
May 2004 Inbound Document Linker 3.2 1

Operations Manual

Release 3.2

May 2004

FileNet, ValueNET, Visual WorkFlo, and OSAR are registered
trademarks of FileNet Corporation.
Panagon, Document Warehouse, UserNET, and The Substance Behind
eBusiness are trademarks of FileNet Corporation.
All other product and brand names are trademarks or registered
trademarks of their respective companies.

Copyright © 2004 FileNet Corporation. All rights reserved.

FileNet Corporation
3565 Harbor Boulevard

Costa Mesa, California 92626
800.FILENET (345.3638)

Outside the U.S., call:
1.7 1 4 .3 2 7 .3 4 0 0

www.filenet.com

http://www.filenet.com/

Contents

End User License Agreement (EULA) 3

Legal Notices 5

About this Manual 6

Education 6

Comments and Suggestions 6

IDL 3.2 an Overview 0

Running IDL Service 1

Viewing IDL Event and Error Logs 2

User Exit Application 3

Sample User Exit 5

DB Access 10

Creating a Link Record 19

Appendix A 21

End User License Agreement (EULA)

License Agreement

READ THIS NOTICE CAREFULLY, THE SOFTWARE IS THE PROPRIETARY INTELLECTUAL
PROPERTY OF FILENET CORPORATION AND IS SUBJECT TO THE MINIMUM TERMS AND
CONDITIONS SET FORTH BELOW. THESE TERMS AND CONDITIONS MAY BE SUPERCEDED BY
THE TERMS AND CONDITIONS OF THE SOFTWARE LICENSE ENTERED INTO BY YOUR
EMPLOYER FOR THE USE OF FILENET SOFTWARE. BY USING THE SOFTWARE, YOU
ACKNOWLEDGE IT IS FILENET PROPRIETARY INTELLECTUAL PROPERTY AND THAT A VALID
SOFTWARE LICENSE WITH FILENET CORPORATION IS APPLICABLE. THEREFORE AT A
MINIMUM, YOU AGREE TO BE BOUND BY THE FOLLOWING FILENET END USER SOFTWARE
LICENSE TERMS AND CONDITIONS (HEREINAFTER “Agreement”):

1. Definition of Software

 The software consists of software owned by FileNet, as well as software owned by certain third
party providers (“Third Party Providers”). Each software product includes any documentation
relating to or describing such software, such as, logic manuals, flow charts, reference materials,
and improvements or updates provided by FileNet (software and documentation collectively called
"Software").

2. Grant of License

A. Each Software product, including any documentation relating to or describing such Software,
such as, but not limited to, manuals, flow charts and improvements or updates provided by
FileNet (collectively "Software"), is furnished to End User under a personal, non-exclusive,
nontransferable license solely for End User's own internal use on End User’s servers and client
devices (“System”) in compliance with this license and all applicable laws and regulations.
End User agrees that this license does not permit End User to: (1) use the Software for a
service bureau application or (2) rent, lease, or sublicense the Software; (3) modify or remove
any proprietary notices; or (4) transfer the Software without prior written consent from FileNet.
The Software is licensed to the End User, not sold.

B. The Software may only be copied, in whole or in part (with the proper inclusion of FileNet's
copyright notice and any other proprietary notice and/or trademarks on such Software), as may
be necessary and incidental for archival purposes or to replace a worn or defective copy.

C. Title to and ownership of the Software and any portions (or any modifications, translations, or
derivatives thereof, even if unauthorized) and all applicable rights in patents, copyrights and
trade secrets in the Software shall remain exclusively with FileNet and its licensors, if any.
Software provided hereunder is valuable, proprietary, and unique, and End User agrees to be
bound by and observe the proprietary nature thereof as provided herein. End User agrees to
take diligent action to fulfill its obligations hereunder by instruction or agreement with its
employees or agents (whose confidentiality obligations shall survive termination of
employment or agency) who are permitted access to the Software. Access shall only be given
on a need-to-know basis. Except as set forth in this Agreement or as may be permitted in
writing by FileNet, End User shall not use, provide or otherwise make available the Software or
any part or copies thereof to any third party. End User shall not reverse engineer, decompile
or disassemble the Software or any portion thereof, nor otherwise attempt to create or derive
the source code. End User acknowledges that unauthorized reproduction, use, or disclosure
of the Software or any part thereof may cause irreparable injury to FileNet and/or its licensors,
who may therefore be entitled to injunctive relief to enforce these license restrictions, in
addition to any other remedies available at law, in equity, or under this Agreement. Further,
the trademarks are owned by the respective trademark holder.

D. FileNet agrees that End User’s affiliates (business entities of which End User owns or controls
more than fifty {50%} percent of the voting rights or the controlling body of the business entity)
may use the Software; provided that prior to any affiliate’s use of the Software: (i) End User
accepts responsibility for the acts or omissions of such affiliates as if they were End User’s
acts or omissions; (ii) End User shall indemnify FileNet against losses or damages suffered by

FileNet arising from breach of this Agreement by any such affiliate; and (iii) such use shall not
constitute an unauthorized exportation of the Software or documentation under U.S.
Government laws and regulations.

3. Termination. FileNet shall have the right to terminate End User's license if End User fails to pay
any and all required license fees or otherwise fails to comply with these license terms and
conditions. Upon expiration of the license term or upon notice of such termination, End User shall
immediately return or destroy the Software and all portions and copies thereof as directed by
FileNet and, if requested by FileNet, shall certify in writing as to the destruction or return of the
same. All confidentiality and non-disclosure obligations herein shall survive termination.

4. Limited Warranty

A. FileNet warrants that it has good and clear title to or has the right to sublicense the Software
being licensed hereunder, free and clear of all liens and encumbrances.

B. FileNet warrants for a period of ninety (90) days from the Shipment Date, Software used in a
manner for which it was designed will perform the functions described in the applicable FileNet
documentation supplied at the time of delivery provided that, (i) Software is continuously
subject to a FileNet Software Support contract, (ii) any substantial nonconformance is
reproducible, and (iii) the substantial nonconformance is not caused by third party software or
hardware not specified in FileNet’s documentation or not expressly authorized in advance by
FileNet. FileNet's sole obligation and liability hereunder shall be to use reasonable efforts to
remedy any material non-conformance, which is reported to FileNet in writing within the
warranty period.

C. End User accepts sole responsibility for, system configuration, design and requirements,
selection of the software for the intended results, modifications, changes or alterations.

D. THERE ARE NO OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE OR NONINFRINGEMENT WITH RESPECT TO THIS
AGREEMENT, THE AGREEMENT, OR THE SOFTWARE LICENSED HEREUNDER.
FILENET DOES NOT WARRANT THAT THE OPERATION OF THE SOFTWARE WILL BE
UNINTERRUPPTED, THAT THE SOFTWARE IS ERROR-FREE, OR THAT ALL ERRORS
CAN BE CORRECTED.

5. Export. End User agrees that the Products purchased hereunder will not be exported directly or
indirectly, separately or as part of any system, without first obtaining a license from the U.S.
Department of Commerce or any other appropriate agency of the U.S. Government, as required.

6. Restrictions on Use. End User acknowledges that one of FileNet's Third Party Providers provides
application integration software as part of the Software (the "Integration Software"). End User
agrees to use the Software solely as follows: (i) FileNet's workflow or content management
software will be the triggering source and/or the destination of the transaction managed by the
Integration Software; (ii) FileNet's workflow or content management functionality must be a
necessary part of the transaction managed by the Integration Software such that without such
FileNet functionality, the transaction managed by the Integration Software could not process; (iii)
the Software will not be used or configured in such a way as to only provide the functionality that
the Integration Software provides; and (iv) all derivative works of the Software made by or for End
User are subject to the foregoing restrictions.

7. Choice of Law. The laws of the State of California will govern the construction and operation of
this Agreement without regard to the conflict of laws provisions thereof.

8. U.S. Government Restricted Rights. The Software is Commercial Software and the
Software and Documentation are provided with Restricted Rights. Use, duplication or disclosure by the
Government is subject to restrictions as set forth in paragraph (c) (1) (ii) of the Rights in Technical Data
and Computer Software Clause at DFARS 252.227-7013 or subparagraphs (c) (1) and (2) of the
Commercial Computer Software-Restricted Rights at 48 CFR 52.227-19, as applicable.
Contractor/manufacturer is FileNet Corporation, 3565 Harbor Blvd., Costa Mesa, California 92626.

Legal Notices

This document contains information proprietary to FileNet Corporation (FileNet).
Disclosure, reproduction, or use of any FileNet proprietary information from any part
of this document is prohibited without prior written permission from FileNet.
Even though FileNet has tested the hardware and software and reviewed the
documentation, FileNet makes no warranty or representation, either express or
implied, with respect to the hardware, software, or documentation, their quality,
performance, merchant-ability, or fitness for a particular purpose. FileNet has made
every effort to keep the information in this manual current and accurate as of the date
of publication or revision. However, FileNet does not guarantee or imply that this
document is error free or accurate with regard to any particular specification. As a
result, this product is sold as is, and you the purchaser are assuming the entire risk
as to its quality and performance.
In no event will FileNet be liable for direct, indirect, special, incidental, or
consequential damages resulting from any defect in the hardware, software, or
documentation, even if advised of the possibility of such damages. In particular,
FileNet shall have no liability for any programs or data stored in or used with FileNet
products, including the costs of recovering such programs or data.
Some states do not allow the exclusion or limitations of liability for incidental or
consequential damages, so the above limitation or exclusion may not apply to your
installation. Certain rights may vary from jurisdiction to jurisdiction.
No FileNet agent, dealer, or employee is authorized to make any modification,
extension, or addition to the above statements. Microsoft®, Windows® and Windows
NT® are registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries.

About this Manual

This manual provides the details of the functionalities and features offered by
Inbound Document Linker (IDL) 3.2 product.

Education

FileNet provides various forms of instruction. Please visit the Global
Learning Services in FileNet's Service & Support area at
http://www.filenet.com/

Comments and Suggestions

FileNet invites all customers to communicate with the documentation
group on any question or comment related to FileNet manuals and
online help. Send an email to docs@filenet.com. We will make every
effort to respond within one week. Your suggestions help us improve
the products we deliver.

http://www.filenet.com/
mailto:docs@filenet.com

1
IDL 3.2 an Overview

Inbound Document Linker (IDL) enables batch linking of FileNet
documents with Siebel records. The rules are defined to specify the
match criteria. Based on matching rules defined in the Link Rules table of
the Application Connector for Siebel 7 (ACS7) database, IDL matches the
properties of a FileNet document to the properties of Siebel records. If a
FileNet document and a Siebel record match, a link record is inserted into
the Document Link table.

The user can use a FileNet Queue or a flat file containing FileNet
document identifiers as input to the Inbound Document Linker. The
FileNet Queue can be a FileNet Distributor queue for new FileNet
documents or an existing queue that is pre-filled with value by another
application.

IDL runs as Windows Service on the machine in unattended mode. IDL
Service periodically starts batch linking process based on configurable
’Run IDL Every … minute’ parameter. IDL Service can process multiple
queues in parallel if queues are configured using IDL Configuration Tool.
Link activity may be logged, along with any warning or error conditions to
local event and error log files. For each input source (in case of queue, it
can be multiple), one event log file is created.

May 2004 Inbound Document Linker 3.2 1

2
Running IDL Service

IDL is executed as a Windows service and can be set up to periodically
start linking process. To run the service:

1. Navigate to Start ->Settings->Control Panel->Administrative
Tools->Services to open the Services Control Manager.

2. Select IDLService from the list of services and start it. A progress
bar appears, as shown below:

May 2004 Inbound Document Linker 3.2 2

3
Viewing IDL Event and Error Logs

To view the Event log and Error logs:

1. Open the directory specified in the Event Log Path and Error Log
Path of IDL 3.2 Configuration Tool.

2. Open the required log file.

The user should always set Event Log and Error Log parameters to true
in IDL 3.2 Configuration Tool to enable logging of all activities, warnings
and errors. Each run creates a new event log, with timestamp. The error
log file is created only if an error occurs. The format for event log is:

 IDL_Instance_n_Event_Log_yyyymmdd_hhmmss.log

 where yyyymmdd_hhmmss is the timestamp.

Error log files are named as IDL_Error_Log_yyyymmdd_hhmmss.log.
Sample Event Log and Error log files are given in Appendix A.

It is the responsibility of the system administrator to delete obsolete event
and error log files. No automatic deletion is provided.

May 2004 Inbound Document Linker 3.2 3

4
User Exit Application

User Exit application can be a Windows DLL or COM DLL. User Exit
application needs to support an entry function by name ‘Process’ as
follows:

For VB based User Exit application, the signature of ‘Process’ function is:

Public Function Process(
ByVal p_conIDLDB As ADODB.Connection,
ByVal p_strDatabaseType As String,
ByVal p_conSiebel As SiebelDataServer.SiebelApplication,
ByVal p_strFnLibrary As String,
ByVal p_strDocClass As String,
ByVal p_strDocID As String,
ByVal p_strBusComp As String,
ByVal p_strRowIDs As String,
ByVal p_strUserExitData As String) As Boolean

For VC++ based User Exit application, the signature of ‘Process’ function
is:

bool Process (ADODB::_ConnectionPtr pDBConnecton,

 char* sDatabaseType,
 SiebelDataServer::SiebelApplicationPtr pSiebelConnection ,
 char* FnLibary,
 char* sDocClass,
 long lDocID,
 char* sBusComp,
 char* sRowID,
 char* sUserExitData)

To configure User Exit Application:

1. Launch the IDL Configuration Tool.
2. Click User Exit Setting to enable User Exit configuration section.

3. Select ‘User Exit DLL Type’.

i. Select ‘Normal DLL’ option if User Exit DLL is normal Windows DLL. .

ii. Select ‘COM DLL’ option if User Exit DLL is COM DLL..

4. Enter name of User Exit DLL.

a Enter fully qualified name of User Exit DLL if selected option is
‘Normal DLL’. .

b Enter Program ID of Class containing ‘Process’ entry function if
selected option is ‘COM DLL’.

Format of Program ID: User Exit DLL name. Class Name

May 2004 Inbound Document Linker 3.2 4

5. If User Exit DLL is ‘COM DLL’ then register User Exit DLL.

May 2004 Inbound Document Linker 3.2 5

5
Sample User Exit

The IDL3.2 release media provides sample User Exit Program. This can
be referred to write new User Exit Programs.

Brief Explanation of this COM DLL written in VB is as follows:

Project References

• Microsoft ActiveX Data Object Library 2.6 (msado15.dll).

• Siebel Data BusObject Interfaces (sobjsrv.tlb).

• BulkLnkDLL (BulkLnkDLL.dll)

• IDLInsertDLL (IDLInsertDLL.dll)

Class Description

clsUserExitImpl.cls

This class serves as the main program of the Sample User Exit
application. The ‘Process’ function is defined in this class. This is
the main method that is called from IDL application. This class
also contains more methods for other operations explained below.

Class Name clsUserExitImpl

Extends /Implements N.A

Package N.A

Purpose / Description This is the main class in the Sample Application.
IDL instantiates this class to implement User Exit
functionality.

 Member Functions

1. Process

Structure Function Process (p_conIDLDB As
ADODB.Connection,p_strDatabaseType As String, p_conSiebel as
SiebelDataServer.ApplicationObject, p_strLibrary as String, p_strDocClass
as String, p_strDocID as string, p_strBusComp as String, p_strRowIDs() as
String, p_strUserExitData as String) as Boolean

Protection Public

May 2004 Inbound Document Linker 3.2 6

Level

Description This function is the main entry point for the Sample Application. IDL calls
this function after passing all the parameters, mentioned below. The
function encapsulates the complete functionality of Sample Application.

Parameters P_conIDLDB - ADODB Connection

p_strDatabaseType - Database Type

 Oracle or MSSQL

p_conSiebel - Siebel Connection Handle

p_conIDLDB - IDL Database Connection Handle

p_strLibrary - Name of FileNet Library.

p_strDocClass - Name of FileNet Document Class.

p_strDocID - Document ID.

p_strBusComp - Name of Siebel Business Component

p_strRowIDs() - Array of matching Siebel Row Ids.

p_strUserExitData - User Exit specific data (Not used in current
Sample Application)

Return Values Boolean

Logic Create object of clsGEL class of BulkLnkDLL.

Store value of passed parameters to appropriate variables.

Read values from ini file by calling ReadIni method.

If ReadIni returns “False”,

1. Write in Error Log.

2. Return True.

Set oApp object of clsGEL object to Siebel Connection Handle.

Call CreateAndLink method to create record in Siebel business component
and create link between newly created record and document being
processed.

Return True.

2. ReadIni

Structure Function ReadIni () as Boolean

Protection
Level

Private

Description This method reads BulkLink_GEL.ini file and sets the variables of sample
application.

Parameters

Return Values Boolean

May 2004 Inbound Document Linker 3.2 7

Logic Read BulkLink_GEL.ini file.

Set local variables of the applications to values read from BulkLink_GEL.ini

file.

Note: BulkLink_GEL.ini is used by Sample User Exit application that is placed in
System folder. (For example “C:\WINNT”)

3.CreateAndLink

Structure Function CreateAndLink ()

Protection
Level

Private

Description This function creates a record in Siebel business component. The name of
this Business Component is passed as parameter from IDL. This function
creates a link between newly created record in Siebel and FileNet
document, which is currently being processed.

Parameters

Return Values

Logic Create a record in Siebel business component by calling CreateSRRecord()
method of clsGEL object.

If successfully created

• Take RowID of newly created Siebel record.

• Create an object of CDLTRecord of IDLInsertDLT.

• Set values of member variables of CDLTRecord object.

• Create link between newly created Siebel record and FileNet
document by calling InsertRecordInDLT method of
IDLInsertDLT.dll.

If InsertRecordInDLT does not return 0

Write to Error Log that insert failed.

Else

Write to Error Log that insert is successful.

Module Description

modHelper.bas

This module is provides a helping hand to clsUserExitImpl class and
contains all the global variables and common methods.

The module contains all the global variables and common methods.

May 2004 Inbound Document Linker 3.2 8

Member Variables

S.No Class Variable Name Type Description

1 G_intNumCreatableBCs Integer This variable stores
number of creatable
business components.

2 G_strCreatableBCNames() String Array that stores names of
all creatable business
components.

3 G_strBCLinkRuleIDs() String Array that stores Link rule
ID’s for the Creatable
business components.

4 G_intNoFNLinkFields() Integer Array that stores number
of Link Fields per
Creatable business
components.

5 G_strFNLinkFields() String Array that stores Link
Fields for the business
components.

6 G_intNoBCUpdateFields() Integer Array that stores number
of business components
Update fields for each
business component.

7 G_strBCFieldInfo() udtBCUpdate
Fields

Array that stores FN-
Siebel pair information for
business component.

8 G_intNumNoMatchFields Integer This variable stores
number of fields of
NoMatchRule business
component.

9 G_strNoMatchFieldNames(
)

String Array that stores names of
Siebel fields of
NoMatchRule business
component.

10 G_strNoMatchFieldValues() String Array that stores values of
all Siebel Fields of
NoMatchRule business
component.

11 G_intNoParentRowIds Integer This variable stores
number of fields that store
RowID of the parent
business component as
value.

12 G_strParentRowIdNames() String Array that contains names
of the fields that store
RowID of the parent
business component as
value.

May 2004 Inbound Document Linker 3.2 9

13 G_strNoMatchBCName String This variable stores name
of the NoMatchRules
business component.

14 G_strDocID String Stores currently processed
Document ID.

15 G_strRowIDs() String Array that contains
matching Row ID’s in
Siebel against currently
processed Doc ID.

16 G_strLibrary String Stores name of the FileNet
library currently being
processed.

17 G_strDocClass String Stores name of the FileNet
document class currently
being processed.

18 G_strBusComp String Stores name of the Siebel
business component.

19 G_strUserExitData String Stores additional User Exit
data passed from IDL.

20 G_conSiebel SiebelDataSe
rver.Applicati
onObject

Stores reference to the
Siebel application
connection currently used
by IDL.

21 G_conIDLDB ADODB.Conn
ection

Stores reference to the
IDL database connection
currently used by IDL.

Logging

Error Logging

In case, Sample Application encounters some errors then one Error Log
file is created and details of these errors are written to this file.

Name of Log file: SampleUserExit_YYYYMMDD_HHMMSS.log.

where,

• YYYY: Current Year

• MM: Current Month

• DD: Current Date

• HH: Current Hour

• MM: Current Minute

• SS: Current Second

This file is created in the same directory where sample application is
residing.

May 2004 Inbound Document Linker 3.2 10

6
DB Access

DB Access is a COM DLL that exposes methods used by IDL DB
Configuration Tool to interact with IDL database. These methods can be
used by custom applications to insert, update and delete dynamic tables
and their data in IDL database.

Brief explanation of this COM DLL written in VB is as follow:

Project References

• Microsoft ActiveX Data Object Library 2.7 (msado15.dll).

Class Description

DBAccess

This class serves as the main program of the DBAccess COM
DLL. This class contains various methods for the aforementioned
database operations.

Class Structure DBAccess

Extends /Implements N.A

Package N.A

Purpose / Description This is the main class in the DBAccess COM DLL.
This class is instantiated by IDL DB Configuration
Tool to interact with IDL database.

 Member Functions

1. FetchConfiguredLibraries

Structure Public Function FetchConfiguredLibraries() As Recordset

Protection

Level

Public

Description This method returns all the configured libraries as a recordset.

Parameters None

Return Values Recordset

May 2004 Inbound Document Linker 3.2 11

Example Dim l_objDBAccess As DBAccess.clsDBAccess

Dim l_objRS As ADODB.Recordset

Set l_objRS = g_objDBAccess.FetchConfiguredLibraries()

‘Loop through the resordset to get all the configured libraries

‘In this example, adding them to a combo box called cmbLibrary

While Not l_objRS.EOF

cmbLibrary.AddItem l_objRS.Fields(0)

l_objRS.MoveNext

Wend

2. FetchColumnNames

Structure Public Function FetchColumnNames(p_strTableName As String) As
Recordset

Protection
Level

Public

Description This method returns the column names of a table as recordset.

Parameters p_strTableName - Table Name - String

Return Values Recordset

Example Dim l_objDBAccess As DBAccess.clsDBAccess

Dim l_objRsColumns As ADODB.Recordset

'Getting the column names in a recordset

Set l_objRsColumns =
l_objDBAccess.FetchColumnNames(m_strTableName)

While Not l_objRsColumns.EOF

'Loop through the recordset to get the column names

l_objRsColumns.MoveNext

Wend

3. FetchConfiguredDocClasses

Structure Public Function FetchConfiguredDocClasses(ByVal p_strLibrary As String)
As Recordset

Protection
Level

Public

Description This method fetches all the configured document classes

Parameters p_strLibrary - Library Name - String

Return Values Recordset

May 2004 Inbound Document Linker 3.2 12

Example Dim l_objDBAccess As DBAccess.clsDBAccess

Dim l_objRS As ADODB.Recordset

Dim l_strLibName as String

l_strLibName = “csdb”

Set l_objRS =

l_objDBAccess.FetchConfiguredDocClasses(l_strLibName)

While Not l_objRS.EOF

'Loop through the recordset to get the doc class names

l_objRS.MoveNext

Wend

4. FetchConfiguredFields

Structure Public Function FetchConfiguredFields(ByVal p_strLibrary As String, ByVal
p_strDocClass As String) As Recordset

Protection
Level

Public

Description This method fetches all the configured fields for a particular configured
document class

Parameters p_strLibrary - Library Name - String

p_strDocClass - Doc Class Name - String

Return Values Recordset

Example Dim l_objDBAccess As DBAccess.clsDBAccess

Dim l_objRsColumns As ADODB.Recordset

Dim l_strLibName as String

Dim l_strDocClassName as String

l_strLibName = “csdb”

l_strDocClassName = “Account”

Set l_objRsColumns =

g_objDBAccess.FetchConfiguredFields(l_strLibName,

l_strDocClassName)

While Not l_objRsColumns.EOF

'Loop through the recordset to get the configured field names

l_objRsColumns.MoveNext

Wend

May 2004 Inbound Document Linker 3.2 13

5. AddFieldToSource

Structure Public Function AddFieldToSource(ByVal p_strLibrary As String, ByVal
p_strDocClass As String, ByVal p_strField As String) As Boolean

Protection
Level

Public

Description This method fetches the name of the dynamic table corresponding to the
passed document class and library name from FN_IDL_TABLESOURCE
table of IDL database. After fetching, it inserts the passed field name as a
column of the dynamic table.

Parameters p_strLibrary - Library Name - String

p_strDocClass - Doc Class Name - String

p_strField - Field Name - String

Return Values Boolean. True, if the operation is successful and False otherwise.

Example Dim l_objDBAccess As DBAccess.clsDBAccess

Dim l_strLibName as String

Dim l_strDocClassName as String

Dim l_strFieldName as String

l_strLibName = “csdb”

l_strDocClassName = “Account”

l_strFieldName = “Account”

If Not g_objDBAccess.AddFieldToSource(l_strLibName,
l_strDocClassName, l_strFieldName) Then

Exit Sub

End If

6. DeleteFieldFromSource

Structure Public Sub DeleteFieldFromSource(ByVal p_strLibrary As String, ByVal
p_strDocClass As String, ByVal p_strField As String)

Protection
Level

Public

Description This method deletes the column, passed as parameter from the dynamic
table of IDL database.

May 2004 Inbound Document Linker 3.2 14

Parameters p_strLibrary - Library Name - String

p_strDocClass - Doc Class Name - String

p_strField - Field Name - String

Return Values None

Example Dim l_objDBAccess As DBAccess.clsDBAccess

Dim l_strLibName as String

Dim l_strDocClassName as String

Dim l_strFieldName as String

l_strLibName = “csdb”

l_strDocClassName = “Account”

l_strFieldName = “Account”

l_objDBAccess.DeleteFieldFromSource (l_strLibName,
l_strDocClassName, l_strFieldName)

7. FetchConfiguredSources

Structure Public Function FetchConfiguredSources() As Recordset

Protection
Level

Public

Description This method fetches the library name, document class name and the
dynamic table name from the FN_IDL_TABLESOURCE table in IDL
database.

Parameters None

Return Values Recordset

Example Dim l_objDBAccess As DBAccess.clsDBAccess

Dim l_objRsColumns As New ADODB.Recordset

Set l_objRsColumns =
l_objDBAccess.FetchConfiguredSources

8. InsertDocIDInDatabase

Structure Public Sub InsertDocIDInDatabase(ByVal p_strDocID As String)

Protection
Level

Public

Description This method inserts the document ID passed in the FN_IDL_CSDOCIDLIST

May 2004 Inbound Document Linker 3.2 15

table of IDL database. This is if table is not configured for document class

Parameters p_strDocID - Document ID - String

Return Values None

Example Dim l_objDBAccess As DBAccess.clsDBAccess

Dim l_strDocID as String

l_strDocID = “123”

l_objDBAccess.InsertDocIDInDatabase (l_strDocID)

9. DeleteTableFromDatabase

Structure Public Sub DeleteTableFromDatabase(ByVal p_strLibrary As String, ByVal
p_strDocClass As String)

Protection
Level

Public

Description This method deletes the dynamic table from IDL database for the passed
library name and document class name.

Parameters p_strLibrary - Library Name - String

p_strDocID - Document ID - String

Return Values None

Example Dim l_objDBAccess As DBAccess.clsDBAccess

Dim l_strLibName as String

Dim l_strDocClassName as String

l_strLibName = “csdb”

l_strDocClassName = “Account”

l_objDBAccess.DeleteTableFromDatabase(l_strLibName,
l_strDocClassName)

10. FetchDocIDsFromDatabase

Structure Public Function FetchDocIDsFromDatabase() As Recordset

Protection
Level

Public

Description This method fetches all the Document IDs from FN_IDL_CSDOCIDLIST
table of IDL database.

Parameters None

May 2004 Inbound Document Linker 3.2 16

Return Values Recordset

Example Dim l_objDBAccess As DBAccess.clsDBAccess

Dim l_objRsColumns As New ADODB.Recordset

Set l_objRsColumns =

l_objDBAccess.FetchDocIDsFromDatabase

While Not l_objRsColumns.EOF

'Loop through the recordset to get the document Ids.

l_objRsColumns.MoveNext

Wend

11. DeleteDocIDFromDatabase

Structure Public Sub DeleteDocIDFromDatabase(ByVal p_strDocID As String)

Protection
Level

Public

Description This method deletes the document Id passed as parameter from
FN_IDL_CSDOCIDLIST table of IDL database.

Parameters p_strDocID - Document ID - String

Return Values None

Example Dim l_objDBAccess As DBAccess.clsDBAccess

Dim l_strDocID As String

l_strDocID = “123”

g_objDBAccess.DeleteDocIDFromDatabase(l_strDocID)

12. UpdateDocIDInDatabase

Structure Public Sub UpdateDocIDInDatabase(ByVal p_strNewDocID As String,
ByVal p_strOldDocID As String)

Protection
Level

Public

Description This method updates the document ID in FN_IDL_CSDOCIDLIST table of
IDL database.

Parameters p_strNewDocID - New Document ID - String

p_strOldDocID - New Document ID - String

Return Values None

May 2004 Inbound Document Linker 3.2 17

Example Dim l_objDBAccess As DBAccess.clsDBAccess

Dim l_strNewDocID As String

Dim l_strOldDocID As String

l_strNewDocID = “456”

l_strOldDocID = “123”

l_objDBAccess.UpdateDocIDInDatabase(l_strNewDocID,

l_strOldDocID)

13. IsDBConnected

Structure Public Function IsDBConnected() As Boolean

Protection
Level

Public

Description This method returns a Boolean, which signifies whether the connection to
the database exists or not.

Parameters None

Return Values Boolean

Example Dim l_objDBAccess As DBAccess.clsDBAccess

If l_objDBAccess.IsDBConnected = False Then

Exit Sub

End If

14. FetchFromDatabase

Structure Public Function FetchFromDatabase(ByVal p_strSQL As String) As
Recordset

Protection
Level

Public

Description This method executes a select query on the database and returns the
results as a recordset.

Parameters p_strSQL - SQL Query - String

Return Values Recordset

Example Dim l_objDBAccess As DBAccess.clsDBAccess

Dim l_objRsTemp As New ADODB.Recordset

May 2004 Inbound Document Linker 3.2 18

Dim l_strSQL As String

l_strSQL = "Select * from FN_IDL_CSDOCIDLIST where DOCID

= ‘123’”

Set l_objRsTemp =

l_objDBAccess.FetchFromDatabase(l_strSQL)

While Not l_objRsTemp.EOF

'Loop through the recordset to browse through the results of the
 ‘SQL Query

l_objRsTemp.MoveNext

Wend

15. ExecuteSQLQuery

Structure Public Sub ExecuteSQLQuery(ByVal p_strSQL As String)

Protection
Level

Public

Description This method executes a query on the database, usually INSERT, UPDATE
or DELETE.

Parameters p_strSQL - SQL Query - String

Return Values None

Example Dim l_objDBAccess As DBAccess.clsDBAccess

Dim l_strSQL As String

l_strSQL = "Delete from FN_IDL_SOURCE1 where DOCID =

‘123’”

Call l_objDBAccess.ExecuteSQLQuery(l_strSQL)

May 2004 Inbound Document Linker 3.2 19

7
Creating a Link Record

IDL 3.2 provides a helper ActiveX DLL InsertDLTRecord to create a link
record in Document Link table of ACS7 database. This DLL is used,
whenever there is a need to create link record by any third party
application. This DLL insulates third party application from IDL database
schema. The following are details of this DLL:

Class name: clsInsertDLT

Function Signature: Public Function InsertDLTRecord (

ByVal p_IDLDBConnection As ADODB.Connection,

ByVal p_strDatabaseType As String,

ByVal p_strBusComp As String,

ByVal p_strRowID As String,

ByVal p_strLibrary As String,

ByVal p_strDocClass As String,

ByVal p_strDocID As String,

ByVal p_strCreatedBy As String) As Boolean

Input Parameters:

Sr. No. Parameter Type Description
1 p_IDLDBConnection ADODB.

Connection

Represents an active
connection to IDL database.

2 p_strDatabaseType String Represents types of RDBMS
used for IDL database.

Valid values are:

‘O’: Oracle

‘S’: SQL Server
3 p_strBusComp String Represents Siebel business

component
4 p_strRowID String Represents Siebel row ID to

be linked
5 p_strLibrary String Represents FileNet library

May 2004 Inbound Document Linker 3.2 20

6 p_strDocClass String Represents document class
of the DocID

7 p_strDocID String Represents document ID
8 p_strCreatedBy String Represents an application,

which is creating link record.

Output Parameter:

Sr. No. Type Description

1 Boolean If link record creation is successful then the
function returns ‘True’ else returns ‘False’.

May 2004 Inbound Document Linker 3.2 21

Appendix A

Sample format of Event Log File
2002/09/16 10:13:41,IDL Instance starting Doc ID Processing
2002/09/16 10:13:44,Log on to FileNet Library successful
2002/09/16 10:13:44,Log on to Siebel Application Server successful
2002/09/16 10:13:46,Log on to IDL Database successful
2002/09/16 10:13:46,File Name = "C:\FileNet\IDL\DocIDS.txt", Document
Source File Opened
2002/09/16 10:13:46,Before Fetching DocID from Source File
2002/09/16 10:13:46,After Fetching DocID from Source File
2002/09/16 10:13:46, Before fetching Document class
2002/09/16 10:13:49, After fetching Document class
2002/09/16 10:13:49,Before Fetching Link Rules
2002/09/16 10:13:49,After Fetching Link Rules
2002/09/16 10:13:49,Before Processing Link Rule
2002/09/16 10:13:49,Before Fetching Field Value
2002/09/16 10:13:50,After Fetching Field Value
2002/09/16 10:13:50,Before Executing query to Siebel
2002/09/16 10:13:51,DocID = 196212, Business Component = "Account",
Siebel Field Name = "Name”, Matching Siebel Row ID Not Found
2002/09/16 10:13:51,After Executing query to Siebel
2002/09/16 10:13:51,After Processing Link Rule
2002/09/16 10:13:51,Before Processing Link Rule
2002/09/16 10:13:51,Before Fetching Field Value
2002/09/16 10:13:51,After Fetching Field Value
2002/09/16 10:13:51,Before Executing query to Siebel
2002/09/16 10:13:51,DocID = 196212, Business Component = "Account",
Siebel Field Name = "Location”, Matching Siebel Row ID Not Found
2002/09/16 10:13:51,After Executing query to Siebel
2002/09/16 10:13:51,After Processing Link Rule
2002/09/16 10:13:51,Before Fetching DocID from Source File
2002/09/16 10:13:51,No More Document ID found in Source File
2002/09/16 10:13:51,Document Source File Closed
2002/09/16 10:13:51,IDL Instance completed Doc ID Processing

Sample format of Error Log File
Time: 2002/09/25 10:24:09
Error Description: Error occurred while fetching link rules from
'LinkRulesTable'
Error Code: 3127
Error Message: IDispatch error #3127

	End User License Agreement (EULA)
	Legal Notices
	About this Manual
	Education
	Comments and Suggestions

	IDL 3.2 an Overview
	Running IDL Service
	Viewing IDL Event and Error Logs
	User Exit Application
	Sample User Exit
	DB Access
	Creating a Link Record
	Appendix A

