IBM FileNet Forms Manager

Version 5.0.0

API Syntax

(10)

L L
‘11 rr'

GC31-5499-00

IBM FileNet Forms Manager

Version 5.0.0

API Syntax

(10)

L L
‘11 rr'

GC31-5499-00

Note
FBefore using this information and the product it supports, read the information in [‘Notices" on page 38.|

This edition applies to version 5.0.0 of IBM FileNet Forms Manager (product number 5724-R89) and to all
subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2005, 2007. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

API 5
Table of Contents

Table of Contents

Table of Contents. 5
REVISION LOQ . . . oo 7
FileNet Forms Manager APl SYNtax e 8
AboUt thisS DOCUMENL. e e e e 8
Forms Manager Server Internal Use e 8

Web ApplicationsS 8

APL OVEIVIEBW . . oo 8
Template SOUIMCES.o e 9
TOOIbAr SOUICES 9
TOOIDAr SOUICE TYPES . . o oottt e 10
EXaMPIES . o 11

Inline Toolbar Source COMMANASo 11
EXaMPIES . o 12
Toolbar Configuration 13
Toolbar Configuration StruCtUIe 13
Toolbar Configuration Commandst 14

Data SOUICES . . oot 19
Data SOUICE TYPES. . . vttt ettt e e e 20
EXamMPIES . o 20

What Happens When a Form is Opened e 21
Data SOUICE MEIGING . . . o oottt e e e e e 22
Mapping Forms Manager Data Typesto XML Datat 25
Syntax CoNSIAErationsS 26

ID ValUBS . . o 26
DelimMiterS . . o oo 26
Optional ATQUMENTS o o e e e e e e 26
Escape Characters and Url-ENcodingot 26
EXaMPIES . 26
Before YoU Begino 27

Embed Custom Toolbar Only e 27
Writing the Toolbar Configuration XML e e e 28

First Time Deployment to the Forms Manager Servert 29
Updating an Existing Template on the Forms Manager Server, 29

Data Source and Toolbar SOUICEt 29
FOImM Ty P . e 29

Data SOUICE ONlY . ..o e e 32
URL TP . et e e e 32
Appendix A - Toolbar Configuration Schema. 34
Validate Your XML Toolbar Code 34
Appendix B - Capturing Data from a Custom Post Action....................... 36
SaAMPIE Sl . . . e e 36

NOLICES . . . ot 38

API 6
Table of Contents

Trademarks.o e 40

Revision Log

APl | 7
Revision Log

Date Revisions

09/2007 Updated guide to IBM documentation specifications.

11/2006 Added content on using scripts and buttons.

11/2006 Updated copyright information and version number; added revision

log.

08/2005

Initial posting.

API
FileNet Forms Manager APl Syntax

FileNet Forms Manager APl Syntax

FileNet® Forms Manager has three components:
* Forms Manager Server

* eForms Central library

* FileNet eForms

Forms Manager Server is comprised of the files that are stored on the web server and the services behind
the eForms Central library. Services can include auto-incrementing of numbers on forms created from
templates, form tracking, and database lookups (e.g., country codes, industry or company-specific data
such as part numbers).

The eForms Central library is a repository of electronic files that are available from your organization’s web
server.

FileNet eForms is comprised of HTML eForms (used for filling out a form in a web browser) and Desktop
eForms (used for filling out forms on the desktop).

The API syntax for the Forms Manager Server is described in this document. Detailed examples have
been provided for your convenience at the end of this chapter.

About this Document

This document is intended for application integrators who can understand and write XML (for creating
custom toolbars), and have experience using middleware scripting environments such as ASP or Cold
Fusion (for using custom data sources). The following describes some cases for when you want to use this
document:

Forms Manager Server Internal Use

Users are presented with forms containing customized toolbars. These toolbars are embedded within the
definition of the ITX Form Template and can include custom names and actions. For example, a Purchase
Order Form may require a toolbar with a button named “Email” instead of the standard “Send” and a
custom button that goes to a specific URL link. The Toolbar Sources API syntax shown on pages 5-15
would apply to this task.

Web Applications

A web developer is creating a web application that includes a form. Form presentation and data is
externally stored and controlled with external HTML pages and databases. The form is called on demand
and filled with prefill or existing data. The Template Sources, Toolbar Sources, and Data Sources API
syntax shown on pages 5-15 would apply to this task.

APl Overview

An HTML eForm is rendered by a request to Form.aspx. The target of this request can be a document
window, a frame, or an iframe. This request requires some or all of the following parameters:

» template: Describes the optional template source used to open the form.

8

APl | g
Template Sources

« data: Describes the optional data sources used to open the form.

» toolbar: Describes the optional toolbar sources that are used to alter the appearance and describes
the functionality of the toolbars presented when the form opens.

» title: The optional title used when the form is opened. The title appears as the title of the form window
and as the default title in the “Save As” dialog box when the user saves the form.

» state: The initial state of the form which can be set to new (“0”) or existing (“1”).

Each of these can be specified as query string or post parameters. If one of the parameters references
another parameter that contains a large data structure, the referenced parameter must be passed as a
post parameter.

Form.aspx is located in Program Files > FileNet > Forms Manager > [Name of eForms Central library]. This page can
be referenced in a url, e.g., http://libraryname/form.aspx?template=local,Expense2003.

Template Sources

A template source provides the template document that contains the graphic and intelligence components
of a form. Only a single template source can be specified. The template source must be indicated explicitly.
The following data source type is supported:

Data Source Type and Syntax Description

I ocal ,t enpl at eRef er ence The form template is obtained from a template
document stored in the eForms Central library with the
template ID templateReference and the document
type “ITX". Use the template’s template ID as the
template reference. NOTE For performance reasons,
parsed templates are cached at the server and are
referenced internally by both the template ID and a “last
modified” timestamp.

Examples

For m aspx?t enpl at e=l ocal , Expenses2003

This example specifies that a template with the template ID “Expenses2003” is to be opened from the
eForms Central library.

Toolbar Sources

A toolbar source provides a toolbar configuration to be applied to the existing collection of toolbars and
buttons that are to be displayed on a form. A toolbar configuration describes the toolbar configuration
commands to be applied to the existing collection of toolbars and buttons. A form can have multiple or no
toolbar sources.

Toolbar configurations are provided by the following:

» Built-in toolbar configurations.

API 10
Toolbar Sources

« template and data sources.

» Toolbar source parameter.

Toolbar configurations are applied in the following order:

e HTML eForms built-in toolbar configuration.

« Forms Manager Server built-in toolbar configuration.

» Template source toolbar configuration.

* Toolbar configuration from each data source in reverse order (the primary data source is merged last).

* Toolbar configurations from the toolbar parameter in standard order.

HTML eForms provides the following empty built-in toolbars:

e app Forms Manager Server toolbar configuration extends the app toolbar by inserting the buttons
needed to save, send, and track the form.

« form HTML eForms toolbar configuration extends the form toolbar by inserting the buttons needed to
generate a PDF version of the form, and display Help.

» script Reserved for later use.

» custom By default, custom toolbar buttons with embedded scripts are inserted into the custom toolbar.

Toolbar Source Types

Theurl,formfile,andinline toolbar source types are supported. All toolbar source types exceptinli ne
reference a toolbar configuration XML document that describes a series of toolbar configuration
commands to be applied to the existing toolbars (see “Toolbar Configuration” on page 13). The inline
toolbar source type defines the toolbar configuration commands within the parameter. See “Toolbar
Configuration Structure” on page 13 for a complete description of each command.

Arguments that can repeat zero or more times are displayed using brace ({}) symbols. Optional
arguments are displayed using bracket ([]) symbols. See also “Syntax Considerations” on page 26.

APl | 11

Toolbar Sources

Toolbar Source Type and Syntax

Description

url, url

The toolbar configuration is obtained from the web site
at the specified url.

form param

The toolbar configuration is obtained from the HTTP
post parameter specified by param. The request must
be an HTTP post request.

file, param

The toolbar configuration is obtained from the HTTP
post parameter specified by param. The request must
be an HTTP post request with enctype="multipart/form-
data”.

i nline,command {, command}

The toolbar configuration is specified inline as a list of
toolbar configuration commands. See “Inline Toolbar
Source Commands” on page 11 for a description of the
commands and their syntax.

Examples

Url

Form.aspx?template=local, WCExpenses&data=local,0&toolbar=url,http\://hostname/ClearToolbar.xml

This example specifies that the WCExpenses form is to be opened with a url based toolbar source.

Form

Form.aspx?data=form,dat,0,Newé&toolbar=form,tb

This example specifies that a new form is to be opened with the title New from the post parameter dat .
The toolbar configuration obtained from the post parameter t b is applied.

Inline Toolbar Source Commands

The following toolbar commands are supported by the inline toolbar source type. See “Toolbar
Configuration Structure” on page 13 for a complete description of each command.

API
Toolbar Sources

Command and Syntax

Description

add, button, [text], [icon],
[acti on]

Adds a button to the specified toolbar.

A but t on argument in the formt ool bar | D: but t onl D specifies
both the toolbar and the button. A button argument in the form

but t onl D specifies the default toolbar. See “Toolbar
Configuration Structure” on page 13 for more information about
toolbar and button IDs.

The t ext argument must take the form

| anguage: | abel : t ool Ti p{: | anguage: | abel : t ool Ti p}.
See “Toolbar Configuration” on page 13 for a description of toolbar
button text. The tool tip value can be omitted as follows:

en: Send: nul | Or en: Send: .

If the i con argument is specified in the form i d: i conl D, the
built-in icon with icon ID i conl D is displayed. If the i con
argument is specified in the form ur | : addr ess, the icon is
obtained from the specified web address. If the i con argument is
specified as none, no icon is used. If the i con argument is not
specified, the default icon for the action is used. See “” on page 18
for more information.

The act i on argument specifies the built-in action performed
when the user clicks the button. It takes the form
actionl I{: parant.

The text, icon, and action arguments may be optional. See “Toolbar
Button Actions” on page 17 for more information.

nod, button, [text], [icon]
, [action]

Modify the specified button in the specified toolbar as specified by
the text, icon, and action parameters. See the add command
above for a description of each argument. See “Toolbar
Configuration Structure” on page 13 for more information

rem buttonl D

Remove the specified button, which may be of any type, from the
toolbar in which it is found. See “Toolbar Configuration Structure”
on page 13 for more information.

clr,[tool barl D]

Remove all toolbar buttons from the specified toolbar(s).

If the toolbar argument is omitted or specified as all, then remove
all toolbar buttons from all toolbars.

See “Toolbar Configuration Structure” on page 13 for more
information.

Examples

Inline

Form.aspx?template=Ilocal, Test&data=local,47&toolbar=inline,clr,all,add,submit

12

APl | 13
Toolbar Configuration

This example specifies that a local form is to be opened with an inline toolbar source that clears all the
toolbars and inserts a single button using the well-known button ID subni t .

Form

Form.aspx?template=local, Test&data=form,dat&toolbar=form,tb&title=New&state=0

This example opens a new data document from the template with the template ID “Test” and title
“New” from the form parameter “dat”. It merges the toolbar configuration obtained from the form
parameter “tb”.

Toolbar Configuration

A toolbar configuration describes a series of commands to be applied to the existing toolbars when the
form opens. A toolbar configuration can be stored with a template or a form. It can also be included as a
Form.aspx parameter when the request is made to render a form. See “Toolbar Configuration Commands”
on page 10 for a description of the commands that can be applied to the existing toolbars. Also see
Appendix A, “Toolbar Configuration Schema” for information on how to validate the XML code for your
toolbar.

Toolbar Configuration Structure

The toolbar configuration structures for the URL, Form, and File types are based on XML. Built-in toolbar
configurations are provided with Forms Manager Server. Toolbar configurations must appear in the top-
level element of a template, between the <revisioninfo> and the <dataModel> elements. Toolbar
configurations can also appear Inline as HTTP post parameters referenced by the t ool bar parameter of
the Form.aspx request.

The following example illustrates how the default toolbars are generated.

<t ool bar Confi g>
<add buttonl D ="submi t”/ >
<add buttonl D ="pdf "/ >

<add buttonl D ="hel p"/ >
<add buttonl D ="save”/ >
<add buttonl D ="saveas"/ >
<add buttonl D ="send”/ >
<add buttonl D ="track”/ >

</ t ool bar Confi g>

In addition to specifying whole toolbars, a toolbar configuration can override or remove parts of a
previously configured toolbar. Thus, the template configuration can override or remove parts of the built-in
configurations, and so on.

For example, here is a configuration that could be used in a template to remove the PDF button:

<t ool bar Confi g>
<renove buttonl D="pdf” />
</t ool bar Confi g>

The following configuration clears all buttons from the form toolbar, removes the PDF button, replaces the
label and tool tip of the Save Document button, and adds a new toolbar with a Privacy Policy button that uses
the Get action to open the appropriate web page. It also uses the url icon source for the worldCorp Home
button.

<t ool bar Confi g>
<cl ear tool bar| D="f or ni/ >
<renove buttonl D="pdf "/ >
<nmodi fy buttonl D="save">
<text | anguage="en” | abel ="Save Docunent” t ool Ti p="Save the docunment” />

APl | 14

Toolbar Configuration

</ modi fy>
<add tool barl D="pol i ci es” buttonl D="pri vacy™>
<text |anguage="en” | abel ="Privacy Policy” tool Ti p="Vi ew Privacy Policy” />
<icon type="id" src="get” />
<action actionl D="get ">
<paranrhttp://ww. wor | dcor p. coml Pol i ci es. ht nx/ par an»
</ action>
</ add>
<add t ool bar| D="pol i ci es” buttonl D="wor | dcor p”>
<text | anguage="en” | abel ="Wor | dCorp Hone” t ool Ti p="Wor| dCorp hone page” />
<icon type="url” src="http://wwv worl dcorp. coniworldcorp.gif” />
<action actionl D="cust oni>
<par am nane="url” type="string">
<! [CDATA[
wi ndow. open("htt p: // www. wor | dcor p. con) ;
11>
</ par anm>
</ action>
</ add>
</ t ool bar Confi g>

Toolbar Configuration Commands

You can use the following commands to configure your toolbars.

toolbarConfig

This is the root element of a toolbar configuration.
Attributes: NONE
Elements: add, modify, remove, clear

add

The button is added to the specified toolbar. All button settings that are not explicitly set assume default
values where possible. An exception is thrown if default values cannot be assumed (e.g., the url for a post
action is not specified). If no toolbar is specified, the button is added to its default toolbar. Because the
button ID must be unique, any other button with a matching ID in any toolbar is removed. If the specified
toolbar does not exist, it is appended to the list of existing toolbars.

Attributes:
Attribute Value Description
toolbarID String The ID of the toolbar to which the button will
be added.
buttonID String The ID of the button to be added.

Elements: text, icon, action

The text, icon, and action elements may be optional. See “Toolbar Button Actions” on page 17 for more
information. If one or more text elements are provided, the language that best matches the browser
settings is selected when the button is displayed.

e.g., <add tool barlD ="custonm buttonl D="send" />

APl | 15
Toolbar Configuration

modify

The button is modified according to the explicit settings specified. All button settings not explicitly specified
are left as before. If the button is found in a different toolbar, it is moved to the specified toolbar. If no
toolbar is specified, the button is modified in the toolbar in which it is found. If the button is not found, it is
created in the specified or default toolbar with default settings as required. An exception is thrown if default
settings cannot be assumed. If the specified toolbar does not exist, it is appended to the list of existing
toolbars.

Attributes:
Attribute Value Description
toolbarlD String The ID of the toolbar in which the button will be
modified.
buttonID String The ID of the button to be modified.

Elements: text, icon, action

The text, icon, and action elements may be optional. See “Toolbar Button Actions” on page 17 for more
information. If one or more text elements are provided, all the original text is discarded and replaced with
the new text. If no text element is specified, no changes are made to the original text.

e.g., <nodify tool barl D="app" buttonl D="SendToServer"/>

remove

The button is removed from the toolbar in which it is found. If the button is not found, no action is
performed.

Attributes:
Attribute Value Description
buttonID String The ID of the button to be removed.

Elements: None

e.g., <renove buttonl D="save" />

clear

All buttons are removed from the specified toolbar. If the specified toolbar does not exist, no action is
performed. If no toolbar is specified, all buttons are removed from all toolbars.

APl | 16

Toolbar Configuration

Attributes:
Attribute Value Description
toolbarlD String The ID of the toolbar from which all buttons will be

removed. If this attribute is “all” or omitted, all
toolbars are cleared.

Elements: None

e.g., <clear toolbarlD="form />

text

The text tag provides localized text for the toolbar button in a particular language. As many text tags as
requested can be added. Based on browser settings, the best language is selected and displayed on the
button. See “” on page 18 for more information.

Attributes:
Attribute Value Description
language String The language of the localized text, e.g., en- US.
label String The localized label for the button.
toolTip String The localized tool tip for the button. If the tool tip is not
specified, the button label is used.

Elements: None

e.g.,<add tool barl D="resources”
<t ext | anguage="en”

</ add>

icon

but t onl D="wor | dcor p” >

| abel ="Wor | dCor p Hone” tool Ti p="Worl dCorp hone page” />

The icon tag provides the icon for the toolbar button. See “” on page 18 for more information and review
the example at the end of this section.

Attributes:
Attribute Value Description
type String If t ype="id", the built-in icon with matching ID is obtained
internally. If t ype="ur| ", the icon is obtained from the
specified url. If t ype="none", no icon is used.
src String If type="id", specifies the icon ID. Ift ype="url", specifies
the url. If t ype="none", no icon is used.

APl | 17
Toolbar Configuration

Elements: None

€.0., <add t ool bar| D="resour ces” buttonl D="wor | dcor p">
<t ext | anguage="en” | abel ="Wor| dCor p Hone” t ool Ti p="Wor | dCor p hone page” />
<icon type="url” src="http://ww. worl dcorp. com worldcorp.gif” />
</ add>

action

The action tag describes the action associated with an action type button. The action is invoked when the
button is clicked. This tag is ignored for all other types of buttons.

Attributes:
Attribute Value Description
actionID String The ID of the action to be performed. See “Toolbar Button
Actions” on page 17 for more information.

Elements: param

€.0., <add tool bar| D="resources" buttonl D="worl dcor p">
<text | anguage="en" |abel ="Worl| dCorp Hone" tool Ti p="Worl dCorp hone page" />
<icon type="url" src="http://ww.worldcorp.conm worldcorp.gif" />
<action actionl D="custoni>
</ action>
</ add>

param

The param tag provides a parameter for the action.
Attributes: None

Elements: The parameter value. Proper encoding is required. For example, the JavaScript™ source code
specified by the source parameter of the custom action can be contained in a CDATA section. See the
following section on “Toolbar Button Actions” for more information.

€.d., <add tool bar| D="resources" buttonl D="worl dcor p">
<text | anguage="en" |abel ="Worl| dCorp Hone" tool Ti p="Worl dCorp hone page" />
<icon type="url" src="http://ww.worl dcorp.conlworldcorp.gif" />
<action actionl D="custoni>
<par an»
<! [CDATA[
wi ndow. open("http://ww. worl dcorp.cont');
>

</ par an»
</ action>
</ add>

Toolbar Button Actions

Each button requires a button ID, toolbar ID, text, icon, and an action. An action is the operation performed
when a button is clicked. Some actions require parameters. If the action ID is not explicitly provided and
the button ID is equivalent to the action ID of an action that requires no parameters, the action ID is implied
by the button ID. If the toolbar ID, text, or icon value is not provided, the default value is implied by the
action ID. Default text is not provided for all actions.

APl | 18
Toolbar Configuration

The following table lists all actions that are supported and their default values.

Action | Action Default Default Default Description
ID Parameters Toolbar English Icon
Text
save N/A app Save = Resaves the form to the eForms

Central library. Behaves like
saveas if the form was not
previously saved.

saveas N/A app Save As Saves the form with a new title or
2] location into the eForms Central
library.
send N/A app Send 52 Sends the form to another user.
£
track N/A app Track _ Displaysthe form’s tracking status.
5
submit N/A form Submit [Submits the form as configured in
& eForms Designer.
pdf N/A form PDF '_j Renders a PDF version of the form
+ in another window.
help N/A form Help Displays the Help document

? associated with thisform as
configured in eForms Designer.

get url form N/A 7 Displays the page at the specified
@ url in anew window.
post url form N/A [Submits the form data formatted as
" “text/xml” to the specified url.

Note: anonymous accessis
required for the url.

custom | source custom N/A : Executes the JavaScript specified
by the source parameter.

®

Toolbar Rendering

Toolbar buttons are rendered on the server on demand using the specified icon and the label whose
language best matches the languages supported by the browser. The button can be rendered in enabled,

API 19
Data Sources

disabled, and rollover states using a standard button height and font. Rendered buttons are cached at the
server for future use.

Toolbars without buttons are not rendered.

The icon can be specified in the toolbar configuration as a built-in icon ID or as a url to an external image
file. The following built-in icon identifiers are supported:

* save

* saveas
* send

» track

e submit
* pdf

* help

* get

e post

e custom

e.g., <nodify buttonl D="NewTool barButton">
<text |anguage="en-US" |abel ="Mil" tool Tip="Send to Clains Dept." />
<icon type="id" src="send" />
</ modi fy>

Data Sources

A data source provides the form data that is used when the form is opened. A form can have multiple or no
data sources. The first data source is called the “primary” data source. The data from all other specified
sources is merged, in order, into the primary data source to provide the data that is used to pre-fill the form
when it is opened. (See “Data Source Merging” on page 22.) The primary data source also provides the
following as required:

 Template ID
* Form title
* Form is new or existing

e Data ID (local data source only)

Data Source Types

API

Data Sources

The following data source types are supported.

Arguments that can repeat zero or more times are displayed using brace ({}) symbols. Optional arguments

are shown in brackets ([]). See also “Syntax Considerations” on page 26.

Data Source Type and Syntax

Description

| ocal ,datal D

The form data is obtained from a form stored in the library
with the data IDdatalD. The form is opened as an existing
data document with the title stored in the eForms Central
library. If the data ID is O, the user’s personal information is
opened as a new form with the title “Untitled.” The
document title is obtained internally from the data
document. The user’s personal information is treated as a
new data document. All other form data documents are
treated as existing form data documents.

url,url

The form data is obtained from a website at the specified
url.

f or mpar am

The form data is obtained from the HTTP post parameter
specified by param. The request must be an HTTP POST
request.

file,param

The form data is obtained from the HTTP post parameter
specified by param. The request must be an HTTP POST
request with enctype="multipart/form-data.”

i nl'ine, [{,nane,val ue}]

The form data is specified inline as a list of name-value
pairs where name and value represent the cell name and
cell value respectively. This type of data source cannot be
used to pre-fill table cells.

cache,cachel D

The form data is obtained from a server cache instance
with the specified cachel D. This type of data source may
only be used internally by the Forms Manager Server.

Examples

Local

For m aspx?t enpl at e=l ocal , Sanpl e&dat a=l ocal , 0; | ocal , 2356&t i t | e=Sanpl e&st at e=1

This example specifies that a data document with the user’s personal information from the local template

with template ID “Sample” is to be opened and merged with a local data document with document ID 2356.
Personal information can be excluded by omitting “local,0”. The document is opened as an existing

document with the title “Sample.”

20

APl | o1
What Happens When a Form is Opened

/ Properties - Microsoft Internet Explorer e P] 1 |
Title: Expenses Dacurnent |D: 2356
Type: ITH Created: 4/14/2003 1:54:39 PM
Filename: Expenzes.it: Modified: 4/14/2003 1:54:44 P

Form aspx?t enpl at e=l ocal , Sanpl e&dat a=l ocal , 0

This example opens a new data document that's pre-filled with the user’s personal information from the
local template with template ID “Sample.” The document is opened as a new form instance with the title
“Untitled.”

Url

For m aspx?t enpl at e=l ocal , WCExpenses&dat a=url, htt p\:// host nane/ Expenses. xm &t i t| e=Expensesé&st at e=0
This example specifies that a form is to be opened with data obtained from a URL data source.

Form

For m aspx?t enpl at e=l ocal , Sanpl e&dat a=f orm f or nDat a

This example specifies that a form is to be opened from the data provided by the form parameter called
“formData” from the local template with template ID “Sample”. The template source must be provided
explicitly.

Inline

For m aspx?t enpl at e=l ocal , User &lat a=i nl i ne, FNane, Bob, LNane, Sni t h, Age, 42

This example specifies that a form is to be opened using the local template with the template ID “User” pre-
filled with the specified inline data. The form will be opened as a new data document with the default title
“Untitled.”

NOTES
» Detailed examples are provided in the last section of this document.

» Inline data sources containing time formatted values must be shown with the escape character
before the colon, e.g., 11:30 should be entered as data=inline,StartTime,11\:30

What Happens When a Form is Opened

The following steps take place when a form is opened:

« If one or more data sources are used to open a form, they are merged into a single instance of data.
See “Data Source Merging” on page 18 for more information about how data is merged.

» Any cells explicitly specified in the merged data are populated. This includes cells whose values are
empty.

» Any cells defined by the template whose values are not explicitly populated are evaluated according to
the configuration of the template.

» If no data source is specified, auto-increments and startup scripts are triggered.

API | o9
Data Source Merging

NOTE Scripts are not supported with this implementation. However, script functionality is reserved for a
future release.

The following diagram illustrates this process.

Data source 1 Data source 2

A

Template Merged data

y

Populates cells with
merged data

)=

Y

Evaluates unpopulated cells

I no data source or - b
isExisting=false
Y

Triggers auto-increments

No

Form

Data Source Merging

A form can be opened with data that is obtained from more than one data source (can be different data
source types). The data from all data sources is automatically merged, in order, into a single data instance,
starting with the primary data source. As each data source is merged, the previously merged data is

preserved.

This table illustrates how data is merged.

API
Data Source Merging

Data Source 1 Data Source 2

Merged Data

Cel | 1="“Ednont on “

Cel | 1= “Ednont on “

Cel | 2="" Cel | 2=“Al berta*“

Cel | 2="*

Cel | 3=“Canada “

Cel | 3=“Canada “

Cel | 4=“North America*“ Cel | 4= “Eur ope “

Cell 4=“North Anerica*“

In the following example, all the data from the primary data source is preserved and only the data from

cel 1 4 and t abl e2 are merged.

NOTE Although the secondary data source has more rows for t abl e1, these rows aren’t included in the

merged data source.

Primary Data Source

<xm version="1.0" ?>
<xf orne
<nodel >
<string nane="cel | 1"/ >
<string nane="cel | 2"/ >
<string nane="cel | 3"/ >
<group nane="t abl e1l” maxCccur s="*">
<nunber nane="Qy"/ >
<nunber nanme="Price"/ >
<string nane="Description”/ >
</ group>
</ nodel >
<i nstance i ndex="1">
<cel | 1>Val uel</cel | 1>
<cel | 2><cel | 2>
<cel | 3>Val ue3</cel | 3>
<t abl el i ndex="1">
<Qy>10</ Qy>
<Price>123</Price>
<Description>Testing stuff</Descri
</ tabl el>
<tabl el i ndex="2">
<Qy>101</ Qy>
<Price>45</ Pri ce>
<Description>Testing stuff</Descri
</ tabl e1>
</instance>
</ xf or mp

Secondary Data Source

<xm version="1.0" ?>
<xf or mp
<nodel >
<string nane="cel | 1"/ >
<string nane="cel | 2"/ >
<string nane="cel | 3"/ >
<string nane="cel | 4"/ >
<group nane="t abl el” maxCccur s="*">

ption>

pti on>

23

APl | o4
Data Source Merging

<nunber nanme="Qy"/ >
<nunber nane="Price"/ >
<string nanme="Description”/ >
</ gr oup>
<group nane="t abl e2” maxQccur s="*">
<nunber nane="Date"/ >
<string nane="Or der Nunber "/ >
<string nane="Description”/ >
</ gr oup>
</ nodel >
<i nstance i ndex="1">
<cel | 1>Val ueSeci</cel | 1>
<cel | 2>Val ueSec2<cel | 2>
<cel | 3>Val ueSec3</cel | 3>
<cel | 4>Val ueSec4</ cel | 4>
<tabl el i ndex="1">
<Qy>10</ Qy>
<Price>123</Price>
<Description>Testing stuff Secondary row 1</Description>

</tabl el>
<tabl el i ndex="2">
<Qy>101</Qy>

<Price>45</Price>

<Description>Testing stuff Secondary row 2</Description>
</tabl el>
<t abl el i ndex="3">

<Qy>101</ Qy>

<Price>45</Price>

<Description>Testing stuff secondary row 3</Description>

</tabl el>
<tabl el i ndex="4">
<Qy>101</ Qy>

<Price>45</Price>
<Description>Testing stuff secondary row 4</Descripti on>
</tabl el>
<t abl el i ndex="5">
<Qy>101</Qy>
<Price>45</Price>
<Description>Testing stuff secondary row 5</Description>
</tabl el>
<tabl e2 i ndex="1">
<Dat €>2003- 02- 15</ Dat e>
<Or der Nunmber >45New01</ Or der Nunber >
<Descri ption>Tabl e2 from secondary row 1</ Descri ption>
</tabl el>
</instance>
</ xf ormp

Merged Data

<xm version="1.0" ?>
<xf ormp
<nodel >
<string nane="cel | 1"/ >
<string nanme="cel | 2"/ >
<string nane="cel | 3"/ >
<string nane="cel | 4"/ >
<group nane="t abl el” maxQccur s="*">
<nunber nanme="Qy"/ >
<nunber nane="Price"/ >
<nunber nanme="Descri pti on"/ >

API
Mapping Forms Manager Data Types to XML Data

</ gr oup>

<group nane="t abl e2” maxCccur s="*">
<nunber nane="Date"/ >
<string name="Cr der Nurber "/ >
<string name="Description”/ >

</ gr oup>

</ nodel >

<cel | 1>Val uel</cel | 1>

<cel | 2><cel | 2>

<cel | 3>Val ue3</cel | 3>

<cel | 4>Val ueSec4</ cel | 4>

<tabl el i ndex="1">
<Qy>10</ Qy>
<Price>123</Price>
<Descri ption>Testing stuff</Description>

</tabl el>
<tabl el i ndex="2">
<Qy>101</ Qy>

<Pri ce>45</Price>
<Descri ption>Testing stuff</Description>

</tabl el>

<t abl e2 i ndex="1">
<Dat €>2003- 02- 15</ Dat e>
<Or der Nunber >45New01</ Or der Nunber >
<Description>Tabl e2 from secondary row 1</ Description>

</tabl el1>

</instance>
</ xf ormp

Mapping Forms Manager Data Types to XML Data

The following table lists all Forms Manager data types with their matching XML data types. This is useful
especially when generating prefill data content from a database.

FormsManager Data Type XML Data Type
Character String
Number Number
Name String

Date Date

Time Time
Boolean Boolean
Picture Binary
Signature Binary

25

APl | 2g
Syntax Considerations

Syntax Considerations

ID Values

To be valid, the values for button IDs and toolbar IDs must be upper or lowercase alpha characters.

Delimiters

Multiple template, data, and toolbar sources are separated by semi-colons (;). Each source contains
multiple arguments separated by commas (,). Some arguments contain multiple values separated by
colons (2).

For example, the toolbar parameter of the following url contains two toolbar sources. The first toolbar
source contains two arguments. The second toolbar source contains four arguments. The fourth argument
of the second toolbar source contains three values.

Form.aspx?template=local,Sample&toolbar=form,tb1;inline,mod,app:save,en-US:Resave:Resave

Optional Arguments
Unused optional arguments can be replaced with empty strings or with the reserved word nul | . Optional

arguments at the end of the set of arguments may be omitted. For example, the following urls are
equivalent.

Form.aspx?template=local, Test&data=local,47&toolbar=inline,add,submit,,id:submit

Form.aspx?template=local, Test&data=local,47&toolbar=inline,add,submit,null,id:submit,null

Escape Characters and Url-Encoding

Because they are used as delimiters, all semicolons, commas, colons, and backslash characters that
occur in any argument must be escaped using the backslash character. Also, if parameters are provided
via the query string, they must be url-encoded.

In the following example, the query string is used to open a form with a local template source, the template
IDT a; b, c: d\ e, and the url data source http://fforms.com/form.asp?id=23. Each parameter must be escaped as
follows.

local, T a\;b\,c\:d\\e
url,http\://www.forms.com/form.asp?id=23
Then each parameter must be url-encoded for the query string:

Form.aspx?template=local%2CT%20a%5C%3Bb%5C%2Cc%5C%3Ad%5C%5Ce&data=url%2Chttp%5C
%3A//www.forms.com/form.asp%3Fid%3D23

This form of query string is difficult to read and reproduce. A partially-encoded url such as the following is
sufficient for most browsers.

Form.aspx?template=local, T%20a\;b\,c\:d\\e&data=url,http\://www.forms.com/form.asp%3Fid%3D23

Examples

This section contains examples of when and how to use the Forms Manager API syntax for Data Source
and Toolbar Source types and simple toolbar configuration.

API | o7
Embed Custom Toolbar Only

Before You Begin

To conveniently generate XML code based on your Desktop Form Template:
Open the template in Desktop eForms.
Choose File > Save As. The Save Data Document As dialog box appears.
Choose “XML File (*.xml)” from the ‘Save as type’ drop-down list.

1.

2.

3

4. Enter a file name and then save it.

5. View the code in any HTML editor program. Do not close this page.
6

Open a new blank page in the HTML editor. Copy and paste the relevant lines of code containing the
necessary pre-fill fields into this blank page.

Using these steps save you time in typing much of the XML code generated from the template.

Embed Custom Toolbar Only

In this example, the form requires a custom toolbar that includes a custom “Home” button. Here is the
sample template drawn by a form author using eForms Designer, and the form as it appears with the
embedded toolbar when opened by the user for the first time.

API
Embed Custom Toolbar Only

World Corporation Advance Claim Request [Reauest Ho.

Employes I Employes Mame [repartrment Supervisor N ame

Reazon for R equest

Amount Claim [rate [pepesit Emplovee Signature
[Jcheque

Desktop Form Template shown in eForms Designer.

(=S ~¢—— Custom button

World Corporation Advance Claim Request [Reauest No.

Employee 1D Employes Marme Department Supernisor Name

Reason for Request

Amount Claim Date ¢~ Deposit Employee Signature
¢~ Cheque

The form as it appears to the user in an eForms Central library..

Writing the Toolbar Configuration XML

After the template is completed, it can be saved in the ITX Form template (*.itx) format.You can add the
toolbar XML directly in the XML by using the following steps:

1.
2.

Open the ITX Form template in Notepad or simple HTML editor.

Enter the toolbar configuration code at the top level of the XML, between the <revisioninfo> and the
<dataModel> elements. For example,

<?xm version="1.0" ?>
<tenpl ate versi on="2" xnl:space="preserve">

<revi sionlnfo version="3.1">
<t ool bar Confi g>
<cl ear tool barl D="app" />
<add tool bar| D="resources" buttonl D="Fi | eNet Home" >
<icon type="url" src="http://hostnanme/infornmation.gif" />
<text |anguage="en-US" | abel ="Hone" tool Ti p="Fi |l eNet website" />
<action actionl D="get">
<paranthttp://ww. fil enet. conx/ paranp
</ action>

28

API
Data Source and Toolbar Source

</ add>
<add buttonl D="send" />
<add buttonl D="saveas" />
</ t ool bar Confi g>
<dat aMbdel >

</tenpl at e>

3. Save the file with an .itx extension.

First Time Deployment to the Forms Manager Server

To add the modified ITX Form template to the eForms Central library:

1. Browse to the appropriate folder in the eForms Central library and click Add Document.
2. Click Browse and find the ITX template.

3. Click Add to add the template to the library.

4. In the Properties dialog box, change the status to Normal and then click update.

NOTE You cannot deploy a template containing modified XML code directly from eForms Designer.

Updating an Existing Template on the Forms Manager Server

If the ITX template already exists in the eForms Central library, you can replace it by:
1. Search for the template in the library, select it and click Properties.
2. Click Browse and find the modified ITX template.

3. Click update to save the changes.

Data Source and Toolbar Source

Form Type

In this example, the designer applies the form type of the XML data source with toolbar configuration code
to create a pre-filled form that loads with a modified toolbar.

The form user selects an Employee ID from a drop-down list in a custom front-end web application. When
the matching ID is found in the database (e.g., see code below; Dat abase=dbnane) HTML eForm opens and
loads the form pre-filled with the Employee ID, Department and Phone number information.

The toolbar above the form contains two new buttons, “Home Page” and “Save XML.” Both save and send
buttons are removed.

Step 1: Create Web Application for Input Data

' Purpose: To be used as a customfront,
"end web app where the user chooses the
' Empl oyee ID from a drop-down |ist

"and then clicks a button called

' Lookup Enpl oyee.

29

API 30
Data Source and Toolbar Source

<% Language=VBScri pt %
<htm >

<head>
<title>Form Data</titl e>
</ head>

<body>
<f or m nane="CpenFor n' acti on="Creat eXM__For nPost . asp" net hod=post t arget="XM.For n{ >

<sel ect nane="sel ect Enpl D' >
<option val ue="12345">12345</ opti on>
<option val ue="10001">10001</ opti on>
<option val ue="10002">10002</ opti on>
</ sel ect>

<i nput type=submit val ue="Lookup Enpl oyee">
</form

</ body>
</htm >

Step 2: Post Data to Form.aspx

Description: Takes XM. data source,
encodes it in HTM. and posts it to
For m aspx.

Renmove buttons and add buttons with
get/ post actions.

<%@ Language=VBScri pt %
<%

m xm String
Di m get Enpl D
Di m f or mXM.

Di m sDepart ment
Di m sPhone

'get the Enployee ID data fromcustom front-end web app
get Enpl D= Request . Forn("sel ect Enpl D")

"ActiveX Data objects required

Set cnn = CreateObject("ADODB. Connection")
Set cnd = CreateObject("ADODB. Conmand"

Set rst = Create(bject("ADODB. Recordset”)

' SQ. connection
cnnSQ = "Driver={SQL Server}; Server=hostnanme; Database=dbnane; Ul D=usernane; PW=password"
Call cnn. Open (cnnSQL)

' DB recordset
cnd. Acti veConnection = cnn
cmd. CommandText = "Sel ect * from Enpl oyeeDirectory where DBenpl D=" & "'" & getEnplD & "'"

Set rst = cnd. Execute (recordCount)

'get DB data to pre-fill XML data
sDepartment= rst.Fields.lten{ "DBdepartment")
sPhone= rst.Fields.lten{ "DBphone")

‘create XML code
xm String = "<fornData version=""2"">

Data Source and Toolbar Source

xm String = xm String + "<config>"

'"renove the buttons called Save and Send

xm String = xm String + "<tool bar Config>"
xm String = xm String + "<renove buttonl D=""save"" />"
xm String = xm String + "<renove buttonl D=""send"" />"

"add a button called "Hone Page" that uses a ‘get’ action

xm String = xm String + "<add tool barl D=""form'" buttonl D=""openHome"">"
xm String = xm String + "<text |anguage=""en"" | abel =""Honme Page"" />"
xm String = xm String + "<icon type=""id"" src=""get"" />"

xm String = xm String + "<action actionlD=""get"">"

xm String = xm String + "<paranphttp://ww. filenet.conx/ paran"

xm String = xm String + "</action>"

xm String = xm String + "</add>"

"add a button called "Save XM." that uses a ‘post’ action

xm String = xm String + "<add tool barl D=""Submi t Forn'" buttonl D=""XM.Subm t"">"

API

xm String = xm String + "<text |anguage=""en-US"" | abel =""Save XM."" tool Ti p=""Click here to submt

the formdata and save as XM.."" [>

xm String = xm String + "<icon type=""url"" src=""http://hostnane/fol derpath/trigger.gif"" />"
xm String = xm String + "<action actionl D=""post"">"

xm String = xm String + "<paranphttp://hostnane/fol der pat h/ Cat chXM.. asp</ par an>"

xm String = xm String + "</action>"

xm String = xm String + "</add>"

xm String = xm String + "</tool bar Confi g>"

xm String = xm String + "</config>"

"nodel of tenplate cells

xm String = xm String + "<nopdel >"

xm String = xm String + "<string name=""Department""/>"

xm String = xm String + "<string name=""Phone""/>"

xm String = xm String + "</ nodel >"

"instance of formdata

xm String = xm String + "<instance index=""1"" valid=""1"">"

xm String = xm String + "<Departnment>"+ Trin{sDepartnent)+ "</ Departnent>"
xm String = xm String +"<Phone>"+ Tri n(sPhone) + "</ Phone>"

xm String = xm String + "</instance>"

xm String = xm String + "</fornData>"

"HTML encoded to wite XM. directly to Form aspx
formXM. = Server. HTMLEncode(xm Stri ng)

%

'takes the encoded XML and posts it to Form aspx
<htm >

<head>
<title></title>
<script |anguage="javascript">
function LaunchForm)

wi ndow. docunent . OpenForm subnit () ;

</script>
</ head>

<body onl oad="LaunchForn()" >
<f orm nane="CpenForni' met hod="post" action="http://hostnane/library/
f orm aspx?t enpl at e=l ocal , Per sonnel Acti onRequest &lat a=f or m par ant >
<i nput type="hi dden" nanme="parant val ue="<%f or mXM.%" >
</form
</ body>

</htm >

31

APl | 35
Data Source Only

Data Source Only

URL Type

In this example, the designer uses a url data source to provide a form data document (e.g., .ifx file) as its
content and “text/xml” as its content type.

The form user selects an Employee ID in a custom front-end web application. When the matching ID is
found in the database (e.g., see code below; Dat abase=dbnane) HTML eForm opens and loads the form
pre-filled with the Employee ID, Department and Phone number information.

Step 1: Create Web Application for Input Data

"Purpose: To allow the user to choose an
' Empl oyee ID; call formvia URL and
"pre-fill fields.

<%@ Language=VBScri pt %
<htm >

<head>
<title>Form Data URL Type</title>

<script |anguage="javascript">
function Handl eForm()
var sl D= wi ndow. docunent. OpenFor m sel ect Enpl D. val ue
var sURL= "http\://hostnane/fol derpat h/ Creat eXM__URLType. asp?quer yEnpl D=" + sl D
wi ndow. docurent . OpenForm action = "http://hostnane/library/
f orm aspx?t enpl at e=l ocal , Per sonal Act i onRequest &at a=url," + sURL;
wi ndow. docurnent . OpenFor m submi t ()
</script>
</ head>
<body >
<f or m nanme="CpenFor ni' et hod="post" target="For mW ndow" >
Select an ID

<sel ect nane="sel ect Enpl D' onchange="Handl eForn()" >
<option val ue="0"></opti on>

<option val ue="12345">12345</ opti on>
<option val ue="67890">67890</ opti on>

</ sel ect >

</forne

</ body>
</htm >

Step 2: Post Data to Form.aspx

e: To open the form and

I it with the data based on a
match with criteria entered in the
custom front-end web app.

' Pur pos
"prefil

<% Language=VBScri pt %

A

%

i mcnn
cnd
rst
cnn

jvjviviviviviviv)
33333333

sPh

SQL

one

xm String
get Enpl D
sDepart nent

'get the Enployee ID fromthe custom front-end web app
get Enpl D= Request. QueryString("queryEmpl D')

"ActiveX Data objects required

Set chn
Set cnd
Set rst

' SQ connection

cnnSQ = "Driver={SQ Server};

Creat eObj ect (" ADODB. Connection")
Creat e(bj ect (" ADODB. Conmand")
Creat e(bj ect (" ADODB. Recordset”)

Cal | cnn. Open (cnnSQL)

' DB recordset
cnd. Acti veConnection = cnn

cnd. CommandText

Set rst

= cnd. Execute (recordCount)

‘'get DB data to pre-fill XML data
sDepartment= rst.Fields.lten{ "DBdepartment")
sPhone= rst.Fields.|ten("DBphone")

'create
xm Stri

xm Stri
xm Stri

xm Stri
xm Stri
xm Stri
xm Stri

xm Stri
xm Stri
xm Stri
xm Stri

xm Stri

XML
ng =

ng
ng

=}
«Q
I

=}
«
I

ng

code

"<fornData version=""2"">"

xm Stri
xm Stri

xm Stri
xm Stri
xm Stri
xm Stri

xm Stri
xm Stri
xm Stri
xm Stri

xm Stri

'wite XML to Form
'"not HTM. encoded as URL is called directly
Response. Cont ent Type = "text/xm"

Response. Wite(xm String)

%

ng + "<config>"
+

ng "</ config>"

ng + "<nodel >"

ng + "<string name=""Departnent""/>"

ng + "<string nane=""Phone""/>"

ng + "</ nodel >"

ng + "<instance index=""1"" valid=""1"">"

ng + "<Departnent>"+ Trim(sDepartnent)+ "</ Department>"
ng +"<Phone>"+ Trim(sPhone)+ "</ Phone>"

ng + "</instance>"

ng + "</ fornData>"

aspx, pass as content type text/xm

API
Data Source Only

Server =host nane; Dat abase=dbnane; Ul D=user nane; PW)=password"

= "Select * from Enpl oyeeDirectory where DBenpl D=" & "'" & getEnplD & """

33

API
Appendix A - Toolbar Configuration Schema

Appendix A - Toolbar Configuration Schema

Validate Your XML Toolbar Code

You can use the schema provided here to validate the XML toolbar code that you write for your toolbar
configurations. You can check the XML schema using any XML Schema validator website, e.g., http://
www.w3.0rg/2001/03/webdata/xsv.

<?xm version="1.0" encodi ng="utf-8" ?>

<xs:schema tar get Namespace="http://[path to website]/

t ool bar schema. xsd" el enent For nDef aul t =" qual i fi ed" xm ns="http://[path
to website]/tool barschema. xsd" xm ns: xs="http://ww. w3. org/ 2001/
XM_LSchema" version="1">

<xs:conpl exType nane="Text">
<xs:attribute nanme="| anguage" type="xs:|anguage" />
<xs:attribute nanme="|abel" type="xs:string" />
<xs:attribute nane="tool Ti p" type="xs:string" use="optional" />
</ xs: conpl exType>
<xs: conpl exType nane="I|con">
<xs:attribute nane="type">
<xs: si nmpl eType>
<xs:restriction base="xs:string">
<xs:enuneration value="id" />
<xs:enuneration value="url" />
<xs:enuneration val ue="none" />
</xs:restriction>
</ xs: si npl eType>
</xs:attribute>
<xs:attribute nanme="src" type="xs:string" />
</ xs: conpl exType>
<xs: conpl exType name="Action">
<Xs:sequence>

<xs: el enent nanme="paran' type="xs:string" m nCccurs="0"
maxQccur s="unbounded" />

</ xs: sequence>
</ xs: conpl exType>
<xs: conpl exType nanme="AddMbodi fy" >

<XS:sequence>

34

API
Validate Your XML Toolbar Code

<xs:el enent name="text" type="Text" nmi nCccurs="0"
maxQOccur s="unbounded” />

<xs: el enent nanme="icon" type="Icon" m nCccurs="0" />
<xs: el enent nanme="action" type="Action" m nCccurs="0" />
</ Xxs: sequence>
<xs:attribute nane="tool barl D' type="xs:string" use="optional" />
<xs:attribute nane="buttonl D' type="xs:string" use="required" />
</ xs: conpl exType>
<xs: conpl exType nane="Renove">
<xs:attribute nanme="buttonl D' type="xs:string" use="required" />
</ xs: conpl exType>
<xs: conpl exType nane="Cl ear">
<xs:attribute nane="tool barl D' type="xs:string" use="required" />
</ xs: conpl exType>
<xs: conpl exType nane="Tool bar Confi g">
<xs: choi ce m nCccurs="0" maxCccur s="unbounded" >
<xs: el enent nanme="add" type="AddModify" />
<xs: el enent name="nodi fy" type="AddModi fy" />
<xs: el enent nanme="renove" type="Renove" />
<xs: el enent name="clear" type="Clear" />
</ xs: choi ce>
</ xs: conpl exType>
<xs: el enent nanme="t ool bar Confi g" type="Tool bar Config" />

</ xs: schema>

35

APl | 36
Appendix B - Capturing Data from a Custom Post Action

Appendix B - Capturing Data from a Custom Post
Action

Sample Script

"Description: Takes XML data fromthe
"form wites it to a text file, and
'saves it. A message is returned to the user.

<%@ Language=VBScri pt %

<%

Option Explicit

Response. Expires = 0
Trap errors manual |y

On Error Resunme Next

' CGet posted XML data

Dimxnm String, xm File, xnlLength

xm Length = Request. Tot al Byt es

xm Fi | e = Request . Bi nar yRead(xnm Lengt h)

Convert Binary to string
Dimi
For i=1 to LenB(xm File)
xm String = xm String + Chr(AscB(M dB(xm File,i,1)))
Next

Set up Constants
Const ForWiting = 2 ' Input QutPut node
Const Create = True
' Create file and wite xm to it
Dim MFil e
Dim FSO ' Fil eSyst enbj ect
Dim TSO ' Text St reanOhj ect

M/Fil e = Server. MapPat h("Form xm ")

Set FSO = Server. CreateCbject("Scripting.FileSystenObject")
Set TSO = FSO OpenTextFile(MFile, ForWiting, Create)

TSO. write xm String

TSO. cl ose
Set TSO = Not hi ng
Set FSO = Not hi ng

Test for errors and return appropriate nmessage to user
If Len(err.Description) <> 0 then
Response. Cont ent Type = "text/plain"

Response. Wite "An error has occurred trying to send your request. Please try again. " &
err.Description
El se

Response. Cont ent Type = "text/plain"
Response. Wite "Your file has been saved."
End | f
%
NOTE You must use XML DOM to extract the individual data fields from the document and insert them into
a database. For example:
Di m xm Doc
Set xm Doc = Server. CreateObject ("M crosoft.XM.DOM')
xm Doc. async = Fal se
xm Doc. Load(Server. MapPat h(" Form xm "))

Read XM.Data field from XM. Docunent

APl | 37
Sample Script

DimfirstNane, formunber

firstNane = xnl Doc. get El ement sByTagName(" Fi rst Nane").iten(0).text
f or mMNunber = xnl Doc. get El enent sByTagNane(" FormNo") . 1ten{0).text

Please refer to your XML Document Object Model documentation for details on how to modify an XML
document.

APl | 38
Notices

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION “AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication. IBM
may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

APl | 39
Notices

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this one)
and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

JA6AIGA

555 Bailey Avenue

San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data for
their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an actual
business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs.

API 40
Trademarks

Trademarks

IBM is a registered trademark of International Business Machines Corporation in the United States, other
countries, or both.

FileNet is a registered trademark of FileNet Corporation, in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both.

Other company, product, and service names may be trademarks or service marks of others.

Program Number: 5724-R89

Printed in USA

GC31-5499-00

	Table of Contents
	Revision Log
	FileNet Forms Manager API Syntax
	About this Document
	API Overview
	Template Sources
	Toolbar Sources
	Toolbar Configuration
	Data Sources
	What Happens When a Form is Opened
	Data Source Merging
	Mapping Forms Manager Data Types to XML Data
	Syntax Considerations
	Examples
	Embed Custom Toolbar Only
	Data Source and Toolbar Source
	Data Source Only

	Appendix A - Toolbar Configuration Schema
	Validate Your XML Toolbar Code

	Appendix B - Capturing Data from a Custom Post Action
	Sample Script

	Notices
	Trademarks

