

eProcess Developer's Guide

Release 5.0

Panagon eProcess Developer's Guide

file:///I|/Workflow/DevGuide/Panagon/title.htm [9/18/2002 8:03:21 AM]

Panagon eProcess Developer's Guide

eProcess Developer's Guide Overview

How to Use This Guide

Conventions Used in This Guide●

Notices●

Printing Topics●

Contact Us●

End User License Agreement●

What's New in 5.0

Understanding eProcess

Panagon eProcess Services Architecture●

eProcess Services Directory Structure●

Required eProcess Services Components●

Referenced Panagon Web Workflo Files●

Referenced Panagon Web Services Files●

eProcess Required Tools and Languages●

Developing with eProcess APIs/Samples

Installing eProcess Toolkit

Panagon eProcess Toolkit Installation❍

Panagon eProcess Toolkit Contents❍

eProcess Toolkit Web Services Help❍

●

eProcess API Classes

Working with eProcess API Classes❍

eProcess API Class Relationships

Runtime API Relationships■

Admininstration and Configuration API Relationships■

Workflow Definition API Relationships■

❍

●

Developing for Java

Java Development❍

Configure the Java SDK❍

●

Links to all topics

file:///I|/Workflow/DevGuide/Panagon/alltopics.htm (1 of 5) [9/18/2002 8:03:58 AM]

Start a Local Router (for development)❍

Developing for ASP

Active Server Pages Overview❍

Set Up an ASP eProcess Services Development System❍

Create a New Solution in Visual InterDev❍

Add eProcess Services Components❍

Create a Generic ASP File for eProcess Services❍

Check Web Server Directory Permissions❍

●

Developing for COM

COM Development❍

Configure the COM Bridge❍

JiGlue COM Bridge Data Types

JiGlue COM Bridge Data Type Conversions■

COM Bridge Data Types Guidelines■

❍

Using the COM Bridge❍

Using the JiGlue COM Bridge in ASP❍

Add JiGlue COM Bridge to Visual Basic❍

JiGlue.Util Reference❍

●

Using the API Samples

Running the Unmodified API Samples

Compile the samples■

Run the sample application■

Review the sample output■

❍

API Samples Overview❍

API Sample Files

LaunchSample■

LockReportSample■

Logger (helper class)■

LogSample■

LogViewer■

MainSample■

MilestoneHelper (helper file)■

MilestoneSample■

OperationsHelper (helper class)■

❍

●

Links to all topics

file:///I|/Workflow/DevGuide/Panagon/alltopics.htm (2 of 5) [9/18/2002 8:03:58 AM]

OperationsSample■

ProcessSample■

QueueHelper (helper class)■

QueueSample■

RosterHelper (helper class)■

RosterSample■

SessionHelper (helper class)■

StepProcessorSample■

SysConfigSample■

SystemStepHelper■

SystemStepSample■

UserInfoSample■

WFDefinitionSample■

WorkPerformerSample■

Customizing Java and HTML Applications

Customizing Java and HTML Processors Overview●

Customizing Java Step and Launch Step Processors

Java Step and Launch Step Processor Toolkit Overview❍

Developing Custom Java Processors - Applications vs. Applets❍

Using the Java Step and Launch Step Processor Samples

Java Step Processor Samples Overview■

Building and Deploying the Sample Java Processors■

Customize the Sample Step Processor■

Java Step Processor Sample Files■

Java Launch Step Processor Sample Files■

❍

Working with the Java UI Toolkit

Java UI Toolkit Overview■

Java UI Toolkit Parameters■

Working with the VWAttachment Panel■

UI Toolkit API JavaDoc■

❍

●

Customizing HTML (ASP) Step and Launch Step Processors

HTML Processor Toolkit

HTML Processor Toolkit Overview■

❍

●

Links to all topics

file:///I|/Workflow/DevGuide/Panagon/alltopics.htm (3 of 5) [9/18/2002 8:03:58 AM]

file:///I|/Workflow/DevGuide/JavaDoc/UI_Toolkit_API/index.html

Modify Core Files■

Modify Core Script Files■

Modify User Interface Files■

Modify Utility Files■

HTML Step Processors

Modify the HTML Step Processor■

HTML Step Processor File Relationships■

❍

HTML Launch Step Processors

Modify the HTML Launch Step Processor■

HTML Launch Step Processor File Relationships■

❍

Deploying Step and Launch Step Processors

Deploying Custom Java Step and Launch Step Processors❍

Signing a JAR File❍

Adding Custom Java and HTML Processors to the Workflow❍

●

Modifying Email Notification Messages

Modify Email Notification Files●

Using Secure Sockets Layer (SSL)●

Localized Notification Files●

Optional Email Notification Variables●

Notification Types

Overdue Step Notification (stp_deadline.msg)❍

Overdue Step Tracker Notification (trk_stp_deadline.msg)❍

Step Assignment Notification (stp_new.msg)❍

Step Reminder Notification (stp_reminder.msg)❍

Tracking Assignment Notification (trk_new.msg)❍

Workflow Exception Notification (trk_exception.msg)❍

Workflow Milestone Notification (org_milestone.msg)❍

Workflow Overdue Notification (trk_wf_deadline.msg)❍

Workflow Reminder Notification (trk_wf_reminder.msg)❍

Workflow Tracker Milestone Notification (trk_milestone.msg)❍

●

Set Up a Test Mail Server

Set up a SMTP Server❍

●

Additional Tips and Procedures

Links to all topics

file:///I|/Workflow/DevGuide/Panagon/alltopics.htm (4 of 5) [9/18/2002 8:03:58 AM]

Using ADO to Query the eProcess Database●

Quick Links

eProcess API Classes JavaDoc

Java UI Toolkit API JavaDoc

Links to all topics

file:///I|/Workflow/DevGuide/Panagon/alltopics.htm (5 of 5) [9/18/2002 8:03:58 AM]

file:///I|/Workflow/DevGuide/JavaDoc/JavaAPI/index.html
file:///I|/Workflow/DevGuide/JavaDoc/UI_Toolkit_API/index.html

eProcess Developer's Guide Overview
This guide provides information for developers who are extending or customizing the Panagon eProcess
out-of-the-box (OOTB) applications or who are creating custom workflow processing applications
(sometimes called "work performers") for Panagon eProcess Services. Extending out-of-the-box
applications may include creating Java™-, ASP-, or COM-based applications for Panagon eProcess
Services, modifying the interface to eProcess services, creating new customized Java or HTML (ASP)
Step or Launch Step Processors, or modifying and customizing the Java or HTML Step Processor and
Launch Step Processor samples provided with the Panagon eProcess Toolkit.

Previous experience with Panagon Web Services, Panagon Web WorkFlo, or Panagon WorkFlo Services
is not required. However, you must be familiar with the specific development concepts, technologies, and
languages on which eProcess Services is based. If you are planning to develop Java applets or
applications, you should also have experience using the Sun Microsystems Java Software Development
Kit (SDK).

Topics covered in this overview include:

Overview of This Guide●

Related eProcess API Documentation●

Browser Compatibility●

Overview of This Guide
Development information is provided in the following sections of this guide:

How to Use This
Guide

Provides information on the documentation conventions used
in the guide, printing the guide or individual topics, locating
additional FileNET resources, and how to contact us to send
comments or suggestions about the guide. A copy of the
Panagon End User License Agreement is also included in this
section.

What's New in 5.0 Provides information on What's New in 5.0, which describes
the changes to the eProcess API (and other developer-related
changes) from the previous Panagon eProcess 4.2.2 release to
the current 5.0 release.

Panagon eProcess Developer's Guide

file:///I|/Workflow/DevGuide/Panagon/misc/dgintro.htm (1 of 3) [9/18/2002 8:03:59 AM]

Understanding
eProcess

Provides an overview of the Panagon eProcess Services
architecture, the eProcess Services directory structure and the
components you use while developing customized eProcess
applications. The section also includes information on the
referenced Web Services and Web WorkFlo files used for ASP
development. Also described are the tools and languages
needed for different development tasks.

Installing Panagon
eProcess Toolkit

Describes the Panagon eProcess Toolkit, how to locate and
install the eProcess Toolkit, the Toolkit contents, and how to
access the eProcess Toolkit Web Services Help.

Developing with
eProcess APIs and
Samples

Provides information on:

Developing with eProcess APIs — describes the eProcess
API Classes and API class relationships and calling sequences,
developing for Java, developing for COM, and developing for
ASP.

API samples — describes the API samples that are provided
with the Panagon eProcess installation and that may be used as
a starting point for developing your custom application
(includes useful helper classes and information on how to
compile and run the samples).

Customizing Java
and HTML
Applications

Provides information on:

Customizing Java and HTML Processors Overview —
provides an overview of customizing Java and HTML (ASP)
Step and Launch Step Processors.

Customizing Java Step and Launch Step Processors —
includes an overview of the Java Step and Launch Step
Processor Toolkit), describes issues on whether to deploy a
custom Java Step Processor as an application or an applet, and
describes how to use the Java Step Processor samples provided
with the Toolkit, and working with the Java UI Toolkit
interfaces and beans (to customize the user interface).

Customizing HTML (ASP) Step and Launch Step
Processors — includes a description of the HTML Processor
Toolkit files, modifying the sample HTML Step Processor,
HTML Step Processor File relationships, and similarly with the
HTML Launch Step Processor and the HTML Launch Step

Panagon eProcess Developer's Guide

file:///I|/Workflow/DevGuide/Panagon/misc/dgintro.htm (2 of 3) [9/18/2002 8:03:59 AM]

Processor file relationships.

Deploying Step and Launch Step Processors — Provides
procedures on deploying custom Java Step or Launch
Processors, signing a JAR file (required for Java Processors),
and adding custom Java and HTML Step or Launch Processors
to the workflow.

Modifying Email
Notification
Messages

Provides information on modifying the email notification
message files supported by Panagon eProcess Services,
including how to enable SSL for email notification. The
section contains reference information for each of the email
notification message file types, including information on the
localized language versions. How to set up a test mail server to
test notifications is also described.

Additional Tips and
Procedures

Provides a procedure on how to set up and use ADO to query
the eProcess database, which can improve performance on
queries on queues, rosters, or logs, where there are large
amounts of data to retrieve.

Related eProcess API Documentation
This guide is only one part of the development documentation set you will need to develop applications
or applets for Panagon eProcess Services. Additional related eProcess API documentation includes the
eProcess API Classes JavaDoc and the Java UI Toolkit JavaDoc API reference documents, which are
HTML-formatted documents containing API class reference information taken directly from the Java
code (using the Sun Microsystems JavaDoc utility).

The eProcess API Classes JavaDoc and Java UI Toolkit JavaDoc API reference documents are included
in the Panagon eProcess Toolkit.

Browser Compatibility
Some navigation components used in guide, like the expandable Table of Contents pane and the Search
engine, work best in Microsoft Internet Explorer 5.0 (and later) and Netscape 6.0 (and later). If you
experience problems viewing the table of contents or search results, verify that Javascript support is
enabled in the browser you are using. If problems persist and you are unable to access the expandable
contents pane, switch to an HTML version of the contents.

Panagon eProcess Developer's Guide

file:///I|/Workflow/DevGuide/Panagon/misc/dgintro.htm (3 of 3) [9/18/2002 8:03:59 AM]

file:///I|/Workflow/DevGuide/JavaDoc/JavaAPI/index.html
file:///I|/Workflow/DevGuide/JavaDoc/UI_Toolkit_API/index.html
file:///I|/Workflow/DevGuide/JavaDoc/JavaAPI/index.html
file:///I|/Workflow/DevGuide/JavaDoc/UI_Toolkit_API/index.html

eProcess Required Tools and Languages
The tools and languages you use depend on your development goals. For example, if you are customizing
the HTML Step Processors, your development requirements are much different than if you are
developing or extending Java Step Processors. Regardless of the development goal, all eProcess Services
development relies on a foundational understanding of the eProcess APIs.

Required tools and languages include:

Java Development●

ASP and COM Development●

ASP.NET Open Client Development●

Java Development
If you are developing or customizing Java Step Processors and/or Launch Step Processors for Panagon
Web WorkFlo, or you are creating Java-based customized work object processing applications (also
called work performers) for Panagon WorkFlo Services, you will need be familiar with the following
languages, tools, and technologies:

Java programming methodology●

Sun Microsystems Java Software Development Kit (SDK)●

Creating, signing, and deploying .JAR files●

ASP architecture and objects (for applets)●

Remote Method Invocation (RMI)●

VBScript●

HTML 4.0 (or higher)●

Panagon Web Services server-side includes (.ASP and .INC files)●

Panagon Web Services client-side Javascript libraries (.JS files)●

Panagon WorkFlo Services on HP-UX platforms, the HP JDK.●

For WorkFlo Services on AIX, the IBM AIX JDK.●

Additionally, experience with an Integrated Development Environment (IDE), which can use the Rapid
Application Development (RAD) components shipped as part of the Panagon eProcess Toolkit, might be
useful. Examples of IDEs with RAD capability are Sun Microsystems Forte for Java, Visual Café, or
Borland JBuilder.

An IDE helps speed up development time for projects that require visual user interfaces by allowing
drag-and-drop functionality on the VWPanel container; however, an IDE is not required to develop
applications using the Swing components.

eProcess Required Tools and Languages

file:///I|/Workflow/DevGuide/Panagon/misc/tools_and_languages.htm (1 of 2) [9/18/2002 8:03:59 AM]

ASP and COM Development
If you are developing or customizing the ASP components in Web WorkFlo, you will need to be familiar
with the following languages, tools, and technologies:

ASP architecture and objects●

Visual Studio development environment (Visual InterDev, Visual Basic, etc.)●

Javascript 1.1 (or higher) and VBScript●

HTML 4.0 (or higher)●

Panagon Web Services server-side includes (.ASP and .INC files)●

Panagon Web Services client-side Javascript libraries (.JS files)●

XML●

JiGlue COM Bridge●

ASP.NET Open Client Development
If you are developing Panagon Open Client in an ASP.NET environment, you will need to be familiar
with:

ASP and ASPX architecture and objects●

JNI●

Visual Studio●

HTML 4.0 (or higher)●

XML●

Visual Basic (experience with VB programming with the ASP.NET SDK and Visual Studio, while
helpful, is not an absolute requirement)

●

Remote Method Invocation (RMI)●

ASP.NET●

Sun Microsystems Java Software Development Kit (SDK), if developing Java applets or
applications.

●

For information on developing eProcess Open Client applications, see the "Developing for eProcess
Open Client" section in the Panagon Open Client Developer's Guide.

eProcess Required Tools and Languages

file:///I|/Workflow/DevGuide/Panagon/misc/tools_and_languages.htm (2 of 2) [9/18/2002 8:03:59 AM]

eProcess API Class Relationships
The calling sequence diagrams demonstrate how the eProcess classes relate to each other and indicate
which methods to call when using the eProcess Application Programming Interfaces (APIs).

These calling sequence diagrams are meant to be used with the detailed reference information found in
the eProcess API Javadocs documentation. The eProcess API Javadocs documentation provide
HTML-formatted class reference information taken directly from the Java source code of the classes
(using the Sun Microsystems Javadoc utility).

Using the calling sequence diagrams
The calling sequence diagrams are separated, by function, into three functional areas:

Runtime APIs●

Administration and configuration APIs●

Workflow definition APIs.●

The diagrams are categorized to more easily present the calling sequences by functional activity. For
example, when developing a system configuration utility you might want to refer primarily to the
Administration and Configuration calling sequence diagram.

Additionally, this section includes some high-level information on the types of programmatic tasks
supported by the APIs. See Working with eProcess APIs for more information. If you are using the
eProcess APIs for Java development, refer to Java development, in the Developing for Java section of
this guide. If you are using the APIs in COM development, refer to COM development, in the
Developing for COM section of this guide.

Use the calling sequence diagrams, regardless of the development environment, to ensure you are using
the preferred methods for calling these Application Programming Interfaces (APIs). The diagrams are not
encyclopedic in detail; they show only the primary class relationships, and the preferred methods used to
call them. Use the calling diagrams with the detailed class information found in the eProcess API
reference documentation.

Some classes, like the interfaces and the VWAttachment and VWXMLUtil among others, do not appear
on these calling diagrams. These classes can be created without first calling one of the primary classes. In
most cases, however, the classes require that other API objects already have valid data or, as is the case
with the VWAttachment class, require data from the IDM Objects to function correctly.

Using deprecated methods
The calling sequence diagrams do not show deprecated methods, since in all cases the deprecated
methods have been replaced by a new, preferred method (which are shown). All deprecated methods
have been marked in the reference documentation, and in almost all cases you will find a suggestion for

eProcess API Class Relationships

file:///I|/Workflow/DevGuide/Panagon/api/eprocess_api.htm (1 of 2) [9/18/2002 8:03:59 AM]

using an alternative method.

If this is the first time you are developing applications for Panagon eProcess, do not use the deprecated
methods; these methods can be removed without notice. (You can find a listing of all of the current
deprecated methods by selecting the Deprecated tab at the top of the each reference page from within
the eProcess API JavaDoc documentation.)

If you have already developed applications for Visual WorkFlo and you are upgrading an existing Visual
WorkFlo application, your code should continue to function with the deprecated method(s). FileNET
recommends updating the application to replace the deprecated methods with the new methods before
upgrading to the next release. In addition, you should review the new classes and changes to existing
classes and methods in the What's New in 5.0 topic.

Tip The eProcess API documentation is located on the Panagon Web WorkFlo and Toolkit CD. Refer
to the Install Panagon eProcess Toolkit topic for more information on locating the eProcess API
documentation.

eProcess API Class Relationships

file:///I|/Workflow/DevGuide/Panagon/api/eprocess_api.htm (2 of 2) [9/18/2002 8:03:59 AM]

Runtime API Relationships
The diagram shows the calling sequences for the APIs that are useful retrieve work objects, query queues, retrieve Step Processor information, and other workflow related operations. See the
Administration and Configuration API Relationships and Workflow Definition API Relationships topics for more information.

Note Duplicate classes appear in the diagram for readability and have no programmatic significance. The duplications simplify the connecting lines.

Runtime API Relationships

file:///I|/Workflow/DevGuide/Panagon/api/runtime_api.htm (1 of 2) [9/18/2002 8:04:00 AM]

Runtime API Relationships

file:///I|/Workflow/DevGuide/Panagon/api/runtime_api.htm (2 of 2) [9/18/2002 8:04:00 AM]

Administration and Configuration API Relationships
The diagram shows the calling sequences for the APIs that are useful for configuring and administering Panagon eProcess. See the Runtime API
Relationships and Workflow Definition API Relationships topics for more information.

Note Duplicate classes appear in the diagram for readability and have no programmatic significance. The duplications simplify the connecting lines.

Admininstration and Configuration API Relationships

file:///I|/Workflow/DevGuide/Panagon/api/admin_and_config_api.htm (1 of 2) [9/18/2002 8:04:00 AM]

Admininstration and Configuration API Relationships

file:///I|/Workflow/DevGuide/Panagon/api/admin_and_config_api.htm (2 of 2) [9/18/2002 8:04:00 AM]

Workflow Definition API Relationships
This diagram shows the calling sequences for the APIs that are useful for creating, modifying, and validating workflow definitions. See the
Runtime API Relationships and Administration and Configuration API Relationships topics for more information.

Note Duplicate classes appear in the diagram for readability and have no programmatic significance. The duplications simplify the connecting
lines.

Workflow Definition API Relationships

file:///I|/Workflow/DevGuide/Panagon/api/workflow_def_api.htm (1 of 2) [9/18/2002 8:04:00 AM]

Workflow Definition API Relationships

file:///I|/Workflow/DevGuide/Panagon/api/workflow_def_api.htm (2 of 2) [9/18/2002 8:04:00 AM]

Working with eProcess API Classes
Within the eProcess APIs there exist a limited number of classes which you must use to access a Panagon
Workflo Services system. The primary classes are listed here and discussed below:

VWSession●

VWWorkflowDefinition●

VWSystemConfiguration (once you have a valid session)●

VWSystemAdministration (once you have a valid session)●

All other classes in the eProcess APIs require prior existence of one, or more, of these objects. In all
cases, working within the eProcess API requires initial calls to one of these classes. The following
sections provides a general introduction to the classes you can access using the APIs listed above. Refer
to the eProcess API reference documentation for more detailed information.

VWSession

Constructed using the following method:

VWSession(username, password, router_URL)

Once you have a VWSession object, you can access the following classes to perform these general tasks:

Class Functional description

VWQueue With this object you can query queues and retrieves
queue descriptions, information on the supported data
fields, and step elements.

VWRoster With this object you query rosters and retrieve
information about the workflow participants.

VWLog With this object you can log system and user-driven
events to a log and retrieve log elements from the
system.

Back to top.

VWWorkflowDefinition

Constructed using the following method:

VWWorkflowDefinition()

Once you have a VWWorkflowDefinition object to access the following classes to perform these general
tasks:

Working with eProcess API Classes

file:///I|/Workflow/DevGuide/Panagon/api/working_with_top_level.htm (1 of 2) [9/18/2002 8:04:00 AM]

Class Functional description

VWMapDefinition With this object you can access workflow steps and
workflow map properties.

VWFieldDefinition With this object you can access or set field definitions.

VWMilestoneDefinition With this object you can access or set milestone
definitions.

Back to top.

VWSystemConfiguration

Created using the following methods:

VWSession(username, password, router_URL)
VWSession.fetchSystemConfiguration()

Once you have a VWSession object, you can create a VWSystemConfiguration object to access the
following classes to perform these general tasks:

Class Functional description

VWRosterDefinition With this object you can access and administer rosters.

VWLogDefinition With this object you can access and administer event
log definitions.

VWQueueDefinition With this object you can access and administer queues.

VWStepProcessorInfoDefinition With this object you can access and administer Step
Processors.

Back to top.

VWSystemAdministration

Created using the following methods:

VWSession(username, password, router_URL)
VWSession.fetchSystemAdministration()

Once you have a VWSession object, you can create a VWSystemAdministration object to create users or
access user information, using the VWUserInfo class.

Back to top.

Working with eProcess API Classes

file:///I|/Workflow/DevGuide/Panagon/api/working_with_top_level.htm (2 of 2) [9/18/2002 8:04:00 AM]

Java Development
Java development for Panagon Web WorkFlo and WorkFlo Services does not require any particular
development environment. All programming discussions and procedures for compiling the supplied
samples contained in this guide assume that you are using the appropriate JDK (for details, see Configure
the Java SDK).

When developing and testing Java applications for Panagon WorkFlo Services, you must have an
installed and configured WorkFlo Services server with at least one initialized region to test the
applications.

If you are developing customized workflow processing applications (sometimes called "work
performers") for deployment on a client workstation, the pw.jar file, which contains all of the eProcess
API classes, must reside on each client system. As part of the development process, the client
workstation must also include any custom classes that a customized workflow processing application
requires to run. Typically, you create a single Java ARchive (JAR) file that contains the eProcess API
classes and your custom classes.

Note Developers who are used to earlier versions of the Visual WorkFlo APIs should keep in mind
during development that there is not a one-to-one correspondence between each Visual WorkFlo API and
eProcess API class. Generally, the two API sets have the same functionality; however, the eProcess APIs
do not have the sequenced mode feature. For developers familiar with earlier eProcess API versions, see
What's New in 5.0 for information on changes from the last Panagon eProcess release.

This section provides information on the following topics:

Configuring the Java SDK on your development system to use the eProcess APIs class libraries.●

Starting an instance of the eProcess Router, which allows you to observe the RMI communication
between your development system and a Panagon WorkFlo server.

●

Panagon WorkFlo Services requires that the Remote Method Invocation (RMI) mechanism be built into
the Java environment. If you develop with Microsoft Visual J++™, install the Microsoft RMI patch
before compiling your application code.

Java Development

file:///I|/Workflow/DevGuide/Panagon/java/java_development.htm [9/18/2002 8:04:01 AM]

COM Development
The JiGlue (pronounced "JIG-LOO") COM Bridge acts as a translation layer between the eProcess Java
APIs and COM. Using the JiGlue COM Bridge provides the ability to make calls similar to native Java
statements for most Win32 programming tasks. Broadly speaking, the JiGlue COM Bridge provides the
ability to instantiate COM objects using the Java APIs. Panagon Web WorkFlo uses the JiGlue COM
Bridge whenever the Web WorkFlo ASP-based module must communicate with the WorkFlo Services
server.

You can develop COM-based applications and utilities for both Panagon Web WorkFlo and Panagon
WorkFlo Services. If you are developing against Panagon IDM Automation layer in a visual
development environment (like Visual Basic), you can work with the FileNET-supplied JiGlue COM
Bridge so your application can use the Java APIs; however, before using the JiGlue COM Bridge you
must configure it on your development system; when deploying non-ASP-based applications you must
configure the JiGlue COM bridge on each client system.

This section contains information on the following topics:

Configuring the JiGlue COM bridge on your development system.●

Using the COM Bridge.●

Finding JiGlue member reference information.●

Understanding how JiGlue converts Java data types to COM equivalents.●

Adding JiGlue to Visual Basic.●

Using JiGlue in an ASP environment.●

COM Development

file:///I|/Workflow/DevGuide/Panagon/com/developing_for_com.htm [9/18/2002 8:04:01 AM]

Installing Panagon eProcess Toolkit
Panagon eProcess Web WorkFlo and WorkFlo Services ships with an eProcess toolkit for developers.
The Panagon eProcess Toolkit consists of the API classes, API samples and utilities, developer guide
documentation, and API reference documentation for both the eProcess Java APIs and the Java UI
Toolkit APIs.

This topic describes:

Panagon eProcess Toolkit Installation●

Panagon eProcess Toolkit Contents●

Step Processor and Launch Step Processor Toolkit Files●

Panagon eProcess Toolkit Installation
Install the Toolkit development files by performing the following steps:

Insert the Panagon Web WorkFlo and Toolkit CD into the CD-ROM drive on your system.1.

On the CD, locate the \Developer Files folder.2.

Copy the \Developer Files folder, and all the sub-directories, to your local drive. Maintain the
relative directory structure of the directories.

3.

Tip While no location requirements exist for the toolkit you should copy the directory structure to the
root directory on your development system. Adding the directory to the root speeds up compile time for
Java applications, makes registering files easier, and makes finding the appropriate reference
documentation much easier.

Change the file attributes for all of the files in the newly created directory structure from
Read-only to Read/Write.

4.

If you have not already done so, install the Java Software Development Kit (SDK). For details on
which JDK to use for your development environment and how to install and configure it for
eProcess, see the Configure the Java SDK topic in this guide.

5.

Configure the Java SDK to use the appropriate files. If you are developing COM-based
application, configure the JiGlue COM Bridge on the development system.

6.

Refer to the eProcess Required Tools and Languages topic for more information on the languages, tools,
and technologies you must be familiar with before developing applications for Panagon Web WorkFlo
and WorkFlo Services.

Panagon eProcess Toolkit Contents
This section describes the Panagon eProcess Toolkit directory structure and contents. If you followed the
installation instructions (above) the eProcess Toolkit files should be located on your development system
in a directory structure contained in the \Developer Files directory. By default the \Developer Files

Installing Panagon eProcess Toolkit

file:///I|/Workflow/DevGuide/Panagon/misc/install_toolkit.htm (1 of 4) [9/18/2002 8:04:01 AM]

file:///I|/Workflow/DevGuide/Panagon/misc/..%5Cjava%5Cconfiguring_the_jdk.htm
file:///I|/Workflow/DevGuide/Panagon/misc/..%5Cjava%5Cconfiguring_the_jdk.htm

directory structure contains the following directories and files:

Directory Contents

\Developer Files Contains the following development files:

pw.jar: contains the eProcess API runtime classes.●

vwpanel.jar: includes the information and classes necessary to use
Rapid Application Development (RAD), drag-and-drop
functionality in a Integrated Development Environment (IDE), such
as Visual Cafe, JBuilder, Forte, etc.

●

jiglue.dll: dynamic link library used to facilitate COM to Java
communication (also called the JiGlue COM Bridge).

●

jiglue.tlb: the JiGlue type library.●

Note The eProcess Swing-based runtime control components are included
in the pw.jar file. However, if you want to use drag-and-drop RAD
programming in your IDE to customize the user interface with these
Swing-based eProcess controls, you must add vwpanel.jar to your IDE.

Developer Files\
Documentation

Includes the following directories:

\Developer Guide: contains the Panagon eProcess Developer's
Guide (this document) HTML and image files. Open \Developer
Guide\eprocess_dg_start.htm to begin viewing the document.

●

\JavaDoc\JavaAPI: contains the eProcess API JavaDoc
documentation for the eProcess API classes. Open
\JavaDoc\JavaAPI\index.html to begin viewing the reference
documentation.

●

\JavaDoc\UI_Toolkit_API: contains the UI Toolkit JavaDoc
documentation for the User Interface Toolkit Swing-based eProcess
controls. Open \JavaDoc\UI_Toolkit_API\index.html to begin
viewing the reference documentation.

●

Tip The UI Toolkit JavaDoc documentation is useful if you plan to create
or extend Java Step Processors or Launch Step Processors using the
Swing-based eProcess controls that come with the Panagon eProcess
Toolkit.

Installing Panagon eProcess Toolkit

file:///I|/Workflow/DevGuide/Panagon/misc/install_toolkit.htm (2 of 4) [9/18/2002 8:04:01 AM]

Developer Files\
Samples

Includes the following directories:

\API: contains Java sample files that demonstrate how to create,
launch, complete, display, and save log information for a workflow.

●

\vwpanel: contains the Java Step Processor samples files (in the
\samplestep subdirectory) and Java Launch Step Processor sample
files (in the \samplelaunch sub-directory) along with the image
files needed to run the compile and run the samples.

●

\Utils: contains a Java class that allows you to view or remove
entries from the RMI registry.

●

Step Processor and Launch Step Processor Toolkit
Files
To modify the Step Processors or Launch Step Processors a developer must first know how to use the
eProcess APIs. One way of looking at the Step Processors and Launch Step Processors is to view them as
specialized applications that make extensive use of the eProcess APIs, existing Panagon Web Services
components, and the JiGlue COM Bridge (HTML versions only).

This section separately lists the toolkit files for both ASP (HTML) and Java Processors:

Toolkit files for ASP (HTML) Processors●

Toolkit files for Java Processors●

Toolkit files for ASP processors

Some eProcess Toolkit files for ASP development were installed on your Web WorkFlo server under the
following directory structures (if the default location was selected during Panagon Web Services and
Web WorkFlo installations):

Note The directories in the following table are relative to the <drive>...\Program
Files\FileNET\IDM\Web\IDMWS directory structure on the Web WorkFlo server.

ASP files Location

Step Processor
files:

\Redist\WF_Step\html

Launch Step Processor
files:

\Redist\WF_Launcher\html

Shared
files:

\Redist\WF_Html_Toolkit

These files are used by the Step Processors and Launch Step Processors shipped with Panagon Web
WorkFlo. You need not install additional files to see these ASP eProcess Toolkit files operate.

Installing Panagon eProcess Toolkit

file:///I|/Workflow/DevGuide/Panagon/misc/install_toolkit.htm (3 of 4) [9/18/2002 8:04:01 AM]

Refer to the HTML Processor Toolkit Overview topic for more information on understanding the default
structure of the ASP-based Step Processor and Launch Step Processor files. The HTML processors use
the JiGlue COM Bridge and Panagon Web Services Javascript objects. You must understand how to use
these development elements to modify the HTML processors successfully.

Toolkit files for Java processors

The Java Step Processor (<drive>...\Developer Files\Samples\vwpanel\samplestep) and Launch Step
Processor (<drive>...\Developer Files\Samples\vwpanel\samplelaunch) samples, along with the UI
Toolkit JavaDoc documentation (<drive>...\Developer
Files\Documentation\\JavaDoc\UI_Toolkit_API), constitute the Java Processor development toolkit.

Additionally, ASP containers for the Java applet versions of the Step Processor and Launch Step
Processors are provided, as follows:

Note The directories in the following table are relative to the <drive>...\Program
Files\FileNET\IDM\Web\IDMWS directory structure on the Web WorkFlo server.

Applet container files Location

Step Processor container file: \Redist\WF_Step\tabbed\step_main.asp

Launch Step Processor container
file:

\Redist\WF_Launcher\tabbed\launcher_main.asp

Installing Panagon eProcess Toolkit

file:///I|/Workflow/DevGuide/Panagon/misc/install_toolkit.htm (4 of 4) [9/18/2002 8:04:01 AM]

Locate Panagon Web Services Toolkit
Help
Panagon Web WorkFlo uses the Javascript API objects, ASP files, and in some cases, the IDM Objects
provided in Panagon Web Services and Panagon IDM Desktop.

To access, or interact with, content stored in Panagon Content Services or Panagon Image Services
libraries, you must be familiar with the Javascript API objects and IDM Objects. (See the Panagon
eProcess Services Architecture topics for more information on how these objects interact with the
eProcess APIs.)

The Panagon Toolkit Help system provides detailed reference and programming information on the
Panagon Toolkit COM IDM Objects and controls, including samples and Working with. . . topics.
Familiarize yourself with the development information available in the Panagon Toolkit Help system.

Access Panagon Toolkit Help, which contains the developer's documentation for Panagon Web Services,
by performing the following steps:

On your eProcess Services server, click Start.1.

Select Programs > FileNET Panagon IDM > Help For Developers. The Panagon Toolkit Help
system displays.

2.

Access the Panagon Web Services programming help by performing the following steps, while still in the
Panagon Toolkit Help system:

From the Panagon Toolkit Help Contents tab, locate the Web Services book (near the bottom of
the topic list).

1.

Highlight and double-click the Web Services book.2.

The following table lists the kind of information you can expect to find in the Web Services help:

Title Content description

Panagon Web Services
Overview

Includes detailed information about the Panagon Web Services
architecture and objects about a Panagon Web Services server before
Panagon Web WorkFlo is installed.

Developing for the Web Includes information necessary for developing a web application for
Panagon Web Services. Topics describe Panagon Web Services
toolkit components, where to find them, and how to use them. Some
topics discuss how to create ASP files that perform specific
functions. Working with. . . topics discuss how to work with four
Javascript API objects: IDMWSC_Document, IDMWSC_Folder,
IDMWSC_Library, and IDMWSC_StoredSearch. Most topics
include basic sample code to demonstrate how to use the objects.

Locate Panagon Web Services Toolkit Help

file:///I|/Workflow/DevGuide/Panagon/arch/accessing_web_services_toolkit_help.htm (1 of 2) [9/18/2002 8:04:01 AM]

Reference Includes reference information for all Web Services API Javascript
objects, methods, properties, events, and addressable Uniform
Resource Locators (URLs).

Using Web Services Sample
Pages

Includes information on using and modifying the IDM Web Services
sample .ASP and .HTM pages.

Locate Panagon Web Services Toolkit Help

file:///I|/Workflow/DevGuide/Panagon/arch/accessing_web_services_toolkit_help.htm (2 of 2) [9/18/2002 8:04:01 AM]

What's New in 5.0
This section summarizes the API and API-related changes made between Panagon eProcess Release 4.2.2 and Release 5.0.

Topics covered in this section include:

New API Classes●

Modified API Classes●

Modified Java UI Toolkit Beans and Interfaces●

Deprecated Class Members: Methods and Static Values●

Miscellaneous Development/API-Related Changes. These are changes made not to any APIs, but which may affect API
usage.

●

Documentation Changes●

Notes
The major feature change for the eProcess 5.0 Release, the addition of the Analysis and Reporting Engine, required little
change to the eProcess API, except for the addition of flags for the VWSystemAdministration class to support future uses.

1.

eProcess integration with Open Client (in addition to the current ActiveX client) for use with the IDM .NET 3.2 Open
Client will initially be provided for use with the eProcess 4.2.2 release. For information on using eProcess in an
environment that includes both Open Client and ActiveX clients, see Miscellaneous Development/API-Related Changes
below. For information on developing eProcess applications for IDM .NET-based Open Client, see the "Developing for
eProcess Open Client" section of the Open Client Developer's Guide.

2.

New API Classes
One new public class, VWAttributeInfo, has been added to the eProcess API to support the use of attributes and also to support
ActiveX/Open Client coexistence (future use).

Class Method Included Class or Method Description

VWAttributeInfo ------- This class enables users to associate
properties they define with
VWOperationDefinition,
VWQueueDefinition,
VWRosterDefinition,
VWStepDefinition,
VWSystemAdministration,
VWSystemConfiguration, and
VWWorkflowDefinition objects.

An additional future use of this class
will be to support ActiveX/Open Client
coexistence when eProcess 5.0
integration with Open Client becomes
available (see Miscellaneous
Development/API-Related Changes
below).

 void deleteField (String
fieldName)

Deletes the field entry that is specified by
input field name.

 String[]
getAttributeNames ()

Gets the array of attribute names for this
VWAttributeInfo object.

What's New in 5.0

file:///I|/Workflow/DevGuide/Panagon/misc/whats_new_in_5_0.htm (1 of 12) [9/18/2002 8:04:02 AM]

 int getFieldType (String
fieldName)

Returns the field type of the field value
that corresponds to the input field name.

 Object getFieldValue (
String fieldName)

Gets the object value for the input field
name.

 boolean isFieldArray (
String fieldName)

Indicates whether the field is an array.

 void setFieldValue (
String fieldName, Object
fieldValue)

Creates, deletes, or updates a
VWAttributeInfo field value. The field
names are labels for fieldValues.

Back to top

Modified API Classes
The following table summarizes the new methods added for this release.

Class Members Added Description Reason for Change

VWActionType ACTION_TYPE_DB_EXECUTE
= 37

Action type for a
DB_exec
instruction.

Future support for a
Database System
Instruction feature.

VWActionType ACTION_TYPE_LOG = 38 Action type for a
logging instruction.

Support for design-time
customization of logging
events.

VWCompoundStepDefinition VWInstructionDefinition
createLogInstruction (String
theEventType, String
theEventText)

Creates a new
instruction that will
be added to the end
of the list of
instructions
currently in this
compound step.
Given the input
event, the input
message will be
logged.

Support for design-time
customization of logging
events.

VWOperationDefinition,
VWQueueDefinition,
VWRosterDefinition,
VWStepDefinition,
VWSystemAdministration,
VWSystemConfiguration, and
VWWorkflowDefinition

VWAttributeInfo getAttributeinfo () Returns
theVWAttributeInfo
object for this class.

Attribute support for these
objects. See New Classes.

What's New in 5.0

file:///I|/Workflow/DevGuide/Panagon/misc/whats_new_in_5_0.htm (2 of 12) [9/18/2002 8:04:02 AM]

VWOperationDefinition,
VWQueueDefinition,
VWRosterDefinition,
VWStepDefinition,
VWSystemAdministration,
VWSystemConfiguration, and
VWWorkflowDefinition

void setAttributeInfo (
VWAttributeInfo)

Sets the
VWAttributeInfo
object for this class.

Attribute support for these
objects. See New Classes.

VWQueue QUERY_GET_NO_
SYSTEM_FIELDS = 1024

QUERY_GET_NO_TRANSLATED
_SYSTEM_FIELDS = 2048

New static values
to provide more
effective query
filtering.

Enhance queries to filter
flexibly on system fields.

VWRoster QUERY_GET_NO_
SYSTEM_FIELDS = 1024

QUERY_GET_NO_TRANSLATED
_SYSTEM_FIELDS = 2048

New static values
to provide more
effective query
filtering.

Enhance queries to filter
flexibly on system fields.

VWSession ATTRIBUTES_SYSTEM = 1
ATTRIBUTES_REGION = 2

New static values
to flag whether to
fetch system-wide
or isolated
region-specific
attribute
information for the
current logged-on
session.

Used to specify either
system-wide or isolated
region-specific attribute
information.

VWSession DATABASE_ORACLE= 1
DATABASE_SQL2000 = 2

New static values
to define the
database
environment as
database
configuration
types.

Future support for a
Database System
Instruction feature.

VWSession WEBAPP_NONE = 0
WEBAPP_WORKPLACE = 1
WEBAPP_WEB_WORKFLO = 2
WEBAPP_OPEN_CLIENT = 3
WEBAPP_CUSTOM = 100

New static values
(as shown) to
define the web
application IDs.

Note: Values
4-99 are reserved
for FileNET use.
Values 101-nnn
are available for
customer use.

Used to specify the web
application. An
additional future use
will be to support
ActiveX/Open Client
coexistence when
eProcess 5.0
integration with Open
Client becomes
available.

What's New in 5.0

file:///I|/Workflow/DevGuide/Panagon/misc/whats_new_in_5_0.htm (3 of 12) [9/18/2002 8:04:02 AM]

VWSession VWAttributeInfo fetchAttributes(int
nFlag)

Fetches from the
workflow server
system-wide or
region-specific
attribute
information for the
current logged-on
session.

Useful for a customization
that creates system-wide
or region-specific attribute
information via
VWSystemAdministration
or
VWSystemConfiguration
objects, respectively.

VWSession int getDatabaseType() Returns the
database
configuration type
of the current
database.

Future support for a
Database System
Instruction feature.

VWSession int getDefaultWebApplication () Returns the
application
environment type.

Gets the default web
application ID for a
logged-on session. The
web application id enables
the workflow system to
use web
application-specific
program implementations.

VWSession String getServerName () Returns the name of
the server for this
session.

Enables an API user to get
the server name at
runtime.

VWSession void setDefaultWebApplication (
int theWebApplicationId)

Stores the
application
environment type as
one among: NONE,
WORKPLACE,
WORKFLO,
OPEN_CLIENT,
or CUSTOM.

Sets the default web
application ID for a
logged-on session. The
web application id enables
the workflow system to
use web
application-specific
program implementations.

VWStepProcessorInfo Hashtable getLocations () Gets an array of
step processor URL
locations, which are
typically URLs of
ASP or JSP pages.

Future use of this
method will be to
support ActiveX/Open
Client coexistence
when eProcess 5.0
integration with Open
Client becomes
available.

VWStepProcessorInfoDefinition VWStepProcessorInfoDefinition (
int, String, int, Hashtable, int, int,
String)

Constructor to
specify the URL
locations of
stepProcessors.

Future use of this
method will be to
support ActiveX/Open
Client coexistence
when eProcess 5.0
integration with Open
Client becomes
available.

What's New in 5.0

file:///I|/Workflow/DevGuide/Panagon/misc/whats_new_in_5_0.htm (4 of 12) [9/18/2002 8:04:02 AM]

VWStepProcessorInfoDefinition String getLocation (int) Gets the URL
location associated
with this step
processor info
object, for one Web
Application.
The location may
be a URL of the asp
page.

Future use of this
method will be to
support ActiveX/Open
Client coexistence
when eProcess 5.0
integration with Open
Client becomes
available.

VWStepProcessorInfoDefinition Hashtable getLocations () Gets the URL
location associated
with this step
processor info
object.
The location may
be a URL of the asp
page.

Future use of this
method will be to
support ActiveX/Open
Client coexistence
when eProcess 5.0
integration with Open
Client becomes
available.

VWStepProcessorInfoDefinition void setLocations (Hashtable
theLocations)

Sets the URL
location associated
with this step
processor info
object.

Future use of this
method will be to
support ActiveX/Open
Client coexistence
when eProcess 5.0
integration with Open
Client becomes
available.

VWSystemAdministration Commit () Saves the session
timeout interval,
system flags,
statistics
consolidation
interval, and
attribute
information to the
workflow server
database.

Future use of this
method will be to
support ActiveX/Open
Client coexistence
when eProcess 5.0
integration with Open
Client becomes
available.

VWSystemAdministration getSessionTimeOut() Gets the number of
minutes before a
client / server
session timeout.

Support for customization
of the Session timeout
period, rather than relying
on the system default of
20 minutes.

VWSystemAdministration void setSessionTimeOut(int) Sets the number of
minutes before a
client / server
session timeout.

Support for customization
of the Session timeout
period, rather than
enforcing a system default
of 20 minutes.

What's New in 5.0

file:///I|/Workflow/DevGuide/Panagon/misc/whats_new_in_5_0.htm (5 of 12) [9/18/2002 8:04:02 AM]

VWSystemAdministration SYSTEM_WIDE_FLAG_
CONSISTENT_RETURN
= 0x200

Indicates that
returns will be
consistent with the
documented
behavior of the
return system
instruction.

Future support for
Analysis and Reporting
features.

VWSystemAdministration SYSTEM_WIDE_FLAG_
NO_ANALYSIS_ENG
= 0x100

Indicates that the
Analysis Engine
should be disabled
on the server.

Future support for
Analysis and Reporting
features.

VWWorkflowDefinition LVALUE = 0 Provides a standard
static value for
locating the
pre-assignment
values of an
assignment array, in
common with step
definitions and
event definitions.

Used to support
pre-assignment and
post-assignment
two-dimensional arrays.

VWWorkflowDefinition RVALUE = 1 Provides a standard
static value for
locating the
post-assignment
values of an
assignment array, in
common with step
definitions and
event definitions.

Used to support
pre-assignment and
post-assignment
two-dimensional arrays.

Back to top

Modified Java UI Toolkit Beans and Interfaces
The IVWParameterConstants interface's fields for session and web application-related operations were modified for this release as
shown in the following table.

Interface/Bean Fields Deprecated Fields Added, Deleted, or
Replaced

Reason for Change

What's New in 5.0

file:///I|/Workflow/DevGuide/Panagon/misc/whats_new_in_5_0.htm (6 of 12) [9/18/2002 8:04:02 AM]

IVWParameterConstants The fields shown below
were added, deleted, or
replaced existing fields.
The field string constant
values shown specify the
web application IDs.

Provide web application
IDs.

An additional future use
will be to support
ActiveX/Open Client
coexistence when
eProcess 5.0 integration
with Open Client
becomes available (see
Miscellaneous
Development/API-Related
Changes below).

IVWParameterConstants PRODUCT WEBAPP

Value: webApp

Same as above.

IVWParameterConstants BRIGHTSPIRE_PRODUCT WEBAPP_WORKPLACE

Value: WORKPLACE

Same as above.

IVWParameterConstants PANAGON_PRODUCT WEBAPP_WEB_WORKFLO

Value: WEB_WORKFLO

Same as above.

IVWParameterConstants OPEN_CLIENT_PRODUCT WEBAPP_OPEN_CLIENT

Value: OPEN_CLIENT

Same as above.

IVWParameterConstants VIEWER

Value: VIEWER

New field added. Enables
the applet to determine
which document viewer to
display (ActiveX or Java).

IVWParameterConstants CUSTOM_PRODUCT Deleted (not replaced). FileNET eProcess does not
currently support a sample
custom product.

Back to top

Deprecated Class Members: Methods and Static Values
The following table summarizes API class members that have been deprecated as of eProcess Release 5.0.

Note For information about any specific deprecation, refer to the "Deprecated Methods" section of the eProcess API JavaDoc
documentation; for information on eProcess API JavaDoc documentation, see eProcess API Class Relationships.

Class Member deprecated Replacement Reason for
Change

What's New in 5.0

file:///I|/Workflow/DevGuide/Panagon/misc/whats_new_in_5_0.htm (7 of 12) [9/18/2002 8:04:02 AM]

VWQueue QUERY_GET_SYSTEM_
FIELDS = 256
QUERY_GET_TRANSLATED
_SYSTEM_FIELDS = 512

Not Replaced. This value is the
default.

To provide for
inclusion or
exclusion of
system fields
or translated
system fields
for query
filtering.

VWRoster QUERY_GET_SYSTEM_
FIELDS = 256
QUERY_GET_TRANSLATED
_SYSTEM_FIELDS = 512

Not Replaced. This value is the
default.

To provide for
inclusion or
exclusion of
system fields
or translated
system fields
for query
filtering.

VWSession PRODUCT_BPS Replaced by
WEBAPP_WORKPLACE; use
with
setDefaultWebApplication(int).

Future use of
the
replacement
member will
be to support
ActiveX/Open
Client
coexistence
when
eProcess 5.0
integration
with Open
Client
becomes
available.

VWSession PRODUCT_CUSTOM Replaced by
WEBAPP_CUSTOM; use with
setDefaultWebApplication(int).

Future use of
the
replacement
member will
be to support
ActiveX/Open
Client
coexistence
when
eProcess 5.0
integration
with Open
Client
becomes
available.

What's New in 5.0

file:///I|/Workflow/DevGuide/Panagon/misc/whats_new_in_5_0.htm (8 of 12) [9/18/2002 8:04:02 AM]

VWSession PRODUCT_OPEN_CLIENT Replaced by
WEBAPP_OPEN_CLIENT; use
with
setDefaultWebApplication(int).

Future use of
the
replacement
member will
be to support
ActiveX/Open
Client
coexistence
when
eProcess 5.0
integration
with Open
Client
becomes
available.

VWSession PRODUCT_PW Replaced by
WEBAPP_WEB_WORKFLO;
use with
setDefaultWebApplication(int).

Helps manage
more flexible
environment
specifications
in multiple
web
application
system
configurations.

VWSession setAuditState() Replaced by inserting an edited
copy of an fnlogging.properties
file in the <JRE>\lib directory.
See this method in the eProcess
API Javadoc for details.

Support for the
Sun 1.4 JRE.

VWSession setProductId(int) Replaced by
setDefaultWebApplication(int
).

More flexible
support for
multiple Web
Application
system
configurations.

VWStepProcessorInfo getLocation() Replaced by getLocation(int). To allow
specification
of one among
multiple web
application
locations for a
single step
processor.

VWStepProcessorInfoDefinition VWStepProcessorInfoDefinition
(int theId, int
theProcessorType, String
theName, int theAppType,
String theLocation, int
theWidth, int theHeight, String
theApp)

Replaced by
VWStepProcessorInfoDefinition
(int theId, int
theProcessorType, String
theName, int theAppType,
Hashtable theLocation, int
theWidth, int theHeight, String
theApp).

To allow
specification
of multiple
web
application
locations for a
single step
processor.

What's New in 5.0

file:///I|/Workflow/DevGuide/Panagon/misc/whats_new_in_5_0.htm (9 of 12) [9/18/2002 8:04:03 AM]

VWStepProcessorInfoDefinition getLocation() Replaced by getLocation(int). To allow
specification
of one among
multiple web
application
locations for a
single step
processor.

VWStepProcessorInfoDefinition setLocation(String) Replaced by setLocations (
Hashtable).

To allow
specification
of one among
multiple web
application
locations for a
single step
processor.

VWSystemAdministration setSystemWideFlags(int
theFlags)

Replaced by setSystemFlags (
int theFlags). This replacement
does not save system flags to
the workflow server.

More flexible
flag setting
replacement.

Back to top

Miscellaneous Development/API-Related Changes
The following are changes made for the eProcess 5.0 Release that were not directly made to any APIs, but which can affect how
the APIs are used:

Support for multi-dimensional arrays for the JiGlue COM Bridge. This change enables API methods that take
multi-dimensional arrays as parameters to be called for JiGlue (previously JiGlue only supported one-dimensional arrays).
Following are API methods (in addition to the new Attribute-related methods described above) that take multi-dimensional
arrays as parameters and can now be called for JiGlue:

VWEventDefinition
 String[][] getAssignments()
 void setAssignments(String[][] theAssignments)

VWCompoundStepDefinition
 VWInstructionDefinition createCreateInstruction(String theWorkClassName,
String[][] theFieldAssignList)
 VWInstructionDEfinition createAssignInstruction(String[][] assignPairs)

●

The Java Runtime Environment (JRE) has been upgraded for the eProcess 5.0 release for certain platforms.
That is, for the eProcess 5.0 release:

For the Web client, use the Sun Microsystems JDK 1.4.0.❍

For the Web server, use the Sun Microsystems JDK 1.3.1.❍

For the WorkFlo Services server on a Windows 2000 platform, use both the Sun Microsystems JDK 1.3.0 and 1.3.1:

WorkFlo server: requires JRE 1.3.0.■

NT Services: requires JRE 1.3.1.■

❍

●

What's New in 5.0

file:///I|/Workflow/DevGuide/Panagon/misc/whats_new_in_5_0.htm (10 of 12) [9/18/2002 8:04:03 AM]

For WorkFlo Services on Solaris, use the Sun Microsystems JDK 1.4.0.❍

For WorkFlo Services on HP-UX platforms, use the HP JDK 1.3.1.❍

For WorkFlo Services on AIX, use the IBM AIX JDK 1.3.0 (for AIX 4.3 and higher).❍

For Panagon Open Client, the Sun JDK 1.3.1 is used on the web server, JDK 1.4.0 on the client (for information on
developing eProcess Open Client applications, see the "Developing for eProcess Open Client" section in the Panagon
Open Client Developer's Guide).

❍

Note Versions used may be updated. For the latest information on which versions of software (including
JDKs) are supported for Panagon eProcess Web Services, Web WorkFlo and WorkFlo Services, see the
eProcess Compatibility/Dependency/Server Matrix document, located at http://www.css.filenet.com web site
(go to Product Info > Panagon > eProcess > Compatibility and Dependency).

As of the eProcess 5.0 release, before you can run a Step or Launch Step Processor application/applet (such as the sample
Java Step Processor, VWSampleStepApplication, included with the Panagon eProcess Toolkit), you will need to use
the Configuration Console to specify the web application defined for VWService — for details on configuring the server
for a web application, see "Managing VWServices" in the eProcess Configuration Console Help.

You will then specify the web application when you run your application. For instance, to run the sample Java Step
Processor, VWSampleStepApplication, you would specify as a parameter: webApp=WEB_WORKFLO (previously,
you would have specified: product=PANAGON). For example:

javaw -classpath .;C:\Developer Files\samples\vwpanel\sample.jar;C:\<your
directory>\pw.jar;%CLASSPATH% samples.vwpanel.samplestep.VWSampleStepApplication
/hostName=<host name> /routerNames=vwrouter /routerPorts=1099 /idmPort=1099
/webApp=WEB_WORKFLO /queueName=InBox /wobNumber=B8D270F79636E1489BA9EC2DD9F7E950

For details, see the Run the Sample Step Processor Application step in the Building and Deploying the Sample Java
Processors procedure.

●

Five new pseudo-fields have been added, so that a program module can more conveniently perform query filtering for work
items, thereby limiting the need for maintaining user fields for common filtering tasks. The pseudo-fields are: F_StepName,
F_StepDescription, F_InstrSheetName, F_LastErrorNumber, and F_LastError.

●

As noted above, eProcess integration with Open Client (in addition to the current ActiveX client) for use with the IDM
.NET 3.2 Open Client will initially be provided for use with the eProcess 4.2.2 release. Using Open Client with eProcess
4.2.2 in an environment that includes both Open Client and ActiveX clients requires that you use a separate web server,
isolated region, router, and preferences for ActiveX and similarly, a separate web server, isolated region, router, etc. for
Open Client. In other words, co-existence is not available with eProcess 4.2.2.

The eProcess 5.0 release however, will support ActiveX and Open Client co-existence on the same web server, isolated
region, and router at such time as Panagon Open Client is released for use with eProcess 5.0. For information on developing
eProcess applications for ASP.NET-based Open Client, see the "Developing for eProcess Open Client" section of the Open
Client Developer's Guide.

●

Back to top

Documentation Changes
The following documentation changes have been made since the last release:

The Panagon eProcess Developer's Guide (this guide) has been updated for new features and restructured with a new Table
of Contents. The index and search capabilities have been expanded. Code samples and examples have been updated and
corrected.

●

The eProcess API JavaDoc documentation has been updated for the changes indicated in this document. In addition, in
many cases, class and method descriptions have been revised and corrected; additional and revised code samples and
examples of usage have been provided.

●

Back to top

What's New in 5.0

file:///I|/Workflow/DevGuide/Panagon/misc/whats_new_in_5_0.htm (11 of 12) [9/18/2002 8:04:03 AM]

http://www.css.filenet.com/

What's New in 5.0

file:///I|/Workflow/DevGuide/Panagon/misc/whats_new_in_5_0.htm (12 of 12) [9/18/2002 8:04:03 AM]

Java UI Toolkit Overview
The UI Toolkit APIs (interfaces, classes, and beans) are designed to help you develop Swing-based
applications that use the eProcess APIs. To use these interfaces and classes, you must be familiar with
the eProcess APIs. These interfaces, support classes, and beans are meant to make user interface
development easier once you understand the programmatic requirements of the eProcess APIs.

This overview information, and the information found in the UI Toolkit API documentation, is useful if
you are using these Swing components and controls to extend the interface of the Java Step Processors or
Launch Step Processors. You can use these Swing components in one of two ways: (1) explicitly coding
using these components in a text-based editor, or (2) drag-and-drop development in an IDE capable of
supporting RAD. For drag-and-drop development you must add the vwpanel.jar file to the IDE.

While runtime versions of these classes are included in the pw.jar file, the necessary support files for
drag-and-drop development are packaged in the vwpanel.jar file. Refer to Install Panagon eProcess
Toolkit for more information on accessing the UI Toolkit APIs reference documentation.

Interfaces

Name Description

IVWAppLauncher Interface that must be implemented by all applications that
need to share session information with child applications.

IVWFrameInterface Interface that specifies which methods the dialogs support.
This is a parent class for the IVWAppLauncher and
IVWLaunchableApp interfaces.

IVWLaunchableApp Interface that must be implemented in child applications
that need to share session information with the parent
application.

IVWPanelComponent Implements required methods for all components for which
VWPanel or VWLaunchPanel beans act as a container.

IVWParameterConstants Interface that contains String versions of all of the
necessary parameters for launching and running applets
and applications.

IVWStepProcessor Interface that should be implemented by any Step
Processor application that allows the toolkit to modify its
title.

Java UI Toolkit Overview

file:///I|/Workflow/DevGuide/Panagon/beans/java_ui_class_overview.htm (1 of 4) [9/18/2002 8:04:03 AM]

IVWStepProcessorComponent Interface that should be implemented by all components
implemented as a Step Processor bean. Additionally, the
VWPanel or VWLaunchPanel bean can contain these
objects.

Support Classes

Name Description

VWDriverFrame Provides a container for customized frame implementations
(extends the java.awt.Frame class).

VWPanelComponentInfo Implements required interfaces for all components
contained by the VWPanel. Retrieves information about
the specified parameter from the step element and saves the
changes to the step element.

VWSessionInfo Provides a container for session related information (like
host name, router name, router ports, and other necessary
session data).

Beans (containers and controls)
See the UI Toolkit Parameters topic for information on the parameters supported by these beans.

Name Description

VWAttachmentPanel Provides the means for listing attachments associated with
the current step. The toolbar provides the Content Services
and Image Services functionality. This bean provides the
only programmatic means to interact with the Content
Services and Image Services within the UI Toolkit APIs.
No other UI Toolkit APIs allow interaction with
attachments.

VWButton Provides support for some Step Processor operations, like
save, complete, cancel, or reassign.

VWCheckBox Provides a means for exposing the state of a Boolean data
field. If the field is editable, the user changes the state by
clicking on the control.

Java UI Toolkit Overview

file:///I|/Workflow/DevGuide/Panagon/beans/java_ui_class_overview.htm (2 of 4) [9/18/2002 8:04:03 AM]

VWComboBox Displays a list of responses. Calling the doSave() method
saves the selected response.

VWFieldPanel Displays the data fields exposed at the step. The panel
allows users to modify the values based on the specified
workflow definition mode.

VWLabel Provides a means for displaying read-only parameter data.

VWLaunchPanel Provides a container for other controls. This class is used to
build a Launch Step Processor. The class creates the
workflow, initializes the other components, and serves as
an ActionListener for the button press events from the
VWButton objects.

VWMilestonePanel Provides a read-only milestone list.

VWPanel Provides a container for other controls. This class is used to
build a Step Processor. The class retrieves the
VWStepElement, initializes the other components, and
implements an ActionListener for the button press events
from the VWButton objects.

VWTabbedPane Provides a tabbed control for displaying the attachments,
fields, and workflow group beans. In addition, the control
allows an end user to select a response and enter his/her
comments.

VWTextArea Provides a multi-row control for displaying step
instructions, or allowing the user to enter his/her
comments.

VWTextField Provides a single-row control for displaying field data.

VWWflGroupPanel Provides a dialog box for displaying the Workflow Group
parameters exposed at this step. The panel allows users to
modify the contents of the groups.

All of the component beans have an associated information class. The information classes are named
using the convention of adding BeanInfo to the bean name. For example, the information class for
VWButton is named VWButtonBeanInfo. The information classes describe the associated beans, and the
information classes support the following methods:

getBeanDescriptor(): The method returns the BeanDescriptor for the class.●

getDefaultPropertyIndex(): The method returns the zero-based index value of the default property
of the bean.

●

Java UI Toolkit Overview

file:///I|/Workflow/DevGuide/Panagon/beans/java_ui_class_overview.htm (3 of 4) [9/18/2002 8:04:03 AM]

getIcon(): The method returns the image used in the toolbar or a form.●

getPropertyDescriptors(): The method returns an array of PropertyDescriptor objects which
represent the properties on the bean.

●

Java UI Toolkit Overview

file:///I|/Workflow/DevGuide/Panagon/beans/java_ui_class_overview.htm (4 of 4) [9/18/2002 8:04:03 AM]

UI Toolkit Parameters
This topic lists the system fields supported by the different UI Toolkit beans (controls). While you can
add other system fields to your customized Java Step Processor and Launch Step Processors, system field
information other than that listed here is ignored.

The "PARAM_" constants are defined in the IVWPanelComponent class. The "PARAM_" constants
map to the associated "F_" string value (shown below).

Some UI Toolkit controls support only one parameter, like the VWComboBox control, or a small set of
the parameters, like the VWButton control. The IVWPanelComponent interface provides support for
creating user-defined fields for the VWCheckBox, VWLabel, VWTextArea, VWTextField controls.

The following sections list the parameters supported by each control and are separated by control type.

The VWButton control supports the following parameters:
F_Cancel (PARAM_CANCEL)●

F_Complete (PARAM_COMPLETE)●

F_Help (PARAM_HELP)●

F_Reassign (PARAM_REASSIGN)●

F_Return (PARAM_RETURN)●

F_Save (PARAM_SAVE)●

F_Status (PARAM_STATUS)●

The VWComboBox control supports the following parameter:
F_Responses (PARAM_RESPONSES)●

The VWCheckBox, VWLabel, VWTextArea, VWTextField controls support the following
parameters:

User-defined fields●

F_Comment (PARAM_COMMENT)●

F_DateReceived (PARAM_DATE_RECEIVED)●

F_DeadLine (PARAM_DEADLINE)●

F_ExceptionDescription (PARAM_EXCEPTION_DESCRIPTION)●

F_ExceptionMap (PARAM_EXCEPTION_MAP)●

F_LaunchDate (PARAM_LAUNCH_DATE)●

F_OperationName (PARAM_OPERATION_NAME)●

F_Originator (PARAM_ORIGINATOR)●

F_Participant (PARAM_PARTICIPANT)●

F_QueueName (PARAM_QUEUE_NAME)●

F_RosterName (PARAM_ROSTER_NAME)●

UI Toolkit Parameters

file:///I|/Workflow/DevGuide/Panagon/beans/ui_bean_parameters.htm (1 of 2) [9/18/2002 8:04:03 AM]

F_SelectedResponses (PARAM_SELECTED_RESPONSE)●

F_StepDescription (PARAM_STEP_DESCRIPTION)●

F_StepName (PARAM_STEP_NAME)●

F_Subject (PARAM_SUBJECT)●

F_Tag (PARAM_TAG)●

F_WorkClassName (PARAM_WORK_CLASS_NAME)●

F_WorkflowName (PARAM_WORK_CLASS_NAME)●

F_WorkflowNumber (PARAM_WORKFLOW_NUMBER)●

F_WorkObjectName (PARAM_WORK_OBJECT_NAME)●

F_WorkObjectNumber (PARAM_WORK_OBJECT_NUMBER)●

Refer to the UI Toolkit APIs JavaDoc reference documentation for more information on using these
values with the appropriate controls.

UI Toolkit Parameters

file:///I|/Workflow/DevGuide/Panagon/beans/ui_bean_parameters.htm (2 of 2) [9/18/2002 8:04:03 AM]

How to Use This Guide
This guide uses specific navigation tools to help you find the appropriate content quickly: the Contents,
the Index, and Search links.

Click Contents to view the table of contents.●

Click Index to view the list of indexed information.●

Click Search this document to search for pages containing a specific word or term. (Click Search
tips for help on using the search.)

●

Note If the Table of Contents does not load properly, click the Text version of Contents link in the
upper right corner of the documentation window. Use the text version of Contents if you are using an
older browser version, or you are experiencing problems viewing the default Table of Contents.

Conventions Used In This Guide
This guide uses the following type, text, and naming conventions:

Convention Description

Bold type Indicates menu names and items, file names, directory names, and notes,
tips and warnings.

Italic type Indicates referenced document titles and dialog box names.

Fixed width type Indicates code samples, syntax, class names, and parameters. Green
fixed width type indicates code sample comments. Typically, green
fixed width type appears within code sample blocks.

Blue text Indicates a link to another topic, a link to another section in the same
topic, or a link to an external topic. In most browsers, when you pass the
cursor over blue-colored text the text is underlined.

<drive>...\ Indicates a directory structure that remains fixed relative to a dynamic
location. For example, the directory structure for the HTML Step
Processor files is
\FileNET\IDM\Web\IDMWS\Redist\WF_Step\html; however, the
directory structure could be located on any drive and contained in any
directory on that drive.

Note Includes information that you might find useful or want to know about in
most situations.

Tip Includes information you should treat as a general guideline while
developing.

How to Use This Guide

file:///I|/Workflow/DevGuide/Panagon/misc/conventions.htm (1 of 2) [9/18/2002 8:04:04 AM]

Caution Includes information about practices, actions, or configurations that
might cause data loss or compilation or application failures.

Product naming Certain product names are abbreviated as follows:

Designer, for eProcess Designer●

Administrator, for eProcess Administrator●

Tracker, for eProcess Tracker●

Configuration Console, for eProcess Configuration Console●

Other Panagon eProcess
documentation and
terminology

Access the eProcess documentation from any system that can connect to
the eProcess web server by clicking the eProcess bar on the Panagon
Web Services home page, then clicking the Help icon (shown to the
left).

For product terminology or definition of terms, refer to the Glossary in
the eProcess documentation.

How to Use This Guide

file:///I|/Workflow/DevGuide/Panagon/misc/conventions.htm (2 of 2) [9/18/2002 8:04:04 AM]

Printing Topics
Depending on need, you can print individual topics or the entire guide. Treat these instructions as
guidelines for printing. (Depending on your printer type, the print menus or dialog boxes might display
differently from those mentioned here.)

Printing topics
These instructions assume you are viewing and printing individual topics using a web browser (either
Internet Explorer or Netscape). Refer to the online help for your web browser for more detailed
information on printing from the browser window.

Internet Explorer

On the File menu, click Print.1.

Select the printing options you want. (The print options depend on the printer attached to the
system.)

2.

Note To print a frame or item in a frame, right-click the frame or item and click Print.

Netscape

On the File menu, click Print.1.

Select the printing options you want. (The print options depend on the printer attached to the
system.)

2.

Note The content of each frame prints separately by default.

Printing the guide
You must have Adobe Acrobat Reader 4.0 (or higher) installed on your system to print the entire guide.

From the Adobe Acrobat Reader, perform the following steps:

Open eprocess_dev_guide_5_0.pdf. (The file resides on the Web WorkFlo server, in the
<drive>...\Developer Files\Documentation\Developer Guide directory in the Panagon eProcess
Toolkit.)

1.

On the File menu, click Print.2.

On the Print dialog box, locate Print Range and select All.3.

Click OK.4.

Note While all of the guide topics exist in the PDF version, not all of the navigation elements function in
the same manner as in the online version. The PDF version is meant to allow you to print all topics in
sequence.

Printing Topics

file:///I|/Workflow/DevGuide/Panagon/misc/printing.htm [9/18/2002 8:04:04 AM]

file:///I|/Workflow/DevGuide/Panagon/eprocess_dev_guide.pdf

Contact Us

Visit the FileNET web site
Visit the FileNET web site for information on the corporation, its products, Global Learning Services,
Professional Services, customer applications, and user groups.

Visit the CSS web site
Go to the FileNET Customer Service and Support (CSS) web site for release notes, documentation, and
other product-specific information.

Send documentation feedback
We welcome your comments on Panagon eProcess documentation. You may:

Send email to the Director of Documentation.●

Call (714) 327-3449.●

Send a fax to (714) 327-5076.●

Contact Us

file:///I|/Workflow/DevGuide/Panagon/misc/filenet.htm [9/18/2002 8:04:04 AM]

http://www.filenet.com/
http://www.css.filenet.com/
mailto:mcalvert@filenet.com

License Agreement
READ CAREFULLY BEFORE INSTALLING. IF YOU DO NOT AGREE WITH THESE
TERMS AND CONDITIONS, OR THE TERMS AND CONDITIONS IN YOUR SOFTWARE
LICENSE AGREEMENT WITH FileNET, DO NOT INSTALL THE SOFTWARE. BY
INSTALLING THE SOFTWARE, YOU AGREE TO BE BOUND BY THE TERMS OF THIS
LICENSE.

1 Authorization of End User

Each Software product, including any documentation relating to or describing such Software, such
as, but not limited to, logic manuals, flow charts and improvements or updates provided by
FileNET (collectively called "Software"), is furnished to End User under a personal,
non-exclusive, nontransferable license solely for End User's own internal use in compliance with
this License and all applicable laws and regulations. End User agrees that this License does not
permit End User to: (1) use the Software for a service bureau application or (2) transfer the
Software without prior written consent from FileNET.

.

End User may make one copy of the Software, (with the proper inclusion of FileNET's copyright
notice and any other proprietary notice and/or trademarks on such Software), for End User's own
backup purposes; however, the End User may not otherwise copy or reproduce the Software
except to install the Software on a single hard drive for use by End User in accordance with this
License.

B.

If End User is unable to operate the Software on the computer equipment due to an equipment
malfunction, the Software may be transferred temporarily to other computer equipment during the
period of equipment malfunction.

C.

Title to and ownership of the Software and all of its parts (or any modifications, translations, or
derivatives thereof, even if unauthorized) and all applicable rights in patents, copyrights and trade
secrets in the Software shall remain exclusively with FileNET and its licensors. Software provided
hereunder is valuable, proprietary, and unique, and End User agrees to be bound by and observe
the proprietary nature thereof as provided herein. End User agrees to take diligent action to fulfill
its obligations hereunder by instruction or agreement with its employees or agents (whose
confidentiality obligations shall survive termination of employment or agency) who are permitted
access to the licensed Software. Access shall only be given on a need-to-know basis. Except as set
forth herein or as may be permitted in writing by FileNET, End User shall not use, provide or
otherwise make available the Software or any part or copies thereof to any third party. Unless
prohibited by law, End User shall not reverse engineer, decompile or disassemble the Software or
any portion thereof, nor otherwise attempt to create or derive the source code. End User
acknowledges that unauthorized reproduction, use, or disclosure of the Software or any part
thereof is likely to cause irreparable injury to FileNET, who shall therefore be entitled to
injunctive relief to enforce these restrictions, in addition to any other remedies available at law or
in equity.

D.

FileNET agrees that affiliates of End User may use the Software; provided that prior to any
affiliate's use of the Software: (1) each affiliate shall sign and deliver to FileNET a mutually

E.

License Agreement

file:///I|/Workflow/DevGuide/Panagon/misc/eula.htm (1 of 4) [9/18/2002 8:04:05 AM]

agreeable appendix to this License certifying its License to be bound by the terms herein; and (2)
such use by such affiliate shall be subject to the following: (i) End User accepts responsibility for
the acts or omissions of such affiliates as if they were End User's acts or omissions; (ii) End User
shall indemnify FileNET against losses or damages suffered by FileNET arising from breach of
this License by any such affiliate as if effected by End User; and (iii) such use shall not constitute
an unauthorized exportation of the Software or documentation under U.S. Government laws and
regulations.

FileNET shall defend any action, suit or proceeding brought against End User so far as it is based
on a claim that the use of any Software delivered hereunder constitutes an infringement of any
patent, copyright or other intellectual property right, provided that FileNET is promptly notified by
End User of the action and given full authority, information and assistance for the defense of the
action. FileNET shall pay all damages and costs finally awarded against End User, but shall not be
responsible for any compromise made without its consent. FileNET may at any time it is
concerned over the possibility of such an infringement, at its option and expense, replace or
modify the Software so that infringement will not exist, or request the End User to remove the
Software involved and refund to End User an amount as established by FileNET.

F.

FileNET shall have no liability to End User under any provisions of this Section, if any claim is
based upon the use of the Software in combination with software not supplied by FileNET, or in a
manner for which the Software was not designed, or if the claim of infringement would have been
avoided but for End User's use of Software other than the latest unmodified release made available
to End User.

G.

2 Types of Software Licenses

For purposes of this License, the following definitions shall apply:

Server Software is a copy of Software residing on a server or multiple servers.1.

Clients are personal computers, minicomputers, mainframes, workstations and terminal
devices that interact with Server Software.

2.

Client Software is a copy of Software residing on a Client that interacts with Server
Software.

3.

CPU is a central processing unit. A central processing unit can exist as a single instance or
in multiple instances within a server.

4.

.

End User agrees to license the Software as follows:

For Client Software - one copy of Client Software for each Client that accesses any Server
Software.

1.

For Server Software - one copy of Server Software for each server.2.

For CPU Software - one copy of Software for each CPU on a server containing FileNET
Server Software. CPU licenses are categorized by performance as outlined in FileNET's
CPU Classification Guideline. FileNET will not limit Enduser to a specific number of
concurrent users under this licensing agreement. The number of CPU's deployed will be
used as a means of calculating the overall system license price. Individual FileNET Systems
cannot mix CPU Software licenses and FileNET's other Software pricing model, Concurrent
User Licenses.

3.

B.

License Agreement

file:///I|/Workflow/DevGuide/Panagon/misc/eula.htm (2 of 4) [9/18/2002 8:04:05 AM]

FileNET may audit the End User's Software usage remotely or on-site during service calls or upon
reasonable notice during standard business hours. The audit shall determine Software usage by
server for the number of concurrent Dedicated, Shared and/or eBusiness User Licenses required
for each server. Should an audit determine that Customer's usage has exceeded the number of
Concurrent User Licenses, or that End User's deployment of Software on Clients exceeds the
contracted ratio of Clients to Concurrent User Licenses, End User agrees to purchase additional
licenses in compliance with this Software Schedule. For a server with a combination of concurrent
Dedicated, Shared and/or eBusiness User Licenses, any use beyond the total aggregate number of
all Concurrent User Licenses (including previously acquired SLU type licenses) will require
additional Concurrent User Licenses to be purchased. The highest ratio Concurrent User License
identified on the End User's configuration and its applicable fee will be invoiced accordingly.

C.

3 Termination

Notwithstanding the foregoing, FileNET shall have the right to terminate End User's authorization to use
the Software if End User fails to comply with the terms and conditions of the License. Upon notice of
such termination, End User shall immediately destroy the Software and all portions and copies thereof
and, if requested by FileNET, shall certify in writing as to the destruction of the same.

4 Disclaimer and Limited Warranty

FileNET warrants the media on which the Software is furnished to be free from defects in materials and
workmanship for a period of ninety (90) days from the date of purchase.

FileNET's entire liability and End User's exclusive remedy as to media shall be at FileNET's option,
either the return of the amount paid for the Software or replacement of the media that does not meet
FileNET's limited warranty and which is returned to FileNET with a copy of the receipt.

EXCEPT AS EXPRESSLY PROVIDED ABOVE, THE SOFTWARE AND DOCUMENTATION ARE
PROVIDED "AS IS", FILENET DOES NOT MAKE ANY AND HEREBY DISCLAIMS ALL
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE.

The entire risk as to the quality, accuracy and performance of the Software and the Documentation is
with End User. FileNET does not warrant that the functions contained in the Software will meet End
User's requirements or that the operation of the Software will be uninterrupted or error free.

FILENET SHALL NOT BE LIABLE UNDER ANY CONTRACT, NEGLIGENCE, STRICT
LIABILITY OR OTHER LEGAL OR EQUITABLE THEORY FOR ANY INDIRECT,
CONSEQUENTIAL OR INCIDENTAL DAMAGES (INCLUDING DAMAGES FROM LOSS OF
BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION,
PROCUREMENT OF SUBSTITUTE GOODS OR TECHNOLOGY, AND THE LIKE) ARISING OUT
OF THIS LICENSE OR THE USE OF OR INABILITY TO USE THE SOFTWARE EVEN IF
FILENET HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

License Agreement

file:///I|/Workflow/DevGuide/Panagon/misc/eula.htm (3 of 4) [9/18/2002 8:04:05 AM]

5 Permitted Uses

This Software and the Documentation are licensed to you, the End User, and may not be transferred to or
used by any third party for any length of time without the written consent of FileNET. You may not
modify, adapt, translate, reverse engineer, decompile, disassemble, or create derivative works based on
the Software or the written materials. Interface information necessary to achieve interoperability is
available from FileNET on written request and payment of FileNET's then current fee.

6 Government Restricted Rights

The Software is commercial software and the Software and Documentation are provided with Restricted
Rights. Use, duplication or disclosure by the Government is subject to restrictions as set forth in
paragraph (c) (1) (ii) of the Rights in Technical Data and Computer Software Clause at DFARS
252.227-7013 or subparagraphs (c) (1) and (2) of the Commercial Computer Software Restricted Rights
at 48 CRF 52.007-19, as applicable. Contractor/Manufacturer is FileNET Corporation, 3565 Harbor
Blvd., Costa Mesa, California 92626.

7 Export

Regardless of any disclosure made by the End User or licensee to FileNET of the ultimate destination of
the Software, End User shall not export or re-export, whether directly or indirectly, the Software to
anyone outside the United States of America without first obtaining an export license from the United
States Department of Commerce or any other agency or department of the United States Government as
required.

8 Miscellaneous

This License is governed by the laws of California, without regard to its conflicts of laws, provisions, or
the United Nations Convention on the International Sale of Goods and will be deemed a contract under
seal. If any provision of this License shall be held by a court of competent jurisdiction to be contrary to
law, that provision will be enforced to the maximum extent permissible, and the remaining provisions of
this License will remain in full force and effect. This License is not assignable or transferable by End
User without prior written consent of FileNET; any attempt to do so shall be void. Any notice, approval
or consent required hereunder shall be in writing. The parties agree that a material breach of this License
by End User would cause irreparable injury to FileNET for which monetary damages would not be an
adequate remedy and that FileNET shall be entitled to equitable relief in addition to any other remedies it
may have hereunder or at law. Section 4 shall survive any termination of this License.

License Agreement

file:///I|/Workflow/DevGuide/Panagon/misc/eula.htm (4 of 4) [9/18/2002 8:04:05 AM]

Building and Deploying the Sample Java
Processors
This topic describes the overall procedure used to build, deploy, and run an unmodified, working sample
Step Processor or Launch Step Processor. These procedures step you through the process of compiling,
installing, and deploying a sample Step or Launch Step Processor applet or application that is provided
with the Panagon eProcess Toolkit. Understanding these procedures will assist you in customizing the
sample applications or applets.

The overall procedure for building, compiling, deploying, and running a Step Processor or Launch Step
Processor consists of a number of basic steps, each of which is itself a procedure or set of procedures. To
help you avoid getting lost in the details of the overall process, the basic overall procedure is provided
here, with links to the detailed procedure for each step.

Install the eProcess Toolkit to a new directory on your local system.1.

Install and configure the Java SDK.2.

Compile the Step Processor or Launch Step Processor samples.3.

Create a Java ARchive (JAR) file that contains the compiled versions of the samples.4.

Sign the JAR file.5.

Deploy the JAR file on the Web WorkFlo server.6.

Configure the server for the web application.7.

Run the Sample Step Processor application.8.

The remaining sections in this topic provide detailed instructions on accomplishing these steps.

Compile the Sample Processors
The Java samples provided with the Panagon eProcess Toolkit include both an application and an applet
version of the Step and Launch Step Processors. If you have not already done so, you must perform the
following actions before you can compile these samples:

Install the Panagon eProcess Toolkit to a new directory on your local system.●

Install the Java SDK. (See the Configure the Java SDK topic for details on which JDK to use for
your development environment and how to install it for eProcess. All of the procedures in this
topic assume the JDK is installed in the default directory.)

●

Configure the Java SDK to use the appropriate eProcess API class library.●

Compile the unmodified sample Step and Launch Step Processors by performing the following steps:

Navigate to the local directory which contains the development files. If you kept the directory
structure the same as the structure on the Web WorkFlo and Toolkit CD, the <drive>...\Developer
Files\vwpanel directory on your development system contains the correct directories and files.

1.

Building and Deploying the Sample Java Processors

file:///I|/Workflow/DevGuide/Panagon/samp/run_java_processor_samples.htm (1 of 4) [9/18/2002 8:04:05 AM]

Select the \samplestep directory or the \samplelaunch directory, depending on which type of Java
Processor you want to compile and test immediately. (Refer to the Java Step Processor Sample
Files or the Java Launch Step Processor Sample Files topics for more information on the specific
files available in each directory.)

2.

Select all files and subdirectories in the selected directory and change the file attributes from
Read-only to Read/Write.

3.

Open a command prompt, and change to the directory containing the Step Processor sample files
(for example, \samplestep).

4.

Compile the unmodified Step Processor sample applet by entering a command similar to the
following (modify for the appropriate JDK):

5.

C:\jdk1.3.1\bin\javac.exe -classpath .;C:\<your directory>\pw.jar;%CLASSPATH%
VWSampleStepApplet.java

Note You should specify the location of the package as part of the compiler command, as shown here.
Alternatively, if you have already created a batch file that includes the pw.jar location in the
CLASSPATH variable, you can specify setenv and need not specify the pw.jar location; for details,
see the Configure the Java SDK topic).

Similarly, you compile the unmodified Launch Step Processor sample applet by entering a command
similar to the following (from the directory containing the Launch Step Processor sample):

C:\jdk1.3.1\bin\javac.exe -classpath .;C:\<your directory>\pw.jar;%CLASSPATH%
VWSampleLaunchApplet.java

Alternatively, if you want to use the sample Java applications, you can compile the unmodified Step
Processor sample or Launch Step Processor sample applications by entering commands similar to the
following (from the directory containing the appropriate sample):

C:\jdk1.3.1\bin\javac.exe -classpath .;C:\<your directory>\pw.jar;%CLASSPATH%
VWSampleStepApplication.java

C:\jdk1.3.1\bin\javac.exe -classpath .;C:\<your directory>\pw.jar;%CLASSPATH%
VWSampleLaunchApplication.java

Create a Java ARchive (.JAR) file containing the compiled classes.6.

Deploy the JAR file on the Web WorkFlo server

If you compiled the applications only, or you only want to test the applications, you can run the
sample Processor applications without first having to install them on the Web WorkFlo server.

7.

Create a Java ARchive (JAR) file
Whenever you compile the unmodified applets samples, modify and rename the applets, or customize the
samples, you must create a Java Archive file to contain the compiled classes. (Refer to Sun Microsystems
JDK documentation for more information on using the Java Archive tool.) The following procedure
assumes you have already compiled the samples without compiler errors.

Building and Deploying the Sample Java Processors

file:///I|/Workflow/DevGuide/Panagon/samp/run_java_processor_samples.htm (2 of 4) [9/18/2002 8:04:05 AM]

Create a JAR file, for example for the Step Processor sample, by performing the following steps:

Open a command prompt, and cd to the parent directory of the directory containing the Step
Processor sample (that is, ...\Developer Files\).

1.

Create a .JAR file containing only the compiled classes by entering a command similar to the
following (modify for the appropriate JDK):

2.

C:\jdk1.3.1\bin\jar.exe -cvf sample.jar samples\vwpanel\samplestep*.class
samples\vwpanel\samplestep\resources*.class samples\vwpanel\samplestep\images*.class
samples\vwpanel\samplestep\images*.gif

You should receive output similar to the following:

added manifest
adding: samplestep\VWSampleStepApplet.class(in = 2617) (out= 1297)(deflated 50%)
adding: samplestep\VWSampleStepApplication.class(in = 3090) (out= 1542)(deflated 50%)
adding: samplestep\VWSampleStepPanel.class(in = 4222) (out= 2053)(deflated 51%)
adding: samplestep\resources/VWResource.class(in = 437) (out= 299)(deflated 31%)
adding: samplestep\images/VWImageLoader.class(in = 1239) (out= 602)(deflated 51%)
adding: samplestep\images/icon.gif(in = 1432) (out= 1015)(deflated 29%)
adding: samplestep\images/step.gif(in = 1592) (out= 1260)(deflated 20%)

Once the classes are added to the JAR file, deploy the JAR file on the Web WorkFlo server.3.

Note You must sign the JAR file (the Netscape Object Signing Certificate is recommended).

If you intend to use several .JAR files, you should add all of the compiled files into a single .JAR file and
deploy just that one file. Alternatively, you can specify multiple .JAR files using a comma (",") delimiter
(however, be aware that not all browsers support multiple .JAR files). If you plan to use several JAR
files, you should place each .JAR file in the same directory as the modified .ASP file that contains the
applet.

Configure the Server for the Web Application
Before you can run a Step or Launch Step Processor application/applet (e.g., the sample Java Step
Processor, VWSampleStepApplication, included with the Panagon eProcess Toolkit), if you have
not already done so, you will need to use the Configuration Console to specify the web application
defined for VWService. For details on how to configure the server for a web application, see "Managing
VWServices" in the eProcess Configuration Console Help.

Once you have configured the server for the web application, you specify the web application when you
run your application/applet. For example, to run the sample Java Step Processor,
VWSampleStepApplication, you specify the Panagon web application as a parameter as follows:
webApp=WEB_WORKFLO (previously, you would have specified: product=PANAGON). For
information and examples on running an application/applet, see the next step, Run the Sample Step
Processor Application.

Building and Deploying the Sample Java Processors

file:///I|/Workflow/DevGuide/Panagon/samp/run_java_processor_samples.htm (3 of 4) [9/18/2002 8:04:05 AM]

Run the Sample Step Processor Application
If you compiled the Step Processor application samples, you will need to create a valid workflow on your
WorkFlo Services server to run and test them. You can use Designer and Administrator to create a
workflow and locate a valid work object number.

To run the unmodified sample Processor applications, use the following procedure:

In Designer, create a workflow.1.

Validate and run the workflow.2.

Retrieve a workflow object number (WobNumber) for an object in a queue from your workflow.3.

Run the Step Processor application sample by entering a command similar to the following:

javaw -classpath .;<sample.jar>;C:\<your directory>\pw.jar;%CLASSPATH% <package
name>.VWSampleStepApplication /hostName=<host name> /routerNames=<local router>
/routerPorts=1099 /idmPort=1099 /webApp=WEB_WORKFLO /queueName=<queue name>
/wobNumber=<object number>;

where <sample.jar> is the .JAR file, the <package name> is the period-separated (".")
directory structure in which the sample files reside, <host name> is the name of the Web WorkFlo
server, <router> is the name of the router on the Web WorkFlo server, <queue name> is the name
of the queue being accessed, and <object number> is the work object number (GUID) assigned to
the work object, by WorkFlo Services.

For example, you might enter a command similar to the following:

javaw -classpath .;C:\Developer Files\samples\vwpanel\sample.jar;C:\<your
directory>\pw.jar;%CLASSPATH% samples\vwpanel\samplestep\VWSampleStepApplication
/hostName=asgard /routerNames=vwrouter /routerPorts=1099
/idmPort=1099 /webApp=WEB_WORKFLO /queueName=InBox
/wobNumber=B8D270F79636E1489BA9EC2DD9F7E950

4.

Run the Launch Step Processor application sample by entering a command similar to the
following:

javaw -classpath .;<sample.jar>;C:\<your directory>\pw.jar;%CLASSPATH%; <package
name>\VWSampleLaunchApplication /hostName=<host name> /routerNames=<local router>
/routerPorts=1099 /idmPort=1099 /webApp=WEB_WORKFLO
/workflowDefinitionDocID=<>/mainAttachmentDocID=<> /subject=<subject>

where <sample.jar> is the .JAR file, the <package name> is the period-separated (".")
directory structure in which the sample files reside, <host name> is the name of the Web WorkFlo
server, <router> is the name of the router on the Web WorkFlo or WorkFlo Services server,
<queue name> is the name of the queue being accessed, <> is the workflow definition ID assigned
to the workflow definition, <> is the library ID assigned to the attachment, and <subject> is the
subject specified for the step that launches the workflow.

5.

Building and Deploying the Sample Java Processors

file:///I|/Workflow/DevGuide/Panagon/samp/run_java_processor_samples.htm (4 of 4) [9/18/2002 8:04:05 AM]

Panagon eProcess Services Architecture
Panagon eProcess Services consists of several components: Panagon Web Services, Panagon Web WorkFlo, and Panagon
WorkFlo Services. This topic describes these components and how they interact with each other and with client
applications in a typical, out-of-the-box (OOTB) configuration.

As illustrated in the figure below, when a user request does not require interaction with the Panagon WorkFlo Services
through a Java applet or application, the request is routed through the Microsoft Internet Information Server (IIS) session
to the Panagon Web Services and Panagon Web WorkFlo components. However, if the user request can be satisfied only
through a Java applet, as is the case with Web WorkFlo applets, the applet residing on the client system gathers the
necessary workflow information and communicates via RMI with the eProcess Router. The eProcess Router directs all
RMI communication between the Panagon eProcess Services server and the server running Panagon WorkFlo Services.

Note If the Web WorkFlo applet needs to interact with IDM Objects, as is the case with attachments, the applet
communicates with the eProcess Service Manager.

Accessing the OOTB application in a web browser, a user logs into the Panagon eProcess Services server and either
launches a workflow or participates in a running workflow. The out-of-the-box Web WorkFlo application requires
Internet Explorer (Panagon Web Services and Web WorkFlo Services only support the Internet Explorer browser).

eProcess Services combines ASP and Java with the automation layer already provided by Panagon Web Services. The
OOTB application contains Java applications and applets that use the Sun Java Runtime Environment (JRE) to operate. If
a developer creates Java-based applications or applets, the JRE must be deployed on the client system as well as on the
Web WorkFlo server system. If a developer creates only ASP-, HTML-, or XML-based processors (or workflow
applications), the browser need not support Java and the JRE need not be deployed on the client system.

Note Panagon eProcess requires the JRE on the Panagon Web server, on the WorkFlo Services server, and also on the
client (automatically downloaded when the client accesses the Web server for the first time). For information on which
JDK to use and how to configure it for eProcess, see the Configure the JDK topic.

The following diagram illustrates where the eProcess Services architectural components reside in relation to each other
and the client. (The figure illustrates only one common, generalized configuration. The figure is not intended to illustrate
all possible configurations, and the relative size of any specific component does not signify the importance of the
component.)

Panagon eProcess Services Architecture

file:///I|/Workflow/DevGuide/Panagon/arch/workflo_arch_components.htm (1 of 4) [9/18/2002 8:04:06 AM]

The numbers (below) refer to the corresponding area shown in the figure (above). The following table describes the
architectural components and describes the constituent elements.

Architecture Area Description

Panagon eProcess Services Architecture

file:///I|/Workflow/DevGuide/Panagon/arch/workflo_arch_components.htm (2 of 4) [9/18/2002 8:04:06 AM]

Client system This section consists of a client workstation, with an installed web
browser, connected to the network. Panagon eProcess Services
automatically installs the Sun JRE and the eProcess Java class library
(pw.jar) during the first client access to the Web server. However, you
must manually install the necessary IDM COM controls the first time the
client accesses the Web server.

Once all of the necessary client-side components are loaded, the browser
uses cached versions of the Web Services JavaScript objects for ASP
communication to the Content Services or Image Services servers (as
needed).

Panagon
eProcess Services

This section consists of Panagon Web Services and Panagon Web
WorkFlo on a web server, one (optional) Panagon Content Services
(Windows NT 4.0 or Windows 2000) server, and an optional Panagon
Images Services (on Windows NT, Windows 2000, AIX, Solaris, or
HP-UX) server.

In a typical eProcess Services configuration, the eProcess Router resides
on the web server and acts as a Remote Method Invocation (RMI) routing
mechanism for handling applet and application requests between the
client system and the workflow server. (The eProcess APIs Java class
library file, pw.jar, includes all of the eProcess APIs.) The eProcess
Service Manager controls the Integration Service, which in turn facilitates
communication (for IDM object-related operations) between the Web
WorkFlo applets and the IDM Objects. All ASP related eProcess
workflow requests are handled through the Panagon Web Services and
Panagon Web WorkFlo applications. While not shown in the figure,
eProcess Services ASP-related requests communicate with WorkFlo
Services using the JiGlue COM Bridge.

Note As indicated, the JRE runs on the Web WorkFlo Server and on the
client. If you deploy custom applets based on the Java Step Processor or
Launch Step Processors samples, the JRE must be deployed on all client
systems.

eProcess This section consists of WorkFlo Services (on Windows 2000, Solaris,
HP-UX, or AIX platforms) and optionally, certain Panagon Image
Services components (not shown), which are loaded during the Panagon
WorkFlo Services installation. (A JRE must run on each WorkFlo
Services server).

The eProcess Pooled Process Manager (PPM) links the eProcess Router
and the WorkFlo Services server processes. The eProcess PPM resides on
the WorkFlo Services server, where it manages multiple threads of
execution, in a sequential fashion, to a pool of WorkFlo Services server
processes. When the PPM receives a request from the eProcess Router,
the PPM forwards the request to the appropriate WorkFlo processes.

In cases where the client machine is using either a Java- or COM-based
workflow application (sometimes called a "work performer"), the client
machine can either use an instance of the eProcess Router running on the
client system to communicate to the WorkFlo Services server or the client
can connect directly to the eProcess Router running on the workflow

Panagon eProcess Services Architecture

file:///I|/Workflow/DevGuide/Panagon/arch/workflo_arch_components.htm (3 of 4) [9/18/2002 8:04:06 AM]

server.

Note While not shown in the figure above, some Panagon Image Services
components are installed on the WorkFlo Services server. Refer to the
Help for eProcess Administrators, the Panagon Web WorkFlo
Installation Handbook, and either the Panagon WorkFlo Services for
Windows Installation Handbook or the Panagon WorkFlo Services for
UNIX Installation Handbook, depending on the OS, for information on
how to configure the Image Services components installed on the
WorkFlo Services server.

Panagon eProcess Services Architecture

file:///I|/Workflow/DevGuide/Panagon/arch/workflo_arch_components.htm (4 of 4) [9/18/2002 8:04:06 AM]

Configure the Java SDK
Before you can develop Java applications or applets, or compile and run the out-of-the-box Java samples shipped with
Panagon eProcess, you must first install and configure the appropriate Java SDK on your development system.

For the current eProcess release:

For the Web client, use the Sun Microsystems JDK 1.4.0.●

For the Web server, use the Sun Microsystems JDK 1.3.1.●

For the WorkFlo Services server on a Windows 2000 platform, use both the Sun Microsystems JDK 1.3.0 and 1.3.1:

WorkFlo server: requires JRE 1.3.0.❍

NT Services: requires JRE 1.3.1.❍

●

For WorkFlo Services on Solaris, use the Sun Microsystems JDK 1.4.0.●

For WorkFlo Services on HP-UX platforms, use the HP JDK 1.3.1.●

For WorkFlo Services on AIX, use the IBM AIX JDK 1.3.0 for AIX 4.3 and higher .●

For Panagon Open Client, the Sun JDK 1.3.1 is used on the web server, JDK 1.4.0 on the client (for information on
developing eProcess Open Client applications, see the "Developing for eProcess Open Client" section in the Panagon
Open Client Developer's Guide).

●

Note Versions used may be updated. For the latest information on which versions of software (including JDKs) are supported
for Panagon eProcess Web Services, Web WorkFlo and WorkFlo Services, see the eProcess
Compatibility/Dependency/Server Matrix document, located at http://www.css.filenet.com web site (go to Product Info >
Panagon > eProcess > Compatibility and Dependency).

The Java sample applications supplied with the product are provided in the pw.jar file. However, there are known issues
associated with adding pw.jar to your system CLASSPATH. These issues and the recommended Java SDK configuration
procedure are described in this topic as follows:

Java SDK Configuration Procedure●

pw.jar CLASSPATH Issues●

Java SDK Configuration Procedure
On your development system, perform the following steps to configure your system to use the eProcess APIs:

Install the appropriate Java SDK on your development system (see above). Refer to the following web sites for
information on downloading and installing the JDK:

For the Sun Microsystems JDKs for Windows and Solaris platforms, see http://java.sun.com/j2se/.❍

For the HP JDK, see http://www.hp.com/products1/unix/java/java2/sdkrte1_3/index.html.❍

For the IBM AIX JDK, see https://www6.software.ibm.com/dl/dka/dka-p.❍

Note On Windows, the default installation directory is <drive>...\jdk1.3.1; on Solaris
<drive>:/j2sdk1.4.0 (for JDK 1.4.0), etc. (The remainder of this procedure assumes a Windows
platform.) As a reminder, remember to add the JDK to your PATH variable. If you are planning to use
Panagon eProcess to develop Java applications with the JiGlue COM Bridge, you must install the Java
SDK in the default directory (for information on configuring the JiGlue COM Bridge on a development
system, see Configure the COM Bridge).

1.

Create a local directory (in any location) called \process. You will use this directory to hold the eProcess Developer
files, including pw.jar.

2.

Copy the \Developer Files directory (includes the pw.jar file) from the Panagon eProcess Toolkit CD to the new
\process directory.

3.

Configure the Java SDK

file:///I|/Workflow/DevGuide/Panagon/java/configuring_the_jdk.htm (1 of 3) [9/18/2002 8:04:06 AM]

http://www.css.filenet.com/
http://java.sun.com/j2se/
http://www.hp.com/products1/unix/java/java2/sdkrte1_3/index.html
https://www6.software.ibm.com/dl/dka/dka-p

Refer to Install Panagon eProcess Toolkit for information on locating the \Developer Files directory on the CD (as
well as additional information on its contents).

Use one of the following three methods to specify the location of the pw.jar file:4.

Specify the pw.jar location each time you compile or run an application (not recommended).●

Create a batch file to include pw.jar in the CLASSPATH (recommended method if you are not working in an IDE).●

Use an IDE to add the pw.jar file location to your global or project setting (if using an IDE).●

pw.jar CLASSPATH Issues
A known issue associated with adding the pw.jar file to the CLASSPATH is that this can cause security conflicts when
attempting to run the out-of-the-box Java client applications on your development system. The conflict is caused when the
Panagon eProcess Web WorkFlo server sends the correct pw.jar, but the CLASSPATH statement forces the client
application to use the pw.jar file from the specified location.

If you run the Java Plug-in console on a system attempting to run the out-of-the-box Java client application with a pw.jar
specified in the CLASSPATH, you will receive messages similar to the following:

 java.security.AccessControlException: access denied (java.lang.RuntimePermission
modifyThreadGroup)
 at java.security.AccessControlContext.checkPermission(Unknown Source)
 at java.security.AccessController.checkPermission(Unknown Source)
 at java.lang.SecurityManager.checkPermission(Unknown Source)
 . . .

There are three ways, any one of which will work, to get around this behavior:

Specify the pw.jar location: Do not add the pw.jar file to the CLASSPATH. Instead, specify the correct location of
the pw.jar file at the command line when you compile or run an application. For example, assuming the pw.jar file is
located in the c:\jdk1.3.1\process directory, and you wanted to compile MainSample.java, you would cd to the
directory containing the MainSample.java file and enter a command similar to the following:

javac.exe -classpath .;c:\jdk1.3.1\process\pw.jar MainSample.java

The disadvantage to this approach is that you have to specify the pw.jar location each time you compile or run the
application.

●

Create a batch file: Create a batch file that includes the pw.jar location in the CLASSPATH variable. This is the
recommended approach, unless you are using an IDE (see next bulleted item). For example, your batch file should
contain a statement similar to:

 set CLASSPATH=.;C:\<your directory>\pw.jar;%CLASSPATH%

where:

You have installed the JDK in the default directory.❍

In this case, you are configuring the JDK on a Windows NT/2000 system.❍

You have not already set up the CLASSPATH for your JDK.❍

Note The only portion of the CLASSPATH statement specific to eProcess development is the location of the pw.jar
file. If any of these assumptions are not correct for your development environment, refer to the Sun Microsystems Java
Development Kit documentation (http://java.sun.com/) for additional information on setting up the CLASSPATH
variable.

●

Use an IDE: Use an Integrated Development Environment (IDE) to compile and run your applications. If you are
using an IDE (such as JBuilder or Visual Cafe), you need not modify the CLASSPATH. Instead of adding the pw.jar
location to your system CLASSPATH, add the pw.jar file location to the specific project CLASSPATH or to the IDE
global project setting. Refer to the documentation that came with your specific IDE for additional information.

●

Configure the Java SDK

file:///I|/Workflow/DevGuide/Panagon/java/configuring_the_jdk.htm (2 of 3) [9/18/2002 8:04:06 AM]

http://java.sun.com/

Note If you are using an IDE, and you want to use the eProcess UI Toolkit Swing-based Java beans and interfaces to
create user controls to allow interaction with the API samples, add the vwpanel to your project (the vwpanel.jar file is
included with the eProcess Java UI Toolkit). For information on using the Process Java UI Toolkit, see the Java UI
Toolkit Overview.

Configure the Java SDK

file:///I|/Workflow/DevGuide/Panagon/java/configuring_the_jdk.htm (3 of 3) [9/18/2002 8:04:06 AM]

Required eProcess Services
Components
Since much of Panagon Web WorkFlo operates within the Panagon Web Services architecture, when
developing for eProcess Services you must reuse the contents of the following directories, which are part
of the eProcess Services directory structure:

_ScriptLibrary●

\Application●

\Redist●

\WSAPI●

\WSCAPI●

The following directories are optional only if you are creating a new user interface and supply equivalent
user interface components:

\CSS●

\Images●

Refer to the Panagon eProcess Services Architecture topic for more detailed information on the server
configuration. Additionally, you should not modify the core files for the HTML Step processor or the
Launch Step Processors. (Refer to the HTML Processor Toolkit Overview for more information.)

When developing for eProcess Services you will, in all likelihood, be adding new directories and files.
You can reuse the modules, images, and style sheets available in the directories listed above. However,
you must use all of the files in the root directory (as they were shipped), except for the following:

home.asp●

default.htm●

index.htm●

index.html●

You can modify the files listed above according to need. If you create your own web application, the start
page must be at the same level as the home.asp file. The default.htm, index.htm, and index.html files
all contain <META> redirection commands to home.asp. If you want to keep the home.asp and you
have created a different top level page for your web application, then you must change the redirection
command to reference your new page.

Note For more information on developing for eProcess Services, which includes the client-side,
JavaScript-based API objects, refer to Locate the Panagon Web Services Toolkit Help for help in
familiarizing yourself with the Panagon IDM toolkit.

Required eProcess Services Components

file:///I|/Workflow/DevGuide/Panagon/misc/..\arch\Panagon_WorkFlo_Components.htm [9/18/2002 8:04:07 AM]

file:///I|/Workflow/DevGuide/Panagon/misc/panagon_workflo_directory_structure.htm
file:///I|/Workflow/DevGuide/Panagon/misc/workflo_arch_components.htm
file:///I|/Workflow/DevGuide/Panagon/misc/accessing_web_services_toolkit_help.htm

HTML Processor Toolkit Overview
This topic provides an overview of the structure of the HTML Step Processor and Launch Step Processor
toolkit and describes each of the components. Since these HTML processors are based on eProcess
Services architecture, you cannot modify or extend these Step Processor or Launch Step Processor
samples without first understanding how to access workflow sessions, objects, elements, queues, rosters,
and logs using the the eProcess APIs. Additionally, you must understand how to use the Panagon Web
Services JavaScript objects to access the Content Services and Images Services servers, and how the
JiGlue COM Bridge functions.

This section contains information on the following topics:

Modifying the default HTML Step Processor●

Modifying the default HTML Launch Step Processor●

Modifying the HTML interface files●

Modifying the HTML core components●

Modifying the HTML utility components●

In addition, you will find reference topics on the following subjects:

HTML processor toolkit descriptions and locations●

HTML Step Processor file relationships and dependencies●

HTML Launch Step Processor file relationships and dependencies●

HTML processor operation
Before customizing the HTML processor files, you should know how the default HTML processors
operate. Once the Step Processor is initialized, the web server supplies the step element property values.
The values are stored on the client system, in the client-side objects. The property values stored on the
client provide the means of updating the processor information. (Storing the property information on the
client system reduces the number of server calls needed to complete the workflow step.) Once the
processor step element is complete, the property values are converted to a XML string. Only the XML
string is sent to the server. Once the server receives the XML string, the Web WorkFlo application parses
the string and updates the values in the workflow.

The HTML Step Processors and Launch Step Processors use the JiGlue COM Bridge to access the
attachments in the Content Services and Image Services libraries. When the HTML Step Processor or
Launch Step Processor accesses attachments, the processors use the IDM Web Services Javascript
objects; therefore, the user must supply valid user credentials to access the Content Services or Image
Services libraries.

The HTML Step Processor will verify URL/UNC format when the user assigns an attachment. The
processor expects a URL to begin with "http://". The processor expects a UNC to begin with "file://". The
processor will warn if a local file is selected with a format of "file:/c:/" (where "c" is any letter

HTML Processor Toolkit Overview

file:///I|/Workflow/DevGuide/Panagon/asp/html_processor_toolkit_overview.htm (1 of 2) [9/18/2002 8:04:07 AM]

representing a drive).

HTML Processor Toolkit Overview

file:///I|/Workflow/DevGuide/Panagon/asp/html_processor_toolkit_overview.htm (2 of 2) [9/18/2002 8:04:07 AM]

Referenced Panagon Web Services Files
Most of the ASP files you create for eProcess Services will need to reference some, or all, of the Panagon
Web Services Javascript library and ASP object implementation files. This topic describes these files and
provides example lines of code to reference the files.

Topics include:

Essential Panagon Web Services Files●

Example Code to Reference Files●

Essential Panagon Web Services Files
This table lists the essential Panagon Web Services files and briefly describes each file.

Referenced file Description

InitApplication.asp Reference this file in top level pages only. This file
implements session-scoped variables and constants needed
by Panagon Web Services. In addition, this file sets cookie
states.

InitPage.js Reference this file in each page in your application. This
file implements page-scoped variables and constants.

EnableRemoteObject.asp Enables remote scripting by calling the remote scripting
components in the _ScriptLibrary directory (in the root
web structure). Remote scripting must be enabled to make
method calls on the client-side Javascript API objects,
which are used in both the Web Services and the Web
WorkFlo application pages.

PopupManager.js Provides functions for handling popup windows.

Misc.js Provides the ability to use the Web Services utility
functions.

Document.js Modified for Panagon WorkFlo. Provides the ability to
create an IDMWSC_Document object and use methods
supported by the object.

Event.js Provides the ability to create an IDMWSC_Event object
and propagate events.

Folder.js Provides the ability to create an IDMWSC_Folder object
and use methods supported by the object.

Referenced Panagon Web Services Files

file:///I|/Workflow/DevGuide/Panagon/arch/referenced_web_services_files.htm (1 of 3) [9/18/2002 8:04:07 AM]

Library.js Modified for Panagon WorkFlo. Provides the ability to
create an IDMWSC_Library object and use methods
supported by the object.

Result.js Provides the ability to create an IDMWSC_Result object
and use the methods and access properties supported by the
object.

StoredSearch.js Provides the ability to create an IDMWSC_StoredSearch
object and use the methods supported by the object.

Version.js Provides the ability to create an IDMWSC_Version object
and use the methods supported by the object.

Note All of the referenced files are located in the \IDMWS\WSCAPI directory on the eProcess Services
web server. For more information on how to use these referenced Web Services files or how to use the
Javascript API objects, refer to Locate the Panagon Web Services Toolkit Help.

Example Code to Reference Files
Include the following lines in the approximate order shown. Include the line referencing the
InitApplication.asp in the top level page only.

<script language="Javascript" src="WSCAPI/InitApplication.asp"></script>
<script language="Javascript" src="WSCAPI/InitPage.js"></script>

The lines referencing the Javascript objects can be included in any order, but you should list them in the
order the object is most likely to be used. In general, you should include only the .JS file associated with
the object you will create in a given page.

<script language="Javascript" src="Redist/PopupManager/PopupManager.js"></script>
<script language="Javascript" src="WSCAPI/Library.js"></script>
<script language="Javascript" src="WSCAPI/Folder.js"></script>
<script language="Javascript" src="WSCAPI/Document.js"></script>
<script language="Javascript" src="WSCAPI/Event.js"></script>
<script language="Javascript" src="WSCAPI/Result.js"></script>
<script language="Javascript" src="WSCAPI/Misc.js"></script>

During web application operation, the referenced Javascript library files are cached on the client system,
so including all of the .JS files in every application page impacts performance only during the first page
request. After the files are cached in local cache, all calls to the .JS files are handled by the locally
cached copies.

You must use remote scripting to access the client-side API objects. You must include the following line
to enable remote scripting:

Referenced Panagon Web Services Files

file:///I|/Workflow/DevGuide/Panagon/arch/referenced_web_services_files.htm (2 of 3) [9/18/2002 8:04:07 AM]

<!-- #INCLUDE FILE="../WSCAPI/EnableRemoteObject.asp"-->

Referenced Panagon Web Services Files

file:///I|/Workflow/DevGuide/Panagon/arch/referenced_web_services_files.htm (3 of 3) [9/18/2002 8:04:07 AM]

Referenced Panagon Web WorkFlo Files
Many of the ASP files you create for eProcess Services might need to use these referenced Panagon Web
WorkFlo application files. This table lists most of the essential Panagon Web WorkFlo files and briefly
describes each file (or file set).

Referenced file Description

WF_Extras\Attachment.js Provides client-side functionality for viewing an
attachment in its native application or in the IDM Viewer.
Called by Attachment.asp.

Both the Attachment.js and the Attachment.asp files use
the Panagon Web Services Javascript objects extensively.
Refer to Referenced Panagon Web Services files for
general information about these object. Refer to Locate the
Panagon Web Services Toolkit Help for information on
where to locate detailed information.

WF_Extras\Attachment.asp Implements the server-side functionality for viewing
attachments.

WF_Extras\globalInfo.asp Provides eProcess router and Content Services port
numbers. Additionally, this file specifies the
FileNET-supplied and custom .JAR file locations needed
for both default and customized Java applets.

WF_Extras\verifySession.asp Provides the ability to verify the session information. Used
in HTML Step Processors and Launch Step Processors to
determine the base URL information. If the base URL
value is NULL, the function implemented in the file works
with PWRedirector.asp to set the correct base URL
(window.location.href) information.

WF_Extras\Token.js Provides client-side functionality for retrieving the session
token for the current session.

WF_Logon\isPWLogon.asp Provides the ability to get VWSession information for Step
Processor and Launch Step Processors currently attached to
the Web WorkFlo server. If no session exists, this file
provides the ability for the user to be prompted to log on to
the appropriate session.

Referenced Panagon Web WorkFlo Files

file:///I|/Workflow/DevGuide/Panagon/arch/referencing_panagon_web_workflo_files.htm (1 of 2) [9/18/2002 8:04:08 AM]

PWRedirector.asp Provides a means of retrieving the session information
from Panagon Web Services for the current Web Services
session. The PWRedirector.asp file resides in the root
directory, and redirects remote calls to the proper pages in
the Web WorkFlo application.

If the user does not start from the root web directory of the
Web Services server, many of the application-scoped
variables used in Web WorkFlo are either unavailable or
NULL. This requirement is especially important for mail
notifications referencing Step Processors and Launch Step
Processors.

WF_Launcher\open_launcher.js Must be included in any file that launches a Launch Step
Processor. See workflow_main.asp for usage.

WF_Step\open_step.js Must be included in any file that launches a Step Processor.
See workflow_main.asp for usage.

WF_FileOpen\FileOpen.js
WF_FileOpen\OtherSelect.js

Provides client-side functionality for opening and working
with attachment files, which are stored in Content Services
or Image Services libraries, from the Step Processor
toolbar.

These files use the Panagon Web Services Javascript
objects extensively. Any file referencing these files must
handle events associated with the IDMWSC_Event object.

WF_FileOpen\FileOpen.asp
WF_FileOpen\OtherSelect.asp

Implements the server-side functionality for opening and
working with documents from the Step Processor toolbar.
These files are called by the corresponding .JS files on the
client.

Referenced Panagon Web WorkFlo Files

file:///I|/Workflow/DevGuide/Panagon/arch/referencing_panagon_web_workflo_files.htm (2 of 2) [9/18/2002 8:04:08 AM]

Configure the COM Bridge
This topic describes how to configure the JiGlue COM Bridge on a development system. Configuring the
JiGlue COM Bridge consists of the following basic steps:

Configure JDK, CLASSPATH, and register the jiglue.dll●

Deploy the client application●

The remainder of this topic provides procedures on how to perform each of these steps.

Configure JDK, CLASSPATH, and Register the
jiglue.dll
To use the JiGlue COM Bridge, if you have not already done so, you must first install the appropriate
Java SDK on your development system (the JDK version varies depending upon your OS). For
information on which JDK to use and how to configure a JDK on a development system for Panagon
eProcess, see the Configure the Java SDK topic. Once you have installed the JDK, you must specify the
location of the pw.jar file (contains the eProcess APIs), and register the jiglue.dll file on your system.

If you are planning to develop COM applications on your Web WorkFlo server, you have typically
already installed your JDK, configured your CLASSPATH, and the jiglue.dll was registered during
eProcess installation; skip to the Deploy the Client Application procedure.

If you are planning to develop an application on a system that is neither your workflow server or Web
WorkFlo server, use the following procedure:

If you have not already done so, install the appropriate Java SDK on your development system. In
order to use the JiGlue COM Bridge, you should install the JDK in the default directory (on
Windows, the default installation directory is <drive>...\jdk1.3.1; on Solaris <drive>:/j2sdk1.4.0
(for JDK 1.4.0), etc.). For information on installing the JDK and configuring your system for
eProcess development, see the Configure the Java SDK topic.

1.

Create a local directory (in any location) called \process. You will use this directory to hold the
eProcess Developer files, including pw.jar and the JiGlue files.

2.

Copy the jiglue.dll, jiglue.tlb, and pw.jar files to the \process directory. In order for JiGlue to
work correctly, all three of these files must be in the same directory (as they are as shipped on the
Panagon eProcess Toolkit CD). Refer to the Panagon eProcess Toolkit topic for information on
these files and where to find them.

3.

If you have not already done so on this system, configure the CLASSPATH to specify the pw.jar
location (typically either by creating a batch file to include pw.jar in the CLASSPATH, or if you
are developing using an IDE (such as Visual Cafe, JBuilder, Forte, etc.), by adding pw.jar to your
global or project setting). For details, see the Configure the Java SDK topic.

Note The jiglue.dll parses the CLASSPATH for the location of the pw.jar file. If JiGlue does not
find pw.jar in the CLASSPATH:

4.

Configure the COM bridge

file:///I|/Workflow/DevGuide/Panagon/misc/..\com\configure_the_com_bridge.htm (1 of 2) [9/18/2002 8:04:08 AM]

The JiGlue library attempts to find the registry key: HLM\Software\FileNET\Panagon
eProcess Services - Web WorkFlo\Extras.

❍

If the library cannot find this registry key, jiglue.dll uses the default <drive>...\WF_Extras
path, appends pw.jar to it, and adds the location to the CLASSPATH for the running JVM
process.

❍

If jiglue.dll does not find any registry entry, the library determines the path to jiglue.dll and
assumes the pw.jar is located in the same directory. JiGlue appends pw.jar to its own
location in the path and adds the location to the CLASSPATH for that instance of the JVM.

❍

Open a command prompt, and cd to the \process subdirectory.5.

Register jiglue.dll by entering the following at the command prompt:

regsvr32.exe jiglue.dll

Tip You can unregister the library by entering the following command:

regsvr32.exe /u jiglue.dll

6.

Deploy the Client Application
If you are developing on the Web WorkFlo server, you do not need to register the jiglue.dll and you do
not need to install the JRE. Both steps were done during installation.

If you are developing a new ASP-based application or extending the current ASP application, the
appropriate JiGlue COM Bridge configuration already exists on the eProcess Web WorkFlo server.
However, if you are developing stand-alone workflow applications (which are sometimes referred to as
work performers) and you plan to deploy them on client systems, your installer must perform the
following steps:

Install or check for an existing installation of the JRE (currently for the client, JRE 1.4.0). Both
JRE\bin and JRE\bin\client must be in the system path.

1.

Create a new directory to contain the process components.2.

Copy the jiglue.dll, jiglue.tlb, and pw.jar files to the new directory (all three of these files must
be in the same directory).

3.

Register the jiglue.dll (see Step 6 above).4.

Configure the COM bridge

file:///I|/Workflow/DevGuide/Panagon/misc/..\com\configure_the_com_bridge.htm (2 of 2) [9/18/2002 8:04:08 AM]

Start a Local Router (for development)
This topic describes how to start a local eProcess router on a development system. An eProcess router is
a Java Remote Method Invocation (RMI) communication bridge. You need not manually start a local
router if an eProcess Router is running on either the Web WorkFlo server or the WorkFlo Services root
server. In those cases, you can pass the host name, port number, and router name as part of the
VWSession.logon() router_URL parameter. However, starting a local router enables you to
observe the RMI communication between a development system and a workflow server more closely.

This procedure assumes you have already installed and configured the Java SDK to use the eProcess
APIs. This procedure also assumes you are using the appropriate JDK (in the example shown, the Sun
Microsystems JDK 1.3.1 on a Windows platform; for details on which JDK version to use and how to
configure it for eProcess development, see Configure the Java SDK).

The following procedure uses the Panagon Task Manager to start a local router (treat all entries as
case-sensitive):

Open a command prompt and enter the following command to start the Task Manager (assumes
for this example that pw.jar is in the process directory; modify for the JDK as appropriate):

1.

C:\jdk1.3.1\bin\javaw.exe -classpath C:\process\pw.jar filenet.vw.apps.taskman.VWTaskApplication

When the Task Manager window displays, click Start.2.

In the router dialog box, enter a name for the local instance of the router; for example,
myrouter.

3.

Enter the name of the server running Web WorkFlo Services. For example, if the name of the
server running WorkFlo services is "hq-workflo", enter hq-workflo.

4.

Enter a valid WorkFlo Services user name. (When running the samples, you should use an
WorkFlo Services administrative user.)

5.

Enter the password for the specified user.6.

Enter an isolated region number for the isolated region you are using for development. (This
number can be from 1 to 999 but the number should correspond to an initialized isolated region.
Although it is possible to do so, you should not run the samples (or other eProcess applications in
development) in an isolated region already used for either production or other development.

7.

Click OK.8.

Once the message appears stating that the local router has started, you can use it to communicate with a
workflow server.

Tip On Windows 98/NT/2000 systems, you can create a short-cut to launch the eProcess Task Manager.
In the short-cut properties dialog box, enter the command shown in Step 1 (above) in the target field.
Specify the directory containing the API samples as the start directory. (Specifying the directory
containing the API samples, creates and updates the router trace files in that directory, which can be
useful for debugging when you start modifying the sample code.)

The first time you attempt to connect to a session, a vwapi.txt file will be created in the root directory of

Start a Local Router (for development)

file:///I|/Workflow/DevGuide/Panagon/java/start_a_local_router.htm (1 of 2) [9/18/2002 8:04:08 AM]

the disk on which the application is being run. The file contains a complete list of all session transactions
handled by the router. If you don't start the router, the vwapi.txt file continues to grow rapidly (as
duplicate error messages are appended to it) until you terminate the sample application.

Start a Local Router (for development)

file:///I|/Workflow/DevGuide/Panagon/java/start_a_local_router.htm (2 of 2) [9/18/2002 8:04:08 AM]

Using the COM Bridge
This topic provides samples of how to use the JiGlue COM Bridge to create a VWSession object and access
content from an Image Services or Content Services library, as follows:

Using the JiGlue COM Bridge to create a VWSession object●

Using the JiGlue COM Bridge to access an Image Services or Content Services Library●

Note The JiGlue COM Bridge requires that elements of a Variant array be of a proper type, and they must be
of the same type. For details on data types and using arrays, see the JiGlue COM Bridge Data Types topic.

Using the JiGlue COM Bridge to create a VWSession
object
The following sample syntax demonstrates how to dimension and create an instances of JiGlue and
VWSession objects in both Visual Basic and VBScript.

Note How you use the JiGlue COM Bridge to create a VWSession object depends on the development
environment.

Visual Basic syntax:

dim objJiGlue As New JiGlue.JiGlueUtil
dim objVWSession As Object
Set objVWSession = objJiGlue.newInstance("filenet.vw.api.VWSession")

VBScript syntax:

dim objJiGlue, objsession
set objJiGlue = CreateObject("JiGlue.Util")
set objsession = objJiGlue.newInstance("filenet.vw.api.VWSession")

Once you create a VWSession object, you can access any of the methods or property in the eProcess APIs.
For detailed reference information on the APIs, refer to the eProcess API JavaDoc documentation. The
eProcess API documentation is HTML-formatted class information taken directly from the Java™ code
(using the Sun Microsystems Javadoc utility). Refer to the Install Panagon eProcess Toolkit topic for more
information on viewing the eProcess API JavaDoc documentation.

Using the JiGlue COM Bridge to Access an Image
Services or Content Services Library
Important As of the current Panagon eProcess release, eProcess can, if desired, be set up without Content
Services library access. For information on configuring eProcess without Content Services, refer to the
WorkFlo Services Installation Handbook.

When accessing the content stored in either Image Services or Content Services libraries, you must first

Using the COM Bridge

file:///I|/Workflow/DevGuide/Panagon/com/using_the_com_bridge.htm (1 of 2) [9/18/2002 8:04:09 AM]

connect to the libraries using IDM Objects.

As an example, if you wanted to access attachments from a Content Services library or an Image Services
library from an ASP file, you might include code similar to the following (the following code sample was
taken from the sample launchStepElementInit.asp page and modified to make it easier to follow. For
additional information, refer to the launchStepElementInit.asp file on the Web WorkFlo server):

Dim objLib, objDoc, vwAttachment, parts, objJiGlue

'Log on to the CS or IS library using the IDM Objects.

set objLib = Server.CreateObject("IDMObjects.Library")
objLib.LogonID = IDMWS_Library_GetLogonID(libraryName)
set objDoc = objLib.GetObject(Application("idmObjTypeDocument"),ObjectID)
docLabel = objDoc.Label
docVerNum = objDoc.Version.Number

'Create a eProcess VWAttachment object using the information retrieved
'from the CS or IS library.

set objJiGlue = CreateObject("JiGlue.Util")
set vwAttachment = objJiGlue.newInstance("filenet.vw.api.VWAttachment")
parts = Split(DocID, ":")
if (UBound(parts) >= 0) then
 vwAttachment.setType(CInt(parts(0)))
end if
if (UBound(parts) >= 1) then
 vwAttachment.setLibraryType(CInt(parts(1)))
end if
if (UBound(parts) >= 2) then
 vwAttachment.setLibraryName(parts(2))
end if
if (UBound(parts) >= 3) then
 vwAttachment.setId(parts(3))
end if
if (UBound(parts) >= 4) then
 Dim id
 id = parts(3) + ":" + parts(4)
 vwAttachment.setId(id)
 vwAttachment.setVersion(parts(4))
end if

Using the COM Bridge

file:///I|/Workflow/DevGuide/Panagon/com/using_the_com_bridge.htm (2 of 2) [9/18/2002 8:04:09 AM]

JiGlue.Util Reference
This section describes the method supported by the JiGlue.Util object:

newInstance●

Tip To use the JiGlue COM Bridge in Visual Basic, add it to your current project. To use the JiGlue
COM Bridge in VBScript, in a non-Web WorkFlo application, register the file on the web server.

newInstance()
The method creates an COM object that represents the specified Java object. In most cases, you need
only to create an instance of the VWSession object to be able to access other objects in the eProcess
APIs. This is the most often used method in the Web WorkFlo application.

Note The Jiglue.newInstance method can only instantiate an object whose class has a default constructor
(that is, without any argument).

Syntax

newInstance(className)

Parameters

className: String. Specifies the name of the object to create. The string must contain the package
location of the Java class being instantiated. For example, if you want to create an instance of the
VWAttachment class in an ASP application, you would have to specify a command similar to the
following:

●

set vwAttachment = JiGlue.newInstance("filenet.vw.api.VWAttachment")

Visual Basic example:

Dim objJiGlue As New JiGlue.JiGlueUtil
Dim objAttachment As Object
Set objAttachment = objJiGlue.newInstance("filenet.vw.api.Attachment")

VBScript example:

dim objJiGlue, objAttachment
set objJiGlue = CreateObject("JiGlue.Util")
set objAttachment = objJiGlue.newInstance("filenet.vw.api.Attachment")

Returns

A COM object representing the Java class specified in the className parameter.

Back to top.

JiGlue.Util Reference

file:///I|/Workflow/DevGuide/Panagon/com/jiglue_ref.htm [9/18/2002 8:04:09 AM]

JiGlue COM Bridge Data Types
This topic describes JiGlue COM Bridge data types, including:

COM Bridge data type conversions●

COM Bridge data types guidelines●

COM Bridge Data Type Conversions
The JiGlue COM Bridge supports the following Java to COM data type conversions:

Java data type COM data type

boolean (java.lang.Boolean) Boolean (VT_I1)

char (java.lang.Char) 2-byte unsigned (VT_UI2)

integer (java.lang.Integer) 4-byte signed integer (VT_I4)

short (java.lang.Short) 2-byte signed integer (VT_I2)

long (java.lang.Long) 2-byte signed integer (VT_I4)

float (java.lang.Float) Float (VT_R4)

double (java.lang.Double) Double (VT_R8)

java.lang.String BSTR (VT_BSTR)

java.util.Date Date (VT_DATE)

Other Java object IDispatch (VT_DISPATCH)

COM Bridge Data Types Guidelines
For simple (non-object) types, you need not use the Set statement in Visual Basic or VBScript code, as illustrated in the
following general, sample statements:

boolean = queuelement.getFieldValue("booleanField");
integer = queuelement.getFieldValue("intField");
float = queuelement.getFieldValue("floatField");
string = queuelement.getFieldValue("stringField");
time = queuelement.getFieldValue("timeField");

●

However, if a Java method returns an object other than the java.lang.* (see below), the Set statement is needed.

JiGlue supports both one-dimensional and multi-dimensional arrays (previously JiGlue only supported one-dimensional
arrays). The following API methods (in addition to the new Attribute-related methods — see What's New in 5.0) that take
multi-dimensional arrays as parameters can be called for JiGlue:

VWEventDefinition
 String[][] getAssignments()
 void setAssignments(String[][] theAssignments)

VWCompoundStepDefinition

●

JiGlue COM Bridge Data Types

file:///I|/Workflow/DevGuide/Panagon/com/jiglue_datatypes.htm (1 of 3) [9/18/2002 8:04:09 AM]

 VWInstructionDefinition createCreateInstruction(String theWorkClassName,
String[][] theFieldAssignList)
 VWInstructionDEfinition createAssignInstruction(String[][] assignPairs)

VWStepDefinition
 String[][] getPreAssignments()
 void setPreAssigtnments(String[][] thePreAssignments)
 String[][] getPostAssignments()
 void setPostAssignments(String[][] thePostAssignments)

When specifying an integer array, be aware that in Visual Basic, an integer is a 16-bit value, whereas in Java (and
eProcess), an integer is a 32-bit value. If, for example, you specify a 2-byte integer array in Visual Basic, it might be
mapped in JiGlue to java.lang.Short, thereby causing the API to throw an exception. For example, the following call to
setDataFields will fail:

Dim integerArray(2)

integerArray(0)=10
integerArray(1)=20
integerArray(2)=30

wob.setFieldValue "integerArrayField", integerArray, false
dataFields = wob.getDataFields(127,1)
wob.setDataFields dataFields, false

However, if you change the array to 4-byte integers, as follows, the call to setDataFields succeeds:

Dim integerArray(2)

integerArray(0)=CLng(10)
integerArray(1)=CLng(20)
integerArray(2)=CLng(30)

wob.setFieldValue "integerArrayField", integerArray, false
dataFields = wob.getDataFields(127,1)
wob.setDataFields dataFields, false

●

The JiGlue COM Bridge allows you to remove explicit assignments for the object references. The following examples
demonstrate two ways of using the data types supported by the JiGlue COM Bridge:

Example 1:

Dim myDate As Variant
Dim mySimpleDate As Object
Set mySimpleDate = JiGlue.newInstance("java.text.SimpleDateFormat")
myDate = mySimpleDate.parse("09/12/2001 11:58 am")

●

Example 2:

Dim myDate As Variant
Dim mySimpleDate As Variant
Set mySimpleDate = JiGlue.newInstance("java.text.SimpleDateFormat")
myDate = mySimpleDate.parse("09/12/2001 11:59 am")

In the examples shown above, mySimpleDate was declared as both Object and Variant (in the different examples);
in both cases, the object reference was assigned by using Set. Notice that in both cases myDate was declared as
Variant without using the Set statement. The reason this works as coded, is because SimpleDateFormat.parse
returns java.util.Date which is mapped to Visual Basic's Date type (which is non-object — see table above). As
previously indicated, if a Java method returns an object other than the java.lang.* (as indicated above), the Set

JiGlue COM Bridge Data Types

file:///I|/Workflow/DevGuide/Panagon/com/jiglue_datatypes.htm (2 of 3) [9/18/2002 8:04:09 AM]

statement is needed. Note that the Jiglue.newInstance method can only instantiate an object whose class has a
default constructor (that is, without any argument).

JiGlue COM Bridge Data Types

file:///I|/Workflow/DevGuide/Panagon/com/jiglue_datatypes.htm (3 of 3) [9/18/2002 8:04:09 AM]

Add JiGlue COM Bridge to Visual Basic
To use the JiGlue COM Bridge in Visual Basic, add the JiGlue.dll file to your project as a reference.

Follow these general steps to add JiGlue to your project:

From within the Visual Basic project window, select the Project > References.1.

From the References dialog box, click Browse.2.

Navigate to the directory containing the JiGlue.dll file.3.

Select JiGlue.dll. Click Open.4.

In the References dialog box, scroll down the Available References list, and check box next to
JiGlue.

5.

Your Visual Basic application can now access the JiGlue.JiGlueUtil class in the library.

Add JiGlue COM Bridge to Visual Basic

file:///I|/Workflow/DevGuide/Panagon/com/add_jiglue_to_vb.htm [9/18/2002 8:04:10 AM]

Use JiGlue COM Bridge in ASP
This sample demonstrates how to use the JiGlue COM Bridge to access queue information in an
ASP-based application. The primary advantage of creating an ASP-based solution for working with the
JiGlue COM Bridge is that the JiGlue COM Bridge need not be registered and deployed on each client
system. In contrast, if you develop a Visual Basic application, you must configure and register the JiGlue
COM Bridge on the client system the application can communicate with WorkFlo Services.

This topic includes:

Creating a Sample VWSession object (using JiGlue) to query queues●

Running the Sample ASP●

Creating a Sample VWSession object (using JiGlue)
to Query Queues
The sample creates a VWSession object and uses that object to query queues for information.

<%@ LANGUAGE="VBSCRIPT" %>
<HTML>
<title>List Queues using the JiGlue COM Bridge</title>
<body>
<%

'Dimension the necessary variables. In this example, the web_server_name
'and router_name variables are assigned explicit, literal values.
'An alternate method might be to pass the information in from another page using
'the Request.QueryString(), which is part of the VB Object Model.
'Refer to the appropriate Microsoft documentation for more information.

Dim web_server_name, router_name, objJiGlue, session
Dim queues, description
web_server_name = "asgard"
router_name = "vwrouter"

'Create an instance of JiGlue, and use it to create a VWSession object.

set objJiGlue = CreateObject("JiGlue.Util")
set session = objJiGlue.newInstance("filenet.vw.api.VWSession")

'Call the logon() method on the newly created session object.
'The sample statement shown here passes SysAdmin as both the username and
'password and constructs the RMI statement using the
'values specified for the web_server_name and router_name variables.

session.logon "SysAdmin","SysAdmin","rmi://" & web_server_name & "/" & router_name

Use JiGlue COM Bridge in ASP

file:///I|/Workflow/DevGuide/Panagon/com/add_jiglue_to_asp.htm (1 of 3) [9/18/2002 8:04:10 AM]

%>

<!-- Start a table list the queues that are available on the system. -->

<table border="0" width="80%" bgcolor="#EEEEEE">
<tr><td colspan="2" bgcolor="#CCFFCC">Available Queues</td></tr>
<tr><td bgcolor="#CCFFCC">Name</td>
<td bgcolor="#CCFFCC">Type</td></tr>
<%

'Retrieve an array of queue names using the newly-created session object. This example
'passes an integer value of 23 to retrieve all user, process (or work), and
'system queues. The integer value is the result of a logical OR of the values associated
'with each queue type. Refer to the VWSession.fetchQueueNames() method description,
'in the eProcess API reference documentation, for more information.

Dim queueValue
queues = session.fetchQueueNames(23)
for i=0 to UBound(queues)

'Using the array of queue names, retrieve the VWQueue object for
'each queue name found. Query the VWQueue object to determine the queue type.

set objQueue = session.getQueue(CStr(queues(i)))
queueValue = objQueue.getQueueType
%>

<!-- Start a row, and create a cell with the current queue name. -->

<tr><td width="33%">
<%=queues(i)%>
</td>

<!-- Create a cell with the containing the description of the queue type based on the integer value
returned from the getQueueType() method. -->

<td width="66%">
<%

'Convert the retrieved value to a human readable description of the queue type.

if queueValue = 1 then
description = "Work"
elseif queueValue = 2 then
description = "User"
else
description = "System"
end if
%>
<%=description%>

Use JiGlue COM Bridge in ASP

file:///I|/Workflow/DevGuide/Panagon/com/add_jiglue_to_asp.htm (2 of 3) [9/18/2002 8:04:10 AM]

</td></tr>
<%
Next
%>

<!-- Close the table once all queues have been retrieved. -->

</table>
<%

'Call the logoff() method on the VWSession object to end the session and log off.

session.logoff
%>

<P>This sample HTML and VBScript code demonstrates one way of creating a VWSession object,
logging on to the server, retrieving a list of available queues, displaying the retrieved queue information,
and logging off the server.</P>
</body>
</html>

Running the Sample ASP
You can run this sample by copying the contents of the code block (above) to an empty file called
queue.asp. Place the queue.asp file in the <drive>...\Program Files\FileNET\IDM\Web\IDMWS
directory on your Web WorkFlo server, and enter the address for the explicit page.

For example, if the Web WorkFlo server is named Asgard, you would enter an address in a web browser
similar to the following:

http://asgard/idmws/queue.asp

For the code shown above to work you must have the following:

At least one server running WorkFlo Services.●

An eProcess Services server properly configured and running a eProcess Router (configured to
communicate with the Workflow Services),

●

At least one least one initialized isolated region within WorkFlo Services.●

At least one valid user name and password for a WorkFlo Services user.●

Tip Another method of establishing a WorkFlo session for an .ASP based application is by using the
global.asa file to set application-scoped variables and objects (like the web server name or the router
name). The application-scoped variable approach allows you to develop event handlers that run
automatically when special ASP events occur and instantiate well-known IDM objects.

Use JiGlue COM Bridge in ASP

file:///I|/Workflow/DevGuide/Panagon/com/add_jiglue_to_asp.htm (3 of 3) [9/18/2002 8:04:10 AM]

Active Server Pages Overview
Some of the Panagon Web WorkFlo and most of the Panagon Web Services components rely on the ASP
object model and server-side scripting to function. This topic provides a high-level overview of ASP, as
it is used in eProcess Services.

Server-side scripts run when a browser requests an .asp file from the web server. The server processes
the ASP file from top to bottom and executes the script commands in the sequence they appear in the
page. Because the scripts run on the server, the web server performs all of the necessary processing and
returns the requested data back to the client browser in a HTML page – without the server-side scripting
code.

You can include client-side script in the same ASP page. The server-side script executes before the
server returns a response, but the client-side script is sent as part of the response. Additionally, you can
include other pages in your ASP. The included files are treated as part of the ASP file during execution.
The included files are executed from beginning to end before returning to the page that called the file.

There are two benefits to using server-side scripting:

The Web Server, not the client system, processes the request. Normally, this behavior reduces the
number of round trips for a typical request.

●

The client cannot view the source of server-side scripting, so your development effort is less likely
to be compromised. Once the server completes processing the page, the user sees only the
generated HTML as well as non-HTML content, such as XML, on the pages being viewed.

●

Any statements placed between the <%. . .%> delimiters are treated as script statements. While you can
use any script language supported by the Microsoft Script Host, the Panagon Web Services and Web
WorkFlo components use VBScript for all server-side scripting and Javascript for all client-side
scripting.

ASP Objects

You can use the following objects in the Active Server Page Object Model: Server, Application, Session,
Request, and Response. The Server object is actually the operating environment for the Active Server
Pages. (Since the WorkFlo architecture does not rely on MTS transactions, you should not attempt to use
the ObjectContext object.)

For more information on the Active Server Page Object Model objects, their methods and properties, and
how to use them, refer to the Microsoft MSDN documentation.

ASP Example

This example illustrates the structure of a simple ASP file, what the client's browser might display, and
shows the source received by the client for the request.

Assume that an ASP file contains the following content:

<%@ Language=VBScript %>

Active Server Pages Overview

file:///I|/Workflow/DevGuide/Panagon/asp/server-side_scripting.htm (1 of 3) [9/18/2002 8:04:10 AM]

<HTML>
<HEAD>
<TITLE>Sample ASP Page showing a loop</TITLE>
</HEAD>
<BODY>
<H1>Looping a variable</H1>

<%
' Before sending the response back to the client, loop
' through a count 5 times and use a Response.Write
' statement to print the current loop count in the HTML document.

Dim loopNum, loopString

' Dimension two variables; one for holding an integer and one
' for holding the dynamically updated, HTML formatted string.

For loopNum = 1 to 5
 loopString = "The current loopNum count equals: " & loopNum &
"
"
Response.Write(loopString)
Next
%>

<P>This paragraph is static HTML content.</P>

<SCRIPT Language="Javascript">
/* This is an example of client-side code executed on the client. */
document.write("Today's date is " + Date());
</SCRIPT>
</BODY>
</HTML>

When a client requests the ASP file containing the source shown above, the user sees content similar (the
formatting might be different) to the following in the client browser:

Looping a variable

The current loopNum count equals: 1
The current loopNum count equals: 2
The current loopNum count equals: 3
The current loopNum count equals: 4
The current loopNum count equals: 5

This paragraph is static HTML content.

Today's date is Fri Sep 12 06:00:00 2036

If the user views the source, delivered as a response the initial ASP request, he or she would see the

Active Server Pages Overview

file:///I|/Workflow/DevGuide/Panagon/asp/server-side_scripting.htm (2 of 3) [9/18/2002 8:04:10 AM]

following HTML formatted code:

<HTML>
<HEAD>
<TITLE>Sample ASP Page showing a loop</TITLE>
</HEAD>
<BODY>
<H1>Looping a variable</H1>
The current loopNum count equals: 1

The current loopNum count equals: 2

The current loopNum count equals: 3

The current loopNum count equals: 4

The current loopNum count equals: 5

<P>This paragraph is static HTML content.</P>
SCRIPT Language="Javascript">
/* This is an example of client-side code executed on the client. */
document.write("Today's date is " + Date());
</SCRIPT>
</BODY>
</HTML>

Note While the Javascript source included in the original ASP file was included in the response sent to
the client browse, none of the server-side VBScript statements were included.

Active Server Pages Overview

file:///I|/Workflow/DevGuide/Panagon/asp/server-side_scripting.htm (3 of 3) [9/18/2002 8:04:10 AM]

Run the Unmodified Samples
To ensure that your development system is set up correctly and to gain a basic understanding of how to
connect to a session, query a workflow queue, and access work objects, it is recommended that you first
compile and run the API samples as delivered (without modifying the samples' Java source code).

To run the API samples, perform the following steps:

Compile the API samples1.

Run the sample application2.

Review the sample output3.

Note To run the API samples you must have workflow server running an active eProcess Pooled Process
Manager (PPM). To view additional information about the eProcess Pooled Process Manager, see
Panagon eProcess Services architecture. The samples will not run without being able to attach to the Web
WorkFlo Server.

Compile the API samples
If you have not already done so, configure the JDK on your development system.1.

cd to the directory containing the API samples (including the main sample file, MainSample.java),
and enter a command similar to (assumes the Sun JDK 1.3.1 on a Windows platform; modify as
needed):

C:\jdk1.3.1\bin\javac.exe -classpath .;C:\<your
directory>\pw.jar;%CLASSPATH% MainSample.java

2.

Alternatively, you need not specify the location of pw.jar if you have already created a
batch file (to set variables) that includes the pw.jar location in the CLASSPATH variable
(for details, see the Configure the Java SDK topic). If this is the case, you could specify:

setenv
C:\jdk1.3.1\bin\javac.exe MainSample.java

Or you can compile all of the classes in the directory at once. For example:

setenv
C:\jdk1.3.1\bin\javac.exe *.java

Note The complete pathname for javac.exe is not necessary if your system PATH variable already
includes the corresponding javac.exe.

Run the Unmodified Samples

file:///I|/Workflow/DevGuide/Panagon/api_samp/compile_the_samples.htm (1 of 3) [9/18/2002 8:04:11 AM]

Run the sample application
Once you have compiled the samples, you can run them. The command line syntax for the running the
MainSample application is as follows:

MainSample <username> <password> <server name>:<port number>/<router instance name>
[<wfDefinition_filename> | <wfDefinition_filename> <output_filename>]

where: <username> is an existing user name in the eProcess Service (for example, SysAdmin);
<password> is the valid password for the specified user; <server name> (defaults to the local machine)
and <port number> (defaults to the default port number) are entities on the web server, and <router
instance name> is the name you want to specify for your local instance of the router object.

The first three parameters are required; the remaining parameters are optional. The
<wfDefinition_filename> is an existing workflow definition (.pep) file, and the <output_filename> is the
file name where you want the results of the application directed.

Suppose, for example, you want to run the unmodified samples as SysAdmin, with a router instance on
server Asgard, port 1099, named myrouter, without specifying workflow definition (*.pep) or output
files. In this case you would enter a command similar to the following:

java -classpath .;%CLASSPATH% MainSample SysAdmin Asgard:1099/myrouter

When the MainSample application runs without encountering errors, you will receive output similar to
the following, in the same command window from which you ran the MainSample application:

Writing messages to file: MainSample.out
~~ Starting the main sample.

~ Starting SysConfigSample execution.
~ SysConfigSample execution complete.

~ Starting WFDefinitionSample execution.
~ WFDefinitionSample execution complete.

~ Starting LaunchSample execution.
~ LaunchSample execution complete.

~ Starting RosterSample execution.
~ RosterSample execution complete.

~ Starting StepProcessorSample execution.
~ StepProcessorSample execution complete.

~ Starting QueueSample execution.
~ QueueSample execution complete.

~ Starting MilestoneSample execution.
~ MilestoneSample execution complete.

Run the Unmodified Samples

file:///I|/Workflow/DevGuide/Panagon/api_samp/compile_the_samples.htm (2 of 3) [9/18/2002 8:04:11 AM]

~ Starting OperationsSample execution.
~ OperationsSample execution complete.

~ Starting SystemStepSample execution.
~ Launching Generated Workflow
~ SystemStepSample execution complete.

~ Starting StepProcessorSample execution.
~ StepProcessorSample execution complete.

~ Starting ProcessSample execution.
~ ProcessSample execution complete.

~ Starting StepProcessorSample execution.
~ StepProcessorSample execution complete.

~ Starting LogSample execution.
~ LogSample execution complete.

~~ MainSample execution complete.

Note This output represents the typical console output results for the first time the MainSample
application is run. If the MainSample application is run a second time, without modification, you will
receive notification stating the required queues already exist.

Review the sample output
You will notice that several files appeared as result of running the samples. This section lists and
describes, in general terms, each of the files created by the unmodified samples.

MainSample.out: This is the default file name for the output file. You can specify a different
output file name as part of the MainSample application command line. The output file contains the
text-formatted output of the MainSample application. The results of the application operation in
the output file clearly indicates where and in what order the other classes are called. Additionally,
the contents of the output file provide some indication of the type of information you can retrieve
from each associated API.

●

Sample.pep: This is the default file name of the workflow definition created by the MainSample
application. You can specify a different workflow definition file, if you have a valid workflow
definition file already. This workflow definition file contains the XML representation of the
workflow definition. You can open this text-formatted file to examine the workflow definition
elements, or you can open the file in Designer and look at the graphical representation of the
workflow.

●

vwapi.txt: This file contains all of the session related information. The file logs all of the
session-related calls; the information contained in the file is useful to resolve problems connecting
to and making calls to an eProcess Server.

●

Note If you followed the procedures for compiling and running the samples, the output files should
reside in the same directory as the MainSample.class file.

Run the Unmodified Samples

file:///I|/Workflow/DevGuide/Panagon/api_samp/compile_the_samples.htm (3 of 3) [9/18/2002 8:04:11 AM]

Step Processor and Launch Step
Processor Overview
This section contains information describing the structure and operation of both the HTML Step and
Launch Step Processors and the Java Step and Launch Step Processors samples. Additionally, this
section includes general information on customizing the existing samples.

Within the context of Panagon Web WorkFlo and WorkFlo Services, the terms "Step Processor" and
"Launch Step Processor" have specific meanings, as follows:

Step Processor: This applet or application processes the information and resources a workflow
participant needs to complete a step in a workflow. When a workflow participant opens a work
item, the Step Processor displays the instructions, Content Services or Image Services attachments,
current field values, response options, or other resources necessary to allow the participant to
process the step. When designing or customizing a Step Processor, you must account for data and
information gathered prior to calling the Step Processor. In other words, a typical Step Processor
will receive information from another, prior Step Processor.

●

Launch Step Processor: This is a more specialized type of Step Processor. Launch Step
Processors begin or launch the workflow. Typical Launch Step Processors contain all of the
information necessary to initialize the workflow. Launch Step Processors are independent of the
condition of the workflow progress, so you need consider only what information the launch step
will introduce into the workflow.

●

The Step Processor and Launch Step Processor samples included in the Panagon eProcess Toolkit
represent a close approximation of the Processors as they are implemented in Panagon Web WorkFlo. (In
the case of the HTML processors, the toolkit files are the actual Step Processor and Launch Step
Processor modules, components, and files implemented in Web WorkFlo.) While you can reuse these
samples in a web-based application, these Processor samples are not meant to be the only starting place
for workflow development. Rather, these samples represent only one way of developing applications that
can launch workflows or process steps in a workflow.

To modify the Step Processors or Launch Step Processors you must first know how to use the eProcess
APIs. In fact, one helpful way of looking at Step Processors and Launch Step Processors is to view them
as specialized applications that make extensive use of the eProcess APIs. The sections in this guide
discussing how to modify the HTML- and Java-based versions of the samples assume that you have
some understanding of the eProcess APIs and how they are used.

Panagon Web WorkFlo includes two sets of Toolkit files, depending on the development focus, for
understanding and modifying Step Processors and Launch Step Processors:

HTML Processors: the HTML Step Processor and Launch Step Processor Toolkit files are
installed on the Panagon Web WorkFlo server during installation.

●

Java Processors: the Java Step Processor or Launch Step Processor Toolkit files are included on●

Step Processor and Launch Step Processor Overview

file:///I|/Workflow/DevGuide/Panagon/samp/step_launch_processor_overview.htm (1 of 2) [9/18/2002 8:04:11 AM]

the Panagon Web WorkFlo and Toolkit CD. (Refer to Install Panagon eProcess Toolkit for
additional information.

Note The Java and HTML Step Processors support a Read-only mode. This mode opens when an end
user only has Read-only permission on a work queue in which the work object is located. The user is
notified of the Read-only mode when the Step Processor opens. However, in Read-only mode any
changes a user makes are discarded. Additionally, while in the Read-only mode the Step Processor
interface displays only the following options: Cancel, Status (if the workflow definition allows), and
Help.

Step Processor and Launch Step Processor Overview

file:///I|/Workflow/DevGuide/Panagon/samp/step_launch_processor_overview.htm (2 of 2) [9/18/2002 8:04:11 AM]

Java Step Processor Samples Overview
The Java Step Processor and Launch Step Processor use the UI Toolkit APIs to initialize and display user
interface components and controls; however, these samples make extensive use of the eProcess APIs.
You cannot modify or extend these Step Processor or Launch Step Processor samples without first
understanding how to access workflow sessions, objects, elements, queues, rosters, and logs using the
eProcess APIs.

The samples are meant to illustrate how to extend the existing Step Processor and Launch Step Processor
applets and applications using the reusable interface components. The samples are not meant to be used
as a framework for developing universally adaptable custom applications to launch workflows or process
workflow steps.

The Java processor toolkit allows you to use the supplied UI (User Interface) Toolkit components in one
of two ways: (1) use a text-based editor to program directly using the UI Toolkit components, or (2) use
an Integrated Development Environment (IDE) for drag-and-drop RAD (Rapid Application
Development). Either development option requires that you understand AWT and Swing. The runtime
versions of the UI Toolkit classes are included in the pw.jar file; however, if you are using an IDE for
RAD configure your IDE to use the vwpanel.jar file. (The vwpanel.jar contains the necessary classes
and images for RAD programming.)

This section includes topics that provide information on the following topics:

Compiling and running the supplied Step Processor samples (without modification)●

Installing (deploying) the custom Step Processor (or Launch Step Processor) on the Web WorkFlo
server

●

Customizing and compiling the Step Processor (or Launch Step Processor) samples with slight
modifications

●

In addition, this section includes reference and development information on the following topics:

Java Step Processor sample file descriptions●

Java Launch Step Processor sample file descriptions●

Java UI Toolkit class, interface, and bean descriptions●

Java UI Toolkit parameters supported by specific controls●

How to work with attachments using these controls●

Java Step Processor Samples Overview

file:///I|/Workflow/DevGuide/Panagon/samp/java_components.htm [9/18/2002 8:04:11 AM]

HTML Processor Toolkit Files
Most of the HTML Processor Toolkit files are included in the \Redist\WF_Html_Toolkit directory (on
the eProcess Services server). The directory includes the following sub-directories:

\Core: includes the essential .ASP, .INC (server-side includes), and .JS (Javascript script) files
used in the default Step Processor and Launch Step Processor. All the files in this sub-directory are
used for defining objects, initializing processor state, and enabling workflow processing.

●

\Images: includes images (GIF format) used in the default Step Processor and Launch Step
Processor. This topic does not list the contents of the \WF_Html_toolkit\Images directory. You can
add image files to the \Images directory, but do not remove any of the existing image files.

●

\UI: includes .ASP files used to format the default Step Processor and Launch Step Processor user
interface. The files contained in this sub-directory define the step and Launch Step Processor user
interface behavior.

●

\Utility: includes client-side (.JS) and server-side (.ASP) files for calling utility functions for quick
sorting, property type checking, and XML streaming.

●

The tables in this section list and describe the files in the \Redist\WF_Html_Toolkit directory. The
following sections describe the contents of each of the sub-directories under the \WF_Html_Toolkit
directory:

Core Shared Files●

User Interface Files●

Utility Files●

Toolbar Shared Files●

Core Shared Files
The following table lists, and briefly describes, the shared files in the \WF_Html_Toolkit\Core directory.
You can extend these files, but do not delete the files or any of the existing content of these files.

Note For more information, see the Modify Core Files topic.

File name Description

att.js Implements functions for creating a client-side attachment object and
defines the associated methods for the object. Checks for the
attachment type: document, folder, and stored search. Uses some of
the Web Services client-side, Javascript API objects to work with
attachments.

HTML Processor Toolkit Files

file:///I|/Workflow/DevGuide/Panagon/samp/..\asp\html_toolkit_files.htm (1 of 5) [9/18/2002 8:04:12 AM]

file:///I|/Workflow/DevGuide/Panagon/samp/core_shared_components.htm

launchStepElementInit.asp Retrieves the launch step information and initializes the Launch Step
Processor system field values for the user interface components.
References work groups and attachment functionality. Uses
loadAtt.inc, loadFields.inc, and loadWorkGroup.inc to initialize the
attachment properties.

launchStepProcessor.asp Implements functions for parsing and processing XML string for
launch processor operations (like launch and cancel). The
implemented functions assume that an VWSession already exists.

loadAtt.inc Server-side include file. Implements general functions for loading and
displaying attachment objects (including attachment properties).

loadFields.inc Server-side include file. Implements general functions for loading,
displaying, and sorting system data fields arrays.

loadWorkGroup.inc Server-side include file. Implements general functions for loading and
displaying work groups arrays.

step.js Implements functions for creating and working with client-side work
group objects, step element objects, step information objects, and step
parameter objects. The functions define all of the associated methods
for these objects.

stepElementInit.asp Retrieves the step information and initializes the Step Processor
system field values for the user interface components (like
F_StepDescription, F_Originator, F_LaunchDate, etc.). References
work groups and attachment functionality. Uses loadAtt.inc,
loadFields.inc, and loadWorkGroup.inc to initialize the attachment
properties.

stepProcessor.asp Implements functions for parsing and processing XML string from
Step Processor operations (like save, cancel, reassign, return, etc.).
The implemented functions assume that an VWSession object already
exists.

stepProcessorAttHelper.asp Implements helper functions for getting and saving attachments.

stepProcessorFieldHelper.asp Implements helper functions for working getting field values and
working with field arrays.

stepProcessorWGHelper.asp Implements helper function for saving workgroup information.

toolbarHelper.asp Implements helper functions for both Step Processor and Launch Step
Processor user interface toolbar components (like save, cancel, move,
cancel launch, etc.)

HTML Processor Toolkit Files

file:///I|/Workflow/DevGuide/Panagon/samp/..\asp\html_toolkit_files.htm (2 of 5) [9/18/2002 8:04:12 AM]

User Interface Files
The following table lists, and briefly describes, the shared files in the \WF_Html_Toolkit\UI directory.
You can extend these files, but do not delete the files or any of the existing content of these files.

Note For more information, see the Modify User Interfaces Files topic.

File name Description

arrayEdit.asp Implements functions for checking, displaying, and editing field
arrays. The embedded form posts the information to the dataField.asp
file.

attachment.asp Container file. Implements a frameset for presenting the
attToolbar.asp and attachmentTable.asp files.

attachmentTable.asp Provides a table for displaying attachment. The file implements
Javascript functions for getting attachment names, item information,
attachment IDs, and the name of the library storing the attachment.

attToolbar.asp Implements functions for creating an attachment toolbar and working
with the changing toolbar state.

dataField.asp Receives array data from the arrayEdit.asp file. Provides a table for
editing non-array values and displaying field array information.

generalInfo.asp Provides a table to display general step information, like the subject
or comments. Implements functions used in the General tab.

milestone.asp Provides support for displaying milestone-related message and status
information.

reassign.asp Implements a dialog box that allows a participant or tracker to
reassign the workflow step to a new participant.

resource.asp Defines localizeable strings that are shared by the HTML Step
Processor, HTML Launch Step Processor, and HTML milestone
tracker components.

stepInfo.asp Displays general step information (like the subject, sender
information, origination time, reception time, comments, and
responses).

tab.asp Implements functions for selecting the Attachments, Data Fields,
Workflow Groups, General, and Milestone tabs.

HTML Processor Toolkit Files

file:///I|/Workflow/DevGuide/Panagon/samp/..\asp\html_toolkit_files.htm (3 of 5) [9/18/2002 8:04:12 AM]

file:///I|/Workflow/DevGuide/Panagon/samp/user_interface_components.htm

tabContent.asp Container file. Implements logic for selecting the page(s) associated
with the selected tab.

toolbar.asp Works with toolbarHelper.asp, which implements all of the button
event handlers, and ToolbarButton.asp files to implement functions to
display a toolbar for the following operations: Complete, Save, Move,
Cancel, Reassign, Return, Status, and Help.

workGroup.asp Provides a table to display workgroup information, like workgroup
name and workgroup participants. Implements function for calling
workGroupEdit.asp.

workGroupEdit.asp Provides a dialog box for displaying and updating workgroup
information.

Utility Files
The following table lists, and briefly describes, the shared files in the \WF_Html_Toolkit\Utility
directory. You can extend these files, but do not delete the files or any of the existing content of these
files.

Note For more information, see the Modify Utility Files topic.

File name Description

utility.js Client-side file that implements Javascript utility functions for
working with field values; Defines functions for sorting, checking,
and converting strings to XML.

utility.asp Server-side .ASP file that implements VBScript utility functions for
working with field values; Defines functions for sorting, checking,
and converting strings from XML to HTML.

Toolbar Shared Files
The following table lists, and briefly describes, the shared toolbar files in the \Redist\Toolbar directory.
These files are supplied by Panagon Web Services.

File name Description

ToolbarButton.asp Implements toolbar icon functionality. Supplied by Panagon Web
Services but referenced to by the HTML processors user interface
components, like attToolbar.asp.

HTML Processor Toolkit Files

file:///I|/Workflow/DevGuide/Panagon/samp/..\asp\html_toolkit_files.htm (4 of 5) [9/18/2002 8:04:12 AM]

file:///I|/Workflow/DevGuide/Panagon/samp/utility_components.htm

ToolbarStoredSearch.asp Implements toolbar icon functionality for the stored searches.
Supplied by Panagon Web Services but referenced to by the HTML
processors user interface components.

HTML Processor Toolkit Files

file:///I|/Workflow/DevGuide/Panagon/samp/..\asp\html_toolkit_files.htm (5 of 5) [9/18/2002 8:04:12 AM]

Java Launch Step Processor Sample
Files
The Java Launch Step Processor sample files are located in the \Developer
Files\Samples\vwpanel\samplelaunch directory. Refer to Install Panagon eProcess Toolkit for
information on installing the appropriate development files on your system.

The directory contains the following files:

File name (and location) Description

VWSampleLaunchApplet.java For applets hosted in .ASP files. Implements methods for
loading the window by using the VWResource and
VWImageLoader classes. Creates and initializes the processor
application. Loads the window, sets the title, establishes a
VWSession, and calls the main user interface panel.

VWSampleLaunchApplication.java For applications. Implements methods for loading the window
by using the VWResource and VWImageLoader classes.
Creates and initializes the processor application. Loads the
window, sets the title, establishes a VWSession, and calls the
main user interface panel.

VWSampleLaunchPanel.java Implements the user interface visual elements for the Launch
Step Processor. Initializes the controls for the panel.

\resources\VWResource.java Acts as a resource provider for the processor. The default
resource is the title string for the applet.

\images\VWImageLoader.java Loads images for the VWSampleLaunchPanel container.

\images\icon.gif Image file for VWSampleLaunchPanel container.

\images\launcher.gif Image file for VWSampleLaunchPanel container indicating that
this is a Launch Step Processor.

Java Launch Step Processor Sample Files

file:///I|/Workflow/DevGuide/Panagon/samp/java_launch_toolkit_files.htm [9/18/2002 8:04:12 AM]

Java Step and Launch Step Processor
Toolkit Overview
This section provides an overview of the resources provided as part of the Java Step and Launch Step
Processor Toolkit that may be used to develop a customized Java Step or Launch Step Processor.

Topics covered in this overview include:

Java Step and Launch Step Processor Toolkit●

Processor Session Sharing●

Java Step and Launch Step Processor Toolkit
The Java Step and Launch Step Processor Toolkit includes of the Java UI Toolkit APIs. These are Java
Interfaces and Beans that can be used to customize the look and feel of the user interface you create for a
Java Step or Launch Step Processor. You may use these Interfaces and Beans instead of, in addition to,
or in conjunction with Swing or AWT components to create the user interface. In other words, you can
mix and match components to suit the interface.

The Java processor toolkit allows you to use the supplied UI (User Interface) Toolkit components in one
of two ways: (1) use a text-based editor to program directly using the UI Toolkit components, or (2) use
an Integrated Development Environment (IDE) for drag-and-drop RAD (Rapid Application
Development). The toolkit also provides a VWPanel container to hold the UI Toolkit components. You
may add the vwpanel.jar as a panel in your preferred IDE (such as Visual Cafe, JBuilder, Forte, etc.) for
easy drag and drop building of the interface.

The runtime versions of the UI Toolkit classes are included in the pw.jar file. If you are using an IDE,
configure your IDE to use the vwpanel.jar file. (The vwpanel.jar contains the necessary classes and
images for RAD programming.)

The Java Step Processor and Launch Step Processor use the UI Toolkit APIs to initialize and display user
interface components and controls, as illustrated by the Step Processor samples provided with your
installation. Note that these samples make extensive use of the eProcess APIs. You cannot modify or
extend these Step Processor or Launch Step Processor samples without first understanding how to access
workflow sessions, objects, elements, queues, rosters, and logs using the eProcess APIs.

Compiling and running the supplied Step Processor samples (without modification)●

Installing (deploying) the custom Step Processor (or Launch Step Processor) on the Web WorkFlo
server

●

Customizing and compiling the Step Processor (or Launch Step Processor) samples with slight
modifications

●

In addition, this section includes reference and development information on the following topics:

Java Step Processor sample file descriptions●

Java Step and Launch Step Processor Toolkit Overview

file:///I|/Workflow/DevGuide/Panagon/samp/custom_java_step_overview.htm (1 of 2) [9/18/2002 8:04:12 AM]

Java Launch Step Processor sample file descriptions●

Java UI Toolkit class, interface, and bean descriptions●

Java UI Toolkit parameters supported by specific controls●

How to work with attachments using these controls●

Processor Session Sharing
The Java Step Processors shipped with Web WorkFlo run as applets hosted by the Java Plug-in in an
ASP page, or as a dialog window that is opened by another window. One significant difference between
the operation of the Java and HTML versions of the Step Processor and the Launch Step Processor is
session sharing behavior. If the Java Step Processor opens from another eProcess window, they share the
logon session, and the user need not logon again.

By contrast, the HTML Step Processors and Launch Step Processors are built on top of the JiGlue COM
Bridge and the IDM Web Services Javascript objects. Therefore, any steps requesting attachments
require the user to supply separate user credentials. If a Java Step Processor is opened from an email
notification, it is run as an applet and behaves the same way as the HTML Processors.

Java Step and Launch Step Processor Toolkit Overview

file:///I|/Workflow/DevGuide/Panagon/samp/custom_java_step_overview.htm (2 of 2) [9/18/2002 8:04:12 AM]

Deploying a Custom Java Step or Launch
Processor
Once you have created a new Java Step Processor or Launch Step Processor and have added the classes
to a Java ARchive (JAR) file, you must deploy and configure the custom Processor on the eProcess
server.

Note Your JAR file must be signed (with either a Netscape Object Signing Certificate or a Sun
Java Object Signing Certificate). For additional information, see Sign a Jar File.

Caution If you upgrade to a new Panagon Web Services version, you must redeploy all existing custom
Step and Launch Processors. Existing custom Java Step Processors and Launch Step Processors should
be recompiled and then redeployed using the procedure shown here. If you get compiling errors, correct
your samples by comparing them to the new version's sample Java Processors (see Java Step Processor
Sample Files).

To deploy a custom Java Step or Launch processor, use the following procedure:

On your Web WorkFlo server, navigate to the <drive>...\Program
Files\FileNET\IDM\Web\IDMWS directory.

1.

Create a new directory under the \Redist\WF_Step directory (at the same level as the \Tabbed
directory). For Launch Step Processors, create the directory under \Redist\WF_Launcher.

2.

Copy the step_main.asp file from the \Tabbed sub-directory, and put the copy into your newly
created directory. For Launch Step Processors, copy the launcher_main.asp file.

3.

Rename the .ASP file (it is recommended that this name reflect the function of the custom
processor). Change the file attribute from Read-only to Read/Write.

4.

Open the renamed file. Locate the <PARAM> attribute of the <OBJECT> tag that matches the
following line:

5.

<PARAM NAME=CODE VALUE="filenet.vw.apps.steps.tabbed.VWTabbedStepApplet">

Modify the <PARAM> statement to reference the correct applet. For example, if your JAR file
was created in the \newStep directory and the applet class is called newStepApplet, your
parameter statement would be similar to the following:

6.

<PARAM NAME=CODE VALUE="newstep.newStepApplet">

Save the renamed file.7.

Navigate to the \Redist\WF_Extras directory.8.

Place your custom Processor Java archive (JAR) file in the \WF_Extras directory.9.

Still in the \WF_Extras directory, locate the globalInfo.asp file. Change the file attribute from
Read-only to Read/Write.

10.

Open the globalInfo.asp file, and locate the following commented statement:11.

's_jarArchiveTag=s_jarArchiveTag + ", " + "samplestep.jar"'

Deploying Custom Java Processor

file:///I|/Workflow/DevGuide/Panagon/samp/installing_Java_Step_processors.htm (1 of 2) [9/18/2002 8:04:13 AM]

Copy the statement, and paste a new instance of the line immediately below the first. Do not use or
modify the statement that specifies the location for the pw.jar file.

12.

Remove the apostrophe (" ' ") from the beginning of the line to allow the server to parse the
statement. (By default, the line is commented out using the VBScript comment convention.)

13.

Delete the "samplestep.jar" portion of the statement, and modify the statement to reflect the actual
name and location of the JAR file you created and copied to the \WF_Extras directory.

14.

For example, the statement should be similar to the following:

s_jarArchiveTag=s_jarArchiveTag + ", " + "<JAR file>.jar"

(where <JAR file>.jar is the name of the JAR file you created and copied to the \WF_Extra directory).

Note: You can also, if you wish, place your jar file in another directory. However, since the jar
file path is relative to "idmws\redist\wf_extras", you must specify the path. If you do this and use
unified logon, the folder must have anonymous access enabled. Remember, as previously
indicated, the jar file must be signed (for details, see Sign a Jar File).

Save the modified globalInfo.asp file.15.

Add the processor to the workflow.16.

If you intend to use several .JAR files, you should add all of your class files into a single JAR file and
reference only the one file. Alternatively, you can specify multiple JAR files using a comma (",")
delimiter. Not all browsers support multiple JAR files.

Deploying Custom Java Processor

file:///I|/Workflow/DevGuide/Panagon/samp/installing_Java_Step_processors.htm (2 of 2) [9/18/2002 8:04:13 AM]

Customize the Step Processor Sample
This topic describes how to customize (or extend) the Java Step Processor sample applet. Refer to the
Java Step Sample Files topic for a detailed list of the available sample files. These procedures assume
that you have already:

Compiled and tested the unmodified processor samples successfully.●

Worked with and understand the eProcess Java APIs.●

Have some familiarity with Swing controls and containers (for information, see the Java UI
Toolkit Overview topic).

●

Customizing the Step Processor sample consists of two key steps:

Create a new version of the sample Step Processor1.

Customize the code (for example, by adding additional user controls)2.

Note These procedures assume you are using the Java SDK in native, command line mode (see
Configure the Java SDK for details on which JDK to use for your development environment and how to
install it for eProcess) and that the JDK is installed in the default directory. If you are using a Java
Integrated Development Environment (IDE), such as Visual Cafe, JBuilder, Forte, etc., you can use the
eProcess Java UI Toolkit API Rapid Application Development (RAD) components, in a drag-and-drop
fashion, by adding the vwpanel.jar file to the Java project (for additional information, see the Java UI
Toolkit Overview topic). The eProcess Java UI Toolkit provides ready-to-use user controls to simplify
customizing the applet user interface. Refer to the documentation that came with your IDE for
information on adding drag-and drop RAD components.

Create a new version of the sample Step Processor
These procedures demonstrate how to modify and compile customized versions of the Step Processor
samples. However, you can adapt these procedures to update the Launch Step Processor samples by
changing the directory and file names used in these procedures.

Navigate to the \vwpanel directory, copy the directory and rename the \samplestep directory
(typically to reflect the name of your customization goal). For example, \newstep.

1.

Caution You should rename the directory to ensure that package names do not conflict when you create
the Java ARchive (JAR) file (see step 7 below).

Change to the renamed directory.2.

Rename the following sample files, by adding a prefix, to match your customization. For example,
you might rename the files as shown:

Rename VWSampleStepApplet.java to newStepApplet.java❍

Rename VWSampleStepApplication.java to newStepApplication.java❍

Rename VWSampleStepPanel.java to newStepPanel.java❍

3.

Open each renamed file, and replace every occurrence of samples.vwpanel.samplestep with the4.

Customize the Step Processor Sample

file:///I|/Workflow/DevGuide/Panagon/samp/modifying_the_sample_step_processor.htm (1 of 4) [9/18/2002 8:04:13 AM]

name of your new directory, which reflects the package structure. For example, if your new
directory is called \newstep, replace samples.vwpanel.samplestep with samples.vwpanel.newstep.

Open each renamed file, and replace every occurrence of VWSample with the prefix you added to
the file name. For example, in the example shown above, you would replace VWSample with new.
 All class definitions must match the files names.

5.

Compile the samples by entering a command similar to the following (modify for the appropriate
JDK):

C:\jdk1.3.1\bin\javac.exe -classpath .;C:\<your directory>\pw.jar;%CLASSPATH%
newStepApplet.java

Alternatively, you can compile all of the classes in the directory at once (assuming, for example,
that you have already created a batch file that includes the pw.jar location in the CLASSPATH
variable; for details, see the Configure the Java SDK topic), as follows:

setenv
C:\jdk1.3.1\bin\javac.exe -classpath .;C:\<your directory>\pw.jar;%CLASSPATH% *.java

6.

Note The complete pathname for javac.exe is not necessary if your system PATH variable
already includes the corresponding javac.exe.

Caution You must replace all directory name (package) occurrences; if you receive errors
messages stating that certain symbols could not be resolved or found, check the files listed
in the error statements to ensure that all package names are correct.

Create a new JAR file containing your customized Step Processor.7.

Sign the JAR file.8.

Deploy the updated Step Processor applet on the Web WorkFlo server.9.

As a test, run the new applet to make sure you can use it.10.

If the new custom Step Processor works, you are ready to customize the Step Processor
application/applet code (see below).

Customize the Code
This section describes how to add user interface controls to the custom Step Processor by adding simple
fields to indicate when the Step Processor was sent (launch information) and who sent it (originator
information).

Using a text editor, open the renamed <prefix>stepPanel.java file (where the <prefix> is the prefix
you appended to the file earlier).

1.

Define the new controls by adding the following statements at the end of the DECLARE
CONTROLS sections (near the bottom of the file):

2.

//Create labels for the launch date and originator information.

javax.swing.JLabel sentLabel = new javax.swing.JLabel();

Customize the Step Processor Sample

file:///I|/Workflow/DevGuide/Panagon/samp/modifying_the_sample_step_processor.htm (2 of 4) [9/18/2002 8:04:13 AM]

javax.swing.JLabel fromLabel = new javax.swing.JLabel();

//Create label objects for the launch date and originator information.

filenet.vw.toolkit.runtime.step.beans.VWLabel vwSentLabel = new
filenet.vw.toolkit.runtime.step.beans.VWLabel();
filenet.vw.toolkit.runtime.step.beans.VWLabel vwFromLabel = new
filenet.vw.toolkit.runtime.step.beans.VWLabel();

Locate the following statement, and change the position values to move the icon out of the current
position to make room for the new fields.

3.

iconLabel.setBounds(516,48,216,108);

Modify the values to change the location of the icon. For example you might enter the
following values:

iconLabel.setBounds(20,48,216,108);

Define the launch date information by adding the following statements to the code, in the
INIT_CONTROLS section:

4.

//Display the label text on the JPanel to specify what the launch date information means.

sentLabel.setText("Launched on:");
add(sentLabel);
sentLabel.setBounds(320,84,100,24);

//Retrieve and display the launch date for Step Processor.

vwSentLabel.setParameterName("F_LaunchDate");
add(vwSentLabel);
vwSentLabel.setBounds(430,84,100,24);

Define the originator information by adding the following statements to the code:5.

//Display the label text on the JPanel to indicate what the originator information means.

sentLabel.setText("Step Originator:");
add(fromLabel);
fromLabel.setBounds(320,120,100,24);

//Retrieve and display the originator information.

vwFromLabel.setParameterName("F_Originator");
add(vwFromLabel);
vwFromLabel.setBounds(430,120,180,24);

Save the changes and close the file.6.

Compile the samples by entering a command similar to the following (modify for the appropriate
JDK):

7.

C:\jdk1.3.1\bin\javac.exe -classpath .;C:\<your directory>\pw.jar;%CLASSPATH% newStepApplet.java

Customize the Step Processor Sample

file:///I|/Workflow/DevGuide/Panagon/samp/modifying_the_sample_step_processor.htm (3 of 4) [9/18/2002 8:04:13 AM]

Alternatively, enter a command similar to the following to compile all of the classes in the
directory at once:

C:\jdk1.3.1\bin\javac.exe -classpath .;C:\<your directory>\pw.jar;%CLASSPATH% *.java

Caution You must replace all directory name (package) occurrences; if you receive errors messages
stating that certain symbols couldn't be resolved or found, check the files listed in the error statements to
ensure that all package names are correct.

Create a new JAR file containing your newly customized Step Processor.8.

Replace the JAR file you installed earlier on the Web WorkFlo server, with this updated version.9.

As a test, run the new applet to make sure the changes are visible and that the applet works.10.

Customize the Step Processor Sample

file:///I|/Workflow/DevGuide/Panagon/samp/modifying_the_sample_step_processor.htm (4 of 4) [9/18/2002 8:04:13 AM]

Java Step Processor Sample Files
The Java Step Processor sample files are located in the \Developer Files\Samples\vwpanel\samplestep
directory. Refer to Install Panagon eProcess Toolkit for information on installing the appropriate
development files on your system.

The directory contains the following files:

File name (and location) Description

VWSampleStepApplet.java For applets hosted in .ASP files. Implements methods for loading
the window by using the VWResource and VWImageLoader
classes. Creates and initializes the processor application. Loads the
window, sets the title, establishes a VWSession, and calls the main
user interface panel.

VWSampleStepApplication.java For applications. Implements methods for loading the window by
using the VWResource and VWImageLoader classes. Creates and
initializes the processor application. Loads the window, sets the
title, establishes a VWSession, and calls the main user interface
panel.

VWSampleStepPanel.java Implements the user interface visual elements for the Step
Processor. Initializes the controls for the panel.

\resources\VWResource.java Acts as a resource provider for the processor. The default resource
is the title string for the applet.

\images\VWImageLoader.java Loads images for the VWSampleStepPanel container.

\images\icon.gif Image file for VWSampleStepPanel container.

\images\step.gif Image file for the VWSampleStepPanel container to indicate that
this is a Step Processor.

Java Step Processor Sample Files

file:///I|/Workflow/DevGuide/Panagon/samp/java_step_toolkit_files.htm [9/18/2002 8:04:13 AM]

Working with the VWAttachmentPanel
The following code demonstrates one way of using the VWAttachmentPanel bean to access attachments,
stored in Content Services or Image Services libraries, from Java-based Step Processors or Launch Step
Processors.

This method of instantiating the VWAttachmentPanel is useful for developers who are not using an IDE
(such as Visual Cafe, JBuilder, Forte, etc.) capable of supporting the RAD drag-and-drop components
packaged in the vwpanel.jar file, or for anyone interested in understanding how to retrieve attachments
apart from the VWTabbedPane control. If you are using the drag-and-drop components in an IDE, the
code for instantiating the VWAttachmentPanel component is added automatically when you drag the
component onto a form.

The VWTabbedPane component includes the VWAttachmentPanel, and the component supplies other
menu items automatically. This code demonstrates how to use the VWattachmentPanel control separately
from the VWTabbedPane component.

1. To initialize the bean properly pass the following information:

A VWStepElement object●

A Frame object (the containing parent frame)●

A valid VWSession object●

2. The following sample code assumes that you declare and initialize these three variables near the top of
the class definition.

VWStepElement vwStepElement = null;
Frame parentFrame = null;
VWSession vwSession = null;

3. Next, instantiate the VWAttachmentPanel bean after testing for the VWStepElement field type:

JComponent newJComponent = null;

if (vwStepElement.getParameters(VWFieldType.FIELD_TYPE_ATTACHMENT,
VWStepElement.FIELD_USER_DEFINED) != null)
{
 newJComponent = (JComponent)Beans.instantiate(getClass().getClassLoader(),
 "filenet.vw.toolkit.runtime.step.beans.VWAttachmentPanel");

 if (newJComponent != null)
 {

\\While it is not shown here, you should include code to add the JComponent to the
\\containing VWPanel to expose the attachment list to the end user.

 if (newJComponent instanceof IVWStepProcessorComponent)
 ((IVWStepProcessorComponent)newJComponent).init(vwStepElement, parentFrame, vwSession);
 }

Working with the VWAttachmentPanel bean

file:///I|/Workflow/DevGuide/Panagon/beans/working_with_vwattachmentpanel.htm (1 of 2) [9/18/2002 8:04:14 AM]

}

Working with the VWAttachmentPanel bean

file:///I|/Workflow/DevGuide/Panagon/beans/working_with_vwattachmentpanel.htm (2 of 2) [9/18/2002 8:04:14 AM]

Developing Custom Java Processors -
Applications vs. Applets
Before you deploy a custom Java Step or Launch Processor, you will need to decide whether to deploy it
as an application or an applet (there may be some advantages to deploying it as an application). For the
purposes of this discussion, these terms may be defined as:

Applet — an applet is a program that is launched and run within the context of a web browser. (In
a Java Step Processor Toolkit context, applets refer to classes that extend JApplet, or FileNET's
VWBaseAppLauncherApplet class, which is itself an extension of JApplet.)

●

Application — an application is a Java application invoked by its package/class name. (In a Java
Step Processor Toolkit context, applications refer to classes that extend JFrame, or FileNET's
VWBaseLaunchableApplication class, which is itself an extension of JFrame.)

●

This topic explores this issue in terms of:

Applications vs. Applets — General Guidelines●

Why Deploy Your Step Processor as an Application●

Applications vs. Applets — General Guidelines
The following general guidelines apply when considering whether to deploy your custom Java Step or
Launch Processor as an application or an applet:

In general, it is optional as to whether you deploy a Java Step or Launch Processor as an
application or an applet. The sample or out-of-the-box Step and Launch Processors included with
the Java Toolkit will each run as either an application or an applet.

●

If a Java Step Processor is to be opened from an email notification message, you must implement
an applet class. In other words, if you deploy as an application, the Step Processor must implement
an applet class in order to open the step assignment from an email notification message. On the
other hand, if a Step Processor is to be opened from an email notification message and you deploy
it as an applet, there is no requirement to implement an application class. Since Launch Processors
cannot be opened from an email notification message, there is no need to implement an applet
class if you are deploying a Launch Processor as an application.

●

Why Deploy Your Step Processor as an Application
There are a number of advantages in deploying a custom Java Step or Launch Processor as an
application. These include:

Deploying the Step Processor as an application provides a better connection between the Step
Processor and the Personal Work Manager (PWM). When you complete or close a step when the
Step Processor is deployed as an application, the application notifies the PWM that an event has
occurred, causing the PWM to automatically refresh its display. When you complete or close a

●

Developing Custom Java Processors - Applications vs. Applets

file:///I|/Workflow/DevGuide/Panagon/samp/apps_vs_applets.htm (1 of 2) [9/18/2002 8:04:14 AM]

step when the Step Processor is deployed as an applet, the user must manually refresh the PWM in
order to refresh its display.

Deploying the Step Processor as an application enables a session to be shared; that is, the user is
not required to login again. This is true if your application class implements the
IVWLaunchableApp interface, either directly or by extending the VWBaseLaunchableApplication
class as in the Java Step and Launch Processor sample code.

●

Deploying the Step Processor as an application forces popup dialogs to be modal. This prevents
users from doing something else outside the dialog box while the dialog entry is unresolved.
Deploying the Step Processor as an applet does not provide dialog modality.

●

Deploying the Step Processor as an application allows the application to use the same instance of
the Java plug-in. Deploying the Step Processor as an applet requires the applet to create a new
instance of the Java plug-in, thereby slowing performance.

●

Developing Custom Java Processors - Applications vs. Applets

file:///I|/Workflow/DevGuide/Panagon/samp/apps_vs_applets.htm (2 of 2) [9/18/2002 8:04:14 AM]

Modify the HTML Step Processor
This topic describes how to customize the default HTML Step Processor to meet unique workflow
requirements.

While no Integrated Development Environment (IDE) requirement for ASP development exists, these
procedures assume you are using Visual InterDev and that you have a solution already set up similar to
the one described in the Developing for ASP section of this guide. An alternative to using Visual
InterDev is working directly in the <drive>...\Program Files\FileNET\IDM\Web\IDMWS directory
structure on your Web WorkFlo server. If you know ASP development requirements and you want to
make minor changes to specific files, working in the directory structure might be the best solution. The
primary disadvantage is you will be working in an active web server directory structure, so mistakes are
hard to correct.

Caution The HTML processors are designed to reuse some shared files, which are located in the
\WF_Html_Toolkit directory. Do not modify the files in the \WF_Html_Toolkit directory. Modifying the
shared files might cause problems with Step Processor and Launch Step Processor shipped with Web
WorkFlo.

Customize the default HTML Step Processor by performing the following steps:

Create a new directory under the \Redist\WF_Step directory (at the same level as the \HTML
directory). If you are using Visual InterDev, you can add a new Folder.

1.

Name the directory according to the function of the processor. (This procedure will use the
directory name \new_HTML_Step.)

2.

Copy the contents of the \Redist\WF_Step\html directory into the \new_HTML_Step directory.3.

Rename the step_main.asp file to newstep_main.asp. If you are not using Visual InterDev, you
must change the file attribute from Read-only to Read/Write.

4.

Open the newstep_main.asp file.5.

Modify the .ASP files as needed. (Refer to the HTML Step Processor Relationships topic for more
information on Step Processor file dependencies and the frameset implemented in the file.)

6.

If you need to modify any of the files in the \WF_Html_Toolkit directory, copy the needed files
into the directory you created for your new processor.

7.

Change all references to the file(s) in the modified processors.8.

Add the Step Processor to the workflow. (Refer to Configure Step Processors in the Management
section of the Configuration Console help for more information on adding Step Processors to a
workflow.)

9.

Test your new Step Processor pages from your application development server.10.

Modify the HTML Step Processor

file:///I|/Workflow/DevGuide/Panagon/asp/modifying_the_html_step_processor.htm (1 of 2) [9/18/2002 8:04:14 AM]

User interface Modifications
The default step_main.asp file includes the colorOpt variable for controlling the default color of the Step
Processor tabs. The default colorOpt value is a hexadecimal value of "#657FD2" (corresponding to a
RGB color model). The variable is passed to the stepInfo.asp, tab.asp, and tabContent.asp files.

Modify the HTML Step Processor

file:///I|/Workflow/DevGuide/Panagon/asp/modifying_the_html_step_processor.htm (2 of 2) [9/18/2002 8:04:14 AM]

Modify the HTML Launch Step Processor
This topic describes how to customize the default HTML Launch Step Processor to meet unique
workflow requirements.

While no Integrated Development Environment (IDE) requirement for ASP development exists, these
procedures assume you are using Visual InterDev and that you have a solution already set up similar to
the one described in the Developing for ASP section of this guide. An alternative to using Visual
InterDev is working directly in the <drive>...\Program Files\FileNET\IDM\Web\IDMWS directory
structure on your Web WorkFlo server. If you know ASP development requirements and you want to
make minor changes to specific files, working in the directory structure might be the best solution. The
primary disadvantage is you will be working in an active web server directory structure, so mistakes are
hard to correct.

Caution The HTML processors are designed to reuse some shared files, which are located in the
\WF_Html_Toolkit directory. Do not modify the files in the \WF_Html_Toolkit directory. Modifying the
shared files might cause problems with Step Processor and Launch Step Processor shipped with Web
WorkFlo.

Customize the default HTML Launch Step Processor by performing the following steps:

Create a new directory under the \Redist\WF_Launcher directory (at the same level as the \HTML
directory). If you are using Visual InterDev, you can add a new Folder.

1.

Name the directory according to the function of the processor. (This procedure will use the
directory name \new_HTML_Launcher.)

2.

Copy the contents of the \Redist\WF_Launcher\html directory - including the images directory -
into the \new_HTML_Launcher directory.

3.

Rename the launcher_main.asp file to newlauncher_main.asp. If you are not using Visual
InterDev, you must change the file attribute from Read-only to Read/Write.

4.

Open the newlauncher_main.asp file.5.

Modify the .ASP files as needed. (Refer to the HTML Launch Step Processor Relationships topic
for more information on launch processor file dependencies and the frameset implemented in the
file.)

6.

If you need to modify any of the files in the \WF_Html_Toolkit directory, copy the needed files
into the directory you created for your new processor.

7.

Change all references to the file(s) in the modified processors.8.

Add the Launch Step Processor to the workflow. (Refer to Configure Step Processors in the
Management section of the Configuration Console help for more information on adding Launch
Step Processors to a workflow.)

9.

Test your new Step Processor pages from your application development server.10.

Note You might want remove image files you know you will not be using, copy only those image file
you are sure to use, or add image files to the \Images sub-directory in your new directory structure.

Modify the HTML Launch Step Processor

file:///I|/Workflow/DevGuide/Panagon/asp/modifying_the_html_launch_processor.htm (1 of 2) [9/18/2002 8:04:15 AM]

User Interface Modifications
The default launcher_main.asp file includes the colorOpt variable for controlling the default color of
the Launch Step Processor tabs. The default colorOpt value is a hexadecimal value of "#669966"
(corresponding to a RGB color model). The variable is passed to the tab.asp, tabContent.asp, and
stepInfo.asp files.

Modify the HTML Launch Step Processor

file:///I|/Workflow/DevGuide/Panagon/asp/modifying_the_html_launch_processor.htm (2 of 2) [9/18/2002 8:04:15 AM]

Modify User Interface Files
This topic describes how to modify, in general terms, the following user interface files used by the default HTML Step
Processors and Launch Step Processors. In all liklihood, you will not need to modify most of the user interface files; in the
following sections, an asterisk (*) following the file name indicates a file you are most likely to modify.

Caution You can add new functions or extend the existing function in these files; however, you must not delete or alter the
existing functions

Many of the files listed in this topic directly referenced in the step_main.asp or launcher_main.asp files (or the modified
versions of those files). Refer to both the HTML Step Processor File Relationships and the HTML Launch Step Processor
File Relationships topics for more information on the file dependencies.

arrayEdit.asp
Called by: dataField.asp file (only for data fields that are arrays)

The arrayEdit.asp file provides Javascript functions for loading an array, displaying the array name, checking the field
type (integer, string, boolean, float, and time), adding and inserting array elements, among other functions. The embedded
form uses a table to display the field information and post the information to the dataField.asp file.

attachment.asp
Called by: Attachments tab (which is implemented in the tabContent.asp file)

The attachment.asp file acts as a parent container for the attToolbar.asp and attachmentTabke.asp files. The file
implements the following frameset:

<frameset rows="35,*" border="0" framespacing="0" frameborder="NO">
 <frame name="AttToolbar" src="Redist/WF_Html_Toolkit/UI/attToolbar.asp" scrolling="no" noresize >
 <frame name="AttTable" src="Redist/WF_Html_Toolkit/UI/attachmentTable.asp?colorOpt=<%=TabColor%>"
frameborder=1 scrolling="auto">
</frameset>

The tab display variable colorOpt passes the value of the VBScript variable <%TabColor%>. If no color is specified, the
default highlight color is blue. The color of the highlighted tab can be selected by the following query string statement:

TabColor = Request.QueryString("tabColor")

The tabColor variable value is used to set distinguishing colors for both the HTML Step and Launch Step Processors.

attachmentTable.asp*
Called by: the frameset implemented in the attachment.asp file

The attachmentTable.asp file implements Javascript functions for dynamically determining attachment properties and
constructing a HTML-formatted table, using Javascript, to display the properties.

The functions test for the attachment type and construct a table which includes and displays the attachment name,
attachment item description, the library where the attachment resides, and the attachment document ID, which is the
Images Services or the Content Services id number.

Modify User Interface Files

file:///I|/Workflow/DevGuide/Panagon/asp/user_interface_components.htm (1 of 5) [9/18/2002 8:04:15 AM]

You can modify the dynamically constructed <A HREF> tags and extend the function implemented in the file to change
link behavior, or you can add additional attachment information and extend the number of columns or rows constructed
for each attachment.

attToolbar.asp
Called by: the frameset implemented in the attachment.asp file

The attToolbar.asp includes the ToolbarButton.asp file and implements functions that allow a user to select an attachments
(like documents, folders, or stored searches) in the attachmentTable.asp file to view, checkout, cancel checkouts, and view
version information. The toolbar images and functionality changes depending on the objected selected in the
attachmentTable.asp file.

Most of the functions for opening attachments are handled by the .asp modules in the \WF_FileOpen directory.
Specifically, the attachments functionality is contained in the FileOpen.js/fileopen.asp and Otherselect.js/OtherSelect.asp
files, which are included in this file at runtime. You must know the IDM Web Services Javascript objects thoroughly to
extend these modules.

You can extend the existing functions or add additional event checking.

dataField.asp*
Called by: Data Fields tab (which is implemented in the tabContent.asp file)

The dataField.asp file constructs a table row by row, using Javascript, to display step element parameter information. You
can change the table creation, or you can extend the function for editing the array.

For parameters that are arrays, the HTML includes an image-based link in the table. When an end user clicks the image,
the link invokes the arrayEdit.asp file, as a new window instance.

milestone.asp
Called by: tab.asp, milestone.asp, and open_milestone.js

The milestone.asp file constructs a table to display the milestone information, like the milestone name, the associated
message, and the time the milestone was reached.

generalInfo.asp
Called by: tab.asp and tabContent.asp

The generalInfo.asp file provides Javascript functions for selecting and displaying the tab-related information used in the
HTML Step Processor and Launch Step Processor.

Modify User Interface Files

file:///I|/Workflow/DevGuide/Panagon/asp/user_interface_components.htm (2 of 5) [9/18/2002 8:04:15 AM]

reassign.asp*
Called by: toolbar.asp (if the step can be reassigned)

The reassign.asp file provides a Javascript pull-down list for reassigning a workflow step to a different participant. The
file implements functions for reading participant arrays, sorting the elements alphabetically, and creating an <Option> tag
(for the <Select> pull-down list) for each array element. You can modify the way the participant information is selected or
displayed.

resource.asp*
Called by: stepElementInit.asp, toolbarHelper.asp, arrayEdit.asp, attachment.asp, attachmentTable.asp, attToolbar.asp,
dataField.asp, generalInfo.asp, milestone.asp, reassign.asp, stepInfo.asp, tab.asp, workGroup.asp, workGroupEdit.asp

The resource.asp file provides variables associated with the strings of displayed text for the user interface components
listed above; the varibles are assigned string values in this file. Alter the strings to localize the text.

stepInfo.asp
Called by: step_main.asp and launcher_main.asp

The stepInfo.asp page constructs a table for displaying instructions. The following query string statement controls the
background color of the instruction label:

ColorOpt=Request.QueryString("colorOpt")

The colorOpt variable, which is passed from the main_step.asp file, the specified value is "#657FD2". If no value exists,
the color defaults to "Blue".

tab.asp*
Called by: step_main.asp and launcher_main.asp

The tab.asp file works with tabContent.asp to implement the default tabs: General tab, Attachment tab, Data Fields tab,
Workflow Groups tab, and Milestones tab. The file selects the tabs displayed in the tabContent.asp file.

The tabs are evaluated in a bit-wise (binary) fashion; each default tab is assigned the following bit value:

General tab = 0 (0000)●

Attachment tab = 1 (0001)●

Data Field tab = 2 (0010)●

Work Groups tab = 4 (0100)●

Milestone tab = 8 (1000)●

You can modify how the tabs display by using bit masking. For example, a value of 1 (0001) displays the General and
Attachment tabs, and a value of 2 (0010) displays the General and Data Fields tabs. However, a value of 6 (0110)
displays the General, Data Fields and Work Group tabs. A value of 15 (1111) displays all tabs. Regardless of the tab
being displayed, all of the tabs display left aligned.

If you want to add a tab, perform the following general steps:

Modify the tab.asp file, or copy the file to a local directory - depending on whether or not you want the new tab to1.

Modify User Interface Files

file:///I|/Workflow/DevGuide/Panagon/asp/user_interface_components.htm (3 of 5) [9/18/2002 8:04:15 AM]

be available to all processors or only the one you are modifying.

Associate a bit value to represent the new tab. For example, a fifth tab must have a value of 16 (10000), and a sixth
tab must have a value or 32 (100000).

2.

Modify the local tabContent.asp to handle the new tab. The new tab must be able to reference all other tabs.3.

The current default function is similar to the following:

function onTabClick(sel)
{
 if (parent.TabContent.updateStep() == false)
 return;

 var htmlString = null;
 if (sel == 0)
 {
 htmlString = "generalInfo.asp?tabColor=<%=colorOpt%>";
 }
 else if (sel == 1)
 {
 htmlString = "attachment.asp?tabColor=<%=colorOpt%>";
 }
 else if (sel == 2)
 {
 htmlString = "dataField.asp?tabColor=<%=colorOpt%>";
 }
 else if (sel == 3)
 {
 htmlString = "workGroup.asp?tabColor=<%=colorOpt%>";
 }
 else if (sel == 4)
 {
 htmlString = "milestone.asp?tabColor=<%=colorOpt%>";
 }
 if (htmlString != null)
 {
 parent.TabContent.location = htmlString;
 }
 parent.TabHeader.location = "tab.asp?colorOpt=<%=colorOpt%>&tabSel=" + sel;
}

tabContent.asp*
Called by: step_main.asp and launcher_main.asp

With the tab.asp file, the tabContent.asp file implements functionality for bitwise comparison of the tabs for the step. The
General tab always display, the remaining tabs are selected depending on the existence the required elements, such as
attachments, or workgroups, or milestones.

If you want to add a tab, you must modify this file along with the tab.asp file.

Modify User Interface Files

file:///I|/Workflow/DevGuide/Panagon/asp/user_interface_components.htm (4 of 5) [9/18/2002 8:04:15 AM]

toolbar.asp
Called by: step_main.asp - or modified versions of the file. The launcher_main.asp file uses a different version of the file,
which is located in the \WF_Launcher\HTML directory.

Modifying this file will allow you to rearrange, replace, remove, and add buttons. All button event handlers are
implemented and defined in the toolbarHelper.asp file.

If you are modifying a toolbar that is available to all step or launch processors, you must also add a button and an
associated handler function to the toolbarHelper.asp file.

●

If you are modifying a toolbar for only one processor, copy the toolbar.asp file to the directory containing the
customized step or Launch Step Processor. Add the button and button event handler in the local copy of the
toolbar.asp. Modify your Step Processor page(s) to reference to the local toolbar.asp.

●

workGroup.asp*
Called by: Workflow Groups tab (which is implemented in the tabContent.asp file)

The workGroup.asp file creates a table automatically, using Javascript, to display the work group name and participant
information for each workgroup defined for the workflow.

Each dynamically-constructed row includes an includes an image-based link that allows the Javascript onClick event to
invoke the workGroupEdit.asp file. When an end user clicks the image, the link invokes the workGroupEdit.asp file, as a
new window instance.

You can modify how the work group information displays by changing the HTML-formatted tables.

workGroupEdit.asp
Called by: workGroup.asp

The workGroupEdit.asp file implements functions for determining and dynamically creating a HTML-formatted table to
edit the work group participants for the work groups.

The file implements functions for reading work group participant arrays, sorting the elements alphabetically, and creating
a check box interface for selecting specific array elements.

Modify User Interface Files

file:///I|/Workflow/DevGuide/Panagon/asp/user_interface_components.htm (5 of 5) [9/18/2002 8:04:15 AM]

Modify Core Files
This topic describes how to modify, in general terms, the following core shared files used by the default
HTML Step Processors and Launch Step Processors. In all liklihood, you will not need to modify most of
these core files; in the following sections, an asterisk (*) following the file name indicates a file you are
most likely to modify. This topic does not include the server-side include file, which are located in the
same directory at these files.

Caution You can add new functions or extend the existing function in these files; however, you must not
delete or alter the existing functions.

launchStepElementInit.asp
Similar to the stepElementInit.asp file. The file includes the following Web WorkFlo helper files:

loadFields.inc●

loadWorkGroup.inc●

loadAtt.inc●

The file uses the JiGlue COM Bridge to work with VWAttachment objects in WorkFlo Services. Refer to
this file to determine how to create and access attachments that can be viewed in workflow processing.

Like the stepElementInit.asp file, the launchStepElementInit.asp implements server-side VBScript
functions and client-side Javascript functions for determining and initializing system field values for the
user interface components.

Additionally, the file uses the Web Services client-side, Javascript, IDMWSC_Result object to
implement a Javascript switch structure. Refer to Locate the Panagon Web Services Toolkit Help for
more information on using the Panagon Web Services components.

launchStepProcessor.asp
Includes the following Web WorkFlo helper files:

stepProcessorAttHelper.asp●

stepProcessorFieldHelper.asp●

stepProcessorWGHelper.asp●

Refer to the file to examine the remaining referenced and included files.

The launchStepProcessor.asp file is a top-level page. The file implements VBScript functions for parsing
XML step element strings composed by on the client system. Additionally, the file includes a template
for the XML schema being used to parse the launch step element string and includes a description of the
assumptions. For reference purposes, the well-formed XML schema is listed here:

<step>

Modify Core Files

file:///I|/Workflow/DevGuide/Panagon/asp/core_shared_components.htm (1 of 5) [9/18/2002 8:04:16 AM]

<comment>...</comment>
<subject>...</subject>
<wfId>...</wfId>
<selResponse>...</selResponse> -- Optional reponses

<att>
 <name>...</name>
 <isArray>0</isArray> -- 0 = non-array, or 1 for array.
 <idmAtt>
 <name>...</name>
 <desc>...</desc>
 <type>...</type>
 <lib>...</lib>
 <libType>...</libType>
 <id>...</id>
 </idmAtt>
... -- one or more IDM attachment
</att>
<att>
... -- One or more attachment objects
</att>

<field>
 <name>...</name>
 <desc>...</desc>
 <type>...</type>
 <value>...</value>
 <isArray>...</isArray>
</field>
<field>
... -- One or more field
</field>

<workgroup>
 <name>...</name>
 <participants>...</participants>
</workgroup>
<workgroup>
... -- One or more work groups
</workgroup>

</step>

Several other files (like stepProcessorAttHelper.asp, stepProcessorFieldHelper.asp, and
stepProcessorWGHelper.asp) help to parse the XML string.

Modify Core Files

file:///I|/Workflow/DevGuide/Panagon/asp/core_shared_components.htm (2 of 5) [9/18/2002 8:04:16 AM]

stepElementInit.asp
Includes the following Web WorkFlo helper files:

loadFields.inc●

loadWorkGroup.inc●

loadAtt.inc●

loadMilestones.inc●

Refer to the file to examine the remaining referenced and included files.

The stepElementInit.asp page implements VBScript server-side functions for retrieving step element
properties used to populate the client-side components.

Additionally, the file uses the Web Services client-side, Javascript, IDMWSC_Result object to
implement a Javascript switch structure. Refer to Locate the Panagon Web Services Toolkit Help for
more information on using the Panagon Web Services components.

stepProcessor.asp
Includes the following Web WorkFlo helper files:

stepProcessorAttHelper.asp●

stepProcessorFieldHelper.asp●

stepProcessorWGHelper.asp●

Refer to the file to examine the remaining referenced and included files.

The stepProcessor.asp file is a top-level page. The file implements VBScript helper functions for
retrieving and restructuring XML step element strings. The implemented functions assume that an
VWSession object already exists.

The file includes a template for the XML schema being used to parse the step element information. The
full XML schema is shown in the launchStepProcessor.asp file description (above).

stepProcessorAttHelper.asp
The stepProcessorAttHelper.asp file implements server-side VBScript functions for parsing the XML
string generated on the client system and saving the property information contained in the Content
Services or Image Services attachment (<idmAtt>...</idmAtt>) tag set of the well-formed XML string.

The file uses the JiGlue COM Bridge to work with VWAttachment objects in WorkFlo Services.

<att>

Modify Core Files

file:///I|/Workflow/DevGuide/Panagon/asp/core_shared_components.htm (3 of 5) [9/18/2002 8:04:16 AM]

 <name>...</name>
 <isArray>0</isArray> -- 0 = non-array, or 1 for array.
 <idmAtt>
 <name>...</name>
 <desc>...</desc>
 <type>...</type>
 <lib>...</lib>
 <libType>...</libType>
 <id>...</id>
 </idmAtt>
</att>

Note The full XML schema is shown in the launchStepProcessor.asp file description (above).

stepProcessorFieldHelper.asp
The stepProcessorFieldHelper.asp file implements server-side VBScript functions for parsing the XML
string generated on the client system and changing the system field property information contained in the
(<field></field>) tag set of the well-formed XML string.

<field>
 <name>...</name>
 <desc>...</desc>
 <type>...</type>
 <value>...</value>
 <isArray>...</isArray>
</field>

Note The full XML schema is shown in the launchStepProcessor.asp file description (above).

stepProcessorWGHelper.asp
The stepProcessorWGHelper.asp file implements server-side VBScript functions for parsing the XML
string generated on the client system and changing property information contained in the work group
(<workgroup></workgroup> tag set of the well-formed XML string.

<workgroup>
 <name>...</name>
 <participants>...</participants>
</workgroup>

Note The full XML schema is shown in the launchStepProcessor.asp file description (above).

Modify Core Files

file:///I|/Workflow/DevGuide/Panagon/asp/core_shared_components.htm (4 of 5) [9/18/2002 8:04:16 AM]

toolbarHelper.asp
The toolbarHelper.asp, working with the step.js file, defines the toolbar button behaviors. The
toolbarHelper.asp file calls the toXML() method defined in the step.js file to generate an XML string,
which is sent from the client to the server.

Modify Core Files

file:///I|/Workflow/DevGuide/Panagon/asp/core_shared_components.htm (5 of 5) [9/18/2002 8:04:16 AM]

Modify Utility Files
Do not modify the shared utility unless you have a compelling reason to do so. This topic describes, in
general terms, why you might modify the utility files.

Caution You can add new functions or extend the existing function in these files; however, you must not
delete or alter the existing functions.

utility.js
Modify and use this file for client-side sorting. If your application requires each user to frequently sort
field arrays, you should reference and extend this file. All of the sorting functionality is handled by the
locally-cached version of this file. When relying on the client-side functionality implemented in this file,
only one user can access the sorting.

utility.asp
Modify and use this file for server-side sorting. If your application requires that a single sorting operation
is distributed across the enterprise - among many users, then reference and extend this file. All sorting
functionality is handled by the file on the server, so using this file for frequent sorting will cause the
server operation to degrade as the load increases.

Modify Utility Files

file:///I|/Workflow/DevGuide/Panagon/asp/utility_components.htm [9/18/2002 8:04:16 AM]

HTML Step Processor File Relationships
This topic illustrates the relationships and dependencies of the HTML Step Processor. The figure shows both the
Panagon Web Services and Web WorkFlo files included in, or referenced by, the default step_main.asp file.

Note The figure does not show referenced images.

For descriptions of the Web Services files, see the Referenced Panagon Web Services Files and the Locate the
Panagon Web Services Toolkit Help topics. For descriptions of the Web WorkFlo files, see the Referenced Panagon
Web WorkFlo Files and the HTML processor toolkit file topics.

The following table lists the file names, locations, and frame names for all of files directly referenced by the
step_main.asp file.

File name (and location) Frame

WF_Html_Toolkit\UI\toolbar.asp Toolbar

WF_Html_Toolkit\UI\stepInfo.asp StepInfo

WF_Html_Toolkit\UI\tab.asp TabHeader

WF_Html_Toolkit\UI\tabContent.asp TabContent

HTML Step Processor File Relationships

file:///I|/Workflow/DevGuide/Panagon/asp/html_step_processor_relationships.htm [9/18/2002 8:04:17 AM]

HTML Launch Step Processor File
Relationships
This topic illustrates the relationships and dependencies of the HTML Launch Step Processor. The figure shows
both the Panagon Web Services and Web WorkFlo files included in, or referenced by, the default
launcher_main.asp file.

Note The figure does not show referenced images.

For descriptions of the Web Services files, see the Referenced Panagon Web Services Files and the Locate the
Panagon Web Services Toolkit Help topics. For descriptions of the Web WorkFlo files, see the Referenced Panagon
Web WorkFlo Files and the HTML processor toolkit file topics.

The table (below) lists the file names, locations, and frame name for all of files directly referenced by the
launcher_main.asp file. The Toolbar and StepInfo frames use specialized .ASP files. The toolbar is different from
that used in the HTML Step Processor. The StepInfo frame displays only the launch subject. The stepInfo.asp file
implements functions for initializing the workflow subject and comments.

File name (and location) Frame

WF_Launcher\html\toolbar.asp Toolbar

WF_Html_Toolkit\UI\stepInfo.asp StepInfo

WF_Html_Toolkit\UI\tab.asp TabHeader

WF_Html_Toolkit\UI\tabContent.asp TabContent

HTML Launch Step Processor File Relationships

file:///I|/Workflow/DevGuide/Panagon/asp/html_launch_processor_relationships.htm [9/18/2002 8:04:17 AM]

Add Custom Processors to the Workflow
Once you have either created a new Step Processor or Launch Step Processor or extended the existing
versions, you must add the custom Processor to the workflow before an end user can access them.

Caution If you upgrade to a new Panagon Web Services version, you must redeploy all existing custom
Step and Launch Processors (for additional information, see the Deploying a Custom Java Step or
Launch Processor procedure).

If you add the Step Processor or Launch Step Processors while Designer is running, the new processor is
not available until the next time you start Designer. Stop Designer before adding custom processors.
(Refer to Configure step processors in the Management tab of the Configuration Console help for more
information on adding Step Processors or Launch Step Processors to a workflow.)

The steps for adding a custom processor differ very little between HTML (ASP) and Java processors.
The primary difference is that for applets hosted in ASP and HTML Step Processors and Launch Step
Processors, you need not specify the package in the Class Name field.

Note Perform the following steps on a client system that can connect to the Web WorkFlo server on
which you installed the modified .JAR file.

Add a custom processor by performing the following general steps:

Connect to your eProcess Server, and open the Configuration Console.1.

Log on to the proper region. Locate and select the router associated with the region.2.

Highlight the router name, and right-click the highlighted name. Select Properties.3.

From the Isolated Region Properties dialog box, select the Step Processor Info tab.4.

Click add and enter the following step definition information:

Type: Enter either Step or Launch.❍

Name: Enter the name you want to display in the Designer.❍

Language: Enter HTML for all Step Processors that are HTML, ASP, and applets hosted in
ASP. Enter Java only when specifying a Java application.

❍

Location: Enter the location and name of the file for the modified step_main.asp or
launcher_main.asp files.

❍

Width: Enter the width in pixels.❍

Height: Enter the height in pixels.❍

Class Name: Enter the class name only if you specified Java earlier. The class name is the
package name containing the modified .JAR file. For example, if the .JAR was created in
the \newStep directory and the class is called newStepApplet, the package name is
newstep.newStepApplet.

❍

5.

Click OK, and commit the changes.6.

Close Configuration Console.7.

Open Designer. The newly added Step Processor or Launch Step Processor should display as one8.

Add Custom Processors to the Workflow

file:///I|/Workflow/DevGuide/Panagon/samp/add_processor.htm (1 of 2) [9/18/2002 8:04:17 AM]

of the available Step Processor options.

Add Custom Processors to the Workflow

file:///I|/Workflow/DevGuide/Panagon/samp/add_processor.htm (2 of 2) [9/18/2002 8:04:17 AM]

Signing a JAR File
Web WorkFlo and WorkFlo Services require that you digitally sign custom step processor Java ARchive
(JAR) with either a Netscape Object Signing Certificate or a Sun Java Object Signing Certificate.

Developers who create custom step processors can obtain a digital certificate to sign their JAR files from
either VeriSign Inc. (http://digitalid.verisign.com/developer/nos_pick.htm) or Thawte Consulting
(http://www.thawte.com/). (The default JAR files are signed with a Netscape Object Signing Certificate.)
Custom signing has been tested in custom step processor JAR files with this type of certificate. A
Netscape Object Signing Certificate is the recommended option. With a single certificate, developers can
create and sign as many custom step processor JAR files as needed.

Signing a Java ARchive (JAR) File

The following procedure details how to create a JAR file signed with the Netscape Object Signing
Certificate. The procedure describes how to use the Netscape signing tool (signtool) in a general fashion.
For more information, visit the Netscape Developer's Site
(http://developer.netscape.com/software/signedobj/jarpack.html).

Note If you purchase a Sun Java Object Signing Certificate, you must use the Sun Microsystems JAR
signing tool: jarsign. You must use a different procedure from that listed below. (Sun offers an on-line
tutorial demonstrating how to use the jarsign tool at
http://java.sun.com/docs/books/tutorial/jar/sign/index.html.)

Create a new directory on the your development system. (For example, C:\certificate.)1.

Copy the files supplied by VeriSign or Thawte to the new directory.2.

Create a second new directory. (For example, C:\Sign.)3.

Copy the contents of the files to include in the JAR file to the second directory. (For example,
C:\Sign.) Make sure you include the MANIFEST.MF file in a META-INF subdirectory of the
second newly created directory. (For example, you would place the MANIFEST.MF file in the
C:\Sign\META-INF directory.)

4.

Open a command Prompt, and change to the directory directly above your C:\sign directory. (For
example, C:\.)

5.

Enter a command similar to the following:6.

C:\certificate\signtool -d"C:\certificate" -k"<Your_company_name>" -Z"<Your_jar_file_name>"
-p"<Your_password>" sign

where <Your_company_name> is replaced by the company name as stated by your
certificate provider, <Your_jar_file_name> is replaced by the name you wish to give the
JAR file, <Your_password> is replaced by your password supplied by your certificate
provider, and sign is the name of the directory containing the files your wish to have in the
signed JAR file.

Once signtool finishes, verify that the JAR was signed properly by entering the following
command:

7.

Signing a JAR File

file:///I|/Workflow/DevGuide/Panagon/samp/signing_jars.htm (1 of 2) [9/18/2002 8:04:17 AM]

http://digitalid.verisign.com/developer/nos_pick.htm
http://www.thawte.com/
http://developer.netscape.com/software/signedobj/jarpack.html
http://java.sun.com/docs/books/tutorial/jar/sign/index.html

C:\certificate\signtool -d"C:\certificate" -w Your_jar_file_name

where <Your_jar_file_name> is replaced by the name you wish to give the JAR file.

Signing a JAR File

file:///I|/Workflow/DevGuide/Panagon/samp/signing_jars.htm (2 of 2) [9/18/2002 8:04:17 AM]

Modify Email Notification Files
The eProcess Services email notification (.MSG) files are text files containing HTML-formatted content.
Since the notification files contain HTML-formatted content, you can modify the look of the resulting
output to match your corporate identity or to meet specific workflow requirements; however, you cannot
add notification files, and you cannot rename the existing files. In addition to the U.S. English versions,
localized versions of the messages files exist for French, German, Italian, and Spanish.

Topics for modifying email notification files include:

Modifying eMail Notification Files Procedure●

eMail Notification Types (including filenames and descriptions)●

Optional eMail Notification Variables●

Using Secure Sockets Layer (SSL)●

Modifying eMail Notification Files Procedure
Using eProcess Services email notification requires that you first enable logging for the Exception and
Begin Operation categories. Configure the logging options in the Configuration Console. (Refer to the
Configure event log options topic, in the Event and Statistics tab of the in the Configuration Console
help, for more information.)

Before modifying the email notification files, you should expose the associated system fields, if they
have not already been exposed or are not exposed by default. Exposed fields are system and data fields in
a roster, queue, or event log that have been made available for searches and sorting.

The email notification files contain placeholder variables embedded in the HTML. The variables values
are supplied by WorkFlo Services at runtime, where a given field variable obtains its values from the
field that is named by the string following the "$" prefix in the field variable name. The WorkFlo
Services Notification process caches the notification files when the process starts. When invoked, the
WorkFlo Services Notification process retrieves the necessary data from the notification information
database, populates the variables with the relevant field information, and dispatches the file via the
SMTP service that is specified in the vwserver.ini file. For information on optional email notification
variables, see Optional eMail Notification Variables.

Modify the email notification files by performing the following general procedure:

On the WorkFlo Services server, navigate to the \fnsw_loc\sd\msg\2 directory (for ActiveX). (On
UNIX servers, navigate to the /fnsw/loc/sd/msg/2 directory.) Note that for Open Client, go to the
\fnsw_loc\sd\msg\3 directory; for custom, use the \fnsw_loc\sd\msg\100 directory; these match
the WEBAPP constants defined in the VWSession API.

1.

Select all of the files in the directory, and change the file attributes from Read-only to Read/Write.2.

Locate and make a copy of the appropriate .MSG file. You should change the extension of the
copy to .ORG (to indicate it represents the original content of the file).

3.

Open the notification file (with the .MSG extension) in a text editor.4.

Modify Email Notification Files

file:///I|/Workflow/DevGuide/Panagon/note/modify_notification.htm (1 of 3) [9/18/2002 8:04:18 AM]

Modify the HTML content. (Refer to the appropriate notification type topic to determine what
system information you can add to the messages.)

5.

Save the changes and close the text file.6.

Restart Image Services on the server running Panagon WorkFlo Services. (Perform this step so the
vwnotify process can cache the changed files when the process restarts.)

7.

Tip Refer to the Email Notification section in the Help for eProcess Administrators for additional
information on configuring email notifications.

eMail Notification Types
The following table lists the email notification types, the file names, and briefly describes the reason why
a participant or tracker receives the notification from WorkFlo Services.

Notification type File name Description

Step notifications

Overdue Step Notification stp_deadline.msg Sent to a workflow participant to
indicate that a step is overdue for
completion.

Step Assignment Notification stp_new.msg Sent as a notification that the
participant was assigned a new
step.

Step Reminder Notification stp_reminder.msg Sent as a reminder to a workflow
participant that a step deadline is
approaching.

Tracker notifications

Tracking Assignment Notification trk_new.msg Sent to a participant to indicate
that he or she was designated as a
workflow tracker.

Overdue Tracker Step Notification trk_stp_deadline.msg Sent to a tracker to indicate that a
workflow step has not been
completed.

Workflow notifications

Workflow Exception Notification trk_exception.msg Sent as a notification to a
workflow tracker that a workflow
exception occurred.

Modify Email Notification Files

file:///I|/Workflow/DevGuide/Panagon/note/modify_notification.htm (2 of 3) [9/18/2002 8:04:18 AM]

Workflow Overdue Notification trk_wf_deadline.msg Sent to an assigned tracker to
indicate that a workflow is
overdue for completion.

Workflow Reminder Notification trk_wf_reminder.msg Sent to an assigned tracker as a
notification that a workflow
deadline is approaching.

Milestone notifications

Workflow Milestone Notification org_milestone.msg Sent to the workflow originator,
which typically is the person who
launched the workflow, as a
notification that a workflow
milestone was reached.

Workflow Tracker Milestone
Notification

trk_milestone.msg Sent to an assigned tracker as a
notification that workflow
milestone was reached.

Using Secure Sockets Layer (SSL)
By default, Panagon Web WorkFlo does not use the Secure Sockets Layer (SSL) protocol. Therefore, the
email notification files, including the localized versions, use a reference to the web server specified in the
vwserver.ini file, and include links similar to:

http://<$F_WEBSERVER>/idmws/. . .

If you enable SSL on your web server, you must modify the http:// protocol designation to https:// for all
occurrences of the files you are referencing. For example, all references to a web server would appear
similar to the following:

https://<$F_WEBSERVER>/idmws/. . .

Modify Email Notification Files

file:///I|/Workflow/DevGuide/Panagon/note/modify_notification.htm (3 of 3) [9/18/2002 8:04:18 AM]

Localized Notification Files
Localized versions of the email notification files are in the same folder as the U.S. English files. On the
WorkFlo Services server, navigate to the \fnsw_loc\sd\msg\2 directory (for ActiveX). (On UNIX servers,
navigate to the /fnsw/loc/sd/msg/2 directory.) Note that for Open Client, go to the \fnsw_loc\sd\msg\3
directory; for custom, use the \fnsw_loc\sd\msg\100 directory; these match the WEBAPP constants
defined in the VWSession API.

To activate a localized notification file, rename the U.S. English file name in a manner that will indicate
its contents; then rename the localized file to the previous U.S. English file name.

The localized email notification files are named using the U.S. English file name with an appended
suffix, which indicates the localized language:

French (*.msg_fr)●

German (*.msg_de)●

Italian (*.msg_it)●

Spanish (*.msg_es)●

The only significant difference in the localized versions of the files and the U.S. English language
version is the text displayed in the email notification; none of the variable names are localized.

The following table lists the U.S. English file name and the corresponding localized file name (according
to language):

U.S. English French German

org_milestone.msg org_milestone.msg_fr org_milestone.msg_de

stp_deadline.msg stp_deadline.msg_fr stp_deadline.msg_de

stp_new.msg stp_new.msg_fr stp_new.msg_de

stp_reminder.msg stp_reminder.msg_fr stp_reminder.msg_de

trk_new.msg trk_new.msg_fr trk_new.msg_de

trk_stp_deadline.msg trk_stp_deadline.msg_fr trk_stp_deadline.msg_de

trk_exception.msg trk_exception.msg_fr trk_exception.msg_de

trk_milestone.msg trk_milestone.msg_fr trk_milestone.msg_de

trk_wf_deadline.msg trk_wf_deadline.msg_fr trk_wf_deadline.msg_de

trk_wf_reminder.msg trk_wf_reminder.msg_fr trk_wf_reminder.msg_de

Localized Notification Files

file:///I|/Workflow/DevGuide/Panagon/note/localized_files.htm (1 of 2) [9/18/2002 8:04:18 AM]

Italian Spanish

org_milestone.msg_it org_milestone.msg_es

stp_deadline.msg_it stp_deadline.msg_es

stp_new.msg_it stp_new.msg_es

stp_reminder.msg_it stp_reminder.msg_es

trk_new.msg_it trk_new.msg_es

trk_stp_deadline.msg_it trk_stp_deadline.msg_es

trk_exception.msg_it trk_exception.msg_es

trk_milestone.msg_it trk_milestone.msg_es

trk_wf_deadline.msg_it trk_wf_deadline.msg_es

trk_wf_reminder.msg_it trk_wf_reminder.msg_es

As is the case with the U.S. English email notification files, you can add optional variables in these
localized email notification files.

Localized Notification Files

file:///I|/Workflow/DevGuide/Panagon/note/localized_files.htm (2 of 2) [9/18/2002 8:04:18 AM]

Optional Email Notification Variables
If an optional field is not exposed in the Event Log, that optional variable will be ignored. By default, all
of the system fields necessary to supply required variable information are exposed in the Event Log.

Note: While it is technically possible to expose any system field in the event log, it is also possible for a
predefined F_xxx system field to be recorded in the event log record incorrectly or meaninglessly. For
example, the F_Response field may contain a stale response string.

A user-defined field does not begin with "F_" and it must be exposed in the event log.

A given field variable obtains its values from the field that is named by the string following the "$" prefix
in the field variable name, as indicated in the following table.

Field variable Must be
Exposed in Log

Description

$F_EMAILADDR
emailAddr

 String containing a secondary email address. The
mail address specifies additional recipients for the
message; separate multiple recipients with a
semicolon (";"). Adding the secondary email
variable allows the system to send a copy of the
notification to a person, or list of people, who would
not otherwise be notified.

Place the variable outside of the
<HTML></HTML> tag set. For example, you
might place the second address immediately after
the line containing the $F_SUBJPREFIX variable. If
you add the variable inside the <HTML></HTML>
tag set the additional email addresses are displayed
as part of the notification message.

$USERFIELD yes String containing information from an exposed
user-defined field. "USERFIELD" is actually the
name of the user-defined field. You must place the
variable inside the <HTML></HTML> tag set. If
you place the variable outside the
<HTML></HTML> tag set the text is not displayed
as part of the notification message.

Note Refer to the Managing event logs section in Events and Statistics tab of the Configuration Console
help for more information on managing or creating exposed system fields.

You can use the non-default variables listed in the following notification files (including the localized
versions of these files); for details on available variables, refer to the specific file description.

Optional Email Notification Variables

file:///I|/Workflow/DevGuide/Panagon/note/optional_variables.htm (1 of 2) [9/18/2002 8:04:18 AM]

Overdue Step Notification stp_deadline.msg

Step Assignment Notification stp_new.msg

Step Reminder Notification stp_reminder.msg

Tracking Assignment Notification trk_new.msg

Overdue Step Notification trk_stp_deadline.msg

Workflow Exception Notification trk_exception.msg

Workflow Overdue Notification trk_wf_deadline.msg

Workflow Reminder Notification trk_wf_reminder.msg

Workflow Milestone Notification org_milestone.msg

Workflow Tracker Milestone
Notification

trk_milestone.msg

Optional Email Notification Variables

file:///I|/Workflow/DevGuide/Panagon/note/optional_variables.htm (2 of 2) [9/18/2002 8:04:18 AM]

Overdue Step Notification
(stp_deadline.msg)
The default stp_deadline.msg notification file uses the following WorkFlo Services variables. Some
notification information is taken from the exposed log fields; if you disable the fields, you will not be
able to use the field values in the notification. All field variables are case sensitive.

Field variable Exposed Description

F_SUBJPREFIX String containing the prefix for the subject line of
the notification message.

$F_WEBSERVER String containing the name of the Web WorkFlo
server a participant must attach to in order to
respond to the notice. The name is also used to
supply the background and notification type images.
The web server value is taken from the vwserver.ini
file on the WorkFlo Services server.

$F_Subject yes String containing the subject entered by a user when
a workflow was launched.

$F_Originator[1] yes Integer containing the user ID of the participant who
started the workflow. Including [1] causes the Image
Services user name to display in the notification.

$F_StartTime yes String containing the time the workflow was
created. With the exception of the initial work item
of the workflow, it is different than the
$F_CreateTime value.

$F_EnqueueTime yes String containing the time work item entered the
queue.

$F_TimeStamp yes String containing the time the overdue event
occurred.

$F_STEPLABEL String containing the step label from the workflow
definition.

$F_STEPINSTR String containing the step instructions from the
workflow definition.

$F_STEPPROC String specifying the name of the processor the
participant must use to complete the step.

Overdue Step Notification (stp_deadline.msg)

file:///I|/Workflow/DevGuide/Panagon/note/overdue_step.htm (1 of 3) [9/18/2002 8:04:19 AM]

$F_WORKQUEUE String containing the work queue associated with
the step or work item.

$F_WobNum yes GUID (Global Unique IDentifier). The GUID
identifies the specific work item for the notification

Tip In addition to the default variables listed above, you can add optional variables in the notification
file.

When shipped, the stp_deadline.msg file contained the following HTML formatting (the variables appear
in bold text):

<$F_SUBJPREFIX Overdue: >
<html>
<head>
<title>Overdue Step Notification</title>
</head>
<body background="http://<$F_WEBSERVER>/idmws/images/FN_Logo_Background.gif"
bgcolor="#FFFFFF" link="#FF0000" vlink="#C0C0C0" alink="#FF0000">
<table border="0">
<tr>
<td align="left">Subject: </td>
<td align="left"><$F_Subject></td>
</tr>
<tr>
<td align="left">Launched By: </td>
<td align="left"><$F_Originator[1]></td>
</tr>
<tr>
<td align="left">Launched On: </td>
<td align="left"><$F_StartTime></td>
</tr>
<tr>
<td align="left">Received On: </td>
<td align="left"><$F_EnqueueTime></td>
</tr>
<tr>
<td align="left">Deadline: </td>
<td align="left"><$F_TimeStamp> (OVERDUE!)</td>
</tr>
<tr>
<td align="left">Step Label: </td>
<td align="left"><$F_STEPLABEL></td>
</tr>
<tr>

Overdue Step Notification (stp_deadline.msg)

file:///I|/Workflow/DevGuide/Panagon/note/overdue_step.htm (2 of 3) [9/18/2002 8:04:19 AM]

<td align="left">Instructions: </td>
<td align="left"><$F_STEPINSTR></td>
</tr>
</table>
<hr>
<table>
<tr>
<td align="center">
<img border="0" src="http://<$F_WEBSERVER>/idmws/images/s_overdue.gif" width="32"
height="32">
</td>
<td>
<a href="#" OnClick = " window.open ('http://<$F_WEBSERVER>/idmws/PWRedirector.asp?
Redist/WF_Step/< $F_STEPPROC>?
queueName=< $F_WORKQUEUE> &wobId=<$F_WobNum> &stepName=<$F_STEPLABEL>')"
>Step Assignment...
</td>
</tr>
</table>
<hr>
</body>
</html>

Overdue Step Notification (stp_deadline.msg)

file:///I|/Workflow/DevGuide/Panagon/note/overdue_step.htm (3 of 3) [9/18/2002 8:04:19 AM]

Step Assignment Notification (stp_new.msg)
The default stp_new.msg notification file uses the following WorkFlo Services variables. Some notification information is taken from the
exposed log fields; if you disable the fields, you will not be able to use the field values in the notification. All field variables are case
sensitive.

Field variable Exposed Description

$F_SUBJPREFIX String containing the prefix for the subject line of
the notification message.

$F_WEBSERVER String containing the name of the Web WorkFlo
server a participant must attach to in order to
respond to the notice. The name is also used to
supply the background and notification type images.
Additionally, the string is used to construct the URL
for a step item. The web server value is taken from
the vwserver.ini file on the WorkFlo Services
server.

$F_Subject yes String containing the subject entered by the user
when a workflow was launched.

$F_Originator[1] yes Integer containing the user ID of the participant that
started the workflow. Including [1] causes the Image
Services user name to display in the notification.

$F_StartTime yes String containing the time the workflow was
created. With the exception of the initial work item
of the workflow, it is different than the
$F_CreateTime value.

$F_TimeStamp yes String containing the time the step assignment
occurred.

$F_STEPLABEL String containing the step label from the workflow
definition.

$F_STEPINSTR String containing the step instructions from the
workflow definition.

$F_STEPPROC String specifying the processor the participant must
use to complete the step.

$F_WORKQUEUE String containing the work queue associated with
the step or work item.

$F_WobNum yes GUID (Global Unique IDentifier). The GUID
identifies the specific work item for the notification.

Tip In addition to the default variables listed above, you can add optional variables in the notification file.

When shipped, the stp_new.msg file contained the following HTML formatting (the variables appear in bold text):

<$F_SUBJPREFIX Work Item: >
<html>
<head>
<title>Step Assignment Notification</title>
</head>
<body background="http://<$F_WEBSERVER>/idmws/images/FN_Logo_Background.gif" bgcolor="#FFFFFF" link="#6666FF"
vlink="#C0C0C0" alink="#6666FF">
<table border="0">

Step Assignment Notification (stp_new.msg)

file:///I|/Workflow/DevGuide/Panagon/note/step_assignment.htm (1 of 2) [9/18/2002 8:04:19 AM]

<tr>
<td align="left">Subject: </td>
<td align="left"><$F_Subject></td>
</tr>
<tr>
<td align="left">Launched By: </td>
<td align="left"><$F_Originator[1]></td>
</tr>
<tr>
<td align="left">Launched On: </td>
<td align="left"><$F_StartTime></td>
</tr>
<tr>
<td align="left">Received On: </td>
<td align="left"><$F_TimeStamp></td>
</tr>
<tr>
<td align="left">Step Label: </td>
<td align="left"><$F_STEPLABEL> </td>
</tr>
<tr>
<td align="left">Instructions: </td>
<td align="left"><$F_STEPINSTR></td>
</tr>
</table>
<hr>
<table>
<tr>
<td align="center">
<img border="0" src="http://<$F_WEBSERVER>/idmws/images/s_step.gif" width="32" height="32">
</td>
<td>
<a href="#" OnClick = "window.open('http://<$F_WEBSERVER>/idmws/PWRedirector.asp?
Redist/WF_Step/<$F_STEPPROC>?queueName=<$F_WORKQUEUE>&wobId=<$F_WobNum>&stepName=<$F_STEPLABEL>')">Step
Assignment...
</td>
</tr>
</table>
<hr>
</body>
</html>

Step Assignment Notification (stp_new.msg)

file:///I|/Workflow/DevGuide/Panagon/note/step_assignment.htm (2 of 2) [9/18/2002 8:04:19 AM]

Step Reminder Notification (stp_reminder.msg)
The default stp_reminder.msg notification file uses the following WorkFlo Services variables. Some notification information is taken from
the exposed log fields; if you disable the fields, you will not be able to use the field values in the notification. All field variables are case
sensitive.

Field variable Exposed Description

$F_SUBJPREFIX String containing the prefix for the subject line of
the notification message.

$F_WEBSERVER String containing the name of the Web WorkFlo
server a participant must attach to in order to
respond to the notice. The name is also used to
supply the background and notification type images.
The web server value is taken from the vwserver.ini
file on the WorkFlo Services server.

$F_Subject yes String containing the subject entered by the user
when a workflow was launched.

$F_Originator[1] yes Integer containing the user ID of the participant that
started the workflow. Including [1] causes the Image
Services user name to display in the notification.

$F_StartTime yes String containing the time the workflow was
created. With the exception of the initial work item
of the workflow, it is different than the
$F_CreateTime value.

$F_EnqueueTime yes String containing the time work item entered the
queue.

$F_STEPLABEL String containing the step label from the workflow
definition.

$F_STEPINSTR String containing the step instructions from the
workflow definition.

$F_STEPPROC String specifying the name of the processor the
participant must use to complete the step.

$F_WORKQUEUE String containing the work queue associated with
the step or work item.

$F_WobNum yes GUID (Global Unique IDentifier). The GUID
identifies the specific work item for the notification.

Tip In addition to the default variables listed above, you can add optional variables in the notification file.

When shipped, the stp_reminder.msg file contained the following HTML formatting (the variables appear in bold text):

<$F_SUBJPREFIX Reminder: >
<html>
<head>
<title>Step Reminder Notification</title>
</head>
<body background="http://<$F_WEBSERVER>/idmws/images/FN_Logo_Background.gif" bgcolor="#FFFFFF" link="#6666FF"
vlink="#C0C0C0" alink="#6666FF">
<table border="0">
<tr>
<td align="left">Subject: </td>

Step Reminder Notification (stp_reminder.msg)

file:///I|/Workflow/DevGuide/Panagon/note/step_reminder.htm (1 of 2) [9/18/2002 8:04:19 AM]

<td align="left"><$F_Subject></td>
</tr>
<tr>
<td align="left">Launched By: </td>
<td align="left"><$F_Originator[1]></td>
</tr>
<tr>
<td align="left">Launched On: </td>
<td align="left"><$F_StartTime></td>
</tr>
<tr>
<td align="left">Received On: </td>
<td align="left"><$F_EnqueueTime></td>
</tr>
<tr>
<td align="left">Step Label: </td>
<td align="left"><$F_STEPLABEL> </td>
</tr>
<tr>
<td align="left">Instructions: </td>
<td align="left"><$F_STEPINSTR></td>
</tr>
</table>
<hr>
<table>
<tr>
<td align="center">
<img border="0" src="http://<$F_WEBSERVER>/idmws/images/s_remind.gif" width="32" height="32">
</td>
<td>
<a href="#" OnClick = "window.open('http://<$F_WEBSERVER>/idmws/PWRedirector.asp?
Redist/WF_Step/<$F_STEPPROC>?queueName=<$F_WORKQUEUE>&wobId=<$F_WobNum>&stepName=<$F_STEPLABEL>')">Step
Assignment...
</td>
</tr>
</table>
<hr>
</body>
</html>

Step Reminder Notification (stp_reminder.msg)

file:///I|/Workflow/DevGuide/Panagon/note/step_reminder.htm (2 of 2) [9/18/2002 8:04:19 AM]

Tracking Assignment Notification
(trk_new.msg)
The default trk_new.msg notification file uses the following WorkFlo Services variables. Some notification
information is taken from the exposed log fields; if you disable the fields, you will not be able to use the field
values in the notification. All field variables are case sensitive.

Field variable Exposed Description

$F_SUBJPREFIX String containing the prefix for the subject line
of the notification message.

$F_WEBSERVER String containing the name of the Web
WorkFlo server a participant must attach to in
order to respond to the notice. The name is
also used to supply the background and
notification type images. Additionally, the
string is used to construct the URL for a step
item. The web server value is taken from the
vwserver.ini file on the WorkFlo Services
server.

$F_Subject yes String containing the subject entered by the
user when a workflow was launched.

$F_Originator[1] yes Integer containing the user ID of the
participant that started the workflow.
Including [1] causes the Image Services user
name to display in the notification.

$F_StartTime yes String containing the time the workflow was
created. With the exception of the initial work
item of the workflow, it is different than the
$F_CreateTime value.

$F_WORKFLOW_DEADLINE String containing a computed value. The value
represents the result of the following
computation: F_StartTime +
F_WFDeadline(*60). (The F_WFDeadline
field contains the workflow deadline value, in
minutes.)

$F_WORKQUEUE String containing the work queue associated
with the workflow. By default this is the
Tracker queue.

Tracking Assignment Notification (trk_new.msg)

file:///I|/Workflow/DevGuide/Panagon/note/tracking_assignment.htm (1 of 3) [9/18/2002 8:04:20 AM]

$F_WobNum yes GUID (Global Unique IDentifier). The GUID
identifies the specific work item for the
notification. By default this is the work object
number for the item in the Tracker queue.

Tip In addition to the default variables listed above, you can add optional variables in the notification file.

When shipped, the trk_new.msg file contained the following HTML formatting (the variables appear in bold
text):

<$F_SUBJPREFIX Tracking Item: >
<html>
<head>
<title>Tracking Assignment Notification</title>
</head>
<body background="http://<$F_WEBSERVER>/idmws/images/FN_Logo_Background.gif"
bgcolor="#FFFFFF" link="#663399" vlink="#C0C0C0" alink="#663399">
<table border="0">
<tr>
<td align="left">Subject: </td>
<td align="left"><$F_Subject></td>
</tr>
<tr>
<td align="left">Launched By: </td>
<td align="left"><$F_Originator[1]></td>
</tr>
<tr>
<td align="left">Launched On: </td>
<td align="left"><$F_StartTime></td>
</tr>
<tr>
<td align="left">Deadline: </td>
<td align="left"><$F_WORKFLOW_DEADLINE></td>
</tr>
</table>
<hr>
<table>
<tr>
<td align="center">
<img border="0" src="http://<$F_WEBSERVER>/idmws/images/s_track.gif" width="32" height="32">
</td>
<td>
<a href="#" OnClick = "window.open('http://<$F_WEBSERVER>/idmws/PWRedirector.asp?
Redist/WF_Tracker/tracker_main.asp?queueName=<$F_WORKQUEUE>&wobId=<$F_WobNum>')Tracking
Assignment...

</td>
</tr>
</table>

Tracking Assignment Notification (trk_new.msg)

file:///I|/Workflow/DevGuide/Panagon/note/tracking_assignment.htm (2 of 3) [9/18/2002 8:04:20 AM]

<hr>
</body>
</html>

Tracking Assignment Notification (trk_new.msg)

file:///I|/Workflow/DevGuide/Panagon/note/tracking_assignment.htm (3 of 3) [9/18/2002 8:04:20 AM]

Overdue Step Tracker Notification
(trk_stp_deadline.msg)
The default trk_stp_deadline.msg notification file uses the following WorkFlo Services variables. Some
notification information is taken from the exposed log fields; if you disable the fields, you will not be
able to use the field values in the notification. All field variables are case sensitive.

Field variable Exposed Description

$F_SUBJPREFIX String containing the prefix for the subject line of
the notification message.

$F_WEBSERVER String containing the name of the Web WorkFlo
server a participant must attach to in order to
respond to the notice. The name is also used to
supply the background and notification type images.
The web server value is taken from the vwserver.ini
file on the WorkFlo Services server.

$F_Subject yes String containing the subject entered by a user when
the workflow was launched.

$F_Originator[1] yes Integer containing the user ID of the participant who
started the workflow. Including [1] causes the Image
Services user name to display in the notification.

$F_StartTime yes String containing the time the workflow was
created. With the exception of the initial work item
of the workflow, it is different than the
$F_CreateTime value.

$F_STEPLABEL String containing the step label from the workflow
definition.

$F_BoundUserId[1] yes Integer indicating whether the work item is bound to
a user. If the work item is bound, lists the user ID of
the binding user; 0 means that the work item is not
bound (in the work queue).

$F_EnqueueTime yes String containing the time work item entered the
queue.

$F_TimeStamp yes String containing the time the overdue event
occurred.

Overdue Step Tracker Notification (trk_stp_deadline.msg)

file:///I|/Workflow/DevGuide/Panagon/note/overdue_step_tracker.htm (1 of 2) [9/18/2002 8:04:20 AM]

Tip optional variables in the notification file.

When shipped, the trk_stp_deadline.msg file contained the following HTML formatting (the variables
appear in bold text):

<$F_SUBJPREFIX Overdue Step: >
<html>
<head>
<title>Step Overdue Notification</title>
</head>
<body background="http://<$F_WEBSERVER>/idmws/images/FN_Logo_Background.gif"
bgcolor="#FFFFFF" link="#FF0000" vlink="#C0C0C0" alink="#FF0000">
<table border="0">
<tr>
<td align="left">Subject: </td>
<td align="left"><$F_Subject></td>
</tr>
<tr>
<td align="left">Launched By: </td>
<td align="left"><$F_Originator[1]></td>
</tr>
<tr>
<td align="left">Launched On: </td>
<td align="left"><$F_StartTime></td>
</tr>
<tr>
<td align="left">Step Label: </td>
<td align="left"><$F_STEPLABEL> </td>
</tr>
<tr>
<td align="left">Participant: </td>
<td align="left"><$F_BoundUserId[1]></td>
</tr>
<tr>
<td align="left">Received On: </td>
<td align="left"><$F_EnqueueTime></td>
</tr>
<tr>
<td align="left">Deadline: </td>
<td align="left"><$F_TimeStamp> (OVERDUE!)</td>
</tr>
</table>
<hr>
</body>
</html>

Overdue Step Tracker Notification (trk_stp_deadline.msg)

file:///I|/Workflow/DevGuide/Panagon/note/overdue_step_tracker.htm (2 of 2) [9/18/2002 8:04:20 AM]

Workflow Exception Notification
(trk_exception.msg)
The default trk_exception.msg notification file uses the following WorkFlo Services variables. Some
notification information is taken from the exposed log fields; if you disable the fields, you will not be
able to use the field values in the notification. All field variables are case sensitive.

Field variable Exposed Description

$F_SUBJPREFIX String containing the prefix for the subject line
of the notification message.

$F_WEBSERVER String containing the name of the Web
WorkFlo server a participant must attach to in
order to respond to the notice. The name is
also used to supply the background and
notification type images. Additionally, the
string is used to construct the URL for a step
item. The web server value is taken from the
vwserver.ini file on the WorkFlo Services
server.

$F_Subject yes String containing the subject entered when the
workflow was launched.

$F_Originator[1] yes Integer containing the user ID of the
participant that started the workflow.
Including [1] causes the Image Services user
name to display in the notification.

$F_StartTime yes String containing the time the workflow was
created. With the exception of the initial work
item of the workflow, it is different than the
$F_CreateTime value.

$F_TimeStamp yes String containing the time the exception
occurred.

$F_WORKFLOW_DEADLINE String containing a computed value. The value
represents the result of the following
computation: F_StartTime +
F_WFDeadline(*60). (The F_WFDeadline
field contains the workflow deadline value, in
minutes.)

Workflow Exception Notification (trk_exception.msg)

file:///I|/Workflow/DevGuide/Panagon/note/workflow_exception.htm (1 of 3) [9/18/2002 8:04:20 AM]

$F_STEPLABEL String containing the step label from the
workflow definition.

$F_STEPINSTR String containing the step instructions from the
workflow definition.

$F_Text yes Contains a string of text exception information
that was entered by the user who designed the
workflow.

Tip In addition to the default variables listed above, you can add optional variables in the notification
file.

When shipped, the trk_exception.msg file contained the following HTML formatting (the variables
appear in bold text):

<$F_SUBJPREFIX Workflow Exception: >
<html>
<head>
<title>Workflow Exception Notification</title>
</head>
<body background="http://<$F_WEBSERVER>/idmws/images/FN_Logo_Background.gif"
bgcolor="#FFFFFF" link="#FF0000" vlink="#C0C0C0" alink="#FF0000">
<table border="0">
<tr>
<td align="left">Subject: </td>
<td align="left"><$F_Subject></td>
</tr>
<tr>
<td align="left">Launched By: </td>
<td align="left"><$F_Originator[1]></td>
</tr>
<tr>
<td align="left">Launched On: </td>
<td align="left"><$F_StartTime></td>
</tr>
<tr>
<td align="left">Received On: </td>
<td align="left"><$F_TimeStamp></td>
</tr>
<tr>
<td align="left">Deadline: </td>
<td align="left"><$F_WORKFLOW_DEADLINE></td>
</tr>
<tr>
<td align="left">Step Label: </td>

Workflow Exception Notification (trk_exception.msg)

file:///I|/Workflow/DevGuide/Panagon/note/workflow_exception.htm (2 of 3) [9/18/2002 8:04:20 AM]

<td align="left"> <$F_STEPLABEL> </td>
</tr>
<tr>
<td align="left">Instructions: </td>
<td align="left"> <$F_STEPINSTR></td>
</tr>
</table>
<hr>
<p>
EXCEPTION <$F_Text>
</p>
<hr>
</body>
</html>

Workflow Exception Notification (trk_exception.msg)

file:///I|/Workflow/DevGuide/Panagon/note/workflow_exception.htm (3 of 3) [9/18/2002 8:04:20 AM]

Workflow Overdue Notification
(trk_wf_deadline.msg)
The default trk_wf_deadline.msg notification file uses the following WorkFlo Services variables. Some
notification information is taken from the exposed log fields; if you disable the fields, you will not be able to use
the field values in the notification. All field variables are case sensitive.

Field variable Exposed Description

$F_SUBJPREFIX String containing the prefix for the subject line
of the notification message.

$F_WEBSERVER String containing the Web WorkFlo server a
participant must attach to in order to respond
to the notice. The name is also used to supply
the background and notification type images.
The web server value is taken from the
vwserver.ini file on the WorkFlo Services
server.

$F_Subject yes String containing the subject entered by the
user when a workflow was launched.

$F_Originator[1] yes Integer containing the user ID of the
participant that started the workflow.
Including [1] causes the Image Services user
name to display in the notification.

$F_StartTime yes String containing the time the workflow was
created. With the exception of the initial work
item of the workflow, it is different than the
$F_CreateTime value.

$F_WORKFLOW_DEADLINE String containing a computed value. The value
represents the result of the following
computation: F_StartTime +
F_WFDeadline(*60). (The F_WFDeadline
field contains the workflow deadline value, in
minutes.)

$F_WORKQUEUE String containing the work queue associated
with the work flow. By default this is the
Tracker queue.

$F_WobNum yes GUID (Global Unique IDentifier). The GUID
identifies the specific work item for the
notification. By default this is the work object
number for the item in the Tracker queue.

Workflow Overdue Notification (trk_wf_deadline.msg)

file:///I|/Workflow/DevGuide/Panagon/note/workflow_overdue.htm (1 of 2) [9/18/2002 8:04:20 AM]

Tip In addition to the default variables listed above, you can add optional variables in the notification file.

When shipped, the trk_wf_deadline.msg file contained the following HTML formatting (the variables appear in
bold text):

<$F_SUBJPREFIX Overdue Workflow: >
<html>
<head>
<title>Workflow Overdue Notification</title>
</head>
<body background="http://<$F_WEBSERVER>/idmws/images/FN_Logo_Background.gif"
bgcolor="#FFFFFF" link="#FF0000" vlink="#C0C0C0" alink="#FF0000">
<table border="0">
<tr>
<td align="left">Subject: </td>
<td align="left"><$F_Subject></td>
</tr>
<tr>
<td align="left">Launched By: </td>
<td align="left"><$F_Originator[1]></td>
</tr>
<tr>
<td align="left">Launched On: </td>
<td align="left"><$F_StartTime></td>
</tr>
<tr>
<td align="left">Deadline: </td>
<td align="left"><$F_WORKFLOW_DEADLINE> (OVERDUE!)</td>
</tr>
</table>
<hr>
<table>
<tr>
<td align="center">
<img border="0" src="http://<$F_WEBSERVER>/idmws/images/s_overdue.gif" width="32" height="32">
</td>
<td>
<a href="#" OnClick = "window.open('http://<$F_WEBSERVER>/idmws/PWRedirector.asp?
Redist/WF_Tracker/tracker_main.asp?queueName=<$F_WORKQUEUE>&wobId=<$F_WobNum>')"Tracking
Assignment...

</td>
</tr>
</table>
<hr>
</body>
</html>

Workflow Overdue Notification (trk_wf_deadline.msg)

file:///I|/Workflow/DevGuide/Panagon/note/workflow_overdue.htm (2 of 2) [9/18/2002 8:04:20 AM]

Workflow Reminder Notification
(trk_wf_reminder.msg)
The default trk_wf_reminder.msg notification file uses the following WorkFlo Services variables. Some
notification information is taken from the exposed log fields; if you disable the fields, you will not be able to use
the field values in the notification. All field variables are case sensitive.

Field variable Exposed Description

$F_SUBJPREFIX String containing the prefix for the subject line
of the notification message.

$F_WEBSERVER String containing the name of the Web
WorkFlo server a participant must attach to in
order to respond to the notice. The name is
also used to supply the background and
notification type images. The web server value
is taken from the vwserver.ini file on the
WorkFlo Services server.

$F_Subject yes String containing the subject entered by the
user when a workflow was launched.

$F_Originator[1] yes Integer containing the user ID of the
participant that started the workflow.
Including [1] causes the Image Services user
name to display in the notification.

$F_StartTime yes String containing the time the workflow was
created. With the exception of the initial work
item of the workflow, it is different than the
$F_CreateTime value.

$F_WORKFLOW_DEADLINE String containing a computed value. The value
represents the result of the following
computation: F_StartTime +
F_WFDeadline(*60). (The F_WFDeadline
field contains the workflow deadline value, in
minutes.)

$F_WORKQUEUE String containing the work queue associated
with the workflow. By default this is the
Tracker queue.

$F_WobNum yes GUID (Global Unique IDentifier). The GUID
identifies the specific work item for the
notification. By default this is the work object
number for the item in the Tracker queue.

Workflow Reminder Notification (trk_wf_reminder.msg)

file:///I|/Workflow/DevGuide/Panagon/note/workflow_reminder_tracker.htm (1 of 2) [9/18/2002 8:04:21 AM]

Tip In addition to the default variables listed above, you can add optional variables in the notification file.

When shipped, the trk_wf_reminder.msg file contained the following HTML formatting (the variables appear in
bold text):

<$F_SUBJPREFIX Workflow Reminder: >
<html>
<head>
<title>Workflow Reminder Notification</title>
</head>
<body background="http://<$F_WEBSERVER>/idmws/images/FN_Logo_Background.gif" bgcolor="#FFFFFF"
link="#6666FF" vlink="#C0C0C0" alink="#6666FF">
<table border="0">
<tr>
<td align="left">Subject: </td>
<td align="left"><$F_Subject></td>
</tr>
<tr>
<td align="left">Launched By: </td>
<td align="left"><$F_Originator[1]></td>
</tr>
<tr>
<td align="left">Launched On: </td>
<td align="left"><$F_StartTime></td>
</tr>
<tr>
<td align="left">Deadline: </td>
<td align="left"><$F_WORKFLOW_DEADLINE></td>
</tr>
</table>
<hr>
<table>
<tr>
<td align="center">
<img border="0" src="http://<$F_WEBSERVER>/idmws/images/s_remind.gif" width="32" height="32">
</td>
<td>
<a href="#" OnClick = "window.open('http://<$F_WEBSERVER>/idmws/PWRedirector.asp?
Redist/WF_Tracker/tracker_main.asp?queueName=<$F_WORKQUEUE>&wobId=<$F_WobNum>')">Tracking
Assignment...

</td>
</tr>
</table>
<hr>
</body>
</html>

Workflow Reminder Notification (trk_wf_reminder.msg)

file:///I|/Workflow/DevGuide/Panagon/note/workflow_reminder_tracker.htm (2 of 2) [9/18/2002 8:04:21 AM]

Workflow Milestone Notification
(org_milestone.msg)
The default org_milestone.msg notification file uses the following WorkFlo Services variables. Some
notification information is taken from the exposed log fields; if you disable the fields, you will not be
able to use the field values in the notification. All field variables are case sensitive.

Field variable Exposed Description

$F_SUBJPREFIX String containing the prefix for the subject line of
the notification message.

$F_WEBSERVER String containing the name of the Web WorkFlo
server a participant must attach to in order to
respond to the notice. The name is also used to
supply the background and notification type images.
Additionally, the string is used to construct the URL
for a step item. The web server value is taken from
the vwserver.ini file on the WorkFlo Services
server.

$F_Subject yes String containing the subject entered by a user when
a workflow was launched.

$F_Originator[1] yes Integer containing the user ID of the participant who
started the workflow. Including [1] causes the Image
Services user name to display in the notification.

$F_StartTime yes String containing the time the workflow was
created. With the exception of the initial work item
of the workflow, it is different than the
$F_CreateTime value.

$F_MILESTONE_NAME String containing the name of the milestone, as it
was defined in Designer, that was reached.

$F_Text yes String containing the text entered in the Message
field, in Designer, when the the milestone was
defined. Typically the string contains additional
information about what the milestone notification
means to the user who received it.

$F_WorkSpaceId yes String containing the workspace ID value assigned
when the workflow was first transferred.

Workflow Milestone Notification (org_milestone.msg)

file:///I|/Workflow/DevGuide/Panagon/note/workflow_milestone.htm (1 of 3) [9/18/2002 8:04:21 AM]

$F_WorkClassId yes String containing a representation of the workflow
number.

$F_WorkFlowNumber yes GUID (Global Unique IDentifier). The GUID
identifies the unique instance of the active
workflow.

Tip In addition to the default variables listed above, you can add optional variables in the notification
file.

The JavaScript included in the message constructs a unique request for the VWProcess object necessary
to fetch the milestone array containing this milestone. The script passes the exposed field data to the
milestone.asp file, on the Web WorkFlo server, to display a list of the milestones.

When shipped, the org_milestone.msg file contained the following HTML formatting (the variables
appear in bold text):

<$F_SUBJPREFIX Workflow Milestone Reached: >
<html>
<head>
<title>Workflow Milestone Notification</title>
<SCRIPT language="JavaScript"
src="http://<$F_WEBSERVER>/idmws/Redist/WF_Html_Toolkit/Utility/utility.js"></script>

<SCRIPT language="JavaScript">
<!--
function onOpenMilestones(webServer, workSpaceID, workClassId, workflowNumber, subject,
launchDate)
{
var subjectURL = convertToSpecialChar(subject);
var launchDateURL = convertToSpecialChar(launchDate);

window.open("http://" + webServer
+"/idmws/PWRedirector.asp?Redist/WF_Milestone/milestone.asp?workSpaceId=" + workSpaceID
+"&workClassId=" + workClassId + "&workflowNumber=" + workflowNumber + "&subject="
+subjectURL +"&launchDate=" + launchDateURL);
}
//-->
</SCRIPT>
</head>
<body background="http://<$F_WEBSERVER>/idmws/images/FN_Logo_Background.gif"
bgcolor="#FFFFFF" link="#6666FF" vlink="#C0C0C0" alink="#6666FF">
<table border="0">
<tr>
<td align="left">Subject: </td>
<td align="left"><$F_Subject></td>
</tr>

Workflow Milestone Notification (org_milestone.msg)

file:///I|/Workflow/DevGuide/Panagon/note/workflow_milestone.htm (2 of 3) [9/18/2002 8:04:21 AM]

<tr>
<td align="left">Launched By: </td>
<td align="left"><$F_Originator[1]></td>
</tr>
<tr>
<td align="left">Launched On: </td>
<td align="left"><$F_StartTime></td>
</tr>
</table>
<hr>
The Milestone, <$F_MILESTONE_NAME>, has been reached with the following message: <$F_Text>
<hr>
<table>
<tr>
<td align="center">
<img border="0" src="http://<$F_WEBSERVER>/idmws/images/milestone.gif" width="32"
height="32">
</td>
<td>
<a href="#" OnClick="JavaScript:onOpenMilestones('<$F_WEBSERVER>', '<$F_WorkSpaceId>',
'<$F_WorkClassId>', '<$F_WorkFlowNumber>', <$F_Subject>, <$F_StartTime>)">Milestone
Tracking...
</td>
</tr>
</table>
</body>
</html>

Workflow Milestone Notification (org_milestone.msg)

file:///I|/Workflow/DevGuide/Panagon/note/workflow_milestone.htm (3 of 3) [9/18/2002 8:04:21 AM]

Workflow Tracker Milestone Notification
(trk_milestone.msg)
The default trk_milestone.msg notification file uses the following WorkFlo Services variables. Some
notification information is taken from the exposed log fields; if you disable the fields, you will not be
able to use the field values in the notification. All field variables are case sensitive.

Field variable Exposed Description

$F_SUBJPREFIX String containing the prefix for the subject line
of the notification message.

$F_WEBSERVER String containing the name of the Web
WorkFlo server a participant must attach to in
order to respond to the notice. The name is
also used to supply the background and
notification type images. The web server value
is taken from the vwserver.ini file on the
WorkFlo Services server.

$F_Subject yes String containing the subject entered by the
user when a workflow was launched.

$F_Originator[1] yes Integer containing the user ID of the
participant that started the workflow.
Including [1] causes the Image Services user
name to display in the notification.

$F_StartTime yes String containing the time the workflow was
created. With the exception of the initial work
item of the workflow, it is different than the
$F_CreateTime value.

$F_WORKFLOW_DEADLINE String containing a computed value. The value
represents the result of the following
computation: F_StartTime +
F_WFDeadline(*60). (The F_WFDeadline
field contains the workflow deadline value, in
minutes.)

$F_MILESTONE_NAME String containing the name of the milestone, as
it was defined in Designer, that was reached.

Workflow Tracker Milestone Notification (trk_milestone.msg)

file:///I|/Workflow/DevGuide/Panagon/note/workflow_tracker_milestone.htm (1 of 2) [9/18/2002 8:04:21 AM]

$F_Text yes String containing the text entered in the
Message field, in Designer, when the the
milestone was defined. Typically the string
contains additional information about what the
milestone notification means to the user who
received it.

Tip In addition to the default variables listed above, you can add optional variables in the notification
file.

When shipped, the trk_milestone.msg file contained the following HTML formatting (the variables
appear in bold text):

<$F_SUBJPREFIX Workflow Milestone Reached: >
<html>
<head>
<title>Workflow Tracker Milestone Notification</title>
</head>
<body background="http://<$F_WEBSERVER>/idmws/images/FN_Logo_Background.gif"
bgcolor="#FFFFFF" link="#6666FF" vlink="#C0C0C0" alink="#6666FF">
<table border="0">
<tr>
<td align="left">Subject: </td>
<td align="left"><$F_Subject></td>
</tr>
<tr>
<td align="left">Launched By: </td>
<td align="left"><$F_Originator[1]></td>
</tr>
<tr>
<td align="left">Launched On: </td>
<td align="left"><$F_StartTime></td>
</tr>
<tr>
<td align="left">Deadline: </td>
<td align="left"><$F_WORKFLOW_DEADLINE></td>
</tr>
</table>
<hr>
The Milestone, <$F_MILESTONE_NAME>, has been reached with the following message:
<$F_Text>
<hr>
</body>
</html>

Workflow Tracker Milestone Notification (trk_milestone.msg)

file:///I|/Workflow/DevGuide/Panagon/note/workflow_tracker_milestone.htm (2 of 2) [9/18/2002 8:04:21 AM]

Set up a SMTP Server
This topic describes the general steps you must take to set up a SMTP server for testing your eProcess
Services Notifications. Since there are many commercially available SMTP applications and hundreds of
different configurations, you should view the procedures listed as general guidelines. You can set up
SMTP services on the Web WorkFlo server; however, you must also install a SMTP-compliant mail
server (like Microsoft Exchange) on the same server or have access to a server with the mail server
application already installed.

Note Regardless of the mail server application you choose, you must refer to the installation and
administration documentation for that mail server software to answer specific configuration or user
interface questions.

Configure SMTP Services on Windows 2000
The SMTP Service is installed with the Windows 2000 operating system. Perform the following steps to
configure the SMTP Service on your server:

On your designated server, point to Start. Navigate to Programs, point to Administrative Tools,
then point to and click Internet Service Manager. The Microsoft Management Console (MMC)
displays.

1.

From MMC, locate and expand the Internet Information Services. Locate and highlight your
server's name. Expand the options under your server's name.

2.

Locate the Default SMTP Virtual Site option, and expand it. From Domains create a remote
domain. Specify a unique domain name (for example, mailtest.com). Make the name unique so
there are no conflicts across the current domain.

3.

Highlight and click on your new domain. Right-click and choose Properties. Select Allow
incoming mail to be relayed to this domain option. Leave all other settings as the default. Click
OK. Exit MMC.

4.

Configure SMTP Services on Windows NT
In order to perform the procedure listed in this section, you must have already installed the SMTP
Services from the Windows NT 4.0 Option Pack installer. Perform the following steps to configure the
SMTP Service on your server:

On your designated server, point to Start. Navigate to Programs, point to Windows NT 4.0 Option
Pack, then point to Microsoft Internet Information Server. Finally, point to and click Internet
Service Manager. The Microsoft Management Console (MMC) displays.

1.

From MMC, locate and expand the Internet Information Server. Locate and highlight your server's
name. Expand the options under your server's name.

2.

Locate the Default SMTP Site option, and expand it. From Domains create a remote domain.
Specify a unique domain name (for example, mailtest.com). Make the name unique so there are no
conflicts across the current domain.

3.

Set up a SMTP Server

file:///I|/Workflow/DevGuide/Panagon/note/set_up_smtp.htm (1 of 3) [9/18/2002 8:04:22 AM]

Highlight and click on your new domain. Right-click and choose Properties. Select Allow
incoming mail to be relayed to this domain option. Leave all other settings as the default. Click
OK. Exit MMC.

4.

Install and configure a mail services application
Install a preferred mail services application (for example, Microsoft Exchange or ArGoSoft Mail Server).
You can download an evaluation copy of the ArGoSoft Mail Server (http://www.argosoft.com), which is
a SMTP/POP3/Finger capable application, for testing purposes.

While installing and configuring your mail server software, you will have to supply the following
information (not necessarily in this order):

Domain name you specified in the SMTP Service properties dialog●

Number of mailboxes being used●

Image Services and/or Content Services user names (when creating mail user accounts)●

Configure the mail client
This procedure assume you are using Microsoft Outlook as a mail client. Perform the following general
steps to configure Microsoft Outlook as your mail client:

On a client, point to Start. Navigate to Settings, and point to and click Control Panel.1.

From the Control Panel window, open Mail.2.

Click Show Profiles and click Add.3.

From the Microsoft Outlook Setup Wizard dialog box, select Internet E-mail only. Click Next.4.

Add a user profile name (for example, SysAdmin). Click Next. Click Setup Mail Account.5.

In the General tab, enter an Account Name (for example, "Primary test mail account"). Configure
other account information as needed.

6.

In the Servers tab, verify or enter the name of the Incoming Mail (POP3) Server, which should be
the name of the server running your mail server software. Verify or enter the Outgoing mail server
(SMTP), which should be the name of the server with both IIS and SMTP running.

7.

In the Incoming Mail Server Account Name field, enter the user name and password you created
during the mail server configuration stage. Click OK.

8.

From the Microsoft Outlook Setup Wizard dialog box, click Next for Internet Email. Enter a name
for the Personal Address Book.

9.

Enter a similar name for the Personal Folders option. Click Next.10.

Repeat these steps for any other users you created.11.

Set up a SMTP Server

file:///I|/Workflow/DevGuide/Panagon/note/set_up_smtp.htm (2 of 3) [9/18/2002 8:04:22 AM]

Configure eProcess email notification
On your Panagon WorkFlo Server, edit the vwserver.ini file, which resides in the \fnsw_loc\sd directory,
to include the SMTP Server name and the Web WorkFlo server name. Your file might contain entries
similar to the following:

SMTPHost=CRONOS
EmailLogonId=SysAdmin@mailtest.com
EmailFromId=SysAdmin@mailtest.com
WebServer=CRONOS

where CRONOS is the name of the server running SMTP Services and Web WorkFlo, and
SysAdmin@mailtest.com is the user name created during your mail server configuration.

Configure your TCP/IP connections
Modify the HOSTS file, on every computer you are using for testing, to include all servers needed to
participate in the workflow. For example, include the address and names of the system running the mail
server application, the web server, and WorkFlo Services server. A generalized HOSTS file might appear
as shown below:

127.0.0.1 localhost
10.0.1.101 cronos #Web WorkFlo server
10.0.1.242 titan #mail server
10.0.1.451 warbird #WorkFlo Services server

You need not perform this step if your servers are enlisted in a DHCP configuration.

Set up a SMTP Server

file:///I|/Workflow/DevGuide/Panagon/note/set_up_smtp.htm (3 of 3) [9/18/2002 8:04:22 AM]

Using ADO to Query the eProcess Database
Querying eProcess queues, rosters, or logs is a typical action performed by a Step Processor (or "work performer")
application. These queries normally use appropriate eProcess APIs to retrieve the data. While the application queries
a queue, roster, or log, it is understood that the data retrieved by these queries actually resides in the underlying
eProcess database tables (either a SQL Server or Oracle database). However, in certain instances, for example, where
the query is to retrieve a large amount of data, performance can become an issue (for details, see Why use ADO? —
Query Performance Issues below).

In these cases, an alternative approach that can improve performance, is to bypass the API and query the eProcess
database views directly, using an Active Directory Object (ADO) Connection object or ODBC to directly connect to
the database. While there is no requirement for using this approach (using the eProcess API classes and methods is
the standard way to do queries), the ADO approach can significantly improve performance when you need to query
large numbers of data records.

This topic describes how to use ADO to query the eProcess database, as follows:

ADO eProcess Query Overview●

Before you start — Things to Keep in Mind●

Using the ADO Query Procedure●

ADO eProcess Query Example Code●

Note Use of this approach requires an understanding of the eProcess database schema, ADO, and some SQL.

ADO eProcess Query Overview
The basic premise of the ADO approach is that instead of querying on a queue, roster, or log via the eProcess APIs,
you instead query on database views generated by the eProcess server. These views are of the underlying eProcess
database tables associated with the queues, rosters, and logs of a given isolated region. Using the ADO approach,
you can directly query on exposed fields of these database views via an ADO Connection object, completely
bypassing the eProcess API. For a step-by-step procedure on how to do this, see Using the ADO Query Procedure
below.

A typical use case for the ADO query approach involves situations where a user application needs to query for a
large amount of data. In this case, you might retrieve the data records with an ADO query, then use the data items
retrieved to query specific work items in eProcess. For example, you might use the F_WobNum field retrieved as part
of the data record to query for a specific work item using the eProcess API.

To accomplish these steps involves an understanding of the following issues:

Understanding eProcess database views●

Why use ADO? — Query performance issues●

Fields available for queries●

Caution It is strongly recommended that you not proceed without first reviewing these issues. In addition, under no
circumstances should you attempt to directly modify the eProcess database.

Back to top

Using ADO to Query the eProcess Database

file:///I|/Workflow/DevGuide/Panagon/samp/access_process_db_ado.htm (1 of 10) [9/18/2002 8:04:23 AM]

Understanding eProcess Database Views

Each time a user performs a commit operation on configuration changes on the workflow server, or a transfer on a
workflow definition, the eProcess server automatically creates database views of those database tables related to the
isolated region's queues, rosters, and logs for the workflow definition. This occurs automatically, with no
customization required (or recommended). The existence of these database views enables exposed fields associated
with the tables in these views to be directly queried from your application or applet via ADO or ODBC (not all
exposed fields, only those useful in a practical way for queries are actually available — for additional information,
see Fields available for queries below).

The following naming conventions are used for the database views:

Queue database view: VWVQ<isolated region>_<workflow definition queue name>; for example, for
isolated region 21 and the Inbox queue: VWVQ21_Inbox

●

Roster database view: VWVR<isolated region>_<workflow definition roster name>; for example, for
isolated region 21 and the DefaultRoster view: VWVR21_DefaultRoster

●

Log database view: VWVL<isolated region>_<workflow definition queue name>; for example, for isolated
region 21 and the mylog view: VWVQ21_mylog

●

It is important to note that the read/write permissions associated with these database views created by the eProcess
server vary according to whether the underlying database is Oracle or MS SQL Server. The Oracle database views
created by the eProcess server are read-only. MS SQL Server data views are read/write (SQL Server does not
provide a way to create read-only views.)

Warning If you are accessing a SQL Server database, it is essential that you do not directly modify the
database directly, even though the DBMS allows it. If you do modify a SQL Server database directly, eProcess
processing will not work correctly. It is recommended that the Database Administrator make the underlying
tables (on which the database views are based) Read-only for users.

Back to top

Why Use ADO? — Query Performance Issues

eProcess query performance, is affected by a number of factors. The most important of these factors are:

The types of objects returned by the query: Normal API eProcess queries can return any of three types of
objects: data records (queue element and roster element objects), step element objects, and work objects. Of
these, the most expensive in terms of performance, are work objects, because they require deblobbing. Next
most expensive are step elements, that require some deblobbing. Data records are the least expensive objects,
requiring no deblobbing. In addition, ADO queries are more efficient because they return only a subset of the
information retrieved by API queries. In particular, ADO queries do not return additional isolated region data
that is returned by API queries.

●

The data transformations: The number and types of data transformations between the client and the database
can also affect performance. For example, with an eProcess API query, there is the data transformation
between the SQL data records returned by the DBMS and the C++ data objects handled by the eProcess
server, then the data transformation between C++ and the Java objects used by the eProcess Java API. If the
Windows client application is non-Java, an additional transformation between Java and COM (via JiGlue) is
also required. On the other hand (regardless of the source language you write your application in), you specify
the ADO query using SQL, thereby reducing the number of data transformations needed.

●

The use of indexes: Although the use of indexes is recommended for the eProcess API, some developers may
not use indexes for their custom application or processor queries. As a result, query data retrieval is less
efficient, particularly if they need to retrieve large amounts of data from the database. The developer (or the

●

Using ADO to Query the eProcess Database

file:///I|/Workflow/DevGuide/Panagon/samp/access_process_db_ado.htm (2 of 10) [9/18/2002 8:04:23 AM]

Database Administrator) can add indexes to the database to additionally improve performance.

Back to top

Fields Available for Queries

You query on exposed fields provided in the database view. Therefore, each of the fields that you need to query must
exist as an exposed field on a queue, roster, or log, as defined by a workflow definition. Fields that are not exposed
are not included in the database view. Of all the exposed fields, those exposed system fields that are not useful for
ADO queries are automatically excluded from the view. Similarly, large binary fields and BLOBS are also not
included.

In other words, only those exposed fields that are useful in a practical way for ADO queries are actually available.

The fields in the database views have the same names as the exposed fields in the underlying database tables from
which they are derived. However, the following database fields are not allowed in the database views:

Fields that contain database reserved words.●

Fields whose names may present conflict with eProcess server software.●

Fields whose names are longer than 32 characters.●

Field names that differ from the names of their respective fields in the underlying database.●

Back to top

Before You Start — Things to Keep in Mind
Before you start using ADO queries, you should keep the following important guidelines and limitations in mind:

Reminder: ADO queries are based on database views. Database records should not be updated via ADO.●

Each client that is to use ADO eProcess queries must be individually configured.●

The database client and the database server (whether using Oracle or SQL Server) cannot be on the same
machine.

●

If you are using an Oracle database, Listener software must be set up first on the server. Then the Oracle
network client must be set up before you can configure the ADO/ODBC connection.

●

As indicated by the previous Warning, if you are using an MS SQL Server database, since SQL Server does
not provide a way to create read-only views, it is essential that you do not modify the SQL Server database. If
you do so, eProcess processing will not work correctly.

●

Back to top

Using the ADO Query Procedure
To use ADO or ODBC to query the eProcess database views for queue, roster, and log data, requires the following
basic steps, which are performed in the order shown:

Note This procedure varies somewhat, depending upon whether the underlying database is Oracle or MS SQL
Server.

Configuring the DBMS server (Oracle only).1.

Configuring the client to connect to the database (Oracle only).2.

Configuring an ADO connection (Oracle and MS SQL Server)3.

Using ADO to Query the eProcess Database

file:///I|/Workflow/DevGuide/Panagon/samp/access_process_db_ado.htm (3 of 10) [9/18/2002 8:04:23 AM]

Identifying the queues, rosters, and logs (and their associated database views).4.

Specifying the query.5.

These steps are described in detail below.

Configuring the DBMS Server (Oracle only)

This step describes how to configure the Oracle server for ADO eProcess queries. If you are using a SQL Server
database, skip to the step, Configuring an ADO Connection.

Caution The database client and the database server cannot be on the same machine. (The Oracle database server
and the eProcess server can, at your option, be on the same machine.)

To configure an Oracle server for ADO, use the following procedure:

Logon to the Oracle DBMS server as the fnsw user.1.

cd to $ORACLE_HOME. Verify that you are logged on as the fnsw user.2.

Type netca at the command line to bring up the Oracle Net(work) Configuration Assistant.3.

Using the Net Configuration Assistant, install and configure Oracle network configuration on the Oracle
server by configuring (in the order shown — if you make a mistake, the Assistant allows you to backtrack):

Listener configuration❍

Naming methods configuration❍

Local net service name configuration❍

Start by selecting Listener Configuration and click Next.

4.

Select Add (to add a Listener) and click Next.5.

Enter the Listener name (for example, LISTENER) into the Listener Name field and click Next.6.

Select the network protocol (for example, TCP) and click Next. If you are using TCP/IP, select the standard
port number of 1521 and click Next.

7.

Select No when prompted to configure another Listener and click Next. Listener configuration is complete.8.

Now proceed to net service naming configuration. Select Naming Methods configuration and click Next.9.

Select Local as the net service naming method (to understand why, see the next step) and click Next.
Naming methods configuration is complete.

10.

Select Local Net Service Name configuration (to enable you to use a local name for the eProcess server to
access the Oracle database using net service) and click Next.

11.

Select Add (to specify you want to add a local name) and click Next.12.

Select the version of the Oracle DBMS (Oracle 8i) and click Next. Then enter the Oracle database System
Identifier (SID), for example, IDB, into the Database SID field.

13.

Select the network protocol to use to access the Oracle database (for example, TCP) and click Next.14.

Enter the eProcess server host name (for example, eprocess_svr) into the Host Name field. If you are
using TCP/IP, select the standard port number of 1521 and click Next.

15.

Select No, do not test, to specify that you don't want to test the database connection at this time (you will do so
later in the procedure) and click Next.

16.

Enter the net service name (for example, IDBGlobal) into the Net Service Name field and click Next.17.

Select No when prompted to configure another net service name and click Next. Net service name
configuration is complete. Click Finish to complete Oracle network setup and exit the Net Configuration
Assistant.

18.

Using ADO to Query the eProcess Database

file:///I|/Workflow/DevGuide/Panagon/samp/access_process_db_ado.htm (4 of 10) [9/18/2002 8:04:23 AM]

Type netasst at the command line to configure the Oracle network service you just created. The Oracle Net8
Assistant displays.

19.

In the Explorer-like pane, under Net8 Configuration, select Local > Listeners > LISTENER. In the main pane,
select Database Services. Edit the fields using the entries you specified while creating the net service name
(for example, IDBGlobal in the Global Database Name field, IDB in the SID field). Specify the Oracle root
directory (for example, /usr/ora/817) in the Oracle Home Directory field. Then select Save from the File
menu to save the network configuration.

20.

To verify that the Listener has been successfully created, type Isnrctl at the command line. Then type status.
Verify that the SID you specified (for example, IDB) is listed as a Listener. If yes, go to the next step. If not,
type stop, then type exit. Restart the Listener (by typing start and pressing Enter). Type Isnrctl at the
command line, then type status to verify again that the SID specified is listed as a Listener.

21.

You can verify whether the connection to the Oracle database is working using the Oracle Net8 Assistant or
manually (see next step). To verify that the Oracle database connection is working using the Net8 Assistant, in
the Explorer-like pane, under Net8 Configuration, select Local > Service Naming, then select your net service
name (for example, IDBGlobal). To test the connection, select Test Service from the Command menu.

If the test is successful, the Connection Test dialog displays a message similar to:

Attempting to connect using userid: system
The connection test was successful

❍

If successful, close the Connection Test dialog and exit the Net8 Assistant.

If the test is not successful, the Connection Test dialog displays a message similar to:❍

The test did not succeed.
ORA-01017: Invalid username/password; logon denied
There may be an error in the fields entered,
or the server may not be ready for a connection.

If the test is not successful, click the Change Login button. In the dialog, change the login to
username=system and password=manager. Click OK and rerun the test by click the Test button
on the Connection Test dialog.

22.

To manually test whether the connection to the Oracle database is working, type sqlplus
system/manager@idbglobal at the command line (where idbglobal is the SID name). This starts SQL *Plus.
Perform a simple SQL query. For example, specify: show parameters db_name to verify that you are
connecting to the correct database.

23.

Back to top

Configuring the Client to Connect to the Database (Oracle Only)

This step describes how to configure an Oracle client to connect to the eProcess database. If you are using a SQL
Server database, skip to the step, Specifying an ADO Connection.

This procedure assumes that you have already installed the Oracle 8i client on a Windows machine. Each client that
is to use ADO eProcess queries must be individually configured.

Caution The database client and the database server cannot be on the same machine.

Note Oracle 8i is the only Oracle client currently supported. If you install the Oracle 8i client on a Windows 2000
machine, be sure to run the Oracle 8i patches that allow the Oracle Installer to run on Windows 2000 before you start
Oracle 8i client installation.

Click on Start and select Programs > Oracle - OraHome81 to start the Oracle client.1.

Using ADO to Query the eProcess Database

file:///I|/Workflow/DevGuide/Panagon/samp/access_process_db_ado.htm (5 of 10) [9/18/2002 8:04:23 AM]

Select Network Administration > Launch Net8 Configuration Assistant to bring up the Oracle Net(work)
Configuration Assistant.

2.

Using the Net Configuration Assistant, configure the net service on the client by configuring (in the order
shown — if you make a mistake, the Assistant allows you to backtrack):

Naming methods configuration❍

Local net service name configuration❍

Start by selecting Naming Methods Configuration and click Next.

3.

Select Local as the net service naming method and click Next. Naming methods configuration is complete.4.

Select Local Net Service Name configuration (to enable you to use a local name for the eProcess server to
access the Oracle database using net service) and click Next.

5.

Select Add (to specify you want to add a local name) and click Next.6.

Select the version of the Oracle DBMS (Oracle 8i) and click Next, then enter the Oracle database System
Identifier (SID), for example, IDB, into the Database SID field.

7.

Select the network protocol to use to access the Oracle database (for example, TCP) and click Next.8.

Enter the eProcess server host name (for example, eprocess_svr) into the Host Name field. If you are
using TCP/IP, select the standard port number of 1521 and click Next.

9.

Select Yes, perform a test, and click Next, to have the Net8 Configuration Assistant test whether database
connection is working. (You can also test the connection manually — see step 13.)

If the test is successful, the Connection Test dialog displays a message similar to:

Connecting...Test successful.

If successful, click Next.

If the test is not successful, the Connection Test dialog displays a message similar to:❍

Connecting...ORA-01017: Invalid username/password; logon denied
The test did not succeed.

Some of the information you provided may be incorrect.
Press Back to review the information provided for net service
name, or Change Login to change username.

If the test is not successful, click the Change Login button. In the dialog, change the login to
username=system and password=manager and click OK to rerun the test.

10.

Enter the net service name (for example, IDBGlobal) into the Net Service Name field and click Next.11.

Select No when prompted to configure another net service name and click Next. Net service name
configuration is complete. Click Finish to complete Oracle network setup and exit the Net Configuration
Assistant.

12.

To manually test whether the connection to the Oracle database is working, type sqlplus
system/manager@idbglobal at the command line (where idbglobal is the SID name). This starts SQL *Plus.
Perform a simple SQL query. For example, specify: show parameters db_name to verify that you are
connecting to the correct database.

Alternatively, you can also verify that the database connection is working by using the SQL *PLUS utility
from the Start menu and entering idbglobal as the Host String (where idbglobal is the SID name).

13.

Back to top

Using ADO to Query the eProcess Database

file:///I|/Workflow/DevGuide/Panagon/samp/access_process_db_ado.htm (6 of 10) [9/18/2002 8:04:23 AM]

Configuring an ADO Connection on the Client

This step describes how to configure an ODBC data source on the client for ADO eProcess queries (assumes a
Windows client platform). Each client that is to use ADO eProcess queries must be individually configured to
specify the driver, the Data Source Name (DSN) and the net service name you created previously. The procedure
varies, depending upon whether you are configuring for either an Oracle or a MS SQL Server database, as follows:

Specifying ADO ODBC for Oracle●

Specifying ADO ODBC for MS SQL Server●

Specifying ADO ODBC for Oracle

To set up an ADO ODBC connection for an Oracle eProcess database, use the following procedure (the procedure
varies somewhat, depending upon whether you use the Oracle ODBC driver or the Microsoft ODBC for Oracle
driver):

Click on Start and select Settings > Control Panel > Administrative Tools. Double-click on Data Sources
(ODBC) to open the ODBC Data Source Administrator dialog. Click on the System DSN tab, then click the
Add button.

1.

Select either of the following drivers for Oracle (both are supported) in the Create New Data Source dialog.

Oracle ODBC Driver — if you use this driver, go to the next step (Step 3).❍

Microsoft ODBC for Oracle — if you use this driver, go to Step 4.❍

Then click Finish.

2.

On the Oracle8 ODBC Driver Setup dialog:

In the Data Source Name field, enter the DSN (for example, eprocess_svr_dsn).❍

In the Description field, enter an appropriate description (for example, eProcess data source name).❍

In the Service Name field, enter the net service name you created previously (for example, IDBGlobal).
You must use the same net service name that you configured for this client.

❍

You may leave the UserID field blank or enter a userid, as is appropriate.❍

Check Application Options as appropriate.❍

Once you have specified the configuration, click OK. You are returned to the ODBC Data Source
Administrator dialog, where you should see the new DSN you just configured. Click OK. ODBC setup using
the Oracle ODBC driver is complete.

3.

On the Microsoft ODBC for Oracle Setup dialog:

In the Data Source Name field, enter the DSN (for example, process_svr_dsn).❍

In the Description field, enter an appropriate description (for example, eProcess data source name).❍

You may leave the UserID field blank or enter a userid, as is appropriate.❍

In the Server field, enter the net service name you created previously (for example, IDBGlobal). You
must use the same net service name that you configured for this client.

❍

Once you have specified the configuration, click OK. You are returned to the ODBC Data Source
Administrator dialog, where you should see the new DSN you just configured. Click OK. ODBC setup using
the Microsoft ODBC driver for Oracle is complete.

4.

Specifying ADO ODBC for MS SQL Server

To set up and test an ADO ODBC connection for a SQL Server eProcess database, use the following procedure:

Using ADO to Query the eProcess Database

file:///I|/Workflow/DevGuide/Panagon/samp/access_process_db_ado.htm (7 of 10) [9/18/2002 8:04:23 AM]

Note If you are using SQL Server as the DBMS for the WorkFlo server, no additional configuration is needed on the
server.

Click on Start and select Settings > Control Panel > Administrative Tools. Double-click on Data Sources
(ODBC) to open the ODBC Data Source Administrator dialog. Click on the System DSN tab, then click the
Add button.

1.

Select the SQL Server in the Create New Data Source dialog and click Finish.2.

On the Create a New Data Source to SQL Server dialog:

In the Name field, enter the DSN (for example, eprocess_svr_dsn).❍

In the Description field, enter an appropriate description (for example, eProcess data source name).❍

In the Server field (in response to the question: Which SQL Server do you want to
connect to?), enter the net service name you created previously (for example, IDBGlobal). You
must use the same net service name that you configured for this client.

❍

Click Next.❍

Specify the authentication method. If you specify using: With SQL Server authentication
using a login ID and password entered by the user, then:

Check the Connect to SQL Server to obtain default settings for the additional configuration
options.

■

Specify the DSN login ID and password.■

Click Next.■

❍

Check the Change the default database to checkbox and enter enter the database name as
the default (for example, appsdb). It is recommended that you also check the Use ANSI quoted
identifiers and Use ANSI nulls, paddings and warnings checkboxes. Click Next.

❍

The default SQL Server system messages is English.❍

Check the Perform translation for character data checkbox.❍

The default query log file is C:\QUERY.LOG and the default Long query time is 30,000 milliseconds.❍

The default ODBC driver statistics log file is: C:\STATS.LOG.❍

Click Finish to complete setup.❍

3.

The ODBC Microsoft SQL Server Setup dialog displays the SQL Server ODBC driver version and the settings
you specified for the data source you just created.

4.

To test the connection, click Test Data Source. If the test is successful, the following message is displayed:

TESTS COMPLETED SUCCESSFULLY!

Click OK.

5.

You are returned to the ODBC Data Source Administrator dialog, where you should see the new DSN you just
configured. Click OK. ODBC setup for Microsoft SQL Server is complete.

6.

Back to top

Identifying Queues, Rosters, and Logs

In order to query a database view, you will need to identify the database tables associated with the queues, rosters
and logs within a given isolated region. To identify the appropriate table views:

Use your DBMS and its appropriate tool.●

Remember the naming conventions for eProcess database views (see Understanding eProcess Database Views
above).

●

Using ADO to Query the eProcess Database

file:///I|/Workflow/DevGuide/Panagon/samp/access_process_db_ado.htm (8 of 10) [9/18/2002 8:04:23 AM]

Back to top

Specifying the Query

You can perform an ADO query by specifying a SQL query in your application. The SQL SELECT statement should
reference the database views (of a queue, roster, or log) rather than the physical database tables. The database views
were identified in the previous step, Identifying Queues, Rosters, and Logs.

When selecting from VW database views, it is normally necessary to use quotation marks around column names (the
column names in the view definition are often defined using quoted identifiers). This is necessary because a
user-defined column may actually be a SQL reserved word (e.g., "SELECT" or "FROM"). Or the user-definied
column name may not be unique unless the name is defined in a case-sensitive way (i.e., "name" and "Name").
Quoting a column name in a SQL query indicates to the DBMS that the quoted name is a column name, even if it
happens to be an otherwise Reserved word. It also indicates to the DBMS that the name is case-sensitive.

When the view being queried is for a queue or roster, you can omit the quotation marks around the VW Server field
names (the ones that begin with "F_"). However, all user-defined column names should be quoted.

For example:

select F_WobNum, F_WorkSpaceId, "userfieldname1", "userfieldname2"
from f_sw.VWVQ94_testmodswp;

Note that f_sw identifies the eProcess database.

When the view being queried is for a log, all column names should be quoted, including the VW Server field names.
For example:

select "F_WobNum", "F_WorkSpaceId", "userfieldname1",
"userfieldname2" from f_sw.vwvl94_testparentlog;

For an additional example of how the query is used, see ADO eProcess Query Example Code below.

Back to top

ADO eProcess Query Example Code
The Visual Basic code fragment example below illustrates the use of the ADO query based on database views
created on eProcess tables. In this example, the ADO Connection object, ADODB.Connection, is set and the SQL
SELECT statement queries for all records for the Inbox queue of isolated region 262.

Private Sub Form_Load()
' %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
' % Setup the System DSN, UserID, Password
' %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 dsn = "eprocess_svr_dsn"
 dbuser = "f_maint"
 dbpassword = "f_maint"

' %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
' % Create the Connection Object and open it
' % with the supplied parameters

Using ADO to Query the eProcess Database

file:///I|/Workflow/DevGuide/Panagon/samp/access_process_db_ado.htm (9 of 10) [9/18/2002 8:04:23 AM]

' % System DSN, UserID, Password
' %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 Set connDB = CreateObject("ADODB.Connection")

 connDB.Open dsn, dbuser, dbpassword

' %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
' % Build the SQL Statement and assign it
' % to the variable SQLStatement. Execute
' % the SQL statement
' %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 SQLStatement = "SELECT * FROM f_sw.VWVQ262_Inbox"

 Set rs = connDB.Execute(SQLStatement)

 ' %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 ' % Loop through Fields Names and print out the Field Names
 ' %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 For i = 0 To rs.Fields.Count - 1
 List2.AddItem (rs(i).Name)
 Next
 ' %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 ' % Loop through rows, displaying each field
 ' %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 Do While Not rs.EOF
 For i = 0 To rs.Fields.Count - 1
 List1.AddItem (rs(i))
 Next
 List1.AddItem ("============================")
 rs.MoveNext
 Loop
 ' %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 ' % Make sure to close the Result Set and the Connection object
 ' %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 rs.Close
 connDB.Close

End Sub

Back to top

Using ADO to Query the eProcess Database

file:///I|/Workflow/DevGuide/Panagon/samp/access_process_db_ado.htm (10 of 10) [9/18/2002 8:04:23 AM]

Notices
Panagon documentation contains information proprietary to FileNET Corporation (FileNET). Due to
continuing product development, product specifications and capabilities are subject to change without
notice. You may not disclose or use any proprietary information or reproduce or transmit any part of this
documentation in any form or by any means, electronic or mechanical, for any purpose, without written
permission from FileNET. FileNET has made every effort to keep the information in the documentation
current and accurate as of the date of publication or revision. However, FileNET does not guarantee or
imply that the documentation is error-free or accurate with regard to any particular specification. In no
event will FileNET be liable for direct, indirect, special incidental, or consequential damages resulting
from any defect in the documentation, even if advised of the possibility of such damages. No FileNET
agent, dealer, or employee is authorized to make any modification, extension, or addition to the above
statements. FileNET may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Furnishing this document does not provide any
license to these patents, trademarks, copyrights, or other intellectual property. FileNET is a registered
trademark. Copyright © 2001 FileNET Corp. All Rights Reserved.

This product incorporates an Apache Software Foundation XML Parser. Apache assumes no liability for
any claim that may arise regarding this incorporation. In addition, FileNET disclaims all warranties, both
express and implied, arising from the use of the Apache XML Parser. Copyright © 1999-2000 The
Apache Software Foundation. All rights reserved. http://www.apache.org/licenses/LICENSE.

Panagon Help systems incorporate Deva Search, a product of Deva Associates LLC. Deva Associates
assumes no liability for any claim that may arise regarding this incorporation. Deva Search is a
trademark or registered trademark of Deva Associates. Copyright © 2001 Deva Associates LLC. All
rights reserved.

All other brands, products, and company names mentioned are trademarks of their respective owners.

Notices

file:///I|/Workflow/DevGuide/Panagon/misc/notices.htm [9/18/2002 8:04:23 AM]

http://www.apache.org/licenses/LICENSE

eProcess Services Directory Structure
Much of the Panagon Web WorkFlo functionality relies on the Panagon Web Services architecture and
directory structure. When they are installed together the Panagon Web Services and Panagon Web
WorkFlo applications collectively are called eProcess Services.

During Panagon Web Services installation, a unique directory structure is created. The directory structure
is extended during Panagon Web WorkFlo installation. This topic describes the directory structure
created by Panagon Web Services and indicates the significant directory structure changes made during
Panagon Web WorkFlo installation. Development decisions must account for the modified eProcess
Services architecture and directory structure.

Note The directory structure shown here is relative to the <drive>...\Program
Files\FileNET\IDM\Web\IDMWS directory on the Web WorkFlo server. Refer to Locate the Panagon
Web Services Toolkit Help for more information on using Panagon Web Services components in
eProcess Services development.

Directory Contents

_ScriptLibrary Contains files used for Microsoft Remote Scripting. These library files
have been modified by FileNET.

\Application Contains the modules used by eProcess Services, and the ASP files used
to create the neighborhood, and eProcess application panes.
Additionally, this directory contains the on-line help for both Panagon
Web Services and Panagon Web WorkFlo.

\CSS Contains Cascading Style Sheets (CSS) used eProcess Services. The
style sheets control the text formatting and layout of the HTML content.

\Images Contains many of the .GIF-formatted icon graphics used Panagon Web
Services application, including the email notifications. Most of the .GIF
files used by Web WorkFlo Services, like those used in Step Processors,
are located in the \Redist directory, in the associated directory structure.

eProcess Services Directory Structure

file:///I|/Workflow/DevGuide/Panagon/arch/panagon_workflo_directory_structure.htm (1 of 3) [9/18/2002 8:04:24 AM]

\Redist Contains sub-folders which contain redistributeable components (like
ASP, HTML, .JS, and .JAR files). These components provide the core
functionality for eProcess Services.

The following directories were added during the Web WorkFlo
installation:

\WF_Extras: contains .ASP files and the pw.jar file. The .ASP
files are used for attachment processing and Session-based token
management. The pw.jar file is an archived file containing the
class and image information used by Panagon WorkFlo applets
and applications.

●

\WF_FileOpen: contains .ASP files used for searching for and
opening files stored in a Content Services library.

●

\WF_Html_Toolkit: contains the .ASP files, .INC files, .JS files,
and image files, in sub-directories, that constitute the HTML
Processor Toolkit. Many of the files in this directory are shared by
the default HTML processors. Refer to the HTML Processor
Toolkit Overview topic for more information.

●

\WF_Launcher: contains the .ASP source for the HTML and
Java launch processors. The Java processor .ASP source is located
in the \Tabbed directory; the ASP source is located in the
\HTML directory. In addition, the HTML directory contains a
sub-directory containing the image (.GIF) files used by the HTML
processor. New Launch Step Processors must be added to a
directory under this directory.

●

\WF_Logon: contains .ASP and .INC files used to logon to a
WorkFlo Server through a Panagon Web Services server. (The
.INC file contains the Javascript functions that are called from the
logon dialog box.

●

\WF_Manager: contains the .ASP file that hosts the Personal
WorkFlo Manager console application.

●

\WF_Milestone: contains .ASP source for the milestone tracking
components.

●

\WF_Step: contains the .ASP source for the HTML and Java Step
Processors. The Java processor .ASP source is located in the
\Tabbed directory; the ASP source is located in the \HTML
directory. New Step Processors must be added to a directory under
this directory.

●

\WF_Tracker: contains an .ASP file that acts as a container for
the WorkFlo Tracker application.

●

The remaining directories were created during the Panagon Web
Services installation:

eProcess Services Directory Structure

file:///I|/Workflow/DevGuide/Panagon/arch/panagon_workflo_directory_structure.htm (2 of 3) [9/18/2002 8:04:24 AM]

\AddFolder: contains an .ASP page used for folder creation
operations.

●

\CheckoutList: contains .ASP pages used for checkout pop lists.●

\CopyMove: contains an .ASP page used for copy and move
operations.

●

\DocControls: contains .ASP pages used for simple and
compound document operations .

●

\DocWizard: contains .ASP pages used for adding and checking
in a document.

●

\Download: extended by Web WorkFlo to include the Sun Java
Runtime Environment Installation package. Contains specific
executables, like the Panagon IDM Viewer, ready for
downloading to client machines.

●

\ErrorManager: contains .ASP pages used for reporting and
handling errors.

●

\ListView: contains .ASP pages used for displaying folder
content.

●

\Logon: contains .ASP pages used for logging on to Image
Services (IS) or Content Services (CS) libraries.

●

\PopUpManager: contains a Javascript file used to manage
end-user message boxes and dialog boxes.

●

\PropertySheets: contains .ASP pages used to determine and
display object properties for both IS and CS libraries.

●

\Search: contains .ASP pages used to support query operations.●

\Toolbar: contains .ASP pages used to display toolbars, which
provides access to all operations.

●

\Treeview: contains .ASP pages used to select and display the
folder structure within both IS and CS libraries.

●

\Utility: contains .ASP and .HTM pages which are used for a
variety of operations.

●

\VersionList: contains .ASP pages used to display version
information for documents.

●

Most of the ASP files in the folders contain #include statements. You
need to examine the beginning of each file to determine dependencies.

\WSAPI Contains .ASP files that implement the Panagon Web Services API
objects and work with the Panagon IDM Object automation. Panagon
Web WorkFlo extends some of the files in this directory.

\WSCAPI Contains the client scripts (.JS) files. Panagon Web WorkFlo extends
some of the files in this directory.

eProcess Services Directory Structure

file:///I|/Workflow/DevGuide/Panagon/arch/panagon_workflo_directory_structure.htm (3 of 3) [9/18/2002 8:04:24 AM]

Set up an ASP eProcess Services
Development System
Panagon eProcess does not require that you use Visual InterDev to develop new or modify existing ASP
files; however, Visual InterDev provides a robust ASP development environment. This topic describes
how to use Microsoft Visual InterDev to create a new solution, add the necessary Panagon Web WorkFlo
components, and begin developing for eProcess Services in an ASP environment.

Note This section covers developing for the ASP environment. For information on developing eProcess
for the ASP.NET framework, see the "Developing for eProcess Open Client" section in the Panagon
Open Client Developer's Guide.

One alternative to using an IDE or ASP development tool, like Visual InterDev, is to work directly in the
<drive>...\Program Files\FileNET\IDM\Web\IDMWS directory structure on your eProcess Services
web server. If you know HTML and ASP and you want to make only minor changes to specific files,
working in the directory structure may be the simplest approach. (Since you will be working in an active
web server directory structure, it is good practice to make a fallback copy of the directory before you
start). If you are developing a larger application with multiple changes across many files, you should
consider using a more sophisticated development tool, such as an IDE.

These procedures assume you have a WorkFlo Services server and a web server dedicated to
development and configured with the following:

Windows NT 4.0 or Windows 2000 Server●

Internet Information Server (IIS)●

FrontPage 98 or FrontPage 2000 Server Extensions (for remote development only)●

Panagon Web Services 3.x (with the appropriate service packs installed)●

Note Refer to the Web Server setup section of the Panagon Web Administrator's Help and the
Configuration section of the IDM Web Administrator's Help for installation requirements.

Additionally, these procedures assume you will be developing your ASP-based applications on a
development system, rather than a production web server. In order to remotely develop your application,
using Visual InterDev, you must install the FrontPage Extensions. If you choose develop your
application directly on your production web server, you need not install the FrontPage Extensions. Refer
to the Panagon eProcess Services architecture topic for more detailed information on the server
configuration.

Note If you have not already installed IIS on your Windows NT Server, refer to the appropriate
Microsoft documentation for the proper installation sequence. For information on installing Panagon
Web Services, refer to the IDM Web Administrator's Help help.

Perform the following general steps to set up a Panagon Web WorkFlo server for development:

If you have not already done so, install the Panagon Web Services Web Application 3.x. (Refer to
the Web Server setup section of the Panagon Web Administrator's Help for more information on
installing Web Services and the Web Application.)

1.

Set up an ASP eProcess Services Development System

file:///I|/Workflow/DevGuide/Panagon/interdev/setting_up_panagon_web_services.htm (1 of 2) [9/18/2002 8:04:24 AM]

Using the IDM Configure application, add at least one library to your server. Refer to the
Configuration section of the IDM Web Administrator's Help for more information on configuring
your server to access Image Services (IS) and Content Services (CS) libraries. (If desired, eProcess
can be configured without a requirement for Content Services library access. For information on
configuring eProcess without Content Services, refer to the Panagon WorkFlo Services
Installation Handbook.)

2.

Install the Web WorkFlo Services software on your web server. (Refer to the Panagon Web
WorkFlo Installation Handbook for installation instructions.)

3.

On your WorkFlo Services server, configure the administration and user accounts to match your
expected implementation. (Refer to the Help for eProcess Administrators for configuration
instructions.)

4.

Start the eProcess Router and PPM processes on your workflow server and web server
(respectively).

5.

Using a web browser (on a client system), verify that you can reach the Panagon Web Services
home page by entering a command similar to the following address:

6.

http://<web server name>/idmws/home.asp

where <web server name> is the host name of the server running IIS.

Click the eProcess bar in the left pane.7.

If the client system does not have the correct ActiveX components, the browser will be redirected
to the client ActiveX component download page automatically. Depending on the client, you
might need to reboot after installing the ActiveX components. Additionally, if the client system
does not have the appropriate Java Runtime Environment installed (for details, see Panagon
eProcess Services Architecture), the JRE will download from the server automatically the first
time the client accesses the server.

8.

You are ready to create a new solution in Visual InterDev.

Set up an ASP eProcess Services Development System

file:///I|/Workflow/DevGuide/Panagon/interdev/setting_up_panagon_web_services.htm (2 of 2) [9/18/2002 8:04:24 AM]

Create a New Solution in Visual InterDev
These instructions assume you are developing on a system other than your eProcess Services web server.
Refer to the appropriate Microsoft Developer's Network documentation for information on using Visual
InterDev to develop applications in a distributed environment.

After you have installed an eProcess Services server successfully, you can create a new solution in
Visual InterDev. If you have not already done so, you should install the FrontPage Extensions on your
Internet Information Server (IIS) web server. With the FrontPage Extensions installed on the IIS server,
you can develop your web application on a remote system and publish the updated application content
directly to the root directory of your web application.

Create a new solution by performing the following steps:

If you have not already done so, open Visual InterDev.1.

From the menu bar, select File. From the pull-down list, select New Project.2.

With Visual InterDev Projects highlighted, select New Web Project. Supply a name and location
for the project. For example, eProcess, and C:\My Documents\Visual Studio Projects\eProcess.

3.

Click Open.4.

Select the WorkFlo web server you have already set up. Choose Master Mode. Click Next.5.

There might be a delay while Visual InterDev connects to the specified web server.6.

When prompted, enter a name for your new web application. For example, eProcess.7.

You can choose to connect to the existing web location and modify the out-of-the-box application
directly; however, these instructions assume you are creating a new web application and will use only
those parts of the eProcess Services components that are essential to make your application work with
Image Services and Content Services libraries. Additionally, while you can choose to add the site to the
root level of the web site, these procedures assume that you are developing your application in an
isolated environment, which is separate from your production web site.

Click Finish.8.

When prompted, enter the user name and password for a user that belongs to the administrator
group on the web server.

9.

If your remote workstation and web server reside in different domains, you will have to supply the
domain name as part of your user name. (For example, for a user in the Asgard domain, you would enter
Asgard\<user name> in the User name field.)

Once all of the new files and folder are added to your new solution, select and highlight all
directories and files below the bolded solution site address (in the Project Explorer pane).

10.

From the Edit menu, select Delete. When prompted, select Apply to all items and click Yes.11.

All of the files and directories created for your new solutions should be deleted. You are now ready to
add the eProcess Services components to your new solution.

Create a New Solution in Visual InterDev

file:///I|/Workflow/DevGuide/Panagon/interdev/creating_a_new_solution.htm [9/18/2002 8:04:24 AM]

Add eProcess Services Components
After creating a new solution and deleting the directories and files (created by Visual InterDev), you
must add the eProcess Services components necessary to extend your application's existing functionality.

Add the necessary components by performing the following steps:

If you have not already done so, open Visual InterDev.1.

Locate and open your new solution.2.

Highlight the bolded solution site address in the Project Explorer pane (for example,
your_webserver/your_webproject_name).

3.

From the menu bar, click Project and select Add Item.4.

Click the Existing tab, and navigate to the mapped directory containing the Web Services toolkit
files.

5.

If you are developing your web application on a remote work station, you must map a network drive to
the directory on the web server that contains the Web Services toolkit files. For example, if you installed
the Panagon Web Services application to the default location, you would need to create a temporary
network drive map to the <drive>...\Program Files\FileNET\IDM\Web\IDMWS directory on the web
server.

From the Files of type pull-down list, select All Files.6.

Select and highlight all of the files in the list view box. Click Open.7.

Once the files from the root directory have been added to your new solution, click Project and
select Add Item a second time.

8.

Click the Existing tab, and navigate to the mapped directory containing the Web Services toolkit
files.

9.

Select and highlight all of the folders, including the _ScriptLibrary folder. (Refer to the eProcess
Services Directory Structure topic for more information of the folders or components you need to
add to your solution.)

10.

If you want to use the Panagon Web Application with minor modifications, include the \Application
folder in the list of folders to add to the solution.

Click Add Folder.11.

The selected folders, and their contents, are added to your new solution. The time necessary for the files
to be copied to the local repository of the solution depends on the network and server speeds. Once the
folders and files are added, the Project Explorer pane lists the files and folders copied into your new web
solution. Your web project now has the necessary components for Web WorkFlo application
development.

If you created a new application and new directory on your web server, you should check the web server
directory permissions. You are now ready to create generic .ASP files for eProcess Services, modify
HTML step and launch processors, or modify the .ASP file containers for the Java Step Processor and
Launch Step Processors applets.

Add eProcess Services Components

file:///I|/Workflow/DevGuide/Panagon/interdev/adding_web_services_components.htm [9/18/2002 8:04:25 AM]

Check Web Server Directory Permissions
Calls to some Panagon Web Services URLs and COM components will fail unless you, or the server
administrator, enable script execute permission for the directory containing your web application. Check
(and if necessary set) the directory permissions by performing the steps on the appropriate platform.

Windows 2000
On your web server, point to Start > Programs > Administrative Tools.1.

Locate and click Internet Services Manager. The Internet Information Services (IIS) console
displays.

2.

In the IIS console, locate and open the directory name (node) associated with the solution you
created (for example, eProcess). Right-click and choose Properties.

3.

From the Properties dialog box, select the Directory tab, if it is not already on the top level.4.

Check that the Read option is selected and that the Execute Permissions, Scripts and
Executables option is selected. If the options are already selected, click Cancel to exit the IIS
console. Otherwise, select the options, and click OK.

5.

Exit the Internet Services Manager console.6.

Windows NT
On your web server, point to Start > Programs > Windows NT Option Pack > Microsoft
Internet Information Server.

1.

Locate and click Internet Service Manager. The Microsoft Management Console (MMC)
displays.

2.

In MMC, locate the directory name (node) associated with the solution you created (for example,
eProcess). Right-click and choose Properties.

3.

From the Properties dialog box, select the Directory tab, if it is not already on the top level.4.

Check that the Read option and the Execute (including scripts) option are selected. If the options
are already selected, click Cancel to exit MMC. Otherwise, select the options, and click OK.

5.

Exit the Microsoft Management Console.6.

Check Web Server Directory Permissions

file:///I|/Workflow/DevGuide/Panagon/interdev/checking_directory_permissions.htm [9/18/2002 8:04:25 AM]

Create a Generic ASP File for eProcess
Services
An Active Server Page (ASP) consists of HTML formatted text, or other content – like images, and
server-side scripting (Javascript or VBScript). In many cases, the ASP includes client-side scripts. The
HTML formatted content provides a framework for presenting dynamic content.

Custom applications can establish a session with the Panagon WorkFlo Services system through eProcess
Services. Within the context of an ASP environment, you develop a web-based application that
communicates to the IDM Objects through the Panagon Web Services JavaScript objects (for document
functionality) and/or the JiGlue COM bridge (for workflow functionality). When working with the
workflow functionality, you will use a scripting language (like VBScript or Javascript) in an ASP file to
log on, create sessions, and retrieve information from a WorkFlo Services server through eProcess
Services.

The script includes HTML tags, such as form tags, to interact with the browser user and script commands
that contain logic for communication with the Panagon WorkFlo server. Since the scripting embedded in
the ASP files runs on the server, only the HTML content (which might include client-side script) returns
to the browser on the client system. The web server processes the server-side script and sends the HTML
output to the client browser.

If you require user interaction, create a HTML form so the user can enter the necessary information. The
ASP application can process the user input (for example, a request for queue names) and provide the
appropriate information to the WorkFlo Services server.

Tip eProcess Services use the global.asa file to initialize the application state; however, you can use only
one global.asa file for each ASP-based application on your web server.

Create web application (.ASP or .HTM) for eProcess Services by following these general steps:

If you have not already done so, open Visual InterDev.1.

Locate and open your new solution.2.

Highlight the bolded solution site address in the Project Explorer pane (for example,
your_webserver/your_webproject_name).

3.

From the menu bar, select Project. From the pull-down list, select Add Item.4.

With Web Projects Files highlighted, select the ASP Page icon. Alternately, if you want to add an
HTML page, select the HTML Page icon.

5.

In the Name field, enter the name for your new page. (The file extension is appended to the name
automatically.)

6.

Click Open.7.

Your new page displays in the Project Explorer pane, and the file contents display in
development pane (in the source view).

8.

Include the appropriate .JS and .ASP files.9.

Create a Generic ASP File for eProcess Services

file:///I|/Workflow/DevGuide/Panagon/interdev/creating_generic_asp_files.htm (1 of 2) [9/18/2002 8:04:25 AM]

Refer to the Referenced Panagon Web Services Files and the Referenced Panagon Web WorkFlo files
topics for information on how and why to reference specific files. Refer to Locate the Panagon Web
Services Toolkit Help for more information on using the Panagon Web Services components.

Include the appropriate HTML and scripting code.10.

Save your ASP page.11.

Create a Generic ASP File for eProcess Services

file:///I|/Workflow/DevGuide/Panagon/interdev/creating_generic_asp_files.htm (2 of 2) [9/18/2002 8:04:25 AM]

API Sample Overview
These API samples are a starting place for understanding and developing applications that use these
APIs; other included samples (for example, the Java-based Step Processors and Launch Step Processors)
cannot be correctly understood or modified without first understanding how to use the APIs as
demonstrated in these samples. In general, these samples demonstrate the fundamental requirements of
developing workflow processing applications (sometimes called work performers) that make efficient
use of the APIs.

The API samples are documented extensively in this guide; however, this guide assumes that you are
also looking at the sample source code for context. In addition to including topics explaining how the
samples operate, the Run the unmodified samples topic details how to compile and run the MainSample
sample, which is a simple workflow processing application. Many of the remaining topics include
information on running samples from the command line.

The following table lists, in alphabetical order, the Java sample files and provides a brief description for
each:

Sample file name Description

LaunchSample.java Demonstrates how to open and transfer a workflow
definition file.

LockReportSample.java Demonstrates how to log the work object number and
user information for locked work objects.

Logger.java (helper class) Provides reusable logging functions for the other
sample files.

LogSample.java Illustrates how to write the VWLog record information
to a file.

LogViewer.java Demonstrates how to create a log-viewing tool with
"Select Log", "Create new log index", "Query Log",
and "List Exposed Log Fields" options.

MainSample.java Demonstrates how to develop a simple application in a
modular fashion. This is a top-level application that
calls main functions in the other sample files. These
sample files create and launch a workflow definition,
complete the steps, and write the history information to
a log file.

MilestoneHelper.java (helper class) Provides reusable milestone display-related methods
that are referenced by some of the sample classes.

API Sample Overview

file:///I|/Workflow/DevGuide/Panagon/api_samp/description.htm (1 of 3) [9/18/2002 8:04:26 AM]

MilestoneSample.java Reports milestone definitions in various workflows of
a queue.

OperationsHelper.java (helper class) Provides reusable methods for creating and reporting
on operations on a queue.

OperationsSample.java Creates operations on a queue and reports
configuration information for all operations defined on
a queue.

ProcessSample.java Illustrates how to log process information.

QueueHelper.java (helper class) Provides reusable queue-specific methods which are
referenced by some of the sample classes.

QueueSample.java Displays contents of workflow queues.

RosterHelper.java (helper class) Provides reusable roster-specific methods which are
referenced by some of the sample classes.

RosterSample.java Demonstrates how to write the contents of a roster to a
log file.

SessionHelper.java (helper class) Provides reusable session-specific logon and logoff
session methods that are referenced by some of the
sample classes.

StepProcessorSample.java Retrieves a step element from a queue, set the
comments, displays the step information, and
completes the step.

SysConfigSample.java Illustrates how to create a queue, exposed field, and an
index.

SystemStepHelper.java (helper class) Provides reusable methods for building workflows
with system steps.

SystemStepSample.java Creates and launches a workflow with system steps.

UserInfoSample.java Demonstrates how to retrieve and display user
information.

WFDefinitionSample.java Demonstrates how to create and save a workflow
definition file.

API Sample Overview

file:///I|/Workflow/DevGuide/Panagon/api_samp/description.htm (2 of 3) [9/18/2002 8:04:26 AM]

WorkPerformerSample Illustrates how to create a custom workflow processing
application (also called a work performer) that polls a
queue and dispatches work items.

API Sample Overview

file:///I|/Workflow/DevGuide/Panagon/api_samp/description.htm (3 of 3) [9/18/2002 8:04:26 AM]

LaunchSample
This sample demonstrates how to create a workflow definition object from the workflow definition file
and transfer it to the database. Run the sample by entering a command similar to the following:

java LaunchSample username password <server name>:<port number>/<router instance name>
[wfDefinition_filename | wfDefinition_filename output_filename]

Note For a detailed explanation of the command line, see the Run the sample application section of the
Run the Unmodified Samples topic.

Methods
The LaunchSample class contains two methods: the main(String args[]) method and the
LaunchSample(VWSession vwSession, Logger logger, String wfDefFile) method, which is the
constructor.

main(String args[])

The main method uses common techniques for validating and defaulting argument values. The default
values for log output file and workflow definition file names are LaunchSample.out and Sample.pep,
respectively. The main method constructs and passes vwSession and Logger objects to the sample
constructor. Main() handles the login and logoff for the session with the login() and logoff() methods of
the sample SessionHelper class. It provides workflow logging with an instance of the sample Logger
class. The main method passes the session, the logger, the user name, and the name of the user definition
file to the sample's class constructor.

LaunchSample(VWSession vwSession, Logger, String wfDefFile)

The sample constructor LaunchSample(VWSession vwSession, Logger, String wfDefFile) defines a
workflow, transfers the definition to the system database, creates and comments the launch step, and
dispatches the workflow as follows:

Create a workflow definition object from a file with VWWorkflowDefinition.readFromFile(). This
presumes that local workflow definition (Sample.pep, for example) was created previously (for example,
by the constructor for the sample class WFDefinitionSample).

wflDef = VWWorkflowDefinition.readFromFile(wfDefFile);

Transfer the definition with VWSession.transfer(...) and validate that the transfer was successful:

// Transfer the workflow definition. The second parameter is a unique id.

// Transfer the workflow definition. The second parameter is a unique id.
// We use a unique Content Services ID for this value,
// from the lib/docid /version.

LaunchSample

file:///I|/Workflow/DevGuide/Panagon/api_samp/launchsample.htm (1 of 3) [9/18/2002 8:04:26 AM]

VWTransferResult transferResult = m_vwSession.transfer(wflDef, "uniqueid", false, true);
 if (transferResult.success()){

m_logger.log("The transfer was successful.");

// (less significant code . . .)

 }
 else
 {

 // Display the transfer errors.

 String[] errorArray = transferResult.getErrors();
 if (errorArray != null)
 m_logger.log("\tThe following transfer errors occurred: ", errorArray);
 else
 m_logger.log("\t\tError messages were not available.");
 }

Prepare to create a launch step by getting the version from the VWTransferResult object. Use the version
string as the argument to instantiate a VWStepElement object ("launchStep") with the API method
VWSession.createWorkflow(string). VWStepElement.setComment(string) to label this launch step as
follows:

vwVersion = transferResult.getVersion();

// (less significant code . . .)

launchStep = m_vwSession.createWorkflow(vwVersion);
launchStep.setComment("This is the sample workflow launch step comment");

Use the Logger object to log the launch step properties, which include the names and values of the
parameters that were assigned to this step in a previous invocation of SysConfigSample.

m_logger.log("\nLaunch Step information:\n");
m_logger.log("\tWorkflow Name: " + launchStep.getWorkflowName());
m_logger.log("\tSubject: " + launchStep.getSubject());
m_logger.log("\tComment: " + launchStep.getComment());
m_logger.log("\tStep Description: " + launchStep.getStepDescription());

m_logger.log("\nParameters:\n");

paramNames = launchStep.getParameterNames();
if (paramNames == null)

m_logger.log("\t\t no parameters!");

}
else { // (less significant code . . .)

LaunchSample

file:///I|/Workflow/DevGuide/Panagon/api_samp/launchsample.htm (2 of 3) [9/18/2002 8:04:26 AM]

// Display the parameter names and their values.

for (int i = 0; i < paramNames.length; i++){

if (paramNames[i] != null){

 // Retrieve the parameter value.

value = launchStep.getParameterValue(paramNames[i]);

 // Write the information to the log.

m_logger.log("\t" + paramNames[i] + " = ", value);

}

}

Complete, or dispatch, the launch step with VWStepElement.doDispatch(). The dispatch saves the
changes made to the step (comment properties, in this case) to the workflow database.

launchStep.doDispatch();

This sample, and all of the non-helper class samples, use the Logger and SessionHelper classes in the
main method to log events and initialize the workflow session when it is run as a standalone application.

LaunchSample

file:///I|/Workflow/DevGuide/Panagon/api_samp/launchsample.htm (3 of 3) [9/18/2002 8:04:26 AM]

SessionHelper (helper class)
This is a helper class for other samples. This sample demonstrates how to implement reusable
session-specific methods, logon and logoff, which can be accessed by other classes or applications. (The
sample code creates a session from a router_URL and a user-supplied user name and password with
appropriate access privileges.)

Note For a detailed explanation of the command line, see the Run the sample application section of the
Run the Unmodified Samples topic.

public SessionHelper(String user, String pw, String router, Logger)

The constructor code initializes variables for the user name, password, router_URL specification, and the
logger object. Session logon and logoff are managed by the logon and logoff methods, respectively.

public SessionHelper(String user, String pw, String router, Logger){

m_userName = user;
m_password = pw;
m_routerPath = router;
m_logger = logger;

}

public VWSession logon()

This logon method invokes the VWSession.logon() method and checks for errors.

try
{

// The following code initializes a session object.

m_vwSession = new VWSession(m_userName, m_password, m_routerPath);
}
catch (Exception ex)
{
if (m_logger != null)
 m_logger.log(ex);
else
 ex.printStackTrace();
}
return m_vwSession;

SessionHelper (helper class)

file:///I|/Workflow/DevGuide/Panagon/api_samp/sessionhelper.htm (1 of 2) [9/18/2002 8:04:26 AM]

public void logoff()

The logoff method invokes the VWSession.logoff() method and checks for errors. It can either log
exceptions or print a stack trace, as shown below:

try {

// Logoff the session.

if (m_vwSession != null)
 m_vwSession.logoff();
}
catch (Exception ex){
 if (m_logger != null)
 m_logger.log(ex);
 else
 ex.printStackTrace();
}
finally {
 m_vwSession = null;
}

SessionHelper (helper class)

file:///I|/Workflow/DevGuide/Panagon/api_samp/sessionhelper.htm (2 of 2) [9/18/2002 8:04:26 AM]

Logger (helper class)
This is a helper class to implement logging functions for other sample classes.

Note The sample code assumes you created a session and supplied a user name and password with
appropriate access privileges.

Methods

Logger(String outputFile)

The calling program passes one argument when it invokes the constructor for the logger helper class
sample. The parameter is a string variable (outputFile) that names the log file to open. The constructor
creates an instance of a PrintWriter object ("m_fOut") and ends by displaying the name of the output file
with the following code:

m_fOut = new PrintWriter(new BufferedWriter(new FileWriter(new File(outputFile))), true);
System.out.println("Writing messages to file: " + outputFile);

displayStepElementInfo(VWStepElement vwStepElement) and
displayWorkObjectInfo(VWWorkObject vwWorkObject)

The logger object displays descriptive information for stepElement or WorkObject objects with
Logger.displayStepElementInfo(object) or Logger.displayWorkElementInfo(object), respectively, using
the object to be described as an argument. In each method the logger assembles display lines with the
argument's (stepElement or workObject) retrieval properties, as in the following
Logger.displayStepElementInfo() code:

String svalue = vwStepElement.getWorkObjectName();
log("\t\t\t"+ "WorkObjectName" + "=" + svalue);

svalue = vwStepElement.getTag();
log("\t\t\t"+ "Tag" + "=" + svalue);

log(Exception ex)

Prints a stack trace with ex.printStackTrace().

log(String text, Object arg1)

If argument "Object arg1" is NULL, the program invokes log(String text), which is described in the next
method description, below. If "Object arg1" is a string, the method concatenates the two string arguments
and invokes log(String text).

If argument "Object arg1" is an object or object array argument (usually an array of numerical values),

Logger (helper class)

file:///I|/Workflow/DevGuide/Panagon/api_samp/logger.htm (1 of 2) [9/18/2002 8:04:26 AM]

the method builds a string from the object using StringBuffer() methods as follows:

Make an array for the argument parameter and create a null Stringbuffer.

Object[] args = (Object[])arg1;
StringBuffer buffer = new StringBuffer();

Append an opening format string.

buffer.append("{");

Append each argument to the StringBuffer() object.

for (int i = 0; i < args.length; i++) {

Append a format string.

if (i > 0) buffer.append(",");

buffer.append(args[i]);

}

Append a closing format string.

buffer.append("}");

Apply StringBuffer.toString() to convert elements to strings and call log(String text, Object arg1) again.
Note the ultimate result of this will be to concatenate the two strings and invoke log(String text).

log(text, buffer.toString());

log(String text) and
logAndDisplay(String text)

Logger.log(string svalue) logs whatever the "svalue" string contains. "svalue" is often a string form of a
data element that belongs to an object. You may wish to concatenate explanatory and formatting
information in the argument; for example:

Logger.log("\t\t\t"+ "Tag" + "=" + svalue);

For each line passed to Logger.log(string text), the method invokes an instance of the printWriter object
(m_fOut).

 if (m_fOut != null)m_fOut.println(text);
 else System.out.println(text);

logAndDisplay(String text) uses the same code and adds a standard system display method as follows:

System.out.println(text);

Logger (helper class)

file:///I|/Workflow/DevGuide/Panagon/api_samp/logger.htm (2 of 2) [9/18/2002 8:04:26 AM]

WFDefinitionSample
This sample demonstrates how to create and save a workflow definition in a file. Run the sample by
entering a command similar to the following:

java WFDefinitionSample username password <server name>:<port number>/<router instance name>
[wfDefinition_filename | wfDefinition_filename output_filename]

Note For a detailed explanation of the command line, see the Run the sample application section of the
Run the Unmodified Samples topic.

Methods

main(String args[])

The main method uses common techniques for validating and defaulting argument values. The default
values for log output file and workflow definition file names are WFDefinitionSample.out and
Sample.pep, respectively. The main method sets local variables to point to the VWSession and Logger
object arguments and passes them to the sample constructor. Main() handles the login and logoff for the
session with the login() and logoff() methods of the sample SessionHelper class. It provides workflow
logging with an instance of the sample Logger class. The main method passes the session, the logger, the
user name, and the name of the user definition file to the constructor for the class.

WFDefinitionSample(VWSession vwSession, Logger, String
userName, String wfDefFile)

The constructor WFDefinitionSample(VWSession, Logger, String, String) performs common exception
handling and demonstrates a variety of workflow definition functions. It creates the default workflow
definition, sets some the workflow definition general properties, and creates some fields. It sets some
properties for the main map, sets the description for the main map and the launch step, and creates some
steps in the main map. Finally, it writes the validated workflow definition to a file. The code is organized
as follows:

Create the default workflow definition:

workflowDef = new VWWorkflowDefinition();

Set subject, description, and name properties in the workflow definition:

workflowDef.setSubject("\"This is the sample workflow definition subject\"");
workflowDef.setDescription("This is the sample workflow definition description");
workflowDef.setName("Sample Workflow");

Create an integer and a string field in the workflow definition:

workflowDef.createFieldUsingString("Field1_Integer", "99", VWFieldType.FIELD_TYPE_INT, false);

WFDefinitionSample

file:///I|/Workflow/DevGuide/Panagon/api_samp/wfdefinitionsample.htm (1 of 4) [9/18/2002 8:04:27 AM]

workflowDef.createFieldUsingString("Field2_String", "{\"\"}", VWFieldType.FIELD_TYPE_STRING,
true);

Set some properties for the map:

 mapDef = workflowDef.getMainMap();
 mapDef.setDescription("This is the sample workflow map");

Get the launch step and set its description:

 currentStepDef = mapDef.getStartStep();
 currentStepDef.setDescription("This is the description for the launch step.");
 precedingStepDef = currentStepDef;

Iteratively create three steps in the "Workflow" (main) map with the local addStep method.

 for (int i = 0; i < 3; i++)
{
 currentStepDef = addStep(mapDef, "Step" + i, userName);
 if (currentStepDef != null){

 // create a route

 precedingStepDef.createRoute(currentStepDef.getStepId());

 // reset the preceding step

 precedingStepDef = currentStepDef;
 }
}

Write the validated workflow definition to a file:

 if (validate(workflowDef, vwSession)){
 logger.log("Writing workflow definition to file: " + wfDefFile);
 workflowDef.writeToFile(wfDefFile);
 }

Additional code in this method performs common user notification, cleanup, and exception handling.

private VWStepDefinition addStep(VWMapDefinition mapDef, String
stepName, String userName)

Creates and initializes a workflow step. The code is organized as follows:

Create a destination step for a new route:

 newStepDef = mapDef.createStep(stepName);
 nStepId = newStepDef.getStepId();

WFDefinitionSample

file:///I|/Workflow/DevGuide/Panagon/api_samp/wfdefinitionsample.htm (2 of 4) [9/18/2002 8:04:27 AM]

Create an integer parameter and a string parameter. The last argument for the second
VWStepDefinition.createParameter(...) is set to true because the programmer expects the value
expression for this parameter to evaluate to an array.

 newStepDef.createParameter("Field1_Integer", VWModeType.MODE_TYPE_IN, "99",
VWFieldType.FIELD_TYPE_INT, false);
 newStepDef.createParameter("Field2_String", VWModeType.MODE_TYPE_OUT, "Field2_String",
VWFieldType.FIELD_TYPE_STRING, true);

Create a named participant and add it to the step

 participants = new VWParticipant[1];
 participants[0] = new VWParticipant();
 participants[0].setParticipantName("\"" + userName + "\"");

 newStepDef.setParticipants(participants);

Set the queue name, deadline, and reminder times.

The deadline value represents the number of minutes between receipt of the step by an application and
expiration of the step's deadline timer at runtime. The reminder value represents the number of minutes
prior to expiration of the deadline timer at which the reminder timer expires at runtime:

 newStepDef.setQueueName("Inbox");
 newStepDef.setDeadline(1000);
 newStepDef.setReminder(500);

Set the step description and design display location. The location coordinates in this example are
arbitrary.

 newStepDef.setDescription("This is the description for step" + nStepId + ".");
 newStepDef.setLocation(new java.awt.Point(nStepId * 100, 150));

Write out the successful step-creation status.

 m_logger.log("Creation and initialization of step: " + nStepId + " is complete.");

}

Additional code in this method handles common cleanup, exception handling, and the return statement
for the new VWStepDefinition object.

private boolean validate(VWWorkflowDefinition workflowDef,
VWSession)

This method provides common exception and message handling when invoking the
VWStepDefinition.validate(...) method. The "false" value of the second parameter of
workflowDef.validate() will cause the system to assume that the caller has already set any join step IDs
that may exist. Since there are no join step IDs in the example, this enhances performance.

 VWValidationError[] validationErrors = null;

WFDefinitionSample

file:///I|/Workflow/DevGuide/Panagon/api_samp/wfdefinitionsample.htm (3 of 4) [9/18/2002 8:04:27 AM]

 validationErrors = workflowDef.validate(vwSession, false);

WFDefinitionSample

file:///I|/Workflow/DevGuide/Panagon/api_samp/wfdefinitionsample.htm (4 of 4) [9/18/2002 8:04:27 AM]

SysConfigSample
This sample demonstrates how to create a queue, exposed fields, and an index. Run the sample by
entering a command similar to the following:

java SysConfigSample username password <server name>:<port number>/<router instance name>
[output_filename]

Note For a detailed explanation of the command line, see the Run the sample application section of the
Run the Unmodified Samples topic.

Methods
The SysConfigSample class contains two methods: the main(String args[]) method and the
SysConfigSample(VWSession vwSession, Logger logger) method, which is the constructor method.

main(String args[])

The main method uses common techniques for validating and defaulting argument values. The default
value for the log output file is SysConfigSample.out. The main method constructs and passes vwSession
and Loggerobjects to the sample constructor. Main() handles the login and logoff for the session with the
login() and logoff() methods of the sample SessionHelper class. It provides workflow logging with an
instance of the sample Logger class. The main method passes the session and the logger to the
constructor method.

SysConfigSample(VWSession vwSession, Logger logger)

The constructor SysConfigSample(VWSession, Logger) performs common exception handling and
demonstrates a variety of system configuration methods. It displays various SysConfig parameters,
creates a test queue, adds one exposed field (integer), and adds one index. The code that performs these
tasks is organized as follows:

Fetch the system configuration object, sysConfig, using the session object:

sysConfig = vwSession.fetchSystemConfiguration();

Use the system configuration object to get three of the system configuration parameters. Display them
with the logger.log method:

logger.log("Logging state = " + sysConfig.getLoggingState());
logger.log("Max DB operations = " + sysConfig.getMaxDBOperations());
logger.log("Max instructions = " + sysConfig.getMaxInstructions());

Create a user-centric test queue:

// Create a test queue; add one exposed field (an integer) and one index.

SysConfigSample

file:///I|/Workflow/DevGuide/Panagon/api_samp/sysconfigsample.htm (1 of 2) [9/18/2002 8:04:27 AM]

queueDef = sysConfig.createQueueDefinition("test", VWQueue.QUEUE_TYPE_USER_CENTRIC);
if (queueDef != null){

Add an exposed field ("field1"):

VWExposedFieldDefinition exposedFieldDef = queueDef.createFieldDefinition("field1", 1, 0);

Create the index:

String[] fNames = {new String("field1")};
VWIndexDefinition id = queueDef.createIndexDefinition("index1", fNames);

Inform the user in the log:

logger.log("The queue 'test' was created with one exposed field ('field1') and one index ('index1').");

Commit the system configuration changes:

String[] errors = sysConfig.commit();

Finally, the following code logs what happened:

if (errors != null){
 logger.log("Errors: ", errors);
} else
 logger.log("All changes have been committed.");

Additional code for SysconfigSample performs common cleanup and exception handling.

SysConfigSample

file:///I|/Workflow/DevGuide/Panagon/api_samp/sysconfigsample.htm (2 of 2) [9/18/2002 8:04:27 AM]

LockReportSample
This stand-alone sample demonstrates how to log the work object number and user information for
locked work objects. Run the sample by entering a command similar to the following:

java LockReportSample username password <server name>:<port number>/<router instance name>
[output_filename]

Note For a detailed explanation of the command line, see the Run the sample application section of the
Run the Unmodified Samples topic.

Methods
The LockReportSample class contains two methods: the main(String args[]) method and the
LockReportSample(VWSession vwSession, Logger logger) method, which is the constructor.

main(String args[])

The main method uses common techniques for validating and defaulting argument values. If the user
does not supply an output filename, the main method supplies LockReportSample.out. The method sets
local variables to point to the VWSession and Logger object arguments and passes them to the sample
constructor. This method handles the login and logoff for the session with the login() and logoff()
methods of the sample SessionHelper class. The main method provides workflow logging functions by
creating an instance of the sample Logger class. The LockReportSample main method passes the session
and the logger instances to the LockReportSample constructor.

The following code from the LockReportSample main method enables it to operate as a stand-alone
program. It validates the arguments and supplies a default value for the [output_filename] string, as
needed.

if (args.length < 3 || (args.length > 0 && args[0].compareTo("?") == 0)){

System.out.println("Usage: LockReportSample username password
router_URL [output_filename]");
System.exit(1);

}

 // The file name (for output) is optional.

if(args.length > 3) fileName = args[3];
else

// Supply a default output_filename.

fileName = new String("LockReportSample.out");

LockReportSample

file:///I|/Workflow/DevGuide/Panagon/api_samp/lockreportsample.htm (1 of 2) [9/18/2002 8:04:28 AM]

Instantiate Logger and session objects. The sample SessionHelper class instantiates the session object:

logger = new Logger(fileName);

// Create the session instance and log on.

sessionHelper = new SessionHelper(args[0], args[1], args[2], logger);

Log onto the session with sessionHelper.logon() and construct an instance of the LockReportSample
class.

vwSession = sessionHelper.logon();
if (vwSession != null) {

 // Create the sample class.

 sampleClass = new LockReportSample(vwSession, logger);
}

When the class terminates, the main method terminates the session with sessionHelper.logoff().
Additional code in the main method manages common cleanup and error handling.

LockReportSample(VWSession vwSession, Logger logger)

The code for the LockReportSample constructor is organized as follows:

Output a header for the lock report withlogger.logAndDisplay(String):

logger.logAndDisplay("\n~ Begin writing lock report.");

Create a QueueHelper object:

queueHelper = new QueueHelper(vwSession, logger);

Log the lock status of each work object in each queue.

queueHelper.displayQueueLockStatus();

LockReportSample

file:///I|/Workflow/DevGuide/Panagon/api_samp/lockreportsample.htm (2 of 2) [9/18/2002 8:04:28 AM]

QueueHelper (helper class)
This is a helper class with reusable methods for other samples or applications, particularly the
QueueSample. The sample demonstrates how to get queue information and report on various
queue-related objects.

Note The sample code assumes you created a session and supplied a user name and password with
appropriate access privileges. The QueueHelper(VWSession, Logger) constructor sets local variables to
point to its SessionHelper and Logger objects, which are initialized by the main method. The
QueueHelper.main() code is as follows:

public QueueHelper(VWSession vwSession, Logger){
m_vwSession = vwSession;
m_logger = logger;
}

Methods
The following sections describe the public QueueHelper class methods.

displayQueueContents(VWQueue vwQueue)

Displays the contents of a Queue: properties of queue elements, step elements, and work objects. This
method retrieves the queue information using methods displayQueueElements(...),
displayStepElements(...), and displayWorkObjects(...), which are described below.

displayQueueElementInfo(VWQueueElement vwQueueElement)

Displays the properties of a single queue element with the following steps:

Validate the input VWQueueElement as follows:

if (vwQueueElement == null){
m_logger.log("\t The queue element is null!");
return;}

Set a string array (fieldNames) to the names of the system fields as follows:

fieldNames = vwQueueElement.getSystemDefinedFieldNames();

Validate that there were system fields:

if (fieldNames == null){...}

Log the name and value of each system field:

} else {

QueueHelper (helper class)

file:///I|/Workflow/DevGuide/Panagon/api_samp/queuehelper.htm (1 of 7) [9/18/2002 8:04:28 AM]

m_logger.log("\t\tSystem Defined Fields:");
for (int i = 0; i < fieldNames.length; i++)
{

if (fieldNames[i] != null){

value = vwQueueElement.getFieldValue(fieldNames[i]);

// Display the field name and its value.

m_logger.log("\t\t\t" + fieldNames[i] + "=" + value);

 }
 }
}

User-defined fields are displayed in the same way that is shown above, but the field names array is set
with a different method as follows:

fieldNames = vwQueueElement.getUserDefinedFieldNames();

Properties of the queue element are logged individually. For example, the queue element work object
number, the work object name, and the work object tag are logged as follows:

String bvalue = vwQueueElement.getWorkObjectNumber();
m_logger.log("\t\t\t"+ "WorkObjectNumber" + "=" + bvalue);

String svalue = vwQueueElement.getWorkObjectName();
m_logger.log("\t\t\t"+ "WorkObjectName" + "=" + svalue);

svalue = vwQueueElement.getTag();
m_logger.log("\t\t\t"+ "Tag" + "=" + svalue);

Other queue element methods are used to get additional property values, and the results are logged (as
shown above). This method uses the following queue element methods to obtain property values:
getWorkClassName(), getQueueName(), getOperationName(), getLockedStatus(), and
getLockedMachine().

displayQueueElements(VWQueue vwQueue)

Queries the series of all queue elements. displayQueueElements(...) performs the following steps:

The first step to query a series of all queue elements is to create a buffer for the items retrieved in each
server fetch transaction with the following code:

// Set the maximum number of items to be retrieved in each server
// fetch transaction. In this case, setting the value to 25 will require
// less memory for each fetch than the default setting (50).

vwQueue.setBufferSize(25);

Construct a queue query object and query for all elements.

QueueHelper (helper class)

file:///I|/Workflow/DevGuide/Panagon/api_samp/queuehelper.htm (2 of 7) [9/18/2002 8:04:28 AM]

qQuery = vwQueue.createQuery(null, null, null, 0, null, null,
VWFetchType.FETCH_TYPE_QUEUE_ELEMENT);

Fetch the first queue element using the VWQueueQuery object. Determine is any queue elements exist.

vwQueueElement = (VWQueueElement)qQuery.next();
if (vwQueueElement == null){
m_logger.log("\t Queue elements: none");

If there are queue elements, the method uses local method displayQueueElementInfo() to display the
queue element information as follows:

} else {
do {

 // display the queue element information

 displayQueueElementInfo(vwQueueElement);
}

Assign a new queue element with the next() method and continue the loop, if there is another element:

while ((vwQueueElement = (VWQueueElement)qQuery.next()) != null);
}

displayQueueLockStatus() (below) performs a similar query of all queue elements, but it differs by
controlling the loop with the qQuery.next() method.

displayQueueLockStatus()

Displays lock status information for all workflow queue elements. The method logs queue names with
the processing steps described below.

Put the queue names into string array queueNames, using QueueHelper.getQueueNames(...) and
QueueHelper.getQueue(...) (described separately below), as follows:

queueNames = getQueueNames(false);
if (queueNames != null){

m_logger.log("Found " + queueNames.length + " queues (NOT including system
queues):");

Display each queue name as follows:

for (int i = 0; i < queueNames.length; i++){

 // Get the queue object

vwQueue = getQueue(queueNames[i]);

 // Display queue name

QueueHelper (helper class)

file:///I|/Workflow/DevGuide/Panagon/api_samp/queuehelper.htm (3 of 7) [9/18/2002 8:04:28 AM]

m_logger.log("\nQueue: " + vwQueue.toString());

// Note that the queue name could also be displayed with:
// m_logger.log("\nQueue: " + queueNames[i]);

For each queue, set the maximum number of items to be retrieved in each server fetch (query)
transaction. In this case, setting the value to 25 will require less memory for each fetch than the default
setting (50).

vwQueue.setBufferSize(25);

Construct a queue query object and query for all locked elements. Note that the input flag limits the
returned object list to locked objects only. The query flag is read and lock, the filter expression is
"F_Locked = 1", and the fetch type is the Queue Element.

qQuery = vwQueue.createQuery(null, null, null, 1, "F_Locked = 1", null, 3);

Note that this is equivalent to:

qQuery = vwQueue.createQuery(null, null, null, QUERY_READ_LOCKED,
"F_Locked = 1", null, FETCH_TYPE_QUEUE_ELEMENT);

Query a series of queue elements for work object number with the VWQueueQuery.next(),
VWQueueQuery.hasnext(), queueElement.getWorkObjectNumber(), and
VWQueueElement.getLockedUser() methods and log the result:

if (qQuery.hasNext()){

// Display column headers for list of locked workobjects.

m_logger.log("\t WorkObject Number\t\t\tLocked User");
do {

// Fetch the next queue element using the VWQueueQuery object.

queueElement = (VWQueueElement)qQuery.next();

// Display the workobject number of each locked workobject.

m_logger.log("\t " +
queueElement.getWorkObjectNumber() + "\t" +
queueElement.getLockedUser());

}while (qQuery.hasNext());

} . . .

 }

}

QueueHelper (helper class)

file:///I|/Workflow/DevGuide/Panagon/api_samp/queuehelper.htm (4 of 7) [9/18/2002 8:04:28 AM]

displayQueueNames()

Logs all queue names with the following steps:

Get a string array of queue names:

queueNames = getQueueNames(true);

Invoke the logger.log method to log each one:

for (int i = 0; i < queueNames.length; i++){
m_logger.log("\t\t" + queueNames[i]);
}

displayStepElements(VWQueue vwQueue),
displayStepElements(VWQueue vwQueue), and
displayWorkObjects(VWQueue vwQueue)

These methods display property information for a group of queue, step, or work elements (work objects).
The processing steps these methods are similar to each other. All the methods begin by setting up an
iterative query of the element group as follows:

Validate the VWQueue object:

if (vwQueue == null){
m_logger.log("The queue object is null!");
return;
}

Set the maximum number of items to be retrieved in each server fetch transaction. Setting the value to 25
will require less memory for each fetch than the default setting (50).

vwQueue.setBufferSize(25);

Construct a query object for the type of object group being processed. The query object is instantiated in
accordance appropriately with the last input parameter (fetchType) of the VWQueue.createQuery method
as shown below:

for step elements

qQuery = vwQueue.createQuery(null, null, null, 0, null, null,
VWFetchType.FETCH_TYPE_STEP_ELEMENT);

for work elements

qQuery = vwQueue.createQuery(null, null, null, 0, null, null,
VWFetchType.FETCH_TYPE_WORKOBJECT);

for queue elements

qQuery = vwQueue.createQuery(null, null, null, 0, null, null,

QueueHelper (helper class)

file:///I|/Workflow/DevGuide/Panagon/api_samp/queuehelper.htm (5 of 7) [9/18/2002 8:04:28 AM]

VWFetchType.FETCH_TYPE_QUEUE_ELEMENT);

Fetch the first element using the VWQueueQuery object:

vwElement = (VWStepElement)qQuery.next();

Check to see if there are any queue elements:

if (vwElement == null){
m_logger.log("\t Number of elements: none");
}
else
{

Iteratively examine each element and display appropriate properties for the element type:

 do {

 // Display the queue element information with one of the following:
 // displayQueueElementInfo(vwElement); // for queue elements, or:
 // displayStepElementInfo(vwElement); // for step elements, or:
 //displayWorkObjectInfo(vwElement); // for work objects

 }

// Advance to the next element with one of the following while loop footers:
// while ((vwQueueElement = (VWQueueElement)qQuery.next()) != null); // or
// while ((vwQueueElement = (VWStepElement)qQuery.next()) != null); // or
// while ((vwQueueElement = (VWWorkObject)qQuery.next()) != null);

}

VWQueue getQueue(String queueName)

Return the queue object for the queueName requested, after Initializing VWQueue object (vwQueue) and
setting it as follows:

vwQueue = m_vwSession.getQueue(queueName);

//(Error handling code . . .)

return vwQueue;

String[] getQueueNames(boolean bIncludeSystem)

Returns an array of queue names and shows how to use session object flags to control what queue names
are fetched, with the following processing steps:

Initialize the fetch flags variable (nflags) and a string array (queueNames)

int nFlags = VWSession.QUEUE_PROCESS | VWSession.QUEUE_USER_CENTRIC |

QueueHelper (helper class)

file:///I|/Workflow/DevGuide/Panagon/api_samp/queuehelper.htm (6 of 7) [9/18/2002 8:04:28 AM]

VWSession.QUEUE_IGNORE_SECURITY;

String[] queueNames = null;

 Use the passed in flag (bIncludeSystem) to optionally include system queues:

if (bIncludeSystem) nFlags |= VWSession.QUEUE_SYSTEM;

Retrieve the list of available queues with VWSession.fetchQueueNames(int)

queueNames = m_vwSession.fetchQueueNames(nFlags);

// (error handling code . . .)

return queueNames; // (a string array)

QueueHelper (helper class)

file:///I|/Workflow/DevGuide/Panagon/api_samp/queuehelper.htm (7 of 7) [9/18/2002 8:04:28 AM]

LogSample
This sample demonstrates how to write the process default event log record information to a file. Run
the sample by entering a command similar to the following:

java LogSample username password <server name>:<port number>/<router instance name>
[output_filename]

Note For a detailed explanation of the command line, see the Run the sample application section of the
Run the Unmodified Samples topic.

Methods
The LogSample class contains two methods: the main method main(String args[]) and the constructor
method LogSample(VWSession vwSession, Logger logger).

main(String args[])

The main method uses common techniques for validating and defaulting argument values. The default
value for the log output file is "LogSample.out". The main method constructs and passes vwSession and
Logger objects to the sample constructor. Main() handles the login and logoff for the session with the
login() and logoff() methods of the sample SessionHelper class. It provides workflow logging with an
instance of the sample Logger class. The main method passes the session and the logger to the sample's
class constructor.

Logsample(VWSession vwSession Logger logger)

The constructor for the LogSample class notifies the user of its work and creates a log query object for
the default event log. It validates the object, its elements, and the element fields and displays element and
field information. The LogSample constructor performs this as follows:

Notify the user.

logger.logAndDisplay("\n~ Starting LogSample execution.");

Get the log object for the DefaultEventLog and log its name.

vwLog = vwSession.fetchEventLog("DefaultEventLog");
logger.log("Log: " + vwLog.toString());

Set the maximum number of elements to 25, which is half the default value of 50. A value of 25 will
require less memory for each fetch.

vwLog.setBufferSize(25);

Construct a log query object and query for all elements. Create a VWLog class query with the
VWLog.startQuery() method. Note that this contrasts with queue and roster query objects, which are

LogSample

file:///I|/Workflow/DevGuide/Panagon/api_samp/logsample.htm (1 of 3) [9/18/2002 8:04:29 AM]

constructed by createQuery() methods.

logQuery = vwLog.startQuery(null, null, null, 0, null, null);
logElement = logQuery.next();

Check to see if there are any log elements.

if (logElement == null){
logger.log("\t Log elements: none");
}
else { . . .

Iterate through the log elements. Log each element to the output file.

Put the element's field names into a string array with the VWLogElement.getFieldnames() method, and
output a message if no fields are found.

do {
logger.log("\t Log element:");

 // Display the fields.

fieldNames = logElement.getFieldNames();

if (fieldNames == null){

logger.log("\t\t No fields!");

} else {

logger.log("\t\t Fields:");

Retrieve and display each field name and its value. VWLogElement.getFieldValue(string) returns an
object that is the corresponding value for the fieldnames.

 for (int i = 0; i < fieldNames.length; i++){

if (fieldNames[i] != null){

 // Retrieve the field value object.

value = logElement.getFieldValue(fieldNames[i]);

Display a value string for the field value object by invoking logger.log(String, Object).

// Display the field name and value(s). Note that this log method takes an object for its second
parameter.

logger.log("\t\t\t" + fieldNames[i] + " = ", value);

}

}

LogSample

file:///I|/Workflow/DevGuide/Panagon/api_samp/logsample.htm (2 of 3) [9/18/2002 8:04:29 AM]

 }

while ((logElement = logQuery.next()) != null);
}

} // . . .

Additional code handles messages, exceptions, and cleanup.

LogSample

file:///I|/Workflow/DevGuide/Panagon/api_samp/logsample.htm (3 of 3) [9/18/2002 8:04:29 AM]

LogViewer
This sample demonstrates how to create a log viewing tool that uses Swing components to render the
user interface. Run the sample by entering the following command line:

java LogViewer

The main method invokes the constructor VWSample3A(), which sets up a dialog box that is the user
interface to the log viewing tool. The dialog contains a system menu with "Select system/router",
"logon", and "logoff" items, and it contains a log menu with "Select Log", "Create new log index",
"Query Log", and "List Exposed Log Fields" items. The program responds to each of these menu
selections according to the code in the actionPerformed method. Each program response is described in
its own section below.

Select system/router

Selecting this menu choice allows the user to choose the system and router to which to connect. The
input must be in the following form:

<server_name>:<port_number>/<router_instance_name>

The above format is identical to that of the router_URL parameter in the API VWSession() constructor or
VWSession.logon. For a detailed explanation of the command, see the Run the sample application
section of the Run the Unmodified Samples topic.

Logon

A Swing component collects the username and password. The program passes this information, along
with the router_URL from the router selection (Select system/router, above) to the API VWSession
constructor, as follows:

s = new VWSession(uname, pword, routerName);

Logoff

Invoke the VWSession.logoff method to free system resources as follows:

s.logoff();

Object "s" represents the instance of the session that was created at the time of the logon.

Select Log

The program creates an array of strings containing the log names with the API
VWSession.fetchEventLogNames() method as follows:

String[] elogNames = s.fetchEventLogNames();

LogViewer

file:///I|/Workflow/DevGuide/Panagon/api_samp/logviewer.htm (1 of 5) [9/18/2002 8:04:29 AM]

The program opens a dialog box that prompts the user to select a log by name, and when a name is
selected, it creates an instance of the API VWLog class with that name and notifies the user with the
following code:

if (logName != null){
 try
 {
 vw_Log = s.fetchEventLog(logName);
 isLogSelected = true;
 JOptionPane.showInternalMessageDialog(dpane, "Opened " + logName);
 }
 catch (Exception e)
 {
 e.printStackTrace();
 JOptionPane.showInternalMessageDialog(dpane, "Unable to open " + logName);
 isLogSelected = false;
 }
}

Object "s" above represents the instance of the session that was created at the time of the logon.

Query Log

When the user makes this menu selection, the program first creates a VWLogDefinition object with the
VWLog.fetchLogDefinition() method. The VWLogDefinition.getIndexes() method creates an array of
VWIndexDefinition objects as follows:

VWLogDefinition vw_LogDef = vw_Log.fetchLogDefinition();
VWIndexDefinition[] vw_Indexes = vw_LogDef.getIndexes();

Using the VWIndexDefinition object array, the program creates a dialog box from which the user may
select an index for an index query. Store the select index in a VWIndexDefinition object name vw_Idx:

VWIndexDefinition vw_Idx = vw_Indexes[xix];

The next dialog the program displays asks the use to select a query method cancel. Cancellation results in
the program returning from the LogViewer method; otherwise, the user selects either "Basic Query" or
"Index-Based Query", and the program creates a log query object. Log query object vwq is initialized as
follows:

VWLogQuery vwq = null;

If the user selects Index-based query, the logViewer method creates another dialog box that enables the
user to select maximum and minimum values for each component field of the selected index. The first
step is to load a string array with a sorted list of index field names, using the
VWIndexDefinition.getFieldNames() method as follows:

String[] idxFieldNames = vw_Idx.getFieldNames();
Arrays.sort(idxFieldNames);

LogViewer

file:///I|/Workflow/DevGuide/Panagon/api_samp/logviewer.htm (2 of 5) [9/18/2002 8:04:29 AM]

The code below creates an array of VWExposedFieldDefinition objects containing the exposed log
definition fields, using the VWLogDefinition.getFields() method. The next line initializes an array of
VWExposedFieldDefinition objects, fieldDefs, with the same number of elements.

VWExposedFieldDefinition[] vw_EFDef = vw_LogDef.getFields();
VWExposedFieldDefinition[] fieldDefs = new VWExposedFieldDefinition[idxFieldNames.length];

The objects for the exposed field definitions that are part of the selected index are loaded into the empty
array fieldDefs[] with the same index as the index field names as follows:

for (int i=0;i<vw_EFDef.length;i++){
 int x = Arrays.binarySearch(idxFieldNames, vw_EFDef[i].getName());
 if (x >= 0){
 fieldDefs[x] = vw_EFDef[i];
 }
}

A dialog box displays field definitions and their types with text box pairs for the user to fill in minimum
and maximum values. The program copies these minimum and maximum values into two object arrays,
one for minimum values and the other for maximum values, respectively. These arrays, min and max, are
arguments for the VWLOG.startQuery() method to create a log query object, as shown below:

vwq = vw_Log.startQuery(vw_Idx.getName(), min, max, 0, null, null);

If the Basic Query method is chosen, the program immediately creates the log query object. The min and
max object arrays are replaced by NULLs, as follows:

vwq = vw_Log.startQuery(vw_Idx.getName(), null, null, 0, null, null);

The program employs a logElement object to load information from the log query object into ArrayList
objects as follows:

VWLogElement le = null; // Initialize data targets:
ArrayList eventTypes = new ArrayList();
ArrayList timeStamps = new ArrayList();
ArrayList seqNumber = new ArrayList(); // Load data targets:

while (vwq.hasNext()){
 le = vwq.next();
 eventTypes.add(VWLoggingOptionType.getLocalizedString(le.getEventType()));
 timeStamps.add(le.getTimeStamp());
 seqNumber.add(String.valueOf(le.getSequenceNumber()));
}

In the code above, the VWLogElement methods, getEventType(), getTimeStamp(), and
 getSequenceNumber() extract events, time stamps, and sequence numbers from an iterated series of log
elements that are derived from the log query object.

The three types of information for each log element are loaded into a two-dimensional array as follows:

LogViewer

file:///I|/Workflow/DevGuide/Panagon/api_samp/logviewer.htm (3 of 5) [9/18/2002 8:04:29 AM]

Object[] e1 = eventTypes.toArray();
Object[] e2 = timeStamps.toArray();
Object[] e3 = seqNumber.toArray();

Object[][] data = new Object[e1.length][3];

for (int i=0;i<e1.length;i++){
 data[i][0] = e1[i];
 data[i][1] = e3[i];
 data[i][2] = e2[i];
}

Finally, the program uses this data array as input to Swing components that display event type, sequence
number, and time stamp in a table, one row for each log element.

Create new log index

Indexes on exposed log fields serve to speed up queries, just as indexes on databases do. When the
"Create new log index" option is selected, the program uses the API VWSystemConfiguration and
VWLogDefinition classes to handle index information. Log index creation begins by creating a
VWSystemConfiguration object with the VWSession.fetchSystemConfiguration method and a
VWLogDefinition object with the VWLog.fetchLogDefinition() method:

VWSystemConfiguration sysConfig = s.fetchSystemConfiguration();
VWLogDefinition vw_LogDef = vw_Log.fetchLogDefinition();

The VWLogDefinition object method, vw_LogDef.getFields(), loads an exposed field definition object,
vw_EFDef, whose getname() method subsequently loads a string array, EFDefNames[]:

VWExposedFieldDefinition[] vw_EFDef = vw_LogDef.getFields();

for (int i=0;i<vw_EFDef.length;i++){
 EFDefNames[i] = vw_EFDef[i].getName();
}

A Swing component dialog prompts the user to choose indexes and specify a name. The components
output an array of indexes, idx[], to the Exposed Field Definition Names array. The program loads string
array "fields" with the chosen index names as follows:

String[] fields = new String[idx.length];
for (int i=0;i<idx.length;i++){
 fields[i] = EFDefNames[idx[i]];
}

The program saves the user specified name in a string variable, "name".
VWLogDefinition.createIndexDefinition(..., ...) uses this name and the fields string array created above
to create an index for the log definition as follows:

vw_LogDef.createIndexDefinition(name, fields);

LogViewer

file:///I|/Workflow/DevGuide/Panagon/api_samp/logviewer.htm (4 of 5) [9/18/2002 8:04:29 AM]

Finally, the program updates the system configuration with the new log definition. Note that the
configuration must be committed with the VWSystemConfiguration.commit method:

sysConfig.updateLogDefinition(vw_LogDef);
String[] err = sysConfig.commit();

The program can use the returned string array for common error handling.

List Exposed Log Fields

The code for this selection shows how to create a list of all exposed fields in the currently selected log.
The program creates three objects: a VWLogDefinition object, a VWExposedFieldDefinition object
array, and a String array of exposed field names. The VWLog.fetchLogDefinition() method loads the log
definition object, and the VWLogDefinition.getFields() method loads an array of exposed fields as
follows:

VWLogDefinition vw_LogDef = vw_Log.fetchLogDefinition();
VWExposedFieldDefinition[] vw_EFDef = vw_LogDef.getFields();

The exposed field's names are copied into a string array with the following code:

String[] EFDefNames = new String[vw_EFDef.length];

for (int i=0;i<vw_EFDef.length;i++){
 EFDefNames[i] = vw_EFDef[i].getName();
}

Finally, the program creates a dialog box that inputs the log name and an array of Strings EFDefNames[]
to display the exposed fields.

LogViewer

file:///I|/Workflow/DevGuide/Panagon/api_samp/logviewer.htm (5 of 5) [9/18/2002 8:04:29 AM]

MainSample
The MainSample application is a top-level application that demonstrates how to call the runtime
operations in the other sample files. The MainSample application represents one way of developing a
simple application to work with the APIs.

This sample application does not use the Swing components found in the Step Processors and Launch
Step Processor samples or the LogViewer sample. Instead, the sample relies on the command line input
and the standard console for output.

Run the sample by entering a command similar to the following:

java LaunchSample username password <server name>:<port number>/<router instance name>
[wfDefinition_filename | wfDefinition_filename output_filename]

Note For a detailed explanation of the command line, see the Run the sample application section of the
Run the Unmodified Samples topic.

MainSample initializes a logger object and a session object, which will be used throughout the workflow
process. MainSample instantiates the session object as an instance of the SessionHelper class and uses it
to log onto a session. These two objects are then passed to sampleClass, which is an instance of the
MainSample class.

The sampleClass object creates and launches a workflow definition, completes the steps, and writes
history information to log files. To achieve this, the sampleClass object configures the workflow session
with an instance of the SysConfigSample class. SysConfigSample creates a queue, an exposed field, and
an index. To view details of workflow design and launch, see the WFDefinitionSample and
LaunchSample classes, which are used by this sample.

The outer class sampleClass then invokes the runtime operations, which are performed by the following
sample classes:

RosterSample: demonstrates how to write the contents of a roster to a log file.●

StepProcessorSample: retrieves a step element from a queue, set the comments, displays the step
information, and completes the step.

●

QueueSample: displays contents of workflow queues, using QueueHelper.●

ProcessSample: illustrates how to log process information.●

LogSample: writes the VWLog record information to a file.●

Note After you have reviewed, compiled, and run the samples, you will notice that some of the classes,
like StepProcessorSample, are called more than once to perform similar operations.

MainSample

file:///I|/Workflow/DevGuide/Panagon/api_samp/mainsample.htm [9/18/2002 8:04:30 AM]

RosterSample
This sample demonstrates how to write the contents of a roster to a log file. This sample uses the sample
RosterHelper(VWSession, Logger) class to display roster information. Run the sample by entering a
command similar to the following:

java RosterSample username password <server name>:<port number>/<router instance name>
[output_filename]

Note For a detailed explanation of the command line, see the Run the sample application section of the
Run the Unmodified Samples topic.

Methods
The RosterSample class contains two methods: the main method main(String args[]) and the constructor
method RosterSample(VWSession vwSession, Logger logger).

main(String args[])

The main method uses common techniques for validating and defaulting argument values. The default
value for the log output file is RosterSample.out. The main method constructs and passes vwSession
and Logger objects to the sample constructor. Main() handles the login and logoff for the session with
 the login() and logoff() methods of the sample SessionHelper class. It provides workflow logging with
an instance of the sample Logger class. The main method passes the session and the logger to the
sample's class constructor.

RosterSample(VWSession vwSession, Logger logger)

The constructor RosterSample(VWSession vwSession, Logger logger) performs common exception
handling and invokes the rosterHelper.displayRosterContents() method with the following two lines of
code:

// Create the roster helper object.

rosterHelper = new RosterHelper(vwSession, logger);

// Display the contents of the roster.

rosterHelper.displayRosterContents();

RosterSample

file:///I|/Workflow/DevGuide/Panagon/api_samp/rostersample.htm [9/18/2002 8:04:30 AM]

RosterHelper (helper class)
This is a helper class for some of the other samples. This sample demonstrates how to implement
reusable roster-specific methods which can be accessed by other classes or applications.

Note The sample code assumes you created a session and supplied a user name and password with
appropriate access privileges.

Methods
The following sections describe the public RosterHelper(VWSession, Logger) class methods.

public RosterHelper(VWSession vwSession, Logger logger)

The RosterHelper(VWSession, Logger) constructor sets variables m_vwSession and m_logger to point to
the vwSession and logger object arguments, as shown below:

m_vwSession = vwSession;
m_logger = logger;

public void displayProcessInformation()

Displays the process information from the items in the default roster with the following processing steps:

Validate the session pointer:

 try {
if (m_vwSession == null){
 m_logger.log("Invalid session: <null> (displayProcessInformation)");
 return;
}

Use the m_vwSession.getRoster() method to get the roster object for the DefaultRoster:

vwRoster = m_vwSession.getRoster("DefaultRoster");
m_logger.log("Displaying process information for roster: " + vwRoster.toString());

// Set the maximum number of items to 25, which requires less memory for each fetch than the default
setting (50).

vwRoster.setBufferSize(25);

Construct a roster query object and query for all elements. The fetch type is denoted by
"VWFetchType.FETCH_TYPE_ROSTER_ELEMENT".

rQuery = vwRoster.createQuery(null, null, null, 0, null, null,
VWFetchType.FETCH_TYPE_ROSTER_ELEMENT);

RosterHelper (helper class)

file:///I|/Workflow/DevGuide/Panagon/api_samp/rosterhelper.htm (1 of 6) [9/18/2002 8:04:31 AM]

Determine if any there any elements to retrieve with the query object, and get each roster element:

if (rQuery.hasNext()){
do
{

 // Get each roster element.

rosterElement = (VWRosterElement)rQuery.next();
m_logger.log("\nVWProcess information for roster element:\n");

Obtain a object process from the roster element's first work object:

workObject = rosterElement.fetchWorkObject(false, false);
if (workObject != null)
 process = workObject.fetchProcess();
if (process == null) continue;

Get workflow history & log key information from the process object.

Tip The mapId parameter is currently always -3 (PW version 4.0).

 wflHistory = process.fetchWorkflowHistory(-3);

Log the launch date of the workflow.

 m_logger.log("\tWorkflow Launch Date: " + wflHistory.getLaunchDate());

Log each of the step history element step IDs. Note the complementary use of the next() and hasNext()
methods to control the loop:

m_logger.log("\n\tStep Histories:\n");

if (wflHistory.hasNext()) {

do {

stepHistory = wflHistory.next();
m_logger.log("\t\tStepId: " +
stepHistory.getStepId());

} while (wflHistory.hasNext());

} else {
 m_logger.log("\t\tNo Step Histories exist.");
}

Log the lock state for each remaining work objects in this process.

m_logger.log("\n\tWork Objects:\n");
if (process.hasNext()) {

do {

RosterHelper (helper class)

file:///I|/Workflow/DevGuide/Panagon/api_samp/rosterhelper.htm (2 of 6) [9/18/2002 8:04:31 AM]

workObject = process.next();
m_logger.log("\t\tWork Object Id: " +
workObject.getWorkObjectNumber());

 // Get the lock state.

if (workObject.fetchLockedStatus() == 0)
 m_logger.log("\t\t\tObject is not locked.");
else
 m_logger.log("\t\t\tObject is locked.");

} while (process.hasNext());

} else {
 m_logger.log("\t\tNo Step Histories exist.");
}

} while (rQuery.hasNext());

} else {
 m_logger.log("\t No roster elements, therefore can't get VWProcess information.");
}

Handle any exceptions:

 }
catch (Exception ex)
{
 if (m_logger != null)
 m_logger.log(ex);
 else
 ex.printStackTrace();
 }
}

public void displayRosterContents()

Displays the contents of the "DefaultRoster" with the following steps:

Get the roster object for the DefaultRoster.

vwRoster = m_vwSession.getRoster("DefaultRoster");

Log the roster depth.

m_logger.log("Roster element count: " + vwRoster.fetchCount());

 Display the roster elements with a local method, as outlined below.

displayRosterElements(vwRoster);

RosterHelper (helper class)

file:///I|/Workflow/DevGuide/Panagon/api_samp/rosterhelper.htm (3 of 6) [9/18/2002 8:04:31 AM]

Display the work objects with a local method.

displayWorkObjects(vwRoster);

public void displayRosterElements(VWRoster vwRoster) and
public void displayWorkObjects(VWRoster vwRoster)

Displays the VWRosterElements in the specified VWRoster object with the following processing steps:

Construct a roster query object to query for all elements.

for displayRosterElements()

ElemQuery = vwRoster.createQuery(null, null, null, 0, null, null,
VWFetchType.FETCH_TYPE_ROSTER_ELEMENT);

for displayWorkObjects()

ElemQuery = vwRoster.createQuery(null, null, null, 0, null, null,
VWFetchType.FETCH_TYPE_WORKOBJECT);

Fetch the first element using the VWRosterQuery object and casting to the appropriate object type.

for displayRosterElements()

Element = (VWRosterElement)ElemQuery.next();

for displayWorkObjects()

Element = (VWWorkObject)ElemQuery.next();

Check to see if there are any elements:

if (Element == null)
 m_logger.log("\t Roster elements: none");
else
{

For each element, display the element information appropriately:

for displayWorkObjects()

 do
 {

 // Display the work object information.

 m_logger.displayWorkObjectInfo(vwWorkObject);
 }
 while ((vwWorkObject = (VWWorkObject)Element.next()) != null);
}

RosterHelper (helper class)

file:///I|/Workflow/DevGuide/Panagon/api_samp/rosterhelper.htm (4 of 6) [9/18/2002 8:04:31 AM]

Additional code for displayWorkObjects() performs common error handling and cleanup.

for displayRosterElements()

// Initialize variables to hold the field names and each object value.

String[] fieldNames = null;
Object value = null;

 // For each roster element, iteratively process fields:

do {
m_logger.log("\t Roster element:");

This step and the remaining steps apply to Roster elements only. Display the system-defined field names
and user-defined exposed field names supported by the roster element:

fieldNames = Element.getFieldNames();
if (fieldNames == null)
{
 m_logger.log("\t\t no Fields!");
}
else
{
 m_logger.log("\t\t Fields:");

 // For each field, iteratively display:

for (int i = 0; i < fieldNames.length; i++) {

if (fieldNames[i] != null){

value = Element.getFieldValue(fieldNames[i]);

// Display the field names and their values:

m_logger.log("\t\t\t" + fieldNames[i] + "=" + value);

}

}

}

Log specialized data available through VWRosterElement retrieval ("get") methods.

m_logger.log("\n\t\tOther Information:");
String bvalue = Element.getWorkObjectNumber();
m_logger.log("\t\t\t"+ "WorkObjectNumber" + "=" + bvalue);
String svalue = Element.getWorkObjectName();

m_logger.log("\t\t\t"+ "WorkObjectName" + "=" + svalue);
svalue = Element.getTag();

RosterHelper (helper class)

file:///I|/Workflow/DevGuide/Panagon/api_samp/rosterhelper.htm (5 of 6) [9/18/2002 8:04:31 AM]

m_logger.log("\t\t\t"+ "Tag" + "=" + svalue);
int ivalue = Element.getServerLocation();
m_logger.log("\t\t\t"+ "CurrentServerLocation" + "=" + ivalue);
}
while ((rosterElement = (VWRosterElement)rElemQuery.next()) != null);

}

Additional code in this sample performs exception handling and cleanup.

RosterHelper (helper class)

file:///I|/Workflow/DevGuide/Panagon/api_samp/rosterhelper.htm (6 of 6) [9/18/2002 8:04:31 AM]

StepProcessorSample
This sample demonstrates how to retrieve a step element from a queue, set the comments on the step
element, display the step information, and complete the step. Run the sample by entering a command
similar to the following:

java StepProcessorSample username password <server name>:<port number>/<router instance name>
[output_filename]

Note For a detailed explanation of the command line, see the Run the sample application section of the
Run the Unmodified Samples topic.

Methods
The StepProcessorSample class contains two methods: the main(String args[]) method and the
StepProcessorSample(VWSession vwSession, Logger logger, String queueName) method, which is the
constructor.

main(String args[])

The main method uses common techniques for validating and defaulting argument values. The default
value for the log output file is StepProcessorSample.out. The main method constructs and passes
vwSession and Logger objects to the sample constructor. Main() handles the login and logoff for the
session with the login() and logoff() methods of the sample SessionHelper class. It provides workflow
logging with an instance of the sample Logger class. The main method passes the session, the logger, the
user name, and the queue name to the constructor method.

StepProcessorSample(VWSession vwSession, Logger logger, String
queueName)

The constructor StepProcessorSample(VWSession, Logger, String) performs common exception
handling and retrieves a step element from a queue with the sample method queueHelper.getQueue(). It
demonstrates setting the comments on the step element, displaying the step information, and dispatching
the step with VWStepElement methods. The code to perform this is organized as follows:

Create an instance of the local sample QueueHelper class, and then create the object for the requested
queue:

queueHelper = new QueueHelper(vwSession, logger);

 // get the requested queue

vwQueue = queueHelper.getQueue(queueName);
if (vwQueue != null)
{

StepProcessorSample

file:///I|/Workflow/DevGuide/Panagon/api_samp/steprocessorsample.htm (1 of 2) [9/18/2002 8:04:31 AM]

Get a step element from the queue object:

 vwStepElement = queueHelper.getStepElement(vwQueue);
 if (vwStepElement != null)
 {

Lock the record whenever the step element changes:

 vwStepElement.doLock(true);

Set the comments:

 vwStepElement.setComment("This is the user's comment.");

Display the Step Processor information:

 logger.displayStepElementInfo(vwStepElement);

Dispatch the step:

 logger.log("Completing step: " + vwStepElement.getOperationName());
 vwStepElement.doDispatch();
 }
}

StepProcessorSample

file:///I|/Workflow/DevGuide/Panagon/api_samp/steprocessorsample.htm (2 of 2) [9/18/2002 8:04:31 AM]

QueueSample
This sample demonstrates how to access and display queue contents, using the sample
QueueHelper(VWSession, Logger) class to display queue information. Run the sample by entering a
command similar to the following:

java QueueSample username password <server name>:<port number>/<router instance name>
[queue_name] [output_filename]

Note For a detailed explanation of the command line, see the Run the sample application section of the
Run the Unmodified Samples topic.

Methods
The QueueSample class contains two methods: the main(String args[]) method and the
QueueSample(VWSession vwSession, Logger logger, String queueName) method, which is the
constructor.

main(String args[])

The main method uses common techniques for validating and defaulting argument values. The default
values for the log output file and queue names are QueueSample.out and the first queue name in the
system list of queue names, respectively. The main method constructs and passes vwSession and Logger
objects to the sample constructor. Main() handles the login and logoff for the session with the login() and
logoff() methods of the sample SessionHelper class. It provides workflow logging with an instance of the
sample Logger class. The main method passes the session, the logger, and the queue name, which may be
NULL.

QueueSample(VWSession vwSession, Logger logger, String
queueName)

After the constructor QueueSample(VWSession, Logger, queueName) performs common exception
handling, the method invokes methods from the sample queueHelper class and the APi class VWQueue
to display queue contents. The code is organized as follows:

Create the roster helper object.

 queueHelper = new QueueHelper(vwSession, logger);

Get the queue object for the queueName passed in, or get first queue in the system list of queueNames.

if (queueName != null) { vwQueue = vwSession.getQueue(queueName);
} else {
 String[] queueNames = queueHelper.getQueueNames(false);

QueueSample

file:///I|/Workflow/DevGuide/Panagon/api_samp/queuesample.htm (1 of 2) [9/18/2002 8:04:31 AM]

if (queueNames == null || queueNames.length == 0){
 logger.log("No queues found.");
 return;
} else {

Iterate through the array getting queues until first one with available elements is found.

for (int i = 0; i < queueNames.length; i++){

vwQueue = vwSession.getQueue(queueNames[i]);

if (vwQueue != null) {
 if (vwQueue.fetchCount() > 0)break;
}

// Clear our reference.

vwQueue = null;

}

 }
}

 // Ensure there is a VWQueue object.

if (vwQueue == null){

logger.log("Unable to retrieve a queue!");
return;

} else {

Display the contents of the queue:

 queueHelper.displayQueueContents(vwQueue);
}

Additional code in this sample manages common cleanup and error handling.

QueueSample

file:///I|/Workflow/DevGuide/Panagon/api_samp/queuesample.htm (2 of 2) [9/18/2002 8:04:31 AM]

ProcessSample
This sample uses the sample RosterHelper(VWSession, Logger) class to display process information.
Run the sample by entering a command similar to the following:

java ProcessSample username password <server name>:<port number>/<router instance name>
[output_filename]

Note For a detailed explanation of the command line, see the Run the sample application section of the
Run the Unmodified Samples topic.

Methods
The ProcessSample class contains two methods: the main(String args[]) method and the
ProcessSample(VWSession, Logger) method, which is the constructor.

main(String args[])

The main method uses common techniques for validating and defaulting argument values. The default
value for the log output file is ProcessSample.out. The main method constructs and passes vwSession
and Loggerobjects to the sample constructor. Main() handles the login and logoff for the session with the
login() and logoff() methods of the sample SessionHelper class. It provides workflow logging with an
instance of the sample Logger class. The main method passes the session and logger to the constructor
method.

ProcessSample(VWSession vwSession, Logger logger)

The constructor ProcessSample(VWSession, Logger) performs common exception handling and invokes
the RosterHelper.displayProcessInformation() method with the following two lines of code:

// create the roster helper object

rosterHelper = new RosterHelper(vwSession, logger);

// display the process information in the roster

rosterHelper.displayProcessInformation();

ProcessSample

file:///I|/Workflow/DevGuide/Panagon/api_samp/processsample.htm [9/18/2002 8:04:31 AM]

MilestoneHelper (helper file)
This is a helper class for other samples. The sample provides reusable getMilestoneDefinitions() and
printMilestoneInfo() milestone-related methods for use by some of the sample classes, particularly the
MileStoneHelper sample.

Note The sample code assumes you created a session and supplied a user name and password with
appropriate access privileges. The MileStoneHelper constructor initializes local variables to point to its
VWSession and Logger arguments as follows:

public MilestoneHelper(VWSession session, Logger logger) {

m_vwSession = vwSession;
m_logger = logger;

}

Methods
The following sections describe the public MileStoneHelper class methods.

VWMilestoneDefinition[] getMilestoneDefinitions(VWQueueElement
vwQueueElement)

Milestone definitions are a part of the process information of a work object, and a queue element
represents the workflow object in a queue. Although this queue element provides access to a fields in a
queue without the expense of retrieving the work object, the API must use the original work object to
obtain process information. The program fetches the passed in queue element's work object with
VWQueueElement.fetchWorkObject(). The program gets process information from the work object with
VWWorkObject.fetchProcess().

VWWorkObject workObj = vwQueueElement.fetchWorkObject(false, false);
VWProcess proc = workObj.fetchProcess();

The VWProcess.getMilestoneDefinitions() method retrieves the milestone definition information as an
array of VWMileStoneDefinition objects. This object array is the value the method returns.

msd = proc.getMilestoneDefinitions();

printMilestoneInfo(VWMilestoneDefinition[] msd)

The milestone definitions obtained through the getMilestoneDefinitions method, in this class, contain
milestone descriptions as a milestone name (String type), message (String type), and level (integer type).
The program displays these values for each mileStone definition with logger.log(String).

// Iterate through all the milestones defined for the workflow
// and report each name, message, and level.

MilestoneHelper (helper file)

file:///I|/Workflow/DevGuide/Panagon/api_samp/milestonehelper.htm (1 of 2) [9/18/2002 8:04:31 AM]

for (int i=0;i<msd.length;i++)
{
m_logger.log("\t\t" + msd[i].getName() + "\t\t" + msd[i].getMessage() + "\t" +
String.valueOf(msd[i].getLevel()));
}

MilestoneHelper (helper file)

file:///I|/Workflow/DevGuide/Panagon/api_samp/milestonehelper.htm (2 of 2) [9/18/2002 8:04:31 AM]

MilestoneSample
This stand-alone sample demonstrates how to log the work object number and user information for
locked work objects. Run the sample by entering a command similar to the following:

java MilestoneSample username password <server name>:<port number>/<router instance name>
[queue_name] [output_file]

Note For a detailed explanation of the command line, see the Run the sample application section of the
Run the Unmodified Samples topic.

Methods
The MilestoneSample class contains two methods: the main(String args[]) method and the
MilestoneSample(VWSession vwSession, Logger logger, String queueName) method, which is the
constructor.

main(String args[])

The main method uses common techniques for validating and defaulting argument values. The default
values for the log output file and queue names are MilestoneSample.out and the first queue name in the
system list of queue names, respectively. The main method constructs and passes vwSession and Logger
objects to the sample constructor. Main() handles the login and logoff for the session with the login()
and logoff() methods of the sample SessionHelper class. It provides workflow logging with an instance
of the sample Logger class. The main method passes the session, the logger, and the user name, and the
name of queue to query, which may be null.

MilestoneSample(VWSession vwSession, Logger logger, String
queueName)

The following code from the MilestoneSample constructor method displays the available milestones in
the specified queue:

Instantiate the MilestoneHelper object, milestoneHelper. This class gets milestone defintions and prints
milestone information.

milestoneHelper = new MilestoneHelper(vwSession, logger);

Instantiate the QueueHelper object, queueHelper. This class gets queue names and creates a VWQueue
object.

queueHelper = new QueueHelper(vwSession, logger);

Get the specified queue object with vwSession.getQueue(), if the name is not null.

if (queueName != null){

MilestoneSample

file:///I|/Workflow/DevGuide/Panagon/api_samp/milestonesample.htm (1 of 3) [9/18/2002 8:04:32 AM]

vwQueue = vwSession.getQueue(queueName);

}
else {

Otherwise, use the QueueHelper.getQueueNames() method, to test for the existence of queues.

String[] queueNames = queueHelper.getQueueNames(false);
if (queueNames == null || queueNames.length == 0)
{

logger.log("No queues found.");
return;

}
else {

If queues are found, iteratively get queues until first queue with accessible elements is found. Create an
instance of VWQueue with vwSession.getQueue(). vwQueue.fetchCount() returns the number of queues
fetched.

for (int i = 0; i < queueNames.length; i++){

vwQueue = vwSession.getQueue(queueNames[i]);
if (vwQueue != null){

if (vwQueue.fetchCount() > 0)
break;

}

// Clear the queue pointer reference.

vwQueue = null;

}

}

If a queue object is retrieved, retrieve the first element and create a query object for the queue object with
the API method VWQueue.createQuery().

qQuery = vwQueue.createQuery(null, null, null, 0, null, null,
VWFetchType.FETCH_TYPE_QUEUE_ELEMENT);

Attempt to retrieve the query object's first queue element.

vwQueueElement = (VWQueueElement)qQuery.next();
if (vwQueueElement == null){

logger.log("\t Queue elements: none");

}

MilestoneSample

file:///I|/Workflow/DevGuide/Panagon/api_samp/milestonesample.htm (2 of 3) [9/18/2002 8:04:32 AM]

else {

If a queue element is retrieved, log its workflow name with the logger.log() method. Obtain the name
from the vwQueueElement.getWorkflowName() method. Get milestone definitions for every element,
and print them using the MilestoneHelper methods getMilestoneDefinitions() and printMilestoneInfo().

do {

logger.log("\tWorkflow " + vwQueueElement.getWorkflowName());
VWMilestoneDefinition[] msd =
milestoneHelper.getMilestoneDefinitions(vwQueueElement);
milestoneHelper.printMilestoneInfo(msd);

} while ((vwQueueElement = (VWQueueElement)qQuery.next()) != null);

Additional code in this method performs common cleanup and error handling.

MilestoneSample

file:///I|/Workflow/DevGuide/Panagon/api_samp/milestonesample.htm (3 of 3) [9/18/2002 8:04:32 AM]

OperationsHelper (helper class)
This is a helper class for other samples. The sample provides system step-related methods for use by
some of the sample classes, particularly the OperationsSample. The methods in this sample class modify
and validate workflows.

Note The sample code assumes you created a session and supplied a user name and password with
appropriate access privileges. The OperationsHelper constructor initializes local variables to point to its
SessionHelper and Logger arguments as follows:

public OperationsHelper(VWSession session, Logger logger) {

m_vwSession = vwSession;
m_logger = logger;

}

Methods
The following sections describe the public OperationsHelper class methods.

VWOperationDefinition getOperationDefinition(String
operationName, VWQueue theQueue)

Retrieve the definition of an operation as follows:

Create default VWQueueDefinition and VWOperationDefinition objects. The VWQueueDefinition
object holds the definition of the passed queue, and the VWOperationDefinition object stores the return
value.

VWQueueDefinition vwQueueDef = null;
VWOperationDefinition vwOpDef = null;

Retrieve the operation definition from the queue definition with VWQueueDefinition.getOperation() and
the passed in operation name, after setting the VWQueueDefinition object with
VWQueue.fetchQueueDefinition(). Return the operation definition.

vwQueueDef = theQueue.fetchQueueDefinition();
vwOpDef = vwQueueDef.getOperation(operationName);

// . . . (code for common messge and error handling) . . .

return vwOpDef;

OperationsHelper (helper class)

file:///I|/Workflow/DevGuide/Panagon/api_samp/operationshelper.htm (1 of 2) [9/18/2002 8:04:32 AM]

printOperationDetails(VWOperationDefinition vwOpDef)

Logs VWOperationDefinition object information as follows:

Log the name and description of the passed in operation definition object with the sample Logger.log
method.

m_logger.log("\tName: " + vwOpDef.getName());
m_logger.log("\t\tDescription: " + vwOpDef.getDescription());

Print the parameter information of the passed in operation definition with the sample
OperationsHelper.printOperationParameters() method.

printOperationParameters(vwOpDef);

Additional code in this method performs common error and message handling.

printOperationParameters(VWOperationDefinition vwOpDef)

Log the parameter information of the passed in operation definition as follows:

Initialize an array of VWParameterDefinition objects.

VWParameterDefinition[] vwPD = null;
vwPD = vwOpDef.getParameterDefinitions();

Log the name, datatype, and value of each operation with VWParameterDefinition retrieval ("get")
methods.

m_logger.log("\t\tName\t\tData Type\tValue");
for (int i=0;i<vwPD.length;i++){

m_logger.log("\t\t" + vwPD[i].getName() + "\t\t" +
VWFieldType.getLocalizedString(vwPD[i].getDataType()) + "\t" + vwPD[i].getValue());

}

Additional code in this method performs common error and message handling.

OperationsHelper (helper class)

file:///I|/Workflow/DevGuide/Panagon/api_samp/operationshelper.htm (2 of 2) [9/18/2002 8:04:32 AM]

OperationsSample
This stand-alone sample demonstrates how to use the API classes to manage queue operations. Run the
sample by entering a command similar to the following:

java OperationsSample username password <server name>:<port number>/<router instance name>
[queue_name] [output_file]

If no queue name is specified, the program uses the first queue with elements in the list of queueNames.
If do not specify an output file name, the sample uses OperationSample.out as the default location.

Note For a detailed explanation of the command line, see the Run the sample application section of the
Run the Unmodified Samples topic.

The OperationsSample code creates an instance of the SessionHelper class (sessionHelper) and the
Logger class (logger). The sessionHelper.logon() method logs on to a workflow session and returns a
VWSession object, vwSession. The main method then passes the vwSession object, the logger object,
and the queue name, which may be null, to the sample constructor.

The following code from the OperationsSample constructor method configures and reports on queue
operations.

Get a valid queue name

Create default operations and queue helper objects.

operationsHelper = new OperationsHelper(vwSession, logger);
queueHelper = new QueueHelper(vwSession, logger);

Get the specified queue object with vwSession.getQueue(), if the name was not NULL.

if (queueName != null){

vwQueue = vwSession.getQueue(queueName);

} else { // (. . . continued below)

Otherwise, use the QueueHelper.getQueueNames() method, to test for exsiting queues.

String[] queueNames = queueHelper.getQueueNames(false);
if (queueNames == null || queueNames.length == 0)
{

logger.log("No queues found.");
return;

} else {

vwQueue = vwSession.getQueue(queueNames[1]);

OperationsSample

file:///I|/Workflow/DevGuide/Panagon/api_samp/operationssample.htm (1 of 3) [9/18/2002 8:04:33 AM]

}

// Make sure the program has created a VWQueue object.

if (vwQueue == null){

logger.log("Unable to retrieve a queue!");
return;

} else {

Add an operation

logger.log("Phase 1 : Configuration\n");

Fetch a VWQueueDefinition object with VWQueueDefinition and initialize a VWOperationDefinition
object.

VWQueueDefinition vwQueueDef = null;
VWOperationDefinition opDef = null;
vwQueueDef = vwQueue.fetchQueueDefinition();

Create a new operation definition with the VWQueueDefinition.createOperation() method and add some
parameters to it.

opDef = vwQueueDef.createOperation("Sample Operation");
logger.log("Created new operation definition");

// Add boolean parameter, sent by the operation, and not an array.

opDef.createParameter("BoolParameter", 2, 4, false);

// Add an integer parameter, returned to the operation, and not an array.

opDef.createParameter("IntParameter", 1, 1, false);
opDef.setDescription("Created by OperationsSample example application");
logger.log("Configured operation definition");

Update the system configuration queue definition, using the current queue copy and
VWSystemConfiguration.updateQueueDefinition().

sysConfig = vwSession.fetchSystemConfiguration();
sysConfig.updateQueueDefinition(vwQueueDef);

Commit changes. The update is not complete until it is committed.

String[] errors = sysConfig.commit();
if (errors != null)

logger.log("Errors: ", errors);

else

OperationsSample

file:///I|/Workflow/DevGuide/Panagon/api_samp/operationssample.htm (2 of 3) [9/18/2002 8:04:33 AM]

logger.log("Committed configuration changes.");

Report on operations for the current queue

Fetch a list of operations defined on this queue. Get each operation information and print it with the
sample helper methods operationsHelper.getOperationDefinition() and printOperationDetails().

String[] operationNames = vwQueue.fetchOperationNames();

VWOperationDefinition vwOpDef = null;
for (int i=0;i<operationNames.length;i++){

// get configuration information about each defined operation

vwOpDef = operationsHelper.getOperationDefinition(operationNames[i],
vwQueue);
operationsHelper.printOperationDetails(vwOpDef);

}

}

Additional OperationsSample code performs common message and error handling.

OperationsSample

file:///I|/Workflow/DevGuide/Panagon/api_samp/operationssample.htm (3 of 3) [9/18/2002 8:04:33 AM]

SystemStepHelper (helper class)
This is a helper class for other samples. This sample provides system step-related methods to some of the
sample classes, particularly the SystemStepSample. The methods in this sample class assist with adding
steps to workflows and validating workflows.

Note The sample code assumes you created a session and supplied a user name and password with
appropriate access privileges. The SystemStepHelper constructor initializes local variables to point to the
VWSession and Logger arguments as follows:

public SystemStepHelper(VWSession session, Logger logger) {

m_vwSession = vwSession;
m_logger = logger;

}

Methods
The following sections describe the public SystemStepHelper class methods.

VWCompoundStepDefinition addCompoundStep(VWMapDefinition
mapDef, String stepName)

Create a VWCompoundStepDefinition object as a compound step definition with
VWMapDefinition.createCompoundStep() and the passed in stepname. Get the ID of the compound step
definition with VWCompoundStepDefinition.getStepId().

newStepDef = mapDef.createCompoundStep(stepName);
nStepId = newStepDef.getStepId();

Set the step description and map location with the step id and VWCompoundStepDefinition storage
("set") methods.

newStepDef.setDescription("This is the description for system step" + nStepId + ".");
newStepDef.setLocation(new java.awt.Point(nStepId * 100, 150));

Additional code in this method performs common message and error handling.

VWStepDefinition addStep(VWMapDefinition mapDef, String
stepName, String queueName)

Create a default step with the passed in name and get the new step Id with VWMapDefinition methods.

newStepDef = mapDef.createStep(stepName);
nStepId = newStepDef.getStepId();

SystemStepHelper

file:///I|/Workflow/DevGuide/Panagon/api_samp/systemstephelper.htm (1 of 2) [9/18/2002 8:04:33 AM]

Create integer and string parameters for the new step definition with the
VWStepDefinition.createParameter() method.

newStepDef.createParameter("Field1_Integer", VWModeType.MODE_TYPE_IN, "99",
VWFieldType.FIELD_TYPE_INT, false);
newStepDef.createParameter("Field2_String", VWModeType.MODE_TYPE_OUT, "Field2_String",
VWFieldType.FIELD_TYPE_STRING, true);

Assign the new step the passed in queue name with VWStepDefinition.newStepDef.setQueueName().

newStepDef.setQueueName(queueName);

Store the step description and map location in the new VWStepDefinition object with its storage ("get")
methods. The map location determines where it will graphically display in Designer

newStepDef.setDescription("This is the description for step" + nStepId + ".");
newStepDef.setLocation(new java.awt.Point(nStepId * 100, 150));

Additional code in this method performs common message and error handling.

boolean validate(VWWorkflowDefinition workflowDef, VWSession
vwSession)

Initialize an array of VWValidationError objects and a variable to hold the return value for the method.

VWValidationError[] validationErrors = null;
boolean bSuccess = false;

Validate the passed in workflow by setting the VWValidationError array with the first argument's
VWWorkflowDefinition.validate() method; then test the array.

validationErrors = workflowDef.validate(vwSession, false);
if (validationErrors != null){

m_logger.log("\nThe following validation errors occurred: ", validationErrors);

} else {

m_logger.log("\nValidation was successful.\n");
bSuccess = true;

}

Additional code in this method performs common message and error handling.

SystemStepHelper

file:///I|/Workflow/DevGuide/Panagon/api_samp/systemstephelper.htm (2 of 2) [9/18/2002 8:04:33 AM]

SystemStepSample
This stand-alone sample demonstrates how to create a workflow, set some properties, add a system step,
and launch the workflow. Run the sample by entering a command similar to the following:

java SystemStepSample username password <server name>:<port number>/<router instance name>
[queue_name] [output_file]

If no queue name is specified, the program does not associate a queue with the workflow. A workflow
without a queue cannot include a Step Processor. If no output file is specified, the name
SystemStepSample.out is used.

Note For a detailed explanation of the command line, see the Run the sample application section of the
Run the Unmodified Samples topic.

Methods
The SystemStepSample class contains two methods: the main(String args[]) method and the
SystemStepSample(VWSession vwSession, Logger logger, String queueName) method, which is the
constructor.

main(String args[])

The SystemStepSample main method code creates an instance of the SessionHelper class (sessionHelper)
and the Logger class (logger). The sessionHelper.logon() method logs on to a workflow session and
returns a VWSession object, vwSession. The main method then passes the vwSession object, the logger
object, and the queue name to the sample constructor.

SystemStepSample(VWSession vwSession, Logger logger, String
queueName)

The SystemStepSample constructor method shows how to create a workflow with a system step. The
sample performs these operations in the general order shown below.

Instantiate a SystemStepHelper object with the vwSession and logger object arguments. This
SystemStepHelper object will later assist the current object with its addStep, addCompoundStep, and
validate methods.

SystemStepHelper systemStepHelper = new SystemStepHelper(vwSession, logger);

Create the VWWorkflowDefinition object, workflowDef.

VWWorkflowDefinition workflowDef = null;
// (additional declaration code . . .)
workflowDef = new VWWorkflowDefinition();

SystemStepSample

file:///I|/Workflow/DevGuide/Panagon/api_samp/systemstepsample.htm (1 of 4) [9/18/2002 8:04:33 AM]

Set some workflow definition properties.

workflowDef.setSubject("\"This is the System Step sample workflow\"");
workflowDef.setDescription("This is a workflow generated by the System Step Sample");
workflowDef.setName("System Step Workflow");

Define some workflow definition fields with VWWorkflowDefinition.createFieldUsingString().

workflowDef.createFieldUsingString("Field1_Integer", "99", VWFieldType.FIELD_TYPE_INT, false);
workflowDef.createFieldUsingString("Field2_String", "{\"\"}", VWFieldType.FIELD_TYPE_STRING,
true);

Get a VWMapDefinition object as the default map with VWWorkflowDefinition.getMainMap(), and set
the map description property.

mapDef = workflowDef.getMainMap();
mapDef.setDescription("This is the sample workflow map");

Get a VWMapNode object as the launch step with VWWorkflowDefinition.getStartStep(), and set the
launch step description map property.

currentStepDef = mapDef.getStartStep();
currentStepDef.setDescription("This is the description for the launch step.");

Define the first step after the launch as a system step. The program must first set another VWMapNode
object to hold the new launch step.

precedingStepDef = currentStepDef;

Construct, then set a compound step ("Step 1") with the sample helper class method
SystemStepHelper.addCompoundStep ().

VWCompoundStepDefinition sysStepDef = null;
sysStepDef = systemStepHelper.addCompoundStep(mapDef, "Step 1");

Create an assignment instruction which initializes system step field "Field1_Integer" to 42.

sysStepDef.createAssignInstruction(new String[][] {{"Field1_Integer","42"}});

Create a BeginTimer instruction with the VWCompoundStepDefinition.createBeginTimerInstruction()
method. The arguments name the Begintimer "Timer 1", set it to expire 15 minutes after reaching this
step, and set its expiration to branch to the system workflow instruction "Terminate". This timer is
"non-preemptive", which means it will wait until the current step completes before it terminates.

sysStepDef.createBeginTimerInstruction("\"Timer 1\"", "addminutes(systemtime(),15)", "Terminate",
null);

Reset the value of the current step definition object variable to the compound system step the program
just defined. This step remains defined in the "precedingStepDef" object.

currentStepDef = sysStepDef;

SystemStepSample

file:///I|/Workflow/DevGuide/Panagon/api_samp/systemstepsample.htm (2 of 4) [9/18/2002 8:04:33 AM]

Use the"precedingStepDef" object to create a route from the preceeding (launch) step to the new step
(step 1). Note that the createRoute() argument specifies the new step ID by invoking
VWNode.getStepId().

precedingStepDef.createRoute(currentStepDef.getStepId());

Create three more (non-compound) steps in the workflow (main) map with the sample class method
systemStepHelper.addStep(). If there is no associated queue name, a null value for queueName is valid.
VWNode.createRoute() establishes the route from step to step.

for (int i = 0; i < 3; i++){

currentStepDef = systemStepHelper.addStep(mapDef, "Step" + i, queueName);
if (currentStepDef != null){

precedingStepDef.createRoute(currentStepDef.getStepId());

// Reset the preceeding step lag variable.

precedingStepDef = currentStepDef;

}

}

Create a fifth step that terminates "Timer 1", initiated by "Step 1", above. The procedure is much the
same as the one that created BeginTimer "Step 1", the previous compound step. The method uses
VWNode.createEndTimerInstruction() in place of VWNode.createBeginTimerInstruction(), as follows:

sysStepDef = null;
sysStepDef = systemStepHelper.addCompoundStep(mapDef, "Step 5")
sysStepDef.createEndTimerInstruction("\"Timer 1\"");
currentStepDef = sysStepDef;

// Create a route from the preceeding step to the new one.

precedingStepDef.createRoute(currentStepDef.getStepId());

The program validates the new workflow definition with the sample method
systemStepHelper.validate().

if (systemStepHelper.validate(workflowDef, vwSession)){ // (. . . continue processing)}

Write the local workflow definition file, which contains an XML representation of the workflow
definition. (To see a graphical representation of the workflow, use Designer to open this file.)

workflowDef.writeToFile("SystemStepSample.pep");

Transfer the workflow definition with VWSession.transfer().

VWTransferResult transferResult = vwSession.transfer(workflowDef, "uniqueid", false, true);

Use the resulting VWTransferResult object to show whether the transfer was successful or not with the

SystemStepSample

file:///I|/Workflow/DevGuide/Panagon/api_samp/systemstepsample.htm (3 of 4) [9/18/2002 8:04:33 AM]

following code:

if (transferResult.success()){

vwVersion = transferResult.getVersion();
logger.log("The transfer was successful.");

}else { (. . . Display the transfer errors) }

Launch the workflow: create a step Element with vwSession.createWorkflow(vwVersion), optionally set
a comment with VWStepElement.setComment(), and dispatch the workflow with
VWStepElement.doDispatch().

VWStepElement launchStep = vwSession.createWorkflow(vwVersion);
launchStep.setComment("This is the System Step sample launch step comment");
launchStep.doDispatch();

Additional code in SystemStepSample manages common messages and errors.

SystemStepSample

file:///I|/Workflow/DevGuide/Panagon/api_samp/systemstepsample.htm (4 of 4) [9/18/2002 8:04:33 AM]

UserInfoSample
This sample demonstrates how to set email notification for all users added to the workflow system. Run
the sample by entering a command similar to the following:

java UserInfoSample username password <server name>:<port number>/<router instance name>
email_suffix

Note For a detailed explanation of the command line, see the Run the sample application section of the
Run the Unmodified Samples topic.

The main method displays a usage line if you supply less than four arguments; otherwise, the method
passes the arguments to the constructor for the sample. The constructor UserInfoSample(String user,
String pw, String router, String email_suffix) performs common exception handling and sets user
information properties for email notification. This sample operates in the general order listed below.

Create an instance of the session object. Create the security list object from the session object. In the
code below, each fetch to the security list object returns 1000 elements, and the false argument causes the
list to consist of users, only, to exclude groups.

session = new VWSession(user, pw, router);
VWSecurityList sl = session.fetchUsers(1000, false);

while (sl.hasNext()){

Create an instance of a user information object from the session and an element of the security list object,
using VWSession.fetchUserInfo(String). The returned security list object is cast to a String for use as an
argument.

VWUserInfo ui = session.fetchUserInfo((String)sl.next());

Print the email address and set it with the VWUserInfo.setEMailAddress(String) method.

System.out.println(ui.getName() + email_suffix);
ui.setEMailAddress(ui.getName() + email_suffix);

This step occurs within a while loop for instructional reasons. In production, the same value should be set
one time before the while loop to reduce runtime redundancy and to perform more efficiently.

Create a combination notification flag for this user to be notified by email, as various events occur. The
flags are combined by performing a bitwise or of each value to be included.

int nf = VWUserInfo.NOTIFICATION_STEP_EXPIRED_DEADLINE |
VWUserInfo.NOTIFICATION_STEP_NEW_ASSIGNMENT |
VWUserInfo.NOTIFICATION_STEP_REMINDERS |
VWUserInfo.NOTIFICATION_TRACKER_EXPIRED_DEADLINE |
VWUserInfo.NOTIFICATION_TRACKER_NEW_ASSIGNMENT |
VWUserInfo.NOTIFICATION_TRACKER_WORKFLOW_EXCEPTION;

UserInfoSample

file:///I|/Workflow/DevGuide/Panagon/api_samp/userinfosample.htm (1 of 2) [9/18/2002 8:04:34 AM]

Set the notification flags and save the user information with VWUserInfo methods:

ui.setNotificationFlags(nf);
ui.save();

}

Additional code in this sample performs common error handling and cleanup.

UserInfoSample

file:///I|/Workflow/DevGuide/Panagon/api_samp/userinfosample.htm (2 of 2) [9/18/2002 8:04:34 AM]

WorkPerformerSample
This sample demonstrates how to retrieve, modify, and complete a step using the VWWorkObject class.
Run the sample by entering a command similar to the following:

java WorkPerformerSample username password <server name>:<port number>/<router instance name>
queueName [output_filename]

Note For a detailed explanation of the command line, see the Run the sample application section of the
Run the Unmodified Samples topic.

Methods
The WorkPerformerSample class contains five methods: main(String args[]), run(),
processQueue(VWQueue vwQueue), processWork(VWWorkObject workObject), and constructor
WorkPerformerSample(VWSession vwSession, Logger logger, String queueName).

main(String args[])

The main method uses common techniques for validating and defaulting argument values. The default
value for the log output file is WorkPerformerSample.out. The main() method constructs and passes
vwSession and Logger objects to the sample constructor. Main() handles the login and logoff for the
session with the login() and logoff() methods of the sample SessionHelper class. It provides workflow
logging with an instance of the sample Logger class. The main method passes the session, the logger, the
user name, and the queue name to the constructor method.

WorkPerformerSample(VWSession vwSession, Logger logger, String
queueName)

The constructor WorkPerformerSample(VWSession, Logger, String) performs common exception
handling and retrieves a VWQueue object of class scope with the sample method
queueHelper.getQueue(). A class-scope boolean variable (m_bDone) is initialized outside the
constructor. This variable serves as a control flag for terminating the run program.

A character variable to hold input keystrokes from the user is initialized within the constructor. A thread
is started, and a message tells the user to hit the enter key to exit. The code captures user keystroke input
in a loop and tests whether a newline character was entered.

// Start the process thread.

Thread thread = new Thread(this, "WorkPerformerSample");
thread.start();

// Wait for a keystroke.

System.out.print("Hit Enter key to exit:");

WorkPerformerSample

file:///I|/Workflow/DevGuide/Panagon/api_samp/workperformersample.htm (1 of 4) [9/18/2002 8:04:34 AM]

while (!m_bDone){

try {

nCh = System.in.read();
if (nCh < 0 || (char)nCh == '\n')

m_bDone = true;

}catch(java.io.IOException e)
{

m_bDone = true;

}

}

Note that control exits this loop when a new line is entered. Control does not pass to the termination code
until the thread that was started terminates, as shown below:

System.out.print("Finishing processing - please wait.");
while (thread.isAlive());

The termination code in main() reports the completion of the program to the user.

finally {
if (m_logger != null)

m_logger.logAndDisplay("~ WorkPerformerSample execution complete.\n");

}

The additional constructor code that follows the above loop performs routine messaging and error
handling.

After the program invokes the Java method thread.start(), the code in WorkPerformerSample.run()
activates. This is the run process.

void run()

This method executes a simple loop that tests the boolean "done" flag (m_bDone) and searches the queue
every 30 seconds. Other included code performs routine error handling. Note that if the mbDone flag is
true, this method and the thread it runs in terminate. Otherwise, the m_bDone flag does not allow the
parent object to terminate.

while (!m_bDone)
{

// Search the queue.

processQueue(m_vwQueue);

WorkPerformerSample

file:///I|/Workflow/DevGuide/Panagon/api_samp/workperformersample.htm (2 of 4) [9/18/2002 8:04:34 AM]

// Pause 30 seconds.

if (!m_bDone)

Thread.sleep(30000);

}

private void processQueue(VWQueue vwQueue)

Initialize null VWQueueQuery and VWWorkObject objects:

VWQueueQuery qQuery = null;
VWWorkObject workObject = null;

Set a buffer size for querying the queue that was passed in and construct a query object.

vwQueue.setBufferSize(25);
qQuery = vwQueue.createQuery(null, null, null, 0, null, null,
VWFetchType.FETCH_TYPE_WORKOBJECT);

After testing for a valid query object, query for all step elements. For each element found, process it with
the processWork() method.

while (qQuery.hasNext()) {

// Get each work object and process it.

workObject = (VWWorkObject)qQuery.next();
if (workObject != null)

processWork(workObject);

}

private void processWork(VWWorkObject workObject)

Each work object obtained from the query of the user-selected queue is processed in this method by work
object methods VWWorkObject.getFieldValue(), VWWorkObject.setFieldValue(), and
VWWorkObject.doDispatch().

Before processing a workObject, it must be locked with the VWWorkObject.doLock(boolean) method.

workObject.doLock(true);

The program tests each work object for the correct name of any fields to be retrieved or set, using
VWWorkObject.hasFieldName(String). Two examples are as follows:

if (workObject.hasFieldName("Title")) {

title = (String)workObject.getFieldValue("Title");

WorkPerformerSample

file:///I|/Workflow/DevGuide/Panagon/api_samp/workperformersample.htm (3 of 4) [9/18/2002 8:04:34 AM]

}

// Set the comment.

if (workObject.hasFieldName("F_Comment")) {

workObject.setFieldValue("F_Comment", "Processed by WorkPerformer",
true);

}

After retrieving and setting field values in the work object, the work object is dispatched with the
doDispatch() method. A work object should be locked when it is dispatched.

workObject.doDispatch();

WorkPerformerSample

file:///I|/Workflow/DevGuide/Panagon/api_samp/workperformersample.htm (4 of 4) [9/18/2002 8:04:34 AM]

Modify Core Script Files
This topic describes how to modify, in general terms, the core script files used by the default HTML Step
Processors and Launch Step Processors. Unlike the other topics detailing the files in the
\WF_Html_toolkit\core directory, this file lists the constructors and available method for the client-side
object.

Caution You can add new functions or extend the existing function in these files; however, you must not
delete or alter the existing functions.

step.js
The step.js file defines and declares methods for the creating and working with step element
(PW_StepElement), step information (PW_StepInfo), step parameter (PW_StepParameter), milestone
(PW_Milestone), and work group (PW_WorkGroup) objects.

This topic summarizes the methods supported for each Javascript object. If you want more detailed
objects reference information, review the Javascript code contained in the file for the constructor and
method parameter information.

PW_StepElement (Step Element) Object

The PW_StepElement object supports the following methods:

addAttachment() - add an attachment object to a step element●

getAttachment() - retrieve a specific attachment●

getAttachmentCount() - determine the number of attachments on a step element●

getResponse() - check the response array for an index value●

setComment() - set the comment for the step element●

setSubject() - set the subject for the step element●

setUserInfoList() - add user information to an array●

toXML() - create an XML string that represents the step element●

PW_StepInfo (Step Information) Object

The PW_StepInfo object does not support any methods.

PW_StepParameter (Step Parameter) Object

The PW_StepParameter object supports the following methods:

getDescription() - returns the parameter description●

setDirty() - modies boolean to indicate the parameter needs to be saved to the server.●

toString() - returns the parameter name●

Modify Core Script Files

file:///I|/Workflow/DevGuide/Panagon/asp/core_script_files.htm (1 of 3) [9/18/2002 8:04:35 AM]

toXML() - creates an XML string, using the step information, to send from the client to the server.●

PW_Milestone (Milestone) Object

The PW_Milestone object supports the following methods:

getName() - retrieve the milestone name.●

getMessage() - retrieve the message associated with the milestone.●

getReached() - get the information about the milestone.●

toXML() - creates an XML string, using the milestone information, to send from the client to the
server

●

PW_WorkGroup (Work Group) Object

The PW_WorkGroup object supports the following methods:

getDescription() - returns the work group description●

setDirty() - modies boolean to indicate the parameter needs to be saved to the server.●

toString() - return the work group name●

toXML() - create an XML string, using the work group information, to send from the client to the
server.

●

att.js
The att.js file defines and declares methods for the creating and working with attachment
(PW_Attachment) objects. Review the Javascript code contained in the file for more information about
constructor information and method parameter information.

Because the attachments are stored in either Content Services or Image Services libraries, the
implemented functions rely on the client-side Javascript IDMWSC_Library object, which is supplied by
the Panagon Web Services, to create and work with attachment objects. Refer to the Referenced Panagon
Web Services Files for a brief description of the available client-side API objects, or refer to Locate the
Panagon Web Services Toolkit Help for more information on using the Panagon Web Services
components.

PW_Attachment (Attachment) Object

The PW_Attachment object supports the following methods:

assign() - assign an attachment a specific place in an array●

deleteIDMObj() - delete an attachment from a specific place in an array●

getDescription() - return an attachment description●

getIconFile() - return a string to locate the icon associated with the object type●

getIDMAttachment() - retrieve an array from a specific location in an array●

Modify Core Script Files

file:///I|/Workflow/DevGuide/Panagon/asp/core_script_files.htm (2 of 3) [9/18/2002 8:04:35 AM]

getIDMAttachmentCount() - determine the number of attachments in an array●

getToolTip() - return a description of well-known object types●

insert() - put an attachment into an array●

setDirty() - set a flag to true to indicate that the attachment parameter was modified and it needs to
be saved to the server

●

setReadOnly() - prevents UI from changing the attachment parameter value●

toString() - get the attachment name●

toXML() - create and XML string the describes the attachment object●

unassignIDMObj() - unassign an attachment at a given location in an array●

Modify Core Script Files

file:///I|/Workflow/DevGuide/Panagon/asp/core_script_files.htm (3 of 3) [9/18/2002 8:04:35 AM]

	Local Disk
	Panagon eProcess Developer's Guide
	Links to all topics
	Panagon eProcess Developer's Guide
	eProcess Required Tools and Languages
	eProcess API Class Relationships
	Runtime API Relationships
	Admininstration and Configuration API Relationships
	Workflow Definition API Relationships
	Working with eProcess API Classes
	Java Development
	COM Development
	Installing Panagon eProcess Toolkit
	Locate Panagon Web Services Toolkit Help
	What's New in 5.0
	Java UI Toolkit Overview
	UI Toolkit Parameters
	How to Use This Guide
	Printing Topics
	Contact Us
	License Agreement
	Building and Deploying the Sample Java Processors
	Panagon eProcess Services Architecture
	Configure the Java SDK
	Required eProcess Services Components
	HTML Processor Toolkit Overview
	Referenced Panagon Web Services Files
	Referenced Panagon Web WorkFlo Files
	Configure the COM bridge
	Start a Local Router (for development)
	Using the COM Bridge
	JiGlue.Util Reference
	JiGlue COM Bridge Data Types
	Add JiGlue COM Bridge to Visual Basic
	Use JiGlue COM Bridge in ASP
	Active Server Pages Overview
	Run the Unmodified Samples
	Step Processor and Launch Step Processor Overview
	Java Step Processor Samples Overview
	HTML Processor Toolkit Files
	Java Launch Step Processor Sample Files
	Java Step and Launch Step Processor Toolkit Overview
	Deploying Custom Java Processor
	Customize the Step Processor Sample
	Java Step Processor Sample Files
	Working with the VWAttachmentPanel bean
	Developing Custom Java Processors - Applications vs. Applets
	Modify the HTML Step Processor
	Modify the HTML Launch Step Processor
	Modify User Interface Files
	Modify Core Files
	Modify Utility Files
	HTML Step Processor File Relationships
	HTML Launch Step Processor File Relationships
	Add Custom Processors to the Workflow
	Signing a JAR File
	Modify Email Notification Files
	Localized Notification Files
	Optional Email Notification Variables
	Overdue Step Notification (stp_deadline.msg)
	Step Assignment Notification (stp_new.msg)
	Step Reminder Notification (stp_reminder.msg)
	Tracking Assignment Notification (trk_new.msg)
	Overdue Step Tracker Notification (trk_stp_deadline.msg)
	Workflow Exception Notification (trk_exception.msg)
	Workflow Overdue Notification (trk_wf_deadline.msg)
	Workflow Reminder Notification (trk_wf_reminder.msg)
	Workflow Milestone Notification (org_milestone.msg)
	Workflow Tracker Milestone Notification (trk_milestone.msg)
	Set up a SMTP Server
	Using ADO to Query the eProcess Database
	Notices
	eProcess Services Directory Structure
	Set up an ASP eProcess Services Development System
	Create a New Solution in Visual InterDev
	Add eProcess Services Components
	Check Web Server Directory Permissions
	Create a Generic ASP File for eProcess Services
	API Sample Overview
	LaunchSample
	SessionHelper (helper class)
	Logger (helper class)
	WFDefinitionSample
	SysConfigSample
	LockReportSample
	QueueHelper (helper class)
	LogSample
	LogViewer
	MainSample
	RosterSample
	RosterHelper (helper class)
	StepProcessorSample
	QueueSample
	ProcessSample
	MilestoneHelper (helper file)
	MilestoneSample
	OperationsHelper (helper class)
	OperationsSample
	SystemStepHelper
	SystemStepSample
	UserInfoSample
	WorkPerformerSample
	Modify Core Script Files

