
February 10, 2006
Part Number DM0710

Verity, Incorporated
894 Ross Drive
Sunnyvale, California 94089
(408) 541-1500

Verity Benelux BV
Coltbaan 31
3439 NG Nieuwegein
The Netherlands

Verity Locale
Configuration Guide

Version 6.1.1

Copyright 2006 Verity, Inc. All rights reserved. No part of this publication may be reproduced,
transmitted, stored in a retrieval system, nor translated into any human or computer language, in any
form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise,
without the prior written permission of the copyright owner, Verity, Inc., 894 Ross Drive, Sunnyvale,
California 94089. The copyrighted software that accompanies this manual is licensed to the End User
for use only in strict accordance with the End User License Agreement, which the Licensee should read
carefully before commencing use of the software.

Verity®, Ultraseek®, TOPIC®, KeyView®, and Knowledge Organizer® are registered trademarks of
Verity, Inc. in the United States and other countries. The Verity logo, Verity Portal One™, and Verity®
Profiler™ are trademarks of Verity, Inc.

Portions of this product Copyright 2003, Sun Microsystems, Inc. All rights reserved. Use is subject to
license terms. Sun, Sun Microsystems, the Sun logo, Solaris, Java, the Java Coffee Cup logo, J2SE, and
all trademarks and logos based on Java are trademarks or registered trademarks of Sun Microsystems,
Inc. in the U.S. and other countries.

Xerces XML Parser Copyright 1999-2000 The Apache Software Foundation. All rights reserved.

Microsoft is a registered trademark, and MS-DOS, Windows, Windows 95, Windows NT, and other
Microsoft products referenced herein are trademarks of Microsoft Corporation.

IBM is a registered trademark of International Business Machines Corporation.

WordNet 1.7 Copyright © 2001 by Princeton University. All rights reserved

Includes Adobe® PDF. Adobe is a trademark of Adobe Systems Incorporated.

LinguistX™ from Inxight Software, Inc., a Xerox New Enterprise Company, © 1996-1997. Xerox®,
Inxight™ and LinguistX™ are trademarks of Xerox Corporation and Inxight Software, Inc. LinguistX™
contains patented technology of Xerox Corporation. All rights reserved.

Portions of this product use Teragram Software.

Includes IBM's XML Parser for C++ Edition.

Includes software developed by the Apache Software Foundation (http://www.apache.org/).

This product may incorporate intellectual property owned by Microsoft Corporation. The terms and
conditions upon which Microsoft is licensing such intellectual property may be found at

http://msdn.microsoft.com/library/en-us/odcXMLRef/html/odcXMLRefLegalNotice.asp?frame=true

All other trademarks are the property of their respective owners.

Notice to Government End Users

If this product is acquired under the terms of a DoD contract: Use, duplication, or disclosure by the
Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of 252.227-7013. Civilian
agency contract: Use, reproduction or disclosure is subject to 52.227-19 (a) through (d) and restrictions
set forth in the accompanying end user agreement. Unpublished-rights reserved under the copyright
laws of the United States. Verity, Inc., 894 Ross Drive Sunnyvale, California 94089.

1/25/06

Copyright Information

http://www.apache.org/
http://msdn.microsoft.com/library/en-us/odcXMLRef/html/odcXMLRefLegalNotice.asp?frame=true

Contents

Figures, Tables, and Listings.. 11

Preface .. 13

Using This Book ... 14

Version ... 14
Organization of This Book .. 14
Stylistic Conventions.. 15

Related Documentation .. 16

Verity Technical Support .. 17

1 Installing Verity Locales.. 19

Prerequisites ... 19

Supported Operating Systems.. 19
Operating-System Localization .. 20
Verity Platform Installation... 20
Installer Requirements ... 20
International Fonts ... 20

License Requirements ... 20

Multilanguage Locale and Single-Language Locales.. 21
Legacy European Locales .. 21

Running the Locales Installer... 22

Installing Additional Locales or Languages .. 28

Uninstalling Locales .. 29

2 Language Concepts... 31

Language and Encoding in Documents ... 32

K2 Internationalization Architecture .. 33
3

Contents
Architecture Overview... 34
Language and Character Set in Indexing .. 36

Indexing in the Multilanguage Locale (uni) .. 36
Indexing in Single-Language Locales ... 37

Language and Character Set in Searching... 39
Searching in the Multilanguage Locale (uni)... 39
Searching in Single-Language Locales ... 41

Language and Character Set in Document Retrieval... 42
Character-Set Detection.. 44
Language Identification ... 44

Language-Related Indexing Features.. 45

Sorting Order ... 45
Tokenization and Word Delimiters.. 45
Stemming ... 47

Stemming for Single-Language Locales ... 48
Stemming for the Multilanguage Locale .. 48

Normalization.. 49
Decomposition of Compound Words.. 50
Part-of-Speech Identification... 50
Number Handling... 51

Language-Related Search Features.. 51

Locale and Language in Search Queries.. 51
Case-Insensitive Search.. 52
Accent-Insensitive Search .. 52
Symbol Search ... 53
Synonym Search.. 53
Soundex Search ... 54
Typo Search.. 54
Stop Words... 54

Limitations in Handling Source Documents.. 56

3 Verity Locales .. 59

Locale Basics ... 59

Installed Location.. 59
Locale Definition File and Locale Configuration File ... 60
4 Verity Locale Configuration Guide

Contents
Internal Character Set and Supported Character Sets... 60
Default Locales and the Session Locale... 61
Default Session Language ... 62
Installation and Licensing ... 62
Built-In Locales ... 63
Locale Categories.. 63

The Multilanguage Locale .. 64

Advanced European Locales.. 67

Asian (CJK) Locales ... 69

The english Locale ... 72

Legacy European Locales ... 73

4 Configuring Locales .. 77

Making Locale-Specific Settings .. 78

Tokenization.. 78
Stemming... 78
Noun- and Noun-Phrase Extraction .. 78
Word Decomposition... 79
Search Characteristics .. 79

Case-Sensitive Search.. 79
Auto-Case ... 79

Thesauruses for Synonym Search .. 79
Configuring the Multilanguage Locale .. 80

Tokenization.. 80
Global Changes to Tokenization ... 81
Per-Language Changes to Tokenization .. 83
Enabling Single-Character Tokenization ... 84

Stemming... 84
Disabling Multistemming .. 84
Customizing Stemming.. 85

Noun- and Noun-Phrase Extraction .. 85
Marking All Words as Nouns.. 86
Customizing Noun Extraction... 87

Disabling Word Decomposition... 87
Customizing Word Decomposition ... 87
Search Characteristics .. 88
Verity Locale Configuration Guide 5

Contents
Auto-Case ... 88
Thesaurus Setup for uni... 88
Special Setup Issues .. 89

Enabling Language Identification ... 89
Specifying the KeyView Filter for PDF Documents ... 90
Improving uni Indexing Performance .. 90

Configuring Advanced European Locales ... 91

Tokenization .. 91
Stemming ... 91

Per-Collection Stemming.. 91
Customizing Stemming .. 92

Noun- and Noun-Phrase Extraction .. 92
Customizing Noun Extraction ... 93

Disabling Word Decomposition ... 93
Customizing Word Decomposition ... 94
Search Characteristics... 94

Auto-Case ... 94
Configuring Asian Locales ... 95

Tokenization .. 95
Disabling and Enabling Simple Tokens.. 95
Enabling Single-Character Tokenization.. 96

Stemming ... 96
Noun- and noun-Phrase Extraction ... 96
Customizing Word Decomposition ... 97
Improving Performance... 97

Configuring Legacy European Locales... 98

Tokenization .. 98
Making Symbols Searchable .. 99
Tokenization Example... 99

Per-Collection Stemming ... 101
Per-Collection Noun- and Noun-Phrase Extraction .. 101
Changing Search Characteristics .. 102

Auto-Case ... 102
Making Other Language-Related Settings ... 102

Redefining the Default Session Locale... 102
Changing Formatting ... 103
6 Verity Locale Configuration Guide

Contents
Changing Date Formatting .. 103
Changing the Decimal Separator .. 104

Setting Up Synonym Search For a Locale ... 104
Creating a Stop-Word File... 105
Configuring Language Identification .. 106

Adjusting the Set of Languages to Identify ... 107
Disabling Language Identification.. 110

Specifying Locale and Character Set in Tools .. 111
Specifying Locale and Character Set On the Command Line............................... 111
Specifying Locale and Character Set In the K2 Dashboard................................... 112
Setting BIF Character Encoding .. 112
Specifying Character Set In Style Files ... 113

5 Locale Issues for Applications.. 115

Language Concerns in Verity Applications... 115

Runtime Concerns .. 115
Session Locale and Character Set .. 116
Resetting the Default Session Language .. 117

Locale and Character Set Concerns.. 117
Getting Locale Information for a Collection or Parametric Index........................ 117
Getting and Setting Client Locale for Parametric Searches................................... 118
Locale and Character-Set Conversion for Gateways.. 118

Language-Specific Searching .. 118
Defining a Search Language .. 118
Language Concerns for Fields and Zones ... 119
Localized Operators .. 119
Locale-Based Tokenization in a Custom Query Parser ... 119
Supporting Search in Multiple Languages .. 119

Localization Concerns.. 120
Date-Format Restrictions for uni Locale and Asian Locales................................. 120
Implications of UTF-8 Character Set for uni Locale ... 120
Locale-Influenced Sorting of Search Results ... 121
Performance Issues for uni and Asian Locales ... 121

Levels of Feature Support in the Multilanguage Locale... 121
Multilanguage Document Clustering... 121
No NGram Support .. 121
Extra Word Variants in Indexes .. 121
Don’t search for _nn (uni locale) ... 122
Verity Locale Configuration Guide 7

Contents
Localized Error Messages and Operators... 122

Messages and Operators for a Locale .. 122
Translating Topic Sets .. 123

Testing and Troubleshooting ... 123

Logging and Debugging .. 123
Set Up Logging of Asian or uni Locale Activity ... 123
Use Standard Diagnostic Logging... 123

Troubleshooting Language Problems.. 124
Searching Problems ... 124
Incorrect Display of Accented or Multibyte Characters .. 125
Command-Line Tools Return Different Results.. 126

A Locales, Character Sets and Languages... 127

Verity Locales and Character Sets ... 128

Supported Source-Document Character Sets... 130

Supported Language Codes ... 135

Code Conversion Command-Line Tool.. 140

Running codeconv .. 140
Example .. 141
Supported Character Sets .. 141
Limitations ... 141

B Tokenization Delimiters ... 143

C Customizing Language Dictionaries .. 147

Custom Dictionaries for Asian Languages... 147

Creating the User Dictionary .. 147
Installing the User Dictionary (Multilanguage Locale)... 149
Installing the User Dictionary (Asian Locales) ... 149
Using Multiple User Dictionaries ... 150

Custom Dictionaries for Non-Asian Languages.. 150

How to Modify a Language Dictionary... 150
_mdic Command-Line Syntax... 153
Creating a Dictionary Source File... 154
Creating a Predefined Compounds File .. 156
8 Verity Locale Configuration Guide

Contents
D The Language ID Command Tool .. 157

Using the Language ID Tool .. 157

Example Output Files.. 160

Tuning the Command-Line Tool... 162

Editing the Language Configuration File ... 162

Glossary.. 165

Index.. 175
Verity Locale Configuration Guide 9

Contents
10 Verity Locale Configuration Guide

Figures, Tables, and Listings

Figure 2-1 Document types, languages, character sets, and repositories 32
Figure 2-2 Verity software architecture (simplified) ... 34
Figure 2-3 Language and encoding during indexing (multilanguage locale) 37
Figure 2-4 Language and encoding during indexing (single-language locale) 38
Figure 2-5 Language and encoding during searching... 40
Figure 2-6 Language and encoding during document retrieval 43

Table 3-1 Languages with advanced support in the multilanguage locale.................. 64
Table 3-2 Features of the multilanguage locale .. 65
Table 3-3 Languages supported by the advanced European locales............................. 67
Table 3-4 Features of the advanced European locales ... 68
Table 3-5 Languages supported by the Asian locales.. 69
Table 3-6 Features of the Asian locales .. 70
Table 3-7 features of the english locale .. 72
Table 3-8 Languages supported by the legacy European locales 73
Table 3-9 Features of the legacy European locales ... 74

Table 4-1 Tokenization example ... 100

Table A-1 Verity locales and character sets .. 129
Table A-2 Supported source-document character sets ... 130
Table A-3 Verity-supported language codes ... 136

Table B-1 Available tokenization delimiters and symbols .. 143
11

Figures, Tables, and Listings
12 Verity Locale Configuration Guide

Preface

Welcome to the Verity Locale Configuration Guide. This book is for administrators and
developers of Verity K2 applications. It is intended for readers who need to know how to
administer or develop an application that supports indexing and search in multiple
languages.

This preface contains the following sections:

Using This Book

Related Documentation

Verity Technical Support
13

Preface
Using This Book
Using This Book

This section briefly describes the organization of this book and the stylistic conventions it
uses.

Version

The information in this book is current as of K2 Enterprise version 6.1.1. The content was
last modified February 10, 2006. Corrections or updates to this information may be
available through the Verity Customer Support site; see “Verity Technical Support” on
page 17.

Organization of This Book

This book contains the following chapters and appendixes:

Chapter 1, “Installing Verity Locales,” describes how install Verity locales.

Chapter 2, “Language Concepts,” gives an overview of the Verity internationalization
architecture, introduces language concepts related to text search, and illustrates how
locale and character set are involved in indexing and searching.

Chapter 3, “Verity Locales,” describes the language-handling characteristics of each
Verity locale.

Chapter 4, “Configuring Locales,” describes how to configure and use Verity locales
to support indexing and search in languages other than English.

Chapter 5, “Locale Issues for Applications,” gives suggestions for creating effective
language-aware K2 applications.

Appendix A, “Locales, Character Sets and Languages,” lists the locales, character
sets, and language codes supported by Verity.

Appendix B, “Tokenization Delimiters,” lists the characters that can be used as
searchable symbols or as word delimiters to control indexing.

Appendix C, “Customizing Language Dictionaries,” describes how to create
customized stemming dictionaries for Asian and non-Asian languages.

Appendix D, “The Language ID Command Tool,” describes how to use a
command-line tool that identifies the language of a document.
14 Verity Locale Configuration Guide

Preface
Using This Book
Stylistic Conventions

The following stylistic conventions are used in this book.

The following command-line syntax conventions are used in this book.

Convention Usage

Plain Narrative text.

Bold User-interface elements in narrative text:

Click Cancel to halt the operation.

Italics Book titles and new terms:

For more information, see the Verity K2 Getting Started Guide.

An index is a Verity collection, parametric index, or
recommendation index.

Monospace File names, paths, and code:

The name.ext file is installed in:

C:\Verity\Data\

Monospace italic Replaceable strings in file paths and code:

user username

Monospace bold Data types and required user input:

SrvConnect A connection handle.

In the User Interface text box, type user1.
Verity Locale Configuration Guide 15

Preface
Related Documentation
Use of punctuation—such as single and double quotes, commas, periods—indicates
actual syntax; it is not part of the syntax definition.

Related Documentation

Most Verity books contain information related to languages and character sets. See also
the following books for general information on Verity products and language-related
features:

Convention Usage

[optional] Brackets describe optional syntax, as in [-create] to specify a
non-required option.

| Bars indicate “either | or” choices, as in

[option1] | [option2]

In this example, you must choose between option1 and option2.

{ required } Braces describe required syntax in which you have a choice and
that at least one choice is required, as in

{ [option1] [option2] }

In this example, you must choose option1, option2, or both
options.

required Absence of braces or brackets indicates required syntax in which
there is no choice; you must enter the required syntax element.

variable Italics specify variables to be replaced by actual values, as in

-merge filename1

... Ellipses indicate repetition of the same pattern, as in

-merge filename1, filename2 [, filename3 ...
]

where the ellipses specify , filename4, and so on.
16 Verity Locale Configuration Guide

Preface
Verity Technical Support
Verity K2 Getting Started Guide

Verity K2 Developer Getting Started Guide

Verity Query Language and Topic Guide

Verity Collection Reference

Verity Technical Support

Verity Technical Support exists to provide you with prompt and accurate resolutions to
difficulties relating to using Verity software products. You can contact Technical Support
using any of the following methods:

Telephone: (403) 294-1107

Fax: (403) 750-4100

Email: tech-support@verity.com

Web: http://www.verity.com

Product documentation, release notes, and document updates are available on the Verity
Customer Support Site, at

https://customers.verity.com

It is recommended that you periodically check the Customer Support site for the
existence of updates to this and other Verity product documents.

Access to the contents of the Customer Support site requires a user name and password.
To obtain a user name and password, follow the signup instructions on the Customer
Support site home page. You will need to supply your Verity entity ID and Verity license
key.
Verity Locale Configuration Guide 17

http://www.verity.com
https://customers.verity.com

Preface
Verity Technical Support
18 Verity Locale Configuration Guide

1
Installing Verity Locales

This chapter gives instructions for running the Verity Locales installer, which installs one
or more locales to provide language-specific indexing and searching capabilities.

This chapter includes the following sections:

Prerequisites

License Requirements

Running the Locales Installer

Installing Additional Locales or Languages

Uninstalling Locales

Prerequisites

The following features must be present on the machine on which you run the Locales
installer.

Supported Operating Systems

Locales and internationalization are supported on all Verity platforms, including
Windows NT/Windows 2000, Solaris, AIX, HP-UX, and Linux.
19

1 Installing Verity Locales
License Requirements
Operating-System Localization

If the operating system on which Verity runs is localized to a different language from the
Verity locale being used, query logging can in some cases be unreadable. If you plan to
install and use only a single Verity locale, it is recommended that you also install an
operating system that is localized to match that locale.

Verity Platform Installation

Before running the Locales installer, you already must have installed K2 Services, Verity
Intelligent Classifier (VIC), or Verity Development Kit (VDK).

Installer Requirements

The Locales installer is Java-based and requires JDK 1.4.2 or later.

To install Verity Locales, you must have at least 1,000 MB of available disk space.

The JAVA_HOME environment variable needs to be set to your JDK before you run the
installer.

International Fonts

Strictly speaking, international fonts need not be present for installing locales or for using
them to build collections. However, if you are building a collection and need to view the
results, or if you are creating style files or BIFs to use in creating the collection, you’ll
need to have fonts available that can display the locale’s characters. End-users’ browsers,
of course, must have fonts that can display the characters of any collections they might
expect to search.

License Requirements

Each licensed locale, or set of locales, is enabled by a single license key. You cannot run
the installer without providing a valid license-key string. Your Verity representative
provides you with the appropriate license key for the locales and language features you
are licensed for.
20 Verity Locale Configuration Guide

1 Installing Verity Locales
License Requirements
Multilanguage Locale and Single-Language Locales

The Verity Locales product includes

The multilanguage locale

Asian locales

Advanced European locales

For the multilanguage locale, two levels of capability are available:

The basic level is unlicensed. It provides advanced support for the English language,
plus basic indexing and searching in any of the Unicode language ranges. This level of
capability is available with every Verity installation and does not require running the
Locales installer.

At this level, non-English documents display properly but might not be indexed or
searched correctly.

The advanced level is installed as part of the Verity Locales product. Installation of this
level requires a license key to be supplied when running the Locales installer. This
level of capability provides linguistic capabilities for any of the European,
middle-eastern, and Asian languages listed in Table 3-1 on page 64.

The license key you supply when running the installer also specifies which of the
European and Asian single-language locales you are licensed for. These locales provide
advanced support for the languages listed in Table 3-3 on page 67 and Table 3-5 on
page 69, respectively. Only the individual locales for which you are licensed are installed.

A runtime license file is required by the multilanguage locale. It is named locale.lic,
in the directory productDir/common, and it contains a single license string. If this
license file is not present or does not contain a valid key, linguistic capabilities are not
available.

All languages also support a client dictionary, which allows users to define their own
tokens. For more information, see “Customizing Language Dictionaries” on page 147.

Legacy European Locales

These single-language locales are installed as part of the Verity Single-Language
European Locales product, and they are available only to certain existing customers.
Installation of these locales requires a license key to be supplied when running the
Locales installer. These locales provide linguistic capabilities for the Western European
languages listed in Table 3-7 on page 72.
Verity Locale Configuration Guide 21

1 Installing Verity Locales
Running the Locales Installer
Running the Locales Installer

For either UNIX or Windows platforms, and for either the Verity Locales product or the
Verity Single-Language European Locales product, the DVD-ROM includes the locales
installer program (launched with install.sh on UNIX platforms, setupwin32.exe
for Windows) plus locale binary files and language data.

Before starting, see “Installer Requirements” on page 20. Then follow these instructions
to use the installer.

1. Launch the installer:

For the Verity Locales product:

Place the K2 product family DVD or the VDK DVD into the DVD-ROM drive of the
machine that already has the installed Verity platform component (K2, VIC, or
VDK). Open the DVD and navigate to the locales directory. Double-click
setupwin32.exe (on Windows) or execute install.sh (on UNIX) to launch the
Locales installer.

For the Verity Single-Language European Locales product:

Place the Single-Language European Locales installation DVD into the DVD-ROM
drive of the machine that already has the installed Verity platform component (K2,
VIC, or VDK). Open the DVD and launch the Locales installer (double-click
setupwin32.exe or execute install.sh).

(To run the installer in console (text) mode on UNIX platforms, execute
install.sh -console.)

The Welcome screen appears.

Note The following screens are from the Verity Locales installer. Screens for the
Verity Single-Language European Locales installer are similar, although
the list of licensed locales and languages is different.
22 Verity Locale Configuration Guide

1 Installing Verity Locales
Running the Locales Installer
2. Read the Welcome screen and click Next. The License Language screen appears.

3. Select the language for the license agreement, then read the agreement on the License
Agreement screen.

4. Read the license agreement, click the I accept... button, then click Next.

The Product Selection and Destination Folder screen appears. The default path shown
in the Destination Folder area is the appropriate installation location based on the
previously installed Verity component (K2, VIC, or VDK).
Verity Locale Configuration Guide 23

1 Installing Verity Locales
Running the Locales Installer
5. Accept the default installed Verity product as shown, or select an installed Verity
product to associate these locales with.

6. Accept the default Locales installation directory as shown, or type in the desired
directory. It should be the directory productDir, where productDir is the path to
specific installed Verity product (such as usr/verity/k2_6/k2 or usr/vdk).

(It is also the directory immediately above the common directory.)

7. Click Next.

A screen appears that cautions you to stop all K2 services before proceeding.

8. Click Next.
24 Verity Locale Configuration Guide

1 Installing Verity Locales
Running the Locales Installer
The License Key screen appears.

9. Type the license-key number for the locale or locales you are installing. Note that the
key determines the set of locales and languages to be installed.

10.Click Next.

The Locales Verification screen appears. It lists all the locales and languages enabled by
the license key entered in the previous screen. (The list may include locales or
languages not installed by the currently running installer.)
Verity Locale Configuration Guide 25

1 Installing Verity Locales
Running the Locales Installer
11.If the list of languages and locales is correct, click Next. Otherwise, click Back to correct
your license-key entry before proceeding.

12.Click Next.

The Summary screen appears, listing the components to be installed and showing the
installation directory path.

For the Verity Locales installer, the list may include one or more languages for the
multilanguage (uni) locale, and/or one or more Asian or advanced European
single-language locales.

For the Verity Single-Language European Locales installer, the list includes one or
more legacy European locales.
26 Verity Locale Configuration Guide

1 Installing Verity Locales
Running the Locales Installer
13.If the information is correct, click Next. Otherwise, click Back to correct the information
before proceeding.

The Copying Files screen appears. It displays a progress bar while it copies the files to
your system.
Verity Locale Configuration Guide 27

1 Installing Verity Locales
Installing Additional Locales or Languages
If copying completes successfully, a confirmation notice appears.

14.Click Finish to complete the installation.

Installing Additional Locales or Languages

After installing one or more locales, you can run either of the Locales installers again to
add more locales (or to add support for more languages to the multilanguage locale).

IMPORTANT Before running the Locales installer to add support for additional
languages to the multilanguage locale, you must first shut down all
K2 services.

Obtain a new license key from Verity that specifies the complete set of locales and
languages that you will be licensed for. Then re-run the appropriate Locales installer and
enter your new license key. The installer adds or removes locales to match the new key.
28 Verity Locale Configuration Guide

1 Installing Verity Locales
Uninstalling Locales
Uninstalling Locales

To completely remove all locales, you run one or both of the Locales uninstallers
(depending on what you have installed). Take these steps:

1. Launch the appropriate uninstaller:

On Windows, open the Add/Remove Programs control panel and choose

- Verity Locales 6.1 to remove all single-language locales (other than englishv)
and all language support (other than English) from the multilanguage locale.

- Verity Single-Language European Locales 6.1 to remove all
legacy European locales.

On UNIX, make sure your JAVA_HOME variable is set and in the system path, then
launch the uninstaller for your locales product:

- Verity Locales: launch the file localeuninstaller.bin in the directory
installDir/product/_uninst_loc.

- Verity Single-language European locales: launch the file localeuninstaller.bin
in the directory installDir/product/_uninst_eur.

The uninstaller Welcome screen appears.

2. Click Next.
Verity Locale Configuration Guide 29

1 Installing Verity Locales
Uninstalling Locales
The uninstaller Summary screen appears, listing the locales and languages to be
removed from the specified directory.

3. To continue, click Uninstall.

4. On the Confirmation screen that appears after the files have been removed, click
Finish.

Note On UNIX, if you have installed multiple times, there will be multiple
uninstall directories (for example, _uninst_loc1, _uninst_loc2, and
so on). Be sure to run the uninstaller that is in the latest uninstall directory.
30 Verity Locale Configuration Guide

2
Language Concepts

By its nature, textual information is language-specific. The words, sentences, paragraphs,
and documents that make up a body of knowledge are expressed only within the context
of one or more human languages. The fundamental building blocks for those
expressions—characters and symbols—are numerous and highly specific to individual
writing systems.

A useful information-retrieval technology must be able to process information in a large
variety of writing systems, and it must be able to extract meaningful units of information
(words, phrases, concepts, and so on) from many different languages.

This chapter gives an overview of Verity’s software architecture to illustrate the
language-related issues that it addresses. The chapter includes the following sections:

Language and Encoding in Documents

K2 Internationalization Architecture

Language-Related Indexing Features

Language-Related Search Features

Limitations in Handling Source Documents
31

2 Language Concepts
Language and Encoding in Documents
Language and Encoding in Documents

Text information is stored on the world’s computer systems in a great variety of
languages and formats. The different languages, the different (and often proprietary)
storage formats, and the different computer platforms involved present challenges for
extracting searchable information.

Figure 2-1 shows examples of the kinds of document characteristics that Verity software
needs to work with in order to extract and analyze their content.

Figure 2-1 Document types, languages, character sets, and repositories

The figure shows four kinds of document characteristics:

Repository type. This is the platform or protocol involved in storing and retrieving
the information. The examples shown here are file system (Windows or UNIX), Web
server (HTTP protocol), and database (ODBC protocol).

Verity software can access these and other types of repositories.

File format. A given repository type can hold documents or information in many
different formats. The examples shown here are Microsoft Word, HTML, PDF, and an
example of the use of database tables to store information. (In a database, information
is not typically stored in documents, so Verity constructs documents—such as
individual purchase orders in this case— from that information.)

Verity software can read hundreds of different file formats.

Character set. The character set of a document includes its encoding—the numeric
codes used to store the values of the individual text characters. Different languages
and different platforms often use different character sets. The characters of a single
language might be able to be implemented in several character sets and, conversely, a
single character set can sometimes be used to store text in several languages.

MS Word docs

English

Windows 1252

Windows (NTFS)

HTML pages

Japanese

Shift-JIS

Web server

PDF docs

French

ISO-8859-1

UNIX

Purchase orders

Russian

KOI8-R

Database
32 Verity Locale Configuration Guide

2 Language Concepts
K2 Internationalization Architecture
Verity software can read document text stored in dozens of different character sets, and
it can convert text from one character set into any other character set supported for that
language.

Language. Language here refers to the natural language (such as English, Japanese,
French, Russian) of the words in the text.

Verity provides basic (display and storage) support for approximately 100 languages,
and it provides linguistically sophisticated support for at least 20 languages.

As an example of the importance of considering character set and character-set
conversion when displaying text, consider the following fragment of an HTML
document containing mixed Chinese and English text. This is the appearance of the text
when the HTML browser’s encoding is set to Windows 1252 (typical for English text):

The Chinese characters (top row) are indecipherable. If the browser encoding is now set
to Big5 (typical for traditional Chinese text), the Chinese characters display correctly:

A language-aware application can use Verity functionality to track character encoding
throughout the process of reading, analyzing, indexing, and displaying text in many
different languages. It can convert character encoding whenever necessary to make sure
users can read the information presented to them.

K2 Internationalization Architecture

Verity software is implemented in a modular, layered architecture that allows customers
and developers to implement information-management solutions that are highly
customized to the needs of their users.
Verity Locale Configuration Guide 33

2 Language Concepts
K2 Internationalization Architecture
Architecture Overview

As shown in Figure 2-2, Verity consists broadly of three layers of software, atop which
sits an application developed by a Verity customer or partner. Each Verity layer is
associated with creating specific data structures used by the application, some examples
of which are shown in Figure 2-2.

Figure 2-2 Verity software architecture (simplified)

From the top down, the layers have these features:

Application layer. This layer represents the customer’s client application, which uses
Verity technology to search for, retrieve, analyze, and present information to the user.

A localized application can provide these capabilities in a language other than English.
A highly capable language-aware application can support multiple non-English
languages.

K2 layer. This layer represents Verity’s broker/server architecture, which provides
scalable, distributed access to information, distributed Web-based administration, and
a security service. It also creates Verity’s most sophisticated information-analysis
features, such as parametric indexes, recommendations, profile nets, adaptive ranking,
and expert location.

The client application typically connects to Verity through the broker/server interface.
Language issues arise related to display characteristics of retrieved search results,
viewed documents, and languages attached to high-level structures (such as topic sets).
34 Verity Locale Configuration Guide

2 Language Concepts
K2 Internationalization Architecture
VDK layer. This layer represents the core capabilities of Verity’s search technology—
reading and indexing documents, creating and searching through indexed collections
of information, and extracting features to build document summaries.

Using linguistic information built into the DDA layer below it, this layer performs the
language-specific tasks of converting document text into indexed, searchable units of
information. It also interacts with the K2 layer to pass language-specific information, in
specific character sets, to the application user.

DDA layer. This is the driver layer, consisting of low-level code modules that interact
with repositories, control the processing of their contents, and pass information back
to the VDK layer. Three basic kinds of drivers exist at this level:

Gateways. Gateways interact directly with repositories. They read file-level
information from the repositories into Verity and prepare it to be processed by
document filters. Each type of repository, such as file system, Web server, or
database, requires a gateway designed specifically for it.

Filters. Document filters take binary file content from gateways and convert it to field
data and pure text virtual documents, ready for indexing. Some filters perform
language- or character-set identification (Verity can work with source documents in
a wide variety of character encodings), others perform character-set conversion and
stripping of non-text data from the binary files. Each different file format, such as
Microsoft Excel, PDF, or XML, requires a document filter that can read that format to
extract document text.

Locales. Verity locales are code modules and data tables that control how the virtual
documents created by document filters are to be turned into language-specific word
indexes. For each language supported by Verity, there is one or more locales. Verity
also implements a special multilanguage locale, which by itself supports over 90
languages.

Locales are the core of Verity’s support for internationalization. By installing and
configuring locales, an administrator can give a language-aware client application
the ability to work in languages other than English.

Drivers at the DDA level are replaceable, plug-in modules. Verity its partners can help
to extend the capabilities of applications by developing new DDA drivers.
Verity Locale Configuration Guide 35

2 Language Concepts
K2 Internationalization Architecture
Language and Character Set in Indexing

For Verity applications, indexing always occurs within the context of a locale (the current
locale). This section and the following two sections illustrate how and where language
analysis and character-set conversion occur in a language-aware Verity application. The
illustrations also highlight the differences between using a single-language locale and the
multilanguage locale.

This section summarizes the processes that occur when documents in a repository are
indexed into a collection.

Indexing in the Multilanguage Locale (uni)
Figure 2-3 shows the indexing process on the same repository when the current locale is
the multilanguage locale. The document repository in this example contains both English
documents written in the ISO-8859-1 character set and French documents written in the
MSDOS 850 character set. A Verity spidering application (such as vspider or K2 Spider)
or direct-indexing application (such as mkvdk) is performing the indexing.

1. The gateway reads in the file’s contents.

2. The file is filtered:

The document filter opens the document.

The language-detection filter assigns a language to the document.

An auto-detection filter determines the character set of the content and converts it to
the internal character set (UTF-8) of the current locale (uni).

The document filter creates the virtual document and writes descriptive information
(including its language—en or fr in this case) to the collection’s document table.

3. The document filter passes the virtual document to the Verity tokenizer, which uses
language-specific rules (French rules for the French document, English rules for the
English document) for tokenizing. Each token in the virtual document, along with
index information noting all of its occurrences in the document, is added to the
collection’s word index.

4. If word stems are being indexed, both the English word stems and the French word
stems—each marked for the language they apply to—are placed in the word index at
the same time as the other tokens. See “Stemming” on page 47 for details of how this
process occurs for the multilanguage locale.
36 Verity Locale Configuration Guide

2 Language Concepts
K2 Internationalization Architecture
Figure 2-3 Language and encoding during indexing (multilanguage locale)

Indexing in Single-Language Locales
Figure 2-4 shows the indexing process when the current locale is a single-language locale,
in this case frenchv. The process is similar to that with the multilanguage locale, except
that the language information that is captured does not affect the indexing process.
Verity Locale Configuration Guide 37

2 Language Concepts
K2 Internationalization Architecture
Figure 2-4 Language and encoding during indexing (single-language locale)

1. The gateway for this kind of repository opens the file containing the French or English
document and reads in its contents.

2. The file is filtered, or initially processed:

A document filter for the type of document that has been read in opens the
document.

A language-identification filter (see “Language Identification” on page 44) assigns a
language—en or fr in this case—to the document.

An auto-detection module (see “Character-Set Detection” on page 44) determines
the character set of the content and converts it to the internal character set (Windows
1252) of the current locale (frenchv).

The document filter extracts the text from the document and creates a pure-text
virtual document to be used for indexing. The filter also generates or extracts
metadata (descriptive information) from the document—including its language, as
determined earlier in this step—and writes it into fields in the collection’s document
table.
38 Verity Locale Configuration Guide

2 Language Concepts
K2 Internationalization Architecture
Both the virtual document and the field information are in the current locale’s
internal character set (Windows 1252 in this case).

3. The document filter passes the virtual document to the Verity tokenizer, which uses
locale-specific rules (in this case frenchv rules) to break the document into words or
other tokens for indexing. Each token in the virtual document, along with index
information noting all of its occurrences in the document, is added to the collection’s
word index.

The use of French rules for indexing in this example applies to every processed
document, regardless of whether its actual language is French. With a single-language
locale, all documents in a collection are indexed according to that language’s rules.

4. If word stems are being indexed (see “Stemming” on page 47), a stem index (stemdex)
is created in the collection during a second indexing pass, using, in this example,
frenchv stemming rules.

Language and Character Set in Searching

This section summarizes the locale- and character set-related processes that occur when
application users search for documents in a collection.

Note that searching and display of search results involve the user’s application and the
collection; the document repository itself is not accessed.

Searching in the Multilanguage Locale (uni)
Figure 2-5 shows what happens during a search of the example multilanguage collection
indexed as described in “Indexing in the Multilanguage Locale (uni)” on page 36. In this
example, the user accesses the Verity application through a Web browser and keyboard
whose character encodings are currently set to the ISO-8859-1 character set.
Verity Locale Configuration Guide 39

2 Language Concepts
K2 Internationalization Architecture
Figure 2-5 Language and encoding during searching

1. The user enters a search term in an application page (in this example, an HTML page in
a browser). The browser sends the search term to the client application.

2. The client application constructs a VQL query string from the search term:

If a language-independent search is to be performed, the application can apply the
VQL operator <WORD> to the string to ensure that all occurrences of the term in any
language should be included in the results.

If a stemmed search is to be performed, the application applies the VQL modifier
<lang/fr> to the string to specify that only occurrences of words with French
stems should be included in the results.
40 Verity Locale Configuration Guide

2 Language Concepts
K2 Internationalization Architecture
(If the default language for searching has been set to fr, this operator is not
required; see “Resetting the Default Session Language” on page 117.)

Note When a multilanguage collection contains Chinese and Japanese
documents, searching with the <lang/id> modifier can return hits
from documents written in both languages.

The application sends the string to the K2 Broker or K2 Server, specifying that it wants
the results to be returned in ISO 8859-1.

3. The K2 Server passes the string to the Verity search engine, which converts the
character encoding to UTF-8, then searches the collection’s word index for all
occurrences of the search term. If a stemmed search is being performed, the word index
is searched for only French stems.

4. The Verity search engine converts the search results to ISO 8859-1 and returns them to
the K2 Server.

5. The K2 Server sends the results to the client application.

6. The client application sends the search results to the user’s browser.

Note A client application using the multilanguage locale and simultaneously
serving multiple users in multiple languages might specify its own
internal character set (UTF-8), and either require all users to work in that
character set or else perform its own character-set conversion between the
user’s character set and UTF-8.

Searching in Single-Language Locales
Figure 2-5 on page 40 also shows what happens during a search of the example frenchv
collection indexed as described in “Indexing in Single-Language Locales” on page 37.
The process is similar to searching a multilanguage collection, except that the language of
the search is not specified.

1. The user enters a search term in the browser page, which causes a search request to be
sent to the client application. The user’s submitted string is in ISO 8859-1 character
encoding.

2. The client application constructs a VQL query string from the user’s search term. The
application sends the string to the K2 Broker or K2 Server and specifies that it wants
the results returned in ISO 8859-1.

3. The K2 Server passes the string to the Verity search engine, which converts the
character encoding to that of the current locale (frenchv) and searches the collection’s
Verity Locale Configuration Guide 41

2 Language Concepts
K2 Internationalization Architecture
word index for all occurrences of the search term. If a stemmed search is being
performed, the stem index is searched. In either case, all indexed documents, whether
French or not, are included in the search.

4. Search results—consisting only of field information from the collection’s document
table—are returned to the search engine. These results are in the locale’s internal
character set (Windows 1252).

5. The search engine converts the results to client’s internal character set (ISO 8859-1), and
the K2 Server returns the results to the client application.

6. The client application sends the search results to the user’s browser. (The client might
specify ISO 8859-1 encoding in the HTML header sent to the browser, to ensure that the
user’s browser would switch to ISO 8859-1 to display the results.)

Language and Character Set in Document Retrieval

This section summarizes the processes that occur when an application user requests to
view a document referenced in search results.
42 Verity Locale Configuration Guide

2 Language Concepts
K2 Internationalization Architecture
Figure 2-6 Language and encoding during document retrieval

1. The user clicks a document link in the search results displayed on the browser page.
The browser sends a URL to the client application.

2. The client application forwards the URL to the K2 Broker or K2 Server.

3. The K2 Server accesses the document repository through the gateway, which opens the
document in its own character encoding (MSDOS 850 in this example).

4. The gateway passes the opened file to the document filters, which convert the
document to the locale’s character set, create a virtual document and pass it to the
locale.

5. The locale obtains word-location information from the collection (if it is using static
highlighting to highlight the search term in the document), highlights the search terms
in the document, and passes the document to the K2 Server.

6. The K2 Server converts the virtual document to the client’s character set (ISO-8859-1)
and passes the document to the client application.
Verity Locale Configuration Guide 43

2 Language Concepts
K2 Internationalization Architecture
7. The client application displays the returned document to the user.

Character-Set Detection

Some documents in a repository might carry specific information (such as in the
encoding attribute of the <?xml> declaration in an XML document) that identifies the
character set they are written in. Many documents, however, do not, and it is up to Verity
to determine the actual character set of each incoming document.

In some cases, based on its configuration settings, the gateway might have prior
knowledge of the character-set encodings of the documents it reads. If not, the Verity
auto-detection process analyzes the incoming document data to determine its character
set.

It is the responsibility of the gateway or the document filters—whichever determines the
character set of an incoming document—to convert that document, if necessary, to the
internal character set of the current locale. Verity’s character-set conversion capability,
like its auto-detection capability, is based on KeyView technology, which can detect and
read over 250 common file formats.

Language Identification

Every collection is created in the context of a single locale. Most locales apply to a single
language only. For those locales, documents in a repository that are not in the locale’s
language are usually not of interest for indexing. In this situation, even though
auto-detection still attempts to identify the language of every file, all documents that are
in a character set supported by the current locale are passed through to the locale for
tokenization.

The multilanguage locale is a special case. It supports many languages, and it applies
language-specific rules when tokenizing the text of a document. Therefore, it must be
able to identify the languages of documents read in through the gateway.

The Verity language-identification filter is used with all locales to detect the language of
incoming documents. The filter makes use of the document’s character set (which in
some cases is enough to identify the language), the presence of specific accented
characters, and other language features to make the identification. The filter stores the
document’s language assignment as a two-character language code (see “Supported
Language Codes” on page 135) in the VLANG field of the collection’s document table.
44 Verity Locale Configuration Guide

2 Language Concepts
Language-Related Indexing Features
Verity’s tokenizer assumes in general that each document consists of text in a single
language. Language identification assigns the language to a document based on a
portion (by default, the first 2K bytes) of content. Portions of mixed-language documents
that are not in the main language are processed as if they were.

Language-Related Indexing Features

Verity locales exist to provide support for language-aware search. Each locale provides
rules, settings, tables of information, and functions that facilitate the construction of
collection indexes that take into account the word structure, spelling, and parts of speech
in that locale’s language.

Sorting Order

For faster case-insensitive and accent-insensitive search, and for efficient search of related
spellings, the word index in a collection needs to be sorted in an order that is specific to
the language’s set of characters. That sorting order can also be used to present search
results to the user.

Each locale maintains a table of characters and their variants, with entries placed in the
sorting order for that language. Typically, the sorting order groups all variants of a
character together, like this:

A a À à Á á Â â B b C c Ç ç D d ...

With this ordering, all accented or capitalized variants of a word are adjacent to each
other in the word index, making accent-insensitive and case-insensitive searching
efficient.

Tokenization and Word Delimiters

In general, Verity collections store all of a document’s individual words as the elements
of the word index it creates from the document. More specifically, the Verity engine
generates and stores all the document’s tokens, which are character strings that occur
between delimiters (white space or punctuation). This process of extracting tokens from a
document is called tokenization.
Verity Locale Configuration Guide 45

2 Language Concepts
Language-Related Indexing Features
Tokens are thus more than just the natural-language words in the document; they are the
document’s searchable units. For example, this English sentence

The blue/green used truck costs $2000 - $5000 more (plus taxes).

might be converted to

$2000
$5000
blue/green
costs
more
(plus
taxes)
The
truck
used

because, in this case, the blank space, period, and hyphen are considered tokenization
delimiters but the forward slash, dollar sign, and parentheses are not. This is the default
behavior for older versions of some locales, such as english.

The set of delimiters that controls tokenization is highly locale-dependent and, for most
locales, is now customizable by the Verity administrator. For the example just given, if the
administrator chooses to enable simple tokens behavior, which redefines nearly all
symbols as delimiters, the following tokens would appear in the word index:

$
2000
5000
blue
costs
green
more
plus
taxes
The
truck
used

In this case, blue, green, plus, and taxes are now searchable words in the document.

The advantage of having more delimiters (and thus shorter tokens) is that more hits are
returned from searches. Simple tokens is the default behavior for the Verity
multilanguage locale, the Advanced European locales, the legacy European locales, and
for Latin characters in the Asian locales.
46 Verity Locale Configuration Guide

2 Language Concepts
Language-Related Indexing Features
In some situations, however, longer, more specific tokens may be more useful—such as in
automatic classification, in which longer words (such as blue/green in this example)
might make better category names (than just blue or green). For that reason, the
simple-tokens behavior can be disabled.

See “Tokenization” on page 78 for instructions on specifying simple tokens and
redefining tokenization delimiters.

Stemming

Stemming is a process by which Verity further breaks down a word by extracting its word
stem, or main part, stripped of prefixes or suffixes. Indexing the word stems in a
document allows for stemmed search—a search that finds all the words that share the
supplied stem.

For example, suppose a document in English contains the words houses, housed, and
housing. A regular search for the term house would find nothing. But a stemmed search
would find all three words, because house is the stem for all of them.

(Verity locales use inflectional stemming, meaning that only stems of the same part of
speech as the word being stemmed are extracted. In the above example, all are verbs.)

In the used truck example from the previous section, the stems use and tax would also be
indexed, so that users searching for those terms would find the information about the
used truck.

Note Verity also uses word stems when it automatically constructs higher-level
indexing structures such as document summaries and clusters; see the
Verity Collection Reference and the Verity Intelligent Classification Guide for
more information.

Note Hyphenated words are not searched by any stemming operators. For
example, a search query of known will not match well-known. However,
a query of *known will match well-known. For more information, see
“Tokenization and Word Delimiters” on page 45.

Verity locales use two different methods for stemming: one for single-language locales,
and another for the multilanguage locale.
Verity Locale Configuration Guide 47

2 Language Concepts
Language-Related Indexing Features
Stemming for Single-Language Locales
With single-language locales, stemming is performed as a separate process after
indexing, and the word stems reside in a separate stem index (stemdex) that Verity
creates inside the collection (see also Figure 2-4):

An entry in the stem index notes the locations of all words in the word index that share
that stem. The word index in turn has the locations of those words in the document.

Stemming for the Multilanguage Locale
With the multilanguage locale, stemming is performed during indexing. Stems are
marked according to language and are related to the regular tokens in the word index
(see also Figure 2-3.):
48 Verity Locale Configuration Guide

2 Language Concepts
Language-Related Indexing Features
In this example, each English word that is a variation of child is referenced by the stem
child@en. Likewise, the word chiles (from a Spanish document) has chile@es as its stem.
English searches for child will return occurrences for all words referenced by child@en;
Spanish searches for chile will return all occurrences of chile and chiles.

This method can in some cases improve stemming quality, since the context (part of
speech) of each word to stem is known. For example, the stem of the past-tense verb saw
is see, but for the noun saw, it is just saw.

Words that are common to more than one language can have more than one word stem.
For example, the word llamas in a word index could have the stems llama@en and
llama@es, in which case both English and Spanish stemmed searches for llama would
return all occurrences of llamas. However, a Spanish search for llama would also return
occurrences of llamadas, whereas an English search would not.

Stemming is highly language-dependent, and each locale implements stemming
according to its own rules. In the current locale architecture, stemming functionality is
not customizable, although it can be enabled or disabled.

Normalization

Some locales support normalization, an indexing feature in which a single version of a
character is used when alternate versions exist, and a single spelling is used for a word
that has alternate spellings. Users searching a normalized collection for a word will then
find all words with either the common spelling or any of the alternate spellings.

For example, in the Japanese language, both Katakana (phonetic) characters and ASCII
characters occur in half-width and full-width versions, with different character codes. In
the Verity Japanese locale (japanb) and in the multilanguage locale, the half-width
versions are normalized to their full-width equivalents. A person searching for full-width
Katakana word (, for example) will find all occurrences of both the full-width
and half-width () version. As another example of Japanese normalization,
Okurigana (Voice-marked Kanji) is indexed as non-marked Kanji.

Normalization applies to the tokens in the collection index itself, not to the original
source documents. When viewing the documents through a Verity client, the user sees
the actual spellings and the actual versions of the characters that occur in the source.
Verity Locale Configuration Guide 49

2 Language Concepts
Language-Related Indexing Features
Decomposition of Compound Words

Some languages (notably German) include the concept of compound words, words created
by the concatenation of several independent words in certain grammatical contexts.
Decomposition is the process by which Verity breaks compound words into their
constituent tokens.

For example, the German word for taxi driver is taxfahrer. During indexing, the word is
decomposed into the subwords taxi and fahrer, and each subword is indexed separately.

A locale that supports compound words creates independent tokens for each compound
word and for all subwords of the compound word. In the word index, the subwords are
marked as having the same positions in the document as the compound word. Therefore,
searching for either the compound word or any of its subwords will produce the same
matches.

Decomposition is somewhat similar to stemming, in that it extracts smaller units from
tokens. However, a compound word is considered a collection of words, whereas the
words that share a stem are considered variations of the same single root word.

For some Asian languages, Verity supports user customization of word decomposition.
For those locales, you can create a user dictionary that contains terms (such as proper
names or industry-specific terms) that should be decomposed in a non-default manner or
not decomposed at all. See “Customizing Word Decomposition” for details.

Japanese uses compound words that can be repeatedly decomposed. For example, the
word (Tokyo Mitsubishi Bank) can be decomposed into +

 (Tokyo + Mitsubishi Bank), or more completely decomposed into +
 + (Tokyo + Mitsubishi + Bank). Each division represents a word. The

compound word is a noun phrase.

Part-of-Speech Identification

Some Verity locales support part-of-speech identification during indexing. When it is
used, each indexed token is analyzed to determine whether it is a noun, verb, adjective,
number, and so on.

An extension of part-of-speech detection is noun-phrase extraction. Automatic detection of
noun phrases is available for some locales, and high-level Verity tools use that capability
to automatically extract document features and construct document summaries or
clusters from a collection.

Part-of-speech information and noun-phrase extraction are used by Verity software to
better support high-level constructions such as feature extraction, document summaries,
document clusters, and automatic classification.
50 Verity Locale Configuration Guide

2 Language Concepts
Language-Related Search Features
For some locales, noun-phrase extraction can be disabled for improved performance, if
desired.

Number Handling

Some languages use traditional script for numbers as well as the common Latin versions.
For example, Chinese, Japanese and Korean use Han script numbers as well as Latin
numbers. The number nineteen can be written in Han script in several different ways, or
as the Latin 19.

For those locales that support number handling, performing a stem search with either a
script number or its equivalent Latin number produces the same results.

In some languages, script numbers may also be used as non-numbers. For example, in
Japanese, the word Ichinomiya is a place name that (when written in Japanese script)
contains the Han number 1, but in this case the 1 does not represent a number value. A
Verity locale converts a script number to Latin only if all characters in the word represent
numbers (or day and month characters, in the case of date strings).

Language-Related Search Features

Verity locales provide several features to help users tailor their searches to provide more
specific or more complete results, based on the specific characteristics of the language of
the collection being searched.

Locale and Language in Search Queries

The Verity Query Language (VQL) supports the concept of language-specific searching.
When searching a collection created with the multilanguage locale, a user can specify that
only occurrences of the search term in documents of a particular language be returned.

The language of the user’s searches can be specified as a default on a per-session basis, or
it can be applied to an individual query string. VQL defines the <lang/id> modifier,
which can be used in a query string to restrict a stemmed search to documents whose
language is specified by a standard (usually two-letter) code id.

For example, this query

<lang/es>aceptar
Verity Locale Configuration Guide 51

2 Language Concepts
Language-Related Search Features
searches for all occurrences of the Spanish word aceptar. If this were a stemmed search, it
could find all occurrences of Spanish words whose root is aceptar, such as acepté, aceptó,
and aceptaron. The same search could also find the word aceptar if it was a valid word in
other languages.

You can use multiple instances of the <lang/id> modifier in a single query. This allows
you to search for terms in more than one language without having to use multiple
queries.

For example, this query

<lang/en> cat <and> <lang/fr> (chien, chat)

searches for the English word cat and the French words chien and chat. Note how
parentheses are used to specify multiple words.

Use of language in search queries is described further in Chapter 5. Supported language
codes are listed in “Supported Language Codes” on page 135.

Case-Insensitive Search

With case-insensitive search, a search term of a returns occurrences of both a and A. All
locales by default specify case-insensitive searches. The Verity administrator can later
reconfigure Verity to make searches case-sensitive, if desired. Also, use of the VQL
operator <CASE> on a search term forces the search to be case-sensitive, even if
case-insensitivity is enabled.

The Verity auto-case capability is a search convention in which search terms that are all
one case (such as next or NEXT) are searched for case-insensitively, whereas mixed-case
search terms (such as Next or neXT) are searched for case-sensitively. In this example, if
auto-case were enabled, an occurrence of NeXT would be found by either of the first two
search terms but not by either of the second two terms. By default, auto-case is disabled.

Accent-Insensitive Search

With accent-insensitive search, a search term of a might return a, à, á, and â.
Accent-insensitive search is in most cases preferable to accent-sensitive search, in which
each accented variation is treated as a separate character for searching. However, note
these implications of using accent-insensitivity:

Automatically extracted feature names (see “Part-of-Speech Identification” on
page 50) will contain only unaccented versions of their characters.
52 Verity Locale Configuration Guide

2 Language Concepts
Language-Related Search Features
Collections created with an earlier, accent-sensitive version of a locale my need to be
re-indexed to retain the same search behavior.

Accent-insensitive search is supported for non-Asian languages in the multilanguage
locale, for the advanced European locales, and for the legacy European locales. (Accented
text does not occur in the Asian locales.) Accent-sensitive search is not supported.

Symbol Search

Normally, punctuation, white space, and other non-alphanumeric characters are not
searchable. In some Verity single-byte locales and in the multilanguage locale, however,
you can configure the locale so that nearly any of the defined token delimiters are
searchable.

For example, without symbol search, the phrase ©Verity Inc. 2003 would be indexed as

2003
Inc
Verity

(assuming that both © and . are specified as word delimiters), and a search for ©Verity
would produce no results. If © is made searchable, however, the word index would have
these entries:

©
2003
Inc
Verity

and searches for ©, Verity, or ©Verity (as a phrase) would be successful.

Synonym Search

The Verity administrator can create a thesaurus, or dictionary of synonyms, to use with
the collections created for a given locale. When the user conducts a synonym search,
occurrences of the search word (for example, run) as well as any of its synonyms (such as
race, rush, hurry, bolt, dash, hasten) are returned.

In VQL, you specify a synonym search with the <THESAURUS> operator.

For instructions on how to create or modify a thesaurus, see the Verity Query Language and
Topic Guide.
Verity Locale Configuration Guide 53

2 Language Concepts
Language-Related Search Features
Soundex Search

For those locales that support it, Verity allows the user to perform a Soundex search. In this
type of search, occurrences of the search word and also of any similar-sounding words
are returned. For example, searching for the name Jean would return occurrences of it
plus any similar-sounding but differently spelled names, such as Joan or Jane.

In VQL, you specify a Soundex search with the <SOUNDEX> operator.

Soundex was originally developed for indexing proper names for census purposes.
Currently, Verity supports Soundex search for the multilanguage locale (English
language only), the englishv locale, and the englishx legacy locale.

Typo Search

For some locales, Verity supports typo search, a kind of “fuzzy search” that corrects for
minor misspellings in the search query. In a typo search, occurrences of the search word
and any words close to it in spelling are returned.

For example, if the user’s search term is juvinile, the typo search facility might return all
occurrences of juvenile. In addition, the client application might display a suggestion to
the user, such as

Did you mean to search for juvenile?

The client application can configure the precision of the typo search by specifying how
closely the spelling of the returned items must match the search term.

In VQL, you specify a typo search with the <TYPO> operator.

Typo search is not strictly related to language features, except that some locales support it
and others do not.

Stop Words

A stop-word list is a list of terms to ignore in searching or in indexing. Typically,
stop-word lists include very short and very common words (such as a, an, and the in
English), but they also might include longer words such as long number strings, or
possibly words that are too common to be useful as search targets (such as the term
Internet in an indexed collection consisting entirely of documents related to the Internet).

The primary reason for using a stop-word list is that it can increase search speed and
decrease the size (storage requirement) for an index. Verity provides support for four
different stop-word lists, each with a different purpose or scope:
54 Verity Locale Configuration Guide

2 Language Concepts
Language-Related Search Features
style.stp. This stop-word file lists words that should not be indexed. Words on this
list do not make it into a collection’s word index, and therefore are not searchable. The
style.stp file is collection-specific and supports the following:

regular expressions

case-sensitive matching (not case-insensitive)

only single-byte character sets

Putting common words in this list can impair searching for phrases. For example, if the
word the is on this list, searching for Attack of the Clones will return no results, even
for a collection devoted to recent science fiction movies—unless the is also in the
stop-word list that is applied to the search query itself (see qp_inet.stp and
vdk30.stp, below).

Instructions for using style.stp are in the index-tuning chapter of the Verity
Collection Reference.

style.fxs. This collection-specific stop word list is used by the feature-extraction
process during indexing. Feature extraction is the automatic process of generating
keywords and phrases that characterize a document, for the purpose of summarizing
it or clustering it with other similar documents.

This file augments vdk30.stp, but does not support regular expressions. It supports
multibyte character sets and case-insensitive matching.

Words listed in style.fxs might exist in the collection index, but they nevertheless
are not used in generating keywords and phrases that constitute the document
features. Those words might include proper names, single characters, and common
short words.

Instructions for using style.fxs are in the chapter on index tuning in the Verity
Collection Reference.

qp_inet.stp. This default stop word list for the Verity Internet-style query parser is
locale-specific, and uses the same format as vdk30.stp. It contains words that the
query parser will strip from query terms before conducting a search.

Words listed in qp_inet.stp might include short words—articles, prepositions, and
so on— to allow the parser to convert a natural-language question, such as

Where can I buy sourdough bread in San Francisco?

Into a search for its core terms:

buy sourdough bread San Francisco

The Internet-style query parser is described in the Verity Query Language and Topic
Guide. It uses a stopword file (in locale_name/qp_inet.stp) to strip out very
Verity Locale Configuration Guide 55

2 Language Concepts
Limitations in Handling Source Documents
common words in the query. The word it is in english/qp_inet.stp, so it is
removed from the list of query terms in the English locale. If all the terms in the original
query are removed (that is, if they are all listed in qp_inet.stp), the Internet-style
query parser generates a dummy query (<Word> #nil#) that is intended to match
zero documents.

You can edit the qp_inet.stp file (for example, to remove the word it).

vdk30.stp. This locale-specific stop-word file is used, along with style.fxs, for feature
extraction at indexing time. It is also used by the Verity Query By Example (QBE)
parser to convert natural-language phrases into query terms, in a similar manner to
the Internet-style query parser. In the multilanguage locale, this stop-word file only
contains stop words common to all supported languages. You can specify
locale-specific stopwords in the stopword.ID file. For more information, see
“Creating a Stop-Word File” on page 105.

The vdk30.stp file does not support regular expressions. It does support multibyte
character sets and case-insensitive matching.

For a multilanguage collection, you can define a language-specific stopword file in
stopword.ID, located at productDir/common/uni, where ID is the language ID.

Two of these stop-word files, style.stp and style.fxs, are collection-specific; you
need to set up different versions of them each time you create a collection in a different
language. The other two files, qp_inet.stp and vdk30.stp, are locale-specific. Each
locale has its own default implementation of vdk30.stp, thus providing
language-sensitive stop words for QBE queries and feature extraction in any language.

Instructions for creating or customizing vdk30.stp are in Chapter 1 of this book. The
QBE parser is described in the Verity Query Language and Topic Guide.

Also to consider is the VDK flag VdkTokenWordInfoFlag_Noise, used on VDK
WordInfo tokens that tokenizers in locale drivers can set to indicate that the following
word is a stop word. Such noise words will be ignored by the indexer, but will be
included by the feature extractor unless specified in vdk30.stp or style.fxs. For
more information, see the Verity Developer’s Kit Programming Reference.

Limitations in Handling Source Documents

Certain language-related issues in some types of source documents either cannot be
handled by Verity, or must be handled as special cases.
56 Verity Locale Configuration Guide

2 Language Concepts
Limitations in Handling Source Documents
HTML/XML documents. Some HTML and XML files include the
language-specification attribute lang in some tags. Verity, however, ignores that
specification, if it is present (unless it occurs in the <HTML> tag), and handles language
assignment in this way:

Single-language locales. The file is indexed according to the language rules of the
current locale.

Multilanguage locale. The language-identification filter assigns a language to the
document based on its text content. The file is then indexed according to the rules of
its assigned language.

Archive documents. Verity can read and process compressed document archives, such
as Zip files. Documents within the archives can be extracted and indexed.

Single-language locales. Documents in the archive are indexed according to the
language rules of the current locale, regardless of the document’s language.

Multilanguage locale. Documents in the archive are indexed according to their own
languages. The language assigned to the archive file itself (as shown in the VLANG
field in the collection’s document table), however, is the language of the first
indexable file encountered during processing.

Database-based documents. Verity can assemble and then index virtual documents
that it constructs from database-table columns. In some cases, the language of one
column might be different from that of another. In single-language locales, the entire
document is indexed according to the language rules of the current locale, so one or
more columns could contain meaningless data.

PDF documents. PDF documents can exist in many different character encodings.
Verity includes two different document filters that convert PDF content differently,
depending on the current locale.

Adobe PDF filter. The Verity PDF filter converts Latin 1-based PDF text to the
Windows 1252 character set. Locale-based tokenization is not used.

KeyView filter. The Verity KeyView filter converts PDF text to the internal character
set of a locale. The filter can be used with any locale if locale-based tokenization is
desired.

Language identification. During indexing to create a collection in the uni locale,
when the language-detection filter cannot recognize the language of a document, it
assigns the language value un to the document.
Verity Locale Configuration Guide 57

2 Language Concepts
Limitations in Handling Source Documents
58 Verity Locale Configuration Guide

3
Verity Locales

This chapter describes the features of Verity locales, the software modules that give
applications based on Verity technology the ability to work in many languages.

This chapter includes the following sections:

Locale Basics

The Multilanguage Locale

Advanced European Locales

Asian (CJK) Locales

The english Locale

Legacy European Locales

Locale Basics

All Verity locales share the characteristics described here.

Installed Location

An installed locale module is a set of data files and one or more executable library files.
The data files are in the locale directory, at

productDir\common\locale_name
59

3 Verity Locales
Locale Basics
where

productDir is the path to the directory containing the component of Verity that has
been installed (for example, usr/verity//k2_6/k2 for K2 Services on UNIX, or
C:\Verity\Intelligent Classifier for VIC on Windows).

locale_name is the name of the locale (for example, japanb).

In a K2 Services installation, the library files are in the directory os_platform\bin,

where os_platform is the pathname of the operating system-specific directory (for
example, C:\verity\k2_6\k2_nti40 for Windows) that holds executable Verity
files.

The locale driver has a name of the form loc_DriverName.so, loc_DriverName.sl,
or loc_DriverName.a on UNIX, loc_DriverName.dll on Windows.

Locale Definition File and Locale Configuration File

The file loc00.lng, in the directory productDir\common\locale_name, controls
several aspects of locale behavior. The Verity administrator can edit that file to customize
the locale.

For the multilanguage locale, the file uni.cfg, in the directory productDir\common\
uni, controls most aspects of locale behavior. The Verity administrator can edit that file,
as well as loc00.lng, to customize the locale.

See “Configuring Locales” on page 77 for details on editing loc00.lng and uni.cfg.

Note In previous Verity releases, the standard file for controlling tokenization
behavior was style.lex, which is not associated with any particular
locale and cannot handle tokenization of anything but 7-bit ASCII
characters. In place of style.lex, you should use each locale’s
loc00.lng file (and uni.cfg, if appropriate) to control tokenization and
other language-related features.

Internal Character Set and Supported Character Sets

Every locale module has a single internal character set. All collection indexes and all
associated files (such as BIFs and style files) processed by the locale are stored in that
character set. The internal character set for a locale is specified in the locale’s loc00.lng
file and cannot be changed.
60 Verity Locale Configuration Guide

3 Verity Locales
Locale Basics
All locales support other character sets in addition to their internal character set. Support
for another character set means that collection data, query strings, and search results in
that locale can be displayed or printed using one of the character sets specified as
supported for that locale. Verity performs the necessary character conversion in such
cases.

The internal character sets and the additional supported character sets for all locales are
listed in “Verity Locales and Character Sets” on page 128.

Default Locales and the Session Locale

Every K2 or VDK application or command-line tool must establish a VDK session at run
time, before accessing collection data or making API calls. Each VDK session includes a
defined internal session locale—the locale that Verity applications and tools assume to be
the locale of collections they access.

The session locale can be specified explicitly or it can be either of two default session
locales:

1. If the application or tool explicitly specifies a locale when it establishes the session, that
locale is the session locale.

2. If the application or tool does not specify a locale, Verity uses the default installation
locale, if it exists, as the session locale.

The default installation locale can be specified in the Verity configuration file
(verity.cfg). Initially, it is not defined; however, you can define it by following the
instructions in “Redefining the Default Session Locale” on page 102.

3. If the default installation locale is not defined, Verity uses the system default locale as the
session locale. The system default locale is uni, except as noted in the next paragraph.

IMPORTANT If your installation is licensed for the englishx locale (see “Legacy
European Locales”), and if you have installed that locale, it becomes
the system default locale in place of uni.

When executing a command-line tool that uses the -locale option, or when making a
function call that takes a locale or internalLocaleDriver parameter, note that if
you do not explicitly pass a locale value, that is equivalent to specifying the default
installation locale.
Verity Locale Configuration Guide 61

3 Verity Locales
Locale Basics
Default Session Language

When the session locale is uni (the multilanguage locale), VDK allows for the concept of
a default session language. The default session language is the language to apply to search
queries that do not explicitly specify a language (through the VQL <lang/id>
modifier).

For a VDK session, you can define the default session language using the uni/id
form for the -locale option on command-line tools such as rcvdk. If you do not
specify a default session language for the uni locale, the default session language is
defined as un (unknown).

When you are using a K2 tool (such as rck2) to search, you cannot redefine the default
session language on the command line. Each collection’s default session language is
specified when it is registered with a K2 Server (for example, through the K2
Dashboard) and rck2 cannot override that specification. If you need to change the
default language for a registered collection, do this:

a. Take the collection offline.

b. Change its default session language, in either of these ways:

- K2 Dashboard: specify the new default session language from the VDK tab
on the collection’s Edit Properties page.

- rcadmin: Use the indexvdkset command to specify the new language
(using the uni/id form for the -locale option).

c. Bring the collection back online, then use rck2 without specifying a language on the
command line.

Installation and Licensing

In general, locales need to be installed before they can be used. Installing one or more
locales means running the Locales installation program. When you run the installer, it
prompts you to supply a license key for the locales and languages to be installed.

The Verity administrator cannot index or manage a collection whose language
corresponds to an unlicensed or uninstalled locale or language. For locale installation
instructions, see “License Requirements” on page 20. To obtain locale license keys,
contact your Verity representative.
62 Verity Locale Configuration Guide

3 Verity Locales
Locale Basics
Built-In Locales

The following Verity locales are installed automatically when K2, VDK, or VIC is
installed:

These locales do not require a separate installation process. However, note these licensing
requirements:

Use of the uni locale, beyond advanced English language capabilities plus simple
display and search of other languages, requires a separate locale license and
installation.

The englishv locale requires no license and supports only English. It provides
advanced English language capabilities equivalent to those of the other Verity
single-language locales.

The english locale is a simple, built-in locale that requires no license and provides
only limited support for the English language.

Locale Categories

Verity locales can be grouped into the following categories, based on internal character
set, language characteristics, and supported indexing features:

Multilanguage locale (the default locale; default language = English; has advanced
support for English and many other languages)

Advanced European locales (each has advanced support for a single language)

Asian locales (each has advanced support for a single language)

english (the built-in locale with only basic English-language support)

Legacy European locales (each has advanced support for a single language;
available only with the Single-Language European Locales product)

Verity locale name Language

uni Multiple languages
(advanced support for English only;
basic support for other languages)

englishv English (advanced language support);

english English (basic language support only)
Verity Locale Configuration Guide 63

3 Verity Locales
The Multilanguage Locale
Verity provides the locales in these categories. Verity partners may make additional
locales available. If you have a need for locales other than those described in this chapter,
see your Verity representative.

The following sections describe the properties of the locales in each of the categories.

The Multilanguage Locale

The Verity multilanguage locale (uni) is a single locale module that supports many
languages. It uses the UTF-8 character set, which is based on Unicode 3.2.

Note The default locale for K2 is the multilanguage locale, and the default
supported language is English. If you are accessing a uni collection and
need to use English indexing or searching rules, you do not need to
specify the locale or language.

As delivered with Verity K2 and VDK, the multilanguage locale includes advanced
linguistic support for the English language, plus basic tokenization support for over 100
languages (see Table A-3 on page 136). With a separate license and installation of the
Verity Locales product, the uni locale can also provide advanced linguistic support for
the languages listed in Table 3-1.

Table 3-1 Languages with advanced support in the multilanguage locale

European Eastern European/Middle Eastern Asian

Danisha Arabic Chinese (simplified)

Dutch Czech Chinese (traditional)

English Greek Japanese

Finnish Hungarian Korean

French Polish Thaib

German Russian

Italian

Norwegian (Bokmal)a

Portuguese
64 Verity Locale Configuration Guide

3 Verity Locales
The Multilanguage Locale
Note Several levels of licensing exist for the multilanguage locale. Use of
each of the features described here for each language requires the
appropriate licensing level. See “License Requirements” on page 20 for
more information.

The multilanguage locale supports the indexing and search features noted in Table 3-2.

Spanish

Swedisha

a. Noun-phrase extraction not supported.
b. Language-specific tokenization only; no stemming or part-of speech extraction.

Table 3-2 Features of the multilanguage locale

Feature Support

Character-set detection Verity’s internal auto-detection technology identifies the character set
of source documents to be indexed. The locale accepts any
source-document character set, converts to UTF-8.

Language identification Verity’s language-detection technology identifies the languages of
source documents to be indexed. Language assignment is based partly
on character-code ranges in Unicode.

(Indexing rules are based on the language assignment.)

Sorting order Sorting order is based on Unicode character value.

Tokenization White-space-separated languages (including Korean):
Simple-tokens behavior, in which nearly all non-alphanumeric
characters can be word delimiters, is supported. Individual
non-alphanumeric characters can also be treated as alphanumeric, if
desired.

Chinese, Japanese, Thai: Word-level tokenization used.

Chinese only: Single-character tokenization can be added.

Stemming Western European Languages: Supported.

Eastern European/Middle-Eastern languages: Supported.

Japanese, Korean: Supported.

Chinese, Thai: Not applicable/not supported.

Table 3-1 Languages with advanced support in the multilanguage locale (continued)

European Eastern European/Middle Eastern Asian
Verity Locale Configuration Guide 65

3 Verity Locales
The Multilanguage Locale
Normalization Japanese:
Half-width Kana indexed as equivalent full-width.
Old Kanji indexed as equivalent New Kanji.
ASCII indexed as equivalent double-byte Latin.
Mixed Kanji/Kana words indexed as Kanji only.
Hyphens removed from Kana.

Okurigana supported for cases where the Okurigana Kanji stems are
the same.

Note: In a wildcard search, half-width–full-width Kana equivalence is
not supported if the query term contains a voice-marked Kana—
unless the voice-marked Kana is the leading character of a wildcard
query.)

Chinese: Traditional Chinese is indexed as Simplified Chinese.

Compound words Dutch, Finnish, German, Japanese: Decomposition into subwords
supported.

Part-of-speech Dutch, English, Finnish, French, German, Italian, Portuguese, Spanish,
Chinese, Japanese, Korean: Supported, including noun-phrase extraction.

Other languages: Limited support (no noun-phrase extraction).

Number handling Chinese, Japanese, Korean: Han script numbers indexed as Latin
numbers, unless they appear in a non-numeric word.

Language-specific search User can specify which language’s rules to apply to a search query.

Query operators must be in English only.

Case-insensitive search All Latin- and Cyrillic-based languages: Supported and enabled by
default. Auto-case capability also available.

Other languages: Not supported.

Accent-insensitive search Supported for languages that have accented characters.

Searchable symbols All languages support search for symbol characters as defined by
Unicode 3.2.

Synonym search Supported for all languages, using a single thesaurus for all languages.

Soundex search English: Supported.

Other languages: Not supported.

Typo search Supported.

Wildcard search Supported.

Table 3-2 Features of the multilanguage locale (continued)

Feature Support
66 Verity Locale Configuration Guide

3 Verity Locales
Advanced European Locales
Note The Verity tokenizer considers each document it indexes to be in only one
language. In many cases, a document that is mainly in one language may
have many words in other languages. In the uni locale, the tokenizer can
process those words, called foreign words, according to the language rules
defined by the Unicode language block those words’ characters fall into.

One implication of this feature is that a language-specific stemmed search in the overall
language of the document will not find occurrences of foreign words. (A literal search
will still find any occurrences, regardless of language.)

Advanced European Locales

The single-language locales in this category serve the languages native to Western
Europe. Use of these locales (other than englishv) requires a separate license and
installation of the Verity Locales product.

The following table lists the currently available advanced European locales. Windows
1252 is the internal character set for all of these locales.

Stop words Stop-word lists for use in feature extraction and by the free-text query
parser are provided. For more information, see “Stop Words” on
page 54.

Date formatting For date fields in a collection, only numeric or English date formats are
supported.

Table 3-3 Languages supported by the advanced European locales

Verity locale Language Verity locale Language

bokmalv Norwegian germanv German

danishv Danish italianv Italian

dutchv Dutch portugv Portuguese

englishva English spanishv Spanish

Table 3-2 Features of the multilanguage locale (continued)

Feature Support
Verity Locale Configuration Guide 67

3 Verity Locales
Advanced European Locales
Note In the K2 Dashboard, the englishv locale is called English (Advanced).

The advanced European locales support the indexing and search features described in
Table 3-7.

finnishv Finnish swedishv Swedish

frenchv French

a. Built-in; does not require installation of Verity Locales.

Table 3-4 Features of the advanced European locales

Feature Support

Character-set detection Verity’s internal auto-detection technology identifies the character set
of source documents to be indexed. The locale accepts any compatible
source-document character set, converts to 1252.

Language identification Verity’s language-detection technology identifies the languages of
source documents to be indexed.

(Indexing rules are based on the language assignment.)

Sorting order englishv supports accent-sensitive searching.

Other locales use case-insensitive and accent-insensitive sorting
behavior based on Windows 1252 character set.

Tokenization Simple-tokens behavior, in which nearly all non-alphanumeric
characters can be word delimiters, is supported. Individual
non-alphanumeric characters can also be treated as alphanumeric, if
desired.

Stemming Supported.

Normalization No normalization applied.

Compound words dutchv, finnishv, germanv: Decomposition into subwords
supported.

Part-of-speech dutchv, englishv, finnishv, frenchv, germanv, italianv,
portugv, spanishv: Supported, including noun-phrase extraction.

bokmalv, danishv, swedishv: Limited support (no noun-phrase
extraction).

Number handling No special number handling.

Table 3-3 Languages supported by the advanced European locales

Verity locale Language Verity locale Language
68 Verity Locale Configuration Guide

3 Verity Locales
Asian (CJK) Locales
Asian (CJK) Locales

The single-language locales in this category serve the multiple-byte languages of East
Asia: Chinese, Japanese, and Korean. Use of these locales requires a separate license and
installation of the Verity Locales product.

The following table lists the currently available Asian locales and their internal character
sets. For common names of the listed character sets, see “Locales, Character Sets and
Languages” on page 127.

Language-specific search Search query always uses language rules of collection being searched.

Case-insensitive search Supported and enabled by default. Auto-case capability also available.

Accent-insensitive search Supported for locales that have accented characters.

Searchable symbols With simple-tokens behavior, nearly all non-alphanumeric characters can
be searched for as symbols.

Synonym search Supported for all locales. Verity provides a simple default thesaurus for
englishv.

Soundex search englishv: Supported.

Other locales: Not supported.

Typo search Supported.

Wildcard search Supported.

Stop words Stop-word lists for use in feature extraction and by the free-text query
parser are provided. For more information, see “Stop Words” on
page 54.

Date formatting For date fields in a collection, only numeric or English date formats are
supported.

Table 3-5 Languages supported by the Asian locales

Verity Locale Language Charset

japanb Japanese sjis

koreab Korean ksc

Table 3-4 Features of the advanced European locales (continued)

Feature Support
Verity Locale Configuration Guide 69

3 Verity Locales
Asian (CJK) Locales
Asian locales support the indexing and search features noted in Table 3-6.

simpcb Chinese (simplified) gb

tradcb Chinese (traditional) big5

Table 3-6 Features of the Asian locales

Feature Support

Character-set detection Verity’s internal auto-detection technology identifies the character set
of source documents to be indexed. If a document with an unknown
character set is encountered during indexing, it is skipped.

Language identification Verity’s language-detection technology identifies the language of
source documents to be indexed.

(Indexing rules are based on the current locale.)

Sorting order Controlled by internal character set. Not customizable.

Tokenization japanb: Word-level tokenization used.

simpcb, tradcb: Word-level tokenization used; single-character
tokenization available.

koreab: White-space separators control tokenization.

All locales: tokenization of ASCII uses simple-tokens behavior.

Stemming japanb, koreab: Supported.

simpcb, tradcb: Not applicable.

Table 3-5 Languages supported by the Asian locales

Verity Locale Language Charset
70 Verity Locale Configuration Guide

3 Verity Locales
Asian (CJK) Locales
Normalization japanb:
Half-width Kana equivalent to full-width Kana.
Old Kanji equivalent to New Kanji.
ASCII indexed as equivalent double-byte Latin.
Mixed Kanji/Kana words indexed as Kanji only.
Hyphens removed from Kana.

Okurigana supported for cases where the Okurigana kanji stems are
the same.

Note: In a wildcard search, half-width–full-width Kana equivalence
is not supported if the query term contains a voice-marked
Kana—unless the voice-marked Kana is the leading character
of a wildcard query.)

simpcb, tradcb:
Simplified text in a traditional document is indexed as traditional;

traditional text in a simplified document is indexed as simplified.
ASCII indexed as equivalent double-byte Latin.

koreab:
ASCII indexed as equivalent double-byte Latin.

Compound words japanb: Deep decomposition of tokens, to recursively break down
compound words, is supported.

Part-of-speech Part-of-speech information is recorded at indexing. Limited
noun-phrase capability is available.

Number handling Han script numbers indexed as Latin numbers, unless they appear in a
non-numeric word.

Language-specific search Search query always uses language rules of collection being searched.

Case-insensitive search Supported for all locales.

Accent-insensitive search Not applicable.

Searchable symbols Supported for all locales.

Synonym search Supported for all locales.

Soundex search Not supported.

Typo search Not supported.

Wildcard search Supported for all locales.

Stop words Stop-word lists for use in feature extraction and by the free-text query
parser are provided for all locales.

Date formatting For date fields in a collection, only numeric or English date formats are
supported.

Table 3-6 Features of the Asian locales (continued)

Feature Support
Verity Locale Configuration Guide 71

3 Verity Locales
The english Locale
The english Locale

The english locale is the original English-language locale provided with Verity K2 and
VDK. It is a simple, table-driven locale that provides basic, customizable capabilities for
tokenization of plain (7-bit) text in English.

Note In the K2 Dashboard, the english locale is called English (Basic).

In general, Verity recommends that you do not use the english locale because of its
limited tokenization and stemming capabilities, and because it does not support 8-bit (or
larger) character sets; it is restricted to 7-bit characters, such as plain ASCII.

The english locale supports the indexing and search features described in Table 3-7.

Table 3-7 features of the english locale

Feature Support

Character-set detection Verity’s auto-detection technology identifies the character set of source
documents to be indexed. If a document with an unknown character
set is encountered during indexing, it is assigned the english locale’s
internal character set (ASCII).

Language identification Verity’s language-detection technology identifies the language of
source documents to be indexed.

(Indexing rules are based on the english locale, not the document
language.)

Sorting order Defined by SORTORDER table.

Tokenization Performed by Verity’s internal lexer. Limited customization possible.

Stemming Limited, rule-based.

Normalization No normalization applied.

Compound words Not supported.

Part-of-speech Not supported.

Number handling No special number handling.

Language-specific search Search query always assumes English.

Case-insensitive search Supported, using TOUPPER and TOLOWER tables.

Accent-insensitive search Not supported.

Searchable symbols Supported, using style.lex and CTYPE table.

Synonym search Supported.
72 Verity Locale Configuration Guide

3 Verity Locales
Legacy European Locales
The functioning of the internal lexer can be configured to a limited extent through the
style file style.lex. In that file, you can specify which characters are to be considered
white space, punctuation, or searchable alphanumerics (word components).

You can further customize the functioning of the english locale by modifying the file
acro20.lng. That file contains the tables CTYPE, TOUPPER, TOLOWER, and SORTORDER,
plus stemming rules. This type of customization typically requires the assistance of Verity
Professional Services.

For more information on style.lex, see the chapter on index tuning in the Verity
Collection Reference.

Legacy European Locales

The single-language locales in this category serve the languages native to Western
Europe. Use of these locales requires a separate license and installation of the Verity
Single-Language European Locales product.

Table 3-8 lists the available legacy European locales. Windows 1252 is the internal
character set for all of these locales.

Soundex search Supported.

Typo search Supported.

Wildcard search Supported.

Stop words Supported.

Date formatting Supported.

Table 3-8 Languages supported by the legacy European locales

Verity locale Language Verity locale Language

bokmalx Norwegian germanx German

danishx Danish italianx Italian

dutchx Dutch nynorskx Norwegian

englishx English portugx Portuguese

Table 3-7 features of the english locale (continued)

Feature Support
Verity Locale Configuration Guide 73

3 Verity Locales
Legacy European Locales
Note In the K2 Dashboard, the englishx locale is called
English (backward compatible).

The legacy European locales support the indexing and search features described in
Table 3-7.

finnishx Finnish spanishx Spanish

frenchx French swedishx Swedish

Table 3-9 Features of the legacy European locales

Feature Support

Character-set detection Verity’s auto-detection technology identifies the character set of source
documents to be indexed. If a document with an unknown character
set is encountered during indexing, it is assigned the locale’s internal
character set.

Language identification Verity’s language-detection technology identifies the language of
source documents to be indexed.

(Indexing rules are based on the current locale, not the document
language.)

Sorting order All locales use case-insensitive and accent-insensitive sorting behavior
based on Windows 1252 character set.

Tokenization Performed by all locales. All locales support simple-tokens behavior,
in which nearly all non-alphanumeric characters can be word
delimiters. Individual delimiters can also be removed from the
delimiters list, if desired.

Stemming All locales support stem indexing and search.

Normalization No normalization applied.

Compound words Decomposition into subwords supported by finnishx and germanx.

Part-of-speech All locales support part-of-speech, including noun-phrase extraction.

Number handling No special number handling.

Language-specific search Search query always uses language rules of collection being searched.

Case-insensitive search Supported by all locales and enabled by default. Auto-case capability
also available for all locales.

Accent-insensitive search Supported for all locales.

Table 3-8 Languages supported by the legacy European locales

Verity locale Language Verity locale Language
74 Verity Locale Configuration Guide

3 Verity Locales
Legacy European Locales
Searchable symbols All locales support defining “searchable non-alphabet” characters.

Synonym search All locales support use of thesaurus for synonym search. Verity
provides a simple default thesaurus for several of the locales.

Soundex search Supported by englishx only.

Typo search Supported by all locales.

Wildcard search Supported by all locales.

Stop words All locales support use of a locale-specific stop-word list for use in
feature extraction and free-text queries. Verity provides a simple
default stop-word file for each locale.

Date formatting For date fields in a collection, all locales support dates with month and
day names in the locale’s language.

Table 3-9 Features of the legacy European locales (continued)

Feature Support
Verity Locale Configuration Guide 75

3 Verity Locales
Legacy European Locales
76 Verity Locale Configuration Guide

4
Configuring Locales

After installing one or more locales, you can use them immediately. However, you also
can reconfigure certain aspects of their behavior to customize the language handling and
search characteristics of your application.

This chapter describes how to perform those configurations. It also gives suggestions for
setting locale and character set when using Verity tools.

Note After changing any of the locale-specific settings described in this chapter,
you must re-index existing collections that use that locale. Otherwise,
search results may be unpredictable.

This chapter includes the following sections:

Making Locale-Specific Settings

Configuring the Multilanguage Locale

Configuring Advanced European Locales

Configuring Asian Locales

Configuring Legacy European Locales

Making Other Language-Related Settings
77

4 Configuring Locales
Making Locale-Specific Settings
Making Locale-Specific Settings

This section summarizes the kinds of locale-specific configurations you can make. The
subsequent sections show how to make them for particular locales.

Note After making any of the changes described in this section to a given locale,
you must re-index existing collections that use that locale. Otherwise,
search results may be unpredictable.

Tokenization

Verity locales allow you to change certain aspects of tokenization behavior by making
modifications to locale configuration files. Different locales handle tokenization
customization differently.

Stemming

In a stemmed search (see “Stemming” on page 47), all variations of a search term’s root
word are returned. For stemmed search to function, the indexing process must extract
and index the stems of all words that it encounters. For some languages, multistemming—
the extraction of multiple stems for a single word—is supported.

K2 also supports customization of the dictionaries that control stemming.

Noun- and Noun-Phrase Extraction

During indexing, the Verity tokenizer can for some languages analyze words for
part-of-speech information. The capture of nouns and the construction of noun phrases,
which depends on part-of-speech identification, is used to extract concepts and
document summaries from a collection (see “Part-of-Speech Identification” on page 50).

If your Verity installation does not make use of analysis of nouns or noun phrases, you
might be able to improve indexing performance by ensuring that noun-phrase extraction
is disabled. You might get further performance improvement by also disabling
part-of-speech identification.

Conversely, if accurate feature and concept extraction is important, you should ensure
that both part-of-speech identification and noun-phrase extraction are enabled.
78 Verity Locale Configuration Guide

4 Configuring Locales
Making Locale-Specific Settings
For some languages in the uni locale, K2 supports customization of the dictionaries that
control noun extraction.

Word Decomposition

In languages that have compound words, Verity locales by default create tokens for all of
a compound word’s subwords (as well as for the compound word itself). K2 also
supports customization of the dictionaries that control word decomposition.

Search Characteristics

For some locales, you can change certain aspects of search behavior by making the
modifications described in this section.

Case-Sensitive Search
All locales have built-in support for case-sensitive searching. For Asian locales whose
native languages do not have the concept of case, case-sensitive searching is still
supported for ASCII characters.

Enabling case-sensitivity is not strictly a locale issue. To disable or enable case-sensitive
searching on a per-collection basis, use the Casedex value in the $define directive in
the collection’s style.prm file. For more information, see the index-tuning chapter of
the Verity Collection Reference.

Auto-Case
As described in “Case-Insensitive Search” on page 52, auto-case is a Verity search feature
in which query terms that are single-case (all uppercase or all lowercase) are matched
case-insensitively, whereas mixed-case query terms are matched case-sensitively. You can
enable or disable the auto-case capability for a given locale. (Auto-case does not apply to
Asian locales.)

Thesauruses for Synonym Search

All Verity locales support the use of a thesaurus, or synonym list, for searching. In a
synonym search, all occurrences of the search term plus any of its synonyms are returned
(see “Synonym Search” on page 53).
Verity Locale Configuration Guide 79

4 Configuring Locales
Configuring the Multilanguage Locale
To enable synonym search for a given locale, you need to implement a thesaurus
containing the lists of synonyms. For some locales, Verity provides a basic thesaurus that
you can use as-is or further customize; for other locales, you need to create your own
thesaurus.

Only one thesaurus file is allowed per locale. If you implement a properly constructed
thesaurus, give it the required name (vdk30.syd), and place it at the top level of your
locale’s directory, it will be used for synonym search.

Because it supports many languages, the multilanguage locale is a special case. See
“Thesaurus Setup for uni” on page 88 for instructions on how to use a thesaurus with the
multilanguage locale.

For detailed instructions on creating and installing a custom thesaurus, see the Verity
Query Language and Topic Guide.

Configuring the Multilanguage Locale

Tokenization

When it indexes a document, the Verity tokenizer breaks words at whitespace and
punctuation characters (see “Tokenization and Word Delimiters” on page 45). The
multilanguage locale by default uses simple-tokens behavior, which means that the full
set of delimiters listed in Table B-1 on page 143 is used to control tokens, subject to
customizations described here.

You can change tokenization behavior in general by disabling simple tokens, or more
specifically by

modifying the set of symbols that are considered punctuation for tokenization
purposes

redefining certain characters as searchable symbols (see examples in “Symbol Search”
on page 53)

redefining certain symbols as alphabetic characters

Redefining certain symbols as alphabetic, but only when they do not occur at the
beginning or the end of a word
80 Verity Locale Configuration Guide

4 Configuring Locales
Configuring the Multilanguage Locale
If you want to change the set of characters used for tokenization, or make any of the other
changes just listed, you can apply the changes globally—to all languages for which the
multilanguage locale provides linguistic support (see Table 3-1 on page 64)—or you can
apply them to an individual language.

Global Changes to Tokenization
You can change the set of characters used across all languages for punctuation or
symbols, and you can disable or enable simple tokens behavior for all languages at once.

Modifying Symbols and Punctuation
To globally change the set of characters used for punctuation or as symbols, take these
steps:

1. Open the file uni.cfg, in the directory productDir\common\uni.

2. If there are characters that you want to specify as punctuation (unsearchable and not
part of any word), locate the treat_as_punctuation block within the global
post-process section. (If the block is commented out, uncomment the parts of it you
are going to use.)

Modify the block like this:

To specify individual characters, follow the chars: label with a space-separated list
of the character codes. (All character codes must be Unicode.)

To specify a range of characters, follow the range: label with the first and last
character codes in the range, separated by a space. (All character codes must be
Unicode.)

You can combine a range and a list of individual characters in a block, and you can
have more than one range: statement.

IMPORTANT All character codes you specify must be in Unicode encoding. See
Table B-1 on page 143 for a list of delimiters and symbols with their
Unicode values.

3. If there are characters that you want to specify as symbols (searchable as words
themselves but not part of any other word), locate the treat_as_symbol block, also
within the global post-process section.

Modify the block in the same manner as described in the previous step. Uncomment it
if it is commented out, and specify individual character codes and/or code ranges.
Verity Locale Configuration Guide 81

4 Configuring Locales
Configuring the Multilanguage Locale
4. If there are symbol characters (for example, _) that you want to be treated as regular
alphabetic characters, specify them in the treat_as_alphabetic block, using
individual codes or code ranges, just as with the other blocks.

5. If there are symbol characters (for example, & or -) that you want to be treated as
alphabetic, but only when they do not occur at the beginning of a word, specify them in
the not_allowed_leading_char block.

Note If you specify a character in this block (or the next) and also in the
treat_as_symbol or treat_as_alphabetic block,
treat_as_symbol or treat_as_alphabetic takes precedence.

6. If there are symbol characters that you want to be treated as alphabetic, but only when
they do not occur at the end of a word, specify them in the
not_allowed_trailing_char block.

7. Save and close uni.cfg.

Disabling and Enabling Simple Tokens
If you disable simple tokens, a much smaller set of punctuation is used to control
tokenization. Note that simple tokens is not necessarily the most desirable indexing
behavior in all cases. For example, for the purpose of extracting document features for
summarization, longer tokens are in general more desirable than shorter ones. In that
case, disabling simple tokens might yield better results.

To disable or re-enable simple tokens, take these steps:

1. Open uni.cfg.

2. In the post-processing block near the top of the file, locate this line

simple_tokens: yes

3. Either comment out the line, like this:

#simple_tokens: yes

or change the variable’s value, like this:

simple_tokens: no

4. Save and close uni.cfg.
82 Verity Locale Configuration Guide

4 Configuring Locales
Configuring the Multilanguage Locale
Per-Language Changes to Tokenization
To make any of these changes on a per-language basis instead of globally, you need to
construct a post-processing block for that individual language in uni.cfg. For example,
this is the Spanish block in the default uni.cfg:

#Spanish
language: es
{

driver: "unitera -lang es ...
}

Within that block, create a post-process block and add the changes you want for that
language. For example, to force the ampersand (&) and dash(-) to be treated as ordinary
alphabetic characters in Spanish, modify the Spanish block like this:

#Spanish
language: es
{

driver: "unitera -lang es ...

post-process:
{

treat_as_alphabetic:
{

chars: 0x26 0x2d
}

}
}

As another example, to disable simple tokens for Spanish only, modify the block like this:

#Spanish
language: es
{

driver: "unitera -lang es ...

post-process:
{

simple_tokens: no
}

}

Verity Locale Configuration Guide 83

4 Configuring Locales
Configuring the Multilanguage Locale
Note Per-language settings take precedence over global settings.

Enabling Single-Character Tokenization
For the Asian languages (simplified Chinese, traditional Chinese, Japanese, and Korean)
in the multilanguage locale, you can force inclusion of every native-script character as a
separate token (in addition to the normal word-level tokenization that occurs) by using
the -single_char option in uni.cfg.

To make this change globally (for all four languages), you can uncomment the statement

#single_char: ja ko zh zt

in the global post-process section near the top of uni.cfg. To make it apply to only
some of the languages, uncomment it and edit it to include only the languages you want
it to apply to.

Because this statement is by default commented out in uni.cfg, single-character
tokenization is not the default behavior.

Stemming

Stem indexing is enabled by default in the multilanguage locale.

Disabling Multistemming
You can specifically disable only multistemming in the multilanguage locale. There is no
option for completely disabling stemming. To disable multistemming in the
multilanguage locale, take these steps:

1. Open the locale’s definition file loc00.lng, in the directory productDir\common\
uni.

2. In the locale block, locate the driver statement, which should look something like
this:

driver: "locuni -decompound" "locuni"

3. Add the option -nomstem, so the statement looks something like this:

driver: "locuni -decompound -nomstem" "locuni"

4. Save and close the file.
84 Verity Locale Configuration Guide

4 Configuring Locales
Configuring the Multilanguage Locale
To re-enable multistemming, remove the -nomstem option from the driver statement.

Customizing Stemming
For non-Asian languages, the multilanguage locale allows you to create a custom
dictionary to control stemming. See “Custom Dictionaries for Non-Asian Languages” on
page 150 for details.

Noun- and Noun-Phrase Extraction

In the multilanguage locale, noun extraction (part-of-speech identification) and
noun-phrase extraction are enabled by default for those languages that can support them.

To disable these features in the multilanguage locale, take these steps:

1. Open the file loc00.lng, in the directory productDir\common\uni.

2. In the locale block, locate the driver statement, which by default looks something
like this:

driver: "locuni -decompound" "locuni"

3. To disable noun-phrase extraction, add the -nonnp option, leaving it like this:

driver: "locuni -nonnp -decompound" "locuni"

4. To also disable part-of-speech identification, add the -nopos option to the line as well,
like this:

driver: "locuni -nonnp -nopos -decompound" "locuni"

5. Save and close the file.

To once more enable noun-phrase extraction and part-of-speech identification, remove
the options from the driver statement.

If you have re-enabled noun-phrase extraction in the uni locale, you must also make or
verify some settings in the style.prm file for any collection that you create with this
locale:

1. If you want to store feature vectors in the collection (required for clustering,
summarization, and recommendation), and if you want those feature vectors to be
Verity Locale Configuration Guide 85

4 Configuring Locales
Configuring the Multilanguage Locale
based on nouns or noun phrase s, verify that one of the following lines is
uncommented in style.prm:

$define DOC-FEATURES "NP"

or

$define DOC-FEATURES "NNP"

2. if you want the nouns and noun phrases themselves to be stored in the collection
(required for thematic mapping), verify that the following two lines (one for noun
storage, one for noun--phrase storage) are uncommented in style.prm:

$define NOUN-IDXOPTS ""
$define NPHR-IDXOPTS ""

These elements of style.prm are described more fully in the chapter on tuning
collections in the Verity Collection Reference.

Marking All Words as Nouns
For languages in the uni locale for which part-of-speech identification is not available, it
is still possible to support feature extraction or concept extraction at a lesser level. You
can make a setting in the locale’s uni.cfg file that will cause all words to get marked as
nouns. The resultant extracted features or concepts can be valuable, if less accurate than
they would be with true part-of-speech identification.

To make this change globally (for all linguistically supported languages), take these
steps:

1. Open the file uni.cfg, in the directory productDir\common\uni.

2. In the post-process block near the top of the file, locate this statement:

#mark_as_noun: no

3. Uncomment the line and change no to yes, like this:

mark_as_noun: yes

4. Save and close uni.cfg.

To make the change on a per-language basis, create a post-process block for the
desired language and place the edited statement into it.
86 Verity Locale Configuration Guide

4 Configuring Locales
Configuring the Multilanguage Locale
Customizing Noun Extraction
The multilanguage locale allows you to create a custom dictionary to control
part-of-speech identification. See “Custom Dictionaries for Non-Asian Languages” on
page 150 for details.

Disabling Word Decomposition

To disable word decomposition for the multilanguage locale, take these steps:

1. Open the file loc00.lng, in the directory productDir\common\uni.

2. In the locale block, locate the driver statement, which should look something like
this:

driver: "locuni -decompound" "locuni"

3. To disable word decomposition, remove the -decompound option, leaving something
like this:

driver: "locuni" "locuni"

4. Save and close the file.

To reinstate word decomposition, replace the -decompound option in the driver
statement.

Customizing Word Decomposition

The multilanguage locale allows you to create two kinds of custom files for controlling
word decomposition:

For the Asian languages Japanese, Korean, Simplified Chinese, and Traditional
Chinese, you can create a user dictionary into which you can place words that you
want decomposed in a non-standard manner. See “Custom Dictionaries for Asian
Languages” on page 147 for details.

For non-Asian languages, you use a command-line tool to create a custom language
dictionary. See “Custom Dictionaries for Non-Asian Languages” on page 150 for
details.
Verity Locale Configuration Guide 87

4 Configuring Locales
Configuring the Multilanguage Locale
Search Characteristics

Auto-Case
For the multilanguage locale, auto-case is disabled by default. If you want to enable
auto-case, take these steps:

1. Open the locale definition file loc00.lng, in the directory productDir\common\
uni.

2. In the locale-flags block, locate the AutoCase entry:

locale_flags:
{
...
NoAutoCase: yes
...

3. Change the value of NoAutoCase from yes to no.

4. Save and close the file.

Thesaurus Setup for uni

A Verity K2 thesaurus file (vdk30.syd) can support only one language, and each Verity
locale can be configured for only one thesaurus file at a time.

The multilanguage locale is by default configured to use an English thesaurus; the
English-language version of vdk30.syd is in the directory installDir/k2/common/
uni.

K2 also includes thesauruses for the following additional languages:

Dutch

English

French

German

Italian

Portuguese

Spanish
88 Verity Locale Configuration Guide

4 Configuring Locales
Configuring the Multilanguage Locale
Swedish

Each of these thesauruses is a vdk30.syd file in its own language-specific subdirectory
within the uni directory. For example:

installDir/k2/common/uni/nl/vdk30.syd for Dutch

installDir/k2/common/uni/fr/vdk30.syd for French

To support synonym search in language other than English, replace the English version
of vdk30.syd in the directory installDir/k2/common/uni with a copy of the
vdk30.syd file from one of these language-specific directories.

For information on creating custom thesauruses for additional languages, see the Verity
Query Language and Topic Guide.

Special Setup Issues

This section describes some configuration requirements and some
performance-improving suggestions that are unique to the uni locale.

Enabling Language Identification
The uni locale needs to assign a language to every document that it indexes. Therefore,
the language-identification filter (flt_lang) must be used whenever a collection is
created in the uni locale.

By default, the language-identification filter is enabled. To confirm that it is enabled, or to
re-enable it if it has been disabled previously, take these steps:

1. Open the version of the universal-filter configuration file (style.uni) that you will
use to create the collection. (The original file is in the directory productDir\common\
style.)

2. Verify that the following line exists and is uncommented:

postformat: "flt_lang "

If the line is there but commented, remove the comment mark (#). Make sure all other
postformat: statements are commented out.

3. Save and close the file.

For more details on flt_lang, see the discussion on configuring the
language-identification filter and style.uni in the chapter “Filtering and Formatting
Documents” in the Verity Collection Reference.
Verity Locale Configuration Guide 89

4 Configuring Locales
Configuring the Multilanguage Locale
Specifying the KeyView Filter for PDF Documents
The Adobe PDF document filter always generates tokens in the Windows 1252 character
set, without making use of locale-specific tokenization behavior. This is incompatible
with the uni locale, which requires UTF-8. Therefore, the KeyView filter must be used for
processing PDF documents for the uni locale.

Note If you use the KeyView filter instead of the PDF filter for PDF documents,
highlighting of search terms is not available when users view the
documents in Acrobat Reader.

By default, the KeyView filter is specified for processing PDF documents. If, however, the
setting has been changed, you can restore it by taking these steps:

1. Open the version of style.uni that you will use to create the collection. (The original
file is in the directory productDir\common\style).

2. Locate the following lines:

type: "application/pdf"
/format-filter = "flt_pdf"

/format-filter = "flt_kv"
...

/charset = none

3. Comment out the PDF filter line, uncomment the KeyView filter line, and assign a
character set, like this:

type: "application/pdf"
/format-filter = "flt_pdf"

/format-filter = "flt_kv"
...

/charset = UTF-8

4. Save and close the file.

Improving uni Indexing Performance
You can take the following steps to improve indexing speed for the uni locale:

Verify that noun-phrase extraction is disabled.
(See “Noun- and Noun-Phrase Extraction” on page 85.)

Disable part-of-speech identification.
(See “Noun- and Noun-Phrase Extraction” on page 85.)
90 Verity Locale Configuration Guide

4 Configuring Locales
Configuring Advanced European Locales
Disable multi-stemming.
(See “Stemming” on page 84.)

Disable word decomposition.
(See “Disabling Word Decomposition” on page 87.)

Configure language identification.
(See “Configuring Language Identification” on page 106.)

Configuring Advanced European Locales

Tokenization

The advanced European locales by default use simple-tokens behavior. To change this, or
to modify the set of searchable symbols or alphabetic characters, follow the procedures
described for the multilanguage locale (see “Tokenization” on page 80)—except that

You edit the uni.cfg file found in productDir\common\localeName, where
localeName is the name of the locale (such as germanv) to be customized.

You supply all character codes in the 1252 character set. (Table B-1 on page 143 lists
standard delimiters and symbols with their 1252 code values.)

Stemming

Stem indexing is enabled by default in the advanced European locales.

Per-Collection Stemming
There is no locale-specific control on stemming. If you want to disable or enable
stemming for a collection built in an advanced European locale, use the Stemdex value
in the $define directive in the collection’s style.prm file.

1. Open the version of style.prm that you are using to create the collection. (The
original default version is in the directory productDir\common\style.)

2. Locate the $define WORD-IDXOPTS directive. If it looks like this:

$define WORD-IDXOPTS "Stemdex Casedex"
Verity Locale Configuration Guide 91

4 Configuring Locales
Configuring Advanced European Locales
change it to this:

$define WORD-IDXOPTS "Casedex"

3. Save and close the file.

For more information on style.prm, see the index-tuning chapter of the Verity Collection
Reference.

Customizing Stemming
The advanced European locales allow you to create a custom dictionary to control
stemming. See “Custom Dictionaries for Non-Asian Languages” on page 150 for details.

Noun- and Noun-Phrase Extraction

In the advanced European locales, noun extraction (part-of-speech identification) and
noun-phrase extraction are enabled by default.

Note Noun-phrase extraction is not available in bokmalv, danishv, or
swedishv.

To disable these features in an advanced European locale, take these steps:

1. Open the file loc00.lng, in the directory productDir\common\localeName, where
localeName is the name of the locale (such as frenchv) to be customized.

2. In the locale block, locate the driver statement, which by default looks something
like this:

driver: "locuni -decompound -nostemsuffix" "locuni"

3. To disable noun-phrase extraction, add the -nonnp option, leaving it like this:

driver: "locuni -nonnp -decompound -nostemsuffix" "locuni"

4. To also disable part-of-speech identification, add the -nopos option to the line as well,
like this:

driver: "locuni -nonnp -nopos -decompound -nostemsuffix" "locuni"

5. Save and close the file.

To once more enable noun-phrase extraction and part-of-speech identification, remove
the options from the driver statement.
92 Verity Locale Configuration Guide

4 Configuring Locales
Configuring Advanced European Locales
If you have re-enabled noun-phrase extraction in an advanced European locale, you must
also make or verify some settings in the style.prm file for any collection that you create
with the locale:

1. If you want to store feature vectors in the collection (required for clustering,
summarization, and recommendation), and if you want those feature vectors to be
based on nouns or noun phrase s, verify that one of the following lines is
uncommented in style.prm:

$define DOC-FEATURES "NP"

or

$define DOC-FEATURES "NNP"

2. if you want the nouns and noun phrases themselves to be stored in the collection
(required for thematic mapping), verify that the following two lines (one for noun
storage, one for noun--phrase storage) are uncommented in style.prm:

$define NOUN-IDXOPTS ""
$define NPHR-IDXOPTS ""

These elements of style.prm are described more fully in the chapter on tuning
collections in the Verity Collection Reference.

Customizing Noun Extraction
The advanced European locales allow you to create a custom dictionary to control
part-of-speech identification. See “Custom Dictionaries for Non-Asian Languages” on
page 150 for details.

Disabling Word Decomposition

To disable word decomposition for those advanced European locales (such as germanv)
that support it, take these steps:

1. Open the file loc00.lng, in the directory productDir\common\localeName, where
localeName is the name of the locale (such as italianv) to be customized.

2. In the locale block, locate the driver statement, which should look something like
this:

driver: "locuni -decompound -nostemsuffix" "locuni"
Verity Locale Configuration Guide 93

4 Configuring Locales
Configuring Advanced European Locales
3. To disable word decomposition, remove the -decompound option, leaving something
like this:

driver: "locuni -nostemsuffix" "locuni"

4. Save and close the file.

To reinstate word decomposition, replace the -decompound option in the driver
statement.

Customizing Word Decomposition

In advanced European locales, stemming, decomposition, and part-of-speech extraction
are handled with a dictionary that you can customize. To create a user dictionary to use
with an advanced European locale, see “Custom Dictionaries for Non-Asian Languages”
on page 150.

Search Characteristics

Auto-Case
In the advanced European locales, auto-case is disabled by default. If you want to enable
auto-case, take these steps:

1. Open the locale definition file loc00.lng, in the directory productDir\common\
localeName, where localeName is the name of the locale (such as dutchv) to be
customized.

2. In the locale-flags block, locate the AutoCase entry:

locale_flags:
{
...
NoAutoCase: yes
...

3. Change the value of NoAutoCase from yes to no.

4. Save and close the file.
94 Verity Locale Configuration Guide

4 Configuring Locales
Configuring Asian Locales
Configuring Asian Locales

Tokenization

You can influence tokenization in an Asian locale by changing options in its loc00.lng
file.

Disabling and Enabling Simple Tokens
For Asian locales, simple-tokens behavior is enabled by default. If you disable simple
tokens, a much smaller set of symbols—just the standard set of punctuation marks—is
used to control tokenization of Latin-based characters.

Simple tokens is not necessarily the most desirable indexing behavior in all cases. For
example, for the purpose of extracting document features for summarization, longer
tokens are in general more desirable than shorter ones. In that case, disabling simple
tokens might yield better results.

To disable simple tokens, take these steps:

1. Open the locale’s definition file loc00.lng, in the directory productDir\common\
locale_name.

2. In the locale block, locate the driver statement, which should look something like
this:

driver: "loc_basis -simple_tokens _-& -nostems" "loc"

3. To disable simple tokens, remove the -simple_tokens option, leaving something
like this:

driver: "loc_basis _-& -nostems" "loc"

4. Save and close the file.

To re-enable simple tokens, restore the -simple_tokens option in the driver
statement.
Verity Locale Configuration Guide 95

4 Configuring Locales
Configuring Asian Locales
Enabling Single-Character Tokenization
For the Asian locales simpcb and tradcb, you can force inclusion of every native-script
character as a separate token (in addition to the normal word-level tokenization that
occurs) by using the -single_character option in loc00.lng. This single-character
behavior is the default. The driver statement in these two locales looks like this:

driver: "locbasis -simple_tokens _-& -single_character" "loc"

You can disable or enable simple-tokens and single-character behavior independently of
each other.

Stemming

Stem indexing is enabled by default in the Asian locales japanb and koreab. Stemming
is not applicable to the Chinese locales.

You might wish to disable stemming for Japanese and Korean. Disabling stemming can
speed indexing—at the expense of supporting stemmed search, of course.

To disable stemming in the japanb locale or the koreab locale, take these steps:

1. Open the locale’s definition file loc00.lng, in the directory productDir\common\
locale_name.

2. In the locale block, locate the driver statement, which for the japanb locale should
look something like this:

driver: "locbasis -simple_tokens _-&" "loc"

3. Add the option -no_stems, so the statement looks something like this:

driver: "locbasis -simple_tokens _-& -no_stems" "loc"

4. Save and close the file.

To re-enable stemming, remove the -no_stems option from the driver statement.

Noun- and noun-Phrase Extraction

In Asian locales, noun extraction (part-of-speech identification) and noun-phrase
extraction are enabled by default.

To disable noun-phrase extraction in an Asian locale, take these steps:

1. Open the file loc00.lng, in the directory productDir\common\locale_name.
96 Verity Locale Configuration Guide

4 Configuring Locales
Configuring Asian Locales
2. In the locale block, locate the driver statement, which by default should look
something like this:

driver: "locbasis -simple_tokens _-&" "loc"

3. Add the -no_nps option to the line, like this:

driver: "locbasis -simple_tokens _-& -no_nps" "loc"

4. Save and close the file.

To re-enable noun-phrase extraction, remove the -no_nps option from the driver
statement.

If noun-phrase extraction is enabled in an Asian locale, you must also be sure it is
enabled for each collection you create with that locale. In the style.prm file for the
collection, verify that the following two lines (one for noun extraction, one for
noun--phrase extraction) are uncommented:

$define NOUN-IDXOPTS ""
$define NPHR-IDXOPTS ""

These definitions are described more fully in the chapter on tuning collections in the
Verity Collection Reference.

Customizing Word Decomposition

The Verity japanb, koreab, simpcb, and tradcb locales allow you to create a custom
file, called a user dictionary, into which you can place words that you want decomposed
in a non-standard manner. See “Custom Dictionaries for Asian Languages” on page 147
for the details of how to create the dictionary.

Improving Performance

You can take the following steps to improve indexing speed for the Asian locales:

Disable noun-phrase extraction.
(See “Noun- and noun-Phrase Extraction” on page 96.)

Disable stemming.
(See “Stemming” on page 84.)
Verity Locale Configuration Guide 97

4 Configuring Locales
Configuring Legacy European Locales
Configuring Legacy European Locales

Tokenization

The legacy European locales by default have simple tokens enabled. To modify the set of
token delimiters used, take these steps:

1. Open the locale’s definition file loc00.lng, in the directory productDir\common\
locale_name.

2. In the locale block, locate the driver statement, which should look something like
this:

driver: "loc_xlt -simple_tokens
-tokenized_as_alphabet -_& -searchable_non_alphabet..." "xlt"

(Note that the -tokenized_as_alphabet option in this locale already specifies three
characters—hyphen, underscore, ampersand—that are to be treated as alphabetical
characters instead of token delimiters.)

3. If the -tokenized_as_alphabet option is not present, add it after the
-simple_tokens option and follow it with the symbols that you want to remove
from the list of token delimiters.

4. If the -tokenized_as_alphabet option is already present, add or remove symbols
to change the list. Adding a symbol here means that it is not to be considered a
delimiter.

The full set of symbols available as token delimiters is listed in “Tokenization
Delimiters” on page 143.

5. Save and close the file.

Note The symbol + is always treated as a delimiter, because it has special
meaning in the Verity Query Language. However when + appears at the
end of a word—that is, if it is followed by white space or another
delimiter—it is not treated as a delimiter. This keeps terms such as such as
C++ from being split up.

See “Tokenization Example” on page 99 for an illustration of how these settings affect
tokenization results.
98 Verity Locale Configuration Guide

4 Configuring Locales
Configuring Legacy European Locales
Making Symbols Searchable
By default, non-alphanumeric symbols are not searchable. However, if simple tokens is
enabled for a locale, you can make certain symbols searchable. (See examples in “Symbol
Search” on page 53.)

This feature is fully supported only for the legacy European locales.

To make symbols searchable, take these steps:

1. Open the locale’s definition file loc00.lng, in the directory productDir\common\
locale_name.

2. In the locale block, locate the driver statement, which should look something like
this:

driver: "loc_xlt -simple_tokens...
-searchable_non_alphabet #$%¡§«°±»¿" "xlt"

(Note that the -searchable_non_alphabet option in this locale already specifies
ten characters—three ASCII and seven extended ASCII—that are to be treated as
searchable symbols.)

3. If the -searchable_non_alphabet option is not present, add it after the
-simple_tokens option (or after the -tokenized_as_alphabet option, if it is
present) and follow it with the symbols that you want to be searchable.

4. If the -searchable_non_alphabet option is already present, add or remove
symbols to change what can be searched.

The full set of symbols available as token delimiters is listed in “Tokenization
Delimiters” on page 143.

5. Save and close the file.

See “Tokenization Example” on page 99 l for an illustration of how these settings affect
tokenization results.

Tokenization Example
The table in this section shows two examples of tokenization in a legacy European locale,
applied to the following (nonsensical) content:

#12:34-56 webmaster@verity.com verity©2003 hi|bye C++ R&D

The table lists the results of tokenization for two settings:

Without the -simple_tokens option
Verity Locale Configuration Guide 99

4 Configuring Locales
Configuring Legacy European Locales
With these three options:
-simple_tokens
-tokenized_as_alphabet -_&
-searchable_non_alphabet #$%©®¢£¥™

(This is equivalent to the default simple-tokens behavior.)

The table also lists selected query strings that could be applied to the tokenized
document, specifying for each whether the query will yield a search hit with simple
tokens on or off.

Table 4-1 Tokenization example

Tokens generated Search hit?

(simple off) (simple on) Example queries (simple off) (simple on)

#12:34-56 12

34

56

#

12:34-56

12:34

34

:#a

a. By default, this symbol is searchable if simple tokens is on.

Yes

No

No

No

Yes

Yes

Yes

Yes

webmaster@verity.com webmaster

verity

com

webmaster@verity.com

webmaster

verity.com

com

@b

b. By default, this symbol is not searchable if simple tokens is on.

Yes

No

No

No

No

Yes

Yes

Yes

Yes

No

verity©2003 verity

2003

©

verity©2003

verity

2003

©a

Yes

No

No

No

Yes

Yes

Yes

Yes

hi|bye hi

bye

hi|bye

bye

|b

Yes

No

No

Yes

Yes

No

C++ C++ C++c Yes Yes

R&D R&D R&D

R

D

&d

Yes

No

No

No

Yes

No

No

No
100 Verity Locale Configuration Guide

4 Configuring Locales
Configuring Legacy European Locales
Per-Collection Stemming

Stem indexing is enabled by default in the legacy European locales. For these locales,
there is no locale-specific control on stemming. If you want to disable or enable stemming
for a collection built in a legacy European locale, use the Stemdex value in the $define
directive in the collection’s style.prm file.

1. Open the version of style.prm that you are using to create the collection. (The
original default version is in the directory productDir\common\style.)

2. Locate the $define WORD-IDXOPTS directive. If it looks like this:

$define WORD-IDXOPTS "Stemdex Casedex"

change it to this:

$define WORD-IDXOPTS "Casedex"

3. Save and close the file.

For more information on style.prm, see the index-tuning chapter of the Verity Collection
Reference.

Per-Collection Noun- and Noun-Phrase Extraction

In legacy European locales, noun extraction (part-of-speech identification) and
noun-phrase extraction are enabled. You can disable them on a per-collection basis by
using the $define directive in the collection’s style.prm file.

1. Open the version of style.prm that you are using to create the collection.

2. Locate the following directives:

$define NOUN-IDXOPTS ""

$define NPHR-IDXOPTS ""

3. Comment them out, like this:

#$define NOUN-IDXOPTS ""

#$define NPHR-IDXOPTS ""

c. + is not a delimiter if followed by another delimiter.
d. & is by default a delimiter, but for this example it has been excluded from the delimiter list.
Verity Locale Configuration Guide 101

4 Configuring Locales
Making Other Language-Related Settings
4. Save and close the file.

For more information on style.prm, see the index-tuning chapter of the Verity Collection
Reference.

Changing Search Characteristics

Auto-Case
For the legacy European locales, auto-case is enabled by default. If you want to disable
auto-case, take these steps:

1. Open the locale’s definition file loc00.lng, in the directory productDir\common\
locale_name.

2. In the locale-flags block, locate the AutoCase entry:

locale_flags:
{
...
NoAutoCase: no
...

3. Change the value of NoAutoCase from no to yes.

4. Save and close the file.

Making Other Language-Related Settings

Redefining the Default Session Locale

If your installation has special requirements, you can optionally redefine the default
session locale for Verity applications and tools (see “Default Locales and the Session
Locale” on page 61). You might want to do this as a convenience if all the collections at
your installation are in the older Verity locale english, rather than the multilanguage
locale (uni), which is the installed default.
102 Verity Locale Configuration Guide

4 Configuring Locales
Making Other Language-Related Settings
Note You can use this technique to switch the default session locale between
english and uni only; use of any other locale as the session default is not
supported.

The default locale that you can change is the default installation locale, which can be
specified for K2 installations in the Verity configuration file (verity.cfg). Take these
steps to change it:

1. Open verity.cfg, in the directory productDir/common, where productDir is
the path to the directory containing the component of Verity that has been installed
(for example, usr/verity/k2_6/k2 for K2 Services on UNIX, or C:\Verity\
Intelligent Classifier for VIC on Windows).

2. In the [GENERAL] section of the file, locate the following entry (if it exists):

locale=uni

3. If the entry exists, change it to

locale=english

4. If the entry does not already exist, add the changed version of it to the file.

5. Save and close the file.

Changing Formatting

For all locales, you can make the text-formatting changes described here.

Changing Date Formatting
As installed, each locale includes a date-ordering convention. The convention specifies
the order in which the elements of a date (day, month, and year) must appear in date
fields in a collection.

You should not have to change the setting for this convention; the default ordering is the
most common one used for the locale. But if you do need to implement a non-default
ordering at your installation, take these steps:

1. Open the locale’s definition file loc00.lng, in the directory productDir\common\
locale_name.

2. In the locale block, locate (or create) the dateInput entry:

locale:
Verity Locale Configuration Guide 103

4 Configuring Locales
Making Other Language-Related Settings
{
...
dateInput: "DMY"
...

3. Change the value of dateInput to specify the date-ordering you want:

DMY (Day–Month–Year)
MDY (Month–Day–Year)
YMD (Year–Month–Day)
YDM (Year–Day–Month)

4. Save and close the file.

Changing the Decimal Separator
As installed, each locale provides a decimal separator—the symbol used to set off the
decimal portion of a number in collection fields. The symbol is either a period (.) or a
comma (,), whichever is most appropriate for the locale.

You should not have to change this value. But if you do need to use a non-default decimal
separator at your installation, take these steps:

1. Open the locale’s definition file loc00.lng, in the directory productDir\common\
locale_name.

2. In the locale block, locate (or create) the decimal entry:

locale:
{
...
Decimal: "comma"
...

3. Change the value of Decimal from comma to dot, or from dot to comma, as appropriate.

4. Save and close the file.

Setting Up Synonym Search For a Locale

All Verity locales support the use of a thesaurus, or synonym list, for searching. In a
synonym search, all occurrences of the search term plus any of its synonyms are returned
(see “Synonym Search” on page 53).
104 Verity Locale Configuration Guide

4 Configuring Locales
Making Other Language-Related Settings
To enable synonym search for a given locale, you need to implement a thesaurus
containing the lists of synonyms. For some locales, Verity provides a basic thesaurus that
you can use as-is or further customize; for other locales, you need to create your own
thesaurus.

Only one thesaurus file is allowed per locale. If you implement a properly constructed
thesaurus, give it the required name (vdk30.syd), and place it at the top level of your
locale’s directory, it will be used for synonym search.

For detailed instructions on creating and installing a custom thesaurus, see the Verity
Query Language and Topic Guide.

Creating a Stop-Word File

As noted in “Stop Words” on page 54, a stop-word list is a list of words to ignore in
searching (or in indexing). Verity provides for several kinds of stop-word files.

The file vdk30.stp, in the directory productDir\common\locale_name, contains
locale-specific stop words to be used by the VQL free-text query parser during searching,
and by the feature-extraction process during indexing (in conjunction with the file
style.fxs). Most Verity locales include a default stop-word list.

vdk30.stp does not prevent words from getting into the word index; that job is the
responsibility of the stop-word file style.stp. What vdk30.stp contains are words
that should not be considered when the indexer extracts document features for creating
automatic document summaries and clusters.

To implement a locale-specific stop-word file, take these steps:

1. Create a text file in the internal character set of the locale. The filename must be
vdk30.stp.

2. Optionally add comment lines (each starting with #) at the top, naming the document
and specifying its locale and character set, like this:

Polish stoplist
charset iso-8859-2
#

3. Enter each word into the stop list. Note these requirements

Enter only one word per line

Words are case-sensitive. You must list all case variants.

The order of the words is not important.
Verity Locale Configuration Guide 105

4 Configuring Locales
Making Other Language-Related Settings
Enter only literal words. Regular expressions are not supported.

If you are creating a stop-word list for the multilanguage locale, note that the
vdk30.stp file only lists stop words common to all supported languages. It must
be in the UTF-8 character set.

To specify stop words for a particular supported language in the multilanguage
locale, use the stopword.ID file, located in the directory

productDir/common/uni/ID/stopword.ID

where ID is the language ID, as listed in “Supported Language Codes” on page 135.
The stopword.ID file must use the UTF-8 character set.

Words you might want to exclude from feature extraction (and therefore include in
vdk30.stp) are proper names plus any words that would not make good topic or
concept titles (single characters and common short words, for example).

4. Save and close the file.

5. Move the file to your locale’s directory:

productDir\common\locale_name

where productDir is the installation directory of the Verity component (such as C:\
Verity\K2), and locale_name is the name of the directory (such as polish)
containing the locale for which you are creating the stop-word file.

Note If you are creating a stop-list file for a locale (like polish) that has a
default stop list provided by Verity, move the default stop-list file from the
locale_name directory, or else rename it, before adding your new
stop-list file. It is recommended that you do not permanently remove the
default stop-list file.

For more information on style.fxs and style.stp, see the chapter on index tuning
in the Verity Collection Reference.

Configuring Language Identification

By default, language identification occurs as a part of indexing in all locales (see
“Language Identification” on page 44). The language-identification filter processes each
incoming document and assigns a language code to it.
106 Verity Locale Configuration Guide

4 Configuring Locales
Making Other Language-Related Settings
Note You perform basic configuration of the language-identification filter by
editing the style.uni file for your collection. For instructions, see the
discussion of the universal filter in the document filters chapter of the
Verity Collection Reference.

Language identification can have a negative effect on indexing performance. The filter
compares each document to a set of defining information for every supported and
enabled language, then assigns the highest-scoring language to the document.

Note The language-identification filter does not have to compare a document to
any language data if the document already contains unambiguous
language-assignment information. For example, if an HTML document
contains the following metatag:

<meta http-equiv="Content-Language" content="id">;

or

<html lang="id">

the language-identification filter uses that information directly, instead of
analyzing the document content.

If you know that all documents you will analyze will be in a specific subset of the
Verity-supported languages, you may be able to improve indexing performance by
applying language identification to only those specific languages. Furthermore, if
detection is not required for any of your documents, you can disable language
identification altogether.

By default, the language-identification filter is enabled for a small subset of the available
languages. You can adjust that set of languages as described next.

Adjusting the Set of Languages to Identify
The languages that the language-identification filter compares with incoming documents
are listed in the file langlist.cfg, in the directory productDir\common\langid. That
directory also contains the language-data files—the files containing the language-defining
information—of all Verity-supported languages.
Verity Locale Configuration Guide 107

4 Configuring Locales
Making Other Language-Related Settings
In addition, each locale uses its own langlist.cfg file to determine that locale's
character sets and possible languages. The langlist.cfg file for an individual locale is
available at productDir\common\locale_name. The langlist.cfg file for one
locale may be different from those of other locales.

The directory productDir\common\uni does not contain a langlist.cfg file. For the
uni locale, the system default at productDir/common/langid/langlist.cfg is
used.

Following is an example of a langlist.cfg file:

da-1252.lm
de-1252.lm
en-1252.lm
es-1252.lm
fi-1252.lm
fr-1252.lm
it-1252.lm
ja-eucjp.lm
ja-sjis.lm
ko-ksc.lm
nl-1252.lm
nb-1252.lm
nn-1252.lm
pt-1252.lm
sv-1252.lm
zt-big5.lm
zh-gb.lm
da-utf8.lm
de-utf8.lm
es-utf8.lm
fi-utf8.lm
fr-utf8.lm
it-utf8.lm
nl-utf8.lm
nb-utf8.lm
nn-utf8.lm
pt-utf8.lm
sv-utf8.lm

Each entry in the list is the name of a language-data file in the langid directory. Each
filename typically specifies the language code (see “Supported Language Codes” on
page 135) and character set (see “Supported Source-Document Character Sets” on
page 130) to which it applies.
108 Verity Locale Configuration Guide

4 Configuring Locales
Making Other Language-Related Settings
IMPORTANT Do not modify the contents of any of the language-data files
referenced in langlist.cfg.

The langlist.cfg file includes three keywords:

MINSIZE defines the minimum size, in bytes, of document content. Any document
whose content (excluding noisy data such as punctuation, numbers, and so on) is
smaller than the value of MINSIZE will be considered to have an unknown language.

MINSCORE defines the minimum score of a document. Any document whose detection
score is less than the value of MINSCORE is assumed to have an unknown language.

The format is:

MINSCORE: minimum_score

The minimum_score can be any value between 0 and 1. A value outside this range is
treated as 0.

UNKNOWN defines the language ID and character set to assign to any document whose
language is unknown. Its format is as follows:

UNKNOWN: <language ID>:<charset>

For example,

UNKNOWN: en:1252

defines en as the language ID to assign to an unknown document and 1252 as the
character set.

If you disable this keyword, the language ID assigned to those documents will be 'un'.

To remove a language/character-set combination from consideration for language
identification, simply remove its line from langlist.cfg. To add another language,
add a line for it to langlist.cfg, like this:

1. In the same directory as langlist.cfg, open the file langlist.all.
(langlist.all is a version of langlist.cfg that lists all languages supported for
identification.)

2. From langlist.all, copy the line(s) for the languages you want identified and paste
those lines into langlist.cfg:

de-1252.lm
de-850.lm
en-1252.lm
ja-eucjp.lm
ja-sjis.lm
Verity Locale Configuration Guide 109

4 Configuring Locales
Making Other Language-Related Settings
In this example, all but German, English, and Japanese have been removed, and
German (cp850 character set) has been added. Documents will now be compared
against only German, English, and Japanese language-data files in order to make a
language assignment.

3. Save and close langlist.cfg. (Do not make changes to langlist.all.)

Note If you want to enable language-identification for all supported languages,
you can rename or save a copy of your original langlist.cfg, then save
a copy of langlist.all as langlist.cfg.

Disabling Language Identification
If you know that language identification is unnecessary for indexing your collections,
there is no need to incur its potential negative performance impact. For example, if all
documents that you index will be in one language only, and the collections you create
will be in the locale for that language, you can disable language identification completely.

IMPORTANT Do not disable language identification if you are using the
multilanguage locale. The uni locale requires language
identification, even if there is only one language to identify.

You can disable language identification by any of these methods:

Delete the entire langid directory from the productDir\common directory.

If the langid directory is missing, the language-identification filter assumes that no
language identification is desired.

Disable the language-identification filter itself:

a. Open the version of the universal-filter configuration file (style.uni) that you will
use to create the collection. (The original file is in the directory productDir\
common\style.)

b. Verify that the following line exists:

postformat: "flt_lang "

c. If the line exists (and is uncommented), comment it out:

#postformat: "flt_lang "

If the line doesn’t exist, do nothing. If it is there but already commented, do nothing.

d. Save and close the file.
110 Verity Locale Configuration Guide

4 Configuring Locales
Making Other Language-Related Settings
Empty or remove the langlist.cfg file, located at
productDir\common\langid.

Empty or remove the langlist.cfg file for a given locale, located at
productDir\common\locale_name.

Specifying Locale and Character Set in Tools

This section contains suggestions and reminders for successfully creating and
maintaining non-English collections and other types of indexes. For detailed information
on any of these topics, see the books referenced in each section.

Note The locale (and internal character set) of a collection apply to the fields
and data in the collection itself, not necessarily to the languages and
character sets of any of the documents indexed by the collection. A
collection in one locale can have index information on documents in
several languages and character sets.

Specifying Locale and Character Set On the Command Line
To create or manipulate collections or other types of indexes, you can use a variety of
command-line tools, including the following:

mkvdk, rcvdk, and rck2 to directly create and modify collections.

k2spider_srv. To create a collection using the K2 Spider.

vspider. To create a collection using the Verity Spider.

mkpi. To create and modify parametric indexes.

mkre. To create and modify recommendation indexes.

mktopics, mkprf, and mksyd to create and manipulate topic sets, profile nets, and
thesauruses, respectively.

rcadmin (indexvdkset command) to register and attach collections and other
indexes.
Verity Locale Configuration Guide 111

4 Configuring Locales
Making Other Language-Related Settings
With any of the above command-line tools, you include the -locale or -charmap
options (or arguments, for rcadmin) for the following purposes:

-locale locale_name

Assigns the locale locale_name to the collection being created (or, alternatively
specifies the locale of the collection or topic set upon which the index or profile net you
are creating or accessing is based). The value of locale_name must be the name of a
locale for which you are licensed. Verity locale names are listed in “Verity Locales and
Character Sets” on page 128.

This option is not required if this collection (or the collection on which this index or
profile net is based) is in the default locale. See “Default Locales and the Session
Locale” on page 61.

-charmap charset_name

Specifies that the character set charset_name is to be used to display information
from this collection, index, or profile net. charset_name must be the name of one of
the supported character sets for the locale specified in locale_name. “Verity Locales
and Character Sets” on page 128 lists the supported character sets for each Verity locale
and indicates which one is the internal one.

This option is not required if you want to display collection, index, or profile-net
information in its locale’s internal character set.

Specifying Locale and Character Set In the K2 Dashboard
When you create a collection though the K2 Dashboard, you need to fill in the locale field
in the Add Collection wizard. The drop-down list displays all the licensed and installed
Verity locales available to you; from the list, choose the locale you want for your index.

If you use the K2 Dashboard to try to view a collection in a locale whose character set is
not the current Dashboard character set, you may need to change the Dashboard
encoding setting to view the collection successfully. The encoding you choose must be
one of the supported character sets of the collection’s locale.

For more information on using Verity Spider, see Part III of Verity K2 Indexers Guide.

Setting BIF Character Encoding
If you are using a Bulk Insert File (BIF) to add, modify, or delete documents in a collection
or to specify field values for the documents in a collection, note that the character set of
the BIF itself must match the character set that the collection’s locale uses.

For example, if the collection is in Russian and uses the character set KOI8-R, create your
BIF in a word processor that uses KOI8-R encoding.
112 Verity Locale Configuration Guide

4 Configuring Locales
Making Other Language-Related Settings
Note You can convert a file from one character encoding to another (within a
given locale) by running the codeconv command-line tool. codeconv is
installed with Verity, in the directory productDir\os_platform\bin.
For instructions on using codeconv, see “Code Conversion
Command-Line Tool” on page 140.

Specifying Character Set In Style Files
In setting up the style files for your non-English collection, note these locale and
character-set issues.

style.uni. This style file configures the universal document filter. For each
recognized document type, style.uni specifies which individual document filter is
to process the document and, optionally, what character set the document is to be
converted to.

If style.uni specifies no character set for that document type, the individual
document filter is responsible for performing any required character-set conversion.
You can therefore use style.uni to force a desired character conversion for a given
file type, if appropriate.

For more information on style.uni, see the chapter on document filters in the Verity
Collection Reference.

style.tde. This style file contains rules specifying how fields are to be extracted from
processed documents when using the mkvdk command-line tool to create a collection.
Using the charmap modifier in the datamap section of style.tde, you can
optionally specify a character-set name if you want mkvdk to display the extracted
fields in a character set other than the internal character set of the collection’s locale.

For more information on style.tde, see the chapter on searching documents by
fields in the Verity Collection Reference.
Verity Locale Configuration Guide 113

4 Configuring Locales
Making Other Language-Related Settings
114 Verity Locale Configuration Guide

5
Locale Issues for Applications

This chapter gives hints and suggestions for creating language-aware applications that
can make maximum use of Verity’s internationalization technology.

For detailed instructions on using the Verity K2 and VDK APIs in application
development, see the Verity documentation referenced in this chapter.

This chapter includes the following sections:

Language Concerns in Verity Applications

Localized Error Messages and Operators

Testing and Troubleshooting

Language Concerns in Verity Applications

This section contains notes and suggestions regarding implementing
language-awareness in applications that use Verity technology.

Runtime Concerns

For VDK applications, locale, character set, and language are settings that can be defined
on a per-session basis.
115

5 Locale Issues for Applications
Language Concerns in Verity Applications
Session Locale and Character Set
Before making calls to the VDK API, your application first needs to create a VDK session.
You can create a session in either of two ways:

Use the VdkSessionNew function to create a new session from scratch. Calling this
function requires you to fill out a complete VdkSessionNewArgRec structure and
pass it to the function.

Use the VdkSessionSpawn function to create a new session by spawning it from an
existing one. The new session inherits the characteristics of its parent session, other
than those you define in a VdkSessionSpawnArgRec structure that you pass to the
function.

A VDK session always has its own defined session locale and character set. The two
functions allow you to specify the locale and character set for the session, using these two
structure members:

Member name Type Description

internalLocale VdkCText (VdkSessionNew only) The locale of the new session. Its
value must be the name of one of the supported Verity
locales listed in “Verity Locales and Character Sets” on
page 128.

If this value is null, the session uses the default locale (see
“Default Locales and the Session Locale”).

charMapDriver VdkCText (VdkSessionNew and VdkSessionSpawn) The name of
the character set for the new session. Strings sent to VDK
during this session must use this character set, and all text
returned from VDK will be in this character set.

This value must be one of the supported character sets for
the session locale.

If this value is null, the session uses the internal character
set for its locale (in the case of VdkSessionNew) or the
locale of its parent session (in the case of
VdkSessionSpawn).

“Verity Locales and Character Sets” on page 128 lists the
supported character sets for each Verity locale and
indicates which one is the internal character set.
116 Verity Locale Configuration Guide

5 Locale Issues for Applications
Language Concerns in Verity Applications
During a VDK session, your application can obtain information about the session by
calling the VdkGetSessionInfo function. The information you can obtain includes the
session’s locale and character set, specified in the localeName and charMapDriver
members of the VdkSessionGetArgRec structure. localeName and charMapDriver
are identical to the internalLocale and charMapDriver members just described for
VdkSessionNewArgRec.

VdkSessionNew, VdkSessionSpawn, and VdkGetSessionInfo are described in the
session suite chapter of the Verity Developer’s Kit Programming Reference.

Resetting the Default Session Language
When the session locale is the uni locale, VDK supports the concept of default session
language (see “Default Session Language” on page 62). Your application can specify a
default session language in the locale specifier you pass to VdkSessionNew in the
VdkSessionNewArgRec structure. Specify the language using a two-character language
code following the locale name, as in uni/fr. See “Supported Language Codes” on
page 135 for a list of the Verity-accepted language codes.

Locale and Character Set Concerns

This section notes programming situations in which locale and character-set assignments
can be made.

Getting Locale Information for a Collection or Parametric Index
If your application supports parametric-index searches on collections that might not be in
the session locale or character set, the application might need to be able to determine
what locale and character set are used by those collections and by indexes accessing those
collections.

In Java, you can use these calls:

Use the methods getLocale and getCharSet of the class
com.verity.parametric.server.Collection to obtain the collection locale.

Use the methods getLocale and getCharSet of the class ParametricIndex to
obtain the index locale.

For more information, see the discussion of the parametric selection Java API in the Verity
Parametric Developer Guide. See also the VParametric JavaDocs.
Verity Locale Configuration Guide 117

5 Locale Issues for Applications
Language Concerns in Verity Applications
Getting and Setting Client Locale for Parametric Searches
To support parametric-index searches on a collection with a non-default locale or
character set, your application needs to be able to read, and possibly set, the client
browser’s character set.

In Java, you can use the methods getLocale, setLocale, getCharSet, and
setCharSet of the class VParametricSearch to perform these tasks. For more
information, see the discussion of the parametric selection Java API in the Verity
Parametric Developer Guide. See also the VParametric JavaDocs.

Locale and Character-Set Conversion for Gateways
If you are writing a gateway driver to read data from a repository and pass it on to the
Verity engine for indexing, note that your driver is expected to determine, if feasible,
what the current locale is and—if necessary—perform any required character conversion.

For documents whose language and character set the gateway understands, the gateway
is expected to pass text to Verity in the internal character set of the current locale. To
accomplish that requirement, your driver can obtain the value of the charSetName
member of the VgwSessionNewArgRec structure, then pass that value to Verity in I18N
library’s V18NConvert function, which determines the text’s current character encoding
and performs the conversion (if necessary).

For instructions on developing a gateway, see the Verity Gateway Developer’s Kit
Programming Reference.

Language-Specific Searching

Your application can allow the user to specify a specific language for stemmed searches.

Defining a Search Language
If your application uses the uni locale, it can tokenize and stem the user’s query string
according to the language that the user wants to search in. Your application can
pre-define the session language (as noted in “Resetting the Default Session Language” on
page 117), or it can add the VQL modifier <lang/id> to the query string, where id is
the code that defines the language of the search.

For Chinese, Japanese and Korean-language searches in uni, you must use the <lang/
id> modifier to receive search results.
118 Verity Locale Configuration Guide

5 Locale Issues for Applications
Language Concerns in Verity Applications
If the application uses a query parser such as the Internet-style query parser, which
doesn’t take VQL operators or modifiers, the user’s query is actually expanded according
the rules defined in the configuration file productDir/common/locale_name/
basic.iqp. A global modifier can be specified in a rule in that file.

Language Concerns for Fields and Zones
Unlike text search of a document’s content, searching a document’s fields does not
involve language information. Applying the <lang/id> modifier has no effect on search
results from fields.

In a document with zones, the Verity engine assumes that all zones are in the same
language. Search results based on a given value of <lang/id> might be incorrect for
zones in a different language than the one specified by id.

Localized Operators
VQL operators, modifiers, and keywords are not available in more than one localized
version. If your application exposes those operators to end users in a multilanguage
environment, they can appear in one language only. The uni locale uses English for VQL
keywords; see “Localized Operators” on page 119 for more information.

Locale-Based Tokenization in a Custom Query Parser
By calling the VdkQParserNew function, your VDK application can specify that a
non-default query parser is to be used for conducting searches. The specified parser can
be one of the built-in non-default parsers (VdkParser_BoolPlus or
VdkParser_FreeText), or it can be a custom parser that you have developed.

When calling VdkQParserNew, you can use the localeTok member of the
VdkQParserNewArgRec structure to flag whether the new parser should tokenize
query strings based on the rules of the current session locale. If you set the flag to off,
strings are tokenized according to the default session locale.

VdkQParserNew is described in the query parser suite chapter of the Verity Developer’s
Kit Programming Reference.

Supporting Search in Multiple Languages
An application can be designed to simultaneously handle search requests in different
languages from multiple users and apply those searches to multiple collections in
different locales. One approach to handling this requirement is to define a separate VDK
session for each user and language, in which the session locale and character set are tied
Verity Locale Configuration Guide 119

5 Locale Issues for Applications
Language Concerns in Verity Applications
to the user’s language and browser encoding. Another approach is for the application to
use the uni locale and UTF-8 encoding for communication with all users and all
collections.

Localization Concerns

This section discusses locale-specific formatting, layout, and performance issues that
your application might need to address.

Date-Format Restrictions for uni Locale and Asian Locales
One of the field types supported for indexing is Date; a collection’s document table can
have any number of fields of type Date. For Date fields in a collection in a
single-language locale, Verity supports both numeric formats (such as 11-11-2003) and
text formats in the locale’s language (such as 11Septiembre 2003).

For the uni locale, text-based dates might be expected to be in any number of languages,
but Verity supports only a single language per locale. Therefore, by default, the uni
locale supports only numeric formats and English text formats for Date fields.

For the Asian locales simpcb, tradcb, japanb, and koreab, the text formats have not
been localized, so they too support only numeric or English date formats.

It is possible to localize the uni locale to display textual dates in any (single) language
other than English. See “Messages and Operators for a Locale” on page 122 for more
information.

Implications of UTF-8 Character Set for uni Locale
If your application is to function correctly with the multilanguage locale, it needs to allow
for differences between the UTF-8 character set and other character sets.

In UTF-8, a single character can occupy up to 4 bytes. Furthermore, the length of a string
cannot be calculated as a fixed multiple of the number of characters it contains. For string
display and text highlighting in UTF-8 text, it is your application’s responsibility to make
sure that it is using the UTF-8 character set and that it is correctly calculating string sizes
and highlighting boundaries.
120 Verity Locale Configuration Guide

5 Locale Issues for Applications
Language Concerns in Verity Applications
Locale-Influenced Sorting of Search Results
In some situations, you may want your application to display search results using a sort
order other than document score or document ID (the defaults). If you sort results based
on a string value (such as name, geographic location, or color), note that the resultant
order depends on the sort-order table for the locale of the collection being searched.

Performance Issues for uni and Asian Locales
Indexing with the Asian locales and the uni locale can be slower than with single-byte
locales. For japanb, koreab, and uni, you might be able to improve performance by
disabling stemming (see “Improving Performance” on page 97). For the uni locale, you
might also get improvements by taking the steps described in “Improving uni Indexing
Performance” on page 90.

Levels of Feature Support in the Multilanguage Locale

This section discusses application-development issues specific to the multilanguage
locale.

Multilanguage Document Clustering
Verity clustering algorithms currently assume that all documents to be clustered are in
the same language. With the uni locale, there is the potential of putting unrelated
documents in different languages into the same cluster.

No NGram Support
The uni locale does not support creation of ngram indexes for Asian languages (Chinese,
Japanese, Korean). An ngram index is a search accelerator for Typo and Wildcard
searches. For more information, see the discussion of the mkvdk tool in the Verity
Collection Referencee.

Extra Word Variants in Indexes
The VDK Assists suite (see the Verity Developer’s Kit Programming Reference) provides
application access to a collection’s various indexes (word index, zone index,
zone-attribute index, stem index, case index, Soundex index, knowledge-base assist, and
fuzzy assist). In the uni locale, an individual word can appear in this set of lists in more
than one way—as the word itself, as a subword, and as a word stem. It is the
responsibility of your application to filter out unwanted duplicates, if they occur.
Verity Locale Configuration Guide 121

5 Locale Issues for Applications
Localized Error Messages and Operators
Don’t search for _nn (uni locale)
The Unicode character code 0x80 is undefined. The multilanguage locale uses this
character as part of a stem word. Users should not be permitted to use it together with
two lower case ASCII letters as the ending letters of a search term. (This is a very rare
case.)

Localized Error Messages and Operators

Part of localizing a K2 application involves translating text that the end-user might see.
Translating your application’s user-interface text is an important issue but is not
discussed here; this section considers Verity-supplied text strings—VDK error messages
and VQL operators.

Messages and Operators for a Locale

Verity supplies a translated set of user-visible error strings and VQL operators for most
locales. The translated strings are in the files vdk30.rsd and vdk30.rst, in the
directory productDir\common\locale_name.

Multilanguage Locale. A single set of error messages and operator names must cover
all supported languages. The current locale architecture does not allow for separate,
language-specific message sets within a single locale. Therefore, as shipped, the uni
locale uses English for all the messages and operators.

Advanced European Locales. Some but not all error messages are translated.
Therefore, if you are licensed for those locales, it is possible for users of your
application to see some messages in the locale’s language and others in English.

Asian Locales. The error strings have not been localized. Therefore, as shipped, the
Asian locales use English for all the messages and operators.

Legacy European Locales. Some but not all error messages are translated. Therefore, if
you are licensed for those locales, it is possible for users of your application to see
some messages in the locale’s language and others in English.

vdk30.rsd and vdk30.rst are compiled files; the majority of their content is not
human-readable. They cannot be edited directly. If your localized Verity application
requires customized or non-English messages and/or operators for a given locale, please
contact Verity Professional Services to discuss creation of custom localized resource files.
122 Verity Locale Configuration Guide

5 Locale Issues for Applications
Testing and Troubleshooting
Translating Topic Sets

If your application package ships with topic sets that you have generated with English
names, you might need to translate the names, or you might need to regenerate the topic
sets, after localization.

Topic sets are described in the Verity Query Language and Topic Guide.

Testing and Troubleshooting

Logging and Debugging

This section describes some of the logging and debugging tools you can use to decipher
problems related to locales.

Set Up Logging of Asian or uni Locale Activity
If you are using the uni locale or the Asian locales, you can turn on logging of locale
activity by adding the -log option to the driver statement in the locale’s loc00.lng
file, like this:

driver: "locuni -simple_tokens -log" "locuni"

With this setting, all locale API activity and results are recorded in a file whose name
starts with LocUn, stored in the directory /var/tmp (Solaris), /tmp (Linux), or the
directory specified by the %TEMP% system variable (Windows). Reviewing this log might
help you to pinpoint problems with the text input to the tokenization process or with the
generated tokens or stems.

Only the most recent 500 actions are kept in the log. It is therefore most useful for
inspecting the last few actions prior to a system crash.

Use Standard Diagnostic Logging
You can also use Verity’s standard diagnostic logging package to log locale-based activity
for the uni locale or other locales. Diagnostic logging records all activity, not just
locale-based actions, and stores everything in a single large file.

The diagnostic package is an internal Verity capability that is not normally available to
customers. If you have a special need to use it, please contact Verity Technical Support.
Verity Locale Configuration Guide 123

5 Locale Issues for Applications
Testing and Troubleshooting
Note You should use diagnostic logging only for problem isolation. When
enabled, it has a significant impact on performance.

Troubleshooting Language Problems

This section lists some problematic symptoms that might occur when you test your K2
client application, and it gives suggestions for how you might narrow the problem to find
the solution.

Searching Problems
All searches fail completely.

Make sure the collection is not empty.

Does a null search produce hits? If not, the indexing might have failed or the
collection might not be attached/loaded correctly into your application.

Make sure that the document you expect to find was indexed.

Try indexing the same document again, using a higher message verbosity. Inspect
the output for problems.

Search fails for specific terms in specific documents.

Does a literal, exact-word search (enclosed in double quotes) succeed?

If yes, there may be a problem in the stemming:

– Did the locale and/or language used for indexing match the language of the
document? Inspect the VLANG and CHARSET fields in the collection’s document
table. For example, run rcvdk and specify the fields to display:

rcvdk
x
fields vdkvgwkey 50 VLANG 10 CHARSET 10
s
r

Or, run the language-identification command-line tool on those documents to see
whether the right language assignment is made:

langid doc_file_path
124 Verity Locale Configuration Guide

5 Locale Issues for Applications
Testing and Troubleshooting
– Did search use the correct language for stemming the query term? (Was the wrong
<lang/id> specification used in the query, or is the current default session
language not what you expect?)

Does a search term containing the exact cases and accents succeed?

If yes, the locale configuration may be different from what you expected (for
example, accent-sensitivity may be enabled).

Does a wildcard search, or a wildcard search that looks for a shorter string, work
better?

If yes, the settings for tokenization or stemming may be different from what you
expect. Is simple-tokens behavior enabled? Is the set of token delimiters what you
expect? Is stemming disabled?

Does search succeed only for plain ASCII search terms?

If yes, the character-set assignment might be incorrect or the locale might be wrong
for the document.

Is your search term in the word index at all?

For multibyte languages in particular, you might want to use didump to print out
the contents of the word index, to verify whether your search term is in the index.

If your search term is not in the index, but similar terms exist near where it would
be, it may be that tokenization or stemming is not functioning as you expect it to.

Incorrect Display of Accented or Multibyte Characters
Is it true for documents in all languages, or only specific ones?

[uni locale] If true only for specific documents, language or character-set
identification may have failed for those documents. Inspect the VLANG and
CHARSET fields for those documents in the collection’s document table. For
example, run rcvdk and specify the fields to display:

rcvdk
x
fields vdkvgwkey 50 VLANG 10 CHARSET 10
s
r

Or, run the language-identification command-line tool on those documents to see
whether the right language assignment is made:

langid doc_file_path
Verity Locale Configuration Guide 125

5 Locale Issues for Applications
Testing and Troubleshooting
Do the standard Verity templates work and display characters correctly?

If yes, the search application might be configured incorrectly. Verify whether your
search application uses an output character set that is incompatible with the locale’s
internal character set. Compare your application templates with the standard Verity
templates.

If no, the indexing/collection configuration might be incorrect. Verify that the locale
used for indexing was the correct locale for those documents. (You can inspect the
file *.abt in the collection’s assists directory to verify the locale used for
indexing.) Also verify that the style files (such as style.uni) contain the correct
character-set settings.

Do characters in fields display incorrectly, but the document summaries are fine?

If yes, field-generation may be specified incorrectly. If you are using a BIF to
populate fields, verify that its character encoding matches the character set of the
locale. (Note that you can convert the character set of a BIF using the codeconv
command-line tool.)

If you are not using a BIF, verify that the gateway and document filter(s) are
working properly for documents that have this problem. Check for errors in the
character-set settings in the style files (such as style.uni or vgwxxxx.yyy).

Is the character encoding of your client-browser set correctly?

The browser encoding must be compatible with the character set of the collection.
(The collection’s character set is the internal character set of its locale. The browser
encoding must be set to one of the supported character sets for that locale.) If your
returned Web page automatically sets the user’s browser encoding, are you using
the correct HTTP-equiv settings for charset?

Command-Line Tools Return Different Results
Is search successful with rcvdk or rck2, but not through your K2 client application?

If yes, a locale or character-set error may have occurred in loading the collection into
the K2 process, or your search-application might be requesting the output in an
incompatible character set.

Is search unsuccessful with rcvdk or rck2?

If yes, make sure the -locale option specifies the locale of the collection and the
-charmap option specifies a character set compatible with that locale.
126 Verity Locale Configuration Guide

A
Locales, Character Sets and Languages

This appendix lists the Verity-supported languages, Verity locales, and character sets that
can be used for indexing, searching, and viewing in a localized environment. For more
information on the features and usage of Verity locales, see “Verity Locales” on page 59
and “Installing Verity Locales” on page 19.

This appendix includes the following sections:

Verity Locales and Character Sets

Supported Source-Document Character Sets

Supported Language Codes

Code Conversion Command-Line Tool
127

A Locales, Character Sets and Languages
Verity Locales and Character Sets
Verity Locales and Character Sets

The table in this section lists the names of the Verity locale modules that you can install
and use for creating collections and other indexes. The table also lists, for each locale,

Its internal character set (the character set it uses to process and store all its data)

The additional character sets that can be used to display the locale’s information and
source documents.

How it is licensed and delivered:

Built-in. Provided with a default K2/VDK installation.

Verity Locales. Installed with the Verity Locales product.

Verity Single-Language European Locales (legacy). Installed with the Verity
Single-Language European Locales product.

Locale and character set are used as options, function parameters, and structure members
in many Verity tools and APIs. Note the following usage conventions:

locale option. When specifying a locale in a Verity command option or function
parameter, use the Verity locale name (column 1 in the table).

For example, to specify Greek as the locale for a collection you are creating with the
mkvdk tool, use the option -locale greek.

charmap option. When specifying a character set in a Verity command option or
function parameter, use one of the Verity-defined character-set names (column 3 or 4
in the table). You can specify any of the supported character sets for the locale.

For example, when using the rcvdk tool to view contents of a collection in the arabic
locale, if you want the output to use the MS-DOS character set, use the option
-charmap 1256.

Note The character-set names listed here are the specific Verity names that you
must supply for the charmap option or parameter. For example, to
indicate the UTF-8 character set, the value of charmap must be utf8, not
UTF-8. See the next section, “Supported Source-Document Character
Sets,” for common aliases and re-spellings of these and other character
sets.
128 Verity Locale Configuration Guide

A Locales, Character Sets and Languages
Verity Locales and Character Sets
Table A-1 Verity locales and character sets

Verity locale Language Internal
character set

Other supported
character sets

Built-in:

uni Advanced support: English

Basic support: Many languagesa

utf8

englishv English (advanced support) 1252 437, 850, 8859

english English (basic support) 1252 437, 850, 8859

Verity Locales:

uni Advanced support: Multiple languagesb

Basic support: Many languagesa

utf8

bokmalv Norwegian 1252 437, 850, 8859

danishv Danish 1252 437, 850, 8859

dutchv Dutch 1252 437, 850, 8859

finnishv Finnish 1252 437, 850, 8859

frenchv French 1252 437, 850, 8859

germanv German 1252 437, 850, 8859

italianv Italian 1252 437, 850, 8859

portugv Portuguese 1252 437, 850, 8859

spanishv Spanish 1252 437, 850, 8859

swedishv Swedish 1252 437, 850, 8859

japanb Japanese sjis eucjp, iso2022_jp

koreab Korean ksc

simpcb Chinese (simplified) gb big5

tradcb Chinese (traditional) big5 gb

Verity Single-Language European Locales (legacy):

bokmalx Norwegian 1252 437, 850, 8859

danishx Danish 1252 437, 850, 8859

dutchx Dutch 1252 437, 850, 8859

englishx English 1252 437, 850, 8859
Verity Locale Configuration Guide 129

A Locales, Character Sets and Languages
Supported Source-Document Character Sets
Supported Source-Document Character Sets

The table in this section lists the character encodings that Verity can read and convert
when indexing source documents from a document repository. Verity converts text in any
of these character sets into a locale’s internal character set for processing and storage in a
collection.

The character sets that Verity uses internally are listed in the previous section, “Verity
Locales and Character Sets.”

finnishx Finnish 1252 437, 850, 8859

frenchx French 1252 437, 850, 8859

germanx German 1252 437, 850, 8859

italianx Italian 1252 437, 850, 8859

nynorskx Norwegian 1252 437, 850, 8859

portugx Portuguese 1252 437, 850, 8859

spanishx Spanish 1252 437, 850, 8859

swedishx Swedish 1252 437, 850, 8859

a. See Table A-3 on page 136.
b. See Table 3-1 on page 64.

Table A-2 Supported source-document character sets

Encoding
Name

Typical aliases and alternate spellings Comment

1250 Cp1250, Windows-1250 Central and Eastern European
(Windows)

1251 Cp1251, Windows-1251 Cyrillic
(Windows)

1252 8859, Cp1252, Windows-1252 Western European
(Windows)

1253 Cp1253, Windows-1253 Greek
(Windows)

Table A-1 Verity locales and character sets (continued)

Verity locale Language Internal
character set

Other supported
character sets
130 Verity Locale Configuration Guide

A Locales, Character Sets and Languages
Supported Source-Document Character Sets
1254 Cp1254, Windows-1254 Turkish
(Windows)

1255 Cp1255, Windows-1255 Hebrew
(Windows)

1256 Cp1256, Windows-1256 Arabic
(Windows)

1257 Cp1257, Windows-1257 Baltic
(Windows)

1258 Cp1258, Windows-1258 Vietnamese
(Windows)

8859-1 latin1, Iso-8859-1, iso8859-1 Western European
(ISO)

8859-2 latin2, Iso-8859-2, Iso8859-2 Central-Eastern European
(ISO)

8859-3 latin3, Is-o8859-3, Iso8859-3 Turkish, Esperanto, Maltese
(ISO)

8859-4 latin4, Iso-8859-4, Iso8859-4 Estonian, Latvian, Lithuanian
(ISO)

8859-5 cyrillic, Iso-8859-5, Iso8859-5 Russian, Cyrillic European
(ISO)

8859-6 arabic, Iso-8859-6, Iso8859-6 Arabic
(ISO)

8859-7 greek, Iso-8859-7, Iso8859-7 Greek
(ISO)

8859-8 iso-visual, iso-logical, hebrew, Iso-8859-8,
Iso8859-8

Hebrew
(ISO)

8859-9 Iso-8859-9, Iso8859-9 Turkish
(ISO)

8859_14 Iso-8859-14, Iso8859-14 Celtic
(ISO)

8859_15 Iso-8859-15, Iso8859-15 Revised Latin 1
(ISO)

DOS-720 cp720 Arabic (DOS)

big5 cp950, Big5, Windows 950, IBM 950 Chinese (traditional)

Table A-2 Supported source-document character sets (continued)

Encoding
Name

Typical aliases and alternate spellings Comment
Verity Locale Configuration Guide 131

A Locales, Character Sets and Languages
Supported Source-Document Character Sets
Cns11643 Cns11643 Chinese (national code for Taiwan)

cp037 Cp037
(EBCDIC code page 037)

cp10000 cp10000
(Microsoft Macintosh Roman)

cp1006 Cp1006 Urdu (Pakistan)
(IBM AIX)

cp1026 Cp1026
(EBCDIC code page 1026)

cp424 Cp424 Hebrew
(EBCDIC)

cp437 Cp437, MSDOS 437 Latin US
(DOS)

cp500 Cp500
(EBCDIC code page 500)

cp737 Cp737, IBM 737 Greek
(DOS)

cp775 Cp775, IBM 775 Baltic
(DOS)

cp850 Cp850, IBM 850 Latin 1
(DOS)

cp851 Greek
(DOS)

cp852 Cp852, IBM 852 Eastern European/Latin 2
(DOS)

cp855 Cp855, IBM 855 Cyrillic
(DOS)

cp856 Cp856, IBM 856 Hebrew
(IBM PC–old)

cp857 Cp857, IBM 857 Turkish
(DOS)

cp860 Cp860, IBM 860 Portuguese
(DOS)

Table A-2 Supported source-document character sets (continued)

Encoding
Name

Typical aliases and alternate spellings Comment
132 Verity Locale Configuration Guide

A Locales, Character Sets and Languages
Supported Source-Document Character Sets
cp861 Cp861, IBM 861 Icelandic
(DOS)

cp862 Cp862, IBM 862 Hebrew
(DOS)

cp863 Cp863, IBM 863 Canadic
(DOS)

cp864 Cp864, IBM 864 Arabic
(DOS)

cp865 Cp865, IBM 865 Nordic
(DOS)

cp866 Cp866, IBM 866 Cyrillic 2
(DOS)

cp869 Cp869, IBM 869 Greek 2
(DOS)

cp874 tis620, Tis-620, Cp874, IBM 874 Thai

cp875 Cp875
(EBCDIC code page 875)

euc-tw Chinese (traditional)
(euc encoding of CNS 1643-1992)

euc-cn Chinese (simplified)
(euc encoding of GB 2312-80)

euc-jp Euc_jp Japanese

Euc-ksc euc-kr, Euc_kr, Windows-949 Korean

gb euc-gb, Gb, Gbk, Cp936,Windows-936,
GB2312, Gb2312-80

Chinese (simplified)

gb12345 Chinese (traditional)
(variant of GB2312)

GB18030 Chinese 4-byte character set

x-iscii-as ISCII Assamese

x-iscii-be ISCII Bengali

 x-iscii-de ISCII Devanagari

Table A-2 Supported source-document character sets (continued)

Encoding
Name

Typical aliases and alternate spellings Comment
Verity Locale Configuration Guide 133

A Locales, Character Sets and Languages
Supported Source-Document Character Sets
x-iscii-gu ISCII Gujarathi

x-iscii-ka ISCII Kannada

x-iscii-ma ISCII Malayalam

 x-iscii-or ISCII Oriya

x-iscii-pa ISCII Panjabi

x-iscii-ta ISCII Tamil

x-iscii-te ISCII Telugu

iso-2022-cn Iso2022cn, Iso-2022-cn Chinese (7-bit)
(GB2312 pus CNS 11643)

This encoding is not supported in the
langlist.cfg file for character set
detection or for XML. However, it is
supported in plain text and HTML if
metadata indicates that
iso-2022-jp is fully supported.

iso-2022-jp Iso2022jp, Iso-2022-jp Japanese (7-bit)

iso-2022-kr Iso2022kr, Iso-2022-kr Korean (7-bit)

This encoding is not supported in the
langlist.cfg file for character set
detection or for XML. However, it is
supported in plain text and HTML if
metadata indicates that iso-2022-jp
is fully supported.

ISO 8859-10 iso_8859-10, iso8859-10 Nordic

ISO 8859-13 iso_8859-13, iso8859-13 Baltic

koi8r cp878, Koi8_r, Koi-8r Russian

ksc cp949, cp1363, IBM 1363 Korean

Shift-jis Sjis, cp932, shift-jis, sjis, Windows-932 Japanese

tis620 620 Thai

Table A-2 Supported source-document character sets (continued)

Encoding
Name

Typical aliases and alternate spellings Comment
134 Verity Locale Configuration Guide

A Locales, Character Sets and Languages
Supported Language Codes
Supported Language Codes

The table in this section lists the ISO 639 and ISO 639-1 two-character and three-character
codes for the languages supported by the Verity multilanguage locale (uni) and the
Verity language-identification command-line tool.

In a bulk import file (BIF) used to create or modify a collection in the multilanguage
locale, the value of the language specification field (VLANG) must be a language code
from this table.

Note When a document specifies a user-defined name for its language, rather
than one of the standard codes, that name is preserved in the VLANG
field. It is not mapped to the standard two-letter code.

A user-defined name can be any string, language, abbreviation, or
spelling. These original names are useful for diagnostic purposes.
When the user-defined VLANG value cannot be determined by the
Verity multilanguage locale (uni), it is treated as 'un' (unknown).

For more information on BIF format, see the Verity Indexers Reference Guide.

Input to, and output from, the Verity language-identification command-line tool
specifies language in terms of the language code.

For more information on the language-identification command-line tool, see “The
Language ID Command Tool” on page 157.

Unicode Unicode, UTF-16, iso-10646, Utf-16,
utf-16be, utf-16le, UnicodeBig,
UnicodeBigUnmarked, UnicodeLittle /
UnicodeLittleUnmarked /Utf-16

(All languages)

Utf8 Utf8, 65001, Utf-8, utf8 (All languages)

 VISCII Vietnamese

Table A-2 Supported source-document character sets (continued)

Encoding
Name

Typical aliases and alternate spellings Comment
Verity Locale Configuration Guide 135

A Locales, Character Sets and Languages
Supported Language Codes
When searching for text in the multilanguage locale, the client can specify which
language rules to apply to the search by using a language code in the <lang/id>
query operator (for example, <lang/de> for German).

Note Only the codes flagged in column 3 of the table below are accepted in
<lang/id>.

For more information on this and other query operators, see the Verity Query Language
and Topic Guide.

When specifying the default session language for a VDK session using the uni locale,
the caller of VdkSessionNew supplies a locale identifier of the form uni/id, where
id is the language code.

Note Only the codes flagged in column 3 of the table below are accepted in
uni/id.

For more information on the default session language, see “Resetting the Default
Session Language” on page 117.

Table A-3 Verity-supported language codes

Language Code OK for <lang/id>
and uni/id?

Afrikaans af

Albanian sq

Arabic ar Yes

Armenian hy

Basque eu

Belarusian be

Bengali bn

Breton br

Bulgarian bg

Catalan ca

Cherokee chr

Chinese (simplified) zh Yes

Chinese (traditional) zt Yes

Croatian hr
136 Verity Locale Configuration Guide

A Locales, Character Sets and Languages
Supported Language Codes
Czech cs Yes

Danish da Yes

Dhivehi (Thanna) div

Dutch nl Yes

English en Yes

Esperanto eo

Estonian et

Ethiopic gez

Faroese fo

Farsi fa

Finnish fi Yes

French fr Yes

Frisian fy

Gaelic ga

Galician gl

Georgian ka

German de Yes

Greek el Yes

Greenlandic kl

Gujarati gu

Hausa ha

Hebrew he

Hindi hi

Hungarian hu Yes

Icelandic is

Indonesian id

IsiNdebele nde

IsiXhosa xh

IsiZulu zu

Table A-3 Verity-supported language codes (continued)

Language Code OK for <lang/id>
and uni/id?
Verity Locale Configuration Guide 137

A Locales, Character Sets and Languages
Supported Language Codes
Italian it Yes

Japanese ja Yes

Kannada kn

Khmer km

Korean ko Yes

Kurdish ku

Lao lo

Latvian lv

Lithuanian lt

Luxembourgish lb

Macedonian mk

Malay ms

Malayalam ml

Maltese mt

Mongolian mm

Myanmar bms

Nepali ne

Norwegian (Bokmal) nb Yes

Norwegian (Nynorsk) nn

Oriya or

Panjabi (Gurmukhi) pa

Pashto ps

Philippine (Tagalog, Hanunoo, Buhid, Tagbanwa) phi

Polish pl Yes

Portuguese pt Yes

Rhaeto-Romance rm

Romanian ro

Russian ru Yes

Sami se

Table A-3 Verity-supported language codes (continued)

Language Code OK for <lang/id>
and uni/id?
138 Verity Locale Configuration Guide

A Locales, Character Sets and Languages
Supported Language Codes
Serbian sr

Sesotho st

SesothoSaLeboa stl

SeTswana tn

Sinhala si

SiSwati ss

Slovak sk

Slovenian sl

Somalian so

Spanish es Yes

Swahili sw

Swedish sv Yes

Syriac syr

Tamil ta

Telugu te

Thai th

Tibetan bo

TsiVenda ven

Turkish tr

Ukranian uk

Urdu ur

Vietnamese vi

Welsh cy

XiTsonga ts

Yiddish yi

(All others) un

Table A-3 Verity-supported language codes (continued)

Language Code OK for <lang/id>
and uni/id?
Verity Locale Configuration Guide 139

A Locales, Character Sets and Languages
Code Conversion Command-Line Tool
Code Conversion Command-Line Tool

Verity requires a fixed character set for BIF, style, and OTL files used by a locale.
However, organizations often create and save documents using many different character
sets. Verity provides the Code Conversion command-line command-line tool to help you
convert files to a single character set. You identify a source file, its character set, and the
character set you want to convert to. The command-line tool produces a converted
document.

Running codeconv

To run the Code Conversion command-line tool, use the following command line:

codeconv src_charset src_file tgt_charset tgt_file
[Unicode_endian]

where

src_charset is the character set of the source file. Can be any encoding name or
alias listed in “Supported Source-Document Character Sets” on page 130.

src_file is the pathname to the file whose character set you want to convert.

tgt_charset is the character set you want to convert to. Can be any encoding name
or alias listed in “Supported Source-Document Character Sets” on page 130, as long as
it is compatible with (applicable to the same language as) the character set specified in
src_charset.

tgt_file is the pathname to the file that is to hold the converted results.

Unicode_Endian (optional) specifies, for 16-bit Unicode character sets, whether the
storage order is little-endian (0) or big-endian (1). The default value is 0.

The source and target character sets must be in the same language. For example, if the
source character set is ISO Russian, the target character set cannot be Japanese.

A symbol that exists in one encoding standard might not exist in another. In this case, the
command-line tool displays a question mark (?) in the converted file. For example, if a
source document contained the Microsoft encoding for the Euro currency symbol, and
the target character set did not provide an encoding for this symbol, the target file would
show a question mark for each occurrence of the Euro symbol.
140 Verity Locale Configuration Guide

A Locales, Character Sets and Languages
Code Conversion Command-Line Tool
Example

In the following command-line example, the command-line tool is converting the file
russian.txt, which uses character set 1251, to the character set UTF-8. The resulting
file is named target.txt:

codeconv 1251 russian.txt utf8 target.txt

Supported Character Sets

The Code Conversion command-line tool supports the character sets listed in “Supported
Source-Document Character Sets” on page 130.

Limitations

The source and target files must be textual, such as .txt, .htm, or .xml files. The
command-line tool cannot convert files in proprietary formats such as Word,
WordPerfect, Excel, or PowerPoint.

Conversion from GB to BIG5 is not supported.
Verity Locale Configuration Guide 141

A Locales, Character Sets and Languages
Code Conversion Command-Line Tool
142 Verity Locale Configuration Guide

B
Tokenization Delimiters

This appendix lists the tokenization delimiters applied by default when simple-tokens
behavior is enabled. Individual symbols in this table can be removed from the list of
delimiters and/or made searchable as symbols. See “Tokenization” on page 80 (for the
multilanguage locale), “Tokenization” on page 91 (for single-language locales),
“Tokenization” on page 95 (for Asian locales), and “Tokenization” on page 98 (for legacy
European locales).

Table B-1 Available tokenization delimiters and symbols

Character Code Description

1252 Unicode

21 U+0021 EXCLAMATION MARK

22 U+0022 QUOTATION MARK

23 U+0023 NUMBER SIGN

24 U+0024 DOLLAR SIGN

25 U+0025 PERCENT SIGN

26 U+0026 AMPERSAND

27 U+0027 APOSTROPHE

28 U+0028 LEFT PARENTHESIS

29 U+0029 RIGHT PARENTHESIS

2A U+002A ASTERISK

2B U+002B PLUS SIGN

2C U+002C COMMA

2D U+002D HYPHEN-MINUS
143

B Tokenization Delimiters
2E U+002E FULL STOP

2F U+002F SOLIDUS

3A U+003A COLON

3B U+003B SEMICOLON

3C U+003C LESS-THAN SIGN

3D U+003D EQUALS SIGN

3E U+003E GREATER-THAN SIGN

3F U+003F QUESTION MARK

40 U+0040 COMMERCIAL AT

5B U+005B LEFT SQUARE BRACKET

5C U+005C REVERSE SOLIDUS

5D U+005D RIGHT SQUARE BRACKET

5E U+005E CIRCUMFLEX ACCENT

5F U+005F LOW LINE

60 U+0060 GRAVE ACCENT

7B U+007B LEFT CURLY BRACKET

7C U+007C VERTICAL LINE

7D U+007D RIGHT CURLY BRACKET

7E U+007E TILDE

80 U+20AC EURO SIGN

82 U+201A SINGLE LOW-9 QUOTATION MARK

84 U+201E DOUBLE LOW-9 QUOTATION MARK

85 U+2026 HORIZONTAL ELLIPSIS

86 U+2020 DAGGER

87 U+2021 DOUBLE DAGGER

88 U+02C6 MODIFIER LETTER CIRCUMFLEX ACCENT

89 U+2030 PER MILLE SIGN

8B U+2039 SINGLE LEFT-POINTING ANGLE QUOTATION MARK

91 U+2018 LEFT SINGLE QUOTATION MARK

Table B-1 Available tokenization delimiters and symbols (continued)

Character Code Description

1252 Unicode
144 Verity Locale Configuration Guide

B Tokenization Delimiters
92 U+2019 RIGHT SINGLE QUOTATION MARK

93 U+201C LEFT DOUBLE QUOTATION MARK

94 U+201D RIGHT DOUBLE QUOTATION MARK

95 U+2022 BULLET

96 U+2013 EN DASH

97 U+2014 EM DASH

98 U+02DC SMALL TILDE

99 U+2122 TRADE MARK SIGN

9B U+203A SINGLE RIGHT-POINTING ANGLE QUOTATION MARK

A1 U+00A1 INVERTED EXCLAMATION MARK

A2 U+00A2 CENT SIGN

A3 U+00A3 POUND SIGN

A4 U+00A4 CURRENCY SIGN

A5 U+00A5 YEN SIGN

A6 U+00A6 BROKEN BAR

A7 U+00A7 SECTION SIGN

A8 U+00A8 DIAERESIS

A9 U+00A9 COPYRIGHT SIGN

AA U+00AA FEMININE ORDINAL INDICATOR

AB U+00AB LEFT-POINTING DOUBLE ANGLE QUOTATION MARK

AC U+00AC NOT SIGN

AD U+00AD SOFT HYPHEN

AE U+00AE REGISTERED SIGN

AF U+00AF MACRON

B0 U+00B0 DEGREE SIGN

B1 U+00B1 PLUS-MINUS SIGN

B2 U+00B2 SUPERSCRIPT TWO

B3 U+00B3 SUPERSCRIPT THREE

B4 U+00B4 ACUTE ACCENT

Table B-1 Available tokenization delimiters and symbols (continued)

Character Code Description

1252 Unicode
Verity Locale Configuration Guide 145

B Tokenization Delimiters
B5 U+00B5 MICRO SIGN

B6 U+00B6 PILCROW SIGN

B7 U+00B7 MIDDLE DOT

B8 U+00B8 CEDILLA

B9 U+00B9 SUPERSCRIPT ONE

BA U+00BA MASCULINE ORDINAL INDICATOR

BB U+00BB RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK

BC U+00BC VULGAR FRACTION ONE QUARTER

BD U+00BD VULGAR FRACTION ONE HALF

BE U+00BE VULGAR FRACTION THREE QUARTERS

BF U+00BF INVERTED QUESTION MARK

Table B-1 Available tokenization delimiters and symbols (continued)

Character Code Description

1252 Unicode
146 Verity Locale Configuration Guide

C
Customizing Language Dictionaries

This appendix describes how to create customized language dictionaries for controlling
stemming, decomposition, and in some cases part-of-speech extraction, in the uni locale,
the englishv locale, and the single-language Asian locales.

This appendix includes these sections:

Custom Dictionaries for Asian Languages

Custom Dictionaries for Non-Asian Languages

Custom Dictionaries for Asian Languages

For the languages Japanese, Korean, Simplified Chinese, and Traditional Chinese in the
the multilanguage locale, and for the Asian locales japanb, koreab, simpcb, and
tradcb, you can create a custom file, called a user dictionary, into which you can place
words that you want decomposed in a non-standard manner. For example, you might
want to create a user dictionary to hold proper names, industry-specific terms, or words
of foreign origin. Or, you might want to prevent trademarked terms or company names
from being decomposed into subwords at all.

Creating the User Dictionary

Your user dictionary must be a text file in the following format:

File encoding must be UTF-8.
147

C Customizing Language Dictionaries
Custom Dictionaries for Asian Languages
Comment lines must begin with a pound sign (#).

Each dictionary entry must be on a separate line. Each line must end with a carriage
return.

Blank lines are permitted.

On each line, you specify how the term is to be decomposed by following it with a tab
(U+0009) followed by a decomposition pattern. The decomposition pattern consists of a
string of digits, each one representing the number of characters (up to a maximum of 9)
in the respective component. For example, the entry

22

specifies that the term should be decomposed into two two-character components:

Note that the sum of the digits in the pattern must match the total number of characters
in the term. For example,

23

is invalid because the term has 4 characters while the pattern is for a 5-character string.

You can also use the dictionary to prevent decomposition of a term that is normally
decomposed during indexing. To do so, follow the term’s entry in the dictionary with a
decomposition pattern that is either 0 (zero) or a single digit equal to the full length of the
entry. For example:

3

0

4

(The nonzero-digit alternative works only for terms with nine or fewer characters).

Note Placing a term with a specific decomposition pattern into the user
dictionary does not guarantee that searches on its components will always
return the term itself. At search time, the components might be tokenized
differently, based on context.

For example, if the entry is ABCD 22 (where A,B, C, and D are individual
characters), a search for AB will not return ABCD if AB is tokenized at
search time as A and B (separate characters) instead of AB.
148 Verity Locale Configuration Guide

C Customizing Language Dictionaries
Custom Dictionaries for Asian Languages
Installing the User Dictionary (Multilanguage Locale)

When your user dictionary is complete, install it into the multilanguage locale this way:

1. Give it any name—for example, user_dict_1.utf8.

2. Store it in the directory productDir/common/basdata/language/dicts, where
language is ja, ko, zh, or zt.

3. Open the language options file for this language. For Japanese, for example, open the
file jla-options.xml, in the directory productDir/common/basdata/ja.

4. To make your dictionary available, add a <DictionaryPath> subelement to the
<DictionaryPaths> element of the language options file, like this:

...
<DictionaryPaths>

...
<DictionaryPath><env name="root"/>/../../ja/dicts/user_dict_1.utf8<DictionaryPath>
...

<DictionaryPaths>

If you have created multiple user dictionaries, make them available by creating a
separate <DictionaryPath> entry for each one.

5. Specify that your dictionary is to be used by setting this value in the file:

FavorUserDictionary="true"

6. Save and close the language options file.

Installing the User Dictionary (Asian Locales)

When your user dictionary is complete, install it into an Asian locale this way:

1. Give it any name.

2. Store it in the locale’s directory—for example, productDir\common\japanb.

3. Open the locale’s loc00.lng file and add a user_dictionaries option to the
driver entry, like this:

driver: "locbasis -simple_tokens & -user_dictionaries dictName" "loc"

where dictName is the filename of the dictionary.

If you have created multiple user dictionaries, add them to the locale by following the
-user_dictionaries option with a comma-separated list of dictionary filenames:
Verity Locale Configuration Guide 149

C Customizing Language Dictionaries
Custom Dictionaries for Non-Asian Languages
-user_dictionaries dictName1,dictName2,dictName3,...

There must be no spaces in the filenames or between them. You can add up to 128 user
dictionaries, as long as the entire driver: statement is not over 2048 characters long.

4. Save and close the file.

Note Verity provides a small sample user dictionary (user_dict_1.utf8)
with the japanb locale.

Using Multiple User Dictionaries

If you have a large number of terms whose decomposition you need to customize, you
can create multiple user dictionaries and install them as just described. You might want
to divide the entries so that each dictionary holds an alphabetically sorted range, or an
industry-specific set of terms, or a certain set of proper names.

Custom Dictionaries for Non-Asian Languages

For non-Asian languages in the multilanguage locale, and for the single-language locales,
you can use the _mdic command-line tool to add additional words to language
dictionaries. During indexing, the locales use these language dictionaries to control
stemming, word decomposition, and noun extraction (part-of-speech identification).

How to Modify a Language Dictionary

The dictionary-customization process consists of creating a list of words, then merging
that list with an existing language dictionary to create a new dictionary.

You run the _mdic tool to generate a language-specific compiled dictionary file of type
.mdic (such as german.mdic). The language dictionary produced by _mdic is actually
a merger of an existing compiled dictionary of type .bmdic (such as german.bmdic)
and a user-defined dictionary source file of type .txt (such as newwords.txt).

Take these steps to modify your dictionary:
150 Verity Locale Configuration Guide

C Customizing Language Dictionaries
Custom Dictionaries for Non-Asian Languages
1. Locate the standard language dictionary (languageDict.bmdic) to which you want
to add more terms. Save a copy of it before proceeding.

In K2, the standard language dictionaries for a given language in the uni
(multilanguage) locale are in the directory installDir/k2/common/terdata/
language, where language is an abbreviated language name (such as en for
English). for example, the standard English-language dictionaries provided with K2
are the following:

(The utf8 dictionaries are for use with the uni locale; the 1252 dictionaries are for use
with the englishv locale. Different levels are stemming are provided to allow for
trading stemming accuracy for indexing performance.)

2. If _mdic has been used previously to create a custom dictionary, locate that dictionary
and save off a copy of it before you run _mdic. (You will be replacing it.)

Custom dictionaries (customDict.mdic) are stored along with the standard
dictionaries, in installDir/k2/common/terdata/language. For example, the
custom English-language dictionaries provided with K2 are the following:

(If you are creating a custom dictionary for English and intend to replace one of these,
be sure to save a copy first.)

3. Create a dictionary source file (words.txt) as described in “Creating a Dictionary
Source File” on page 154. The file is a simple list of text lines, each of which defines a
term to add to the dictionary.

emd08_mstem.bmdic Multistemming (1252 charset)

emd08_mstem.utf8.bmdic Multistemming (utf8 charset)

emd08_mstem_norm.bmdic Multistemming + normalization (1252 charset)

emd08_mstem_norm.utf8.bmdic Multistemming + normalization (utf8 charset)

emd08_stem.bmdic Simple stemming (1252 charset)

emd08_stem.utf8.bmdic Simple stemming (utf8 charset)

emd08_mstem.fast.mdic Multistemming (1252 charset)

emd08_mstem.fast.utf8.mdic Multistemming (utf8 charset)

emd08_mstem_norm.fast.mdic Multistemming + normalization (1252 charset)

emd08_mstem_norm.fast.utf8.mdic Multistemming + normalization (utf8 charset)

emd08_stem.fast.mdic Simple stemming (1252 charset)

emd08_stem.fast.utf8.mdic Simple stemming (utf8 charset)
Verity Locale Configuration Guide 151

C Customizing Language Dictionaries
Custom Dictionaries for Non-Asian Languages
4. If appropriate for your dictionary’s language, create a predefined compounds file
(compounds.txt) with explicit decomposition guidelines. See “Creating a Predefined
Compounds File” on page 156.

5. Use the -minus option on _mdic if you want your source-file entries (including
part-of-speech tags or other meta-information) to replace the equivalent entry in the
language dictionary.

6. Execute the _mdic command-line tool to compile the source file, the predefined
compounds file, and a specified standard language dictionary into a custom dictionary.

For syntax details, see “_mdic Command-Line Syntax” (next). Here is an example
command:

_mdic -compile_user emd08_mstem.bmdic multistem_source.txt
-tmpdir /usr/home/tmp -compress >emd08_mstem.fast.mdic

7. Place the output file customDict.mdic into the directory installDir/k2/
common/terdata/language, replacing any previous dictionary of the same name.

8. To make the locale (uni or Advanced European) use the custom dictionary, do this:

a. Open the locale’s uni.cfg file, in installDir/k2/common/locale, where
locale is the locale name (for example, uni, englishv, or frenchv).

b. Locate the language mapping list and find the entry for your dictionary’s language.
For English in the uni locale, the entry looks like this:

#English

 language: en "en-us" "en-can"
{

driver: "unitera -lang en -stkzo english.utf8.stkzo
-mdic emd08_mstem_norm.fast.utf8.mdic
-concepts english_small.concepts" "unitera"

}

c. If the driver: line already contains the -mdic option, make sure that the option
specifies the custom dictionary you just created. If not, add the option and specify
your dictionary.
152 Verity Locale Configuration Guide

C Customizing Language Dictionaries
Custom Dictionaries for Non-Asian Languages
_mdic Command-Line Syntax

You run the _mdic tool from the UNIX command line. The tool is located in the directory
platformDir/bin, where platformDir is the platform-specific directory within the
K2 installation (for example, usr/verity/k2_6/k2/_ssol26).

The command syntax for _mdic is this:

_mdic -compile_user languageDict.bmdic words.txt [-tmpdir
tmpDirName] [-compress] [-minus] [-predef_compounds compounds.txt]
>customDict.mdic

where

-compile_user is the flag that specifies that dictionary compilation is to occur.

languageDict.bmdic specifies the name of a default, language-standard binary
dictionary file (such as german.bmdic). In K2, binary language dictionaries have the
file extension .bmdic and are stored in the directory installDir/k2/common/
terdata/language.

The uni locale includes pre-defined language dictionaries for English only, in the
directory installDir/k2/common/terdata/en.

 words.txt is the name of a user-defined dictionary source file, containing terms to
be added to the dictionary. See “Creating a Dictionary Source File” on page 154 for a
description of its format and usage.

 -tmpdir tempDirName is an optional flag to specify the name of a temporary
directory for writing files while processing.

-compress is an optional flag to specify that the resulting language dictionary should
be compressed. If -compress is specified, the resulting memory usage will be smaller
and the speed for processing new words will be faster; however, the loading time will
be longer.

-minus is an optional flag to specify that the entries in words.txt should replace
(override) the equivalent entries in the language dictionary.

Both stemming and additional information—that is, both the ROOT and INFO portions
of the entry, as described in “Creating a Dictionary Source File” on page 154—are
overridden by using this option.

-predef_compounds compounds.txt specifies the name of a user-defined file that
contains predefined compound words to be added to the language dictionary. See
“Creating a Predefined Compounds File” on page 156 for a description of its format
and usage.
Verity Locale Configuration Guide 153

C Customizing Language Dictionaries
Custom Dictionaries for Non-Asian Languages
customDict.mdic specifies the name of the output compiled dictionary file, such as
german.mdic. The output dictionary contains terms from both the
language-standard (.bmdc) binary dictionary and the source (.txt) file inputs.

If you specify no output file, results are written to standard output. If you specify a
filename only, the file is written to the current directory. If you specify a path, it is
interpreted as relative to the current directory.

For use, the output dictionary needs to be stored in installDir/k2/common/
terdata/language, replacing the previous dictionary of the same name.

This is an example _mdic command:

_mdic -compile_user german.bmdic newwords.txt -tmpdir /usr/home/
tmp -compress -predef_compounds gcompounds.txt >german.mdic

Creating a Dictionary Source File

The _mdic tool operates on a source file that contains the terms you wish to add to a
pre-existing user dictionary. Create the source file as a plain-text file named words.txt,
where words can be any valid filename string.

You add each term to the file as a single text line. Lines should be separated by a single
newline character. You can add simple words, compound words, and predefined
compounds.

To add words to the dictionary, create a source file consisting of text lines with the
following format

KEY,ROOT:INFO

where

KEY is the inflected word to be analyzed.

ROOT is the root form (or stem) for the word specified by KEY. A comma (,) must be
present between KEY and ROOT.

INFO is an arbitrary string representing additional information for the analysis, such
as part-of-speech tags. A colon (:) must be present between ROOT and INFO.

Note The file does not need to be sorted. All lines not conforming to the correct
syntax will be ignored.
154 Verity Locale Configuration Guide

C Customizing Language Dictionaries
Custom Dictionaries for Non-Asian Languages
For example, three lines of the file might look like this:

booked,book:w
books,book:w
compilations,compilation:w

The first two lines specify that book is the root form of the words booked and books,
while the third line specifies that compilation is the root form of compilations. For
all three words, the information section uses w, which means that the intended use is
simple stemming only (associating a single stem with any inflected word).

For cases in which part-of-speech information is also desired, you can add part-of-speech
tags to the INFO string. For a list of the part-of-speech tags, refer to the Morphological
Dictionary for your language.

For instance, lines in a sample file might look as follows:

booked,book:Vpp
books,book:Npl
compilations,compilation:Npl

Note that multiple lines can have the same KEY, to account for multiple word meanings.
In the following file:

booked,book:Vpp
booked,book:Vpt
books,book:Npl
books,book:V3s
compilations,compilation:Npl

the word books can have both the verb form and the plural noun form, and the word
booked can be either the past tense or the past participial form of the verb.

The case used in the source file should be standard usage. In the previous examples, all
common English words are in all lower case. By contrast, in a language like German,
nouns would start with upper-case letters. For example:

Gesellschaften,Gesellschaft:w
trinkest,trinken:w
Verity Locale Configuration Guide 155

C Customizing Language Dictionaries
Custom Dictionaries for Non-Asian Languages
Creating a Predefined Compounds File

For Germanic languages, it may be useful to break up compound words into their
constituent parts, even if they are in the standard language dictionary and could be
stemmed as one word. This is useful if you want to allow users to search for both Krebs
(cancer) and Nieren (kidneys), in addition to Nierenkrebs (all of which are in a
standard German language dictionary).

The compounds for which you provide explicit decomposition information are called
predefined compounds. A large number of predefined compounds are included in
standard language dictionaries for Germanic languages. However, you may want to add
your own predefined compounds to your dictionary. In that case, create a compounds
source file (compounds.txt) containing lines like this:

hauptbahnhof,haupt:bahnhof

Each entry should be on its own line. On each line, write the compound form, followed
by a comma, followed by the broken up compound. The compound’s parts should be
separated by colons. Compounds of several parts are acceptable, like this:

ausfahrhubbegrenzungseinheit,ausfahr:hub:begrenzungs:einheit

Add to the source file any compounds that are already in the standard language
dictionary as single entries that otherwise would not be decomposed.

Note There is no need to add predefined compounds to this file if their parts are
already in the standard dictionary or in your words.txt file;
decomposition will happen automatically. One exception, however, is that
if a compound has one or more parts that are fewer than four characters
long, you must add them to both words.txt and to compounds.txt.
156 Verity Locale Configuration Guide

D
The Language ID Command Tool

Verity collections created with the multilanguage locale can include documents in more
than one language. During indexing, the Verity language-identification filter (see
“Configuring Language Identification” on page 106) detects the language of each
incoming document to ensure that its content is indexed according to the rules of that
language.

The language-identification command-line tool (langid) is a Verity tool that is built on
that language-detection capability. It detects the language and encoding of a document
that you provide. You can use it to identify the language and character set of a document
before you index it into a collection, or you can perform other language-dependent
processes based on its output.

This appendix includes the following sections:

Using the Language ID Tool

Example Output Files

Tuning the Command-Line Tool

Using the Language ID Tool

You can run the language-identification command-line tool against any plain-text, PDF,
HTML, XML, or WYSIWYG document supported by the indexer, including Word,
WordPerfect, Excel, PowerPoint, or RTF. The tool generates an output file that identifies
the character set and the predominant language or languages in the document.
157

D The Language ID Command Tool
Using the Language ID Tool
To help in evaluating multilanguage documents or documents whose language cannot be
determined with complete certainty, the tool applies a score to each identified language
and sorts the output that score. You can use the score to identify the predominant
language or the most probable language for the document.

The language ID tool by default uses only the first 2KB of a document to detect language
and encoding.

To run the Language ID tool, use the following command:

langid [-n num_langs] [@]input_file [-bif bif_file][output_file]
[-buffer_size detection_size] [-config config_file]
[-data_path language_data_path]

where

-n num_langs specifies the maximum number of languages to be considered. The
value must be a positive integer. (Default = 1.)

The -n option is optional. It tells how many pairs of language and score values to
identify in the output file for a document. For example, if the langlist.cfg file (see
“Editing the Language Configuration File” on page 162) identifies codes for 12
languages, but you only want to see the two highest scores in the output file, include
-n 2 in the command line.

Specifying -n does not mean you always get results for num_langs languages. The
tool only returns language identifications that score greater than zero. That may be
fewer than the number specified by -n.

input_file is the file whose language (or languages) is to be identified.

The @ prefix is optional. It indicates that input_file a list file, meaning that it
contains a list of documents whose languages are to be identified.

-bif bif_file specifies the name of a bulk insert file (BIF) that you want the results
written to.

The -bif option is optional. It instructs the language ID tool to construct a BIF
describing the results of the language analysis. Use this option if you want to use
mkvdk to index a collection directly from the results of running this tool. It saves you
the effort of manually constructing a BIF.

Using the -bif option when the language ID tool analyzes a list of documents in
different languages results in one BIF being generated for each identified language. For
example, if the file list includes both French and English documents, and if your -bif
option looks like

-bif test.bif
158 Verity Locale Configuration Guide

D The Language ID Command Tool
Using the Language ID Tool
the following two BIFs are generated:

test.bif.en
test.bif.fr.

The BIF format produced by this option contains the following elements for each
document:

For more information on bulk insert files and the BIF format, see the Verity
Command-Line Indexing Reference.

output_file is the name of the file that the language ID tool is to write its results to.

The output_file parameter is optional. If you do not use it, the command-line tool
writes its results to standard output. In either case, the results are in the following
format for each analyzed document:

Value Description

VDKVGWKEY: The Verity gateway key for the input file.

VLANG: The language detected in the file. Only the language with
the highest score appears in these results.

The value of this field is the ISO-standard language code,
as listed in “Supported Language Codes” on page 135.

CHARSET: The encoding detected in the file. For non-text documents,
it shows Unknown.

<<EOD>> End of data for the document.

(If the file specified in [@]<input file> is a list of
documents, this value separates the output data for each
document.)

Value Description

DOC_NAME The file name.

LANGUAGE The name for the language detected in the file.

CHARSET The encoding name detected in the file. For non-text
document, it will show Unknown.
Verity Locale Configuration Guide 159

D The Language ID Command Tool
Example Output Files
-buffer_size detection_size specifes how much of the text of a document to
analyze in making a language determination.

The -buffer_size option is optional. If you leave it off, the default value of 2KB
applies.

-config config_file specifes the location of the language configuration file to
use. For an explanation of this file, see “Editing the Language Configuration File” on
page 162.

The -config option is optional. If you leave it off, the default value (langlist.cfg,
located at productDir/common/langid) applies.

-data_path language_data_path specifies the location of the language data files.

The -data_path option is optional. If you leave it off, the default path productDir/
common/langid applies.

Example Output Files

The following output shows the results for a text document called francais.txt, when
the -n option is not used. The output shows results for the highest-scoring language only
(French). This document is suitable for indexing into a French collection.

DOC_NAME:/data/french/francais.txt
LANGUAGE: French
CHARSET: 1252

SCORE A numeric value-between 0.0 and 1.0 that is relative to the
other languages detected in the document. A value greater
than 0.0 indicates that the language ID tool has detected
the specified language in the document. The language with
the highest score is listed first.

. . . (Additional entries for LANGUAGE, CHARSET, and
SCORE, if more than one language was detected for this
document)

<<EOD>> End of data for the document.

(If the file specified in [@]<input file> is a list of documents,
this value separates the output data for each document.)

Value Description
160 Verity Locale Configuration Guide

D The Language ID Command Tool
Example Output Files
SCORE: 0.95
<<EOD>>

The following output shows results for the same document, but with-n set to 2. The
scores reveal that French is the predominant language, but some words in the document
are Portuguese.

DOC_NAME:/data/french/francais.txt
LANGUAGE: French
CHARSET: 1252
SCORE: 0.95
LANGUAGE: Portuguese
CHARSET: 1252
SCORE: 0.03
<<EOD>>

The following output shows the results for a document containing nearly equal amounts
of two languages (French and German). This document could be indexed into either a
French or German collection.

DOC_NAME:/data/swiss/francais_deutsch.txt
LANGUAGE: French
CHARSET: 1252e indexed
SCORE: 0.95
LANGUAGE: German
CHARSET: 1252
SCORE: 0.90
<<EOD>>

The following output shows the results when the input file is a list of documents. In this
case, <<EOD>> separates the information for each document.

DOC_NAME:/data/french/francais.txt
LANGUAGE: French
CHARSET: 1252
SCORE: 0.95
LANGUAGE: Portueguese
CHARSET: 1252
SCORE: 0.05
<<EOD>>
DOC_NAME:/data/german/deutsch.doc
LANGUAGE: German
CHARSET: Unknown
SCORE: 0.85
<<EOD>>
Verity Locale Configuration Guide 161

D The Language ID Command Tool
Tuning the Command-Line Tool
Tuning the Command-Line Tool

The language ID tool employs several strategies to detect the language of a document:

For documents that contain clear language information, such as a character set name
in a metatag of an HTML document, the command-line tool extracts it. However, at
times this encoding information may not be the same as the actual document
encoding.

If an HTML document has more than one such metatag regarding the character set or
language, only the first one is used.

For documents that lack clear information, the command-line tool relies on the
language data file and language configuration file to detect the language/encoding.
The command-line tool supports the detection of up to 90 languages. Since the
mechanism is configuration-data based, you can update the configuration data to tune
the command-line tool to give better results within a more narrow domain.

Editing the Language Configuration File

The language configuration file langlist.cfg specifies how many languages a
document is to be compared to for the purpose of identifying its language.

The file is located in the directory productDir/common/locale_name, where
productDir is the pathname of the directory (such as C:\Verity\K2) containing the
component of Verity you have installed, and locale_name is the name of the locale,
such as productDir/common/czech.

langlist.cfg lists the names of language-data files, which contain information used for
language identification. There is one language data file listed for each language/
character-set combination to be analyzed.

Language data files are located in the directory productDir/common/langid. A
language data file has a name of the form langID-encoding.lm, where langID is a
two-character language ID and encoding is a character-set designation. For example,
ar-1256.lm. is the language data file for Arabic documents using the Widows 1256
character set. Language IDs and character-set designations are listed in “Locales,
Character Sets and Languages” on page 127.

During the language-identification process, the language ID engine processes a portion
of the text of an incoming document with each language data file in turn, generating a
score for that document for each language.
162 Verity Locale Configuration Guide

D The Language ID Command Tool
Tuning the Command-Line Tool
The langid directory contains language data files that represent all language/encoding
pairs supported for language identification. langlist.cfg specifies the subset of those
files to use for language identification. The following table lists the content of the default
version of langlist.cfg.

Note When a document contains clear language information in its metadata, the
langlist.cfg file is not consulted and it doesn’t matter what languages
it specifies. For example, if Japanese (ja-sjis.lm) is not listed in
langlist.cfg but the document being analyzed (japanese.html)
contains the tag

<meta http-equiv="Content-Type" content="text/html;
charset=shift-jis">

the language ID tool will still report the following results:

DOC_NAME: japanese.html
LANGUAGE: ja
CHARSET: sjis
SCORE: 1.0

You can add or remove language data files from this list as needed. For detailed
instructions on editing langlist.cfg, see “Adjusting the Set of Languages to Identify”
on page 107.

ar-1256.lm
ar-iso-8859-6.lm
cs-1250.lm
cs-iso-8859-2.lm
da-1252.lm
de-1252.lm
el-1253.lm
en-1252.lm
es-1252.lm
fi-1252.lm
fr-1252.lm
it-1252.lm
ja-eucjp.lm
ja-sjis.lm
ko-ksc.lm
nl-1252.lm

nb-1252.lm
nn-1252.lm
pl-1250.lm
pl-iso-8859-2.lm
pt-1252.lm
ru-1251.lm
ru-855.lm
ru-866.lm
ru-iso-8859-5.lm
ru-koi8-r.lm
sv-1252.lm
zt-big5.lm
zh-gb.lm
ar-utf8.lm
cs-utf8.lm
da-utf8.lm

de-utf8.lm
es-utf8.lm
fi-utf8.lm
fr-utf8.lm
it-utf8.lm
ja-utf8.lm
ko-utf8.lm
nl-utf8.lm
nb-utf8.lm
nn-utf8.lm
pl-utf8.lm
pt-utf8.lm
sv-utf8.lm
zh-utf8.lm
Verity Locale Configuration Guide 163

D The Language ID Command Tool
Tuning the Command-Line Tool
IMPORTANT This configuration file is used for indexing and collection creation
as well as by the language ID tool. If you make changed to is for
running the language ID tool, those changes will also affect any
subsequent indexing through vspider or K2 Spider.
164 Verity Locale Configuration Guide

Glossary

accent-insensitive search A type of search that includes all accented variations of
a letter in the search term. In accent-insensitive search,
the search term si would find all instances of both si or
sí, for example. Conversely, in accent-sensitive search,
the search term si would find only instances of the
unaccented si.

Adobe PDF filter A document filter that processes PDF files for indexing.
Compare KeyView Filter.

auto-case A Verity search feature which, when enabled, conducts
case-insensitive search when the search term is
single-case (such as cat or CAT), and case-sensitive
search when the search term is mixed-case (such as Cat
or caT). With auto-case, the word cAt would be found
by searching for cat or CAT, but not by searching for Cat
or caT.

auto-detection A Verity capability in which a document is analyzed to
determine its character set and/or its language. Verity’s
auto-detection can accurately determine both the
character set and the native language of many
documents.

browse A command-line tool that displays the contents (field
names and values) of a collection’s document table.
165

Glossary
case-insensitive search A type of search in which the case of the letters in the
search term does not matter. In case-insensitive search,
the search term Cat would find all instances of cat or
CAT or Cat, for example. Conversely, in case-sensitive
search, the search term Cat would find only instances of
Cat.

character set A numeric encoding of the characters of a language.
Text in a given language can be stored and manipulated
using one or more character sets. Examples include
ASCII, Shift-JIS, and UTF-8.

collection A set of files and folders that stores information needed
to search and classify documents in a repository. A
collection stores the locations of all the indexed
documents, the locations of all the indexed words in
those documents, and metadata about the documents. It
does not store the documents themselves.

compound word A word created by the concatenation of several
independent words. Decomposition in indexing breaks
up a compound word into subwords and creates index
entries for each one.

current locale The Verity locale within whose context an indexing or
text-manipulation process is occurring. Every VDK
session has a current locale.

decomposition The process of breaking a compound word into its
constituent subwords for indexing. Searches for a
subword will then return all occurrences of the
compound word.

decomposition pattern In a user dictionary for the koreab, japanb, simpcb,
or tradcb locales, a numeric pattern that specifies
how a compound word is to be broken into subwords.

default installation locale The locale specified in the configuration file
verity.cfg. If defined, it is the default session locale.

default session language The language used as the default for queries during a
VDK session. Applies only when the session locale is
the multilanguage (uni) locale.

default session locale The locale assigned to a VDK session if no locale is
specified when the session is opened.
166 Verity Locale Configuration Guide

Glossary
delimiter A character used by the tokenizer to split document text
into searchable units. For many locales, white space and
punctuation are the most common delimiters.

didump A command-line tool that generates a list of the words
(tokens) in a collection’s word index.

document cluster An automatically generated grouping of similar
documents, based on document features.

document feature A noun or noun phrase that characterizes a topic or
concept in a document. Document features are
identified automatically during the process of feature
extraction.

document filter A driver-level plug-in software module that can read
documents in one or more specific formats (such as
PDF, XML, Microsoft Word). Document filters receive
documents from gateways, extract text data and field
information from them, and pass that information along
for indexing and storage in a collection.

document key A unique identifier assigned to each document indexed
in a collection. In the document table of a collection, it is
in the field VdkVgwKey.

document summary A concise description of the contents of a document. An
automatically generated document summary can be
based on document features or the document’s initial
text.

document table A table in a collection that specifies the location of each
indexed document. The document table also contains
all metadata (fields) associated with each document.

dynamic highlighting A method of highlighting the search term in a
document summary or in a retrieved document. In
dynamic highlighting, the application actually searches
through the results or the document to locate and
highlight the term. Dynamic highlighting is slower but
more accurate than static highlighting.

feature See document feature.
Verity Locale Configuration Guide 167

Glossary
feature extraction The process of identifying the important subjects and
concepts in a document by analyzing its nouns and
noun phrases. Feature extraction underlies the creation
of document clusters and document summaries.

foreign word In the uni locale, a word in any language other than the
overall language of its document.

full-width character In Japanese, a Katakana or romaji character that
occupies the same amount of horizontal space as a Kanji
character. In Japanese character sets, a full-width
character has a different character code from its
half-width equivalent.

gateway A driver-level plug-in software module that can retrieve
documents from a specific type of platform or through a
specific protocol. For example, Verity gateways exist for
UNIX and Windows file systems, Web servers, and
ODBC-accessible databases. During indexing, gateways
pass retrieved files to document filters for processing.

half-width character In Japanese, a Katakana or romaji character that
occupies half the horizontal space of a Kanji character.
In Japanese character sets, a half-width character has a
different character code from its full-width equivalent.

inflectional stemming A style of stemming in which the words of a stem are all
of the same part of speech (such as noun or verb).

internal character set The character set used internally by a locale. All
collection data written in that locale, and all BIFs and
style files used by that locale, must be in the locale’s
internal character set.

Internet-style query parser A free-text query parser that lets users conduct familiar
Web-style searches.

KeyView filter A document filter, based on Verity KeyView technology,
that is used during indexing to process many types of
files.

language-data file A file containing language-defining information. Used
by the language-identification filter and the
language-identification command-line tool.
168 Verity Locale Configuration Guide

Glossary
language ID A two-character (ISO 639) code that specifies an
individual language. Examples are en for English and
zh for simplified Chinese. Verity uses language ID for
specifying languages for the multilanguage locale and
the language-identification command-line tool.

language-identification
command-line tool

A Verity tool that opens a document and returns a
language assignment.

language-identification
filter

A document filter (flt_lang) used by the
multilanguage locale to assign a language to a
document before indexing.

locale 1. A geographic or political region whose residents
share the same language and customs. 2. Verity locale.

locale definition file A file (loc00.lng) in each locale’s directory that
controls the language-handling characteristics of the
locale.

locale directory The directory that holds the files belonging to a
particular locale. The name of a locale’s directory is the
name of the locale.

multilanguage locale A Verity locale (uni) that supports multiple languages
simultaneously. Compare single-language locale.

normalization An indexing feature in which a single version of a
character is used when alternate versions exist (such as
half-width and full-width kana in Japanese), and a
single spelling is used for a word that has alternate
spellings (such as color and colour in English). Users
searching a normalized collection for a word find all
words with either the common spelling or any of the
alternate spellings.

noun phrase A group of words (for example, due process or court of
law) that functions as a noun. Part-of-speech
identification during indexing can lead to the automatic
extraction of noun phrases, which can be used in the
automatic creation of document features, summaries,
and clusters.

okurigana In Japanese, pronunciation marks added to Kanji
words.
Verity Locale Configuration Guide 169

Glossary
partition A subdivision of a collection. Partitioning collections
improves scalability and searching performance.

part-of-speech
identification

During indexing, the assignment of the appropriate part
of speech (noun, verb, adjective, and so on) to each
token in the word index.

qp_inet.stp A locale-specific stop-word file used by the Verity
Internet-style query parser. It contains words that the
query parser will strip from query terms before
conducting a search. See also vdk30.stp.

session character set The character set used for input to and output from
VDK during a VDK session. Must be a character set
supported by the session locale.

session locale The locale used for all operations during a VDK session.

simple tokens A behavior, available for some locales, in which nearly
all symbols (in addition to white space and
punctuation) are defined as delimiters. In simple-tokens
behavior, words are broken down into smaller
searchable units, thus increasing the potential for search
hits.

single-language locale A Verity locale that supports only one language. Most
locales are single-language. Compare multilanguage
locale.

sorting order The order in which a locale sorts the characters of its
language. Verity locales sort characters in a manner that
facilitates accent-insensitive and case-insensitive search
and display.

Soundex search A type of search in which occurrences of the search term
plus any words with similar pronunciation are
returned. Verity supports Soundex search for the
English language only.

static highlighting A method of highlighting the search term in a
document summary or in a retrieved document. In
static highlighting, the application uses offsets in the
collection’s word index to calculate the positions of
terms to highlight. Static highlighting is faster but less
accurate than dynamic highlighting.
170 Verity Locale Configuration Guide

Glossary
stem See word stem.

stemmed search A type of search that locates all words that share the
same word stem. For example, a stemmed search for the
term house would find all occurrences of house, but also
all occurrences of houses, housed, and housing.

stemming The process of extracting a word’s root portion, or word
stem, during indexing. For example, house is the word
stem for houses, housed, and housing. Indexing of word
stems makes stemmed search possible.

stopword.ID Specifies stop words for a particular supported
language in the multilanguage locale. The ID variable is
the language ID.

stop word A search term that should be ignored. Verity supports
several types of stop-word lists, some used at indexing
time and others used at search time.

style.dft A collection style file that controls the contents of the
virtual document created during indexing.

style.fxs A collection style file that contains feature-extraction
stop words—words that should not appear in
document summaries and clusters. See also
vdk30.stp.

style.lex A collection style file that can control how tokenization
occurs during indexing. Use of style.lex is
discouraged; tokenization control is now available
through the locale definition file associated with each
locale.

style.prm A collection style file containing parameters that control
the generation of specialized indexes.

style.stp A collection style file that contains indexing stop
words—words that should not be included in the
collection’s word index.

style.ufl A collection style file that defines custom fields to be
included in the collection’s document table and
optionally specifies the generation of indexes for those
fields.
Verity Locale Configuration Guide 171

Glossary
style.uni A collection style file that controls the functioning of the
universal filter.

subword A constituent element of a compound word.

summary See document summary.

synonym search A type of search that returns all occurrences of the
search term and also any of its synonyms, as defined in
a thesaurus.

system default locale It is the default session locale if the default installation
locale is not defined.

thesaurus A dictionary of synonyms. Each Verity locale support
use of a thesaurus for searching. In a synonym search,
all occurrences of the search term and any of its
synonyms are returned.

token A searchable unit in a document. Tokens are typically
the individual words in a document, but they can also
be word stems, subwords, or any string fragments that
occur between delimiter characters.

tokenization The process by which the tokenizer converts a
document’s text into searchable units (such as words
and word stems). The tokens are then stored in a
collection’s word index.

typo search A type of search that corrects for minor misspellings in
the search terms. In a typo search, occurrences of the
search term and any words close to it in spelling are
returned.

Unicode A standard for 16-bit character sets. Unicode provides
character encoding for all major modern languages.
There are various implementations of portions of the
Unicode standard. The implementation used by the
Verity multilanguage locale is UTF-8.

VDK 1. Verity Developer's Kit, the API that enables OEM
developers to build Verity functionality into their
products. 2. The Verity search engine and other core
Verity technology.
172 Verity Locale Configuration Guide

Glossary
vdk30.stp A locale-specific file that contains feature-extraction
stop words—words that should not appear in
document summaries and clusters. See also
style.fxs.

Verity locale A driver-level plug-in software module that allows
Verity applications to operate on documents in a wide
variety of languages. Locales provide language-specific
tokenization, stemming, part-of-speech identification,
and thesaurus use. See also single-language locale,
multilanguage locale.

virtual document A pure text version of a document, constructed by a
document filter. The virtual document is converted by
the tokenizer into tokens to be stored in the word index.

wildcard search A type of search in which the search term contains
special symbols that represent multiple characters. For
example, a wildcard search with the term abc* returns
occurrences of all words that start with abc.

word index In a collection, a list of all words that appear in the
documents, plus the location of every instance of the
word.

word stem The root portion of a word. For example, house is the
word stem for houses, housed, and housing. Indexing of
word stems makes stemmed search possible.

XML filter A document filter that processes XML documents.

zone A named, searchable region of a document. Examples
are HTML tags such as H1 or BODY, an the values of
email and Usenet message fields such as TO or
SUBJECT.

zone filter A document filter that processes documents—such as
HTML, Usenet news, and email documents—that
contain zones. See also XML filter.
Verity Locale Configuration Guide 173

Glossary
174 Verity Locale Configuration Guide

Index

A
accent-insensitive search 52

availability per locale 66, 69, 71, 72, 74
adaptive ranking 34
Adobe PDF filter 57, 90
advanced European locales

messages for 122
application layer 34
archive documents 57
Asian locales 69, 120

accent-insensitive search 71
case-insensitive search 71
character-set detection 70
compound words 71
customizing tokenization 95

simple tokens 95
single-character 96

date formatting 71
language identification 70
language-specific search 71
logging 123
messages for 122
normalization 71
noun-phrase extraction 71, 96
number handling 71
part-of-speech identification 71
performance improvement 97
sorting order 70
Soundex search 71
stemming 70

disabling/enabling 96
stop words 71
symbol search 71
synonym search 71
tokenization 70
typo search 71
user dictionaries for 147
user dictionary for 97
wildcard search 71

auto-case 52, 79
auto-detection 38, 44

B
bin directory 60
bokmalx locale 67, 73
browser (client) 42
built-in locales 63
bulk insert file (BIF) 112, 135

C
<CASE> operator 52
case index 121
Casedex value 79
case-insensitive search 52

availability per locale 66, 69, 71, 72, 74
case-sensitive search 79
character sets 32

alternate names for 130
internal, for locale 60, 128
session 116
supported for source documents 130
supported, by locale 60, 128

character-set conversion 35, 38, 41, 42, 43, 140
character-set detection 35, 38, 44

per locale 65, 68, 70, 72, 74
charMapDriver structure member 116
CHARSET field 125
client locale 118
clusters 47, 50, 121
code-conversion command-line tool 140
Collection Wizard 112
175

Index
collections 35, 117
compound words 50

custom decomposition of 87, 147
custom decomposition of (Asian) 147
custom decomposition of (non-Asian) 94,

150
customizing decomposition of (Asian) 97
defined 50
disabling decomposition in (uni) 87, 93
support per locale 66, 68, 71, 72, 74

configuring locales 77
Create Collection dialog box 112
custom dictionaries 85, 87, 92, 93

D
danishx locale 67, 73
database-based documents 57
Date field type 120
date formatting 103, 120

availability per locale 67, 69, 71, 73, 75
DDA layer 35
debugging 123
decimal separator 104
decomposition

See also compound words
defined 50
user dictionary for 50

-decompound option 87, 94
default installation locale 61
default session language 62, 117, 125
default session locale 61, 102
delimiters 45

list of codes for 143
dictionaries 147
disk-space requirements 20
document clusters 47, 50, 121
document filters 35, 38
document retrieval 42
document summaries 35, 47, 50
document table 36, 38
176 Verity Locale Configuration Guide
dutchx locale 67, 73
dynamic highlighting 43

E
encoding 32, 33
english locale 63, 72, 102

accent-insensitive search 72
case-insensitive search 72
character-set detection 72
compound words 72
date formatting 73
features 72
language identification 72
language-specific search 72
normalization 72
noun-phrase extraction 72
number handling 72
part-of-speech identification 72
sorting order 72
Soundex search 73
stemming 72
stop words 73
symbol search 72
synonym search 72
tokenization 72
typo search 73
wildcard search 73

englishv locale
custom dictionary 92

englishv locale 63, 67
per-collection stemming, disabling/

enabling 91
user dictionary for 94

englishx locale 67, 73
as system default 61

error messages 122
expert location 34

Index
F
feature extraction 35, 50
finnishx locale 68, 74
fonts, international 20
formatting

dates 103, 120
decimal separator 104

frenchx locale 68, 74
fuzzy assist 121

G
gateways 35, 38, 118
germanx locale 67, 73
getCharSet method 117, 118
getLocale method 117, 118

H
Han script numbers 51
highlighting 43
HTML documents 57

I
indexing 36, 45

extra word variants in 121
for multilanguage locale 36
for single-language locales 37
performance 90

installing locales 19
adding locales or languages 28
disk-space requirements 20
JDK version requirement 20
license requirements 20
prerequisites 19
running the installer 22
uninstalling 29

internal character set (of locale) 60
internalLocale structure member 116
international fonts 20
Verity Locale Configuration Guide
italianx locale 67, 73

J
japanb locale 69
JDK version requirement 20

K
K2 architecture 33
K2 Dashboard, locale names in 68, 72, 74
k2spider_srv command-line tool 111
Katakana 49
KeyView filter 57, 90
knowledge-base assist 121
koreab locale 69

L
<lang/id> operator 51, 62, 136
langid directory 107
langlist.cfg file 107, 108, 163

minscore keyword 109
minsize keyword 109
unknown keyword 109

language 33
language codes 44, 51, 106, 108, 117

list of 135
language identification 35, 38, 44

availability per locale 65, 68, 70, 72, 74
configuring 106
disabling 110
enabling 89

language-identification filter 44, 89
language-specific search 40

availability per locale 66, 69, 71, 72, 74
legacy European locales 73

accent-insensitive search 74
case-insensitive search 74
character-set detection 74
compound words 74
date formatting 75
177

Index
delimiters, changing 98
features 74
language identification 74
language-specific search 74
list of 73
messages for 122
normalization 74
noun-phrase extraction 74
number handling 74
part-of-speech identification 74
searchable symbols 99
sorting order 74
Soundex search 75
stemming 74
stop words 75
symbol search 75
synonym search 75
tokenization 74
typo search 75
wildcard search 75

license key entry 25
license requirements for locales 20, 62
limitations 56
loc00.lng file 60, 88, 94, 102, 103

Asian locales 95, 96
character set defined in 60
multilanguage locale 84, 85, 87, 92, 93

locale configuration file. See uni.cfg file
locale definition file. See loc00.lng file
locale directory 59
locale_name metavariable 60
locales 59

See also multilanguage locale,
single-language locales, Asian locales,
legacy European locales

built-in 63
configuring 77
default installation locale 61
default session locale 61, 102
defined 35
178 Verity Locale Configuration Guide
general features of 59
installation location 59
installing 19
internal character set of 60
license requirements for 20
licensing 62
list of 128
logging activity of 123
names in K2 Dashboard 68, 72, 74
performance issues 90, 97, 121
session 61, 116
single-language 37, 41
supported character sets for 60
system default locale 61

localeTok structure member 119
localization of operating system 20
logging 123

M
messages 122
mkpi command-line tool 111
mkvdk command-line tool 113
multilanguage locale 35, 36, 39, 63, 64, 89, 120

accent-insensitive search 66
and PDF documents 90
as system default 61
case-insensitive search 66
character-set detection 65
compound words 66
custom dictionaries 87, 93
custom dictionary 85
customizing noun extraction 87, 93
customizing tokenization 80, 91

global 81
per-language 83
single-character 84

date formatting 67
default session language 62, 117
disabling word decomposition 87, 93
enabling language identification 89

Index
foreign words in 67
indexing performance 90
language identification 65
language support 64
language-specific search 66
logging 123
messages for 122
multistemming, disabling/enabling 84
normalization 66
noun-phrase extraction 66, 85, 92
nouns, marking all words as 86
number handling 66
part-of-speech identification 66, 85, 92
sorting order 65
Soundex search 66
stemming 65
stop words 67
symbol search 66
synonym search 66
thesaurus setup 88
tokenization 65
typo search 66
user dictionary 87
user dictionary for Asian languages 147
user dictionary for non-Asian languages

150
UTF-8 implications 120
wildcard search 66

multistemming 78, 84

N
-no_stems options 96
NoAutoCase 88, 94, 102
-nomstem option 84
-nopos option 85, 92
normalization 49

availability per locale 66, 68, 71, 72, 74
not_allowed_leading_char 82
not_allowed_trailing_char 82
noun extraction
Verity Locale Configuration Guide
customizing 87, 93
noun-phrase extraction 50

availability per locale 66, 68, 71, 72, 74
enabling/disabling

Asian locales 96
multilanguage locale 85, 92

marking all words as nouns 86
number handling 51

features per locale 66, 68, 71, 72, 74
nynorskx locale 73

O
okurigana 49
operating systems

localization of 20
supported 19

operators 122
os_platform metavariable 60

P
parametric indexes 34, 117
parametric search 118
part-of-speech identification 50

See also noun-phrase extraction
availability per locale 66, 68, 71, 72, 74
enabling/disabling

multilanguage locale 85, 92
PDF documents 57, 90
performance 90
portugx locale 67, 73
prerequisites for installation 19
productDir metavariable 60
profile nets 34

Q
qp_inet.stp file 55
query. See search queries
query parsers 119
179

Index
R
rck2 command-line tool 62
rcvdk command-line tool 62
Recommendation Engine indexes 34
repositories 32

S
search queries 41, 51
search results 42

sorting by locale 121
searching 39, 51, 79

accent-insensitive 52
case-insensitive 52
case-sensitive 79
for symbols 53
in multilanguage locale 39
in single-language locales 41
language-specific 40
parametric 118
Soundex 54
synonym 53, 79, 89, 104
typo 54

session character set 116
session locale 61, 116
setCharSet method 118
setLocale method 118
simpcb locale 70
simple tokens 46

enabling and disabling, Asian locales 95
enabling and disabling, uni locale 82
enabling or disabling, uni locale 83

-simple_tokens option 95
single_char statement 84
-single_character option 96
single-character tokenization 84, 96
single-language European locales. See legacy

European Locales
single-language locales 37, 41

accent-insensitive search 69
180 Verity Locale Configuration Guide
case-insensitive search 69
character-set detection 68
compound words 68
date formatting 69
features 68
language identification 68
language-specific search 69
list of 67
normalization 68
noun-phrase extraction 68
number handling 68
part-of-speech identification 68
sorting order 68
Soundex search 69
stemming 68
stop words 69
symbol search 69
synonym search 69
tokenization 68
typo search 69
wildcard search 69

sorting order 45
per locale 65, 68, 70, 72, 74

<SOUNDEX> operator 54
Soundex index 121
Soundex search 54

per locale 66, 69, 71, 73, 75
source documents 32

limitations in handling 56
spanishx locale 67, 74
standard diagnostic logging 123
static highlighting 43
stem index 39, 48, 121
Stemdex value 91, 101
stemming 39, 47

capability per locale 65, 68, 70, 72, 74
customizing 85, 92
enabling/disabling

Asian locales 96
per collection 101

Index
for multilanguage locale 48
for single-language locales 48
inflectional 47
per-collection 91

stop words 54, 105
availability per locale 67, 69, 71, 73, 75

style.fxs file 55
style.lex file 60
style.prm file 79, 91, 101
style.stp file 55
style.tde file 113
style.uni file 90, 110, 113
summaries 47, 50
swedishx locale 68, 74
symbol search 53

availability per locale 66, 69, 71, 72, 75
symbols, list of codes for 143
synonym search 53, 79, 89, 104

availability per locale 66, 69, 71, 72, 75
system default locale 61

T
<THESAURUS> operator 53
thesaurus 79, 104

for multilanguage locale 88
thesaurus search 53
tokenization 45, 119

customizing, Asian locales 95
simple tokens 95
single-character 96

customizing, multilanguage locale 80, 91
global 81
per-language 83
single-character 84

example 99
features per locale 65, 68, 70, 72, 74

tokenizer 39
tokens 45
topic sets 123
tradcb locale 70
Verity Locale Configuration Guide
treat_as_alphabetic 82
treat_as_punctuation 81
troubleshooting language issues 124
<TYPO> operator 54
typo search 54

availability per locale 66, 69, 71, 73, 75

U
uni locale. See multilanguage locale
uni.cfg file 60, 86, 91

advanced European locales 91
multilanguage locale 81, 83, 84, 86

uni/id locale specifier 62, 117, 136
uninstalling locales 29
user dictionaries 50, 87, 147

Asian languages 97, 147
non-Asian languages 94, 150

UTF-8 character set 120

V
V18NConvert function 118
VDK Assists suite 121
VDK layer 35
vdk30.rsd file 122
vdk30.rst file 122
vdk30.stp file 56, 105
vdk30.syd file 80, 105
VdkQParserNew function 119
VdkQParserNewArgRec structure 119
VdkSessionNew function 116
VdkSessionNewArgRec structure 116
VdkSessionSpawn function 116
VdkSessionSpawnArgRec structure 116
VdkTokenWordInfoFlag_Noise flag 56
Verity Query Language (VQL) 51
verity.cfg file 61, 103
VgwSessionNewArgRec structure 118
virtual documents 35, 38
VLANG field 44, 125, 135
181

Index
vspider command-line tool 111

W
wildcard search

availability per locale 66, 69, 71, 73, 75
word index 36, 39, 48, 121
word stems 47

X
XML documents 57

Z
zone index 121
zone-attribute index 121
182 Verity Locale Configuration Guide

	Verity Locale Configuration Guide
	Contents
	Figures, Tables, and Listings
	Preface
	Using This Book
	Version
	Organization of This Book
	Stylistic Conventions

	Related Documentation
	Verity Technical Support

	Installing Verity Locales
	Prerequisites
	Supported Operating Systems
	Operating-System Localization
	Verity Platform Installation
	Installer Requirements
	International Fonts

	License Requirements
	Multilanguage Locale and Single-Language Locales
	Legacy European Locales

	Running the Locales Installer
	Installing Additional Locales or Languages
	Uninstalling Locales

	Language Concepts
	Language and Encoding in Documents
	K2 Internationalization Architecture
	Architecture Overview
	Language and Character Set in Indexing
	Language and Character Set in Searching
	Language and Character Set in Document Retrieval
	Character-Set Detection
	Language Identification

	Language-Related Indexing Features
	Sorting Order
	Tokenization and Word Delimiters
	Stemming
	Normalization
	Decomposition of Compound Words
	Part-of-Speech Identification
	Number Handling

	Language-Related Search Features
	Locale and Language in Search Queries
	Case-Insensitive Search
	Accent-Insensitive Search
	Symbol Search
	Synonym Search
	Soundex Search
	Typo Search
	Stop Words

	Limitations in Handling Source Documents

	Verity Locales
	Locale Basics
	Installed Location
	Locale Definition File and Locale Configuration File
	Internal Character Set and Supported Character Sets
	Default Locales and the Session Locale
	Default Session Language
	Installation and Licensing
	Built-In Locales
	Locale Categories

	The Multilanguage Locale
	Advanced European Locales
	Asian (CJK) Locales
	The english Locale
	Legacy European Locales

	Configuring Locales
	Making Locale-Specific Settings
	Tokenization
	Stemming
	Noun- and Noun-Phrase Extraction
	Word Decomposition
	Search Characteristics
	Thesauruses for Synonym Search

	Configuring the Multilanguage Locale
	Tokenization
	Stemming
	Noun- and Noun-Phrase Extraction
	Disabling Word Decomposition
	Customizing Word Decomposition
	Search Characteristics
	Thesaurus Setup for uni
	Special Setup Issues

	Configuring Advanced European Locales
	Tokenization
	Stemming
	Noun- and Noun-Phrase Extraction
	Disabling Word Decomposition
	Customizing Word Decomposition
	Search Characteristics

	Configuring Asian Locales
	Tokenization
	Stemming
	Noun- and noun-Phrase Extraction
	Customizing Word Decomposition
	Improving Performance

	Configuring Legacy European Locales
	Tokenization
	Per-Collection Stemming
	Per-Collection Noun- and Noun-Phrase Extraction
	Changing Search Characteristics

	Making Other Language-Related Settings
	Redefining the Default Session Locale
	Changing Formatting
	Setting Up Synonym Search For a Locale
	Creating a Stop-Word File
	Configuring Language Identification
	Specifying Locale and Character Set in Tools

	Locale Issues for Applications
	Language Concerns in Verity Applications
	Runtime Concerns
	Locale and Character Set Concerns
	Language-Specific Searching
	Localization Concerns
	Levels of Feature Support in the Multilanguage Locale

	Localized Error Messages and Operators
	Messages and Operators for a Locale
	Translating Topic Sets

	Testing and Troubleshooting
	Logging and Debugging
	Troubleshooting Language Problems

	Locales, Character Sets and Languages
	Verity Locales and Character Sets
	Supported Source-Document Character Sets
	Supported Language Codes
	Code Conversion Command-Line Tool
	Running codeconv
	Example
	Supported Character Sets
	Limitations

	Tokenization Delimiters
	Customizing Language Dictionaries
	Custom Dictionaries for Asian Languages
	Creating the User Dictionary
	Installing the User Dictionary (Multilanguage Locale)
	Installing the User Dictionary (Asian Locales)
	Using Multiple User Dictionaries

	Custom Dictionaries for Non-Asian Languages
	How to Modify a Language Dictionary
	_mdic Command-Line Syntax
	Creating a Dictionary Source File
	Creating a Predefined Compounds File

	The Language ID Command Tool
	Using the Language ID Tool
	Example Output Files
	Tuning the Command-Line Tool
	Editing the Language Configuration File

	Glossary
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

