
August 19, 2005
Part Number DM0677

Verity, Incorporated
894 Ross Drive
Sunnyvale, California 94089
(408) 541-1500

Verity Benelux BV
Coltbaan 31
3439 NG Nieuwegein
The Netherlands

Verity K2
Getting Started Guide

Version 6.0

Copyright 2005 Verity, Inc. All rights reserved. No part of this publication may be reproduced,
transmitted, stored in a retrieval system, nor translated into any human or computer language, in any
form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise,
without the prior written permission of the copyright owner, Verity, Inc., 894 Ross Drive, Sunnyvale,
California 94089. The copyrighted software that accompanies this manual is licensed to the End User
for use only in strict accordance with the End User License Agreement, which the Licensee should read
carefully before commencing use of the software.

Verity®, Ultraseek®, TOPIC®, KeyView®, and Knowledge Organizer® are registered trademarks of
Verity, Inc. in the United States and other countries. The Verity logo, Verity Portal One™, and Verity®
Profiler™ are trademarks of Verity, Inc.

Portions of this product Copyright 2003, Sun Microsystems, Inc. All rights reserved. Use is subject to
license terms. Sun, Sun Microsystems, the Sun logo, Solaris, Java, the Java Coffee Cup logo, J2SE, and
all trademarks and logos based on Java are trademarks or registered trademarks of Sun Microsystems,
Inc. in the U.S. and other countries.

Xerces XML Parser Copyright 1999-2000 The Apache Software Foundation. All rights reserved.

Microsoft is a registered trademark, and MS-DOS, Windows, Windows 95, Windows NT, and other
Microsoft products referenced herein are trademarks of Microsoft Corporation.

IBM is a registered trademark of International Business Machines Corporation.

WordNet 1.7 Copyright © 2001 by Princeton University. All rights reserved

Includes Adobe® PDF. Adobe is a trademark of Adobe Systems Incorporated.

Portions of this product use Teragram Software.

Includes IBM's XML Parser for C++ Edition.

Includes software developed by the Apache Software Foundation (http://www.apache.org/).

This product may incorporate intellectual property owned by Microsoft Corporation. The terms and
conditions upon which Microsoft is licensing such intellectual property may be found at

http://msdn.microsoft.com/library/en-us/odcXMLRef/html/odcXMLRefLegalNotice.asp?frame=true

All other trademarks are the property of their respective owners.

Notice to Government End Users

If this product is acquired under the terms of a DoD contract: Use, duplication, or disclosure by the
Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of 252.227-7013. Civilian
agency contract: Use, reproduction or disclosure is subject to 52.227-19 (a) through (d) and restrictions
set forth in the accompanying end user agreement. Unpublished-rights reserved under the copyright
laws of the United States. Verity, Inc., 894 Ross Drive Sunnyvale, California 94089.

7/28/05

Copyright Information

http://www.apache.org/
http://msdn.microsoft.com/library/en-us/odcXMLRef/html/odcXMLRefLegalNotice.asp?frame=true

Contents

Figures, Tables, and Listings.. 9

Preface .. 11

Using This Book ... 11

Version ... 12
Organization of This Book .. 12
Stylistic Conventions.. 12

Verity K2 Documentation... 14

Verity Technical Support .. 16

1 Introducing Verity K2 .. 17

Intellectual Capital Management With Verity K2... 18

The Intelligent Content Services Architecture... 18

Multiple Primary Storage Formats .. 21
Secure Access Through Gateways ... 21
Information-Extraction Services... 22
The Intelligent Content Engine... 24
Flexible Access Control.. 26
Information-Access Services ... 26
Multilanguage APIs and Web Services ... 29

K2 Software Architecture ... 29

Client Layer ... 30
K2 Layer ... 30
VDK Layer ... 31
DDA Layer... 31

Deployment Architecture ... 32

Administration Console.. 33

Business Console.. 34
3

Contents
2 Setting Up a Verity K2 Installation... 37

Identifying Information Sources .. 38

Information Repositories ... 38
Verity Gateways... 39
Verity Document Filters.. 40

Data Sources .. 40
Sources for Collections.. 40
Sources for Parametric Indexes.. 41
Sources for Entity Extraction.. 41
Sources for Recommendations... 41

Designing a K2 Server/K2 Broker Deployment .. 42

Choose Which K2 Services to Use .. 42
Flexible Configuration.. 43
Multiple Brokers and Servers.. 43
Parallel Querying .. 44
Mirroring.. 45
Multi-Domain Search Groups ... 46

Installing Verity K2 .. 47

Multiplatform Installer... 48
Installed K2 Components .. 49
Other Installation Programs .. 50

Setting Up Security .. 51

K2 Ticket Server .. 51
Gateway Security .. 52
Collection-Level Security ... 52

Obtaining Access to Secure Collections.. 53
Anonymous Access ... 53

Document-Level Security .. 53
No Results Filtering... 54
Results-List Filtering ... 54
Access-Control Lists .. 54

Single Sign-On... 55
Internationalizing a K2 Installation ... 55

Locales .. 55
Multilanguage Locale.. 56
Single-Language Locales .. 57
4 Verity K2 Getting Started Guide

Contents
Language Identification... 58
Character-Set Detection and Conversion.. 58

Administering a K2 Installation .. 58

Administration-Server Architecture .. 59
Administration Through the K2 Dashboard .. 60

Using the K2 Dashboard .. 61
Using the StyleSet Editor.. 63

Administration With Other Tools .. 65
Using rcadmin.. 65
Using Indexing Tools.. 65
Manually Editing Style Files.. 66

Managing Information With the Business Console .. 66

Modules ... 66
User Types and user Roles .. 69
Using the Business Console .. 69

3 Indexing and Classifying Information ... 71

Building Collections .. 71

The Indexing Process ... 72
K2 Spider.. 74

Distributed Indexing... 75
Continuous Indexing .. 75
Customizing K2 Spider... 75

Direct Indexing ... 76
Creating Topic Sets... 76
Setting Up Parametric Search ... 77

Parametric Indexes.. 78
Extracting Document Features ... 80

Extracting Entities.. 81

Classifying Information .. 84

About Taxonomies ... 84
Building the Taxonomy.. 85
Creating Category Definitions... 86
Populating the Taxonomy.. 87
Using the Taxonomy... 87

About Relational Taxonomies .. 87
Verity K2 Getting Started Guide 5

Contents
Creating Profile Nets .. 89
Providing Recommendations ... 91

The Recommendation Engine ... 91
Tensor Matching Engine... 92
Entity Profiles ... 93
Transactions.. 93

Setting Up Recommendation Indexes.. 94

4 Delivering Information to Users .. 97

Providing Search Capability... 98

VQL and Search Operators.. 98
Query Parsers .. 99
Implementing Search.. 99

Simple Search ... 100
Stemmed Search... 100
Typo Search .. 100
Synonym Search... 100
Soundex Search .. 101
Wildcard Search ... 101
Language-Specific Search ... 101
Accent-Insensitive Search... 102

Using Stop-Word Lists ... 102
Providing Topic Search .. 102
Using Thesauruses.. 103

Presenting Search Results ... 103

Clustering Results ... 103
Returning Document Summaries ... 104
Providing Spelling Suggestion.. 105

Retrieving and Displaying Documents... 105

Implementing Parametric Search... 106

Parametric Selection ... 107
Relational Taxonomies ... 108

Implementing Profiling ... 110

Implementing Recommendations.. 110
6 Verity K2 Getting Started Guide

Contents
5 Developing Your Application ... 115

Developing K2 Applications .. 115

Using the Component Framework .. 116
Using Java-Language K2 APIs.. 116
Using C-Language K2 APIs .. 118
.NET Development... 119

Developing VDK Applications .. 119

Developing Driver Modules .. 121

A Contacting Verity Technical Support .. 123

Opening a Technical Support Incident (TSI) ... 123

Product Support Hints .. 124

Glossary.. 127

Index.. 139
Verity K2 Getting Started Guide 7

Contents
8 Verity K2 Getting Started Guide

Figures, Tables, and Listings

Figure 1-1 Components of Intelligent Content Services.. 19
Figure 1-2 Intelligent Content Services architecture.. 20
Figure 1-3 Layers of K2 architecture .. 30
Figure 1-4 K2 Distributed Architecture ... 32
Figure 1-5 K2 Dashboard Home page.. 34
Figure 1-6 Business Console Summary page.. 35

Figure 2-1 Examples of information repositories... 38
Figure 2-2 Parallel querying, mirroring, and failover in a large deployment................ 45
Figure 2-3 A distributed search group that spans two domains 47
Figure 2-4 Select Custom or Full Mode dialog from the K2 installer.............................. 48
Figure 2-5 K2 Ticket Server ... 51
Figure 2-6 Master Administration Server.. 59
Figure 2-7 K2 Dashboard home page... 61
Figure 2-8 Action links on the K2_Server_1 detail page ... 62
Figure 2-9 View Logs page .. 63
Figure 2-10 Create Styleset page (in K2 Dashboard) ... 64
Figure 2-11 Collection Fields Definition page (in StyleSet Editor) 64
Figure 2-12 Business Console Summary window.. 67
Figure 2-13 Taxonomy module interface... 68
Figure 2-14 Configuring a component with the application module................................ 70

Figure 3-1 Indexing documents into a collection ... 73
Figure 3-2 Using K2 Spider for indexing... 74
Figure 3-3 A “parametric cube”.. 79
Figure 3-4 Verity Extractor (shaded) used during indexing .. 82
Table 3-1 Some common entities .. 83
Figure 3-5 A taxonomy of automobile models ... 84
9

Figures, Tables, and Listings
Figure 3-6 A taxonomy of automobile manufacturing plants .. 88
Figure 3-7 Using the K2 Profiler for email routing... 90
Figure 3-8 Tensor space example .. 92

Figure 4-1 Pure parametric selection.. 107
Figure 4-2 Text search combined with parametric selection .. 108
Figure 4-3 Displaying taxonomies for user browsing.. 109
Figure 4-4 Taxonomy browse combined with text search and parametric selection .. 109
Figure 4-5 Ranking, recommendation, and community.. 111
Figure 4-6 Document similarity and expert location ... 112
10 Verity K2 Getting Started Guide

Preface

This book is for readers who want to learn about Verity K2 technology. It explains Verity’s
approach to searching, classifying, and personalizing large bodies of enterprise
information, for the purpose of maximizing return on intellectual capital investment.

This preface contains the following sections:

Using This Book

Verity K2 Documentation

Verity Technical Support

Using This Book

Welcome to the Verity K2 Getting Started Guide. This document introduces K2 services and
K2 applications. With Verity K2, enterprise employees can discover, organize, and
connect with the information critical to their jobs.

This book covers all areas of K2. It should be the starting point for understanding how to
use, manage, and develop K2 applications.
11

Preface
Using This Book
Version

The information in this book is current as of K2 version 6.0. The content was last
modified August 19, 2005. Corrections or updates to this information may be available
through the Verity Customer Support site; see “Verity Technical Support” on page 16.

Organization of This Book

This book includes the following chapters and appendixes:

Chapter 1, “Introducing Verity K2.” Describes the capabilities of K2 and outlines
some of the many benefits that this technology offers to your organization.

Chapter 2, “Setting Up a Verity K2 Installation.” Explains the steps to design and set
up an installation of K2 in your enterprise.

Chapter 3, “Indexing and Classifying Information.” Describes how to implement the
powerful information-access and analysis capabilities in a K2 installation.

Chapter 4, “Delivering Information to Users.” Describes how to implement the
powerful search and information display capabilities of K2 in your application.

Chapter 5, “Developing Your Application.” Describes how to create and use a K2
application to search documents, browse classified information, and connect to
communities of experts.

Appendix A, “Contacting Verity Technical Support.” Describes how to get help with
your questions about Verity products and features.

Glossary. Defines Verity terms and related industry terminology.

Stylistic Conventions

The following stylistic conventions are used in this book.
12 Verity K2 Getting Started Guide

Preface
Using This Book
The following command-line syntax conventions are used in this book.

Convention Usage

Plain Narrative text.

Bold User-interface elements in narrative text:

Click Cancel to halt the operation.

Italics Book titles and new terms:

For more information, see the Verity K2 Getting Started Guide.

An index is a Verity collection, parametric index, or
recommendation index.

Monospace File names, paths, and code:

The name.ext file is installed in:

C:\Verity\Data\

Monospace italic Replaceable strings in file paths and code:

user username

Monospace bold Data types and required user input:

SrvConnect A connection handle.

In the User Interface text box, type user1.

Convention Usage

[optional] Brackets describe optional syntax, as in [-create] to specify a
non-required option.

| Bars indicate “either | or” choices, as in

[option1] | [option2]

In this example, you must choose between option1 and option2.

{ required } Braces describe required syntax in which you have a choice and
that at least one choice is required, as in

{ [option1] [option2] }

In this example, you must choose option1, option2, or both
options.
Verity K2 Getting Started Guide 13

Preface
Verity K2 Documentation
Use of punctuation—such as single and double quotes, commas, periods—indicates
actual syntax; it is not part of the syntax definition.

Verity K2 Documentation

Verity K2 offers an extensive set of interrelated technologies, tools, and programming
interfaces. To support these far-reaching capabilities, Verity provides the documents
listed in Table PR-1, in two broad categories: administrator and knowledge worker
documents and developer documents.

required Absence of braces or brackets indicates required syntax in which
there is no choice; you must enter the required syntax element.

variable Italics specify variables to be replaced by actual values, as in

-merge filename1

... Ellipses indicate repetition of the same pattern, as in

-merge filename1, filename2 [, filename3 ...
]

where the ellipses specify , filename4, and so on.

Table PR-1 K2 documentation

For administrators and knowledge workers For developers

Getting started: Getting Started:

Verity K2 Getting Started Guide Verity Developer Getting Started Guide

Installing and configuring K2: Administration:

Verity K2 Installation and Setup Guide

Verity K2 Migration Guide

Verity Locale Configuration Guide

Verity K2 Administration Prog. Guide

(VAdministration JavaDoc)

Convention Usage
14 Verity K2 Getting Started Guide

Preface
Verity K2 Documentation
Indexing and managing collections: Search applications:

Verity K2 Dashboard Admin. Guide

Verity Collection Reference

Verity Command-Line Indexing Ref.

Gateway Guides:

Verity K2 Lotus Notes Gateway Guide

Verity K2 ODBC Gateway Guide

Verity K2 Documentum Gateway Guide

Verity K2 Exchange Gateway Guide

 Verity K2 Client Programming Guide

(VSearch JavaDoc)

Verity K2 Viewing Service Prog. Guide

(VView JavaDoc)

Verity Federator Programming Guide

Verity Query Language and Topic Guide

Verity Web Services Guide

Classifying and personalizing information: Indexing and classification apps (K2 Layer):

Verity Intelligent Classification Guide

Verity Business Console Guide

Verity K2 Recommendation Eng. Guide

Verity K2 Parametric Developer Guide

Verity K2 Profiler Programming Guide

Verity Query Lang. and Topic Guide

Verity K2 Collection-Indexing Prog. Guide

(VIndex JavaDoc)

Verity K2 Parametric Developer Guide

(VParametric JavaDoc)

Verity Organization Developer’s Kit Guide

Verity K2 Profiler Programming Guide

Indexing and classification apps (VDK Layer):

Verity Organization Developer’s Kit Guide

Verity Developer’s Kit Prog. Reference

Verity Extractor Programming Guide

Verity Profiler Programming Guide

(Profiler JavaDoc)

DDA Layer Programming:

Verity Gateway Developer’s Kit Reference

OEM Deployment:

Verity OEM Deployment Guide

Table PR-1 K2 documentation (continued)

For administrators and knowledge workers For developers
Verity K2 Getting Started Guide 15

Preface
Verity Technical Support
Verity Technical Support

Verity Technical Support exists to provide you with prompt and accurate resolutions to
difficulties relating to using Verity software products. You can contact Technical Support
using any of the following methods:

Telephone: (403) 294-1107

Fax: (403) 750-4100

Email: tech-support@verity.com

Web: http://www.verity.com

Product documentation, release notes, and document updates are available on the Verity
Customer Support Site, at

https://customers.verity.com

It is recommended that you periodically check the Customer Support site for the
existence of updates to this and other Verity product documents.

Access to the contents of the Customer Support site requires a user name and password.
To obtain a user name and password, follow the signup instructions on the Customer
Support site home page. You will need to supply your Verity entity ID and Verity license
key.
16 Verity K2 Getting Started Guide

http://www.verity.com
https://customers.verity.com

1
Introducing Verity K2

Information is the key to business success, but you must be able to find the right
information before you can act on it. Verity’s K2 infrastructure enables enterprise
employees to discover, organize, and connect with the information critical to their job
success.

Verity K2 is designed for building knowledge-management applications and business
portals that provide customized access to corporate information and leverage
investments in intellectual capital. K2 delivers these capabilities with powerful features
such as full-text search, parametric selection, intelligent classification, adaptive ranking,
and recommendations.

This chapter contains the following sections:

Intellectual Capital Management With Verity K2

The Intelligent Content Services Architecture

K2 Software Architecture

Deployment Architecture

Administration Console

Business Console
17

1 Introducing Verity K2
Intellectual Capital Management With Verity K2
Intellectual Capital Management With Verity K2

Enterprises of all sizes throughout the world are facing the need to better manage their
information. The intellectual capital of an organization—its stored information and data,
along with the knowledge and experience of its employees—is now recognized as a
critically important resource that has traditionally been difficult to locate and exploit.

Studies have shown that knowledge workers today spend approximately 35% of their
productive time searching for information online, yet nearly 40% of corporate users
cannot readily find the information they need to do their jobs. Employees who waste
precious time searching for information can cost a large corporation hundreds of millions
of dollars annually.

Intellectual capital management addresses these problems. It combines human knowledge
and experience with the information and data in an enterprise for the purpose of
exploiting greater value. It allows people in your organization to more effectively locate
information that they know exists but aren’t sure where, and also uncover unknown
information assets. With that improved access they can respond quickly and accurately to
questions, and they can better evaluate content to make better decisions.

Verity K2 contains technologies that help your users succeed in these tasks. Together, the
technologies are called intelligent content services. The services include search,
classification, recommendation, profiling, entity extraction, and other activities that can
maximize the usefulness of your organization’s information.

Verity is the recognized leader in intellectual capital management software. The open
design of Verity K2 and its support for universal standards ensures straightforward
integration with your existing applications. Its built-in multilanguage capabilities give
international access to information. Its scalable architecture gives your business
unlimited growth potential and exceptional fault tolerance while maintaining full
security. This means users anywhere in your organization, anywhere in the world, can
make the most of your information assets.

The Intelligent Content Services Architecture

K2 is an implementation of Verity Intelligent Content Services, an integrated set of
technologies that locate, extract, and analyze information to aid decision making. When
K2 is installed in a production environment and applications have been developed to use
its capabilities, the services fit into an overall architecture like that shown in Figure 1-1.
18 Verity K2 Getting Started Guide

1 Introducing Verity K2
The Intelligent Content Services Architecture
Figure 1-1 Components of Intelligent Content Services

A user accesses an application that makes use of one or more Verity information-access
services. These services allow the application to assist the user in searching for or
browsing through information, thus helping the user to learn facts, form opinions, or
make decisions or purchases. A search interface is one example of an application UI built
on information-access services.

The information presented to the user is processed through the Verity engine, a set of core
libraries that manage not only the information access services but also the information
extraction services, which locate raw information in its primary storage form, then process
it into a variety of indexed, organized, and classified states that the information-access
services can use. A K2 collection is one possible result of applying information extraction
to primary data.

Figure 1-2 expands the picture of the Intelligent Content Services architecture to show
some specific examples of supported application types, information-access services,
information-extraction services, and primary storage types. This figure is not exhaustive;
K2 includes services not shown here.
Verity K2 Getting Started Guide 19

1 Introducing Verity K2
The Intelligent Content Services Architecture
Figure 1-2 Intelligent Content Services architecture

The rest of this section explains the K2 architecture briefly, from the bottom up.
20 Verity K2 Getting Started Guide

1 Introducing Verity K2
The Intelligent Content Services Architecture
Multiple Primary Storage Formats

The lowest level of the Intelligent Content Services architecture consists of unstructured,
semi-structured, and structured data belonging to a given organization or enterprise.

The typical enterprise has documents residing in a variety of content sources and
databases. K2 provides access to documents in the following types of information
repositories:

File systems (Windows and UNIX)

Web sites

Lotus Notes servers

Email servers (Microsoft Exchange)

Databases (ODBC)

Document-management systems (Documentum)

Documents can exist in a myriad of file formats ranging from Microsoft Office documents
to Lotus Smartsuite to Adobe PDF. K2 utilizes state-of-the-art technology to read
documents in over 200 such formats, extracting the structured and unstructured content
from the documents. Documents may exist in many languages with different character
sets—sets of numeric codes based on the characters of a language—and have attachments
in multiple MIME-types and languages. K2 can support close to 100 languages and
popular character sets including the Unicode standard.

K2 makes documents from this wide variety of sources available for searching by
processing them into Verity collections, index structures that support extremely rapid and
flexible search capabilities over very large numbers of documents.

Secure Access Through Gateways

Verity gateways are software modules that allow K2 to access information in a variety of
different primary storage formats. Each gateway is tied to a particular type of repository
(such as HTTP, Lotus Notes or Microsoft Exchange); the gateway can access documents
and metadata in the repository’s native formats.

A user’s role in the organization dictates which documents the user is allowed to access.
For example, an employee outside of the Human Resources department should
presumably get a “No Results Found” message on the query “layoffs next week” even
when a matching document exists that is accessible to Human Resources department
employees. K2 supports multiple levels of secure search implementations ranging from
Verity K2 Getting Started Guide 21

1 Introducing Verity K2
The Intelligent Content Services Architecture
the stringent role-based security in the above example, to weaker forms in which the
existence (but not the contents) of all matching documents is revealed to the user
regardless of his access rights.

Information-Extraction Services

The core capabilities of Verity K2 focus on accessing documents in heterogeneous
repositories to extract information and build data structures needed by
information-access applications.

Administrators and knowledge workers (or indexing applications that use the verity
APIs) can use these information-extraction services to create collections and other types
of indexes that support search and information access.

Figure 1-2 on page 20 shows some of the available information-extraction services. More
information on each is available elsewhere in this book.

Indexing. Before users can search or classify enterprise information, it generally must
be indexed. The K2 system uses gateways and the Verity engine to gather information
into a universal index called a collection.

The main purpose of a collection is to support sophisticated, multi-featured text search.
A collection stores the locations of all indexed documents and a list of essentially all
words contained within the text of those documents. (A collection does not contain the
actual documents themselves.)

Classification. Beyond search, information access can also involve classification, in
which documents are organized into one or more taxonomies, which are browsable,
22 Verity K2 Getting Started Guide

1 Introducing Verity K2
The Intelligent Content Services Architecture
searchable, hierarchies of categories. Verity K2 includes several information-extraction
services related to creating and populating taxonomies.

Parametric indexes. Parametric indexes are structures built on top of collections or
other sets of documents. These indexes support both parametric search, the ability to
search heterogeneous collections of documents containing both structured metadata
(parameters) and free text, and taxonomy browse, the ability to navigate through a
taxonomy of category links to arrive at desired documents.

For example, documents that describe cars might have structured attributes such as
Color, Price, Make, Model, Location, and Year, plus free-text descriptions of the cars.
Also, a taxonomy applied to the descriptions might organize the documents by
manufacturer, make, model, and year.

The parametric-selection portion of a parametric search would involve the user
selecting the desired attributes from the structured data. The free-text portion would
involve searching for terms in the descriptions. Taxonomy browse would involve
navigating through the hierarchy of links to find the desired model and year. (See,
for example, Figure 4-1 on page 107.)

Relational taxonomies. Verity parametric indexes can further include a high-level
classification concept called relational taxonomies. With relational taxonomies, more
than one taxonomy is applied to a parametric index. Users can simultaneously
navigate the multiple taxonomies, drilling down and jumping from one to the other,
navigating to the information they seek in the manner most intuitive to them. (See,
for example, Figure 4-3 on page 109.)

Thematic Mapping is a process that automatically extracts key concepts from a set of
documents, constructs a taxonomy from them, and assigns the documents to the
taxonomy to create a parametric index. (See “Building the Taxonomy” on page 85.)
Verity K2 Getting Started Guide 23

1 Introducing Verity K2
The Intelligent Content Services Architecture
Profiling. Using the K2 Profiler, an application can automatically classify incoming
documents, assigning them to one or more categories based on criteria such as subject
areas of interest to specific users.

The categories used for profiling are implemented in structures called profile nets,
which are stored queries that knowledge workers can create manually or with the help
of command-line tools. (See “Creating Profile Nets” on page 89.)

Feature Extraction. When displaying search results, a K2 application can provide a
summary of each document and it can cluster related documents together on the page.

Clustering, thematic mapping, and some kinds of summarization rely on an
underlying process called feature extraction, in which the most important key words and
concepts in a document are automatically extracted and saved during collection
indexing.

See “Extracting Document Features” on page 80 for more details.

Entity Extraction. K2 includes a component called the Verity Extractor, which is an
engine that applications can use to extract entities—words or blocks of text that have
specific meaning (for example, names, telephone numbers, URLs, addresses, product
IDs)—from a document or set of documents.

Applications can use the results of extraction to populate collection fields or taxonomy
categories, to forward the entity information to other analytical programs, or to
validate or route documents based on entity rules. See “Extracting Entities” on page 81.

Entity Profiling (for Recommendation). The Verity Recommendation Engine is a K2
component that brings sophisticated, high-level socialization and personalization
capabilities to applications. Recommendation applications can connect users to social
networks, not only providing results for search queries but also adaptively ranking
results, locating experts, recommending alternative documents, and connecting the
user with communities of people with similar interests.

The K2 Recommendation Engine stores the information it needs in entity profiles
(recommendation indexes) that record the activities and preferences of users and the
actions taken on various documents and other entities. The information changes over
time as the system evolves. See “Providing Recommendations” on page 91.

The Intelligent Content Engine

The heart of K2 is the Intelligent Content Engine. The engine consists of several modules
that extract information, create structures, and process data to support K2-enabled
applications.

Some components of the Intelligent Content Engine include the following:
24 Verity K2 Getting Started Guide

1 Introducing Verity K2
The Intelligent Content Services Architecture
The Verity engine, or VDK, which supports collection creation and search.

The Extractor Engine, which supports entity extraction.

The Recommendation Engine, which supports recommendation indexes.

Application-level services for displaying information to users, such as document
summaries and spelling suggestions. See “Presenting Search Results” on page 103

The Viewing service, which displays highlighted content for documents (in any of
hundreds of native formats) retrieved from a search results page. See “Retrieving and
Displaying Documents” on page 105.

The Intelligent Content Engine includes extensive low-level programming interfaces
(APIs) and configuration settings that allow applications to control its behavior closely. A
large variety of command-line tools also provide access to the engine for creating and
manipulating the information structures it manages.

The Intelligent Content Engine can also be accessed through high-level K2 APIs, exposed
on the various distributed services in a K2 system.

These services include Administration Servers (for managing the system and its indexes),
K2 Servers and K2 Brokers (for accessing collections and other indexes), Ticket Servers
(for secure access), Index Servers (for direct indexing of documents), K2 Spider Servers
(for using a spider to crawl and index repositories), and Report Servers (for generating
user-activity reports). See “Choose Which K2 Services to Use” on page 42 for more
information.
Verity K2 Getting Started Guide 25

1 Introducing Verity K2
The Intelligent Content Services Architecture
Flexible Access Control

Verity K2 supports secure access to the information in collections and other indexes and
to the documents in repositories. K2 allows for multiple levels of security, multiple
authentication methods, and single sign-on. See “Setting Up Security” on page 51 for
details.

Information-Access Services

At the application level, Verity K2 offers a variety of services that applications can use to
give users functional and convenient access to the information that has been extracted,
indexed, and classified by the information-extraction services described earlier.

Figure 1-2 on page 20 shows some of the available information-access services. More
information on each is available elsewhere in this book.

Search. Sophisticated search is at the core of the information services that K2
applications provide for users. The search capabilities include

Full-text search, supporting single or multiple words or phrases, case- or
accent-sensitive or insensitive searches, synonyms, wildcards, proximity searches,
and logical combinations of them.

Fuzzy searches, using automatic re-spelling or stemming of search terms.

Language-specific search, in any of a large number of languages.

Topic search, in which a single search term can expand into query expression of any
size or complexity.

Federated Search. Federated search (licensed separately from K2 as Verity Federator)
gives out-of-the-box access to many information sources, including proprietary
sources licensed by Verity on behalf of its customers. Federator sends a single query to
multiple sources such as internal Verity indexes plus external sources like Web sites
and proprietary subscription sources such as news feeds and business information
services. Federator then merges results from all of them into a unified presentation for
the user.

Federator is a powerful, standalone application and API that combines federated
search with the Verity Ultraseek technology to extend the reach of an enterprise’s
search capabilities. See your Verity representative for more information.

Parametric Search and Taxonomy Browse. An application that works with
information that has been processed into classification structures (parametric indexes
and taxonomies) can use sophisticated information-access services such as the
following:
26 Verity K2 Getting Started Guide

1 Introducing Verity K2
The Intelligent Content Services Architecture
Parametric selection, in which the user can find documents by selecting values for
various parameters instead of by searching.

Text search combined with parametric selection, restricting the results to documents
that match both the currently selected parameters and the search terms.

Taxonomy browse, in which users navigate through hierarchical categories of
information to reach a desired set of results. The results at each stage consist of
documents that match the selected taxonomy category, plus the currently selected
parameters, plus any search terms that are applied.

Relational taxonomies, in which multiple taxonomies are applied to the data. The user
can start browsing one taxonomy, then switch to another, and even back again, until
arriving at a desired category or document. Results can be restricted to documents
that simultaneously match the selected category in each of the represented
taxonomies, plus the currently selected parameters, plus any search terms that are
applied.

For example, a user might search for a used car by selecting values for categories such
as color, mileage, price, and year, then navigate both geographic and manufacturer
taxonomies, and finally search for a specific desired feature (such as a car alarm).

Universal Document Viewing. The Verity K2 viewing service provides applications
with a powerful document viewing and highlighting service. When the user clicks a
link on the search results page to view a document (in any of hundreds of supported
formats), the viewing service displays the document content and highlights
occurrences of the search terms throughout the document.
Verity K2 Getting Started Guide 27

1 Introducing Verity K2
The Intelligent Content Services Architecture
Spelling Suggestion. Spelling suggestion can be used to suggest corrections to
mistyped words in a user’s query. If a search returns no or few results, the application
can display a message on the search results page, listing a suggested alternate query.
For example, if the user searches for “helo wonderful worlld” and that phrase returns
no hits, your application could respond with

Are you searching for “hello wonderful world”?

See “Providing Spelling Suggestion” on page 105 for more information.

Document Summarization. By presenting a short, automatically generated summary
for each document in a results list, a K2 application can help users quickly assess the
relevance of the returned documents before retrieving the documents themselves.

Verity K2 supports several kinds of document summaries, including passage-based
summaries, which consist of text excerpts in which the search term appears, optionally
highlighted. For more information about summarization, see “Returning Document
Summaries” on page 104.

Document Clustering. When presenting search results to the user, an application can
cluster, or group together, documents covering similar topics or concepts.

Clustering relies on the extraction of document features at collection-indexing time (see
“Extracting Document Features” on page 80).

Recommendation. An application that uses the K2 Recommendation Engine can
suggest or recommend documents, expert users, or other entities that are specifically
relevant to the current user’s context. To do so, the Recommendation Engine uses
profiles (recommendation indexes) that are continually updated with users’s actions
and preferences, meaning that the recommendations can evolve over time.

Features available with the Recommendation Engine include

Adaptive ranking of search results

Context-based personalization in user profiles

Concept-based retrieval (independent of specific keywords)

Location of experts and communities

Session-based profiles (updated dynamically within a single session)

See “Providing Recommendations” on page 91 for more information.
28 Verity K2 Getting Started Guide

1 Introducing Verity K2
K2 Software Architecture
Multilanguage APIs and Web Services

Creating an application that makes use of the information-extraction and
information-access services provided by K2 requires development effort. Depending on
the scale of your needs, it can be as simple as customizing the look and feel of the client
component sample programs included with K2 (see “Using the Component Framework”
on page 116), or it can be a large, multi-departmental development project involving
many software developers.

Verity K2 supports application development in Java/JSP, C++, and C#. APIs are available
for connecting to features at all levels of the software architecture. See “Developing Your
Application” on page 115 for more information.

K2 Software Architecture

K2 is an integrated set of software technologies that allows enterprise applications to
bring the capabilities of Verity’s intelligent content services to users. The software is
modular and layered; it includes application-programming interfaces (APIs) at several
levels for maximum programming flexibility. Figure 1-3 is a high-level overview showing
how the major pieces fit together.
Verity K2 Getting Started Guide 29

1 Introducing Verity K2
K2 Software Architecture
Figure 1-3 Layers of K2 architecture

Client Layer

The topmost layer in this architecture is the client application layer, consisting of a K2
application or portal created by a Verity customer. It typically includes a Web-based user
interface that displays search, classification, and personalization capabilities to the end
user. The client can be a business portal, Web application, or a third-party application
from vendors such as Oracle, BEA or IBM.

K2 Layer

The client application communicates directly with the K2 layer, connecting to either a K2
Server or a K2 Broker (which in turn connects to one or more K2 Servers). The K2 Server/
Broker architecture provides distributed, scalable, secure, and fault-tolerant access to
Verity’s core and advanced capabilities. See “Deployment Architecture” on page 32 for
more information on K2 Server and K2 Broker.
30 Verity K2 Getting Started Guide

1 Introducing Verity K2
K2 Software Architecture
The K2 Server makes use of advanced Verity features and capabilities within the K2 layer.
These features include:

Administration, security, and distributed indexing services, as described in “Setting
Up a Verity K2 Installation” on page 37.

Content services such as knowledge tree creation, parametric-index creation, and the
use of the Recommendation Engine and Logistic Regression Classifier, as described in
“Classifying Information” on page 84 and “Providing Recommendations” on page 91.

VDK Layer

Features in the K2 layer communicate in turn with the VDK layer. (VDK is an
abbreviation for “Verity Developer’s Kit” or “Verity Development Kernel.”) The VDK
layer holds the core searching and indexing capabilities of the Verity architecture. These
capabilities include:

Content services such as indexing and collection creation, simple and advanced text
search, parametric selection, and document clustering, as described in “Building
Collections” on page 71 and “Classifying Information” on page 84.

The document viewing service, as described in “Retrieving and Displaying
Documents” on page 105.

DDA Layer

Features in the K2 layer communicate in turn with the Dynamic Data Access (DDA)
layer, the lowermost layer in the architecture. This layer contains driver-level modules
that access and process external data. There are three kinds of DDA modules:

Gateways, which provide read-only access to information repositories (see
“Information Repositories” on page 38).

Document filters, which process documents of different formats read in through the
gateways (see “Verity Document Filters” on page 40).

Locales, which perform character conversion and apply language-specific indexing
techniques to document content (see “Locales” on page 55).

Taken together, these main software layers provide the support for Verity intelligent
content services, as shown conceptually in Figure 1-4.
Verity K2 Getting Started Guide 31

1 Introducing Verity K2
Deployment Architecture
Deployment Architecture

K2 includes a brokered, distributed server architecture that offers fault tolerance, load
balancing, and growth potential for your client application. Brokering your users’
searches can increase both the amount of information that can be included in a search and
the number of simultaneous users that can be supported—with little degradation in
performance.

As shown earlier in Figure 1-3 on page 30, the upper layers of the K2 architecture consist
of the K2 client, the K2 Broker, and the K2 Server. In a distributed environment, they
might interact as shown in Figure 1-4.

Figure 1-4 K2 Distributed Architecture

This example shows a single client potentially accessing many different collections.

The K2 application is a Verity client. It is integrated with K2 through Verity APIs. It
provides the search, content organization, and social network functionality to users.
32 Verity K2 Getting Started Guide

1 Introducing Verity K2
Administration Console
The client can connect directly to a K2 Server, but in a distributed environment the
client connects to a K2 Broker.

The K2 Broker is a service that is an intermediary. It receives requests from a K2 client
and distributes them to available K2 Servers. Multiple brokers can execute on one
machine, or they can be installed on separate machines.

Each K2 Broker connects to one or more K2 Servers. It distributes the requests it
receives among the active K2 Servers that are attached to it. A broker can communicate
with all its K2 Servers simultaneously, whether on the same machine or on different
machines.

In cases where the application searches multiple collections, each K2 Server performs
its appropriate portion of the task and returns the results to the broker, which is
responsible for consolidating the results and returning them to the application.

The K2 Server is a service that receives requests and performs searches of collections,
knowledge trees, and parametric indexes. It also provides recommendations. A K2
Server can accept requests directly from a client, but in a distributed environment
those requests usually come through a K2 Broker.

Each K2 Server connects to one or more Verity collections, which are the index
structures that the K2 client searches.

For more information on K2 Server/Broker configurations, see “Designing a K2 Server/
K2 Broker Deployment” on page 42.

Administration Console

Most administration of a K2 installation is performed through a browser-based
application called the K2 Dashboard. The K2 Dashboard manages K2 services and
functionality. Its user interface consists of Web pages (see Figure 1-5). Each page manages
a specific function within K2.
Verity K2 Getting Started Guide 33

1 Introducing Verity K2
Business Console
Figure 1-5 K2 Dashboard Home page

In the System View pane, The K2 Dashboard gives a visual representation of your
distributed K2 system and allows you to configure the system. For example, you can use
the Dashboard to control the settings for the following:

K2 Services. Executable processes such as K2 Broker, K2 Server, and K2 Ticket Server.

Indexes. Verity collections, parametric indexes, and recommendation indexes.

Jobs. Collection-indexing tasks and user-defined tasks.

For specific administrative tasks, including batch processing, you can also use one of
several Verity command-line tools.

For more information on the K2 Dashboard and the command-line administration tools,
see “Administering a K2 Installation” on page 58.

Business Console

Users at a K2 installation can take advantage of the Verity Business Console to create and
work with the information extraction and access services that K2 provides. The Business
Console is an application that provides a graphical interface for manipulating
34 Verity K2 Getting Started Guide

1 Introducing Verity K2
Business Console
taxonomies, parametric indexes, synonyms, and promotions. The Business Console also
allows software developers to easily create and configure application components when
creating K2 applications with the Verity Component Framework.

Figure 1-6 Business Console Summary page

For more information on the Business Console, see “Managing Information With the
Business Console” on page 66.
Verity K2 Getting Started Guide 35

1 Introducing Verity K2
Business Console
36 Verity K2 Getting Started Guide

2
Setting Up a Verity K2 Installation

To set up and use Verity K2, you will need to understand the various components and
how they relate to each other. Various people in your organization can help execute these
tasks:

Administrators design, install, configure, and maintain the K2 installation. They may
also create collections and taxonomies.

Knowledge workers are librarians and domain experts that make decisions about what
information sources to make available to users of a K2 installation. They design,
create, and maintain collections and taxonomies.

Developers create search applications and implement user interfaces that leverage
Verity search, classification, and social-network technologies.

End users use applications to search, browse, and retrieve information.

This chapter contains information primarily of interest to administrators. It contains the
following sections:

Identifying Information Sources

Designing a K2 Server/K2 Broker Deployment

Installing Verity K2

Setting Up Security

Internationalizing a K2 Installation

Administering a K2 Installation

Managing Information With the Business Console
37

2 Setting Up a Verity K2 Installation
Identifying Information Sources
Identifying Information Sources

The first step in setting up a K2 installation is to identify the different kinds of internal
and external information that your business produces or accesses. You will need to know
how the information you want to analyze is stored.

Information Repositories

An enterprise might store millions of files on dozens of file servers. This same enterprise
might also store many thousands of Web pages on multiple Web servers. In each case,
files are stored in their native formats on a single type of platform or storage medium, or
accessed through a specific connection protocol. The file server represents one type of
information repository, while the Web server represents another.

Figure 2-1 Examples of information repositories

K2 includes indexing technology that gives you simultaneous access to many types of
repositories. You can classify, search for, retrieve, and compare information in locations as
diverse as a record in an Oracle database and an XML page on an IIS Web server.

Indexed repository data is the basis for many of Verity’s information-management
features, including text search, parametric selection, topic sets, and knowledge trees.
38 Verity K2 Getting Started Guide

2 Setting Up a Verity K2 Installation
Identifying Information Sources
Verity Gateways
Verity applications access repositories through gateways, driver modules that provide
interfaces to specific repository types. Gateways unify your business information by
making it all available for indexing and retrieval, regardless of where and how it is
stored.

The gateways supplied by Verity with the K2 product include the following:

Verity ODBC Gateway. Provides access to ODBC-compliant databases. The gateway
can combine data from any number of databases and tables, such as help desk, sales
tracking, or marketing information, so users can view it alongside other enterprise
information resources.

Verity Lotus Notes Gateway. Provides connectivity to Lotus Notes repositories. The
gateway allows remote or local access, supports encrypted secure Internet passwords,
and permits users to search and retrieve information in all views, as well as
attachments, OLE objects and encrypted fields.

Verity Documentum Gateway. Provides connectivity to the Documentum eContent
Server. The gateway allows users to search and retrieve Documentum content,
metadata, and repository-managed properties. It supports hierarchies and
relationships such as simple and virtual documents and handles annotations.

Verity Exchange Gateway. Provides secure access to documents in Microsoft
Exchange public folders through an Exchange MAPI client. The gateway allows
authorized users to search and retrieve information in e-mail attachments and public
folders.

Verity HTTP Gateway. Provides simultaneous accesses to information on multiple
Internet and intranet Web sites. The gateway allows exploration of all CGI-compliant
Web servers. It supports proxy and firewall authentication, HTTPS/SSL and various
login methods.

Verity File System Gateway. Provides access to information on UNIX and Microsoft
NTFS file systems. It supports local access, as well as remote mounted, mapped, or
UNC access.

Note Additional types of gateways may be available through Verity
Professional Services.

If your business stores information in repositories other than those described here, Verity
offers the Gateway Development Kit (GDK), which includes a set of APIs for writing
customized gateways for unique repositories. These APIs allow you to build new
gateways or modify existing gateways to accommodate your specific features. See the
Verity Gateway Developer’s Kit Programming Reference for more information.
Verity K2 Getting Started Guide 39

2 Setting Up a Verity K2 Installation
Identifying Information Sources
Verity Document Filters
Accessing a file in a repository is only the first step toward indexing its information.
Repositories store documents in hundreds of native file formats. Therefore, Verity also
supplies document filters, driver modules that can detect, open, and extract the text from
files in hundreds of the most popular file types, including

Word processing files, such as Microsoft Word, Lotus Word Pro and Corel WordPerfect

Spreadsheet documents, such as Lotus 1-2-3, Corel QuattroPro and Microsoft Excel

Presentation files, such as Corel Presentations, Microsoft PowerPoint, and Lotus
Freelance

Adobe Acrobat PDF

HTML and XML

Entity-extraction filter

Document filters not only extract the textual content of documents for indexing, they can
also extract field information, such as the title or author of a text document. (Field
information from a file is indexed separately from its text content.) The entity extraction
filter goes even farther; it extracts entities (such as names or addresses) from a
document’s regular body text and saves them in collection fields.

Data Sources

Depending on the nature of your organization’s information and the kinds of tasks you
want to perform, you may find that different sources are most appropriate for different
kinds of information structures.

Sources for Collections
Information from repositories that passes through gateways and document filters is
indexed into Verity collections, where it is made available for search by K2 applications.
The best sources for searchable data are any of the repositories that hold your enterprise’s
unstructured and semi-structured information. For example, all word-processing
documents, spreadsheets, memos, emails, discussion threads, and presentation
documents related to a given project can be indexed together into a single collection
related to the project.

More structured data that is searchable on its own (such as database information) might
also be beneficial to index into a collection, so that it will be searchable from within a K2
application, along with all the other document types.
40 Verity K2 Getting Started Guide

2 Setting Up a Verity K2 Installation
Identifying Information Sources
Sources for Parametric Indexes
Parametric indexes support parametric selection, in which the user can select certain
parameters—for example, color or manufacturer or price range in the case of an
automobile—to narrow the scope of a search.

In parametric selection, each parameter that a user can choose must be related to a
collection field or XML element. Therefore, the kinds of data sources most useful for
parametric selection are those that are semi-structured—that is, documents in which a
significant amount of information can be turned into fields:

Database records

HMTL catalog pages

XML files

Spreadsheet documents

XML files are useful also because you can build parametric indexes on them directly,
without first indexing them into a collection.

Sources for Entity Extraction
Entity extraction is the process of recognizing and capturing small-scale text structures—
names, addresses, dates, numeric or monetary values, and the like—from unstructured
text. Given that, the best sources to which to apply Verity Extractor might be documents
that are entity-rich. Documents such as telephone directories, employee lists, activity
logs, ledgers, account statements, and transaction records might be especially promising
candidates for entity extraction.

On the other hand, the purpose might not be to extract large numbers of entities, but to
instead locate only entities of a specific kind within a large body of documents. In that
case, the entity extraction can be applied to any kind of readable unstructured or
structured document.

Sources for Recommendations
If a K2 application is set up to recommend documents, experts, or other entities to a user,
those recommendations are based on historical searching behavior and feedback
provided by that user and other similar users. The recommendations are dynamic; they
come from the interaction between users and documents.

Therefore, the kinds of information sources you might want to use for recommendations
include the following:

All your indexed enterprise data that is available for searching.
Verity K2 Getting Started Guide 41

2 Setting Up a Verity K2 Installation
Designing a K2 Server/K2 Broker Deployment
Published data authored by your users. If your organization uses a document
management system, you can use Recommendation Engine APIs to import users’
documents and other information from it.

Emails, from which the Recommendation Engine can extract author and content
information for updating user profiles.

Employee information.

Designing a K2 Server/K2 Broker Deployment

The architecture on which K2 is built uses a flexible component-based design. This
design allows you to construct distributed systems at any scale, with brokering, serving,
security, administration, indexing, searching, and viewing services arranged in the
optimal configuration for your environment, even if you have a mix of platforms.

Choose Which K2 Services to Use

K2 services are implemented as multithreaded server processes. Depending on your
organization’s needs, you may want to use from a few to all of the available K2 services.
At installation, you can choose which services are to be installed on a given host machine.
The available service include the following:

K2 Servers. These servers are the main service providers of K2. They allow
applications to access document repositories to create and update collections and
other indexes, to retrieve documents for viewing, and to support profiling and entity
extraction. They give applications access to collections and indexes to support
searching, parametric selection, recommendations, and highlighting of search terms in
viewed documents.

K2 Brokers. These servers support scaling of a K2 installation to deployment of large
numbers of K2 Servers and many collections and indexes. Applications can access a
small set of K2 brokers, which can in turn access many K2 Servers, distributed across
many hosts and around the world.

Ticket Servers. If your installation needs to support secure access to collections and
documents, you can install a K2 Ticket Server to handle security in a K2 domain.
42 Verity K2 Getting Started Guide

2 Setting Up a Verity K2 Installation
Designing a K2 Server/K2 Broker Deployment
K2 Spider Servers. If collection indexing is to be performed by using K2 Spider to
crawl and index the directories of your repositories, you need to install one or more K2
Spider Servers.

Index Servers. If any collection indexing is to be performed directly—that is, by
providing K2 with the explicit locations of documents to index—you need to install a
K2 index Server.

Report Servers. If you plan to make use of the K2 reporting service, which analyzes
user search activity in a k2 domain, you need to install a K2 report Server.

Administration Servers. Every host machine in an installation needs an
Administration Server, which is installed automatically whenever any K2 component
is installed. Administration servers manage communication among the K2
components in an installation.

Master Administration Server. Each K2 domain has a single Master Administration
Server, which controls the administration of the domain. The K2 Dashboard
administration tool is installed on the host that holds the Master Administration
Server.

Each of these kinds of services is described in more detail in the Verity K2 Dashboard
Administrator Guide.

Flexible Configuration

The way you configure brokers and servers depends on your business needs. Brokering
enables you to scale the system as your user base and the amount of information being
searched grows. As more users submit simultaneous queries, you can add brokers to
balance the load. Likewise, as the number of documents to search grows, you can add K2
Servers to accommodate the increased workload. You add brokers and servers only as
you require them, rather than paying for excess capacity before you need it.

Multiple Brokers and Servers

Consider an enterprise that stores millions of documents on different file systems in
North America and Asia. These documents are searched by thousands of users
simultaneously. The enterprise can use one K2 Broker to consolidate these user queries
and deliver them to a K2 Server, or it can arrange multiple brokers to speed up the
process. You can also configure each broker to distribute search requests to multiple K2
Servers.
Verity K2 Getting Started Guide 43

2 Setting Up a Verity K2 Installation
Designing a K2 Server/K2 Broker Deployment
By allowing processes to be distributed across K2 Servers, you eliminate the risk of any
single point of failure taking your entire K2 installation offline. If a K2 Server experiences
a hardware failure, queries are automatically brokered to the remaining K2 Servers. This
results in uninterrupted service 24 hours a day, seven days a week.

Parallel Querying

The K2 infrastructure supports parallel querying, in which a single search query can be
distributed simultaneously to multiple collections.

In the case of a single K2 Server attached to multiple collections, the K2 Server
simultaneously processes the request against each collection. The K2 Server then merges
the results for display to the user.

In the case of a larger installation, separate K2 Servers may be involved. For example,
consider a company that must provide fast and accurate search results across many
collections in its large corporate intranet. Its documents reside in six separate collections:
C1 through C6 (Figure 2-2). Assume that an application needs to search collections C3,
C4, and C5. In that case, the K2 Broker distributes the search to the two appropriate K2
Servers. One server distributes the search to collections C3 and C4; the other server
searches collection C5. All three searches are conducted simultaneously. Final merging of
the results is performed by the K2 Broker.
44 Verity K2 Getting Started Guide

2 Setting Up a Verity K2 Installation
Designing a K2 Server/K2 Broker Deployment
Figure 2-2 Parallel querying, mirroring, and failover in a large deployment

Mirroring

You can configure a K2 installation to use mirroring, in which a collection is duplicated
and attached to separate K2 Servers. A K2 Broker can then distribute searches and
document retrievals among the mirrored collections in a load-balanced fashion.

As Figure 2-2 shows, the company in this example has decided to mirror its most heavily
used collection, C1, on all three K2 Servers. (To enable load-balanced search of mirrored
collections, the collection duplicates must be on different K2 Servers and must have
identical names.)

This mirrored configuration allows simultaneous access to C1 by many users,
distributing any performance impact. The K2 Broker handles incoming requests to search
collection C1 by routing the requests among the appropriate K2 Servers.

Additionally, if one of the collections or K2 Servers goes off-line, the broker is still able to
access the remaining mirrored collections, without requiring any action by the end user
or administrator.
Verity K2 Getting Started Guide 45

2 Setting Up a Verity K2 Installation
Designing a K2 Server/K2 Broker Deployment
Another advantage of the distributed architecture shown in Figure 2-2 is that K2 Brokers
can be duplicated for failover purposes. If the primary K2 Broker goes offline, the
application can switch to the alternate and still access all the same information.

Note You can configure K2 to automatically create mirrored collections when
indexing. You can also create multiple non-mirrored collections in a single
indexing pass (as illustrated by collections C2a and C2b in Figure 2-2),
distributing documents between the collections based on document
content or other criteria.

Multi-Domain Search Groups

A K2 domain consists of one Master Administration Server and all the K2 services (K2
Ticket Servers, K2 Brokers, K2 Servers, and so on) that are configured by that Master
Administration Server. All K2 services are associated with their own administration
server. An individual K2 domain typically serves an individual geographic location or an
individual department within an organization.

A K2 search group consists of one top-level K2 Broker plus all the other K2 Brokers and K2
Servers attached below it. A search request handled by the top level K2 Broker can be
passed to any of the other K2 Brokers and K2 Servers in the search group.

It is possible to set up a distributed search group, in which some servers or brokers in the
group are from a different domain. Figure 2-3 illustrates the concept with two domains:
one in Tokyo and one in Sydney. The Sydney search group includes all of its local K2
Brokers and K2 Servers, plus one K2 Server in the Tokyo domain.

Use of K2 search groups that span multiple K2 domains gives administrators flexibility in
deploying K2 and in handling search requests.
46 Verity K2 Getting Started Guide

2 Setting Up a Verity K2 Installation
Installing Verity K2
Figure 2-3 A distributed search group that spans two domains

Installing Verity K2

Once you have planned the kinds of information to index and know what configuration
you want your K2 installation to have, you are ready to install the K2 software itself.
Verity K2 makes it easy for you to install a complete K2 system, or individual
components of it, on one or multiple host machines.

For specific instructions on how to install K2 in your enterprise, see the Verity K2
Installation and Setup Guide.
Verity K2 Getting Started Guide 47

2 Setting Up a Verity K2 Installation
Installing Verity K2
Multiplatform Installer

On all supported platforms, you use the same executable installation program to install
the components of K2. After launching the installer and entering basic information,
including license information, you select the type of installation to perform and are then
offered the choice of performing either a Full or Custom installation, as shown in
Figure 2-4.

Figure 2-4 Select Custom or Full Mode dialog from the K2 installer

A full installation installs all components of K2 (see “Installed K2 Components” on
page 49) onto the local host. It creates a single instance each of K2 Broker, K2 Server,
and K2 Ticket Server. It also installs a Master Administration Server.

A full installation is appropriate for development purposes or prototyping.

A custom installation installs only the components you choose onto the local host.

A custom installation is required for multimachine installations, such as a large-scale
production deployment. In such an installation, you might install K2 Servers and
Brokers on many machines. However, you install only one Master Administration
Server, and you must install it on the first machine you run the installer on.
48 Verity K2 Getting Started Guide

2 Setting Up a Verity K2 Installation
Installing Verity K2
Installed K2 Components

You can run the K2 installer to install some or all of the following K2 components on the
local host machine.

K2 Services:

K2 Broker. A K2 service that receives client search requests and distributes them to
available K2 Servers.

K2 Server. A K2 service that receives requests for searching, viewing, profiling and
recommendations, and performs searches of collections, parametric indexes, and
recommendation indexes.

K2 Ticket Server. A K2 service that stores an array of users who have been
authenticated for access to K2. K2 Ticket Server authenticates users and supports
search of secure indexes.

K2 Spider Server. Gathers document information and builds collections, distributing
the indexing load across multiple processes and/or machines.

K2 Index Server. A K2 service that supports direct indexing, the process of building a
collection through direct submission of documents, rather than use of a spider such as
K2 Spider.

K2 Administration:

Master Administration Server. Serves as a central hub for K2 system configuration
information. A K2 system must have one and only one Master Administration Server.
For each host on which you run the K2 installer, you choose whether to install a
Master Administration Server or an Administration Server (next).

Administration Server. A repository for configuration information. In a K2 system,
there is one Administration Server for every host.

K2 Dashboard. A Web-based application for administering distributed K2 services
from a single host.

StyleSet Editor. Graphical editor for customizing collection style files for different
gateways.

Business Console. A Java application that helps knowledge workers and developers
to create and manage classification structures and search applications.

Application server. A server that can serve Web pages and Java Server Pages (JSPs).
Each K2 installation uses its own embedded application server.
Verity K2 Getting Started Guide 49

2 Setting Up a Verity K2 Installation
Installing Verity K2
K2 Development:

K2 Java Client. JAVA programming interfaces to support K2 client application
development.

Client C APIs. C programming interfaces to support K2 client application
development.

.NET libraries. Libraries necessary for .NET K2 client application development in C#,
J#, or Visual Basic.

Organization Developer’s Kit. Java and C APIs that support development of K2
applications that manipulate taxonomies.

Indexes and Jobs:

Sample collections, parametric indexes, recommendation indexes. These example
indexes are installed for learning and testing purposes.

User-defined jobs. Several user-defined jobs (see “Administration Through the K2
Dashboard” on page 60) are installed to extend the capabilities of the K2 Dashboard.

Documentation:

K2 documentation. PDF and HTML versions of all K2 product documentation.

Online help. HTML-based help for K2 Dashboard and Verity Business Console.

K2 component application samples. Java/JSP sample applications constructed from
the K2 application component framework. The component samples demonstrate the
capabilities of the various K2 Services.

Other Installation Programs

The following components are licensed and installed separately from the K2 installer.

Verity Intelligent Classifier. A tool with a graphical user interface that helps you to
construct taxonomies of topics appropriate for an enterprise, and populate them with
documents from the enterprise. Described in the Verity Intelligent Classification Guide.

Verity Locales. Driver modules that provide language-specific processing and
indexing for international documents. Described in the Verity Locale Configuration
Guide.

Verity Developer’s Kit. C APIs, libraries, and tools that support lower-level, non-K2
application development. Described in the Verity Developer’s Kit Programming
Reference.
50 Verity K2 Getting Started Guide

2 Setting Up a Verity K2 Installation
Setting Up Security
Setting Up Security

Security in K2 is multi-leveled and integrated with native security systems in your
enterprise.

K2 Ticket Server

At each K2 installation, there are optionally one or more instances of the K2 Ticket Server
(Figure 2-5). The K2 Ticket Server is a component that authenticates users to the K2
System and controls search access to secure indexes. The K2 Ticket Server uses security
modules that can communicate to third-party information stores to validate
authentication credentials. The authentication stores that are supported include LDAP
Servers, Windows NT Domain, and UNIX.

Figure 2-5 K2 Ticket Server
Verity K2 Getting Started Guide 51

2 Setting Up a Verity K2 Installation
Setting Up Security
When a user authenticates to a security model by providing valid login information, the
user receives a ticket, or temporary access pass, from the Verity K2 Ticket Server. The K2
Ticket Server stores information in memory for users who have been authenticated to
LDAP, Windows NT domain, or UNIX. Once the user ends the session by logging off, the
ticket expires and the user’s credentials are deleted from memory. Optionally, the K2
Ticket Server can save credentials to an encrypted store to retain them from session to
session.

The K2 Ticket Server monitors search and viewing requests on a TCP/IP port. As each
request is made, the K2 Ticket Server gives users access to only those collections for
which they have the correct tickets. This integrates your native security model into the K2
system.

The K2 Ticket Server can handle authentications from multiple native security models.
For example, if a user provides K2 with credentials to authenticate to the NT Domain
security model, the user is able to search documents protected by that domain (as long as
the user has permission to read them, based on group membership). However, collections
can include information from two or more separate repositories, each with its own native
security model. If the collection the user is searching also contains documents from a
Microsoft Exchange repository, K2 also prompts the user to authenticate to Microsoft
Exchange.

The K2 Ticket Server includes a persistent store, in which it keeps a list of administrative
users for the system, plus security information for collections and repositories.

Gateway Security

Gateways provide secure information access to let users retrieve and view documents in
their native formats from repositories located anywhere. Each gateway uses the native
security model of the repository it represents. To access a repository through a gateway,
users must first provide credentials to the native security model—for example, if users
want to access information from a Documentum repository, they must provide user ID
and password information for Documentum. Only then can they search or retrieve
documents from the Documentum repository.

Collection-Level Security

Collection-level security limits which collections a user can search. To search a collection, a
user must be a member of a particular user group. Network administrators create these
user groups regularly when they set up native LDAP, Windows NT domain, or UNIX
52 Verity K2 Getting Started Guide

2 Setting Up a Verity K2 Installation
Setting Up Security
security models. After creating a collection, the K2 administrator simply assigns it to one
or more user groups. This assignment allows K2 to determine exactly which users have
permission to search the collection.

For example, if your enterprise indexes all your human resources information into a
single HR collection, it might be important to restrict collection access to a user group
that consists only of senior human resources management. If an outside employee
searches for enterprise-wide salary information, K2 excludes the employee from the HR
collection because the employee is not part of that group. No salary information appears
in the employee’s search results.

In addition to providing flexible restrictions to sensitive material, collection-level security
accelerates search performance by limiting the number of collections that a query is run
against. This can be helpful if your enterprise has indexed its information into a large
number of collections.

Obtaining Access to Secure Collections
To obtain access to a secure collection, the user must authenticate to K2. To authenticate,
the user provides K2 with the login information of the enterprise’s native security model.
K2 then uses this information to verify the user’s group membership. For example, if
your enterprise uses a Windows NT Domain security model, the user provides K2 with a
valid NT user name, password and domain name. K2 stores this information,
authenticates the user with NT, and obtains the user’s NT group information. Only then
will K2 grant the user access to the collections for which the user is authorized.

Anonymous Access
Enterprises can allow anonymous access to collections and documents. This access
method is useful for companies that expose information to public users. Such publicly
available documents are stored in a non-secure collection and are configured in LDAP,
NT or UNIX to be anonymously available. If a user signs on to K2 without first logging
into the native security model, K2 gives access to these public documents only.

Document-Level Security

K2 uses native authentication and the K2 Ticket Server to achieve collection-level
security. However, you may also want to limit certain documents within collections to
specific users. In this case, you implement document-level security to control whether a
document appears in a results list, and whether a user can retrieve it.
Verity K2 Getting Started Guide 53

2 Setting Up a Verity K2 Installation
Setting Up Security
Document-level security uses Verity Gateways to determine a user’s access rights for
individual documents. Each gateway respects and enforces the document repository’s
existing security model. Since gateways support ODBC-compliant databases, Lotus
Notes, Documentum, Microsoft Exchange, Web servers, and file systems, K2 can examine
access rights for multiple models and use them to provide document-level security.

No Results Filtering
K2 offers different methods for document-level security. The first is no results filtering, in
which you configure K2 to display all documents in a results list or category, regardless
of user access rights. If a user doesn’t have access rights to view a document, he can see
its results list information, such as its title and summary, but he cannot retrieve it. This
method is useful when you want users to be aware of documents, whether or not they
can view the details within them.

Results-List Filtering
The second method of document-level security is called results-list filtering, in which K2
checks each document for access rights before it displays the results list to the user.
Filtered results lists and categories only show documents that a user can retrieve.

Results list filtering is useful when you do not want particular users to be aware of
certain documents within a secure collection. Results-list filtering can be important in
some situations, because a query result for some documents might provide as much
information as the entire contents of the document itself.

Access-Control Lists
For gateways that support them, K2 uses access-control lists (ACLs) to regulate security
at the document level. To enhance performance, an ACL for each document is cached
within a collection. When users submit queries, K2 uses the cached information to
determine whether the user can access a document, instead of examining the access
rights of each document in its remote repository. This approach dramatically increases
the speed with which K2 returns results and significantly decreases the load on each
repository.

K2 provides the flexibility to use cached ACLs or to check repository access rights when
it generates a results list. However, when a user selects a document from a results list for
viewing, K2 always checks the repository for access rights. It does not use cached ACLs
to determine whether a user can open a document for viewing. Therefore, even if a
document’s access rights change immediately after a collection is indexed, K2 will apply
the most current security measures before it displays the document itself to the user.
54 Verity K2 Getting Started Guide

2 Setting Up a Verity K2 Installation
Internationalizing a K2 Installation
Single Sign-On

By integrating with third-party security solutions such as Netegrity SiteMinder, K2 can
support single sign-on, in which a user logs in just once to access all repositories for
searching, viewing, and indexing. Both basic authentication (submission of user ID and
password) and HTML forms-based authentication are supported.

In a SiteMinder single sign-on deployment, K2 observes the underlying security
privileges defined by SiteMinder to control whether a document appears in a results list,
and whether a user can retrieve it. SiteMinder passes authenticated user information to
the K2 Ticket Server, which accepts the users and grants tickets without requiring
additional authentication.

Integration with collection-level security is not supported.

For gateway access to documents (for viewing or indexing), K2 can be configured for
pre-authentication, in which the gateway accepts all users as being already authenticated,
and thus not requiring separate authentication by the gateway.

Integrating K2 with SiteMinder is a complex process, best implemented with the help of
Verity Professional Services. The process is described in the Verity K2 Technical Note
Integrating Verity K2 With Netegrity SiteMinder.

Internationalizing a K2 Installation

K2 includes built-in language support. Administrators can create indexed collections of
documents in any Verity-supported language, and users of a language-aware K2
application can apply language-specific searches against those collections. Furthermore,
a single collection can hold indexed, searchable documents in many different languages.

To fully support non-English languages and the multitude of character-encodings used
for storing international documents, K2 provides locales, automatic language
identification, and automatic character-set detection and conversion.

Locales

Verity locales are code modules and data tables that allow documents to be indexed and
searched in a language-specific manner. Locales are at the core of Verity’s support for
internationalization. By installing and configuring locales, an administrator can give a
language-aware client application the ability to work in languages other than English.
Verity K2 Getting Started Guide 55

2 Setting Up a Verity K2 Installation
Internationalizing a K2 Installation
Multilanguage Locale
Verity’s principal locale is the multilanguage locale, which provides specific linguistic
support for the following languages:

The multilanguage locale also provide basic search and viewing support for these
languages:

European Eastern European/
Middle Eastern

Asian

Danish Arabic Chinese (simplified)

Dutch Czech Chinese (traditional)

English Greek Japanese

Finnish Polish Korean

French Russian

German

Italian

Norwegian (Bokmal)

Portuguese

Spanish

Swedish

Afrikaans French Latvian SeTswana

Albanian Frisian Lithuanian Sinhala

Arabic Gaelic Luxembourgish SiSwati

Armenian Galician Macedonia Slovak

Basque Georgian Malay Slovenian

Belarusian German Malayalam Somalian

Bengali Greek Maltese Spanish

Breton Greenlandic Mongolian Swahili

Bulgarian Gujarati Myanmar Swedish

Catalan Panjabi (Gurmukhi) Nepali Syriac

Cherokee Hausa Norweigan (Bokmal) Tamil

Chinese (simplified) Hebrew Norweigan (Nynorsk) Telugu
56 Verity K2 Getting Started Guide

2 Setting Up a Verity K2 Installation
Internationalizing a K2 Installation
The multilanguage locale uses the UTF-8 character set, which is based on Unicode 3.2.
Use of UTF-8 allows individual collections built on the multilanguage locale to contain
documents in more than one language.

Single-Language Locales
Verity also provides locales that each support a single language only. The locales are
available in two sets: Asian locales and European locales. Single-language locales are
available for the following languages:

Chinese (traditional) Hindi Lao Thai

Croatian Hungarian Oriya Tibetan

Czech Icelandic Pashto TsiVenda

Danish Indonesian Philippine** Turkish

Dhivehi (Thanna) IsiNdebele Polish Ukranian

Dutch IsiXhosa Portuguese Urdu

English IsiZulu Rhaeto-Romance Vietnamese

Estonian Italian Romanian Welsh

Esperanto Japanese Russian XiTsonga

Ethiopic Kannada Sami Yiddish

Faroese Khmer Serbian

Farsi Korean Sesotho

Finnish Kurdish SesothoSaLeboa

**Includes Tagalog, Hanunoo, Buhid, Tagbanwa

Single-language Asian locales Single-language European locales

Japanese Norwegian (Bokmal) German

Korean Danish Italian

Chinese (simplified) Dutch Norwegian

Chinese (traditional) English Portuguese

Finnish Spanish

French Swedish
Verity K2 Getting Started Guide 57

2 Setting Up a Verity K2 Installation
Administering a K2 Installation
As delivered, K2 includes full support for English plus limited support for other
languages (through the multilanguage locale). To obtain additional language capability,
you can license and install additional locales and languages.

Language Identification

Because the multilanguage locale supports many languages, it generally must be able to
identify the language of each document to be indexed, so that the proper
language-specific processing is applied.

The Verity language-identification filter is used to detect the language of incoming
documents before they are indexed. The filter makes use of the document’s encoding and
language features to make the identification.

Character-Set Detection and Conversion

When reading in a document for indexing, the Verity engine commonly has no prior
knowledge of what character encoding the document uses. In those cases, the Verity
auto-detection process analyzes the incoming document data to determine its character
set.

After character-set detection, the engine converts the document’s text, if necessary, to the
character set required by the current locale. K2 then automatically converts between the
character set of that indexed information and the character set used by a Verity
application accessing it.

Verity’s character-set conversion capability can convert between all common character
sets in dozens of languages.

For more information on internationalization and localization of Verity applications, see
the Verity Locale Configuration Guide.

Administering a K2 Installation

For most administrative purposes, you use the browser-based K2 Dashboard to manage
K2 services and functionality at a K2 installation. The command-line tool rcadmin is also
available for performing many administrative tasks.
58 Verity K2 Getting Started Guide

2 Setting Up a Verity K2 Installation
Administering a K2 Installation
Administration-Server Architecture

On each host on which it installs a component of K2, the K2 installer also installs a K2
Administration Server. The Administration Server takes care of interactions between the
components of K2 on the local host, and between the local host and other machines.

Furthermore, for each installation as a whole there is one instance, on one host only, of
the K2 Master Administration Server (see Figure 2-6). The Master Administration Server
communicates with all the other Administration Servers. It is through the Master
Administration Server that you administer your K2 installation.

Figure 2-6 Master Administration Server

At installation time, the K2 Ticket Server and the Administration Servers on each host
machine are configured to connect to the Master Administration Server.
Verity K2 Getting Started Guide 59

2 Setting Up a Verity K2 Installation
Administering a K2 Installation
Administration Through the K2 Dashboard

Note This discussion is a brief summary only; for complete information on
using the K2 Dashboard, see the Verity K2 Dashboard Administrator Guide.

The K2 Dashboard is an application with a browser-based user interface enabling you to
control configuration settings for the components in your K2 system. If your K2 system
consists of many K2 Servers, K2 Brokers, and indexes in different physical locations, you
can use the K2 Dashboard to configure settings for the entire system from one computer.

These are some of the K2 Dashboard configuration tasks you can apply to a distributed
environment:

Add a new service (K2 Broker, K2 Server, K2 Ticket Server, or other service).

Manage and monitor the status of a K2 service.

Create and manage collections and their style sets.

Attach a collection or other index to a K2 Server.

Assign security to an index.

Generate user activity reports.

Set logging options and view log files.

Create a user defined job, a scripted command to run any command-line tool directly
from the K2 Dashboard.

Use user-defined jobs to optimize collections or stage indexes.

Add and remove administrative users.

Manage license keys.
60 Verity K2 Getting Started Guide

2 Setting Up a Verity K2 Installation
Administering a K2 Installation
Using the K2 Dashboard
To use the K2 Dashboard, you launch it and log in. After login, the K2 Dashboard home
page appears (Figure 2-7).

Figure 2-7 K2 Dashboard home page

Note these areas of the K2 Dashboard screen:

Menu bar. Across the top area of the window. Includes these links:

Home. Displays the K2 Dashboard home page (the page shown in Figure 2-7).

Preferences.

Help. Displays the Verity K2 Dashboard Administrator Guide. Context-sensitive Help
is available from other Help buttons.

Logout. Ends the current K2 Dashboard session.

System View. Displays all K2 system components, grouped by type. You select a K2
component in the System View to view or change its settings through the related
summary or detail page (or action page, accessed through the summary or detail
page).

Summary pages. Each displays a summary of the components represented by the
currently selected folder in the System View. For example, if you click the K2 Server

Menu
bar

System
View

Home page,
Summary page,
or
detail page
Verity K2 Getting Started Guide 61

2 Setting Up a Verity K2 Installation
Administering a K2 Installation
folder, the summary page lists all K2 Servers in the system and gives various statistics
and configuration actions for each one.

Summary pages offer useful overviews that allow you to monitor the performance of
system services and indexes.

Detail pages. Each displays information about an individual component that has been
selected either from a summary page or from within a folder in the System View. For
example, if you open the K2 Server folder in the System View and then click the icon
K2_Server_1 beneath it, the detail page for K2_Server_1 (Figure 2-8) appears.

A detail page shows an individual component’s relationship to other services and
indexes in the K2 domain. It also provides access to all configuration actions available
for that component.

Actions. You access most K2 Dashboard functions by selecting actions. For example,
separate actions allow you to start a service, create an index, or run a collection
indexing job.

Action links appropriate to each component are displayed in the upper area of the
component’s detail page (see Figure 2-8), and as links associated with the component’s
related services and indexes. Action links are also available on the K2 Dashboard home
page, as shown in Figure 2-7 on page 61.

Figure 2-8 Action links on the K2_Server_1 detail page
62 Verity K2 Getting Started Guide

2 Setting Up a Verity K2 Installation
Administering a K2 Installation
When you click an action link, the K2 Dashboard displays information related to that
action. For example, to view the service logs for K2_Server_1 in Figure 2-8, click the View
Logs action link. The K2_Server_1 detail page is replaced by the View Logs page.

Figure 2-9 View Logs page

You can then perform additional actions using the controls on this page.

Notifications. K2 Dashboard notifications are displayed on the home page and on
summary, detail, and action pages. They show system messages and prompt you to
perform required actions, such as restarting a K2 Server.

Using the StyleSet Editor
A style set is the complete set of style files, the Verity configuration files that control many
aspects of indexing behavior and index structure. Before you create a collection, you need
to select or create the style set that it will use.

Style files generally have the scope of an individual collection. When creating a
collection, you typically create (copy and modify) a set of style files customized for that
collection.

Verity K2 includes the StyleSet Editor application, which offers a graphical approach to
creating and modifying style files. You can launch the StyleSet Editor from the K2
Dashboard. Figure 2-10 shows the Create Styleset page.
Verity K2 Getting Started Guide 63

2 Setting Up a Verity K2 Installation
Administering a K2 Installation
Figure 2-10 Create Styleset page (in K2 Dashboard)

Clicking Continue brings up the StyleSet Editor’s Collection Fields Definition page
(Figure 2-11).

Figure 2-11 Collection Fields Definition page (in StyleSet Editor)

The StyleSet Editor’s user interface is gateway-specific; the fields, tabs, and navigation
features that you see depend on which gateway your style set will be used with.
64 Verity K2 Getting Started Guide

2 Setting Up a Verity K2 Installation
Administering a K2 Installation
Once you create a style set through the StyleSet Editor, it is automatically registered and
stored with the Master Administration Server, and then it is available to assign to a
collection. For more information, see the chapter on identifying style sets in the Verity K2
Dashboard Administrator Guide.

Administration With Other Tools

The Verity command-line tool rcadmin and a variety of command-line indexing tools
and configuration files provide a non-graphical alternative to administering a K2
installation.

Using rcadmin
The rcadmin command-line tool enables you to view and update configuration settings
for the components (K2 Servers, K2 Brokers, collections, and other indexes) in your K2
system. It also provides a scriptable, command-line alternative to the K2 Dashboard. In
some cases, you can use rcadmin to configure settings that are not available through the
K2 Dashboard.

You can create scripts that contain rcadmin commands to automate many administrative
tasks. For example, you can create a script to start or stop a server, add a new collection,
or take an index offline.

For more information on rcadmin, see the Verity K2 rcadmin Guide.

Using Indexing Tools
Verity provides a large number of command-line tools for use by administrators. You use
many of these tools to create the indexes and structures described in “Indexing and
Classifying Information” on page 71. These are some of the tools:

mkvdk creates a collection.

vspider creates a collection by indexing documents in a given directory structure.

k2spider works with K2 Server to create a collection by indexing documents in a
distributed environment.

mkpi creates a parametric index.

mktopics creates a topic set.

mkprf creates a profile net.

browse, didump, rcvdk, rck2, testqp allow you to inspect collections and other
indexes.
Verity K2 Getting Started Guide 65

2 Setting Up a Verity K2 Installation
Managing Information With the Business Console
Manually Editing Style Files
One of the administrative tasks involved with creating collections and other indexes is
the customization of style files. The K2 Dashboard provides access to the StyleSet editor,
a tool for graphically editing style files. (See “Using the StyleSet Editor” on page 63.)

Style files are text files with names of the form style.xxx, where xxx is a three-letter
extension related to the file’s function. For example, the style file that controls the
universal document filter (see “Verity Document Filters” on page 40) is named
style.uni. You can edit certain style files manually, using a text editor. Style files are
documented in detail in the Verity Collection Reference.

Managing Information With the Business Console

The Verity Business Console is a server-based Java application with a WebStart Java client
that allows knowledge workers and other business users to manipulate
information-classification structures and indexes. It also facilitates fast development of
search and classification applications constructed with the Verity Component
Framework.

Modules

The Business Console interface consists of several separate modules with different
purposes. You can access the modules through individual panes in the Business Console
Summary window, as shown in Figure 2-12.
66 Verity K2 Getting Started Guide

2 Setting Up a Verity K2 Installation
Managing Information With the Business Console
Figure 2-12 Business Console Summary window

These are the available modules:

Taxonomy. Use this module to manipulate taxonomies (see “About Taxonomies” on
page 84), topics, topic sets, and parametric indexes. You can use the taxonomy module
to classify information into categories for more efficient searching

Parametric index. Use this module to create and maintain parametric indexes (see
“Parametric Indexes” on page 78). Parametric indexes can refine the selection of
documents in a search.

Applications. Use this module to create application components with the Verity
Component Framework and configure them to work together as a search or
classification application. See “Using the Component Framework” on page 116.
Verity K2 Getting Started Guide 67

2 Setting Up a Verity K2 Installation
Managing Information With the Business Console
Promotion group. Use this module to define sets of links that should appear in your
application’s search results whenever the user enters specific queries. You can create a
promotion, such as an advertisement or datasheet, configure the promotion in the
Component Framework, and then display the promotions on the results page based
on the rules you have set.

Synonym group. Use this module to create and maintain keyword files that your
application can use to refine queries by expanding the search to include also
synonyms of the user’s search term.

Once you have selected a module, the Business Console interface for that module
appears (Figure 2-13). Each module’s interface includes multiple panes for creating and
manipulating the module’s data.

Figure 2-13 Taxonomy module interface
68 Verity K2 Getting Started Guide

2 Setting Up a Verity K2 Installation
Managing Information With the Business Console
User Types and user Roles

Several types of people are Business Console users:

Administrators might use Business Console to create parametric indexes. They
typically are IT specialists.

Business Analysts might use Business Console to create promotions and synonym
groups. They typically are domain experts in terminology and business issues.

Developers use Business Console to create applications that make use of JSP and XML
technologies.

Librarians (knowledge workers) use Business Console to create and manage
taxonomies.

Users in individual Business Console modules can occupy one or more roles. For
example, editors in the taxonomy, promotion group, and synonym group modules can
modify structures and can edit information for nodes. Publishers in the same modules can
also publish nodes.

Using the Business Console

To use the Business Console, you open a browser and navigate to the Business Console
URL. Once there, you click Launch Business Console Client and the Summary window
(see Figure 2-12 on page 67) appears.

Note Some installations are not licensed for the taxonomy module, and some
users may not have permission to access all licensed modules; therefore,
your Summary window might not look exactly like Figure 2-12.

The user interface that the Business Console presents to you, and the tasks that you
perform, are different for each module.

In the taxonomy module, for example (see Figure 2-13 on page 68), the window is split
into three main areas—one to display the categories of the taxonomy being worked on,
one to display source information you can add to the current taxonomy, and one for
manipulating information in the taxonomy itself.

As a different example, when using the application module to configure an XML
component from the Verity Component Framework (Figure 2-14), the window has two
panes—one for displaying the component hierarchy and one for setting component
attributes.
Verity K2 Getting Started Guide 69

2 Setting Up a Verity K2 Installation
Managing Information With the Business Console
Figure 2-14 Configuring a component with the application module
70 Verity K2 Getting Started Guide

3
Indexing and Classifying Information

At most Verity K2 installations, administrators or knowledge workers take responsibility
for generating the data tables and search-support structures that K2 applications use to
deliver information to users. Decisions about the business and access rules underpinning
the tables and structures are made by knowledge workers (domain experts and
librarians).

This chapter, therefore, contains information primarily of interest to administrators and
knowledge workers. It contains the following sections:

Building Collections

Classifying Information

Providing Recommendations

Extracting Entities

Building Collections

Before users can search or classify enterprise information, it generally must be indexed.
The K2 system uses various gateways to access and gather information into a universal
index, called a collection. The K2 Spider or the Index Server can manage the indexing
process that builds your collections. You control the indexing tool through the K2
Dashboard or through command-line tools such as rcadmin.
71

3 Indexing and Classifying Information
Building Collections
A collection stores the locations of all indexed documents and a list of essentially all
words contained within the text of the documents. Collections are in general much
smaller than the total size of the documents they represent. When a user chooses to view
a document returned as a search result, K2 uses a gateway to retrieve the document from
its repository.

A single K2 system can have multiple collections. For example, a business could establish
a collection containing all human resource documents, such as resumes and personnel
records. The same business could set up another collection that contains all customer
service information, or a third that contains departmental budget forecasts and reports. It
can then configure K2 to allow some users to search all of these collections, and to restrict
other users from a particular collection. For example, only those employees in the human
resources department who need access to personnel records would be able to run
searches against the human resources collection.

The Indexing Process

Figure 3-1 summarizes the process of indexing a set of documents in a repository.

1. One by one, repository documents are opened (by K2 Spider by or some other indexing
tool).

2. Each opened document’s format—such as Microsoft Word, Lotus 1-2-3, or HTML—is
automatically identified.

3. K2 invokes the correct document filter for the format and extracts a word index from the
document’s content.

4. K2 extracts document metadata (fields or attributes) for indexing into the collection’s
document table. Several predefined metadata fields are supported, including author,
date and title. Custom fields are also supported. You define custom fields with a name
and data type, such as text, date, or numbers.

By extracting field values through gateways, K2 preserves the structure of structured
and semi-structured documents so that users can target desired content more precisely.
72 Verity K2 Getting Started Guide

3 Indexing and Classifying Information
Building Collections
Figure 3-1 Indexing documents into a collection

The collection’s document table also includes an identifying key (such as physical file
system address or URL) for each document in the collection.

A collection can optionally store data for document zones and fields. A zone is a named
region of text in a document, such as the area in the <h2> or <body> tags in an HTML
file. A collection that includes zones allows users to search these regions of a document
for specific content.

For more information about building collections, see the Verity Command-Line Indexing
Reference, the Verity Collection Reference., and the Verity K2 Dashboard Administrator Guide.

Note Verity also provides API s for indexing collections from within an
application. For more information, see the discussion of the Collection
Indexing API in “Client APIs” on page 117.
Verity K2 Getting Started Guide 73

3 Indexing and Classifying Information
Building Collections
K2 Spider

The Verity K2 Spider manages the indexing process that builds your collections. To build
a collection, K2 Spider uses gateways to gain access to data and documents contained in
repositories.

For example, if an enterprise wants its knowledge workers to be able to search
Documentum files, the Documentum Gateway obtains access for K2 Spider, and then
extracts properties, fields, data, and security schemas from the Documentum repository.
K2 Spider then communicates with the gateway and gathers these attributes into a
collection.

When users query for a Documentum file, K2 searches against the collection and displays
a list of results. If a user selects a document for viewing, K2 uses the Documentum
Gateway to access the selected file in the repository and then display it.

Figure 3-2 Using K2 Spider for indexing
74 Verity K2 Getting Started Guide

3 Indexing and Classifying Information
Building Collections
Distributed Indexing
K2 Spider distributes processes to controllers, crawlers, and indexers. Documents can be
indexed in real time as they are created or modified, without disrupting current indexing
jobs. K2 crawlers “walk” through information sources as indexes are built. The K2 Spider
controller manages the crawlers, indexers, jobs, and workflow. As shown in Figure 3-2 on
page 74, the controller, crawlers, and indexers can be on separate machines.

A Spider job is the actual process of building the collection. Using optional features, the
K2 Spider can also crawl secure Web servers that use SSL certificates and Web servers
with cookies.

K2 Spider’s distributed architecture provides scalability and fault tolerance. For example,
you can configure K2 Spider to index one repository but create two separate, identical
collections on different servers. If one server slows down, K2 Spider continues to update
the collection on the other server, ensuring up-to-date query results.

Similarly, if K2 Spider detects a corrupted or unreadable document, it does not halt the
indexing operation. Rather, it logs the corrupted document and continues to index the
remaining documents, guaranteeing that they become part of the collection. You can then
use the log information to locate and repair the corrupted documents in the repository.

The K2 administrator controls K2 Spider’s indexing through the K2 Dashboard or
through the command-line tools k2spider_srv and k2_spider_cli.

Continuous Indexing
K2 Spider continuously monitors the state of your collections. Its crawlers are persistent
and regularly crawl documents based on the indexing frequency you set. They can also
be configured to index documents as soon as they are created or modified, and can be
integrated with content management system workflow processes. Collections can be
updated continuously and automatically, even while searches are in progress. You do not
have to repeatedly schedule which documents to index.

Customizing K2 Spider
You can configure K2 Spider to suit your specific requirements through its published
APIs. K2 Spider includes C and Java APIs that give you flexibility and control in building
indexed collections. The APIs enable you to build your own administrative tool or user
interface to control different aspects of the indexing process.

K2 Spider also provides style files (configuration files) for setting up indexing preferences.
Style files are used to control different aspects of a collection, such as the summary data
displayed in query results or the fields available for searching. For both optimal indexing
performance and ease of administration, style files can be created and edited through the
Verity K2 Getting Started Guide 75

3 Indexing and Classifying Information
Building Collections
StyleSet Editor, a Windows-based interface. The SSM lets you visually explore
repositories, define fields to extract for indexing and map repository fields to collection
fields. For more information on style files, see “Manually Editing Style Files” on page 66.

Direct Indexing

Verity K2 also includes a programming interface that applications can use to index and
update collections without going through K2 Spider. The Collection Indexing Java API
uses the K2 Index server to allow your application to submit document content directly
for indexing into a collection.

The Collection Indexing API is especially useful in situations such as these:

No gateway exists for the document’s repository.

You want to implement custom crawling or event triggering not handled by the
repository’s gateway.

You want to augment a collection with metadata during or after indexing.

The content to be indexed is on a remote system from the collection and file sharing is
not available.

Note The collection indexing API is not typically used when K2 Spider
operations are adequate; using K2 Spider does not require programming.

When using the Collection Indexing API, your application can submit individual
documents, or it can submit a list of documents in a special format, called a bulk insert file
(BIF).

Creating Topic Sets

In K2, a topic is a named expression in the Verity Query Language (VQL), designed to
locate documents related to a given concept or subject area. For example, a topic named
DaimlerChrysler Cars might consist of a query expression that searches for that term
itself, plus any corporate division names (like Mercedes Benz), plus the names of any of
its automobile lines (like Chrysler), plus the names of any of its individual car models
(like PT Cruiser). For this simple example, the body of the topic might contain VQL
elements like these:

DaimlerChrysler Cars <OR> Mercedes Benz <OR> ... <OR> Chrysler
<OR> PT Cruiser <OR> Caravan <OR> ...<OR> Jeep <OR> <WORD<CASE>
Wrangler <OR>...
76 Verity K2 Getting Started Guide

3 Indexing and Classifying Information
Building Collections
A more specific topic, such as hybrid cars, might consist of a query that searches for
Honda Insight and Toyota Prius and possibly technical or legislative terms in documents
relating to low-emission vehicles.

Topics can be created manually by domain experts or knowledge workers who
understand how to express a concept in terms of search-query strings. They can also be
created automatically, using machine-learning tools. An individual topic can be a simple,
short expression, or it can be a long and complex one, involving many terms and
sophisticated boolean and non-boolean search operators.

Topics can be combined and compiled into groups called topic sets. A topic set can have a
flat structure or it can be hierarchical.

Administrators can create topic sets using either Intelligent Classifier or the mktopics
command-line tool. K2 applications can use topic sets in several ways:

A topic set can be attached to an application to integrate it into the application’s search
capabilities.

A topic set can be indexed into a collection to provide extra-fast searches over the
collection for the topic set’s terms.

A topic set can also be used as the set of business rules for populating the taxonomy of
a knowledge tree; see “Creating Category Definitions” on page 86.

Topics are also used as the basis for profile nets; see “Creating Profile Nets” on
page 89.

Note Topic sets are commonly used as sets of query expressions only; the topic
names are used as search terms but do not necessarily appear in a K2
application’s user interface. If you want to implement a topic-set structure
that users can directly browse, you can create it in a parametric index, as
described in “Relational Taxonomies” on page 108.

For more information on topics and topic sets, see the Verity Collaborative Classifier Guide
and the Verity Query Language and Topic Guide.

Setting Up Parametric Search

Most enterprise information is semi-structured. For instance, a text document
(unstructured) commonly includes associated metadata (structured) such as author,
content source, date of creation, size, format, and language. Textual product pages in an
online catalog commonly include extensive metadata relating to product features.
Verity K2 Getting Started Guide 77

3 Indexing and Classifying Information
Building Collections
Parametric search is a Verity search capability in which users can locate information by
simultaneously selecting values in structured metadata and searching through
unstructured text.

In a typical setup, each document used for searching includes both unstructured data and
structured attributes. For example, in the case of documents that describe cars, attributes
might include Color, Price, Make, Model, Mileage, Location, and Year. Attributes can
have numeric, date, or string values. The free-text portion of a search queries the
unstructured data, while the parametric-selection portion queries the structured data
through its attributes.

For example a parametric-search query for a car might be described like this:

Find Red cars less than $15,000 with “air conditioning”

in which Red is one of the available values for the Color parameter, less than $15,000
selects a range from the Price parameter, and air conditioning is a phrase to be searched
for in the unstructured text.

In addition to the ability to combine text queries and parametric values, parametric
search can rank results, by either text-query scores or parameter values. The application
can then sort the results for the user and allow the user to further refine or broaden the
search.

Parametric Indexes
Parametric indexes are the structures that underlie parametric selection. You can think of a
parametric index as an extension to a collection’s word index; the Verity engine uses it to
identify documents matching the requested parameters.

Conceptually, you can view a parametric index as an n-dimensional “parametric cube,” a
matrix in which each dimension represents a parameter. Figure 3-3 shows a portion of a
three-dimensional version, in which the parameters are color, model year, and price.
78 Verity K2 Getting Started Guide

3 Indexing and Classifying Information
Building Collections
Figure 3-3 A “parametric cube”

Each individual value or range of values for a parameter is called a bucket, and each
parameter as a whole (each dimension of the cube) makes up a bucket set. Each bucket
holds references to the documents that have that value for that parameter. For example,
in the portion of the cube shown in Figure 3-3, the Color bucket set contains three
buckets: Black, Red and Silver. The Red bucket identifies all documents in the collection
that relate to red cars.

In this example, a parametric selection for all red cars costing less than $15,000 and made
in either 1999 or 2000 (the shaded area in Figure 3-3) returns only those documents whose
field values satisfy all three criteria.

Administrators or knowledge workers can build parametric indexes on top of existing
Verity collections or directly from specifically formatted XML documents.
Verity K2 Getting Started Guide 79

3 Indexing and Classifying Information
Building Collections
To create a parametric index, the administrator first creates an XML-based outline file that
specifies the collection or XML fields from which to create the parameters. The
administrator can then use the mkpi command-line tool to create the parametric index
itself. Alternatively, a knowledge worker can use the graphical interface of the Verity
Collaborative Classifier to set up the outline file and create the index.

For more information on configuring and using parametric selection, see the Verity K2
Dashboard Administrator Guide, the Verity Collaborative Classifier Guide, or the Verity K2
Parametric Developer Guide.

Note parametric indexes can also support user browsing and selection from
taxonomies (hierarchical classifications of information). See “About
Taxonomies” on page 84 and “About Relational Taxonomies” on page 87.

Extracting Document Features

Document clustering is a technique for analyzing a set of documents to create groups
(clusters) of them that address the same subjects. Document summarization is a technique
for presenting a list of keywords or a short passage that summarizes the content of a
document.

Clustering and content summarization rely on the Verity feature extraction technology,
which operates during collection indexing. Feature extraction automatically discovers
the subjects addressed in a document by performing vector analysis on nouns and noun
phrases. Each document’s feature vector is then stored in the collection for use in
clustering and summarization.

Clustering and summarization are collection-level features. Therefore, the administrator
must enable them at indexing time, by specifying the generation of feature vectors during
collection indexing.
80 Verity K2 Getting Started Guide

3 Indexing and Classifying Information
Extracting Entities
For more information on clustering and summarization, see “Clustering Results” on
page 103 and“Returning Document Summaries” on page 104. For more information on
feature vectors, see the Verity Developer’s Kit Programming Reference and the Verity
Collection Reference.

Extracting Entities

K2 developers can create applications that use a product called Verity Extractor, which is
an engine that applications can use to extract entities—words or blocks of text that have
specific meaning (for example, names, telephone numbers, URLs, addresses, product
IDs)—from a document or set of documents.

With Verity Extractor your application can

Identify and extract elements from document content, based on predefined grammars
and rules.

Use extracted elements to support analytical applications or metadata-enriched search
and browse applications.

Validate documents based on a defined patterns or rules.

The Verity Extractor product includes these components:

Core engine. Supports the extraction of predefined entities using prebuilt resource
files (dictionaries and grammars).

Dictionaries. A dictionary is an XML file that provides a vocabulary for a simple
entity, such as a city or country name. A dictionary has a list of headwords; each
headword has a set of associated words called synonyms. Verity Extractor uses the
dictionary to scan a document and extract the defined entities that match the
headwords or synonyms.

Grammars. A grammar is an XML file that provides rules for complex entities such
as URLs or postal addresses. Rules are written in regular-expression format, can be
recursive, and can refer to other grammars and dictionaries. Verity Extractor uses
the grammar to scan a document and extract entities that match the rules.

C API. Allows you to write a C application that performs entity extractions.

Java API. Allows you to write a Java application that performs entity extractions.

Command-line tool (mkve). Allows you to perform entity extractions from the
command line and generate output in multiple formats.
Verity K2 Getting Started Guide 81

3 Indexing and Classifying Information
Extracting Entities
Entity extraction filter (flt_ve). A document filter that extracts entities during the K2/
VDK indexing process, allowing entities to be extracted and immediately stored in
Verity collection fields.

Common entity resource files. A basic set of pre-packaged, U.S.-specific dictionary
and grammar files for common entities such as person, place, organization, address,
phone number, email address, date and time.

Figure 3-4 shows the Verity Extractor being used to extract entities into a Verity collection
during the indexing process.

Figure 3-4 Verity Extractor (shaded) used during indexing

Table 3-1 lists examples of some of the entities that can be extracted with the common
entity resource files.
82 Verity K2 Getting Started Guide

3 Indexing and Classifying Information
Extracting Entities
With Verity Extractor, you can also create your own custom dictionaries and grammars,
to refine its capabilities or extend them beyond the common entities.

For complete information about entity extraction and all components of Verity Extractor,
see the Verity Extractor Programming Guide.

Table 3-1 Some common entities

Entity Description/Components Example(s)

Commercial organization Business name

Business type

Business designator

Verity, Inc.

Cardiff Software

Person(s) Title

Given name

Family name

Suffix

 President George W. Bush

 Harold Potter

 Mr. and Mrs. John Doe

 Mary and John Doe

Place(s) City

State

Country

Region

Tokyo

Sunnyvale, California

United Kingdom

Northern and Eastern Europe

Postal address 894 Ross Drive, Sunnyvale

PO Box 9090, Beverley Hills, 90210

Internet address http://www.verity.com

Money $200.00

$50 million

Date Any time designated by a
particular day, month, or
year

Monday

 last August

 1/1/2004

300 B.C.

 July 4th

 Dec. 2000
Verity K2 Getting Started Guide 83

3 Indexing and Classifying Information
Classifying Information
Classifying Information

Besides allowing you to create indexed collections that support different kinds of search,
and besides providing tools for extracting various kinds of entities from unstructured
data, K2 also helps you to create classification structures that aid users to more readily
access the specific information they seek.

Classifying information into categories and subcategories allows your users to locate
individual files by drilling down through the concepts represented by each category until
they find relevant documents. It can also help to profile or classify documents for routing
purposes.

Verity supports several kinds of information-retrieval structures based on these
categorical hierarchies, called taxonomies.

About Taxonomies

A taxonomy is a hierarchal organization of categories. It is typically represented as a tree
structure or directed graph, with a single, most general category at the top, branching
downward to subcategories, which in turn branch into deeper subcategories. For
example, Figure 3-5 shows a small portion of a taxonomy that classifies automobiles by
manufacturer, product line, and model name.

Figure 3-5 A taxonomy of automobile models
84 Verity K2 Getting Started Guide

3 Indexing and Classifying Information
Classifying Information
Note This taxonomy is not the only way to classify automobile brand names.
You could devise completely different taxonomies that might instead
classify automobiles by manufacturing location, consumer market
segment, price, or other features. K2 allows the use of multiple taxonomies
to categorize the same information; for more details, see “About Relational
Taxonomies” on page 87.

Using taxonomies is a flexible approach to classification that can combine domain
expertise with automatic techniques to apply a hierarchical structure to information from
many different kinds of documents. Creating a taxonomy organizes your information
assets into categories that are easy for users to understand and browse. There are four
basic steps to implementing taxonomies in K2:

1. Build the taxonomy.

2. Create definitions for each category in the taxonomy.

3. Populate the taxonomy with documents.

4. Use the taxonomy.

Building the Taxonomy
A taxonomy is a skeletal navigation structure of named categories. It defines the views by
which you want to organize your content. Thus, for a zoological taxonomy you might
have a category Animal, with child categories Bird and Cat. These children may in turn
have descendants, and so on.

The result of this stage is typically a tree structure of names. (It is possible, however, for a
category to have more than one parent category, in which case the structure is more
generally characterized as a directed graph.)

There are several techniques you can use to build a taxonomy:

Use a domain expert. This is a common method for building a taxonomy. A domain
expert builds the skeleton and assigns names to the categories. Yahoo! and some other
corporations employ this method.

Import a taxonomy. This technique allows users to extract implicit hierarchies from
existing URL or file system hierarchies, or metadata, and mirror them in a taxonomy.

Purchase an industry taxonomy. Vendors such as Lexis-Nexis or Factiva provide
taxonomies for particular industry segments.

Use thematic mapping. In many enterprises, the information explosion has reached a
point where it is impossible for a human to envision all the various themes and topics
Verity K2 Getting Started Guide 85

3 Indexing and Classifying Information
Classifying Information
represented in the corpus—the entire collection or body of knowledge—of the
enterprise. K2 provides a thematic-mapping capability that extracts key concepts from a
set of documents, constructs a taxonomy from them, and assigns the documents to the
taxonomy. Thematic mapping also generates human-readable labels for the concepts
(categories) in the taxonomy.

For more information on thematic mapping, see the Verity Knowledge Console Guide.

Creating Category Definitions
The next step is to attach a definition to each category to control how it is populated with
documents. A category definition consists of a mathematical rule against which each
document can be evaluated for membership in that category. For example, a very simple
rule for the category Animal might be “If a document contains the word paw or hoof, it
belongs to this category.” The result of this stage is a taxonomy with attached category
definitions.

Note For certain types of taxonomies (rule-based taxonomies), category
definitions are part of the taxonomy itself and do not need to be
attached in a separate step.

There are several methods you can use to create category definitions:

Business rules. A domain expert defines a rule for each category. Verity’s powerful
topics feature (see “Creating Topic Sets” on page 76) is one means for generating such
business rules.

Import. Document membership in categories mirrors a file system or URL hierarchy.
This method corresponds to the import technique for building the taxonomy. Both the
taxonomy structure and the membership of documents in categories mirrors a
specified structure such as a file system.

Industry taxonomy. A standards body, an independent vendor, or Verity Professional
Services creates category definition rules for an industry taxonomy. This method
corresponds to the industry taxonomy technique for building the taxonomy. Both the
taxonomy structure and the membership of documents in categories are specified by
the industry taxonomy.

Automatic classification. Verity provides an automatic classification system, called
the Logistic Regression Classifier (LRC), which uses state-of-the-art machine learning
technology to perform this task. The LRC is fed positive or negative example
documents for membership in each category. The system learns from these “training
documents” and creates a defining rule for each category.

For more information on the LRC, see the Verity Knowledge Console Guide.
86 Verity K2 Getting Started Guide

3 Indexing and Classifying Information
Classifying Information
Populating the Taxonomy
Once the taxonomy is built and each of its categories is defined, you can populate it with
documents. The result of this stage is a fully functional taxonomy, which might be a topic
set or portion of a parametric index.

You either accomplish this task either manually or automatically:

Manual. Experts determine what document belongs in what categories, and they
populate the category nodes in the taxonomy accordingly. Yahoo! populates its Web
taxonomy in this way.

Automatic. A Verity tool evaluates each document against the rule for each category
and assigns the document to the appropriate categories in the taxonomy. This
approach takes advantage of the business-rules category definitions described earlier.

The best approach is often to use a combination of the automatic and manual methods.

Using the Taxonomy
Studies show that with a well-implemented taxonomy, users use a balanced combination
of search and browsing to locate documents. The search could be issued at the top level to
filter the categories in which matching documents exist, or scoped within a subset of the
taxonomy.

To accommodate the different ways that various groups use information, you can create
multiple taxonomies to organize content in ways that make the most sense for each
group. For example, separate taxonomies can be created for the sales, marketing, human
resources, and engineering departments. This puts information into the context of your
overall business model, and adds a valuable dimension to the content discovery process.

About Relational Taxonomies

The use of multiple taxonomies to categorize the same information is implemented as the
relational taxonomies feature of parametric search. Using relational taxonomies, end users
can simultaneously navigate more than one taxonomy, drilling down and navigating to
the information they seek in the manner most intuitive to them.

Relational taxonomies are useful in the common situation where a document can
logically belong to multiple information structures, or where a business has multiple
organizational perspectives for classifying the same information. For example, to help a
user find a document about software companies in Sunnyvale, which of the following
taxonomies should an application provide?
Verity K2 Getting Started Guide 87

3 Indexing and Classifying Information
Classifying Information
Drill down by location. Follow links from USA to California to Sunnyvale, hoping to
find a Software Companies category.

Drill down by business category. Follow links from Businesses to Computers to
Software, hoping to find a Sunnyvale category.

With relational taxonomies, the user is not bound to the taxonomy structure envisioned
by the taxonomy creator. Instead, users can drill down and navigate as they wish,
jumping from taxonomy to taxonomy wherever appropriate.

Consider a taxonomy showing the worldwide locations of car manufacturing plants.
Figure 3-6 illustrates a portion of that taxonomy.

Figure 3-6 A taxonomy of automobile manufacturing plants

In this taxonomy, automobile manufacturing is organized geographically. Following one
path shows that Ford Explorers are manufactured in (among other places) Windsor,
Ontario in Canada. Comparing this taxonomy with the one presented earlier in
Figure 3-5 on page 84 shows that a relationship clearly exists between the two
taxonomies. Both can be followed to arrive at the same document.

Each taxonomy has a static navigation path. However, when two or more taxonomies
share overlapping sets of documents (such as documents describing the Ford Explorer in
this example), they have a relationship that allows the trees, conceptually, to be traversed
dynamically. This dynamic traversal effect occurs because selections from one taxonomy
are dependent on the current selections from the other taxonomies.

Consider this traversal path through the two taxonomies:
88 Verity K2 Getting Started Guide

3 Indexing and Classifying Information
Classifying Information
1. The user starts the traversal from the root (Automobile models) of Figure 3-5 on
page 84, then selects the manufacturer Ford. Only Ford-related documents are selected.

2. The user then jumps to the Windsor link in the taxonomy of Figure 3-6. Now, only
documents related to Ford vehicles manufactured in Windsor, Ontario are selected.

3. The user navigates to and selects the Explorer link, obtaining a list of documents
related to Explorer manufacturing in Windsor.

Conversely, the traversal could follow the opposite path:

1. The user starts the traversal from the root (Automobile factories) of Figure 3-6, then
follows the links down to Windsor. Only documents related to vehicles manufactured
in Windsor, Ontario are selected.

2. The user then jumps to the Ford link in the taxonomy of Figure 3-5 on page 84. Now,
only documents related to Ford vehicles manufactured in Windsor, Ontario are
selected.

3. The user follows that taxonomy down through Ford trucks to the Explorer link,
obtaining a list of documents related to Explorer manufacturing in Windsor.

For an example of the interface an application might use to present relational taxonomies
to the user, see “Relational Taxonomies” on page 108.

Creating Profile Nets

With the K2 Profile Service, developers can build applications that classify documents for
purposes other than taxonomy browsing.

The Profile Service is based on sophisticated technology that matches the terms and
concepts in incoming documents to profile nets, which are sets of topics (stored queries)
called interest profiles. The Profiler Service uses interest profiles to determine whether a
given document is about a given subject. The application can then assign the document
to the appropriate category or categories, which can in turn trigger messaging systems or
cause the documents to be sent directly to interested users. The Profiler model is ideal for
document classification, message routing, or push technologies.

(Note that, in contrast to the Verity engine, which indexes a number of documents and
then evaluates individual queries against them, the Profile Service indexes a number of
queries and then evaluates individual documents against them.)

For example, each email message arriving into a customer response system (Figure 3-7)
might need to be routed to one of several service specialists. The Profiler application can
match the content of each email to the stored interest profiles, and thereby know which
specialist should receive the message.
Verity K2 Getting Started Guide 89

3 Indexing and Classifying Information
Classifying Information
Figure 3-7 Using the K2 Profiler for email routing

In this example, the content of email B most closely matches the profile associated with
support specialist B, so the application sends the email to B.

The Verity administrator creates the interest profiles and compiles them into a profile net
by using the mkprf command-line tool. Each profile in a profile net is a topic. In fact, a
topic set can be converted directly into a profile net.
90 Verity K2 Getting Started Guide

3 Indexing and Classifying Information
Providing Recommendations
For more information on creating interest profiles and writing a K2 Profiler application,
see the Verity K2 Profiler Programming Guide.

Providing Recommendations

In the Verity architecture (see Figure 1-2 on page 20), the most sophisticated information
access service is recommendation, the expression of social networks. Recommendation
focuses on the relationships between people in an enterprise, as expressed by the
documents they manipulate and the actions they take. The portion of K2 that implements
social networks is the Recommendation Engine.

The Recommendation Engine

The Recommendation Engine is a K2 component designed to enhance the end-user's
information discovery experience using a powerful and flexible matching engine. In
addition, the Recommendation Engine also provides a platform for enabling social
networks. Social networks help in modeling people and their relationships with
information and other people.

The Recommendation Engine allows the user to find arbitrary correlations across entities
of different types. Common examples of entities are documents, users and queries. In
addition, the Recommendation Engine allows for user-defined entities, such as
categories, frequently asked questions (FAQs), virtual documents, and so on. For
example in ecommerce applications, you can create entities representing classes of
product families (such as BOOKs, CDs, and DVDs) and control what entities are
recommended for a given operation, or what entities are used as inputs to a
recommendation.

For more information on using the Recommendation Engine, see the Verity K2 Dashboard
Administrator Guide and the Verity K2 Recommendation Engine Guide.

The Recommendation Engine is built on three components that let you take advantage of
social networks:

Tensor Matching Engine

Entity Profiles

Transactions
Verity K2 Getting Started Guide 91

3 Indexing and Classifying Information
Providing Recommendations
Tensor Matching Engine
The Recommendation Engine maintains entity profiles that are managed and
manipulated as vectors using a technology called Tensor Space Analysis (TSA). An entity
profile is essentially the mathematical representation of a document or user on multiple
planes in the tensor space. The tensor space creates a dimension for each unique term the
Recommendation Engine encounters. In simple terms, each entity is represented by a
collection of words. Each word has a weight associated with it, and the Recommendation
Engine can measure the proximity of entities by using these weights.

This technology makes it possible for the Recommendation Engine to define an input
context, which is a combination of a set of profiles based on entities such as the user's
identity, the query used, and the document being viewed. The Recommendation Engine
represents the input context in the same tensor space as the document, user, and other
entity profiles. This allows the retrieval of the closest, or most relevant entities. For
example, if profiles are defined for users who are considered experts on a topic, only
documents related to users who are experts on the current topic of interest (as defined by
the input context) are retrieved by the query. The documents retrieved are those
determined to be the most relevant to the input context; for example, the documents
marked as “A” in Figure 3-8.

Figure 3-8 illustrates how users, documents, queries, other entities, and context coexist in
the tensor space.

Figure 3-8 Tensor space example
92 Verity K2 Getting Started Guide

3 Indexing and Classifying Information
Providing Recommendations
Entity Profiles
Entity profiles are dynamic representations that continually adapt to user interactions.
The essence of the Recommendation Engine lies in the creation and updating of entity
profiles, and the subsequent utilization of these profiles in application programming
interfaces (APIs).

A document profile can be created over time from the following evolving information:

the content of the document

relevance of query terms to the document content

Document profiles are created on a per-collection basis, and reside in a recommendation
index called the RE Doc Index. The document profiles are initially seeded with the
information stored about the documents in a Verity collection. Any fields in the collection
can be used to contribute to the initial vectors of the documents in the RE Doc Index.

Over time, a user's interest profile can be affected by information, such as the following:

a list of interests, submitted via a form

queries submitted to the system by that user

documents rated or viewed

User profiles are stored in a recommendation index called the RE User Index. It is possible
to separate a user's interest profile from the user's expertise. This can be done by creating
a user-defined RE Index, of type “expert”, with an alias, say, “Technical Support”. These
expertise profiles can be created in the following ways:

Manually assembled by the domain expert

Imported from specific organization databases, such as resume databases

Automatically generated from documents, such as analyst reports, authored by the
experts

The Recommendation Engine automatically maintains the profiles; however, the user can
optionally control (edit) the contents of the profile for tuning.

Transactions
The tensors representing users and documents change over time due to user interactions.
These interactions are recorded as Recommendation Engine transactions, which represent
the interactions between people and information in the enterprise and therefore
encapsulate the constantly evolving social network. If a user changes projects, and the
user's interests change, the system is able to track these changes, so that the system
provides improved relevance with minimal administration overhead.
Verity K2 Getting Started Guide 93

3 Indexing and Classifying Information
Providing Recommendations
The K 2 Recommendation Engine continually gathers this transaction information and
dynamically updates the profiles.

The transaction interface is exercised whenever the user interacts with the system—as
when selecting a document of interest, submitting a purchase order, or explicitly rating
the relevance of an item of information to the query that retrieved it. Popular documents
will appear in many transactions, and therefore their profiles will evolve more rapidly
than those of less popular documents.

Recommendation applications can choose which interactions to consider as transactions.
While one enterprise will find value in tracking user click streams, another might choose
to consider only explicit user ranking and feedback. The application can determine which
entities are included in a transaction and what relevance to assign to it.

Setting Up Recommendation Indexes

Implementing a solution that uses the Recommendation Engine involves both
developing the application itself and instituting a process for creating and updating the
user and document profiles.

Both user and document profiles evolve over time, but it may be important to seed them
initially with sufficient information to make them immediately useful. As noted earlier,
document profiles are seeded with automatically extracted feature information that is
generated when the documents are first indexed into a collection. User profiles do not
automatically contain any initial information, but the Recommendation Engine provides
an XML import interface you can use to seed that initial information. The information
you import can come from many sources, including the following:

Customer data from a Customer Relationship Management (CRM) system
94 Verity K2 Getting Started Guide

3 Indexing and Classifying Information
Providing Recommendations
Employee data from human resource or LDAP databases

Job descriptions from organization charts

Document relationships from clustering algorithms

For more information on the user-visible features a recommendation application can
implement, see “Implementing Recommendations” on page 110. For more information or
recommendation indexes and entity profiles, see the Verity K2 Recommendation Engine
Guide.
Verity K2 Getting Started Guide 95

3 Indexing and Classifying Information
Providing Recommendations
96 Verity K2 Getting Started Guide

4
Delivering Information to Users

In most K2 installations, developers—software designers and programmers—are
responsible for building the customized K2 applications or portals that deliver enterprise
information to users. Developers are also responsible for integrating Verity K2 with the
enterprise’s other systems.

This chapter contains information primarily of interest to developers. It gives a brief
overview of K2 application development. For a more complete introduction to the
options and interfaces available to Verity application developers, see the Verity Developer
Getting Started Guide.

This chapter contains the following sections:

Providing Search Capability

Presenting Search Results

Retrieving and Displaying Documents

Implementing Parametric Search

Relational Taxonomies

Implementing Profiling

Implementing Recommendations
97

4 Delivering Information to Users
Providing Search Capability
Providing Search Capability

Text search is the most basic and common feature of K2 applications. Once your
administrator has built indexed collections of documents and has added higher-level
classification and personalization information, your enterprise’s users can then take
advantage of your application or portal to access the information structures constructed
for them.

K2 gives you flexibility in creating your application’s presentation interface. You can
write your own presentation interface or integrate K2 with presentation interfaces from
third-party vendors. To support development, K2 provides Java and C APIs (including a
.NET interface), plus sample application components. If your enterprise uses a
presentation interface from a portal vendor, such as Oracle, BEA or IBM, you can use
these APIs to integrate K2. You can also use the APIs to write your own presentation
interface, should your enterprise require it.

The main function of your application will be to support the types of searching,
browsing, and recommendation features that are most helpful to your users.

VQL and Search Operators

K2 search is based on the Verity Query Language (VQL). VQL is a rich language for
writing queries that return relevant information. VQL includes a large number of
operators and modifiers that offer users many options for conducting specific,
sophisticated types of search. Your application can implement support for some or all of
the available search types.

As one example, the proximity operator <NEAR> allows users to search for occurrences of
terms that are close to each other (but not necessarily adjacent) in the indexed documents.
A query string to perform a proximity search might look like this:

history <NEAR> philosophy

While it is possible for your application to make such VQL operators directly available to
end users, it is more typical (and user-friendly) to hide this level of complexity, instead
using checkboxes, buttons, or menus to allow users to select the type of search desired.
The user then enters the specific terms to be searched, and your application inserts the
appropriate operators and modifiers before submitting the search query to K2.

For some search features described here, support from administrators is also required, in
the form of configuration settings made at indexing time so that the necessary extra data
structures are created.
98 Verity K2 Getting Started Guide

4 Delivering Information to Users
Providing Search Capability
By writing complete VQL support into your application, you can turn all your users into
search experts even before they start using K2. For complete information about the Verity
Query Language and its operators, see the Verity Query Language and Topic Guide.

Query Parsers

K2 offers a number of different query parsers for your application to use. Each parser
provides different search capabilities. Note that the same search query can yield different
results with different parsers.

Simple query parser (full-text parser). This is the standard parser for text searches
and for searches over document fields and zones. It has full support for VQL.

Free-text query parser. This parser automatically performs a stemmed search, and it
scores results based solely on term frequency in the document. Simple, short words in
the query term are stripped out before the search is conducted. This parser does not
support VQL operators.

Internet-style query parser. This parser lets users enter familiar Web-search-style
commands to find information. It supports case-insensitive searching, quoted phrases,
natural-language questions, and the use of plus and minus signs to include or exclude
specific terms. The Internet-style query parser does not support VQL operators.

BooleanPlus query parser (explicit parser). This parser is similar to the simple parser
in that it supports all of VQL and it supports field and zone searches. Unlike the
simple parser, however, this parser requires explicit VQL query syntax in all cases. For
this reason, the BooleanPlus query parser typically is not used in end-user search
forms.

Other kinds of query parsers can be developed and integrated into K2. Query parsers are
described in the Verity Query Language and Topic Guide.

Using the simple query parser, your application can apply the types of search described
here to one or more indexed collections. Some variations of full-text search are available
only if the collections have been indexed with the proper configuration settings.

Implementing Search

The K2 search features provide your application with many choices for giving users
precise results. By using the correct type of search, users can quickly find the information
they need. Even one-word queries can return accurate results.

Your application conducts searches by making calls to the K2 VSearch Java API or the
Verity Client C API.
Verity K2 Getting Started Guide 99

4 Delivering Information to Users
Providing Search Capability
Simple Search
By default, single words are searched case-insensitively and strings of words are
searched as phrases. Your application can force case-sensitive searching by adding the
<CASE> operator to the user’s search term. Your application can force a search for the
individual words in a phrase (such as air conditioning) by converting the string to
a comma-separated list of terms (air,conditioning) before submitting the query to
K2.

Stemmed Search
Stemmed search is a fuzzy search (an inexact search) that returns occurrences of indexed
words whose word stems match the search term. For example, a stemmed search for
dance returns documents that contain dance or dancer or dances.

To conduct a stemmed search, your application adds the <STEM> operator to the user’s
search terms.

Typo Search
Typo search is a fuzzy search that allows your users to find and retrieve documents even
when they misspell the search terms. K2 allows a customizable, limited range of
deviation in spelling between search terms and their indexed equivalents. For example, a
typo search for contiment might return documents containing either continent or
condiment.

To conduct a typo search, your application adds the <TYPO> operator to the user’s search
term.

Synonym Search
Synonym search is a fuzzy search that returns occurrences of the search term or any of its
synonyms. The synonyms are listed in a thesaurus file. For example, a synonym search
for brave might return documents that contain brave or courageous or fearless.

To conduct a synonym search, your application adds the <THESAURUS> operator to the
user’s search term. A properly constructed and compiled thesaurus file must be installed.
K2 is delivered with default thesauruses for some languages; for others, the
administrator may have to create a thesaurus file, as described in “Using Thesauruses”
on page 103.
100 Verity K2 Getting Started Guide

4 Delivering Information to Users
Providing Search Capability
Soundex Search
Soundex is a fuzzy search that retrieves documents containing terms that are phonetically
similar to the search term. For example, a Soundex search for Joan might return
documents containing either Jean or Jane.

To conduct a Soundex search, your application adds the <SOUNDEX> operator to the
user’s search term.

Word stems and indexed synonyms can be used in search terms, and relevancy ranking
to assign a user-identified level of importance to documents. Wild cards can also be
employed when they know only a few characters or a characteristic of a string being
searched.

Wildcard Search
In wildcard search, users can substitute a wildcard character when they know only some of
the characters of the term they are searching for. For example, a wildcard search for ta*l
returns documents that contain tail or tall or tactical.

To conduct a wildcard search, your application adds the <WILDCARD> operator to the
user’s search term.

Language-Specific Search
K2 includes support for search and display of documents in multiple languages. An
application can be licensed to support one or more locales, each of which allows a user to
search according to the rules of the locale’s language.

Also, if your K2 installation is using the multilanguage locale (see “Locales” on page 55),
users of your application are able to conduct stemmed searches in any of the locale’s
languages for which your installation is licensed.

For example, a single collection might include documents in English, French, and
Japanese. The user can select a language and enter a term, and then your application can
construct a query term like this:

<LANG/fr><STEM>fort

in which case only documents containing French words whose stem is fort will be
returned.
Verity K2 Getting Started Guide 101

4 Delivering Information to Users
Providing Search Capability
Accent-Insensitive Search
Depending on the language of the documents being searched, searches with the simple
query parser are by default either accent-insensitive or accent-sensitive. In an
accent-insensitive search, using the search term resume returns documents that contain
resume or resumé or résumé. In an accent-sensitive search, using the search term resume
returns only documents that contain resume.

Converting your application between accent-insensitive and accent-sensitive searching is
not a programming task; it is a configuration task performed by the administrator, as
explained in the Verity Locale Configuration Guide.

Using Stop-Word Lists

Stop-word lists are files that contain words that should not be searched for. Verity supports
several different types of stop-word lists. Some are applied to the collection at indexing
time to prevent the stop words from appearing in the index, whereas others are applied
at search time to strip the stop words from the search query.

You can create stop-word lists as part of the application-development process, or the
administrator can create and modify stop-word lists as part of maintaining the K2
installation.

Stop-word lists are described in more detail in the Verity Collection Reference and the Verity
Locale Configuration Guide.

Providing Topic Search

The administrator can create topic sets and index them into collections (see “Creating
Topic Sets” on page 76). If your application is using the simple query parser, submitted
queries are automatically compared to topic names and, if there is a match, the topic
search is used—that is, the topic’s query is submitted to the Verity search engine instead
of the user’s original term.
102 Verity K2 Getting Started Guide

4 Delivering Information to Users
Presenting Search Results
Using Thesauruses

Presenting Search Results

Most K2 applications implement a search-results page, on which the names of documents
that match the user’s search terms are listed, along with information about—and a link
to—each result document.

Results can be paginated, both to avoid requiring the user to scroll through long lists of
results and to allow the application to present results faster.

Your application’s search-results page can also include the features described in this
section.

Clustering Results

K2 applications can use document clustering to group related documents on a search
results page. Clustering documents into groups can help give the user a sense of the main
subject areas covered in a set of search results. For example, if only one of several
document groups in the search results is of interest, the user can quickly focus on the
most interesting documents without wasting time scanning the rest.

Clustering operates by analyzing the feature vectors in a document set and clustering
documents that are more semantically similar to each other than they are to the
documents in other clusters. Each document is assigned to one and only one cluster.

Document clustering is an inherently ambiguous process. There is no one “correct”
grouping of documents into clusters. The number of clusters can be fixed in advance, or it
can be automatically determined by the Verity engine based on the application’s
preference for cluster granularity. Documents are clustered on the basis of their text
content only, and not on the basis of meta-information such as title or other fields.

When displaying a cluster, a Verity application can also display the most important
keywords for the cluster itself, to further help the user to quickly find the most relevant
information.
Verity K2 Getting Started Guide 103

4 Delivering Information to Users
Presenting Search Results
Returning Document Summaries

Document summarization is a feature that can be used to generate content summaries for
documents listed on the search-results page. The goal of automatic document
summarization is to accelerate the browsing of search results returned by the Verity
search engine.

By presenting a short summary for each document in a results list, a Verity application
can help users quickly assess the relevance of the returned documents without wasting
time loading and skimming the full text of the documents.

The following types of document summarization are available in K2:

Static summaries. K2 applications can support two types of static summarization:

Simple summarization displays information from the beginning of a document, for
example the first 400 bytes.

Content summarization generates summaries by selecting sentences from the
document that are indicative of the overall theme of the text. This kind of
summarization relies on Verity feature extraction, as described in “Extracting
Document Features” on page 80.

Static summaries are enabled by the administrator and created at collection-indexing
time.

Passage-based summaries. A passage-based summary consists of one or more
passages (sentences or phrases) from the document, each of which contains instances,
usually highlighted, of the search terms that were used to locate the document. For
example, with passage-based summary enabled, searching for the term report in a
collection might yield a result like this:

Installed Reporting Components
...components in the tree: The report server. This is a standard K2 Server whose...
one report server in a K2 domain. Its alias is report_server. The ... report index is
attached to the report server. There is only one report index in ...

Your application displays a passage-based summary for a document by making calls to
the Client C API or the VSearch Java API. Passage-based summaries must be enabled
by the administrator at the time of indexing.

For more information on summarization, see the Verity Developer’s Kit Programming
Reference, the Verity Collection Reference, and the Verity K2 Client Programming Guide.
104 Verity K2 Getting Started Guide

4 Delivering Information to Users
Retrieving and Displaying Documents
Providing Spelling Suggestion

Spelling suggestion can be used to propose corrections to mistyped words in a user’s
query. If a search returns no or few results, the application can display a message on the
search results page, listing a suggested alternate query. For example, if the user searches
for “helo wonderful worlld” and that phrase returns no hits, your application could
respond with

Are you searching for “hello wonderful world”?

on the search-results page. To go farther, your application could also provide additional
suggested alternates to the user’s keywords:

Are you searching for “hello wonderful world”?

More suggestions: hello, hell, Hilo, word, world, whorl

The suggestions presented to the user are taken from the word indexes of the collections
being searched. All suggested keywords can, therefore, be guaranteed to occur in at least
one of the collections the user is searching.

Note In Version 5.5, spelling suggestion is supported for only single-byte
languages.

To display spelling suggestions to the user, Your application makes calls to the Client C
API or the VSearch Java API. To support the spelling suggestion feature, structures must
be created when the collection is indexed. To generate these structures, the administrator
can use the mkvdk command-line tool, or the administrator can set up a user-defined job
(UDJ) to run from the K2 Dashboard. For more information on the required structures,
see the Verity Command-Line Indexing Reference. For more information on user-defined
jobs, see the Verity K2 Dashboard Administrator Guide.

Retrieving and Displaying Documents

When a user of your application clicks a link on the search results page, your application
typically displays the content of the document referenced in the link. Your application
can take full responsibility for performing the display, or you can use the powerful
document viewing and highlighting service provided by K2. This viewing service has the
following advantages:
Verity K2 Getting Started Guide 105

4 Delivering Information to Users
Implementing Parametric Search
It converts indexed documents to HTML format for viewing directly in the user’s
browser.

The viewing service also allows you to specify which template to use for HTML
conversion. This capability lets you customize the conversions or tailor the output to
different output devices (such as Web browsers, PDAs, and so on.).

It includes the ability to highlight the search terms in the document.

It supports URL-based retrieval from all Verity gateways and Web servers, Lotus
Domino servers, and Microsoft Exchange Web servers. If desired, retrieved documents
can have links replaced and be dynamically highlighted.

It also supports retrieval of documents in raw, binary format from all gateways (for
example, PDF documents from Notes Domino servers), in case you want your
application to display the document in native format through a browser plug-in.

It supports display of sub documents that are linked from the main document. This
can include HTML links and attachments.

Note The viewing service supports display of only those subdocuments that
are indexed. It cannot display documents that are in the repository but
not indexed into the collection.

It works within the existing K2 security framework (including document-level and
collection-level security).

Your application makes use of the viewing service by making calls to the K2 VView Java
API.

Implementing Parametric Search

Parametric search is available to the user if your application supports it and if the
administrator has created a parametric index for your repository data, as noted in
“Setting Up Parametric Search” on page 77.
106 Verity K2 Getting Started Guide

4 Delivering Information to Users
Implementing Parametric Search
Parametric Selection

Supporting parametric search in your application typically involves creating a user
interface that supports both parametric selection (for the user to select field values) and
text search (for the user to search document content) over the specific collection on which
the parametric index is built.

For example, a user might search for a used car by selecting values for categories such as
color, mileage, price, and year, as show in Figure 4-1.

Figure 4-1 Pure parametric selection
if

Your application can also provide sorting capabilities to allow the user to specify how
results should be ordered, whether by relevancy ranking or by the values in one or more
fields.

If your application supports text search as well as parametric selection, results are
restricted to the documents that match the currently selected parameters plus the search
terms. In the example shown in Figure 4-2, the user searches for the name of a desired
feature (a car alarm) in addition to setting parameters.
Verity K2 Getting Started Guide 107

4 Delivering Information to Users
Implementing Parametric Search
Figure 4-2 Text search combined with parametric selection

Your application conducts parametric searches by making calls to the K2 Parametric Java
API.

Relational Taxonomies

You can enhance your parametric-search application to support relational taxonomies
(see “About Relational Taxonomies” on page 87). With relational taxonomies, your users
can navigate (drill down) through multiple taxonomies at the same time. This implies
that when your results page displays the results of the most recent parametric selection, it
should also display links to allow the user to browse further, based on any of the
taxonomies to which the current result set belongs.

For example, Figure 4-3 shows the display of two automobile-related taxonomies: one of
dealership locations, and one of manufacturer, make, and model. Links to nodes at the
current level and two levels downward are displayed. (The number of documents in each
node appear in parentheses.)
108 Verity K2 Getting Started Guide

4 Delivering Information to Users
Implementing Parametric Search
Figure 4-3 Displaying taxonomies for user browsing

In this situation, the user can start browsing one taxonomy, then switch the other, and
even back again, until arriving at a desired category or document.

Your application can dynamically render the taxonomy links presented to the user. For
example, if the user clicks the Canada link on the right side of Figure 4-3, the resultant
taxonomy display need not show the links for Australia and U.S.A., because those
categories cannot be searched downward from that point.

Figure 4-4 shows the result of browsing the automotive taxonomies to select California
dealers of European cars, then performing the same search and selections as in Figures
4-1 and 4-2.

Figure 4-4 Taxonomy browse combined with text search and parametric selection

Supporting relational taxonomies requires a parametric index that contains multiple
taxonomies. Administrators can use the Verity Collaborative Classifier or other Verity
tools to create the taxonomies and insert them into the parametric index.
Verity K2 Getting Started Guide 109

4 Delivering Information to Users
Implementing Profiling
Your application conducts parametric selections by making calls to the K2 Parametric
Java API. Note that the Verity search engine can return the categories (topics) to which a
document belongs when it returns a parametric selection result. Your application can use
that information to display links for further browsing the associated taxonomies.

Implementing Profiling

Use of profile nets to classify or route documents is available to your application once the
administrator has created the necessary interest profiles (see “Creating Profile Nets” on
page 89).

Depending on its purpose, your application may or may not need an end-user interface
for document classification. To perform the classifications, it makes calls to the Profiler
Java API.

Implementing Recommendations

Your application can use the Recommendation Engine to provide recommendations and
social-network information to users once the administrator has created the necessary
user and document profiles (See “Providing Recommendations” on page 91).

For example, the Recommendation Engine can provide recommendations for documents
relevant to a user’s context by analyzing what documents users have accessed or
authored, what searches they have issued, which department they belong to, who their
colleagues are, what documents the colleagues have accessed, and so on.

The Recommendation Engine currently makes the following features available to users of
Recommendation applications.

Adaptive Ranking. When the user executes a search, the Recommendation Engine
returns a result set that is ordered based on the document content but also on prior
access patterns from the users of the application. Thus, a document that is extremely
popular with users who have issued similar queries during a certain period of time
moves up in the rankings, but then drops off in the rankings when its popularity
subsides.
110 Verity K2 Getting Started Guide

4 Delivering Information to Users
Implementing Recommendations
Your application’s search-result pages could include areas for displaying adaptive
ranking of the results, document recommendations, and user community. Figure 4-5
shows a portion of the search results page from a sample Recommendation application.
The adaptive ranking is shown in the Rank column beside the document links.

Figure 4-5 Ranking, recommendation, and community

Document Recommendation. When the user views the results of a search, the
Recommendation Engine displays a personalized list of documents to the user. The list
consists of documents that most closely represent the query plus the user’s profile.

In Figure 4-5, recommended documents are under the Recommendations heading
beside the search results.

The recommendations can improve over time, due to context-based personalization.
Different people performing the same search may be looking for different things. For
example, people from different parts of the world may mean different things by the
term “football” (soccer vs. American football). User profiles can be used to tune the
results of a given request, and the system can track user interactions and automatically
update the profiles.

Community Identification. When the user views the results of a search, the
Recommendation Engine can provide a personalized list of other users whose profiles
are closest to the current context (user’s profile plus query).

In Figure 4-5, similar users are identified under the My Community heading beside the
search results.
Verity K2 Getting Started Guide 111

4 Delivering Information to Users
Implementing Recommendations
Document Similarity. When the user views the content of a document, the
Recommendation Engine can provide a personalized list of other similar documents.
The list shows the documents (or products, in the case of a catalog application) most
relevant to the current context (document plus user’s query).

Your application’s document-display pages could include areas for displaying a list of
similar documents and the locations of other interested users (experts). It could also
allow for rating of the current document to perform transactional updating of profiles.
Figure 4-6 shows a portion of the document-viewing page from a sample
Recommendation application. The list of similar documents is shown in the Similar
Documents column beside the document content.

Figure 4-6 Document similarity and expert location

Expert Location. When the user views the content of a document, the
Recommendation Engine can also provide a list of other people most interested in the
subject. The list identifies users whose profiles most closely match the current context
(document plus user’s query).

Expert location takes recommendations a logical step beyond adaptive
recommendation. As K2 analyzes the patterns of interaction between users and
documents, it uncovers implicit relationships between the various users in a system.
Based on this analysis, expert location can suggest experts in the enterprise whom the
user can consult for a particular context. For example, to a scientist viewing a research
report on widgets, it can provide a list of widget experts in the scientist’s domain.

In Figure 4-6, the subject-matter experts are identified under the Interest Group
heading beside the document content.
112 Verity K2 Getting Started Guide

4 Delivering Information to Users
Implementing Recommendations
Transactional Updating. One way to use transactions to update profiles is by allowing
users to rate documents. When the user views the content of a document, the
application can also display a field or control in which the user can score the relevance
of the document to the user’s query. The application then uses the Recommendation
Engine transaction API to update the document’s profile.

In Figure 4-6, the transactional update is triggered by clicking the rating links (stars)
under Rate This Page beside the document content.

Entity Editing. A powerful feature of the Recommendation Engine is that entities can
be edited. Users can update their own user profiles directly. Administrators, or other
users with special authorization, can update the profiles of other entities, such as
categories. Even a query profile can be updated, so that the query becomes relevant to
other contexts as well. Usually, the profiles are encrypted within the engine for privacy
reasons, but the application can choose to set the profiles to be available in
unencrypted form in order to use this editing capability.

Entity Export. It is possible to export a set of entities into an XML file. This allows the
entities to be examined, processed further via other scripts and software tools, such as
data mining tools, and imported back into the engine or to another instance of the
engine running on a different machine or at a different location. The function allows
entities to be exported by RI type or specific to a given alias (RI Index).

Note Entity export can be accomplished by running the mkre -export
command.

Concept-Based Retrieval. One of the limitations of keyword-based retrieval systems
is that if a certain keyword is not found in a given document, the system does not
retrieve it. A document's representation changes over time based on user interactions,
such as queries, even if the document content itself has not changed. This allows
domain-specific usage of the information to change document profiles. K2
applications can recommend relevant documents for query terms or concepts that may
not exist in the document (or even the entire corpus). This happen automatically over
time, without any specific administration/management effort.

Session-Based Profiles. Session-based profiles are temporary and dynamic user
profiles that can be used to track relevant searches and purchases so that similar
products can also be recommended. Recommendations are geared the user's current
context, rather than using historical information. Thus, recommendations made to a
user browsing a catalog can be based on earlier transactions within the same session.

Dynamic Taxonomies. The recommendation engine allows extremely simple creation
of user-defined categories. These user-defined categories can live in their own
namespace, or can be integrated into the organization's taxonomy via the other
taxonomy management tools provided with K2.
Verity K2 Getting Started Guide 113

4 Delivering Information to Users
Implementing Recommendations
Your application obtains recommendation information and performs transactional
updates by making calls to the VRecommendation Java API and VTransaction API.
114 Verity K2 Getting Started Guide

5
Developing Your Application

In most K2 installations, software designers and programmers are the ones responsible
for building customized K2 applications or portals that deliver enterprise information to
users. Programmers are also responsible for integrating Verity K2 with the enterprise’s
other systems.

This chapter contains information primarily of interest to developers. It gives a brief
overview of K2 application development. For a more complete introduction to the
options and interfaces available to Verity application developers, see the Verity Developer
Getting Started Guide.

This chapter contains the following sections:

Developing K2 Applications

Developing VDK Applications

Developing Driver Modules

Developing K2 Applications

For developing K2 applications, you can use the Verity Component Framework or you
can use the Java or C APIs. (You can also use the APIs when programming in a .NET
language such as C#.)

These APIs allow you to access and customize the features of K2 to help build your client
application. Lower-level APIs are also available for developing driver software modules.
115

5 Developing Your Application
Developing K2 Applications
Using the Component Framework

The simplest and most-recommended method for creating a K2 application may be to
construct it using the Verity Component Framework. With the Frame work you can easily
build software components and link them together into a functioning application.

A Component Framework application implements a search capability using the Verity K2
search engine. You create a Component Framework application by defining components
and related entities that define the user interface for your application and by placing calls
to VComponent methods in a set of JSP or .NET pages to render the interface.

You define the application and its components by using the Application module of the
Verity Business Console (see “Managing Information With the Business Console” on
page 66). and integrate them into your JSP or .NET pages using the following procedure:

1. Create a new application using the Application module of the Business Console.

2. Create a JSP or .NET page and set it up to use your components.

3. Specify a cascading style sheet (CSS) to use with your JSP or .NET page.

4. Create one or more components in the Business Console Application module. For
example, create a search box (Search component) and a results list (Results component).

5. Add the VComponent.draw method to your JSP or .NET page, to render the
component in a browser window.

6. Publish your application from the Business Console.

See the Verity Component Framework Developer Guide for more details.

Using Java-Language K2 APIs

Many K2 applications have a user interface written in Java/JSP. For collection search,
programming examples in Java are provided in the Verity K2 Client Programming Guide.
For parametric indexes, programming examples of JSP interface elements are provided in
the Verity K2 Parametric Developer Guide. For recommendations, examples of JSP interface
elements are provided in the Verity K2 Recommendation Engine Guide.

K2 Java API Guides provide easy integration into a wide range of application servers and
environments, including Java Server Pages, the Java™ Platform, and the .NET
environment.

The K2 Java APIs provide a high-level object exposure that allows clients to communicate
over a socket with a K2 Broker or K2 Server. These clients can be based on Java objects
(using Java Server Pages).
116 Verity K2 Getting Started Guide

5 Developing Your Application
Developing K2 Applications
Client APIs
VSearch Java API. Interface to Verity search functionality; used to perform
collection-level search and tree search, to obtain system information, to authenticate
access to repositories, to perform K2 login, and to obtain user/group information.

Documented in the VSearch JavaDoc document.

VView Java API. Interface to the Verity viewing service; used to convert indexed
documents to HTML format—based in various templates—and display the results to
the user.

Documented in the VView JavaDoc document.

Parametric Java API. Interface to the parametric engine and to parts of ODK; used to
manipulate parametric indexes, conduct parametric selection, and render results.

Documented in the Parametric JavaDoc document and the Verity K2 Parametric
Developer Guide.

ODK Java APIs. Interfaces to the Organization Developer’s Kit (ODK); used to
provide classification features for documents, including taxonomies and topic sets.
Includes programmatic support for collection indexing, thematic mapping, and the
Logistic Regression Classifier (LRC). ODK makes use of the Parametric Java API to
implement taxonomies within a parametric index.

Documented in the Parametric JavaDoc document and the Verity Organization
Developer’s Kit Programming Guide.

Profiler Java API. Interface to the K2 Profiler service; used to evaluate documents
against a set of predefined profiles (queries) to obtain a list of profiles matched to each
document, plus relevance scores.

Documented in the Profiler JavaDoc document and the Verity K2 Profiler
Programming Guide.

VRecommendation Java API. Interface to the Recommendation Engine; used to find
desired users or documents given an input context.

Documented in the VSearch JavaDoc document.

VTransaction Java API. Interface to the Recommendation Engine; used to provide
feedback to the Recommendation Engine to update document or user profiles.

Documented in the VSearch JavaDoc document.

FDK Java API. Interface to the Federated Developer’s Kit; used to access the federated
infrastructure and Verity Federator, to execute simultaneous searches on multiple
search engines.
Verity K2 Getting Started Guide 117

5 Developing Your Application
Developing K2 Applications
Documented in the Verity Federated Developer’s Kit documentation.

Administration APIs
VAdministration Java API. Interface to K2 administrative functionality; used to
change and manage the K2 system configuration. This API provides the same
functionality as K2 Dashboard or the rcadmin command-line tool.

Documented in the VAdministration JavaDoc document.

VIndex Java API. Interface to the K2 Spider controller; used to administer indexing of
collections. This API provides the same functionality as the K2 Spider C API.

Documented in the VIndex JavaDoc document.

Using C-Language K2 APIs

The K2 Developer product includes C APIs that allow application programmers to
quickly and efficiently create customized user applications for searching and displaying
the results of search operations. For collection search, programming examples in C are
provided in the Verity K2 Client Programming Guide.

The K2 client C API uses a simple, connectionless HTTP-style protocol, which reduces
latency and overhead for most common operations by bundling common API usage
scenarios into a single call. As a consequence, latency is greatly reduced, leading to
highly responsive applications.

The K2 client API is specifically designed to support asynchronous operation, so that a
single instance of the client application can accept user input while the K2 Server
processes the request.

The K2 application-level C APIs include the following:

Client C API. Interface to Verity search functionality; used to perform collection-level
search and tree search, to obtain system information, to authenticate to repositories, to
perform K2 login, and to obtain user/group information.

Documented in the Verity K2 Client Programming Guide.

Viewing Service C API. Interface to the Verity viewing service; used to convert
indexed documents to HTML format—based in various templates—and display the
results to the user.

Documented in the Verity K2 Viewing Service Programming Guide.

Spider C API. Interface to the K2 Spider controller; used to administer indexing of
collections. This API provides the same functionality as the VIndex Java API.
118 Verity K2 Getting Started Guide

5 Developing Your Application
Developing VDK Applications
Documented in the Verity K2 Spider Programming Guide.

Profiler C API. Interface to the K2 Profiler service; used to evaluate documents against
a set of predefined profiles (queries) to obtain a list of profiles matched to each
document, plus relevance scores.

Documented in the Verity K2 Profiler Programming Guide.

Administration C API. Interface to K2 administrative functionality; used to change
and manage the K2 system configuration. This API provides the same functionality as
K2 Dashboard or the rcadmin command-line tool.

Documented in the Verity K2 Administration Programming Guide.

Security API. Interface to the Verity Ticket Server; used to add or remove
administrators or users and to manipulate security information.

Documented in the Verity K2 Security Programming Guide.

ODK C APIs. Interfaces to ODK; used to conduct parametric selections, use thematic
mapping and the LRC, and manipulate topic sets, parametric indexes, and parametric
trees.

Documented in the Verity Organization Developer’s Kit Programming Guide

.NET Development

Verity K2 allows .NET developers to write C#, J#, or Visual Basic applications that call the
Verity APIs and run natively in the Microsoft .NET Common Language Runtime (CLR).
The Verity-provided dynamic link library k2dotnet.dll, which is installed as an
option when you install K2, is required.

Note Documentation for Verity APIs is provided only in Javadoc format.

Developing VDK Applications

Verity also provides APIs for development at the lower-level VDK layer. These APIs are
available in C language only.
Verity K2 Getting Started Guide 119

5 Developing Your Application
Developing VDK Applications
Developing for the VDK layer means that you are calling the Verity engine directly.
Therefore, the scalable, distributed functionality of the K2 Broker/K2 Server architecture
is not available.

Documented in the Verity Developer’s Kit Programming Reference:

Session suite. Provides a context for VDK operations.

Security suite. Enables document-level security. The API provides the ability to
identify users, their credentials and certificates, and the ability to authenticate users
against documents in repositories.

Service suite. Provides the ability to perform operations in the background.

Collection Maintenance suite. Provides the ability to create collections, index them,
and perform other maintenance functions.

Search Processing suite. Provides basic search and retrieval capabilities.

Query Parser suite. Provides the ability to specify how the Verity engine interprets
query parameters.

Document Access suite. Provides the ability to access documents, read their fields,
and highlight their contents.

Clustering and Summarization suite. Provides advanced search capabilities,
including the ability to cluster similar documents and summarize the subject of a
document.

Assists suite. Provides the ability to assist end users when they specify queries.

Knowledge Base suite. Provides the ability to define sets of search criteria that
populate knowledge bases.

Transitory Fields suite. Provides the ability to create temporary fields in a
document.

Documented in the Verity Profiler Programming Guide:

Profiler suite. Provide the ability to evaluate documents against a set of predefined
profiles (queries) to obtain a list of profiles matched to each document, plus
relevance scores.

Documented in the Verity Organization Developer’s Kit Programming Guide:

Parametric suite. Provides the ability to administer parametric indexes and their
bucket sets.

Taxonomy suite. Provides the ability to create, edit, and navigate taxonomies.

Topic Set suite. Provides the ability to create, edit, import and index topic sets.
120 Verity K2 Getting Started Guide

5 Developing Your Application
Developing Driver Modules
Thematic Mapping suite. Provides the ability to extract concepts and build a
taxonomy and topic set from a corpus of documents.

Logistic Regression Classification suite. Provides the ability to automatically create
topics from example documents.

Developing Driver Modules

Verity provides limited C-language APIs for developing low-level driver modules for the
Verity DDA layer. Most driver modules (gateways, document filters, and locales) are
developed by Verity itself.

The following are the DDA-level C APIs:

Gateway Driver APIs. Support the development of custom gateways that access new
kinds of information repositories.

Documented in the Verity Gateway Developer’s Kit Programming Reference.

Custom Filter APIs. Support the development of custom document filters that read
and process new document formats.

Documented in the Verity Developer’s Kit Programming Reference.
Verity K2 Getting Started Guide 121

5 Developing Your Application
Developing Driver Modules
122 Verity K2 Getting Started Guide

A
Contacting Verity Technical Support

Verity Technical Support exists to provide you with prompt and accurate resolutions to
difficulties relating to using Verity software products. You can contact technical support
using any of the following methods:

Telephone: (403) 294-1107

Fax: (403) 750-4100

Email: tech-support@verity.com

Web: http://www.verity.com

Opening a Technical Support Incident (TSI)

To open a Technical Support Incident (TSI) with Verity’s Technical Support, have your
Entity ID number available and ready (or provided in your initial e-mail). Technical
Support cannot assist you if you cannot provide a valid Entity ID number. The Entity ID
number can be found on your License Key Sheet which was supplied when you received
your Verity product. Please try to have as much information as possible ready for the
Technical Support Specialist, including

The product you are currently using.

The product’s version number.

What you are having problems with.

Any commands you are running.
123

http://www.verity.com

A Contacting Verity Technical Support
Product Support Hints
For example, if you are having problems indexing with mkvdk, you will need to supply
the full mkvdk command you are using. Be prepared to send in your complete set of
style files for the collections in question. These files provide important insight on how
your collection is built.

If your problem includes a Verity Product that produces error code numbers and
messages, please carefully copy the entire error message (be precise with the spelling)
and have it ready to send to Technical Support. Often the error number is accompanied
by text. The text is generally more important than the actual error number and will often
provide a clearer understanding of your problem.

If you are having difficulties searching, you will probably be asked to use rcvdk and/or
rck2 to try to replicate the problem. These two tools are quite valuable in tracking down
problems related to both indexing and searching. It is to your advantage to become
familiar with them. You might also be asked to send in your search templates and/or
client search code. If you are having difficulties indexing a particular document, or type
of document, you will need to send the documents to the Technical Support Specialist.

In some cases, you will be asked to send your entire collection. This is not uncommon
and is sometimes the only way to narrow down a problem. We realize that some clients’
collections are very large, or contain sensitive data, but having the collection locally in
Technical Support can be critical to resolving the issues at hand. In these cases Verity will
supply instructions for FTPing the collections to Technical Support. If necessary, Tech
Support Management can sign a non-disclosure agreement (NDA) to protect your
sensitive data.

When you open a TSI with Technical Support, your TSI will be given a number. This
number is used to track individual cases and will link you with your support specialist.
On subsequent phone calls, mention the TSI number to the technician who answers the
phone and you will be immediately transferred to your support specialist. If using email,
please include the TSI number as part of the subject line. This helps to ensure that the
correct technician picks up your email quickly.

Product Support Hints

To find out version numbers when using mkvdk:

Type mkvdk on the command line. The first line of output will contain the relevant
information, such as

mkvdk - Verity, Inc. Version 4.5.1 (_nti40, Aug 8 2002)
124 Verity K2 Getting Started Guide

A Contacting Verity Technical Support
Product Support Hints
To find out version numbers when using vspider:

Type vspider on the command line. The first line of output will contain the relevant
information, such as

vspider - Verity, Inc. Version K4.5.1 (_nti40, Aug 8 2002)

To find out version numbers when using K2:

Type k2server on the command line. You may need to actually start the server to get
the full information. The output will contain the relevant information, such as

K2SERVER - Verity, Inc. Version 4.5.1 (Build 20020809)
Verity K2 Getting Started Guide 125

A Contacting Verity Technical Support
Product Support Hints
126 Verity K2 Getting Started Guide

Glossary

accent-insensitive
search

A type of search that includes all accented variations of a
letter in the search term. In accent-insensitive search, the
search term si would find all instances of both si or sí, for
example. Conversely, in accent-sensitive search, the search
term si would find only instances of the unaccented si.

Active Server Page
(ASP)

A Windows-specific file for generating Web pages. It
contains a combination of server-side scripting, HTML, and
COM components. The programming language can be
Visual Basic or JavaScript and the Web server must be ASP
aware. Compare Java Server Page (JSP).

adaptive ranking The scoring and ranking of documents based on the
historical behavior of users who have issued similar
searches.

administrator Design, install, configure, and maintain the K2 installation.
They may also create collections and taxonomies.

Administration
Server

A repository for, and synchronizer of, configuration
information. In a K2 domain, there is one Administration
Server for every host. Compare Master Administration
Server.
127

Glossary
authentication The process of identifying a user by passing credentials to a
secure server, such as a K2 Server, K2 Broker, or K2 Ticket
Server.

browse A command-line tool that lists the contents (field names and
values) of a collection’s document table.

bucket A value or range of values for a parameter in a parametric
index. It identifies a set of like documents for parametric
selection.

bucket set The set of all buckets associated with a parameter in a
parametric index.

category A subject of interest used to collate documents that are
relevant to the subject. Logically, a category represents a
node in a taxonomy.

character set A numeric encoding of the characters of a language. Text in a
given language can be stored and manipulated using one or
more character sets. Examples include ASCII, Shift-JIS, and
UTF-8.

classification The process of assigning documents to categories in a
taxonomy.

cluster A group of documents related by similarities in their
content.

clustering The process of automatically defining the clusters in a set of
documents. Clustering uses Verity feature extraction
technology.

collection The set of index files and other information needed to search
and classify documents in a repository. A collection stores
the locations of all the indexed documents, the locations of
all the indexed words in those documents, and metadata
about the documents. It does not store the documents
themselves.

collection indexing
job

A specification of an indexing process, including which
documents to index and the times when indexing should
occur. Also called K2 Spider job. Compare user-defined job
(UDJ).
128 Verity K2 Getting Started Guide

Glossary
collection-level
security

A security feature that controls a user’s access to a collection
as a whole. Collection-level security relies on the user’s
group membership in the enterprise’s native security
system. Compare document-level security.

concept tree A hierarchy of key concepts generated by thematic
mapping.

content organization See classification.

controller A K2 Spider process that manages crawlers and indexers for
indexing.

corpus A large collection or set of documents. An enterprise’s set of
repositories can be considered its corpus.

crawler A K2 Spider process that gathers document data for
indexing.

crawling The process of seeking out documents in a repository to
determine if they are valid candidates for indexing. If those
documents contain links to other documents, K2 can be
configured to follow those links and also crawl the target
documents

developer Create search applications and implement user interfaces
that leverage Verity search, classification, and social-network
technologies.

didump A command-line tool that displays a list of the words in a
collection’s word index.

distributed search
group

A search group in which some servers or brokers in the
group are from a different domain.

document filter A Verity software module that can read documents in one or
more specific formats (such as PDF, XML, or Microsoft
Word). Document filters receive documents from gateways,
extract text data and field information from them, and pass
that information along for indexing and storage in a
collection.
Verity K2 Getting Started Guide 129

Glossary
document-level
security

A security feature that controls which documents can either
(1) appear in search results for a particular user, or (2) be
viewed by that user. Document-level security relies on the
user’s access permissions to the individual repositories.
Compare collection-level security.

document profile The representation of a document in a recommendation
index. A document profile is based on the document’s
feature vector and evolves over time from information
based on queries that select the document. See also user
profile.

document table A table in a collection that specifies the location of each
indexed document. The document table also contains all
metadata (parameters) associated with each document.

domain A grouping of K2 services consisting of one Master
Administration Server and all the K2 services (K2 Ticket
Servers, K2 Brokers, K2 Servers, Administration Servers,
and so on) that it configures.

end users Use K2 applications to search, browse, and retrieve
information.

entity In the Recommendation Engine, a person, document, query,
or other object or concept that can be profiled using
tensor-space analysis.

feature extraction The process of automatically discovering the subjects
addressed in a document by performing vector analysis on
nouns and noun phrases. Feature extraction is performed
during indexing.

feature vector A mathematical structure, constructed during feature
extraction, that represents the set of subjects addressed in a
particular document.

field A discrete item of document metadata, such as author, title,
location, or creation date, in a Verity collection.

filter See document filter.

fuzzy search A search with the ability to retrieve documents containing
words with spelling and typographical differences from the
search term. Fuzzy search types include typo search,
Soundex search, and stemmed search.
130 Verity K2 Getting Started Guide

Glossary
gateway A Verity software module used to retrieve documents from a
specific type of repository. K2 includes gateways for local file
systems, HTTP, Documentum, ODBC databases, MAPI (MS
Exchange), and Lotus Notes.

index A Verity structure that provides the basis for searching.
Examples include collection indexes, knowledge trees,
parametric indexes, and recommendation indexes.

indexer A K2 Spider process that performs indexing.

indexing The process of scanning a document to create a word index
and to store its metadata (fields and internal zones) into a
collection.

input context In the tensor analysis performed by the Recommendation
Engine, the combination of a query, the document being
viewed, and the user's identity.

intellectual capital
management

The process of combining human knowledge and experience
(both implicit and explicit) with the information and data in
an enterprise for the purpose of exploiting greater value.

interest profile a VQL query, stored in a profile net, that the Profiler Service
compares documents to for the purpose of document
classification or message routing.

Java Server Page (JSP) A file containing Java code mixed with HTML and
JavaScript. Used to generate Web pages. Compare Active
Server Page (ASP).

job See collection indexing job, user-defined job.

K2 Broker A K2 service that receives client search requests and
distributes them to available K2 Servers.

K2 Dashboard A browser-based user interface that enables administrators
to view and change configuration settings for K2 services
from a single computer, even when the K2 services reside on
many different computers.

K2 domain A K2 system consisting of one Master Administration Server
and all the K2 services configured by that Master
Administration Server. Note that a K2 domain is unrelated
to a Windows NT domain.
Verity K2 Getting Started Guide 131

Glossary
K2 search group A set of K2 Brokers and K2 Servers containing one top-level
K2 Broker and all the other K2 Brokers and K2 Servers
attached below it, possibly including ones in different K2
domains. A search request handled by the top-level K2
Broker can be passed to any of the other K2 Brokers and K2
Servers in the search group, including those from other K2
domains.

K2 Server A K2 service that receives search, viewing, profiling, and
recommendation requests and performs searches of
collections, knowledge trees, parametric indexes, RE Doc
Indexes, and RE User Indexes.

K2 services The executable processes in a K2 system, such as a K2
Broker, a K2 Server, or a K2 Ticket Server.

K2 Spider A tool to perform spidering. K2 Spider executes through the
K2 Server, and thus can perform distributed spidering.
Compare Verity Spider.

K2 Spider Client The executable and command-line tool used to interface
with K2 Spider Servers to create and manage indexing jobs.

K2 system A generic term meaning a K2 installation. It may be either a
K2 domain or a K2 search group.

K2 Ticket Server A K2 service that is used to implement secure access to
collections, search results and documents. The K2 Ticket
Server stores information in memory for users who have
been authenticated.

knowledge tree A structure for organizing documents for navigation to
subjects of interest. A knowledge tree consists of a taxonomy
plus category definitions plus documents attached to those
categories.

knowledge worker A librarian or domain expert that makes decisions about
what information sources to make available to users of a K2
installation. They index collections, and create and populate
taxonomies.

language
identification filter

A document filter (flt_lang) used by the multilanguage
locale to assign a language to a document before indexing.

locale 1. A geographic or political region that shares the same
language and customs. 2. See Verity locale.
132 Verity K2 Getting Started Guide

Glossary
Logistic Regression
Classifier (LRC)

A Verity tool that creates a category definition from a set of
positive and negative exemplary documents.

Master
Administration
Server

An Administration Server that is the central hub for K2
configuration information. A K2 domain must have one and
only one Master Administration Server.

metadata Data that describes other data. For example, Author and
Size could be metadata for a Microsoft Word document.
Fields in Verity collections contain document metadata that
can be searched for.

mirroring The creation of multiple duplicate collections attached to
different K2 Servers. K2 Spider can be configured to create
mirrored collections.

mkprf A command-line tool for building and maintaining profile
nets.

mksyd A command-line tool used to build a thesaurus from a
thesaurus control file.

mktopics A command-line tool for building and updating topic sets.

mkvdk An all-purpose command-line collection maintenance tool.

multilanguage locale A Verity locale (uni) that supports multiple languages
simultaneously. See also single-language locale.

no results filtering A setting for document-level security in which all found
documents are displayed in results lists, regardless of user
access rights. Compare results-list filtering.

noun phrase A group of words (for example, due process or court of law)
that functions as a noun. Part-of-speech processing during
indexing can lead to the automatic extraction of noun
phrases, which can be used in document feature extraction.

OTL file See topic outline file (OTL).

outline file 1. An XML file that specifies the structure of a parametric
index. 2. See topic outline file (OTL).

parallel querying The ability to simultaneously search multiple collections. K2
Server and K2 Broker support parallel querying.

parametric index An index that supports parametric selection.
Verity K2 Getting Started Guide 133

Glossary
parametric selection The ability to search for documents based on the values of
one or more document parameters, combined with full-text
search on document content.

passage-based
summary (PBS)

An automatically generated document summary that
consists of text passages in which the search term appears,
typically highlighted.

profile See document profile, interest profile, user profile.

profile net A set of stored interest profiles (queries) against which the
Profiler Service evaluates documents.

Profiler Service A K2 service that evaluates an incoming stream of
documents against the interest profiles in a profile net.
Developers can use Profile Services in applications such as
message routing and document classification.

proximity search A type of search that returns documents in which the
specified terms are close to each other (for example, in the
same sentence or separated by no more than a specified
number of words).

rcadmin A command-line tool used to administer K2. It has similar
functionality to the K2 Dashboard.

rck2 A command-line tool used to connect to K2 Servers for
searching collections and other Verity indexes.

rcvdk A command-line tool used for searching collections and
displaying documents.

RE Doc Index A data file that contains the profiles of the documents in a
collection.

RE User Index A data file that contains the profiles of a set of users on a
host.

Recommendation
Engine

The K2 component that provides recommendations.

recommendation
index

A data file that contains entity profiles used by the
Recommendation Engine.

relational taxonomies A Verity feature in more than one taxonomy is applied to a
set of information. Relational taxonomies allows users to
simultaneously navigate through the different taxonomies.
134 Verity K2 Getting Started Guide

Glossary
repository A group of documents that are all stored in the same location
and accessed through the same protocol, such as a file
system. Repositories can include relational databases or
proprietary storage systems such as Microsoft Exchange
folders or Lotus Notes databases.

results-list filtering A setting for document-level security in which results lists
show only those documents that a user can retrieve.
Compare no results filtering.

score A numerical value indicating the degree of match between a
document and a query. Scores, usually expressed to the end
user as a decimal number between 0 and 1, are calculated
during Verity search or Profiler operations. Scores are based
on numerous factors, including the number of times search/
query words appear in the document, their location in the
document, and their proximity.

search group A grouping of K2 services consisting of one top-level K2
Broker plus all the other K2 Brokers and K2 Servers attached
to it.

search worker A software module in federated search that connects to and
retrieves information from a particular kind of information
source.

session-based profile Temporary and dynamic user profiles that can be used to
track relevant searches and purchases so that similar
products can also be recommended.

single-language
locale

A Verity locale that supports only one language. Most
locales are single-language. Compare multilanguage locale.

social network A model of the explicit and implicit relationships between
the people in an organization and the documents they create,
modify, access, search, and organize.

Soundex search A kind of search in which occurrences of the search term
plus any words with similar pronunciation are returned.
Verity supports Soundex search for the English language
only.

spidering The process of crawling and indexing the contents of a
repository.
Verity K2 Getting Started Guide 135

Glossary
stemmed search A kind of search that locates all words that share the same
word stem. For example, a stemmed search for the term
dance would find all occurrences of dance, but also all
occurrences of dances and dancer.

stop-word list A file containing search terms that should be ignored. Verity
supports several types of stop-word lists, some used at
indexing time and others at search time.

style file A file used to configure the indexes and fields in a
collection.

StyleSet Editor The Verity application that enables administrators to create
and modify style files.

synonym search A type of search that returns all occurrences of the search
term and also any of its synonyms, as defined in a thesaurus.

taxonomy The hierarchical organization of categories. A taxonomy
defines a structure for accessing data.

tensor A multidimensional mathematical structure used by the
Recommendation Engine to construct a weighted
representation of the significant subjects and actions of a
document or user.

tensor space A multidimensional space to hold tensors used by the
Recommendation Engine.

thematic mapping A process that automatically discovers the key concepts in a
collection of documents and maps the hierarchical
relationships between them.

thesaurus A dictionary of synonyms. Each Verity Locale supports use
of a thesaurus for searching. In a synonym search, all
occurrences of the search term and any of its synonyms are
returned.

ticket A temporary access pass granted by the K2 Ticket Serverto a
user for as long as the user is logged in.

topic A stored query expression written in the Verity Query
Language (VQL). Topics are used to model concepts of
interest in a classification task, or to enable users to quickly
find information without having to compose sophisticated
queries. See also topic set.
136 Verity K2 Getting Started Guide

Glossary
topic outline file
(OTL)

A text file that defines the structure of a topic set. Topic
outline files have a file extension of .otl.

topic set A grouping of topics that have been compiled for use by a
Verity application. For classification tasks, a topic set
contains one or more topics used to classify documents in a
collection.

transaction A modification of one or more entities in a recommendation
index. For example, a transaction may make a document
more relevant to a particular query due to user input.

typo search A kind of search that corrects for minor misspellings in the
search terms. In a typo search, occurrences of the search term
and any words close to it in spelling are returned.

Unicode A standard for double-byte character sets. The Unicode
standard encodes the characters for all major modern
languages in one character set. There are various
implementations of portions of the Unicode standard. The
implementation used by the Verity multilanguage locale is
UTF-8.

universal filter A document filter that determines the file type of the
incoming document and then invokes a suitable helper filter
for extracting the available text and metadata.

user defined job
(UDJ)

A specification, created by the administrator, of a
command-line tool to be executed plus its associated
arguments. Jobs can be scheduled and chained. Compare
collection indexing job.

user profile The representation of a user in a recommendation index. A
user profile is created over time from information such as
documents authored by the user, interests submitted, queries
asked, and documents rated or viewed. See also document
profile.

VDK 1. Verity Developer's Kit, the API that enables developers to
build Verity functionality into their products. 2. The
programming core on which most Verity applications are
built.

Verity Intelligent
Classifier

An application for creating, viewing, editing, and testing
topics and taxonomies.
Verity K2 Getting Started Guide 137

Glossary
Verity locale A software module that allows Verity applications to operate
on documents in a specific language or set of languages. A
locale provides one or more capabilities that may include
tokenization, stemming, part-of-speech recognition, and
thesaurus use. See also single-language locale,
multilanguage locale.

Verity Query
Language (VQL)

Verity’s standard language for creating search queries.

vspider A command-line tool that provides document indexing
capabilities. See also K2 Spider.

wildcard search A type of search in which the search term contains special
symbols that represent multiple characters. For example, a
wildcard search with the term abc* returns all documents
containing occurrences of words that start with abc.

word index A collection index that lists all words that appear in the
collection’s documents and the location of every instance of
each word.

worker See search worker.

zone A named region of a document. Examples are HTML tags
such as TITLE, BODY, and H1, and email fields such as TO,
FROM, and SUBJECT. Zones can be made searchable in
collections and can also be saved as collection fields.
138 Verity K2 Getting Started Guide

Index

A
accent-insensitive search 102
access-control list (ACL) 54
actions (K2 Dashboard) 62
adaptive ranking 28, 110
administration 33, 58

installed components 49
through K2 Dashboard 60
with rcadmin 65

Administration C API 119
Administration Server 43, 49

defined 59
Administration-Server architecture 59
administrator (role) 37
anonymous access 53
APIs 29

C 50, 118
Java 50, 116

application servers 49
applications. See K2 applications
architecture

Administration Server 59
deployment 32, 42
distributed 32
software 29

ASP user interface 116
Assists suite APIs 120
authentication 52
auto-detection 58
automatic classification 86
B
BooleanPlus query parser 99
browse command-line tool 65
bucket sets 79
buckets 79
building collections 71
Business Console 34, 49, 66, 116

C
C APIs 50, 118
categories 86

business rules for 86
generating automatically 86
importing 86
in industry taxonomy 86

category drill-down 103
character set 21
character-set conversion 58
character-set detection 58
classification 84
client applications 32
Client C API 118
client layer 30
cluster

defined 80
clustering 80, 103
Clustering and Summarization suite APIs 120
clusters

creating 80
Collection Maintenance suite APIs 120
collection-level security 52
collections 21, 65

building 71
data sources for 40
mirrored 45

community identification 111
component application samples 50
Component Framework 116
concept-based retrieval 113
139

Index
console. See Business Console
context-based personalization 111
controllers (Spider) 75
corpus 86
crawlers (Spider) 75
creating clusters 80
Custom Filter APIs 121

D
data sources 40

for collections 40
for entity extraction 41
for parametric indexes 41
for recommendation 41

DDA layer 31
DDA module development 121
deployment architecture 32, 42
detail pages (K2 Dashboard) 62
developer (role) 37
development

installed components 50
of DDA modules 121
of K2 applications 115
of VDK applications 119

didump command-line tool 65
distributed architecture 32
distributed indexing 75
distributed search group 46
Document Access suite APIs 120
document filters 40, 72
document formats 21, 40
document profile 93
document recommendation 111
document recommendations 28

similar documents 112
document table 72
documentation 50
documentation, installed 50
document-level security 53

defined 53
140 Verity K2 Getting Started Guide
results-list filtering 54
Documentum gateway 39
domain experts 85
domains 46
Dynamic Data Access. See DDA
dynamic taxonomies 113

E
end user (role) 37
entities 91
entity editing 113
entity export 113
entity extraction 81

data sources for 41
entity profiles 92
Exchange gateway 39
expert location 112
explicit query parser 99

F
failover 46
FDK Java API 117
feature extraction 80
feature vectors 80
federated search 26
Federator 26
File system gateway 39
filter

language identification 58
filtering

no results-list 54
formats (document) 21, 40
free-text query parser 99
full-text query parser 99
full-text search 26, 99
fuzzy search 100, 101

G
Gateway Development Kit (GDK) 39

Index
Gateway Driver APIs 121
gateway security 52

H
help, installed 50
Home page 61
HTTP gateway 39

I
Index Server 43
indexers (Spider) 75
indexes 34
indexing 65, 72

continuous 75
customized 75
distributed 75

indexing tools 65
input context 92
installation

of K2 47
of other components 50
on Windows 48

intellectual capital management 18
Intelligent Classifier 50
interest profiles 89
internationalization 55
Internet-style query parser 99

J
Java APIs 50, 116
Java-based classification console 34
jobs 34
JSP user interface 116

K
K2 applications 32

C APIs 118
Component Framework 116
Verity K2 Getting Started Guide
development options 115
Java APIs 116
query parsers available 99
search implementation 98

K2 Broker 33, 42, 49
K2 Dashboard 33, 49, 58, 60

actions 62
detail pages 62
Home page 61
StyleSet Editor 63
summary pages 61
System View 61

K2 Index Server 49
K2 installation 47
K2 layer 30
K2 Profiler Service 89
K2 Server 33, 42, 49
K2 services 34

installed components 49
K2 software architecture 29
K2 Spider 49, 74

customizing 75
K2 Spider Server 43
K2 Ticket Server 49, 51
K2 Viewing Service 105
k2spider command-line tool 65
Knowledge Base suite APIs 120
knowledge worker (role) 37

L
language identification 58
language-identification filter 58
language-specific search 101
locale

multilanguage 56
single-language 57

locales 50, 55, 101
defined 55

localization 55
141

Index
Logistic Regression Classification suite APIs
121

Logistic Regression Classifier (LRC) 86
Lotus Notes gateway 39

M
mapping

thematic 23
Master Administration Server 43, 46, 49, 59
metadata 72
mirrored collections 45
mirroring

defined 45
mkpi command-line tool 65, 80
mkprf command-line tool 65, 90
mktopics command-line tool 65, 77
mkvdk command-line tool 65, 124
multilanguage locale 56
multiple

K2 Brokers 43
K2 Servers 43

N
.NET development 119
no results filtering 54
NTFS gateway 39

O
ODBC gateway 39
ODK C APIs 119, 120, 121
ODK Java APIs 117
online documentation 50
online help 50
operators (search) 98
Organization Developer’s Kit (ODK) 50
Organize Java API 117
outline files 80
142 Verity K2 Getting Started Guide
P
parallel querying 44
parametric cube 78
parametric indexes 65, 78

data sources for 41
parametric search 23, 78, 87
Parametric Search Java API 117
Parametric suite APIs 120
parsers (query) 99
profile nets 65, 89, 110
Profiler 89
Profiler C API 119
Profiler Java API 117
Profiler suites APIs 120
proximity search 26, 98

Q
Query Parser suite APIs 120
query parsers 99

R
ranking 28
rcadmin command-line tool 58, 65
rck2 command-line tool 65, 124
rcvdk command-line tool 65, 124
RE Doc Index 93
RE User Index 93
recommendation 28, 91

data sources for 41
Recommendation Engine 91, 110

adaptive ranking 110
community identification 111
document recommendation 111
expert location 112
similar documents 112
transactions 93, 113

relational taxonomies 23, 87, 108
defined 87

Report Server 43

Index
repositories 21, 38, 72
repository

defined 38
results-list filtering 54
roles 37

S
sample applications 50
search 98

accent-insensitive 102
federated 26
full-text 26, 99
language-specific 101
operators 98
parametric 78
proximity 26, 98
simple 100
Soundex 101
stemmed 100
synonym 100
topic 77, 102
typo 100
wildcard 101

search groups 46
Search Processing suite APIs 120
secure collections 53
security 21, 51

anonymous access 53
authentication 52
collection-level 52
document-level 53
gateway 52
secure collections 53
single sign-on 55

Security API 119
Security suite APIs 120
Service suite APIs 120
Session suite APIs 120
setting up

Recommendation Engine profiles 94
Verity K2 Getting Started Guide
setting up parametric selection 77
similar-documents recommendation 112
simple query parser 99
simple search 100
single sign-on 55
single-language locale 57
social networks 91
software architecture 29
Soundex search 101
sources of data 40
Spider C API 118
Spider jobs 34, 75
Spider. See K2 Spider, vspider
stemmed search 100
stop-word lists 102
style files 63
style set 63
StyleSet Editor 49, 63
summaries 104
summarization 80
summary pages (K2 Dashboard) 61
synonym search 100
System View (K2 Dashboard) 61

T
taxonomies 23

building 85
defined 84
defining categories 86
importing 85
populating 87
purchasing 85
relational 87, 108
using 87

Taxonomy suite APIs 120
technical support 123
Technical Support Incident (TSI) 123
tensor matching engine 92
tensor space 92
testqp command-line tool 65
143

Index
thematic mapping 23, 86
using 85

Thematic Mapping suite APIs 121
Ticket Server 42
Ticket Server. See K2 Ticket Server
tickets 52
topic search 77, 102
Topic Set suite APIs 120
topic sets 65, 76, 90, 102
topics 76, 90, 102
transactions 93, 113

defined 93
Transitory Fields suite APIs 120
typo search 100

U
Ultraseek 26
Universal Viewing Service 27
universal viewing service 27
UNIX gateway 39
user roles 37
user-defined jobs 34
UTF-8 character set 57

V
VAdministration Java API 118
VDK applications 119
VDK C APIs 119
VDK layer 31
Verity Developer’s Kit (VDK) 31, 50
Verity Development Kernel (VDK) 31
Verity Extractor 81
Verity Federator 26
Verity locales 55
Verity Query Language (VQL) 98
Verity Ultraseek 26
viewing service 105

defined 105
Viewing Service C API 118
144 Verity K2 Getting Started Guide
VIndex Java API 118
VRecommendation Java API 117
VSearch Java API 117
vspider command-line tool 65
VTransaction Java API 117
VView Java API 117

W
Web-based administration 33
wildcard search 101
word index 72

Z
zones 73

	Verity K2 Getting Started Guide
	Contents
	Figures, Tables, and Listings
	Preface
	Using This Book
	Version
	Organization of This Book
	Stylistic Conventions

	Verity K2 Documentation
	Verity Technical Support

	Introducing Verity K2
	Intellectual Capital Management With Verity K2
	The Intelligent Content Services Architecture
	Multiple Primary Storage Formats
	Secure Access Through Gateways
	Information-Extraction Services
	The Intelligent Content Engine
	Flexible Access Control
	Information-Access Services
	Multilanguage APIs and Web Services

	K2 Software Architecture
	Client Layer
	K2 Layer
	VDK Layer
	DDA Layer

	Deployment Architecture
	Administration Console
	Business Console

	Setting Up a Verity K2 Installation
	Identifying Information Sources
	Information Repositories
	Data Sources

	Designing a K2 Server/K2 Broker Deployment
	Choose Which K2 Services to Use
	Flexible Configuration
	Multiple Brokers and Servers
	Parallel Querying
	Mirroring
	Multi-Domain Search Groups

	Installing Verity K2
	Multiplatform Installer
	Installed K2 Components
	Other Installation Programs

	Setting Up Security
	K2 Ticket Server
	Gateway Security
	Collection-Level Security
	Document-Level Security
	Single Sign-On

	Internationalizing a K2 Installation
	Locales
	Language Identification
	Character-Set Detection and Conversion

	Administering a K2 Installation
	Administration-Server Architecture
	Administration Through the K2 Dashboard
	Administration With Other Tools

	Managing Information With the Business Console
	Modules
	User Types and user Roles
	Using the Business Console

	Indexing and Classifying Information
	Building Collections
	The Indexing Process
	K2 Spider
	Direct Indexing
	Creating Topic Sets
	Setting Up Parametric Search
	Extracting Document Features

	Extracting Entities
	Classifying Information
	About Taxonomies
	About Relational Taxonomies
	Creating Profile Nets

	Providing Recommendations
	The Recommendation Engine
	Setting Up Recommendation Indexes

	Delivering Information to Users
	Providing Search Capability
	VQL and Search Operators
	Query Parsers
	Implementing Search
	Using Stop-Word Lists
	Providing Topic Search
	Using Thesauruses

	Presenting Search Results
	Clustering Results
	Returning Document Summaries
	Providing Spelling Suggestion

	Retrieving and Displaying Documents
	Implementing Parametric Search
	Parametric Selection
	Relational Taxonomies

	Implementing Profiling
	Implementing Recommendations

	Developing Your Application
	Developing K2 Applications
	Using the Component Framework
	Using Java-Language K2 APIs
	Using C-Language K2 APIs
	.NET Development

	Developing VDK Applications
	Developing Driver Modules

	Contacting Verity Technical Support
	Opening a Technical Support Incident (TSI)
	Product Support Hints

	Glossary
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

