
February 10, 2006
Part Number DM0709

Verity, Incorporated
894 Ross Drive
Sunnyvale, California 94089
(408) 541-1500

Verity Benelux BV
Coltbaan 31
3439 NG Nieuwegein
The Netherlands

Verity
Collection Reference

Version 6.1.1

Copyright 2006 Verity, Inc. All rights reserved. No part of this publication may be reproduced,
transmitted, stored in a retrieval system, nor translated into any human or computer language, in any
form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise,
without the prior written permission of the copyright owner, Verity, Inc., 894 Ross Drive, Sunnyvale,
California 94089. The copyrighted software that accompanies this manual is licensed to the End User
for use only in strict accordance with the End User License Agreement, which the Licensee should read
carefully before commencing use of the software.

Verity®, Ultraseek®, TOPIC®, KeyView®, and Knowledge Organizer® are registered trademarks of
Verity, Inc. in the United States and other countries. The Verity logo, Verity Portal One™, and Verity®
Profiler™ are trademarks of Verity, Inc.

Portions of this product Copyright 2003, Sun Microsystems, Inc. All rights reserved. Use is subject to
license terms. Sun, Sun Microsystems, the Sun logo, Solaris, Java, the Java Coffee Cup logo, J2SE, and
all trademarks and logos based on Java are trademarks or registered trademarks of Sun Microsystems,
Inc. in the U.S. and other countries.

Xerces XML Parser Copyright 1999-2000 The Apache Software Foundation. All rights reserved.

Microsoft is a registered trademark, and MS-DOS, Windows, Windows 95, Windows NT, and other
Microsoft products referenced herein are trademarks of Microsoft Corporation.

IBM is a registered trademark of International Business Machines Corporation.

WordNet 1.7 Copyright © 2001 by Princeton University. All rights reserved

Includes Adobe® PDF. Adobe is a trademark of Adobe Systems Incorporated.

Portions of this product use Teragram Software.

Includes IBM's XML Parser for C++ Edition.

Includes software developed by the Apache Software Foundation (http://www.apache.org/).

This product may incorporate intellectual property owned by Microsoft Corporation. The terms and
conditions upon which Microsoft is licensing such intellectual property may be found at

http://msdn.microsoft.com/library/en-us/odcXMLRef/html/odcXMLRefLegalNotice.asp?frame=true

All other trademarks are the property of their respective owners.

Notice to Government End Users

If this product is acquired under the terms of a DoD contract: Use, duplication, or disclosure by the
Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of 252.227-7013. Civilian
agency contract: Use, reproduction or disclosure is subject to 52.227-19 (a) through (d) and restrictions
set forth in the accompanying end user agreement. Unpublished-rights reserved under the copyright
laws of the United States. Verity, Inc., 894 Ross Drive Sunnyvale, California 94089.

1/25/06

Copyright Information

http://www.apache.org/
http://msdn.microsoft.com/library/en-us/odcXMLRef/html/odcXMLRefLegalNotice.asp?frame=true

Contents

Figures, Tables, and Listings.. 17

Preface .. 19

Using This Book ... 19

Version ... 20
Organization of This Book .. 20
Stylistic Conventions.. 21

Related Documentation .. 23

Verity Technical Support .. 23

PART I STYLE-FILE REFERENCE

1 Configuring and Managing Collections ... 27

About Collections .. 27

Collection Content.. 28
Gateway Access to Repositories... 28
Universal Document Support ... 30
How to Build a Collection ... 31
The Indexing Process ... 33

Setting the Indexing Mode... 34
Configuring the Virtual Document .. 35
Defining and Populating Collection Fields ... 35

Searching a Collection.. 36
Query Handling... 37
Specifying Search Characteristics ... 38

Viewing Collection Documents.. 38
Optimizing Collections.. 40
Concurrent Access and Updating .. 40
3

Contents
Internal Collection Structure .. 41

Collection Partitions ... 41
The Document Table .. 41

Document Keys .. 42
Collection Fields... 42

Collection Indexes... 43
Collection Directory Structure .. 45

About Style Files... 47

Gateway Style Files... 47
Collection Style Files... 48

About Style Sets.. 53

Standard and Default Style Sets.. 54
Style Sets Used With the K2 Dashboard... 55
Style Sets Used With the StyleSet Editor.. 56
Other Standard Style Sets ... 57
The Default Style Set ... 58

A Collection’s Internal Style Set.. 58
Collection-Management Tools ... 59

2 Configuring Gateways .. 61

Gateway Configuration Overview .. 62

Primary Document Key Format.. 62
Simple Keys .. 62

Gateway Field Types .. 63
Security Method .. 63
Using Separate Gateways for Indexing and Viewing.. 63

Gateway-Related Style Files ... 64

Using Different Gateways for Indexing and Viewing... 65
Using the HTTP Gateway ... 66

Overview.. 66
Gateway Configuration File Syntax ... 66
Gateway Configuration File Sample .. 71
Using Dynamic Cookies... 72

Cookies Section Syntax ... 72
Sample vgwhttp.cfg with Cookies Sections... 73

URL Redirection.. 74
4 Verity Collection Reference

Contents
Security Levels .. 74
Document Level... 74
Directory Level .. 74
Web Server Level... 75
No Security... 75
Security Section Syntax... 75
Sample vgwhttp.cfg with Security Sections .. 76

Configuring Forms-Based Authentication.. 77
The K2 Spider job.ini File ... 77
The vgwhttp.cfg File ... 77

Using the File System Gateway ... 79

Features .. 79
Style Directory... 79
Pre-Authentication Support.. 79
Supporting Document-Level Security on Remote Hosts.. 80
Configuration File Syntax.. 80

3 Setting Indexing and Search Policies ... 85

About Indexing Modes ... 85

What Indexing Modes Do ... 86
Dynamically Changing Modes ... 86
Background vs. Administrative Optimizations ... 86

Using Indexing Modes.. 86

Using the Verity API .. 87
Using mkvdk... 87

Built-in Indexing Modes ... 88

Generic Mode .. 88
Fast Search Mode.. 89
Bulk Load Mode ... 89
News Feed Indexer Mode ... 90
News Feed Optimizer Mode... 90
Read Only Mode... 91

Custom Indexing Modes .. 91

Metaparameter modifiers in style.plc.. 91
Defining a Custom Mode .. 92

Defining a Default Indexing Mode... 92
Verity Collection Reference 5

Contents
Inheriting From a Predefined Indexing Mode .. 93
Defining Multiple Custom Indexing Modes.. 93
Forcing Serialization of Bulk Transactions .. 94

Returning Document Counts ... 94

Using style.plc ... 95
Skipping Results Set Filtering .. 95

4 Filtering and Formatting Documents ... 97

The Virtual Document ... 98

Document Layout Definition .. 98
Document Filter Specification ... 98
Default style.dft File ... 99

Using the style.dft File... 100

style.dft File Syntax... 100
style.dft File Statements ... 101
style.dft File Keywords .. 102

Shorthand Notation for zone-begin and zone-end... 103
style.dft Keyword Modifiers ... 104
Date Formats in the style.dft File.. 106
Late Binding for Field Elements ... 106

The Universal Filter ... 106

Invoking the Universal Filter .. 107
How the Universal Filter Works... 107

Components.. 107
How Filtering Occurs .. 108

Character Set Recognition and Mapping... 109
Checking File Types.. 109

Using the style.uni File .. 110

Syntax of style.uni File Statements... 111
Syntax of style.uni File Keywords .. 112
Syntax of style.uni Keyword Modifiers... 114
Configuring the Language-Identification Filter ... 117
Conditionally Loading Filters ... 119
Generating Text-Formatting Zones .. 120
Supporting Container Files (ZIP and PST).. 120
6 Verity Collection Reference

Contents
Adding/Removing Container-File Support.. 121
Specifying Cache Characteristics .. 121

Disabling Filtering .. 122
Extracting Page Headers and Footers.. 122
Consequences of Changing style.uni... 123

Universal Filter Document Types ... 123

Recognized Document Types ... 123
Recognized Categories of Document Types... 124

The KeyView Filters .. 125

The KeyView PDF Filter ... 126

Custom Lexing Rules Not Supported.. 126
Specifying the PDF Filter... 126

Using the -fieldoverride Option.. 127
Using the -charmapto Option.. 127

PDF Fields.. 128
Standard PDF Fields ... 128
Optional PDF Fields.. 129
Defining Optional PDF Fields ... 130

Paragraph Ordering ... 132
Paragraph Direction Options... 132
Enabling Logical Reading Order... 133

The XML Filter ... 134

Requirements for Indexing XML Documents .. 134
Requirements for Data Files.. 135
Implementation Summary .. 135
Style File Configuration... 136

style.uni File ... 136
style.xml File .. 137
style.ufl File .. 143
style.dft File .. 143

Indexing From the Command Line ... 144
Troubleshooting Filters ... 144

Checking File Types ... 144
Disable Document Filters by MIME Type .. 145
Verity Collection Reference 7

Contents
5 Defining Collection Fields .. 147

Data Types... 147

Data Tables... 148
Field Types .. 149

Constant Fields.. 149
Variable Fields ... 150

Field Definition Files.. 150

Internal Fields (style.ddd).. 151
Contents of style.ddd .. 151

Standard Fields (style.sfl)... 154
Field Aliases in style.sfl... 155
Contents of style.sfl ... 155

User-Defined Fields (style.ufl) .. 158
Contents of style.ufl... 159

style.ufl Syntax ... 160

Mandatory Statements ... 160
$control.. 160
descriptor .. 160
data-table... 161

Constant Field Types.. 162
constant ... 162
autoval ... 163
worm.. 164

Variable Field Types ... 165
fixwidth ... 165
fixwidth Length and Ranges for Integer Data Types ... 166
varwidth.. 166
dispatch ... 167

6 Populating Collection Fields... 171

Methods for Populating Fields... 171

Using the Bulk Modify Feature... 171
Extracting Field Values .. 172

style.tde Syntax... 172

Syntax Template.. 173
$control ... 174
8 Verity Collection Reference

Contents
datamap ... 174
define .. 176
dispatch .. 176
field ... 178
pre-process... 181
tde ... 181

style.tde Example... 181

7 Defining Document Zones ... 183

Zone Filter Overview .. 184

Introduction to Zones .. 184
Document Types... 184
Zones vs. Fields... 184

Advantages of Using a Field.. 185
Advantages of Using a Zone ... 185
Processing Order ... 185

Zones and Zone Occurrences.. 185
Invoking the Zone Filter ... 186

Specifying the Zone Filter ... 186
Mode Options .. 187
Character Mapping Options .. 188

Extracting META Tags as Fields .. 189
Extracting Zones as Fields... 190

style.zon File Syntax .. 190

style.zon File Structure .. 191
zonespec Modifiers... 191
Conditionally Configuring Modes... 192

Implementing Multiple User Modes in style.zon... 193
The element Keyword.. 194
The attribute Keyword... 196
The entity Keyword.. 198

Entity Substitution... 200
Built-In Default Entities.. 200

Wildcards... 200
style.zon Default Behavior .. 202

Zones for Markup Language Documents .. 202
Verity Collection Reference 9

Contents
How the Zone Filter Parses Markup Language Documents .. 202
Implicit Zone Endings... 203

Zones for HTML Documents .. 204
Zone Filter Specification for HTML .. 205
Supported HTML Tags ... 205
Supported HTML Entities .. 205
Additional HTML Parsing Rules... 205

Zones for SGML Documents ... 206
Zone Filter Specification for SGML... 206
Using style.zon with SGML Documents .. 206

Zones for Internet Message Format Documents ... 207

How the Zone Filter Parses Internet Message Format Documents 207
Zone Filter Specification for Email ... 208

Using style.zon with Email .. 209
Zone Filter Specification for Usenet News.. 210

Using style.zon with Usenet News ... 211
Custom Zone Definitions .. 211

Dumping style.zon Information ... 212
Modifying Default Behavior.. 212
Attribute Extraction .. 213

Defining Zones as Collection Fields .. 214

Extracting HTML Zones as Fields .. 215
Extracting META Tags as Fields... 216

Defining Zones for Virtual Documents .. 217

Hidden Elements in Zones ... 218

Entries in the style.dft File ... 219
Searching over Hidden Zones... 219

Special Noindex and Noextract Zones.. 220

Noindex Zones .. 220
Noextract Zones .. 221
Hidden Elements in NoExtract Zones ... 222

Searching in Zones ... 222

Using the Query Language IN Operator... 223
Using a Custom Query Parser... 224
Searching Multiple Zone Occurrences... 224

Default style.zon File ... 225
10 Verity Collection Reference

Contents
8 Tuning Collections ... 233

Style Files and Index Tuning.. 233

Indexing Collection Fields (style.ufl) .. 235

Indexed Field Type... 235
Minmax Field Type .. 236

Adding Extra Collection Capabilities (style.prm)... 237

Specifying Instance Vector Encodings... 237
WCT Encoding Issues ... 237
PSW Encoding Issues.. 238
SENTENCE and PARAGRAPH Search Operators .. 238

Enabling Storage of Nouns and Noun Phrases.. 239
Enabling Document Features.. 240
Configuring Document Summaries... 240

Static Summaries ... 241
Passage-Based Summaries ... 242

Setting Index Options .. 244
Case-Insensitive Search .. 245
Stemming.. 246
Soundex Search.. 246
XML Structure Search... 246
XML Range Search .. 247
Highlight Location Data... 248
Qualify Instance Data ... 248

style.prm File Syntax.. 249
Default style.prm File... 249

Using Custom Zones to Improve Relevance (style.tkm) ... 252

Creating Custom Zones ... 252
Tokenizing Custom Fields... 254
style.tkm File Syntax .. 254

Alias Definitions .. 254
Mapping Rules... 255
Tokenization Definitions .. 257
End of File... 257

Default style.tkm File ... 257
Providing Passwords for Document Access (style.pw) ... 259

Defining Indexing Stop Words (style.stp).. 261
Verity Collection Reference 11

Contents
style.stp Syntax.. 261
style.stp Features... 262

Case Sensitivity .. 262
Regular Expressions .. 262

Defining Indexing Go Words (style.go).. 263

style.go Syntax... 263
Defining Feature-Extraction Stop Words (style.fxs) ... 263

Customizing 7-Bit Tokenization (style.lex) .. 264

style.lex File Syntax... 264
General Information .. 265
define Statements... 266
token Statements .. 266
Statement Interpretation... 267
Default Handling of the Dot Character .. 268

Character Mapping... 268

PART II COLLECTION TOOLS REFERENCE

9 Command-Line Tool Summary.. 271

10 Using mkvdk ... 283

mkvdk Overview ... 284

Basic mkvdk Syntax.. 284
Accessing a List of Command-Line Options .. 285

Creating and Indexing Collections .. 285

Creating a Collection .. 285
Indexing Documents Into a Collection .. 286

Specifying Documents on the Command Line.. 286
Indexing With a BIF... 287
Specifying a Base for Relative Pathnames.. 288

Populating Collection Fields ... 288
Putting Field Data in a BIF ... 288
Using Field Extraction... 289

Managing Collections.. 290

Updating Document Content and Fields .. 290
12 Verity Collection Reference

Contents
Deleting Documents... 290
Updating Fixed-Width Collection Fields Without Re-Indexing.................................. 291
Backing Up a Collection .. 291
Purging a Collection... 292
Repairing a Collection.. 292

Optimizing Collections ... 293

Using Optimized Indexing Modes... 293
Using the -optimize Option .. 294
Squeezing... 294
Incremental Squeeze .. 295
Creating a Spanning Word List .. 296
Creating an ngram Index... 296
Creating a Topic-Set Index .. 297
Optimizing Partitions... 298
Cleaning Up and Publishing... 298

Controlling mkvdk Settings ... 299

Accessing Secure Repositories.. 299
Specifying Absolute or Relative Collection Paths.. 299
Working With Locales ... 300
Working With Character Sets ... 301
Specifying Date Formats.. 301
Managing Memory Usage... 302
Managing System Messages ... 303

Servicing Collections ... 304

Setting the Service Level.. 304
Prohibiting Specific Service Levels .. 305
Persistent Servicing .. 306
Servicing Examples .. 306

Default Servicing ... 306
Periodic Indexing .. 306
Periodic Optimization... 306
Document Submission (No Indexing).. 307

mkvdk Reference ... 307

Command Syntax ... 307
Command Options ... 307
Verity Collection Reference 13

Contents
11 Using Bulk Insert Files ... 317

About Bulk Insert Files .. 317

BIF Format... 318

Statements .. 319
Comments ... 319
Record Terminator... 319
Field Definitions... 319

Escape Sequences and Special Characters... 320
Using Escape Sequences ... 320
Escaping Pathname Separators.. 321
Using the Backslash as a Literal Character .. 321

BIF Character Set... 321
BIF Size ... 321
BIF Examples ... 321

Inserting Documents into a Collection.. 323

Deleting Documents from a Collection... 324

Supporting Continuous Feeds.. 325

Other Uses for the BIF Format.. 326

Language Identification ... 326
Categories... 326
Profile Nets .. 327
Parametric Indexes ... 327

12 Using Other Collection Tools ... 329

About the Collection Tools ... 329

Location .. 330
Specifying Locale and Character Set .. 330

didump .. 331

didump Syntax .. 331
Viewing the Word Index.. 332
Viewing the Zone List .. 333
Viewing the Zone Attribute List ... 334

browse.. 335

Displaying Fields in a Document Table... 336
merge.. 339
14 Verity Collection Reference

Contents
Merging Collections ... 339
Splitting Collections ... 340

rcvdk .. 340

Starting rcvdk.. 341
Specifying a Default Session Language ... 341
Attaching to a Collection on Launch .. 341
Viewing Available Commands ... 342

Attaching Collections... 342
Attaching Multiple Collections ... 343
Disabling and Enabling Attached Collections .. 343
Detaching From Collections .. 344

Basic Searching.. 344
Viewing the Results List .. 345

Sorting the Results... 347
Changing Score Precision... 348
Displaying Passage-Based Document Summaries ... 348
Generating Dynamic Document Summaries .. 350

Displaying Documents .. 351
Highlighting of Search Terms.. 351
Displaying XML Subdocuments ... 352
Command Syntax .. 354
Displaying Elements Based on Attributes ... 355
Displaying Individual Elements of a Set.. 355

Authenticating in rcvdk... 356
Checking Document Access... 357

APPENDIXES

A Supported Document Formats .. 361

Archive Formats... 362

Computer-Aided Design .. 362

Display Formats ... 362

Graphic Formats .. 363

Mail Formats... 364

Multimedia Formats.. 364

Presentation Formats... 364
Verity Collection Reference 15

Contents
Spreadsheet Formats.. 365

Text-Processing Formats ... 366

Notes on K2 Support for PST Files .. 368

B Supported Date Formats ... 369

Date Import Formats ... 369

Date Import Format Strings.. 370

Table Conventions .. 370
Zulu Date Format.. 372
Time Formats... 372

Numeric Date Formats .. 373

C Supported Regular Expressions .. 375

Operators for Regular Expressions.. 375

Symbols .. 376
Substrings... 377
Regular Expression Examples... 378

D Collection Limits .. 381

Index .. 383
16 Verity Collection Reference

Figures, Tables, and Listings

Figure 1-1 Collection indexes and pointers to repository documents 28
Figure 1-2 Search access to multiple types of repositories.. 29
Figure 1-3 Using filters to access document content in multiple formats 30
Figure 1-4 Indexing a collection.. 33
Figure 1-5 Searching a collection .. 37
Figure 1-6 Using Verity to view a document from search results 39
Figure 1-7 The collection verity_doccoll and its subdirectories 46
Table 1-1 Standard style files... 49
Table 1-2 Locations of the standard style sets and templates... 55

Listing 2-1 HTTP gateway configuration file (vgwhttp.cfg) ... 67
Table 2-1 vgwhttp.cfg file syntax elements ... 69
Listing 2-2 repository section of vgwhttp.cfg for forms-baed authentication 77
Table 2-2 Elements of vgwhttp.cfg file required for forms-based authentication....... 78
Listing 2-3 File System gateway configuration file (vgwhttp.cfg).................................... 80
Table 2-3 File System gateway configuration file elements .. 82

Table 3-1 Predefined Indexing Mode Names ... 88
Listing 3-1 Example style.plc file... 95

Listing 4-1 Default style.dft file ... 99
Table 4-1 style.dft keywords.. 102
Table 4-2 style.dft modifiers .. 104
Figure 4-1 Universal filter components ... 108
Listing 4-2 Example style.uni file .. 110
Table 4-3 style.uni statements ... 111
Table 4-4 style.uni keyword syntax.. 112
Table 4-5 style.uni keyword-modifier syntax ... 114
Listing 4-3 Default style.xml file.. 137
17

Figures, Tables, and Listings
Table 4-6 style.xml commands .. 141

Table 5-1 Valid field data types... 148
Table 5-2 Constant field types ... 149
Table 5-3 Variable field types .. 150
Listing 5-1 Default style.ddd file ... 151
Listing 5-2 Default style.sfl file... 155
Listing 5-3 Default style.ufl file .. 159
Listing 5-4 Customized style.ufl file.. 159

Listing 6-1 Syntax of style.tde .. 173
Listing 6-2 Example style.tde file... 181

Table 7-1 Zone-filter modes ... 187
Table 7-2 zonespec modifiers... 191
Table 7-3 Optional mode definition flags in style.zon ... 193
Listing 7-1 Example style.zon file .. 206
Listing 7-2 Default style.zon file .. 225
Listing 8-1 Default style.prm file for File System gateway.. 249
Listing 8-2 Default style.tkm file.. 257
Listing 8-3 Example style.pw file... 259
Listing 8-4 Example style.stp file ... 261
Listing 8-5 Example style.lex file ... 265

Table 9-1 Verity K2 command-line tools.. 272
Table 9-2 Verity command-line sample programs ... 280

Table 10-1 mkvdk command-line options ... 308

Table 11-1 Nonprintable ASCII characters .. 320
Listing 11-1 Example bulk insert file... 321
Listing 11-2 Bulk insert file with custom fields ... 322

Table B-1 Import Date Formats.. 371

Table D-1 Collection limits.. 381
18 Verity Collection Reference

Preface

The Verity K2 Collection Reference Guide describes the architecture and design of Verity®
collections. Collections represent groups of documents that can be searched by one or
more Verity applications.

This book is for Verity administrators. It is intended for readers who have a Verity
installation and who are familiar with the basic concepts of search applications

This preface contains the following sections:

Using This Book

Related Documentation

Verity Technical Support

Using This Book

This section briefly describes the organization of this book and the stylistic conventions it
uses.
19

Preface
Using This Book
Version

The information in this manual is current as of K2 Enterprise version 6.1.1. The content of
the manual was last modified February 10, 2006. Corrections or updates to this
information may be available through the Verity Customer Support site; see “Verity
Technical Support” on page 23.

Organization of This Book

This book includes the following chapters and appendixes:

Part I: Style-File Reference

Chapter 1, “Configuring and Managing Collections,” gives overview information
about Verity® collections and how to build them for your Verity application.

Chapter 2, “Configuring Gateways,” describes gateway features and the File System
gateway and HTTP gateway in detail.

Chapter 3, “Setting Indexing and Search Policies,” describes how you can customize
the Verity engine’s behavior by assigning an indexing mode or by defining what is
included in the document hit count.

Chapter 4, “Filtering and Formatting Documents,” describes how to configure
document filters to affect search engine operations, like indexing and displaying
documents stored in a variety of native formats.

Chapter 5, “Defining Collection Fields,” describes field definitions and the schema for
a collection’s document table.

Chapter 6, “Populating Collection Fields,” describes methods for populating fields.

Chapter 7, “Defining Document Zones” on page 183 describes how to enable zone
searching through the use of the zone filter for: SGML, HTML, internet-style email
messages, internet-style Usenet news articles.

Chapter 8, “Tuning Collections,” describes how to customize collection indexes using
optional style files.

Part II: Collection-Tool Reference

Chapter 9, “Command-Line Tool Summary,” lists the command-line tools provided
with K2 and links to their descriptions.

Chapter 10, “Using mkvdk,” describes how to use the principal command-line tool for
creating and maintaining collections.
20 Verity Collection Reference

Preface
Using This Book
Chapter 11, “Using Bulk Insert Files,” documents BIF format and explains how to use
BIFs to modify collection content.

Chapter 12, “Using Other Collection Tools,” describes the command-line tools (other
than mkvdk) available for your use.

Appendixes:

Appendix A, “Supported Document Formats,” describes the document types
recognized by the universal filter and what the file name extensions are, if any.

Appendix B, “Supported Date Formats,” describes the variety of date formats that can
be recognized during indexing and searching.

Appendix C, “Supported Regular Expressions,” describes the syntax of regular
expressions.

Appendix D, “Collection Limits,” describes certain ranges and limits for collections.

Stylistic Conventions

The following stylistic conventions are used in this book.

Convention Usage

Plain Narrative text.

Bold User-interface elements in narrative text:

Click Cancel to halt the operation.

Italics Book titles and new terms:

For more information, see the Verity K2 Getting Started Guide.

An index is a Verity collection, parametric index, or
recommendation index.

Monospace File names, paths, and code:

The name.ext file is installed in:

C:\Verity\Data\

Monospace italic Replaceable strings in file paths and code:

user username

Monospace bold Data types and required user input:

SrvConnect A connection handle.

In the User Interface text box, type user1.
Verity Collection Reference 21

Preface
Using This Book
The following conventions are used in this book to describe command-line tool syntax.

Use of punctuation, such as single and double quotes, commas, periods, and such,
indicate actual syntax; they are not part of the syntax definition.

Convention Usage

[optional] Brackets describe optional syntax, as in [-create] to specify a
non-required option.

| Bars indicate “either | or” choices, as in

[option1] | [option2]

In this example, you must choose between option1 or option2.

{ required } Braces describe required syntax in which you have a choice and
that at least one choice is required, as in

{ [option1] [option2] }

In this example, you must choose either option1, option2, or
both options.

required Absence of braces or brackets indicates required syntax in which
there is no choice; you must enter the required syntax without
modification, as in mkre.

variable Italics specify variables to be replaced by actual values, as in

-merge filename1

... Ellipses indicate repetition of the same pattern, as in

-merge filename1, filename2 [, filename3 ...
]

where the ellipses specify , filename4, and so on.
22 Verity Collection Reference

Preface
Related Documentation
Related Documentation

The collection administrator may need to use some or all of the following books in
conjunction with this manual to create and configure collections:

Verity K2 Dashboard Administrator Guide

Verity Command-Line Indexing Reference

Verity Gateway Guides (Notes, ODBC, Exchange, Documentum)

Verity Knowledge Console Guide

Verity Intelligent Classification Guide

Verity Technical Support

Verity Technical Support exists to provide you with prompt and accurate resolutions to
difficulties relating to using Verity software products. You can contact Technical Support
using any of the following methods:

Telephone: (403) 294-1107

Fax: (403) 750-4100

Email: tech-support@verity.com

Web: http://www.verity.com

Product documentation, release notes, and document updates are available on the Verity
Customer Support Site, at

https://customers.verity.com

It is recommended that you periodically check the Customer Support site for the
existence of updates to this and other Verity product documents.

Access to the contents of the Customer Support site requires a user name and password.
To obtain a user name and password, follow the signup instructions on the Customer
Support site home page. You will need to supply your Verity entity ID and Verity license
key.
Verity Collection Reference 23

http://www.verity.com
https://customers.verity.com

Preface
Verity Technical Support
24 Verity Collection Reference

PART I

Style-File Reference

Chapter 1: Configuring and Managing Collections

Chapter 2: Configuring Gateways

Chapter 3: Setting Indexing and Search Policies

Chapter 4: Filtering and Formatting Documents

Chapter 5: Defining Collection Fields

Chapter 6: Populating Collection Fields

Chapter 7: Defining Document Zones

Chapter 8: Tuning Collections
25

26

1
Configuring and Managing Collections

This chapter provides overview information about Verity® collections and how to
configure them to fit the needs of your Verity application.

This chapter introduces these basic concepts about Verity collections:

About Collections

Internal Collection Structure

About Style Files

About Style Sets

Collection-Management Tools

About Collections

A Verity collection is the fundamental structure underlying the powerful and
sophisticated search capabilities demonstrated by Verity applications. A collection
consists of information about a particular set of documents that are available for
searching and viewing. You can implement a range of application features to support
searching, viewing and navigating your collection and its documents.

A collection represents metadata, or data about data, applied to a a set of documents. The
metadata in a collection includes indexes to aid searching plus tables defining document
locations and document-field content.
27

1 Configuring and Managing Collections
About Collections
Collection Content

A collection includes metadata that references a repository (a logical group of documents)
plus metadata that describes document content. The specific information stored for a
collection includes a word index and various other indexes, plus a document table
containing document field information and logical pointers to the document files
(Figure 1-1).

Figure 1-1 Collection indexes and pointers to repository documents

The additional indexes optimize searching or offer advanced search features such as
category search, parametric search, adaptive ranking, and topic search. See “Internal
Collection Structure” on page 41 for more details.

Gateway Access to Repositories

A Verity application can control numerous collections, with the number of documents
associated with each collection optimized for searching. As shown in Figure 1-2, the same
application can use different collections to search documents in repositories of different
types, such as a Web site versus a database.
28 Verity Collection Reference

1 Configuring and Managing Collections
About Collections
Figure 1-2 Search access to multiple types of repositories

The Verity engine uses gateways to access repositories. A gateway is a software module
that provides access to a repository of a given type. Verity provides gateways for
accessing the following types of repositories:

File system (Windows or UNIX)

Web (HTTP)

Lotus Notes

ODBC-compliant databases

Documentum

Microsoft Exchange

Your Verity license agreement determines which of these gateways are available for your
use. See“Configuring Gateways” on page 61 for more information on using and
configuring Verity gateways.

Note Verity customers can design and build custom gateways to provide access
to still other types of repositories. See Verity Gateway Developer’s Kit
Programming Reference for more information.
Verity Collection Reference 29

1 Configuring and Managing Collections
About Collections
Universal Document Support

Verity applications make use of document filters (Figure 1-3) to support indexing and
viewing of documents in many different formats. Many filter types are available.

Figure 1-3 Using filters to access document content in multiple formats

During indexing, a Verity module called the autorecognizer first identifies the format of
the document, then the appropriate document filter for that format converts document
content from its native format into a plain-text format that can be processed to create the
word index and other indexes.

During document viewing, the filter performs the same task so that the Verity application
can display the document to the user. For documents in standard word-processing
formats such as Microsoft Word and Lotus 1-2-3, the filters can generate high-fidelity
WYSIWYG document representations for viewing.

The available document filters include these:

The Verity universal filter, which calls other filters to convert a wide variety of
documents.

You can configure this filter to control its behavior.
(See “The Universal Filter” on page 106.)

Verity KeyView filters for numerous native formats.
(See “The KeyView Filters” on page 125 and “Supported Document Formats” on
page 361.)

The Verity XML filter for XML documents.
(See “The XML Filter” on page 134.)

The Verity zone filter for HTML and tagged ASCII formats.
(See “Defining Document Zones” on page 183.)
30 Verity Collection Reference

1 Configuring and Managing Collections
About Collections
Verity PDF filters for Adobe Acrobat documents. There are two PDF filters available;
one using Verity’s viewing technology, and one based on Adobe libraries. (See “The
KeyView PDF Filter” on page 126.)

The universal filter uses any of the other filters as “helper” subfilters to actually perform
the conversion. For example, If you use the universal filter, Microsoft Word documents
are automatically converted with a KeyView filter, HTML documents are automatically
converted with the zone filter, and PDF documents are automatically converted with the
PDF filter. You do not need to restrict a collection to a single type of document.

Note Using the VDK API, you can develop your own custom filters.

How to Build a Collection

You typically build Verity collections using one of these approaches:

Using the graphical interface of the K2 Dashboard.

Running the command-line tool mkvdk.

Running either of the command-line spidering tools Verity Spider and K2 Spider.

Writing and executing a program that uses the Verity C or Java APIs.

The detailed steps required to create and index a collection vary with the tools that you
use, but the overall process is the same.

1. Specify a style set.

Establish a set of style files, configuration files that will control indexing behavior and
collection characteristics.

With the K2 Dashboard, you can set up the style files from within the
collection-creation dialogs.

With the command-line tools, you set up the style files separately, before creating the
collection.

You configure style files either through manual editing or by using the StyleSet Editor,
a graphical tool for manipulating style files. (For a simple collection using files accessed
through the file system and without using spidering, you can use mkvdk and no
style-file setup is necessary.)

For more information, see “About Style Files” on page 47 and “About Style Sets” on
page 53.)
Verity Collection Reference 31

1 Configuring and Managing Collections
About Collections
2. Create the collection structure.

With the K2 Dashboard, you create the collection using the Collection Wizard or
though the Create Collection dialog.

With the mkvdk command-line tool, you use the -create option. With the spider
tools, you use the -collection command option.

(With the command-line tools, you also specify other options along with -create,
such as the -style option to specify the set of style files to use for configuration.)

Your Verity application can create collections programmatically, using the VDK or
VAdministration APIs.

For more information on creating a collection structure, see these documents:

K2 Dashboard: the creating collections chapter of the Verity K2 Dashboard
Administrator Guide

mkvdk: “Creating and Indexing Collections” on page 285.

K2 Spider: the running K2 Spider Server chapter of Verity Command-Line Indexing
Reference.

Verity Spider: the Verity Spider reference chapter of Verity Command-Line Indexing
Reference.

C APIs: Collection Maintenance Suite chapter of Verity Developer’s Kit Programming
Reference.

Java APIs: VAdministration Javadocs.

3. Index documents into the collection.

With the K2 Dashboard, you perform indexing through an indexing job, a task that
you can set up using the Collection Wizard or through the Create Job dialog.

With mkvdk, you can either specify a bulk insert file (BIF), which lists the specific
documents that are to be indexed, or list the documents explicitly on the command
line itself.

With Verity Spider and K2 Spider, you use command-line options to set up crawling
and indexing tasks across multiple directories, or alternatively you specify the
location of a bulk insert file.

Your Verity application can index documents into a collection programmatically,
using the collection-indexing API.
32 Verity Collection Reference

1 Configuring and Managing Collections
About Collections
For more information on indexing, see these documents:

K2 Dashboard: the creating collection-indexing jobs chapter of the Verity K2
Dashboard Administrator Guide

mkvdk: “Creating and Indexing Collections” on page 285.

K2 Spider: the running K2 Spider Server chapter of Verity Command-Line Indexing
Reference.

Verity Spider: the Verity Spider reference chapter of Verity Command-Line Indexing
Reference.

APIs: The collection-indexing suite chapter of the Verity K2 Collection Indexing
Programmer Guide. See also the Verity K2 Spider Programming Guide and the Verity
Developer’s Kit Programming Reference (for VdkCollectionSubmit).

The Indexing Process

Figure 1-4 summarizes what happens when a document is indexed into a collection. The
steps are the same whether a collection is being indexed for the first time or whether an
individual document is being added (inserted) into an existing collection.

Figure 1-4 Indexing a collection

1. The indexing job, spidering tool, or mkvdk goes through the appropriate gateway to
retrieve a document from the repository.
Verity Collection Reference 33

1 Configuring and Managing Collections
About Collections
2. The proper document filter (or filters) converts the retrieved document into a virtual
document, a plain-text representation of the document’s content. (You can configure the
virtual document, as noted in “Configuring the Virtual Document” on page 35.)

The filter also extracts field information, if any, from the document, and in addition
assigns it a document key (VdkVgwKey), a gateway-specific pointer to the document that
serves as a unique document identifier.

3. The document filter inserts the document’s VdkVgwKey into the collection’s document
table. It also inserts field information associated with the document into the collection
fields in the document table. (You can configure which fields are created, and how
they are populated, as noted in “Defining and Populating Collection Fields” on
page 35).

4. A portion of the Verity engine called the tokenizer processes the virtual document,
producing index information for its entire content. That information is inserted into
the collection’s word index.

5. Depending on what other indexes have been specified for the collection, the Verity
engine may extract information from the virtual document or the document fields to
create or update those indexes.

Note that a document’s text content does not itself become part of the collection; only the
detailed index information about it goes into the collection. Selected document field
content, however, is written into the collection.

The Verity engine may process the information differently, or create different indexes,
depending on what indexing mode has been selected; see “Setting the Indexing Mode”
(next).

The indexing process is highly dependent on the language and character set of the
documents being indexed. Indexing always occurs in the context of a particular Verity
locale, or language definition. Verity applications can index, search, and display
documents in collections of many different locales. See theVerity Locale Configuration
Guide for more information.

Setting the Indexing Mode
As part of setting up the style set before indexing, you can specify an indexing mode. The
indexing mode assigned to a collection determines performance and scheduling of
indexing tasks performed by the Verity engine. For example, special indexing modes are
available for indexing from bulk insert files, for indexing newsfeeds, and for creating
indexes optimized for fast searching.
34 Verity Collection Reference

1 Configuring and Managing Collections
About Collections
Before you index the collection, you assign the indexing mode in the collection’s style file
(style.plc). If no mode is assigned, a default generic indexing mode is used. For more
information about using indexing modes, see “Setting Indexing and Search Policies” on
page 85.

Configuring the Virtual Document
The definition of a virtual document includes:

A document layout definition for the document body (the textual content)

A document filter specification that identifies the filters to be used (universal filter
plus format filters)

The virtual document’s specification is defined in the style file style.dft. By default,
the document layout consists of a single field that holds nothing but the document’s
complete text content, formatted as if written into a table, one character per cell,
beginning at row 1, column 1.

Before you index the collection, you can customize style.dft to specify which parts of
the collections’s documents will be available for searching, for viewing, or for
summarization (creating document summaries). For example, you can

allow for the inclusion of various document-related fields (such as title or author) in
the document content.

define multiple document layout fields, which means that you can combine multiple
files into a single virtual document.

define certain document fields as zones (see “Defining Document Zones” on
page 183), so that they will be indexed and available for zone searching.

For more information about configuring the virtual document, see “The Virtual
Document” on page 98.

Defining and Populating Collection Fields
Besides the indexes that map to document content, a collection can include any number
of fields. Verity allows for the inclusion of several types of fields, in order to support
various information management needs.

Internal fields. These fields are defined and populated by the Verity engine. Internal
fields include the document key (VdkVgwKey) and other fields used to control search
and viewing operations. Internal fields are defined in the style file style.ddd, which
should not be edited. See “Internal Fields (style.ddd)” on page 151.
Verity Collection Reference 35

1 Configuring and Managing Collections
About Collections
Standard fields. These fields are defined in the style.sfl file and populated
automatically by the Verity engine and document filters. Standard fields include
Title, Author, Chariest, and Date.

You can customize the set of standard fields in your collection by commenting or
uncommenting individual lines in style.sfl. See “Standard Fields (style.sfl)” on
page 154.

Custom fields. These are application-defined fields. Typically, these fields are
populated at indexing time by one of these methods:

Importing their content in a bulk insert file (see “Using Bulk Insert Files” on
page 317).

Extracting field data from document content, using mkvdk and the style file
style.tde (see “Extracting Field Values” on page 172).

Parsing metatags, using the zone filter or XML filter (see “Defining Zones as
Collection Fields” on page 214 and “The XML Filter” on page 134).

You define your collection’s set of custom fields in the style file style.ufl. See
“User-Defined Fields (style.ufl)” on page 158.

External fields. These fields exist as entities in another application and their contents
are copied to Verity fields through the use of a Verity gateway. External fields are
defined in the gateway style files. See “Gateway Style Files” on page 47.

Searching a Collection

A Verity application uses collections to provide users with fast search and browse access
to large numbers of documents. At its simplest (Figure 1-5), the search application’s
function is to forward user queries to the collection and present results back to the user.
36 Verity Collection Reference

1 Configuring and Managing Collections
About Collections
Figure 1-5 Searching a collection

Query Handling
Verity applications can use the Verity Query Language (VQL) to search collections. VQL
is a powerful search language that is described in the Verity Query Language and Topic
Guide.

The application’s query can be sent through a K2 Server or K2 Broker, which may
distribute the search to multiple collections. Setting up K2 Servers and K2 Brokers is
discussed in the Verity K2 Dashboard Administrator Guide.

The Verity engine interprets the query, locates documents that are relevant to the query,
and returns a list of the most relevant documents as search results. The search results
include document field information (such as title and document summary) and the
document key (written into a link that allows the application to use the Verity engine to
retrieve the document from the repository).

A search can be applied to document content or to any of the collection fields. Note that
the actual document repository is not accessed during a typical search; only the collection
itself is processed. (For secure collections, the repository might be accessed to determine
which search results can be displayed to the user.)

Queries can be stored as topics. Topics are a search convenience, in that a user can
effectively invoke a long, complex query simply by entering the name of a topic into the
search application. A number of topics can be grouped into a topic set and attached to a
collection, and even indexed for faster searching (see “Collection Indexes” on page 43).
Topic sets can also be combined into knowledge bases.

Topics and topic sets are described in the Verity Query Language and Topic Guide.
Knowledge bases are described in the Verity Developer’s Kit Programming Reference.
Verity Collection Reference 37

1 Configuring and Managing Collections
About Collections
Specifying Search Characteristics
You can tune the search characteristics of your collection in several ways by making
changes to the following style files before indexing:

style.stp. Use this file to keep extraneous words out of the collection’s word index,
in order to speed search. See “Defining Indexing Stop Words (style.stp)” on page 261.

style.go. Use this file to specify the full set of words that are allowed into the
collection’s word index. See “Defining Indexing Go Words (style.go)” on page 263.

style.prm. Use this file to specify that additional indexes (such as SOUNDEX) and
structures (such as feature vectors) be built into the collection. These features support
additional types of search.

See “Collection Indexes” on page 43 for a discussion of these additional features. See
“Adding Extra Collection Capabilities (style.prm)” on page 237 for more information
about style.prm.

style.ufl. Besides defining the custom fields for the collection, this style file allows
you to specify that the content of any of the custom fields should itself be indexed, to
make field searches much faster. See “Indexed Field Type” on page 235.

Viewing Collection Documents

After a search, if the user of a Verity application wants to view one of the returned
documents, the user typically clicks a link on the search-results page. The application
then displays the document in one of two ways:

The application retrieves the document directly and displays it through its own
display capabilities or by launching another application, such as a Web browser.

The application uses Verity to retrieve and display the document.

If the application uses Verity, it follows the search-results link (which is based on the
document’s VdkVgwKey) and uses the gateway to retrieve the document from the
repository (Figure 1-6).
38 Verity Collection Reference

1 Configuring and Managing Collections
About Collections
Figure 1-6 Using Verity to view a document from search results

The appropriate document filters are applied to the document to reproduce the virtual
document, then highlighting information is extracted from the collection and applied.
The document is then returned to the application for display to the user (possibly in a
Web browser), with the user’s search terms highlighted.

Note Highlighting of search terms is not available if the application itself
retrieves and displays the document.

Note that, apart from providing information for highlighting, the collection itself is not
accessed for document viewing.

To use the Verity viewing service, your application calls the Viewing Service API,
described in the Verity K2 Viewing Service Programming Guide and in the VView Javadocs.
The document formats that can be displayed by the Verity Viewing Service are listed in
“Supported Document Formats” on page 361.

Your application can use separate gateways for indexing and viewing. For example, if
indexing with the Lotus Notes gateway, it might be more convenient to use the HTTP
gateway for viewing. This requires using two separate gateway style files; see “Using
Separate Gateways for Indexing and Viewing” on page 63 for details.

Note You can customize the appearance of the document summaries that
appear in search results. Using the style file style.fxs, you can specify
words that are to be excluded during feature extraction, so that those
words do not appear in document summaries and clusters. See “Defining
Feature-Extraction Stop Words (style.fxs)” on page 263.
Verity Collection Reference 39

1 Configuring and Managing Collections
About Collections
Optimizing Collections

The Verity collection-optimization features allow you to configure a collection for the best
possible search performance. There are two instances in which you would want to do
this:

1. When a collection becomes static (will never need re-indexing) and you want to
publish it for general use. Also, whenever you are distributing a collection on a
CD-ROM disc.

2. When a periodically changing collection need regular optimizations, either to improve
search performance or to recover space still occupied by deleted document indexes.

There are a few different ways to optimize collections. Information about the available
options is provided in “Optimizing Collections” on page 293.

Concurrent Access and Updating

The Verity collection architecture includes the following features that support high
availability and efficient optimization:

Collections can be updated continuously while Verity applications are searching them.

Collections have many features that support consistent and continual access (even
while updates are occurring) from multiple applications. Any Verity
collection-building application can read and add documents to any collection to which
it has valid access. Concurrent access to collections by multiple Verity sessions is
enabled through file sharing, and is synchronized through file locking and collection
servicing.

Document indexing can occur continuously and in concert with client operations,
since a collection maintains constantly updated data about documents.

The Verity engine controls an application’s access to collections by updating collection
metadata on an ongoing basis. When a collection-building application submits
documents to be indexed, the Verity engine processes the index request and updates
the collection by creating a new set of metadata in order to not disrupt searches. When
the update is complete, the new set of metadata is used, and the old set is cleaned up by
the general housekeeping and background servicing functions.

The Verity engine regularly performs housekeeping services on collections to ensure
efficient search performance.

General housekeeping is a service that cleans up the collection files, deletes older disk
files that are no longer needed, monitors the collection for problems, and prevents the
optional system log from exceeding a certain size. Other background services preserve
40 Verity Collection Reference

1 Configuring and Managing Collections
Internal Collection Structure
the integrity of indexed documents while making those documents accessible for
searching at all times.

Your application can programmatically invoke housekeeping operations as well. See
the auto-administration chapter of the Verity Developer’s Kit Programming Reference for
more information.

Collections are repaired automatically when certain error conditions occur.

To perform some of these housekeeping operations manually, you can use the mkvdk
command-line tool (see “Optimizing Collections” on page 293), the VDKAdminOptimize
function (see Verity Developer’s Kit Programming Reference), or the optimize method of
VCollection (see the VParametric Javadocs).

Internal Collection Structure

A collection consists of indexes, tables, and optional structures used for specialized
functions. Large collections can be subdivided into smaller units. Each collection is stored
in a specific, accessible directory structure.

Collection Partitions

When indexing documents, the Verity engine stores document metadata in collection
units called partitions. Each partition contains metadata for up to 64K documents. The
metadata includes the document table and the word index.

Partitions have a scalable architecture that supports incremental searching and display of
results. If a collection has multiple partitions, the Verity engine can search one partition at
a time and provide search results after each partition search, rather than waiting until the
entire collection has been searched. In this way, search performance (time to first results)
can be uniform regardless of whether a collection is 1 megabyte or 1 gigabyte in size.

The Document Table

The document table is a collection structure that

maintains document keys, the pointers to all documents that have been indexed onto
the partition.
Verity Collection Reference 41

1 Configuring and Managing Collections
Internal Collection Structure
defines and holds the contents of the collection fields, a set of metadata fields that
apply to each document in the collection.

There is one document table for each partition in the collection.

Document Keys
VdkVgwKey is a special field in the document table that is used as the document key, a
persistent document pointer. When accessing documents through the File System
gateway, the Verity engine by default assigns the document file pathname to VdkVgwKey.
When accessing documents through other gateways, the Verity engine assigns other
identifying information to VdkVgwKey.

Note Verity K2 APIs define a document key called k2DocKey, which is of the
form VdkVgwKey@collection, where collection is the name (alias)
of the collection to which the document specified in VdkVgwKey belongs.

Collection Fields
The fields of the document table are persistent or transitory.

Persistent Fields. Persistent fields are persistent between sessions, and they can be
internal, standard, custom, or external.

Internal fields are nonsearchable, non-visible fields internally managed by the Verity
engine. Internal fields are defined in the style file style.ddd.

Standard fields are the default visible, searchable fields (such as author, title,
and summary) that are defined and populated by Verity for each collection.
Standard fields are defined in the style file style.sfl.

Custom fields are visible, searchable fields that are defined and populated by the
application for an individual collection. Custom fields are defined in the style file
style.ufl.

External fields hold information that is stored in repositories, such as mail
applications or relational databases. Examples of external fields might be userID or
mailbox (in situations where that information is kept in the repository but not in
the documents themselves). External fields are accessed through Verity gateways.
External fields are defined in the style file style.ufl.

Transitory Fields. Transitory fields are stored during a session, and they go away
when the session is over. As a logical construct, the transitory field is added to the
table format. An example of a transitory field is a document’s score. Other transitory
42 Verity Collection Reference

1 Configuring and Managing Collections
Internal Collection Structure
fields can be defined using the Verity Developer’s Kit, as described in the Verity
Developer’s Kit Programming Reference.

Collection Indexes

At the core of each Verity collection is the word index (also called full word index or full
inverted index), a data structure that maps the location of essentially every word (or,
optionally, every sentence or paragraph) in every document that has been indexed into
the collection. The word index is what makes fast searching possible.

A Verity collection has a separate word index for each partition.

A collection optionally includes the following other indexes and structures. Some are
optimization features that can speed searching; some support specialized types of search:

zone index. This index is a word index for portions of the document that are in zones.
Zones are created at indexing time from tagged documents in HTML, XML, or Internet
Message format, or from other kinds of tagged document for which you have created a
custom style file (style.zon or style.xml). Users can search for terms within
specific document zones in a collection.

You can also manually add zones to a document by changing settings in the style file
style.dft.

For more information on zones and their style files, see “Defining Document Zones” on
page 183, “The XML Filter” on page 134, and “Using the style.dft File” on page 100.

spanning word list. This optimization feature is an extension of the collection’s word
index. It is a word index that crosses all partitions, saving the Verity engine the time of
having to look up a search term separately in several word indexes. It is especially
important for large, multi-partition collections.

To create a spanning word list for a collection, you can use the K2 Dashboard, mkvdk,
or an index-optimization API call. See, for example, “Creating a Spanning Word List”
on page 296.

ngram index. This optimization feature is a search accelerator for fuzzy searches
(queries that use operators such as <TYPO> and <WILDCARD>). It indexes partial
words. Creating an ngram index requires also creating a spanning word list.

To create an ngram index for a collection, you can use the K2 Dashboard, mkvdk, or an
index-optimization API call. See, for example, “Creating an ngram Index” on page 296.

Stem index. This index supports stemmed search, in which results that share the same
word stem as the search term are returned. For example, a stemmed search for the
term “runs” might return results containing “runs”, “run”, or “running”.
Verity Collection Reference 43

1 Configuring and Managing Collections
Internal Collection Structure
A stem index is created by default. To exclude a stem index during collection indexing,
you change a setting in the style file style.prm. See “style.prm File Syntax” on
page 249.

Case index. This index supports case-sensitive search. All case variants of a word are
indexed separately so that, for example, a case-sensitive search for “NeXT” doesn’t
return instances of “next” or “Next”.

A case index is created by default. To exclude a case index during collection indexing,
you change a setting to the style file style.prm. See “style.prm File Syntax” on
page 249.

Soundex index. This optional index is required to support “sounds-like” searches,
which can return results that have similar spellings to the submitted term. For
example, searching for the word “Smith” can return values such as “Smithe”,
“Smyth”, or “Smythe”.

To create a Soundex index for a collection, you make a setting in the style file
style.prm. See “Soundex Search” on page 246.

Topic-set index. An application can use a topic set to aid searching, so that when users
submit a search term that matches the name of a topic in the topic set, that topic is
used as the query instead of the search term itself. To speed searching that uses topics,
a topic set can be indexed into a collection. When a topic set is indexed, all its queries
are run against the collection and the results are stored in the index.

You create a topic-set index for a collection by using the mktopics command-line tool.
For more information, see the chapter on building topic sets in the Verity Query
Language and Topic Guide.

Field indexes. For faster searching of field data, you can specify that certain fields in a
collection be themselves indexed. (If a field is not indexed, it is searched with a simple
text matching algorithm, which can be very slow in large collections.)

Field indexes are of two types: indexed (for general text fields) and minmax (for fields
that can contain a specific range of values). Setting up either type of field index
involves making settings in the style file style.ufl. See “Indexing Collection Fields
(style.ufl)” on page 235.

Feature vectors. These optional structures are stored in a field in the document table.
A feature vector contains key words and phrases (typically nouns or noun phrases)
that summarize or characterize the content of the document they are extracted from.

Feature vectors are prerequisite to supporting certain other search capabilities, such as
document summaries, clustering of search results, fast query-by-example search, and
recommendation indexes. To enable feature extraction during the indexing of a a
collection, you make a setting in the style file style.prm. See “Enabling Document
Features” on page 240.
44 Verity Collection Reference

1 Configuring and Managing Collections
Internal Collection Structure
Some advanced Verity search capabilities use the following indexes and structures. These
indexes are not part of a collection itself, but they can be based in part on information in
the collection:

Parametric indexes. These indexes are used for parametric search. A parametric index
can be based either on a collection or on XML data. A parametric tree is a structure
within a parametric index that implements a hierarchical taxonomy that can be
browsed or searched. Parametric trees are associated with collections. For more
information on parametric indexes and trees, see the Verity K2 Parametric Developer
Guide.

Recommendation indexes. The Recommendation Engine uses these indexes to make
recommendations to a user, based on the user’s role and past history.
Recommendation indexes are based on entity profiles, some of which rely on
collection data. For more information, see the Verity K2 Recommendation Engine Guide.

Profile nets. The Verity Profiler Service and the Verity K2 Profiler Service use these
structures to evaluate documents for purposes such as document routing. The
documents to be evaluated may be obtained through a collection, although documents
not i n collections can also be evaluated. For more information, see the Verity Profiler
Programming Guide or the Verity K2 Profiler Programming Guide.

Knowledge trees. Knowledge trees are searchable and browsable hierarchical
taxonomies associated with collections. For more information, see the Verity Intelligent
Classification Guide.

Collection Directory Structure

A collection is a directory structure that stores the indexes, tables, and other information
that make up the collection. The directory structure is portable across multiple platforms.

Note Secure collections are not portable across platforms.

Figure 1-7 shows the directory structure of the collection verity_doccoll, included
with a basic installation of Verity K2. The collection’s directory and its contents are
created entirely by the collection-building application. Other than the contents of the
style subdirectory, you should not modify anything in the collection directory.
Verity Collection Reference 45

1 Configuring and Managing Collections
Internal Collection Structure
Figure 1-7 The collection verity_doccoll and its subdirectories
i

Each collection includes the following subdirectories:

assists. Contains files that give general collection information and assist in
optimizing searches, such as spanning word lists (*.wld), the collection “about” file
(*.abt), and ngram indexes (*.ngm).

morgue. Contains collection files scheduled for deletion.

parts. Contains the internal fields table (*.ddd) and the word index (*.did) for
each of the partitions in the collection.

pdd. Contains the partition map file (*.pdd) for the collection.

style. The style set that configures the collection. Contains both gateway style files
and collection style files.

temp. Temporary storage used by Verity Spider and K2 Spider.

topicidx. Contains indexed topic sets, if they exist for this collection.

trans. Contains files (*.trn) that store information on pending indexing
transactions.

work. Temporary storage for files being processed.
46 Verity Collection Reference

1 Configuring and Managing Collections
About Style Files
About Style Files

A set of style files within each collection determines its configuration options. All
documents that are inserted into a collection must be indexed using the same set of style
files.

Style files are human-readable text files that contain configuration settings. Verity
collections are highly configurable; therefore, a large number of style files, each
containing multiple configuration settings, are associated with each collection.

This section summarizes the style files that Verity provides, with links to more detailed
information.

Gateway Style Files

Each collection includes one set of gateway style files, which configure the gateway
associated with the collection. These are the gateway style files provided for each of the
standard Verity gateways:

Fore each gateway, the files have the following purposes:

vgw*.cfg: Sets the indexing parameters for the collection.

vgw*.gfl: Defines internal gateway-related collection fields.

File-system gateway HTTP gateway Lotus Notes gateway

vgwfsys.cfg vgwhttp.cfg vgwnotes.cfg

vgwfsys.gfl vgwhttp.gfl vgwnotes.gfl

vgwfsys.prm vgwhttp.prm vgwnotes.prm

vgwfsys.vgw vgwhttp.vgw vgwnotes.vgw

ODBC gateway Documentum gateway Exchange gateway

vgwodbc.cfg vgwdctm.cfg vgwmsxch.cfg

vgwodbc.prm vgwdctm.gfl vgwmsxch.gfl

vgwodbc.vgw vgwdctm.prm vgwmsxch.prm

vgwdctm.vgw vgwmsxch.vgw

vgwdctm.cpy
Verity Collection Reference 47

1 Configuring and Managing Collections
About Style Files
vgw*.prm: Sets various parameters, including settings for viewing documents.

vgw*.vgw: Defines the gateway driver definition file and security module.

vgw*.cpy: Defines collection fields to copy from document metadata in the
repository. (Used only by Documentum gateway.)

In general, you should not directly edit any of these style files. For additional overview
information on gateways and gateway configuration, see “Configuring Gateways” on
page 61. For detailed information on specific gateways and their style files, see these
documents:

HTTP gateway: “Using the HTTP Gateway” on page 66

File-system gateway: “Using the File System Gateway” on page 79

Lotus Notes gateway: Verity K2 Lotus Notes Gateway Guide

ODBC gateway: Verity K2 ODBC Gateway Guide

Documentum gateway: Verity K2 Documentum Gateway Guide

Exchange gateway: Verity K2 Exchange Gateway Guide

Collection Style Files

Table 1-1 lists the standard style files provided by Verity. Most of these style files are
mentioned earlier in this chapter, in conjunction with the collection features they affect.
All editable style files are described in more detail later in this book

IMPORTANT Not all style files should be edited or customized—only those
identified as editable in Table 1-1. Non-editable style files should
remain in the style-set directory without modification.
48 Verity Collection Reference

1 Configuring and Managing Collections
About Style Files
Table 1-1 Standard style files

File Explanation

style.ddd Purpose: Defines internal collection fields.

Editable? No.

Description: The internal field definition file. It defines the collection’s internal
fields.

See:
“Field Definition Files” on page 150.

style.dft Purpose: Document format and filter specification.

Editable? Yes.

Description: The document format file. It overrides the default virtual document
definition. This file defines the content of the document, which determines how
the document will be filtered and viewed.

See:
“The Virtual Document” on page 98
“Using the style.dft File” on page 100.

style.did Purpose: Word-index structure.

Editable? No.

Description: The internal word index definition file. It is used to generate the word
index.

style.fxs Purpose: Feature extraction tuning

Editable? Yes.

Description: The feature extraction word-exclusion file. In this file, you can
specify the words that are not to be considered when creating feature vectors,
used for scoring sentences for best-sentence summaries and for forming clusters.

See:
“Defining Feature-Extraction Stop Words (style.fxs)” on page 263.

style.go Purpose: Word index tuning

Editable? Yes.

Description: The word-inclusion file. It contains a list of the specific words that
can be included in a collection’s full-word index. Only the words listed can
appear in the index.

See:
“Defining Indexing Go Words (style.go)” on page 263.
Verity Collection Reference 49

1 Configuring and Managing Collections
About Style Files
style.lex Purpose: Word index tuning

Editable? Yes.

Description: The lexical definition file. You can use it to define non-alphanumeric
characters to be interpreted as searchable characters.

Note: Applies only to older 7-bit locales (such as english). Not used by or
recommended for current 8-bit locales.

See:
“Defining Indexing Stop Words (style.stp)” on page 261

style.ngm Purpose: ngram index specification

Editable? No.

Description: The ngram definition file. Contains parameters controlling the ngram
indexes. The ngram index is an optional index that helps to accelerate searching.

style.pdd Purpose: Collection partitioning

Editable? No.

Description: The partition definition file. It contains parameters for configuring
and managing the collection’s partitions.

style.plc Purpose: Indexing mode specification

Editable? Yes.

Description: The indexing policy file. You use it to specify the indexing mode to
be used for a collection.

See:
“Using style.plc” on page 95

style.prm Purpose: Collection tuning and indexing behavior

Editable? Yes.

Description: The parameter file. You use it to specify features that you want
included in or excluded from the collection indexes. Features include clustering,
query-by-example support, and the SOUNDEX operator. The style.prm file can
be used to specify case-insensitive word indexes to support case-insensitive
searching.

See:
“Adding Extra Collection Capabilities (style.prm)” on page 237

Table 1-1 Standard style files (continued)

File Explanation
50 Verity Collection Reference

1 Configuring and Managing Collections
About Style Files
style.pw Purpose: Indexing access to password-protected documents

Editable? Yes.

Description: The password file. Lists passwords required to access particular
documents. Generated automatically by the StyleSet Editor, which typically
encrypts the passwords. Manual editing or creation usually not required.

See:
“Providing Passwords for Document Access (style.pw)” on page 259

style.sfl Purpose: Standard collection fields

Editable? Yes.

Description: The standard collection-field list. It defines the collection’s
document-table schema for the Verity standard fields. By default, these fields are
populated in the collection by the universal filter.

See:
“Defining Collection Fields” on page 147
“Contents of style.sfl” on page 155

style.sid Purpose: Indexing of topics

Editable? No.

Description: The topic index definition file contains parameters for topic index
configuration. Topic indexes are optional indexes that allow fast searching of
topics.

style.stp Purpose: Word-index tuning

Editable? Yes.

Description: The stop-word list (word exclusion file). It contains a list of words
that are to be excluded from a collection’s full-word index.

See:
“Defining Indexing Stop Words (style.stp)” on page 261

style.tde Purpose: Document-field extraction

Editable? Yes.

Description: This is the field extraction rule file in which you specify the rules to
be used when extracting fields with the -extract option of mkvdk.

See:
“Populating Collection Fields” on page 171

Table 1-1 Standard style files (continued)

File Explanation
Verity Collection Reference 51

1 Configuring and Managing Collections
About Style Files
style.tkm Purpose: Token mapping

Editable? Yes.

Description: Specifies document zones and fields to be created based on
document formatting and location information. Can be used to improve relevance
ranking or for other purposes.

See:
“Using Custom Zones to Improve Relevance (style.tkm)” on page 252

style.ufl Purpose: User-defined collection fields

Editable? Yes. Edit with StyleSet Editor? Yes.

Description: The user-defined field list. It defines the collection’s document-table
schema for custom fields that you define.

See:
“Defining Collection Fields” on page 147
“Contents of style.ufl” on page 159

style.uni Purpose: Document-filtering configuration

Editable? Yes.

Description: The universal filter file. For every supported document type, it
specifies which helper filters the universal filter is to load, in what order, and
what characteristics they should have.

See:
“Using the style.uni File” on page 110

style.ve Purpose: Entity-extraction configuration

Editable? Yes.

Description: The Verity Extractor filter configuration file. You use it to set
extraction engines and to specify mappings form entities to fields or zones.

See:
Verity Extractor Programming Guide.

style.vgw Purpose: Gateway specification

Editable? No.

Description: The gateway definition file. It identifies the gateway to be used to
access the collection’s document repository. This file should normally not be edited
if you are using a gateway supplied with Verity K2, unless you are indexing
container files; see “Supporting Container Files (ZIP and PST)” on page 120.

See:
Verity Gateway Developer’s Kit Programming Reference (For custom gateways)

Table 1-1 Standard style files (continued)

File Explanation
52 Verity Collection Reference

1 Configuring and Managing Collections
About Style Sets
About Style Sets

A style set is a directory of style files that contain specific configuration options used to
create a given collection. Each collection has one style set, and you must define that style
set before you create the collection.

style.wld Purpose: Spanning word list specification

Editable? No.

Description: The spanning word list file. It configures a word index that includes
all partitions of the collection. The spanning word list is an optional index that aids
fast searching.

style.xfl Purpose: Extra collection fields

Editable? No.

Description: The extra fields definition file. It contains includes for the
style.sfl, style.ufl and style.gfl files.

style.xml Purpose: XML filter configuration

Editable? yes.

Description: The XML-filter configuration file. It supports indexing, metadata
extraction, and viewing of XML files.

“The XML Filter” on page 134.

style.zon Purpose: Zone filter configuration

Editable? Yes.

Description: The zone-filter configuration file. It is used to define how tagged
(SGML and HTML) documents are filtered. Does not apply to XML documents.

See:
“Defining Document Zones” on page 183

Table 1-1 Standard style files (continued)

File Explanation
Verity Collection Reference 53

1 Configuring and Managing Collections
About Style Sets
This section only summarizes style-set creation. For details on how to use the K2
Dashboard and the Verity command-line tools to create and modify style sets, see

Verity K2 Dashboard Administrator Guide

Verity Command-Line Indexing Reference

Gateway Guides:

Verity K2 Lotus Notes Gateway Guide

Verity K2 ODBC Gateway Guide

Verity K2 Documentum Gateway Guide

Verity K2 Exchange Gateway Guide

Standard and Default Style Sets

Verity supplies standard style sets and style-set templates for your use. Some of them (the
standard style sets) you can use as they are, and others (the templates) you must
customize before use. In most cases, regardless of whether you are starting with a
standard style file or a template, you are likely to need to modify various style-file entries
or create new style files to customize the behavior of your collection.

Apart from configuring a specific collection, you can also modify a standard style set or
template, in order to globally customize the behavior of all future collections. If you do
so, first make a backup copy of the original style set in a safe location, preferably outside
of the Verity product installation directory. That way, you can always recover the original
style files.

Note None of the standard style sets configures collections for document-level
security. However, you can use the style-set templates (see “Style Sets
Used With the StyleSet Editor” on page 56) to create style sets in which
document-level security is enabled.

Table 1-2 summarizes the locations the standard style sets and templates available on a
K2 system, and notes how the style sets are accessed during collection creation.
54 Verity Collection Reference

1 Configuring and Managing Collections
About Style Sets
Style Sets Used With the K2 Dashboard
When you create a collection through the K2 Dashboard, you can either assign a
pre-existing style set to it or you can create a new style set for it. The pre-existing style
sets available for you to choose from are those that have been imported into the K2
Dashboard; they are stored in the directory dataDir\stylesets (where dataDir is
the data directory—for example, C:\Program Files\Verity\data on Windows) on
the Master Administration Server machine.

These are the standard style sets initially available in this directory:

Def_Filesystem. Default style set for non-secure access through the File System
gateway.

Def_Filesystem_Secure. Default style set for secure access through the File
System gateway.

Def_Filesystem_PushAPI. Default style set for access through the
collection-indexing API.

Def_HTTP. Default style set for non-secure access through the HTTP gateway.

Def_HTTP_Secure. Default style set for secure access through the HTTP gateway.

Table 1-2 Locations of the standard style sets and templates

Location
(description)

Accessed through...a

a. The style sets are also accessed programmatically, for example, through the VAdministration
Java (see the VAdministration Javadocs) or the Administration C API (see the Verity K2
Administration Programming Guide).

dataDir\stylesets\stylesetName\

(Standard style sets for HTTP and File System gateways)

K2 Dashboard
rcadmin

productDir_nti40\bin\templates\vgwGatewayName\

(Style-sets templates for Notes, ODBC, Documentum, and
Exchange gateways)

StyleSet Editor

productDir\common\styles\stylesetName\

(Standard style sets for HTTP and File System gateways
—specified with -style option)

mkvdk
vspider
k2spider

productDir\common\style\

(Standard style sets for HTTP and File System gateways
—used when no style set is specified)

mkvdk
vspider
k2spider
Verity Collection Reference 55

1 Configuring and Managing Collections
About Style Sets
If one of the available style sets is exactly perfect for the collection you are creating, you
can select it. But if your collection requires a style set that is different (even only slightly
different) from the existing ones, you need to create a new style set.

If you choose to create a new style set, you start with a cloned copy of one of the above
standard style sets (based on your gateway and security requirements), or you can
choose to clone a copy of any other registered style set (for your gateway). You can then
customize the copy to fit your needs.

Every new style set that you create through the K2 Dashboard is registered with the
Dashboard, is stored in dataDir\stylesets, and is available for use or cloning for
future collections.

Note The K2 Dashboard allows you to edit any of its registered style sets. Doing
so will affect the behavior of all future collections created with that style
set, but will have no effect on any existing collections.

Style Sets Used With the StyleSet Editor
If you create a new style set through the K2 Dashboard, the StyleSet Editor (SSE) is
invoked to create the style set.

For a collection that is to access documents through the File System, HTTP, or ODBC
gateways, the Java version of the StyleSet Editor is used.

For a collection that is to access documents through the Notes, Documentum, or
Exchange gateways, the Microsoft Management Console (MMC) version of the
StyleSet Editor is used. (You can also use the MMC StyleSet Editor outside of the K2
Dashboard.)

Note The MMC StyleSet Editor runs only on Windows platforms.

When you use SSE to create a style set, you start with a style set cloned from a template
specific to your gateway. The style-set templates are stored in the directory
productDir_nt40\bin\templates (where productDir is the product-specific
directory in your Verity installation—such as C:\Program Files\Verity\k2) on any
machine on which SSE has been installed.

These are the style-set templates available in this directory:

vgwdctm. Style set for the Documentum gateway.

vgwmsxch. Style set the Exchange gateway.

vgwnotes. Style set for the Lotus Notes gateway.
56 Verity Collection Reference

1 Configuring and Managing Collections
About Style Sets
You then use SSE to customize your style set to fit your needs. Note that none of these
style-set templates can be used as-is; each needs customization for the particular
collection its applies to.

A style set created by the StyleSet Editor is saved as follows:

If you invoke SSE through the K2 Dashboard, the style set is registered with the
Dashboard, stored in dataDir\stylesets, and made available for cloning for use
by future collections.

If you call the StyleSet Editor from a command-line tool, you specify where the new
style set should be saved. The style set is not registered with the K2 Dashboard.

Note If you manually edit a style set in productDir_nt40\bin\
templates, the changes will affect the behavior of all future collections
created with that style set, but will have no effect on any existing
collections.

Other Standard Style Sets
If you create a collection using any of the Verity command-line indexing tools such as
vspider, k2spider_srv, or mkvdk, you use the -style option to specify the style set
to use for creating the collection’s style set.

For the HTTP and File System gateways, Verity provides sample standard style sets that
you can use for this purpose. (For the Notes, ODBC, Documentum, or Exchange
gateways, you need to create a customized style set using the SSE, as mentioned in the
previous section.)

You can use the standard style sets mentioned under “Style Sets Used With the K2
Dashboard” on page 55 with the -style option. You can also use another group of
standard style sets, in the directory productDir\common\styles on any machine on
which K2 or VDK has been installed.

These are the usable standard style sets available in this directory:

fspush

fssec

fsusec

httpsec

httpusec
Verity Collection Reference 57

1 Configuring and Managing Collections
About Style Sets
(Other style sets in this directory have names that begin with vgw; they apply to
gateways other than HTTP or file system and are not directly usable, although you can
edit them manually if desired.)

These style sets are named somewhat differently from, but are identical to, the equivalent
standard style sets in dataDir\stylesets, as described in “Style Sets Used With the
K2 Dashboard” on page 55.

Note If you manually edit a style set in productDir\common\styles, the
changes will affect the behavior of all future collections created with that
style set, but will have no effect on any existing collections.

The Default Style Set
If you create a collection using a command-line tool and you do not use the -style
option to specify a style set, the tool automatically applies the default Verity style set to
your collection. The default style set is in the directory productDir\common\style
on any machine on which K2 or VDK has been installed.

The default style set can be used only for non-secure repository access through the
file-system or HTTP gateways.

Note If you manually edit the default style set, the changes will affect the
behavior of all future collections created with that style set, but will have
no effect on any existing collections.

A Collection’s Internal Style Set

When you create a collection, the style set that you choose (or create) for it is copied into
the collection itself, in the directory collectionName\style. All actions taken on that
collection use the collection’s copy of that style set, not the original style set that you
specified at creation.

Therefore, if you wish to use style-file modifications to change an existing collection’s
characteristics or behavior, you must make those modifications on the collection’s copy of
the style set. Those changes will of course not alter the characteristics or behavior of any
other existing or future collection.
58 Verity Collection Reference

1 Configuring and Managing Collections
Collection-Management Tools
Note If you modify a style file for an existing collection, you must then re-index
the collection. (The exception to this is style.plc, which affects indexing
behavior but not the contents of the collection. See “Setting Indexing and
Search Policies” on page 85 for information on style.plc.)

Collection-Management Tools

Verity provides a variety of tools for creating, indexing, diagnosing, and maintaining
collections.

GUI tools:

K2 Dashboard. The principal application for collection management in Verity K2.
Using the Dashboard graphical interface, you can create and index collections, attach
them to K2 Servers and Brokers, schedule regular updates, generate usage reports, and
perform other maintenance tasks.

The K2 Dashboard is described in the Verity K2 Dashboard Administrator Guide.

Verity Collaborative Classifier (VCC). The principal application for managing
classification structures (taxonomies, parametric indexes, parametric trees, and topic
sets). The VCC graphical interface helps you to build information-classification
capabilities on top of Verity collections.

VCC is described in the Verity Collaborative Classifier Guide.

Verity Intelligent Classifier (VIC). An application with a graphical interface for
managing knowledge trees and topic sets. VIC also supports generation of taxonomies
by applying thematic mapping and logistic-regression classification to collections.

VIC is described in the Verity Intelligent Classification Guide.

Command-line tools:

The following are some of the command-line tools most commonly used on collections:

mkvdk. The basic command-line tool for collection maintenance in Verity VDK. You
can use mkvdk to create a collection, index documents into it, insert or delete
documents, control indexing behavior and performance, perform simple maintenance
tasks like purging, and delete the collection.

mkvdk is described in “Using mkvdk” on page 283.
Verity Collection Reference 59

1 Configuring and Managing Collections
Collection-Management Tools
Note rmkvdk (“remote mkvdk”) is a sample program that provides
mkvdk-like functionality in a server environment. It makes use of the
K2 Index Server and the collection-indexing API.

didump. Displays the word list for a collection, one partition at a time. Also displays a
list of zones, if zones are used. Described in “didump” on page 331.

browse. Lists the collection fields and their values, as stored in a collection’s
document table, one partition at a time. Described in “browse” on page 335.

rcvdk. A simple command-line search client that allows you to search over a
collection and list the collection fields. Described in “rcvdk” on page 340.

merge. Allows you to split a collection or merge collections that have the same
schema (the same set of style files). Described in “merge” on page 339.

For a more complete list of Verity command-line tools, see “Command-Line Tool
Summary” on page 271.
60 Verity Collection Reference

2
Configuring Gateways

Verity gateways are used to access data anywhere across the network, including data on
Web servers. The role of the gateway is to access the data for index, search, and view
functions. This chapter describes gateway features in general, and the File System
gateway and HTTP gateway in detail.

For detailed information on other Verity gateways, see the Verity K2 Lotus Notes Gateway
Guide, Verity K2 ODBC Gateway Guide, Verity K2 Documentum Gateway Guide, and Verity K2
Exchange Gateway Guide.

Gateway Configuration Overview

Gateway-Related Style Files

Using the HTTP Gateway

Using the File System Gateway
61

2 Configuring Gateways
Gateway Configuration Overview
Gateway Configuration Overview

A single gateway can be configured for one repository type, like HTTP or Lotus Notes,
one Verity collection, and a specific security method. In the description for each gateway
in this chapter, the security features are discussed.

Primary Document Key Format

The format for the VdkVgwKey field uses a URL-style syntax. There is a format for simple
keys (non-compound documents) and compound keys (compound documents).

Simple Keys
The format for simple keys follows standard URL conventions, except query strings and
anchors are not supported as part of the URL schema. The format for a simple key is:

protocol://schema-info

Gateway Protocol Name Description

File System
vgwfsys

file Solaris file system, NTFS

HTTP
vgwhttp

http HTTP 1.0, HTTP 1.1

Exchange
vgwmsxch

msx Microsoft Exchange
62 Verity Collection Reference

2 Configuring Gateways
Gateway Configuration Overview
Gateway Field Types

There are three basic field types used by gateways:

Repository Fields. Database fields that contain the metadata in a repository. Typically,
repository fields are the actual database column names, DBMS attributes, etc. Repository
fields cannot be read by Verity. Repository fields can be mapped to external fields.

External Fields. Database fields that can be read by Verity to perform some functions.
External fields can be displayed in a results list or used in a document view composition
via the style.dft file.

Internal Fields. Database fields that can be read by Verity without accessing the gateway
to perform all field-related functions. Internal fields can be displayed in a results list or
used in a document view composition via the style.dft file. Unlike external fields,
internal fields can be used to perform field searches and results list sorting.

Security Method

All gateways implement the Results list filtering security method. Using this method the
results list includes only those documents that match the query term and which the user
has access to.

Using Separate Gateways for Indexing and Viewing

When you use either the Notes gateway or the Exchange gateway to index, you can
implement the HTTP gateway for viewing.

The configuration files for both the indexing gateway and the HTTP gateway for viewing
must be in the style directory used. The sample style directories for the Notes and the
Exchange gateway each have these configuration files defined. All gateways defined for

Notes
vgwnotes

notes Lotus Notes

ODBC
vgwodbc

odbc ODBC

Documentum
vgwdctm

dctm Documentum

Gateway Protocol Name Description
Verity Collection Reference 63

2 Configuring Gateways
Gateway-Related Style Files
a particular gateway implementation are defined in DataSource sections of the
style.vgw file. If a gateway happens to be defined at the top of a style.vgw file, it is
treated as if it were defined in a distinct DataSource section.

Gateway-Related Style Files

Style directories include both gateway-related style files and standard style files. This
means that a single style directory, and therefore a single collection, is tied to a single
gateway type, such as file system, HTTP, Lotus Notes, ODBC, or Microsoft Exchange.

The gateway-related style files determine the configuration and behavior of a particular
gateway type. The default style files for the File System and HTTP gateways are located
here:

productDir/common/style

where productDir represents the directory containing the installed verity product
(such as usr/verity/k2). You can enable one gateway through one set of style files.

Verity uses a naming convention to identify style-file types. Standard style files are
named style.*, where * is an extension that describes the purpose of the style file.
Gateway-related style files are named vgw*.*, where vgw* reflects the gateway the style
file applies to. For example, the configuration style file for the HTTP gateway is called
vgwhttp.cfg.

File Name Description Purpose

vgw*.cfg Gateway-type
configuration file

Specifies the repositories to index and
gateway-specific configuration options to
apply.

Repository access
64 Verity Collection Reference

2 Configuring Gateways
Gateway-Related Style Files
Gateway-related style files have been set up by Verity and do not generally require
configuration. However, to disable security, the line in the vgw*.prm file noted in the
above table must be commented out.

Using Different Gateways for Indexing and Viewing

For the Notes and Exchange gateways, there are two sets of gateway-related style files:

vgw*.* files are configured for repository access for indexing

vgwhttp.* files are configured for repository access for viewing

For each gateway, both sets of gateway-related style files must be present in order for the
gateway to function.

vgw*.gfl Gateway
field-definition file

Defines fields that are required for proper
gateway functioning.

Document-table
schema definition

vgw*.prm Gateway-type
parameter file

Specifies the Verity security module to load
with the gateway type. If the security
module syntax is commented out
($define VGW*_SECURITY 1, where
VGW* represents a gateway type like
VGWHTTP for the HTTP gateway), security
is not implemented. By default, security is
implemented.

Gateway
performance

vgw*.vgw Gateway-type
definition file

Governs repository access. Repository access

File Name Description Purpose
Verity Collection Reference 65

2 Configuring Gateways
Using the HTTP Gateway
Using the HTTP Gateway

The HTTP gateway enables access to documents on CGI-compliant web servers. Using
this gateway, documents managed by web servers can be indexed, searched, and viewed.

Overview

The HTTP gateway has these features:

Supports indexing local and remote web sites.

Supports all of the features in Verity Spider, including mime-type mapping and
performance enhancements.

Frame sets are indexed.

Uses the web server’s authentication for access to documents.

The document returned for VdkVgwKey is only the page; scripts are not interpreted;
images and frames are not downloaded.

The HTTP gateway accesses all repositories by default in this release. The administrator
can limit which repositories, secure directories, and URLs to be accessed by editing the
default HTTP gateway configuration file, vgwhttp.cfg.

Sample style files appropriate for the HTTP gateway are available in the default style
directory, at

productDir/common/style/

where productDir is the directory for the Verity product you have installed. (For
example, for K2 it might be usr/verity/k2_6/k2.)

It is recommended that you backup the default style directory to another location before
making changes.

Gateway Configuration File Syntax

The HTTP gateway configuration file, called vgwhttp.cfg, must be present in the style
directory for proper functioning of the gateway. Listing 2-1 shows the content of the
default vgwhttp.cfg file in common/style.
66 Verity Collection Reference

2 Configuring Gateways
Using the HTTP Gateway
Listing 2-1 HTTP gateway configuration file (vgwhttp.cfg)

#
vgwhttp.cfg - vgwhttp configuration store
#
This is the default HTTP Gateway config file.
#

$control:1

the global settings for cookie configuration (optional)
and will take precendence if no local section is specified
for settings of cookies for each repository
cookies:
{
you can specify the cookie file (optional), which allows gateway to fetch
cookie at anthentication time for each user. The file must be in style
directory.
cookieurlfile: "-local meme.txt"
you can turn on/off cookie support in gateway, the default is on
useCookies: true
}

the global settings for security cache configuration (optional)
and will take precendence if no local section is specified
for settings of security for each repository
security:
{
you can specify the cache level in gateway (optional), the default is document
mode: none|webserver|directory|document
cachetimeout: seconds # can only be global setting, the default is 3600 seconds
usePreauthentication: true # the default is false
}

Repository settings. Zero or multiple repository entries can be listed.
repository: name
{
securityModuleId: 0x0 or 0xdff4
url: http://.*
#
loginURL (optional). Enable gateway to validate if the user can access
specified URL, and use the credentials in logon page as necessary
loginURL: http://hostname:port/docpath/doc

the local settings for cookie configuration (optional)
cookies:
{
you can specify the cookie file (optional), which allows gateway to fetch
cookie at anthentication time for each user. The file must be in style
directory.
cookieurlfile: "-local meme.txt"
you can turn on/off cookie support in gateway, the default is on
useCookies: true
Verity Collection Reference 67

2 Configuring Gateways
Using the HTTP Gateway
}

the global settings for security cache configuration (optional)
security:
{
you can specify the cache level in gateway (optional), the default is document
mode: none|webserver|directory|document
usePreauthentication: true # the default is false
}
}

Proxy settings (optional)
proxy: hostname portnum
{
proxyAuth: username password (optional)
noproxy: (optional)
{
server: hostname or IP-address (one or more "server" lines ok, up to 255)
}
}

User-Agent (optional). Sent as User-Agent in http requests
userAgent: string

Timeout (optional). Count in seconds before timing out a connection.
Gateway will wait 2 x count for data once connection is established.
timeout: count

autoLogin (optional). This option if set to TRUE indicates the HTTP gateway
should always send credentials (userid:password) on each GET request if they
are available for the HTTP target repository. This is as opposed to the
default behaviour of only sending credentials if the remote system
returns a authentication (401) error and they are available.
autoLogin: TRUE

User-defined Header (optional). Sent as a header in http requests
The string could contain multi headers, but user must have "\r\n"
for each header. For example:
header: "attribute: value\r\n"
header: string

Ignore the "Charset" defined in the "Content-Type" parameter of the HTTP header.
The default value is False.
The HTTP 'Charset' parameter, if defined, will be used as the stream charset
(instead of detecting the charset from the content-type metadata).
To ignore the HTTP header charset setting, set the value to True.
ignoreHeaderCharset: False

$$

Note that all statements in Listing 2-1 are commented out, with the exception of
$control:1 and $$. All elements in the configuration file, therefore, are optional.
68 Verity Collection Reference

2 Configuring Gateways
Using the HTTP Gateway
The vgwhttp.cfg file may contain any of the following elements.

Table 2-1 vgwhttp.cfg file syntax elements

Element Description

cookies: Specifies a cookie file to use globally. (See “Cookies Section Syntax”
on page 72.) Subelements are:

cookieurlfile: "-local filename"

usecookies: True or False. Default = True.

security: Specifies the security level to use globally. (See “Security Levels” on
page 74.) Subelements are:

mode: Can be none, webserver, directory, or document.
Default = document.

usePreauthentication: True or False. Default = False.
Verity Collection Reference 69

2 Configuring Gateways
Using the HTTP Gateway
repository: name Repository settings. name is an arbitrary string that identifies a single,
logical repository. Subelements are:

securityModuleID: value

where value = 0x0 for nonsecure access, 0xDFF4 for secure
access.

url: url

where url is the URL for accessing the repository. url can have
regular-expression syntax. The default vgwhttp.cfg file
uses an expression for url that gives access all HTTP
repositories, without limit.

You can supply multiple url entries for each repository.

loginURL: http://host:port/docpath/document

An optional URL to a login page, to authenticate the user for
repository access.

Optional subelements are:

- cookies: Specifies a cookie file for this repository.
(See “Cookies Section Syntax” on page 72.)

cookieurlfile: "-local filename"

usecookies: True or False. Default = True.

- security: Specifies the security level for this repository.
(See “Security Levels” on page 74.)

mode: Can be none, webserver, directory, or document.
Default = document.

usePreauthentication: True or False.
Default = False.

Multiple repository sections can be used to define multiple
repositories.

Note: Additional subelements of repository are required to support
forms-based authentication. See “Configuring Forms-Based
Authentication” on page 77.

Table 2-1 vgwhttp.cfg file syntax elements (continued)

Element Description
70 Verity Collection Reference

2 Configuring Gateways
Using the HTTP Gateway
Gateway Configuration File Sample

A sample HTTP gateway configuration file is shown here. This configuration file defines
three separate repositories. Each repository is defined for a secure directory.

$control:1

repository: A

proxy: host port Proxy settings. host and port specify the proxy server to use.
Optional subelements are:

proxyAuth: userID password

Credentials for authentication to proxy server.

noproxy:

Introduces a list of servers (up to 255) that are to be accessed
directly, rather than through the proxy server. Each server is
identified like this:

server: hostname
or
server: IPAddress

userAgent: string A string to send as the value for User-Agent in HTTP requests.

timeout: count count is the time in seconds to wait before timing out a connection
attempt.

Once a connection is established, the gateway will wait twice this value
to receive data.

autoLogin: True or False. (Default = False.)

If True, the gateway sends credentials (userID:password), if they
are available, with each GET request. If False, the gateway sends
credentials only if the remote system returns a 401 error.

header: string A string to be sent as an HTTP header with all HTTP requests.

Multiple header lines, each terminated with \r\n, are permitted. For
example:

header: "attrib: value\r\nattrib: value\r\n"

ignoreheaderCharset: True or False. (Default = False.)

If True, the character set defined in the Content-Type parameter of
the HTTP header is ignored, and the document’s character set is
determined by the Verity auto-detection filter.

Table 2-1 vgwhttp.cfg file syntax elements (continued)

Element Description
Verity Collection Reference 71

2 Configuring Gateways
Using the HTTP Gateway
{
/securityModuleId = 0x0
/url = http://www.verity.org/dirA/*

}

 repository: B
{

/securityModuleId = 0x0
/url = http://www.verity.org/dirB/*

}

 repository: C
{

/securityModuleId = 0x0
/url = http://www.verity.org/dirC/*

}
$$

Using the above vgwhttp.cfg file, Verity prompts the user for credentials for each
repository, as defined.

Using Dynamic Cookies

The HTTP gateway supports dynamic cookies. A cookie is a name = value pair that is
passed from one URL request to another based on the user and the path or site. Cookies
are a general mechanism that server side connections (such as CGI scripts) can use to
both store and retrieve information on the client side of the connection. Dynamic cookies
means multiple cookies can be passed per site or path. The HTTP gateway supports
dynamic cookies and gathers all known cookies in the HTTP header. You can specify the
use of dynamic cookies globally, or for a particular repository.

By default, the HTTP gateway supports dynamic cookies.

Cookies Section Syntax
To configure the HTTP gateway to support dynamic cookies, add a cookies section to
your vgwhttp.cfg file.

To add cookie support for a particular repository, add a cookies section within that
repository’s repository section.
72 Verity Collection Reference

2 Configuring Gateways
Using the HTTP Gateway
To add cookie support globally, add a cookies section to the main body of the
vgwhttp.cfg file, outside of all repository sections. A repository’s cookies setting
takes precedence over the global cookies setting.

The cookies section contains two entries, usecookies and cookieurlfile:

usecookies. Tells the HTTP gateway to support dynamic cookies. Default value is
True.

cookieurlfile. Optional. Specifies the file that contains URLs to web servers from
which cookies will be received to be used at authentication time. The URL file does not
itself contain any cookie information. This file must be located in the style directory.
Specify -local before the file name to force the HTTP gateway to look for the file in
the current style file directory. Otherwise, if the full path is not provided, the HTTP
gateway looks in the current directory for the file.

Sample vgwhttp.cfg with Cookies Sections
The following sample from a vgwhttp.cfg file shows two cookies sections, one
within a repository and one outside.

repository: SalesRepository
{
repository cookie setting

cookies:
{

usecookies: True
cookieurlfile: "-local url.txt"

}
}
...
global cookie setting
cookies:
{

usecookies: True
}

Verity Collection Reference 73

2 Configuring Gateways
Using the HTTP Gateway
URL Redirection

The HTTP gateway supports URL redirection in the HTTP header section. Redirection is
not supported for JavaScript, HTTP META tags, or in the body of the document. If the
redirection becomes circular, the HTTP gateway detects the infinite loop and processes
the last URL requested.

Security Levels

Search performance is affected by the level of security specified for the HTTP gateway.
HTTP gateway has four levels of security configurable on a per-site basis. The four
security levels in decreasing order are:

Document

Directory

Web Server

No Security

Each level of security takes advantage of an in-memory cache with configurable time-out,
significantly increasing the performance of results-list filtering. The cache is created per
user, is destroyed when the user logs off and is purged when the time-out is reached. The
cache minimizes trips to the web server for known URLs. Existing collections created
with previous versions of K2 can also be used to increase performance for all security
levels except document.

To configure the HTTP gateway for the different levels of security, modify your
vgwhttp.cfg file.

Document Level
Document is the highest level of security. The HTTP gateway determines access on a per
document basis. Each document URL is checked against the web server for
authentication. This level of security has the slowest performance.

The HTTP gateway considers each and every URL unique and contacts the web server to
ask for access.

Directory Level
The HTTP gateway determines access based on every unique path to a document.

For example, with the following URLs,
74 Verity Collection Reference

2 Configuring Gateways
Using the HTTP Gateway
www.abcd.com/a/b/c/x.html
www.abcd.com/a/b/z.html
www.abcd.com/a/y.html
www.abcd.com/d/e/f.html
www.abcd.com/d/e/g.html

the first three URLs have unique paths, so the HTTP gateway contacts the web server for
access for each URL. Since the last two URLs have the same path above the file, after the
HTTP gateway determines access to the second last URL, it does not contact the web
server again for the last URL.

Note If the destination page uses forms-based authentication, the HTTP
gateway cannot fill in the user name and password to authenticate or
create a cookie.

Web Server Level
The HTTP gateway determines access based on the URL the site resides in. Only URLs
from different sites are contacted.

No Security
Results list checking is skipped for all documents. This provides the fastest performance.

Security Section Syntax
To configure the HTTP gateway for the different levels of security, you modify your
vgwhttp.cfg file. To add or modify security for a particular repository, add or modify a
security section for that repository’s repository section. To configure security for all
repositories, create or modify a security section outside all repository sections.

Use the following options in the security sections of the vgwhttp.cfg file to
configure security levels.

mode. Specifies the security level. This can be one of the following values:

none. Specifies that no security is to be provided

webserver. Specifies web server security level

directory. Specifies directory level security

document. Default. Specifies document level security.
Verity Collection Reference 75

2 Configuring Gateways
Using the HTTP Gateway
cachetimeout. Specifies (in seconds) when the search will time out. This option can
only be applied globally (not in a repository section). Default value is 3600.

usePreauthentication. Pass only the user name, without the password. This
option supports the K2 single sign-on feature. This setting can only be applied
globally (not in a repository section). Default value is False.

cachecgiurl. Specifies that the HTTP gateway cache CGI URLs. By default, CGI
URLs are not cached. This setting can only be applied globally, outside of any
repository section. The default value is False. An example CGI URL would be:

http://www.verity.com/search.exe? query=hello &user=test

Sample vgwhttp.cfg with Security Sections
The following example shows part of a vgwhttp.cfg file with one security section
inside of a repository, and one outside.

repository: name
{

respository redirect setting
security:
{

mode: directory
cachecgiurl: True

}
}

...
global security setting
security:
{

mode: webserver
cachetimeout: 5
usePreauthentication: True
cachecgiurl: True

}

76 Verity Collection Reference

2 Configuring Gateways
Using the HTTP Gateway
Configuring Forms-Based Authentication

The HTTP gateway supports forms-based authentication. For the HTTP gateway to
access a form, the following conditions must be met:

A [FormsAuth] section must exist in a K2 Spider job.ini file.

For more information, see the FormsAuth section in the Job Initialization File Reference
chapter of the Verity Command-Line Indexing Reference.

A repository section must exist in the vgwhttp.cfg file of the target collection.

Configuring a repository section in vgwhttp.cfg file is explained later in this section.

The value for form_loginurl in vgwhttp.cfg must return a status code of 302 and
redirect to a URL that contains a form. If the login URL is a form itself, and returns a
status code of 200 OK, the HTTP gateway cannot process it.

The K2 Spider job.ini File
In the [FormsAuth] section of the job.ini file, you specify the form elements required
for authentication of the form. One of these elements may be a password. As described in
the Verity Command-Line Indexing Reference, you use the K2 Spider Client to create an
encrypted password that is stored in the job.ini file and provided at indexing time.

The vgwhttp.cfg File
You must create a repository section in the vgwhttp.cfg file for each form you want
the HTTP gateway to access. Listing 2-2 is an example repository section.

Listing 2-2 repository section of vgwhttp.cfg for forms-baed authentication

repository: secure_by_form_A
{
 # it must be http security module (0xdff4) for this feature
 securityModuleId: 0xdff4
 # the repository or realm definition
 url: http://www.verity.com/finance/.*
 url: http://www.verity.com/hr/exec/.*

 # info for form based authentication
 # the form login url
 form_loginurl: http://www.verity.com/finance/login.asp
 for_errorurl: http://www.verity.com/finance/error.asp

 # the form method
Verity Collection Reference 77

2 Configuring Gateways
Using the HTTP Gateway
 form_method: GET
 # the form action url
 form_action: http://www.verity.com/finance/submit.asp
 # the form character set
 form_charset = <character_set>

 # the credentials required by the form
 form_credential: username
 form_credential: password
 form_credential: mmname

Table 2-2 describes the elements that are required in the repository section to support
forms-based authentication.

Table 2-2 Elements of vgwhttp.cfg file required for forms-based authentication

Element Description

repository Specifies a unique identifier for this form repository.

url Specifies URLs to documents that are protected by the login page. For
example, you could type

http://www.verity.com/finance/*

to include all of the pages beneath /finance that are protected by the
login.asp page from the example.

form_loginurl Specifies the URL of the login page containing the authentication form.

form_errorurl Specifies the URL of the page to which the K2 Spider is redirected when
authentication fails. This entry is optional.

form_action Specifies the URL of the page used to process the form. This entry is
optional.

form_charset Specifies the character set of the login page. This entry is optional.

form_method Specifies either a GET or POST method is used to submit credentials to the
form.

form_credential Specifies a form field name expected by the form. For example, mmname for
mother’s maiden name. Ensure you have defined equivalent entries, with
their values, in the job.ini file.
78 Verity Collection Reference

2 Configuring Gateways
Using the File System Gateway
Using the File System Gateway

The File System gateway enables access to documents in the local file system.

Features

The File System gateway has these features:

Supports indexing files available from the network

Uses NTFS and Unix permissions for authorization and access rights to documents

Style Directory

The default style directory contains the style files for the File System gateway. The default
style directory is located at productDir/common/style/, where productDir is the
directory (such as D:\verity\k2_6\k2) holding the Verity product that has been
installed.

It is recommended that you backup the sample directory to another location before
making changes.

It is recommended that you use the File System gateway configuration file, called
vgwfsys.cfg, as is. The sample File System gateway configuration file has been
designed to work on Verity supported platforms and does not require edits or
configuration.

Pre-Authentication Support

The File System gateway supports pre-authentication in conjunction with the K2 Ticket
Server. To configure a collection to support pre-authentication, edit the vgwfsys.cfg
configuration file for the desired collection as follows:

preAuth = Yes

By default, this entry is disabled.

Once you have configured a collection to support pre-authentication, you must use the
K2 Dashboard or the rcadmin command-line tool to configure your K2 Ticket Server.
Verity Collection Reference 79

2 Configuring Gateways
Using the File System Gateway
For information on corresponding configuration with the K2 Ticket Server, see the Verity
K2 rcadmin Guide.

Supporting Document-Level Security on Remote Hosts

On Windows platforms, when you are using the File System gateway from one host to
index files on another host where K2 is not installed, and the files are secured by groups
local to that host, you must include a localServer:contenthost parameter in the
vgwfsys.cfg configuration file for your style set that defines contenthost as the
server that holds the files and the local groups securing those files.

For example, you may have a Windows domain where there is a Master Domain in which
user accounts and global groups are defined. There are also sub-domains, DomainA and
DomainB, which do not share a Windows domain trust relationship with each other. The
Master Domain, however, does trust DomainA and DomainB independently with
two-way trust relationships. K2 is installed in DomainA, the files you want to index are
on a server (DomainBServer) in DomainB, and all user accounts and security
information come from the Master Domain.

For document level security to work properly in such a scenario, you must include the
localServer:contenthost parameter in vgwfsys.cfg, where contenthost in
this example is DomainBServer, the server in DomainB that holds the files to be
indexed. That server, DomainBServer, has a local group that includes the Global group
from the Master Domain, and it is the local group that actually secures the files.

The entry in vgwfsys.cfg (located in collname\style) is:

localServer: DomainBServer

Note You must supply your own values for collname and DomainBServer.

Configuration File Syntax

The gateway configuration file, called vgwfsys.cfg, must be present for proper
functioning of the gateway. The is the default vgwfsys.cfg file, from productDir/
common/style.

Listing 2-3 File System gateway configuration file (vgwhttp.cfg)

#
Verity File System Gateway Configuration File
80 Verity Collection Reference

2 Configuring Gateways
Using the File System Gateway
$include vgwfsys.prm

$control: 1
fsgw:
{
Field mapping: RepositoryFieldName ExternalFieldName

map: "VgwDocKey" "VgwDocKey"
map: "VgwViewURL" "VgwViewURL"
map: "VgwFileCreateDate" "VgwFileCreateDate"
map: "VgwFileModifyDate" "VgwFileModifyDate"
map: "VgwFileAccessDate" "VgwFileAccessDate"
map: "VgwFileSize" "VgwFileSize"
map: "VgwFilePath" "VgwFilePath"
map: "VgwFileOwner" "VgwFileOwner"

$ifdef VGWFSYS_SECURITY
map: "_VgwAccessType" "_VgwAccessType"
map: "_VgwFileAccessValue" "_VgwFileAccessValue"

$endif

$ifdefVGWFSYS_FSKEYS
fskeys: yes

$endif

#repositoryName needs to be specified if it needs to be machine
#or host independent
#repositoryName: MY_REPOSITORY_NAME

#To enable directory level access cache and check.
#For windows, it's off by default because of performance
$ifdef TP_NTOS

enableFolderSecurity: NO

add local server entries to allow gw to fetch local group info,
for example:
localServer: server_name1
localServer: server_name2

$else
enableFolderSecurity: YES

$endif

#To enable the Signle-Sign-On feature in gateway
#preAuth: Yes
Verity Collection Reference 81

2 Configuring Gateways
Using the File System Gateway
By default, gateway uses process owner to access document without
authentication. Uncomment it to disable the default bahavior
#defaultUserAccess: 0

Default data path
path: "data_default" "."

viewURLFormat: http://%s
}
$$

Table 2-3 File System gateway configuration file elements

Element Description

fsgw: Identifies the file as a File System gateway configuration
file.

map: "field" "field" The mapping from repository field to collection field in
the document table. The first value is the repository field
name; the second value is the collection field name.
Mapped fields are treated as “external” fields—these
fields can be displayed in a results list or document
view. For information about external fields, see
“Gateway Field Types” on page 63.

For a secure collection (VGWFSYS_SECURITY is
defined), two additional field mappings are defined for
controlling user access.

fskeys: Yes if document keys are to be in native file-system
format instead of URI format.

repositoryName: name By default, the repository name is the machine name of
its host. To allow the repository to be moved among
hosts, give it an explicit name.

enableFolderSecurity: If Yes, folder-level security is enabled. For Windows
(TP_NTOS is defined), it is off by default; for other
platforms, it is on by default.

localServer: name For Windows, you can name one or more local servers
from which the gateway can fetch group information
that controls file security.

preAuth: If Yes, pre-authentication to support single sign-on is
enabled. Commented out by default.
82 Verity Collection Reference

2 Configuring Gateways
Using the File System Gateway
defaultUserAccess: 0 If uncommented, the gateway cannot use the process
owner to access documents without authentication.
Commented out by default.

path: "base" "." A path to an additional data directory holding indexable
documents.

viewURLFormat: URL A partial URL to be combined with a filename or
VdkVgwKey to form a URL for viewing each document
in a Web browser.

Table 2-3 File System gateway configuration file elements

Element Description
Verity Collection Reference 83

2 Configuring Gateways
Using the File System Gateway
84 Verity Collection Reference

3
Setting Indexing and Search Policies

This chapter discusses how you can customize certain behaviors such as indexing mode
and what types of documents are returned. The following information is covered:

About Indexing Modes

Using Indexing Modes

Built-in Indexing Modes

Custom Indexing Modes

Returning Document Counts

Skipping Results Set Filtering

About Indexing Modes

An indexing mode is a collection of settings, possibly stored in a policy style file
(style.plc), that affects Verity engine’s indexing behavior. An indexing mode affects
the engine’s performance during indexing plus the layout of the index data in a
collection.
85

3 Setting Indexing and Search Policies
Using Indexing Modes
What Indexing Modes Do

Selecting an indexing mode sets a number of metaparameters that are used to build
optimized collection components called VDBs. A VDB refers to a proprietary data
structure that Verity uses to store different kinds of collection data, including the
full-word index, document table, and optional spanning word list. When a VDB is
optimized its contents are organized in the best possible layout so that the engine’s
search performance over the collection is most efficient.

Dynamically Changing Modes

Modes can be changed and updated dynamically for an indexer. This means you can
change modes even after some indexing has taken place.

Background vs. Administrative Optimizations

Indexing modes are intended to optimize the way the Verity engine operates during
indexing time on a continuous basis. Some optimizations such as squeezing deleted
documents can be done only by administrative tools, like VdkAdminOptimize and
mkvdk -optimize. For more information on VdkAdminOptimize, see the Verity
Developer’s Kit documentation. For information on mkvdk and its options, see the Verity
K2 Indexers Guide.

The administrative functions are intended to do all the work necessary to optimize a
collection for fast retrieval all in one call. After the function is performed, the VDBs of a
collection are optimally packed. You can then make changes to the collection, such as
submitting new documents, and make the collection nonoptimal again.

Using Indexing Modes

The Verity engine has many built-in modes to support different indexing behaviors. To
use one of the built-in modes, you specify the mode name as an input argument to an
indexer. Mode names are case-insensitive.

The method for implementing an indexing mode varies depending on the application:

Using the Verity VDK API. (No policy style file required.)
86 Verity Collection Reference

3 Setting Indexing and Search Policies
Using Indexing Modes
Using the mkvdk -mode command-line option. (No policy style file required.)

Defining a custom mode called default in a policy style file.

The policy style file (style.plc) must be stored in a custom style directory that is
specified at indexing time, using mkvdk -style or the style member of the
VdkCollectionOpenArgRec structure of the VDK API.

You can create a policy style file with any text editor. It should contain only plain ASCII
text. As shipped, Verity K2 does not include a style.plc file.

For more information on defining custom indexing modes, see “Custom Indexing
Modes” on page 91.

Using the Verity API

When developing an indexing application using the VDK API, your application can
specify the indexing mode when it calls VdkCollectionOpen. The mode field in the
VdkCollectionOpenArgRec structure should point to a string that contains the name
of the mode to use while indexing.

For example, this sample code shows how to use the bulkload mode:

{
 VdkCollectionOpenArgRec openRec;
 VdkStructInit(&openRec);
 ...
 openRec.path = "mycollection";
 openRec.mode = "bulkload";
 ...
 VdkCollectionOpen(session, &collection, &openRec);
}

You can change an indexing mode after the collection has been opened, using
VdkCollectionSetInfo.

Using mkvdk

Use the -mode option with mkvdk to set a policy mode, as follows:

mkvdk -collection coll -mode BulkLoad -insert -bulk bulkfile

where coll is a collection name and bulk file is the bulk load file.
Verity Collection Reference 87

3 Setting Indexing and Search Policies
Built-in Indexing Modes
Built-in Indexing Modes

Several built-in modes are predefined by the Verity engine, each of which is designed to
support a different indexing behavior. For any one collection, the application can
implement one or more built-in or custom indexing modes.

The indexing mode names are described here.

You can also define your own indexing mode. For more information, see “Custom
Indexing Modes” on page 91.

Generic Mode

The generic mode is the base mode from which all other modes inherit their behaviors.
It is optimized to give the average overall performance without assuming anything about
the desired indexing rates of documents, how many searches are occurring
simultaneously, and so on.

The generic mode is not very efficient at performing any particular optimization in a
short amount of time. It does not perform advanced search optimizations such as
creating spanning word lists or squeezing deleted documents.

Table 3-1 Predefined Indexing Mode Names

Mode Name Description

generic The generic mode is the base mode from which all other modes
inherit their behaviors. It is optimized to give the average overall
performance.

fastsearch The fastsearch mode can be used to optimize indexes for fastest
possible searching.

bulkload The bulkload mode can be used to index large numbers of
documents using the bulk modify/bulk update feature.

newsfeedidx The newsfeedidx mode can be used to index documents arriving
from a live feed, quickly and efficiently.

newsfeedopt The newsfeedopt mode can be used to optimize collections that
were indexed using the newsfeedidx mode.

readonly The readonly mode can be used to disable modifications to
indexes.
88 Verity Collection Reference

3 Setting Indexing and Search Policies
Built-in Indexing Modes
The Verity engine builds optimized VDBs for the generic mode. The generic indexing
mode is equivalent to setting the following metaparameters:

The generic mode (named “generic”) is the default mode if the style.plc file does
not exist at all, or if style.plc does not specify a default mode for all applications, or if
VdkCollectionOpenArgRec does not specify a default mode for custom applications.

Fast Search Mode

The fastsearch mode is optimized to index documents so that retrievals happen as
quickly as possible. This mode causes the Verity engine to do more work at indexing
time.

The Verity engine performs the following optimizations for the fastsearch mode:

It builds optimized VDBs

It builds spanning word lists, and search accelerators like the ngram index

It configures collection data to minimize search overhead

The fastsearch mode is equivalent to setting the following metaparameters:

Bulk Load Mode

The bulkload mode is for indexing large numbers of documents in large batches with
bulk modify/bulk update mechanism. It is primarily intended to create new collections
from a large amount of pre-existing documents. The bulkload mode inherits most of its
settings from the fastsearch mode.

The Verity engine performs the following optimizations for the bulkload mode:

typical_document_size 2000

document_throughput 60

document_latency 200

typical_document_size 2000

document_throughput 60

document_latency 200
Verity Collection Reference 89

3 Setting Indexing and Search Policies
Built-in Indexing Modes
It builds optimized VDBs

It builds spanning word lists, and search accelerators like the ngram index

It configures collection data to minimize search overhead

The bulkload mode is equivalent to setting the following metaparameter:

News Feed Indexer Mode

The newsfeedidx mode is optimized to accept a moderate number of documents in a
short amount of time where the documents arrive in frequent small batches. It is
designed keep up with the high arrival rates of news feeds without falling behind in the
indexing.

Designed to index incoming documents and perform small merges for partitions of up to
100 documents each. These small partitions are not optimized VDBs, since optimization
of such small partitions would incur significant overhead.

The newsfeedidx mode sets the following metaparameters:

If you are developing an indexing application using the VDK API, the following service
levels must be set for the session with the newsfeedidx mode:
VdkServiceLevel_Index, VdkServiceLevel_Optimize.

News Feed Optimizer Mode

The newsfeedopt mode is designed to perform background work that the
newsfeedidx mode does not. Both modes are designed to be used together.

What the newsfeedopt mode does is merge partitions (components of collections) that
the newsfeedidx mode creates into large and optimized partitions. This mode ensures
fast search performance by:

Performing merges that would result in partitions that exceed 100 documents

typical_document_size 2000

typical_document_size 2000

document_throughput 1000

document_latency 60
90 Verity Collection Reference

3 Setting Indexing and Search Policies
Custom Indexing Modes
Creating optimized VDBs to allow faster access and larger VDB size at the expense of
merging

The Verity engine performs the following optimizations for the newsfeedopt mode:

It builds optimized VDBs

It builds spanning word lists

It configures collection data to minimize search overhead

If you are developing an indexing application using the Verity Developer’s Kit, the
following service levels must be set for the session with the newsfeedopt mode:
VdkServiceLevel_Optimize, VdkServiceLevel_DBA,
VdkServiceLevel_Delete.

Read Only Mode

The readonly mode is not an indexing mode in the sense that it does not affect how
indexing occurs. It disables data writes to the collection. This mode is useful for accessing
a collection on a read-only medium such as CD-ROM.

Custom Indexing Modes

You can define a custom indexing mode by specifying metaparameter modifiers in a
policy style file.

Metaparameter modifiers in style.plc

The style.plc file has a number of metaparameter modifiers which are used to define
indexing modes. These modifiers are a convenient way of setting a number of low-level
parameters all at once. Given one metaparameter, the Verity engine calculates
appropriate values for a number of low-level parameters. Using metaparameters, system
performance can be tuned easily.
Verity Collection Reference 91

3 Setting Indexing and Search Policies
Custom Indexing Modes
The metaparameter modifiers are provided here.

Defining a Custom Mode

Because you cannot modify any of the predefined indexing modes, you must define your
own indexing mode in style.plc. A custom mode is defined in style.plc by
specifying a mode name and metaparameter modifiers. The name you specify must be
unique.

As a shortcut, you can use the /inherit modifier to inherit the metaparameters from
one of the predefined modes. Then, you can optionally override individual
metaparameters.

Defining a Default Indexing Mode
The Verity engine has a mode called default that it uses if an application does not set the
indexing mode using mkvdk or the VDK API. The following example defines the default
mode as the bulkload mode.

$control: 1
policy:
{

mode: default

Metaparameter modifier Description

/inherit Inherits settings from another mode, either one of the
built-in modes, or another user-defined mode.
Typically, a new named mode inherits a majority of its
settings from another mode, then modifies one or two.
Default is to inherit the setting from the generic mode.

/typical_document_size A best-guess expression of the typical or average
number of indexable text words in the documents you
will be submitting. Default is 2000 words.

/document_throughput A best-guess expression of how many documents per
hour will be added or updated in the collection.
Default is 60 documents per hour.

/document_latency The acceptable latency, in seconds, between the time
that the document submitted to the collection and the
time that it can be retrieved with a search. The
minimum latency is 15 seconds. Default is 200
seconds.
92 Verity Collection Reference

3 Setting Indexing and Search Policies
Custom Indexing Modes
/inherit=bulkload
}
$$

Note You must use the mode name of default. However, you can specify any
predefined mode as the basis, using the /inherit modifier, and you can
also override any of the inherited mode’s metaparameters by specifying
your own values.

Inheriting From a Predefined Indexing Mode
In this example, you want to define a new mode, called mymode, that inherits all
metaparameters of bulkload with an override of typical_document_size=1000.

$control: 1
policy:
{

mode: mymode
/inherit=bulkload
/typical_document_size=1000

}
$$

Defining Multiple Custom Indexing Modes
You can define multiple modes by repeating the mode: name entry with any relevant
metaparameter modifiers. For example:

$control: 1
policy:
{

mode: mymode
/inherit=bulkload

mode: myothermode
/inherit=bulkload
/typical_document_size=1000

}
$$
Verity Collection Reference 93

3 Setting Indexing and Search Policies
Returning Document Counts
Forcing Serialization of Bulk Transactions
In multithreaded execution, VDK normally does not serialize bulk updates—that is, it
does not check to make sure that there are no duplicate keys in the update transactions
performed by each thread. If duplicate keys exist, they can be added as redundant entries
in the collection’s document table.

To avoid the possibility of adding duplicate keys to a collection during bulk updates, you
can force the threads to execute serially. style.plc provides the /serialize modifier
for this purpose. Use it like this:

$control: 1
policy:
{

mode: default
/inherit=Generic
/serialize=1

}
$$

Serializing bulk transactions can cause a significant degradation in indexing
performance, because it disallows simultaneous execution of different update threads. If
the likelihood of duplicate keys for your bulk update transactions is low, Verity
recommends that you do not use this option.

Returning Document Counts

To return the total number of unsecured hits in a search, you must do the following:

Include the entry unfiltered_count:yes in the style.plc file before or after
indexing.

For more information, see “Using style.plc” (next).

For K2 users, you must additionally use the following command-line tool with this
option:

rck2 -checkmaxdocs

For Verity Developer Kit (VDK) users, you must enable the
VdkSearchParam_CountAllHitsOpt flag in VdkSearchNew

For more information, see the Verity Developer’s Kit API Reference Guide V4.5.
94 Verity Collection Reference

3 Setting Indexing and Search Policies
Skipping Results Set Filtering
Using style.plc

You must specify the unfiltered_count:yes line in a style.plc file, and place it in
the style file directory for the relevant collections for which you want to enable this
feature.

Note The StyleSet Editor includes a form (Collection Parameters) that will
create or edit style.plc to enable unfiltered counts.

Listing 3-1 is a sample style.plc that enables only the unfiltered count feature.

Listing 3-1 Example style.plc file

$control: 1
policy:
{
unfiltered_count:yes
}
$$

Note If you are also specifying an indexing mode, you should include the line,
unfiltered_count=yes, at the bottom of your style.plc file before
the last curly bracket.

For more information on indexing modes, see the earlier sections in this chapter.

Skipping Results Set Filtering

To skip results-set filtering on a secure collection, you can modify a policy style file before
or after indexing.

Note The StyleSet Editor includes a form (Collection Parameters) that will
create or edit style.plc to skip results-set filtering.

Include the entry skip_results_set_filtering:yes in the style.plc file and
place it in the style set for the collection for which you do not want to perform filtering of
search results.
Verity Collection Reference 95

3 Setting Indexing and Search Policies
Skipping Results Set Filtering
The following is an example style.plc that does nothing but enable the
skip_results_set_filtering feature.

$control: 1
policy:
{
skip_results_set_filtering:yes
}
$$

Note If your policy file also specifies an indexing mode, place the
skip_results_set_filtering:yes line at the bottom of the file, just
before the last curly bracket.
96 Verity Collection Reference

4
Filtering and Formatting Documents

This chapter discusses how to configure document filters to affect search engine
operations, like indexing and displaying documents stored in a variety of native formats.

Note The zone filter, used for indexing HTML and SGML documents, is covered
in detail in Chapter 7. The Verity Extractor filter (flt_ve), used to extract
entities from documents, is described in the Verity Extractor Programming
Guide.

This chapter covers these topics:

The Virtual Document

Using the style.dft File

The Universal Filter

Using the style.uni File

Universal Filter Document Types

The KeyView Filters

The KeyView PDF Filter

The XML Filter

Troubleshooting Filters
97

4 Filtering and Formatting Documents
The Virtual Document
The Virtual Document

A virtual document represents the document text to be indexed and viewed by the
application. There is one virtual document definition for each collection. The definition of
a virtual document includes:

A document layout definition for the document body (that is, the textual content)

A document filter specification that identifies the filters to be used (that is, the
universal filter, plus helper filters for WYSIWYG, Acrobat PDF, HTML)

Document Layout Definition

By default, the Verity engine assumes that the document layout consists of the entire
contents of each document's file, beginning at row 1, column 1. You can redefine what the
virtual document looks like using the style.dft file. Document layout options
affecting the placement of the document on the screen for display, with or without field
information, can be implemented in the style.dft file. The document layout definition
indicates the document body text to be indexed and viewed.

Document Filter Specification

Document filters are available to stream documents for indexing and viewing functions.
Filters support most major word processing and desktop publishing formats. The default
configuration of the universal filter (specified in the style.uni file) implements helper
filters for all supported document types, including WYSIWYG, PDF, and HTML
documents. The default style.dft file specifies that the universal filter is to be used.

The universal filter and its configuration are described in “The Universal Filter” on
page 106. For information about the document types recognized by the universal filter,
see “Supported Document Formats” on page 361.
98 Verity Collection Reference

4 Filtering and Formatting Documents
The Virtual Document
Default style.dft File

Verity provides a default document format file, called the style.dft file that is used to
override the virtual document definition. The default style.dft file is shown in
Listing 4-1.

Note The StyleSet Editor includes a form (DFT Fields Definition) for editing
style.dft.

Listing 4-1 Default style.dft file

#
Document Format
#
$control: 1
dft:
{
 field: DOC
 /filter="universal"
 zone-begin: NOEXTRACT
 /hidden=yes
 field:Title
 /zone=Title
 /hidden=yes
 zone-end: NOEXTRACT
 zone-begin: NOEXTRACT
 /hidden=yes
 field:Keywords
 /zone=Keywords
 /hidden=yes
 zone-end: NOEXTRACT
}

In this listing, the main content of the document is defined by the DOC field. Two special
(NOEXTRACT) zones contain information that is not to be used to extract document
features for clustering or summarization. Furthermore, fields within those zones
specified as /hidden are not shown when the virtual document is displayed.

The following section describes in more detail how style.dft works.
Verity Collection Reference 99

4 Filtering and Formatting Documents
Using the style.dft File
Using the style.dft File

A style.dft file is referred to as a document format file, since this file contains
specifications that override the default virtual document definition. The dispatch field
consists of the text of the document which begins in row one, column one of the display.

To override the default virtual document definition, you must include a style.dft file
in the style directory used for creating your collection.

Note If you create a style.dft file that contains any fields other than a single
dispatch field, and the dispatch field is filtered, your application will be
unable to get the raw binary stream from the Verity engine.

style.dft File Syntax

A sample style.dft file called wsjstyle.dft, is shown here. The sample file illustrates
how to add Verity collection fields to the document layout. In this case, the document
layout includes these elements:

The Verity collection field “Source” in row 1, column 5

The Verity collection field “Title” in row 2, column 5

The document text starting in row 3, column 1

wsjstyle.dft
#
$control: 1
dft:
 /fill = no
{
 field: Source # displays the Source field
 /row = 1 # 1st row
 /col = 5 # 5th column
 field: Title # displays the Title field
 /delta-row = 1 # start on 2nd row
 /col = 5 # start in 5th column
 field: DOC # start display of doc text
 /delta-row = 1 # start on 3rd row
 /col = 1 # start in 1st column
}

100 Verity Collection Reference

4 Filtering and Formatting Documents
Using the style.dft File
$$

Using the style.dft file above, the Verity engine invokes the ASCII filter.

style.dft File Statements

The description for the style.dft file syntax for statements is provided here.

Element Description

$control: 1 The $control statement is the first noncomment line in the
style.dft file. This statement identifies the file as a Verity control
file.

dft: The dft statement identifies the control file as a style.dft file
and it must appear on the second noncomment line in a style.dft
file. There are three optional modifiers for the dft statement.
Modifiers assigned to the dft statement apply to all values
specified in the keyword statements.

/fill = yes|no This optional modifier to the dft statement identifies whether a
newline is created if a newline character appears in the field value
or constant. By default, newlines are retained (/fill=no). If you
enter /fill=yes, a single newline character in the field value or
constant is absent in a document window, and two newline
characters in a row are displayed as one.

/right-margin = margin_num This optional modifier to the dft statement identifies the right
margin of the field value or constant to be displayed in a document
window. The right margin is expressed as an integer, and the
default right margin is 0.

/tabsize = tab_chars This optional modifier to the dft statement identifies the indent
created in a document window when a tab character appears in the
field value or constant. The indent created is expressed as a number
of characters, and by default a tab character is translated into an
8-character indent.
Verity Collection Reference 101

4 Filtering and Formatting Documents
Using the style.dft File
style.dft File Keywords

Table 4-1 describes the syntax for keywords in style.dft.

Table 4-1 style.dft keywords

Element Description

field: fieldname This keyword specifies the name of a field as defined in the
document table that you want displayed with each document.
These optional modifiers can be used with the field keyword:

The /filter modifier specifies which filter to use.

The /charmap modifier specifies which character map to use to
map the textual output of the filters or gateways into the
internal character set.

The /filter and /charmap modifiers are described in detail
in the next section, “style.dft Keyword Modifiers.”

(See also note about gateway fields following this table.)

constant: "string" This keyword specifies a string that you want displayed with each
document. The string to be displayed can contain a maximum of
132 characters, and if the string contains white space, the entire
string must be enclosed in quotation marks.

system: "syscall" This keyword specifies a system call that you want the Verity
engine to execute to produce text that you want redirected to the
virtual document. To specify a parameter for a field, precede the
field name with a dollar sign ($). For example, for a field named
title, you could enter $title in a system call.

The $$ special parameter represents the name of a temporary file to
hold the output of the system call; text in the temporary file is
redirected to the virtual document definition for each document.

For example, this system keyword specifies a script named
myscript taking the title field as a parameter.

system: "myscript $title > $$"

The output of myscript is redirected to the virtual document.
102 Verity Collection Reference

4 Filtering and Formatting Documents
Using the style.dft File
Note Some gateways and filters emit certain fields only when streaming the
dispatch field (DOC). When streaming documents from a source other than
a collection, any instances of such fields will be empty (unpopulated)
unless they are listed in style.dft after the DOC field.

Shorthand Notation for zone-begin and zone-end
A shorthand notation exists for the zone-begin and zone-end combination. You can
use instead the /zone construct. For example, as an alternative to the following:

zone-begin: zname
 field: fname
zone-end: zname

you could substitute the following:

field: fname
 /zone = zname

zone-begin: zone_name This keyword specifies a zone name that identifies the beginning of
the zone to include in the virtual document.

A special zone named noextract specifies fields whose content is
not to be used for feature extraction. You can also use this zone to
specify hidden elements (text) in the virtual document. Hidden
elements get indexed but cannot be viewed. To implement hidden
elements, see “Hidden Elements in Zones” on page 218. For
complete information about zones, refer to “Defining Zones for
Virtual Documents” on page 217.

Note: If the Verity K2 Viewing Service (described in the Verity K2
Client Programming Guide) is to be used to display document
content in this collection, you cannot use the zone-begin/
zone-end keywords except in the hidden parts of no-extract
zones (see the description of the /hidden modifier in Table 4-2).
You can, however, use the /zone modifier as described in
“Shorthand Notation for zone-begin and zone-end”(next).

zone-end: zone_name This keyword identifies the end of a zone (defined with
zone-begin) to include in the virtual document.

Table 4-1 style.dft keywords

Element Description
Verity Collection Reference 103

4 Filtering and Formatting Documents
Using the style.dft File
style.dft Keyword Modifiers

The style.dft file keywords can include one or more modifiers, as described in
Table 4-2. The dft statement can have a maximum of three modifiers, and there are
several more modifiers available for the keywords.

The modifiers available for the dft statement are also available for the keywords. The
modifiers for the dft statement are global variables for the keyword elements. If a
modifier for a keyword exists also as a modifier for the dft statement, the keyword
modifier takes precedence.

Table 4-2 style.dft modifiers

Modifier Description

/filter="value" This modifier specifies which filter will be used. If not specified, the
internal ASCII filter will be used. Valid values are:

universal for the universal filter (the default; see “Hidden
Elements in Zones” on page 218).

flt_pdf for the PDF filter (see “The KeyView PDF Filter” on
page 126).

flt_xml for the XML filter

zone [-mode] for the zone filter (see “Defining Document
Zones” on page 183).

It is recommended that you use the universal filter for all filtering
due to its superior performance and handling of character sets.

/charmap This modifier is used to specify the character set that the document
is written in. The search engine will automatically character map
the text of the document into the internal character set if necessary
before it is indexed or viewed. This modifier is required to properly
map any document containing non-ASCII characters. These
character map codes can be entered as follows for the Western
European languages:

1252 for code page 1252;

850 for IBM code page 850;

8859 for ISO-8859;

For Asian localizations, you can enter a character map defined
for the locale.
104 Verity Collection Reference

4 Filtering and Formatting Documents
Using the style.dft File
/fill This optional modifier specifies whether a newline is created if a
newline character appears in the field value or constant. By default,
newlines are retained (/fill=no). If you enter /fill=yes, a
single newline character in the field value or constant is absent in a
document window, and two newline characters in a row are
displayed as one. If specified, the fill option given overrides the fill
option selected in the same modifier in the dft statement.

/right-margin This optional modifier specifies the right margin of the field value
or constant to be displayed in a document window. The right
margin is expressed as an integer, and the default right margin is
zero. If specified, the right margin given overrides the right margin
specified in the same modifier in the dft statement.

/tabsize This optional modifier specifies the indent created in a document
window when a tab character appears in the field value or constant.
The indent created is expressed as a number of characters, and by
default a tab character is translated into an 8-character indent. If
specified, the tab given overrides the tab specified in the same
modifier in the dft statement.

/row This optional modifier specifies the row number in which the field
value or string will be displayed. The first row of a virtual
document display is row one.

/col This optional modifier specifies the row number in which the first
character of the field value or string will be displayed. The left-most
column of a virtual document display is column one.

/delta-row The optional modifier specifies a row number relative to the text
above it where you want the field value or string displayed. For
example, if field is defined to appear in row four, and you specify /
delta-row=2 for a second field, the second field appears two
rows ahead, in row six.

/delta-col This optional modifier specifies a column relative to the right-most
character in a row where you want the first character of a field value
or string displayed. For example, if a field is defined to appear in
row three from columns five to 15, and you specify /
delta-col=5, the second field will appear five columns ahead,
beginning in column 20.

Table 4-2 style.dft modifiers

Modifier Description
Verity Collection Reference 105

4 Filtering and Formatting Documents
The Universal Filter
Date Formats in the style.dft File

If one of the fields in your style.dft file is a date field, you must use the same date
output format for both indexing and viewing. If you do not, you may have incorrect
highlights (unless your retrieval client uses dynamic highlighting).

Late Binding for Field Elements

The Verity engine uses late binding for field elements in the virtual document, meaning
that the value of a field specified in the style.dft is not read until the field element is
actually inserted into the stream. This enables field values populated by gateways and
filters, such as HTML META tags and Microsoft Office properties, to be added to the
document stream following the text of the main document.

It is not possible to capture the values of the VdkSummary and VdkFeatures field in the
virtual document because these fields are generated after the entire virtual document has
already been streamed.

The Universal Filter

This section provides an overview of the universal filter and its implementation.

/hidden This optional modifier specifies that one or more fields are defined
as hidden elements. Valid values are:

YES to treat the zone’s fields as hidden elements.

NO (default) to not treat the zone’s fields as hidden elements.

A special zone named noextract is used to specify hidden
elements (text) in the virtual document; hidden elements get
indexed but cannot be viewed. To implement hidden elements, see
“Hidden Elements in Zones” on page 218. For complete
information about zones, refer to “Defining Zones for Virtual
Documents” on page 217.

Table 4-2 style.dft modifiers

Modifier Description
106 Verity Collection Reference

4 Filtering and Formatting Documents
The Universal Filter
The universal filter is a document filter that produces indexable (or viewable) text like
any other filter. The difference is that it dynamically filters documents according to the
type of those documents using a number of “helper” subfilters. For example, Microsoft
Word documents are filtered with a certain set of filters (using the KeyView Filter Kit),
and HTML documents are filtered in a different way with a different set of filters (the
current zone filter).

The advantage of the universal filter is that it removes the need to specify the document
type and character set of documents before creating the collection, and it allows multiple
document types written in multiple character sets to be indexed into the same collection.

The universal filter is configurable. It has a configuration file that tells it how to filter each
type of document that it sees. It also allows multiple filters on each document, so that you
are not limited to a single type of filter. The goal of the universal filter design, however,
was to be able to filter all important document types “out of the box.” That is, the default
configuration file that ships with the search engine should be sufficient for almost all
documents that you might want to index. Configuration is offered in case you have
special needs that are not addressed in the standard configuration file.

Invoking the Universal Filter

The universal filter is invoked by default, unless you override the default style.dft
file in the styleset for your collection. When you index your collection or view documents
in your collection, the universal filter will filter each document appropriately.

mkvdk -create -collection mycoll -insert *

How the Universal Filter Works

The following sections describe how the universal filter components work together to
filter documents during indexing and viewing operations.

Components
The universal filter has a number of different components:

1. The universal filter itself: This segment installs and synchronizes all the other stream
segments.

2. The autorecognizer segments: These segments recognize the type of the document.

3. The format filters: The job of the format filters is to extract indexable text from a binary
file.
Verity Collection Reference 107

4 Filtering and Formatting Documents
The Universal Filter
4. The charmap filter: The job of the charmap filter is to guarantee that all text is written in
the internal character set.

5. The content filters: The job of the content filters is to extract meta-information such as
fields or zones from the text of the document and send that meta-information up the
stream.

Figure 4-1 Universal filter components

How Filtering Occurs
The following steps demonstrate the functioning of each of the parts shown in Figure 4-1.

1. If the first document to be processed was generated by an application in PDF format,
the autorecognizer recognizes the document as type application/pdf and invokes
the PDF format filter. The charmap filter determines its character set and converts it if
necessary to the collection’s character set. The appropriate content filter extracts PDF
metadata. The document content and metadata are then passed along the document
stream to be tokenized and indexed.

2. If the next document to be processed is an HTML document, the PDF filters remain in
memory for future use. The autorecognizer recognizes the document as type text/
html, invokes the appropriate format filter and content filter, and the universal filter
sends the content and metadata along the document stream.
108 Verity Collection Reference

4 Filtering and Formatting Documents
The Universal Filter
3. If the next document to be processed is a Microsoft Word document, the PDF and text
filters remain in memory for future use. The autorecognizer recognizes the document
as type application/pdf, invokes the appropriate format filter and content filter for
Word documents, and the universal filter sends the content and metadata along the
document stream.

4. Each subsequent document to be processed is handled according to its format. If
another PDF document is indexed, for example, the universal filter would reuse the
PDF filters it had previously set up.

Character Set Recognition and Mapping

The charmap segment, which is inserted between the format filters and the content
filters, guarantees that all text it produces is written in the internal character set. Because
different file types are written in different character sets, the charmap segment must
sometimes dynamically determine the character set of the text of the document for each
document. If the /charset=guess modifier is given for any type in the style.uni
file, the charmap segment will automatically determine the character set of each
document and install the correct character set mapping.

The Verity internationalization infrastructure includes the ability to determine the
character set of a piece of text with very high precision. For Western European languages,
the recognition can be more than 99% correct.

The charmap segment can recognize the character sets listed in Appendix A of the Verity
Locale Configuration Guide. For Western European languages and the multilanguage
locale, it includes these character sets:

1252

850

8859

Mac1

UTF-8

Checking File Types

You can determine information about how the Verity engine evaluates the document type
and character set for a particular document by looking at the “info” messages that the
engine produces. You can see these “info” messages using mkvdk with the -verbose
flag, as shown in the command-line syntax here:
Verity Collection Reference 109

4 Filtering and Formatting Documents
Using the style.uni File
mkvdk -verbose -create -collection mycoll -insert mydocs/*

The above example illustrates how to index a set of documents into a collection called
mycoll in verbose mode. For complete information about using mkvdk, see the “Using
mkvdk” on page 283.

You may want to check the document type recognized by the engine if errors occur. For
example, if a web page is interpreted by the engine as a plain ASCII document, then zone
searching will not work; if the autorecognizer thinks that the document is written in an
incorrect character set, extended characters will not be displayed.

Document types recognized by default are listed in detail in “Supported Document
Formats” on page 361.

Using the style.uni File

The universal filter is controlled with a style file called style.uni. This style file tells
the universal filter which helper filters to load in what order for every possible document
type.

Listing 4-2 is an example of a short style.uni file that can filter Microsoft Word
documents, PDF documents, and email documents.

Listing 4-2 Example style.uni file

 $control: 1
 types:
 {
 autorec: "flt_kv -recognize"
 postformat: "flt_lang "

 type: "application/msword"
 /format-filter = flt_kv
 /charset = guess
 /def-charset = 1252

 type: "application/pdf"
 /format-filter = "flt_pdf -charmapto 1252"
 /charset = guess
 /def-charset = 1252

 # this is the MIME Content Type for email messages
110 Verity Collection Reference

4 Filtering and Formatting Documents
Using the style.uni File
 type: "message/rfc822"
 /charset = guess
 /def-charset = 1252
 /content-filter = "zone -email -nocharmap"

 # if we get anything else, just skip it.
 default:
 /action = skip
 }
 $$

Syntax of style.uni File Statements

The description for the style.uni file syntax for statements is provided in Table 4-3.

Table 4-3 style.uni statements

Element Description

$control: 1 Must be the first non-comment line in the style.uni file. This
statement identifies the file as a Verity control file.

types: Identifies the control file as a style.uni file, and it must appear
on the second noncomment line in a style.uni file.
Verity Collection Reference 111

4 Filtering and Formatting Documents
Using the style.uni File
Syntax of style.uni File Keywords

The description for the style.uni file syntax for keywords is provided in Table 4-4.

Table 4-4 style.uni keyword syntax

Element Description

autorec: "filter" Specifies the name of the filter segment to use as an autorec segment. Valid values
are:

flt_rec. The generic autorecognizer; it determines which filter type is
appropriate for each document (required)

flt_kv. The WYSIWYG autorecognizer. Use it with one of these sets of options:

-recognize. Interpret binary file types for the WYSIWYG filters (required if
you have binary WYSIWYG documents).

-trust -recognize. Enforce the document-type assignment made by the
universal filter, regardless of the document’s file extension.

-bifmime. Ignore the document-type assignment made by the universal filter,
and instead use a document-type assignment specified in the MIME-type field
of a BIF file (or in a call to the Collection Indexing API, described in the
Verity K2 Collection-Indexing Programmer Guide).

Note: This option affects only the first dispatch field (as specified by
style.dft) of the virtual document generated for each file.

This option is enabled by default only in the fspush sample style set.

-unzip. Index the contents of archive files. When it encounters an archive file,
the recognizer extracts its files into a disk cache and creates a queue of
file-name tokens to be used for streaming the extracted documents into a single
virtual document. (Compare this with separate indexing of archived files,
described in “Supporting Container Files (ZIP and PST)” on page 120.)

Note: This is no longer the recommended method for handling zip files.
See“Adding/Removing Container-File Support” on page 121.

There may be multiple autorec statements in the style.uni file. When multiple
statements are used, they are installed in the order that they are specified, with the
first one being attached to the gateway and the last one being attached on the other
end to the universal filter.

This argument can be a document data access (DDA) specification for external
DDA filters written by a Verity developer.

default: Specifies what the universal filter should do with any document type that is not
explicitly listed with a type keyword. There can be only one default keyword in the
style.uni file.
112 Verity Collection Reference

4 Filtering and Formatting Documents
Using the style.uni File
postformat:
"filter -options"

Specifies a format filter (plus appropriate options, if applicable) to apply to all
document types after the standard format filter for that type.

Each postformat statement specifies one filter; multiple instances of this
keyword are allowed if you want to chain multiple postformat filters.

Specify flt_lang for filter to perform language identification on all
documents and write the output into the collection’s VLANG and CHARSET fields. If
multiple post-format filters are specified, flt_lang must be the last filter in the
chain.

For information on configuring flt_lang, see “Configuring the
Language-Identification Filter” on page 117.

postcontent:
"filter -options"

Specifies a content filter (plus appropriate options, if applicable) to apply to all
document types after the standard content filter for that type.

Each postcontent statement specifies one filter; multiple instances of this
keyword are allowed if you want to chain multiple postcontent filters.

prerec:
"filter -options"

Specifies a filter (plus appropriate options, if applicable) to apply to all document
types before the auto-recognition filter (autorec).

Each prerec statement specifies one filter; multiple instances of this keyword are
allowed if you want to chain multiple prerec filters.

type: "type" Specifies what the universal filter should do with a particular document type. There
may be many type keywords in the style.uni file, one for each content type.

This argument specifies the name of the content type token as it is emitted from the
autorec segment. It is usually in the form of class/subtype. For a complete list of
the file types defined in the default style.uni file, see “Supported Document
Formats” on page 361.

Table 4-4 style.uni keyword syntax (continued)

Element Description
Verity Collection Reference 113

4 Filtering and Formatting Documents
Using the style.uni File
Syntax of style.uni Keyword Modifiers

For a style.uni file, the type and default keywords can include modifiers.

Table 4-5 style.uni keyword-modifier syntax

Modifier Description

/format-filter="value" This modifier specifies that a filter will be used to extract text from
a binary file. Valid values are:

flt_kv for the KeyView filters;

flt_pdf for the PDF filter;

flt_xml for the XML filter;

DDA spec for any DDA-based filter;

There can be multiple format-filter modifiers, and the binary
information will be filtered through each of the specified filters in
the order that they are specified in the style.uni file. The default
is to install no filters.

The flt_xml filter can be run without converting META tags
to text elements by using the -nometa flag:

/format-filter=”flt_xml -nometa”

The flt_kv filter can be run in-process for a given MIME type
by using the -noprot flag:

/format-filter=”flt_kv -noprot”

The flt_kv filter can be configured to generate
text-formatting zones for a given MIME type by using the
-zoned flag:

/format-filter=”flt_kv -zoned”

(See“Generating Text-Formatting Zones” on page 120.)

The flt_kv filter can be configured to extract header and
footer information from a word-processing file by using the
-headfoot flag:

/format-filter=”flt_kv -headfoot”

(See “Extracting Page Headers and Footers” on page 122.)

The flt_kv filter can be configured stop filtering a document
after a specified number of seconds, by using the -timeout
flag:

/format-filter=”flt_kv -timeout 300”

Use this option to ensure that very slow filtering operations
time out instead of appearing to hang the system.
114 Verity Collection Reference

4 Filtering and Formatting Documents
Using the style.uni File
/content-filter="value" This modifier specifies that a filter will be used for extracting
meta-information from the text. Valid values are:
zone for the zone filter;
flt_meta for HTML documents with META tags (for more
information, see “Extracting META Tags as Fields” on page 189.);
DDA spec for any DDA-based filter.

There may be multiple content-filter modifiers, and the text will be
filtered through each of the specified filters in the order that they
are specified in the style.uni file. The default is to install no
filters.

/charset=name This modifier is used to specify the character set used to represent
characters in the document after it has been format-filtered. The
text will be automatically character mapped into the internal
character set. The valid settings are:

guess causes the charmap segment to guess what the character
set of the text is (it currently has about 99% accuracy on files
larger than 512 bytes written in Western European languages).

none causes the charmap segment to pass the text through
without any character set mapping.

1252 for code page 1252.

850 for IBM code page 850.

8859 for Latin1 (ISO-8859-1) encoding.

mac1 for Macintosh Roman1 encoding.

Other character sets can be specified, depending on the locale
under which the search engine is currently running. The default is
to perform no character set mapping.

/def-charset=name If the /charset modifier is given the argument guess, the
guessing might fail for various reasons. For example, the file might
not have been long enough to guess properly. In this case, the /
def-charset specifies the default character set to use for
character set mapping when the guess fails. The valid values for
the name are the same as for the /charset modifier in the
preceding, without the guess argument. The default setting for
the default character set is none.

Table 4-5 style.uni keyword-modifier syntax

Modifier Description
Verity Collection Reference 115

4 Filtering and Formatting Documents
Using the style.uni File
Here is an example of what the initial part of a style.uni file that uses prerec,
postformat, and postcontent statements might look like:

$control: 1
types:
{

prerec: "filter1 -options"
prerec: "filter2 -options"
autorec: "flt_kv -recognize"
postformat: "filter3 -options"
postformat: "flt_lang "
postcontent: "filter5 -options"

type: "application/pdf"
/format-filter = "flt_pdf -charmapto 1252"
/charset = guess
/def-charset = 1252

type: "message/rfc822"

/action=action-name This optional modifier specifies the action to perform with
documents of this type. Valid values are:

index to index a document that should be streamed as normal.

skip to skip this type of document, so that it is not indexed or
viewed.

fields-only to stream this type of document for the
purposes of extracting field information only to put in the
document table. The text of the document will not be indexed
or viewed.

/protocol=protocol-name This optional modifier specifies a Verity gateway-supported
protocol for accessing documents. Valid values are:

vzip for accessing the contents of zip files as separate files.

vpst for accessing the contents of PST files as separate files.

Note: The /action modifier takes precedence over the
/protocol modifier, if both are applied to the same type of
document.

IMPORTANT: Any protocol specified in style.uni must
exactly match in spelling one of the protocols specified in
style.vgw.

Table 4-5 style.uni keyword-modifier syntax

Modifier Description
116 Verity Collection Reference

4 Filtering and Formatting Documents
Using the style.uni File
/charset = guess
/def-charset = 1252
/content-filter = "zone -email -nocharmap"

...

Configuring the Language-Identification Filter

You can specify flt_lang in a postformat statement in style.uni to perform language
identification on all documents indexed into a collection. The language and character-set
information is written to the collection’s VLANG and CHARSET fields.

This is the syntax of the flt_lang assignment:

postformat: "flt_lang [-buffer_size buffer_size] [-config
config_path] [-n num_languages] [-lang language] [-nocontent]"

where

-buffer_size buffer_size (optional) specifies how much of the document, in
bytes, to analyze for language detection. Default = 2048.

Note In some situations, especially when flt_lang needs to distinguish
between similar languages, language detection can improve
significantly if the buffer size is increased (for example, from 2048 to
4096 bytes).

-config config_path is the path to the language-list file (langlist.cfg).
Default = verity_product/common/langlist.cfg.

The language-list file specifies the languages to test the incoming documents for. See
the using locales chapter of the Verity Locale Configuration Guide for more information
about this file.

Note If any file names in config_path contain spaces, enclose the entire
path in quotes. Also, on Windows, you may need to use
double-backslashes as path separators.

-n num_languages is the maximum number of languages to assign to a single
document. Default = 1.

If n > 1 and more than one language is detected, language codes written into VLANG are
ordered by score and separated by commas. (CHARSET has only one value, the value of
Verity Collection Reference 117

4 Filtering and Formatting Documents
Using the style.uni File
the first language encountered.) Language codes are documented in Appendix A of the
Verity Locale Configuration Guide.

-lang language is the language (if known) of all incoming documents. If all
documents in all repositories for this collections are in the same language, using this
option allows immediate assignment of language, bypassing the detection process.

Note The filter does not verify that the language you supply here is
supported. The string you provide is written unchanged into VLANG.

-nocontent instruct s flt_lang to write only the VLANG field and the CHARSET
field when it processes a document, ignoring document content.

This option can be used with Profiler to improve performance if only these fields are
needed.)

To enable the writing of debugging information to a log file, set the environment variable
VERITY_LANG=DEBUG. On UNIX, the logging information is written to /var/tmp/
langxxx.log. On Windows, it is written to C:\temp\langxxxx.log (or to the
location defined by the environment variable temp on Windows 2000).

Note these issues with flt_lang:

For archive documents, The values of VLANG and CHARSET are determined by the first
indexable document in the archive.

For compound documents, flt_lang assigns language and character set to each
sub-document.

For markup documents (HTML, XML, SGML), language assignment is based on
content, not the tags themselves.

If multiple post-format filters are specified in style.uni, flt_lang must be the last
one.

The language-identification filter does not assign a language or character set if it has
already been assigned by a higher-priority method. These are the priorities for
assignment:

VLANG priority CHARSET priority

1. From BIF file 1. From BIF file
118 Verity Collection Reference

4 Filtering and Formatting Documents
Using the style.uni File
For additional configuration of language detection, including modification of
langlist.cfg to control the set of languages considered for detection, see the using
locales chapter of the Verity Locale Configuration Guide.

Conditionally Loading Filters

The VDK API supports the concept of stream mode, based on VdkDocStreamType,
which differentiates the processing of documents for indexing, profiling, or viewing.
Applications can specify the stream mode when initializing a stream to process a
document.

Different modes might require the use of different document filters. Therefore, the filter
specifications in style.uni need to be sensitive to the current stream mode.
style.uni implements this flexibility by supporting the conditional loading of filters
based on the existence of these three defines:

VDKSTREAMMODE_INDEX (for indexing)

VDKSTREAMMODE_PROFILE (for profiling)

VDKSTREAMMODE_VIEW (for any other mode, including viewing)

For example, to use the language-identification filter during profiling only, add lines like
this to the initial part of style.uni:

$control: 1
types:
{

prerec: "filter -options"
autorec: "flt_kv -recognize"

$ifdef VDKSTREAMMODE_PROFILE
postformat: "flt_lang "

$endif
postformat: "filter -options"

...

2. From flt_lang -lang language 2. From /charset modifier in style.uni

3. From gateway or other format filter 3. From gateway or other format filter

4. From flt_lang language detection 4. From flt_lang language detection

VLANG priority CHARSET priority
Verity Collection Reference 119

4 Filtering and Formatting Documents
Using the style.uni File
As another example, to use the Adobe PDF filter for indexing or profiling PDF
documents, while using the KeyView filter for viewing them, add lines like this to the
type statement for PDFs:

type: "application/pdf"
$ifdef VDKSTREAMMODE_VIEW

/format-filter="flt_kv"
$else

/format-filter="flt_pdf"
$endif

/charset=utf8

For more information on stream mode, see the chapter on writing custom filters in the
Verity Developer’s Kit API Reference Guide.

Generating Text-Formatting Zones

You can use the flt_kv filter to generate zones and attributes from the formatting
information in a document. For documents whose formatting information can be read by
the KeyView filters, flt_kv can generate zones for headings, footers, links, font
assignments, tables, image tags, and so on. This information can then be used by the
token-map segment (see “Using Custom Zones to Improve Relevance (style.tkm)” on
page 252) to aid relevance ranking or for any customer-defined purpose.

The set of zones that is generated varies with the individual document format (MIME
type) processed.

You enable this capability in style.uni, by applying the -zoned flag to the flt_kv
value for the /format-filter modifier to a given MIME type:

/format-filter="flt_kv -zoned"

Supporting Container Files (ZIP and PST)

You can use the vgwkvcn built-in gateway to support the indexing and viewing of
documents archived within a container file in ZIP or PST format. The contained
documents are indexed as separate child documents of the container document.
120 Verity Collection Reference

4 Filtering and Formatting Documents
Using the style.uni File
Adding/Removing Container-File Support
You use the /protocol modifier (see Table 4-5 on page 114) to set up this support. The
default version of style.uni uses these lines:

#uncomment the next 2 lines to index zip files
#type: "application/zip"
/protocol = vzip

#uncomment the next 2 lines to index pst files
#type: "application/x-ms-pst"
/protocol = vpst

Note that to include support for indexing these archive file types, you must uncomment
the lines. Furthermore, if you have configured style.uni to support the legacy method
for indexing zip files (see the discussion of flt_kv -unzip in Table 4-4 on page 112),
you will also need to remove that configuration.

Specifying Cache Characteristics
VDK stores an archive’s uncompressed documents in a cache within the collection
directory. By default, the cache is named kvcache and it is permanently valid (never
expires).

You can change the location of that cache, and you can also limit its time of validity, by
making changes to the collection’s style.vgw file. This is the vgw: statement in an
example version of style.vgw:

vgw:
{

dda: vgwkvcn
protocols: vzip vpst
#can be an absolute file path
config: cache-dir ../kvcache
#in secs, -1, means no expiration
0, means cache is always recreated
config: cache-timeout -1

}

Change the config: cache-dir line to specify the desired cache location. Change the
config: cache-timeout line to specify the number of seconds after indexing at
which the cache should be considered expired and would need to be re-created.

To turn caching off completely, you can set cache-timeout to 0.
Verity Collection Reference 121

4 Filtering and Formatting Documents
Using the style.uni File
Note Turning caching off may cause indexing to take up to 4 times longer, and
searching and viewing to take up to 20 times longer, than would be
required with caching enabled.

Disabling Filtering

You can disable filtering for a particular mime-type in the style.uni file. To disable the
use of a KeyView filter for the mime type entry, place a pound sign (#) at the beginning of
each line in the entry as shown here:

type: "application/x-lotus-amipro"
/format-filter = flt_kv
/charset = guess
/def-charset = 1252

As a result, the Verity engine will not index or display documents for the mime-type
shown.

Extracting Page Headers and Footers

The universal filter allows extraction of page headers and footers from word-processing
documents during indexing, so that they can be searched and displayed.

When indexed, the header and footer information becomes part of the virtual document.
Any full text search will include header and footer text; display of the document will
include its headers and footers.

By default, headers and footers are not extracted. To enable this feature, edit the filter
type definition in style.uni for the type of document whose headers you want
displayed. Add the -headfoot flag to the /format-filter modifier under the type
statement. For example, to extract headers and footers in Microsoft Word documents,
change the Microsoft Word type statement like this:

type: "application/msword"
/format-filter = "flt_kv -headfoot"
/charset = guess
/def-charset = 8859

Note that the /format-filter modifier value must be enclosed in quotation marks, as
shown.
122 Verity Collection Reference

4 Filtering and Formatting Documents
Universal Filter Document Types
Consequences of Changing style.uni

If you change the style.uni file, you must re-index an existing collection to update it
later.

Note If you change the style.uni file at all after you have created a collection,
you run the risk of changing the way a document is filtered. The main
consequence is that your highlights may become considerably inaccurate.
If you must change the style.uni file, you should use dynamic
highlighting from that point onward to guarantee more accurate
highlights.

Universal Filter Document Types

This section lists the document types recognized by the universal filter and what the file
name extensions are, if any.

Recognized Document Types

When you invoke the universal filter, the following document types are recognized by
default. These document types are defined in the style.uni file.

Type Possible File Name Extensions

 application/msword
application/x-ms-wordpc

doc

 application/wordperfect5.1
x-corel-wordperfect

 application/x-ms-excel xls

 application/x-ms-powerpoint ppt

 application/x-ms-works

 application/x-ms-write

 application/postscript ps, ai, eps, prn

 application/rtf rtf
Verity Collection Reference 123

4 Filtering and Formatting Documents
Universal Filter Document Types
Recognized Categories of Document Types

When the universal filter is invoked, some document types may be recognized even
though they do not have MIME types defined yet. Also, some document types may be
recognized even though the KeyView Filter Kit does not support them yet. The following
universal filter type entries define generic categories of document types.

 application/x-lotus-amipro

 application/x-lotus-123 123

 application/pdf pdf

 application/x-executable exe, com, dll, 386, ovl, so, sl

application/zip zip

 message/news

 message/rfc822

 text/html htm, html, shtml, htmls

 text/sgml sgm, sgml

text/ascii

 text/enriched

 text/richtext rtx

 text/container

 text/tab-separated-values tsv

 text/plain txt, c, h, cpp, y, cc, hh, m, f90, java, csh, ksh, sh,
tcl, pl, sed, awk, ini, bat

image/gif gif

Type Category Description

application/x-wordprocessor Word processor formats that are supported by
KeyView Filter Kit, but do not have unique
MIME types defined yet

application/x-wordprocessor-nokv Word processor formats that are unsupported
by the KeyView Filter Kit

application/x-spreadsheet Spreadsheet formats that are supported by
the KeyView Filter Kit, but do not have
unique MIME types defined yet

Type Possible File Name Extensions
124 Verity Collection Reference

4 Filtering and Formatting Documents
The KeyView Filters
The KeyView Filters

The KeyView Filter Kit includes document filters that support indexing and viewing of
numerous native document formats. Features of the KeyView filters are:

Threadsafe filtering of multiple documents simultaneously

Fast, reliable performance

Automatic detection of source document format

Filters for popular formats, including word processing, desktop publishing,
spreadsheets and presentations

Multiplatform support

Numerous popular document suites and formats are supported, including: Microsoft
Office 95, 97, and 2000, Corel WordPerfect, Microsoft Word, Microsoft Excel, Lotus AMI
Pro, Lotus 1-2-3.

application/x-spreadsheet-nokv Spreadsheet formats that are unsupported by
the KeyView Filter Kit

application/x-presentation Presentation graphics formats that are
supported by the KeyView Filter Kit, but do
not have unique MIME types defined yet

application/x-presentation-nokv Presentation graphics formats that are
unsupported by the KeyView Filter Kit

application/x-graphics Graphics formats that are supported by the
KeyView Filter Kit, but do not have unique
MIME types defined yet

Type Category Description
Verity Collection Reference 125

4 Filtering and Formatting Documents
The KeyView PDF Filter
The KeyView PDF Filter

PDF indexing is supported through a dynamically loadable PDF filter (flt_pdf.so or
flt_xml.sl on UNIX, flt_pdf.dll on Windows). By default, the Verity engine
invokes the universal filter with the PDF filter as a helper filter.

The following is an example of how to construct and add documents to a PDF collection
that does not use the universal filter. It uses the PDF filter on its own. Given a Verity
installation directory of /usr/verity, the PDF collection can be created as follows:

% mkvdk -collection pdfcoll -create -style /usr/verity/data/
stylesets/def_filesystem

To index the file REPORT.PDF into the collection, use the following command:

% mkvdk -collection pdfcoll -insert REPORT.PDF

The PDF filter offers great versatility, since the PDF documents can reside in any
repository as long as it is supported with a valid Verity gateway. For example, the PDF
filter can be used in conjunction with the HTTP gateway to index PDF documents on the
World Wide Web.

Note The PDF filter tokenizes documents independently of the current locale’s
tokenizer. Therefore, certain characters in non-English words might not
get tokenized. A possible alternative is to use the KeyView filter (flt_kv)
instead of flt_pdf to index PDF documents.

Custom Lexing Rules Not Supported

The PDF filter streams PDF documents and performs the task of lexing. The output of the
PDF filter is a series of word tokens and punctuation tokens. These tokens are ignored by
the Verity default lexer or any custom lexer that might be defined in the style.lex file.
There is no way to specify alternative lexing rules.

Specifying the PDF Filter

The PDF filter, named flt_pdf can be invoked together with the universal filter or as a
single filter. By default, the PDF filter is invoked with the universal filter.
126 Verity Collection Reference

4 Filtering and Formatting Documents
The KeyView PDF Filter
The PDF filter can be invoked in two ways. To invoke the PDF filter with the universal
filter, it must be specified in the style.uni file with the type keyword and the /
format-filter modifier, as shown in the sample style.uni syntax here:

type: "application/pdf"
 /format-filter = "flt_pdf"
 /charset = 1252 #1252 is the default

To invoke the PDF filter as a single filter for a collection using the 850 character set, you
must specify the filter in the style.dft file using the field keyword and the /filter
modifier, as shown in the sample style.dft file syntax here:

field: DOC
 /filter = "flt_pdf -charmapto 850"
 /charmap = 850

If the PDF filter is invoked as a single filter, the engine will index PDF documents only, so
the collection will be limited to PDF documents.

Using the -fieldoverride Option
The PDF filter specification located in the style.uni file can include a field override
option, -fieldoverride, that specifies that the field values generated by the PDF filter
override those generated by a Verity gateway.

To use the -fieldoverride option, include it as part of the /format-filter
specification as follows:

type: "application/pdf"
 /format-filter = "flt_pdf -fieldoverride"
 /charset = 1252 #1252 is the default

Using the -charmapto Option
The PDF filter specification located in the style.dft can include a character mapping
option, -charmapto, to control the character set output by the filter. This option is
specified in the style.dft file and is used only when the PDF filter is invoked as a
single filter. Valid values for the -charmapto option are:
Verity Collection Reference 127

4 Filtering and Formatting Documents
The KeyView PDF Filter
The default character set used is platform-dependent. When the -charmapto option is
not specified, the PDF filter uses the platform’s default character encoding. On Unix and
Windows systems, the default character encoding is 8859; on Macintosh systems it is
mac1.

PDF Fields

While processing each document, the PDF filter generates a series of field tokens
containing information extracted and derived from the PDF document. When these fields
are defined in the style.sfl file, they are populated in the collection’s document table.
PDF fields can be populated by the PDF filter if they exist in the information dictionary
for the PDF document.

Standard PDF Fields
The following PDF fields are predefined as standard fields in the default style.sfl file.
These fields are populated unless changes are made to the style.sfl file. For the
predefined fields, the Adobe PDF field names are mapped to Verity collection names as
described here.

-charmapto Value Description

1252 For code page 1252

850 For IBM code page 850

8859 For ISO-8859

mac1 For Macintosh systems
128 Verity Collection Reference

4 Filtering and Formatting Documents
The KeyView PDF Filter
Optional PDF Fields
There are several optional PDF fields that can be defined as standard fields. These fields
exist in the style.sfl file, but are commented out and therefore are not populated by
the PDF filter. For information on defining these fields, see “Defining Optional PDF
Fields” following this table.

PDF Field Name (Verity Collection Field Name) Description

PageMap PageMap This field represents a vector of integers, one for each
page, describing the number of word instances for each page. This
field is required. In the default style.sfl file, the PageMap field
is defined as:
varwidth: PageMap xya

/_hexdata=yes

FTS_Author (Author) The author of the PDF document obtained by reading
the value for the Author key in the PDF document’s information
dictionary. Definition is:
varwidth: Author ddh

/alias=FTS_Author

FTS_Keywords (Keywords) This field contains the keywords key for the PDF
document obtained by reading the value for the Producer key in
the PDF document’s information dictionary. Definition is:
varwidth: Keywords ddh

/alias = FTS_Keywords

FTS_ModificationDate (Date) The last modification date of the PDF document obtained
by reading the value for the ModDate key in the PDF document’s
information dictionary. Definition is:
fixwidth: Date 4 date

/alias = FTS_ModifidationDate

FTS_Title (Title) The title of the PDF document obtained by reading the
value for the Title key in the PDF document’s information
dictionary. Definition is:
varwidth: Title ddh

/alias= FTS_Title
Verity Collection Reference 129

4 Filtering and Formatting Documents
The KeyView PDF Filter
Defining Optional PDF Fields
In oder to define these option PDF fields, you must do the following:

PDF Field Name Description

DirID The Adobe path specification for the directory where the PDF file
exists. If the PDF document is being pulled from a repository other
than the file system, this directory will be the temp directory.
Definition is:
varwidth: DirID ddc

FileName The Adobe filename specification for the PDF document. Definition
is:
varwidth: FileName xya

FTS_CreationDate The creation date of the PDF document obtained by reading the
value for the CreationDate key in the PDF. Definition is:
fixwidth: FTS_CreationDate 4 date

FTS_Creator The creator of the PDF document obtained by reading the value for
the Creator key in the PDF document’s information dictionary.
Definition is:
varwidth: FTS_Creator xya

FTS_Producer The producer of the PDF document obtained by reading the value
for the Producer key in the PDF document’s information
dictionary. Definition is:
varwidth: FTS_Producer xya

FTS_Subject The subject of the PDF document obtained by reading the value for
the Subject key in the PDF document’s information dictionary.
Definition is:
varwidth: FTS_Subject xyd

InstanceID The changing ID found in /ID array (position 1) in the trailer of the
PDF document. If it does not exist, one is generated using the last
modification time. Definition is:
fixwidth: InstanceID 32 text

NumPages The number of pages in the PDF document. Definition is:
fixwidth: NumPages 4 unsigned-integer

PermanentID The changing ID that is found in /ID array (position 0) in the trailer
of the PDF document. If it does not exist, one is generated using the
last modification time. Definition is:
fixwidth: PermanentID 32 text

WXEVersion The version of the Adobe Word Finder used to extract the text from
the PDF document. Definition is:
fixwidth: WXEVersion 1 unsigned-integer
130 Verity Collection Reference

4 Filtering and Formatting Documents
The KeyView PDF Filter
Add the -fieldoverride option to the PDF filter specification in the style.uni
file

Define a new field in the style.sfl file

Editing the style.uni File
In a text editor, open the style.uni file and add the -fieldoverride option to the
PDF filter specification as follows:

type: “application/pdf”
/format-filter = “flt_pdf -fieldoverride”

Editing the style.sfl File
In order to use one of the optional PDF fields, you must define your own field, using the
optional PDF field’s definition, that aliases the optional PDF field. In a text editor, open
the style.sfl file and do the following:

1. Define your new field.

When you define the new field, add a comment line prior to where you insert the
definition so you can easily review what you have added. For example:

#My new field to define FTS_CreationDate

2. Define your field by using the appropriate definition from the table of optional PDF
fields provided previously, but replace the field name with your own name. For
example:

#My new field to define FTS_CreationDate
fixwidth: PdfCreatedDate 4 date

3. Add an alias specification that refers to the optional PDF field. For example:

#My new field to define FTS_CreationDate
fixwidth: PdfCreatedDate 4 date

/alias = FTS_CreationDate

Note When defining a field for FTS_CreationDate, you also need to add an
alias to the field Created as follows:

#My new field to define FTS_CreationDate
fixwidth: PdfCreatedDate 4 date

/alias = FTS_CreationDate
/alias = Created
Verity Collection Reference 131

4 Filtering and Formatting Documents
The KeyView PDF Filter
When defining your fields for the other optional fields, you can just alias the optional
field itself.

Paragraph Ordering

The PDF format is primarily designed for presentation and printing of brochures,
magazines, forms, reports, and other materials with complex visual designs. Most PDF
files do not contain the logical structure of the original document—the correct reading
order, for example, and the presence and meaning of significant elements such as
headers, footers, columns, tables, and so on.

KeyView can filter a PDF file by either using the file’s internal unstructured paragraph
flow, or by applying a structure to the paragraphs to reproduce the logical reading order
of the visual page. Logical reading order enables KeyView to output PDF files containing
languages that read from right-to-left (Hebrew, and Arabic) in the correct reading
direction.

Note The algorithm used to reproduce the reading order of a PDF page is based
on common page layouts. The paragraph flow generated for PDFs with
unique or complex page designs may not emulate the original reading
order exactly.

For example, page design elements such as drop caps, callouts that cross
column boundaries, and significant changes in font size, may disrupt the
logical flow of the output text.

Paragraph Direction Options
By default, the KeyView filter produces an unstructured text stream for PDF files. This
means PDF paragraphs are extracted in the order in which they are stored in the file, not
the order in which they appear on the visual page. For example, a three-column article
could be output with the headers and the title at the end of the output file, and the second
column extracted before the first column. Although this output does not represent a
logical reading order, it accurately reflects the internal structure of the PDF.

You can configure KeyView to produce a structured text stream that flows in a specified
direction. This means PDF paragraphs are extracted in the order (logical reading order)
and direction (left-to-right or right-to-left) in which they appear on the page.
132 Verity Collection Reference

4 Filtering and Formatting Documents
The KeyView PDF Filter
The following paragraph direction options are available:

Note Filtering may be slower when logical reading order is enabled. For
optimal speed, use an unstructured paragraph flow.

The paragraph direction options control the direction of paragraphs on a page; they do
not control the text direction in a paragraph. For example, let us say a PDF file contains
English paragraphs in three columns that read from left to right, but 80% of the second
paragraph contains Hebrew characters. If the left-to-right logical reading order is
enabled, the paragraphs are ordered logically in the output—title paragraph, then
paragraph 1, 2, 3, and so on—and flow from the top left of the first column to the bottom
right of the third column. However, the text direction of the second paragraph is
determined independently of the page by the PDF filter, and is output from right to left.

Enabling Logical Reading Order
To enable logical reading order, modify the KeyView formats.ini file as follows. (The
formats.ini file is in the directory install\k2_nti40\filters\, where
install is the pathname of the K2 installation directory.):

1. Change the PDF reader entry in the [Formats] section of the formats.ini file as
follows:

[Formats]
200=lpdf

Paragraph Direction Option Description

Left-to-right Paragraphs flow logically and read from left to right. This
option should be specified when most of your documents are
in a language using a left-to-right reading order, such as
English or German.

Right-to-left Paragraphs flow logically and read from right to left. This
option should be specified when most of your documents are
in a language using a right-to-left reading order, such as
Hebrew or Arabic.

Dynamic Paragraphs flow logically. The PDF filter determines the
paragraph direction for each PDF page, and then sets the
direction accordingly. When a paragraph direction is not
specified, this option is used.
Verity Collection Reference 133

4 Filtering and Formatting Documents
The XML Filter
2. Optionally, specify the paragraph direction. Add the following section to the end of the
formats.ini file:

[pdf_flags]
pdf_direction=paragraph_direction

where paragraph_direction is one of the following:

The XML Filter

The XML filter supports indexing and viewing well-formed XML documents. Metadata
extraction is also supported.

Requirements for Indexing XML Documents

To prepare for indexing XML documents:

1. Make sure that the XML filter (flt_xml.dll, flt_xml.sl, flt_xml.so) resides in
the bin directory for the installed platform.

2. Make sure that style.uni contains the directive for invoking the XML filter.

3. If custom fields or zones are required, define them in style.ufl.

4. Specify custom fields to be populated in style.xml.

Flag Description

LPDF_LTR Left-to-right paragraph direction

LPDF_RTL Right-to-left paragraph direction

LPDF_AUTO The PDF filter determines the paragraph direction for each PDF
page, and then sets the direction accordingly. When a
paragraph direction is not specified in the formats.ini, this
option is used.

LPDF_RAW Unstructured paragraph flow. This is the default when logical
order is not enabled. If logical reading order is enabled, and
you want to return to an unstructured paragraph flow, set this
flag.
134 Verity Collection Reference

4 Filtering and Formatting Documents
The XML Filter
Requirements for Data Files

To be properly indexed, XML data files must be well-formed XML documents as
specified in the Extensible Markup Language Recommendation (http://www.w3.org/
TR/REC-xml).

A well-formed XML document contains elements that begin with a start tag and
terminate with an end tag. One element, which is called the root or document element,
cannot appear in the content of another element. For all other elements, if the start tag is
in the content of another element, the end tag is also in the content of the same element.

The XML data files must have an extension of .xml if the universal filter is used; the
universal filter is specified in the style.dft file. XML documents without the .xml
extension can be indexed into a collection that contains only XML documents if the
style.dft file specifies the XML filter instead of the universal filter. For more
information, see “style.dft File” on page 143.

Implementation Summary

Verity support for XML documents is implemented by the XML filter and controlled
using a number of style files.

The XML filter (flt_xml.dll, flt_xml.sl, flt_xml.so) resides in the
platform-specific bin directory for the Verity installation.
Verity Collection Reference 135

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml

4 Filtering and Formatting Documents
The XML Filter
The following style files are required to enable and configure the indexing of XML files.

Note As delivered, Verity products are configured to support indexing of XML
documents; no style-file customization is required. You can, however,
change the XML-filtering characteristics by making appropriate changes
to the style files.

Style File Configuration

style.uni File
To index XML documents, style.uni must include the following lines:

type: "text/xml"
/format-filter = "flt_xml"
/charset = guess
/def-charset = 8859

Note Older versions of style.uni may specify that text/xml content is to be
handled by flt-zone. This specification should be replaced with the
above construct.

Style File Description

style.uni Invokes the XML filter for indexing XML documents.

style.xml Modifies the default behavior of the XML filter.

style.ufl Defines custom fields in XML documents. The fields must also be defined in the
style.xml file.

style.dft Specifies whether the universal filter or the XML filter will be used to index the
collection. If the XML filter is specified, XML documents can be indexed into
their own collection and the .xml file extension for data files is not required.
136 Verity Collection Reference

4 Filtering and Formatting Documents
The XML Filter
style.xml File
By default, the XML filter indexes regions of the document delimited by XML tags as
zones, with the zones given the same name as the XML tag. META tags are automatically
indexed as fields unless they are in a suppressed region (see the suppress command in
Table 4-6 on page 141).

The style.xml file allows you to change the default indexing behavior for XML
documents. You can specify field and zone indexing for regions of the document
delimited by XML tags and skip regions of the document delimited by XML tags.

Note The StyleSet Editor includes a form (XML Styles Definition) for editing
style.xml.

The default style.xml file in Listing 4-3 contains example commands that are
commented out.

Listing 4-3 Default style.xml file

<?xml version="1.0" encoding="ISO-8859-1"?>
<?note: this is a sample comment line?>
<style.xml version="3.0.0">

<?note:
? this following line dictates all xmltags be ignored
? <ignore xmltag="*" />
?>

<?note:
? "ignore" will skip indexing xmltag, yet index contents
? between the beginning and end of this pair of xmltags
?>

<?next 2 sample lines commented out:
<ignore xmltag="section_1" />
<ignore xmltag="section_2" />
?>

<?note:
? "preserve" indexes xmltag as zone with the presence of
? <ignore xmltag="*" />
?>

<?next 1 sample line commented out:
<preserve xmltag="section_3" />
?>
Verity Collection Reference 137

4 Filtering and Formatting Documents
The XML Filter
<?note:
? "suppress" will suppress every xmltag embedded within
?>

<?next 2 sample lines commented out:
<suppress xmltag="region_1" />
<suppress xmltag="region_3" />
?>

<?note:
? "zone" will use the value of attribute zonename instead of
? the value of xmltag as zone name
?>

<?next 1 sample line commented out:
? <zone xmltag="section_3" zonename="vdk_zone_name"/>
?>

<?note:
? "field" will further index content between the beginning
? and end of this pair of xmltags as field values
?>

<?next 1 sample line commented out:
<field xmltag="column_1" />
?>

<?note:
? if attribute "xmlattribute" is present, "field" will index
? the value of the attribute as its field value
?>

<?next 1 sample line commented out:
<field xmltag="column_1" xmlattribute="attribute_1"/>
?>

<?note:
? if attribute "fieldname" is present, above content will
? be indexed into VDK field under the value of fieldname
? instead of the field under the name of xmltag/xmlattribute
?>

<?next 1 sample line commented out:
<field xmltag="column_2" fieldname="vdk_field_2" />
?>

<?note:
? if attribute "index" is set to "override", above content
? will be indexed into VDK field overriding values read in
138 Verity Collection Reference

4 Filtering and Formatting Documents
The XML Filter
? from bulk insert file, if any
?>

<?next 1 sample line commented out:
<field xmltag="column_3" index="override" />
?>

<?note:
? fieldname & index attributes could both exist
?>

<?note:
? noindex will skip indexing xmltag and contents
? between the beginning and end of this pair of xmltags
?>

<?next 1 sample line commented out:
? <noindex xmltag="section_1" />
?>

<?note:
? A paragraph token will be generated when xmltag occurs
?>

<?next 2 sample lines commented out:
? <paragraph xmltag="section_1" />
? <paragraph xmltag="/section_1" />
?>

<?note:
? A sentence token will be generated when xmltag occurs
?>

<?next 2 sample lines commented out:
? <sentence xmltag="section_1" />
? <sentence xmltag="/section_1" />
?>

</style.xml>
Verity Collection Reference 139

4 Filtering and Formatting Documents
The XML Filter
style.xml Commands
Each command in style.xml is a single tag that follows this syntax:

<command attribute="value"/>

To uncomment a command in style.xml, you need to remove it from within its
enclosing tag and remove its comment mark(?). For example, to map the contents of the
XML tag <author> to a collection field, do this:

Before:

<?note:
? "field" will further index content between the beginning
? and end of this pair of xmltags as field values
?>

<?next 1 sample line commented out:
<field xmltag="column_1" />
?>

After:

<?note:
? "field" will further index content between the beginning
? and end of this pair of xmltags as field values
?>

<field xmltag="author" />

Table 4-6 describes the available style.xml commands and their attributes.
140 Verity Collection Reference

4 Filtering and Formatting Documents
The XML Filter
Table 4-6 style.xml commands

Command Description

field Map the content of the specified XML tag, or the value of the specified attribute,
as field values.

By default, the field name is the same as the xmltag or xmlattribute value,
unless otherwise specified by the fieldname attribute.

Attributes:

xmltag. The name of the XML tag whose contents are to be mapped to a
collection field.

fieldname. The name to assign to the collection field.

index=”override”. If present, specifies that this content should override
the content of any BIF-created collection field with the same name.

xmlattribute. The name of the attribute (within this XML tag) whose
values are to be put into the field. If xmlattribute is present, the specified
attribute’s value is assigned to the field; otherwise, the specified XML tag’s
content is used.

Note: If multiple instances of the specified tag or attribute occur in the
document, the field is populated with all of the values (separated by <>).

ignore Do not index (as a zone) the content of the specified XML tag. (The tag’s content
is still indexed as regular collection content.)

Note: Subtags within this tag are not ignored; their content is indexed as zones.

Attributes:

xmltag. The name of the XML tag to ignore.
(To ignore all XML tags, assign the value "*" to xmltag.)

preserve Index (as a zone) the content of the specified XML tag, or the value of the
specified attribute.

Use this command to override an existing ignore xmltag="*" command.

Note: Subtags within this tag are not preserved through this command. You
must preserve them explicitly or they will be ignored.

Attributes:

xmltag. The name of the XML tag to preserve.

noindex Do not index the content of the specified XML tag—either as a zone or as
regular collection content.

Note: Subtags within this tag are still indexed, as zones. Subtag content,
however, is not indexed as regular collection content.

Attributes:

xmltag. The name of the XML tag that should not be indexed.
Verity Collection Reference 141

4 Filtering and Formatting Documents
The XML Filter
style.xml Command Examples:
The following command ignores all XML tags in the document (creates no zones),
indexing all content as regular collection content:

<ignore xmltag="*" />

The following command skips creating a zone for the tag <section_1>, indexing the
tag’s content only as regular collection content:

<ignore xmltag="section_1" />

The following command creates a zone for the tag <section_1> (used only to override
for specific tags the command ignore xmltag="*"):

<preserve xmltag="section_1" />

The following command stops indexing (as zones) the tag <section_1> and all of its
subtags. Furthermore, the content of the tag and all its subtags is not indexed as regular
collection content:

<suppress xmltag="section_1" />

suppress Do not index (as zones) the content of this tag or of any of its subtags—either as
zones or as regular collection content.

Attributes:

xmltag. The name of the XML tag to suppress.

zone Index the contents of the specified XML tag into a collection zone with the
specified zone name (instead of using the XML tag name as the zone name).

Attributes:

xmltag. The name of an XML tag that is to be indexed.

zonename. The name to give the collection zone holding the tag’s contents.

paragraph Treat the content of the specified XML tag as a paragraph (generate a paragraph
token for it during indexing).

Attributes:

xmltag. The name of the XML tag to generate a paragraph token for.

sentence Treat the content of the specified XML tag as a sentence (generate a sentence
token for it during indexing).

Attributes:

xmltag. The name of the XML tag to generate a sentence token for.

Table 4-6 style.xml commands (continued)

Command Description
142 Verity Collection Reference

4 Filtering and Formatting Documents
The XML Filter
The following command stops indexing (as a zone) the tag <section_1>. Any subtags
within the tag are indexed. The content of the tag and all its subtags is not indexed as
regular collection content:

<noindex xmltag="section_1" />

The following command maps the content of the tag <section_1> to a collection field,
which is given the same name as the tag:

<field xmltag="column_1" />

The following command maps the content of the tag <section_2> to a collection field,
which is given the name specified in the fieldname attribute:

<field xmltag="column_2" fieldname="vdk_field_2" />

The following command maps the content of the tag <section_2> to a collection field
(with the same name as the tag), overriding any existing value for the field:

<field xmltag="column_2" index="override" />

The following command maps the content of the attribute id of the tag <book> to a
collection field named id:

<field xmltag="book" xmlattribute="id" />

The following command maps the content of the attribute id of the tag <book> to a
collection field named ISBN:

<field xmltag="book" xmlattribute="id" fieldname="ISBN" />

style.ufl File
If you have used style.xml to specify the population of custom fields, you must also
define those fields in the collection’s style.ufl file or style.sfl file, using standard
syntax. See “Defining Collection Fields” on page 147.

style.dft File
To create a collection that contains only XML documents, administrators can modify the
style.dft file to invoke the XML filter directly. In this case, the XML documents do not
need a .xml extension.
Verity Collection Reference 143

4 Filtering and Formatting Documents
Troubleshooting Filters
The style.dft must include the following lines:

$control: 1
dft:
 {
 field: DOC
 /filter="flt_xml"
 }

Indexing From the Command Line

To index XML documents using a command-line indexer, issue commands such as these
(in mkvdk):

mkvdk -create -style styledir -collection collname
mkvdk -collection collname file1.xml file2.xml filen.xml

Or, using a file list (in this example, flist.txt):

mkvdk -create -style styledir -collection collname @flist.txt

(The file list is a simple list of pathnames, one per line.)

The specified style directory contains the style.uni and style.xml files for your
collection, optionally customized to provide the XML-document indexing that you need.

Troubleshooting Filters

This section contains information about some actions that you can take when errors
appear to have occurred with your documents.

Checking File Types

You can determine information about how the Verity engine evaluates the document type
and character set for a particular document by looking at the “info” messages that the
engine produces. You can see these “info” messages using mkvdk with the -verbose
flag, as shown in this command line (which indexes the documents in the mydocs
directory into the collection mycoll):
144 Verity Collection Reference

4 Filtering and Formatting Documents
Troubleshooting Filters
mkvdk -verbose -create -collection mycoll -insert mydocs/*

You may want to check the document type recognized by the engine if errors occur. For
example, if a web page is interpreted by the auto-recognizer engine as a plain ASCII
document, then zone searching will not work; if the auto-recognizer thinks that the
document is written in an incorrect character set, extended characters will not be
displayed.

Disable Document Filters by MIME Type

You can disable filtering for a particular MIME Type in the style file style.uni. To
disable the use of a KeyView filter for the MIME Type entry, place a pound sign (#) at the
beginning of each line in the entry as shown here:

type: "application/x-lotus-amipro"
/format-filter = flt_kv
/charset = guess
/def-charset = 1252

As a result, the Verity engine will not index or display documents for the MIME Type
shown.
Verity Collection Reference 145

4 Filtering and Formatting Documents
Troubleshooting Filters
146 Verity Collection Reference

5
Defining Collection Fields

The schema definition for a collection’s document table is derived from the field
definitions made in the style.ddd file (internal fields) and the style files style.ufl
(custom user fields), and style.sfl (standard fields). A schema must be defined for
each collection, and a default schema is defined in the default style.ddd file for your
Verity application.

This chapter covers these topics:

Data Types

Field Types

Field Definition Files

style.ufl Syntax

Data Types

A variety of data types are supported for the Verity field types. Data types define the type
of data you want to store in a Verity field. The Verity field types define the scope of the
field, meaning whether the field information is the same across the collection or just
document-by-document.

The Verity field types are described in the following section, “Field Types” on page 149.

Table 5-1 lists valid data types.
147

5 Defining Collection Fields
Data Types
Data Tables

Field types and data types and variables are stored in one or more data tables. The
number of data tables used for a collection depends upon the field types to be included.
In some cases, isolating a field definition in its own data table results in improved system
performance. More information about the various field and data types and issues
surrounding system performance are described in the sections that follow.

Every data table in a collection must contain at least one physical field. That is, at least
one field in every data table must be defined with a field type other than constant.

Table 5-1 Valid field data types

Data Type Description

text ASCII characters.

signed-integer A range of integers (from negative 2 billion to positive 2 billion) stored in
binary format.

unsigned-integer A range of integers (from 0 to 4 billion) stored in binary format.

date An internal date format that stores dates (and times) for the range of years:
1904 to 2037.

If field-level searches are to be conducted over a field containing a
date, the date field must be defined as a fixed-width or constant
field that is assigned a data type called date or xdate. More than
one date field can be defined for a collection.

xdate An internal date format that stores dates (and times) for an extended range
of years than the date format: 1000 AD to 3000 AD, with a one minute
resolution. Due to a calendar adjustment in the 16th century, the day of the
week may be inaccurate for dates before the adjustment.

float Floating point number stored in IEEE 754 format.
148 Verity Collection Reference

5 Defining Collection Fields
Field Types
Field Types

At the most basic level, there are two categories of Verity fields, distinguished by whether
the information in the field types for each category is collection- or document-wide.

Constant Fields. Constant fields contain the same information for every document in a
collection. Within this category are several field types: constant, autoval and worm.

Variable Fields. Variable fields contain information that can change
document-by-document. Within this category are several field types: fixwidth and
varwidth.

Constant Fields

Constant fields are populated with values that remain constant throughout the collection.

Table 5-2 Constant field types

Value Description

constant A constant field, defined by a constant keyword, assumes a
constant value for every document in the collection. Of the
constant field types listed, this field type functions most
efficiently.

autoval An automatic value field, defined by an autoval keyword,
assumes a constant value for every document in a collection.

Note: This field type is used internally by the Verity engine and
should only be used at the direction of Verity technical support.

worm A worm field, defined in a worm keyword, assumes a constant
value for every document in a collection. The name worm stands for
Write Once Read Many, which describes how this field behaves.

Note: This field type is used internally by the Verity engine and
should only be used at the direction of Verity technical support.
Verity Collection Reference 149

5 Defining Collection Fields
Field Definition Files
Variable Fields

Variable fields are populated with variable values parsed from the original document.

Field Definition Files

The field definition files define the collection schema. These are the style files used for
field definition:

Internal Fields (style.ddd)

Internal fields are defined in the default style.ddd file. This file controls the
collection’s schema and uses a $include statement to include and load the
style.ufl, style.sfl and style.prm files.

Note You should never manually change the contents of the style.ddd file.

User-Defined Fields (style.ufl)

Custom user fields (custom application fields) are defined in the style.ufl file. This
file is included by the style.xfl file.

Standard Fields (style.sfl)

Standard fields are defined in the default style.sfl file. This file is included by the
style.xfl file.

Table 5-3 Variable field types

Value Description

fixwidth A fixed-width field, defined in a style file by the fixwidth field
type, is populated by values that do not change in length.

varwidth A variable-width field, defined by the varwidth field type, is
populated by text information of variable lengths (such as author or
title).

dispatch A variable-width field, defined by the dispatch field type,
represents free-form text that will be searched and presented
for viewing.
150 Verity Collection Reference

5 Defining Collection Fields
Field Definition Files
Internal Fields (style.ddd)

The style.ddd file contains definitions for all internal fields included in the default
schema for the collection’s document table. This file includes a $include statement
which refers to the style.xfl that in turn includes the style.sfl and style.ufl
files.

Contents of style.ddd
Listing 5-1shows the contents of the default style.ddd file for the File System gateway.

IMPORTANT Do not edit the style.ddd file.

Listing 5-1 Default style.ddd file

#
Document Dataset Descriptor
#
DO NOT add user fields to this file - add them to style.ufl
which is included at the end of this file.
$control: 1
$include style.prm
$subst: 1
descriptor:

/collection = yes
{

Header information for partition management
data-table:_df

/num-records = 1
/max-records = 1

{
worm:_DBVERSIONtext
fixwidth:_DDDSTAMP4 date
varwidth:_DOCIDX_dv
fixwidth: _DOCIDX_OF 4 unsigned-integer
fixwidth: _DOCIDX_SZ 3 unsigned-integer
fixwidth:_PARTDESC40 text # +8 bytes from _SPARE1

constant:_FtrCfgtext "${DOC-FEATURES:}"
constant:_SumCfgtext "${DOC-SUMMARIES:}"
constant:_PBSumCfgtext "${DOC-PBSUMMARIES:}"

fixwidth:_SPARE18 text # stole 8 bytes from here
Verity Collection Reference 151

5 Defining Collection Fields
Field Definition Files
fixwidth:_SPARE24 signed-integer
}

Required internal fields per document
data-table:_df

/offset = 64
{

autoval:_STYLEsirepath
fixwidth:_DOCID4 unsigned-integer
fixwidth:_SECURITY4 unsigned-integer

/minmax = yes
fixwidth:_INDEX_DATE4 date

/_minmax-nonzero = yes

Required for Version 6 collections that support the enhanced
Parent child functionality
fixwidth:VDK_IS_PARENT1 unsigned-integer
varwidth:_VDK_PARENT_KEYS_pk

VLang is filled in by: flt_lang
varwidth:VLang_pk

/alias = vdk:VLang
/alias = gw:LANGUAGE

Charset is filled in by: flt_lang or flt_cmap
varwidth:Charset_pk

/alias = vdk:Charset
}

$ifdef DOC-FEATURES
Optional feature vector per document
data-table:_dg
{

varwidth:VDKFEATURES_dh
/_implied_size
/alias = dc:Subject
/alias = vdk:VDKFEATURES

}
$endif

$ifdef DOC-SUMMARIES
Optional generated summary per document
data-table:_di
{

152 Verity Collection Reference

5 Defining Collection Fields
Field Definition Files
varwidth:VDKSUMMARY_dj
/_implied_size
/alias = dc:Description
/alias = vdk:VDKSUMMARY

}
$endif

$ifdef DOC-PBSUMMARIES
Optional tokenized and compressed texts per document for
passage-based summarization
data-table:_dm
{

varwidth: VDKPBSUMMARYDATA _dn
/_implied_size
/alias = dc:PBSummaryData
/alias = vdk:VDKPBSUMMARYDATA

}
$endif

data-table:_dk
{

dispatch:DOC
varwidth:DOC_FN_dl

}

The VdkVgwKey is the application's primary key to identify
each document in the Document Data Table. By default, the
VdkVgwKey is a text string no more than 32000 bytes (VdkDocKey_MaxSize)
in length. It is stored in a separate data-table, indexed and
minmaxxed to minimize the time required to lookup by VdkVgwKey.

data-table: aaa
{

varwidth: VdkVgwKey aab
/indexed = yes
/minmax = yes
/alias = vdk:VdkVgwKey

}

All extensions the the DDD schema are included via style.xfl
This includes TIS Standard fields, User defined fields and
Verity Collection Reference 153

5 Defining Collection Fields
Field Definition Files
gateway specific fields.

$include style.xfl

}
$$

Note Some internal fields are not defined in style.ddd and are not accessible.
Any collection field whose name is fieldName_XX is considered by VDK
to be an internal field, if there is a field named fieldName of type
Dispatch or Varwidth, or if XX is MI, MX, or IX.

Standard Fields (style.sfl)

All collections have the following fields defined in the document table by default because
they are defined in the default style.sfl file (standard fields file). Standard fields are
populated by the filters and gateways used. Not all filters and gateways populate all
standard fields so that it is possible that some standard fields will be defined but not
populated during indexing.

The default style.sfl file includes many field definitions which can be defined and
populated as standard fields. If all of these fields were uncommented, that would create a
very large document index, so they are left commented for now. If you need any of them,

Field Name Description

 Title Title of the document

Author Author of the document

Keywords Keywords in the document

MIME-Type The mime type of the document. This field is populated by the universal
filter.

Charset The character set used in the document

To To field in the document, such as the value of “To:” in an email.

Date Last date the document was modified

Newsgroups News groups (populated only by the news zone filter)

PageMap A vector of integers, one for each page, describing the number of word
instances for each page (populated only by the PDF filter)
154 Verity Collection Reference

5 Defining Collection Fields
Field Definition Files
you can uncomment them before creating your collection. For example, if you would like
to search over a PDF field in PDF documents, you should uncomment the desired fields
in the style.sfl file.

For complete information about the universal filter and its configuration, see “The
Universal Filter” on page 106.

Field Aliases in style.sfl
The style.sfl file uses field aliases to alias field names from various filters to a set of
common field names. For example, in the default style.sfl file the PDF field name
“FTS_Title” is an alias for the collection field named “Title.” The field aliasing feature
simplifies field display and gives users flexibility to use field names they are familiar
with in their queries. This allows you to perform field searches using a field name or an
aliased field name. For example, by default you can perform field searches using the field
name “FTS_Title” or “Title”. To override this default mapping, you can create a custom
field in the style.ufl file. This file is described in “User-Defined Fields (style.ufl)” on
page 158.

Contents of style.sfl
The style.sfl file is referenced by the style.xfl file, which is in turn referenced by
the style.ddd file. Listing 5-2 shows the contents of the default style.sfl file for the
File System gateway.

Note The StyleSet Editor includes a form (Defining Collection fields) for
editing style.sfl.

IMPORTANT Do not edit the style.xfl or style.ddd files; instead, change
the state of fields here in the style.sfl file, or add your custom
fields to the style.ufl file.

Listing 5-2 Default style.sfl file

#
style.sfl - Verity-Defined Standard Fields
#
These fields are included in the internal documents table.
They are filled in by various filters and gateways that Verity ships,
and are the "standard fields" that Verity suggests should exist in all
Verity collections. They are not required in your collection. Instead,
they are merely highly recommended to promote the ability to use your
collection with other products that use Verity's search technology.
You can comment out the fields below to save space, or uncomment others
Verity Collection Reference 155

5 Defining Collection Fields
Field Definition Files
to gain functionality.
#
data-table: _sf
{

Title is filled in by: zone -html, flt_pdf, flt_kv
 varwidth: Title_sv
 /alias = FTS_Title
 /alias = dc:Title
 /alias = vdk:Title

Subject is filled in by: flt_pdf, zone -email, zone -news, flt_kv
 varwidth: Subject_sv
 /alias = FTS_Subject
 /alias = vdk:Subject

Author is filled in by: flt_pdf, zone -email, zone -news, flt_kv
varwidth: Author_sv
 /alias = From
 /alias = FTS_Author
 /alias = Source
 /alias = dc:Creator
 /alias = vdk:Author

Keywords is filled in by: flt_pdf, zone -news, flt_kv
varwidth: Keywords_sv
 /alias = FTS_Keywords
 /alias = Keyword
 /alias = vdk:Keywords
 /alias = Reference

Snippet is filled in by: universal
#varwidth: Snippet_sv
/alias = Abstract
/alias = vdk:Snippet

MIME-Type is filled in by: universal
varwidth: MIME-Type_sv
 /alias = dc:Format
 /alias = vdk:MIME-Type

To/CC/BCC is filled in by: zone -email
varwidth: To_sv
 /alias = Destination
 /alias = vdk:To

varwidth: CC_sv
 /alias = vdk:CC

varwidth: BCC_sv
 /alias = vdk:BCC

NewsGroups is filled in by: zone -news
156 Verity Collection Reference

5 Defining Collection Fields
Field Definition Files
varwidth: NewsGroups_sv

PageMap is filled in by: flt_pdf
This field is required to do highlighting in pdf documents. Do not
comment this if you want pdf highlighting!
varwidth: PageMap_sv

/_hexdata = yes
/alias = vdk:PageMap

The following are fields that are available to be populated by Verity
filters, but are commented out by default to save space as they are
currently not populated by many documents.
To enable them to be populated, remove the hash (#) character
before indexing your documents.
#
The following fields are filled in by "zone -news"
#varwidth: References_sv

The following fields are filled in by flt_pdf
To enable any of these fields, copy one of the lines to a new line
and replace the field name with a unique name of your choosing.
Add an alias line beneath your new field that refers to the PDF field.
For example, an enabled FTS_Producer field, using the name MyProducer,
would look like the following:
#varwidth: FTS_Producer _sv
varwidth: MyProducer _sv
/alias = FTS_Producer
#
These lines are commented here to keep them from being interpreted.
Note the relationship, however, of the lines you need to add to the
original line that begins with the hash (#) character.

#varwidth: FileName _sv
#fixwidth: NumPages 4 unsigned-integer
#fixwidth: PermanentID 32 text
#fixwidth: InstanceID 32 text
#varwidth: DirID _sv
#fixwidth: WXEVersion 1 unsigned-integer
#varwidth: FTS_Creator _sv
#varwidth: FTS_Producer _sv
#fixwidth: FTS_CreationDate 4 date

The following fields are filled in by spider
varwidth: URL _sv

Field for storing standard document viewing URL
Used for prefix map feature
/alias = vgw:ViewURL
/alias = vgw:VgwViewURL

varwidth: _Created _sv
varwidth: _Modified _sv
fixwidth: Size 4 unsigned-integer
Verity Collection Reference 157

5 Defining Collection Fields
Field Definition Files
fixwidth: Created 4 date
varwidth: _TOKENMAP_FN _sv

Field for file pointing to external zones

The following fields are filled in by flt_kv
#varwidth: Dictionary_sv
#varwidth: CodePage_sv
#varwidth: Comments_sv
#varwidth: Template_sv
/alias = dc:Source
#varwidth: LastAuthor_sv
#varwidth: RevNumber_sv
#fixwidth: PageCount 4 unsigned-integer
#fixwidth: WordCount 4 unsigned-integer
#fixwidth: CharCount 4 unsigned-integer
#varwidth: AppName _sv
#varwidth: ThumbNail _sv
#fixwidth: Doc_Security 4 unsigned-integer

}

data-table: _sg
{

Date is filled in by: zone -email, zone -news, flt_pdf, flt_kv

This field is the "last modified" date, not the creation date
fixwidth: Date 4 date

 /alias = Modified
 /alias = Sent
 /alias = FTS_ModificationDate
 /alias = Recorded_Date
 /alias = Version_Date
 /alias = dc:Date
 /alias = vdk:Date
 /indexed = yes
 /minmax = yes

}

User-Defined Fields (style.ufl)

The style.ufl file should be used to add custom user fields for the application. The
default style.ufl file for each gateway does not contain field definitions. The syntax
for style.ufl is identical to the syntax for the style.ddd file.

The style.ufl file is referenced by the style.xfl file, which is in turn referenced by
the style.ddd file. Do not edit the style.xfl or style.ddd files; instead, add your
custom fields here to the style.ufl file, or change the state of fields in the style.sfl
file.
158 Verity Collection Reference

5 Defining Collection Fields
Field Definition Files
Note You should not create a custom field with a name that might conflict with
an internal VDK field. Any collection field whose name is fieldName_XX
is considered by VDK to be an internal field, if there is a field named
fieldName of type Dispatch or Varwidth, or if XX is MI, MX, or IX.

Contents of style.ufl
Listing 5-3 shows the contents of the default style.ufl file for the File System gateway.
Note that no user fields are defined by default.

Note The StyleSet Editor includes a form (Defining Collection fields) for
editing style.ufl.

Listing 5-3 Default style.ufl file

#
style.ufl - Application-specific User Fields
#
These fields are included in the internal documents table. For
more information about adding fields to the internal documents
table, see the discussion of style.ufl syntax in the chapter on defining
collection fields in the Verity Collection Reference.

Specify additional application-specific fields here in their own
data-table[s].

Listing 5-4 shows the contents of the style.ufl file for the sample collection
verity_doccoll. Several user fields are defined.

Listing 5-4 Customized style.ufl file

#
style.ufl - Application-specific User Fields
#
These fields are included in the internal documents table. For
more information about adding fields to the internal documents
table, see the discussion of style.ufl syntax in the chapter on defining
collection fields in the Verity Collection Reference.

Specify additional application-specific fields here in their own
data-table[s].

data-table: _uf
{
 varwidth: ProductName_sv
 varwidth: Chapter_sv
 varwidth: ChapterFile_sv
Verity Collection Reference 159

5 Defining Collection Fields
style.ufl Syntax
 varwidth: BookTitle_sv
 varwidth: BookFile _sv
 varwidth: BookVersion_sv
 varwidth: BookCategory _sv
 fixwidth: LAST-MODIFIED4 date
}

style.ufl Syntax

The style.ufl file syntax is also valid for the style.ddd file. You should only edit the
style.ufl to add custom fields, or the style.sfl file to comment or uncomment
standard fields. Do not edit the style.ddd file unless directed by Verity technical
support or sales engineering staff.

Note that delimiters (curly braces) surround the field definitions associated with a
data-table statement.

Mandatory Statements

$control
The $control statement appears on the first non-comment line in a style.ufl file.
This statement identifies the file as a Verity control file, and it always appears as
$control: 1.

$control Syntax
$control: 1

descriptor
The descriptor statement identifies the file as a document dataset descriptor file. The
descriptor statement must be followed by a /collection = yes modifier.

description Syntax
The descriptor statement appears as the first statement after the $control statement
in a style.ddd/style.sfl/style.ufl file.
160 Verity Collection Reference

5 Defining Collection Fields
style.ufl Syntax
descriptor:
 /collection = yes

data-table
The data-table statement identifies a data table of fields to be included in the
collection. A collection can include one or more data tables.

Multiple data-table statements can be specified in the style.ufl file.

data-table Syntax
The data-table statement is a child of the descriptor statement.

descriptor:
{
data-table: name

Using data-table Statements
When indexing documents for a collection, the Verity engine creates data segments based
on the syntax provided in a style.ddd file and style.ufl file. If the files have one data
table defined, only one data segment is produced for each partition in the collection; if
two data tables are defined, two data segments are produced. Each collection’s document
data table contains one or more field definitions depending again on the syntax of the
style.ddd file and its included style.ufl file used to create the collection.

descriptor: This is a required statement that does not take an
argument. A descriptor statement can be followed by
one or more data-table statements.

/collection = yes This modifier identifies this file as a collection descriptor
file to be used by the Verity engine.

data-table: This statement identifies the name of the data table.

name This argument is a unique three-character name assigned to a data
segment. Segment names including underscores (_) are reserved
for use by Verity. Segment names must be unique within a
collection.

Note: Segment names should not contain the same
three-characters as style file extensions.
Verity Collection Reference 161

5 Defining Collection Fields
style.ufl Syntax
For a fixed-width or variable-width field, the application developer can elect to store a
single field in its own data segment. Storing these types of fields in separate data
segments improves their accessibility to the Verity search engine, and can result in
improved retrieval performance time. Searching will be faster; display of results slower.

To store a field in its own data segment, use a construct similar to the following:

data-table: name
{
varwidth: fieldname identifier
}

Constant Field Types

constant
The constant field type for a data-table statement identifies a field that assumes a
constant value for every document in the collection. An application reads a constant field
from the collection’s document table at run time. The field value assigned to a constant
field is always the same for all documents in the collection using the same style.

constant Syntax
The constant field type is defined in a data-table statement, and the syntax of the
constant field type is shown here. For a description of name, see “data-table Syntax” on
page 161.

data-table: name
{
constant: fieldname data_type value
}

162 Verity Collection Reference

5 Defining Collection Fields
style.ufl Syntax
autoval
The autoval field type for the data-table statement identifies a field that
automatically assumes a constant value for every document in a collection. This field is
referred to as an automatic value field because the Verity engine automatically computes
the field value from the autoval keyword in the style.ddd file at run time.

Note This field type is used internally by the Verity engine and should only be
used at the direction of Verity technical support.

The constant value assigned to an automatic value field can fluctuate by collection. For
example, if the name of one collection is march02, and the name of another collection is
april02, document fields in the first collection and the second collection are assigned
different values.

autoval Syntax
The autoval field type is defined in a data-table statement, and the syntax of the
autoval field type is shown here. For a description of name, see “data-table Syntax” on
page 161.

data-table: name
{
autoval: fieldname DBNAME|DBPATH|SIRENAME|SIREPATH
}

Element Description

fieldname This required argument is the field name for the constant field. The
name can have a maximum of 124 characters, consisting of
alphanumeric characters. Field names including underscores (_)
are reserved for Verity.

data_type This required argument identifies the type of data to be stored in
the constant field type.

The table of valid data types can be found in “Data Types” on
page 147.

value This required argument identifies the value assigned to the
constant field. If the value specified contains white space, then it
must be enclosed in quotation marks.
Verity Collection Reference 163

5 Defining Collection Fields
style.ufl Syntax
worm
The worm keyword for a data-table statement identifies a field that assumes a
constant value for every document in a collection. The field is referred to as a worm field
because functionally the Verity engine writes the value once to the collection’s documents
and reads the value many times (Write Once Read Many).

Note This field type is used internally by the Verity engine and should only be
used at the direction of Verity technical support.

worm Syntax
The worm field type is defined in a data-table statement, and the syntax of the worm
field type is shown here. For a description of name, see “data-table Syntax” on page 161.

data-table: name
{
worm: fieldname data_type
}

fieldname This argument is the field name for the automatic value field.
The field name can have a maximum of 124 characters,
consisting of alphanumeric characters. Field names including
underscores (_) are reserved for Verity.

DBNAME The name of the collection that stores information to make
documents retrievable. When DBNAME is specified, the name of
the collection is assigned as the value of the autoval field.

DBPATH The full or relative pathname of the collection. When DBPATH is
specified, the pathname of the collection associated with a
document is assigned as the autoval field value.

SIRENAME The name of the style.ddd file used to create the collection.
When SIRENAME is specified, the name of the style.ddd file
associated with a document is assigned as the autoval field
value.

SIREPATH The full or relative pathname of the style.ddd file. When
SIREPATH is specified, the pathname of the style.ddd file
associated with a document is assigned as the autoval field
value.
164 Verity Collection Reference

5 Defining Collection Fields
style.ufl Syntax
Variable Field Types

fixwidth
The fixwidth field type for a data-table statement identifies a fixed-width field. The
application developer may elect to store fixed-width field definitions in separate data
tables to improve retrieval performance. See “Using data-table Statements” on page 161
for information about storing variable-width field definitions in separate data segments.

fixwidth Syntax
The fixwidth field type is defined in a data-table statement, and the syntax of the
fixwidth field type is shown here. For a description of name, see “data-table Syntax” on
page 161.

data-table: name
{
fixwidth: fieldname length data_type
 /indexed = yes|no
 /case-sensitive = yes|no
}

fieldname This argument is the name of the worm field. The name can have
a maximum of 124 characters, consisting of alphanumeric
characters. The name cannot begin with an underscore.

data_type This required argument identifies the type of data to be stored in
the worm field type.

The table of valid data types can be found in “Data Types” on
page 147.
Verity Collection Reference 165

5 Defining Collection Fields
style.ufl Syntax
fixwidth Length and Ranges for Integer Data Types
The following table lists the range for each integer type (unsigned and signed) based on
field length.

varwidth
The varwidth field type for a data-table statement identifies a variable-width field.
The application developer may elect to store variable-width field definitions in separate
data tables to improve retrieval performance. See “Using data-table Statements” on
page 161 for information about storing variable-width field definitions in separate data
segments.

fieldname This argument is the name of the fixed-width field. The name
can have a maximum of 124 characters, consisting of
alphanumeric characters. Note that the name cannot begin with
an underscore.

length This required argument identifies the length of the fixed-width
field expressed as a number of characters.

data_type This required argument identifies the type of data to be stored in
the fixwidth field.

The table of valid data types can be found in “Data Types” on
page 147.

/indexed This optional modifier identifies whether the Verity engine
creates an index for this field. By default, an index is not created.
If you enter /indexed=yes, an index is created.

/
case-sensitive

This optional modifier identifies whether the Verity engine
creates a case-sensitive index if an index is created for this field.
By default, an index is not case-sensitive. If you enter /
case-sensitive=yes, a case-sensitive index is created.

Length (bytes) Unsigned-Integer Range Signed-Integer Range

1 0 to 255 -128 to 127

2 0 to 65535 -32768 to 32767

4 0 to (232-1) -231 to (231-1)
166 Verity Collection Reference

5 Defining Collection Fields
style.ufl Syntax
varwidth Syntax
The varwidth field type is defined in a data-table statement, and the syntax of the
varwidth field type is shown here. For a description of name, see “data-table Syntax” on
page 161.

data-table: name
{
varwidth: fieldname identifier
 /indexed = yes|no
 /case-sensitive = yes|no
}

dispatch
A document dispatch field, defined by a dispatch field type, represents free-form text
that will be searched and presented for viewing. It points to the document text in place,
without copying the text into the collection. By default, the document dispatch field is
named DOC.

The dispatch field identifies a special field referred to as the document dispatch field.
In most cases, a collection has only one document dispatch field that stores information
about a document’s location and size. This information is used to dispatch the document

fieldname This argument is the name of the variable-width field. The
name can have a maximum of 124 characters, consisting of
alphanumeric characters. Note that the name cannot begin
with an underscore.

identifier This required argument identifies a three-character name for
the data segment that will store all variable-width field
definitions. The segment name should begin with the letters
dd. The specified name cannot begin with an underscore (_) or
the letter combination di.

/indexed This optional modifier identifies whether the Verity engine
creates an index for this field. By default, an index is not
created. If you enter /indexed=yes, an index is created.

/case-sensitive This optional modifier identifies whether the Verity engine
creates a case-sensitive index for the field if the field will be
indexed. By default, an index is not case-sensitive. If you enter
/case-sensitive=yes, a case-sensitive index is created.
Verity Collection Reference 167

5 Defining Collection Fields
style.ufl Syntax
when the application issues a command to display it. The dispatch field is defined in the
default style.ddd file. It is recommended that this field definition remain in the
style.ddd file, not in one of the include files.

dispatch Syntax
The dispatch field is defined in a data-table statement in the style.ddd file, and
the syntax of the dispatch field is shown here. For a description of name, see
“data-table Syntax” on page 161.

data-table: name
{
dispatch: fieldname
}

Assigning a Custom Name to a Dispatch Field
If you want to assign a name other than DOC, then you must create a separate data table
for a variable-width field having the same root name as the document dispatch field.

Note Place the data-table segment in the style.ufl file, which is accessed
from a $include statement in the style.xfl file, which is in turn
accessed from a $include statement in the style.ddd file. For example,
if you want to name the document dispatch field article, then the
syntax of the style.ufl file would need to include the following syntax:

data-table: ddf
{
varwidth: article_fn dd1
dispatch: article
}

The variable-width field for the document’s file name must have the same root name as
the dispatch field, and the variable-width field must have the _fn ending.

dispatch: This identifies the field type as a document dispatch
field.

fieldname This argument is the name of the dispatch field. The
default style.ddd file assigns the name “DOC” to the
document dispatch field.
168 Verity Collection Reference

5 Defining Collection Fields
style.ufl Syntax
If a custom dispatch field name is used (only if your are creating a second dispatch field),
you must define a style.dft file that minimally includes the field keyword with the
custom dispatch field name. For example, for a dispatch field named article, the
following statement must appear in the style.dft file:

field: article

For complete information about the style.dft file, see “Filtering and Formatting
Documents” on page 97.
Verity Collection Reference 169

5 Defining Collection Fields
style.ufl Syntax
170 Verity Collection Reference

6
Populating Collection Fields

This chapter describes using field extraction rules with mkvdk. Two field-parsing
methods are supported by Verity collection-building products. These topics are covered:

Methods for Populating Fields

style.tde Syntax

style.tde Example

Note For best performance, you should populate fields using the bulk modify
feature, described in “Using Bulk Insert Files” on page 317.

Methods for Populating Fields

You may wish to set field values related to your documents, so that the documents are
searchable by fields. mkvdk supports the following methods for populating fields:

Using the bulk modify feature to insert documents and set field values in the bulk
modify file(s)

Extracting field values from documents

Using the Bulk Modify Feature

To use the bulk modify feature to populate fields, complete the following steps:
171

6 Populating Collection Fields
style.tde Syntax
1. Define the fields in the style.ufl file.

For more information about the style.ufl file, see “Defining Collection Fields” on
page 147.

2. Create a bulk modify file specifying the documents to insert and the field values for
each document.

3. Run mkvdk using the -bulk option and specify the bulk modify file(s).

For more information about bulk modify files, refer to the chapters on mkvdk in the
Verity K2 Indexers Guide.

Extracting Field Values

To populate fields by extracting field values from documents, complete the following
steps:

1. Define the fields in the style.ufl file.

For more information about the style.ufl file, refer to “Defining Collection Fields”
on page 147.

2. Create a style.tde file containing the field extraction rules (the datamap).

For more information about the style.tde file, refer to the next section.

3. Run mkvdk using the -extract option.

For more information about bulk modify files, refer to the chapters on mkvdk in the Verity
K2 Indexers Guide.

style.tde Syntax

This section explains the style.tde syntax used to supply field extraction rules.

In this section, an example of the style.tde syntax template is followed by descriptions
of the style.tde statements in alphabetical order. A statement is any word that may
appear at the beginning of a line and is always immediately followed by a colon (:).
172 Verity Collection Reference

6 Populating Collection Fields
style.tde Syntax
Syntax Template

Listing 6-1 is a syntax template for style.tde. It includes the syntax relevant to mkvdk
for extracting field values.

Listing 6-1 Syntax of style.tde

$control: 1
tde:
{
 pre-process:
 {
 relative-path: yes|no
 }

 {
 datamap:
 /docsep = "pattern"
 /filter = "filter_name"
 /system = "system_call"
 /charmap = charmap_code
 {
 define: pattern_name "pattern"
 ...
 field: field_name FILENAME|TIME|FILETIME|
 FILESIZE|FILEPATH|PATTERN|LINE num|"pattern"
 /required = yes|no
 /which = [1|###|LAST|ALL]
 /string-before = "string"
 /string-between = "string"
 /string-after = "string"
 /default = "field_value"
 /alsowrite = [field_name|"field_names"]
 ...
 dispatch: field_name
 /required = yes|no
 /start-line = "string"
 /start-pattern = "string"
 /end-line = "string"
 /end-pattern = "string"
 /inclusive = yes|no
 ...
 }
 }
Verity Collection Reference 173

6 Populating Collection Fields
style.tde Syntax
}
$$

$control

The $control statement identifies the file as a Verity control file. It must be the first
non-comment line in the style.tde file.

Syntax
$control: 1

datamap

The datamap section of the style.tde file defines the document body text and the
rules for populating field values from documents. The document body text is used to
create a collection’s full-word index. Field population rules populate fields in the
collection’s document table, as defined by the style.ddd and style.ufl files.

The following statements may appear as children of datamap: define, dispatch,
field. define, dispatch, and field are described later in this section.

Syntax
datamap:
/docsep = "pattern"
/filter = "filter_name"
/system = "system_call"
/charmap = charmap_code
{
datamapping
}

174 Verity Collection Reference

6 Populating Collection Fields
style.tde Syntax
/docsep This optional modifier identifies the characters that
separate documents within a file. If a /docsep modifier
is not specified, the default separator is the end-of-file. If
you have multiple documents in a file, you must define a
dispatch field to avoid indexing the entire file for each
document within the file. This modifier can be used only
if your documents are in plain text (ASCII) format.

/filter="universal” This optional modifier specifies that the universal filter
will be used to read documents during indexing and to
present them for viewing, and is used only when you
want the engine to convert the format of documents
before parsing them. Note that if this modifier is used, a
style.dft file with the same /filter modifier is also
required.

/system This optional modifier allows you to specify your own
filter. Two substitution variables are available:
$filename and $$. The variable $filename
represents the input text file name, and $$ represents the
output temporary file name to be parsed by the Verity
engine.

/charmap This modifier specifies the character map used to print
characters to the screen. Note that this modifier is
required if a language other than English is used. The
following character map codes are available:

1252 for code page 1252

850 for IBM code page 850

8859 for ISO-8859

datamapping This represents a set of statements that define the
document body text and the rules for extracting field
values from documents. The document body text is used
to create the full-word index. Extracted field values may
be stored in a collection. To store extracted field values in
a collection, the field(s) must be defined in the
style.ufl file.
Verity Collection Reference 175

6 Populating Collection Fields
style.tde Syntax
define

The define statement is a child of the datamap statement. It assigns a name to a regular
expression. Use this name to represent the expression elsewhere in the datamap section
of the style.tde file.

Syntax
define: pattern_name "pattern"

dispatch

The dispatch statement is a child of the datamap statement. It supplies the rules for
populating the dispatch field defined in the style.ddd or style.ufl file. It identifies
the document body text to include in the full-word index. If there is no style.dft file,
the document body text, as specified by the dispatch statement, is displayed for
viewing.

The start and end of the document body can be identified by a line number or a pattern
written as a regular expression.

Syntax
dispatch: field_name
/required = yes|no
/start-line = "string"
/start-pattern = "string"
/end-line = "string"
/end-pattern = "string"
/inclusive = yes|no

pattern_name The name assigned to a pattern. The name specified can
be up to 128 characters long, and can consist of
alphanumeric characters, underscores, and hyphens.

pattern A regular expression describing a character or set of
characters. For more information, see “Supported
Regular Expressions” on page 375. The pattern specified
must be enclosed in quotes.
176 Verity Collection Reference

6 Populating Collection Fields
style.tde Syntax
field_name The name of the dispatch field as defined in the
collection’s style.ddd or style.ufl file. The
document dispatch field may be assigned a field name
other than DOC, but the field name must match the field
name specified in the style.dft file.

/required This optional modifier identifies whether the field is
required in order for the Verity engine to include the
document in the collection. If you specify yes, the Verity
engine ignores the document if the field is not found.
The default is no.

/start-line This optional modifier identifies the line of the
document on which the dispatch field begins. If neither
/start-line nor /start-pattern is given, the field
begins on line 1.

/start-pattern This optional modifier identifies the pattern, represented
by a regular expression, with which the dispatch field
begins. If neither /start-line nor /start-pattern
is given, the field begins on line 1.

/end-line This optional modifier identifies the line of the
document on which the dispatch field ends. If neither /
end-line nor /end-pattern is given, the dispatch
field ends at the end of the file. A dollar sign ($) can be
used to signify the end of the file.

/end-pattern This optional modifier identifies the pattern, represented
by a regular expression, that occurs at the end of every
document. If an /end-line modifier or an /
end-pattern modifier is not given, the documents end
at the end of the file.

/inclusive This optional modifier identifies whether a specified
start pattern and end pattern are to be included in the
dispatch field. By default, these patterns are not
included. If you specify YES, both patterns will be
included in the dispatch field.
Verity Collection Reference 177

6 Populating Collection Fields
style.tde Syntax
field

The field statement is a child of the datamap statement. It identifies the rules the Verity
engine follows to parse data for a specified field name. Field values can be stored in
collections. To store extracted field values in a collection, the field(s) must be defined in
the style.ufl file. A field keyword must be present for each field for which you
want to store extracted values.

Syntax
field: field_name {FILENAME|FILEPATH|FILETIME|FILESIZE|
LINE|PATTERN|TIME} num|"pattern"
 /required = yes|no
 /which = [1|###|LAST|ALL]
 /string-before = "string"
 /string-between = "string"
 /string-after = "string"
 /default = "field_value"
 /alsowrite = [field_name|"field_names"]

field_name The name of a field for which you want to extract
values from your documents. If this name corresponds
to a name in the style.ufl, the Verity engine stores
the extracted field values in the collection. Field names
are case-insensitive and may contain alphanumeric
characters, hyphens (-), and underscores (_). Note that
field names cannot contain blank spaces.

FILENAME The name of the source file containing the document,
as in this example:

field: DOC_FILENAME FILENAME

FILEPATH The fully-qualified pathname where the source file
containing the document is located, as in this example:

field: DOC_PATHNAME FILEPATH

FILETIME The time when the source file containing the document
was last edited, as in this example:

field: DOC_FILETIME FILETIME
178 Verity Collection Reference

6 Populating Collection Fields
style.tde Syntax
FILESIZE The size of the source file, in bytes, that contains the
document, as in this example:

field: DOC_FILESIZE FILESIZE

LINE num Assigns the text at that line in the document to the
specified field, as in this example:

field: DOC_LINE LINE 3

PATTERN "pattern" The flag that precedes a regular expression that the
Verity engine matches. The specified regular
expression must appear in quotes as shown in this
example:

field: TITLE PATTERN "Title :<.*>"

PATTERN
"{pattern_name}"

The flag that precedes a regular expression that the
Verity engine matches. The pattern_name variable
represents a macro which can be substituted for a long
regular expression. The macro must surrounded by
curly braces and must be specified in a define
statement. An example is provided at the end of this
chapter.

TIME The time when the document was parsed. For
example:

field: DOC_TIME TIME

/required This optional modifier identifies whether the field is
required in order for the Verity engine to include the
document in the collection. If you specify yes, the
Verity engine ignores the document if the field is not
found. The default is no.

/which This optional modifier specifies how the Verity engine
behaves when multiple instances of a particular field
are found in a document.

1. the first instance of the field is used (the default is 1).

Number. The field with the given instance number is used.

LAST. The last instance of the field is used.

ALL. All instances of the field are used.

/string-before This optional modifier identifies a string to be inserted
before the field value.
Verity Collection Reference 179

6 Populating Collection Fields
style.tde Syntax
/string-between This optional modifier identifies a string to be inserted
between field values when the Verity engine extracts
many field values for the field. This option is only
valid when the modifier /which=all is specified.

/string-after This optional modifier identifies a string to be inserted
after the field value.

/default This optional modifier specifies the string that the
Verity engine assigns the field if a field value is not
found. If this modifier is not specified, the field is
empty and appears blank if displayed in a Verity
application.

/alsowrite Using this modifier, you can store a parsed value in
two fields: the field named by the field statement,
and the field named by the /alsowrite modifier.

/alsowrite also allows you to populate more than
two fields with the same value. Simply specify a
space-separated list of field names delimited by quote
marks:

/alsowrite = "Us1 Us2 Gx1 Gx2"
180 Verity Collection Reference

6 Populating Collection Fields
style.tde Example
pre-process

The pre-process statement identifies the beginning of the pre-process section of the
style.tde file. Note that no more than one pre-process statement should be
included in the style.tde file. Each pre-process statement can have up to 1000 child
statements.

Syntax
pre-process:
{
pre-processing
}

tde

The tde statement identifies the control file as a style.tde file. It should be the first
non-comment line after the $control statement.

Syntax
tde:

style.tde Example

Sample style.tde and style.ufl files for defining the use of a custom macro are shown here.

Listing 6-2 Example style.tde file

$control: 1
tde:

pre-processing A set of statements that define the work done by the
Verity engine when documents are initially parsed. For
example, the relative-path: NO statement can be
specified to build collections with full paths to
documents (by default, relative paths are used).
Verity Collection Reference 181

6 Populating Collection Fields
style.tde Example
{
 pre-process:
 {
 datamap:
 {
 define: writename "<E.*>"
 field: Writer PATTERN "{writename}"
 /required = yes
 dispatch: DOC
 }
 }
}
$$

The following style.ufl field definition would be used with the style.tde example
in Listing 6-2.

data-table: dad
{
 varwidth: Writer dxa
}

182 Verity Collection Reference

7
Defining Document Zones

Zone filtering allows an application to search within regions, or zones, of document text.
Searching within document regions is an efficient way to find information. This chapter
describes how to enable zone searching through the use of the zone filter for: SGML,
HTML, internet-style email messages, internet-style Usenet news articles.

This chapter covers the following:

Zone Filter Overview

Invoking the Zone Filter

style.zon File Syntax

Zones for Markup Language Documents

Zones for Internet Message Format Documents

Custom Zone Definitions

Defining Zones as Collection Fields

Defining Zones for Virtual Documents

Hidden Elements in Zones

Special Noindex and Noextract Zones

Searching in Zones

Default style.zon File
183

7 Defining Document Zones
Zone Filter Overview
Zone Filter Overview

This section provides an introduction to zones, describes the kinds of documents that use
zones, and explains the differences between fields and zones.

Introduction to Zones

Zones are specific regions of a document to which searches can be limited. The Verity
engine uses the zone filter to build zone information into a collection’s full-word index.
The enhanced index permits quick and efficient searches using zones. A zone may be
automatically defined by the zone filter, or you may define it in the style.zon file.

Zone searching is useful when you believe that limiting your search to a particular zone
will produce more accurate search results. Speed of searching is not a factor, since
searching a zone for information use the same amount of time as searching the entire
document. Note however, that searching a zone is faster than field searching, since zone
searching uses the fast search algorithm of the search engine, whereas field searching is a
linear process.

Document Types

You can use the zone filter and search over zones for two specific types of documents:

Markup Language documents. This includes both SGML and HTML. The zone filter
includes built-in support for HTML. You can use the style.zon file to specify zones
for any SGML document.

Internet Message Format documents. This includes standard email and Usenet news
messages. These documents must conform to the RFC822 standard. The zone filter
includes built-in support for both email and Usenet news.

Zones vs. Fields

Fields are extracted from the document and stored in the collection for retrieval and
searching, and can be returned on a results list. Zones, on the other hand, are merely the
definitions of “regions” of a document for searching purposes, and are not physically
extracted from the document in the same way that fields are extracted. The contents of a
zone cannot be returned in a search results list.
184 Verity Collection Reference

7 Defining Document Zones
Zone Filter Overview
A region of text in the content of a document must first be defined as a zone in order to be
extracted as a field. Therefore, it can be a zone only, or it can be both a field and a zone.
Whether you define a region of text as a zone only or as both a field and a zone depends
on your particular requirements.

Advantages of Using a Field
For numeric fields like dates, you can perform relative comparisons using the
relational operators (=, >, <, >=, <=).

For example, you can do a query like the following on a field: date > may 1, 1993.
Because zones are not parsed for content, such searches cannot be performed on them.

The value of a field can be returned on a results list.

This is most useful for those parts of a document that help identify it, like the title and
the author. Zones cannot be returned on a results list.

Fields are stored with a collection, so the source document need not be accessed to get
field values.

Advantages of Using a Zone
For text regions of a document, searching a zone is much faster than searching a field.

Arbitrary query searches can be restricted to a zone, but not to a field (which can be
searched only with CONTAINS and relative comparisons).

Zones can be any length with little impact on the index file size.

This is because the source text is not stored in the binary collection files. Only a
description of where each zone starts and ends is stored, so the zone’s size does not
matter. Field values are stored in a table in the collection, and therefore tend rapidly to
increase the size of the collection.

Processing Order
Field parsing and populating in the document table are performed before full-text
indexing. If zones are defined, they are interpreted during full-text indexing.

Zones and Zone Occurrences

When you extract a zone from a document you may be extracting a single zone or you
may be extracting multiple occurrences of a zone. For example, a Usenet news or internet
email document will only have one Subject: field. However, an HTML document may
Verity Collection Reference 185

7 Defining Document Zones
Invoking the Zone Filter
have several <h2> tags. When you create a zone, all of the <h2> tags are extracted, and
all are searched when you submit a query on the zone. The specifics of zone searches are
discussed in “Searching in Zones” on page 222.

Invoking the Zone Filter

By default, the Verity engine invokes the universal filter with the zone filter as a helper
filter. If you open the default style.uni file you will see that it includes zone filter with
options that invoke the built-in modes for processing HTML (-html), email (-email),
and Usenet news (-news) files. Besides the built-in modes, you can also define and
specify custom user modes, as described later in this chapter.

The zone filter can index and access for display documents in tagged ASCII formats, like
HTML, SGML, email and Usenet news. The tagged regions of text are defined by the
search engine as zones and these zones can be searched by users.

If, for a particular collection, you know you will only be indexing one of these tagged
ASCII formats, and no other format, then you can avoid the overhead of the universal
filter and instead specify a zone filter directly in the style.dft file as described later.

For more information about the universal filter, the syntax of the style.uni and
style.dft files, see “Filtering and Formatting Documents” on page 97.

Specifying the Zone Filter

The zone filter can be invoked together with the universal filter or as a single filter. By
default, the built-in zone modes (for HTML, email, and Usenet news) are all invoked
with the universal filter. The zone filter specifications for the built-in zone modes are
included in the default style.uni file.

To invoke the zone filter with the universal filter, you need to specify the filter in the
style.uni file using the type keyword with the /content-filter modifier, as
shown in the sample style.uni syntax here:

type: text/html
 /charset = guess
 /def-charset = 1252
 /content-filter = "zone -html -nocharmap"
186 Verity Collection Reference

7 Defining Document Zones
Invoking the Zone Filter
Note The -nocharmap argument specifies that zone filter will not perform
character set mapping; instead, the universal filter will use its character set
recognizer.

To invoke the zone filter as a single filter, you need to specify the filter in the style.dft
file using the field keyword and the /filter modifier, as shown in the sample
style.dft file syntax here:

field: DOC
 /filter="zone -html"

If the zone filter is invoked as a single filter, the engine will index documents in the mode
specified, so the collection will be limited to those documents.

Mode Options
The zone filter supports several filtering modes, each appropriate for a specific document
type. To specify a particular zone-filter mode when invoking the zone filter, you need to
use one of the options shown in Table 7-1 with the zone argument.

Note that, if you specify no mode option when invoking the zone filter, it operates in a
mode appropriate for SGML documents.

Specifying one of these modes causes a corresponding mode flag in the style.zon file
to be defined. Use of mode flags allows a single style.zon file to be capable of handling
all of the above types of files. The mode definitions are listed in Table 7-3 on page 193.

Table 7-1 Zone-filter modes

Option Description

-html Documents in Hypertext Markup Language format for World
Wide Web.

-email Internet email conforming to the RFC822 standard.

-news Internet Usenet news conforming to the RFC822 standard.

-usermode modeName User-defined mode for handling documents of type modeName.
See “Custom Zone Definitions” for more information.

(No option) Documents in SGML format.
Verity Collection Reference 187

7 Defining Document Zones
Invoking the Zone Filter
Note Several of the zone-filter modes support entity translation, and by default
rely upon built-in tables of entity translations that are appropriate for the
current mode and character set. Please see “Built-In Default Entities” on
page 200 for more information.

Character Mapping Options
To filter a document with the zone filter, you need to know which character set a text file
is written in to be able to parse it properly. The character mapping options are general
enough that you can use them for all Web documents, even those in, for example, Korean,
Chinese, Russian, and Czech.

When you use the zone filter a helper filter to the universal filter, the universal filter’s
character set recognizer should be used. In this case, you should include the
-nocharmap option in your filter specification.

When you use the zone filter as a single filter for a collection, use one of the following
options in the filter specification to instruct the zone filter how to perform character
mapping.

For example, to invoke the zone filter as a single filter and to perform character mapping
before parsing the documents, you need to specify the filter in the style.dft file using
the field keyword and the /filter modifier, as shown in the sample style.dft file
syntax:

field: DOC
 /filter="zone -html -precharmap 850"

Option Description

-precharmap name Map from the named character set before parsing the document.
The name variable is the name of the character set to map from.

-autocharmap Guess the character set of the document, and then map from that
character set to the internal character set before parsing the
document.

-nocharmap Do not perform any character set mapping before parsing the
document. When the -html flag and the -nocharmap flag are
given together, the document will not be mapped from the
HTML standard of 8859 before being parsed.
188 Verity Collection Reference

7 Defining Document Zones
Invoking the Zone Filter
A key purpose of the -precharmap and the -autocharmap options is to support
Japanese and other Asian languages in which Web pages are commonly written in a
multibyte character set rather than the HTML standard of ISO-8859-1. In Japan in
particular, there are three common character sets, and a Web page might be written in
any of those three.

In the previous example, the -autocharmap option is a convenient way of handling a
Web page written in an unknown character set. The same mechanism also works for Web
pages written in other locales, as long as that locale supports a character set detection
function.

Extracting META Tags as Fields

The universal filter supports filtering <META> tags, which are typically defined in HTML
documents, using the special flt_meta content filter with the zone filter. The flt_meta
filter can be specified for the text/html document type in the style.uni file.

The default style.uni file automatically invokes the flt_meta content filter with the
zone filter. Here is an example of a short style.uni file that can filter HTML documents
with <META> tags (the type: statement here also appears in the default style.uni
file):

 $control: 1
 types:
 {
 autorec: "flt_rec"
 autorec: "flt_kv -recognize"
 type: text/html
 /charset = guess
 /def-charset = 1252
 /content-filter = "zone -html -nocharmap"
 /content-filter = "flt_meta"
 # if we get anything else, just skip it
 default:
 /action = skip
 }
 $$

The flt_meta filter watches markup tokens in the document stream. When the filter
encounters a <META> tag, it produces a field token based on the tag and then the field
token is stored as a field in the collection. In the collection’s document table, the field
name is the name of the <META> tag’s name attribute, and the field value is the value of
the content attribute in the <META> tag.

A sample <META> tag in HTML is shown here:
Verity Collection Reference 189

7 Defining Document Zones
style.zon File Syntax
<META name="Abstract" content="This is a long document">

When filtering the HTML above, the flt_meta filter produces a field token of this form:

ABSTRACT: This is a long document

In the default style.sfl file, the field name Abstract is populated with the value
This is a long document. A field definition that corresponds to the <META> tag’s
name attribute must appear in the style.ufl or style.sfl in order for the field to be
populated by the filter. In the example above, the field named Abstract is aliased to the
Snippet field in the default style.sfl file so you would not need to add a field
definition.

Extracting Zones as Fields

The zone filter supports a method for extracting zones as fields that differs from the
method used by the flt_meta filter to extract <META> tags as fields. The zone filter
watches HTML in the document stream and produces a field tokens based on the zone
name(s) specified in the style.zon file, where a zone name corresponds to a tag name.
In the collection’s document table, the field is defined as the tag name and the tag value is
the field value.

For example, when the zone filter encounters this HTML:

<TITLE>This is the title</TITLE>

the filter produces the following field token:

TITLE: This is the title

Since TITLE is defined as a standard field by default, the zone filter populates the TITLE
field with the value “This is the title.” For more information about extracting zones as
fields, see “Defining Document Zones” on page 183.

style.zon File Syntax

You can use the style.zon file to specify the tags you want to create as zones by using
the element and attribute keywords. The examples in the description of the
style.zon file refer to common entities in SGML.
190 Verity Collection Reference

7 Defining Document Zones
style.zon File Syntax
style.zon File Structure

The structure of the style.zon file is as follows:

$control: 1
zonespec:
[/ignoreattributes = YES|NO]
[/html] | [/email] | [/news]
{
 .

 .

 .

}
$$

The style.zon file must reside in the style directory of the collection. The first line in
the file must be $control: 1, and zonespec: must be the first uncommented line
following it. The file must end with $$ on a line by itself.

The content of the file depends upon the types of document for which you are creating
zones, and how you want the various zones stored in the collection. The syntax for the
various style.zon keywords and sample style.zon sections for the various
document types are included in “Zones for Markup Language Documents” on page 202
and “Zones for Internet Message Format Documents” on page 207.

zonespec Modifiers

The zonespec keyword is immediately followed by one of the modifiers listed in
Table 7-2.

Table 7-2 zonespec modifiers

Modifier Description

/ignoreattributes Specify YES or NO. The default is YES. Ignores tag attributes unless
overridden by a statement beneath it.

/html Specifies that, when the zone filter is invoked with the -html
option, the zone filter should use this zonespec for processing
documents. If this modifier is not present, internally coded
processing consistent with the HTML standard occurs.
Verity Collection Reference 191

7 Defining Document Zones
style.zon File Syntax
If none of the -html, -email, -news, or -user modes is specified when the zone filter
is loaded, then the zone filter uses SGML mode. In SGML mode and in user mode, no
zonespec modifier is required.

In modes other than SGML and user, the zonespec keyword must have the appropriate
mode modifier (/html, /email, or /news) or else style.zon will be ignored and
hard-coded settings will be used.

The zonespec keyword appears as follows when using the /ignoreattributes
modifier.

$control: 1
zonespec:
 /ignoreattributes = no
{
 element: *
}
$$

Conditionally Configuring Modes

When it parses style.zon, the zone filter defines one of the flags listed in Table 7-3,
based on which zone-filter mode option (see Table 7-1 on page 187) was specified in
style.uni. For example, if the filter is invoked with the -HTML option, the
ZONEMODE_HTML flag becomes defined in style.zon.

These flags are used in style.zon to conditionally adjust the configuration according to
zone-filter mode. By adding conditional expressions based on the following mode
definitions to your style.zon file, you can effectively create multiple versions of
style.zon, one for each type of zone-filter mode that you will use. Within the section of

/email Specifies that, when the zone filter is invoked with the -email
option, the zone filter should use this zonespec for processing
documents. If this modifier is not present, internally coded
processing consistent with the standard for RFC822 email files
occurs.

/news Specifies that, when the zone filter is invoked with the -news
option, the zone filter should use this zonespec for processing
documents. If this modifier is not present, internally coded
processing consistent with the standard for Usenet news files
occurs.

Table 7-2 zonespec modifiers

Modifier Description
192 Verity Collection Reference

7 Defining Document Zones
style.zon File Syntax
style.zon covered by each flag, you can then include a zonespec line followed by its
appropriate modifier, in turn followed by the elements, attributes, and entities
appropriate for processing that type of document.

Note that if none of the -html, -email, -news, or -user modes is specified when the
zone filter is loaded, the ZONEMODE_SGML definition is activated in style.zon. No
zonespec modifier is required for the section of style.zon covered by
ZONEMODE_SGML.

See “Default style.zon File” on page 225 for an example of how these zone definitions
appear in style.zon.

Implementing Multiple User Modes in style.zon
If you need multiple, differently-configured custom modes, you can modify style.zon
so that it identifies the correct mode to use by testing the value of $ZONEMODE, which—if
the zone filter is called with the -usermode modeName option—will have the value
modeName.

Table 7-3 Optional mode definition flags in style.zon

Mode Description

ZONEMODE_SGML Conditionally activates the section that handles SGML documents.
This flag is defined in style.zon when the zone filter is invoked
without any of the options -html, -email, -news, or -user.

ZONEMODE_HTML Conditionally activates the section that handles HTML documents.
This flag is defined in style.zon when the zone filter is invoked
with the option -html.

ZONEMODE_EMAIL Conditionally activates the section that handles RFC822 email
documents. This flag is defined in style.zon when the zone filter
is invoked with the option -email.

ZONEMODE_NEWS Conditionally activates the section that handles Usenet news
documents. This flag is defined in style.zon when the zone filter
is invoked with the option -news.

ZONEMODE_USER Conditionally activates a custom, user-defined section of
style.zon that handles other types of documents. This flag is
defined in style.zon when the zone filter is invoked with the
option -usermode modeName.

See also “Implementing Multiple User Modes in style.zon,” below.
Verity Collection Reference 193

7 Defining Document Zones
style.zon File Syntax
Here is an example of how this might appear in style.zon, for modeName values of
XML_internal and XML_external:

$SUBST: 1
$if $ZONEMODE == XML_internal
... # Configuration for internal docs
$elif $ZONEMODE == XML_external
... # Configuration for external docs
$else
 ... # Configuration for all other docs
$endif
$SUBST: 0

The element Keyword

The element keyword specifies extraction or exclusion of elements (tags) in the
document being processed. It uses the following syntax:

element: elementname

where elementname specifies the name of the element (that is, the tag) you want to
extract as a zone. Element names are case-insensitive. To extract all tags as zones, use *
for elementname. (See “Wildcards” on page 200 for more information about using the
asterisk.)
194 Verity Collection Reference

7 Defining Document Zones
style.zon File Syntax
You can use the following optional modifiers with the element keyword.

There are two approaches to specifying the elements to extract as fields. The first is to
specify the asterisk, and then use the /ignore modifier to list any tags you do not want
extracted. The following is an example of the first approach:

$control: 1
zonespec:

Modifier Description

/ignore Specify YES to ignore the specified element. If you use the
wildcard character (*) for elementname, only those elements
specified with the /ignore=yes modifier are ignored. If you do
not use the asterisk, all the elements specified are extracted and
those omitted are ignored.

/field Specify YES to extract the specified element as a field as well as a
zone. See “Defining Zones for Virtual Documents” on page 217.
The extracted field value is stored in the elementname field. To
extract attribute names, you must also extract the element name.

/nonwordbreaking Specify YES to prevent a zone boundary from occurring in the
middle of a word. Otherwise, occurrences of this zone's tag in the
middle of a sequence of characters will split those characters and
cause them to be indexed as two words.

If you specify /nonwordbreaking, zone searches for the entire
word that would otherwise have been split will succeed, and
searches for the word’s fragments will not succeed.

/noindex Specify to YES to cause all instances of this zone to be
surrounded by <noindex> tags. This will prevent content of this
zone from being searched. See “Special Noindex and Noextract
Zones” on page 220 for more information.

Note: this modifier is disregarded if the /ignore modifier has
the value YES. It is also disregarded for any zones named
noindex.

/noextract Specify to YES to cause all instances of this zone to be
surrounded by <noextract> tags. This will prevent content of
this zone from being used for feature extraction. See “Special
Noindex and Noextract Zones” on page 220 for more
information.

Note: this modifier is disregarded if the /ignore modifier has
the value YES. It is also disregarded for any zones named
noextract.
Verity Collection Reference 195

7 Defining Document Zones
style.zon File Syntax
{
 element: *

 element: heading3
 /ignore = yes

 element: list-item
 /ignore = yes
}
$$

In this case, all elements are extracted as zones except for heading3 and list-item,
which are ignored.

The second approach is to explicitly list only those elements you want extracted. The
following is an example of the second approach.

$control: 1
zonespec:
{
 element: header
 element: body
 element: title
 element: textzone
 element: section
 element: sub-section
 element: footnote
 element: appendix
}
$$

In this case, only the eight elements specified are extracted as zones. All the rest are
ignored.

The attribute Keyword

The attribute keyword specifies extraction or exclusion of attributes within a tag. It is
entered in the style.zon file as a child of element and uses the following syntax:

attribute: attributename
196 Verity Collection Reference

7 Defining Document Zones
style.zon File Syntax
where attributename specifies the name of the attribute you want to extract as a zone.
Attribute names are case-insensitive. To extract all attribute names as zones, use * for
attributename. (See “Wildcards” on page 200 for more information about using the
asterisk.)

You can use the following optional modifiers with the attribute keyword.

The following is an example of the attribute keyword and its modifiers:

$control: 1
zonespec:
{
 element: header
 element: body
 element: title
 {
 attribute: company
 /default: "IBM"
 }
 element: textzone
 element: section
 element: sub-section
 element: footnote
 element: appendix
}

Modifier Description

/ignore Specify YES to ignore the specified attribute. To extract the attribute,
specify NO (default). If you use the asterisk for attributename,
only those attributes specified with the /ignore=yes modifier are
ignored. If you do not use the asterisk, all the attributes specified are
extracted and those omitted are ignored.

/field Specify YES to extract the specified attribute as a field value as well as
a zone. See “Defining Zones for Virtual Documents” on page 217.
When a /field=YES modifier is assigned to an attribute, the attribute
name and value are prepended to the field value named by the
element name.

Note: Using /field=YES does not cause the attribute information to
be extracted into its own field.

/default Specify the default attribute value you want to use when the attribute
name does not occur in the zone tag.

/values Specify values that may appear in a tag without the corresponding
attribute name.
Verity Collection Reference 197

7 Defining Document Zones
style.zon File Syntax
$$

The default behavior is to extract all attributes as zones. In some circumstances, you can
suppress this behavior:

With wildcards (See “Wildcards” on page 200), you can set new default behavior like
this:

element: *
{

attribute: *
/ignore = yes

}

If you specify the /ignoreattributes=yes modifier, all attributes are ignored.

If an element is ignored (for example by means of an /ignore=yes modifier), that
element’s attributes are ignored as well.

In either case, you can override the ignore behavior and extract an attribute as a zone by
specifying /ignore=no for that attribute.

The entity Keyword

The entity keyword specifies the translation of entities to their equivalents. It uses the
following syntax:

entity: name "value"

where name is the name of the entity as it appears in the document, and value is the
way you want the entity to display. You can use the following optional modifiers with the
entity keyword.

Entities in SGML are used to specify characters that would otherwise be considered as
part of the markup language or that cannot be typed on the normal keyboard.

Modifier Description

/ignore Specify either YES or NO. The default is NO.

/punct If present, specifies that this entity is to be
considered punctuation (not a character that can
be part of a word).
198 Verity Collection Reference

7 Defining Document Zones
style.zon File Syntax
The entity begins with an ampersand (&) and ends with a semicolon (;) or white space.
No space is permitted between the ampersand character and the following entity name.
The entity name consists of alphanumeric characters plus any combination of
underscores, dashes, and number signs (#). If the entity is terminated with a semicolon,
the semicolon is also part of the string that is replaced by the equivalent string. If the
entity is terminated by a whitespace character, that whitespace is not considered part of
the string that is replaced.

For example, assume the following entities and their translations:

The style.zon file would then appear as follows:

$control: 1
zonespec:
{
 entity: amp "&"
 entity: lessthan "<"
 entity: greaterthan ">"
}
$$

The following is a sample of how the actual document would appear in ASCII text form:

Here is some text. First an entity delimited by a semicolon:
S&P’s stock index. Second, entities delimited by a spaces:
the &greaterthan character and the &lessthan character.

Using the above style.zon file, the resulting document would then appear as follows

Here is some text. First an entity delimited by a semicolon:
S&P’s stock index. Second, a entities delimited by spaces:
the > character and the < character.

If an entity is encountered and no translation is given for it in the style.zon file or in
the built-in rules, then the text of that entity is passed through the filter unchanged.

Entity Translation

& &

&greaterthan >

&lessthan <
Verity Collection Reference 199

7 Defining Document Zones
style.zon File Syntax
Entity Substitution
When the zone filter does entity substitution, it literally replaces the entity string (the
ampersand followed by the symbolic name) with the string (typically just one character)
specified in the substitution table. An exception to this behavior has been incorporated
into the built-in HTML filter which interprets non-alphabetic entities as punctuation
tokens. Using the built-in HTML filter, entities such as &, <, and > are not
streamed to the literal characters: &, <, and >. A custom HTML zone filter will perform
entity substitution for all entities, and all entities are streamed to literal characters.

Built-In Default Entities
If the zone filter uses style.zon but style.zon defines no entities, the zone filter uses
a set of built-in default entities appropriate for the current zone-filter mode and character
set. If style.zon defines any entities, none of the built-in entities are used. Therefore, if
you define any entities in style.zon, you must define all that you need.

To view the built-in set of default entities, you can use the -dump argument to the zone
filter. See “Dumping style.zon Information” on page 212 for details.

Wildcards

style.zon recognizes the asterisk (*) as a wildcard character. An asterisk can be used as
a wildcard for the name of an element, header or attribute. You use wildcards to establish
default values used for subsequent definitions in style.zon, and to establish settings to
be used for zones or headers that have no definition listed in style.zon.

When the zone filter parses style.zon, any settings established with a wildcard will
remain in effect as default modifiers until overridden by another wildcard. These default
modifiers will be inherited by subsequent keywords that do not have explicit modifiers.
(The /ignore modifier is excepted, and is never inherited.) In the following example, the
subject and from headers are extracted to fields, but the date header is not.

zonespec:
/email
/news
{

header: *
/field = YES
header: subject
header: from
200 Verity Collection Reference

7 Defining Document Zones
style.zon File Syntax
header: *
/field = NO
header: date

}

Note also that whatever wildcard values are in effect at the end of parsing of style.zon
will become the values used for any headers or elements that are not explicitly defined in
style.zon. The /ignore modifier is also applied to those elements or headers.

The following modifiers can be used with header wildcards:

/ignore (affects only undefined zones)

/field

The following modifiers can be used with element wildcards:

/ignore (affects only undefined zones)

/field

/nonwordbreaking

/noindex

/noextract

 A wildcard attribute can also be specified for a wildcard element, and will establish
default attribute settings for all subsequent elements. Note that, other than a wildcard
attribute, any other attributes specified for a wildcard element are ignored.

The following modifiers can be used with attribute wildcards:

/ignore (not inherited by explicitly listed attributes)

/field

Note that the /ignoreattributes modifier to zonespec is equivalent to:

element: *
{

attribute: *
/ignore = YES

}

Verity Collection Reference 201

7 Defining Document Zones
Zones for Markup Language Documents
style.zon Default Behavior

If no style.zon exists, or if a mode is used for which the zonespec in style.zon
does not have the appropriate modifier, then zone filter will revert to default behavior
that preserves backward compatibility with previous versions of Verity software. In these
cases, the zone filter will generally parse documents in accordance with the appropriate
industry standard for the specified mode.

Zones for Markup Language Documents

Markup languages use tags embedded in the text of documents to specify the document’s
structure and formatting. Viewers and print programs are designed to read the tags and
display or print the document appropriately.

The international standard for markup languages is SGML, or Standard Generalized
Markup Language. SGML is the basis for HTML, or Hypertext Markup Language, which
is the means used to create pages for the World Wide Web. A newer markup language
named XML (Extensible Markup Language) uses user-definable tags to extend the
capabilities offered by HTML.

There are a number of reasons why you might want to search HTML, SGML or XML tags
as zones. For example, if you are looking for information on Ecuador, you may want to
search for the word “Ecuador” on the title or first-level heading. Using the title or
first-level heading as a zone will help ensure that documents retrieved have Ecuador as
their primary focus, rather than simply being briefly mentioned in the body of the text.

Note For indexing XML files, Verity recommends that you use the XML filter,
described in “The XML Filter” on page 134.

How the Zone Filter Parses Markup Language Documents

When the zone filter encounters a start zone tag, it opens a new zone. When it encounters
an end zone tag, it closes that zone. The indexer makes a zone out of all the text between
the two tags. The tags themselves are ignored during filtering.

The syntax for a start zone tag is:

<name[attributes...]>
202 Verity Collection Reference

7 Defining Document Zones
Zones for Markup Language Documents
The syntax for an end zone tag is:

</name[attributes...]>

That is, a start tag begins with a left angle bracket, followed by the element name. The
end tag starts with a slash and a left angle bracket, followed by the element name. There
can be no space between the left angle bracket and the following characters. The element
name is followed by zero or more attributes. Attributes can be arbitrary text, including
strings and whitespace characters, but frequently have the form:

AttributeName=Value

where Value can be an identifier, a string literal, a URL, or anything else, so long as it
does not contain a right angle bracket.

Exclamation point and question mark metatags are parsed, but ignored. Examples are:

<!name[attributes...]>
<?name[attributes...]>

Here is an example of a document containing valid SGML text and tags.

 <HEAD> This text is in the header zone. </HEAD>
 <BODY> This text is in the body zone.
 <section>
 This text is in a body zone AND the section zone, which is
 nested inside the body zone.
 </section>
 </BODY>

Tag names are case-insensitive. They can consist of all the alphabetic characters (upper
and lower case), numeric characters, the dash, the underscore character, or the number
sign (#).

Implicit Zone Endings
The zone filter implicitly ends zones that have not been explicitly ended with an end tag.
For example:

 This is the li zone.

 This is outside all zones.

The tag ended the ul zone, but also implicitly ended the li zone. It is equivalent
to the following, in which the implicit end tag is underlined:
Verity Collection Reference 203

7 Defining Document Zones
Zones for Markup Language Documents

 This is the li zone.

Zone end tags are implicit in only two cases:

At the end of the file, all still-open zones are automatically closed.

When an end tag is encountered, its matching start tag is found, and all zones that
were opened between those matching start and end tags that are not closed are
implicitly closed.

The filter does not perform any implicit end of zones when a start tag is encountered. For
example, here is an HTML construct:

 This is in the li zone, which is nested in the ul zone.
 This is another li zone, which is also nested in the ul
 zone. In HTML, this li ends the previous one. With the
 zone filter, it does not.

It would be interpreted with the following implicit end tags:

 This is in the li zone, which is nested in the ul zone.
 This is another li zone, which is also nested in the ul
 zone.

Implicit end tags are not handled when start tags are encountered because it is not very
useful to search contiguous zones. Searching for “text in the li zone” in the preceding
examples has little meaning because all the text is already in the li zone.

Zones for HTML Documents

HTML is based on SGML. It is, essentially, one SGML DTD. However, because of its
popularity and widespread use, most HTML tags and entities are commonly recognized
and read by Web browsers and authoring tools. Therefore, HTML tags and entities are
built into the zone filter.
204 Verity Collection Reference

7 Defining Document Zones
Zones for Markup Language Documents
Zone Filter Specification for HTML
The following zone filter specification in the style.uni file is appropriate for HTML
documents:

type: text/html
 /charset = guess
 /def-charset = 1252
 /content-filter = "zone -html -nocharmap"

The above specification will invoke the built-in HTML filter.

Supported HTML Tags
The zone filter recognizes most standard tags through HTML 4.01 and XHTML 1.0. It
automatically extracts certain tags as zones and ignores others.

For a list of the HTML tags that are supported and the tags that are ignored, see the
default version of style.zon (“Default style.zon File” on page 225).

Supported HTML Entities
HTML uses entities to represent certain characters. An entity is a representation of a
character that, when interpreted by the HTML browser, displays the proper character.
Entities in HTML are used to specify characters that would otherwise be considered as
part of the markup language or that cannot be typed on the normal keyboard. For
example the < is used to denote the beginning of a tag. If you want this character to
display in an HTML browser, you need to enter the entity lt in your HTML document.
Likewise, you can display the character Á by using the entity Aacute. The zone filter
supports all of the ISO8859-1 entities as specified by the HTML 4.01 specification.

Additional HTML Parsing Rules
The zone filter observes the following additional rules for HTML:

1. No header lines are parsed, and the parsing starts off in markup language parsing
mode.

2. The title tag is extracted as a zone and a field. You must make sure to put the title in
your style.ufl file to be able to store this field. (For more information, see “Defining
Zones as Collection Fields” on page 214.)

3. The character set for HTML pages is ISO 8859. The zone filter automatically translates
the characters into the internal character set specified at startup.
Verity Collection Reference 205

7 Defining Document Zones
Zones for Markup Language Documents
Zones for SGML Documents

SGML documents rely on a Document Type Definition (DTD) to define their tags. Unlike
HTML, different groups of SGML documents use different DTDs. Therefore, you must
define the zones you want to extract for each group of SGML documents that share a
common DTD.

There is a limitation to using a Verity zone filter for SGML documents. The length of any
SGML attribute name plus its corresponding attribute value is limited to 256 bytes. If the
indexing engine meets this limitation for an attribute, the engine truncates the zone
attribute value.

Zone Filter Specification for SGML
The following zone filter specification in the style.uni file is appropriate for SGML
documents:

type: text/sgml
 /charset = guess
 /content-filter = "zone -nocharmap"

Using style.zon with SGML Documents
You can use the style.zon file to specify the SGML tags you want to create as zones by
using the element and attribute keywords. You can specify the conversion of SGML
entities using the entity keyword. A sample style.zon file for SGML is shown in
Listing 7-1.

Listing 7-1 Example style.zon file

$control: 1
zonespec:
{
 element: *

 element: heading3
 /ignore = yes

 element: list-item
 /ignore = yes
}
$$
206 Verity Collection Reference

7 Defining Document Zones
Zones for Internet Message Format Documents
For complete information about using the style.zon file, see “Custom Zone
Definitions” on page 211.

Zones for Internet Message Format Documents

The zone filter recognizes documents in internet message format that conform to the
RFC822 standard. This includes most standard email and Usenet news messages.

How the Zone Filter Parses Internet Message Format Documents

The zone filter parses the headers of Internet-style email and Usenet news messages to
create zones.

For example, the following email message can be parsed to extract zones from the
headers automatically.

From johns@verity.com Thu Dec 15 11:38:18 1994
From: John Smith <johns@verity.com>
Received: (from johns@localhost) by grimaldi
 (8.6.6.Beta9/8.6.6.Beta9) id LAA12705 for johns; Thu, 15 Dec
 1994 11:36:35 -0800
Message-Id: <199412151936.LAA12705@grimaldi>
Subject: test message
To: johns (John Smith)
Date: Thu, 15 Dec 1994 11:36:34 -0800 (PST)

This is a test message.
John

Here is the same document with implicit start and end zone markers for the above
message. The implicit zone starts and ends are surrounded by square brackets and are
underlined for easy identification.

From johns@verity.com Thu Dec 15 11:38:18 1994
From: [from-beg] John Smith <johns@verity.com>
[from-end] Received: (from johns@localhost) by grimaldi
 (8.6.6.Beta9/8.6.6.Beta9) id LAA12705 for johns; Thu, 15 Dec
 1994 11:36:35 -0800
Message-Id: <199412151936.LAA12705@grimaldi>
Verity Collection Reference 207

7 Defining Document Zones
Zones for Internet Message Format Documents
Subject: [subject-beg] test message
[subject-end] To: [to-beg] johns (John Smith)
[to-end]Date: [date-beg] Thu, 15 Dec 1994 11:36:34 -0800 (PST)
[date-end]

This is a test message.
John

Header lines should conform to the RFC822 standard for email and news messages.
RFC822 specifies the following syntax:

Header-line-name: data data data \n
 [<whitespace>more data, more data more data \n] ...

The first line of a header line must begin with the header line name, which can consist
entirely of alphanumeric characters, underscores, or dashes, followed by a colon. The rest
of the line until the return character is the text of the header line. Header line names, like
tag names, are case-insensitive. (For example, to matches To.)

Optionally, the header line can be continued on the next line with a continuation line.
Lines whose first character is a whitespace character are continuation lines. The text of
the entire continuation line is included as part of the previous header line. For example,
the To header line in the following email spans multiple lines. Again, zone starts and
ends are underlined.

From:[from-beg] John Smith <johns@verity.com>
[from-end]Subject:[subject] another test message
[subject-end]To:[to-beg] johns (John Smith),
 toddq@verity.com (Todd Quidnunc),
 mick@verity.com (Mickey O'Donnicker),
 ralphp@verity.com (Ralph Poobah)
[to-end]

The header section of a document is ended by the first line that contains only whitespace
characters, or that starts with an SGML element tag. After that point, the parser reverts
from header line parsing to SGML element parsing. If for some reason you have an
internet message format document that contains embedded markup language tags, you
can specify those tags in the style.zon file and they will be extracted as zones.

Zone Filter Specification for Email

The following zone filter specification in the style.uni file is appropriate for email
documents:
208 Verity Collection Reference

7 Defining Document Zones
Zones for Internet Message Format Documents
type: message/rfc822
 /charset = guess
 /def-charset = 1252
 /content-filter = "zone -email -nocharmap"

The above specification will invoke the built-in email filter. The rules for the built-in
email filter are as follows:

The following header lines are extracted as zones: Cc, Bcc, Organization, To, From,
Subject, and Date.

The following headers are extracted as fields as well as zones: To, From, Subject,
and Date. These fields must be listed in the style.ufl file. (For more information,
refer to “Defining Zones as Collection Fields” on page 214.)

No markup language element tags are extracted as zones.

No markup language entities are translated.

Using style.zon with Email
You can customize the default parsing rules for email documents by altering the default
version of style.zon, described in “Default style.zon File” on page 225. When setting
up the style.zon file to process email, you use the header keyword.

The header keyword specifies extraction or exclusion of header lines. The syntax is as
follows:

header: headername

where headername specifies the name of the header line you want to extract as a zone.
Header names are case insensitive. To extract all header names as zones, use * for
headername. You can use the following optional modifiers with the header keyword.

There are two approaches to specifying the header lines to extract as fields.

1. Specify the asterisk, and then to list any tags you do not want extracted using the /
ignore modifier.

Element Description

/ignore Specify YES to ignore the specified header. If you use the asterisk for
headername, only those attributes specified with the /ignore=yes
modifier are ignored. If you do not use the asterisk, all the headers specified
are extracted and those omitted are ignored.

/field Specify YES to extract the specified element as a field as well as a zone. See
“Defining Zones for Virtual Documents” on page 217.
Verity Collection Reference 209

7 Defining Document Zones
Zones for Internet Message Format Documents
2. Explicitly list only those elements you want extracted.

The following is an example of the first approach:

$control: 1
zonespec:

/email
{

header: *

header: received
/ignore = yes

header: message-id
/ignore = yes

}
$$

In this example, all headers are extracted as zones, except received and message-id,
which are ignored.

The following is an example of the second approach:

$control: 1
zonespec:

/email
{

header: received

header: message-id
}

$$

In this example, only received and message-id are extracted as zones. All others are
ignored.

Zone Filter Specification for Usenet News

The following zone filter specification in the style.uni file is appropriate for Usenet
news documents:

type: message/news
 /charset = guess
 /def-charset = 1252
210 Verity Collection Reference

7 Defining Document Zones
Custom Zone Definitions
 /content-filter = "zone -news -nocharmap"

The above specification will invoke the built-in Usenet news filter. The rules for the
built-in Usenet news filter are as follows:

The following header lines are extracted as zones: Organization, Summary,
Newsgroups, From, Subject, Date, and Keywords.

The following headers are extracted as fields as well as zones: From, Subject, Date,
and Keywords. These fields must be listed in your style.ufl file. (For more
information, refer to “Defining Zones as Collection Fields” on page 214.)

No markup language element tags are extracted as zones.

No markup language entities are translated.

Using style.zon with Usenet News
You can customize the default parsing rules for Usenet news documents by altering the
default version of style.zon, described in “Default style.zon File” on page 225. As with
email, you use the header keyword when setting up the style.zon file to process
news files.

Custom Zone Definitions

You can customize how zones are defined by modifying any of the standard mode
definitions (see Table 7-3 on page 193) provided in the default version of style.zon, or
by creating a custom mode definition to suit your needs.

Note that if a mode is specified for which no zonespec section appears in style.zon,
or if there is no style.zon, the zone filter reverts to hard-coded settings that preserve
backward compatibility with earlier versions of K2.

For most implementations, you can create custom definitions by modifying the default
definitions in style.zon. However, some modes make use of hard-coded default
settings; for example, HTML and SGML modes typically use hard-coded entity
translation tables that are not visible in style.zon. In such a case, it can be useful to
dump the definitions of the mode, as described next, so you can modify them for use in
your custom style.zon file.
Verity Collection Reference 211

7 Defining Document Zones
Custom Zone Definitions
Dumping style.zon Information

You can dump the contents of the style.zon configuration settings used by any
zone-filter mode (including any hard-coded definitions that are not actually in
style.zon) to standard output. This can be useful in various circumstances, including
debugging the style.zon file and modifying the hard-coded behavior of certain modes.

1. Set the -dump flag in style.uni. Here is an example zone filter specification with the
-dump flag for the HTML mode:

type: text/html
 /charset = guess
 /def-charset = 1252
 /content-filter = "zone -html -dump"

2. Run an indexing tool, such as mkvdk, on a document and pipe the output to a file.

When you attempt to index a document with the -dump flag present in the style.uni
file, the zone filter prints to the standard output a style.zon file with the settings that
are in effect at the time of filtering. After the style.zon file is printed, the actual
indexing does not take place.

The -dump option produces output in the character set of the current locale. The output
can be mapped to another character set using the -charmap option of mkvdk.

Modifying Default Behavior

In general, you can modify the zone filter's default behavior for any document type by
editing the appropriate section of the default style.zon file. In some circumstances,
such as when you must alter a built-in setting such as an entity, you may need to apply
changes to a complete configuration dump. In these circumstances, do the following:

1. Dump the contents of the built-in mode you want to modify, as described above.

2. Edit the output to reflect the behavior you want.

3. Use the modified configuration in your style.zon file.

For use with the -html, -email, or -news options, be sure to include the /html,
/email, or /news modifier for your zonespec keyword.

4. If the universal filter is being used, make sure the appropriate zone-filter specification
is in the style.uni file. Otherwise, make the specification in the style.dft file, as
described in “Invoking the Zone Filter” on page 186.
212 Verity Collection Reference

7 Defining Document Zones
Custom Zone Definitions
Attribute Extraction

Attributes can be extracted into a field named by an element keyword. This means the
element value and the one or more attribute values are stored together in the same
collection field. Consider the following style.zon file:

$control: 1
zonespec:
 /ignoreattributes = no
{
 element: name
 /field = yes
 {
 attribute: first
 /field = yes
 attribute: last
 /field = yes
 }
}
$$

A sample document with attributes to be indexed is shown here:

This is <name first="emily" last="shaffer">AAA</name>here.
Another is <name first="al" last="jones">ZZZ</name>here.

When the style.zon file above is in effect and the document above is indexed, the
following behavior occurs:

A field named “name” is populated with:

"first=al last=jones ZZZ"

The fields named “first” and “last” are not populated.

The /field=yes modifier on the element statement indicates that the field is
populated (zone contents are extracted and stored in the field).

Attributes that are children of the element and that have the /field=YES modifier
defined cause an attribute name and value string to be prepended to the field. The
format of the attribute string is:

attributename=attributevalue

Multiple occurrences of the name element in the document cause the field value to be
overwritten. The last occurrence encountered is saved in the field. The sample
Verity Collection Reference 213

7 Defining Document Zones
Defining Zones as Collection Fields
document contains two occurrences of the name element, so the values in the second
instance were saved.

Defining Zones as Collection Fields

Any zone can also be extracted as a collection field. The differences between zones and
fields are described under “Zones vs. Fields” on page 184.

The following lines in a style.zon file show how to extract the To, From, and Subject
lines from an email message as fields as well as zones:

$control: 1
zonespec:
{
 # Extract all header lines of this email message as zones
 header: *

 # also extract these three header lines as fields as well as
 # zones
 header: From
 /field = yes

 header: To
 /field = yes

 header: Subject
 /field = yes
}
$$

Fields listed in a style.zon file must also be listed in the collection’s style.ufl or
style.sfl file. Otherwise, when the zone filter extracts these fields, the indexer will
have no place to store the values and the values will be ignored.

The field definitions for the Verity standard fields are included in the default style.sfl
file. In this file, there are field definitions for several fields including “Subject”, which is
aliased to the field named “Title”. All of the built-in zone filter modes automatically
populate “Title” by default. The email and news zone modes populate the “To” and
“From” fields.
214 Verity Collection Reference

7 Defining Document Zones
Defining Zones as Collection Fields
While the standard field definitions cause the zone filter to define zones as collection
fields, sometimes you need to create custom field definitions. If you are using the HTML
zone mode, and you want to define the “To” and “From” zones as custom fields, then
you need to provide a field definition corresponding to a zone name in the style.ufl
file.

Here is the data table of the style.ufl file to use with the previous style.zon file:

data-table: ddf
 {
 # User fields go here. These fields also listed in
 # the style.zon file
 varwidth: From dd1
 varwidth: To dd4

}

For information about making a field definition in the style.ufl file, see “Defining
Collection Fields” on page 147.

Extracting HTML Zones as Fields

The zone filter supports a method for extracting zones as fields that differs from the
method used by the “flt_meta” filter to extract META tags as fields (as described in the
next section, “Extracting META Tags as Fields” on page 189).

The zone filter watches HTML in the document stream and produces a field tokens based
on the zone name(s) specified in the style.zon file, where a zone name corresponds to
a tag name. In the collection’s document table, the field is defined as the tag name and the
tag value is the field value.

For example, when the zone filter encounters this HTML:

<TITLE>This is the title</TITLE>

the filter produces the following field token:

TITLE: This is the title

Since TITLE is defined as a standard field by default, the zone filter populates the TITLE
field with the value “This is the title”.
Verity Collection Reference 215

7 Defining Document Zones
Defining Zones as Collection Fields
Extracting META Tags as Fields

The universal filter supports filtering <META> tags, which are typically defined in
HTML documents, using the special “flt_meta” content filter with the zone filter. The
“flt_meta” filter can be specified for the text/html document type in the style.uni file.

The default style.uni file automatically invokes the “flt_meta” content filter with the
zone filter. Here is an example of a short style.uni file that can filter HTML documents
with META tags (the type: statement here also appears in the default style.uni file):

 $control: 1
 types:
 {
 autorec: "flt_rec"
 autorec: "flt_kv -recognize"
 type: text/html
 /charset = guess
 /def-charset = 1252
 /content-filter = "zone -html -nocharmap"
 /content-filter = "flt_meta"
 # if we get anything else, just skip it
 default:
 /action = skip
 }
 $$

The “flt_meta” filter watches markup tokens in the document stream. When the filter
encounters a <META> tag, it produces a field token based on the tag and then the field
token is stored as a field in the collection. In the collection’s document table, the field
name is the name of the META tag’s name attribute, and the field value is the value of the
content attribute in the META tag.

A sample <META> tag in HTML is shown here:

<META name="Abstract" content="This is a long document"

When filtering the HTML above, the “flt_meta” filter produces a field token of this form:

ABSTRACT: This is a long document

In the default style.sfl file, the field name “Abstract” is populated with the value
“This is a long document”. A field definition that corresponds to the META tag’s name
attribute must appear in the style.ufl or style.sfl in order for the field to be
populated by the filter. In the example above, the field named “Abstract” is aliased to the
“Snippet” field in the default style.sfl file so you would not need to add a field
definition.
216 Verity Collection Reference

7 Defining Document Zones
Defining Zones for Virtual Documents
Defining Zones for Virtual Documents

The style.dft file is used to compose a virtual document “on the fly” that is made up
of the body of the real document, plus the text of various fields that were previously
extracted from the real document. This virtual document does not actually exist on disk,
but is composed every time you view or index the real document. The virtual document
allows the user to view all the relevant fields without needing to see all the fields.

You can define zones in this virtual document with the zone-begin and zone-end
keywords in the style.dft file. Each keyword takes one argument, which is the name
of the zone to begin and end.

Here is an example of a style.dft file that composes a virtual document containing
zones.

$control: 1
dft:
{
 # this begins the "headers" zone, which contains all the
 # headers of this virtual document
 zone-begin: headers

 constant: "Title: "
 field: TITLE
 constant: "\nAuthor: "
 field: AUTHOR
 constant: "\nDate: "
 field: DATE

 # This ends the "headers" zone
 zone-end: headers

 # Now comes the actual text of the document as it is read
 # from the gateway. The engine knows to recognize the special
 # "DOC" field and read it from the gateway rather than
 # from the collection.
 #
 # Note that the document is filtered using the zone filter,
 # and the given style.zon instructs the zone filter which
 # zones to extract.
 #
 # Also note that the entire text of the document resides in a
 # zone called "body", separate from the headers zone above.
Verity Collection Reference 217

7 Defining Document Zones
Hidden Elements in Zones
 zone-begin: body

 field: DOC
 /filter="zone"

 zone-end: body
}
$$

With this example style.dft file and its associated style.zon file, you can search for
text that matches in the headers zone, or only in the body zone.

A shorthand notation exists for the zone-begin and zone-end combination. You can
use instead the /zone construct. For example, as an alternative to the following:

zone-begin: zname
 field: fname
zone-end: zname

you could substitute the following:

field: fname
 /zone = zname

Hidden Elements in Zones

Hidden elements allow you to add text to the virtual document that gets indexed but
cannot be viewed. This provides a way to add document fields to the full-text index for
the document, allowing them to be searched faster than with standard field search, but
preventing them from being viewed as part of the document. If the fields are enclosed in
“hidden” zones, the fields can be searched using standard zone search syntax.

Hidden elements must be placed after all of the visible elements in the virtual document,
as defined in the style.dft file.

For complete information about the zone filter and the special “noextract” and “noindex”
zones, see “Special Noindex and Noextract Zones” on page 220
218 Verity Collection Reference

7 Defining Document Zones
Hidden Elements in Zones
Entries in the style.dft File

Hidden elements are defined in the style.dft file using the /hidden modifier. Here's
an example:

$control: 1
 dft:
 {
 field: DOC
 /filter="universal"

 zone-begin: NOEXTRACT
 /hidden=yes
 field: Title
 /zone=Title
 field: Keywords
 /zone=Keywords
 zone-end: NOEXTRACT
 }

Using the style.dft file above, the Verity engine adds a Title zone and a Keywords
zone to the end of the virtual document. The zones will be indexed but not included in
the viewing stream. If the Keywords field is generated by the META tag filter, it will be
inserted and indexed in the Keywords zone.

The zone-begin and zone-end keywords define the boundaries for the hidden zone. The
noextract label tells the summarizer to disregard the text of these hidden fields for
feature extraction and summarization in the indexing stream. A noextract zone is a
special zone type. In the example above, the noextract type with the /hidden attribute is
applied to the Title and Keywords zones. In general, if the /hidden attribute is
specified for a zone, all elements contained within the zone are also hidden.

Paragraph breaks are automatically inserted between hidden fields so that PHRASE
queries don't hit across document-field and field-field boundaries (though NEAR queries
might still hit).

Searching over Hidden Zones

Searching over hidden zones is like searching over regular zones. When the above
style.dft file is implemented, you can write queries using the <IN> operator, like this:

(query, this, zone) <IN> Keywords
Verity Collection Reference 219

7 Defining Document Zones
Special Noindex and Noextract Zones
Hidden elements affect some of the Verity search engine’s standard behavior in these
ways:

You don’t see highlights for hits in the hidden text.

The search engine considers the hidden text to be a real part of the document, so full
text searches may find hits on words in the hidden text, which can’t be seen by the
user.

For information about searching over zones using the <IN> operator, refer to the Verity
K2 Query Language Guide.

Special Noindex and Noextract Zones

The special noindex and noextract zones are optional. The noindex zone is used to mark
text that will not be indexed. The noextract zone is used to mark text that will not be
processed during feature extraction (for clustering and Query-By-Example) and
summarization.

Noindex Zones

The noindex zone is a special zone whose contents do not get indexed. When the
contents are not indexed, the Verity engine won’t find hits on the text marked by the
noindex zone.

To mark a zone as a noindex zone, you need to specify the /zone=noindex modifier in
the style.dft file. An example style.dft file with noindex zones defined is shown
here.

$control: 1
 dft:
 {
 constant: "Title: "
 /zone=noindex
 field: TITLE
 /zone=noindex
 constant: "\n"
 /zone=noindex
 field: DOC
 /filter=zone
220 Verity Collection Reference

7 Defining Document Zones
Special Noindex and Noextract Zones
 }

In the preceding example, the constant, field, and constant keywords together go
into a zone called noindex. This is a special zone for the indexer. If the indexer sees this
zone, it continues counting words inside that zone as it normally does, but it doesn’t put
those words into the full word index. Also, it doesn’t store the boundaries of the
noindex zone in the zone index either.

Here’s another example with a different syntax, but equivalent meaning:

$control: 1
 dft:
 {
 zone-start: noindex
 constant: "Title: "
 field: TITLE
 constant: "\n"
 zone-end: noindex
 field: DOC
 /filter=zone
 }

An added feature that falls out of this is that you can specify noindex zones inside your
SGML documents if you like:

This is normal text. More normal text.
<noindex>
 This text won’t be indexed because the zone filter will spit
 out a "zone-start noindex" token when it sees the above
 noindex tag. We can put weird words like "onomatopoeia" here
 and they won’t show up in the full-word index.
</noindex>
 These words are outside the noindex zone again, so they will
 show up in the index again, i.e. Ya gotta be careful what
 you write out here!

Now, when you do a search for “onomatopoeia”, you will not find it.

Noextract Zones

The noextract zone is a special zone whose contents are not processed during feature
extraction. Using this zone, you have the ability to selectively exclude sections of a
document from being considered for feature extraction (for clustering/
Verity Collection Reference 221

7 Defining Document Zones
Searching in Zones
Query-By-Example) and summarization. The summarization/feature extraction
component recognizes the special zone token called NOEXTRACT. Anything between the
start and end of a noextract zone is ignored by the feature extractor.

The use is analogous to the use of the special noindex zone, which is described in the
previous section. Like a noindex zone, a noextract zone can be inserted either with
the style.dft mechanism, with NOEXTRACT tags in SGML documents, or manually if
you are using a custom gateway.

If you are developing a custom gateway using the Verity Gateway Developer Kit, you
simply need to insert a zone token named noextract before and after the text to be
ignored (with the start and end flags set appropriately).

The noextract zone is not indexed as a zone by the indexer, though the text within the
zone is indexed.

Hidden Elements in NoExtract Zones

Hidden elements in noextract zones allow you to add text to the virtual document that
gets indexed but cannot be viewed. This provides a way to add document fields to the
full-text index for the document, allowing them to be searched faster than with standard
field search, but preventing them from being viewed as part of the document. If the fields
are enclosed in “hidden” zones, the fields can be searched using standard zone search
syntax.

Hidden elements must be placed after all of the visible elements in the virtual document,
as defined in the style.dft. For information implementing hidden elements in zones,
see the previous section, “Hidden Elements in Zones,”

Searching in Zones

This section describes how users can search in zones when the zone filter is implemented.

Zones can be searched in two ways:

Using the IN operator of the query language

Using a custom query parser

Each of these methods is described in this section.
222 Verity Collection Reference

7 Defining Document Zones
Searching in Zones
Using the Query Language IN Operator

Use the IN operator to search within zones.

The syntax of the IN operator is:

(query) <IN> zone

or

(query) <IN> (zone1, zone2, ...)

query represents any query expression. To preclude ambiguity, the query expression
must be placed within parentheses. The zone variables represent the zone names. The
zone name supplied must match the zone names defined in your collections. If more than
one zone is to be searched, they must appear in a comma-separated list with parentheses
surrounding them.

IN Operator Examples
The following examples illustrate the proper use of the IN operator.

To search in the zone named summary using the topic named safety, use the following
query expression:

(safety) <IN> summary

To search in two zones, summary and title, using the topic named safety, use the
following query expression syntax:

(safety) <IN> (summary, title)

If the query expression contains a comma, enclose the query expression in parentheses.
Thus, to search in the zone summary using the query “safety, environmental regulation,”
use the following query expression:

(safety, environmental regulation) <IN> summary

To search using the previous query in the summary and title zones, use the following
query expression:

(safety, environmental regulation) <IN> (summary, title)

To specify searching a zone nested within a zone, nest the IN operator, as shown in the
following example:

((happiness <AND> health) <IN> subsection) <IN> section
Verity Collection Reference 223

7 Defining Document Zones
Searching in Zones
If you specify a query expression with the IN operator, and no zones have been defined
for your collections, the search yields no results. No documents will be retrieved when
zones have not been defined.

Using a Custom Query Parser

If you are using a custom query parser, you can set a field in the
VdkQParserNewArgRec called defaultZone. This has the same effect as applying
<IN> zone to the end of the custom query you define. This field should point to a string
that is the zone specification for the search. You can leave this field NULL if you do not
want to restrict the search to a particular zone.

You might use the defaultZone field when defining a form search, and restrict each
field in the form to search within one particular zone:

To: ____________ (search for this in the To zone)
Subject: ____________ (search for this in the Subject zone)
From: ____________ (search for this in the From zone)

Searching Multiple Zone Occurrences

When you create a zone, it may occur only once in the document (as in the case of the
<title> tag extracted as a zone), or it may occur multiple times in a document (as in an
<h2> tag extracted as a zone). When a zone occurs more than once in a document, you
can search for words that appear together in the same occurrence of the zone, or you can
search for words without respect to whether or not they appear in the same occurrence of
the zone.

To search for two words appearing together in the same occurrence of the zone, use the
standard syntax as described above, for example:

(health <AND> safety) <IN> h2

To search for the two words without regard to whether they appear in the same
occurrence of the zone, use the following syntax:

(health <IN> h2) <AND> (safety <IN> h2)
224 Verity Collection Reference

7 Defining Document Zones
Default style.zon File
Default style.zon File

Listing 7-2 shows the contents of the default style.zon file shipped with K2. This style
file re-implements the default behavior that K2 5.5 exhibited when no style.zon file
was used, except that it now honors no-index and no-extract zones for HTML files.

Listing 7-2 Default style.zon file

#
style.zon - zone filter configuration
#
This file is used to configure the behavior of the zone filter.
macro definitions similar to those allowed by the C preprocessor.
Note that style.zon may be removed, causing the zone filter to default
to legacy behavior.
Refer to the "Defining Document Zones" chapter in the
Verity Collection Reference for more information.

#
Generally, this file contains a zonespec (with possible modifiers) containing
element, header and entity parameters.
#
element: <zone name>
[/modifiers]
#
element parameters specify which content tags should be considered zones.
The element zone name may be a wildcard ("*"), in which case any
applicable modifiers (except /ignore) are inherited as default values for
subsequently-named element parameters. Modifiers associated with the
last-appearing element parameter (including /ignore) are also retained and
used for any elements enountered that have not been explicitly listed in
this file.
#
Note that /noindex and /noextract element modifiers have no effect for
elements with the /ignore modifier.
#
#
header: <header name>
[/<modifiers>]
#
header parameters specify which headers should be considered zones.
The header name may be a wildcard ("*"), and header wildcards behave
as element wildcards do.
#
#
entity: <entity string> <equivalent string>
[/<modifiers>]
#
entity parameters specify the translation of entities.
If no entity parameters are specified, default tables for the appropriate
Verity Collection Reference 225

7 Defining Document Zones
Default style.zon File
charset and document type will be used.
#

$control: 1

$ifdef ZONEMODE_SGML
This section is used when the zone filter is launched without
a -html, -email, -news, -traffic or -usermode arguments.
zonespec:
/ignoreattributes = no
{

element: *
}

$elifdef ZONEMODE_HTML
This section is used when the zone filter is launched with
the -html argument. Note that if no zonespec /html modifier is used,
the style.zon file will be ignored and hard-coded default settings
used.
zonespec:
/html
/ignoreattributes = no
{

Ignore anything not explicitly listed
element: *

/ignore = yes

Allow use of noindex/noextract tags
These tags are not HTML tags, but are useful for specifying content
that should not be indexed or should not have feature extraction.
element: noindex
element: noextract

element: applet
/ignore = yes

element: area
/ignore = yes

element: basefont
/ignore = yes

element: bdo
/ignore = yes

element: br
/ignore = yes

element: button
/ignore = yes

element: center
/ignore = yes

element: col
/ignore = yes

element: colgroup
/ignore = yes

element: dd
226 Verity Collection Reference

7 Defining Document Zones
Default style.zon File
/ignore = yes
element: del

/ignore = yes
element: dir

/ignore = yes
element: div

/ignore = yes
element: dl

/ignore = yes
element: dt

/ignore = yes
element: fieldset

/ignore = yes
element: fig

/ignore = yes
element: frameset

/ignore = yes
element: hr

/ignore = yes
element: input

/ignore = yes
element: ins

/ignore = yes
element: isindex

/ignore = yes
element: kbd

/ignore = yes
element: label

/ignore = yes
element: legend

/ignore = yes
element: li

/ignore = yes
element: listing

/ignore = yes
element: map

/ignore = yes
element: math

/ignore = yes
element: menu

/ignore = yes
element: meta

/ignore = yes
element: nextid

/ignore = yes
element: noframes

/ignore = yes
element: noscript

/ignore = yes
element: ol

/ignore = yes
element: optgroup
Verity Collection Reference 227

7 Defining Document Zones
Default style.zon File
/ignore = yes
element: option

/ignore = yes
element: p

/ignore = yes
element: param

/ignore = yes
element: plaintext

/ignore = yes
element: pre

/ignore = yes
element: s

/ignore = yes
element: select

/ignore = yes
element: small

/ignore = yes
element: span

/ignore = yes
element: strike

/ignore = yes
element: style

/ignore = yes
element: sub

/ignore = yes
element: sup

/ignore = yes
element: tab

/ignore = yes
element: table

/ignore = yes
element: tbody

/ignore = yes
element: tfoot

/ignore = yes
element: thead

/ignore = yes
element: td

/ignore = yes
element: th

/ignore = yes
element: tr

/ignore = yes
element: tt

/ignore = yes
element: ul

/ignore = yes
element: var

/ignore = yes
element: xmp

/ignore = yes
element: a
228 Verity Collection Reference

7 Defining Document Zones
Default style.zon File
element: abbr
element: abbrev
element: acronym
element: au
element: address
element: b

/nonwordbreaking = yes
element: banner
element: base
element: big

/nonwordbreaking = yes
element: blockquote
element: body
element: caption
element: cite
element: code
element: dfn
element: em

/nonwordbreaking = yes
element: fn
element: font

/nonwordbreaking = yes
element: form
element: frame
element: h1
element: h2
element: h3
element: h4
element: h5
element: h6
element: head
element: html
element: i

/nonwordbreaking = yes
element: iframe
element: img
element: lang
element: link
element: note
element: object
element: person
element: q
element: samp
element: script
element: strong

/nonwordbreaking = yes
element: textarea
element: title

/field = yes
element: u

/nonwordbreaking = yes
}

Verity Collection Reference 229

7 Defining Document Zones
Default style.zon File
$elifdef ZONEMODE_EMAIL
This section is used when the zone filter is launched with
the -email argument. Note that if no zonespec /email modifer is used,
the style.zon file will be ignored and hard-coded default settings
used.
zonespec:
/email
{

header: To
/field = yes

header: From
/field = yes

header: Subject
/field = yes

header: Date
/field = yes

header: Cc
/field = yes

header: Bcc
/field = yes

header: Organization
header: Sent

/field = yes
header: Priority

/field = yes
header: Importance

/field = yes
}

$elifdef ZONEMODE_NEWS
This section is used when the zone filter is launched with
the -news argument. Note that if no zonespec /news modifer is used,
the style.zon file will be ignored and hard-coded default settings
used.
zonespec:
/news
{

header: From
/field = yes

header: Subject
/field = yes

header: Date
/field = yes

header: Keywords
/field = yes

header: Organization
header: Summary
header: Newsgroups

/field = yes
header: References

/field = yes
230 Verity Collection Reference

7 Defining Document Zones
Default style.zon File
}

$elifdef ZONEMODE_TRAFFIC
This section is used when the zone filter is launched with
the -traffic argument. Note that if no zonespec /traffic modifer is used,
the style.zon file will be ignored and hard-coded default settings
used.
zonespec:
/traffic
{

header: *
}

$else
This default section is typically not invoked.
Note that a "-usermode <ModeName>" argument may be passed to the zone
filter, and will cause $ZONEMODE_USER and $ZONEMODE="ModeName" to be
defined. This can be used to create custom style.zon configurations for
handling various document types.
zonespec:
/ignoreattributes = no
{

element: *
}
$endif
$$
Verity Collection Reference 231

7 Defining Document Zones
Default style.zon File
232 Verity Collection Reference

8
Tuning Collections

This chapter discusses how to customize style files to give your collections greater
capabilities, or to refine collection content to better meet your needs.

The following topics are covered:

Style Files and Index Tuning

Indexing Collection Fields (style.ufl)

Adding Extra Collection Capabilities (style.prm)

Using Custom Zones to Improve Relevance (style.tkm)

Providing Passwords for Document Access (style.pw)

Defining Indexing Stop Words (style.stp)

Defining Indexing Go Words (style.go)

Defining Feature-Extraction Stop Words (style.fxs)

Customizing 7-Bit Tokenization (style.lex)

Style Files and Index Tuning

The Verity engine indexes documents using configuration options specified in style files.
A directory of default style files is included with each Verity product.
233

8 Tuning Collections
Style Files and Index Tuning
The configuration options specified in the style files listed below affect how word indexes
and feature vectors (for clustering and summarization) are generated during the
indexing process.

To tune an existing collection, you edit the style files in the collection_name/style
(see “A Collection’s Internal Style Set” on page 58) and then re-index.

To create a new collection with the desired tuning parameters, you create a new style set
based on one of the default style sets (see “Standard and Default Style Sets” on page 54),
change its parameters, then use it to create a collection.

Note Never edit a collection’s style.ddd file.

The following sections explain the style-file options available for index tuning.

Style File Name Function

style.lex Applies only to 7-bit character sets such as ASCII. Specifies that
nonalphanumeric characters be used as search criteria. The
specified characters can be interpreted as legal characters so that
words containing the specified nonalphanumeric, like OS/2, will
appear as index entries.

style.stp Specifies an excluded word list. This list excludes selected words
from the collection word index—freeing the index of unwanted
words.

style.go Specifies an included word list. This list includes only selected
words in the collection word index—limiting the word index to a
narrow vocabulary.

style.ufl Specifies collection fields for which field indexes will be built. By
implementing an /indexed or /minmax field index, the Verity
engine indexes collection field values so that a search can search
the field values more efficiently.

style.prm Specifies additional data to be stored in the index, including:
SOUNDEX data, assist data, and highlight data

style.fxs Specifies words to exclude from feature vectors so the words do
not appear in document summaries and clusters.

style.tkm Specifies document zones and fields to be created based on
document formatting and location information. Can be used to
improve relevance ranking or for other purposes.
234 Verity Collection Reference

8 Tuning Collections
Indexing Collection Fields (style.ufl)
Indexing Collection Fields (style.ufl)

Using the style.ufl file, you can select to index collection field values for certain field
types so that information agents can perform field searches more quickly. Field indexes
are distinct from word indexes, and they are entirely optional.

Two types of indexed fields can be implemented: indexed and minmax. These field types
are discussed in this section. Indexing field values increases the time it takes to index
documents in general, but the payoff is in improved search speed.

The style.ufl file is described in “style.ufl Syntax” on page 160. The default
style.ufl file is shown in Listing 5-3 on page 159.

Indexed Field Type

You can opt to index fields defined in the document collection by specifying the /
indexed = yes modifier for the fields to be indexed in the relevant style.ufl file.

Verity recommends that you use indexed fields as follows:

When you anticipate queries will involve field searches over one or more collection
fields

When you anticipate users will want to sort query results by one or more collection
fields

An indexed field index can be case-sensitive. If the /case-sensitive entry is specified
in addition to the /indexed entry for a field keyword in a style.ufl file a
case-sensitive index of field values is created.

Creating case-sensitive indexes for fields is valuable when a query contains case-sensitive
search criteria. For example, if a retrieval contains a CASE modifier, a case-sensitive field
index could speed the retrieval.

If case-sensitive queries are not issued, and case-sensitive field indexes are created, then
maximum efficiency is not achieved, and the user will not experience improved search
speed as the result of indexing fields.

Each indexed field must be in its own data table. A data table containing an indexed field
must not contain any other fields. At index time, the engine issues an error message if
this rule is violated:

Error E)-)448(Vdb): Indexed fields must be in their own
table (NAME)
Verity Collection Reference 235

8 Tuning Collections
Indexing Collection Fields (style.ufl)
where NAME is the name of the indexed field that is not defined in its own data table.

It is not an error to have more than one indexed varwidth field in the same data segment.
You can define two indexed varwidth fields in two different data tables in the same data
segment. This configuration can affect search and results display as described in
“Defining Collection Fields” on page 147

Minmax Field Type

Defining a field as a minmax field is recommended for fixed-width and variable-width
fields in the collection of documents when you anticipate queries will involve field
searches over these fields. minmax fields greatly improve retrieval speed for field
searches, especially when your document collection is very large. Only fixed-width and
variable-width fields may be defined as minmax fields.

Defining minmax field indexes is very worthwhile if there are a specific range to the
field's values, and if users want to perform field searches over the field regularly.

You can implement a fixed- or variable-width field as a minmax field in the style.ufl
files to be used to build the collections. To define one of these types of collection fields as
a minmax field, enter the minmax=yes modifier to the appropriate keyword, either
fixwidth or varwidth, as shown in the example here.

varwidth: author dd5
 /minmax = yes

A minmax field can store a maximum of 256 bytes. If the field value is longer, the Verity
engine stores the first 256 characters in the minmax field index.

When minmax fields are defined, the Verity engine creates and maintains worm (write
once, read many) field indexes containing all field values for all documents in a collection.
During search processing, the search engine reads information in the field indexes,
instead of reading through the actual document records.

If the information provided in the minmax worm fields is not sufficient for the search
engine either to select all of the documents in the collection or to pass over all the
documents, then the search engine must read the individual document records contained
in the collection.
236 Verity Collection Reference

8 Tuning Collections
Adding Extra Collection Capabilities (style.prm)
Adding Extra Collection Capabilities (style.prm)

Using the style.prm file, you can specify additional data that you want included in the
collection indexes. Additional data in collection indexes support some search features,
like clustering and summarization. The style.prm file can be used to specify index
features such as stemming, case-insensitive word indexes (to support case-insensitive
search), and SOUNDEX search.

See “Default style.prm File” on page 249 for an example of style.prm.

Specifying Instance Vector Encodings

Paragraph and sentence boundaries are detected at index time by whatever lexer or
tokenizer is use. The boundary determination can be based on punctuation, indentation,
or anything else the lexer implements. The built-in lexer supplied with Verity products is
punctuation based.

If you modify the style.prm file, you can configure the internal, punctuation-based
lexer for all document types except PDF. If you use a Verity Locale, the behavior of the
tokenizer supplied with the locale cannot be modified.

PSW and WCT are two different instance vector encodings. As words are put into the
word index, their positions are encoded using one of the two encodings. PSW stands for
Paragraph-Sentence-Word encoding. WCT stands for Word-Count encoding.

WCT Encoding Issues
When WCT encoding is used, explicit sentence and paragraph position information is not
stored in the word index. However, word count is incremented by one any time the
indexer sees a Paragraph or Sentence token coming from the tokenizer. This behavior
prevents phrases from spanning a sentence and/or paragraph boundary.

WCT encoding is implemented by default; the style.prm file included with Verity
products in the default and sample style directories includes this entry:

$define IDX-CONFIG "WCT"

If no sentence and/or paragraph boundaries are detected at indexing time (as with PDF
documents), then phrase searches can return phrases that span sentence boundaries. For
non-PDF documents, the Verity lexer determines sentence and paragraph boundaries, so
phrase searches do not appear to span sentence boundaries.
Verity Collection Reference 237

8 Tuning Collections
Adding Extra Collection Capabilities (style.prm)
If you want to allow phrase searches in all documents to return phrases that span
sentence and paragraph boundaries, you can force that with the NOEOS option:

$define IDX-CONFIG "WCT NOEOS"

PSW Encoding Issues
When PSW is used, the explicit paragraph and sentence position of each word instance is
stored in the word index. The paragraph and sentence counters are incremented
whenever the indexer receives a Paragraph or Sentence token from the tokenizer.

PSW encoding allows only 255 words in a sentence and only 255 sentences in a
paragraph. If you index something that does not have sentence and/or paragraph
boundaries, the indexer creates sentence and paragraph boundaries with these limits.
The PDF tokenizer, for example, does not detect paragraph or sentence boundaries,
meaning that the indexer creates arbitrary boundaries that do not correspond to the
apparent punctuation in the documents.

When a boundary is met the indexer produces a message like this:

Warn E2-0526 (Document Index): Document 1 (report.pdf):
Sentence 1 in paragraph 0 has more than 255 words - splitting
sentence.

PSW encoding is activated by uncommenting the following line in the style.prm file:

$define IDX-CONFIG "PSW Many"

If PSW encoding is used, NEAR and NEAR/N queries will not cross sentence or paragraph
boundaries. In other words, a NEAR query returns documents in which search terms
appear within N words in the same sentence and paragraph.

Note The Many option, used with either WCT or PSW encoding, improves
results from VQL searches that use the Many modifier. However, it can
enlarge the collection and slow search performance.

SENTENCE and PARAGRAPH Search Operators
When used in queries, the semantics of the SENTENCE and PARAGRAPH operators are the
same regardless of whether the collection was built with PSW or WCT encoding.

For PSW collections, the operators use stored position information.
238 Verity Collection Reference

8 Tuning Collections
Adding Extra Collection Capabilities (style.prm)
For WCT indexes, the sentence and paragraph boundaries are approximated using
15-word and 100-word rules. These word windows are applied dynamically at search
time (for example, as long as the children of a SENTENCE operator are within 15 words
of each other, the SENTENCE operator will succeed.) This means that SENTENCE and
PARAGRAPH operators match documents if the search terms occur within a certain
distance of each other, whether or not the terms occur in the same actual paragraph or
sentence.

Note If you need the SENTENCE operator to be accurate, meaning results
contain documents that only have words in the same sentence, then use
PSW encoding. Using WCT encoding means you might have results where
words are not always in the same sentence.

Enabling Storage of Nouns and Noun Phrases

For thematic mapping, your collection needs to include a list of all the nouns and noun
phrases in a collection and their term frequencies in each document. To enable indexing
and storage of nouns and noun phrases, do this:

1. Ensure that noun and noun-phrase extraction is not disabled for your locale. See the
discussion of the -nonnp option in the locale-configuration chapter of the Verity Locale
Configuration Guide.

2. Un-comment the following $define statements in your collection’s style.prm file:

#$define NOUN-IDXOPTS ""
#$define NPHR-IDXOPTS ""

The uncommented lines should appear as:

$define NOUN-IDXOPTS ""
$define NPHR-IDXOPTS ""

The statements following the $define will ensure that if these options are active and no
Casedex is active (the default), nouns and noun phrases will be indexed in upper case. If
these options are active and Casedex is active, nouns and noun phrases will be indexed
using case-sensitivity.
Verity Collection Reference 239

8 Tuning Collections
Adding Extra Collection Capabilities (style.prm)
Enabling Document Features

To use clustering, VDK summarization, recommendation, and fast query-by-example, the
generation of document feature vectors at indexing time must be enabled. This requires
that an un-commented $define directive with the DOC-FEATURES parameter must
exist in the collection’s style.prm file. The DOC-FEATURES parameter can have any of
three values:

By default, the "NNP" definition is un-commented and the others are commented out,
meaning that feature vectors based on nouns and noun phrases are enabled. You can
change the commenting to change the kinds of features vectors, if any, that are to be
generated.

If your collection’s style.prm specifies either "NP" or "NNP", you must also ensure that
noun and noun-phrase extraction is not disabled for your locale or language. See the
discussion of the -nonnp option in the locale-configuration chapter of the Verity Locale
Configuration Guide.

TF, NP, and NNP can take an optional argument, MaxFtrs n, that is only rarely used,
where n specifies the number of features to store per document in the collection. An
example of the complete syntax is

$define DOC-FEATURES "TF MaxFtrs n"

If DOC-FEATURES is defined, the VdkFeatures field is automatically included in the
document-table schema, to hold the generated feature vectors.

Configuring Document Summaries

By presenting a short summary for each document in a results list, an application can
help users to quickly assess the relevance of the documents without retrieving the full
text of each document. Verity supports the creation of three types of document
summaries:

Static Summaries

Dynamic Summaries

Passage-Based Summaries

$define DOC-FEATURES "TF" Generate feature vectors from all word types.

$define DOC-FEATURES "NP" Generate feature vectors from noun phrases only.

$define DOC-FEATURES "NNP" Generate feature vectors from nouns and noun phrases.
240 Verity Collection Reference

8 Tuning Collections
Adding Extra Collection Capabilities (style.prm)
Dynamic summaries are generated at search time through the K2 client API, as described
in the K2 Client C Programming Guide, or through the VDK API, as described in the Verity
Developer’s Kit Programming Reference. Static summaries and passage-based summaries
are enabled through settings in style.prm and other style files, as described here.

Static Summaries
To automatically generate and store document summaries at indexing time, include the
$define directive with the DOC-SUMMARIES parameter in the style.prm file, as
follows:

$define DOC-SUMMARIES "type [Zone]"

where type specifies the type of summary to generate: XS, LS or LB. The type is required
and must appear first in the string ahead of any of the optional parameters.

Summary Types

Summary Type Parameters
Along with the summary type, you can also specify optional parameters as described in
the following table.

Type Description

XS Extract the “best” sentences from the document

LS Use the first sentences from the document

LB Use the first bytes of text from the document (with white space compressed)

Parameter Description

MaxBytes n n specifies the maximum size of a summary in bytes. Summaries longer than n
are truncated with an ellipse (...). This parameter is supported by all three
summary types

The default value is 400.

MaxSents n n specifies the maximum number of sentences in a summary. This parameter is
supported by the XS and LS summary types.

The default value is 2.

TruncSent n n specifies the maximum length of any sentence. Sentences longer than n are
truncated with an ellipse (...). This parameter is supported by the XS and LS
summary types.

The default value is 400.
Verity Collection Reference 241

8 Tuning Collections
Adding Extra Collection Capabilities (style.prm)
Zone Argument
The optional Zone argument adds the summary to the end of a document as a zone,
allowing you to perform zone searches on the summary.

Examples of Summary Definitions
Generate summaries comprised of the best 3 sentences from each document, or a
maximum of 500 bytes:

$define DOC-SUMMARIES "XS MaxBytes 500 MaxSents 3"

Generate summaries comprised of the first 400 bytes from each document, compressing
white space, while storing the summary as a zone:

$define DOC-SUMMARIES "LB MaxBytes 400 Zone"

If a $define directive with the DOC-SUMMARIES parameter is defined, the VdkSummary
field is automatically included in the document table schema to contain the generated
summaries.

HTML Code in Summaries
If an indexed document contains HTML code samples, and if code from those samples is
included in the document’s stored summary, the summary may display incorrectly in an
application’s HTML search-results page. This problem occurs because the browser
attempts to interpret and display the summary as actual HTML instead of sample code.

Stored static summaries can contain only plain-text data. The search application is
responsible for any necessary pre-processing on the summary (for example, escaping
characters such as “<“ in HTML sample code) so that it displays correctly for the user.

Passage-Based Summaries
A passage-based summary consists of one or more passages (sentences or phrases) from
the document, each of which contains an instance, optionally highlighted, of the search
term that was used to locate the document. This type of summarization is also called
keywords in context, because the keyword (the search term) is displayed in its context
within the document.

A passage-based summary is different from other kinds of summaries in that a single
document can yield a different summary for each different search term (query) that is
applied to the document.

The following is an example of a passage-based summary for a document returned from
a stemmed search for Verity collection. This summary includes three passages:

...This chapter introduces the basics about Verity collections: ...how to build and
configure Verity collections for your search application. ...Any Verity
242 Verity Collection Reference

8 Tuning Collections
Adding Extra Collection Capabilities (style.prm)
collection-building application can read and add documents to any collection to which
it has valid access. ...

To enable or disable generation of passage-based summaries, you must make the
appropriate settings in the style.prm and style.ddd files in your collection’s style
set.

Modifying style.prm
In style.prm, locate the following section:

#--
Passage-based summarization is enabled by uncommenting the
DOC-PBSUMMARIES line below. This stores tokenized and
compressed text version of documents in the document table.
The tokenized texts can then be used in the passage-based
summarization, which delivers the summary with search term
highlighted.

The example below stores up to 8K text for each document.
$define DOC-PBSUMMARIES "MaxBytes 8192"

If the $define DOC-PBSUMMARIES line is uncommented, the first MaxBytes bytes of
each indexed document are stored in the internal collection field VDKPBSUMMARYDATA,
for use in construction of passage-based summaries. By default, MaxBytes is 8192, but
you can change the value to extract either more or less text from documents during
indexing. (The maximum value for MaxBytes is 32K.)

Note The information stored in VDKPBSUMMARYDATA is tokenized and
compressed. It is not directly readable.

Note that the $define DOC-PBSUMMARIES line is uncommented by default. To disable
passage-based summaries, comment out the line.

Verifying style.ddd
In style.ddd, make sure the following section exists:

$ifdef DOC-PBSUMMARIES
Optional tokenized and compressed texts per document for
passage-based summarization
data-table:_dm
{

varwidth: VDKPBSUMMARYDATA _dn
/_implied_size
/alias = dc:PBSummaryData
Verity Collection Reference 243

8 Tuning Collections
Adding Extra Collection Capabilities (style.prm)
/alias = vdk:VDKPBSUMMARYDATA
}

$endif

This section adds the field VDKPBSUMMARYDATA to the collection (if DOC-PBSUMMARIES
is defined in style.prm).

Creating the Summaries
If you have made the appropriate settings in style.prm and style.ddd to enable the
gathering of the data, your search application can then create the passage-based
summaries. At search time, the application makes function calls as described in the
document-access chapter of the Verity Client C Programming Guide or the clustering and
summarization chapter of the Verity Developer’s Kit Programming Reference.

Setting Index Options

In your collection’s style.prm file, you can set options that control the existence and
characteristics of the following indexes:

index Description style.prm parameter Available options

Word index Lists all significant words and
their positions in each
collection document.

WORD-IDXOPTS Stemdex
Casedex
Soundex
LocationN
QualifyN

Zone index Lists names of all defined
document zones in the
collection, indirectly indexes
the zones’ content.

ZONE-IDXOPTS Dewey

Zone-attribute index Lists the values of all zone
attributes in the collection.

ATTR-IDXOPTS Casedex
Numdex
Datedex
Xdatedex
244 Verity Collection Reference

8 Tuning Collections
Adding Extra Collection Capabilities (style.prm)
The options have the following meanings for an index:

Stemdex. The stem of each indexed word is also indexed.

Casedex. Each case variant of a word is stored separately in the index.

Soundex. A phonetic representation of each word is stored in the index.

Dewey. XML structured search is supported on the index.

Numdex. Numeric-range search is enabled on the index.

Datedex. Date-range search (in Verity date format) is enabled on the index.

Xdatedex. Date-range search (in Verity xdate format) is enabled on the index.

LocationN. Store N bytes of highlight-location data with each word instance.

QualifyN. Store N bytes of qualifying data with each word instance.

The following sections describe how to use these options to set index characteristics.

Case-Insensitive Search
Case-sensitive word indexes are built by default, so case-sensitive searching occurs
automatically. With case-sensitive word indexes, if a user enters a mixed-case query, the
engine finds case-sensitive matches only.

If you want your collection to support only case-insensitive searches, you need to build
case-insensitive word indexes by making an edit in the default style.prm file. To do
this, remove the Casedex option from this $define directive:

$define WORD-IDXOPTS "Stemdex Casedex"

so that the edited directive looks like this:

Zone-content index Lists the content of all defined
document zones in the
collection (to support range
search on numbers, dates, and
text).

ZONE-CONTENT-IDXOPTS Casedex
Numdex
Datedex
Xdatedex

Noun index Indexes the locations of all nouns
in each collection document.

NOUN-IDXOPTS (none)

Noun-phrase index Indexes the locations of all noun
phrases in each collection
document.

NPHR-IDXOPTS (none)

index Description style.prm parameter Available options
Verity Collection Reference 245

8 Tuning Collections
Adding Extra Collection Capabilities (style.prm)
$define WORD-IDXOPTS "Stemdex"

The zone-attribute index and the zone-content index also support case-sensitive search
by default. To change them to case-insensitive, make a similar change to these $define
directives:

$define ATTR-IDXOPTS "Casedex Numdex Datedex"

$define ZONE-CONTENT-IDXOPTS "Casedex Numdex Datedex"

so that the edited directives look like this:

$define ATTR-IDXOPTS "Numdex Datedex"

$define ZONE-CONTENT-IDXOPTS "Numdex Datedex"

Stemming
Word stems are by default indexed, so that a search for a specific term (such as “stems”)
will find all instances of all variations of its stem (“stem”, stemmed”, “stemming” and so
on).

If you do not want your collection to support stemmed searches, you can ensure that
word stems are not indexed by editing the default style.prm file. To do this, remove
the Stemdex option from this $define directive:

$define WORD-IDXOPTS "Stemdex Casedex"

so that the edited directive looks like this:

$define WORD-IDXOPTS "Casedex"

Soundex Search
By default, Soundex information is not indexed for a collection, and thus the VQL
operator SOUNDEX will not work in a search. To specify a Soundex index to be built, you
need to include the Soundex option with the WORD-IDXOPTS parameter. The following
directive adds Soundex indexing to the default word index:

$define WORD-IDXOPTS "Stemdex Casedex Soundex"

XML Structure Search
By default, VQL searches of XML structures (tag hierarchies) are supported for zones.
The search syntax supports a subset of XPath syntax. For example, the following query
returns (bibliographic) documents in which the first listed book is about UNIX:

VQL: unix <in> //book[1]
246 Verity Collection Reference

8 Tuning Collections
Adding Extra Collection Capabilities (style.prm)
To remove the XML structure search capability, remove the Dewey option from this
$define directive:

$define ZONE-IDXOPTS "Dewey"

so that the edited directive looks like this:

$define ZONE-IDXOPTS ""

XML Range Search
By default, the zone-content index holds dates and numeric values in a manner that
supports VQL searches of XML documents for value ranges. For example, the following
query returns books about UNIX whose price (the value of the price attribute) is less
than $60.00:

VQL: unix <in> book <when> <zone><numeric>price < 60

The following query returns books about UNIX that were published since the beginning
of 1999:

unix <in> book <when> <date>published > "1/1/1999"

To remove the ability to search for numeric or date ranges (or both), remove the Numdex
or Datedex option from this $define directive:

$define ZONE-CONTENT-IDXOPTS "Casedex Numdex Datedex"

so that the edited directive looks like this (if you remove both):

$define ZONE-CONTENT-IDXOPTS "Casedex"

By default, dates are stored and evaluated as standard Verity dates, which range from
1904 to 2037 AD (with 1-second precision). You can specify that dates be stored instead as
Verity xdates, which range from 1000 to 3000 AD (with 1-minute precision). To switch to
xdate format, replace the Datedex option with Xdatedex in the default directive, so the
edited directive looks like this:

$define ZONE-CONTENT-IDXOPTS "Casedex Numdex Xdatedex"

Note The zone-content index is not designed to hold large amounts of content.
Any zone content string greater than 250 bytes long is truncated to 250
bytes. Therefore, XML range searches will not succeed on content beyond
the initial 250 bytes in a zone.
Verity Collection Reference 247

8 Tuning Collections
Adding Extra Collection Capabilities (style.prm)
Highlight Location Data
Application developers may want to build auxiliary highlight data to store information
used to highlight words in retrieved documents. For example, you can store auxiliary
highlight data to store information like a page number or a byte offset into the original
file. To build the auxiliary highlight data into the collection index, use the
WORD-IDXOPTS parameter.

To build auxiliary highlight data into the collection index, use the LocationN option
with the WORD-IDXOPTS parameter:

$define WORD-IDXOPTS Location4

This statement reserves 4 bytes of auxiliary data for each word instance in the index. (You
can reserve 1 to 4 bytes.)

Building auxiliary highlight data is considered an advanced feature for application
developers using the Verity Developer Kit.

Note The default value stored for the highlight location data (when it is
enabled) is the byte offset into the indexing stream to the document.

Qualify Instance Data
Application developers may want to build qualify instance data into the word index, to
store auxiliary information about words in the collection. This data is used to support
VQL qualify instance queries, in which only those instances of a word that match not only
the query word itself but also the specified auxiliary data are returned. See the discussion
of qualify instance queries in the Verity Query Language and Topic Guide for more
information.

Using qualify instance data can allow application developers to implement specialized
zone-like searches if, for example, words in a document’s abstract are given different
instance values than words in the body. It can also allow for faster searches of large fields,
if words in such a field are identified with a specific instance value.

Implementing qualify instance data is a four-step process, described in the appendix on
word qualification in the Verity Developer’s Kit Programming Reference. Modifying
style.prm as described here is the first step.

To build qualify instance data into the collection index, use the QualifyN option with
the WORD-IDXOPTS parameter:

$define WORD-IDXOPTS Qualify4
248 Verity Collection Reference

8 Tuning Collections
Adding Extra Collection Capabilities (style.prm)
This statement reserves 4 bytes of auxiliary data for each word instance in the index. (You
can reserve 1 to 4 bytes.)

Note Do not specify more bytes than you need. Reserving space for qualify
instance data can significantly affect collection size.

style.prm File Syntax

The style.prm file consists of $define directives, several of which are commented
out. You may uncomment $define directives to control collection index content. Also,
you can edit or remove $define directives, as appropriate.

Note If you are changing the style.prm file for an existing collection, be sure
to re-index the collection.

In the style.prm file, the $define directives may be entered in any order. Blank lines
are ignored, and comments are introduced with the # character. The $define directive
has this structure:

$define parameter "option string"

When specifying more than one option for a parameter, put the set of options within
double quotes. For example:

"Stemdex Casedex"

If there is only a single option, it need not be quoted.

Note The StyleSet Editor includes a form (Collection Parameters) for editing
parts of style.prm.

Default style.prm File

The default style.prm file for the File System gateway is shown in Listing 8-1.

Listing 8-1 Default style.prm file for File System gateway

#
style.prm - collection schema parameters
#
This file is used to enable/disable index schema features through
Verity Collection Reference 249

8 Tuning Collections
Adding Extra Collection Capabilities (style.prm)
macro definitions similar to those allowed by the C preprocessor.
This file is included in other style files using $include so
that the selected features are propagated to the schemas of all
tables in the index. Refer to the style.prm discussion
in the chapter "Tuning Collections" in the Verity Collection Reference
for more information.

The IDX-CONFIG parameter defines the storage format used to
encode the word positions in the index. WCT (Word Count) format
is a compact format, storing the ordinal counting position of the
word from the beginning of the document. PSW (Paragraph, Sentence,
Word) format takes approximately 15-20% more disk space, but
stores semantically accurate paragraph and sentence boundaries.
Optionally, Many may be specified with either WCT or PSW to
improve the accuracy of the <MANY> operator at the expense of
disk space and search performance.

This example enables Word Count word position format (the default).
$defineIDX-CONFIG"WCT"

#This example enable Word Count word position format but ignore
#sentence tagging. The word position is bumped upon sentence tokens.
#However, the sentence breaks maybe incorrect, causing phrase op to fail
#to yield a hit. This option ignores sentence tagging during
#the indexing time for word position counting(i.e. word positions will not
#be bumped upon sentence breaks).
#$defineIDX-CONFIG"WCT NOEOS"

This example turns on Paragraph/Sentence/Word word position format.
It also enables the <MANY> operator accuracy improvement.
#$define IDX-CONFIG"PSW Many"

The IDXOPTS parameters define which index options are applied to
the various index token tables. The following index options are
supported for each: Stemdex enables an index by the stem of each
word. Casedex stores all case variants of a word separately, so
one can search for case sensitive terms such as "Jobs", "Apple",
and "NeXT" more easily. Soundex stores phonetic representations
of the word, using AT&T's standard soundex algorithm. Numdex
enables numeric search on attributes. Datedex enables date search
on attributes. Xdatedex does the same for xdates; Datedex and
Xdatedex are mutually exclusive. Dewey enables structured
search for zones. The application may also store 1-4 bytes of
application-specific data with each word instance, in the form of
Location data and/or Qualify Instance data. These options are
specified separately for each token table: word, zone,
zone attribute and zone content.
250 Verity Collection Reference

8 Tuning Collections
Adding Extra Collection Capabilities (style.prm)
$defineWORD-IDXOPTS"Stemdex Casedex"
$defineZONE-IDXOPTS"Dewey"
$defineATTR-IDXOPTS"Casedex Numdex Datedex"
$define ZONE-CONTENT-IDXOPTS "Casedex Numdex Datedex"
#$defineNOUN-IDXOPTS""
#$defineNPHR-IDXOPTS""
$ifdef NOUN-IDXOPTS

$ifdef NPHR-IDXOPTS
$define NNP-IDXOPTS

$endif
$endif

The following example shows how to associate 4 bytes of Location
and Qualify data with each word instance.
#$defineWORD-IDXOPTS"Location4 Qualify4"

The DEWEY-IDXOPTS setting below limits the maximum Dewey Ordered
path length to 128 levels.
$defineDEWEY-IDXOPTS"MaxLevels 128"

Clustering is enabled by uncommenting one of the DOC-FEATURES
lines below. DOC-FEATURES stores a feature vector for each
document in the Documents table. These features are used for
Clustering results and fast Query-by-Example. See the discussions
on clustering in Verity Developer's Kit Programming Reference for
more information.
The maximum number of features can be controlled by appending
"MaxFtrs n" to the DOC-FEATURES string. The default is 25.

The example below creates the DOC-FEATURES from any of the words
in the document.
#$define DOC-FEATURES "TF"

The example below creates the DOC-FEATURES entirely from Nouns
and Noun Phrases.
$define DOC-FEATURES "NNP"

The example below creates the DOC-FEATURES entirely from Noun Phrases.
$define DOC-FEATURES "NP"

Document Summarization is enabled by uncommenting one of
the DOC-SUMMARIES lines below. The summarization data is
stored in the documents table so that it might easily be
shown when displaying the results of a search.
See the discussions on document summaries in the style.prm section
of the chapter "Tuning Collections" in the Verity Collection Reference
for more information.

The example below stores the best three sentences of
the document, but not more than 500 bytes.
Verity Collection Reference 251

8 Tuning Collections
Using Custom Zones to Improve Relevance (style.tkm)
$define DOC-SUMMARIES "XS MaxSents 3 MaxBytes 500 Zone"

The example below stores the first four sentences of
the document, but not more than 500 bytes.
#$define DOC-SUMMARIES "LS MaxSents 4 MaxBytes 500"

The example below stores the first 150 bytes of
the document, with white space compressed.
#$define DOC-SUMMARIES "LB MaxBytes 150"

#--
Passage-based summarization is enabled by uncommenting the
DOC-PBSUMMARIES line below. This stores tokenized and
compressed text version of documents in the document table.
The tokenized texts can then be used in the passage-based
summarization, which delivers the summary with search term
highlighted.

The example below stores up to 8K text for each document.
$define DOC-PBSUMMARIES "MaxBytes 8192"

Using Custom Zones to Improve Relevance (style.tkm)

The token-map segment is a part of the sequence of filters that processes incoming
documents during indexing. The token-map segment performs three tasks that can be
useful in assigning relevance or in classifying document information:

It generates custom zones based on a document’s text-formatting zones.

It tokenizes the contents of the document’s VdkVgwKey field or any custom field

You use the style.tkm file to configure this functionality.

Creating Custom Zones

The token-map segment’s purpose is to allow applications to make use of the formatting
information contained in a document’s text-formatting zones (see “Generating
Text-Formatting Zones” on page 120). The token-map segment operates on the
text-formatting zones (and their attributes) in the document’s content, producing a
different set of custom zones as output. (The token-map segment does not change or
remove any of the text-formatting zones or attributes.)
252 Verity Collection Reference

8 Tuning Collections
Using Custom Zones to Improve Relevance (style.tkm)
For example, the token-map segment could place all headings into a single zone that is
considered important for searching purposes. As another example, all bold or italic text,
or perhaps all table text, might be placed in a zone of particular importance for certain
kinds of queries.

Here are some examples of the kinds of configuration options you can use to create
custom zones based on document format:

Example 1. Map any of a set of text-formatting zones to a custom zone:

Criterion: Include any of the text-formatting zones h1, h2, or h3 in custom zone
headings.

Document content:
<h1>ABC</h1>...<h2>DEF</h2>...<h4>GHI</h4>...

Output:
ABC and DEF are mapped to zone headings.

Example 2. All specified text-formatting zones must apply for the mapping to occur:

Criterion: Include text that is both bold and italics in custom zone emphasis.

Document content:
<bold>ABC<italics>DE</italics>FG</bold>HI

Output:
DE is mapped to zone emphasis.

Example 3. Certain attribute values must apply for the mapping to occur:

Criterion: Include text where font=Arial and size>24 in custom zone headlines.

Document content:
ABC
DEF
GHI

Output:
ABC is mapped to zone headlines.

You configure this capability with the mapto keyword in style.tkm.
Verity Collection Reference 253

8 Tuning Collections
Using Custom Zones to Improve Relevance (style.tkm)
Tokenizing Custom Fields

The token-map segment tokenizes a document’s VdkVgwKey field (or other custom field)
to extract words in it that also relate to the document’s content. The token-map segment
then writes those words into a zone at the end of the document. The result of this process
is a zone that contains terms that are relevant to both the document’s location and its
content.

For example, the URL key

http>//www.acme.com/corporate/financials/2002_AnnualReport.pdf

might yield, when tokenized and compared to the contents of the PDF document, a zone
containing the following terms:

corporate financials 2002 annual report

Note in particular that this tokenization extracts the separate terms annual and report,
which would not be possible with just a tokenization of the URL.

You configure this capability with the tokenizeto keyword in style.tkm.

Note The default version of style.tkm is already configured to use the
tokenizeto keyword to tokenize the vdkvgwkey field in a collection.

style.tkm File Syntax

Like all style files, style.tkm starts with a control directive. That directive is followed
immediately by a definitions directive:

$control: 1
definitions:
{

The rest of the file consists of alias definitions followed by mapping rules followed by
tokenization definitions.

Alias Definitions
Aliases are specifications of input-zone attribute values that can be used like input zone
names in subsequent mapping rules. An aliasto definition has this form:

aliasto: aliasname
254 Verity Collection Reference

8 Tuning Collections
Using Custom Zones to Improve Relevance (style.tkm)
{
inputzonename

/attribute: type expression
[/attribute: type expression...]

}

where

aliasname is the name of the alias (such as largeFont).

inputzonename is the name of the input text-formatting zone (such as FONT) to
which the attribute that follows is to apply.

type is is the type (integer or string) of the attribute value. The expression must
evaluate to this type.

expression is a specification of the attribute value (such as size>24). The available
operators to use in expression are

> (greater than)
< (less than)
= (equals)
!= (not equals).

In a subsequent mapping rule that includes this alias, when the value of the attribute for
this input zone matches all of the expressions, the contents of the input zone are added to
the output zone specified in the rule.

All aliases must be defined before any mapping rules.

Mapping Rules
A mapping rule defines a custom (output) zone and specifies which format (input) zones
and aliases are to be included in it. The rule can also specify which types of documents
the rule applies to. A mapto definition has this form:

mapto: outputzonename
[/mimetypeinclude mimetype [mimetype...]]
[/mimetypeexclude mimetype [mimetype...]]

{
any | all: inputzonename [inputzonename...]
[any | all: inputzonename [inputzonename...]...]

}

where
Verity Collection Reference 255

8 Tuning Collections
Using Custom Zones to Improve Relevance (style.tkm)
outputzonename is the name (for example, relevance1) of the custom zone being
defined.

mimetype is a MIME type definition (such as application/x-ms-powerpoint)
that specifies a type of document to be either included or excluded when creating this
zone. Multiple MIME types can appear in the line, separated by spaces.

Both mimetypeinclude and mimetypeexclude are optional parameters. If only
mimetypeinclude appears, all other document types are excluded. If only
mimetypeexclude appears, all other document types are included. If neither
parameter appears, all document types are included.

The maximum number of MIME-type definitions you can list in a single
mimetypeinclude or mimetypeexclude statement is12.

inputzonename is the name of a text-formatting zone (or an alias defined earlier in
the file) to include in this custom zone. Use spaces to sparate multiple zone names or
alias names.

Note You cannot specify an output zone defined elsewhere as an input zone
for this mapping rule.

This line is the mapping rule. The custom zoneoutputzonename is created only if this
rule is satisfied.

Use any before the list of zone names if document content is to be written to the
custom zone wherever any of the listed input zones or aliases apply to the
document.

Use all if document content is to be written to the custom zone only where all of
the listed input zones and aliases apply to the document.

A single mapto definition can include more than one mapping rule.
256 Verity Collection Reference

8 Tuning Collections
Using Custom Zones to Improve Relevance (style.tkm)
Tokenization Definitions
A tokenization definition specifies a collection field to tokenize and place in a custom
zone. There can be more than one tokenization definition in the file. A tokenizeto
definition has this form:

tokenizeto: outputzonename
{

field: fieldname [wordcount]
}

where

outputzonename is the name (for example, urlkeyterms) of the custom zone being
defined to hold this field information.

fieldname is the name of the collection field to tokenize. Most typically VdkVgwKey
is the field used for this purpose, but you can specify any text-based collection field,
including a custom field.

wordcount is an optional numeric parameter that specifies how many words in the
document (starting from the first word) to use in tokenizing fieldname.

Only terms that appear in fieldname and also within the first wordcount words in
the document are written into outputzonename. If wordcount does not appear or is
zero, all words in the document are used.

End of File
The style.tkm file ends with the close of the definitions zone:

}
$$

Default style.tkm File

The default style.tkm file for collections is shown in Listing 8-2.

Listing 8-2 Default style.tkm file

$control: 1
definitions:
{

aliasto: font1
{

Verity Collection Reference 257

8 Tuning Collections
Using Custom Zones to Improve Relevance (style.tkm)
zone: font
/attribute: integer size > 19

}

aliasto: font2
{

zone: font
/attribute: integer size > 13
/attribute: integer size < 20

}

aliasto: ppt-font1
{

zone: font
/attribute: integer size > 35

}

aliasto: ppt-font2
{

zone: font
/attribute: integer size > 23
/attribute: integer size < 36

}

mapto: vdk1
/mimetypeexclude: application/x-ms-powerpoint text/xml

{
any: h1 h2 font1

}

mapto: vdk1
/mimetypeinclude: application/x-ms-powerpoint

{
any: h1 h2 ppt-font1

}

mapto: vdk2
/mimetypeexclude: application/x-ms-powerpoint text/xml

{
any: big b bold i italic u underline em strong h3 font2

}

mapto: vdk2
/mimetypeinclude: application/x-ms-powerpoint
258 Verity Collection Reference

8 Tuning Collections
Providing Passwords for Document Access (style.pw)
{
any: big b bold i italic u underline em strong h3 ppt-font2

}

tokenizeto: vdkvgwkeywords
{

field: vdkvgwkey 2500
}

}
$$

Providing Passwords for Document Access (style.pw)

Verity K2 supports indexing of password-protected documents, which may include Zip
files, PST files, and PDF documents. Passwords and password expressions for a collection
are typically entered by an administrator into the Defining Password Protected Files
Settings screen of the StyleSet Editor when constructing a style set for a collection that
uses the ODBC, File System, or HTTP gateway. The passwords are stored in the style file
style.pw, from which the collection-indexing tool retrieves them as needed during
indexing.

There is no default version of style.pw provided with K2; the StyleSet Editor creates
the file when an administrator needs to provides passwords for a particular collection.

You normally will not create or edit style.pw manually, except in cases where you need
to index password-protected documents through a gateway for which the StyleSet Editor
does not provide a password-editing interface. In such a situation, you will have to store
the passwords in plain-text (unencrypted) form.

Listing 8-3 illustrates the syntax of style.pw:

Listing 8-3 Example style.pw file

$control: 1
specify whether passwords in the file are plaintext or encrypted.
default is "no".
plaintext: yes
wildcard:
{
exp: *test1/xml/*.xml
Verity Collection Reference 259

8 Tuning Collections
Providing Passwords for Document Access (style.pw)
/passwd = H@w@1150
specify whether the above wildcard exp is case sensitive. default is
"no"

/ignorecase = yes
...
}
regex:
{
exp: test2/xml/.*\.xml$

/password = H@w@1150
/ignorecase = no

...
}

Each entry in the file is an expression that represents a document, followed by a
password assignment and optionally an ignore-case flag.

Note that document specifications can be either wildcard expressions or regular
expressions. (See “Supported Regular Expressions” on page 375 for Verity’s
regular-expression syntax.) The expressions in Listing 8-3 state that any file with an
extension of .xml in the directory test1/xml or test2/xml is to be accessed using the
specified password. In the case of the wildcard directive, case is ignored, so it would
apply to both directories test1/xml and test1/XML, for example.

Passwords stored in style.pw are AES-encrypted and base-64 encoded, unless the
value of the plaintext directive is yes.

Note these usage issues:

The expression refers to a complete document path. Either use the complete path in
the expression, or apply wildcards or regular-expression elements appropriately.

If you use a regular expression and need to use special characters as literals, escape
them by preceding them with a backslash(\):

Write the expression test[0].xml as test\[0\]\.xml.

In expressions (such as Windows pathnames) that include a literal backslash, double
the backslash:

Write the expression test\xml*.xml as test\\xml*.xml.

Expressions or passwords that contain “ “(space) or “#” (poundsign) characters must
be escaped by enclosing them in double quotes(""):

Write the expression Program Files as "Program Files".

Write the expression *#2.xml as "*#2.xml".
260 Verity Collection Reference

8 Tuning Collections
Defining Indexing Stop Words (style.stp)
Escaped characters within an expression that is in quotes must be double-escaped;
that is, two backslashes precede a regular-expression special character, or two sets of
double-backslashes represent a backslash.

Write the expression test\xml\#2.xml as "test\\\\xml\\\\#2.xml".

Accented characters in expressions or in passwords might not be handled correctly.
Any character that is not a valid character in the locale of the style set’s collection
cannot be used in an expression or in a password. (Plain ASCII characters are valid in
all locales, and therefore are the safest to use.)

If the access passwords to any of the documents in a collection change, those
documents cannot be re-indexed until the updated passwords have been added to
style.pw.

Defining Indexing Stop Words (style.stp)

Excluding words from a word index can improve search performance. You can use the
optional style.stp file to do that. You place into it character strings that would not be
useful to search for, and those strings are excluded from the collection.

The style.stp file is rarely used. Its main purpose is for excluding rare constructs that
look like words in documents (such as the 70-character “words” starting with M found in
encoded files).

style.stp Syntax

A style.stp file is a flat ASCII file containing an excluded word list. The words in the
list can appear in any order. The excluded word list should be left justified, and a
separate word should appear on each line. A sample style.stp file is shown in
Listing 8-4.

Listing 8-4 Example style.stp file

[0-9a-zA-z]
..........+
an
and
the
of
Verity Collection Reference 261

8 Tuning Collections
Defining Indexing Stop Words (style.stp)
or
but

style.stp Features

When creating a style.stp file, you can control its case-sensitivity and you can also
make use of regular expressions.

Case Sensitivity
By default, the collection word index is case-sensitive. If your collection word indexes are
case-sensitive, the style.stp file must include every case combination for words you
want to stop. For example, if you want to stop both “and” and “And”, you must include
both entries in your style.stp file.

Regular Expressions
You can specify a regular expression as a word in the excluded word list. For example,
the following regular expression could be entered:

[0-9a-zA-Z]

This regular expression excludes every one-letter word appearing in a collection’s
documents from appearing in the collection word indexes.

You can also use regular expressions to exclude long words from a word indexes. Long
words generally occur infrequently. Thus, users are less likely to search for them, and it is
usually not crucial for them to be indexed.

To exclude words that are n characters or more in length, enter a regular expression
consisting of n dots (.) followed by a plus sign (+) in your style.stp file. For example, to
exclude words of 10 or more characters, enter 10 dots followed by a plus sign in your
style.stp file, as follows:

 +
262 Verity Collection Reference

8 Tuning Collections
Defining Indexing Go Words (style.go)
Defining Indexing Go Words (style.go)

In a style.go file, you specify the words to be included in a collection’s word indexes. A
style.go file is optional. Words that comprise an industry-specific taxonomy can be
specified for an included word list in a style.go file. If a style.go file is included in a
style directory only those words included in this file are included in the word indexes.

The style.go file is rarely used.

style.go Syntax

A style.go file is a flat ASCII file containing an included word list. The words in the list
can be entered in upper or lower case, and they can be listed in any order. The included
word list should be left-justified, and a separate word should appear on each line. An
example style.go file would look just like the sample style.stp file in the previous
section.

You can specify a regular expression as a word in the included word list to identify a
range of values to be included.

Defining Feature-Extraction Stop Words (style.fxs)

During indexing, a special feature extraction process evaluates documents and stores
special feature vectors for all documents. The feature vectors are used to generate
summaries and clusters for display in the application. The style.fxs file can be used to
exclude words from appearing in document summaries and clusters.

For information about configuring an application to display clusters and/or summaries,
see the documentation for your Verity application.

Words you might want to exclude are proper names, like the names of newspapers. In the
style.fxs file, you list each word to exclude—one word per line. The stop word file is
case-insensitive and accepts only literal words, not regular expressions.
Verity Collection Reference 263

8 Tuning Collections
Customizing 7-Bit Tokenization (style.lex)
It is possible for sentences containing some terms in the style.fxs to score high
enough to be included in best sentence type summaries. The Verity engine uses the
feature vectors to determine which sentences are the best for presentation in the
summaries. The engine does not filter the document text to remove style.fxs terms
when presenting summaries for display.

Customizing 7-Bit Tokenization (style.lex)

Note The style.lex file is used only by the older 8-bit table-driven locales,
such as english. It is not used by or recommended for any current
locales.

The character definitions for a collection affect how words are tokenized and stored in the
word index. The character definitions used by the Verity engine are located in the CTYPE
table in the older Verity locales. Many accented alphabetic characters are defined for each
locale, so a style.lex file may not be required to index and search words with these
characters. For nonalphanumerics not specified in the locale, use the style.lex file so
that these characters are interpreted by the engine and words containing these characters
will appear in the word index.

For example, if users want to enter non-alphanumeric characters (such as &, /, and ") as
search criteria and these characters and not defined in the collection configuration, you
can specify these characters in a style.lex file. If a style.lex file is present in the
style directory, the word index is built based on the specifications made in the
style.lex file. For example, if the character “/” is specified as a valid character, the
word index will include that character and users can search for such words as “OS/2”.

style.lex File Syntax

Entries in the style.lex file identify the patterns that the Verity engine interprets as
valid characters in words, punctuation such as newlines and white space, and characters
used to perform retrievals such as end-of-sentence and end-of-paragraph delimiters. The
application developer creates a style.lex file only when it is necessary to override the
system defaults.
264 Verity Collection Reference

8 Tuning Collections
Customizing 7-Bit Tokenization (style.lex)
A sample style.lex file is shown in Listing 8-5. This file represents the closest
approximation to the default style.lex file used by the Verity engine for processing
7-bit ASCII text. The internal implementation is platform dependent, which affects the
accuracy of the extended ASCII characters.

Note style.lex file handles 7-bit characters only.

Listing 8-5 Example style.lex file

style.lex -- 7-bit only version of internal hardwired lexer
$control: 1
lex:
{
 define: ALNUM "[A-Za-z0-9]"
 define: W "[\t\f\r\v]"
 token: WORD "{ALNUM}+(\\.{ALNUM}+)*"
 token: EOS "[.?!][.?! \t]*"
 token: EOP "{W}*\n({W}*\n)+"
 token: NEWLINE "{W}*\n"
 token: WHITE "{W}+"
 token: PUNCT "[^A-Za-z0-9 \t\f\r\v.?!]+"
}
$$

General Information
The first noncomment lines in a style.lex file must be the following:

 $control:1
 lex:

After the lex statement, two types of keyword statements can be specified: define
statements and token statements. The define statements are used to specify macros
used in the style.lex file. The token statements are used to define words, paragraphs,
white space, and so on. In the sample style.lex file above, the define statements are
used to define allowed letters and numbers and valid white space characters. The token
statements are used to define words, end of sentences, paragraphs and so on that occur in
the documents contained in the collection.

In the style.lex file, the following symbols are used to create the token definitions.
Verity Collection Reference 265

8 Tuning Collections
Customizing 7-Bit Tokenization (style.lex)

For additional information regarding regular expressions, see “Supported Regular
Expressions” on page 375.

define Statements
The define statements used in the style.lex file specify macros to be used within the
following token statements. When define statement macros are used in token
statements, the macro is enclosed in braces {}. Use of define statements is optional.

token Statements
Each token statement contains a flag identifying tokens such as end-of-sentence,
end-of-paragraph, and white space. The default patterns used to match these tokens
appear in the various token statements. Typical tokens are listed here.

Symbol Type Symbol Description

Quotes "" Specifies the elements that make up the define statement
macro or token statement definition.

Brackets [] Defines a character class.

Braces {} Specifies a macro that was created in a define statement.

Plus + Specifies one or more occurrences of a combination of
characters and/or numbers.

Asterisk * Specifies zero or more occurrences of a combination of
characters and/or numbers.

Two Backslashes \\ Specifies an escape sequence. When two backslashes are used,
it is to escape the second backslash. For instance, (\\.) is used
to specify a floating decimal.

Pound Sign # Specifies that the characters following are a comment.

Token Pattern

WORD A word represented as any string comprised of alphanumeric
characters (both uppercase and lowercase) or a floating decimal.

EOS
SENT

An end-of-sentence character represented as either a period (.),
question mark (?), or exclamation point (!). EOS and SENT are
identical in meaning and are interchangeable.

NEWLINE A single end-of-line represented as a newline.
266 Verity Collection Reference

8 Tuning Collections
Customizing 7-Bit Tokenization (style.lex)
Statement Interpretation
Two statements of the same type in the style.lex file are ORed. For example, if you had
the following two statements in your style.lex:

token: WORD "[A-Za-z]+"
token: WORD "[0-9]+"

then a word would be defined as any string of alphabetical characters or any string of
numeric characters.

The order of the token statements in the style.lex file determines which token the
lexical analyzer (“lexer”) returns. The lexer returns the longest string that matches any
pattern specified in the style.lex file. The token associated with that pattern is
returned as well. If that string matches more than one pattern, the token that appears
earliest in the style.lex is returned.

For example, if the following statements appeared in the order here:

token: PUNCT "."
token: WORD "[A-Z]+"

and the text looked like this:

 "XY Z"

then the letters “XY” would be returned as a WORD token, the white space would be
returned as a PUNCT token, and the “Z” would be returned as a PUNCT token. The “Z” is
not returned as a WORD token because it matches the patterns in both TOKEN statements,
so the Verity engine selects the first matching pattern, in this case PUNCT.

As shown, a token: WORD statement typically contains a regular expression. If you
specify a regular expression that contains a backslash (\), then you must enter two
backslashes so that the Verity engine will interpret the additional backslash as a literal.
Note that the double-backslash entry is not needed when specifying a predefined
character. The backslash usage is consistent with all Verity control files.

EOP
PARA

An end-of-paragraph represented as two or more newlines. EOP
and PARA are identical in meaning and are interchangeable.

WHITE A blank space represented by one or more white spaces.

PUNCT Any character except a newline.

Token Pattern
Verity Collection Reference 267

8 Tuning Collections
Customizing 7-Bit Tokenization (style.lex)
A style.lex file must specify token statements for all the tokens you want the Verity
engine to match. Note that default values for individual token statements are not
provided.

Default Handling of the Dot Character
Using the default version of style.lex, the lexical analyzer considers the dot (.) to be a
punctuation character. However, the lexer accepts a dot as part of a word if the dot is
surrounded by alphabetical characters.

In this situation, the lexer performs the following tokenizations:

Agent.Server becomes one word: Agent.Server.

P.Blumson becomes one word: P.Blumson.

P. Blumson becomes two words: P and Blumson (because space follows the dot).

P.Q. Blumson becomes two words: P.Q and Blumson.

Character Mapping

style.lex does not index 8-bit characters (characters outside the standard ASCII
range), even though they are valid in English documents. In addition, the character set
for the style.lex file is the internal character set even if you set everything else in the
application to a different code page (8859, for example), unless you add the $charmap
option to the style.lex file, as shown here:

$control: 1
$charmap: 8859
lex:
{
 [...]
}
$$

The $charmap construct specifies that the contents should be mapped to the internal
character set before being used for lexing.
268 Verity Collection Reference

PART II

Collection Tools Reference

Chapter 9: Command-Line Tool Summary

Chapter 10: Using mkvdk

Chapter 11: Using Bulk Insert Files

Chapter 12: Using Other Collection Tools
269

270

9
Command-Line Tool Summary

This chapter lists the Verity K2 command-line tools that you can use to manage
collections and perform other tasks. Some of these tools are described in this book, some
are described in other books, and some are unofficial, untested tools that are
undocumented.

Locations and tool names in Table 9-1 are for Windows platforms. For UNIX platforms,
substitute forward slashes for the separators and remove the .exe extension, if any.

The metavariable platformDir refers to the full path to the platform-specific directory
for the K2 or VDK installation. For example, on Windows:

C:\Program Files\Verity\k2_nti40

The most important collection-management tools listed in this chapter are described in
this book, in Chapter 10, “Using mkvdk,” and Chapter 12, “Using Other Collection
Tools.” Other tools listed here are described in the referenced Verity books. Tools that are
marked undocumented here are not described anywhere outside of this chapter.

This chapter contains two tables:

Table 9-1 on page 272 lists the executable command-line tools delivered with Verity K2
or Verity VDK.

Table 9-2 on page 280 lists sample programs that you can build and execute as
command-line tools.

In both tables, tools are listed in alphabetic order.
271

9 Command-Line Tool Summary
Table 9-1 Verity K2 command-line tools

Tool name Description

adminconfigimport Copies Administration Server configuration settings during migration.

Location:
platformDir\bin\adminconfigimport.exe

See:
The chapter on adminconfigimport in the Verity K2 Migration Guide

browse Lists the field names and values stored in a collection’s document table, one
partition at a time.

Location:
platformDir\bin\browse.exe

See:
“browse” on page 335

chkvlkey Displays a list of the installed Verity components for which you are licensed.

Location:
platformDir\bin\chkvlkey.exe

See:
The discussion on updating license keys in the Verity K2 Installation and Setup
Guide

codeconv Converts text files from one character set to another.

Location:
platformDir\bin\codeconv.exe

See:
Appendix A of the Verity Locale Configuration Guide

delbyqry Deletes, from the specified collection, documents that match the submitted query.
Use the -user option to access secure collections.

Syntax:
delbyqry [-locale locale] query collection [-user
username[:password][:domain][:mailbox]]

query must be standard VQL; enclose collection path in quotes if it contains
spaces.

Note: If collection was built with vspider or K2 Spider, using delbyqry puts the
vsdb out of sync with the collection. Using vsdb and k2spider_cli vsdb
commands is the preferred way to delete records.

Location:
platformDir\bin\delbyqry.exe

See:
(undocumented)
272 Verity Collection Reference

9 Command-Line Tool Summary
didump Produces a word list for a collection, one partition at a time. Also produces a list
of zones, if zones are used.

Location:
platformDir\bin\didump.exe

See:
“didump” on page 331

extract Extracts the documents assigned to knowledge tree created by ktmgr, for use in
converting it to a parametric tree.

Location:
platformDir\bin\didump.exe

See:
The discussion on converting knowledge trees in the Verity Intelligent Classification
Guide

fscrawl Sample application showing how to crawl a file system. It creates a BIF for a given
file-system directory.

Location:
platformDir\bin\fscrawl.exe
(source code in installDir\k2\samples\vdk)

See:
samples directory discussion in the Verity Developer’s Kit Programming Reference
Discussion on building and testing gateways in the Verity Gateway Developer’s Kit
Programming Reference

genvlvdk Updates a Verity license key. For use by Verity only.

Location:
platformDir\bin\fscrawl.exe

getlogs Retrieves query logs from K2 Servers and Brokers in preparation for populating
or updating the K2 report index.

Location:
platformDir\bin\getlogs.exe

See:
The discussion on exporting consolidated log data in the reporting chapter of the
Verity K2 Administration Programming Guide.

k2admin The executable for the K2 Administration Server; can be executed as a
command-line tool.

Location:
platformDir\bin\k2admin.exe

See:
The K2 Spider examples chapter of the Verity Command-Line Indexing Reference

Table 9-1 Verity K2 command-line tools (continued)

Tool name Description
Verity Collection Reference 273

9 Command-Line Tool Summary
k2collswap Brings a collection online by swapping the online and offline versions of it.

Location:
platformDir\bin\k2collswap.exe

See:
The discussion of custom user-defined jobs in the Verity K2 Dashboard
Administrator Guide

k2spider_cli Client process that uses k2spider_srv to index documents into a collection.

Location:
platformDir\bin\k2spider_cli.exe

See:
The K2 Spider Client chapter of the Verity Command-Line Indexing Reference

k2spider_srv Server process that acts as controller, crawler and indexer to index documents
into a collection.

Location:
platformDir\bin\k2spider_srv.exe

See:
The K2 Spider Server chapter of the Verity Command-Line Indexing Reference

ktmgr Creates and maintains knowledge trees from scripts or from the command line.

Location:
platformDir\bin\ktmgr.exe

See:
The chapter on building knowledge trees from the command line in the Verity
Intelligent Classification Guide

ktsrch Runs a scoped search against a Knowledge Tree and groups results by category.

Location:
platformDir\bin\ktsrch.exe

See:
The chapter on testing knowledge trees in the Verity Intelligent Classification Guide

langid Detects the language and character encoding of supplied documents.

Location:
platformDir\bin\langid.exe

See:
The language ID command tool appendix in the Verity Locale Configuration Guide

Table 9-1 Verity K2 command-line tools (continued)

Tool name Description
274 Verity Collection Reference

9 Command-Line Tool Summary
merge Allows you to merge or split collections.

Location:
platformDir\bin\merge.exe

See:
“merge” on page 339

mkenc Creates an encryption file for a topic set.

Location:
platformDir\bin\mkenc.exe

See:
The chapter on building topic sets from the command line in the Verity Intelligent
Classification Guide

mklrc A command-line version of the Logistic Regression Classifier. It creates a topic
from a set of positive and negative exemplary documents or from a taxonomy in a
parametric index.

Location:
platformDir\bin\mklrc.exe

See:
The chapter on the Logistic Regression Classifier in the Verity Intelligent
Classification Guide

mkpi Creates and updates parametric indexes.

Location:
platformDir\bin\mkpi.exe

See:
The mkpi command-line tool reference in the Verity K2 Parametric Developer Guide

mkprf Create, updates, or deletes a profile net.

Location:
platformDir\bin\mkprf.exe

See:
The chapter on K2 Profiler command-line tools in the Verity K2 Profiler Program-
ming Guide

mkre Manages recommendation indexes, transaction files, and K2 Server-Broker
processes related to recommendation.

Location:
platformDir\bin\mkre.exe

See:
The chapter on administering the Recommendation Engine in the Verity K2 Recom-
mendation Engine Guide

Table 9-1 Verity K2 command-line tools (continued)

Tool name Description
Verity Collection Reference 275

9 Command-Line Tool Summary
mkreport Populates the report index and allows export of log data.

Location:
platformDir\lib\mkreport.jar

See:
Verity K2 Reporting API Developer Note
(Certain uses of this tool remain undocumented)

mksyd Compiles a thesaurus control file into a thesaurus.

Location:
platformDir\bin\mksyd.exe

See:
The appendix on managing thesauruses in the Verity Query Language and Topic
Guide.

mktm A command-line version of the Thematic Mapper. It automatically extracts key
concepts from a set of documents and organizes them into a hierarchy.

Location:
platformDir\bin\mktm.exe

See:
The chapter on thematic mapping in the Verity Intelligent Classification Guide

mktopics Builds a topic set from an OTL file.

Location:
platformDir\bin\mktopics.exe

See:
The chapter on building topic sets from the command line in the Verity Query
Language and Topic Guide

mkvdk Creates, manages, and optimizes collections.

Location:
platformDir\bin\mkvdk.exe

See:
“Using mkvdk” on page 283

qsrch a command-line tool for searching an optimized knowledge tree.

Location:
platformDir\bin\qsrch.exe

See:
The chapter on testing knowledge trees in the Verity Intelligent Classification Guide.

Table 9-1 Verity K2 command-line tools (continued)

Tool name Description
276 Verity Collection Reference

9 Command-Line Tool Summary
rcadmin A command-line alternative to the K2 Dashboard. You can use it to view and
update configuration settings for the components of a K2 system.

Location:
platformDir\bin\rcadmin.exe

See:
The Verity K2 rcadmin Guide

rcidx Writes detailed diagnostic information on all open collections and parametric
indexes to a log file at dataDir/services/index_alias/log/status.log.
For use by Verity Technical Support only.

Location:
platformDir\bin\rcidx.exe

See:
(undocumented)

rck2 A general-purpose tool that allows you to interact with a K2 system to search,
retrieve from, and view the contents of collections as well as other types of Verity
indexes.

Location:
platformDir\bin\rck2.exe

See:
Verity K2 Dashboard Administrator Guide (for collections)
Verity K2 Parametric Developer Guide (for parametric indexes)
Verity K2 Profiler Programming Guide (for profile nets)
Verity K2 Recommendation Engine Guide (for recommendation indexes)

rcodk A command-line tool for browsing a taxonomy or searching a parametric index.

Location:
platformDir\bin\rcodk.exe

See:
The chapter on testing parametric indexes in the Verity Intelligent Classification
Guide

rctk Sets an administrative user of the K2 Ticket Server.

Location:
platformDir\bin\rctk.exe

See:
The chapter on managing security in the Verity K2 rcadmin Guide

Table 9-1 Verity K2 command-line tools (continued)

Tool name Description
Verity Collection Reference 277

9 Command-Line Tool Summary
rcvdk A simple search client that allows you to search over a collection, list the
collection fields, and display documents.

Location:
platformDir\bin\rcvdk.exe

See:
“rcvdk” on page 340

regsvr32 Registers or de-registers DLLs.

Location:
platformDir\bin\regsvr32.exe

See:
(undocumented)

savecred Creates a user credentials database.

Location:
platformDir\bin\savecred.exe

See:
The credentials-database appendix of the Verity K2 Documentum Gateway Guide
The introductory chapter of the Verity K2 Lotus Notes Gateway Guide

standalone Launches the Verity StyleSet Editor, an MMC-based tool for managing the
contents of style files.

Location:
productDir_nti40\standalone.cmd (available on Windows only)

See:
Verity Spider examples chapter and K2 Spider Examples chapter of the Verity
Command-Line Indexing Reference

taxmgr Creates and maintains taxonomy databases from the command line or in scripts.

Location:
platformDir\bin\taxmgr.exe

See:
The chapter on building knowledge trees from the command line in the Verity
Intelligent Classification Guide

testqp Tests the validity of query syntax.

Location:
platformDir\bin\testqp.exe

See:
(undocumented)

Table 9-1 Verity K2 command-line tools (continued)

Tool name Description
278 Verity Collection Reference

9 Command-Line Tool Summary
Note The following programs are sample code only. They have not been tested
and are not guaranteed to work correctly. They may need to be built
(compiled and linked) before they can be used.

top2tax Converts a topic set to a taxonomy (.tax) file.

Location:
platformDir\bin\top2tax.exe

See:
The chapter on building knowledge trees from the command line in the Verity
Intelligent Classification Guide

vconfig Configures an OEM installation. For OEM developers only.

Location:
platformDir\bin\top2tax.exe

See:
The chapter on configuring an installation in the Verity OEM Deployment Guide.

vsdb Provides access to the Verity Spider persistent store. Useful for diagnosing
vspider problems.

Location:
platformDir\bin\vsdb.exe

See:
vspider reference chapter of the Verity Command-Line Indexing Reference.

vspider The Verity Spider. Indexes documents into a collection.

Location:
platformDir\bin\vspider.exe

See:
vspider reference chapter of the Verity Command-Line Indexing Reference.

Table 9-1 Verity K2 command-line tools (continued)

Tool name Description
Verity Collection Reference 279

9 Command-Line Tool Summary
Table 9-2 Verity command-line sample programs

Program name Description

ezclust Groups collection documents that match a given query into groups, based on
their feature vectors.

Location:
productDir\samples\client\c\ezclust\

See:
The clustering suite discussion in the Verity K2 Client Programming Guide.

ezk2admin Illustrates use of the Administration C API to administer a K2 system.

Location:
productDir\samples\client\c\ezk2admin\

See:
The overview chapter of the Verity K2 Administration Programming Guide.

ezk2prf Illustrates use of the K2 Profiler C API to administer profiles nets and evaluate
documents against them.

Location:
productDir\samples\client\c\ezk2prf\

See:
The example applications chapter of the Verity K2 Profiler Programming Guide.

ezk2srch Illustrates use of the K2 Client C API to search a collection and retrieve results.

Location:
productDir\samples\client\c\ezk2srch\

See:
The collection-search chapter of the Verity K2 Client Programming Guide.

ezk2strm Illustrates use of the K2 Client C API to retrieve documents from a
search-results list.

Location:
productDir\samples\client\c\ezk2strm\

See:
The document access chapter of the Verity K2 Client Programming Guide.

ezstream Illustrates use of the VDK C API to retrieve documents from a search-results
list.

Location:
productDir\samples\client\c\ezk2strm\

See:
The ezstream chapter of the Verity Developer’s Kit Programming Reference.
280 Verity Collection Reference

9 Command-Line Tool Summary
ezwatch Illustrates use of the K2 Client C API to connect to a remote host and watch for
events on that host.

Location:
productDir\samples\client\c\ezwatch\

See:
The maintenance-suite chapter of the Verity K2 Client Programming Guide.

rmklrc A remote version of mklrc that works in a K2 environment. It illustrates use of
the ODK API to execute the Logistic Regression Classifier. It creates a topic from
a set of positive and negative exemplary documents or from a taxonomy in a
parametric index.

Location:
productDir\samples\client\java\rmklrc\

See:
(undocumented)

rmkpi A remote version of mkpi that works in a K2 environment. It illustrates use of
the Parametric Java API to create and update parametric indexes.

Location:
productDir\samples\client\java\rmkpi\

See:
(undocumented)

Table 9-2 Verity command-line sample programs (continued)

Program name Description
Verity Collection Reference 281

9 Command-Line Tool Summary
rmktm A remote version of mklrc that works in a K2 environment. It illustrates use of
the ODK Java API to automatically extract key concepts from a set of
documents and organize them into a hierarchy.

Location:
productDir\samples\client\java\rmktm\

See:
(undocumented)

rmktopics A remote version of mktopics that works in a K2 environment. It illustrates
use of the ODK Java API to build a topic set from an OTL file.

.Location:
productDir\samples\client\java\rmktopics\

See:
(undocumented)

rmkvdk A remote version of mkvdk that works in a K2 environment. It illustrates use of
the Collection Indexing Java API to create, manage, and optimize collections.

Location:
productDir\samples\client\java\rmkvdk\

See:
(undocumented)

Table 9-2 Verity command-line sample programs (continued)

Program name Description
282 Verity Collection Reference

10
Using mkvdk

This chapter describes mkvdk, a command-line tool that you can use to build and
maintain collections.

This chapter includes the following sections:

mkvdk Overview

Creating and Indexing Collections

Managing Collections

Optimizing Collections

Controlling mkvdk Settings

Servicing Collections

mkvdk Reference
283

10 Using mkvdk
mkvdk Overview
mkvdk Overview

mkvdk is a command-line tool for manipulating collections. For many tasks, alternative
tools are available as well, such as the K2 Dashboard, K2 Spider, or Verity Spider. For
some optimization tasks, however, there is no alternative to mkvdk.

This chapter explains mkvdk usage under the following headings:

“mkvdk Overview” describes basic command syntax.

“Creating and Indexing Collections” describes the fundamental commands for
building collections.

“Managing Collections” describes commands for modifying and manipulating
collections.

“Optimizing Collections” describes commands for improving search performance and
minimizing collection size.

“Servicing Collections” describes commands for controlling housekeeping operations
on collections.

“Controlling mkvdk Settings” describes commands for setting the characteristics of
mkvdk or the collections it creates, such as language, logging level, and memory
usage.

“mkvdk Reference” gives a summary of all mkvdk command options and keywords.

Basic mkvdk Syntax

The following syntax is valid for mkvdk:

mkvdk -collection path [option] [...] [docSpec] [...]

where brackets ([]) indicate optional items and an ellipsis (...) indicates repetition of
the previous item. Thus, the mkvdk command line can include multiple options and it
can optionally include a series of docSpec arguments.

The -collection path argument is required for any manipulation on a collection. The
options (none is required) are described in this chapter and tabulated in “mkvdk
Reference” on page 307. All options must precede the first docSpec argument.
284 Verity Collection Reference

10 Using mkvdk
Creating and Indexing Collections
An optional docSpec argument can (1) specify a document to apply to the collection, or
(2) specify the path to a file containing a list of documents (in the form of a simple list of
document pathnames, one per line). If docSpec points to a file containing a list of
documents, it should consist of an at-sign (@) followed by the file path, as in @doclist.

The default behavior of mkvdk (without any specified options) is to create or update the
collection specified by the -collection argument, by indexing the documents specified
by the docSpec arguments.

Indexing is one example of servicing a collection (see “Servicing Collections” on
page 304); whenever mkvdk acts on a collection, it by default performs whatever
servicing it has been configured to do.

mkvdk by default performs its work in the background, as resources become available.
You can force indexing to happen immediately, in the foreground, by using the -synch
option.

Accessing a List of Command-Line Options

To display a usage list of mkvdk command-line options, type:

mkvdk -help

Creating and Indexing Collections

To build a collection with mkvdk, you perform two separate tasks:

1. Create the collection structure.

2. Index documents into the collection.

You can put these tasks in two separate mkvdk commands, or you can combine them on a
single command line.

Creating a Collection

The simplest mkvdk command for creating a collection is this:

mkvdk -create -collection collpath
Verity Collection Reference 285

10 Using mkvdk
Creating and Indexing Collections
where collpath is the pathname of the collection directory you wish to create. With this
command, the Verity engine creates a collection directory including a default set of style
files (see “Standard and Default Style Sets” on page 54).

If you want to specify a non-default style set—for example if you are using a gateway
other than the HTTP or File System gateways, or if your collection configuration needs to
be customized in anyway— use the -style option on the mkvdk command line to
specify the location of a style set to use with the collection.

The following command creates a collection in path_1 using the style set specified in
path_2:

mkvdk -create -collection path_1 -style path_2

Optionally, you can assign a short description to the collection, using the -description
option. That description is stored with the collection and can be displayed by a search
application, or by using the -about option (see Table 10-1 on page 308) of mkvdk.

When you create a collection, you can also apply various collection-optimization options
to change the indexing mode or to create additional index features. See “Optimizing
Collections” on page 293 for details.

Indexing Documents Into a Collection

Once the collection structure is created, you can submit documents to it for indexing.

IMPORTANT The -create option can be used only once, to create the collection
directory structure. After a collection directory structure has been
created, do not use the -create option to update the collection.

Specifying Documents on the Command Line
The following command indexes the documents docSpec1 and docSpec2 into the
collection whose pathname is path:

mkvdk -collection path docSpec1 docSpec2

where docSpec1 and docSpec2 are document keys appropriate to the current
gateway—for example, pathnames if you are using the File System gateway.

You can combine collection creation and indexing in a single command. The following
command creates a collection in path_1, using the style set specified in path_2, and it
indexes the documents listed in the file docList:

mkvdk -create -collection path_1 -style path_2 @docList
286 Verity Collection Reference

10 Using mkvdk
Creating and Indexing Collections
where docList contains a simple list of document keys, one per line.

Indexing With a BIF
You can add a large number of documents to a collection, and you can add field
information as well as document content, by using one or more bulk insert files (BIFs)
and the mkvdk options -bulk and -insert.

The following command inserts the documents specified in the bulk insert file specified
by BIFpath into the existing collection at collPath:

mkvdk -collection collPath -bulk -insert BIFpath

Because insertion is the default action associated with -bulk, the following command
has the same effect:

mkvdk -collection collPath -bulk BIFpath

Note In your BIF, do not mix new documents with documents that may
already exist in the collection. If you specify -insert and mkvdk
attempts to index a document that is already in the collection, a
duplicate key for that document will be created.

You can use the -bulk option with other options (-update and -delete) to update or
delete existing files in a collection, or to modify collection fields. See “Managing
Collections” on page 290.)

You can combine collection creation and indexing. The following command both creates
the collection at the location collpath and inserts the documents specified in the two
bulk insert files at BIFpath1 and BIFpath2:

mkvdk -create -collection collpath -bulk -insert BIFpath1 BIFpath2

You can use the mkvdk options -offset and -numdocs to control where in a BIF to start
indexing from, and how many document s to index. These options are especially useful
for repeated indexing from a single BIF, as described in “Supporting Continuous Feeds”
on page 325.

If you include the -autodel option along with -bulk on the command line, the
specified BIF will be automatically deleted after indexing.

For more information on bulk insert file format and usage, see “Using Bulk Insert Files”
on page 317.
Verity Collection Reference 287

10 Using mkvdk
Creating and Indexing Collections
Specifying a Base for Relative Pathnames
As noted in “Specifying Absolute or Relative Collection Paths” on page 299, if your
collection uses the File System gateway, you can provide either full or partial pathnames
when specifying document locations to mkvdk.

By default, partial pathnames are relative to the collection’s directory. However, you can
specify a different base to use, by including the -datapath option on the mkvdk
command line. Each supplied document pathname (whether on the command line or in a
specified BIF) is appended to the path specified in -datapath, and the resulting
pathname is stored in the collection.

Populating Collection Fields

You may wish to include field values related to your documents into your collection, so
that field data can be displayed and the collection can be searched by field value. mkvdk
supports populating collection fields by use of a bulk insert file, and also by use of the
mkvdk field-extraction capability.

Putting Field Data in a BIF
To use a bulk insert file to populate fields while indexing a collection, take the following
steps:

1. Define the fields in the style.sfl and/or style.ufl file, as appropriate.

For more information about style.sfl and style.ufl, see “Defining Collection
Fields” on page 147.

2. Create a bulk insert file that specifies the documents to insert and the field values for
each document.

For more information on BIF format and usage, see “Using Bulk Insert Files” on
page 317.

3. Run mkvdk using the -bulk option and the -insert flag, specifying the bulk insert
file or files.
288 Verity Collection Reference

10 Using mkvdk
Creating and Indexing Collections
Using Field Extraction
The Verity field-parsing and field-extraction features allow you to populate collection
fields by specifying regular expressions that the Verity engine applies to the collection’s
documents to extract field data during indexing. Take the following steps to populate
fields by extracting field values:

1. Define the fields in the style.sfl and/or style.ufl file.

For more information about style.sfl and style.ufl, see “Defining Collection
Fields” on page 147.

2. Create a style.tde file containing the field extraction rules.

3. Run mkvdk using the -extract option, like this:

mkvdk -collection path -extract -bulk -insert BIFpath

where BIFpath is the pathname of a BIF specifying the documents to index (and to
extract field data from).

For a full discussion of the field extraction process and the rules that you can write into
style.tde, see “Populating Collection Fields” on page 171.

Using a Field-Extraction Work List
By default, when mkvdk processes documents for field extraction, it writes a work list (a
BIF file named worklist that contains the extracted fields) to the collection directory.
Use of the work list allows you to separate the field extraction from the indexing
process—if, for example, you want to edit the extracted fields before indexing or you
want to batch the indexing in a particular way.

If you want that separation to occur, you can run mkvdk with the -nosubmit,
-noservice, or -noindex option, like this:

mkvdk -collection path -extract -nosubmit -bulk -insert BIFpath

In this case, the extracted fields are written to the work list in the collection directory, and
an internal BIF is created to specify the documents. In a separate, later action—perhaps
after manually editing the work list—you can run mkvdk again to add the documents
and revised field data to the collection.

mkvdk -collection path
Verity Collection Reference 289

10 Using mkvdk
Managing Collections
If you do not want this separation to occur and you do not even want the work list to be
saved, you can suppress its creation by using the -nosave option (in place of
-nosubmit). The use of -nosave is not common.

Managing Collections

The mkvdk tool offers a broad range of collection-management capabilities.

Updating Document Content and Fields

You can use a bulk insert file to update a collection, that is, to re-index changed
documents or insert updated values into existing fields. To perform the update, you
submit a BIF to mkvdk and use the -bulk option along with the -update option.

The following command updates the collection at collpath by replacing all current
information related to the documents specified in the bulk insert file at BIFpath with
new, re-indexed information:

mkvdk -collection collpath -bulk -update BIFpath

Note You can mix new documents with updated documents in your BIF. For
a document that is not already in the collection, specifying -update is
equivalent to specifying -insert.

Deleting Documents

You can use mkvdk -delete option to delete documents from a collection. The
following command deletes the two specified documents from a collection:

mkvdk -collection collPath -delete fileSpec1 fileSpec2

are document keys appropriate to the current gateway. You can alternatively use the
@docList argument to specify a file containing a list of document keys.

The following command specifies bulk deletion of a set of documents:

mkvdk -collection collPath -bulk -delete BIFpath
290 Verity Collection Reference

10 Using mkvdk
Managing Collections
where BIFpath specifies a bulk insert file that identifies the files to delete. It can be the
same BIF used to insert documents; the only difference is that the -delete flag is
specified instead of -insert (or instead of no flag).

Note The -delete option actually only marks documents for deletion. After
deleting documents from a collection in this way, you should perform a
squeeze on the collection to remove the document keys. For instructions,
see “Squeezing” on page 294. See also the discussion of squeezing in the
chapter on managing collections in the Verity K2 Dashboard Administrator
Guide.

Updating Fixed-Width Collection Fields Without Re-Indexing

You can use a bulk insert file to update fixed-width fields in a collection without
re-indexing the documents. To do this, you create a BIF containing the document field
information to be updated, then run mkvdk with the -modify flag.

By default, the Verity engine takes the collection off line, then reads the bulk insert file,
updates values for the requested fields, writes information to collection files (without
rewriting the partition), and rebuilds the indexes for any indexed fields. After the
updated collection information is committed to disk, the engine brings the collection
back on line, so it is once again available for searching.

If you need to leave the collection in an online state while updating it, you can use the
-online option:

mkvdk -collection collPath -bulk -modify -online BIFpath

Note Each document record in your BIF should contain only the VdkVgwKey
field plus collection fields of type fixwidth. Collection field types are
described in “Field Types” on page 149.

Backing Up a Collection

You can use the -backup option to create a backup of a collection. The following
command backs up the collection at collPath into the directory backupPath.

mkvdk -collection collPath -backup backupPath

mkvdk deletes the contents, if any, of the backup directory before copying the new
collection into it. If the backup directory does not already exist, mkvdk creates it.
Verity Collection Reference 291

10 Using mkvdk
Managing Collections
Purging a Collection

Purging a collection means deleting all document information from it, but not deleting
the collection itself. Purging leaves the collection directory structure intact.

Purging might be necessary if you have changed the collection’s style set or its indexing
starting points, or otherwise need to remove all currently indexed content before
re-indexing.

With mkvdk, you use the -purge option to purge a collection. By default, purging occurs
as a foreground process; to purge in the background, add the -purgeback option.

The following command purges the collection specified by path:

mkvdk -collection path -purge

The following command purges the collection in the background.

mkvdk -collection path -purge -purgeback

IMPORTANT A collection must be offline when you purge it.

To wait a specified amount of time before starting the purge, add the -purgewait
option to the command line. With -purgewait, you specify the number of seconds that
mkvdk is to delay before starting the purge. If you use -purgewait but specify no value
for it, the wait is 600 seconds.

The following command purges the collection specified by path, after waiting 300
seconds:

mkvdk -collection path -purge -purgewait 300

Repairing a Collection

A collection needs repair if it has corrupted partitions. You will know that repair is
required if mkvdk reports the state of a collection as

State = Collection needs repair

In such a situation, use the -repair option of mkvdk, as in this example:

mkvdk -collection path -repair

If you manually repair a collection instead of having mkvdk do it, run the mkvdk
-repair command after the repair, to enable the collection. (For manual repair
assistance, contact Verity Technical Support.)
292 Verity Collection Reference

10 Using mkvdk
Optimizing Collections
Optimizing Collections

There are several ways that you can use mkvdk to create collections that are optimized for
various purposes.

Using Optimized Indexing Modes

By using the -mode option of mkvdk, you can optimize a collection for various broad
modes of usage. The -mode option controls the way the collection is built, depending on
the value of mode:

-mode mode

Indexing with these modes is described in more detail in Chapter 3, “Setting Indexing
and Search Policies.” These are the available values for mode:

generic. The standard indexing mode. Gives the best overall average performance.
For more information, see “Generic Mode” on page 88.

fastsearch. Optimized for fastest return of results at search time. For more
information, see “Fast Search Mode” on page 89.

bulkload. Optimized for indexing large numbers of documents through BIFs. For
more information, see “Bulk Load Mode” on page 89.

newsfeedidx. Optimized for indexing frequent small batches of documents without
falling behind. For more information, see “News Feed Indexer Mode” on page 90.

newsfeedopt. Merges partitions created by the newsfeedidx mode. For more
information, see “News Feed Optimizer Mode” on page 90.

rdonly. Disables writing to the collection after indexing. For more information, see
“Read Only Mode” on page 91.

If you do not include the -mode option when indexing with mkvdk, the default mode
(generic) is used.
Verity Collection Reference 293

10 Using mkvdk
Optimizing Collections
Using the -optimize Option

By using the -optimize option of mkvdk, you can perform various specific
optimizations on a collection. Most of these optimizations are more narrowly focused
than the optimizations performed by the indexing modes described in the previous
section. (In fact, the indexing modes are mostly made up of combinations of these specific
optimizations.)

You can perform one or several optimizations in a single command, by following the
-optimize option with one or more optimization keywords:

-optimize keyword[-keyword...]

If you specify multiple keywords, separate them with hyphens, as in

-optimize maxmerge-squeeze-readonly

These are the available optimization keywords:

The following sections discuss the optimizations you can perform with these keywords,
as well as with other options.

Squeezing

When a document is deleted from a collection, the space that it occupied is not recovered.
The document is merely marked as deleted, and it is not available for subsequent
searches. The Verity technique squeezing actually removes deleted documents from the
collection’s document table and word indexes, creating a smaller collection and reducing
the collection’s disk space. The smaller collection has a more efficient structure that uses
somewhat less memory and can be searched somewhat faster.

It is safe to squeeze a collection at any time. You do not need to temporarily disable a
collection for squeezing, because the mkvdk self-administration capability assigns a new
revision code to the collection and ensures that it remains available for searching and
servicing. After a squeeze has occurred, the Verity engine points the application to the
new collection data.

maxclean maxmerge ngramindex

publish readonly spanword

squeeze tuneup vdbopt
294 Verity Collection Reference

10 Using mkvdk
Optimizing Collections
Squeezing is a significant update to a collection. If users are reviewing search results at
the time when squeezing occurs, the search results may be invalidated after the squeeze
completes.

To perform a squeeze, you use the squeeze optimization keyword with the -optimize
option, as in this example:

mkvdk -collection path -optimize squeeze

Incremental Squeeze

Incremental squeeze is a collection optimization feature that allows the application
administrator to save on the disk space required for squeezing a collection. Incremental
squeeze uses significantly less disk space to squeeze a collection than does a normal
squeeze.

When normal squeezing is performed on a collection, the disk space required can be up
to twice the size of the collection. During a squeeze, all collection partitions that have
deleted documents are recreated without the deleted documents. After the squeeze, the
original partitions are removed. During the time of squeezing, both the old and new
partitions exist, allowing for continuous search access to the collection but occupying
perhaps nearly double the space.

With incremental squeeze, the Verity engine squeezes the partitions in the collection one
by one. After each partition is squeezed into a new partition, the corresponding old
partition is immediately removed. The behavior of incremental squeeze ensures that the
extra disk space required to squeeze a collection is no more than the size of the largest
partition.

To implement incremental squeeze, you run mkvdk with a set of style files that include a
style.plc file with a special /incremental_squeeze=YES entry. The entry is
specified as an attribute to the indexing mode used. here is a sample style.plc file that
implements incremental squeeze with the default indexing mode:

$control: 1
 policy:
 {
 mode: default
 /inherit=generic
 /incremental_squeeze=yes
 }

With this style.plc file, the Verity engine performs an incremental squeeze when an
mkvdk call includes the -optimize squeeze option.
Verity Collection Reference 295

10 Using mkvdk
Optimizing Collections
Creating a Spanning Word List

A collection consists of one or more partitions, each of which includes a word index.
During search processing, the Verity engine needs to separately load in and search the
word index from each partition. In a large collection with numerous partitions, the
presence of multiple word indexes can slow searching significantly.

You can improve search speed in large collections by creating a spanning word list, a word
index that encompasses all the partitions. A spanning word list gives a search application
quicker access to documents by allowing it to search more efficiently across the entire
collection.

Note For spelling suggestion to function in a search application, a spanning
word list is required for each collection searched.

Potential disadvantages of creating a spanning word list include the extra indexing time
required to construct it, and the somewhat larger collection size that results.

You can use mkvdk to create a spanning word list in two ways. One method is to use the
spanword optimization keyword with the -optimize option:

mkvdk -collection path -optimize spanword

An alternative method is to use the -words option:

mkvdk -collection path -words

Creating an ngram Index

An ngram index is a collection structure that improves the search performance for
queries that need to match partial words. VQL queries that use the <TYPO> or
<WILDCARD> operators, for example, benefit greatly from having an ngram index.

The disk space required for the ngram index is not significant; it represents a very small
percentage of the total size of the collection. Building an ngram index does take some
time, however, so applications that are not dependent on fast wildcard searches may not
need it.

Note If you create an ngram index, you must also create a spanning word list.
296 Verity Collection Reference

10 Using mkvdk
Optimizing Collections
Note For spelling suggestion to function optimally in a search application, an
ngram index is recommended for each collection that is searched.

You can use mkvdk to create an ngram index in two ways. One method is to use the
ngramindex optimization keyword with the -optimize option. The following
example creates both a spanning word list and an ngram index:

mkvdk -collection path -optimize spanword-ngramindex

An alternative method is to use the -wordindex option. The following example also
creates both a spanning word list and an ngram index:

mkvdk -collection path -words -wordindex

Creating a Topic-Set Index

If a topic set is attached to your collection, you can index it to shorten search and retrieval
time. To create the topic-set index, the Verity engine searches the collection using each of
the topics in the topic set and stores the results. By holding pre-computed results of all
topic searches, the topic index allows for much faster searching.

Potential disadvantages of creating a topic-set index are that it increases the time
required to index a collection and that it increases the collection size.

To create the topic-set index, you use the -topicset option of mkvdk and provide a
path to the topic set. For example:

mkvdk -collection collPath -topicset topicsetPath

The topic-set index is stored in the topicset subdirectory of the collection directory.

Note When a topic set is first created with the mktopics command-line tool, it
has an index type (“normal” or “named”), which determines what kind of
topic-set index will be created if the topic set is indexed. For more
information, see the chapter on building topic sets from the command line
in the Verity Query Language and Topic Guide.
Verity Collection Reference 297

10 Using mkvdk
Optimizing Collections
Optimizing Partitions

You can decrease the number of partitions in a collection to a minimum number by using
mkvdk to perform a merge. The merge operation makes each partition as large as possible
(containing up to 64,000 documents), so that the least number of partitions is used to hold
all the collection’s documents. Having fewer partitions can improve search performance.

To perform the merge, use the maxmerge optimization keyword with the -optimize
option:

mkvdk -collection path -optimize maxmerge

Cleaning Up and Publishing

Before making a collection available to search-application users, it is typical to perform
cleanup procedures on it. It might also be desirable to make it read-only, to prevent
accidental or malicious alteration of any of its data. A number of mkvdk housekeeping
options are available for these purposes.

Cleanup. To perform the most comprehensive cleanup possible and to remove
out-of-date collection files, use the maxclean optimization keyword with the
-optimize option:

mkvdk -collection path -optimize maxclean

Performing this cleanup is recommended only when you are preparing an isolated
(never updated or changed) collection for publication.

Tuneup. A tuneup consists specifically of a merge and the creation of a spanning word
list. Use the tuneup optimization keyword with the -optimize option:

mkvdk -collection path -optimize tuneup

Performing a tuneup is equivalent to specifying -optimize maxmerge-spanword.

Packing. Each collection includes a proprietary structure (VDB) that supports fast
access to document information in the collection. Optimizing the VDB packs its
information into a dense format that allows for extra-fast access. VDB optimization
happens during normal indexing operations, but you can also perform it manually,
using the vdbopt optimization keyword with the -optimize option.

mkvdk -collection path -optimize vdbopt

Read-only. Use the readonly optimization keyword with the -optimize option to
prevent a collection from being altered in any way.
298 Verity Collection Reference

10 Using mkvdk
Controlling mkvdk Settings
mkvdk -collection path -optimize readonly

Naturally, you would not want to perform this optimization on a collection that might
be updated in the future. It is appropriate for collections that you are publishing as
static collections, perhaps on a CD-ROM.

Publishing. Once your collection is finalized, and if you never expect to update it, you
can use the publish optimization keyword with the -optimize option to prepare it
for final publication, such as to a network server or CD-ROM:

mkvdk -collection path -optimize publish

This optimization includes all the other optimizations available through the
-optimize option, except for ngramindex. In other word, it is equivalent to

-optimize maxclean-maxmerge-readonly-spanword-squeeze-tuneup-vdbopt

Controlling mkvdk Settings

This section describes how to use mkvdk options and parameters to change global
collection characteristics or to affect the functioning and out put of mkvdk itself.

Accessing Secure Repositories

If mkvdk requires access to a secure repository, you can use the -credentials option to
pass a user name and password to the gateway. The option takes this form:

-credentials username[:password][:domain][:mailbox]

where -credentials is followed by the specific login credentials that are required by
the gateway involved.

Specifying Absolute or Relative Collection Paths

A Verity collection stores the paths to its files in one of two ways:

A relative path shows the location of the file relative to the collection’s directory.

An absolute path shows the global location of the file, independent of the location of
the collection’s directory.
Verity Collection Reference 299

10 Using mkvdk
Controlling mkvdk Settings
An individual collection can contain all relative, all absolute, or a mixture of relative and
absolute pathnames. When indexing a document, the Verity engine simply uses the
pathnames as provided in the dockey arguments on the mkvdk command line. Partial
paths are taken as relative to the collection directory; the concept of “current working
directory” has no significance to the engine.

In general, relative paths are the most versatile and portable. A convenient way to
manage a set of documents and its associated collection is to set up a parent directory
that contains both the collection and the repository. However, there are two situations in
which absolute paths are preferable:

Collections on Windows require absolute paths unless the search is being conducted
from the same drive that contains the collection and the documents. This is because
these systems use drive letters. It is not possible to create a relative path that crosses
from one drive letter to another. Thus, relative paths cannot be used if a document
exists on a different drive from the collection.

Absolute paths are also required when the collection and the repository will not exist
together as a unit. This happens, for example, when the two are stored in directories
far removed from each other. This would be the case when the data is owned by
another application.

In general, UNIX systems are the most flexible. Their symbolic linking facilities can be
used to work around difficult situations. For example, if a collection that was built on a
Windows platform using absolute paths (starting with drive letters) is moved to UNIX,
symbolic links with names like E: can be created in order to use the collection.

Working With Locales

Every Verity collection is created within the context of a single Verity locale. The
collection’s documents are presumed to be in the language (or languages) of that locale
and are processed according to that locale’s rules.

Whenever mkvdk executes, it establishes a session locale. You can explicitly specify the
session locale using the -locale option on the command line. If you do not specify a
locale, the default session locale (usually uni) is used.

When you create a collection, use the -locale option if you want the collection to be in
a locale other than the default.
300 Verity Collection Reference

10 Using mkvdk
Controlling mkvdk Settings
Note If you specify uni for the session locale, you can further specify a default
session language, by adding a language designation, like this:

-locale uni/fr

If uni is the default session locale, specifying no locale or specifying uni
without a language designation is equivalent to specifying uni/en.

The locales and language codes supported by Verity are listed in Appendix A of the
Verity Locale Configuration Guide.

Working With Character Sets

Every collection uses a specific character set, the default (or internal) character set of the
collection’s locale. When you index a collection and the command line specifies the
documents to be indexed, those documents are assumed to be in the collection’s internal
character set unless you specify their character set using the -charmap option.

If you do specify a character set, the documents you submit must be in that character set.
They are then converted to the collection’s character set by the Verity engine before
indexing.

IMPORTANT If you specify a character set using -charmap, that character set
must be one of the character sets supported by the locale of the
collection you are accessing. Supported character sets for each
Verity locales are listed in Appendix A of the Verity Locale
Configuration Guide.

If you submit documents in a BIF (bulk insert file; see “Indexing With a BIF” on
page 287), each document can be in a different character set, because the BIF can specify a
character set for each document. (The BIF itself must be in the collections’s character set.)

Specifying Date Formats

During indexing, if you use the mkvdk options -extract (for extraction of field data) or
-bulk (for submission of field data through a BIF), the field data may include dates. By
default, the Verity engine interprets ambiguous numerical dates (such as 04/04/04) as
being in month-day-year (MDY) format, where M represents a two-digit month, D
represents a two-digit day, and Y represents a two-digit year.
Verity Collection Reference 301

10 Using mkvdk
Controlling mkvdk Settings
If the data you are submitting uses a different ordering of date components, comparison
operations on those date fields will not work correctly. To correct this problem, you can
use the -datefmt option to specify that the date information you are submitting is in a
different format from MDY. The following format values are supported:

MDY
DMY
YMD
YDM
USA
EUR

See“mkvdk Reference” on page 307 for explanations of each of the formats.

Managing Memory Usage

You can use options to set certain characteristics of the VDK session that mkvdk
establishes when it executes.

Maximum memory. You can specify the maximum amount of memory that mkvdk is
permitted to use when processing a command. Use the -maxmemory option to set this
value (in KB). For example:

mkvdk -collection path -maxmemory 20000 -bulk -insert BIFpath

If you do not specify -maxmemory, mkvdk will use as much memory as it can. You
might want to set an explicit value to minimize interference with other applications.

Maximum open files. You can specify the maximum number of files that mkvdk is
permitted to keep open at one time. Use the -maxfiles option to set this value. For
example:

mkvdk -collection path -maxfiles 100 -bulk -insert BIFpath

If you do not specify -maxfiles, the default value (50) applies.

Disk cache size. You can specify the size of the VDK disk cache that is set up when
mkvdk executes. Use the -diskcache option to set this value (in KB). For example:

mkvdk -collection path -diskcache 1000 -bulk -insert BIFpath

If you do not specify -diskcache, the default value applies.

In general, a large cache size is most useful for searching, and a small cache size for
indexing.
302 Verity Collection Reference

10 Using mkvdk
Controlling mkvdk Settings
Managing System Messages

You can use command options to control the level of detail that mkvdk uses in handling
errors and system messages, and to specify how it saves or displays them.

To control how much information mkvdk writes to the console screen, use the -outlevel
option and specify a number between 1 and 127.

To control how much information mkvdk writes to a log file, use the -loglevel option
and specify a number between 1 and 127. If you use -loglevel, you must also use the
-logfile option to specify the file that mkvdk should write the log information to. (No
log file is written if you do not specify these options.)

You determine the value to supply for -outlevel or -loglevel by adding up the
number values for any of the following message types:

Fatal=1

Error=2

Warning=4

Status=8

Info=16

Verbose=32

Debug=64

For example, to specify that only fatal, error, and warning messages should be logged,
but that all messages up through the verbose level should be displayed onscreen, the
command line could include these options:

-outlevel 63 -loglevel 7 -logfile filePath

The default value for both -outlevel and -loglevel is 15 (includes fatal, error,
warning, and status messages).

These other options also affect the output of system messages:

You can use the -verbose option—which is equivalent to specifying
-outlevel 63—when you want mkvdk to write all system messages up through the
verbose level to the screen.

You can use the -debug option—which is equivalent to specifying
-outlevel 127—when you want mkvdk to write all system messages plus
debugging information to the screen.
Verity Collection Reference 303

10 Using mkvdk
Servicing Collections
Regardless of the current value for -outlevel, you can force mkvdk to write no more
than fatal and error messages to the screen by including the -quiet option on the
command line.

If you want mkvdk to return error codes when it encounters bad document keys
during indexing, use the -errorcodes option.

Servicing Collections

By default, when you invoke mkvdk to index a collection, a two-step process occurs:

1. mkvdk submits the documents to the collection for indexing.

2. mkvdk retrieves the documents and indexes them into the collection.

The indexing step is an example of servicing a collection, and it is separate from the
submission step. The two steps need not occur in immediate sequence, and they need not
even be performed in the same session (that is, by the same invocation of mkvdk.)

You can use multiple executions of mkvdk, using various service-related options, to
divide and share the servicing of collections. For example, you could set up a persistent
mkvdk session that periodically looks in a collection for documents to index, and you
could then—as needed—invoke mkvdk non-persistently to submit (but not index)
documents to that collection. The persistent session would then pick up and index the
submitted documents.

This section describes how to specify different kinds of servicing capability for different
mkvdk sessions.

Setting the Service Level

There are three general classes of service that can be performed on a collection:

Indexing-related tasks such as inserting, deleting, and updating documents.

Optimization tasks such as creating special indexes and merging partitions.

Housekeeping tasks such as removing corrupted or unneeded files.

mkvdk recognizes several service levels that cover these classes. You can use the
-servlev option, along with one or more keywords, to set the level of servicing that
mkvdk is permitted to perform on a given collection. For example:
304 Verity Collection Reference

10 Using mkvdk
Servicing Collections
mkvdk -collection path -servlev optimize

In this example, optimization is the only form of servicing that this session of mkvdk can
perform.

The keywords that you can specify with -servlev are the following:

search. Enable search and retrieval.

insert. Enable adding and updating documents.

optimize. Enable collection optimization. See “Using the -optimize Option” on
page 294.

assist. Enable building of a spanning word list or ngram index.

housekeep. Enable housekeeping of unneeded files and partitions.

delete. Enable document deletion.

backup. Enable backup of the collection.

purge. Enable purging of the collection.

repair. Enable collection repair. See “Repairing a Collection” on page 292.

dataprep. Same as search-index-optimize-assist-housekeep.

index. Same as insert-delete.

You can allow multiple levels of servicing by combining keywords on the command line,
separated by hyphens:

mkvdk -collection path -servlev search-optimize-assist

If you specify no service level, it is equivalent to specifying

-index -optimize -housekeep

Prohibiting Specific Service Levels

You can also use the following options to deny particular levels of service to mkvdk:

No service. Use the -noservice option to prevent any servicing from occurring.

No housekeeping. Use the -nohousekeep option to disallow housekeeping.

No indexing. Use the -noindex option to disallow indexing.

No optimization. Use the -nooptimize option to disallow optimization.
Verity Collection Reference 305

10 Using mkvdk
Servicing Collections
Persistent Servicing

You can use the -persist option to run mkvdk as a persistent process. If you do that,
you can then use the -sleeptime option to perform servicing repeatedly, at specified
intervals.

The following command runs mkvdk as a persistent process and repeatedly services the
collection at path, with idle waits of num seconds between servicings.

mkvdk -collection path -persist -sleeptime num

If you specify -persist but do not give a value for -sleeptime, mkvdk uses the
default idle wait time of 30 seconds.

Servicing Examples

This section gives a few simple examples of configuring servicing with mkvdk.

Default Servicing
Whenever mkvdk is invoked against a collection, it services the collection. If no
service-related options are specified on the command line, mkvdk performs the default
levels of service: it indexes, optimizes the collection, and performs housekeeping.

The following command performs default servicing only:

mkvdk -collection path

This command might or might not cause indexing, optimization, or housekeeping to
occur, depending on whether previous submissions are pending.

Periodic Indexing
The following command executes mkvdk as a persistent process that, once an hour,
checks the collection at path for newly submitted documents and indexes them into the
collection:

mkvdk -collection path -persist -sleeptime 3600 -servlev index

Periodic Optimization
The following command executes mkvdk as a persistent process that, once a day,
optimizes the collection at path:

mkvdk -collection path -persist -sleeptime 86400 -servlev optimize
306 Verity Collection Reference

10 Using mkvdk
mkvdk Reference
The kind of optimization performed depends in the current indexing mode, which you
can specify with the -mode option.

Document Submission (No Indexing)
The following command submits the documents specified in BIFpath for indexing into
the collection at path, but does not perform the indexing or any other service:

mkvdk -collection path -noservice -bulk -update BIFpath

Using this command in conjunction with the periodic-indexing and
periodic-optimization commands listed in the previous sections allows you to spread the
collection-servicing burden among several processes.

mkvdk Reference

This section summarizes the mkvdk command syntax and lists all command-line
options.

Command Syntax

mkvdk -collection path [option] [...] [docSpec] [...]

-collection path is required to create or open a collection. All command options
must precede the first docSpec parameter

If docSpec refers to a file containing a list of files, it should consist of an at-sign (@)
followed by the file name containing the list, as in @filelist.

Command Options

Table 10-1 describes the mkvdk command-line options. The options are listed in
alphabetic order.
Verity Collection Reference 307

10 Using mkvdk
mkvdk Reference
Table 10-1 mkvdk command-line options

Option Description

-about This option shows information about the collection, such as its
description and the date when it was last modified.

-autodel This option deletes the bulk insert file or files when the bulk
submission work is finished.

-backup path This option backs up the collection into the directory in the
specified path.

Note: To ensure that the backup does not include any old data from
previous backups, the contents in the specified directory are
deleted before the new backup is created.

-bulk This option tells mkvdk to interpret docSpec as a bulk insert file.
The option can be used with -insert, -update, -delete, and
-modify.

-charmap charset_name Use the character set specified in charset_name to display the
contents of the collection. charset_name must be the name of one
of the supported character sets for the collection’s locale.

This option is not required if you want to display the collection data
using its locale’s internal character set.

Appendix A of the Verity Locale Configuration Guide lists the
supported character sets for each Verity locale and indicates which
one is the internal character set.

-collection path Specifies the path of the collection to create or open. This is required
to execute mkvdk.

-common Specifies the path of the Verity common directory. If you do not use
this option, the Verity engine looks for the common directory in the
vicinity of the mkvdk executable, and then along the executable
search path, determined by your OS path settings.

Using this option is not recommended in most situations.

-create Creates a collection in the specified -collection directory. It
creates the directory structure, determines the index contents and
sets up the document-table schema according to the style files used.
If the specified collection already exists, mkvdk exits rather than
overwriting the existing collection.

-credentials user When accessing a secure repository, pass the login credentials
specified in user to the gateway. Depending on the login
requirements, user can be

username[:password][:domain][:mailbox]

-datapath path This option is not supported.
308 Verity Collection Reference

10 Using mkvdk
mkvdk Reference
-datefmt format This option is used to convert a date field value into Verity’s
internal data representation, and can be used in conjunction with
the mkvdk options -extract (for the field extraction feature) and
-bulk (for the bulk submit feature).

The named format string identifies to the date parsing routines as
to what order dates are written in when the date string only consists
of a sequence of numbers (for example, 03/03/96). The K2 engine
interprets the numbers in MDY format, where M represents a
two-digit month, D represents a two-digit day, and Y represents a
two-digit year. The default is MDY.

MDY: month-day- year (US format, the default).

DMY: day-month-year (European formats).

YMD: year-month-day (ISO international format).

YDM: year-day-month (Swedish format).

USA: US format (the same as MDY).

EUR: European format (the same as DMY).

-debug Runs mkvdk in debugging mode. Equivalent to specifying
-outlevel 127.

-delete Marks the specified documents as deleted and makes them
unavailable for searches. To actually remove deleted documents
from the collection’s document table and word indexes, use the
squeeze keyword.

-description desc Sets the collection’s description. Enter any alphanumeric text you
like, surrounded by quotes (such as “This collection contains
electronic mail from ABC Company.”)

-diskcache num Sets the size of the VDK cache (in KB).

-errorcodes Outputs error messages when mkvdk encounters bad document
keys.

-extract Extracts field values from documents, using the field extraction
rules specified in the style.tde file.

-help Displays mkvdk syntax options.

-insert This option adds documents to the collection. This is the default
option for mkvdk.

NOTE: Collections created by the Verity Gateway Developer’s Kit
(GDK) are not supported by mkvdk.

Table 10-1 mkvdk command-line options (continued)

Option Description
Verity Collection Reference 309

10 Using mkvdk
mkvdk Reference
-locale locale_name The name of the locale in which the collection you are accessing
was created. locale_name must be the name of a locale for which
you are licensed, and must be one of the Verity locales listed in
Appendix A of the Verity Locale Configuration Guide.

This option is not required if the collection uses the default session
locale (usually uni).

-logfile file_name Saves messages in the specified file.

-loglevel num Indicates which message types to route to the optional log file.
Valid values are determined by adding numbers together that
correspond to the desired message types.

Fatal=1

Error=2

Warning=4

Status=8

Info=16

Verbose=32

Debug=64.

Default value = 15 (Fatal + Error + Warning + Status).

-maxfiles num Sets the maximum number of files that mkvdk can have open at
once. Default = 50.

-maxmemory Sets the maximum amount of memory that mkvdk is permitted to
use.

-mode mode Optimizes the collection for one of the following specific modes
of usage:

generic. (Default) The standard indexing mode.

fastsearch. Optimized for fastest return of results at search
time.

bulkload. Optimized for indexing large numbers of
documents through BIFs.

newsfeedidx. Optimized for indexing frequent small
batches of documents without falling behind.

newsfeedopt. Merges partitions created by the
newsfeedidx mode.

rdonly. Disables writing to the collection after indexing.

For more information, see “Built-in Indexing Modes” on page 88

Table 10-1 mkvdk command-line options (continued)

Option Description
310 Verity Collection Reference

10 Using mkvdk
mkvdk Reference
-modify Use this option along with the -bulk option to update fixed-width
fields in an existing collection. Field name/value pairs are specified
in a bulk insert file.

Note: The Verity engine takes the collection off-line to perform the
operation, then brings it back up, unless you also specify -online.

-nohousekeep This option prevents housekeeping by this instance of mkvdk.
Housekeeping includes deleting files that are no longer needed.
Using this option turns off the service level VdkServiceType

-noindex This option prevents indexing by this instance of mkvdk.
Documents will not be inserted or deleted. Using this option turns
off the service level VdkServiceType_Index.

-nolock This option turns off file locking. Locking is on by default.

-nooptimize This option prevents optimization by this instance of mkvdk.
Using this option turns off the service level
VdkServiceType_Optimize. The service types determine what
type of work the Verity engine and its self-administration features
will execute on a collection.

-nosave Specifies that a work list, which is generated by mkvdk automati-
cally when the -extract option is used, will not be saved in the
collection directory in a file called worklist (in the Verity bulk
insert file format). By default, mkvdk saves the work list in the
worklist file.

-noservice This option prevents collection servicing (servicing includes
indexing) by this instance of mkvdk.

-nosubmit Specifies that a work list, which is generated by mkvdk automati-
cally when the -extract option is used, will not be submitted to
the indexing engine and will be saved in the collection directory in
a file called worklist (in the Verity bulk insert file format). This
option enables mkvdk to process field extraction separately from
other indexing tasks.

-numdocs num This option specifies the number of documents to insert or delete
from the bulk insert file or files. Note that if you specify multiple
bulk insert files and use the -numdocs option, the -numdocs
setting is applied to all of the files.

-offset num This option specifies the offset into a bulk insert file or files. Note
that if you specify multiple bulk insert files and use the -offset
option, the offset is applied to all of the bulk insert files.

Table 10-1 mkvdk command-line options (continued)

Option Description
Verity Collection Reference 311

10 Using mkvdk
mkvdk Reference
-online Use this option, along with -bulk and -modify, to update
fixed-width fields in an existing collection without first bringing
the collection offline. Field name/value pairs are specified in a bulk
insert file.

-optimize keyword Performs specific optimizations on the collection, based on the
following values for keyword:

maxclean. Perform the most comprehensive housekeeping
possible and remove out-of-date collection files. Recommended
only when you are preparing an isolated collection for
publication.

maxmerge. Perform maximal merging to create partitions that
are as large as possible (up to 64000 documents each).

spanword. Create a spanning word list across all the
collection’s partitions.

squeeze. Remove information related to deleted documents
from the collection. Squeezing recovers space in the collection
and improves search performance.

tuneup. A convenience keyword; includes maxmerge and
spanword.

readonly. Make this collection read-only. Appropriate for
CD-ROM collections.

publish. A convenience keyword; includes all of the
optimization types except ngramindex.

Use this keyword to optimize the collection for the best possible
retrieval performance, such as for publication to a network on a
server or on a CD-ROM.

vdbopt. Build optimized VDBs (Verity internal databases that
contain data from the indexed documents).

ngramindex. Build an ngram index for the collection.

If you build an ngram index, you must also build a spanning
word list.

Note: You can specify more than one optimization keywords by
constructing a string separated by hyphens, such as
maxmerge-spanword-squeeze.

Table 10-1 mkvdk command-line options (continued)

Option Description
312 Verity Collection Reference

10 Using mkvdk
mkvdk Reference
-outlevel num Indicates which message types to display to the console. Valid
values are determined by adding numbers together that
correspond to the desired message types:

Fatal=1

Error=2

Warning=4

Status=8

Info=16

Verbose=32

Debug=64.

Default value = 15 (Fatal + Error + Warning + Status).

-persist This option services the collection repeatedly, at default intervals of
30 seconds. Use the -sleeptime option to set a different interval.

-purge This option waits the amount specified by the purgewait option
and then deletes all documents in the collection, but not the
collection itself; it leaves the collection directory structure intact. To
specify a different wait period, use the -purgewait option instead
of -purge. If you do not use purgewait, the default is 600
seconds. Note that -purge deletes all documents in a collection,
but does not delete the collection itself. To delete a collection, use
operating system commands such as the rm command on UNIX to
remove the collection directory structure and control files.

-purgeback This option, used with the -purge option, performs a purge in the
background.

-purgewait seconds This option specifies to the -purge option how many seconds to
wait. If you do not specify sec, the default is 600.

-quiet This option displays only fatal and error messages to the console. It
overrides the -outlevel setting.

-repair This option attempts to repair corrupted partitions in a collection.
Use this option when mkvdk reports the state of a collection as
State = Collection needs repair.

Table 10-1 mkvdk command-line options (continued)

Option Description
Verity Collection Reference 313

10 Using mkvdk
mkvdk Reference
-servlev level Service level. The argument level is a string consisting of
keywords separated by hyphens, such as
search-index-optimize.

Values for level:

search. Enable search and retrieval.

insert. Enable adding and updating documents.

optimize. Enable collection optimization.

assist. Enable building of word list.

housekeep. Enable housekeeping of unneeded files.

delete. Enable document deletion.

backup. Enable backup.

purge. Enable background purging.

repair. Enable collection repair.

dataprep. Same as
search-index-optimize-assist-housekeep.

index. Same as insert-delete.

-sleeptime sec This option specifies the interval between service calls when
mkvdk is run with the -persist option.

-style dir This option specifies the style directory that contains the style files
to use in creating a collection. This option can only be used with the
-create option. If you do not specify this option when you use
mkvdk to create a collection, mkvdk uses the style files in the
common/style directory.

-synch This option performs work immediately. If this option is not used,
indexing work is done in the background, as time permits.

-topicset path This option creates a topic index for the collection based on the
specified topic set and stores it in the collection directory. This
facilitates efficient searches over the collection when using topics.

-update This option adds documents to the collection, replacing all previous
information about the specified documents.

NOTE: Collections created by the Verity Gateway Developer’s Kit
(GDK) are not supported by mkvdk.

-vdkhome This option specifies the path of the Verity VDK home directory. If
you do not use this option, the Verity engine looks for the VDK
home directory in the directory containing mkvdk, and then along
the executable search path, determined by your OS path settings.

Table 10-1 mkvdk command-line options (continued)

Option Description
314 Verity Collection Reference

10 Using mkvdk
mkvdk Reference
-verbose Output system messages to the screen, including all message levels
up through verbose. Equivalent to specifying -outlevel 63.

-wordindex This option builds an ngram index for the collection. This has the
same effect as using the option combination -optimize
ngramindex.

-words This option builds a spanning word list that covers all partitions in
the collection. This has the same effect as using the option
combination -optimize spanword.

By default, the collection is optimized before the spanning word list
is generated. To prevent optimization from occurring, use -words
in conjunction with -nooptimize.

Table 10-1 mkvdk command-line options (continued)

Option Description
Verity Collection Reference 315

10 Using mkvdk
mkvdk Reference
316 Verity Collection Reference

11
Using Bulk Insert Files

This chapter describes the format of bulk insert files and their usage to support collection
indexing.

About Bulk Insert Files

BIF Format

Inserting Documents into a Collection

Deleting Documents from a Collection

Supporting Continuous Feeds

Other Uses for the BIF Format

About Bulk Insert Files

A bulk insert file (BIF) is a text file that contains name-value pairs of data. The BIF format
is used by various Verity processes to import data from external sources or to export data
for later use.

The command-line tools mkvdk, vspider, and k2spider_cli can read BIFs to obtain
document data to submit to a collection for indexing and for populating collection fields.
Also, vspider and k2spider_srv can output BIFs containing document data for later
submission.

These tools can use BIFs to insert (add), update (replace), or delete documents from
collections.
317

11 Using Bulk Insert Files
BIF Format
This chapter discusses the use of bulk insert files only for manipulating documents in
collections. Other Verity components and products use the BIF format for other purposes,
as summarized in “Other Uses for the BIF Format” on page 326 and as fully documented
in other books.

BIF Format

A bulk insert file is a text file containing a list of records. Each record is a list of
name:value pairs. The first element in each record is the record key. Each record is
terminated with <<EOD>>. For example:

VdkVgwKey: ../docs/html/agenda.html
VLANG: en
CHARSET: utf8
TITLE: Conference Agenda
AUTHOR: Nancy Wilshire
<<EOD>>

VdkVgwKey: ../docs/html/sessions.html
VLANG: en
CHARSET: utf8
TITLE: List of Sessions
AUTHOR: Nancy Wilshire
<<EOD>>
...

This example uses the VdkVgwKey field as the record key. It specifies the document to be
inserted, update, or deleted from the collection that this BIF will be applied to. The other
fields in each record correspond to collection fields that will be populated with the data
for each document.
318 Verity Collection Reference

11 Using Bulk Insert Files
BIF Format
Statements

Every line in a BIF is a statement. Statements can be field definitions, record terminators,
or comments.

Comments
Two types of comment statements are allowed: blank lines and lines that begin with a
pound sign (#).

Record Terminator
Each record (set fields for a given key) is terminated by the character sequence <<EOD>>
(end of document).

Field Definitions
Field definitions are the principal content of a BIF. These rules apply:

Each field definition is a single name-value pair.

Each definition begins with the field name, which must begin in the first column of the
line. (No leading spaces allowed.)

Field names are case-insensitive.

Field names can contain any alphanumeric character, as well as the hyphen (-) and
underscore (_).

Field names must be terminated with a colon (:).

Field values begin after the colon and continue to the end of the line.

Leading and trailing blank spaces are stripped from the field value when the bulk
insert file is processed.

Single and double quotes surrounding the field value are stripped when the bulk
insert file is read. Blank spaces that occur between the quotes are preserved.

C-style escape sequences (such as \t representing a tab) are allowed in field names.
See “Escape Sequences and Special Characters,” following this list.

One field definition in each record must be the record key. For BIFs used to manipulate
documents in collections, that field must be VdkVgwKey.
Verity Collection Reference 319

11 Using Bulk Insert Files
BIF Format
Escape Sequences and Special Characters

If you need to use special characters in your bulk insert file, follow these guidelines.

Using Escape Sequences
An escape sequence is a set of characters that, together, represent one character that may
have a special significance. Escape sequences can be used in field values. The lead-in
character for an escape sequence is the backslash.

An escape sequence may be embedded within a character constant or string literal. In a
string literal, the apostrophe may be represented by itself or by its escape sequence. In a
character constant, the quotation mark may be represented by itself or by its escape
sequence.

You can use escape sequences in BIF fields to specify nonprintable ASCII characters or
characters special to the BIF parser, such as backslash and quotes, as indicated Table 11-1.

Table 11-1 Nonprintable ASCII characters

This string: Is interpreted as:

\b backspace

\e escape

\f formfeed

\n newline

\r carriage return

\t tab

\v vertical tab

\xnn a character represented by the hexadecimal value nn

\\ backslash

\" double quote

\' single quote
320 Verity Collection Reference

11 Using Bulk Insert Files
BIF Format
Escaping Pathname Separators
If your application is running on a Windows platform and any of your BIF fields contain
pathnames with Windows-style separators (backslashes), the backslashes must be
escaped (doubled). For example, a Windows pathname such as this:

C:\markets\data

must be specified in your BIF as:

C:\\markets\\data

Alternatively, you can use UNIX-style pathname syntax. The Verity engine correctly
interprets UNIX-style pathname syntax on all platforms.

Using the Backslash as a Literal Character
If you want a backslash to be interpreted as a literal character, the control file syntax must
include two backslashes instead of one backslash. When the Verity engine’s control file
reader encounters two backslashes in a row, it strips the first one and interprets the
second as a literal backslash.

BIF Character Set

The bulk insert file itself should always be in the internal character set for the current
locale (the locale of the collection to which it is to be applied).

BIF Size

There is no hard limit on the number of records that can be included in a BIF. However, to
avoid runtime memory-usage problems, Verity recommends that you keep individual
BIF files to 1K or fewer keys.

BIF Examples

Listing 11-1 file illustrates the BIF syntax, including the use of comments.

Listing 11-1 Example bulk insert file

Every document must have a key
VdkVgwKey: 538592765
Construct the pieces of the dispatch field that will
Verity Collection Reference 321

11 Using Bulk Insert Files
BIF Format
point at the text. The "document" starts at byte offset 1400
in text/d940116.txt and extends for 945 bytes.
DOC_FN: text/d940116.txt
DOC_OF: 1400
DOC_SZ: 945
Embed a hex character into a field value
Company: F.SNM \x1a Ti Group Plc (U.TI)
Use quotes to preserve leading or trailing white space
Hot: " "
End the document, then start a new one
<<EOD>>
The second document
VdkVgwKey: 538592766
DOC_FN: text/d940116.txt
DOC_OF: 2345
DOC_SZ: 690
Ddate: 16-Jan-94 06:05 am
Headline: *Zurich Noon Gold At 1100 GMT
Hot: "H"
<<EOD>>

Listing 11-2 shows a bulk insert file that contains four documents. The custom fields
TITLE and ACTOR fields will be populated in the collection if they are defined in the
collection's style.ufl file.

Listing 11-2 Bulk insert file with custom fields

TITLE: Dances with Wolves
ACTOR: Kevin Costner
VDKVGWKEY: docs/articl26
<<EOD>>

TITLE: Ghost
ACTOR: Patrick Swayze, Demi Moore, Whoopi Goldberg
VDKVGWKEY: docs/articl28
<<EOD>>

TITLE: Nightmare Before Christmas
VDKVGWKEY: docs/articl29
<<EOD>>
322 Verity Collection Reference

11 Using Bulk Insert Files
Inserting Documents into a Collection
TITLE: Gone with the Wind
ACTOR: Vivien Leigh, Clark Gable
VDKVGWKEY: docs/articl27
<<EOD>>

Inserting Documents into a Collection

Using a bulk insert file, you can associate field values with a set of documents and insert
those documents into a collection using mkvdk. You can either insert new documents or
update existing documents in the collection. Take these steps:

1. Define the document fields in the collection

Any field data included in your BIF must apply to fields that are already defined in the
collection. You define collection fields in the style files style.ufl and style.sfl.

For instructions on how to define collection field using these style files, see “Defining
Collection Fields” on page 147.

2. Create the BIF

Be sure to create the BIF in the same character set as the collection it will be used to
modify.

For each document to be inserted, include its location (file path, URL, etc.) in the
BIF’s VdkVgwKey field.

(You don’t need to define the VdkVgwKey field in the collection; it is already
defined in the collection’s style.ddd file.)

Note VdkVgwKey values must be unique across all collections that will be
searched in any one application. Non-unique document keys cause
application errors.

Add a field definition line for each of the fields whose data you are importing with
the BIF. Not all document records in the BIF have to include all fields being
imported; in each document record, add field-definition lines only for fields that
have data for that document.

Be sure to end each document record with <<EOD>> on its own line.
Verity Collection Reference 323

11 Using Bulk Insert Files
Deleting Documents from a Collection
3. Use mkvdk to submit the BIF

To submit the contents of the BIF to a collection, use the -bulk option of mkvdk, as
in either of these commands:

mkvdk -collection collname -bulk -insert filespec
mkvdk -collection collname -bulk -update filespec

where collname is the pathname (full or relative) of the collection to be updated,
and filespec is the pathname of the BIF.

Use the -insert option if the BIF specifies only new documents to insert in the
collection. Use the -update option if the BIF specifies updates to documents
already in the collection.

Note: It is safest to always use the -update option. If a document in the BIF is new
to the collection, it is properly inserted even if the -update option is specified. But
if you specify -insert and a document in the BIF is already in the collection, an
error can occur.

If you need to start processing the BIF from a position other than the beginning of
the file, use the -offset option of mkvdk, as follows:

mkvdk -collection collname -offset num -bulk filespec

where num is the offset (in bytes from the beginning of the file) at which to start.

If you want the BIF to be automatically deleted when processing is complete, use the
-autodel option of mkvdk, as follows:

mkvdk -collection collname -autodel -bulk filespec

If you need to limit the number of documents processed, use the -numdocs option
of mkvdk, as illustrated in the following example:

mkvdk -collection collname -numdocs num -bulk filespec

where num is the maximum number of documents to process from the BIF.

Deleting Documents from a Collection

You can also use a bulk insert file to delete documents from a collection. To delete all
references to a set of documents in a collection, use mkvdk as follows:

mkvdk -collection collname -delete -bulk filespec
324 Verity Collection Reference

11 Using Bulk Insert Files
Supporting Continuous Feeds
where collname is the full or relative pathname of the collection to be accessed, and
filespec is the pathname of the BIF specifying the documents to delete. The BIF can be
either a standard bulk insert file (see “BIF Format” on page 318) that, for example, may
have been used earlier to insert information into the collection, or it can have the simpler
format of one document key per line, like this:

VdkVgwKey: trn_log.c
VdkVgwKey: trn_misc.c
VdkVgwKey: trn_pars.c
VdkVgwKey: trn_work.c
VdkVgwKey: trn_wrte.c

Deleting files from a collection in this way does not by itself recover disk space; it simply
marks the specified documents as deleted and makes them unavailable for searching.

To physically remove information related to deleted documents from the collection’s
tables and indexes, thereby recovering disk space, you must use mkvdk with the
squeeze keyword. For more information, see “Using mkvdk” on page 283.

Supporting Continuous Feeds

If you are writing an application that reads data from a continuous feed such as the Dow
Jones or Reuters news service, you may want your application to continuously append
information to a single bulk insert file, rather than starting a new BIF every time the
collection is updated. For example, the application could append received documents to
a single BIF for an entire day, but use that BIF to add documents to the collection much
more frequently, perhaps every 30 seconds or 1 minute.

If you append continuously to a single BIF under these circumstances, your
collection-building application needs to know the offset into the BIF at which to start
each time it updates the collection, and how many documents it can add to the collection.
With mkvdk, you specify these values using the -offset and -numdocs command-line
options as mentioned in Step3, “Use mkvdk to submit the BIF” on page 324.

Using Verity Developer’s Kit, these options are implemented using the offset and
numdocs numbers in the VdkCollectionSubmitArgRec structure. When used, these
options permit the collection-building application to append and process documents at
the same time.
Verity Collection Reference 325

11 Using Bulk Insert Files
Other Uses for the BIF Format
Other Uses for the BIF Format

See the referenced documents for more information on how bulk insert files are used by
other Verity tools, products, and APIs.

Language Identification

The language-identification command-line tool optionally outputs bulk insert files that
include a language ID field for each analyzed document. The BIFs can then be used to
add documents to the appropriate collections. For example:

VDKVGWKEY:/data/french/francais.txt
VLANG: fr
CHARSET: 1252
<<EOD>>

VDKVGWKEY:/data/swiss/francais_deutsch.txt
VLANG: fr
CHARSET: 1252
<<EOD>>

This BIF shows that two documents were identified as predominantly French.

For more information on langID and its use of BIFs, see the Verity Locale Configuration
Guide.

Categories

The Verity Intelligent Classifier uses bulk insert files to add or remove documents from
categories in a taxonomy. For example:

VdkVgwKey: docs/demo_templates/searchresults.html
RemoveCategory: reports
<<EOD>>

VdkVgwKey: docs/products/keyview/index.html
AssignCategory: annual 10001 reports 10002
<<EOD>>
326 Verity Collection Reference

11 Using Bulk Insert Files
Other Uses for the BIF Format
This BIF removes the document searchresults.html from the reports category,
and adds the document index.html to two categories: annual and reports. (The
numeric values represent the ranking score to assign to the document in each of the two
categories.)

For more information on Intelligent Classifier’s use of BIF files, see the Verity Intelligent
Classification Guide.

Profile Nets

The mkprf command-line tool uses bulk insert files to add or remove queries from
profile nets. The queryText field is the only required field. For example:

queryText: Water
<<EOD>>

In this case, any document containing the word Water generates a query hit when
evaluated against the profile net created with this BIF.

For more information on mkprf and profile nets and their use of BIFs, see the Verity K2
Profiler Programming Guide.

Parametric Indexes

With the Parametric API, you can use bulk insert files to add or remove documents from
categories in a parametric index. You specify the documents to add or remove using the
document key, the document ID, or a query. For example:

QueryQuestion: installation
AssignCategory: field
LowerThreshold: 4000
UpperThreshold: 9000
<<EOD>>

QueryQuestion: News
RemoveCategory: news
<<EOD>>

This BIF assigns any document that matches the query “installation”, with a relevance
score between 4000 and 9000, to the field category. It also removes any document that
matches the query “News” from the news category.
Verity Collection Reference 327

11 Using Bulk Insert Files
Other Uses for the BIF Format
For more information on using BIFs with parametric indexes, see the Verity K2 Profiler
Programming Guide.
328 Verity Collection Reference

12
Using Other Collection Tools

This appendix describes useful tools for troubleshooting and maintaining collections.
This appendix includes these topics:

About the Collection Tools

didump

browse

merge

rcvdk

About the Collection Tools

The collection-management tools described here let you view some of the inner structure
of collections, search them from a command line, and perform certain optimizations on
them.

Note The collection-management tool mkvdk is described in “Using mkvdk” on
page 283.
329

12 Using Other Collection Tools
About the Collection Tools
Location

These command-line tools are all in the directory platformDir\bin, where platformDir
refers to the full path to the platform-specific directory for the K2 or VDK installation (for
example, usr/verity/k2/_ssol26 on Solaris).

Specifying Locale and Character Set

The -charmap and -locale options are available for rcvdk, didump, and browse to
allow you to access and display information in a variety of languages and character sets.
Here is how they are used:

Option Description

-charmap name Specifies the character set used by information (such as a BIF)
that the tool passes to the Verity engine, and the character set
that the Verity engine should use when passing information
(such as index contents) back to the tool.

name should be a character set that your system can display
properly. It should also be a character set that is supported by
the locale, if any, specified in the -locale option. For
information on supported character sets, see Appendix A of the
Verity Locale Configuration Guide.

Note: This value is not related to the character set of the
collection or of documents being indexed. It only specifies the
character set used for communication between the tool and the
Verity engine.

-locale name Specifies the session locale (or language). When creating a
collection, the session locale is the locale that will be assigned to
the collection being created. See Appendix A of the Verity Locale
Configuration Guide for a list of the supported locales.

If you do not specify a locale, the default session locale is used.
The initial value of the default is uni. For information on
changing the default session locale, see the using locales chapter
of the Verity Locale Configuration Guide.
330 Verity Collection Reference

12 Using Other Collection Tools
didump
didump

The didump command-line tool produces a word index for a collection, one partition at a
time. It also produces a list of zones, when zones are used.

Using didump, you can view the word index components by partition. The word index
consists of a list of all words indexed by the Verity engine. The zone index is a list of all
zones found by the engine. The zone attribute index is a list of the zone attributes found
by the engine.

didump can be found in the Verity bin directory. In a typical installation, the path is:

platformDir/bin/didump[.exe]

where platformDir is the pathname of the platform-specific directory beneath the
Verity installation directory (for example, usr/verity/k2_ssol26 for Solaris), and
.exe is the tool’s file extension (Windows only).

didump Syntax

This is the syntax for didump:

didump [-verbose] [-words] [-zones] [-attributes] [-auxdata]
[-nouns] [-nounphrases] [-zonecontent] [-stemdex] [-soundex]
[-rangedex] [-pattern word_pattern] partition_name

-verbose Display debugging information.

-words Display the collection’s word index.

-zones Display the collection’s zone index.

-attributes Display the collection’s zone attributes index.

-auxdata Add auxiliary data (highlight location data and qualify
instance data) to the word index display

-nouns Display the collection’s extracted nouns.

-nounphrases Display the collection’s noun phrases.

-zonecontent Display the collection’s zone-content index.

-stemdex Display the collection’s stem index.
Verity Collection Reference 331

12 Using Other Collection Tools
didump
Viewing the Word Index

You can view the contents of the word list for a partition by using the didump
command-line tool with the -words flag. The command-line syntax must include the
-words flag and a pathname to a partition file, like this:

didump -words /z/collref/html/parts/00000003.did

The display provides an alphabetical listing of the words in the word index, as shown
here.

didump - Verity, Inc. Version 4.0.1 (_nti40, Jun 7 2001)

Text Size Doc Word
A 10 3 4
a 34 5 24
abbreviations 4 1 1
about 4 1 1
acronym 5 1 2
acronyms 4 1 1
actual 4 1 1
administrator 3 1 1
advance 3 1 1
all 8 2 3
also 9 2 4
Always 4 1 1
always 9 2 3
ampersand 4 1 1
...

The columns in the display indicate:

-soundex Display the collection’s Soundex index.

-rangedex Display the collection’s numeric/date indexes (Numdex,
Datedex, and XDatedex).

-pattern Display occurrences of word_pattern in the word index.
word_pattern can be a word or a regular expression.

partition_name The path to the collection partition file containing the indexes
to display.
332 Verity Collection Reference

12 Using Other Collection Tools
didump
Size. the number of bytes used by the Verity engine to store information about the
word

Doc. the number of unique documents in which the word appears

Word. the total number of occurrences of a word for the partition

To view the occurrences of a specific word or pattern, enter a command using the
-pattern option, as in the following example:

didump -pattern acronym 00000003.did

The didump command-line tool will display information about the number of
occurrences of the word “acronym.” You can display the individual occurrences of a
word using the verbose (-verbose) option.

Note In viewing the word list for a collection created in the multilanguage
locale, you may see language-specific word stems formatted as the stem
followed by an unprintable (or unintelligible) character, followed in turn
by the two-character language code, as in this example for a collection
containing German documents:

Viewing the Zone List

The zone list contains a list of the zones identified by the zone filter. The zones listed can
be searched using the Verity IN operator in a query. To view the contents of zone list, use
didump with the -zones flag plus the pathname to a partition, like this:

didump -zones /z/collref/html/parts/00000003.did

The partition above is for a collection containing a document in HTML format. The Verity
universal filter invoked the HTML filter by default and indexed the documents using
these zones.

didump - Verity, Inc. Version 4.0.1 (_ssol26, Jun 07 2001)
Verity Collection Reference 333

12 Using Other Collection Tools
didump
ZoneName Fmt Size Doc Regions
A Wct 10239 85 5016
ADDRESS Array 34 1 1
BODY Array 197 85 85
CAPTION Wct 298 31 85
CODE Wct 3868 66 1829
H1 Array 80 83 83
H2 Wct 646 53 212
H3 Wct 517 49 171
H4 Wct 128 8 47
HEAD Array 70 85 85
HTML Array 165 85 85
TITLE Array 70 85 85

The columns in the display indicate:

Fmt. the internal data format used to store the zone information

Size. the number of bytes used by the Verity engine to store information about the
zone

Doc. the number of unique documents in which the zone appears

Region. the total number of instances of a zone for the partition

For complete information about the how zones are defined, see “Defining Document Zones”
on page 183.

Viewing the Zone Attribute List

The zone attribute list contains a list of the HTML attributes for the zones identified by
the HTML zone filter. The zone attributes listed can be searched using the Verity IN
operator together with the WHEN operator in a query. To view the contents of the zone
attributes list, use didump with the -attributes flag plus the pathname to a partition,
like this:

didump -attributes /z/collbldg/html/parts/00000003.did

The partition above is for a collection containing the <book_title>Verity Collection
Reference Guide in HTML format.

didump - Verity, Inc. Version 4.0.1 (_ssol26, Jun 7 2001)

Text Size Doc Word
href 01_cbg.htm 10 2 4
334 Verity Collection Reference

12 Using Other Collection Tools
browse
href 01_cbg.htm#282870 3 1 1
href 01_cbg.htm#282872 6 2 2
href 01_cbg1.htm 8 2 3
href 01_cbg1.htm#286513 7 2 2
href 01_cbg1.htm#286520 3 1 1
...

The columns in the display indicate:

Size. the number of bytes used by the Verity engine to store information about the
zone attribute

Doc. the number of unique documents in which the zone attribute appears

Word. the total number of occurrences of a zone attribute for the partition

browse

The browse command-line tool lists the field names and values stored in a collection’s
document table, one partition at a time. browse can be used to browse the document
table (filename.ddd) in the /parts directory of a collection. Field names and values
are displayed.

A document table is built for each partition in a collection. The document table is used for
field searching and for sorting search results. The fields within the document table are
defined by the following collection style files:

style.ddd, defines fields used internally by the Verity engine, identified by an initial
underscore character (_)

style.sfl, defines standard fields (many of which are commented out to limit the
size of the document table)

style.ufl, defines custom fields that are not included in style.sfl

The value of each field can be filled in from source documents or can be provided
explicitly. If a field is blank, it has not been populated.

browse can be found in the Verity bin directory. In a typical installation, the path is:

/verity/prdname/k2/_platform/bin/browse
Verity Collection Reference 335

12 Using Other Collection Tools
browse
where verity/prdname represents the user-definable portion of the Verity installation
directory name, and _platform represents the platform name (like _nti40 for
Windows NT v4.0).

Displaying Fields in a Document Table

You should be in the /parts directory of a collection when you run the browse tool.
This saves you the effort of having to type the full path to the document table
(filename.ddd).

To display all the document fields in a document table, follow these steps.

1. Use the following command to start the browse tool and display the set of menu
options:

D:\VERITY\colltest\parts\>browse filename.ddd

where filename is an incrementing number, such as 00000002. The path provided
above is for illustrative purposes. The paths to your collections will be different.

The system displays the following menu of options available for the browse tool.

D:\VERITY\colltest\parts>browse 00000003.ddd
BROWSE OPTIONS

?) help
q) quit
c) Number of entries in field
) Toggle viewing fields beginning with ''
v) Toggle viewing selected fields

 ##) Display all fields in specified record number
Dispatch/Compound field options:

n) No dispatch
d) Dispatch
s) Dispatch as stream

Action (? for help):

2. Optionally, type the underscore character (_), and then press Enter to suppress the
display of the internal fields.

Action (? for help):_
View non ‘_’ fields
Action (? for help):
336 Verity Collection Reference

12 Using Other Collection Tools
browse
Note At any time, you can type the underscore character (_) and press Enter
to toggle between displaying all fields, only internal fields, or only
non-internal fields. After you type the underscore character (_) and
press Enter, the browse tool will display a status message regarding
the types of fields that are to be displayed. Then you will see the Action
prompt.

3. At the Action prompt, press Enter to display the fields for the first document record.

Action (? for help): <Enter>

The following partial display of the results of the browse command includes internal
fields, used by the Verity search engine. An internal field name starts with an
underscore (_) character.

Record number: 0

50 Created FIX-date (4) = 12-Jan-2001 01:52:27 pm
51 Modified FIX-date (4) = 24-Apr-2001 02:40:26 pm
52 Size FIX-unsg (4) = 5381
53 DOC_OF FIX-unsg (4) = 0
54 DOC_SZ FIX-unsg (4) = 4294967295
55 DOC_FN_OF FIX-unsg (4) = 436

Action (? for help):

Note Depending on the size of your command-prompt window (on
Windows), the list of fields may scroll past the visible portion of the
command prompt. You may want to increase the size of the window so
that you can see more of the fields at one time. Or you may want to
increase the display buffer size used by the command prompt, so that
you can scroll back to view some of the fields.
Verity Collection Reference 337

12 Using Other Collection Tools
browse
4. At the Action prompt, press Enter again to display the fields for the next document
record.

Action (? for help): <Enter>
Record number: 1

50 Created FIX-date (4) = 12-Jan-2001 01:52:27 pm
51 Modified FIX-date (4) = 24-Apr-2001 02:40:26 pm
52 Size FIX-unsg (4) = 5381
53 DOC_OF FIX-unsg (4) = 0
54 DOC_SZ FIX-unsg (4) = 4294967295
55 DOC_FN_OF FIX-unsg (4) = 436

Action (? for help):

Note If the collection was created in a non-default (non-uni) locale, or if any of
the fields have non-ASCII characters, use the -locale option before
viewing the fields. For example:

Action (? for help): -locale uni
Action (? for help): <Enter>
Record number: 1

50 Created FIX-date (4) = 12-Jan-2001
01:52:27 pm
51 Modified FIX-date (4) = 24-Apr-2001
02:40:26 pm
52 Size FIX-unsg (4) = 5381
53 DOC_OF FIX-unsg (4) = 0
54 DOC_SZ FIX-unsg (4) = 4294967295
55 DOC_FN_OF FIX-unsg (4) = 436

Action (? for help):
338 Verity Collection Reference

12 Using Other Collection Tools
merge
merge

The merge command-line tool allows you to merge and split collections. merge lets you
combine multiple collections that have the same schema (that is, the same set of style
files). This is useful for merging smaller collections built from different sources into one,
large collection. Also, you can use the merge command-line tool to break up the
collection into smaller collections of a roughly uniform size.

It is important to note that collections can be merged only if they have identical schemas.
Collections can be merged if they have exactly the same set of style files (and style file
entries).

Breaking up a large collection helps to optimize search performance, because it allows
many applications to perform multiple concurrent search requests over the different
collections. After breaking up a large collection, you can also discard older collections to
reclaim limited disk storage space.

merge can be found in the Verity bin directory. In a typical installation, the path is:

/verity/prdname/k2/_platform/bin/merge

where verity/prdname represents the user-definable portion of the Verity installation
directory name, and _platform represents the platform name (like _nti40 for
Windows NT v4.0).

To obtain help for the merge command-line tool, enter the following command:

merge -help

Note After running the merge command-line tool, you must optimize the
collection, using the mkvdk -optimize option.

Merging Collections

The following is the syntax for using the merge command-line tool to merge multiple
collections into a single collection:

merge newCollection srcCollection1 srcCollection2
[srcCollectionN]

The command-line tool reads srcCollection1, srcCollection2 and so on and
merges them into a single collection with the directory name given for newCollection
If the directory name given for newCollection doesn't exist, then it is created.
Verity Collection Reference 339

12 Using Other Collection Tools
rcvdk
Splitting Collections

The following is the syntax for using the merge command-line tool to split a single large
collection into smaller collections:

merge -split srcCollection newCollection1 newCollection2
[-number]

The command-line tool reads srcCollection and splits it in roughly equal-sized
pieces, using the file names given for newCollection1 and so on.

If you want to split a very large collection into a large number of new collections, you can
use the following option instead of explicitly naming each new collection:

merge -split -number N srcCollection newCollection

The command-line tool reads the collection identified by srcCollection and splits it
into the number of segments (N) specified by the -number option. The name of the first
new collection is generated by appending the first two letters in the alphabet (aa) to the
directory name given for newCollection. Each subsequent file name is generated by
incrementing one of the appended letters (up to zz) for a maximum of 676 partitions. For
example, if the value of -number is 3, and the value of newCollection is
Collection1, the collections are named, Collection1aa, Collection1ab, and
Collection1ac.

Note The maximum length of the directory name given for newCollection is
2 characters less than the length allowed by the file system.

rcvdk

The rcvdk command-line tool is a simple command-line search client that allows you to
search over a collection and list the collection fields. rcvdk is used for searching Verity
collections and displaying documents. The rcvdk name is an acronym for Retrieval
Client Verity Developer Kit.

Using rcvdk, you can check the contents of a collection from the command line. rcvdk
allows you to write a variety of queries, using words and phrases separated by commas
and/or Verity query language. A viewing option allows you to see document contents
and highlights in a simple text display.

rcvdk can be found in the Verity bin directory. In a typical installation, the path is:
340 Verity Collection Reference

12 Using Other Collection Tools
rcvdk
/verity/prdname/k2/_platform/bin/rcvdk

where verity/prdname represents the user-definable portion of the Verity installation
directory name, and _platform represents the platform name (like _nti40 for
Windows).

Note rcvdk includes the following software limitation. If the first docID that
rcvdk encounters when trying to read documents is invalid, the gateway
returns “no access” to all documents in the collection.

Starting rcvdk

To start rcvdk on most systems, type the path and executable name. On a Windows
machine, use a DOS command window or the Run dialog. The examples shown here
assume you have set your PATH variable set, so you just need to enter “rcvdk” to run it.

Specifying a Default Session Language
If you are using rcvdk to access a collection created with the multilanguage (uni) locale,
you can specify a default language to use for the session. The default session language is
the language whose rules are to be used for searching when the search query does not
include an explicit language specification (using the VQL <lang/id> modifier).

To specify a language, use the -locale option on the command line when you launch
rcvdk, with a locale specification in the form of uni/id. For example:

rcvdk -locale -uni/ja

(Available language specifications are listed in Appendix A of the Verity Locale
Configuration Guide.)

Attaching to a Collection on Launch
You make a collection accessible to rcvdk by attaching it. You can do that after launch
with an rcvdk command (see “Starting rcvdk” on page 341), or you can specify the path
to the collection (relative to the current working directory) on the command line when
you launch rcvdk. For example:

rcvdk verity\k2_61\data\colls\verity_doccoll
Verity Collection Reference 341

12 Using Other Collection Tools
rcvdk
Viewing Available Commands
When you start rcvdk with no arguments, you get this message followed by a RC>
prompt:

Type 'help' for a list of commands.
RC>

The help (or ?) command produces the following list of available commands:

RC> help
Available commands (note that some have 1-character shortcuts, like "s" for "search"):
search|s <query> Search collection for <query>
search|s Perform null search (returns all documents in collection)
results|r <number> Display search results starting at Nth result
results|r Display search results starting at current result (default=1)
clusters|c Display clustered search results
view|v <number> View Nth document in results list
view|v View document at current point in results list (default=1)
summarize|z <number> Get dynamic summary of Nth doc in results list
summarize|z Get dynamic summary of current doc in list (default=1)
attach|a <coll_path>... Attach one or more collections
attach|a List currently attached (enabled and disabled) collections
detach|d <coll_path>... Detach one or more collections
detach|d List currently attached (enabled and disabled) collections
quit|q Quit rcvdk or leave document display
about Display VDK 'About' info
help|? Display help page
expert|x Toggle (on/off) expert mode
user|u Set user: username|:password |:domain |:mailbox
RC>

Additional commands are available in expert mode (type expert or x).

At any time, you can enter q at the RC> prompt to quit the application.

Attaching Collections

To search a collection, you first must attach it using the attach (or a) command. This
command must include the pathname to a collection directory as an argument. After you
press return, rcvdk reports whether the attach command was successful.

RC>a /z/colls/mycoll1
Attaching to collection: /z/colls/mycoll1
Successfully attached to 1 collection.
RC>
342 Verity Collection Reference

12 Using Other Collection Tools
rcvdk
Attaching Multiple Collections
rcvdk allows you to attach more than one collection. After attaching mycoll1, do the
following to attach collection mycoll2.

RC>a /z/colls/mycoll2
Attaching to collection: /z/colls/mycoll2
Successfully attached to 1 collection.
RC>

To view a list of the attached collections, use the attach command without arguments:

RC> a
Attached collections [2]:
 Enabled: /z/colls/mycoll1
 Enabled: /z/colls/mycoll2
RC>

You can attach multiple collections at once by following the a command with multiple
collection paths.

Disabling and Enabling Attached Collections
You can choose to search only a subset of the currently attached collections by disabling
one or more of them. You use the disable command to change the enabled/disabled
state of one or more attached collections.

The disable command is available only in expert mode, activated by executing the
expert (or x) command. For example, to disable both mycoll1 and mycoll2, type
these commands:

RC> x
Expert mode enabled
RC> disable mycoll1 mycoll2
/z/colls/mycoll1 is now disabled for searching.
/z/colls/mycoll2 is now disabled for searching.
RC>

To re-enable one or more disabled collections, again use the disable command:

RC> disable /z/colls/mycoll1
/z/colls/mycoll1 is now enabled for searching.
RC>

At any time, you can view the enabled/disabled states of all attached collections by
executing the attach or detach command without arguments:
Verity Collection Reference 343

12 Using Other Collection Tools
rcvdk
RC> attach
Attached collections [2]:
 Enabled: /z/colls/mycoll1
Disabled: /z/colls/mycoll2
RC>

Detaching From Collections
Attached collections remain attached until you detach from one or more of them using
the detach (or d) command:

RC> detach /z/colls/mycoll2
Detaching from collection: /z/colls/mycoll2
Successfully detached from 1 collection.
RC>

Basic Searching

To retrieve all documents in the attached collection(s), perform a null search: just enter s
or search. After you press return, a search update message is produced, like the one
shown here.

RC>s
Search update: finished (100%). Retrieved: 85(85)/85.
RC>

In the message returned for the null search, the notation indicates that 85 of the total 85
documents in the collection were retrieved. If you specify a query, like “universal filter”,
a subset of the total documents in the collection will be retrieved.

RC>s universal filter
Search update: finished (100%). Retrieved: 18(18)/85.
RC>

In the message returned for the search above, rcvdk indicates that 18 documents
matched the query.

More elaborate queries using Verity query language can be used, like this:

RC>s universal filter <OR> filter
344 Verity Collection Reference

12 Using Other Collection Tools
rcvdk
You can use the expert-mode time (or t) command to turn on or off a display of the
amount of time a search takes:

RC> time
Display of elapsed time after Search enabled
RC> s universal filter
Search update: finished (100%). Retrieved: 18(18)/85.
Elapsed time is 16 milliseconds
RC>

Viewing the Results List

After you have attached to a collection and issued a search command successfully, you
can view the results list and look at any of the retrieved documents. Use the results (or
r) command with the following options to view results:

The results list for the search s universal filter is shown below. For each
document, these fields are displayed by default: Number, Score, and VdkVgwKey.

RC> r
Retrieved: 15(15)/85
Number SCORE VdkVgwKey
1: 1.00 d:\verity\k2\docs\doc\fundmntl\08_k23.htm
2: 0.97 d:\verity\k2\docs\doc\fundmntl\11_k22.htm
3: 0.97 d:\verity\k2\docs\doc\fundmntl\08_k27.htm
4: 0.97 d:\verity\k2\docs\doc\fundmntl\08_k21.htm
5: 0.95 d:\verity\k2\docs\doc\fundmntl\k2toc.htm
6: 0.95 d:\verity\k2\docs\doc\fundmntl\08_k24.htm
7: 0.93 d:\verity\k2\docs\doc\fundmntl\k2ix.htm
8: 0.92 d:\verity\k2\docs\doc\fundmntl\08_k26.htm
9: 0.90 d:\verity\k2\docs\doc\fundmntl\08_k2.htm
10: 0.90 d:\verity\k2\docs\doc\fundmntl\04_k21.htm
11: 0.90 d:\verity\k2\docs\doc\fundmntl\01_k21.htm
12: 0.87 d:\verity\k2\docs\doc\fundmntl\f_k2.htm
13: 0.87 d:\verity\k2\docs\doc\fundmntl\08_k22.htm

Option Description

r Displays the results list, starting with the first document. A maximum of 24
documents is displayed.

r N Displays the results list, starting with the Nth document. A maximum of 24
documents is displayed.
Verity Collection Reference 345

12 Using Other Collection Tools
rcvdk
14: 0.84 d:\verity\k2\docs\doc\fundmntl\06_k21.htm
15: 0.80 d:\verity\k2\docs\doc\fundmntl\part4.htm
RC>
The default fields have these properties:

Specifying Fields to Display
You can tell rcvdk to display certain fields other than the defaults in the results list. To
do so, use the fields command, which is available in the expert mode. To activate
expert mode, type x or expert at the RC> prompt, then press Enter.

The parameters to the fields command are the field name and display length (in
characters) for each field to be displayed. When used, the fields command overrides
the default fields Score and VdkVgwKey. (Number, the first column in the display, shows
the rank order of the results and is not overridden.)

Fields for the results list are returned by the search engine, so if you have done a search,
then go to expert mode to use the fields command, you must run the search again in
order to see the results list with the fields you requested.

All fields in a column are blank if the field is not defined for the collection in the
document table (in style.ddd, style.sfl, or style.ufl). A field in an individual
document’s row will be blank if the field was not populated for that document.

In this example, only the title field is specified for display:

RC> expert
Expert mode enabled
RC> fields title 40
RC> s universal filter
Search update: finished (100%). Retrieved: 15(15)/85.
RC> r
Retrieved: 15(15)/85
Number title
1: Verity Portal Fundamentals

Field Name Description

Number The rank of the document in the results list. The document with
the highest score is ranked number 1.

Score The score assigned to each retrieved document, based on its
relevance to the query. For a NULL query, no scores are
assigned, so the Score column in the results list is blank.

VdkVgwKey The document key used by the Verity engine to refer to the
document.
346 Verity Collection Reference

12 Using Other Collection Tools
rcvdk
2: Document Types
3: Indexing File Systems
4: Indexing Web Servers
5: Table of Contents
6: Indexing Exchange Servers
7: Index
8: Verifying Collections
9: Maintaining Collections
10: Tuning Unstructured Search
11: Field and Collection Schema Definition
12: Starting Servers from the Command Line
13: Using the K2 System Console
14: Parametric Search
15: Personalization Engine
RC>

Multiple fields can be specified with the fields command. The order of fields in the
results display corresponds to the order you specify them on the fields command line.

After specifying new fields, remember to re-run the search before you display the results.

RC> fields score 5 title 40
RC> s universal filter
Search update: finished (100%). Retrieved: 15(15)/85.
RC>

Sorting the Results
You can re-order the displayed results of a search by using the sort command, available
in expert mode.

RC> sort title asc
RC> s universal filter
RC> r
Retrieved: 15(15)/85
Number title
1: Document Types
2: Field and Collection Schema Definition
3: Index
4: Indexing Exchange Servers
5: Indexing File Systems
6: Indexing Web Servers
7: Maintaining Collections
8: Parametric Search
Verity Collection Reference 347

12 Using Other Collection Tools
rcvdk
9: Personalization Engine
10: Starting Servers from the Command Line
11: Table of Contents
12: Tuning Unstructured Search
13: Using the K2 System Console
14: Verifying Collections
15: Verity Portal Fundamentals
RC>

Clustering the Results
You can cluster the results into groups of similar documents by using the command
clusters (or c). The number of groups and the criteria for membership are determined
by rcvdk, based on feature analysis.

Changing Score Precision
You can change the precision of the displayed relevance score (SCORE field) of the results
by using the command precision, available in expert mode. To change the precision,
you include an argument specifying the number of bits of precision: 1, 4, 8, 16, or 32.

If precision is 8, results might look like this:

1: 1.00 d:\verity\k2\docs\doc\fundmntl\08_k23.htm
2: 0.97 d:\verity\k2\docs\doc\fundmntl\11_k22.htm
3: 0.97 d:\verity\k2\docs\doc\fundmntl\08_k27.htm
...

If precision is 16, the same results might look like this:

1: 0.9998 d:\verity\k2\docs\doc\fundmntl\08_k23.htm
2: 0.9732 d:\verity\k2\docs\doc\fundmntl\11_k22.htm
3: 0.9683 d:\verity\k2\docs\doc\fundmntl\08_k27.htm
...

Displaying Passage-Based Document Summaries
The static summary field (VDKSUMMARY) is one of the fields that you can always specify
for display by using the fields command. In addition, you can also use the pbs
command (available in expert mode) to specify that passage-based summaries be
generated for documents in the results list.
348 Verity Collection Reference

12 Using Other Collection Tools
rcvdk
You configure passage-based summaries by following the pbs command with two
arguments: the first specifies the number of passages to include in a summary, and the
second specifies the size (in bytes) of each passage. If you execute pbs without any
arguments, rcvdk displays the current pbs settings.

For example, to specify that each summary should consist of 4 passages of 100 bytes each,
do this:

RC> x
Expert mode enabled
RC> pbs 4 100
RC> pbs
Number of passages: 4
Passage size: 100
RC>

Then, to actually view the passage-based summaries, you must use the fields
command to make the VDKPBSUMMARY field visible in the search results.

RC> fields score 10 VdkVgwKey 50 VDKPBSUMMARY 400
RC> fields
Results fields:
 10 score
 50 VdkVgwKey
400 VDKPBSUMMARY
RC> s universal filter
Search update: finished (100%). Retrieved: 45(45)/4409.
RC> r
Retrieved: 45(45)/4409
Number score VdkVgwKey VDKPBSUMMARY

1: 0.9352 ../docs/html/VDKProgramming/filters6.html ... Filters > Using
the Universal Filter The universal filter is a document filter that ... filters (the
current zone filter). The universal filter and its helper filters are used to ... universal
filter, see the Verity Collection Reference. The advantage of the universal filter ...
into the same collection. The universal filter is can be configured. It has a
configuration ...

2: 0.9203 ../docs/html/CollectionReference/filters14.html ... The Universal
Filter This section provides an overview of the universal filter and its ...
implementation. The universal filter is a document filter that produces indexable (or ...
zone filter). The advantage of the universal filter is that it removes the need to
specify ... Subtopics: Invoking the Universal Filter How the Universal Filter Works
Character Set ...

3: 0.9115 ../docs/html/CollectionReference/filters6.html ... Document >
Universal Filter Functionality The universal filter can automatically detect ... The
Verity engine implements the universal filter by default based on configuration settings
Verity Collection Reference 349

12 Using Other Collection Tools
rcvdk
... The universal filter and its configuration are described in The Universal Filter. For

... the document types recognized by the universal filter, see Supported Document Formats.
See ...

...

Generating Dynamic Document Summaries
You can also use rcvdk to generate dynamic summaries, which are similar to the VDK
static summaries stored in the collection field VDKSUMMARY, except that they are
generated on the fly.

Unlike for static or passage-based summaries, you use the summarize (or z) command
to specify (by number in the search results) the individual document you want a dynamic
summary of. For example, to view the results list and then generate and display a
dynamic summary of the 4th document in the list, do this:

RC> r
Retrieved: 15(15)/85
Number SCORE VdkVgwKey
1: 1.00 d:\verity\k2\docs\doc\fundmntl\08_k23.htm
2: 0.97 d:\verity\k2\docs\doc\fundmntl\11_k22.htm
3: 0.97 d:\verity\k2\docs\doc\fundmntl\08_k27.htm
4: 0.97 d:\verity\k2\docs\doc\fundmntl\08_k21.htm
5: 0.95 d:\verity\k2\docs\doc\fundmntl\k2toc.htm
6: 0.95 d:\verity\k2\docs\doc\fundmntl\08_k24.htm
7: 0.93 d:\verity\k2\docs\doc\fundmntl\k2ix.htm
8: 0.92 d:\verity\k2\docs\doc\fundmntl\08_k26.htm
9: 0.90 d:\verity\k2\docs\doc\fundmntl\08_k2.htm
10: 0.90 d:\verity\k2\docs\doc\fundmntl\04_k21.htm
11: 0.90 d:\verity\k2\docs\doc\fundmntl\01_k21.htm
12: 0.87 d:\verity\k2\docs\doc\fundmntl\f_k2.htm
13: 0.87 d:\verity\k2\docs\doc\fundmntl\08_k22.htm
14: 0.84 d:\verity\k2\docs\doc\fundmntl\06_k21.htm
15: 0.80 d:\verity\k2\docs\doc\fundmntl\part4.htm
RC> z 4
4: 0.97 d:\verity\k2\docs\doc\fundmntl\08_k21.htm
The zone filter can be invoked together with the universal filter
or as a single filter. When the zone filter is invoked with the
universal filter as a helper filter, the universal filter’s
character set recognizer should be used. When the zone filter is u

Unlike with the other two types of summaries, generating a dynamic summary requires
access to the document in the repository, not just the collection.
350 Verity Collection Reference

12 Using Other Collection Tools
rcvdk
Displaying Documents

rcvdk can display the content of text-based or HTML/XML/SGML-based documents.
To view a document that is listed in the search results, use the view (or v) command:

Highlighting of Search Terms
By default, static highlighting is used, meaning that the positions of highlighted terms
are determined by looking them up in the collection’s word table. You can use the
hlmode command to toggle to dynamic highlighting, in which highlighting is applied by
finding the terms in the document content as it is streamed for display. In some
situations, dynamic highlighting is more accurate.

To change how highlighted terms are marked in displayed documents, you can use the
highlight command, followed by a paired set of characters (separate the sets by a
space), representing the opening and closing highlight delimiters, respectively.

For example, the default highlight delimiters—paired double angle brackets—are
equivalent to giving the following command:

RC> highlight >> <<

You can set any other characters you wish as the opening and closing delimiters. And
you can view what the current delimiters are by executing highlight without any
arguments. For example:

RC> highlight *** ####
RC> highlight
Current ***highlight#### mode.
RC>

Option Description

v Displays the first or next document in the results list. Highlights, or matched
query terms, are indicated using reverse video, if possible. If not, double angle
brackets are by default used to delimit the highlighted terms. For example, if
you search for the term “universal filter,” you see the following in the
document display:

>>universal<< >>filter<<

You can change the highlighting delimiters, if desired; see “Highlighting of
Search Terms” on page 351.

To exit the document display, type q.

v N Displays the Nth document in the results list. To exit the document display,
type q.
Verity Collection Reference 351

12 Using Other Collection Tools
rcvdk
Furthermore, you can specify different delimiters for different collection fields. For
example, to specify double plus-signs as the delimiters for highlighted terms in the
document-summary field only, you could give this command:

RC> highlight ++ ++ vdksummary

Then, if you perform a search and if your results display is configured to include the
vdksummary field, you might get a result like this:

RC> s verity
Search update: finished (100%). Retrieved: 1(1)/1.
RC> r
Retrieved: 1(1)/1
Number vdksummary
1: ++Verity++ provides software that enables organiza
RC>

Displaying XML Subdocuments
An XML subdocument is a portion of an XML document defined by one or more of the
document’s tag elements. For example, for a bibliography in XML format, it is possible to
extract a subdocument consisting of only book titles.

If you have used rcvdk to search a collection containing XML documents, you can then
use the subdocs command to specify a subdocument that should be displayed for each
retrieved XML document.

For example, consider searching a collection of XML catalogs for an author whose name
(specified by the <author> tag) is “Wilson”:

RC> s Wilson <in> author
Search update: finished (100%). Retrieved: 1(1)/30.
RC> r
Retrieved: 1(1)/30
Number SCORE VdkVgwKey
1: 0.7967 test4.xml
RC>
352 Verity Collection Reference

12 Using Other Collection Tools
rcvdk
Viewing a result document in the normal manner causes the entire document to be
displayed:

RC> highlight * *
RC> v
1: 0.7967 test4.xml
<?xml version="1.0"?>
<catalog>
 <book id="1" year="1998">
 <title>TCP/IP Reference</title>
 <author><last>*Wilson*</last><first>H.</first></author>
 <publisher>Bramburg Press</publisher>
 <price>59.95</price>
 </book>

 <book id="2" year="2004">
 <title>Advanced TCP/IP Programming</title>
 <author><last>*Wilson*</last><first>H.</first></author>
 <publisher>Western Books</publisher>
 <price discount="15%">45.00</price>
 </book>

 <book id="3" year="2000">
 <title>History of Network Protocols</title>
 <author><last>Anderson</last><first>Aaron</first></author>
 <author><last>Burke</last><first>Barry</first></author>
 <author><last>Chase</last><first>Chester</first></author>
 <publisher>Elite Publishers</publisher>
 <price>29.50</price>
 </book>
</catalog>

(This three-book catalog file is used in the rest of the examples shown here.)

Using the subdocs command, you can specify, for example, that you want to see only
the book titles in the document:

RC> subdocs / //title
RC> v
1: 0.7967 test4.xml
<title>TCP/IP Reference<title>Advanced TCP/IP Programming</title>
<title>History of Network Protocols</title>
RC>

You can request display of more than one subelement—for example, title and price:
Verity Collection Reference 353

12 Using Other Collection Tools
rcvdk
RC> subdocs / //title //price
RC> v
1: 0.7967 test4.xml
<title>TCP/IP Reference<price>59.95<title>Advanced TCP/IP
Programming<price>45.00<title>History of Network Protocols<price>
29.50</price>
RC>

Note that the XML elements are displayed as encountered in the document, without
newlines or any other formatting inserted.

Command Syntax
The subdocs command uses this syntax:

subdocs context path1 [path2...]

where context and pathN are XPath fragments that describe the elements to be
included in the subdocument. context is a prefix that specifies where in the document
to start looking for the elements, and each pathN denotes the path to a particular
element, relative to context.

The context and path fragments consist of element or attribute names, optionally with
certain XPath symbols:

The context must start with the document root (represented by a single forward slash)
or with the name of the outermost element.

The path fragments consist of element names and certain XPath symbols. For example,
a single forward slash (/) means “child of” and a double forward-slash (//) means
“any descendent of”.

Using the earlier example as an illustration, note that the command

RC> subdocs / //title

means “Display all <title> elements that are descendents of the document root”—in
other words, anywhere in the document.

Given the specific XML file used for these examples, the same result could be achieved
with this command:

RC>subdocs catalog book/title
354 Verity Collection Reference

12 Using Other Collection Tools
rcvdk
which means “Display all <title> elements that are direct children of the element
<book> that is a direct child of <catalog>, which is the element directly beneath the
document root.” (If any <title> elements were to occur outside of that path, they
would not be displayed.)

Displaying Elements Based on Attributes
You can use the subdocs command along with an XPath attribute expression
(@attribute) to restrict the display to elements that include a given attribute.

In the example file shown earlier, the <price> element for one of the books includes an
attribute discount. The <price> element for other books does not include that
attribute.

To display all prices, you would use a command like this:

RC> subdocs / //price
RC> v
1: 0.8351 test4.xml
<price>59.95</price><price discount="15%">45.00</price><price>
29.50</price>
RC>

To display only those prices that include a discount, use a command like this:

RC> subdocs / //price[@discount]
RC> v
1: 0.8351 test4.xml
<price discount="15%">RC>

Displaying Individual Elements of a Set
If a given XML element has a number of instances of the same subelement—for example,
if a single book has multiple authors listed—you can use XPath subscript notation with
subdocs to specify which of the subelements to display.
Verity Collection Reference 355

12 Using Other Collection Tools
rcvdk
For example, to display the title and (first) author for each book in this example, you
could use this command (results reformatted for clarity):

RC> subdocs /catalog book/title book/author[1]
RC> v
1: 0.7967 test4.xml
<title>TCP/IP Reference
<author><last>*Wilson*</last><first>H.</first>

<title>Advanced TCP/IP Programming
<author><last>*Wilson*</last><first>H.</first>

<title>History of Network Protocols
<author><last>Anderson</last><first>Aaron</first></author>
RC>

To display the title and only the third author for each book, change the subscript (results
reformatted for clarity):

RC> subdocs /catalog book/title book/author[3]
RC> v
1: 0.7967 test4.xml
<title>TCP/IP Reference

<title>Advanced TCP/IP Programming

<title>History of Network Protocols
<author><last>Chase</last><first>Chester</first></author>
RC>

In this example, only one of the books has three authors, so no author is displayed for the
other books.

Authenticating in rcvdk

For secure collections, you cannot view documents without supplying the appropriate
user credentials. The user (or u) command allows you to set user credentials for an
rcvdk session, by entering appropriate values for user ID, password, domain, and/or
mailbox.

RC> user gwashington:cherry:POTOMAC
356 Verity Collection Reference

12 Using Other Collection Tools
rcvdk
The credentials you supply must match the credentials in the repository where
documents are stored.

Checking Document Access
You can also check ahead of time to see whether you have access to an individual
document listed in the search results.

Use the expert-mode checkid command to see if you have access to the collection
document with a given VDK document ID (an integer value assigned at indexing
time).

Use the checkkey command to see if you have access to the collection document with
a given document key.

Both checkid and checkkey allow you to check more than one document at a time. For
example:

RC> checkkey
Please enter VdkDocKeys, one per line; finish by a blank line:
 ../docs/html/CollRef/filters14.html
../docs/html/CollectionReference/filters6.html

docKey: ../docs/html/CollRef/filters14.html, access: yes
docKey: ../docs/html/CollRef/filters6.html, access: yes
2 documents checked in total
RC>
Verity Collection Reference 357

12 Using Other Collection Tools
rcvdk
358 Verity Collection Reference

APPENDIXES

Appendix A: Supported Document Formats

Appendix B: Supported Date Formats

Appendix C: Supported Regular Expressions

Appendix D: Collection Limits
359

360

A
Supported Document Formats

This appendix lists the document formats supported both for indexing (using the Verity
universal document filter and the XML filter) and for viewing (using the Verity Viewing
Service). This information is based on the formats supported by Verity KeyView 9.1.

In the tables in this appendix, Y = supported; N = not supported; T = only text is
extracted; and M = only metadata is extracted.

Additional information on support for indexing and viewing Microsoft Personal Folder
(PST) files is presented in the final section.

This appendix includes the following sections:

Archive Formats

Computer-Aided Design

Display Formats

Graphic Formats

Mail Formats

Multimedia Formats

Presentation Formats

Spreadsheet Formats

Text-Processing Formats

Notes on K2 Support for PST Files
361

A Supported Document Formats
Archive Formats
Archive Formats

Computer-Aided Design

Display Formats

Format Version(s) Extension Indexing Viewing

PKZIP through 2.04g ZIP Y Y

Format Version(s) Extension Filter Export

AutoCAD Drawing R13, R14, 2000, 2004 DWG Y Y

AutoCAD Drawing Exchange R13, R14, 2000, 2004 DLL Y Y

Microsoft Project 98, 2000, 2002 MPP M M

Microsoft Visio 5, 6, 2000, 2002, 2003 VSD Y T

Format Version(s) Extension Filter Export

Adobe Portable Document Format 1.1 to 1.6 PDF Y Y
362 Verity Collection Reference

A Supported Document Formats
Graphic Formats
Graphic Formats

Format Version(s) Extension Filter Export

Computer Graphics Metafile n/a CGM N Y

CorelDRAW (TIFF header) through to 9.0 CDR Y Y

DCX Fax System TIFF/CCITT/DCX DCX Y Y

Encapsulated PostScript (raster) TIFF header EPS N Y

Enhanced Metafile n/a EMF Y Y

Graphic Interchange Format 87, 89 GIF N Y

JPEG n/a JPEG N Y

Lotus AMIDraw Graphics n/a SDW N Y

Lotus Pic n/a PIC N Y

Macintosh Raster 2 PIC
PCT

N Y

MacPaint n/a PNTG N Y

Microsoft Office Drawing n/a MSO N Y

PC PaintBrush 3 PCX N Y

Portable Network Graphics n/a PNG N Y

SGI RGB Image n/a RGB N Y

Sun Raster Image n/a RS N Y

Tagged Image File 3.0 to 6.0 TIFF M Y

Truevision Targa 2 TGA N Y

Windows Animated Cursor n/a ANI N Y

Windows Bitmap n/a BMP N Y

Windows Icon Cursor n/a ICO N Y

Windows Metafile 3 WMF Y Y

WordPerfect Graphics 1 1 WPG N Y

WordPerfect Graphics 2 2, 7 WPG N Y
Verity Collection Reference 363

A Supported Document Formats
Mail Formats
Mail Formats

Multimedia Formats

The multimedia formats supported by Viewing SDK (except MP3) use Microsoft
ActiveMovie. ActiveMovie is not included in Viewing SDK and must be licensed from
Microsoft.

Presentation Formats

Format Version(s) Extension Filter Export

Microsoft Outlook 97, 2000, 2002, 2003 MSG Y Y

Microsoft Outlook Express n/a EML Y N

Microsoft Outlook Personal Folder
(Windows only)

97, 2000, 2002, 2003 PST Y Y

Format Version(s) Extension Filter Export

MPEG-1 Audio layer 3 ID3 versions 1 and 2 MP3 M M

Format Version(s) Extension Filter Export

Applix Presents () 4.0, 4.2, 4.3, 4.4 AG Y Y

Corel Presentations 7, 9, 10, 11, 2000 SHW Y Y

Lotus Freelance Graphics 96, 97, 98, R9, 9.8 PRZ Y Y

Lotus Freelance Graphics 2 2 PRE Y Y

Microsoft PowerPoint Windows 97, 2000, 2002, 2003 PPT Y Y
364 Verity Collection Reference

A Supported Document Formats
Spreadsheet Formats
Spreadsheet Formats

Microsoft PowerPoint Windows 95 PPT Y Y

Microsoft PowerPoint PC 4 PPT Y Y

Microsoft PowerPoint Macintosh 98 PPT Y Y

Format Version(s) Extension Filter Export

Applix Spreadsheets 4.2, 4.3, 4.4 AS Y Y

Comma Separated Values () n/a CSV Y Y

Corel Quattro Pro 5, 6, 7, 8 QPW WB3 Y Y

Lotus 1-2-3 96, 97, R9, 9.8 123 Y Y

Lotus 1-2-3 2, 3, 4, 5 WK4 Y Y

Lotus 1-2-3 Charts 2, 3, 4, 5 123 Y Y

Microsoft Excel Windows 2.2, through 2003 XLS Y Y

Microsoft Excel Charts 2, 3, 4, 5, 6, 7 XLS Y Y

Microsoft Excel Macintosh 98 XLS Y Y

Microsoft Works Spreadsheet 1, 2, 3, 4 S30
S40

Y Y

Format Version(s) Extension Filter Export
Verity Collection Reference 365

A Supported Document Formats
Text-Processing Formats
Text-Processing Formats

Text and Markup

Word Processors

Format Version(s) Extension Filter Export

ANSI n/a TXT Y Y

ASCII n/a TXT Y Y

HTML 3, 4.0 HTM Y Y

MIME n/a EML Y Y

IBM DCA/RFT
(Revisable Form Text)

SC23-0758-1 DC Y Y

Microsoft Excel Windows XML 2003 XML Y T

Microsoft Word Windows XML 2003 XML Y T

Microsoft Visio XML 2003 VDX Y T

OpenOffice 1, 1.1 SXI
SXP
SXC
SXW

Y T

Rich Text Format 1 through 1.7 RTF Y Y

StarOffice 6, 7 SXI
SXP
SXC
SXW

Y T

Unicode Text 3, 4 TXT Y Y

XHTML 1.0 HTM Y Y

XML (generic) 1.0 XML Y T

Format Version(s) Extension Filter Export

Adobe Maker Interchange Format 5, 5.5, 6, 7 MIF Y Y

Applix Words 3.11, 4, 4.1, 4.2, 4.3, 4.4 AW Y Y

DisplayWrite 4 IP Y Y

Folio Flat File 3.1 FFF Y Y
366 Verity Collection Reference

A Supported Document Formats
Text-Processing Formats
Fujitsu Oasys 7 OA2 Y Y

JustSystems Ichitaro 8, 9, 10, 12 JTD Y Y

Lotus AMI Pro 2, 3 SAM Y Y

Lotus AMI Professional Write Plus 2.1 AMI Y Y

Lotus Word Pro
(Windows x86 only)

96, 97, R9 LWP Y Y

Lotus SmartMaster
(Windows x86 only)

96, 97 MWP Y Y

Microsoft Word PC 4, 5, 5.5, 6 DOC Y Y

Microsoft Word Windows 1.0 and 2.0 DOC Y Y

Microsoft Word Windows 6, 7, 8, 95 DOC Y Y

Microsoft Word Windows 97, 2000, 2002, 2003 DOC Y Y

Microsoft Word Macintosh 4, 5, 6, 98 DOC Y Y

Microsoft Works 1, 2, 3, 4 WPS Y Y

Microsoft Works 6, 2000 WPS Y Y

Microsoft Windows Write 1, 2, 3 WRI Y Y

WordPad through 2003 RTF Y Y

WordPerfect Windows 5, 5.1 WO Y Y

WordPerfect Windows 6, 7, 8, 9, 10, 11, 2000 WPD Y Y

WordPerfect Linux 6, 8 WPS Y Y

WordPerfect Macintosh 1.02, 2, 2.1, 2.2, 3, 3.1 WPS Y Y

XyWrite 4.12 XY4 Y Y

Format Version(s) Extension Filter Export
Verity Collection Reference 367

A Supported Document Formats
Notes on K2 Support for PST Files
Notes on K2 Support for PST Files

K2 supports indexing and viewing the contents of Microsoft Personal Folder (PST) files.
This section lists some of the prerequisites for successful indexing and viewing of these
files.

Microsoft Outlook must be installed and must be the default email client on the host
machine containing the PST file(s) to be indexed. Moreover, the version of the installed
Microsoft Outlook installed must match the version of the PST files to be indexed.

Indexing a PST file requires having write access to it. PST files that are read-only
cannot be indexed.

PST files cannot be accessed for indexing purposes on a mapped drive. Windows does
not support opening PST files over a network share.

Password-protected PST files can be indexed (see “Providing Passwords for
Document Access (style.pw)” on page 259). However, note that password characters—
if they are not to be encrypted—must be plain ASCII or other valid characters in the
encoding of the locale of the collection into which the PST is being indexed.

Note that, since a PST file is commonly in a compressed format, the collection
resulting from indexing it can be up to several times larger than the file itself.
368 Verity Collection Reference

B
Supported Date Formats

The Verity engine can recognize a wide variety of date formats during indexing and
searching. Numerous date formats can be parsed according to parsing rules you supply
in the form of regular expressions in the style.tde file. For information about defining
date fields, see “Defining Collection Fields” on page 147.

This appendix contains the following information:

Date Import Formats

Date Import Format Strings

Numeric Date Formats

Date Import Formats

The Verity engine can parse a variety of date formats. A single date format can include a
calendar format plus an optional time format.

Table B-1 on page 371 presents date formats supported by the Verity parser. These
formats can be read, translated, and stored in a collection’s document table.

If you are using mkvdk, use the -datefmt option. If you are developing an application
using a Verity API, then you must set the dateInputFormat member in
VdkSessionNewArgRec.
369

B Supported Date Formats
Date Import Format Strings
Date Import Format Strings

A variety of constructs can be used to define the import date format string.

6-digit and 8-digit numbers are interpreted as having a year, month, and day according to
the prevailing datefmt specification, as described in “Numeric Date Formats” on
page 373. If datefmt is not specified, then the engine first tries to interpret 6- and 8-digit
numbers in year-month-day order. If that fails, the engine tries to interpret the numbers
in month-day-year order.

Table Conventions

Within the Description column of the Date Formats table, shown here, the following
constructs describe a date format element. These are representational constructs only.
That is, elements such as MM DD YYYY are not actually ever typed in anywhere.

Date Format Element Description

MM Represents a one or two-digit numeric month, as 3 or 12.

Mon Represents an alphabetic month, 3 or more characters in length, as Feb or
February.

DD Represents a one or two-digit numeric day of the month, as 1, 01, or 29.

YYYY Represents a four-digit numeric year, as 1997.

TIME Represents a time format, as described under “Time Formats” on
page 372.

DDD Represents a three-digit numeric Julian day of the year, as 129.
370 Verity Collection Reference

B Supported Date Formats
Date Import Format Strings

Table B-1 Import Date Formats

Description Examples

Month-day-year, numeric, American date format (MM DD YY, MM-DD-YY,
MM/DD/YY, or MM.DD.YY).

2 17 97
02-17-97
02/17/1997
2.17.1997

Day-month-year, numeric, English format (DD MM YY, DD-MM-YY, DD/
MM/YY, or DD.MM.YY).

17 02 97
17-2-97
17/02/1997
17.2.97

Year-month-day, numeric, European date format (YY MM DD, YY-MM-DD,
YY/MM/DD, or YY.MM.DD).

97 02 17
97-2-17
1997/2/17
97.2.17

Year-day-month, numeric, Swedish date format (YY DD MM, YY-DD-MM,
YY/DD/MM, YY.DD.MM).

97 17 02
97-17-2
97/17/2
97.17.2

Day (numeric), month (alphabetic), year (numeric) (DD Mon YY). 17 Feb 97
17 February 1997

Month (alphabetic), day (numeric), year (numeric) (Mon DD YY). Feb 17 97
February 17 1997

Month (alphabetic), year (numeric) (Mon YY). Mar 97
January 95

Month (numeric), year (numeric) (MM YY). 02 97
12 97

Julian Date format (YYDDD). 97364
20001

Any of the preceding, followed with an optional time expression
(DD Mon YY TIME); the time can be expressed using any of the time formats
described under “Time Formats” on page 372.

17 Feb 97 23:59
17 February 97 01:50

Dow Jones date format (hh mm DD MM YY) 23 59 25 12 91
00 00 01 01 32

Zulu date format (DDhhmmZ Mon YY); see “Zulu Date Format” (next) 252312Z JAN 94
310101Z JAN 94
Verity Collection Reference 371

B Supported Date Formats
Date Import Format Strings
Zulu Date Format

The Verity engine assumes that the time in Zulu date format is in Greenwich Mean Time
(GMT). If you use a different time format when you enter search criteria, local time is
assumed. Local time depends on the time and time zone settings of your operating
system.

Thus, if you enter the following date as the DATE field value for a document:

252312Z JAN 94

and your computer is set to Pacific Standard Time (PST), a Verity client finds this
document if you query the following DATE field value:

Jan 25 94 15:12

This is because PST is 8 hours behind GMT.

Time Formats

Any of the constructs can include an optional time format, as, for example, 02/17/
1997 08:55.

The Verity engine understands time formats that have one of the following structures. As
in Table B-1 on page 371, these are representational constructs only. That is, elements
such as hh:mm:ss are not actually ever typed in anywhere. You would actually see
instead 12:34:56.

hh:mm

hh:mm:ss

hh:mm:ss TIMEOFDAY

hh:mm:ss TIMEOFDAY TIMEZONE

The time format elements are described here.

Time Format Element Description

hh This element represents the hours, as 01,1, 11, or 23.

mm This element represents the minutes, as 01 or 55.
372 Verity Collection Reference

B Supported Date Formats
Numeric Date Formats
For example, the Verity engine can import the following combined date and time:

Oct 15 1997 01:33:12 AM PST

Field searches can be performed on dates and times using any of the formats shown in
the preceding table.

Numeric Date Formats

The date format constructs described in this section resolve ambiguities in numerical
date representations.

By default, dates input into the document table are assumed to be in American numeric
date format, that is, the month-day-year format (MM-DD-YY). This means that if a user
enters a date for a field search query in the same format, the Verity engine can interpret
the date and perform the appropriate retrieval. Numeric date formats can be delimited
by spaces or slashes in addition to dashes.

If users want to enter date field search criteria in a different format, such as English or
European numeric date format, that is, day-month-year or year-month-day, then you
must specify to the application which date format to use. If you are using mkvdk, use the
-datefmt option. If you are developing your own application, then you must set the
dateInputFormat member in VdkSessionNewArgRec.

The datefmt syntax options are listed here.

ss This optional element represents the seconds, as 01 or 55.

TIMEOFDAY This optional element specifies the 12-hour representation of the
time, one of either AM or PM.

TTIMEZONE This optional element represents a time zone, as PST or EDT.

datefmt syntax Description

MDY Represents the month-day-year (MM-DD-YY)
numeric format (American format, the default).

Time Format Element Description
Verity Collection Reference 373

B Supported Date Formats
Numeric Date Formats
Example:

mkvdk -collection collname -bulk -insert filespec -datefmt DMY

The preceding mkvdk command would interpret numeric dates in the format XX-YY-ZZ
as DD-MM-YY (day-month-year).

DMY Represents the day-month-year (DD-MM-YY)
numeric format (English format).

YMD Represents the year-month-day (YY-MM-DD)
numeric format (European format).

YDM Represents the year-day-month (YY-DD-MM)
numeric format (Swedish format).
374 Verity Collection Reference

C
Supported Regular Expressions

This appendix describes the syntax of regular expressions that an application can use to
identify text patterns for valid words. For example, an application developer can use
regular expressions to identify text patterns in the style.lex file.

The Verity engine’s parser interprets regular expression syntax nearly identical to the
UNIX regular expression syntax. The Verity engine’s regular expression syntax also
includes some extensions for matching substrings.

This appendix covers these topics:

Symbols

Substrings

Operators for Regular Expressions

The following table lists the regular expression operators available in the Verity engine
and the pattern the operator matches.

Operator Matched Pattern

x The character “x”.

\x The character “x”, even if x is an operator. You would use this, for
example, to search for the $ character, which is an operator. (\n and \
t are exceptions; see the following explanations.)

\b A backspace.
375

C Supported Regular Expressions
Operators for Regular Expressions
Symbols

You can define symbols to avoid redefining expressions to search for common patterns.
Symbol definitions should appear at the top of a file, before any regular expressions that
use them. To define symbols, use the define statement with the following syntax.

define: symbol "regular expression"

\f A form-feed.

\n A newline.

\r A carriage-return.

\t A tab.

\v A vertical tab.

[xy] The character “x” or “y”.

[x-z] The characters “x”, “y”, or “z”; this regular expression searches for a
range of characters. For example, the expression [a-z] is used to
search for any character in the lowercase alphabet; [0-9] is used to
search for any digit.

. Any character but newline.

[^z] Any character but “z”.

^x An “x” at the beginning of a line.

x$ An “x” at the end of the line.

x? 0 or 1 occurrence of “x”.

x* 0 or more occurrences of “x”.

x+ 1 or more occurrences of “x”.

x|y An “x” or a “y”.

(x|y)z “xz” or “yz”; the parentheses are used for grouping.

{symbol} The translation of a symbol defined earlier in the file.
376 Verity Collection Reference

C Supported Regular Expressions
Operators for Regular Expressions
Symbol Examples
The define statement is used to codify an expression so that user-defined symbols can
be included in regular expressions. For example, you might use the following definitions
at the beginning of a style.lex file:

define: D "[0-9]"

The preceding statement defines the symbol D, which represents any digit.

define: SPACE "[\t]"

The preceding statement defines a symbol SPACE that represents either a space, or a tab.

You can also use previously defined symbols in other symbol definitions. For example,
you might first define a symbol for any digits as follows:

define: D "[0-9]"

You could then use the symbol {D} in other symbol definitions, as in this definition of a
YEAR symbol as follows:

define: YEAR "{D}{D}{D}{D}"

Symbols in regular expressions must be enclosed in braces.

Substrings

Normally, the text returned is the entire string that matches the pattern in the regular
expression. The Verity engine includes an extension to regular expression syntax that
allows you to identify a string and then select a substring of that string. To define a
substring and retrieve only that substring, enclose the substring in angle brackets.

"TITLE:<.*>"

This expression returns any characters after the string “TITLE:”, but not including the
string “TITLE:”.

Element Description

symbol The word replaced by the quoted pattern; the symbol name can
contain any alphanumeric characters.

"reg_exp" A regular expression that the Verity engine uses for matching
when it encounters the defined symbol. Double quotes are used
in the event that the matched pattern contains white space.
Verity Collection Reference 377

C Supported Regular Expressions
Operators for Regular Expressions
"Volume{SPACE}+<{DIGIT}+>"

This expression returns any number of digits following the string “Volume” and one or
more spaces.

Regular Expression Examples

Some simple examples of regular expressions are presented here.

Example 1
^[0-9]

This expression matches any digit at the beginning of a line.

Example 2
^[0-9]+

This expression matches one or more digits at the beginning of a line.

Example 3
[^0-9]

This expression matches any single character except a digit.

Example 4
"TITLE:.*$"

This expression matches a string beginning with “TITLE:” and followed by any
characters until the end of the line.

Example 5
"^Sub(j|ject):.*$"

This expression matches the string “Subj” or “Subject” that occurs at the beginning of a
line and is followed by a colon and any other characters until the end of the line.
378 Verity Collection Reference

C Supported Regular Expressions
Operators for Regular Expressions
Example 6
"FIELD:\t"

This expression matches the string “FIELD:” followed by a tab character.
Verity Collection Reference 379

C Supported Regular Expressions
Operators for Regular Expressions
380 Verity Collection Reference

D
Collection Limits

This appendix lists the acceptable limits and ranges for collections. For information on
limits in topics, see the Verity Query Language and Topic Guide.

Table D-1 Collection limits

Limit Description

Wildcards Wildcard auto-expansion is limited to 16,000 matches.

Number of collections The maximum number of physical collections that each K2
Server can search at one time is 128.

Documents per collection The maximum number of documents per collection is 16
million.

Documents per partition The maximum number of documents per partition is 64,000.

Fields per collection The maximum number of fields per collection is 250.

Field length The maximum length of any field is 32,000 bytes. The number
of actual characters that translates to will depend on the
character set used.

Field length in a BIFs The maximum length of a field value in a bulk insert files is 32
KB. The number of actual characters that translates to will
depend on the character set used.

Zones per document Unlimited.

Characters in path The maximum path size is 256 characters on Windows and
1024 characters on UNIX.

Maxdocs with sort spec The maximum number of documents returned when a sort
specification is applied is 16,000.
381

D Collection Limits
Sort fields per search The maximum number of fields that can be included in a sort
specification is 16.

Maximum repository
nodes

The maximum number of repository nodes (secured file
systems, unsecured file systems, HTTP servers, Exchange
servers, and so on) permitted for a given collection is 1024.
Defined by the constant MAX_K2REPOSITORY_NODES.

Spanning word list size Maximum size = 4 GB (if file system is 64-bit; otherwise,
maximum size is 2 GB).

By default, Windows, Solaris, and Linux support 64-bit file
systems. To support larger spanning word lists on HP-UX and
AIX, you must specifically enable 64-bit filesystem support at
the operating-system level; consult your operating-system
documentation for instructions. Also for HP-UX and AIX, set
the environment variable VDK_LARGEFILE_SUPPORT to 1.

Note: If you need to turn off Verity support for 64-bit file
systems (for example, if you are using FAT32 or CD-ROM file
systems), set the environment variable
VDK_LARGEfILE_SUPPORT to 0.

Table D-1 Collection limits (continued)

Limit Description
382 Verity Collection Reference

Index

Symbols
* (style.zon wildcard) 200
/collection modifier 161

A
-about option 308
absolute path (in mkvdk) 299
access, checking 357
adminconfigimport command-line tool

272
Adobe Maker Interchange Format (MIF) 366
Adobe Portable Document Format (PDF). See

PDF file
ANSI (TXT) 366
Applix Presents (AG) 364
Applix Spreadsheets (AS) 365
Applix Words (AW) 366
archive formats 362
ASCII (TXT) 366
assist service level 305, 314
asterisk symbol (style.lex) 266
attribute extraction 213
attributes (SGML) 203
ATTR-IDXOPTS definition 246
ATTR-IDXOPTS parameter 244
authenticating

forms-based 77
pre-authentication 82

AutoCAD Drawing Exchange Format (DXF)
362

AutoCAD Drawing format (DWG) 362
-autocharmap (zone filter specification) 188
-autodel option 287, 308
autoval field type

data-table statement 163
function 163
of style.ufl file 149, 163

autoval field type arguments 163
DBNAME argument 164
DBPATH argument 164
fieldname argument 164
SIRENAME argument 164
SIREPATH argument 164

B
backslash, as literal character in BIF 321
-backup option 291, 308
backup service level 305, 314
bi-directional text (PDF) 132
BIF. See bulk insert files
-bifmime filter option 112
braces symbol (style.lex) 266
bracket symbol (style.lex) 266
browse command-line tool 272, 335
built-in indexing modes 88
bulk data 326
bulk insert files (BIFs) 171, 317

character set for 321
deleting documents with 324
examples 321
field length limit 381
format 318
inserting documents with 323
output from language identification 326
parametric index management with 327
Profiler query management with 327
size limit 321
special characters in 320
supporting continuous feeds with 325
unique document keys 323
VIC category management with 326

bulk load mode 89
383

Index
-bulk option 287, 301, 308
bulk updates, serialization of 94
bulkload indexing mode 293, 310

C
cache, for container files 121
cache-dir 121
cache-timeout 121
Casedex option 245
case-insensitive indexes 245
/case-sensitive modifier

fixwidth field type 166
varwidth field type 167

case-sensitive word indexes
style.prm 245
style.stp 262

characters in path (limit) 381
/charmap keyword modifier

style.dft file 104
style.tde file 175

-charmap option 301, 308
CHARSET field 117
chkvlkey command-line tool 272
codeconv command-line tool 272
/col keyword modifier

style.dft file 105
/collection modifier

descriptor statement 161
-collection argument 285
collection limits 381
/collection modifier

descriptor statement 160
-collection option 308
collection style files 48
Collection-management tools 59
collections

architecture 40
basics 27
building, how to 31
defined 27
384 Verity Collection Reference
directory structure of 45
documents per (limit) 381
field length limit 381
fields in 35, 42
fields per (limit) 381
indexes in 28, 43
merging 339
number of (limit) 381
optimizing 40
portable 45
searching 36
secure 45
splitting 340
structure of 41
updating 40
viewing documents in 38

Comma Separated Values (CSV) 365
command-line tools

mkprf 327
rcvdk 340

-common option 308
Computer Graphics Metafile (CGM) 363
constant field type

data-table statement 162
function 162
integer type ranges 166
of style.ufl 149, 162
of style.ufl, valid data types 165, 166
style.dft file 102
valid data types 163

constant field type arguments 162
data_type argument 163
fieldname argument 163
value argument 163

constant field types 149
constant fields of style.ufl 162

autoval field type 149, 163
constant field type 149, 162
dispatch field type 167
worm field type 149, 164

Index
container files 120
archive 362
email 364
supported 364

continuous feeds (mkvdk support for) 325
$control statement

style.ddd file 160
style.tde file 174

Corel Presentations (SHW) 364
Corel Quattro Pro (QPW, WB3) 365
-create option 285, 308
-credentials option 299, 308
custom query parser 224

D
data table

function 148
requirements 148

data type
date 148
float 148
signed-integer 148
text 148
unsigned-integer 148
xdate 148

data, submitting in bulk 326
data_type argument

constant field type 163
fixwidth field type 166
worm field type 165

datamap section (style.tde) 174
-datapath option 288, 308
dataprep service level 305, 314
data-table statement 165

arguments 161
arguments, name argument 161
autoval field type 163
constant field type 162
dispatch field type 168
fixwidth field type 165
Verity Collection Reference
of style.ufl file 161
varwidth field type 166
worm field type 164

date 148
date fields

defining internal date fields 148
search criteria 373

date formats 369, 372
style.dft file 106
Zulu date format 372

Datedex option 245, 247, 332
-datefmt option 302, 309
dateInputFormat member 369, 373
date-range search support in indexes 247
DBNAME argument (autoval field type) 164
DBPATH argument (autoval field type) 164
-debug option 303, 309
default schema 147
default session language 301
default session locale 300
default style sets 54
define statement 176
define statement (style.lex) 266
delbyqry command-line tool 272
-delete option 290, 309
delete service level 305, 314
/delta-col keyword modifier (style.dft)

 105
/delta-row keyword modifier (style.dft)

 105
-description option 286, 309
descriptor statement (style.ufl) 160
descriptor statement modifiers 161
Dewey option 245, 247
dft statement (style.dft file) 101
dft statement modifiers

/fill modifier 101
/right-margin modifier 101
/tabsize modifier 101

didump command-line tool 273, 331
385

Index
directory-level security with HTTP gateway
74

-diskcache option 302, 309
dispatch field type

function 167
of style.ufl 150, 167, 168

dispatch field type arguments 168
dispatch statement 176, 177
dispatch statement (style.tde file) 176
DisplayWrite (IP) 366
DOC-FEATURES definition 240
DOC-PBSUMMARIES definition 243
/docsep 175
DOC-SUMMARIES 241
DOC-SUMMARIES definition 241
document

filters 97
formatting 97

document dispatch field (style.ddd) 168
document format file. See style.dft file
document formats 361
document keys 42, 62
document summaries 240
document table 41, 102
document types (universal filter) 123
document-level security with HTTP gateway

74
document-related fields, defining 323
documents

checking access to 357
maximum with sort spec 381
zones per (limit) 381

documents per collection (limit) 381
documents per partition (limit) 381
double backslash symbol (style.lex) 266
dynamic cookies 72
dynamic summaries 241

E
email
386 Verity Collection Reference
standard 208
zone filter mode 187

email files supported 364
-email option 187
Encapsulated PostScript (EPS) 363
end zone tag (zone filter) 203
Enhanced Metafile (EMF) 363
entities (zone filter) 188
entity keyword (style.zon) 198
EOP token (style.lex) 267
EOS token (style.lex) 266
-errorcodes option 304, 309
external fields 63
extract command-line tool 273
-extract option 289, 301, 309
extracting field values 172
ezclust sample program 280
ezk2admin sample program 280
ezk2prf sample program 280
ezk2srch sample program 280
ezk2strm sample program 280
ezstream sample program 280
ezwatch sample program 281

F
fastsearch indexing mode 293, 310
fast-search mode 89
feature vectors 240
field aliases, style.sfl 155
field definition files 150
field definitions 147
field keyword (style.dft file) 102
field keyword (style.dft) 102
field length limit 381
field statement (child of datamap) 178, 179
field types, standard 149
fieldname argument 168

autoval field type 163, 164
dispatch field type 168
fixwidth field type 166

Index
varwidth field type 167
worm field type 165

fields
and zones 184
custom 158
external 63
for gateways 63, 103
in a sort specification (limit) 382
internal 63
late binding 106
persistent 42
populating 106, 171
repository 63
transitory 42
Verity internal 151
Verity standard 155
Verity user 158
virtual document 106
when to use 185

fields per collection (limit) 381
file extensions (universal filter) 123
File System gateway 79

configuration file 80
pre-authentication support 79
security on remote hosts 80

/fill keyword modifier (style.dft file)
105

/fill modifier (dft statement) 101
/filter="auto" keyword modifier

(style.dft file) 104
filters 97

conditional loading of 119
fixwidth field type

maximum number of fields 165
of style.ddd 150
of style.ufl 165
of style.ufl, function 165

fixwidth field type arguments 165
/case-sensitive modifier 166
/indexed modifier 166
Verity Collection Reference
data_type argument 166
fieldname argument 166
length argument 166

float 148
flt_kv filter 112, 114, 120
flt_lang filter 113, 117
flt_rec filter 112
Folio Flat File (FFF) 366
footers, extracting 122
formats

container 364
container (email) 364
graphic 363
multimedia 364
presentations 364
word processing 366

forms-based authentication 77
fscrawl command-line tool 273
Fujitsu Oasys (OA2) 367

G
gateway

configuration file 66, 80
configuration overview 62
definition 29
fields 63, 103
File System 79
HTTP 66
indexing versus viewing 63
security method 63

gateway style files 47
GDK collections (unsupported by mkvdk) 309
generic indexing mode 293, 310
generic mode 88
genvlvdk command-line tool 273
getlogs command-line tool 273
Graphic Interchange Format (GIF) 363
graphics supported 363
387

Index
H
header keyword 209
headers, extracting 122
-headfoot flag 114, 122
-help option 285, 309
/hidden keyword modifier (style.dft)

106
hidden elements 218, 222
highlight location data 248, 331
housekeep service level 305, 314
HTML 366

code in summaries 242
zone filter for 204
zone filter mode 187

-html option 187
HTTP gateway 66

configuration file 66
dynamic cookies 72
forms-based authentication 77
security levels 74
URL redirection 74

I
IBM DCA/RFT (Revisable Form Text) (DC)

366
identifier argument (varwidth field type)

 167
implicit zone endings, SGML 203
IN operator 223
incremental squeeze 295
index options (style.prm) 244
index service level 305, 314
/indexed modifier

fixwidth field type 166
function 235
impact on retrieval speed 235
varwidth field type 167
when to use 235

indexing
continuous 40
388 Verity Collection Reference
mode 34
PDF documents 125, 126
process 33

indexing modes 85, 293
built-in 88
defining a default 92
implementing 86
predefined names 88

indexing options for document table 235
/indexed modifier 235
indexing fields for performance 235

index tuning for performance
/case-sensitive modifier 235
/minmax modifier 236
case-sensitive word indexes 245, 262
indexing field values 235
restricting contents with style.go 263

-insert option 287, 309
GDK collections not supported 309

insert service level 305, 314
instance vector encodings 237
internal fields 63, 151

inaccessible 154, 159

J
JPEG file interchange format 363
JustSystems Ichitaro (JTD) 367

K
K2 Dashboard 31
K2 Spider 31
k2admin command-line tool 273
k2collswap command-line tool 274
k2DocKey 42
k2spider_cli command-line tool 274
k2spider_srv command-line tool 274
ktmgr command-line tool 274
ktsrch command-line tool 274

Index
L
<lang/id> operator 341
langid command-line tool 274
language, default 301, 341
language-identification filter 113, 117
length argument (fixwidth field type) 166
limits on collections 381
-locale option 300, 310
locales 34

default 300
localServer parameter 80
LocationN option 245, 248
-logfile option 303, 310
logical reading order (PDF) 133
-loglevel option 303, 310
Lotus 1-2-3 (123) 365
Lotus 1-2-3 (WK4) 365
Lotus 1-2-3 Charts (123) 365
Lotus AMI Pro (SAM) 367
Lotus AMIDraw Graphics (SDW) 363
Lotus Freelance Graphics (PRE) 364
Lotus Pic (PIC) 363
Lotus SmartMaster (MWP) 367
Lotus Word Pro (LWP) 367
LPDF_AUTO paragraph direction 134
LPDF_LTR paragraph direction 134
LPDF_RAW paragraph direction 134
LPDF_RTL paragraph direction 134

M
Macintosh Raster (PICT/PCT) 363
MacPaint (PNTG) 363
mandatory style.ufl file statements

$control statement 160
data-table statement 161
descriptor statement 160

Many option 238
MAX_K2REPOSITORY_NODES 382
maxclean optimization keyword 298, 312
Verity Collection Reference
-maxfiles option 302, 310
maximum number of fixwidth fields 165
-maxmemory option 302, 310
maxmerge optimization keyword 298, 312
merge command-line tool 275, 339
merging collections 339
metadata 27
metaparameter modifiers for indexing modes

91
metaparameters 91
Microsoft Excel 365
Microsoft Excel Charts (XLS) 365
Microsoft Excel for Windows XML format 366
Microsoft Outlook (MSG) 364
Microsoft Outlook Express (EML) 364
Microsoft Outlook Personal Folder (PST) 364
Microsoft Personal Folder (PST) files 368
Microsoft PowerPoint (PPT) 364, 365
Microsoft PowerPoint for Macintosh (PPT)

365
Microsoft PowerPoint for PC (PPT) 365
Microsoft Project (MPP) 362
Microsoft Visio (VSD) 362
Microsoft Visio XML format (VDX) 366
Microsoft Windows Write (WRI) 367
Microsoft Word for PC (DOC) 367
Microsoft Word for Windows (DOC) 367
Microsoft Word for Windows XML format

366
Microsoft Works (WPS) 367
Microsoft Works Spreadsheet (S30,S40) 365
/minmax modifier

defining 236
function 236
when to use 236

mkenc command-line tool 275
mklrc command-line tool 275
mkpi command-line tool 275
mkprf 327
mkprf command-line tool 275
mkre command-line tool 275
389

Index
mkreport command-line tool 276
mksyd command-line tool 276
mktm command-line tool 276
mktopics command-line tool 276, 297
mkvdk command-line tool 31, 276

background/foreground processing 285
default behavior 284
service levels 314
syntax 284

mode
built-in 88
bulk load 89
changing dynamically 86
fast-search 89
generic 88
modifying 92
news feed indexer 90
news feed optimizer 90
read only 91

mode definitions(style.zon) 192
-mode option 293, 310
modes (zone filter) 186, 187, 192
-modify option 291, 311
MPEG-1 Audio layer 3 (MP3) 364
multimedia files supported 364

N
name argument (data-table statement) 161
NEWLINE token (style.lex) 266
news feed indexer mode 90
news feed optimizer mode 90
news messages, standard 208
-news option 187
news services, support for bulk insert 325
newsfeedidx indexing mode 293, 310
newsfeedopt indexing mode 293, 310
ngramindex optimization keyword 297, 312
-nocharmap zone filter specification 188
NOEOS option (style.prm) 238
noextract zones 219, 221
390 Verity Collection Reference
-nohousekeep option 305, 311
-noindex option 305, 311
noindex zones 220
-noindex option 289
-nolock option 311
-nooptimize option 305, 311
-nosave option 290, 311
-noservice option 289, 305, 311
-nosubmit option 289, 311
noun index 245, 331
NOUN-IDXOPTS definition 239
NOUN-IDXOPTS parameter 245
noun-phrase index 239, 245, 331
NPHR-IDXOPTS definition 239
NPHR-IDXOPTS parameter 245
Numdex option 245, 247, 332
-numdocs option 287, 311
numeric-range search support in indexes 247

O
-offset option 287, 311
-online option 312
-online option 291
OpenOffice (SXI, SXP) 366
-optimize option 294, 312
optimize service level 305, 314
-outlevel option 303, 313

P
page headers and footers 122
PARA token (style.lex) 267
paragraph direction options (PDF) 132
paragraph ordering (PDF) 132
partitions

definition 41
documents per (limit) 381
maximum number of documents for 41

passage-based summaries 242
path size limit 381

Index
PC PaintBrush (PCX) 363
PDF documents 362

indexing 125, 126
PDF fields (style.ufl) 128
PDF filter 125, 126

bi-directional text 132
lexing 126
lexing rules 126
paragraph ordering 132
specifying 126

performance considerations
fields, data tables 161
indexing fields 235

-persist option 306, 313
persistent fields 42
PKZIP (ZIP) 362
plus symbol (style.lex) 266
populating fields 171
Portable Network Graphics (PNG) 363
pound sign (style.lex) 266
pre-authentication 82
pre-authentication (File System gateway) 79
-precharmap (zone filter specification) 188
pre-process statement 181
presentations supported 364
/protocol modifier 116
PST files 116, 120, 368
PSW encoding 238
publish optimization keyword 299, 312
PUNCT token (style.lex) 267
-purge option 292, 313
purge service level 305, 314
-purgeback option 292, 313
-purgewait option 292, 313

Q
qsrch command-line tool 276
qualify instance data 248, 331
QualifyN option 245, 248
query expression 223
Verity Collection Reference
query language 223
query parser, custom 224
-quiet option 304, 313
quote symbol (style.lex) 266

R
rcadmin command-line tool 277
rcidx command-line tool 277
rck2 command-line tool 277
rck2 command-line tool , unfiltered count and

 94
rcodk command-line tool 277
rctk command-line tool 277
rcvdk command-line tool 278, 340

attach command 342
authenticating in 356
checkid command 357
checkkey command 357
clustering results 348
clusters command 348
collections, attaching 341, 342, 343
commands, viewing 342
default session language and 341
detach command 344
disable command 343
documents, viewing 351
dynamic summaries 350
expert command 343
fields command 346
fields, displaying 346
highlight command 351
highlighting search terms 351
hlmode command 351
-locale option 341
passage-based summaries 348
pbs command 348
precision command 348
results command 345
results, viewing 345
score precision 348
391

Index
search command 344
searching with 344
sort command 347
sorting results 347
starting 341
subdocs command 352
summarize command 350
time command 345
user command 356
view command 351
XML subdocuments, displaying 352

rdonly indexing mode 293, 310
read only mode 91
readonly optimization keyword 312
-recognize filter option 112
regsvr32 command-line tool 278
regular expressions 375

excluding with style.stp 262
including with style.go 263
operators 375
substrings 377
symbols 376

relative paths and mkvdk 299
-repair option 292, 313
repair service level 305, 314
repository fields 63
repository nodes (limit) 382
RFC822 standard 184, 208
Rich Text Format (RTF) 366
/right-margin keyword modifier

dft statement 101
style.dft file 105

rmklrc sample program 281
rmkpi sample program 281
rmktm sample program 282
rmktopics sample program 282
rmkvdk sample program 282
/row keyword modifier (style.dft file) 105
392 Verity Collection Reference
S
savecred command-line tool 278
schema definition (one per collection) 147
search service level 305, 314
security method 63
security, HTTP gateway

in vgwhttp.cfg file 75
levels of 74
per directory 74
per document 74
per web server 75

segment
naming conventions 161, 167
naming restrictions 161, 167

SENT token (style.lex) 266
serialization of bulk updates 94
/serialize modifier 94
service levels 314
-servlev option 304, 314
SGI RGB Image (RGB) 363
SGML

attributes 203
implicit zone endings 203
zone filter for 206

signed-integer 148
single sign-on 82
SIRENAME argument (autoval keyword)

164
SIREPATH argument (autoval keyword)

164
-sleeptime option 306, 314
sort fields per search (limit) 382
Soundex index 332
Soundex option 245, 246
Soundex support in indexes 246
spanning word list 296

size limit 382
spanword optimization keyword 296, 312
spelling suggestion 296, 297
splitting collections 340

Index
squeeze optimization keyword 295, 312
squeezing deleted documents 294
standalone command-line tool 278
standard collection fields (universal filter) 154
standard for email and news messages 208
standard style sets 54
StarOffice (SXI/SXP) 366
start tag (zone filter) 202
static summaries 241
stem index 331
stem indexes 246
Stemdex option 245, 246
stream mode 119
structure search support in indexes 246
structured text stream (PDF) 132
style directory 234
style files 47

collection 48
gateway 47

-style option 286, 314
style sets 53

default 54
default style set 58
for command-line tools 57
for K2 Dashboard 55
for StyleSet Editor 56
internal to collection 58
standard 54

style.ddd file 35, 49, 323
default 151
mandatory statements 160

style.dft file 35, 49, 100
composing virtual document 217
date formats in 106
sample file 100
syntax 100

style.dft file keyword modifiers 104
/charmap modifier 104
/col modifier 105
/delta-col modifier 105
Verity Collection Reference
/delta-row modifier 105
/fill modifier 105
/fiter="auto" modifier 104
/hidden modifier 106
/right-margin modifier 105
/row modifier 105
/tabsize modifier 105

style.dft file keywords 102
constant keyword 102
field keyword 102
system keyword 102

style.did file 49
style.fxs file 39, 49, 263
style.go file 38, 49, 263

function 263
regular expressions 263
syntax 263

style.lex file 50, 264
asterisk symbol 266
brace symbol 266
bracket symbol 266
define statement’s function 265, 266
double backslash symbol 266
EOP token 267
EOS token 266
function 264
interpretation of statements 267
NEWLINE token 266
PARA token 267
plus symbol 266
pound sign 266
PUNCT token 267
quote symbol 266
sample file 265
SENT token 266
specifying macros 266
symbols to create definitions 265
syntax 264
token statement’s function 265
token statements’ function 266
393

Index
typical tokens 266
WHITE token 267
WORD token 266

style.ngm file 50
style.pdd file 50
style.plc file 35, 50, 94, 295

/serialize modifier 94
metaparameter modifiers 91
unfiltered_count 94

style.prm file 38, 50, 237
DOC-SUMMARIES 241
document features 240
instance vector encodings 237
NOEOS option 238
PSW encoding 238
WCT encoding 237

style.pw file 51, 259
style.sfl file 36, 51

default 154
style.sid file 51
style.stp file 38, 51, 261

case-sensitive indexes 262
regular expressions 262
sample file 261
syntax 261

style.tde file 36, 51
syntax 172

style.tde keyword modifiers
/charmap 175
/docsep modifier 175
/filter="auto" modifier 175
/system modifier 175

style.tkm file 52, 234, 252
aliasto definition 254
creating custom zones 252
default version 257
mapto definition 255
syntax 254
tokenizeto definition 257
tokenizing fields 254
394 Verity Collection Reference
style.ufl file 36, 38, 52, 160, 235
$control statement 160
constant field keywords 162
data types 147
data-table statement 161
descriptor statement 160
document dispatch field 167
naming a document dispatch field 168
PDF fields 128
syntax 160
variable field types 165

style.uni file 52, 110, 189, 216
keyword modifiers 114
syntax keywords 112
syntax statements 111
using 110

style.ve file 52
style.vgw file 52
style.wld file 53
style.xfl file 53
style.xml file 43, 53

command examples 142
command syntax 140
description 137

style.zon
mode definitions 192
wildcard character 200

style.zon file 43, 53
attribute keyword 196
default 225
element keyword 194
header keyword 209
syntax 191

submitting bulk data 326
substrings in regular expressions 377
summaries 240

dynamic 241
HTML code in 242
passage-based 242
static 241

Index
Sun Raster Image (RS) 363
symbols in regular expressions 376
-synch option 285, 314
/system 175
system keyword (style.dft file) 102

T
/tabsize keyword modifier

dft statement 101
style.dft file 105

tag name case-sensitivity 203
Tagged Image File (TIFF) 363
taxmgr command-line tool 278
tde statement 181
testqp command-line tool 278
text 148
text-formatting zones 120, 252
thematic mapping 239
time formats 372
-timeout filter option 114
token statement (style.lex) 266
token-map segment 252
top2tax command-line tool 279
-topicset option 297, 314
transitory fields 42
Truevision Targa (TGA) 363
-trust filter option 112
tuneup optimization keyword 298, 312

U
underscore character in segment names 161,

167
unfiltered count and rck2 94
unfiltered_count 94
uni/id locale specifier 341
Unicode Text 366
universal filter

collections, standard fields 154
configuration 110
Verity Collection Reference
document types 123
document types supported 361
file extensions 123
invoking 107
using 106, 107

unsigned-integer 148
unstructured text stream (PDF) 132
-unzip filter option 112
-update option 290, 314
URL redirection (HTTP gateway) 74
Usenet news (zone filter mode) 187
user (custom) zone filter mode 187
-usermode option 187

V
valid data types 147
value argument (constant keyword) 163
variable field types 150
variable fields of style.ufl 165

dispatch field type 150
fixwidth field type 150, 165
varwidth field type 150, 166, 167

varwidth field type
of style.ufl, function 166

varwidth field type arguments
identifier argument 167

varwidth field type of style.ufl file 150
varwidth keyword arguments 167

/case-sensitive modifier 167
/indexed modifier 167
fieldname argument 167

vconfig command-line tool 279
vdbopt optimization keyword 298, 312
VdkDocStreamType 119
-vdkhome option 314
VdkSearchParam_CountAllHitsOpt 94
VdkSessionNewArgRec 369, 373
VDKSTREAMMODE_INDEX 119
VDKSTREAMMODE_PROFILE 119
VDKSTREAMMODE_VIEW 119
395

Index
VdkVgwKey 42, 62
simple keys 62
style.ddd file 323

-verbose option 303, 315
Verity API 87
Verity fields 151, 155, 158
Verity Spider 31
vgw*.cfg file 64
vgw*.gfl file 65
vgw*.prm file 65
vgw*.vgw file 65
vgwfsys.cfg file 80
vgwhttp.cfg file

directory-level security 74
document-level security 74
for dynamic cookies 72
security configuration 75
web server-level security 75

vgwkvcn built-in gateway 120
virtual document 35

composing with style.dft 217
creating 217
definition 98
procedure for overriding definition 100

VLANG field 117
vsdb command-line tool 279
vspider command-line tool 279

W
WCT encoding 237
web server-level security (HTTP gateway) 75
WHITE token (style.lex) 267
wildcard character (style.zon) 200
wildcard limits 381
Windows Animated Cursor (ANI) 363
Windows Bitmap (BMP) 363
Windows Metafile (WMF) 363
word index 244, 331
word processing files supported 366
WORD token (style.lex) 266
396 Verity Collection Reference
WORD-IDXOPTS definition 245
WORD-IDXOPTS parameter 244
-wordindex option 297, 315
WordPad 367
WordPerfect for Linux 367
WordPerfect for Macintosh 367
WordPerfect for Windows (WO) 367
WordPerfect Graphics 1 (WPG) 363
WordPerfect Graphics 2 (WPG) 363
-words option 296, 315
worm field type

data-table statement 164
function 164
of style.ufl 164

worm field type arguments 164
data_type argument 165
fieldname argument 165

worm field type of style.ddd file 149

X
xdate 148
XDatedex option 332
Xdatedex option 245, 247
XML documents, indexing

attributes to fields 141
tags to fields 141

XML filter 134
data file requirements 135
implementation summary 135
indexing requirements 134
style file configuration 136
style.xml file 137

XML structure search 246
XyWrite (XY4) 367

Z
Zip archive 362
ZIP files 116, 120
/zone 103

Index
zone attributes index 331
zone filter 183

end zone tag 203
entities 188
for HTML 204
for SGML 206
implicit zone endings 203
invoking 186
modes 186, 187, 192
specification 186
start tag 202

zone index 244, 331
zone-attribute index 244
zone-begin 103, 217
zone-content index 245, 331
ZONE-CONTENT-IDXOPTS definition 246
ZONE-CONTENT-IDXOPTS parameter 245
-zoned flag 114, 120
zone-end 103, 217
ZONE-IDXOPTS definition 247
ZONE-IDXOPTS parameter 244
zones

and fields 184
defined 184
noextract 221
noindex 220
number per document (limit) 381
searching within 222
text formatting 120
text-formatting 252
when to use 185

zonespec statement 191
Verity Collection Reference
 397

Index
398 Verity Collection Reference

	Verity Collection Reference
	Contents
	Figures, Tables, and Listings
	Preface
	Using This Book
	Version
	Organization of This Book
	Stylistic Conventions

	Related Documentation
	Verity Technical Support

	Style-File Reference
	Configuring and Managing Collections
	About Collections
	Collection Content
	Gateway Access to Repositories
	Universal Document Support
	How to Build a Collection
	The Indexing Process
	Searching a Collection
	Viewing Collection Documents
	Optimizing Collections
	Concurrent Access and Updating

	Internal Collection Structure
	Collection Partitions
	The Document Table
	Collection Indexes
	Collection Directory Structure

	About Style Files
	Gateway Style Files
	Collection Style Files

	About Style Sets
	Standard and Default Style Sets
	A Collection’s Internal Style Set

	Collection-Management Tools

	Configuring Gateways
	Gateway Configuration Overview
	Primary Document Key Format
	Gateway Field Types
	Security Method
	Using Separate Gateways for Indexing and Viewing

	Gateway-Related Style Files
	Using Different Gateways for Indexing and Viewing

	Using the HTTP Gateway
	Overview
	Gateway Configuration File Syntax
	Gateway Configuration File Sample
	Using Dynamic Cookies
	URL Redirection
	Security Levels
	Configuring Forms-Based Authentication

	Using the File System Gateway
	Features
	Style Directory
	Pre-Authentication Support
	Supporting Document-Level Security on Remote Hosts
	Configuration File Syntax

	Setting Indexing and Search Policies
	About Indexing Modes
	What Indexing Modes Do
	Dynamically Changing Modes
	Background vs. Administrative Optimizations

	Using Indexing Modes
	Using the Verity API
	Using mkvdk

	Built-in Indexing Modes
	Generic Mode
	Fast Search Mode
	Bulk Load Mode
	News Feed Indexer Mode
	News Feed Optimizer Mode
	Read Only Mode

	Custom Indexing Modes
	Metaparameter modifiers in style.plc
	Defining a Custom Mode

	Returning Document Counts
	Using style.plc

	Skipping Results Set Filtering

	Filtering and Formatting Documents
	The Virtual Document
	Document Layout Definition
	Document Filter Specification
	Default style.dft File

	Using the style.dft File
	style.dft File Syntax
	style.dft File Statements
	style.dft File Keywords
	style.dft Keyword Modifiers
	Date Formats in the style.dft File
	Late Binding for Field Elements

	The Universal Filter
	Invoking the Universal Filter
	How the Universal Filter Works
	Character Set Recognition and Mapping
	Checking File Types

	Using the style.uni File
	Syntax of style.uni File Statements
	Syntax of style.uni File Keywords
	Syntax of style.uni Keyword Modifiers
	Configuring the Language-Identification Filter
	Conditionally Loading Filters
	Generating Text-Formatting Zones
	Supporting Container Files (ZIP and PST)
	Disabling Filtering
	Extracting Page Headers and Footers
	Consequences of Changing style.uni

	Universal Filter Document Types
	Recognized Document Types
	Recognized Categories of Document Types

	The KeyView Filters
	The KeyView PDF Filter
	Custom Lexing Rules Not Supported
	Specifying the PDF Filter
	PDF Fields
	Paragraph Ordering

	The XML Filter
	Requirements for Indexing XML Documents
	Requirements for Data Files
	Implementation Summary
	Style File Configuration
	Indexing From the Command Line

	Troubleshooting Filters
	Checking File Types
	Disable Document Filters by MIME Type

	Defining Collection Fields
	Data Types
	Data Tables

	Field Types
	Constant Fields
	Variable Fields

	Field Definition Files
	Internal Fields (style.ddd)
	Standard Fields (style.sfl)
	User-Defined Fields (style.ufl)

	style.ufl Syntax
	Mandatory Statements
	Constant Field Types
	Variable Field Types

	Populating Collection Fields
	Methods for Populating Fields
	Using the Bulk Modify Feature
	Extracting Field Values

	style.tde Syntax
	Syntax Template
	$control
	datamap
	define
	dispatch
	field
	pre-process
	tde

	style.tde Example

	Defining Document Zones
	Zone Filter Overview
	Introduction to Zones
	Document Types
	Zones vs. Fields
	Zones and Zone Occurrences

	Invoking the Zone Filter
	Specifying the Zone Filter
	Extracting META Tags as Fields
	Extracting Zones as Fields

	style.zon File Syntax
	style.zon File Structure
	zonespec Modifiers
	Conditionally Configuring Modes
	The element Keyword
	The attribute Keyword
	The entity Keyword
	Wildcards
	style.zon Default Behavior

	Zones for Markup Language Documents
	How the Zone Filter Parses Markup Language Documents
	Zones for HTML Documents
	Zones for SGML Documents

	Zones for Internet Message Format Documents
	How the Zone Filter Parses Internet Message Format Documents
	Zone Filter Specification for Email
	Zone Filter Specification for Usenet News

	Custom Zone Definitions
	Dumping style.zon Information
	Modifying Default Behavior
	Attribute Extraction

	Defining Zones as Collection Fields
	Extracting HTML Zones as Fields
	Extracting META Tags as Fields

	Defining Zones for Virtual Documents
	Hidden Elements in Zones
	Entries in the style.dft File
	Searching over Hidden Zones

	Special Noindex and Noextract Zones
	Noindex Zones
	Noextract Zones
	Hidden Elements in NoExtract Zones

	Searching in Zones
	Using the Query Language IN Operator
	Using a Custom Query Parser
	Searching Multiple Zone Occurrences

	Default style.zon File

	Tuning Collections
	Style Files and Index Tuning
	Indexing Collection Fields (style.ufl)
	Indexed Field Type
	Minmax Field Type

	Adding Extra Collection Capabilities (style.prm)
	Specifying Instance Vector Encodings
	Enabling Storage of Nouns and Noun Phrases
	Enabling Document Features
	Configuring Document Summaries
	Setting Index Options
	style.prm File Syntax
	Default style.prm File

	Using Custom Zones to Improve Relevance (style.tkm)
	Creating Custom Zones
	Tokenizing Custom Fields
	style.tkm File Syntax
	Default style.tkm File

	Providing Passwords for Document Access (style.pw)
	Defining Indexing Stop Words (style.stp)
	style.stp Syntax
	style.stp Features

	Defining Indexing Go Words (style.go)
	style.go Syntax

	Defining Feature-Extraction Stop Words (style.fxs)
	Customizing 7-Bit Tokenization (style.lex)
	style.lex File Syntax
	Character Mapping

	Collection Tools Reference
	Command-Line Tool Summary
	Using mkvdk
	mkvdk Overview
	Basic mkvdk Syntax
	Accessing a List of Command-Line Options

	Creating and Indexing Collections
	Creating a Collection
	Indexing Documents Into a Collection
	Populating Collection Fields

	Managing Collections
	Updating Document Content and Fields
	Deleting Documents
	Updating Fixed-Width Collection Fields Without Re-Indexing
	Backing Up a Collection
	Purging a Collection
	Repairing a Collection

	Optimizing Collections
	Using Optimized Indexing Modes
	Using the -optimize Option
	Squeezing
	Incremental Squeeze
	Creating a Spanning Word List
	Creating an ngram Index
	Creating a Topic-Set Index
	Optimizing Partitions
	Cleaning Up and Publishing

	Controlling mkvdk Settings
	Accessing Secure Repositories
	Specifying Absolute or Relative Collection Paths
	Working With Locales
	Working With Character Sets
	Specifying Date Formats
	Managing Memory Usage
	Managing System Messages

	Servicing Collections
	Setting the Service Level
	Prohibiting Specific Service Levels
	Persistent Servicing
	Servicing Examples

	mkvdk Reference
	Command Syntax
	Command Options

	Using Bulk Insert Files
	About Bulk Insert Files
	BIF Format
	Statements
	Escape Sequences and Special Characters
	BIF Character Set
	BIF Size
	BIF Examples

	Inserting Documents into a Collection
	Deleting Documents from a Collection
	Supporting Continuous Feeds
	Other Uses for the BIF Format
	Language Identification
	Categories
	Profile Nets
	Parametric Indexes

	Using Other Collection Tools
	About the Collection Tools
	Location
	Specifying Locale and Character Set

	didump
	didump Syntax
	Viewing the Word Index
	Viewing the Zone List
	Viewing the Zone Attribute List

	browse
	Displaying Fields in a Document Table

	merge
	Merging Collections
	Splitting Collections

	rcvdk
	Starting rcvdk
	Attaching Collections
	Basic Searching
	Viewing the Results List
	Displaying Documents
	Authenticating in rcvdk

	Appendixes
	Supported Document Formats
	Archive Formats
	Computer-Aided Design
	Display Formats
	Graphic Formats
	Mail Formats
	Multimedia Formats
	Presentation Formats
	Spreadsheet Formats
	Text-Processing Formats
	Notes on K2 Support for PST Files

	Supported Date Formats
	Date Import Formats
	Date Import Format Strings
	Table Conventions
	Zulu Date Format
	Time Formats

	Numeric Date Formats

	Supported Regular Expressions
	Operators for Regular Expressions
	Symbols
	Substrings
	Regular Expression Examples

	Collection Limits
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

