
August 19, 2005
Part Number DM0682

Verity, Incorporated
894 Ross Drive
Sunnyvale, California 94089
(408) 541-1500

Verity Benelux BV
Coltbaan 31
3439 NG Nieuwegein
The Netherlands

Verity Query Language
and Topic Guide

Version 6.0

Copyright 2005 Verity, Inc. All rights reserved. No part of this publication may be reproduced,
transmitted, stored in a retrieval system, nor translated into any human or computer language, in any
form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise,
without the prior written permission of the copyright owner, Verity, Inc., 894 Ross Drive, Sunnyvale,
California 94089. The copyrighted software that accompanies this manual is licensed to the End User
for use only in strict accordance with the End User License Agreement, which the Licensee should read
carefully before commencing use of the software.

Verity®, Ultraseek®, TOPIC®, KeyView®, and Knowledge Organizer® are registered trademarks of
Verity, Inc. in the United States and other countries. The Verity logo, Verity Portal One™, and Verity®
Profiler™ are trademarks of Verity, Inc.

Portions of this product Copyright 2003, Sun Microsystems, Inc. All rights reserved. Use is subject to
license terms. Sun, Sun Microsystems, the Sun logo, Solaris, Java, the Java Coffee Cup logo, J2SE, and
all trademarks and logos based on Java are trademarks or registered trademarks of Sun Microsystems,
Inc. in the U.S. and other countries.

Xerces XML Parser Copyright 1999-2000 The Apache Software Foundation. All rights reserved.

Microsoft is a registered trademark, and MS-DOS, Windows, Windows 95, Windows NT, and other
Microsoft products referenced herein are trademarks of Microsoft Corporation.

IBM is a registered trademark of International Business Machines Corporation.

WordNet 1.7 Copyright © 2001 by Princeton University. All rights reserved

Includes Adobe® PDF. Adobe is a trademark of Adobe Systems Incorporated.

Portions of this product use Teragram Software.

Includes IBM's XML Parser for C++ Edition.

Includes software developed by the Apache Software Foundation (http://www.apache.org/).

This product may incorporate intellectual property owned by Microsoft Corporation. The terms and
conditions upon which Microsoft is licensing such intellectual property may be found at

http://msdn.microsoft.com/library/en-us/odcXMLRef/html/odcXMLRefLegalNotice.asp?frame=true

All other trademarks are the property of their respective owners.

Notice to Government End Users

If this product is acquired under the terms of a DoD contract: Use, duplication, or disclosure by the
Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of 252.227-7013. Civilian
agency contract: Use, reproduction or disclosure is subject to 52.227-19 (a) through (d) and restrictions
set forth in the accompanying end user agreement. Unpublished-rights reserved under the copyright
laws of the United States. Verity, Inc., 894 Ross Drive Sunnyvale, California 94089.

7/26/05

Copyright Information

http://www.apache.org/
http://msdn.microsoft.com/library/en-us/odcXMLRef/html/odcXMLRefLegalNotice.asp?frame=true

Contents

Preface .. 13

Using This Book ... 14

Version ... 14
Organization of This Book .. 14
Stylistic Conventions.. 15

Related Documentation .. 17

Verity Technical Support .. 17

1 Overview ... 19

Evidence Operators ... 20

Proximity Operators.. 21

Relational Operators.. 22

Concept Operators... 24

Modifiers ... 25

Advanced Operators ... 27

Topics... 28

What is a Topic?.. 28
Relationship Between Topics and Topic Sets ... 29

PART I VERITY QUERY LANGUAGE

2 Elements of Query Expressions... 33

Overview... 34

Simple Queries .. 34

Operator/Modifier Names.. 35
Topic Names.. 35
3

Contents
Automatic Case-Sensitive Searches.. 35
Auto-Match Phrase to Topic Name.. 36

Explicit Queries ... 36

Syntax Options ... 37

Using Shorthand Notation... 37
Specifying Topic Names Explicitly... 37
Assigning Importance (Weights) to Search Terms... 37
Searching Fields for Null Values .. 38

Precedence Evaluation .. 39

Precedence Rules... 39
Parentheses in Expressions.. 42
Prefix and Infix Notation ... 42

Delimiters in Expressions ... 43

Angle Brackets for Operators.. 43
Braces in Expressions ... 43
Double Quotes for Reserved Words .. 43
Backslashes for Special Characters... 44

Special Characters .. 44

Characters with Special Meaning ... 44
Punctuation in Queries... 45

Qualify Instance Queries... 45

3 Operators.. 47

Operators for Searching Full Text.. 47

ACCRUE ... 48
ALL ... 49
AND ... 50
ANY .. 50
BUTNOT... 51
IN... 51
NEAR.. 54
NEAR/n .. 55
OR ... 55
PARAGRAPH ... 56
4 Verity Query Language and Topic Guide

Contents
PHRASE ... 57
SENTENCE.. 57
SOUNDEX ... 58
STEM .. 59
THESAURUS .. 59
TYPO/N .. 60
WILDCARD ... 61
WORD ... 63

Operators for Searching Text Fields.. 64

CONTAINS .. 64
ENDS .. 65
MATCHES .. 65
STARTS ... 66
SUBSTRING ... 67

Operators for Searching Numeric Fields.. 67

= (Equals) .. 67
!= (Not Equals) ... 67
> (Greater Than) ... 68
>= (Greater Than Or Equal To) ... 68
< (Less Than) ... 68
<= (Less Than Or Equal To) .. 69

4 Modifiers ... 71

CASE ... 71

LANG/ID ... 72

MANY .. 74

NOT .. 75

ORDER ... 76

WHEN .. 77

5 Advanced Query Language... 81

Score Operators .. 82

COMPLEMENT .. 82
LOGSUM and LOGSUM/n .. 83
Verity Query Language and Topic Guide 5

Contents
MULT/n... 84
PRODUCT.. 85
SUM ... 85
YESNO ... 85

Natural Language Operators.. 86

FREETEXT.. 86
LIKE ... 87

Syntax .. 87
Special Characters in VdkVgwKey Fields.. 88
VdkVgwKey Fields on Windows Systems .. 89
Examples of LIKE Expressions .. 89
Efficiency Considerations ... 90

PART II TOPICS

6 Elements of Topic Design .. 93

About Topics and Topic Sets .. 94

Topic Structure .. 95
Topic and Subtopic Relationships .. 96
Storing Topic Sets.. 96

How Topics Work .. 96

Using Topics as Stored Queries in Other Verity Applications....................................... 97
Making Topics Available ... 97

Rules About Topics and Topic Sets ... 98

Operator Precedence Rules.. 98
Rules About Topics... 98

Topic Design Strategies ... 99

Top-Down Design... 99
Bottom-Up Design .. 100

7 Using Topic Outline Files.. 101

About Outline (OTL) Files .. 102

Creating a Topic Outline File ... 102

Defining Topics in the OTL File ... 104
6 Verity Query Language and Topic Guide

Contents
Specifying Weights with Subtopics ... 105
Including and Excluding Documents.. 105

Specifying Field Evidence Topic Ranges ... 106
Topic Outline File Elements ... 107

Topic Definition Modifiers.. 107
Indentation Characters .. 109

Topic Structure... 109

Defining Topic Structure ... 110
Defining Top-level Topics.. 110
Defining Subtopics .. 110
Subtopic Weight Assignments .. 111
Assigning the NOT Modifier to Subtopics .. 111

Evidence Topics .. 111
Evidence Topic Weight Assignments... 113
Assigning Modifiers to Evidence Topics ... 113
Abbreviated Evidence Topics.. 114

Defining Subtopics Using the PHRASE Operator ... 114
Defining Field Evidence Topics.. 115
How Field Evidence Topics Affect Document Scores... 117
Defining Topics for Zone Searching .. 117
Defining Topics Using Score Operators .. 118

8 Building Topic Sets from the Command Line .. 119

Starting mktopics ... 120

Building a Topic Set ... 120
Sample mktopics Command... 121

mktopics Syntax ... 122

mktopics Syntax Summary ... 122
mktopics Syntax Descriptions .. 122

Checking Topic Precedence Rules... 125

Topic Set Indexing ... 126

Topic Set Encryption ... 127

Before You Begin .. 127
Creating an Encryption File .. 128
Encrypting a Topic Set ... 128
Verity Query Language and Topic Guide 7

Contents
APPENDIXES

A Query Parsers .. 133

Simple Queries.. 133

Words and Phrases Separated by Commas .. 134
Case-Sensitivity ... 134
How to Search Hyperlink Contents ... 135

Simple Query Parser .. 135

Query-By-Example (QBE) Parser... 137

Internet-Style Parser .. 137

Search Terms.. 138
Including and Excluding Search Terms ... 138

Search Scope .. 139
Template Files.. 140
Query Syntax ... 142

Zone and Field Searches ... 142
Pass-Through of Terms... 143
Stop Words ... 143

Testing the Templates .. 144
BooleanPlus Parser... 145

Using Query Parsers Programatically... 145

Obtaining a Query Parser Using the VDK API .. 145
Using VQL with the Internet Query Parser .. 147

B Query Limits ... 149

Search Time Limits... 149

Operator Limits .. 150

C Creating a Custom Thesaurus ... 151

Creating a Thesaurus Control File... 151

Control-File Structure... 152
The control Directive. .. 153
The synonyms Keyword... 153
The list Keyword.. 153
8 Verity Query Language and Topic Guide

Contents
The qparser Keyword ... 154
Creating a Control File from an Existing Thesaurus... 154

Using the LANG/ID Modifier in the Thesaurus Control File.............................. 156
Compiling a Thesaurus with mksyd... 157

Integrating the Thesaurus with Verity ... 157

Naming and Installing the Thesaurus ... 157
Using a Knowledge Base Map to Point to a Thesaurus File... 158

Index.. 159
Verity Query Language and Topic Guide 9

Contents
10 Verity Query Language and Topic Guide

Figures, Tables, and Listings

Table 1-1 Evidence Operators ... 20
Table 1-2 Proximity Operators .. 21
Table 1-3 Relational Operators.. 22
Table 1-4 Concept Operators ... 24
Table 1-5 Modifiers ... 25
Table 1-6 Modifier Preceding Operator Syntax .. 26
Table 1-7 Operator Preceding Modifier Syntax .. 26
Table 1-8 Advanced Operators ... 27
Table 2-1 Field Search Syntax.. 38
Figure 2-1 Operator Precedence ... 40
Table 2-2 Operator Precedence Rules... 41
Table 2-3 Special Characters .. 44
Table 3-1 Evidence Operators ... 47
Table 3-2 Proximity Operators .. 48
Table 3-3 Concept Operators ... 48
Table 3-4 Supported XPath Subset ... 53
Table 3-5 Wildcard Characters .. 61
Table 6-1 Top-down Design Strategy... 99
Table 6-2 Bottom-up Design Strategy .. 100
Table 7-1 Topic Outline File Elements ... 102
Table 7-2 Topic Definition Modifiers ... 108
Table 7-3 Evidence Topic Elements .. 112
Table 7-4 Field Evidence Topic Elements .. 115
Table 7-5 Field Evidence Topic Operators... 116
Table 8-1 mktopics Syntax Elements .. 122
Table 8-2 mkenc Syntax Elements .. 130
Table A-1 Templates .. 141
11

Figures, Tables, and Listings
12 Verity Query Language and Topic Guide

Preface

The Verity Query Language and Topic Guide describes how to construct simple queries with
Verity query language, and how the four parsers that are included with Verity products
parse those queries.

This preface contains the following sections:

Using This Book

Related Documentation

Verity Technical Support
13

Preface
Using This Book
Using This Book

This section briefly describes the organization of this book and the stylistic conventions it
uses.

Version

The information in this book is current as of K2 Enterprise version 6.0. The content was
last modified August 19, 2005. Corrections or updates to this information may be
available through the Verity Customer Support site; see “Verity Technical Support” on
page 17.

Organization of This Book

This book includes the following chapters and appendixes:

Chapter 1, “Overview,” provides an overview to the Verity query language, topics,
and the contents of the entire guide.

Part I, “Verity Query Language”

Chapter 2, “Elements of Query Expressions,” provides detail on how to compose
simple and complex queries using Verity query language elements, such as
operators, modifiers, and syntax.

Chapter 3, “Operators,” provides a reference to Verity query language operators.

Chapter 4, “Modifiers,” provides a reference to Verity query language modifiers.

Chapter 5, “Advanced Query Language,” provides a reference to Verity query
language advanced (most sophisticated) operators.

Part II, “Topics”

Chapter 6, “Elements of Topic Design,” describes how to define topics and
subtopics, create a Topic Outline File, and customize topic information.

Chapter 7, “Using Topic Outline Files,” describes basic information about building
an outline file to create topic sets using mktopics and Intelligent Classifier. The
.otl file is required to make topics with mktopics, but is optional for use with
Intelligent Classifier. Information includes options and command syntax for a topic
outline (.otl) file.
14 Verity Query Language and Topic Guide

Preface
Using This Book
Chapter 8, “Building Topic Sets from the Command Line,” describes how to build
topic sets using the Verity mktopics command-line tool.

Appendixes

Appendix A, “Query Parsers,” provides a description of Verity query parsers.

Appendix B, “Query Limits,” describes the search and operator limits for queries.

Appendix C, “Creating a Custom Thesaurus,” describes how to create a specialized
thesaurus to support synonym search.

Stylistic Conventions

The following stylistic conventions are used in this book.

Convention Usage

Plain Narrative text.

Bold User-interface elements in narrative text:

Click Cancel to halt the operation.

Italics Book titles and new terms:

For more information, see the Verity K2 Getting Started Guide.

An index is a Verity collection, parametric index, or
recommendation index.

Monospace File names, paths, and code:

The name.ext file is installed in:

C:\Verity\Data\

Monospace italic Replaceable strings in file paths and code:

user username

Monospace bold Data types and required user input:

SrvConnect A connection handle.

In the User Interface text box, type user1.
Verity Query Language and Topic Guide 15

Preface
Using This Book
The following command-line syntax conventions are used in this book.

Use of punctuation—such as single and double quotes, commas, periods—indicates
actual syntax; it is not part of the syntax definition.

Convention Usage

[optional] Brackets describe optional syntax, as in [-create] to specify a non-required
option.

| Bars indicate “either | or” choices, as in

[option1] | [option2]

In this example, you must choose between option1 and option2.

{ required } Braces describe required syntax in which you have a choice and that at least one
choice is required, as in

{ [option1] [option2] }

In this example, you must choose option1, option2, or both options.

required Absence of braces or brackets indicates required syntax in which there is no
choice; you must enter the required syntax element.

variable Italics specify variables to be replaced by actual values, as in

-merge filename1

... Ellipses indicate repetition of the same pattern, as in

-merge filename1, filename2 [, filename3 ...]

where the ellipses specify , filename4, and so on.
16 Verity Query Language and Topic Guide

Preface
Related Documentation
Related Documentation

The following books provide more information on creating search applications:

Verity K2 Getting Started Guide

Verity Developer Getting Started Guide

Verity K2 Client Programming Guide

Verity Developer’s Kit Programming Reference

Verity Command-Line Indexing Reference

Verity Collection Reference

Verity Technical Support

Verity Technical Support exists to provide you with prompt and accurate resolutions to
difficulties relating to using Verity software products. You can contact Technical Support
using any of the following methods:

Telephone: (403) 294-1107

Fax: (403) 750-4100

Email: tech-support@verity.com

Web: http://www.verity.com

Product documentation, release notes, and document updates are available at the Verity
Customer Support Site, at

https://customers.verity.com

It is recommended that you periodically check the Customer Support site for the
existence of updates to this and other Verity product documents.

Access to the contents of the Customer Support site requires a user name and password.
To obtain a user name and password, follow the signup instructions on the Customer
Support site home page. You will need to supply your Verity entity ID and Verity license
key.
Verity Query Language and Topic Guide 17

https://customers.verity.com
http://www.verity.com

Preface
Verity Technical Support
18 Verity Query Language and Topic Guide

1
Overview

The Verity query language provides a rich language for writing queries that return
relevant information. Queries can be composed to search full text only or full text in
combination with field information. Simple syntax, such as words and phrases separated
by commas, and more complex syntax involving operators and modifiers can be used.

This chapter provides an overview of the operators and modifiers that comprise the
Verity query language. Material covered includes:

Evidence Operators

Proximity Operators

Relational Operators

Concept Operators

Modifiers

Advanced Operators

Topics

Special queries called topics are included as part of the Verity query language. Topics are
discussed in “Elements of Query Expressions” on page 33.

Verity toolkit and server products include query parsers. For information about the
available query parsers, see “Query Parsers” on page 133.
19

1 Overview
Evidence Operators
Evidence Operators

Evidence operators can specify either a basic word search or an intelligent word search. A
basic word search finds documents that contain only the word or words specified in the
query. An intelligent word search expands the query terms to create an expanded word
list so that the search returns documents that contain variations of the query terms. For
example, the THESAURUS operator selects documents that contain the word specified, as
well as its synonyms.

Documents retrieved using evidence operators are not relevance-ranked unless you
include the MANY modifier. (For examples and more detailed information, see “MANY”
on page 74.)

Table 1-1 briefly describes each evidence operator. For examples and more detailed
descriptions, see “Operators for Searching Full Text” on page 47.

Table 1-1 Evidence Operators

Operator Name Description

SOUNDEX Expands the search to include the word you enter and one or more
words that sound like, or whose letter pattern is similar to, the
word specified. Collections do not have sound-alike indexes by
default; you must build the sound-alike indexes to use this feature.

STEM Expands the search to include the word you enter and its
variations.

THESAURUS Expands the search to include the word you enter and its
synonyms.

TYPO/N Expands the search to include the word you enter and words
similar to the query term. This operator performs “approximate
pattern matching” to identify similar words.

WILDCARD Matches wildcard characters in search strings. Certain characters
automatically indicate a wildcard specification.

WORD Performs a basic word search and selects documents that include
one or more instances of the specific word you enter.
20 Verity Query Language and Topic Guide

1 Overview
Proximity Operators
Proximity Operators

Proximity operators specify the relative location of specific words in the document; that
is, specified words must be in the same phrase, paragraph, or sentence for a document to
be retrieved. In the case of the NEAR and NEAR/n operators, retrieved documents are
relevance-ranked based on the proximity of the specified words. When proximity
operators are nested, use the ones with the broadest scope first. Phrases or individual
words can appear within SENTENCE or PARAGRAPH operators, and SENTENCE operators
can appear within PARAGRAPH operators. Table 1-2 briefly describes each proximity
operator. See “Operators” on page 47 for examples and more detailed descriptions.

Table 1-2 Proximity Operators

Operator Name Description

ALL Selects documents that contain all of the search elements you
specify. A score of 1.00 is assigned to each retrieved document.
<ALL> and <AND> are similar and they retrieve the same results.
Queries using <ALL> are not relevance-ranked unless you use
MANY; all retrieval results are assigned a score of 1.00.

ANY Selects documents that contain at least one of the search elements
you specify. A score of 1.00 is assigned to each retrieved document.
<ANY> and <OR> are similar and they retrieve the same results.
Queries using <ANY> are not relevance-ranked unless you use
MANY; all retrieval results are assigned a score of 1.00.

BUTNOT Selects documents that qualify your search term (word or phrase)
by specifying one or more additional terms that cannot match the
search term to count as a hit.

IN Selects documents that contain specified values in one or more
document zones. A document zone represents a region of a
document, such as the document's summary, date, or body text. To
search for a term only within the one or more zones upon which
certain conditions have been placed, qualify an IN query with the
WHEN modifier.

NEAR Selects documents containing specified search terms. The closer the
search terms are within a document, the higher the document’s
score.

NEAR/n Selects documents containing two or more search terms within N
number of words of each other, where N is an integer between 1 and
1024. The closer the search terms are within a document, the higher
the document’s score.
Verity Query Language and Topic Guide 21

1 Overview
Relational Operators
Relational Operators

Relational operators search document fields (such as AUTHOR) that have been defined in
the collection. These operators perform a filtering function by selecting documents that
contain specified field values. The fields that are used with relational operators can
contain alphanumeric characters. Documents retrieved using relational operators are not
relevance-ranked, and you cannot use the MANY modifier with relational operators.

A number of relational operators are available for numeric and date comparisons,
including the following: = (equals), > (greater than), >= (greater than or equal to), < (less
than), <= (less than or equal to). See “Operators for Searching Numeric Fields” on
page 67 for examples and more detailed descriptions.

Table 1-3 describes the relational operators that are available for text comparisons. See
“Operators for Searching Full Text” on page 47 for examples and more detailed
descriptions.

PARAGRAPH Selects documents that include all of the search elements you
specify within the same paragraph.

PHRASE Selects documents that include the phrase you specify. A phrase is
a grouping of two or more words that occur in a specific order.

SENTENCE Selects documents that include all of the words you specify within
the same sentence.

Table 1-3 Relational Operators

Operator Name Description

CONTAINS Selects documents by matching the character string you specify with the
values stored in a specific document field.

ENDS Selects documents by matching the character string you specify with the
ending characters of the values stored in a specific document field.

MATCHES Selects documents by matching the character string you specify with
values stored in a specific document field. Documents are selected only
if the search elements specified match the field value exactly. When a
partial match is found, the document is not selected.

Table 1-2 Proximity Operators (continued)

Operator Name Description
22 Verity Query Language and Topic Guide

1 Overview
Relational Operators
When using the relational operators in combination with attributes, some operators are
interpreted differently than when they are used in a field search.

For example, in the following construct the MATCHES operator is equivalent to the
equals sign (=) and no wildcards are allowed.

<WHEN> attribute <OPERATOR> value

The following table shows the actual operators and values used when matching the
attribute value in the query with the stored attributes in a collection’s index. The use of
wildcards is denoted by an asterisk (*).

STARTS Selects documents by matching the character string you specify with the
starting characters of the values stored in a specific document field.

SUBSTRING Selects documents by matching the character string you specify with a
portion of the strings of the values stored in a specific document field.

Operator in the query Actual operator used Interpretation of the attribute’s value

= or MATCHES WORD value

STARTS WILDCARD value*

ENDS WILDCARD *value

SUBSTRING or CONTAINS WILDCARD *value*

Table 1-3 Relational Operators (continued)

Operator Name Description
Verity Query Language and Topic Guide 23

1 Overview
Concept Operators
Concept Operators

Concept operators combine the meaning of search elements to identify a concept in a
document. Documents retrieved using concept operators are relevance ranked. Table 1-4
briefly describes each concept operator. See “Operators for Searching Full Text” on
page 47 for examples and more detailed descriptions.

.

Table 1-4 Concept Operators

Operator Name Description

ACCRUE Selects documents that include at least one of the search elements you
specify. The more search elements that are present, the higher the score
will be.

AND Selects documents that contain all of the search elements you specify. An
score is calculated for each retrieved document. <AND> and <ALL> are
similar and they retrieve the same results. Queries using <AND> are
relevance-ranked; retrieved documents are assigned a score between 0
and 1.00.

OR Selects documents that contain at least one of the search elements you
specify. A score is calculated for each retrieved document. <OR> and
<ANY> are similar and they retrieve the same results. Queries using
<OR> are relevance-ranked; retrieval documents are assigned a score
between 0 and 1.00.
24 Verity Query Language and Topic Guide

1 Overview
Modifiers
Modifiers

Modifiers are used in conjunction with operators to change the standard behavior of an
operator in some way. When specified, a modifier changes the standard behavior of an
operator in some way. For example, you can use the CASE modifier with an operator to
specify that the case of the search word you enter be considered a search element as well.

Table 1-5 briefly describes each modifier. For examples and more detailed descriptions,
see “Modifiers” on page 71.

Two syntax formats are used to specify modifiers with operators.

The first format specifies the modifier name before the operator name, as shown in
Table 1-6. This format is valid for all four types of modifiers. Certain operators are valid
only with certain modifiers.

Table 1-5 Modifiers

Modifier Description

CASE Performs a case-sensitive search.

DATE Provides support for XML date operators. Used only to extend the
WHEN modifier.

LANG/ID Performs language-specific stemmed searches on collections
created with the multilanguage locale.

MANY Incorporates the density of search words in the calculation of the
relevance-ranked score.

NOT Excludes documents containing the words or phrases.

NUMERIC Provides support for XML numeric operators. Used only to extend
the WHEN modifier.

ORDER Specifies the order in which search elements must occur in the
document.

WHEN Selects documents that contain specified values in one or more
document zones upon which certain conditions have been placed.
Used only with the IN operator.

ZONE Provides support for XML element operands. Used only to extend
the WHEN modifier.
Verity Query Language and Topic Guide 25

1 Overview
Modifiers
The second syntax format specifies the operator name before the modifier name, as
shown in Table 1-7. This syntax is valid only for the CASE and NOT modifiers.

Table 1-6 Modifier Preceding Operator Syntax

 Modifier Valid Operators Examples

CASE TYPO/n
WORD
WILDCARD

<CASE><WORD> iMac

LANG/ID STEM <LANG/fr><STEM>un

MANY WORD
WILDCARD
STEM
SOUNDEX
PHRASE
SENTENCE
PARAGRAPH
THESAURUS
TYPO/n
BUTNOT

<MANY><WORD> virtual

NOT all operators cat <AND> dog <AND> <NOT> pet

ORDER PARAGRAPH
SENTENCE
NEAR
NEAR/N
ALL

president <ORDER> <PARAGRAPH> washington

<ORDER> <SENTENCE> ("president", "washington")

Table 1-7 Operator Preceding Modifier Syntax

 Modifier Valid Operators Examples

 CASE WORD
WILDCARD
CONTAINS
MATCHES
STARTS
ENDS
SUBSTRING

author <CONTAINS/CASE>Don

 NOT all operators author<CONTAINS/NOT>don
author<STARTS/NOT>xxx
26 Verity Query Language and Topic Guide

1 Overview
Advanced Operators
Advanced Operators

The following are advanced classes of Verity operators. Advanced operators are not used
with modifiers.

The score operators (YESNO, PRODUCT, SUM, LOGSUM, MULT, and
COMPLEMENT) affect how the search engine calculates scores for retrieved
documents. When a score operator is used, the search engine first calculates a separate
score for each search element found in a document, and then performs a mathematical
operation on the individual element scores to arrive at the final score for each
document.

The natural language operators (FREETEXT and LIKE) enable you to specify search
criteria using natural language syntax. The search engine uses natural language
analysis to translate the query text into Verity query language expression for
evaluating and scoring documents.

Table 1-8 briefly describes each advanced operator. For examples and more detailed
descriptions, see “Advanced Query Language” on page 81.

Table 1-8 Advanced Operators

Operator Name Description

COMPLEMENT Score operator. Calculates scores for documents matching a query by
taking the complement (subtracting from 1) of the scores for the
query’s search elements.

FREETEXT Natural language operator. Interprets text using the free text query
parser, and scores documents using the resulting query expression.
All retrieved documents are relevance-ranked.

For information about the free text query parser, see
“Query-By-Example (QBE) Parser” on page 137

LIKE Searches for other documents that are like the sample one or more
documents or text passages you provide. The search engine analyzes
the provided text to find the most important terms to use for the
search. Retrieved documents are relevance-ranked.

LOGSUM and LOGSUM/n Score operator. Returns a score that approaches 1 as the sum of the
child node’s score approaches 1.

MULT/n Score operator. Multiplies the score returned from its child by the
constant. This is the only operator that can return a negative number
or a value greater than 1.

PRODUCT Score operator. Calculates scores for documents matching a query by
multiplying the scores for the query’s search elements together.
Verity Query Language and Topic Guide 27

1 Overview
Topics
Topics

Topics are the fundamental building blocks in Verity's classification infrastructure, and
play a central role in defining categories. The following sections define a topic and
explain the relationship between topics and topic sets.

What is a Topic?

A topic is a grouping of information related to a concept or a subject area. In Verity terms,
a topic is a stored query expression that is written in the Verity Query Language (VQL). A
topic models a concept of interest, which is used as the definition for a category. When a
topic is evaluated against a set of documents, the Verity search engine identifies the
subset of the documents that match the concept that the topic represents.

Consider the following scenario:

You can use the VQL expression GM <OR> Ford <OR> Chrysler to model the
concept “North American car manufacturers.” When this expression is evaluated on a
set of newspaper articles, the Verity search engine selects all articles that mention GM,
Ford, or Chrysler as matching the concept “North American car manufacturers.”

Topics can be combined using VQL operators to create more complex topic definitions.
For example, you might combine the concept “North American car manufacturers”
with “European car manufacturers” (another VQL expression). By combining these
topics and applying <NOT> to the concepts, you could perhaps create a new topic
definition corresponding to the concept “Asian car manufacturers.” (This definition
assumes no South American or Australian car manufacturers.)

You can also use sophisticated non-Boolean VQL operators.

SUM Score operator. Calculates scores for documents matching a query by
adding together the scores for the query’s search elements.

YESNO Score operator. Enables you to limit a search to only those documents
matching a query, without the score of that query affecting the final
scores of the documents.

Table 1-8 Advanced Operators (continued)

Operator Name Description
28 Verity Query Language and Topic Guide

1 Overview
Topics
Operators and modifiers act as the glue that joins related evidence topics. Operators
represent logic to be applied to evidence topics and define the criteria for the kinds of
documents you want to find. Modifiers apply further logic to evidence topics. For
example, a modifier can specify that documents containing an evidence topic not be
included in the list of results.

Relationship Between Topics and Topic Sets

A topic set is a group of stored queries or topic definitions that have been compiled for use
by a Verity application. A topic can be used to define a category, so a topic set contains
one or more topics used for classifying documents in a collection. Because a topic set
represents many concepts, it is sometimes referred to as a knowledge base. A Verity
knowledge base can consist of one or more topic sets. When Verity applications
incorporate topics, end users can find information by entering the topic names—instead
of entering elaborate queries with complex syntax.

By using individual topics or combining topics, you can create category definition rules
that are used to decide whether a document belongs to the category. There are several
techniques for constructing topics, ranging from domain expertise to the use of
automated machine learning techniques. Topics can be combined regardless of how they
have been created. One advantage of combining topics is that it allows a gradual buildup
so that basic topics can be shared between multiple higher-level topics.

Verity Intelligent Classifier is an application that runs on Microsoft Windows and has a
graphical interface for designing, editing, and testing topics. With Intelligent Classifier,
users can create topic definitions and build topic sets.
Verity Query Language and Topic Guide 29

1 Overview
Topics
30 Verity Query Language and Topic Guide

PART I

Verity Query Language

Chapter 2: Elements of Query Expressions

Chapter 3: Operators

Chapter 4: Modifiers

Chapter 5: Advanced Query Language
31

32

2
Elements of Query Expressions

This chapter describes the elements of Verity query language used to write simple query
expressions. It provides the following information:

Overview

Simple Queries

Explicit Queries

Syntax Options

Precedence Evaluation

Delimiters in Expressions

Special Characters

Qualify Instance Queries
33

2 Elements of Query Expressions
Overview
Overview

A query expression is any statement you enter as criteria for performing a search. The
words and operators you use in a query expression comprise its elements.

When the simple query parser (the default parser) is used, you can state a query
expression using simple or explicit syntax. The syntax you use determines whether the
search words you enter will be stemmed, and whether the words that are found will
contribute to relevance-ranked scoring.

For further information, see “Query Parsers” on page 133.

Simple Queries

When you use simple syntax, the search engine implicitly interprets single words you
enter as if they were preceded by the MANY modifier and the STEM operator. By implicitly
applying the MANY modifier, the search engine calculates each document’s score based on
the word density it finds; the denser the occurrence of a word in a document, the higher
the document’s score.

As a result, the search engine relevance-ranks documents according to word density as it
searches for the word you specify, as well as words that have the same stem. For example,
“films,” “filmed,” and filming” are stemmed variations of the word “film.” To search for
documents containing the word “film” and its stem words, enter the word “film” using
simple syntax:

film

When documents are relevance-ranked, they are listed in an order based on their
relevance to your search criteria. Relevance-ranked results are presented with the most
relevant documents at the top of the list.
34 Verity Query Language and Topic Guide

2 Elements of Query Expressions
Simple Queries
Operator/Modifier Names

Left and right angle brackets (< >) are reserved for designating operators and modifiers.
They are optional for AND, OR, and NOT, but required in all other cases.

To include a backslash (\) in a search, insert two backslashes for each backslash character.
To search for “C:\bin\print,” enter the following simple syntax:

C:\\bin\\print

Topic Names

For simple queries, simply enter the topic name as you would a word or phrase.

The search engine also interprets words that are topic names as topics rather than as
individual words when you use simple syntax. This means that if the text you enter
contains a topic name, the query corresponding to that topic is used instead of the word
itself.

Automatic Case-Sensitive Searches

The search engine attempts to match the case-sensitivity provided in the query
expression when mixed case is used. For search terms entered completely in lowercase or
completely in uppercase, the search engine looks for all mixed-case variations.

Search terms with mixed case automatically become case-sensitive. For example, a query
on Apple behaves as if you had specified <case>Apple (which would find only the
precise string Apple), while a query on apple finds all of the following: APPLE, Apple,
apple.

A query all in uppercase does not turn on case-sensitive searching. A query on APPLE
finds all of the following: APPLE, Apple, apple (as before).

The CASE modifier has the same effect as in previous releases. When used, the
case-sensitivity of the query is preserved. For example, if you want to search for the term
“OCX” and want to find instances of “OCX” in uppercase only, you could enter the
following query:

<CASE> <WORD> OCX

The search engine would interpret the previous query expression to mean: find all
documents containing one or more instances of the word “OCX” spelled in uppercase,
not mixed case.
Verity Query Language and Topic Guide 35

2 Elements of Query Expressions
Explicit Queries
Auto-Match Phrase to Topic Name

If your query expression includes a phrase, the search engine tries to match the phrase
with a topic name by substituting the spaces with hyphens. For example, if the phrase
“web server” is used in a query expression, the search engine looks for a topic named
“web-server.” If a match is found, the topic name is used to perform the search.

Partial matches are not valid. For example, the search engine does not match the phrase
“web server features” with the topic name “web-server;” it matches the topic name
“web-server-features.”

Explicit Queries

When you enclose individual words in double-quotation marks (“), the Verity search
engine interprets those words literally. For example, by entering the word “film”
explicitly in double-quotation marks, the words “films,” “filmed,” and filming” are not
considered in the search. To select documents containing the word “film” without
searching for its stemmed words, enter the word “film” using explicit syntax:

"film"

The following example retrieves documents that contain both the literal phrase
“pharmaceutical companies” and the literal word “stock”:

AND ("pharmaceutical companies", "stock")

The AND operator does not require angle brackets because it is automatically interpreted
as an operator.

The following example retrieves documents containing the phrase “black and white”:

<PHRASE> (black "and" white)

The PHRASE operator requires angle brackets, and the “and” is enclosed in
double-quotation marks (“) because it is to be interpreted as a literal word, not as an
operator.

Additionally, when you enter a topic name enclosed in double-quotation marks (“), the
search engine will interpret the topic name as a literal word instead of as a topic. This is
useful when you want to search for a word that is the same as the name of a topic.
36 Verity Query Language and Topic Guide

2 Elements of Query Expressions
Syntax Options
Syntax Options

Following is a summary of Verity query language syntax options, including alternative
syntax and topics, that you can use to compose query expressions. These syntax options
are available for simple and explicit queries.

Using Shorthand Notation

The Verity query language provides a few alternatives you can use to specify evidence
operators. In the following examples, “word” represents the word to be located.

.

Specifying Topic Names Explicitly

You can specify topics in expressions in a variety of ways. Use any of the following
formats to specify a topic explicitly in an expression:

{topic_name}

<TOPIC>topic_name

<TOPIC>(topic_name)

{KB:topic_name}

In the previous examples, topic_name represents the name of the topic used in the
expression. KB represents the name of the knowledge base used in the expression.

Assigning Importance (Weights) to Search Terms

You can assign a weight to each search term in a query to indicate each search term’s
relative importance. The weight assignment is expressed as a number between 01 and
100, where 01 represents the very lowest importance rating and 100 represents the very
highest importance rating.

Standard Query Expression Equivalent Format

<MANY><WORD>word "word"

<MANY><STEM>word 'word'
Verity Query Language and Topic Guide 37

2 Elements of Query Expressions
Syntax Options
To specify a weight with a search term, enter the weight in brackets just before the search
term, as shown in the following example:

[50]test, [80]help

For the previous example, the search engine looks for stemmed variations of the words
“test” and “help” and assigns a weight of 50 to the term “test” and a weight of 80 to the
term “help.” Search results with the highest density of stemmed variations of the term
“help” would receive the highest possible scores.

Using explicit syntax, you could enter a query expression with weights as follows:

<ACCRUE> ([50]<WORD>(test), [80]<WORD>(help))

Searching Fields for Null Values

The search engine supports searching for fields that have a null value. This means that
you can perform the basic search and find all of the documents that have a null value for
a particular field. You can also search for fields that are populated with a non-null value.

The methods for searching for null or populated field values are indicated in Table 2-1.

Table 2-1 Field Search Syntax

Syntax Description

fieldname = "" This syntax is used to search for documents that have a null value for the
field named fieldname. The value for fieldname must be a valid
Verity field. If the field name given does not exist for a document,
meaning the field is not defined for the document’s collection, it does not
match the query.

fieldname != "" Used to search for documents that have some value for the field named
fieldname. The value for fieldname must be a valid Verity field. If the
field name given does not exist for a document, meaning the field is not
defined for the document’s collection, it does not match the query.
38 Verity Query Language and Topic Guide

2 Elements of Query Expressions
Precedence Evaluation
Precedence Evaluation

The ways that precedence rules and syntax affect the evaluation of queries are described
in the following sections.

Precedence Rules

A Verity query expression is read using explicit precedence rules applying to the
operators that are used. Although a query expression is read from left to right, some
operators carry more weight than others; this affects the interpretation of the expression.
For example, the AND operator takes precedence over the OR operator. For this reason, the
following example is interpreted to mean: Look for documents that contain b and c, or
documents that contain a.

a OR b AND c

To ensure that the OR operator is interpreted first, use parentheses as follows:

(a OR b) AND c

In general, the appropriate use of parentheses in query expressions, especially complex
ones, ensures that the query expression is interpreted as intended.

The Verity search engine uses precedence rules to determine how operators are assigned.
These rules state that some operators rank higher than others when assigned to topics,
and affect how document selections are performed.

Figure 2-1 shows the precedence of the various operators. Higher levels can be parents of
lower levels, but the reverse is not true.
Verity Query Language and Topic Guide 39

2 Elements of Query Expressions
Precedence Evaluation
Figure 2-1 Operator Precedence
40 Verity Query Language and Topic Guide

2 Elements of Query Expressions
Precedence Evaluation
Note To avoid a precedence violation, do not use ANY or ALL in a parent topic
whose child topic includes a concept operator (AND, OR, ACCRUE).
Topics that use ANY or ALL cannot have variable weights assigned to
them, so you cannot use these operators in a parent topic with any child
topic that allows variable weights (such as AND, OR, ACCRUE).

Table 2-2 Operator Precedence Rules

Operator Precedence How Precedence is Determined

AND
OR
ACCRUE

Highest precedence These concept operators take the highest precedence
over the other operators. So, subtopics of topics
using these operators can be assigned any of the
operators listed below under “incremental
precedence” or “lowest precedence.”

ALL
IN
PARAGRAPH
SENTENCE
NEAR, NEAR/N
PHRASE
BUTNOT
ANY

Incremental
precedence
(in descending
order)

This combination of concept and proximity
operators refer to incremental ranges that exist
within a document. Subtopics of topics using these
operators can be assigned their next lowest operator
in the precedence order. So, a phrase takes
precedence over a word; a sentence takes
precedence over a phrase or a word; and a
paragraph takes precedence over a sentence, a
phrase, or a word.

WORD
STEM
SOUNDEX
WILDCARD
THESAURUS
TYPO, TYPO/N

Lowest precedence These evidence operators reside at the lowest level
in a topic structure. Because evidence operators are
used with words contained in documents, these
operators all have the same precedence.
Verity Query Language and Topic Guide 41

2 Elements of Query Expressions
Precedence Evaluation
Parentheses in Expressions

Parentheses indicate the order in which the directions are to be performed; information
within parentheses is read first, then information outside parentheses is read next. There
must be at least one space between operators and words used in the expression. The
following example means: Look for documents that contain a and b, or documents that
contain c.

(a AND b) OR c

When there are nested parentheses, start with the innermost level. The following
example means: Look for documents that contain b or c as well as a, or that contain d.

(a AND (b OR c)) OR d

Prefix and Infix Notation

Words or topics that use any operator except evidence operators (SOUNDEX, STEM,
THESAURUS, WILDCARD, and WORD) can be defined in prefix notation or in infix notation.

Prefix notation is a format that specifies that the operator is specified before the words or
topics used with that operator. The following example means: Look for documents that
contain a and b.

AND (a,b)

When prefix notation is used, precedence is explicit within the expression. The following
example means: Look for documents that contain b and c first, then documents that
contain a.

OR (a, AND (b,c))

Infix notation is a format that specifies that the operator is specified between each
element within the expression. The following example means: Look for documents that
contain a and b or documents that contain c.

a AND b OR c

When infix notation is used, precedence is implicit within the expression; for example,
the AND operator takes precedence over the OR operator.
42 Verity Query Language and Topic Guide

2 Elements of Query Expressions
Delimiters in Expressions
Delimiters in Expressions

Angle brackets (< >), braces ({ }), double-quotation marks ("), and backslashes (\) are
used in expressions as described in the following sections.

Angle Brackets for Operators

Left and right angle brackets (< >) are reserved for designating operators and modifiers.
They are optional for AND, OR, and NOT but required in all other cases. Examples in this
guide appear with and without angle brackets. As the following simple syntax examples
show, enter expressions either way:

future <AND> trends
future AND trends

Both expressions mean: Look for documents that contain the stemmed variations of the
words “future” and “trends”.

You can also explicitly specify a topic by using <TOPIC>(topic_name), where
topic_name represents the topic to be used. The following example means: Look for
documents that contain elements of the topic named performing-arts and the
stemmed variations of the word “acting.”

<TOPIC>(performing-arts) AND acting

Braces in Expressions

Use left and right braces ({ }) to specify a topic. The following example means: Look for
documents that contain elements of the topics named philosophy and history.

{philosophy} AND {history}

Double Quotes for Reserved Words

To search for a word that is reserved as an operator (AND, OR, and NOT), enclose the word
in double quotation marks. For example, to search for the phrase “black and white TV,”
enter the following simple syntax:

black "and" white TV
Verity Query Language and Topic Guide 43

2 Elements of Query Expressions
Special Characters
Enclosing the word “and” in double-quotation marks (“) signifies that “and” should be
considered as a word, not an operator.

Backslashes for Special Characters

To include a backslash (\) in a search, insert two backslashes for each backslash character.
To search for “C:\bin\print,” enter the following simple syntax:

C:\\bin\\print

Special Characters

The following information describes how special characters are interpreted.

Characters with Special Meaning

Characters without special meaning in the Verity query language can be entered
anywhere in a query. Characters with special meaning are shown in Table 2-3.

A backslash removes special meaning from the next character. To enter a literal backslash
in a query, use two backslashes. The following examples illustrate the use of the
backslash.

<FreeText>("\"Hello\", said Emilie.")
'Emilie\'s'
"phrase containing a backslash (\\)"

Table 2-3 Special Characters

Special Characters Description

, () [These characters end a text token.

= > < ! These characters end a text token because they signify the start
of a field operator. (! is special: != ends a token.)

 ‘ @ ` < { [! These characters signify the start of a delimited token. These are
terminated by the end character associated with the start
character.
44 Verity Query Language and Topic Guide

2 Elements of Query Expressions
Qualify Instance Queries
Punctuation in Queries

Punctuation in queries is handled by an automatic expansion mechanism, in which, for
example, the string “AT&T” becomes the following:

<Any>("AT&T", "AT T", "AT & T")

Qualify Instance Queries

The qualify instance feature can be implemented through the
VdkCollectionQualifyCBFnc call, as described in Verity Developer’s Kit Programming
Reference. When implemented, users can search for instance data. The qualify instance
feature can be implemented using the Verity Developer’s Kit product only.

To search for the word “steve” with an instance value of 52, you enter the following
query:

steve[52]

If a particular search term is to be “qualified,” then the qualification follows the search
term in square brackets ([]).

When entering a search string, to qualify an individual word or set of words in an
expansion list, append the qualification to the leaf in square brackets. For example:

 <WORD>apple[67] <AND> <WORD>banana[44]

In the previous example, the only documents that would pass this query would be those
that had the word “apple” with an instance value of 67 and the word “banana” with an
instance value of 44.

Any valid leaf term can be qualified, except a leaf using the TYPO or TYPO/N operator.
Examples:

<STEM>orange[45]
<SOUNDEX>kiwi[50]

To search for instance data using weights, you must use parentheses surrounding the
qualify instance part of the query. For example, the following queries will be processed:

[80](orange)[45])

The weight of 80 will be applied to the qualify instance leaf: orange[45].
Verity Query Language and Topic Guide 45

2 Elements of Query Expressions
Qualify Instance Queries
46 Verity Query Language and Topic Guide

3
Operators

This chapter describes Verity query language operators. These sections are included:

Operators for Searching Full Text

Operators for Searching Text Fields

Operators for Searching Numeric Fields

Operators for Searching Full Text

This section describes operators used for performing full text searches. The following
three tables summarize the three “families” of text search operators. The operators and
examples of their use are listed in alphabetical order after the tables.

Table 3-1 Evidence Operators

Operator Modifiers Automatically
Relevance-ranked

SOUNDEX MANY, NOT No

STEM MANY, NOT No

THESAURUS MANY, NOT No

TYPO/N CASE, MANY, NOT No

WILDCARD CASE, MANY, NOT No

WORD CASE, MANY, NOT No
47

3 Operators
Operators for Searching Full Text
ACCRUE

ACCRUE selects documents that include at least one of the search elements you specify.
Valid search elements are two or more words or phrases. Retrieved documents are
relevance-ranked.

The ACCRUE operator scores retrieved documents according to the presence of each
search element in the document using “the more, the better” approach; the more search
elements found in the document, the better the document’s score.

The following examples illustrate the search syntax. For example, to select documents
containing stemmed variations of the words “computers” and “laptops,” enter any of the
following:

computers <ACCRUE> laptops

Table 3-2 Proximity Operators

Operator Modifiers Automatically
Relevance-ranked

ALL MANY, NOT, ORDER No

ANY MANY, NOT No

BUTNOT MANY, NOT No

IN MANY, NOT, WHEN Inherits from the
subquery.

NEAR NOT, ORDER Yes

NEAR/n NOT, ORDER Yes

PARAGRAPH MANY, NOT, ORDER No

PHRASE MANY, NOT No

SENTENCE MANY, NOT, ORDER No

Table 3-3 Concept Operators

Operator Modifiers Automatically
Relevance-ranked

ACCRUE NOT Yes

AND NOT Yes

OR NOT Yes
48 Verity Query Language and Topic Guide

3 Operators
Operators for Searching Full Text
computers, laptops

<ACCRUE> (computers, laptops)

The following examples show how you can use the ACCRUE operator in topics.

topic_1 <Accrue>
<Word> computer
<Word> speed

topic_2 <Accrue>
p1 <Near>
<Thesaurus> retrieve
<Thesaurus> information

p2 <Phrase>
<Stem> view
<Word> and
<Stem> print

Note If you use Intelligent Classifier to create a child node under an ACCRUE
operator, the child node is automatically assigned the default weight of
0.50. This allows ACCRUE to differentiate documents with more hits from
those with fewer. If all of the children of ACCRUE have weights of 1.00,
most documents will have equal scores, regardless of how many of the
children’s search terms are present within the documents.

For the best selection results, assign weights between 0.80 and 0.20 to the
children of ACCRUE.

ALL

Selects documents that contain all of your search elements. Retrieved documents are not
relevance-ranked. Scores cannot be assigned to this operator.

For example, to select documents that contain stemmed variations of the phrase
“pharmaceutical companies” and stemmed variations of the word “stock,” enter the
following:

pharmaceutical companies <ALL> stock

Only those documents that contain both search elements, or stemmed variations of them
(for example, “pharmaceutical company,” “stocks,” and so on), are retrieved. Each
retrieved document is assigned a score of 1.00.
Verity Query Language and Topic Guide 49

3 Operators
Operators for Searching Full Text
The following example retrieves documents that contain “Verity” and “product” and
“press release.”

example <All>
<Case><Word> Verity
<Word> product
<Phrase>

<Word> press
<Word> release

AND

Selects documents that contain all of your search elements. Documents retrieved using
the AND operator are relevance-ranked.

For example, to select documents that contain stemmed variations of the phrase
“pharmaceutical companies” and stemmed variations of the word “stock,” enter the
following:

pharmaceutical companies AND stock

Only those documents that contain both search elements, or stemmed variations of them
(for example, “pharmaceutical company,” “stocks,” and so on), are retrieved. A
calculated score is assigned to each retrieved document.

The unweighted score is the lowest score of the child nodes. In particular, if any of the
child nodes return a score of 0, AND also scores 0. For example, if the lowest score of the
children is 0.5739, AND returns a score of 0.5739.

ANY

Selects documents that contain at least one of your search elements. Retrieved documents
are not relevance-ranked. Scores cannot be assigned to this operator.

For example, to select documents that contain stemmed variations of the word “election”
or the phrases “national elections” or “senatorial race”, enter the following:

election <ANY> national elections <ANY> senatorial race

Only those documents that contain at least one of the search elements, or a stemmed
variation of at least one of them, are retrieved. Each retrieved document is assigned a
score of 1.00.
50 Verity Query Language and Topic Guide

3 Operators
Operators for Searching Full Text
BUTNOT

Selects documents that qualify your search term (word or phrase) by specifying one or
more additional terms that cannot match the search term to count as a hit. For example,
the query:

<BUTNOT>(china, china sea, north china, south china)

matches the text "fine china is beautiful" and the text "fine china shipped from north
china" but does not match the text "the china sea is very cold" or the text "the economic
integration of north china and south china".

Wildcard terms are fully supported, so the following query works:

<BUTNOT>(chin*, china sea, *th china)

The <BUTNOT> operator is a proximity operator and has the same operator priority as
<PHRASE>. A <BUTNOT> query term can be used anywhere in a query that a PHRASE or
non-field leaf term (such as WORD or STEM) can appear. The <BUTNOT> operator accepts
the MANY and NOT modifiers, and is Boolean by default.

<BUTNOT> terms highlight appropriately in streamed documents. In particular, instances
of the first term that match a qualifying term are not highlighted.

IN

Selects documents that contain specified values in one or more document zones. A
document zone represents a region of a document, such as the document's summary, date,
or body text. The IN operator works only if document zones have been defined in your
collections. If you use the IN operator to search collections without defined zones, no
documents will be selected. Also, the zone name you specify must match the zone names
defined in your collections. Consult your collection administrator to determine which
zones have been defined for specific collections.

The IN operator can be qualified with the WHEN operator to search for a term only within
the one or more zones upon which certain conditions have been placed. Use of the WHEN
operator is described in “WHEN” on page 77.

The following query expression searches document zones named “summary” for the
word “safety.”

"safety" <IN> summary

To search with multiple words, phrases, or topics, enclose them in parentheses. The
following query expression searches document zones named “summary” for the word
“safety” and stemmed variations of the word “warning.”
Verity Query Language and Topic Guide 51

3 Operators
Operators for Searching Full Text
("safety", warning) <IN> summary

To search multiple zones, separate them with commas and enclose them in parentheses.
The following query expression searches both the “summary” zone and the “title” zone
for the word “safety” and stemmed variations of the word “warning.”

("safety", warning) <IN> (summary, title)

You must enclose query expressions containing commas in parentheses. The following
example searches the “summary” zone for the word “safety” and stemmed variations of
the phrase “environmental regulation.”

("safety", environmental regulation) <IN> summary

The following query expression searches both the “summary” zone and the “title” zone
for the word “safety” and stemmed variations of the phrase “environmental regulation.”

("safety", environmental regulation) <IN> (summary, title)

The following topic example selects documents containing the word “new” in IMG zones
whose SRC attribute contains “logo”.

<In> IMG <When> SRC <Contains> logo
 <Word> new

This matches, for example, an HTML document containing the following line (assuming
IMG is a zone defined for the collection).

.

Note You can enter the node as shown in the previous example, without
parentheses if you are using Intelligent Classifier. Parentheses are
automatically added around parts of the expression when the node is
parsed.

The following topic example selects documents containing the phrase “located here” in A
zones with an HREF attribute that contains “verity”.

<In> A <When> HREF <Contains> verity
 <Phrase>
 <Word> located
 <Word> here

This matches, for example, an HTML document containing the following line (assuming
A is a zone defined for the collection).

Our site is located here.
52 Verity Query Language and Topic Guide

3 Operators
Operators for Searching Full Text
The following topic example shows how <IN> nodes can be nested.

<In> BODY
 <In> A <When> HREF <Contains> verity
 <Word> documents

Note In Intelligent Classifier, you can use the Assists window to see what zones
have been defined for a given collection. For more information about
defining zones in collections, see the Verity K2 Dashboard Administrator
Guide.

XML Support
You can use the <IN> operator for structural searches in a supported XPath subset. Use
an XPath to identify zones within an XML document.

That means that the syntax:

query <in> (zone1, …, zonen)

is now interpreted as

query <in> (xpath1, …, xpathn)

Note Absolute and relative XPaths, as well as simple zone names, are
supported. The relative XPaths are handled from the document root.

For example, to find documents where the first book is about UNIX.

VQL: unix <in> //book[1]

Table 3-4 Supported XPath Subset

XPath Construct XML Fragment Example <IN> operator

Child abbreviation (/) Books under the bib root
element.

/bib/book

Descendant-or-self
abbreviation (//)

Books anywhere in the
document.

//book

Subscript([n]) 1st book under the bib root
element.

/bib/book[1]

Attribute (@) Published books. //book[@published]
Verity Query Language and Topic Guide 53

3 Operators
Operators for Searching Full Text
NEAR

Selects documents containing specified search terms within close proximity to each other.
Document scores are calculated based on the relative number of words between search
terms.

For example, if the search expression includes two words, and those words occur next to
each other in a document (so that the region size is two words long), then the score
assigned to that document is 1.0. Thus, the document with the smallest possible region
containing all search terms always receives the highest score. As search terms appear
further apart, the score drops toward zero. A document receives a zero score only if it
does not contain all search terms.

The NEAR operator is similar to the other proximity operators in the sense that the search
words you enter must be found within close proximity of one another. However, unlike
other proximity operators, the NEAR operator calculates relative proximity and assigns
scores based on its calculations.

To retrieve relevance-ranked documents that contain stemmed variations of the words
“war” and “peace” within close proximity to each other, enter the following:

war <NEAR> peace

The following topic examples show how you can use <NEAR> with various operators.

example <Near>
 <Word> document
 <Word> retrieve

example2 <Near>
 <Phrase>
 <Stem> document
 <Word> retrieval
 <Case><Word> Verity
 <Wildcard> computer*
 <Typo> keyview
 <Any>
 <Word> new
 <Word> announce

If the PSW option is used when the collection is built, <NEAR> will not cross sentence or
paragraph boundaries. That is, it only returns documents where the search terms are
within n words and are in the same sentence and paragraph.
54 Verity Query Language and Topic Guide

3 Operators
Operators for Searching Full Text
NEAR/n

Selects documents containing two or more words within n number of words of each
other, where n is an integer. Document scores are calculated based on the relative
distance of the specified words when they are separated by n words or less.

For example, if the search expression NEAR/5 is used to find two words within five
words of each other, a document that has the specified words within three words of each
other is scored higher than a document that has the specified words within five words of
each other.

The n variable can be an integer between 1 and 1,024, where NEAR/1 searches for two
words that are next to each other. If n is 1,000 or above, you must specify its value
without commas, as in NEAR/1000. You can specify multiple search terms using multiple
instances of NEAR/n, as long as the value of n is the same.

Note The NEAR/n operator default is 1024.

For example, to retrieve relevance-ranked documents that contain stemmed variations of
the words “commute,” “bicycle,” “train,” and “bus” within 10 words of each other, enter
the following:

commute <NEAR/10> bicycle <NEAR/10> train <NEAR/10> bus

You can use the NEAR/n operator with the ORDER modifier to perform ordered proximity
searches. For more information about the ORDER modifier, see “ORDER” on page 76.

If the PSW option is used when the collection is built, <NEAR/n> will not cross sentence
or paragraph boundaries. That is, it only returns documents where the search terms are
within n words and are in the same sentence and paragraph.

OR

OR selects documents that show evidence of at least one of your search elements.
Documents selected using the OR operator are relevance-ranked.

For example, to select documents that contain stemmed variations of the word “election”
or the phrases “national elections” or “senatorial race,” enter the following:

election OR national elections OR senatorial race

Only those documents that contain at least one of the search elements, or a stemmed
variation of at least one of them, are retrieved. A calculated score is assigned to each
retrieved document.
Verity Query Language and Topic Guide 55

3 Operators
Operators for Searching Full Text
The unweighted score is the highest score of the child nodes. If any of the child nodes
return a score of 1, the OR operator’s unweighted score is also 1. If the highest scoring
subtopic under the OR operator has a score of 0.8442, the OR operator returns 0.8442.

PARAGRAPH

The PARAGRAPH operator selects documents that include all of the search elements you
specify within a paragraph. Valid search elements are two or more words or phrases. You
can specify search elements in a sequential or a random order. Documents are retrieved
as long as search elements appear in the same paragraph.

To retrieve relevance-ranked documents that contain stemmed variations of the word
“drug” and the phrase “cancer treating” in the same paragraph, enter the following:

drug <PARAGRAPH> cancer treating

To search for three or more words or phrases, you must use the PARAGRAPH operator
between each word or phrase.

In the following topic example, PARAGRAPH selects documents that contain (1) a sentence
containing “computer” and “laptop”, and (2) the word “software”, both in the same
paragraph.

example <Paragraph>
 <Sentence>
 <Word> computer
 <Word> laptop
 <Word> software

You can use the PARAGRAPH operator with the ORDER modifier to perform ordered
proximity searches. For more information about the ORDER modifier, see “ORDER” on
page 76.

PARAGRAPH only has the expected behavior if the PSW option is used when the collection
is built. If this option is not used, PARAGRAPH matches documents if the search terms
occur within a certain distance of each other, whether or not the search terms occur in the
same paragraph.
56 Verity Query Language and Topic Guide

3 Operators
Operators for Searching Full Text
PHRASE

Selects documents that include a phrase you specify. A phrase is a grouping of two or
more words that occur next to each other in a specific order.

By default, two or more words separated by a space are considered to be a phrase in
simple syntax. Two or more words enclosed in double quotes are also considered to be a
phrase. To retrieve relevance-ranked documents that contain the phrase “mission oak,”
enter any of the following:

mission oak

"mission oak"

mission <PHRASE> oak

<PHRASE> (mission, oak)

When entering a new node in the topic tree, you can create a PHRASE set of nodes by
typing the phrase inside double quotation marks double quotation marks ("). You can
also enter a phrase inside single quotation marks as a shortcut. For example:

PHRASE has an unweighted score of 1 if the search is successful, and 0 otherwise. Scores
of matching documents can be relevance-ranked (range from 0.01 to 1) using the MANY
modifier.

SENTENCE

Selects documents that include all of the words you specify within a sentence. You can
specify search elements in a sequential or a random order. Documents are retrieved as
long as search elements appear in the same sentence.

Entering "my dog barks" produces <Many><Phrase>
<Word> my
<Word> dog
<Word> barks

Entering 'my dog barks' produces <Many><Phrase>
<Stem> my
<Stem> dog
<Stem> barks
Verity Query Language and Topic Guide 57

3 Operators
Operators for Searching Full Text
To retrieve relevance-ranked documents that contain stemmed variations of the words
“American,” and “innovation” within the same sentence, enter the following:

american <SENTENCE> innovation

<SENTENCE> (american, innovation)

You can use the SENTENCE operator with the ORDER modifier to perform ordered
proximity searches. For more information about the ORDER modifier, see “ORDER” on
page 76.

SENTENCE has an unweighted score of 1 if the search is successful, and 0 otherwise.
Scores of matching documents can be relevance-ranked (modified to range from 0.01 to 1)
by using the MANY modifier.

SENTENCE only has the expected behavior if the PSW option is used when the collection
is built. If this option is not used, SENTENCE matches documents if the search terms occur
within a certain distance of each other, whether or not the search terms occur in the same
sentence. It is also affected by the EOS (end of sentence) setting in the style.lex file.

SOUNDEX

Selects documents that include one or more words that sound like, or whose letter
pattern is similar to, the word specified. Words must start with the same letter as the
word you specify to be selected.

Your collection administrator must have configured collections to support the SOUNDEX
operator. See your collection administrator for information.

For example, to retrieve documents containing a word that is close in structure to the
word “sale,” enter the following:

<SOUNDEX> sale

The documents retrieved will include words such as “sale,” “sell,” “seal,” “shell,” “soul,”
and “scale.” Documents are not relevance-ranked unless the MANY modifier is used, as in:

<MANY><SOUNDEX> sale

Note In Intelligent Classifier, you can use the Assists window to see what
SOUNDEX will return for a given collection.
58 Verity Query Language and Topic Guide

3 Operators
Operators for Searching Full Text
STEM

STEM selects documents that include one or more variations of the search word you
specify.

For example, to retrieve documents containing a variation of the word “film,” enter the
following:

<STEM> film

The documents retrieved will include words such as “films,” “filmed,” and “filming.”
Documents are not relevance-ranked unless the MANY modifier is used, as in:

<MANY><STEM> film

When entering a new node in the topic tree, you can create a simple STEM node by
enclosing the search term in single quotation marks (‘). You can create a phrase of STEM
nodes by entering the phrase in single quotation marks.

Note In Intelligent Classifier, you can use the Assists window to see what STEM
will return for a given collection.

THESAURUS

Selects documents that contain one or more synonyms of the word you specify.

For example, to retrieve documents containing synonyms of the word “altitude,” enter
the following:

<THESAURUS> altitude

The documents retrieved might include words such as “height” or “elevation.”
Documents are not relevance-ranked unless the MANY modifier is used, as in:

<MANY><THESAURUS> altitude

Note In Intelligent Classifier, you can use the Assists window to see what
THESAURUS will return for a given collection.

The synonyms for a given word are defined in a thesaurus file. Thesaurus files are
locale-specific, and Verity provides default thesaurus files for many locales. You can
create a customized thesaurus file for a locale or to support an industry-specific
terminology; see“Creating a Custom Thesaurus” on page 151 for more information.
Verity Query Language and Topic Guide 59

3 Operators
Operators for Searching Full Text
TYPO/N

Selects documents that contain the word you specify plus words that are similar to the
query term. The TYPO/N operator performs “approximate pattern matching” to identify
similar words. This makes it ideal for use in an environment where documents have been
scanned using an Optical Character Reader (OCR).

The optional N variable in the operator name expresses the maximum number of errors
between the query term and a matched term, a value called the error distance. If N is not
specified, an error distance of 2 is used.

The error distance between two words is based on the calculation of errors, where an
error is defined to be a character insertion, deletion, or transposition. For example, for
these sets of words, the second word matches the first within an error distance of 1:

mouse, house (m➞h)
agreed, greed (a is deleted)
cat, coat (o is inserted)

For the following query, documents with the words “sweeping” and “swimming” will
match, because there are 3 transpositions in the word (e➞i, e➞m, p➞m).

<TYPO/3> sweeping

Both of the following queries return the same results. Documents containing the words
“swept” and “kept” match, because the “kept” word contains 1 transposition, 1 deletion.

<TYPO/2> swept

<TYPO> swept

The TYPO/N operator must scan the collection’s word list to find candidate matching
words. This makes it impractical for use in large collections (greater than 100,000
documents unless a current spanning word list is available) or in performance-sensitive
environments. Performance can be improved by generating a spanning word list for the
collections to be used. For more information on generating spanning word lists, see the
Verity Collection Reference for information about collection optimization.

Note Please note these limitations. A query term specified with TYPO/N can
have a maximum length of 32 characters. Also, TYPO/N is not supported
with multibyte character sets.
60 Verity Query Language and Topic Guide

3 Operators
Operators for Searching Full Text
WILDCARD

Selects documents that contain matches to a wildcard character string. The WILDCARD
operator lets you define a wildcard string, which can be used to locate related word
matches in documents. A wildcard string consists of special characters.

For example, to retrieve documents that contain words such as, “pharmaceutical,”
“pharmacology,” and “pharmacodynamics,” enter the following:

pharmac*

Documents are not relevance-ranked unless the MANY modifier is used, as in:

<MANY> pharmac*

The wildcard characters “*” and “?” automatically enable wildcard searching. To use
other constructs, use the WILDCARD operator explicitly with any of the characters in
Table 3-5. By default, searches are case-insensitive. You can change this using the CASE
modifier.

Table 3-5 Wildcard Characters

Character Function

? Specifies one of any alphanumeric character, as in ?an, which locates “ran,” “pan,”
“can,” and “ban.” It is not necessary to specify the WILDCARD operator when you use the
question mark. The question mark is ignored in a set ([]) or in an alternative pattern ({
}).

* Specifies zero or more of any alphanumeric character, as in corp*, which locates
“corporate,” “corporation,” “corporal,” and “corpulent.” It is not necessary to specify the
WILDCARD operator when you use the asterisk. Do not use the asterisk to specify the first
character of a wildcard string. The asterisk is ignored in a set ([]) or in an alternative
pattern ({ }).

[] Specifies one of any character in a set, as in <WILDCARD> ‘c[auo]t‘, which locates
“cat,” “cut,” and “cot.” You must enclose the word that includes a set in backquotes (‘),
and a set cannot contain spaces.

{ } Specifies one of each pattern separated by commas, as in
<WILDCARD> ‘bank{s,er,ing}‘, which locates “banks,” “banker,” and “banking.”
You must enclose the word that includes a pattern in backquotes (‘), and a set cannot
contain spaces.

^ Specifies one of any character not in the set, as in <WILDCARD> ‘st[^oa]ck‘, which
excludes “stock” and “stack” but locates “stick” and “stuck.” The caret (^) must be the
first character after the left bracket ([) that introduces a set.

- Specifies a range of characters in a set, as in <WILDCARD> ‘c[a-r]t‘, which locates
every three-letter word from “cat” to “crt.”
Verity Query Language and Topic Guide 61

3 Operators
Operators for Searching Full Text
Note For Chinese, Japanese, and Korean, a wildcard search can be manually
modified to specify how to tokenize the query string. For example, you
can search for:
B CD* instead of BCD*

Note In Intelligent Classifier, you can use the Assists window to see what
WILDCARD will return for a given collection.

Searching for Nonalphanumeric Characters

Remember that you can search for nonalphanumeric characters only if the style.lex
file used to create the collections you are searching is configured to recognize the
characters you want to locate. Consult your collection administrator for more
information.

Searching for Wildcard Characters as Literals

Provided the style.lex file is configured for the collections to be searched, you can
search for a word containing a wildcard character such as “/” or “*” by preceding the
wildcard character with a backslash.

For example, when you enter the following search string:

abc*d

the engine finds five-character words matching the “abc*d” string.

When you want to match a literal backslash, you must enter two backslashes.

Searching for Special Characters as Literals

The following nonalphanumeric characters perform special, internal search engine
functions, and, by default, are not treated as literals in a wildcard string:

comma ,

left and right parentheses ()

double quotation mark "
62 Verity Query Language and Topic Guide

3 Operators
Operators for Searching Full Text
backslash \

at sign @

left curly brace {

left bracket [

less than sign <

backquote ‘

To interpret special characters as literals, you must surround the whole wildcard string in
backquotes (‘). For example, to search for the wildcard string “a{b”, you surround the
string with backquotes, as follows:

<WILDCARD> ‘a{b‘

To search for a wildcard string that includes the literal backquote character (‘), you must
use two backquotes together and surround the whole wildcard string in backquotes (‘).
For example, to search for the wildcard string “*n‘t”, you can enter the following query:

<WILDCARD> ‘*n‘‘t‘

You can search on backquotes only if the style.lex file used to create the collections
you are searching is configured to recognize the backquote character. Consult your
collection administrator for information.

WORD

WORD selects documents that include one or more instances of only the word you specify
without locating stemmed variations of that word.

For example, to search for documents that contain the word “rhetoric,” without also
considering the words “rhetorical” and “rhetorician,” enter the following:

<WORD> rhetoric

Documents are not relevance-ranked unless the MANY modifier is used, as in:

<MANY><WORD> rhetoric

In Intelligent Classifier, if you enter a new node in the topic tree, you can create a simple
<MANY><WORD> node by enclosing the search term in double quotation marks (“).

Create a phrase of WORD nodes by entering the phrase in double quotation marks.
Verity Query Language and Topic Guide 63

3 Operators
Operators for Searching Text Fields
The style.lex file affects how documents are parsed into words when a collection is built.
For example, it affects whether “plug-in” is considered to be one word or two. It also
affects whether you can search for non-alphanumeric characters, such as in the term
“OS/2”.

Operators for Searching Text Fields

This section describes operators that can be used to search document fields.

CONTAINS

Selects documents by matching the word or phrase you specify with values stored in a
specific document field. Documents are selected only if the search elements you specify
appear in the same sequential and contiguous order in the field value. When you use the
CONTAINS operator, you specify the field name to search, and the word or phrase to
locate.

With the CONTAINS operator, the words stored in a document field are interpreted as
individual, sequential units. You can specify one or more of these units as search criteria.
To specify multiple words, each word must be sequential and contiguous and must be
separated by a blank space.

For example, the following title contains eight sequential words:

American Version of 'Orient Express' Offers Opulent Ride

The following examples demonstrate how you can use the CONTAINS operator with
sequential, contiguous words to match the previous document title, assuming it is stored
in a title field:

TITLE <CONTAINS> American Version

TITLE <CONTAINS> Express Offers

The following examples show how you can use a question mark (?) to represent
individual variable characters of a word and an asterisk (*) to match multiple variable
characters of a word:

TITLE <CONTAINS> Amer* Version

TITLE <CONTAINS> Version of Or????
64 Verity Query Language and Topic Guide

3 Operators
Operators for Searching Text Fields
Question marks and asterisks cannot be used to represent white space that appears
between words.

The CONTAINS operator does not recognize nonalphanumeric characters. The CONTAINS
operator interprets nonalphanumeric characters as spaces and treats the separated values
as individual units.

For example, if you have defined a dash (-) as a valid character, and you enter search
criteria that include this character, as in on-line, the value is defined as two individual
units, as follows:

TITLE <CONTAINS> on line

ENDS

Selects documents by matching the character string you specify with the ending
characters of the values stored in a specific document field.

For example, assume a document field named AUTHOR has been defined. To select
documents written by Milner, Wagner, and Faulkner, enter the following:

AUTHOR <ENDS> ner

MATCHES

Selects documents by matching the character string you specify with values stored in a
specific document field. Documents are selected only if the search elements specified
match the field value exactly. If a partial match is found, a document is not selected.
When you use the MATCHES operator, you specify the field name to search, and the word,
phrase, or number to locate.

You can use question marks (?) to represent individual variable characters within a
string, and asterisks (*) to match multiple characters within a string.

For example, assume a document field named SOURCE includes the following values:

COMPUTER

COMPUTERWORLD

COMPUTER CURRENTS

PC COMPUTING
Verity Query Language and Topic Guide 65

3 Operators
Operators for Searching Text Fields
To locate documents whose source is COMPUTER, the MATCHES operator is used as
follows:

SOURCE <MATCHES> computer

Here, the MATCHES operator matches COMPUTER, but not COMPUTERWORLD, COMPUTER
CURRENTS, or PC COMPUTING.

To locate documents whose source is COMPUTERWORLD, the MATCHES operator is used as
follows:

SOURCE <MATCHES> computer?????

Now, the MATCHES operator matches COMPUTERWORLD, because each question mark (?)
represents specific character positions within the string. COMPUTER and COMPUTER
CURRENTS are not matched, because their character strings do not match the length
represented by the question marks.

To locate documents whose sources are COMPUTER, COMPUTERWORLD, and COMPUTER
CURRENTS, the MATCHES operator is used as follows:

SOURCE <MATCHES> computer*

Here, the MATCHES operator matches COMPUTER, COMPUTERWORLD, and COMPUTER
CURRENTS, because the asterisk (*) represents zero or more variable characters at the end
of the string.

To locate documents whose sources include COMPUTER, COMPUTERWORLD, COMPUTER
CURRENTS, and PC COMPUTING, the MATCHES operator can be used as follows:

SOURCE <MATCHES> *comput*

Now, the MATCHES operator matches all four occurrences, because the asterisk (*)
represents a string of characters of any length.

STARTS

Selects documents by matching the character string you specify with the starting
characters of the values stored in a specific document field.

For example, assume a document field named REPORTER has been defined. To retrieve
documents written by Jack, Jackson, and Jacks, enter the following:

REPORTER <STARTS> jack
66 Verity Query Language and Topic Guide

3 Operators
Operators for Searching Numeric Fields
SUBSTRING

Selects documents by matching the character string you specify with a portion of the
strings of the values stored in a specific document field. The characters that comprise the
string can occur at the beginning of a field value, within a field value, or at the end of a
field value.

For example, assume a document field named TITLE has been defined. To retrieve
documents whose titles contain words such as “solution,” “resolution,” “solve,” and
“resolve,” enter the following:

TITLE <SUBSTRING> sol

Operators for Searching Numeric Fields

The following sections describe operators used to search numeric and date fields.

= (Equals)

Selects documents whose document field values are exactly the same as the search string
you specify.

For example, assume a document field named ORGNO has been defined as the number of
the organization that wrote the document. To select only those documents written by
organization 104, enter the following:

ORGNO = 104

!= (Not Equals)

Selects documents whose document field values do not match the search string you
specify.

For example, to search for documents with ORGNO field values not equal to 104, use this
query:

ORGNO != 104
Verity Query Language and Topic Guide 67

3 Operators
Operators for Searching Numeric Fields
Another query using the NOT modifier could be used to perform the same search:

<NOT>(ORGNO=104)

Although using the NOT modifier returns the same results as using the != operator, the
!= operator functions much more efficiently.

> (Greater Than)

Selects documents whose document field values are greater than the search string you
specify.

For example, assume a document field named REVISION has been defined. To select only
those documents that have been revised more than three times, enter the following:

REVISION > 3

>= (Greater Than Or Equal To)

Selects documents whose document field values are greater than or equal to the search
string you specify.

For example, assume a document field named REVISION has been defined. To select only
those documents that have been revised three times or more, enter the following:

REVISION >= 3

< (Less Than)

Selects documents whose document field values are less than the search string you
specify.

For example, assume a document field named PAGES has been defined. To select only
those documents less than five pages long, enter the following:

PAGES < 5
68 Verity Query Language and Topic Guide

3 Operators
Operators for Searching Numeric Fields
<= (Less Than Or Equal To)

Selects documents whose document field values are less than or equal to the search string
you specify.

For example, assume a document field named DATE has been defined. To select only
those documents dated prior to and including February 14, 1991, enter the following:

DATE <= 02-14-91

To refine a date search using the time of day, use a 24-hour format. For example,

DATE <= 02-14-2003 13:00

You can also use the DATE field with today and now. For example,

DATE <= today
Verity Query Language and Topic Guide 69

3 Operators
Operators for Searching Numeric Fields
70 Verity Query Language and Topic Guide

4
Modifiers

This chapter describes Verity query language modifiers. These modifiers can be
combined with operators to compose a query expression:

CASE

LANG/ID

MANY

NOT

ORDER

WHEN

CASE

Use the CASE modifier with the WORD or WILDCARD operator to perform a case-sensitive
search, based on the case of the word or phrase specified. The CASE modifier is not valid
with the SOUNDEX and STEM operators.

To use the CASE modifier, you simply enter the search word or phrase as you wish it to
appear in retrieved documents—in all uppercase letters, in mixed uppercase and
lowercase letters, or in all lowercase letters.

For example, to retrieve documents that contain the word “iMac” in mixed uppercase
and lowercase letters, you would enter:

<CASE> <WORD> iMac
71

4 Modifiers
LANG/ID
Only those documents that contain the word “iMac” will be selected. Occurrences of
“imac,” “Imac,” or “IMAC” are not selected.

An example including a CASE modifier with WILDCARD is:

<Case><Wildcard> Computer*

This example retrieves documents containing “Computer,” “Computers,”
“Computerworld,” and so on, but not “COMPUTER,” “COMPUTERS,” “computer,” or
“computers.”

Other examples of using CASE are:

<Case><Typo> Verity

<Many><Case><Word> release

LANG/ID

Use the LANG/ID modifier to perform language-specific stemmed search on collections
created with the multilanguage locale.

Every collection is created within the context of a locale. For a collection created in any
locale other than the multilanguage locale, all text is tokenized and stemmed according to
the rules of a single language. For collections created in the multilanguage locale,
however, text is tokenized and stemmed according to its document’s language. Such a
collection, therefore, can have a word index containing words and word stems from
many different languages.

To restrict a stemmed search or topic definition over such a collection to consider only the
words of a single language, apply the LANG/ID modifier to the query expression, like
this:

<LANG/fr>un

In this example, only documents containing French words whose stem is un (such as un,
une, unes) would be returned. If the collection also contained Spanish documents
containing uno or unas, those documents would not be returned.

The simple query parser by default assumes a stemmed search. For other parsers, it may
be necessary to include the <STEM> operator to get a language-specific search:

<LANG/fr><STEM>un
72 Verity Query Language and Topic Guide

4 Modifiers
LANG/ID
The language ID used in this modifier must be one of the language codes listed in the
Verity Locale Configuration Guide.

Note For Chinese, Japanese, and Korean, the LANG/ID modifier also has the
effect of forcing language-specific tokenization of the query string itself.
For example, during indexing, a particular sequence of characters might
be tokenized differently in Chinese than in Japanese. If the same sequence
is subsequently used as a search term along with the LANG/ID modifier,
the term is tokenized appropriately for the specified language before the
collection is searched.

Rules for using the LANG/ID modifier are provided in the following list:

LANG/ID is a modifier that can be applied to individual query terms or topic
definition files. If you want to apply it to a multiple term query, you must use
parentheses.

Note By default, LANG/ID applies only to the next query term. If there is
only one LANG/ID modifier in a query or topic definition, LANG/ID
behaves as a global modifier and applies to all query terms.

If you put more than one LANG/ID modifier into a query or topic definition, the last
one in the string is the one that is used for the search. This also affects the use of the
LANG/ID modifier in a thesaurus control file, so that if a THESAURUS operator follows
a LANG/ID modifier in the query, the LANG/ID modifier in the THESAURUS file is used
for the search.

The LANG/ID modifier is ignored if the collection being searched was not indexed
using the multilanguage locale.

The LANG/ID modifier is ignored if the language ID it specifies is not valid or is not
found in the collection.

The LANG/ID modifier applies only to stemmed search. For a literal search,
language-specific stems are not considered.

The LANG/ID modifier applies to the results of the FREETEXT and LIKE advanced
operators.

If the LANG/ID modifier does not appear in a search query that is applied to a
multilanguage collection, the search is nevertheless language-specific as long as a
default session language has been defined. The search is equivalent to including a
LANG/ID modifier that specifies the default language.
Verity Query Language and Topic Guide 73

4 Modifiers
MANY
To ensure that a search over a multilanguage collection is not language-specific, apply
the WORD operator to the query (or enclose it in double quotes). That modification will
ensure that the search applies to all documents in all languages in the collection,
regardless of whether the LANG/ID modifier appears in the query and regardless of
whether there is a defined default session locale.

The multilanguage locale and details about language-specific searching and default
session language are described in the Verity Locale Configuration Guide.

MANY

Counts the density of words, stemmed variations, or phrases in a document, and
produces a relevance-ranked score for retrieved documents. The more occurrences of a
word, stem, or phrase proportional to the amount of document text, the higher the score
of that document when retrieved. Because the MANY modifier considers density in
proportion to document text, a longer document that contains more occurrences of a
word can score lower than a shorter document that contains fewer occurrences.

For example, to select documents based on the density of stemmed variations of the word
“apple,” you would enter:

<MANY> <STEM> apple

To select documents based on the density of the phrase “mission oak,” you would enter:

<MANY> mission oak

The parent node might ignore MANY’s relevance ranking if the parent uses an operator,
such as ANY, that only cares whether or not the child’s score is non-zero.

The behavior of MANY depends on whether “Many” is used with the IDX-CONFIG option
when the collection is built. See the Verity Collection Reference for more details about PSW
encoding.

The MANY modifier cannot be used with AND, OR, ACCRUE, or relational operators.
74 Verity Query Language and Topic Guide

4 Modifiers
NOT
NOT

Use the NOT modifier with a word or phrase to exclude documents that show evidence of
that word or phrase.

For example, to select only documents that contain the words “cat” and “mouse” but not
the word “dog,” you would enter:

cat <AND> mouse <AND> <NOT> dog

To search for documents that contain the word “not,” enclose the word “not” in
double-quotation marks (‘). For example, to search for the phrase “love not war,” enter
any of the following queries.

<ORDER> love "not" war

"love not war"

<PHRASE> (love, "not", war)

In Intelligent Classifier, top-level topics cannot use NOT. In the topic tree, NOT only has an
effect when the node it is on passes information up to its parent node. Assigning NOT to a
topic has no effect for that topic, only on higher-level nodes. For example, if the topic tree
is:

topic_1 <Accrue>
 topic_2 <Not><Word> open
topic_3 <Accrue>
 topic_4 <Word> open

then topic_1 retrieves documents that do not contain “open” and topic_3 retrieves
documents that do. However, topic_2 and topic_4 both retrieve the same set of
documents (those that contain “open”).
Verity Query Language and Topic Guide 75

4 Modifiers
ORDER
ORDER

Use the ORDER modifier to specify that search elements must occur in the same order in
which they were specified in the query. If search values do not occur in the specified
order in a document, the document is not selected. You can use the ORDER modifier with
these operators: PARAGRAPH, SENTENCE, NEAR/N, and ALL.

Always place the ORDER modifier just before the operator. The following syntax
examples show how you can use either simple syntax or explicit syntax to retrieve
documents containing the word “president” followed by the word “washington” in the
same paragraph.

Simple syntax

president <ORDER><PARAGRAPH> washington

Explicit syntax

<ORDER><PARAGRAPH> ("president", "washington")

To search for documents containing the words “diver,” “kills,” “shark” in that order
within 20 words of each other, use one of the following queries:

diver <ORDER><NEAR/20> kills <ORDER><NEAR/20> shark

<ORDER> <NEAR/20> (diver, kills, shark)

You can use the NEAR/N operator with the ORDER modifier to duplicate the behavior of
the PHRASE operator. For example, to search for documents containing the phrase “world
wide web,” you can use the following syntax:

world <ORDER><NEAR/1> wide <ORDER><NEAR/1> web

To search for a word between two other words, you can use the ORDER modifier with
the ALL operator, like this:

<ORDER><ALL>(dog, cat, squirrel)

The previous query searches for “cat” between “dog” and “squirrel”. Stemmed
variations of the words will match the query.

The query can be extended to include subquery expressions. For example:

<ORDER><ALL>(dog, fat cat, squirrel)
76 Verity Query Language and Topic Guide

4 Modifiers
WHEN
The previous query searches for the phrase “fat cat” between the words “dog” and
“squirrel”. Again, stemmed variations of the words are considered a match.

In a topic tree, ORDER selects documents that contain the search terms in the specified
order (for example, from top to bottom).

For example,

example1 <Order><Near>
 <Word> today
 <Word> announced

selects documents that contain “today” and “announced” in that order.

The next example shows how you can use ORDER with other operators.

<Order><Paragraph>
 <Word> keyview
 <Word> pro
<Order><Phrase>
 <Word> computer
 <Word> file
<Order><Sentence>
 <Word> new
 <Word> release
<Many><Order><Paragraph>
 <Word> computer
 <Word> hardware
<Order><All>
 <Word> press
 <Word> release

WHEN

WHEN selects documents that contain specified values in one or more document zones
upon which certain conditions have been placed. The following examples illustrate
searching for terms within a zone upon which certain conditions have been placed.

To search for the word “here” in a zone named “A,” whose HREF attribute contains the
string “verity,” the text might appear as:

Our site is here.
Verity Query Language and Topic Guide 77

4 Modifiers
WHEN
To search for the word “here” in the zone “A” when the HREF contains the string
“verity,” you can write the following query:

"here" <IN> A <WHEN> (HREF <CONTAINS> "verity")

A query condition for the WHEN operator must be enclosed in parentheses, as shown in
the previous example. A query condition can include one or more Verity operators; it
takes the form:

attribute_name <attribute_test_operator> "test_value"

where attribute_test_operator is one of the following operators: <STARTS>,
<ENDS>, <CONTAINS>, <=>, or <MATCHES>. Except for =, all operators must be
surrounded by angle brackets.

Attribute test operators can be combined with the combination operators <AND> or <OR>.
For example, you can search for the string “IBM” in a zone named “Company,” when the
attribute named “reference” is either equal to “major” or “significant” by using the
following query:

"IBM" <IN> "Company" <WHEN> (reference = "major" <OR>
reference = "significant")

XML Support
The XML support for the <WHEN> modifier includes:

ZONE

Prefix the operand with the <zone> modifier. to use element operands.

The following code example shows a query to find documents containing books
published by Addison-Wesley.

* <in> book <when> <zone>publisher = "Addison-Wesley"

NUMERIC

Provides support for the numeric operators =, !=, >, >=, <, and <=. Prefix the operand
with <numeric> to use non-text operator semantics.

Note All the numeric zones/attributes are stored and used as floats.

The following code example shows a query to find documents containing books about
UNIX that are cheaper than $60.

unix <in> book <when> <zone><numeric>price < 60
78 Verity Query Language and Topic Guide

4 Modifiers
WHEN
DATE

Prefix the operand with the <date> modifier to use date semantics. The date operators
supported are the same as the numeric operators.

The following code example shows a query to find documents containing books about
UNIX that were published in 1999 or later.

unix <in> book <when> <date>published > "1/1/1999"

All dates are treated as vdates by default. You can change to xdates in the
style.prm file settings.
Verity Query Language and Topic Guide 79

4 Modifiers
WHEN
80 Verity Query Language and Topic Guide

5
Advanced Query Language

This chapter describes the advanced Verity operators that are not used with modifiers.
Four of these operators enable sophisticated combinations of query components for
advanced document scoring, and two provide support for natural language analysis of
query text.

It includes syntax and usage information for the following operators:

COMPLEMENT

FREETEXT

LIKE

LOGSUM and LOGSUM/n

MULT/n

PRODUCT

SUM

YESNO

These operators can be combined together or combined with other Verity query
language.
81

5 Advanced Query Language
Score Operators
Score Operators

The score operators affect how the search engine calculates scores for retrieved
documents. When a score operator is used, the search engine first calculates a separate
score for each search element found in a document, and then performs a mathematical
operation on the individual element scores to arrive at the final score for each document.

The YESNO operator has wide application, whereas the PRODUCT, SUM, and COMPLEMENT
operators are intended for use mainly by application developers who want to generate
queries programmatically.

COMPLEMENT

Calculates scores for documents matching a query by taking the complement
(subtracting from 1) the scores for the query’s search elements. To arrive at a document’s
score, the search engine calculates a score for each search element and takes the
complement of these scores.

For example, if the node

<Word> computers

scores 0.80, then the node

<Complement>
<Word> computers

scores 0.20.

The following example displays the search syntax:

<COMPLEMENT> ("computers")

The COMPLEMENT operator is a unary operator. It multiplies search elements as specified.
The elements are combined, using the ACCRUE operator by default, to generate a single
score that is then complemented. The following sample query expression contains two
search elements.

<COMPLEMENT> ("computers","laptops")

In the previous example, the query is evaluated as the word “computers” accrued using
the ACCRUE operator with the word “laptops.” The COMPLEMENT operator is applied to
the result.
82 Verity Query Language and Topic Guide

5 Advanced Query Language
Score Operators
LOGSUM and LOGSUM/n

LOGSUM and LOGSUM/n are score operators. They return a score that approaches 1 as the
sum of the child node’s score approaches 1.

The following examples assume that c is the sum of the scores of the child nodes.

The unweighted score of LOGSUM/n is:

If the parameter n is not specified, it defaults to zero. In other words, LOGSUM is
equivalent to LOGSUM/0.

As the sum of the child nodes increases, the score of LOGSUM/n approaches 1. The larger
n is, the faster is the approach to 1.

Example 1
If a document contains the word “computer” but not “file”, then

example <LogSum>
 <Word> computer
 <Word> file

returns

Example 2
If a document contains the word “computer” and the word “file”, then

example <LogSum/5000>
 <Word> computer
 <Word> file

returns

The weights of the child nodes cannot be negative or greater than 1, but you can use the
MULT operator to achieve the same thing. For example:
Verity Query Language and Topic Guide 83

5 Advanced Query Language
Score Operators
example <LogSum>
 <Mult/20000>
 <Word> computer
 <Mult/-8000>
 <Word> file

If a document contains “computer” and “file”, then this topic will return a score of

MULT/n

MULT/n is a score operator that multiplies the score returned from its child by the
constant. This is the only operator that can return a negative number or a value greater
than 1.

The MULT/n operator accepts one child node. If c is the score of the child node, then the
MULT/n operator’s unweighted score is

If a document contains the word “computer” then the child node returns a score of 1.0, so
the topic

example <Mult/5000>
 <Word> computer

returns a score of

The parameter n can be left out, but n defaults to zero, so MULT always results in a score
of zero.

The parameter n can range from -100,000,000 to +100,000,000. So the score of MULT/n can
range from -10,000 times c to +10,000 times c. The score for this operator can be negative
or greater than 1. For an example of how you can use MULT, see “LOGSUM and
LOGSUM/n” on page 83.
84 Verity Query Language and Topic Guide

5 Advanced Query Language
Score Operators
PRODUCT

Calculates scores for documents matching a query by multiplying the scores for the
query’s search elements together. To arrive at a document’s score, the search engine
calculates a score for each search element and multiplies these scores together.

Following is an example of search syntax:

<PRODUCT> ("computers","laptops")

If a search on “computers” generated a score of .5 and a search on “laptops” generated a
score of .75, the preceding search would produce a score of .375.

SUM

Calculates scores for documents matching a query by adding together, to a maximum of
1, the scores for the query’s search elements. To arrive at a document’s score, the search
engine calculates a score for each search element and adds these scores together.

Following is an example query expression:

<SUM> ("computers","laptops")

If a search on “computers” generated a score of .5 and a search on “laptops” generated a
score of .2, the preceding search would produce a score of .7 If a search on “computers”
generated a score of .5 and a search on “laptops” generated a score of .75, the preceding
search would produce a score of 1.00 (the maximum).

YESNO

Forces the score of an element to 1, if the element’s score is nonzero. Examples help
clarify this.

<YesNo> ("Chloe")

If the retrieval result of the search on “Chloe” was .75, with the YesNo operator, the result
would be 1; if the retrieval result is 0, it remains 0.

This operator allows you to limit a search to only those documents matching a query,
without the score of that query affecting the final scores of the documents. For example,
to search among documents that contain “Chloe,” with “Mead” as the determinant for
ranking, you cannot simply specify the following:

"Chloe" <AND> "Mead"
Verity Query Language and Topic Guide 85

5 Advanced Query Language
Natural Language Operators
The previous query would produce documents ranked with scores combined from both
elements. The following query retrieves the results you want:

<YesNo> ("Chloe") <AND> "Mead"

If the retrieval result of the search on “Chloe” was .5 and that on “Mead” was .75, without
the YesNo operator, the combined result would be .5; with the operator, however, it is .75,
because the score of AND is calculated to be the minimum score of all its search elements.

Natural Language Operators

The natural language operators enable you to specify search criteria using natural
language syntax. The search engine uses natural language analysis to translate the query
text into Verity query language expression for evaluating and scoring documents. The
FREETEXT and LIKE natural language operators are intended mainly for use by
application developers.

FREETEXT

Interprets text using the free text query parser and scores documents using the resulting
query expression. All retrieved documents are relevance-ranked. For information about
the free text query parser, see “Query Parsers” on page 133.

This operator provides the functionality of the free text query parser, but allows you to
combine free text queries with other search criteria using the full Verity query language.
For example:

<FREETEXT> ("peace negotiations in the Middle East") <AND>
(DATE > 01-01-96)

The quotation marks are required. If you want to include embedded quotes, they must be
preceded with backslashes, as:

<FREETEXT> ("\"Independence Day\""), ("\"The Arrival\""), science
fiction")

Note In the case where a query or document contains only words defined as
stop words in the collection style.stp file(s), the free text query parser
uses the stop words for the query, ignoring the stop words list.
86 Verity Query Language and Topic Guide

5 Advanced Query Language
Natural Language Operators
The FREETEXT operator can be combined with other operators in the same way as the
ACCRUE operator.

LIKE

Searches for other documents that are like the sample one or more documents or text
passages you provide. The search engine analyzes the provided text to find the most
important terms to use for the search. If multiple samples are provided, the search engine
assumes all of the samples are about a single theme and selects important terms common
across the samples. Retrieved documents are relevance-ranked.

The LIKE operator accepts a single operand, called the QBE (query-by-example)
specification. The QBE specification can be either the literal text of the example to query
on, or it can be a specification of one or more full documents and text passages to use as
positive and negative examples.

Note In the case where a query or document contains only words defined as
stop words in the collections style.stp file(s), a QBE query with the
LIKE operator returns no results.

Syntax
Document specification is made with a series of text references enclosed in braces. The
syntax for specifying references is:

{[name=]type:value [name=]type:value ...}

where:

name is either posex (positive example), or negex (negative example).

A negative example reduces the weights of terms when they occur in a positive
example. If terms from a negative example do not exist within the positive example,
the negative example has no effect. (Hence a negex by itself makes no sense.)

type can be one of the following:

VdkVgwKey, to specify a document by external key

VdkDocId, to specify a document by internal (session-specific) key,

File, to specify a file containing the document text (plain text only; no HTML or
other formatting)

Text, to specify the text directly
Verity Query Language and Topic Guide 87

5 Advanced Query Language
Natural Language Operators
value is a reference to a piece of text to use as the positive or negative example.

If name is not specified, value is assumed to be a reference to a positive example (that is,
posex is the implied name).

The value of value depends on type:

VdkVgwKey and VdkDocId: the document key

File:

filename[:offset:range]

where a byte offset into the file and a byte range from that offset can be optionally
specified

Text: literal text.

If there is no explicit type specifier, value is interpreted in the following ways:

VdkDocId if it starts with a # character

Literal text if it starts with a quotation mark

VdkVgwKey for all other cases

The Like operator can be combined with other operators using the same rules as for the
ACCRUE operator.

Special Characters in VdkVgwKey Fields
The syntax for the LIKE operator allows VdkVgwKeys to be enclosed in quotes (either
single or double) to avoid parsing confusion. This means VdkVgwKeys containing things
like whitespace, curly braces, and quotes can be handled. Backslash must be used to
escape quote characters and backslashes embedded in the key, as is standard for string
handling.

The syntax supports the use of single quotes for enclosing literal text examples, as in
{text:’sample text’}.

The syntax for text: and vdkvgwkey: references has been enhanced to allow the reference
value to be enclosed in either single or double quotes, with the usual backslash escaping
mechanisms for embedded backslashes and quotes.

Concerning the backslash character in document keys, follow these guidelines. When a
backslash appears in a document key, you must enter two backslashes in the <LIKE>
syntax. See “VdkVgwKey Fields on Windows Systems” for important information about
specifying paths on Windows systems.
88 Verity Query Language and Topic Guide

5 Advanced Query Language
Natural Language Operators
Syntax examples are:

<LIKE> ("{text:'sample text'}")
<LIKE> ("{text:"sample text"}")
<LIKE> ("{text:"sample ‘quote'"}")
<LIKE> ("{text:"sample \"quote\""}")
<LIKE> ("{vdkvgwkey:keyname}")
<LIKE> ("{vdkvgwkey:'{keyname}'}")
<LIKE> ("{vdkvgwkey:"{keyname}"}")
<LIKE> ("{vdkvgwkey:"c:\\my\\data"}")

VdkVgwKey Fields on Windows Systems
To specify a VdkVgwKey including backslashes on Windows systems, you must double
escape the two required backslashes. This means you must enter four backslashes, as
shown in the following example.

<LIKE> ("{vdkvgwkey:"c:\\\\my\\\\data"}")

Examples of LIKE Expressions
The following examples illustrate uses of the LIKE operator.

Just literal text:

<LIKE> ("The dog ate the shoe.")

Explicit specification of a single positive example:

<LIKE> ("{posex=vdkvgwkey:doc1}")

Explicit specification of multiple positive and negative examples:

<LIKE> ("{posex=vdkdocid:1234 posex=vdkvgwkey:doc1
negex=text:"stock market"}")

Same as the preceding but with implied reference types:

<LIKE> ("{posex=#1234 posex=doc1 negex=\"stock market\"}")

Similar to the preceding but with implied posex names:

<LIKE> ("{vdkdocid:1234 vdkvgwkey:doc1}")

Same as the preceding, but using the most implicit syntax:

<LIKE> ("{#1234 doc1}")
Verity Query Language and Topic Guide 89

5 Advanced Query Language
Natural Language Operators
You can combine a text reference list with literal text:

<LIKE> ("{#1234 doc1} And more text")

The preceding QBE specification is equivalent to this:

<LIKE> ("{#1234 doc1 text: \"And more text\"}")

The simplest way of specifying a single positive example by VgwKey:

<LIKE> ("{doc1}")

The example is in the file doc.txt, starting at the 100th byte:

<LIKE> ("{posex=file:doc.txt:100:200}")

To use a file reference with spaces in the file name, use single quotes, as follows:

<LIKE> ("{file:‘my file.txt’}")

To specify offset and length with single-quoted-filenames, use the following syntax:

<LIKE> ("{file:‘my file.txt:0,5’}")

Quotation marks embedded in LIKE expressions must be preceded by backslashes. The
backslash indicates to the engine that the following character is supposed to be treated as
a literal character.

Efficiency Considerations
In order to process a LIKE expression, the search engine must analyze the full text of the
examples in the QBE specification. This has the potential to be time consuming,
especially if the example documents are large or require expensive filtering.

The processing of LIKE queries can be accelerated by extracting feature vectors for
documents at indexing time. Feature vectors are extracted during indexing when an
appropriate entry is made in the style.prm file, as described in the Verity Collection
Reference. With feature vectors available in the collection, the search engine does not need
to touch the original text of the example documents and LIKE queries are processed very
efficiently.
90 Verity Query Language and Topic Guide

PART II

Topics

Chapter 6: Elements of Topic Design

Chapter 7: Using Topic Outline Files

Chapter 8: Building Topic Sets from the Command Line
91

92

6
Elements of Topic Design

This chapter describes the features of topics, including:

About Topics and Topic Sets

How Topics Work

Rules About Topics and Topic Sets

Topic Design Strategies
93

6 Elements of Topic Design
About Topics and Topic Sets
About Topics and Topic Sets

A topic is a grouping of information that comprises a topic definition related to a concept or a
subject area. In terms of the implementation, a topic is a stored query in Verity Query
Language (VQL).

A topic set is a grouping of topic definitions that have been compiled for use by a Verity
application.

Because a topic set represents many concepts, or search terms, it is sometimes referred to
as a knowledge base. It is a catalogue of predefined queries that can be referenced at search
time to expand user queries. A Verity knowledge base can consist of one or more topic
sets. See “Building Topic Sets from the Command Line” for information about building
topic sets.

The subject area of a topic is typically identified by the topic name. For example, the
subject of a topic could be financial documents. This topic could be composed of two
structural elements: its name, for example finance, and its evidence topics (important
terms, acronyms, or jargon used to define the subject) that could contain inc, and
company.

finance <Accrue>
inc <Accrue>
company <Accrue>

Operators and modifiers are the glue joining related evidence topics. Operators represent
logic to be applied to evidence topics. Modifiers apply further logic to evidence topics.
For example, a modifier can specify that documents containing an evidence topic not be
included in a list of results.

A topic's structure becomes more sophisticated as topics are added to it. In the following
example, the topic bond has been added to the structure.

finance <Accrue>
inc <Accrue>
company <Accrue>

bond <Accrue>

Next, another topic, corporate, is added at the top level, giving a structure similar to:

finance <Accrue>
inc <Accrue>
company <Accrue>

bond <Accrue>
corporate <Accrue>
94 Verity Query Language and Topic Guide

6 Elements of Topic Design
About Topics and Topic Sets
Finally, finance and bond are dragged under corporate to form what is now a
top-level topic, corporate. In this new structure, finance and bond are subtopics of the
topic corporate. inc and company become evidence topics beneath the finance
subtopic.

corporate <Accrue>
finance <Accrue>
bond <Accrue>

Sophisticated topics are composed of:

top-level topics

subtopics

evidence topics

These elements determine the related subject areas of a topic. Typically, a knowledge base
consists of several top-level topics.

Note Subtopics and evidence topics can be used by multiple top-level topics.
See “Topic Structure” for more information about topic levels.

In the previous illustration, you might notice the word ACCRUE. The Verity search engine
is built on the notion that topics represent search concepts. Queries that go beyond a
single word or phrase typically involve the ACCRUE-class operators (ACCRUE, AND, OR) to
combine several branches of evidence in a topic tree. At search time, the combined
evidence is evaluated.

Topic Structure

Top-level topics are the highest topics defined in a topic structure. Top-level topics
represent the subject areas you want a Verity search agent to find.

Subtopics form the levels between top-level topics and evidence topics.

The name of a subtopic should reflect the subject area that its subtopics or evidence topics
combine to describe.

Evidence topics are the lowest units of a topic structure. Evidence topics are strings,
made up of combinations of alphanumeric characters. An evidence topic can contain up
to 128 alphanumeric characters.
Verity Query Language and Topic Guide 95

6 Elements of Topic Design
How Topics Work
Topic and Subtopic Relationships

Each topic and its associated subtopics form a hierarchical parent and child relationship.
When you use a topic to perform a search, the subject area defined by the topic includes
its subtopics, their subtopics, and so on, down to the evidence topics of the structure.
Topics that are not direct descendants of the topic you use will not be included in the
search. A subtopic can be shared by multiple topics.

Storing Topic Sets

Topic sets can be stored in one of the following ways:

The most common form is in binary files inside a particular directory structure. (The
top level directory has the same name as the topic. Inside are a sysind directory, and
files with names with a format such as 00000000.std.)

For backward compatibility, topic sets can also be stored in ASCII representations
called topic outline files, which have an . otl filename extension. For more
information, see “Using Topic Outline Files” on page 101

Intelligent Classifier can open and save to either format. The directory format is the
native format used by most Verity applications. For more information about using the
OTL files, see “Using Topic Outline Files” on page 101 and the Verity Intelligent
Classification Guide.

How Topics Work

Topics have two main functions:

You can use them as stored queries in other Verity applications. End users can quickly
find information without composing sophisticated queries using complex syntax.

Optionally, topics can also be preindexed to speed their execution.

To use topics this way, the topic set must be imported into the application. See “Using
Topics as Stored Queries in Other Verity Applications.”

In Intelligent Classifier, topics can also be used to control which documents are
assigned to a given category in a taxonomy, and to control the documents assigned in
a knowledge tree or parametric index. In this case, the topics are not visible to the end
user.
96 Verity Query Language and Topic Guide

6 Elements of Topic Design
How Topics Work
If topics are used this way, the topic set does not need to be imported into another
Verity application. The taxonomy or Knowledge Tree does need to be imported.

Using Topics as Stored Queries in Other Verity Applications

Four main steps are involved in using topic sets with other Verity applications:

1. Create the topic set(s).

You can use the mktopics command line tool (see “Building Topic Sets from the
Command Line”) to convert topic sets in OTL format to binary format.

Intelligent Classifier provides a powerful graphical editor to create topic sets in either
binary format or OTL format. Intelligent Classifier can also open an OTL file and
export it to a binary format topic set.

2. If you create more than one topic set to be used in the same Verity application, you
must also supply a knowledge base map (KBM) file.

If you are using Intelligent Classifier, a KBM file is automatically created for you. For
more information, see the Verity Intelligent Classification Guide.

3. Optionally, you can preindex a topic set against a collection. Preindexing speeds up the
time taken to run queries that use topics.

You can use command line tools such as mktopics to preindex. See “Building Topic
Sets from the Command Line” on page 119 for information about mktopics.

Intelligent Classifier enables you to specify which parts of a topic set will be
preindexed.

4. You must tell the Verity application to use the topic set or KBM file. For information
about how to configure topic sets, see the Verity Intelligent Classification Guide.

Note Topic sets must be in binary format so that other Verity applications can
use them. You can use either Intelligent Classifier or the mktopics
command-line tool to convert an OTL formatted topic set into binary
format.

Making Topics Available

You need to make a topic set available to a K2 Server. For complete information about
using K2 brokers and servers, see the Verity K2 Dashboard Administrator Guide.
Verity Query Language and Topic Guide 97

6 Elements of Topic Design
Rules About Topics and Topic Sets
Rules About Topics and Topic Sets

Although topics are a powerful search tool, there are certain rules that apply to both
topics and topic sets.

Operator Precedence Rules

The Verity search engine uses precedence rules to determine how operators are assigned.
These rules state that some operators rank higher than others when assigned to topics,
and affect how document selections are performed. See “Precedence Rules” on page 39
for the operator precedence rules.

Rules About Topics

The following list describes a few rules that you should be aware of when using Verity
topics.

Topic Names—All topic names can contain up to 128 alphanumeric characters,
including hyphens (-), underscores (_), plus signs (+), dollar signs ($), percent signs
(%), periods (.) and circumflexes (^). A topic name cannot start with a period. A topic
name must be unique in a topic set.

Case Sensitivity—Topic names and evidence topics are normally case-insensitive. You
can name an evidence topic using all caps, as in APPLE; initial caps, as in Apple; or all
lowercase, as in apple. Case is not considered when a search is performed. Thus, if
your evidence topic is entered as APPLE, the Verity search engine selects documents
containing “APPLE”, “Apple”, or “apple”.

Topic Limits—See “Query Limits” on page 149 for information about topic limits.
98 Verity Query Language and Topic Guide

6 Elements of Topic Design
Topic Design Strategies
Topic Design Strategies

Topic design is more of a task of strategy than a task of organization. As a topic designer,
you are encouraging users to access knowledge according to a particular strategy. The
topics you define are the tactics you will use to implement that strategy.

Consider the topics you define as questions to be asked, just as you might ask a reference
librarian at your local library for information relating to a subject area.

Once you have an understanding of your documents, you are ready to choose a topic
design strategy. You can either start with major subject classifications and become
increasingly more specific (top-down design), or start with specific details and then
create more general “umbrellas” to encapsulate them (bottom-up design).

Table 6-1 and Table 6-2 summarize the two design strategies.

Top-Down Design

Table 6-1 describes the top-down design strategy.

Table 6-1 Top-down Design Strategy

Optimal Conditions Implementation Maintenance

Works best with clearly-defined
requirements. Ideal if your
searchable document set is
constantly growing or changing.
With this strategy, you are likely
to define subjects that might not
yet be evident in information
sources.

Advantage: If you find that many
new documents contain
information not identified in
your topic design, you can add
new topics.

Top-level topics: Use
general headings to
identify the subject area.

Subtopics: Use more
specific headings to
identify primary
groupings.

Evidence topics: Use
important terms, acronyms
or jargon to define the
subject.

If your information sources
(your set of indexed
documents) change constantly,
subjects within documents can
be missed, especially at the
lowest levels.

Periodically re-analyze the
information being selected by
your topics to ensure that
topics critical to your
application are current, and the
appropriate information is
being found.
Verity Query Language and Topic Guide 99

6 Elements of Topic Design
Topic Design Strategies
Bottom-Up Design

Table 6-2 describes the bottom-up design strategy.

Table 6-2 Bottom-up Design Strategy

Optimal Conditions Implementation Maintenance

Works best when you have
documents that are
representative of many other
documents that contain similar
information.

This approach is also useful
when your information sources
are not subject to many changes
or additions.

Evidence topics: Start with
a document that contains a
good representative
sample of words or phrases
you want to search for.
Then group these words by
successively higher
classifications.

Subtopics and Top-level
topics: Design the topic
from individual evidence
topics, up through the top
level to be defined. With
this strategy, your topic
design objective is to select
documents containing
information similar to your
lower-level topics.

Keep in mind that topic
designs based on the contents
of specific documents can miss
related subject areas in other
documents. For example, if a
name is used in the sample
document and that name
changes in other documents,
the new name can be missed in
searches.

In addition, the specific
document set being used to
develop your topics might not
be representative of all
documents contained in your
information sources.

Periodically review the
effectiveness of your searches.
100 Verity Query Language and Topic Guide

7
Using Topic Outline Files

A topic represents a concept or a subject area. Each topic is assigned a unique name.
When Verity applications incorporate topics, users can find information by typing topic
names instead of elaborate queries using complex syntax.

Topics offer many benefits:

Reusability—they can be shared among users

Simplicity—they can eliminate the need for complex queries

Speed—they can improve search time

This chapter contains the following information:

About Outline (OTL) Files

Creating a Topic Outline File

Defining Topics in the OTL File

Topic Outline File Elements

Topic Structure
101

7 Using Topic Outline Files
About Outline (OTL) Files
About Outline (OTL) Files

A topic outline file (an OTL file) is an ASCII text file named with the suffix .otl. You can
create a topic outline file from scratch in any directory using your favorite ASCII text
editor.

An outline file is required for use with the mktopics tool. When you use an OTL file
with mktopics, you include the file on the command line.

You can use Verity Intelligent Classifier to create .otl files. Check the .otl file format
when you create a new topic set from the Intelligent Classifier window or when you
export the current topic set as an .otl file. Optionally, you can create a text-based outline
file and import the file for use with Intelligent Classifier.

Topic outline files define topics and include the elements described in Table 7-1.

Creating a Topic Outline File

A topic outline file is an ASCII text file named with the suffix.otl and used to define
topic structure. You can create a topic outline file in any directory using your favorite
ASCII text editor. If you are using the Verity Intelligent Classifier, you can export your
taxonomy as an OTL file.

This file is optional, but if you want to set up a tailored taxonomy, you need to create this
file.

Table 7-1 Topic Outline File Elements

Element Consists Of Used For

$control: 1 keyword and comment
lines

A control file to be used by Verity search
engine tools

Topic definition
modifiers

Modifiers to be assigned to
the top-level topic, its
subtopics, and its evidence
topics

Define evidence topics, track who has
updated the topic outline file, when
additions or edits have been made, and
add annotations to topics

Indentation characters Asterisks (*) that denote
indentation of subtopics
and evidence topics within
a topic structure

Indicate the level of a topic with respect to
its parent topic and its children
102 Verity Query Language and Topic Guide

7 Using Topic Outline Files
Creating a Topic Outline File
The file includes the following topic definition elements:

$control: 1 keyword and comment lines

The topic definition, which includes the weight, operator, and modifiers to be assigned
to the top-level topic, its subtopics, and its evidence topics

Topic definition modifiers, as needed by the topic

Indentation characters, which indicate the level of that topic with respect to its parent
topic and its children

These elements are shown in the following example, which defines a topic named art.
Verity Query Language and Topic Guide 103

7 Using Topic Outline Files
Defining Topics in the OTL File
Defining Topics in the OTL File

As you begin defining topics in an outline file, it is a good idea to define simple topics
and then add to them. This section discusses some aspects of creating a topic outline file.

If you are receiving errors from mktopics about your topic outline file, check for
precedence rule violations.

In the following example, new STEM evidence topics, bond and corporate have been
added to the finance topic.

finance <Accrue>
inc <Accrue>
company <Accrue>

bond <Accrue>

The finance and bond topics are moved under the corporate topic to make
corporate the new stem topic.

corporate <Accrue>
finance <Accrue>
bond <Accrue>

The edited outline file for this topic structure appears as follows.

$control: 1
Beginning of corporate topic
corporate ACCRUE
 /date = "30-Dec-01"
 /annotation = "Generic corporate information."
* 0.50 finance ACCRUE
** 0.50 WORD
 /wordtext = inc
** 0.50 STEM
 /wordtext = company
** 0.30 WORD
 /wordtext = corporate
* 0.50 bond ACCRUE
 /date = "31-Dec-01"
End of corporate topic

After you start using a topic to perform searches, you might find you need to make
additions to enhance the topic's document selection.
104 Verity Query Language and Topic Guide

7 Using Topic Outline Files
Defining Topics in the OTL File
Specifying Weights with Subtopics

When you define a subtopic as a top-level topic, include the subtopic weight where you
name it under its parent topic, because a child's weight is significant in relation to its
parent. Because of this, you can use the subtopic in several locations in a topic outline file,
depending on your desired selection results.

The weight for a subtopic can be a value from 0.01 to 1.00, where 1.00 indicates that the
topic is of very high importance. Alternatively, the weight can be a value from 1 to 100,
where 100 indicates that the topic is of very high importance.

In the following topic outline file, the subtopic finance appears as a top-level topic, but
is used in two different locations. Each location uses a different weight for this subtopic,
depending on its relevance to the parent topic. The abbreviated style is used to define
phrase evidence topics and word evidence topics.

$control: 1
Beginning of finance topic
finance ACCRUE
* 0.70 "corporate finance"
* 0.40 "financial information"
* 0.60 ‘money’
End of finance topic

Beginning of bond definition
bond ACCRUE
* 0.50 "corporate bonds"
* 0.50 "stocks and bonds"
* 0.50 ‘finance’
End of bondtopic

The weights specified with the children of the finance subtopic remain the same, even
though the weight of the finance subtopic differs where it has been specified under the
bond topic.

Including and Excluding Documents

You can include or exclude documents by defining a field evidence topic at a higher level
than the evidence topics that will be used to select documents. You can limit selected
documents to those that match the field evidence topic.

For example, the following topic limits the search performed by the bond topic to
documents dated October 10, 2000 and later. This example assumes that the bond topic
has been previously defined in the topic outline file.
Verity Query Language and Topic Guide 105

7 Using Topic Outline Files
Defining Topics in the OTL File
$control: 1
Beginning of bond-limit topic
bond-limit AND
* 1.00 bond
* 1.00 bond-date FILTER
 /definition = "DATE >= 10-Oct-01"
End of bond-limit topic

In the previous example, the bond-limit topic uses the AND operator. The bond and
bond-date subtopics each have a weight of 1.00. Use of the AND operator along with
weight assignment ensures that both subtopics must be present in a document when the
bond-limit topic is used.

Specifying Field Evidence Topic Ranges
To specify a range, define a parent topic that uses the AND operator and has two field
evidence topics as children. Use the operators GREATER THAN OR EQUAL TO (>=) and
LESS THAN OR EQUAL TO (<=) to specify the beginning and ending values of the
range.

In the following example, the field evidence topic named date-range selects
documents dated from February 1, 2001 through February 28, 2003.

$control: 1
date-range AND
* from-date FILTER
 /definition = "Date >= 01-Feb-01"
* to-date FILTER

 /definition = "Date <= 28-Feb-03"
106 Verity Query Language and Topic Guide

7 Using Topic Outline Files
Topic Outline File Elements
Topic Outline File Elements

The elements that make up a topic outline file are described in the following sections.

$control: 1 Keyword

The $control: 1 keyword identifies a file as a control file to be used by Verity search
engine tools. This keyword always appears as the first non-comment line in a topic
outline file, and is entered as $control: 1, as shown in the examples in “Including and
Excluding Documents” on page 105. The number following the keyword denotes the file
version number, and is used internally by the Verity search engine.

Comment Lines

You can include comment lines in a topic outline file by beginning the lines with a pound
sign (#) character. Comment lines can appear on separate lines, or can be added to the
end of a statement. Blank lines can also be used to separate topics and improve
readability.

Topic Definition Modifiers

Topic definition modifiers define evidence topics, track who has updated the topic
outline file, track when additions or edits have been made, and add annotations to topics.
You can use the topic definition modifiers in a topic outline file.

The topic definition modifiers are optional; you can create topics without the modifiers.
The topic definition modifiers are described in Table 7-2.
Verity Query Language and Topic Guide 107

7 Using Topic Outline Files
Topic Outline File Elements
Table 7-2 Topic Definition Modifiers

Modifier Description

/annotation Use the /annotation topic definition modifier to add a description to the
topic.

You can enter up to 2,000 character of text. Enclose text in double quotes (""),
as shown in the following example:

/annotation = "This topic is used by fsmith."

/author Use the /author topic definition modifier identify the author of a top-level
topic, a subtopic, or an evidence topic. Enter the name of the author in double
quotes ("") following the /author topic definition modifier, as shown in the
following example:

/author = "fsmith"

/date Use the /date topic definition modifier to identify the date a topic has been
added or changed.

You can enter the date in any manner you wish. Enclose the date in double
quotes ("") following the /date topic definition modifier, as shown in the
following example:

/date = "December 18, 2001"

/definition Use the /definition topic definition modifier when you want to use a
relational operator with a field topic. Field topics contain fields that have been
defined in the style.ddd file.

Relational operators perform a filtering function by selecting documents that
contain specified values in their associated fields (such as AUTHOR). The fields
that are used with relational operators can contain numbers or alphanumeric
characters.

/wordclass Use the /wordclass modifier when you want to reference qualify instance
data. Qualify instance data can be referenced only by an application built by
the Verity Developer’s Kit. For example, to define a topic for instance 39 of the
word orange, use this syntax:

* t27 word
/wordtext = "orange"
/wordclass = 39

Alternatively, you can use this syntax:

* "orange"
/wordclass = 39

/wordtext Use the /wordtext topic definition modifier to define a evidence topic (the
lowest topic level).

/zonespec Use the /zonespec topic definition modifier when you want to reference a
zone in a topic outline file.
108 Verity Query Language and Topic Guide

7 Using Topic Outline Files
Topic Structure
Indentation Characters

Use asterisks (*) to denote indentation of subtopics and evidence topics within a topic
structure. For example, a top-level parent topic uses no indentation. Subtopics of a
top-level topic are preceded by one asterisk; subtopics of a subtopic are preceded by two
asterisks; children of subtopics are preceded by three asterisks, and so on.

Topic Structure

A topic can be as simple or as complex as needed, and can contain as many levels of
indentation as are required to accurately describe the characteristics of the parent topic.

As you prepare to create topics, consider the naming conventions you will use. Topic
names should help identify the subject matter of the kinds of documents you want to
select.

To ensure the best search performance, use alphanumeric characters (A through Z, and 0
through 9) for topic names. You can also use foreign characters with ASCII values greater
than or equal to 128, as well as the following symbols.

Using other non-alphanumeric characters could cause misinterpretation of the topic
name and could affect results.

A topic name can be up to 128 characters long. Topic names can be entered in any
combination of uppercase and lowercase letters.

WARNING! If two topics with the same name exist but have different topic
outline files, the second topic outline file replaces the first topic
outline file when the topic building tool is used. There is no
warning message.

$ dollar sign

% percentage sign

^ circumflex

+ plus sign

- dash

_ underscore
Verity Query Language and Topic Guide 109

7 Using Topic Outline Files
Topic Structure
Defining Topic Structure

You can name and structure topics to guide a user’s search. Topic names should help
identify the subject matter of the kinds of documents you want to select.

The following sections contain examples of structuring topics to tailor information
retrieval.

Defining Top-level Topics
To define a top-level topic, in the OTL file, type the topic name first, followed by the
operator to be assigned to the topic. In the following example, the top-level topic named
merger-activity includes the /author, /date, and /annotation topic definition
modifiers:

merger-activity ACCRUE
/author = "fsmith"
/date = "30-Dec-01"
/annotation = "This topic used by Marketing."

The /author, /date, and /annotation topic definition modifiers are optional; you do
not need to include these modifiers in your topic.

Defining Subtopics
To define a subtopic, enter the indentation character(s) first, followed by the weight to be
assigned to the subtopic, the subtopic name, and the operator to be assigned to the
subtopic. You can also include the /author, /date, and /annotation modifiers.

In the following example, the subtopics named trade-action, speculation, and
offering-postponed have been added to the top-level topic named
merger-activity. In addition, the subtopic named offering-postponed includes
the subtopic named standstill-agreement.

merger-activity ACCRUE
/author = "fsmith"
/date = "30-Dec-01"
/annotation = "This topic used by Marketing."

* 0.50 trade-action ACCRUE
* 0.50 speculation ACCRUE
* 0.50 offering-postponed AND
** 0.50 standstill-agreement PHRASE
110 Verity Query Language and Topic Guide

7 Using Topic Outline Files
Topic Structure
When creating a subtopic that uses the PHRASE operator, you can define the words that
comprise the phrase as evidence topics, or you can use an abbreviated style to define the
phrase. For more information, refer to “Defining Subtopics Using the PHRASE Operator”
on page 114.

Subtopic Weight Assignments
If you do not assign a weight to a subtopic, the Verity search engine automatically assigns
a weight based on the operator used by the subtopic's parent. So, in the previous example
if the parent (*) uses the ACCRUE operator, the subtopic (**) will have an automatic weight
assignment of 0.50.

The Verity search engine ignores a weight assigned to a subtopic with a parent that does
not accept a variable weight.

Assigning the NOT Modifier to Subtopics
To assign the NOT modifier to a subtopic, enter the modifier following the indentation
character(s) and preceding the weight. In the following example, the subtopic named
standstill-agreement has been assigned the NOT modifier.

merger-activity ACCRUE
/author = "fsmith"
/date = "30-Dec-01"
/annotation = "This topic used by Marketing."

* 0.50 trade-action ACCRUE
* 0.50 speculation ACCRUE
* 0.50 offering-postponed AND
** NOT 0.50 standstill-agreement PHRASE

To specify a NOT modifier, you can use a tilde character (~) instead of the word NOT.

Evidence Topics

Enter information for evidence topics in the following format:

weight evidence_topic_OPERATOR
 /wordtext = evidence_topic_name
Verity Query Language and Topic Guide 111

7 Using Topic Outline Files
Topic Structure
Table 7-3 describes the elements used in evidence topic syntax.

In the following example, the evidence topics rise, rose, and speculation have been
assigned to the subtopic named speculation.

Note Asterisks (*) are used as indentation characters to indicate the relationship
between these evidence topics and their parent topic.

merger-activity ACCRUE
 /author = "fsmith"
 /date = "30-Dec-01"
 /annotation = "This topic used by Marketing."
* 0.50 trade-action ACCRUE
* 0.50 speculation ACCRUE
** 0.50 STEM
 /wordtext = rise
** 0.50 STEM
 /wordtext = rose
** 0.50 STEM
 /wordtext = speculation
* 0.50 offering-postponed AND
** NOT 0.50 standstill-agreement PHRASE

Evidence topics can also be defined in an abbreviated style that does not use the /
wordtext topic definition modifier. For more information, refer to “Topic Structure” on
page 109.

Table 7-3 Evidence Topic Elements

Element Description

weight Assigns a weight to the definition topic, if a weight is accepted by
the parent. If a weight is not assigned, the engine automatically
assigns a weight of 1.00. The weight can be a value from 0.01
through 1.00, where an assignment of 1.00 indicates that the topic
is of very high importance. Alternatively, the weight can be a value
from 1 through 100, where 100 indicates that the topic is of very
high importance.

evidence_topic_OPERATOR Specifies the evidence topic operator to be used.

evidence_topic_name Specifies the name to be assigned to the evidence topic.

Note: The evidence topic name is not assigned in double quotes.
112 Verity Query Language and Topic Guide

7 Using Topic Outline Files
Topic Structure
Evidence Topic Weight Assignments
If you do not assign a weight to an evidence topic, the engine automatically assigns a
weight based on the operator used by the evidence topic’s parent. Thus, if the parent uses
the AND operator, the evidence topic will have an automatic weight assignment of 1.00.

If you assign a weight to an evidence topic with a parent that does not accept a variable
weight, the Verity engine ignores the weight.

Assigning Modifiers to Evidence Topics
To assign the MANY or CASE modifier to an evidence topic, enter the modifier before the
evidence topic operator, using this syntax:

<MODIFIER><OPERATOR>
<MODIFIER><MODIFIER><OPERATOR>

or this syntax:

<OPERATOR/MODIFIER>
<OPERATOR/MODIFIER/MODIFIER>

To assign the NOT modifier to a evidence topic, enter the modifier preceding the weight.

You can use one, two, or three modifiers, depending on the function of the evidence topic
and the operator assigned to its parent. The following example illustrates how modifiers
can be assigned to evidence topics.

merger-activity ACCRUE
/author = "fsmith"
/date = "30-Dec-01"
/annotation = "This topic used by Marketing."

* 0.50 trade-action ACCRUE
* 0.50 speculation AND
** 0.50 STEM

/wordtext = rise
** 0.50 <WORD/CASE/MANY>

/wordtext = Rose
** 0.50 <MANY><STEM>

/wordtext = speculation
Verity Query Language and Topic Guide 113

7 Using Topic Outline Files
Topic Structure
Abbreviated Evidence Topics
When defining evidence topics that use the WORD, STEM, or SOUNDEX operators, you can
abbreviate the entries in your topic outline file. Abbreviated evidence topics do not use
the /wordtext topic definition modifier. Weights can be assigned to an abbreviated
evidence topic, depending on the operator used by the parent topic. If no weight is
assigned, the Verity engine automatically assigns the evidence topic a weight of 1.00.

The following examples illustrate defining abbreviated evidence topics.

Abbreviated WORD Evidence Topics
Evidence topics that define words can be abbreviated by enclosing the word in double
quotes (""), as shown in the following:

* 0.50 "acquisition"

Abbreviated STEM Evidence Topics
Evidence topics that define stems can be abbreviated by enclosing the stem in single
quotes ('), as shown in the following:

* 0.50 'merger'

Abbreviated SOUNDEX Evidence Topics
Evidence topics that define sound-alike words can be abbreviated by enclosing the word
to be matched with at symbols (@), as shown in the following example:

* 1.00 @airplane@

Defining Subtopics Using the PHRASE Operator

When you use the PHRASE operator to define a subtopic, enter the words that comprise
the phrase as children of the subtopic. The order in which you list the words of the phrase
specifies how they must appear in documents.

For example, the phrase “standstill-agreement” is defined by the subtopic
standstill-agreement, as follows:

merger-activity ACCRUE
 /author = "fsmith"
 /date = "30-Dec-01"
 /annotation = "This topic used by Marketing."
* 0.50 trade-action ACCRUE
* 0.50 speculation ACCRUE
* 0.50 offering-postponed AND
** NOT 0.50 standstill-agreement PHRASE
114 Verity Query Language and Topic Guide

7 Using Topic Outline Files
Topic Structure
*** 1.00 WORD
 /wordtext = standstill
*** 1.00 WORD
 /wordtext = agreement

You can also define phrases by enclosing the words that comprise the phrase in double
quotes (""), as follows:

merger-activity ACCRUE
 /author = "fsmith"
 /date = "30-Dec-01"
 /annotation = "This topic used by Marketing."
* 0.50 trade-action ACCRUE
* 0.50 speculation ACCRUE
* 0.50 offering-postponed AND
** "standstill agreement"

When this abbreviated style is used, the phrase does not have a title.

When the abbreviated style is used to define a phrase, the weight does not have to be
included, because children of PHRASE topics do not accept weights other than 1.00.

Defining Field Evidence Topics

Type information for field evidence topics using the following format:

topic_name FILTER
 /definition = "FIELD OPERATOR value"

Table 7-4 describes the elements for field evidence topic syntax.

Table 7-4 Field Evidence Topic Elements

Expression Element Description

topic_name Specifies the name assigned to the topic.

FILTER Specifies that a field search is to be performed using the information
enclosed in quotes.

/definition = Specifier preceding the field evidence topic definition.

FIELD Specifies the name of the field to be searched. The field name given must
be a valid field name, as defined in the collection policy files.

OPERATOR Specifies the name of the relational operator to be used.

value Specifies the variable to be used to perform the field search.
Verity Query Language and Topic Guide 115

7 Using Topic Outline Files
Topic Structure
The argument used with the /definition topic definition modifier is enclosed in
double quotes (""). The relational operators that can be assigned to field evidence topics
are listed in Table 7-5.

Note When a character string is used to represent a value for a field containing
text, case is ignored. So if you enter TITLE contains computer as an
argument, documents containing the word Computer, COMPUTER, or
computer in their titles will be located.

The following example illustrates a field evidence topic that performs a filtering function
for documents containing the word Economy in the TITLE field.

merger-activity ACCRUE
 /author = "fsmith"
 /date = "30-Dec-01"
 /annotation = "This topic used by Marketing."
* 0.50 merger-title FILTER
 /definition = "TITLE Contains Economy"
* 0.50 trade-action ACCRUE
* 0.50 speculation ACCRUE
* 0.50 offering-postponed AND
** "standstill agreement"

Table 7-5 Field Evidence Topic Operators

Operator Name Alternate Symbol Notes

EQUALS = You can use symbols rather than
names when specifying the first five
operators

GREATER THAN >

GREATER THAN OR EQUAL TO >=

LESS THAN <

LESS THAN OR EQUAL TO <=

CONTAINS

MATCHES

STARTS

ENDS

SUBSTRING
116 Verity Query Language and Topic Guide

7 Using Topic Outline Files
Topic Structure
When the topic merger-activity is used in a search, documents containing the word
Economy in their titles and containing the maximum occurrences of the other search
criteria are scored higher than those that do not contain the word Economy in their titles,
or have fewer occurrences of the other search criteria.

How Field Evidence Topics Affect Document Scores

When defining field evidence topics, keep in mind that the filtering function performed
depends on where the field evidence topic exists within the topic set.

In the topic set listed above, documents that contain the word Economy in their titles, as
well as the information specified by the other field evidence topics, are scored higher
than documents that do not contain Economy in their titles, but contain the information
as specified by the other field evidence topics.

Place field evidence topics at a higher level than other subtopics if you want to:

Filter documents according to information specified by the field evidence topic

Score selected documents based on the topic's remaining subtopics

Defining Topics for Zone Searching

To search over a zone named title for the stemmed variations of the words “health”
and/or “insurance,” specify the following in the topic outline file:

health-care IN
 /zonespec = "title"
* <ANY>
** 'health'
** 'insurance'

You can also use multiple zones. To search over zones named title and subject for
stemmed variations of the words “health” and “insurance,” specify the following:

health-care IN
 /zonespec = "title,subject"
*<ANY>
** 'health'
** 'insurance'
Verity Query Language and Topic Guide 117

7 Using Topic Outline Files
Topic Structure
You can impose conditions. You can specify a search over a zone named <A> (anchor) in
an HTML file. The corresponding HREF contains the term “verity.com”. To look for the
precise string “Verity” specify the following:

verity-link <In>
 /zonespec = "A <When> HREF <Contains> verity.com"
* "Verity"

Currently, the IN operator takes only one subquery node to find within the constraint of
the zone. Similarly, the simple query construct:

cat <AND>dog<IN>title
 is interpreted as:

cat<AND>(dog <IN>title)
instead of: (

cat<AND>dog)<IN>title

Defining Topics Using Score Operators

The use of the score operators PRODUCT, SUM, and COMPLEMENT in the topic outline
file is shown in the following example:

Sample-Product <Product>
* 50 "steve"
* 25 "bill"

Sample-Sum <Sum>
* 75 "verity"
* 25 "search"

Sample-Complement <Complement>
* 25 "verity"

Sample-Complement-2 <Complement>
* SubTopic <Accrue>
** "steve"
** "bill"

Sample-YesNo <YesNo>
* "Steve"
118 Verity Query Language and Topic Guide

8
Building Topic Sets from the Command
Line

OTL format topic sets can be created using a text editor. However, this format cannot be
deployed directly in other Verity applications. You can use the mktopics command-line
tool to build a binary format topic set from an OTL file if you do not have Intelligent
Classifier. There are two features unique to mktopics: generating encrypted topic sets to
protect intellectual property, and indexing topic sets against collections to improve search
efficiency.

Building a topic set from an OTL file using mktopics involves two major activities:

Creating topic definitions in a topic outline (OTL) file

Building topic sets using mktopics

This chapter discusses how to build a topic set using the mktopics command-line tool,
and contains the following information:

Starting mktopics

mktopics Syntax

Checking Topic Precedence Rules

Topic Set Indexing

Topic Set Encryption
119

8 Building Topic Sets from the Command Line
Starting mktopics
Starting mktopics

The mktopics tool is used to build a topic set using the topic definitions contained in an
outline (otl) file. When you run mktopics to build a new topic set, the following
functions are performed:

Topic definition syntax is checked. If an error is detected, the mktopics tool returns
the line(s) containing the error(s), and provides possible options for correcting the
error.

If no errors are detected in the outline file, mktopics builds the topic set in the
directory that you specify

mktopics also supports maintenance functions, as described later in this chapter.

Building a Topic Set

To build a topic set:

1. Open an ASCII editor, and create and save an outline file. See “Using Topic Outline
Files” on page 101 for instructions.

Save the file in any directory. Use the -outline command modifier to indicate the path
and name of the outline file to be used with the mktopics command. (See step 3.)

2. Open a command window.

3. In the command window, issue the mktopics command, as in:

mktopics -topicset topicset_dir -outline file.otl
[-collection collection|@list] [-indexType normal|namedOnly]

-topicset topicset_dir (Required) Identifies the directory name
(topicset_dir) where the topic set will be created or
updated.

-outline file.otl (Required) Identifies the topic outline file (file.otl)
where the topics are defined.
120 Verity Query Language and Topic Guide

8 Building Topic Sets from the Command Line
Starting mktopics
Sample mktopics Command

To create a new topic set, use a command similar to:

mktopics -quiet -topicset /dir1/mytopics -outline topics.otl

This mktopics command builds a new topic set in quiet mode in the directory called
/dir1/mytopics from an outline file called topics.otl.

-collection collection|@list (Optional) Identifies a collection (collection) or a list
of collections (list) that will contain the topic index in
the topicidx subdirectory. The list of collections is an
ASCII file that lists the full path to each collection
directory, on a separate line.

-indexType normal|namedOnly (Optional) Specifies the type of index for the collection.

A normal index indexes all topics with a precedence
rating of incremental or lower. Indexes search and
retrieval performance varies depending on the structure
of the topic.

A namedOnly index indexes only named topics. It takes
longer to build, and uses more disk space than a normal
index, but search and retrieval are almost instantaneous.
Verity Query Language and Topic Guide 121

8 Building Topic Sets from the Command Line
mktopics Syntax
mktopics Syntax

A topic set can be built and updated using the mktopics tool. Some Verity applications
support the use of multiple topic sets. For those applications, you need to run mktopics
for each topic set desired.

mktopics Syntax Summary

The command-line syntax for the mktopics tool is shown below.

mktopics -topicset topicset_dir -outline file.otl

See “mktopics Syntax Descriptions” for descriptions of the options for mktopics.

mktopics Syntax Descriptions

Table 8-1 describes the syntax elements for mktopics.

Table 8-1 mktopics Syntax Elements

Element Description

-charmap The optional -charmap argument specifies the character set used
to display messages and other mktopics screen output. Use a
character set that your system can display properly.

For information on the supported locales and relevant character
sets, see the Verity Locale Configuration Guide.

-collection
collection|@list

The optional -collection argument specifies a collection
directory or an ASCII file containing a list of collection directories
(each on a separate line); the name of such a list file must be
preceded by an at sign. This argument specifies which
collection(s) the topic set is indexed against. When specified, the
topic set index is updated in the specified collection directories.
Maintaining a topic index in a collection facilitates quick and
efficient searches over the collection data when using topics.

-deep The optional -deep argument specifies that a dump of a topic set
to an outline file dumps each top-level topic as far down as
possible. Only meaningful when used with -fullotl. This is
the default.
122 Verity Query Language and Topic Guide

8 Building Topic Sets from the Command Line
mktopics Syntax
-encrypt keyfile The optional -encrypt argument encrypts the topic set using
the specified key file. Generate the key file with the mkenc tool.

-fullotl filename The optional -fullotl argument exports topic definitions to an
OTL file. The argument is followed by the full or relative path and
name of the file to which you want to export a copy of the topic
set. Use .otl as the file name extension. Additional arguments for
-fullotl are -topic, -deep, and -shallow.

-indexType
normal|namedOnly

The optional -indexType argument specifies the type of topic
set index to be built when the topic set is indexed against a
collection using operator precedence rules. Valid values are:

normal for indexing topics in the outline file with an
incremental precedence or lowest precedence

namedOnly for indexing only named topics in the outline file

The default is normal. For information about topic precedence
ratings, refer to “Operator Precedence Rules.”

-locale The optional -locale argument specifies the locale for the topic
set. The locale used must match the locale of the document
collection associated with the topic set.

For information on the supported locales and relevant character
sets, see the Verity Locale Configuration Guide.

-logfile filename The optional -logfile argument followed by a log filename
indicates that a log file will be generated. For the log filename,
you can specify the filename and path. If a path is not specified
with the filename, the log file is put in the current working
directory.

-nowarnundef The optional -nowarnundef argument specifies that you will
not be warned if there are any undefined topics when importing
topic definitions from an outline file. Only meaningful when
used with -outline. The default is -warnundef.

-noprecres The optional -noprecres argument specifies that topic
precedence checking will not occur when the topic set is built. If
this argument is set, then topics with precedence errors are
rewritten at query time, making the performance of topic
searching slow. The default is -precres. Only meaningful when
used with -outline.

Table 8-1 mktopics Syntax Elements (continued)

Element Description
Verity Query Language and Topic Guide 123

8 Building Topic Sets from the Command Line
mktopics Syntax
-optimize The optional -optimize argument specifies that the topic set be
optimized. The optimization rebuilds the topic set structure,
recovering space from deleted nodes, and so on. After optimizing
a topic set, you must update any topic indexes that depend on
that topic set.

-outline file.otl The full or relative path and name of the outline file from which
the new topic set will be built. Use .otl as the filename
extension.

-precres The optional -precres argument specifies that topic precedence
checking will occur when the topic set is built or updated. This
argument is the default. Only meaningful when used with
-outline. For information about topic precedence ratings, refer
to “Operator Precedence Rules.”

-quiet The optional -quiet argument suppresses status messages. By
default, mktopics runs in verbose mode.

-reset The optional -reset argument deletes and replaces an existing
topic set with an empty topic set. This option does not update a
topic set.

Note: The -reset argument temporarily increases the .std and .sid
files in the topic set directory. The cleanup of old files occurs less
frequently because the files might being referenced by multiple
collections. This generally does not affect performance.

-shallow The optional -shallow argument specifies that a dump of a
topic set to an outline file dumps each top-level topic down to the
next named topic. Only meaningful when used with -fullotl.

-topic name The optional -topic argument is followed by the name of the
topic in the specified topic set that you want to export to a topic
outline file. This argument must be specified with -fullotl.

-topicset topicset_dir The required -topicset argument specifies the name of a new
or existing topic set directory, depending on the other mktopics
syntax supplied. For example, to export un–encrypted topic sets
use the following syntax:

[-topicset topname -fullotl exportfilename]

-warnundef The optional -warnundef argument specifies that you will be
warned if there are any undefined topics when importing topic
definitions from an outline file. Only meaningful when used with
-outline. This is the default.

Table 8-1 mktopics Syntax Elements (continued)

Element Description
124 Verity Query Language and Topic Guide

8 Building Topic Sets from the Command Line
Checking Topic Precedence Rules
Checking Topic Precedence Rules

Topics must be structured according to a set of precedence rules. These rules state that
certain operators have precedence over others, and some operators cannot be used to
define child topics depending on the parent topic’s definition. For complete information
about topic precedence rules and how to define topics, refer to “Precedence Evaluation”
on page 39 and “Elements of Topic Design” on page 93.

By default, mktopics does topic precedence checking and resolution when it builds a
topic set. If topic precedence errors are found by mktopics, then error messages are
reported and the topic set will not be built.

If you want to override the default behavior, you can use the mktopics -noprecres
argument. When -noprecres is used, no precedence checking occurs when the topic set
is built or updated, and the checking is done when the Verity search engine processes a
topic query at search time. If a precedence rule violation is found, then the Verity search
engine recompiles the query automatically. For example, a precedence rule violation will
occur if you use the ANY or ALL operator in a parent topic and a child topic includes one
of the concept operators such as AND, OR, ACCRUE. This violation will occur because the
ANY and ALL operators cannot have variable weights assigned to them. The operators
AND, OR, ACCRUE allow for variable weights.

If you index a topic set over a collection, using the -collection and -noprecres
options, and the engine encounters precedence problems when processing the topic
query, the topic with the precedence problem will not be written to the topic set index.
This means that when a topic set is used, any query that uses a topic with a precedence
problem needs to be recompiled at search time to resolve the precedence problem. This
recompile needs to occur every time the topic is used and it slows down the search
performance. For this reason, it is recommended that you always use the default
-precres behavior, unless you do not plan to index the topic set against a collection.

When running mktopics, if you get many precedence errors with the default -precres
behavior, you can use the -logfile argument to save the errors into a log file, so that
you can review the errors at a later time when you are correcting the topic outline file.
Verity Query Language and Topic Guide 125

8 Building Topic Sets from the Command Line
Topic Set Indexing
Topic Set Indexing

A topic set can be indexed against a collection to shorten search and retrieval time. To
index a topic set against a collection, you specify the -collection argument with the
mktopics command. When a topic set is indexed against a collection, the collection size
will increase to include the topic information. The topic index is stored in a subdirectory
of its root collection.

Two types of topic set indexes, “normal” and “named only,” can be built by mktopics
using the -collection argument. The normal index, which mktopics builds by
default, takes less time to build and uses less disk space than the named only index.
When a normal index is built, the search and retrieval performance varies according to
the topic structure. By contrast, when a named only index is built, the search and retrieval
performance is more consistent among similar sized topics and considerably faster.

The difference between the normal and named only index types has to do with which
topics are indexed. For a normal index, all topics with a precedence rating of incremental
or lowest are indexed. For a named only index, only named topics are indexed.

A topic set can be indexed against a collection using only one of the two available index
types. After a topic set index has been created, you cannot change the index type. Using
the -reset argument with mktopics does not change the index type for a topic set.
126 Verity Query Language and Topic Guide

8 Building Topic Sets from the Command Line
Topic Set Encryption
Topic Set Encryption

A topic set can be encrypted.

To set up topic set encryption, you create the encryption key file and place it where you
will remember it. You can create a directory called encryption files and place it
there for retrieval later. Then you create and encrypt the topic set using mktopics. The
sections below describe how to set up and maintain encrypted topic sets.

If you perform back-to-back mktopics, both commands are executed without any
errors, but only the key from the first command is retained in the topic set.

For example, if you type:

mktopics -topicset t1 -outline 1.otl -encrypt ekey1
mktopics -topicset t1 -outline 2.otl -encrypt ekey2

t1 will be encrypted with key ekey1.

Before You Begin

In order to build an encrypted topic set, you must use the command-line tools mkenc,
and mktopics. You must also have an .otl file that you can use to create the encrypted
topic set from. If you do not have an .otl file, you can open a classification tool, such as
Intelligent Classifier, and export a topic set to an .otl file.

The following exercise shows you how to create and encrypt a topic set using Intelligent
Classifier. Before starting, you should decide where you are going to keep the encryption
file. For this exercise create a directory in the samples directory of the Intelligent
Classifier installation. For a default installation the directory should be located here:

C:\program files\verity\intelligent classifier\samples\encryption
files

Where encryption files is the new directory within the samples directory.

For a custom installation the path will be:

install_dir\verity\intelligent classifier\samples\encryption files

Where install_dir is the installation directory for Intelligent Classifier, and
encryption files is the new directory within the samples directory.
Verity Query Language and Topic Guide 127

8 Building Topic Sets from the Command Line
Topic Set Encryption
Creating an Encryption File

1. Open a new (DOS) command window.

2. Change directory to the encryption files directory. The reason for this is when you
invoke the -out command, it creates the file in the directory shown in the (DOS)
command window. Your directory should look like this:

C:\program files\verity\intelligent classifier\samples\
encryption files>

3. Type in the following command (including the quotes around the description) to create
the encryption key file. For this exercise the syntax has been chosen for you; however,
you can change the filename, key name, and description when you create your own
encryption files.

mkenc -out encfile -key bardic -desc ‘to be or not to be’

4. Press Return.

If the command was typed in correctly, you should get the following text after pressing
Return:

mkenc done - encryption file encfile
Created key file on Tue Jan 22 11:32:06 2002
Create a backup of this file and keep it in a safe place

If you receive an error message, retype the command checking that the syntax is
correct.

Encrypting a Topic Set

This section discusses how to encrypt a topic set using the tutorial_taxonomy topic
set shipped with Intelligent Classifier. You do not have to save the new encrypted topic
set to the same directory; the new encrypted topic set will not overwrite the older one.
For this command it is necessary to point to the encryption file to ensure proper
encryption of the topic set. Create this topic set in the samples directory as follows:

1. Change the directory to samples. When you are done, the prompt window should
show this directory structure:

C\:program files\verity\intelligent classifier\samples>
128 Verity Query Language and Topic Guide

8 Building Topic Sets from the Command Line
Topic Set Encryption
2. Type in the following command:

C:\Program Files\Verity\Intelligent Classifier\samples>mktopics
-topicset tutorial_taxonomy -outline tutorial_taxonomy.otl
-encrypt "C:\program files\verity\intelligent classifier\samples\
encryption files\encfile"

Remember that C:\Program Files is the default installation directory. Your
installation might have been installed elsewhere; just substitute your directory path for
the default path.

Note This command is written as a one-line command. The only return should
be at the end of the command.

3. Press Return. You should see the following message:

mktopics - Verity, Inc. Version 6.0.0 (_nti40, Jul 12 2005)
Using Message Database ..\common\english\vdk30.rsd from product
install area ..
Warn E3-0327 (Vdk Info): Topicset directory tutorial_taxonomy
does not exist. Creating it
Building system topic dataset: tutorial_taxonomy/00000000.std
 from text topics: tutorial_taxonomy.otl
Reading
Parsing
Loading Pass 1
Load pass 2 not necessary -- skipping
Index Layout
mktopics done

If you receive an error message, retype the command checking that the syntax is correct.
Notice that mktopics knows that the topic set directory tutorial_taxonomy does not
exist, and therefore creates one for you.

To view what an encrypted topic set looks like in Intelligent Classifier:

1. Open Intelligent Classifier.

2. If the Wizard starts, click Cancel.

3. Select File | Open Workspace.

4. Browse to and select tutorial_taxonomy.

5. Click Open.

6. Select Topic | Open Topic Set | Topic Set.
Verity Query Language and Topic Guide 129

8 Building Topic Sets from the Command Line
Topic Set Encryption
7. Browse to the samples directory and select tutorial_taxonomy.

If you test the topic PR, you see that it returns the same documents as the unencrypted
topic set.

Encryption allows only the top-level topics to be seen by the end–user. The topics cannot
be added to or modified in any way. You now have a secure topic set that has a protected
design.

Table 8-2 lists the elements and descriptions for mkenc.

Table 8-2 mkenc Syntax Elements

Syntax element Description

mkenc The name of the command-line tool used to generate the encryption key
file.

-out filename The output encryption key file. The encryption key file must be named
based upon the level of encryption desired.

[-key mykey] The key for the encryption key file. The key must be assigned a name, or
any combination of letters and numbers. The level of encryption is based
upon the character string length. For example, if you want to encrypt the
key in 40–bit, you would use a character string of no less than 5
characters. If you want 128–bit encryption, you would use a character
string of no less than 15 characters.

[-128] A flag used to specify 128-bit encryption. If not specified, 40-bit
encryption is used.

[–desc (optional)] You can use the description to identify different encryption keys. The
description is created in the encryption file, and can be viewed with a
text editor.

Note: You can only add to the description in the encryption file. If you
want to change the encryption level of a topic set you must create a new
encryption file with that level, or use an already created one to generate
the new encrypted topic set. It is not recommended to edit the encryption
file, so decide beforehand what the description will be for that file.
130 Verity Query Language and Topic Guide

APPENDIXES

Appendix A: Query Parsers

Appendix B: Query Limits

Appendix C: Creating a Custom Thesaurus
131

132

A
Query Parsers

A user’s query is interpreted by one of five predefined query parsers included with
Verity products. The simple query parser is very popular because it allows users to enter
simple words and phrases separated by commas, with or without additional query
language.

This appendix covers the following topics:

Simple Queries

Simple Query Parser

Query-By-Example (QBE) Parser

Internet-Style Parser

BooleanPlus Parser

Using Query Parsers Programatically

Simple Queries

This section introduces how to write queries for interpretation by the simple query
parser.
133

A Query Parsers
Simple Queries
Words and Phrases Separated by Commas

A simple query is specified as words and phrases, separated by commas. To see
documents about using text editors to create Web documents, start with a single-word
query, such as:

editor

Your query finds all the documents that include the word “editor.” However, this search
would include not only documents about text editors, but also documents about people
who are editors. (You don’t have to specify the plural form, because a simple search
includes stemmed variations, such as “editors.”) Documents about the Web that did not
include the word “editor” would not be retrieved.

For more specific results, enter several words or phrases, separated by commas, that
describe the subject more precisely, such as:

text editor, document, web

Case-Sensitivity

The search engine attempts to match the case-sensitivity provided in the query
expression, when mixed case is used. For search terms entered completely in lowercase
or uppercase, the search engine looks for all mixed-case variations.

Search terms with mixed case automatically become case-sensitive. For example, the
query of Apple behaves as if you had specified <case>Apple (which would find only the
precise string Apple), while the query of apple finds all of the following: APPLE, Apple,
apple.

The CASE modifier preserves case-sensitivity of the query. For example, if you want to
search for the term “OCX” and want to find instances of “OCX” in uppercase only, you
could enter this query:

<CASE> <WORD> OCX

The search engine would interpret the previous query expression to mean: find all
documents containing one or more instances of the word “OCX” spelled in uppercase,
not mixed case.
134 Verity Query Language and Topic Guide

A Query Parsers
Simple Query Parser
How to Search Hyperlink Contents

Using the Verity operators IN and WHEN, you can search for all documents that refer to a
particular HTML document by following HREF links in the source document. The
following syntax can be used:

* <IN> A <WHEN> HREF <SUBSTRING> searchterm

The previous query is evaluated in distinct query segments, as follows:

The SUBSTRING operator can be substituted with the CONTAINS or MATCHES
operator. These three operators have different ways of performing string comparisons.
For more information about the operators, see “Operators” on page 47.

Simple Query Parser

The simple query parser supports searching over the full text of documents in addition to
searching over collection fields and zones. Sometimes the simple parser is referred to as
the “full text” parser. The simple parser interprets Verity query language.

A unique feature of the simple query parser is that it can translate a query expression
supplied by the user into a more robust query form without requiring the user to specify
a lot of syntax. For example, if a user enters a single word, the simple query parser
applies the MANY modifier and STEM operator to the word by default. This more robust
query form, specifically “<MANY> <STEM> word” causes the search engine to search
for a broader range of documents containing evidence of the user’s query.

Behaviors of the simple query parser are described in the following list.

An individual word is interpreted as a stemmed word or a topic name, unless the
word is surrounded by double quotation marks. When processing the search, the

Query segment Interpreted as

* <IN> A The expression including the IN operator evaluates any contents (*)
in the A tags (zones).

<WHEN> HREF
<SUBSTRING> searchterm

The expression including the WHEN operator further qualifies the
query for a specified HTML attribute, in this case HREF. The
searchterm variable is a word or phrase. The SUBSTRING
operator matches the character string you specify with strings in
the target HREF.
Verity Query Language and Topic Guide 135

A Query Parsers
Simple Query Parser
search engine first checks to see whether the word matches a topic name, and if a
match is found, the topic is used. If a match is not found or if topics are not
implemented, the word is interpreted as a stemmed word. The MANY modifier and
the STEM operator are applied to a single word.

When a word is interpreted as a stemmed word, the search engine broadens the search
to include the word itself along with the stemmed variations of the word. For example,
if a user enters the word “meet” (without double quotation marks, as in: meet) in the
search form and then starts a search, the search engine will look for these words:
“meet,” “meets,” and “meeting.”

When matching a query expression (including two or more words) against topic
names, spaces are interpreted as hyphens. This means that if a phrase named BIG
COMPANIES is supplied as part of a query expression, the application looks for the
topic BIG-COMPANIES. If a topic name match is found, the topic is used to process
the search.

To specify a literal word so that words that have the same stem will not be considered
in the search, the user can surround the word with double quotation marks. For
example, to search for documents that contain the word “tropic” and not consider
words that have the same stem, such as “tropics” or “tropical,” the word “tropic”
needs to be surrounded with double quotation marks.

Double quotation marks in VQL represent the <WORD> operator. They do not affect
case sensitivity in a search.

The PHRASE operator is applied to a phrase where a phrase is defined to be two or
more words separated by spaces.

Queries are case-insensitive when the query terms are entered in lowercase or
uppercase characters. Queries are case-sensitive when the query terms are entered in
mixed case characters. To force case-sensitive searches for words and phrases, users
can use the CASE modifier in queries.

Special meaning is assigned to the following words in a query expression: AND, OR,
NOT. These words are interpreted as Verity query language, unless they are enclosed
in double quotation marks.

For example, to search for the phrase “recycle and reuse,” ensuring that the word
“and” is not interpreted as an operator, the following query can be used:

recycle "and" reuse

Note Special characters such as “&” and “|” must also be enclosed in quotes.

The Verity query language can be used to perform zone and field searches. The zones
that are available for searching depends on the type of documents in the collection.
136 Verity Query Language and Topic Guide

A Query Parsers
Query-By-Example (QBE) Parser
Query-By-Example (QBE) Parser

The query-by-example (QBE) parser supports searching for similar documents, a search
method sometimes referred to as similarity searching. The QBE parser supports
searching over the full text of documents only. The QBE parser does not support
searching over collection fields and zones. The QBE parser does not support Verity query
language except topics.

IMPORTANT The Verity products and documentation also refers to the QBE
parser as the Free Text Parser.

Meaningful words are automatically treated as if they were preceded by the MANY
modifier and the STEM operator. By implicitly applying the STEM operator, the search
engine searches not only for the meaningful words themselves, but also for words that
have the same stem. By implicitly applying the MANY modifier, the search engine
calculates each document’s score based on the word density it finds for meaningful
words; the denser the occurrences of a word in a document, the higher the document’s
score.

By default, common words (such as “the,” “has,” and “for”) are stripped away, and the
query is built based on the more significant words (such as “personnel,” “interns,”
“schools,” and “mentors”). Therefore, the results of a query-by-example search are likely
to be less precise than a search performed using the simple or BooleanPlus parser.

The QBE query parser interprets topic names as topic objects. This means that if the
specified text block contains a topic name, the query expression represented by the topic
is considered in the search.

Internet-Style Parser

With the internet-style query parser (IQP), users can search entire documents or parts of
documents (zones and fields) using a command syntax similar to the syntax used in
many Web search engines.
Verity Query Language and Topic Guide 137

A Query Parsers
Internet-Style Parser
Search Terms

In a search form enabled with the internet-style query parser, users can enter words,
phrases, and plain language. The internet-style parser does not support the Verity query
language (VQL).

However, if you are developing an application using the Verity Developer’s Kit
Application Programming Interface (VDK API), you can combine VQL and IQP syntax.

See the section “Using Query Parsers Programatically” on page 145 for more information.

Words
To search for multiple words, separate them with spaces.

Phrases
To search for an exact phrase, surround it with double quotation marks.

A string of capitalized words is assumed to be a name. Separate a series of names with
commas.

Commas aren’t needed when the phrases are surrounded by quotation marks.

The following example searches for a document that contains the phrases “San
Francisco” and “sourdough bread”.

San Francisco "sourdough bread"

Plain Language
To search with plain language, enter a question or concept.

The Verity internet-style Query Parser identifies the important words and searches for
them. For example, enter a question such as:

Where is the sales office in San Francisco?

This query produces the same results as entering:

sales office San Francisco

Including and Excluding Search Terms
You can limit searches by excluding or requiring search terms, or by limiting the areas of
the document that are searched.
138 Verity Query Language and Topic Guide

A Query Parsers
Internet-Style Parser
A minus sign (–) immediately preceding a search term (word or phrase) excludes
documents containing the term.

A plus sign (+) immediately preceding a search term (word or phrase) means returned
documents are guaranteed to contain the term.

If neither sign is associated with the search term, the results may include documents that
do not contain the specified term as long as they meet other search criteria.

Search Scope

The internet-style parser supports searching over the full text of documents in addition to
document zones and fields.

Zone Searches
The internet-style parser allows users to perform zone searches. Zones that are available
for searching depend on the type of documents in the collection.

Zones are available in Markup Language documents (such as HTML and SGML) as well
as Internet Message format documents (such as standard email and Usenet newsgroup
messages).

To search a document zone, type the name of the zone, a colon (:), and the search term
with no spaces.

zone:term

If you enter a minus sign (–) immediately preceding zone, documents containing the
specified term will be excluded from the search results. For example, if you enter
–zone:term, documents containing term are excluded from the results of the search of
zone.

If you enter a plus sign (+) immediately proceeding the zone search specification, such as
+zone:term, documents are included in the zone search results only if the term is
present.

Field Searches
The internet-style parser allows users to perform field searches. The fields that are
available for searching depend on field extraction rules based on document type of
documents in the collection.
Verity Query Language and Topic Guide 139

A Query Parsers
Internet-Style Parser
To search a document field, type the name of the field, a colon (:), and the search term
with no spaces.

field:term

If you enter a minus sign (–) immediately proceeding field, documents containing the
specified term will be excluded from the search results. For example, if you enter
-field:term, documents containing the specified term in the specified field will be
excluded from the results of the search.

If you enter a plus sign (+) immediately proceeding the field search specification, such as
+field:term, documents will be included in the search results only if the search term is
present in the specified field.

Field searches are enabled by the enableField parameter in a template file. This
parameter, set to 0 by default, must be set to 1 to allow searching a document field.

The enableField is the only thing in a template file that should be changed without
prior consultation with Verity Technical Support.

Template Files

Template files are located in a locale-specific subdirectory of your Verity installdir.

If you have a K2 system that uses the uni locale, the templates are located in the
<installDir>/k2/common/uni subdirectory.

If you have a VDK system that uses the uni locale, this directory is located in the
<installDir>/vdk/common/uni subdirectory.

Template files allow the Verity engine to balance the performance of query parsing with
the goal of increased relevance.

It also means you can customize the Verity engine to provide a query for different kinds
of documents.

Table A-1 lists the templates.
140 Verity Query Language and Topic Guide

A Query Parsers
Internet-Style Parser
The Template Name is the identifier that is used to specify a template in the rcvdk
command-line tool; in the VDK API, it is also the value returned by the
VdkQParserGetInfo function, as demonstrated in the section “Using Query Parsers
Programatically” on page 145.

Use the Internet_Advanced template except under the following circumstances:

If most searches will be directed at HTML documents, use the
Internet_AdvancedWeb template.

If search performance is unacceptable, use the Internet_Basic template.

Note To use the Internet_BasicWeb and Internet_AdvancedWeb
templates, the collection must be created using K2Spider with the
CollectLinkInfo and CollectAnchorText parameters set to true
in the jobs file. For more information about setting these parameters, see
the Verity Command-Line Indexing Reference.

Table A-1 Templates

Template Name Filename Description Use

Internet_Basic basic.iqp Leverage the title and location
information from the document
to boost relevancy-ranking.

Minimize search
time

Internet_BasicWeb basicweb.iqp In addition to Internet_Basic
ranking, uses summarization,
keywords, and anchor text
information.

Search documents
with anchor text

Internet_Advanced advanced.iqp In addition to Internet_Basic
ranking, uses summarization,
keywords and document
formatting information.

Documents are
mostly WYSIWIG
document types

Internet_AdvancedWeb advweb.iqp In addition to
Internet_Advanced ranking,
uses link analysis information
to boost relevancy.

Search targets are
mostly HTML
documents

Internet legacy.iqp Backward
compatibility
Verity Query Language and Topic Guide 141

A Query Parsers
Internet-Style Parser
Query Syntax

The query syntax is very similar to the syntax users expect to use on the Web. All queries
produce valid results; therefore, be careful to form your query to produce the results you
expect. Queries are interpreted according to the following rules:

Individual search terms are separated by whitespace characters, such as a space, tab,
or comma, as in the following example:

cake recipes

Search phrases are entered within double quotes, as in the following example:

"chocolate cake" recipe

Exclude terms with the negation operator, minus (-), or the not operator, as in the
following example:

cake recipes -rum

or

cake recipes not rum

Require a compulsory term with the unary inclusion operator, plus (+), as in the
following example:

cake recipes +chocolate

This example requires the term chocolate to be present.

Require compulsory terms with the binary inclusion operator, and, as in the following
example:

cake recipes and chocolate

This example requires both the term recipes and chocolate to be present.

Zone and Field Searches
You can search fields or zones by specifying name:term, where name is the name of the
field or zone and term is an individual search term or phrase, such as

bakery city:"San Francisco"

or

bakery city:Sunnyvale
142 Verity Query Language and Topic Guide

A Query Parsers
Internet-Style Parser
Pass-Through of Terms
Search terms are passed through to the VDK-level and are interpreted as Verity Query
Language (VQL) syntax. No issues arise if the terms contain only alphabetic or numeric
characters. Other kinds of characters may be interpreted by the locale. If a term contains a
character that is not handled by the locale, it may be interpreted as VQL; for example, a
search term that includes an asterisk (*) would be interpreted as a wildcard.

Stop Words
The configurable Internet-style query parser uses its own stop-word list, qp_inet.stp,
to specify terms to ignore for natural language processing.

Note You can override the “stop out” by using quotation marks around the
word.

For example, the following stop words are provided in the query parser’s stop word file
for the english locale:

Verity provides a populated stop-word file for the english and uni locales; you need
not modify the qp_inet.stp file for these locales. If you use the configurable
Internet-style query parser for another locale, you must provide your own
qp_inet.stp file containing the stop words you want to ignore in the locale. This stop
word file must contain, at a minimum, the locale-equivalent words for or and <or>.

a did i or what

also do i’m should when

an does if so where

and find in than whether

any for is that which

am from it the who

are get its there whose

as got it’s to why

at had like too will

be has not want with

but have of was would

can how on were <or>
Verity Query Language and Topic Guide 143

A Query Parsers
Internet-Style Parser
Note The configurable Internet-style query parser’s stop word file contains a
different word list than the vdk30.stp word file, which is used for other
purposes, such as summarization.

Testing the Templates

To see which templates are available to you, run the rcvdk command-line tool.

After the tool is loaded, enter the x command to enable expert mode, then enter the
qparser command to see the list of query parsers currently available. In the following
example, the tool is run from the colls subdirectory of a K2 data directory, and the
example collection verity_doccoll is specified:

host:/users/user> rcvdk verity_doccoll
rcvdk Verity, Inc. Version 5.0.0
Attaching to collection: verity_doccoll
Successfully attached to 1 collection.
Type 'help' for a list of commands.
RC> x
Expert mode enabled
RC> qparser
Available query parsers:

Name Description
---- -----------
Simple Simple Query Syntax
BoolPlus BooleanPlus Query Syntax
Prefix Explicit Prefix Query Syntax
FreeText Natural Language Query Syntax
Internet_Basic Basic Relevance Factors.
Internet_BasicWeb Basic Relevance Factors with Anchor Text.
Internet_Advanced Advanced Relevance Factors.
Internet_AdvancedWeb Advanced Relevance Factors for Web Gateway

Collections
Internet Legacy Internet Query Parser.

RC>

To select a query parser, enter the qparser command with the name of the parser:

qparser Internet_Basic
144 Verity Query Language and Topic Guide

A Query Parsers
BooleanPlus Parser
BooleanPlus Parser

The BooleanPlus query parser supports searching over the full text of documents in
addition to searching over collection fields and zones. Sometimes the BooleanPlus parser
is referred to as the “explicit” parser.

The BooleanPlus parser is similar to the simple parser in that it interprets all of the Verity
query language and can interpret field and zone searches. Unlike the simple parser,
queries can not be interpreted using the BooleanPlus parser unless explicit query syntax
is used. For this reason, the BooleanPlus query parser typically is not used in end user
search forms.

Using Query Parsers Programatically

If you are developing your own application, you can use the Verity Developer’s Kit
Application Programming Interface (VDK API) to access query parsers, and to combine
VQL syntax with the Internet Query Parser (IQP) syntax.

Obtaining a Query Parser Using the VDK API

The following example shows how to use the VdkQParserGetInfo API function to
obtain the name and description of a query parser and how to obtain a handle to a query
parser, given its name.

This example also shows how to use the VdkQParserGetInfoFree function.

/*--
* This example demonstrates how to list available
* query parsers.
--/

VdkError ListQParsers(VdkSession session)
{

VdkError error = VdkSuccess;
VdkSessionGetArgRec sesArg;
VdkSessionGetOut sesOut;
VdkQParserGetArgRec qpArg;
VdkQParserGetOut qpOut;
Verity Query Language and Topic Guide 145

A Query Parsers
Using Query Parsers Programatically
VdkInt2 i;

VdkStructInit(&sesArg);
sesArg.requestQparserBase = VdkFlag_On;

if (error = VdkSessionGetInfo(session, &sesArg, &sesOut))
goto abort;

printf("Available Query Parsers:\n");

for (i = 0; i < sesOut->qparserBaseCount; i++)
{

VdkQParser qp = sesOut->qparserBaseArray[i];
VdkStructInit(&qpArg);

if (error = VdkQParserGetInfo(session, qp, &qpArg, &qpOut))
goto abort;

/* print out the name and description of each parser */
printf(" %-20s %s\n", qpOut->name, qpOut->description);

VdkQParserGetInfoFree(qpOut);
}
VdkSessionGetInfoFree(sesOut);

abort:
return error;

}

/*--
* This example demonstrates how to get the handle of
* a query parser given a string.
--/

VdkError StrToParser(
VdkSessionsession,
VdkCString name,
VdkQParser *parser)

{
VdkError error = VdkSuccess;
VdkSessionGetArgRec sesArg;
VdkSessionGetOut sesOut;
VdkQParserGetArgRec qpArg;
VdkQParserGetOut qpOut;
VdkQParser found = NULL;
146 Verity Query Language and Topic Guide

A Query Parsers
Using Query Parsers Programatically
VdkInt2 i;

VdkStructInit(&sesArg);
sesArg.requestQparserBase = VdkFlag_On;

if (error = VdkSessionGetInfo(session, &sesArg, &sesOut))
goto abort;

for (i = 0; i < sesOut->qparserBaseCount && !found; i++)
{

VdkQParser qp = sesOut->qparserBaseArray[i];
VdkStructInit(&qpArg);

if (error = VdkQParserGetInfo(session, qp, &qpArg, &qpOut))
goto abort;

if (!stricmp(qpOut->name, name))

/* found a parser */
found = qp;

VdkQParserGetInfoFree(qpOut);
}

VdkSessionGetInfoFree(sesOut);

abort:
if (found)

printf("Located query parser %s\n", name);
else

printf("Did not locate query parser %s\n", name);
*parser = found;
return error;

}

Using VQL with the Internet Query Parser

You can use the VDK API to combine the functionality of VQL with the IQP as follows:

Set the queryQParser member of a VdkSearchNewArgRec data structure equal to
one of the Internet Query Parsers. See the example code in the section “Obtaining a
Query Parser Using the VDK API” on page 145.
Verity Query Language and Topic Guide 147

A Query Parsers
Using Query Parsers Programatically
Set the queryQuestion member of the data structure equal to a query using Internet
Query Parser syntax, such as red +apple +computer.

Set the sourceQParser member of the data structure to a query parser that supports
VQL.

Set the sourceQuestion member of the data structure to a VQL expression, such as
Date >01-01-2003.

Call the API function VdkSearchNew.

The following snippet of C code demonstrates this sequence. The question argument
contains a query using IQP syntax, while the source argument contains an additional
query criteria using VQL syntax. The qryParser argument contains the IQP parser. The
example is hard-coded to use the VDK API designation for the Simple parser as the
sourceQParser value.

void UseSourceQuery(
VdkSession sess, /

* from VdkSessionNew */
const char* source, /* Source query */
VdkQParser qryParser, /* Query Parser */
const char* question) /* ASCII string */

{
VdkSearchNewArgRec searchNew;
VdkSearch search;
VdkError error;

VdkStructInit(&searchNew);
searchNew.maxDocs = 100;
searchNew.queryQuestion = (VdkCString)question;
searchNew.queryQParser = qryParser;
searchNew.sourceQuestion = (VdkCString)source;
searchNew.sourceQParser = VdkQParser_Simple;

error = VdkSearchNew(sess, &search, &searchNew);
if (error == VdkSuccess)
{

/*---
* Display the results of the search.
* When done with the search object, free it.
--/

VdkSearchFree(search);
}

}

148 Verity Query Language and Topic Guide

B
Query Limits

The overall limit on the size of a topic set is 5 million nodes and 8 million links. In
addition, there are some search-time limitations on the size of a single topic. These limits
apply to the topic that is built from the query you type in, which may be a combination of
query terms and predefined topics from a topic set.

This section covers:

Search Time Limits

Operator Limits

Search Time Limits

Search-time limitations are combinations of implementation limitations of various
portions of the search engine, rather than a simple limit on the physical number of nodes
or links allowed.

The Verity search engine includes the concept that topics represent search terms. Queries
that go beyond a single word or phrase typically involve the ACCRUE-class operators
(ACCRUE, AND, OR) to combine several branches of evidence in a topic tree. At search
time, the combined evidence is evaluated by a stack-based engine.

The stack engine imposes some restrictions for ACCRUE-class topics. Its limited stack
space imposes the restriction of 1,024 children for any single ACCRUE-class node and
about 5,300 total notes (16,000/3 to be precise) in a topic. The engine detects these limits
while building a query and returns an error if they are exceeded.
149

B Query Limits
Operator Limits
You can work around the limit on total nodes in a topic by creating named subnodes in
the topic and building the topic set with this mktopics option:

-indextype namedonly

Using this option causes separate queries to be built for each named subtopic, resulting in
fewer nodes for each query. Carrying this process to the extreme, however, can reduce the
effectiveness of the topic index for the top-level topic.

Operator Limits

Note the following limits on the use of operators:

There can be a maximum of 32,764 children for the ANY operator. If a topic exceeds
this limit, the search engine does not always return an error message.

The NEAR operator can evaluate only 64 children. If a topic exceeds this limit, the
search engine does not return an error message.

For example, assume you have created a large topic that uses the ACCRUE operator with
8365 children. This topic exceeds the 1024 limit for any ACCRUE-class topic and the
16000/3 limit for the total number of nodes.

In this case, you cannot substitute ANY for ACCRUE, because that would cause the topic
to exceed the 8,000 limit for the maximum number of children for the ANY operator.
Instead, you can build a deeper tree structure by grouping topics and creating some
named subnodes.
150 Verity Query Language and Topic Guide

C
Creating a Custom Thesaurus

Synonym search is a type of search that locates occurrences of either the search term or any
of its synonyms. For example, a synonym search for brave might return documents that
contain brave or courageous or fearless. A search application specifies a synonym search
by adding the VQL THESAURUS operator to the user’s search term.

Synonym search requires the use of a thesaurus file, which lists groups of synonyms.
Verity K2 includes a default English thesaurus that may be adequate for most purposes in
English. To construct a thesaurus for use in other locales, or to create a custom English
thesaurus, follow the instructions in this appendix.

The THESAURUS operator is described in “THESAURUS” on page 59.

This appendix includes the following sections:

Creating a Thesaurus Control File

Compiling a Thesaurus with mksyd

Integrating the Thesaurus with Verity

Creating a Thesaurus Control File

A Verity thesaurus is a compiled file with a .syd extension. To create or modify a
thesaurus, you need to first create or edit a text file called a thesaurus control file, which
has a .ctl extension. You then compile the control file into a locale-specific thesaurus file
with the mksyd command-line tool.
151

C Creating a Custom Thesaurus
Creating a Thesaurus Control File
When creating a thesaurus, you can

Create a complete control file using a text editor.

Edit an existing control file to add or remove synonyms.

Purchase a commercial thesaurus, then turn it into a thesaurus control file by adding
the statements described here.

Note You can recreate a control file from a thesaurus; see “Creating a Control
File from an Existing Thesaurus” on page 154.

Control-File Structure

A thesaurus control file contains synonym lists. Each list is defined by the list
keyword. The list contains synonyms and, optionally, keys. Keys are words that must
appear in the search term for the synonym list to be used. In other words, if a search term
consists of one of the non-key words in a synonym list, the term itself is searched for, but
none of its synonyms is. A list with specified key terms is an asymmetric list.

If a given list has no keys, every synonym in the list is considered a key, and the list is
circular.

The following is an example of a small thesaurus control file.

$control:1
synonyms:
{
list: "abort,miscarry,terminate,halt,end,fail"
list: "cease,stop,desist,terminate,end,discontinue"
list: "karma <or> fate <or> destiny"

/keys = "karma"
}

The first two lists are circular; the third is asymmetric. A synonym search for any term in
the first list, for example, will locate that term plus any of its synonyms. Likewise, a
synonym search for karma will find all occurrences of karma, fate, or destiny. However,
a synonym search for fate will find only occurrences of fate.
152 Verity Query Language and Topic Guide

C Creating a Custom Thesaurus
Creating a Thesaurus Control File
If a key word (explicit or implicit) appears in more than one list, all lists for which it is a
key are included in the synonym search. For example, note that the words terminate and
end are keys in two lists in this example. In this case, a thesaurus query for either
terminate or end results in an expanded query containing both lists:

"(cease,stop,desist,terminate,end,discontinue) <or>
(abort,miscarry,terminate,halt,end,fail)"

A list can be more than a simple comma-separated set of terms. Note that the third list in
this example includes the query expression "karma <or> fate <or> destiny". You
can use query expressions in a thesaurus control file to apply sophisticated search logic to
synonyms or to override default the default query expansion of synonym lists. See “The
qparser Keyword” on page 154 for more information.

Note A thesaurus definition cannot contain punctuation defined by the locale
configuration files loc0.lng and separator.cfg. For example, the
term R.F.P. must be defined in the thesaurus as RFP. Otherwise, the
definition is split into the simple tokens R, F, and P.

The control Directive.
The $control:1 directive must be the first non-comment line in the control file.

The synonyms Keyword
The synonyms keyword is required in a thesaurus control file. It must appear directly
after the $control:1 directive.

The list Keyword
The list: keyword specifies the synonyms in a list, either in query form or in a list of
words or phrases separated by commas. The optional modifier /keys specifies the keys
list, which must be a list of words separated by commas. If /keys is absent, all synonyms
in the list become keys. The optional modifier /op-default defines the fallback operator
to use if there is no match for a thesaurus query.

The maximum length for a single list is 32,000 characters.

Note If you separate your list into multiple lines (inserting new lines), you must
include a backslash (\) at the end of each line so that the lines are treated
as one list.
Verity Query Language and Topic Guide 153

C Creating a Custom Thesaurus
Creating a Thesaurus Control File
The following is a sample list statement:

list:"happy, joyous, joyful, glad, blithe, merry,\
cheerful, contented, blissful, delighted, satisfied,\
pleased, favored, lucky, fortunate, propitious,\
appropriate, felicitous, befitting"

The qparser Keyword
The synonym lists in a thesaurus control file are parsed and expanded as queries when
the thesaurus is created.

The default expansion applied during thesaurus creation is different from the default
expansion applied to user queries by applications that use the simple query parser. For
example, the simple query parser expands a list of words separated by commas (the
default combination operator) by applying the <ACCRUE> operator to the list. In default
thesaurus query expansion, however, the comma-separated list is expanded by applying
the <ANY> operator to it.

The following table lists the default values for expansion operators during thesaurus
creation.

To make sure that the same expansion operators are used during thesaurus expansion as
are used during search, you can use the qparser keyword in your control file to specify a
query parser. For example:

qparser: simple

Creating a Control File from an Existing Thesaurus

The mksyd command-line tool is primarily used to compile a thesaurus from a control file
(see “Compiling a Thesaurus with mksyd” on page 157), but you can also use it to
de-compile (export) a thesaurus, turning it back into a control file.

The easiest way to create a custom thesaurus in a locale for which you already have a
thesaurus is to export the thesaurus to a text file, modify it, and then recompile it as a .syd
file.

Type of Expansion Operator in thesaurus creation Comment

leaf operator <STEM> Synonyms are stemmed for searching

combination operator <ANY> Synonym searches are not ranked

phrase operator <PHRASE> Phrases are searched as phrases
154 Verity Query Language and Topic Guide

C Creating a Custom Thesaurus
Creating a Thesaurus Control File
Existing thesaurus files are stored in the directory verity_product/common/
locale_name, where verity_product is the directory containing the component of
Verity that has been installed (for example, usr/verity/K2 for K2 Services), and
locale_name is the name of the thesaurus’s locale.

To use mksyd to create a control file from an existing thesaurus file, execute this
command from within the directory that holds the existing thesaurus file:

mksyd -locale locale_name -charmap charset -dump -syd vdk30.syd -f
ctrl_file.ctl

where

locale_name is the name of the locale whose thesaurus you are de-compiling.

(This option is not required if the thesaurus is in the default locale.)

charset is the character set you want the control file to use. It must be one of the
character sets supported by locale_name, as listed in Appendix A of the Verity Locale
Configuration Guide.

(This option is not required if the control-file’s character set is to be the default
character set for locale_name.)

vdk30.syd is the name of the thesaurus file that you want to de-compile.

ctrl_file.ctl is the name you want to give to the control file (note the extension
.ctl).

The resulting file is in control-file format:

$control: 1
synonyms:
{
 list: "word1, synonym1-1, synonym1-2, synonym1-3"
 list: "word2, synonym2-1, synonym2-2, synonym2-3"
 list: "word3, synonym3-1, synonym3-2, synonym3-3"
...
}

You can then edit the control file as needed and re-compile it as explained next.
Verity Query Language and Topic Guide 155

C Creating a Custom Thesaurus
Creating a Thesaurus Control File
Using the LANG/ID Modifier in the Thesaurus Control File
You can use the LANG/ID VQL modifier in the thesaurus control file. For example:

$control:1
synonyms:
{

the code page must be in UTF8 for uni locale
##
list: "karma <or> fate <or> destiny"
/keys = "karma"

use multi <lang/id> operators in thesaurus file
list: "<lang/en> hello <or> <lang/fr> world"
/keys = "lang"

use <lang/id> for same word in different languages
list: "<lang/en> en_dog, <lang/fr> fr_dog, <lang/ja> ja_dog"

the <lang/fr> will apply to all items in list, that is,
it's the same as "<lang/fr>test, <lang/fr> testa, <lang/fr>
teste"
list: "test, <lang/fr> testa, teste"

if there are more than 2 <lang/id> in list, any item without
<lang/id> will use
the default lang/id from vdk session, in this sample it's
"javat"
list: "<lang/en>java, <lang/fr> jave, javat"

use default lang from Vdk session to apply to all items
list:
"Arcadian,bucolic,country,pastoral,provincial,rural,rustic"
list:
"Cain,butcher,cutthroat,homicide,killer,murderer,slaughterer,
slayer"
list: "Casanova,philanderer,womanizer"
list: "Goliath,behemoth,giant,mammoth,monster,titan"
list: "Judas,betrayer,traitor"
list: "Philistine,barbarian,boor,churl"
list: "Pollyanna,optimist"
list: "wrench,wrest,wring"

}

156 Verity Query Language and Topic Guide

C Creating a Custom Thesaurus
Compiling a Thesaurus with mksyd
Compiling a Thesaurus with mksyd

After you have created a thesaurus control file, you can use the mksyd command-line tool
to compile it into a thesaurus. The control file must have the file-name extension .ctl.

Execute the following command from within the directory that holds the thesaurus
control file:

mksyd -locale locale_name -charmap charset -f control_file.ctl
-syd vdk30.syd

where

locale_name is the locale of the thesaurus, which must be the locale of any
collections that the thesaurus is to be used with.

(This option is not required if the thesaurus is in the default locale.)

charset is the character set of the control file. charset must be a character set
supported by the locale locale_name.

The charset option is optional; leave it off if the control file’s character set is the
internal character set of the thesaurus’s locale. For a list of the supported character sets
and internal character set for each locale, see Appendix A of the Verity Locale
Configuration Guide.

control_file is the name (minus file extension) of the control file to compile.

vdk30.syd is the name of the thesaurus file that you want to create.

Integrating the Thesaurus with Verity

After you have created a new thesaurus, placed it in the appropriate directory for use.

Naming and Installing the Thesaurus

First, the thesaurus file must have the appropriate filename. Regardless of its locale,
every thesaurus file must be named vdk30.syd.
Verity Query Language and Topic Guide 157

C Creating a Custom Thesaurus
Integrating the Thesaurus with Verity
Note Only one active thesaurus file is allowed per locale. Only one vdk30.syd
file can be present in a locale_name directory. If you are creating a
thesaurus for a locale that has a default thesaurus provided by Verity,
move the default thesaurus from the locale_name directory, or else
rename it, before adding your new thesaurus. It is recommended that you
do not permanently remove the default thesaurus.

To integrate your custom thesaurus into your search application, move the
compiled thesaurus file to the locale’s directory:

verity_product/common/locale_name

where verity_product is the installation directory (such as /usr/
verity/k2) of your Verity component, and locale_name is the name of
the directory containing the locale for which you are creating the
thesaurus.

WARNING! All application processes, including user searches, must be
terminated before you remove or change the contents of the common
directory or any of its subdirectories. The new thesaurus will be
available when the application is started or restarted.

Using a Knowledge Base Map to Point to a Thesaurus File

You can also use a knowledge-base map to point to a .syd file. This is a sample map file:

$control:1
kbases:
{
kb: "Thesaurus"
/kb-path = "vdk30.syd"
}

In K2, point to this map file either through the client in a local context, or through the
server configuration file in a remote context.

No thesaurus operator is necessary in queries using a knowledge-base map. The query
works like a topic, so any word in the thesaurus that you enter automatically maps to its
synonym list.
158 Verity Query Language and Topic Guide

Index

Symbols
$control

1 keyword 103
.otl files 96

A
ACCRUE operator 48
advanced.iqp 141
advweb.iqp 141
ALL operator 49
AND operator 50
angle brackets

delimiters 43
operator/modifier names 35

ANY operator 50
asterisks (*) as indentation characters 112
automatic case-sensitive searches 35

B
basic.iqp 141
basicweb.iqp 141
BooleanPlus parser 145
bottom-up design 99
braces 43
branches of evidence 95
BUTNOT operator 51

C
CASE modifier 71
category definition rules 29
collections, effect on 56
command line tool
mktopics 122

comment lines
topic outline file 107

COMPLEMENT operator 82
concept operators

ACCRUE 48
AND 50
description 24
OR 55

CONTAINS operator 64
control: 1 keyword

topic set 107
creating a topic 109

evidence topics 111
subtopics 110
top-level 110

D
database field evidence topics 115

affect on document scores 117
defining 115
placing 117
relational operators 116
specifying ranges 106
using to include and exclude documents

105
DATE field 69
DATE modifier 79
default weight 49
defining topics

evidence topics 111
subtopics 110
top-level 110

definition modifier
/definition 108
/wordclass 108
/zonespec 108

delimiters in expressions 43
document
159

Index
including and excluding 105
document zone, defined 51
documents, excluding from results list 75
double quotation marks, reserved words 43

E
encryption 127
ENDS operator 65
evidence operators

description 20
SOUNDEX 58
STEM 59
THESAURUS 59
TYPO/N 60
WILDCARD 61
WORD 63

evidence topics 94, 95
abbreviated 114

SOUNDEX operator 114
STEM operator 114
WORD operator 114

assigning the CASE modifier 113
assigning the MANY modifier 113
assigning the NOT modifier 113
assigning weight 113
defining 111
defining database fields 115
relational operators 116
specifying database field ranges 106

excluding documents 75
explicit parser 145
explicit syntax 36
exporting taxonomies 102
expressions

braces 43
delimiters 43
parentheses 42
160 Verity Query Language and Topic Guide
F
field evidence topic 116
field searches

available fields 139
internet-style query 140
using relational operators 22

filter documents 117
free text parser 137
FREETEXT operator 86

I
IN operator 51
infix notation 42
instance data, searching for 45
internet-style query

- (minus sign) 139
limited queries 138
plain language 138
+ (plus sign) 139

interpretation of a topic name 109

K
kbm files 97
knowledge base 94

L
LANG/ID modifier 72
language-specific search 72
legacy.iqp 141
LIKE operator 87
locale_name metavariable 155
LOGSUM and LOGSUM/n operators 83

M
main functions of topics 96
making topics available 97
MANY modifier 74
MATCHES operator 65

Index
minus sign (–) 139
mkenc command line tool 127
mksyd command-line tool

control file from custom thesaurus 155
create custom thesaurus 157

mktopics command line tool 119, 122, 127
suppressing status messages 124
syntax 122
topic precedence checking 125, 126
using 122

modifiers
CASE 71
DATE 79
description 25
LANG/ID 72
MANY 74
NOT 75
NUMERIC 78
ORDER 76
WHEN 77
ZONE 78

MULT/n operator 84

N
natural language operators

FREETEXT 86
LIKE 87

NEAR operator 54
NEAR/N operator 55
negative example 87
negex 87
NOT modifier 111
NOT modifier 75
NUMERIC modifier 78

O
operator precedence rules 98
operator types

concept 24
Verity Query Language and Topic Guide
evidence 20
natural language 86
proximity 21
relational 22
score 82

operator used by a parent topic 114
operators

!= (Not Equals) 67
< (Less Than) 68
<= (Less Than Or Equal To) 69
= (Equals) 67
> (Greater Than) 68
>= (Greater Than Or Equal To) 68
ACCRUE 48
ALL 49
AND 50
ANY 50
BUTNOT 51
COMPLEMENT 82
CONTAINS 64
ENDS 65
FREETEXT 86
IN 51
LIKE 87
LOGSUM and LOGSUM/n 83
MATCHES 65
MULT/n 84
NEAR 54
NEAR/N 55
OR 55
PARAGRAPH 56
PHRASE 57
PRODUCT 85
SENTENCE 57
SOUNDEX 58
STARTS 66
STEM 59
SUBSTRING 67
SUM 85
THESAURUS 59
161

Index
TYPO/N 60
WILDCARD 61
WORD 63
YESNO 85

operators and modifiers 94
precedence of 39

OR operator 55
ORDER modifier 76
outline file

creating 104
elements 102

comment lines 107
definition modifiers 107
indentation characters 109

outline file elements
control: 1 keyword 107

P
PARAGRAPH operator 56
parent and child relationship 96
parentheses in expressions 42
phrase evidence topics 105
PHRASE operator 57
+ (plus sign) 139
posex 87
precedence of operators 39
precedence rules 39, 98
prefix notation 42
preindexing topic sets 97
preindexing topics 97
PRODUCT operator 85
proximity operators

ALL 49
ANY 50
BUTNOT 51
description 21
IN 51
NEAR 54
NEAR/N 55
PARAGRAPH 56
162 Verity Query Language and Topic Guide
PHRASE 57
SENTENCE 57

punctuation in queries 45

Q
QBE specification 87
qualify instance data 108
qualify instance data, searching for 45
qualify instance syntax 45
queries

commas between words 134
precedence rules 39
punctuation 45
shorthand notation 37
simple 133
using wildcards 61

queries, internet-style
limited queries 138
minus sign (–) 139
plain language 138
plus sign (+) 139

query expression
defined 34

query parsers
BooleanPlus 145
explicit 145
free text 137
internet-style 137
query-by-example 137
simple 135

query-by-example
description 87
negative example 87
parser 137

quotation marks
double 43
in FreeText 86

Index
R
relational operators 116

CONTAINS 64
description 22
ENDS 65
MATCHES 65
STARTS 66
SUBSTRING 67

rules
category definition 29

S
score operators

COMPLEMENT 82
LOGSUM and LOGSUM/n 83
MULT/n 84
PRODUCT 85
SUM 85
YESNO 85

score selected documents 117
scoring

affected by field evidence topics 117
search concepts 95
searches

assigning weights to search terms 37
Boolean 24
excluding documents 75
excluding stemmed variations and topics

36
SENTENCE operator 57
simple parser 135
simple queries 133
simple syntax 34
SOUNDEX operator 58
STARTS operator 66
STEM operator 59
stem topic 104
stemmed variations

how to exclude 36
Verity Query Language and Topic Guide
how to include 34
language-related 72

storage methods, topic sets 96
strategy, topic design 99
style.lex file 58
subject areas of a topic 95
SUBSTRING operator 67
subtopics 95

assigning the NOT modifier 111
assigning weight 105, 111
defined by the PHRASE operator 114
defining 110
using the same in several places 104

SUM operator 85
syntax

explicit 36
simple 34

T
templates

advanced.iqp 141
advweb.iqp 141
basic.iqp 141
basicweb.iqp 141
legacy.iqp 141

text comparisons 22
<THESAURUS> operator 151
thesaurus

creating a control file from 155
THESAURUS operator 59
top-down design 99
topic

creating 109
evidence topics 111
subtopics 110
top-level 110

defined 28, 94
definition modifiers 107

/annotation 108
/author 108
163

Index
/date 108
/wordtext 108

elements 94
maximum number 149
name case sensitivity 98
name characters 109
name length 98, 109
naming 109
operator precedence 98
outline file

creating 104
elements 102

outline file elements
comment lines 107
control: 1 keyword 107
definition modifiers 107
indentation characters 109

relationships to subtopics 96
size limits 149
specifying names 37
types

evidence topics 94, 95
subtopics 95
top-level 95

topic design strategy 99
topic outline file 102

See .otl files
topic set

defined 29
maximum number of topics 149
replace existing 124
size limits 149

topic set storage methods 96
topic set, definition 94
topic sets

encryption of 127
indexing topics 126
preindexing 97
stored in .otl files 96
stored in directory format 96
164 Verity Query Language and Topic Guide
topic precedence checking 125
topic subject areas 95
topic weights 105
topic, definition 94
topics 96

benefits 101
best performance 97
inetsrch.ini setting 97

top-level topics 95
top-level topics, defining 110
TYPO/N operator 60

V
vdk30.syd 158

W
weight

assigning to evidence topics 113
assigning to subtopics 111

weight, default 49
WHEN modifier 77
WILDCARD operator 61
word evidence topics 105
WORD operator 63

Y
YESNO operator 85

Z
ZONE modifier 78
zone search

description 139
document 51
internet-style query 139

	Verity Query Language and Topic Guide
	Contents
	Preface
	Using This Book
	Version
	Organization of This Book
	Stylistic Conventions

	Related Documentation
	Verity Technical Support

	Overview
	Evidence Operators
	Proximity Operators
	Relational Operators
	Concept Operators
	Modifiers
	Advanced Operators
	Topics
	What is a Topic?
	Relationship Between Topics and Topic Sets

	Verity Query Language
	Elements of Query Expressions
	Overview
	Simple Queries
	Operator/Modifier Names
	Topic Names
	Automatic Case-Sensitive Searches
	Auto-Match Phrase to Topic Name

	Explicit Queries
	Syntax Options
	Using Shorthand Notation
	Specifying Topic Names Explicitly
	Assigning Importance (Weights) to Search Terms
	Searching Fields for Null Values

	Precedence Evaluation
	Precedence Rules
	Parentheses in Expressions
	Prefix and Infix Notation

	Delimiters in Expressions
	Angle Brackets for Operators
	Braces in Expressions
	Double Quotes for Reserved Words
	Backslashes for Special Characters

	Special Characters
	Characters with Special Meaning
	Punctuation in Queries

	Qualify Instance Queries

	Operators
	Operators for Searching Full Text
	ACCRUE
	ALL
	AND
	ANY
	BUTNOT
	IN
	NEAR
	NEAR/n
	OR
	PARAGRAPH
	PHRASE
	SENTENCE
	SOUNDEX
	STEM
	THESAURUS
	TYPO/N
	WILDCARD
	WORD

	Operators for Searching Text Fields
	CONTAINS
	ENDS
	MATCHES
	STARTS
	SUBSTRING

	Operators for Searching Numeric Fields
	= (Equals)
	!= (Not Equals)
	> (Greater Than)
	>= (Greater Than Or Equal To)
	< (Less Than)
	<= (Less Than Or Equal To)

	Modifiers
	CASE
	LANG/ID
	MANY
	NOT
	ORDER
	WHEN

	Advanced Query Language
	Score Operators
	COMPLEMENT
	LOGSUM and LOGSUM/n
	MULT/n
	PRODUCT
	SUM
	YESNO

	Natural Language Operators
	FREETEXT
	LIKE
	Syntax
	Special Characters in VdkVgwKey Fields
	VdkVgwKey Fields on Windows Systems
	Examples of LIKE Expressions
	Efficiency Considerations

	Topics
	Elements of Topic Design
	About Topics and Topic Sets
	Topic Structure
	Topic and Subtopic Relationships
	Storing Topic Sets

	How Topics Work
	Using Topics as Stored Queries in Other Verity Applications
	Making Topics Available

	Rules About Topics and Topic Sets
	Operator Precedence Rules
	Rules About Topics

	Topic Design Strategies
	Top-Down Design
	Bottom-Up Design

	Using Topic Outline Files
	About Outline (OTL) Files
	Creating a Topic Outline File
	Defining Topics in the OTL File
	Specifying Weights with Subtopics
	Including and Excluding Documents
	Specifying Field Evidence Topic Ranges

	Topic Outline File Elements
	Topic Definition Modifiers
	Indentation Characters

	Topic Structure
	Defining Topic Structure
	Defining Top-level Topics
	Defining Subtopics
	Subtopic Weight Assignments
	Assigning the NOT Modifier to Subtopics

	Evidence Topics
	Evidence Topic Weight Assignments
	Assigning Modifiers to Evidence Topics
	Abbreviated Evidence Topics

	Defining Subtopics Using the PHRASE Operator
	Defining Field Evidence Topics
	How Field Evidence Topics Affect Document Scores
	Defining Topics for Zone Searching
	Defining Topics Using Score Operators

	Building Topic Sets from the Command Line
	Starting mktopics
	Building a Topic Set
	Sample mktopics Command

	mktopics Syntax
	mktopics Syntax Summary
	mktopics Syntax Descriptions

	Checking Topic Precedence Rules
	Topic Set Indexing
	Topic Set Encryption
	Before You Begin
	Creating an Encryption File
	Encrypting a Topic Set

	Appendixes
	Query Parsers
	Simple Queries
	Words and Phrases Separated by Commas
	Case-Sensitivity
	How to Search Hyperlink Contents

	Simple Query Parser
	Query-By-Example (QBE) Parser
	Internet-Style Parser
	Search Terms
	Including and Excluding Search Terms

	Search Scope
	Template Files
	Query Syntax
	Zone and Field Searches
	Pass-Through of Terms
	Stop Words

	Testing the Templates

	BooleanPlus Parser
	Using Query Parsers Programatically
	Obtaining a Query Parser Using the VDK API
	Using VQL with the Internet Query Parser

	Query Limits
	Search Time Limits
	Operator Limits

	Creating a Custom Thesaurus
	Creating a Thesaurus Control File
	Control-File Structure
	The control Directive.
	The synonyms Keyword
	The list Keyword
	The qparser Keyword

	Creating a Control File from an Existing Thesaurus
	Using the LANG/ID Modifier in the Thesaurus Control File

	Compiling a Thesaurus with mksyd
	Integrating the Thesaurus with Verity
	Naming and Installing the Thesaurus
	Using a Knowledge Base Map to Point to a Thesaurus File

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

