
FileNet Business Activity Monitor
FileNet BAM Server Reference

Release 3.5.1

November 2005

FileNet is a registered trademark of FileNet Corporation.
All other product and brand names are trademarks or registered trademarks of
their respective companies.
Due to continuing product development, product specifications and capabili-
ties are subject to change without notice.

Copyright © 2001, 2005 FileNet Corporation. All rights reserved.

FileNet Corporation
3565 Harbor Boulevard

Costa Mesa, California 92626
800.FILENET (345.3638)

Outside the U.S., call:
1.714.327.3400

www.filenet.com

http://www.filenet.com

Notices

For notices regarding this documentation, refer to Help Directory > Notices in the FileNet P8 online
documentation.

Typographical Conventions

This document uses the conventions in the following table to distinguish elements of text.

Convention Usage

UPPERCASE Environment variables, status codes, utility names.

Bold Paths and file names, program names, clickable user-interface
elements (such as buttons), and selected terms such as command
parameters or environment variables that require emphasis.

Italic User-supplied variables and new terms introduced in text.

<italic> User-supplied variables that replace everything between and
including the angle bracket delimiters (< and >).

Monospace Code samples, examples, display text, and error messages.

FILENET BAM SERVER REFERENCE
Contents

3

Contents

Introduction . 15

Access Filters. 17

Access filter conditions . 18

Access filter behavior and restrictions . 20

Creating a view access filter . 21

Creating a cube access filter . 22

Assigning an access filter to users and roles . 23

Agents . 25

Creating agents . 26

Editing agents . 27

Alerts . 28

Creating alerts . 29

Alert attributes . 30

Message subject and body text . 31

Alert subscribers . 32

Managing alert notification messages . 33

Alert states . 34
Alert escalation . 34

Consolidating multiple messages . 35

Alert reportlets . 35

Reportlet filtering . 36

Business Activities . 40

FILENET BAM SERVER REFERENCE
Contents

4

Creating business activities . 41

Business activity attributes . 41

Deleting business activities . 41

Context . 42

How it works . 43

Creating context tables . 44

Editing context tables . 45

Context column limitations in queries . 45

Caching context queries . 47

Cubes . 48

Creating cubes . 49

Data Types. 52

Data type conversion . 53

Numeric . 54
Third party data types . 54
Combining numeric types . 55
Casting numeric types. 55
Decimal precision results . 56

String . 57

Date-Time . 58
TIMESTAMP literal . 59
INTERVAL literal . 60
Date-Time formatting . 62

Boolean . 64

Dimensions . 65

Creating dimensions . 69

Events . 70

FILENET BAM SERVER REFERENCE
Contents

5

Event properties . 71

Creating event tables . 72

Editing event tables . 72

Flat Files . 73

How it works . 74

Flat file event tables . 74
Creating a flat-file source event . 76
Multi-Row events. 77

Flat file agents . 78
Creating a flat file agent . 79
Configuring the file agent program . 79

Delimited files . 83

Fixed-Width files . 84

XML files . 85
XML field information . 86
XML data types . 86

Formulas . 89

Functions . 90

Function types . 90

Function categories . 92

Functions . 95

ABS . 98

AVG . 99

CAST . 101

CEIL . 102

CHARACTER_LENGTH . 102

FILENET BAM SERVER REFERENCE
Contents

6

CONCAT . 103

concatList . 104

concatSet . 105

COUNT . 106

CURRENT . 106

CURRENT_TIMESTAMP . 107

CURRENT_USER . 108

DATE_ADD . 108

DATE_DIFF . 109

DISPLAY_MONEY . 110

EXP . 112

FLOOR . 113

gammaDist . 113

GREATEST . 114

IS_RAISED . 115

LAST_DAY . 116

LEAST . 116

LOG . 117

logNormDist . 118

LOWER . 118

LPAD . 119

LTRIM . 120

MAX . 121

FILENET BAM SERVER REFERENCE
Contents

7

median . 122

MIN . 123

MOD . 123

mode . 125

MOV_function . 126
Time-series spans. 128
View warning. 128
Interacting with GROUP BY . 129

MOV_AVG . 130

MOV_COUNT . 131

MOV_MAX . 132

MOV_MIN . 133

MOV_SUM . 134

MOV_STD_DEVIATION . 135

MOV_VARIANCE . 136

NTILE . 137

POSITION . 138

POWER . 139

PREV . 140

PRIOR_VALUE . 141

RANK . 142

RATIO_TO_REPORT . 143

ROUND . 144

RPAD . 144

FILENET BAM SERVER REFERENCE
Contents

8

RTRIM . 145

SIGN . 146

SQRT . 146

SUBSTRING . 147

SUM . 148

STD_DEVIATION . 149

TIMESTAMP_DIFF . 150

TO_CHAR . 151

TO_DATE . 152

TRUNC . 153

TUMBLE_AVG . 154

TUMBLE_COUNT . 155

TUMBLE_MAX . 156

TUMBLE_MIN . 157

TUMBLE_SUM . 158

TUMBLE_STD_DEVIATION . 159

TUMBLE_VARIANCE . 160

UPPER . 162

VARIANCE . 163

HTTP Post . 164

How it works . 165

HTTP Post Event Tables . 165
Creating an HTTP Post event table . 166
HTTP Post column information . 167

FILENET BAM SERVER REFERENCE
Contents

9

Posting to an HTTP post event . 168
Posting to message fields . 169
Posting values in the URL. 170
Multiple lines (events) of input. 170

Java Messaging Service (JMS) . 171

How it works . 172

JMS event . 172
Creating a JMS event table. 174
JMS column information . 174
Mapping JMS data types. 176

JMS agents . 176
JNDI properties for connecting to a remote namespace. 178
Creating a JMS Agent . 178

JDBC . 179

JDBC tables . 180
Creating a JDBC source event or context table . 182
Query source. 183
Polling the JDBC source . 184
Stored procedure source. 185
Mapping JDBC data types . 187

JDBC agents . 187
Creating a JDBC agent . 190

JDBC Access to View Data . 191

JDBC view interfaces . 192

JDBC accessor examples . 198
Example: Establishing a connection to the FileNet BAM Server. 199
Example: Querying the contents of a view . 201
Example: Querying a view’s column specifications. 201
Example: Querying Column Metadata . 203
Example: Querying View Metadata. 204

Objects . 206

Object status . 207

Object names . 208

FILENET BAM SERVER REFERENCE
Contents

10
Object namespace . 211

Operators and Constants. 212

Numeric operators . 213

String operators . 213

Comparison operators . 214

Logical operators . 215

Constants . 215

Permissions . 216

Application of permissions . 217

Accessing permissions . 218
Class level access permissions . 218

Creating permission . 220

Granting permissions . 221
Permission restrictions . 221
Permission inheritance and dependencies . 222

Processes . 223

How it works . 224

Creating and using processes . 225
Event streams . 225
Context search table . 226
Process definitions . 226
Process Diagrams. 227

Query Windows . 228

Overview . 229

Window declarations and references . 230
Multiple windows per query. 230
Extending one window definition with another . 231

Event-Series windows . 232

FILENET BAM SERVER REFERENCE
Contents

11
EVENTS clause . 232

Time-Series windows . 233
RANGE clause . 234
ORDER BY Clause . 235
Integer Time-Series. 237

Window partitions . 238
Advantage of partitions over groups . 238
Historical results from partitioned views . 240

Window advancement . 241
SLIDE clause . 242
Tumbling Windows . 242
Tumble Functions . 243
Tumbling and moving windows using window inheritance . 244

Window update reference . 245

Window Initialization . 246
INITIALIZE clause. 246

Reportlets . 247

Creating reportlets . 248

Reportlet attributes . 249

External reportlet attributes . 250

Reportlet views . 251

Roles . 252

Creating roles . 254

Role attributes . 254

Rules . 255

Creating rules . 256

Rule attributes . 257

Rule condition . 258

FILENET BAM SERVER REFERENCE
Contents

12
Rule action . 258

Monitoring alerts . 259

Monitoring the system log . 260

Scenarios . 261

Creating scenarios . 262

Scenario attributes . 262

Deleting scenarios . 263

SELECT . 264

Select list . 265

FROM clause . 267
Join operations . 267
Table expressions . 269

WHERE clause . 270

GROUP BY clause . 270

ORDER BY clause . 272

TIBCO Rendezvous . 273

TIBCO Rendezvous tables . 274

Creating a TIBCO Rendezvous event table . 276
TIBCO column information . 276
Mapping TIBCO Rendezvous Data types . 278

TIBCO Rendezvous agents . 280
Creating a TIBCO Rendezvous Agent . 281

Users . 282

User Details tab . 283

Delivery Profiles tab . 284

FILENET BAM SERVER REFERENCE
Contents

13
User Preferences tab . 286

User Permissions tab . 286

User-Defined Functions . 288

Creating and using a UDF . 288

Manifest files . 290

Views . 291

Creating views . 292
Copying a view . 292

View attributes . 293

View constraints . 294

Synchronized joins . 294

Consolidated events . 296

Aggregate views . 297

Updating views through event propagation . 298

Stateless and stateful views . 298

View initialization . 299

Maintaining events in stateless views . 300

Persisting views to a database . 301

Web services . 303

Web service events . 304
Creating a Web Service Event . 305

Web service context . 306
Creating a Web Service Context Table. 308
Output columns. 309
Input columns . 310
String replacement templates . 311

FILENET BAM SERVER REFERENCE
Contents

14
Web service agents . 312
Creating a web service agent . 313

Web service external processes . 313
Creating an External Process . 314
Implementing the external service . 314

XML/XSD . 317

About XML and XSD files in FileNet Business Activity Monitor 318

Uploading XML files . 319
From a command line . 319
From a Web Browser . 320

Defining an object with XML . 321
Example: Create user . 321

Defining multiple objects with XML . 322
Example: Batch command . 323

Altering an existing object with XML . 324

Issuing commands with XML . 325
Example: Enabling an object and its dependencies . 326
Example: Restarting the system . 326

FileNet Business Activity Monitor XSD files . 327

Glossary . 332

Index . 335

FILENET BAM SERVER REFERENCE 15
Introduction

This document provides detailed descriptions of each of the objects and features of the FileNet Business
Activity Monitor. The specific topics include:

• “Access Filters” on page 17 describes the filters that restrict the data a user sees without having to
define a new view or cube for each user.

• “Agents” on page 25 describes the objects that know how to receive or retrieve information from
external sources.

• “Alerts” on page 28 describes the notifications of exceptional events sent to users or external systems.

• “Business Activities” on page 40 describes the container objects that collect the scenarios that identify
exceptional business conditions.

• “Context” on page 42 describes context data, how it flows into the system, and how to create it.

• “Cubes” on page 48 describes multidimensional data cubes and how to create them.

• “Data Types” on page 52 describes the supported SQL-99 data-types and their semantics.

• “Dimensions” on page 65 describes dimensions and levels for use by cubes.

• “Events” on page 70 describes event data, how it flows into the system, and how to create it.

• “Flat Files” on page 73 describes how the system uses text files to source event data.

• “Formulas” on page 89 describes how to construct formulas in the FileNet Business Activity Monitor.

• “Functions” on page 95 describes C-SQL functions that may appear in commands and rule formulas.

• “HTTP Post” on page 164 how to use HTTP to post events to an event stream.

• “Java Messaging Service (JMS)” on page 171 describes how the system uses JMS to source event
data.

• “JDBC” on page 179 describes how the system uses JDBC interfaces to retrieve context data, receive
event data, and to allow other Java applications to access the business views in memory.

• “JDBC Access to View Data” on page 191 describes the application programming interface (API) that
allows JDBC 2.0 applications to retrieve data from a view, and to retrieve the metadata that describes
the views in the installation.

• “Objects” on page 206 describes the details that all FileNet Business Activity Monitor objects have in
common, including name, optional description, and status.

• “Operators and Constants” on page 212 describes the supported operators and constants.

• “Permissions” on page 216 describes the controls that identify which users may access, create, and
edit FileNet Business Activity Monitor objects and user accounts.

• “Processes” on page 223 describes how FileNet Business Activity Monitor uses and presents business
process diagrams and statistics.

• “Query Windows” on page 228 describes query windows, which are sets of rows used when making
calculations regarding the current event window.

• “Reportlets” on page 247 describes objects that provide information about an event that puts the event
into context.

FILENET BAM SERVER REFERENCE 16
• “Roles” on page 252 describes how to use roles to assign permissions to a set of users.

• “Rules” on page 255 describes the objects that analyze business views looking for metrics that meet
specific conditions.

• “Scenarios” on page 261 describes the collections of rules, alerts, and reportlets that identify
exceptional business conditions in a business view.

• “SELECT” on page 264 describes C-SQL select statements that manage information in the FileNet
Business Activity Monitor.

• “TIBCO Rendezvous” on page 273 describes how the system uses TIBCO Rendezvous for event
data.

• “Users” on page 282 describes the accounts by which each user is known to the system.

• “User-Defined Functions” on page 288 describes user-defined functions (UDFs) for use in formulas.

• “Views” on page 291 describes the data models that provide a real-time picture of a business activity.

• “Web services” on page 303 describes how the system uses Web services to retrieve context data.

• “XML/XSD” on page 317 describes how to create FileNet Business Activity Monitor objects with XML.

• “Glossary” on page 332 define common terms used throughout FileNet Business Activity Monitor.

FILENET BAM SERVER REFERENCE 17
Access Filters

Access filters allow different users to see different rows of the same view or cube depending on the criteria
specified in the filter. These filters restrict the data a user sees without having to define a new view or cube
for each user. For example, consider this view of total sales by region:

Total Sales Region

----------- -------

763000.00 West

489500.00 Central

522950.00 South

650740.00 East

By defining an access filter that says something like “OrderTotals.Region=Employees.Region”, you can
limit users to see only the rows that apply to their business region. As such, a user from the Central region
looking at the view would see:

Total Sales Region

----------- -------

489500.00 Central

The filters are logical expressions similar to the Where clause of a view definition. See “Access filter
conditions” on page 18 for a complete description.

Access filters are defined on a view-by-view and cube-by-cube basis, and are applied to users and roles
having Filtered/Read-Only permission on the view or cube. For details about how access filters work, see
“Access filter behavior and restrictions” on page 20.

Applying access filters to a view or cube requires that you first create the filter, and then assign it to users
or roles, as described in these sections:

• “Creating a view access filter” on page 21

• “Creating a cube access filter” on page 22

• “Assigning an access filter to users and roles” on page 23

For detailed information about views, see “Views” on page 291, for cubes, see “Cubes” on page 48.

FILENET BAM SERVER REFERENCE
Access filter conditions

18
Access filter conditions
Access filter conditions are logical expressions that are applied to each row in the view, or dimension level
in a cube. A user looking at the view or cube sees those rows where the expression evaluated to true. As a
minimum each filter should contain some condition that evaluates data found in the view or cube. For
example, this simple condition shows only the rows in OrderTotals that are in the East business region:

OrderTotals.Region='East'

Naming users

The filter above must be assigned to each user or role in the East region to limit their access. A more
powerful expression is one that names the users. The CURRENT_USER() function returns the login name
of the user looking at the view. You can include that function in the filter condition to apply the filter to
specific users. For example, this condition also identifies two users, and as such, only these two users
would see the results for the East region:

OrderTotals.Region='East' AND

(CURRENT_USER()='Skyler' OR CURRENT_USER()='Nina')

NOTE: Access filters are logical expressions that can include Boolean operators (AND, OR, and NOT),
and can use parentheses for grouping.

A limitation of the two examples above is that they have literal values hard-coded into the expressions: the
region name and the user names. Using literals is problematic because it requires you to edit the filters
whenever the names change. Further, you would need one for each region.

A more powerful expression is one that can be applied to all users by dynamically retrieving information
about the user and applying it to the view.

Context filters

In addition to the current view, access filters can retrieve data from a context table. If you define a context
table that contains information about the users, you can compare that information to the data in the view to
create a dynamic context filter. Consider this filter that uses an Employees context table:

OrderTotals.Region=Employees.Region AND

CURRENT_USER()=Employees.User_Name

Now you can apply the filter to many users and roles, and only those users assigned to the same business
region as the data will see the data.

NOTE: To use dynamic look-ups you must provide the information in an external context table.

FILENET BAM SERVER REFERENCE
Access filter conditions

19
Users as context

Context tables usually support events by providing additional information about the event. When used in
an access filter, a context table provides information that supports the filter: namely, information about the
current user. As such, a “users” context table must have at least one column that contains the user name
that matches the login name that the user uses to log in to FileNet Business Activity Monitor.

Be aware that CURRENT_USER() returns the user’s login name as defined in FileNet Business Activity
Monitor, in the same character case, and as appears in the FileNet BAM Workbench. As such, it is
important that the character case match exactly. (Note that some DBMS provide case-insensitive
compares, so this might not be an issue to your installation.) To avoid mismatches, you might want to enter
the names in the context table in a single case, and then use UPPER() or LOWER() in the filter expression,
like this:

UPPER(CURRENT_USER())=Employees.User_Name

NOTE: You cannot use UPPER() or LOWER() on the reference to the Employees context table. See
“Context column limitations in queries” on page 45 for details.

Similarly, all text columns referenced in a filter need to be aware of case issues.

To use a context table in an access filter, add the table to the filter’s workset when defining the filter. See
“Creating a view access filter” on page 21 for details.

Summary

In summary, a “users” context table must include:

• One row for each user that will be assigned a Filtered/Read-Only access permission. If the user is not
found in the context table, the filter will most likely fail to find any rows for that user.

• At least one text column that contains the user login name. If the DBMS provides case-sensitive
matches, enter the names exactly as defined in FileNet Business Activity Monitor, or at least with the
same characters in the one text-case if you plan to use UPPER() or LOWER() in your filters.

• One column for each reference in the filter, and the data types must match. For character values, the
strings in the view must exactly match the strings in the context table.

Also be aware that if the context table data is cached, the filters can fail if the user data is not in the cache.
In other words, if you add a user to the database, you might also want to invalidate the context table cache
before the user attempts to look at filtered views or cubes. If the user is not found in the context, the filter
returns false.

FILENET BAM SERVER REFERENCE
Access filter behavior and restrictions

20
Access filter behavior and restrictions
Access filters are applied only when a user with Filtered/Read-Only permission on a view looks at or
requests data from the view, or defines a new view on top of a such a view. The filters do not affect users
or roles with Read-Only or Read-Write permission on the view, nor do they apply to users receiving
reportlets sent as an attachment to alert notifications.

Specifically:

• The default access permission to the classes of View and Cube objects is No Access for all new users.

Before any user can see the results, they must be assigned — directly or as a member of a role —
Read-Only or Read-Write permission on the classes of View and Cube objects (all views and cubes),
at least Filtered/Read-Only permission on the specific view.

• When a user is assigned multiple access filters to the same view or cube — perhaps as the result of
being a member of multiple roles each with assigned filters — the user sees those rows where any of
the filters is true for the row.

For example, one filter might restrict a user to see on “West” region data, but another might allow the
user to see all results for a specific family of products. The result is that the user will see all results for
the family, regardless of region.

• Reportlets always include all data from the view that they reference, regardless of any access filters
associated with the view.

Users who receive reportlets as part of alert notifications always see the entire view referenced by the
reportlet.

• When a user with filtered access to a view creates a new view on top of the filtered view, the new view
inherits that user’s filtered results, but not the filter definition.

Subsequently, anyone else looking at the derived view sees the results as filtered for the creating user.
For example, if Sklyer can see only Total Sales from the “West” region, and he creates a new view
called WrapUp derived from the Total Sales view, anyone else with permission to look at WrapUp sees
the data for the West region, regardless of their own access permission to Total Sales.

• Similarly, when a user with filtered access to a view creates a rule based on the view, the rule inherits
that user’s filtered results.

As such, that rule only sees events that match the users access filter condition, and any subscribers to
the alert associated with the view only receive alerts for the filtered events.

FILENET BAM SERVER REFERENCE
Creating a view access filter

21
Creating a view access filter
To create an access filter, you must have Read-Write permission on the view.

To create an access filter:

1. In the FileNet BAM Workbench, Workbench tab, Views list, select the view that will have the filter.

2. Select the Access Filters tab to see the list of filters currently associated with this view.

3. Click Create Access Filter to create the new filter.

4. Add a context table to the Workset by clicking Add Context. This example includes the Employees
context table to retrieve information about the current user.

5. In the Edit Access Filter dialog, assign the filter’s name and optionally provide a description. Define the
filter condition following the instructions in “Access filter conditions” on page 18.

6. Save the access filter.

You can now assign the filter to users having Read-Filtered access to the view.

FILENET BAM SERVER REFERENCE
Creating a cube access filter

22
Creating a cube access filter
You must have Read-Write permission on the cube.

To create an access filter:

1. In the FileNet BAM Workbench, Workbench tab, Cubes list, select the cube that will have the filter.

2. Select the Access Filters tab to see the list of filters currently associated with this view.

3. Click Create Access Filter to create the new filter.

4. In the Configure Cube Filter dialog, assign the filter’s name and optionally provide a description.

5. Define the filter condition per the details in “Access filter conditions” on page 18.

To define a simple filter

• Choose the dimension, level, and value, as show here:

To define a context filter

1. Choose the Use Context Filters option.

FILENET BAM SERVER REFERENCE
Assigning an access filter to users and roles

23
2. Choose the context table and identify the column that contains the user’s name and the column that
maps to a dimension level, as show here.

NOTE: This filter is the same as the one shown in “Context filters” on page 18.

3. Save the access filter.

You can now assign the filter to users having Read-Filtered access to the view.

Assigning an access filter to users and roles
To perform this procedures:

• You must have Read-Write permission on the view or cube.

• The filters must already be defined. See Creating a view access filter,” above, for details.

To assign an access filter to a user or role on a view:

1. In the FileNet BAM Workbench, Workbench tab, click the Views folder in the Workset to list all of the
views.

2. Select the view to assign the filtered read permission, and click Permissions.

3. Select one or more users or roles who will have the filtered access, and click Change Permissions.

4. Choose the Filtered / Read only permission, and choose one or more access filters to use.

FILENET BAM SERVER REFERENCE
Assigning an access filter to users and roles

24
When multiple filters are assigned, the user see the rows that meet any of the conditions. For example,
when one filter shows only rows that are in the user’s department classification, and another shows
rows applicable to their business region, the user sees the row if either condition is true.

Save the assignments and the permissions are immediately put into effect.

FILENET BAM SERVER REFERENCE 25
Agents

Agents are FileNet Business Activity Monitor processes that know how to receive or retrieve information
from external sources. When an agent locates new event or context information, it passes that data to an
Events and Context table for use by the Business Views.

NOTE: One agent may support multiple event or context tables.

While an agent knows how to communicate with an external source, event and context tables know what
information is desired. As such, most of the event and context tables define the details that tell the agent
what to look for.

External sources

FileNet Business Activity Monitor provides agents to several external context and event sources. Some
events stream (are pushed) into the system as they happen. Other events are loaded (pulled) as the result

Application Server
Event and Context

TIBCO Rend.
Agent

JMS Agent Flat File
Agent

Web Services
Agent

JDBC Agent

Web
Application

Java
Application

TIBCO
Messaging

Flat
FileDBMS

FILENET BAM SERVER REFERENCE
Creating agents

26
of a request, such as to a database or from a text file. Context data, however, are always pulled from the
source. This table summarizes the available sources and identifies the source agent they support.

Creating agents
These steps summarize how to create an agent. For details about creating agents of specific types, see
the descriptions of those types.

Before you create an agent, you must have create permission for agents (see “Creating permission” on
page 220 for details) and the connection specifications for the specific agent type.

To create an agent:

1. Open the Administration Console tab of the FileNet BAM Workbench.

2. Select Agents.

3. Click New Agent.

4. Choose the source type for the Agent (as described above in External sources.”.

5. Fill in the details for the specific source type. For details, see

Save the object as enabled and it will immediately be ready to receive events or context.

External source Agent Event
push

Event
pull

Context
pull

Java Database Connectivity
(JDBC), usually from a
Relational database (RDBMS)

“JDBC” on page 179 No Yes Yes

Java Messaging Service
(JMS) from a Java application.

“Java Messaging
Service (JMS)” on
page 171

Yes No No

Text file. “Flat Files” on
page 73

Yes No No

TIBCO Rendezvous (RV) from
a business application using
TIBCO message streams.

“TIBCO Rendezvous”
on page 273

Yes No No

Web services from a Web
application over an HTTP
connection.

“Web services” on
page 303

No No Yes

FILENET BAM SERVER REFERENCE
Editing agents

27
Editing agents
These steps summarize how to modify an existing an agent. For details about agents attributes, see the
description of the specific source.

Before you create an agent, you must have Read and Write permission for the agent (see “Accessing
permissions” on page 218 for details).

To edit or alter an agent:

1. Open the Administration Console tab of the FileNet BAM Workbench.

2. Select Agents.

3. Double-click the agent to alter.

4. Fill in the details for the specific source type.

Save the object as enabled and it will immediately be ready to receive events or context.

FILENET BAM SERVER REFERENCE 28
Alerts

Alerts are the notifications of exceptional events sent to users or external systems. An alert may come in
the form of a simple message indicating that an event has occurred, or it may more detailed, including
information that indicates the cause and possible courses of action.

Each alert message is comprised of text that describes the exceptional incident to the subscriber. This is
the text that appears in the FileNet BAM Workbench and in any other device identified by the subscriber’s
delivery profile. How the message is rendered depends on the device that displays it to the subscriber.

In thisChapter:

“Creating alerts” on page 29

“Alert attributes” on page 30

“Message subject and body text” on page 31

“Alert subscribers” on page 32

“Managing alert notification messages” on page 33

“Alert states” on page 34

“Consolidating multiple messages” on page 35

“Alert reportlets” on page 35

“Reportlet filtering” on page 36

FILENET BAM SERVER REFERENCE
Creating alerts

29
Creating alerts
To create an alert you need these permissions:

• Create permission for business activities (see “Creating permission” on page 220 for details)

• Read and Write permission on the business activity that will contain the alert

• Read Only permission on the view or cube that will feed the alert

There are three ways to create alerts with the FileNet BAM Workbench Scenario Modeler.

To create a stand-alone alert:

1. Select an existing Business Activity.

2. Select an existing scenario to contain the alert.

3. Select the Alerts folder.

4. Click the New Alert button.

5. Choose the data source that will feed the alert.

• If the scenario has a “default view”, that one appears selected by default. Choose another source
to monitor by clicking Select Data Source.

• For a view, choose the view.

• For a cube, choose the dimension level in a cube. Optionally you may also apply a filter that further
restricts the data that the cube feeds to the alert.

• If the source contains data, that data appears to provide a sample of what to expect. When the
source is empty, the form displays just the column names and the message “No Data Available”.

6. Fill in the fields in the Alert Definition form.

To create an alert associated with a rule:

1. Follow the instructions for “Creating rules” on page 256.

2. Fill in the fields in Step 2 of 2: the Alert Definition form.

To clone an existing alert:

Copy the definition of an existing alert to a new alert.

1. Edit the alert you want to clone.

2. Change the alert name, and change the other attributes that differ from the original alert.

3. Choose “Save as New Alert”.

FILENET BAM SERVER REFERENCE
Alert attributes

30
Alert attributes
Every alert has the following attributes:

Attribute Description

Alert Name Identifies the alert object. The name can contain letters and numerals
only. This name must be unique among alerts within the same scenario.
See “Object namespace” on page 211 for details.

Status Specifies if the rule is enabled (receiving new event information), or
disabled.

Note: When the containing scenario is disabled, you cannot make the
alert enabled. The scenario must be enabled before the alert
may be enabled.

Importance A hint about how important a message is. Values are: HIGH, NORMAL
(default), or LOW. Messages arriving in the FileNet BAM Dashboard are
sorted into folders corresponding t the importance level. Further, e-mail
messages are flagged accordingly with the “Importance” mail header
field per mail standards.

Description Optional description that may contain any text characters.

Data source View or cube dimension level that defines the columns in the alert. Note
that this should be the same source as the associated rule, or one
derived from that source; otherwise, the generated alert might not contain
valid information.

Subscribers Users who receive the alert. See “Alert subscribers” on page 32 for
details.

Subject Text message that is the subject of the alert, similar to an e-mail subject
line. Can contain column references to the underlying business view.

Body Text message that is the body of the alert. Can contain column
references to the underlying business view, and can contain
acknowledgements and reportlets. For details about acknowledgements,
see Acknowledgements, for reportlets, see “Reportlets” on page 247.”

FILENET BAM SERVER REFERENCE
Message subject and body text

31
Message subject and body text
Each alert message is comprised of text that describes the exceptional incident to the subscriber. This is
the text that appears in the FileNet BAM Workbench, FileNet BAM Dashboard and in any other device
identified by the subscriber’s delivery profile. How the message is rendered depends on the device that
displays it to the subscriber.

The Subject and Body alert attributes define the text of the message. Each attribute contains static text and
fields. When the alert generates the message, it replaces the fields with the values from the columns of the
same name in the business view row that caused the alert.

For example, consider this default message definition:

Subject: NOTICE -- A customer has opened a problem ticket.

Body: CUST_NAME is a TIER tier customer and has opened problem ticket number TICKET.

When the alert is activated, it generates a message similar to this e-mail:

NOTE: You can include any valid HTML code in the body of the message. If you reference an external
object, such as a graphic, make the reference to a HTTP server; do not reference a local file because it will
not be included in the message.

Acme Works is a HIGH tier customer and has opened problem ticket
number 0703.

From: FileNet Business Activity Monitor
Date: 3/05/2003 07:45 PM
Subject: NOTICE -- A customer has opened a problem ticket

FILENET BAM SERVER REFERENCE
Alert subscribers

32
Alert subscribers
When you define an alert, you can also declare one or more Users to receive the alert notification. By
clicking the Add/Remove button next to the subscribers list in the Alert editor, you can designate individual
users and Roles to receive the alert, or identify columns in the alert’s view that provide lists of users, roles,
or e-mail addresses to receive the notification.

The Alert Subscribers dialog has two tabs:

• Individual Subscription tab is where you choose the users and roles to receive the notification.

• Mandatory subscribers always receive the notification. These users or roles cannot voluntarily
unsubscribe to the alert in the FileNet BAM Dashboard; rather, they must be removed from this
dialog.

• Optional subscribers receive notifications, but they may unsubscribe using the FileNet BAM Dash-
board.

• Data-Driven Subscription tab is where you identify columns in the view that contain the names or
addresses of users or roles to receive the notification. A column may contain either a list of users and

FILENET BAM SERVER REFERENCE
Managing alert notification messages

33
roles, or a list of e-mail addresses to receive the notifications. Each list of values in a column is
separated by a comma or semi-colon, and each item may optionally be enclosed in quotes (").

NOTE: Data-driven subscriptions are mandatory: the users, roles, and e-mail addresses that receive them
cannot “unsubscribe”. Further, users who receive these subscriptions as a result of an e-mail address list
do not see them in the FileNet BAM Dashboard list of subscriptions.

When the column contains multiple instances of the same, exact e-mail address, only one message is
sent. However, slight differences in the entries will generate one message for each instance. For example,
these to variations of the same address myname@filenet.com and "Me" <myname@filenet.com> generate
two messages.

Managing alert notification messages
Users receive alert notifications the devices identified by their delivery profiles in the “Delivery Profiles tab”
on page 284. For details about using the Alert Manager in the FileNet BAM Dashboard to view, subscribe
and delete notifications, see Alert Messages.

Alerts remain in the Alert Manager list until deleted specifically by the user or automatically by the system.
The system removes messages after a count of days specified by the system administrator in the Viewing
user interface of the Working with system settings dialog.

FILENET BAM SERVER REFERENCE
Alert states

34
Alert states
FileNet Business Activity Monitor provides two kinds of alerts:

• Stateless alerts are one-time notifications about the business condition when the condition happens.
Stateless alerts are said to be fired when the rule condition is met. For example, a stateless alert might
fire a notification to a warehouse manager when a product inventory count falls below a specific
threshold. Note that every subsequent change in inventory levels for that product also sends a
notification as long as the inventory count remains below the threshold.

• Stateful alerts have a status that is raised or acknowledged as long as the business condition exists,
and which is lowered when the condition does not exist. With a stateful alert, warehouse managers
receive the alert when the inventory falls below threshold, and do not receive another until the alert is
lowered, presumably after inventory levels have been restored above the threshold. When multiple
parties have interest in an alert, one may choose to handle the raise alert and acknowledge it. This is
done by clicking the Acknowledge link in the message body. The alert’s creator places the link in the
message body when creating the alert. See Acknowledgements for details.

By combining a stateful alert with a Holds for time period, you can delay the notification. For example, only
alert the warehouse manager when a product’s inventory count has remained below a threshold for one
day: “the alert condition holds for 1 day”. This way the manager doesn’t receive the notification if the
inventory drops within a day of being restocked.

Alert escalation
You can monitor the alert’s state and generate new alerts when conditions demand. For example, if an
alert has not been handled in a timely manner, a new alert can be sent to more significant users, in effect
escalating the original alert. To test for these states, use the IS_RAISED function. See Monitoring alerts for
details.

Lower

Raise

AcknowledgRaised

Lowered

Acknowledge

Lower

FILENET BAM SERVER REFERENCE
Consolidating multiple messages

35
Consolidating multiple messages
Events may contain multiple rows of information. When the event meets a rule condition, that rule
generates one alert for each row of the event. Often it is desirable to send only one message describing all
of the alerts. This is called a consolidated alert.

For example, consider a new purchase order entering the system (an event). If the quantity of items in-
stock is insufficient to fulfill the order, an alert might note that condition. When multiple line items on the
order have insufficient inventory, each generates a new alert. To send just one notification instead, use a
consolidated alert.

To create a consolidated alert:

• On the Create Rule form, check the Consolidate multiple messages from same alert option.

Alert reportlets
Reportlets describe the contents of a view and present that information in a report that is attached to the
alert message. Frequently reportlets provide information about an event that puts the event into context.

To include reportlets in the body of the alert notification:

1. Open the Add Reportlet dialog.

2. Select the reportlet from the list.

3. Choose OK to add it to the alert.

FILENET BAM SERVER REFERENCE
Reportlet filtering

36
Send as

Alerts displayed in the FileNet BAM Dashboard embed the reportlet as an in-line, HTML table. The Send
as option specifies the format of the reportlet to attach to the alert notification sent to user subscription
profiles. The reportlet can be embedded in the body of the message, or included as an attachment in one
of the available formats.

The next section, Reportlet filtering”, describe the Reportlet data base on and Reportlet data is options.

Reportlet filtering
When you create the reportlet, you identify the view or cube from which the reportlet draws its data.
However, the data that appears in the reportlet depends on the type of the source (stateless or stateful),
and how the rows of data are filtered as specified on the Add Reportlet dialog. In general,

• Reportlet data based on specifies whether a reportlet’s stateful source should include data based on
all events, or just those that have met the rule condition.

• Reportlet data is limits whether the rows in the reportlet’s source include only those related to the
event that activated the alert, or all previous event data also in the source.

To better understand how these settings affect the reportlet data, consider these two views that track and
report on product orders. The OrderDetails stateless view is a summary of each order event, while the
OrderAggregates stateful view tracks the average quantity for each product ordered.

Now consider these events:

prod_name ord_qty

--------- -------

nails 1000

plywood 1000

nails 4000

nails 4000

plywood 5000

SELECT prod_name,AVG(ord_qty),

COUNT(*) AS Ct

FROM OrderDetails

OrderAggregates

OrderEvent

OrderDetails

Product

Rule

SELECT prod_name,ord_qty
FROM OrderEvent,Product
WHERE OrderEvent.prod_id=

Product.prod_id

Reportlet

SEND ALERT BigOrder

WHEN ord_qty>3000

SELECT prod_name,ord_qty

FROM OrderEvent,Product

WHERE OrderEvent.prod_id=

Product.prod_id

FILENET BAM SERVER REFERENCE
Reportlet filtering

37
After the events have entered the stream, the OrderAggregates view has these values:

prod_name AVG(ord_qty) Ct

--------- ----------- --

nails 3000 3

plywood 3000 2

By default, a reportlet using the OrderAggregates view shows the details for both products, regardless of
which product event might have generated the alert. Further, even though only the last three events met
the rule condition of ord_qty greater than 3,000, the reportlet shows the results from all events. Which
might not be what you intended.

The two filtering options on the Add Report dialog alter the results by filtering the results that appear in the
reportlet.

The Reportlet data is option causes the reportlet to show one of the following:

• All of the data in its view or cube face

• Only those data related to the event found by the rule

To show only the event-related data, you must define the relationship between the event and reportlet
sources. For example, if you want the reportlet to only show the result for “products” in both views, define
the relation by picking the prod_name column from both views. This tells the reportlet to show only those
rows in the OrderAggregates view whose prod_name value matches the name in the OrderDetails view.
Then, the reportlet shows the nails value only when the rule generates the alert.

prod_name AVG(ord_qty) Ct

--------- ----------- --

nails 3000 3

Similarly, when working with cube face, you pick columns that best identify the event to the reportlet. For
example, this illustration shows PROD_NAME in the rule view being joined to the PRODUCT dimension in
the reportlet cube:

A variation would be to link the product family instead of the product name. In that case the reportlet shows
all of the products in the same product-family as the one that triggered the event.

Show the products that match
the one in the event that
triggered the alert.

FILENET BAM SERVER REFERENCE
Reportlet filtering

38
Reportlet data based on option

The Reportlet data based on option specifies whether a stateful view should include data based on all
events, or just those that have met the rule condition. Following the example above, the OrderAggregates
view AVG(ord_qty) column has a value of 3,000 for “nails” after both events have be processed. This is
what happens when the setting for this option is Event Data. However, the rule condition says to generate
an alert only when the order quantity is greater than 3,000. To track only events that have met the rule
condition, change the setting for this option to Rule Filter of Event Data. Then the reportlet shows 4,000 as
the average because 4,000 is the average of the two events greater than 3,000.

Example

These illustrations show the view results on the example data when you use the two reportlet filtering
options. Notice that the first event does not pass the rule filter, and does not appear in those views.

Similarly, the second event also does not pass the rule filter. Notice though that the view that shows event
related data now only includes the plywood event.

prod_name ord_qty
--------- -------
nails 1000 prod_name ord_qty Ct

--------- ------- --
nails 1000 1

prod_name ord_qty Ct
--------- ------- --
nails 1000 1

prod_name ord_qty Ct
--------- ------- --

prod_name ord_qty Ct
--------- ------- --

Only data related to the
event (prod_name)

All data in the
reportlet view

Rule Filter of
Event Data
(ord_qty>3000)

Event Data

Events

prod_name ord_qty
--------- -------
nails 1000
plywood 1000

Events

prod_name ord_qty Ct
--------- ------- --
plywood 1000 1

prod_name ord_qty Ct
--------- ------- --
nails 1000 1
plywood 1000 1

prod_name ord_qty Ct
--------- ------- --

prod_name ord_qty Ct
--------- ------- --

Only data related to the
event (prod_name)

All data in the
reportlet view

Rule Filter of
Event Data
(ord_qty>3000)

Event Data

FILENET BAM SERVER REFERENCE
Reportlet filtering

39
The third event now passes the rule filter, and as such, appears in the bottom views. And once again, nails
is the product in the event-related views.

The third nails event also passes the rule filter.

The final event again changes the event-related views. Notice that all events are reflected in the upper-left
view, while only those that passed the rule filter are in the lower-left view.

prod_name ord_qty
--------- -------
nails 1000
plywood 1000
nails 4000

Events

prod_name ord_qty Ct
--------- ------- --
nails 2500 2

prod_name ord_qty Ct
--------- ------- --
nails 2500 2
plywood 1000 1

prod_name ord_qty Ct
--------- ------- --
nails 2000 1

prod_name ord_qty Ct
--------- ------- --
nails 2000 1

Only data related to the
event (prod_name)

All data in the
reportlet view

Rule Filter of
Event Data
(ord_qty>3000)

Event Data

prod_name ord_qty
--------- -------
nails 1000
plywood 1000
nails 4000
nails 4000

Events

prod_name ord_qty Ct
--------- ------- --
nails 3000 3

prod_name ord_qty Ct
--------- ------- --
nails 3000 3
plywood 1000 1

prod_name ord_qty Ct
--------- ------- --
nails 4000 2

prod_name ord_qty Ct
--------- ------- --
nails 4000 2

Only data related to the
event (prod_name)

All data in the
reportlet view

Rule Filter of
Event Data
(ord_qty>3000)

Event Data

prod_name ord_qty
--------- -------
nails 1000
plywood 1000
nails 4000
nails 4000
plywood 5000

Events

prod_name ord_qty Ct
--------- ------- --
nails 3000 2

prod_name ord_qty Ct
--------- ------- --
nails 3000 3
plywood 3000 2

prod_name ord_qty Ct
--------- ------- --
nails 4000 2
plywood 5000 1

prod_name ord_qty Ct
--------- ------- --
nails 5000 1

Only data related to the
event (prod_name)

All data in the
reportlet view

Rule Filter of
Event Data
(ord_qty>3000)

Event Data

FILENET BAM SERVER REFERENCE 40
Business Activities

A business activity is a collection of possible scenarios that identify exceptional business conditions. Each
scenario contains rules that identify specific possible conditions, and the alerts and reportlets to send to
key personnel when the condition is found to exist.

You must have at least one business activity before creating any scenarios, rules, alerts, or reportlets.

Tips:

• Deleting a business activity deletes its contained scenarios, and all of the scenario’s objects.

• Disabling a business activity disables its contained scenarios, rules, alerts, and reportlets.

The business activity topic discussions include:

• “Creating business activities” on page 41

• “Business activity attributes” on page 41

• “Deleting business activities” on page 41

Business Activity

Scenarios identify exceptional
conditions within a business activity.

Business Activities are collections of
possible scenarios.Scenario

Rule
Rule
Rule
Alert
Reportlet

Scenario
Rule
Alert

FILENET BAM SERVER REFERENCE
Creating business activities

41
Creating business activities
You need Create permission for business activities (see “Creating permission” on page 220 for details).

To create a new business activity

1. Open the Scenario Modeler.

2. Click New Business Activity…

3. Fill in the fields of the New Business Activity dialog.

Business activity attributes
Every scenario has the following attributes:

Deleting business activities
You need Read and Write permission on the business activity.

NOTE: Deleting a business activity deletes its contained scenarios, and all of the scenario’s objects.

To delete a business activity:

1. Open the Scenario Modeler.

2. In the tree view, select the Business Activities folder.

3. In the list of business activities, select the activity to remove.

4. Click Delete Business Activity.

Attribute Description

Name Identifies the business activity. The name can contain letters and numerals only.
This name must be unique among business activities and users; you cannot have
a user with the same name as a business activity. See “Object namespace” on
page 211 for details.

Status Specifies if the business activity is enabled (receiving new event information), or
disabled. When an activity is disabled, all of the objects it contains are also
disabled, including the rules, alerts, and reportlets.

Description Optional description that may contain any text characters.

FILENET BAM SERVER REFERENCE 42
Context

Context support event processing by providing meaningful information about the event. Contexts are the
business information stored in databases, data warehouses, or are provided by Web services. Context
tables receive data from Agents that know how to communicate with information sources. When you define
a context table, you also instruct the agent how to identify the information from the source.

In this Chapter:

“How it works” on page 43

“Creating context tables” on page 44

“Editing context tables” on page 45

“Context column limitations in queries” on page 45

“Caching context queries” on page 47

FILENET BAM SERVER REFERENCE
How it works

43
How it works
When a business view requires context information, it does so based on some information already in the
view. For example, a view that is processing a purchase order might have received a product identification
number along with the event data. If the view also requires the suppliers of that product, it would retrieve
the supplier names from a context table that contains the names that matches the ID. In the view definition,
a WHERE clause would join the context table to the event, similar to this:

WHERE event.product_id = context.suppliers_of_product_id

When the view performs this join, it passes the ID from the event to the context table. If the matching
supplier data are already in the context cache, the table uses that data and passes it to the business view.
If the data are not already in memory, the ID is passed — either as an SQL query or by value for a stored
procedure — to an agent, which sends data to the DBMS or Web service for processing. The result of the
query is then loaded into the context table, and subsequently included in the business view.

The context source may be databases accessed via a JDBC, or business applications accessed via Web
services. For details about these type of sources, see “JDBC tables” on page 180, or “Web service
context” on page 306.

Business Data for

Contex
Resul

Context

Agent
Event

The context table contains data that match some
ID in the view. The data comes from a cache,
which originally comes from some external
source, such as a DBMS.

Query for

Conte

FILENET BAM SERVER REFERENCE
Creating context tables

44
Creating context tables
Every context table has a name, description, status attribute, and agent.

Before creating a context table, you must have Create permission for tables (see “Creating permission” on
page 220), and Read Only access permission on the agent that will feed the table.

To create a context table:

1. Open the FileNet BAM Workbench WorkbenchWorkbench tab.

2. Click New Context…

3. Choose the source type, each type has its own specific attributes.

For details, see:

• “JDBC” on page 179

• “Web services” on page 303

4. Fill in the fields in the New Context form.

Save the table as enabled and it will immediately be ready to receive context.

Attribute Description

Name Identifies the table and is the name accessed by the Business Views that
depend on this table. This name must be unique among views, events, context,
and consolidated events. See “Object namespace” on page 211 for details.

Description (optional) Description of the table.

Status Whether or not the object is enabled (able to receive and pass data), or
disabled (not receiving or passing data).

Agent The agent that retrieves the context information, and passes the data to the
event or context object. See “Agents” on page 25 for information about agent
types.

Disable context
after errors

Count of consecutive errors to receive before the system disables this context.
Once disabled, a context must be re-enabled manually.

FILENET BAM SERVER REFERENCE
Editing context tables

45
Editing context tables
Editing the attributes of a context table causes the object to lose state, and possibly invalidates dependant
views. For example, if you remove a column, any view or rule that references that column becomes invalid.
(However, if you re-define the column in the table, the dependant views are automatically re-validated.)

Before editing a context table, you must have Read and Write permission for tables (see “Accessing
permissions” on page 218), and Read Only access permission on the agent that feeds the table.

To edit a context table:

1. Open the FileNet BAM Workbench tab.

2. Select the event or context object.

3. Chose Edit This Context.

4. Change the definitions in the Edit Context form. Note that each type has its own specific attributes. For
details, see

• “JDBC” on page 179

• “Web services” on page 303

Save the table as enabled and it will immediately be ready to receive events or context.

Context column limitations in queries
Context can be retrieved with no limitations from a JDBC query source. However, the following limitations
apply when retrieving context from a JDBC stored procedure source or a Web service source:

• When the context column is referenced as part of a query, somewhere in the WHERE or FROM clause
it must appear in an equality expression and then only as an atomic predicate (no other operators on
the same side of the equal sign). For example, this is permitted:

WHERE context_column = 10*event_column

But the following is not permitted because the left-side predicate, which contains the context column, is
an expression that includes an operator (/):

WHERE context_column/10 = event_column

• The required atomic reference may not appear in a disjunct (OR) expression. This fails:

WHERE (context_column = event_column OR A > B)

However, it may appear in a conjunct (AND) expression:

WHERE (context_column = event_column AND A > B)

FILENET BAM SERVER REFERENCE
Context column limitations in queries

46
• Once there is at least one equality reference in the query, you may use the column in any other way.
For example, these two are permitted:

WHERE (context_column = event_column AND

context_column/10 = other_event_column)

WHERE ((context_column = event_column AND

context_column >= other_event_colum) OR

(A > B))

But the following fails because there is no equality reference in the query:

WHERE context_column >= event_column

• The required equality expression may not reference another context column in the same table. For
example:

t1.context_column = t1.other_context_column

• However, the equality expression may reference a context column in another table, for example:

t1.context_column = t2.other_context_column

Sybase limitations

When making a query to a Sybase database, be aware of these limitations:

• All names, including tables and columns, are case-sensitive.

• All queries must be in the form SELECT * FROM table only; you cannot include any SELECT
clauses. To filter the results, load them into a business view, and then filter that view.

FILENET BAM SERVER REFERENCE
Caching context queries

47
Caching context queries
Caching allows you to store the results of context queries in memory. Subsequent requests for the same
information are then retrieved from memory instead of impacting the DBMS with a redundant query. When
caching is active and a view requests context, it searches the cache first. If the desired data are not in the
cache, FileNet Business Activity Monitor issues a query to the database.

The context cache has these parameters:

• On Demand | Cache Data

Either don’t cache or do cache context query results.

• Number of results to cache

Count of query results to cache in memory. Each set of results may contain one or more rows of
context related to the event.

• Invalidation schedule

Identifies when to invalidate the cache and discard all information currently in the cache.

The cache maintains results in on a least recently used (LRU) basis. It keeps track of when each result set
was last requested. When the cache is full, it keeps the most recently accessed rows and discards those
that have not been accessed in the longest period of time.

NOTE: Rows containing frequently requested data will remain in the cache the longest to reduce impact
on the database. However, if details about the information can change often, define an invalidation
schedule to account for the changes and thereby invalidate the cache.

When the context data are not rapidly changing, it is best to invalidate the cache less often. For example, if
the context is fairly static, you might want to invalidate the cache weekly or monthly. However, if the context
database is updated nightly, you might want to invalidate the cache nightly as well to ensure the latest
data.

FILENET BAM SERVER REFERENCE 48
Cubes

A cube is a set of data organized by dimensions and measures for the purpose of aggregating different
subsets of the larger set of data. When rendered as a Dashboard Object, cubes allow you to quickly
choose categories that “filter” data to show the results that meet your selection. For example, a cube of
“sales” data might provide aggregations of the same data by product, by time, or by sales region
dimensions. Looking at the cube you might choose to view the total sales of a product (Nails) within a
business region (West) during a fiscal quarter (Q1):

West Q1 January Hardware Nails 120,000

West Q1 March Hardware Nails 98,000

218,000 Total

Further, by quickly removing the product dimension specification, you switch the classification to see all
sales for that region and quarter:

West Q1 January Hardware Nails 120,000

West Q1 March Hardware Nails 98,000

West Q1 March Hardware Screws 97,000

West Q1 January Lumber Studs 137,000

452,000 Total

Or for all sales during the month of March:

West Q1 March Hardware Nails 98,000

West Q1 March Hardware Screws 97,000

East Q1 March Lumber Plywood 92,000

South Q1 March Hardware Nails 98,000

385,000 Total

Or for all West region sales of the Lumber family of products:

West Q1 January Lumber Studs 137,000

137,000 Total

NOTE: See Cube charts and Cube tables in the Using Dashboard documentation for details about viewing
and working with cube data.

Measures

Measures are the central value that are aggregated and analyzed. In the examples above, Total sales is
the aggregate value. In each example above, the Total is measuring the sum of all sales in the set.
Measures are built with the C-SQL Set functions, including SUM, AVG, MIN, MAX, STD_DEVIATION, and
VARIANCE. For more information about measures, see “Measure columns” on page 50.

Dimensions

A dimension is a ranked order of classifications that, from highest to lowest level each describe smaller,
more distinct sets of related data. In the examples above, the business region is one level of a
geographical dimension, the quarter and month columns are each levels of a time dimension, and the
product family and product name are part of an inventory dimension. In the time dimension, months are

FILENET BAM SERVER REFERENCE
Creating cubes

49
smaller sets of fiscal quarters, just as product name is a smaller set of the product family level. Here are
some examples of dimensions:

For information about dimensions, see “Dimensions” on page 65.

NOTE: You can limit user access to data in the cube with an access filter. For details, see “Access Filters”
on page 17.

Creating cubes
Cubes are similar to business views in that they aggregate event data, but they do so across different
dimensions. The view that a cube aggregates is a fact table: a view or event table in an event stream that
contains one or more columns to measure (aggregate), and which also contains columns that identify the
dimensional elements associated with the event. For example, you could imagine a fact table containing
an event similar to this:

Cost Quantity Product State Month

------ -------- ------- ---------- -------

200.00 1600 Nails California January

However, in practice the dimensional elements are stored in Dimensions (special context tables) and
referenced by IDs, like this:

Cost Quantity prod_id region_id ddim_id

------ -------- ------- --------- -------

200.00 1600 100 7 39

Time Geography Inventory Security Taxonomy

year
quarter
month
week
day
hour
minute

continent
country
region
state
county
city
district

classification
type
manufacturer
model
configuration

type
rating
company
cusip

kingdom
phylum
class
order
family
genus
species

FILENET BAM SERVER REFERENCE
Creating cubes

50
This illustration shows a cube built from the OrderDetails fact table and which measures total sales across
various business regions, products, and time:

To define a cube:

1. Choose the fact table and columns to measure.

2. Specify how to measure them (aggregate formulas to use).

3. Choose one or more dimensions that classify the measurements.

Measure columns

Measure columns define the aggregations that the cube calculates. A cube must have at least one
measure column, and may have more. Each measure column defines an expression that contains a
C-SQL Set function that aggregates other columns from the fact table. For example, to determine the “total
sales” from the OrderDetails fact table, a measure column might be defined as:

SUM(OrderDetails.prod_cost*OrderDetails.order_qty) AS TotalOrderSales

Dimension columns

Dimension columns categorize the measurements. A cube must have at least one dimension, and may
have more. Further, the data in the fact table must be able to identify a unique element in each associated
dimension. For a complete discussion, see “Dimensions” on page 65. (Note that while the mathematical
term “cube” implies three dimensions; however, a database cube can have any number from one or more.)

Prerequisites

Before creating a cube, you need:

• Create permission for Views, Cubes, and Dimensions.

• At least Read-Only access to an existing fact table (business view).

• At least Read-Only access to the Dimensions to include. See “Creating dimensions” on page 69 for
details.

OrderCube

OrderDetails Products Location DateTime

prod_id
prod_name
prod_family

region_id
region_name
region_state
region_city

ddim_id
ddim_year
ddim_qtr
ddim_mon
ddim_week
ddim_dom
ddim_dname

order_id
prod_id
region_id
ddim_id
order_qty
prod_cost
total_sale

SUM(prod_cost*order_qty)

FILENET BAM SERVER REFERENCE
Creating cubes

51
Creation steps

To create a cube:

1. Open the Workbench tab of the FileNet BAM Workbench, select the Cubes folder, and click New Cube.

2. Identify a name, and optionally provide a description of the cube.

3. Choose the Fact Table that contains the data to measure, and which contains columns that identify the
dimension elements.

4. Define one or more Measure columns.

• Click Add Measure Column to define a column.

• Name the column in the Measure Name field.

• Define the measure formula with a C-SQL Set function in the Aggregate Expression field. The
function should reference a column from the fact table. For example, this SUM() expression totals
the product of the cost and quantity columns):

SUM(OrderDetails.prod_cost*OrderDetails.order_qty)

For more information about C-SQL expressions, see “Formulas” on page 89.

5. Define one or more Dimension columns.

• Click Add Dimension to define a column.

• Choose the dimension to include from the Dimension column drop-down list. This list includes all
dimensions that you have at least Read-Only access to.

• Identify the key columns in the dimension and in the fact table. See “Key columns” on page 67 for
more details about the keys.

The data type for the key in the fact table must be the same for the key in the dimension (context
table). You cannot, for example, mix integer and decimal types; both must be either integer or
decimal.

6. Save the cube and you can immediately begin building Dashboard Objects on top of it.

FILENET BAM SERVER REFERENCE 52
Data Types

FileNet Business Activity Monitor and C-SQL supports the following SQL-99 data-types and their
semantics, each of which is described in detail in the following sections of this documentation:

C-SQL provides means for converting data of one type to another type. See “Data type conversion” on
page 53 for details.

C-SQL Data Type Data Type Category

BOOLEAN Boolean

DECIMAL Numeric

DOUBLE PRECISION Numeric

INTEGER Numeric

INTERVAL Date-Time

TIMESTAMP Date-Time

VARCHAR String

FILENET BAM SERVER REFERENCE
Data type conversion

53
Data type conversion
In FileNet Business Activity Monitor there are two ways to convert values from one data-type to another:
explicit casting and implicit casting.

Explicit cast

Any C-SQL argument may contain CAST() to convert the data-type of a value. For example, you can cast
a character string of numerals into a numeric value, and use the result as an argument to FLOOR():

FLOOR(CAST('1234.56' AS DECIMAL))

Implicit cast

C-SQL automatically attempts to convert a data-type to the correct type for the argument where the value
is encountered. For example, if C-SQL encounters the VARCHAR ‘1234.56’ in the FLOOR() argument, it
automatically converts the value to a DOUBLE PRECISION numeric before truncating the decimal digits.

FLOOR('1234.56') << Implicit cast to DOUBLE PRECISION.

Similarly, when a value of one data type is compared to a value of different type, C-SQL first converts one
of the values to match the other. In this example, C-SQL converts the VARCHAR string to a BOOLEAN
before evaluating the expression:

'true' = TRUE << Implicit cast to BOOLEAN.

Context also affects casting. For example, because the following arithmetic add operator expects numeric
arguments, and even though both values are characters, the values are first cast to numeric:

'2' + '3' << Both cast to numeric to match operator data type.

NOTE: The value must be convertible to the required type or the expression will result in an incorrect data-
type error.

Order of precedence

The following table shows which types are convertible, and the order of precedence assigned to each
possible data type conversion, where zero (0) is the highest precedence and a million (1,000,000) is the
lowest:

To \ From VARCHA
R

BOOLEA
N

TIMESTAM
P

DOUBLE
PRECISIO
N

DECIMA
L

INTEGE
R

VARCHAR 0 10 10 10 1,000,000 1,000,000

BOOLEAN 1 0 — — — —

TIMESTAMP 2 — 0 — — —

DOUBLE
PRECISION

3 — — 0 1 3

DECIMAL 4 — — 1 0 1

INTEGER 5 — — 2 2 0

FILENET BAM SERVER REFERENCE
Numeric

54
In the comparison example above, C-SQL converts the VARCHAR to a BOOLEAN because the
precedence level for that conversion is 1, as opposed to 10 for converting the BOOLEAN to a VARCHAR.
Similarly, in the FLOOR("1234.56") example C-SQL converts the string to a DOUBLE PRECISION
because DOUBLE PRECISION has a higher precedence than DECIMAL, even though a decimal might
seem to be more appropriate to the value.

See the descriptions of the individual C-SQL data types for the specific details about converting those
types.

Numeric
C-SQL has three data types for numeric values.

Third party data types
The C-SQL numerics map to these data types in other support systems:

Type Description Bits Minimum value Maximum value

INTEGER Signed
integer

32 -2,147,483,648 2,147,483,647

DECIMAL Decimal — 1 digitsTotal count of
DECIMAL digits, both before
and after the decimal
separator is 256.

256 digits Total count of
DECIMAL digits, both
before and after the decimal
separator is 256.

DOUBLE
PRECISIO
N

IEEE 754
floating point

64 +/-4.94065645841246544E-
324

+/
-1.79769313486231570E-
308

Total count of DECIMAL digits, both before and after the decimal separator is 256.

To express a DOUBLE PRECISION as a literal, use scientific notation, such as 1e24.

C-SQL/
JDBC

Java Oracle SQL-Server Sybase

INTEGER int Number(p=3
8)

Int(32 bit) Int(32 bit)

DECIMAL BigDeci
mal

Number(p=3
8)

Decimal(p=38)
Numeric(p=38)
Money(64bit)
SmallMoney(32b
it)

Decimal(p=38)
Numeric(p=38)
Money(64bit)
SmallMoney(32b
it)

DOUBLE
PRECISION

double Number(p=3
8)

double
real(4 bytes)

double
real(4 bytes)

Where p is precision.

FILENET BAM SERVER REFERENCE
Combining numeric types

55
Combining numeric types
When combining two different numeric types, the result is the type with higher precedence based on the
“Order of precedence” on page 53. For example, adding a INTEGER to a DECIMAL results in a DECIMAL
sum.

Casting a fractional number to an integer silently truncates the fraction (rounds down) to fit the target. For
example, forcing a DOUBLE PRECISION into an INTEGER truncates the fractional part of the value.

Casting numeric types
Casting numerics to types of different storage size is permissible provided that the target is large enough to
hold the result; otherwise the conversion fails with an “Number out of range” error. For example, attempting
to put a floating-point type of a larger storage size into a location of a smaller size results in an error.

To strings

When casting numerics to strings, be aware of the following:

• For DECIMAL numbers, the result is zero-padded in the decimal values to match the precision and
scale defined for the column. So, for example, if a column is defined as precision 5 and scale 4, a
value of 1.1 in the column is cast as ‘1.1000’.

• For DOUBLE PRECISION numbers, the ‘e’ is cast to upper case. So, for example, +1e11 is converted
to ‘1.0E11’.

FILENET BAM SERVER REFERENCE
Decimal precision results

56
Decimal precision results
All decimal numbers have two components:

• Precision

The count of digits, both to the left and right of the decimal point. The maximum is 256, and the
minimum is 1.

• Scale

The count of digits of the fractional component, and is less than or equal to the precision. When no
scale is specified the default is 2.

In instances where a value has greater scale or precision than the target storage, such as a database field
with a smaller precision, FileNet Business Activity Monitor truncates decimals and rounds down the result
to make it fit.

Casting

When casting a Decimal value, you can declare the precision and scale like this:

DECIMAL(precision, scale)

For example,

CAST('4.012345', DECIMAL(5,4)) --> 4.0123

When casting from a decimal formatted column to a string, the result is zero-padded on the decimals to
match the scale. For example, when column is precision 5 and scale 4, implicitly casting a value of 1.1 in
the column to a string results in '1.1000'.

Multiplication

In multiplication, the resulting precision is the sum of the precisions, and the scale is the sum of the scales.

PrecisionResult = MIN(PrecisionLeft+PrecisionRight, 256)

ScaleResult = MIN(ScaleLeft+ScaleRight, 256)

For example, the result of (4.55*1.414) is precision 7 (3+4) and scale 5 (2+3).

Division

In division, the results are:

ScaleResult = MIN(MAX((ScaleLeft+PrecisionRight-ScaleRight+1),2), 256)

PrecisionResult = MIN((PrecisionLeft + ScaleRight + ScaleResult), 256)

For example, the result of (4.55/1.414) is scale 4 (2+4-1) and precision 10 (3+3+4).

Addition and subtraction

For addition and subtraction, the results are:

PrecisionResult = MIN((MAX(PrecisionLeft - ScaleLeft,

 PrecisionRight - ScaleRight) +

MAX(ScaleLeft, ScaleRight) + 1), 256)

ScaleResult = MAX(ScaleLeft, ScaleRight)

FILENET BAM SERVER REFERENCE
String

57
All other functions

For other functions and operations, the result is determined by the value with the largest precision and the
value with the largest scale — the results may be determined from the same value.

PrecisionResult = MIN(MAX(Precision[i]), 256)

ScaleResult = MIN(MAX(Scale[i]), 256)

String
The C-SQL VARCHAR data type maintains character string values.

String width

Though the maximum size limit for string values is infinite, try not to exceed 255 characters because that is
the limit imposed on many DBM systems. However, to improve performance, assist data storage, and aid
in string compares, it is good to declare an appropriate maximum width when defining a VARCHAR
column. The width should be big enough to hold the maximum length of any string result inserted into the
field. Text that is longer than the maximum width will be truncated when the string is stored.

Third party data types

The C-SQL string type maps to these data types in other support systems:

String concatenation

To concatenate two strings, use either CONCAT() or the || operator. See “CONCAT” on page 103 for
details.

Type Descriptio
n

Padding Minimum Size Maximum Size

VARCHAR Variable
length

No 1 character
(default), may
be null.

Infinite characters. Note that
an error occurs if you attempt
to store a value into a DBMS
that is larger that the size of
the column defined in the
table.

C-SQL/
JDBC

Java Oracle SQL-Server Sybase

VARCHAR String Char
Varchar
Varchar2(4k)

Varchar(8k) Varchar(8k)

FILENET BAM SERVER REFERENCE
Date-Time

58
String literal

To express a String as a literal, enclose the text in single quotes ('). To include a single quote, include two,
for example:

'Couldn''t' Returns: Couldn't

Converting strings to other data types

When combining a string with another data type, or when expressing a string where another data type is
expected, automatically converts the string to the new type based on the “Order of precedence” on
page 53. Additionally:

• All leading and trailing spaces are stripped.

• If the string contains an invalid character or invalid formatting, an error occurs. An invalid character is
one that is inappropriate for the target data type. For example, ‘hello’ can’t be converted to an
INTEGER.

• Formatting that is not consistent with the definition of a literal data value of the target type is invalid.
For example, for a string to implicitly convert successfully to a TIMESTAMP data type, the source
string must contain be in the default C-SQL date format. See Date-Time for details about formatting
strings for date-time types.

Date-Time
Date-time data types store date and time-of-day of that date as a single value (a number). There is no
facility for directly accessing a date-time as its internal, numeric representation. Instead, to access date-
time values in a meaningful way, C-SQL provides several functions for manipulating the values, and
provides literal constructs for representing the values in expressions.

NOTE: Date-time values are in the time-zone of the locale of the server running FileNet Business Activity
Monitor.

Converting between date-time and strings

Convert a date-time to a character string (VARCHAR) with TO_CHAR(), and convert a string to a date-time
with TO_DATE(). Both of those functions allow you to specify the format of the string.

Including a TIMESTAMP literal in a string an argument automatically converts the value to a string using
the default date-time format, which is “yyyy-MM-dd hh:mm:ss.SSS”. For more information about converting
between date-time and string values, see “Data type conversion” on page 53.

Function Description

TIMESTAMP literal A character string representation of a date-time value. Can be any
combination of year, month, day-of-month, hour, minute, second, and
fractional seconds.

INTERVAL literal A character string representation of an interval: a span of time comprised of
years and months, or of days, hours, minutes, and seconds.

FILENET BAM SERVER REFERENCE
TIMESTAMP literal

59
Comparing date-time values

A date-time is stored internally as a number representing the date-time in milliseconds. As such, you need
to be careful when comparing two date-time values. For example, this comparison is only true when both
dates have exactly the same milliseconds:

first_date = second_date

If exact granularity is not important, consider first converting the date-time values to strings that represent
just the date portion:

TO_CHAR(first_date,"yyyy-MM-dd") = TO_CHAR(second_date,"yyyy-MM-dd")

Note that according to the “Order of precedence” on page 53, comparing a string to a date-time first casts
the string to a date-time before the comparison occurs. Consider this example where birth_date is a date-
time value. If birth_date has a time associated with it, the comparison will never be true:

'2003-02-18' = birth_date

A more exact comparison is to first cast birth_date to a string without a time:

'2003-02-18' = TO_CHAR(birth_date, "yyyy-MM-dd")

Date-time arithmetic

The DATE_ADD() and DATE_DIFF() functions add and subtract intervals of years, months, days, hours,
minutes, and seconds on date-time values. See the descriptions of those functions for details. Some query
clauses, however, require a INTERVAL literal (described below).

Third party data types

The C-SQL date-time type maps to these data types in other support systems:

TIMESTAMP literal
The TIMESTAMP literal represents a date-time value as a character string. To express as date-time as a
literal value, prefix the data with the word “TIMESTAMP”, and enclose the entire data in single quotes ('),
for example:

TIMESTAMP '2003-03-05 19:45:23.123'

The format of the string is “yyyy-MM-dd hh:mm:ss.SSS”, where S (the fractional seconds) are optional and
may be from zero to nine digits of precision. See “Date-Time formatting” on page 62 for details about the
formatting characters.

C-SQL/
JDBC

Java Oracle SQL-Server Sybase

Date-time Date
Time
Timestamp

Date(YMDHMS) Datetime(YMDHMS.xx)
SmallDateTime
(YMDHMS)

Datetime
(YMDHMS.xx)
SmallDateTime
(YMDHMS)

FILENET BAM SERVER REFERENCE
INTERVAL literal

60
INTERVAL literal
An INTERVAL literal identifies a span of time comprised of years and months (year-month intervals), or of
days, hours, minutes, and seconds (day-time intervals). You cannot combine year-month and day-time in
one interval declaration. Intervals are applied to date-time values to calculate the a span of time from that
instance. Typically they are used in expressions to offset date-time columns and TIMESTAMP literals, such
as when declaring the range from a date or time in Query Windows. For example, this query window totals
of all events arriving in the last hour (implicitly applied to the arrival time of the latest event to arrive):

SUM(Qty) AS Total_Of_Qty OVER (RANGE INTERVAL '1' HOUR PRECEDING)

When applying an interval to a date-time, the interval is added to or subtracted from the value. For
example, if the current date-time is 5 March 2003 at 7:45p.m., adding an interval of 1 year to that date
results in 5 March 2004 at the exact same time. Note that calendar arithmetic follows Gregorian calendar
rules—see DATE_DIFF() for details.

Year-Month intervals

A year-month INTERVAL uses either, or combines both, of the date-time fields YEAR or MONTH. The
possible definitions are:

INTERVAL 'yy' YEAR[(<precision>)]

INTERVAL 'mm' MONTH[(<precision>)]

INTERVAL 'yy mm' YEAR[(<precision>)] TO MONTH[(<precision>)]

These examples define intervals of 3 years and of 10 months, respectively:

INTERVAL '3' YEAR

INTERVAL '10' MONTH

You can define a fraction year interval by expressing the result in total months, like 46 months, or by
combining the field. For example, to identify an interval of 3 years and 10 months:

INTERVAL '3-10' YEAR TO MONTH

Note that you may specify a value of zero (0) for either field. These intervals are each 2 years:

INTERVAL '2-0' YEAR TO MONTH

INTERVAL '1-12' YEAR TO MONTH

INTERVAL '0-24' YEAR TO MONTH

Precision

The <precision> argument is an ANSI standard that declares the maximum count of digits in the integer. By
default, the <precision> is 2. As such, these two declarations of 100 month intervals each fail:

INTERVAL '100' MONTH(2) << ERROR, precision is less than value size.

INTERVAL '100' MONTH << ERROR, default precision is 2.

To use more than 2 digits, declare a precision, like this:

INTERVAL '100' MONTH(3)

When using both fields, apply the precision on the YEAR field only; the MONTH field uses its default
precision of 2. For example, the follow is erroneous because the month is greater than the default.

INTERVAL '100-123' YEAR(3) TO MONTH << ERROR, month is 3 digits

FILENET BAM SERVER REFERENCE
INTERVAL literal

61
Day-Time Intervals

A day-time INTERVAL is comprised of a combination of days, hours. minutes and seconds. The possible
definitions are:

INTERVAL 'dd' DAY

INTERVAL 'dd hh' DAY TO HOUR

INTERVAL 'dd hh:mm' DAY TO MINUTE

INTERVAL 'dd hh:mm:ss[.nn]' DAY TO SECOND

INTERVAL 'hh' HOUR

INTERVAL 'hh:mm' HOUR TO MINUTE

INTERVAL 'hh:mm:ss[.nn]' HOUR TO SECOND

INTERVAL 'mm' MINUTE

INTERVAL 'mm:ss[.nn]' MINUTE TO SECOND

INTERVAL 'ss[.nn]' SECOND

Where .nn is a fraction of a second.

Examples

Here are some examples of day-time intervals:

INTERVAL '27 23:59:59.999999999' DAY TO SECOND

INTERVAL '100 10:10' DAY(3) TO MINUTE

Precision

Each of the day-time fields also have a precision argument, such as:

MINUTE(<precision>)

The <precision> argument is an ANSI standard that declares the maximum count of digits in the integer. By
default, the <precision> is 2 (except for fractional seconds whose default is 9, see below for details). As
such, these two declarations of 100 hour intervals each fail:

INTERVAL '100' HOUR(2) << ERROR, precision is less than value size.

INTERVAL '100' HOUR << ERROR, default precision is 2.

To use more than 2 digits, declare a precision, like this:

INTERVAL '100' HOUR(3)

When declaring precision for SECOND with a fractional component, specify two precision values
separated by a comma. Consider these examples:

INTERVAL '12.345' SECOND(2, 3)

INTERVAL '12.123456789' SECOND(2, 9)

INTERVAL '12.123456789' SECOND

Notice that the last two examples above have the same effect because the default is (2, 9) for SECOND.

When using multiple fields, expression the precision on the first field only; the remaining fields use their
default. For example, the precision here applies to the minutes only and does not affect the fractional
seconds:

INTERVAL '100:23.123456789' MINUTE(3) TO SECOND

FILENET BAM SERVER REFERENCE
Date-Time formatting

62
Date-Time formatting
The TO_CHAR() and TO_DATE() functions both have arguments that define the format of the date-time
string. The format date pattern string is identical to the one used by the Java SimpleDateFormat class,
which uses these letters in pattern:

Some letters have multiple results, depending on the number of consecutive letters in the format. The
result will be the value that best fits the pattern. For numbers, if the pattern is bigger than the value, the
result is padded with leading zeros (0). See the examples below for details.

Letter Date-time Component Presentation Examples

G Era designator Text AD

y Year Year 1996; 96

M Month in year Month July; Jul; 07

w Week in year Number 27

W Week in month Number 2

D Day in year Number 189

d Day in month Number 10

F Day of week in month Number 2

E Day in week Text Tuesday; Tue

a Am/pm marker Text PM

H Hour in day (0-23) Number 0

k Hour in day (1-24) Number 24

K Hour in am/pm (0-11) Number 0

h Hour in am/pm (1-12) Number 12

m Minute in hour Number 30

s Second in minute Number 55

S Fraction of a second (one S
always returns an integer of 0
to 9 digits)

Number 978

' escape for text Delimiter

'' single quote Literal '

FILENET BAM SERVER REFERENCE
Date-Time formatting

63
The following examples modified from the Java SimpleDateFormat class documentation show how date
and time patterns are interpreted in the U.S. locale. The given date and time are 2001-08-04 12:08:56 local
time in the U.S. Pacific Time time zone.

Date and Time Pattern Result

'd M yy' 4 8 01

'dd MM yy' 04 08 01

'ddd MMM yyy' 004 Aug 2001

'dddd MMMM yyyy' 0004 August 2001

"yyyy.MM.dd G 'at' HH:mm:ss z" 2001.08.04 AD at 12:08:56 PDT

"EEE, MMM d, ''yy" Sat, Aug 4, '01

"h:mm a" 12:08 PM

"hh 'o''clock' a, zzzz" 12 o'clock PM, Pacific Daylight Time

"K:mm a, z" 0:08 PM, PDT

"yyyyy.MMMMM.dd GGG hh:mm aaa" 02001.August.04 AD 12:08 PM

"EEE, d MMM yyyy HH:mm:ss Z" Sat, 4 Aug 2001 12:08:56 -0700

"yyMMddHHmmssZ" 010704120856-0700

FILENET BAM SERVER REFERENCE
Boolean

64
Boolean
C-SQL follows the SQL-99 use of three-valued logic (TRUE, FALSE, and UNKNOWN) to support NULL
value semantics. For example,

WHERE OnSale IS TRUE

WHERE (Age >= 21) IS UNKNOWN

When using Boolean operators to evaluate the truth of an expression, the values are evaluated as follows:

Truth table for NOT

Truth table for AND

Truth table for OR

Truth table for IS

NOTE: TRUE is greater than FALSE in comparisons.

NOT TRUE FALSE UNKNOWN

FALSE TRUE UNKNOWN

AND TRUE FALSE UNKNOWN

TRUE TRUE FALSE UNKNOWN

FALSE FALSE FALSE FALSE

UNKNOWN UNKNOWN FALSE UNKNOWN

OR TRUE FALSE UNKNOWN

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE UNKNOWN

UNKNOWN TRUE UNKNOWN UNKNOWN

IS TRUE FALSE UNKNOWN

TRUE TRUE FALSE FALSE

FALSE FALSE TRUE FALSE

UNKNOWN FALSE FALSE TRUE

FILENET BAM SERVER REFERENCE 65
Dimensions

A dimension is a ranked order of classifications that, from highest to lowest level each describe
decreasingly smaller sets of related data. Here are some examples of dimensions where the top level of
each list contains the largest set of related items, while the bottom contains the smallest, most specific set:

Cubes categorize measurements by dimensions, and within dimensions by levels and values. For
example, a location dimension can filter the results to show the measurements for all cities in a state. This
illustration shows several locations filtered by state name, which limits the measurements to just three
cities:

Dimensions draw their values from context tables, where each dimension level is one column in the table,
and each row is a unique dimension element. In the example above, the region names are in one column,
states in another, and cities in a third. When you create a dimension, you identify the existing source
context table and the columns to include, and arrange the columns into the level hierarchy.

Time Geography Inventory Security Taxonomy

year
quarter
month
week
day
hour
minute

continent
country
region
state
county
city
district

classification
type
manufacturer
model
configuration

type
rating
company
cusip

kingdom
phylum
class
order
family
genus
species

East New York Rochester

East Rhode Island Tug Hollow

Central Missouri Parman

Central Ohio Toledo

Central Texas Austin

West Nevada Reno

West California Lodi

West California Ojai

West California Pasadena

South Florida Wallaby Ranch

FILENET BAM SERVER REFERENCE 66
Level hierarchy

The level hierarchy is what enables “roll-up” and “drill-down” in cubes. When a user is viewing data for one
level, they can “roll-up” to see a higher level of measurements, or “drill-down” to see the data categorized
at the next smaller level. For example, when looking at the results for a state, the user might choose to roll-
up to see the measurement for all states in the region. Alternatively, the user might click on the results to
see the results for each city in the state. The level hierarchy defines the levels in the dimension.

This picture shows four columns in the source file, but only three contain dimension level data. These three
are selected and arranged in the containing hierarchy of largest to most-specific levels.

Alias names

After identifying the columns, you can optionally assign alias names that the users will see when they work
with the cube. This illustration shows the filter level alias names as they appear in the Dashboard.

Alias names that users
see when choosing
filter levels in the cube.

FILENET BAM SERVER REFERENCE 67
Order by

In the FileNet BAM Dashboard, dimension values are presented in their sort order (as provided by the
server). For example, a list of month names appears in alphabetical order starting with April and ending
with September, rather than in the order they occur in a year. To specify another order, use the Order By
Column field. This field identifies another column that contains the values to use for sorting. For example,
instead of using the “month name” column, use the “month number” column, like this:

Key columns

To use the context as a dimension, your event data must identify the unique dimension element (row) that
it belongs too. In the location context data, the most unique value in each element is the city name;
however, while that name could be used for identification purposes, for performance reasons it is better to
use a number. As such, the locations context data should have an integer ID, like this:

region_id region_name region_state region_city

--------- ----------- ------------ ------------

1 West Nevada Reno

2 South Texas Austin

3 East New York Rochester

4 Central Ohio Toledo

5 West California Pasadena

...

Default order by
month name.

Order as sorted by
month number.

FILENET BAM SERVER REFERENCE 68
Then the fact table that provides the value for the cube to measure also includes the key value to identify
the associated dimension. For example, this order record is associated with Ojai, California, in the West
region:

order_id region_id total_sales ...

-------- --------- -----------

102341 7 120000 ...

NOTE: The data type for the key in the fact table must be the same for the key in the dimension (context
table). You cannot, for example, mix integer and decimal types; both must be either integer or decimal.

When you define the dimension, identify one or more key fields that may be used to identify the specific
level. You can choose any column that is not already a dimension level, because levels are automatically
assumed to be potential keys. The illustration below shows one column, REGION_ID, because all the
other columns in the dimension are assigned to levels. Later, when you define the cube, identify the key
column in the dimension that maps to the key in the fact table. In this example they happen to have the
same name; however, that is not a requirement. Further, you may assign an alias name to the column to
make it easier to identify.

For information about defining cubes, see “Creating cubes” on page 49.

Map dimensions to facts in
the Cube editor.

Identify keys in the
Dimension editor.

FILENET BAM SERVER REFERENCE
Creating dimensions

69
Creating dimensions
Before creating a dimension, you need:

• Create permission for Views, Cubes, and Dimensions.

• At least Read-Only access to the Context table that provides the dimension elements.

NOTE: Turn on caching for the context table for optimum performance. When caching is off, performance
for cubes can be slowed dramatically. See “Caching context queries” on page 47 for information about
controlling the cache.

To create a dimension:

1. Open the Workbench tab of the FileNet BAM Workbench, select the Dimensions folder, and click New
Dimension.

2. Identify a name, and optionally provide a description of the dimension.

3. Choose the Context Table that contains the dimension elements.

4. Define the levels of the hierarchy:

• Add fields to the hierarchy from the Available Fields list.

• Order the levels from largest set (top) to smallest (bottom).

• Identify one or more Key Columns to include.

• Optionally assign Alias names to the levels.

Save the dimension and you can immediately use it in Cubes.

FILENET BAM SERVER REFERENCE 70
Events

Events drive FileNet Business Activity Monitor internal processing. Events are data produced by external
business applications that record transactions, identify changes in business state, and synthesize the
details about the business activities. FileNet Business Activity Monitor receives events in event tables.
Business views built on the tables then aggregate the event information and drive the Rules that look for
exceptional business conditions.

How it works

Events come to FileNet Business Activity Monitor from business applications, databases, and text files.
Usually Agents automatically receive or retrieve the event data and load it into an event table. Alternatively,
you can manually load events from text files with the FileNet BAM Workbench. As events arrive they are
processed and their data are passed to the business views. The views then aggregate the data and might
they retrieve context data relative to the event.

NOTE: Events are processed in the order that they are received in the system. When one agent has
received a large quantity of events, any new events received by other agents are queued behind the first
set, and are not processed until the first set is completely processed.

External sources

FileNet Business Activity Monitor provides agents to access several external event sources. Some events
stream (are pushed) into the system as they happen. Other events are loaded (pulled) as the result of a
request, such as from a database or a text file. This table summarizes the available sources and identifies

Business

Contex

Agent

Event

Events stream into the event table from business
applications, databases, of text files. The events
then flow into business views.

Business

DBM

Flat

Agent

Agent

Event Upload

FILENET BAM SERVER REFERENCE
Event properties

71
the source agent they support. (See “Agents” on page 25 for details about how they retrieve and receive
event data.)

Event properties
Every event table has a name, description, and status attribute, and most have an agent.

External source Agent Event
push

Event
pull

Java Messaging Service
(JMS)

“Java Messaging Service (JMS)” on
page 171

Yes No

Text file (XML or flat) “Flat Files” on page 73 No Yes

TIBCO Rendezvous
(RV)

“TIBCO Rendezvous” on page 273 Yes No

HTTP Post action “HTTP Post” on page 164 Yes No

Web service None. See “Web service events” on
page 304

Yes No

Attribute Description

Name Identifies the table and is the name accessed by the Business Views
that depend on this table. This name must be unique among views,
events, context, and consolidated events. See “Object namespace” on
page 211 for details.

Description (optional) Description of the table.

Status Whether or not the object is enabled (able to receive and pass data), or
disabled (not receiving or passing data).

Agent An agent that receives or retrieves the event information, and passes
the data to the event table. See “Agents” on page 25 for information
about agent types.

Log event data
for recovery

When on, logs event data that arrived after the last checkpoint started.
This “recovery” log is used to restore the state of the system in the event
of an abnormal shutdown of the servers. See Working with checkpoint
and recovery for complete details.

Process events
in the order of
arrival

Choose this option when events must be processed in the order
received. When off, events may be processed out of order.

Note: To join events in a view, the events must be processed in order:
leave this option off to join the events.

FILENET BAM SERVER REFERENCE
Creating event tables

72
Creating event tables
Before creating an event table, you must have Create permission for tables (see “Creating permission” on
page 220), and Read only access permission on the agent that will feed the table.

To create an event table:

1. In the Workbench tab of the FileNet BAM Workbench, click New Event…

2. Choose the source type, each type has its own specific attributes. For details, see

• “Flat Files” on page 73

• “HTTP Post” on page 164

• “Java Messaging Service (JMS)” on page 171

• “JDBC” on page 179

• “TIBCO Rendezvous” on page 273

3. Fill in the fields in the New Event or New Context form.

Save the object as enabled and it will immediately be ready to receive events or context.

Editing event tables
Editing the attributes of an event table causes the object to lose state, and possibly invalidates dependant
views. For example, if you remove a column, any view or rule that references that column becomes invalid.
(However, if you re-define the column in the table, the dependant views are automatically re-validated.)

Before editing an event table, you must have Read and wrIte permission for tables (see “Accessing
permissions” on page 218), and Read only access permission on the agent that feeds the table.

To edit an event table:

1. In the Workbench tab of the FileNet BAM Workbench, select the event or context object.

2. Chose Edit This Event or Edit This Context.

3. Change the definitions in the Edit Event form. Note that each type has its own specific attributes. For
details, see

• “Flat Files” on page 73

• “HTTP Post” on page 164

• “Java Messaging Service (JMS)” on page 171

• “JDBC” on page 179

• “TIBCO Rendezvous” on page 273

Save the object as enabled and it will immediately be ready to receive events or context.

FILENET BAM SERVER REFERENCE 73
Flat Files

A flat file is a text file that contains the information about one or more events. Each line in the file is usually
one event record — one row in the event table — and the data in the row map into the columns in the event
table. The rows may be formatted as fixed width, delmited, or XML files.

In this Chapter:

“How it works” on page 74

“Flat file event tables” on page 74

“Flat file agents” on page 78

“Delimited files” on page 83

“Fixed-Width files” on page 84

“XML files” on page 85

NOTE: Fixed-width and delimited files may contain multiple rows for the same event. See “Multi-Row
events” on page 77 for details.

FILENET BAM SERVER REFERENCE
How it works

74
How it works
Flat file events are loaded in “batch” mode into the flat-file event table, though events are processed
individually as they are loaded into the table. There are two ways to load flat-files into the event tables:

• Automatically

The Flat file agents periodically looks to see if the associated file exists. When the file is found, the
agent retrieves it and passes it to the event object for event processing.

• Manually

The Upload Event File button in the event-detail page in the FileNet BAM Workbench loads a manually
selected file when chosen. See Upload Event File option for details.

Flat file event tables
Flat Files event tables receive event files from Flat file agents or from the Upload Event File option in the
FileNet BAM Workbench of the FileNet BAM Workbench. The three flat-file formats are:

• “Delimited files” on page 83

• “Fixed-Width files” on page 84.

• “XML files” on page 85

Before creating an event to a flat-file event table, you need:

• Permissions — Create permission for tables (see “Creating permission” on page 220), and Read Only
access permission on the agent that will feed the table.

• Fixed-width and delimited files — (optional) A sample file that contains data in the format of the actual
events. Use the sample when you create the event to ensure that the fields map correctly into the
event table. Note that this is optional; you can create the event without a source, but having it greatly
assists you with event table creation.

Flat file
agent

Passes file contents
to event table.

Event table

Flat files can be loaded as events
automatically by agent, or manually by
Event File Upload button

Looks for file.

Retrieves found file
and deals with file.

File to look for.

Event File
Upload button

Passes file contents
to event table.

Event table
Looks for file.

Retrieves found file
contents and leaves
file alone.

FILENET BAM SERVER REFERENCE
Flat file event tables

75
• The schema of the XML files to load. Specifically, you need to know the names of the attributes that
contain the event column information, and the XML path to the element that contains the columns for
each event. See “XPaths” on page 85 for details.

Attribute Description

Name Identifies the event object. This name must be unique among views, events,
context, and consolidated events. See “Object namespace” on page 211 for
details.

Description Optional description that may contain any text characters.

Status Whether or not the event object is enabled (monitoring for events), or disabled
(not monitoring for events).

Log event data for
recovery

When on, logs event data that arrived after the last checkpoint started. This
“recovery” log is used to restore the state of the system in the event of an
abnormal shutdown of the servers. See Working with checkpoint and recovery
for complete details.

Note: To improve input/output performance, point the recovery log file
directory to a disc different from the one that feeds this agent.

Process events in
the order of arrival

Note: Choose this option when events must be processed in the order
received. Otherwise, if events may be processed out of order, turn this
on. To join events in a view, the events must be processed in order:
leave this option off to join the events.

File Agent An existing file agent that retrieves events and context from a text file. Create
an agent with the FileNet BAM Workbench Administration tab. See “Flat file
agents” on page 78 for details.

Start import on
row

For fixed-width and delimited files identifies the row of the text in the source
file that contains the first data to import. Default is 1, the first row. Use this
option if the text contains unnecessary introduction or header information.

Use this row for
column names

For fixed-width and delimited files when using a sample, this option identifies a
row in the sample that includes the column names. These names identify each
column in the Column Information details. When this option is not specified,
the default names are Field1, Field2, etc.

Skip rows For fixed-width and delimited files identifies the rows to ignore in the source
file before importing event data. For example, if the file contains some title and
header information, the source might actually start on the third row of the file.
In that example, specify 2 as the count of rows to skip.

Allow short rows For delimited files only. See “Delimited files” on page 83 for details.

Delimiter For delimited files only. See “Delimited files” on page 83 for details.

Escape character For delimited files only. See “Delimited files” on page 83 for details.

FILENET BAM SERVER REFERENCE
Creating a flat-file source event

76
Creating a flat-file source event
To create a flat-file source event:

1. Open the Workbench tab in the FileNet BAM Workbench.

2. Choose New Event and select Flat-file as the source type.

3. (Optional for fixed-width and delimited files.) Identify a sample file to assist in mapping the columns.
This file is a sample of the real data file. Data from this file appears in the next step to assist you as you
map the event data into the table.

4. For fixed-width files, define the positions of the data columns with the Set Field Widths dialog.

5. Identify the event Attribute.

6. Define the format-specific Column Information. For details about the source type, see:

• “Delimited files” on page 83

• “Fixed-Width files” on page 84.

• “XML files” on page 85

Save the file source as enabled and it will immediately be ready to receive event messages.

Text qualifier For delimited files only. See “Delimited files” on page 83 for details.

Number formats Number formatting specifications. Default is comma (,) thousands separator
and dot (.) decimal separator.

Column
information

For fixed-width and delimited files details about each column in the table,
including the name, data type, and formatting applicable to the type.

Event Key For fixed-width and delimited files identifies key field columns for multi-row
events. See “Multi-Row events” on page 77 for details.

Field information For XML files identifies the source elements and how they map into the event
table columns. See “XML field information” on page 86 for details.

Attribute Description

FILENET BAM SERVER REFERENCE
Multi-Row events

77
Multi-Row events
A fixed-width or delimited file may contain multiple rows for the same event. For example, a “purchase
order” event might contain one row for each line-item in the order. When this event is loaded into the event
table, each row is treated as part of the same event; the system does not treat each row as a new event.

To identify the rows as containing data for the same event, each row must have some identifying data that
is unique to the event. For example, this sample data contains line items for 3 purchase orders where each
order identified by the POID column. The first order has 3 items, the second has one, and the third has 2:

POID,ITEM_NO,ITEM_NAME,ITEM_QTY,ITEM_COST,ITEM_TOTAL

0697,1,Smoke Shifter,100,5.00,500.00

0697,2,Nano Webber,50,6.00,300.00

0697,3,Locking Rail Key,25,7.50,187.50

0698,1,Nano Webber,50,6.00,300.00

0699,1,Foo Bar Stool,100,60.00,6000.00

0699,2,Can of Levers,250,1.50,375.00

When defining the column information for this event, you identify the POID column as the key field by
choosing Event Key. Each event may have one or more Event Key fields.

In the file, the rows for each event must appear together, and the data in the Event Key fields must be
unique to the event. As soon as the data in one of the fields is not the same as the previous row, that field’s
row is a new event. For example, this sample is treated as three separate events, even though the last row
has the same Event Key value as the first two rows:

POID,ITEM_NO,ITEM_NAME,ITEM_QTY,ITEM_COST,ITEM_TOTAL

0697,1,Smoke Shifter,100,5.00,500.00

0697,2,Nano Webber,50,6.00,300.00

0100,1,Foo Bar Stool,100,60.00,6000.00

0697,3,Locking Rail Key,25,7.50,187.50

NOTE: If any row contains invalid data, that row is discarded and does not affect subsequent rows. For
example, the third row in this sample contains a character (‘X’) where an integer is expected. In this
sample, the third row is discarded, and the fourth is included as the third row in the event:

POID,ITEM_NO,ITEM_NAME,ITEM_QTY,ITEM_COST,ITEM_TOTAL

0697,1,Smoke Shifter,100,5.00,500.00

0697,2,Nano Webber,50,6.00,300.00

0697,X,Foo Bar Stool,100,60.00,6000.00

0697,4,Locking Rail Key,25,7.50,187.50

FILENET BAM SERVER REFERENCE
Flat file agents

78
Flat file agents
A flat file agent retrieves event messages from a text file.

NOTE: You cannot retrieve context from a file agent because there is no query logic.

File processing

The flat file agent searches for files in a specified location on a defined interval. The name of the files to
search for may include * and ? wildcard characters. When the agent locates a file, it retrieves the events
and then either deletes, moves, or renames the source file. When multiple files are located in the named
location, the agent processes them in filename order.

Prerequisites

Before creating a flat file agent, you need:

• Create permission for agents (see “Creating permission” on page 220 for details).

• A running File agent program (see “Configuring the file agent program” on page 79)

A file agent has the following attributes:

Event
push

Event pull Context pull

Yes No No

Attribute Description

Name Identifies the agent and is the same name as defined by the agentName
element in the agent’s AgentProperties.xml configuration file. See
“Configuring the file agent program” on page 79 for details.

Description Optional description that may contain any text characters.

Status Whether or not the agent is enabled (monitoring for events), or disabled
(not monitoring for events).

FILENET BAM SERVER REFERENCE
Creating a flat file agent

79
Creating a flat file agent
This section shows you how to create a flat file agent.

To create a flat file agent:

1. Open the FileNet BAM Workbench Administration Console.

2. Click New Agent…

3. Choose Flat-file as the source type

4. Fill in the fields that define the agent’s attributes.

Save the agent as enabled and it will immediately begin monitoring for events.

Configuring the file agent program
The File Agent is a stand-alone Java program that runs on a host, possibly different than the FileNet BAM
Server host, gathering events from a text file. When it finds event data, it passes the data to the FileNet
BAM Server for processing.

The agent has two XML configuration files:

• AgentProperties.xml (based on VCAgent.xsd) defines the connection information, such as how to
locate the FileNet BAM Server(s) and how those servers can locate the file agent.

• FileAgent.xml (based on FileAgent.xsd) identifies the text file and what to do with the file when finished
uploading its data.

To start the agent, run the cqagent.jar file in Java and pass the AgentProperties.xml configuration file as an
argument, like this:

java -jar …\cqagent.jar AgentProperties.xml

Optionally, you can identify the logging configuration file directory and logging level by including logging
properties. This example sets the logging level to all messages:

java "-Dcom.celequest.property.Logging Directory=C:\logs\agents"

"-Dcom.celequest.property.Detailed Log File Level=All"

-jar …\cqagent.jar AgentProperties.xml

FILENET BAM SERVER REFERENCE
Configuring the file agent program

80
AgentProperties.xml

The AgentProperties.xml file has the following configuration attributes and elements:

Attribute Description

serverPort
(attribute)

(optional: default 80) HTTP port on the application server that is running the
FileNet BAM Server, and which the agent uses to communicate to the server.
This is the same port that users use to connect to the FileNet BAM
Workbench.

pingInterval
(attribute)

(optional: default 20 seconds) How often the agent test to see if the FileNet
BAM Server is running. When the server is not running, the agent will not
gather events.

agentName (required) Identifies this agent and is the same Name to use when creating the
agent in the Administration Console. This name must be unique among
agents. See “Object namespace” on page 211 for details.

serverHost (required) Name of the host machine running the FileNet BAM Server(s). If
they are running on the same machine as the File Agent, specify localhost as
the name.

agentImplClass (required) Agent implementation class. Do not change this value; currently
com.celequest.agent.FileAgent is required.

agentImplConfigFil
e

(required) Identifies the configuration file for the implementation (the text file
component), usually FileAgent.xml.

agentPort (required) Port used to communicate to the agent on the agent’s host. Used
for communication by the server to the agent for disable and enable status
changes. Use any valid port number, such as 5050.

pollingInterval (required) How frequently (in seconds) to look for new events.

loggingDirectory (optional: default is configuration file directory) Directory in which to log file
information. The log filename is agentName.log.

FILENET BAM SERVER REFERENCE
Configuring the file agent program

81
Example

This example names the event agent as “orderStatusEvent”, identifies the implementation configuration file
as FileAgent.xml, and sets the server port to 8080:

<?xml version="1.0" encoding="UTF-8"?>

<VCAgent

xmlns="http://www.celequest.com"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.celequest.com ../../../xsd/agent/VCAgent.xsd"

serverPort='80'

>

<agentName>orderStatusEvent</agentName>

<serverHost>localhost</serverHost>

<agentImplClass>com.celequest.agent.FileAgent</agentImplClass>

<agentImplConfigFile>FileAgent.xml</agentImplConfigFile>

<agentPort>5050</agentPort>

<pollingInterval>20</pollingInterval>

</VCAgent>

FileAgent.xml

This file configures the text file component (the implementation) of the File Agent. This file’s actual name
and location are identified in the AgentProperties.xml file, and it is usually located in the same directory as
that file. This configuration file has four configuration elements, though most configurations use the
<filename> and <fileDisposal> elements only.

FILENET BAM SERVER REFERENCE
Configuring the file agent program

82
Elements

The FileAgent.xml file has the following configuration elements:

Example

This example identifies the source text file as orderStatusData.txt in the events\ subdirectory on a Windows
host, and moves the finished file into the ..\done\ sibling directory:

<?xml version="1.0" encoding="UTF-8"?>

<FileAgent

xmlns="http://www.celequest.com"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.celequest.com FileAgent.xsd"

>

<fileName>event\\orderStatusData.txt</fileName>

<fileDisposal><move target="..\\done\\"></move></fileDisposal>

</FileAgent>

Element Description

filename The name and location of the source text file that contains the events. The file is
assumed to be in the same directory as the configuration file unless you identify
another location in the filename. You may use relative or complete filepath
specifications. And the filename may include * and ? wildcard characters.

On UNIX systems use a slash to separate directory path names, such as events/
file*.txt.

On Windows systems use two backslashes to separate directory path names, such
as events\\file*.txt.

type Identifies the source as a STREAM or FILE. Use FILE when the entire text file must
be uploaded atomically (all or nothing), such as for an XML file. Otherwise, use
STREAM to upload lines in batches defined by the buffersize element.

buffersize (optional: default is 4,000+EOL) Count of characters to buffer or send in batch to the
server. The actual size sent is the buffersize plus the remainder of the line of
characters that span the limit. Use this setting to avoid uploading excessively large
amounts of event text at one time.

fileDisposal (optional) What to do with the source file after uploading its data. Choices are:

delete — (default) Deletes the file after upload.

move — Moves the file to a directory specified by the target attribute.

rename — Renames the file by adding the extension attribute to the filename.

Both move and rename overwrite any existing files of the same name in the target
location, without warning or error.

FILENET BAM SERVER REFERENCE
Delimited files

83
Delimited files
In a delimited file, each field (column) is separated by a character, typically a comma. For example:

0703,00001,Assigned,13,2003-03-05 14:23:00,Sridar

0706,00004,Open,13,2003-03-05 19:50:00,

0706,00004,Resolved,13,2003-03-05 19:50:00,Niku

NOTE: Delimited files are also called comma separated value (CSV) files.

The field separator character, escape character, and text qualifier are each customizable.

• Separator character — Separates each field in the row; usually a comma character (,).

• Escape character — Precedes characters that are not to be used as a separator; usually a back slash
character (\). For example, if the separator character is a comma, and the text contains a real comma,
then the real comma is “escaped” with a preceding back slash. For example, the comma after
“Altadena” is no a field separator:

123 Buena Loma Dr,Altadena\, CA,91001

• Text qualifier — Text strings are further bounded by this character, usually a double quote("). Use this
option when text strings are qualified to be different from other data types. For example, this event has
text fields that contain numerals, but one of the fields (data value 13) is numeric:

"0706","00004","Open",13,2003-03-05 19:50:00,""

Source rows that do not contain enough data to fill the row generate an error. To permit the data without
generating an error, turn on Allow Short Rows. For example, this text generates an error when the third row
in imported unless short rows is allowed:

1,2,3,4,5,6

1,,,,,

1

When the First row contains field names option is selected, the names in that row appear as the column
names. Otherwise, assign the names manually. Additionally, for each column, assign a data type and
optionally declare a data format.

FILENET BAM SERVER REFERENCE
Fixed-Width files

84
Fixed-Width files
In fixed-width files, each field (column) is the same pre-defined width in each file row, similar to a
spreadsheet table. For example:

070300001Assigned13 2003-03-05 14:23:00Sridar

070600004Open 13 2003-03-05 19:50:00

070600004Resolved13 2003-03-05 19:50:00Niku

To import a fixed-width file, you need to identify the column positions that begin each field of data with the
Set Field Widths dialog. When you provide a sample, the sample data are shown and you click the
columns to indicate the start of a field.

If you don’t have a sample, you need to identify the starting position of each column in the text. Remember
too that the first field starts at position zero (0).

Once the column positions have been defined, you can assign names and declare their data types and
formats.

When the First row contains field names option is selected, the names in that row appear as the column
names. Otherwise, assign the names manually. Additionally, for each column, assign a data type and
optionally declare a data format.

FILENET BAM SERVER REFERENCE
XML files

85
XML files
In extensible markup language (XML) files, every event row is an XML element, and every column is an
attribute or child element of the row. For example, this shows two problem ticket events.

<problem_tickets>

<ticket>

<ticket_id>0703<ticket_id>

<customer cust_id=00001>

<customer_name>Big Trees</customer_name>

</customer>

<status>Assigned</status>

<topic>13</topic>

<when_opened>2003-03-05 14:23:00</when_opened>

<assigned_to>Sridar</assigned_to>

</ticket>

<ticket>

<ticket_id>0706<ticket_id>

<customer cust_id=00004>

<customer_name/>

</customer>

<status>Open</status>

<topic>13</topic>

<when_opened>2003-03-05 19:50:00</when_opened>

</ticket>

<problem_tickets>

XPaths

When defining the event’s Field Information, XPaths locate the rows and columns in the XML file as
follows:

• Schema XPath identifies the event row element, such as <ticket> in the example above. A Schema
XPath is an absolute path to the element in the XML structure, and as such always begins with a slash
(/) followed by the root element and path to the row element. In the example above, the Schema XPath
as “/problem_tickets/ticket”.

• Relative XPath identifies a column element or attribute relative to the row element. When the column is
a child element of the row element, the XPath is either just the element name, or it begins with “child::”.
For example, these are valid Relative XPaths from the example:

ticket_id

child::status

customer/customer_name

child::customer/customer_name

To locate an attribute, put an at-symbol (@) before the attribute name, like this:

customer/@cust_id

NOTE: The XPath standard for locations defines additional XML node mappings not supported by FileNet
Business Activity Monitor events.

FILENET BAM SERVER REFERENCE
XML field information

86
XML field information
Each column in the event table is defined as a field in the XML event editor. Each field has the following
attributes:

XML data types
The XML data types map to FileNet Business Activity Monitor Data Types as follows.

Attribute Description

Field Name Name of the column in the event table.

Relative XPath Element in the XML file that contains this field’s data. See XPaths”
above for details.

XML Data Type Data type of the XML element. See below for details.

FileNet Business Activity
Monitor Data Type

Data type of the column in the event table. See “Data Types” on
page 52 for details.

Formatting Formatting of the decimal, string, or date-time value.

XSD Data Type

anyURI Varchar

base64Binary Varchar

Boolean Boolean

byte Integer

date Timestamp (time portion zero'ed out)

dateTime Timestamp Note the fractional part of a second is supported up to 9
significant digits

decimal Decimal

double Double

duration Varchar (as a string)

ENTITIES Varchar

ENTITY Varchar

float Double

gDay Varchar (as a string) Defines a part of a date - the day (DD)

gMonth Varchar (as a string) Defines a part of a date - the month (MM)

FILENET BAM SERVER REFERENCE
XML data types

87
gMonthDay Varchar (as a string) Defines a part of a date - the month and day (MM-DD)

gYear Varchar (as a string) Defines a part of a date - the year (CCYY)

gYearMonth Varchar (as a string) Defines a part of a date - the year and month (CCYY-
MM)

hexBinary Varchar

ID Varchar

IDREF Varchar

IDREFS Varchar

int Integer

integer Integer

language Varchar

long Decimal

Name Varchar

NCName Varchar

negativeInteger Integer

NMTOKEN Varchar

NMTOKENS Varchar (as a single string)

nonNegativeIntege
r

Integer

nonPositiveInteger Integer

normalizedString Varchar

NOTATION Varchar

positiveInteger Integer

QName Varchar

QName Varchar

short Integer

string Varchar

time Varchar

XSD Data Type

FILENET BAM SERVER REFERENCE
XML data types

88
token Varchar

unsignedByte Integer

unsignedInt Decimal

unsignedLong Decimal

unsignedShort Integer

XSD Data Type

FILENET BAM SERVER REFERENCE 89
Formulas

All formulas in FileNet Business Activity Monitor are expressions in the C-SQL language, a derivative of
ANSI SQL. Some of the formulas are simple expressions, such as field expressions that define the values
in business view columns. Other expressions are more complex and represent entire components of the
C-SQL query statement (SELECT), such as the WHERE, WINDOW, and JOIN clauses.

All formulas in FileNet Business Activity Monitor accept Operators and Constants that can manipulate the
values, and they can accept most C-SQL Functions to further process results.

NOTE: For detailed descriptions of each of the C-SQL SELECT statement, operators, and functions, see
“SELECT” on page 264.

In this Chapter:

“Functions” on page 90

“Function types” on page 90

“Function categories” on page 92

FILENET BAM SERVER REFERENCE
Functions

90
Functions
Functions return values that are system information, such as the current time, manipulations of data, such
as converting a string of characters to upper case, or are evaluations of sets of data, such as the total of all
prices in a set of purchase orders.

C-SQL functions can be used in most formulas in FileNet Business Activity Monitor. However, some are
limited by the operations allowed in the formula’s context. Function types,” below, describes the types of
functions and tells where they are allowed.

If you are looking for a function for a specific task, see “Function categories” on page 92 to see which tasks
the functions can perform.

For a detailed description of each functions, see “Functions” on page 95.

Function types
C-SQL has five types of functions: Scalar, Set, Rank, Moving set, and Tumbling set. The type distinctions
determine where you may include the function in a formula.

Scalar

Scalar functions operates on a single item and provide a single result. For example, the ABS() function
returns the absolute value of a (single) number. Scalar functions may appear in any C-SQL expression.
The scalar functions are:

ABS DISPLAY_MONEY LPAD SIGN

CAST EXP LTRIM SQRT

CEIL FLOOR MOD SUBSTRING

CHARACTER_LENGTH GREATEST POSITION TIMESTAMP_DIFF

CONCAT IS_RAISED POWER TO_CHAR

CURRENT_TIMESTAMP LAST_DAY PRIOR_VALUE TO_DATE

CURRENT_USER LEAST ROUND TRUNC

DATE_ADD LOG RPAD UPPER

DATE_DIFF LOWER RTRIM

FILENET BAM SERVER REFERENCE
Function types

91
Set

Set functions perform aggregations on sets of business view rows and produce a single results for the set.
For example, SUM() provides the total of all the rows in a column in a view. A set function may only be
used in the Select list of a SELECT statement: the field definitions of a view.

NOTE: A set function may reference another set function, but the results are the same as if only the
referenced (inner) function was expressed alone. For example SUM(AVG(Order_Total)) has the same
result as AVG(Order_Total).

NOTE: NULL is ignored when computing set function, moving set function, and rank function values. For
example, the average of (3, NULL, 3) is 3, not NULL and it is not 2.

Rank

Rank functions compute the scalar result for a column in each row in a set, with respect to the entire set. A
rank function may only be used in the Select list of a SELECT statement.

Moving set

Moving set functions are special case set functions that performs calculations on a set of the latest rows in
a view. The set of rows to include is determined only when a new event arrives. At that time, only the latest
rows that meet the set criteria are included in the calculation. Moving set functions are defined by applying
“MOV_” to an existing set function. For example, to calculate a moving average, use MOV_AVG(). A
moving set can be determined by a count of events or as a duration of time. This example calculates the
mean average of Order_Total for the last twelve hours. As new orders are inserted into the view they are
included in the calculation; however, orders older than 12 hours are excluded.

SELECT MOV_AVG(Order_Total, HOUR, 12) FROM Purchase_Orders

NOTE: Moving set functions are a shorthand way to express a simple query window. See “MOV_function”
on page 126 for a complete discussion.

AVG MAX PREV STD_DEVIATION

COUNT MIN SUM VARIANCE

CURRENT

NTILE RANK RATIO_TO_REPORT

MOV_AVG MOV_MAX MOV_SUM MOV_VARIANCE

MOV_COUNT MOV_MIN MOV_STD_DEVIATION

FILENET BAM SERVER REFERENCE
Function categories

92
Tumbling set

Tumbling set functions are special case set functions that perform calculations on a windowed set of the
rows in a view. The set of rows to include is determined when a new event arrives, and the set empties
when full. Tumbling set functions are a shorthand way to express a tumbling window query. For more
information, see “Tumbling Windows” on page 242.

Function categories
These are the categories of C-SQL functions:

Alerts

IS_RAISED

Conversion

CAST
DISPLAY_MONEY
TO_CHAR
TO_DATE

Date and time

CURRENT_TIMESTAMP
DATE_ADD
DATE_DIFF
GREATEST
TIMESTAMP_DIFF
LEAST
LAST_DAY
TO_CHAR
TO_DATE

TUMBLE_AVG TUMBLE_MIN TUMBLE_STD_DEVIATION

C-SQL Function for
a complete list of
functions.TUMBLE
_COUNT

TUMBLE_SUM TUMBLE_VARIANCE

TUMBLE_MAX

FILENET BAM SERVER REFERENCE
Function categories

93
Math

ABS
CAST
CEIL
EXP
FLOOR
LOG
MOD
POWER
ROUND
SIGN
SQRT
SUM
TRUNC

Ranking

NTILE
RANK
RATIO_TO_REPORT

Rules

IS_RAISED
CURRENT_USER

Statistical

AVG
COUNT
GREATEST
LEAST
MAX
MIN
MOV_AVG
MOV_COUNT
MOV_MAX
MOV_MIN
MOV_SUM
MOV_STD_DEVIATION
MOV_VARIANCE
NTILE
RANK
RATIO_TO_REPORT
STD_DEVIATION
TUMBLE_AVG
C-SQL Function for a complete list of functions.TUMBLE_COUNT
TUMBLE_MAX
TUMBLE_MIN
TUMBLE_SUM
TUMBLE_STD_DEVIATION

FILENET BAM SERVER REFERENCE
Function categories

94
TUMBLE_VARIANCE
VARIANCE

Text and string

CAST
CHARACTER_LENGTH
CONCAT
DISPLAY_MONEY
GREATEST
LEAST
LOWER
LTRIM
LPAD
POSITION
RPAD
RTRIM
SUBSTRING
TO_CHAR
TO_DATE
UPPER

Time-series and aggregation

AVG
COUNT
MAX
MIN
MOV_function
MOV_AVG
MOV_COUNT
MOV_MAX
MOV_MIN
MOV_SUM
MOV_STD_DEVIATION
MOV_VARIANCE
STD_DEVIATION
TUMBLE_AVG
C-SQL Function for a complete list of functions.TUMBLE_COUNT
TUMBLE_MAX
TUMBLE_MIN
TUMBLE_SUM
TUMBLE_STD_DEVIATION
TUMBLE_VARIANCE
VARIANCE

Views

CURRENT
IS_RAISED
PREV
PRIOR_VALUE

FILENET BAM SERVER REFERENCE 95
Functions

C-SQL functions may appear in commands and rule formulas where an expression is accepted. For a
general discussion of functions, a list of the Function categories, see “Formulas” on page 89. This
document describes each of the following C-SQL functions in detail.

C-SQL Function Description

ABS Returns the absolute value of a number.

AVG Returns the average value (arithmetic mean) of a set of
numeric values.

CAST Converts a value from one FileNet Business Activity
Monitor type to another FileNet Business Activity Monitor
type.

CEIL Returns the smallest integer, rounded up from zero, greater
than or equal to a number.

CHARACTER_LENGTH Returns the length of a string.

CONCAT Returns a string that is the concatenation of two characters
or strings.

concatList Returns a string that is the concatenation of a list of
characters or strings.

concatSet Returns an alphabetically ordered set of strings.

COUNT Returns the count of rows in a view or set.

CURRENT Returns a value from the latest or last row in a set.

CURRENT_TIMESTAM
P

Returns the current date and time in the server time zone.

CURRENT_USER Returns the login name of the current user.

DATE_ADD Adds a duration of time to a date-time value.

DATE_DIFF Subtracts a duration from a date-time value.

DISPLAY_MONEY Formats a number as a currency value.

EXP Returns e raised to a specific power.

FLOOR Returns largest integer less than or equal to an expression.

gammaDist Returns the gamma distribution of a value.

GREATEST Returns the greatest of a list of expression results.

IS_RAISED Returns true when the specified alert is in a raised state.

FILENET BAM SERVER REFERENCE 96
LAST_DAY Returns the date of the last day of the month that contains
a specified date.

LEAST Returns the least value of a list of expressions.

LOG Returns the logarithm of a number from a specific base.

logNormDist Returns the cumulative lognormal distribution of a value.

LOWER Converts all uppercase characters in a string to lower case.

LPAD Inserts one or more instances of a string into the start of
another string.

LTRIM Removes characters from the start of a string.

MAX Returns the maximum value from a set.

median Returns the median (middle) number in a set.

MIN Returns the minimum value from a set.

MOD Returns the modulus (remainder) of a division.

mode Returns the most frequently occurring number in a set.

MOV_function Limits the rows used in a set function calculation to a set of
the latest rows in the view.

MOV_AVG Returns the moving average value (arithmetic mean) of a
moving window set of numeric values.

MOV_COUNT Returns the count of rows in a moving window set.

MOV_MAX Returns the maximum value from a moving window set.

MOV_MIN Returns the minimum value from a moving window set.

MOV_SUM Returns the sum of a moving window set of numeric
values.

MOV_STD_DEVIATION Returns sample standard deviation of a moving window set
of numbers.

MOV_VARIANCE Returns the square of the sample standard deviation of a
moving window set of numbers.

NTILE Determines the tier rank of each value in a set with respect
to the entire set.

POSITION Returns the position of a character or string within a string.

POWER Returns a value raised to a specific power.

PREV Returns a value from the next to last row in a set.

PRIOR_VALUE Returns the prior value of a column, alias, or expression.

C-SQL Function Description

FILENET BAM SERVER REFERENCE 97
RANK Determines the rank of each value in a set with respect to
the entire set.

RATIO_TO_REPORT Calculates the ratio of a value to the sum of the values for
the entire set.

ROUND Returns a number rounded up to a specified count of
decimal places.

RPAD Adds one or more instances of a string to the end of
another string.

RTRIM Removes characters from the end of a string.

SIGN Identifies the arithmetic sign of a number.

SQRT Returns the square root of a number.

SUBSTRING Returns the portion of a string identified by position and
length.

SUM Returns the sum of a set of numeric values.

STD_DEVIATION Returns sample standard deviation of a set of numbers.

TIMESTAMP_DIFF Returns the interval of time between two timestamps.

TO_CHAR Converts a date-time to a character string.

TO_DATE Converts a character string to a date-time value.

TRUNC Truncates a number to a specific count of decimal places.

TUMBLE_AVG Returns the average value (arithmetic mean) of a tumbling
window set.

C-SQL Function for a
complete list of
functions.TUMBLE_CO
UNT

Returns the count of rows in a tumbling window set.

TUMBLE_MAX Returns the maximum value from a tumbling window set.

TUMBLE_MIN Returns the minimum value from a tumbling window set.

C-SQL Function Description

FILENET BAM SERVER REFERENCE
ABS

98
ABS
This scalar function returns the absolute value of a number.

Syntax

ABS(numeric)

Parameters

• numeric - An expression that evaluates to a numeric.

Return type

Numeric, same data-type as numeric argument.

Example

Return the difference in two persons ages, regardless of which is older.

SELECT ABS(father_age - mother_age) AS "Difference of parents ages"

FROM Family

SIGN() returns the arithmetic sign of a number.

TUMBLE_SUM Returns the sum of a tumbling window set of numeric
values.

TUMBLE_STD_DEVIATI
ON

Returns sample standard deviation of a tumbling window
set of numbers.

TUMBLE_VARIANCE Returns the square of the sample standard deviation of a
tumbling window set of numbers.

UPPER Converts all lowercase characters in a string to uppercase.

VARIANCE Returns the square of the sample standard deviation of a
set of numbers.

C-SQL Function Description

FILENET BAM SERVER REFERENCE
AVG

99
AVG
This set function returns the average value (arithmetic mean) of a set of numeric values.

Syntax

AVG(numeric)

Parameters

• numeric - An expression that evaluates to a numeric and which cannot reference a rank function
function. Typically the argument is a column in a view.

Return type

Numeric, same data-type as numeric argument.

Remarks

Calculates the average of numeric in all rows in the referenced view. When using a GROUP BY clause, the
average applies to the numeric in each group.

SELECT AVG(pr_price) "Average price" FROM Products

Average price

49.96

Example

The following example uses moving averages to produce results similar to a Moving Average
Convergence/Divergence (MACD) indicator. (This is not a true MACD because it does not use an
exponential moving average.) In securities trading, the basic MACD trading rule is to sell when the MACD
falls below its 9 day average and to buy when the MACD rises above the 9 day average. You can
accomplish this by defining rules similar to this:

• Raise SELL when MACD > Nine_Day_MA
Lower SELL when MACD < Nine_Day_MA

• Raise BUY when MACD < Nine_Day_MA
Lower BUY when MACD > Nine_Day_MA

To get these values you need two views:

FILENET BAM SERVER REFERENCE
AVG

100
• MACD_Base_View tracks the moving averages for each security symbol in the event stream. Note
that the Nine_Day_MA formula repeats the formulas for the other two averages. This is because you
cannot reference an alias in another column of the same view.

SELECT

StockQuotes.SYMBOL AS Symbol,

MOV_AVG(StockQuotes_Event.CLOSE, Day, 26, StockQuotes.DATE)

AS Twentysix_Day_MA,

MOV_AVG(StockQuotes_Event.CLOSE, Day, 12, StockQuotes.DATE)

AS Twelve_Day_MA,

MOV_AVG((MOV_AVG(StockQuotes.CLOSE, Day, 12, StockQuotes.DATE) -

MOV_AVG(StockQuotes.CLOSE, Day, 26, StockQuotes.DATE)),

Day, 9, StockQuotes.DATE) AS Nine_Day_MA

FROM StockQuotes

GROUP BY StockQuotes.SYMBOL

• MACD_View contains the last MACD values for each security stored in the base view:

SELECT MACD_Base_View.Symbol AS Symbol,

MACD_Base_View.Nine_Day_MA AS Nine_Day_MA,

(MACD_Base_View.Twentysix_Day_MA -

MACD_Base_View.Twelve_Day_MA

) AS MACD

FROM MACD_Base_View

median() returns the median (middle) number in a set.

mode() returns the most frequently occurring number in a set.

MOV_AVG() returns the moving average for a set.

TUMBLE_AVG() returns the tumbling average for a set.

FILENET BAM SERVER REFERENCE
CAST

101
CAST
This scalar function converts a value from one FileNet Business Activity Monitor type to another FileNet
Business Activity Monitor type.

Syntax

CAST(value AS vcDataType)

Parameters

• value - Value to convert.

• vcDataType - One of the C-SQL Data Types to convert to.

• INTEGER

• DECIMAL

• DOUBLE PRECISION

• VARCHAR

• TIMESTAMP

• BOOLEAN

Return type

Same as vcDataType argument.

Remarks

Types are cast according the Order of precedence table in “Data type conversion” on page 53. CAST()
returns an error if a type cannot be cast as specified in an expression. For example, the following is an
error because C-SQL attempts to cast ‘4.5’ to an INTEGER, but the decimal is an illegal character for
INTEGER types:

3 < CAST('4.5' AS INTEGER)

When casting from a decimal formatted column to a string, the result is zero-padded on the decimals to
match the scale, just as when casting from a string to a decimal. For example,

CAST('1.1' AS DECIMAL(5,4)) --> 1.1000

CAST(CAST('1.1' AS DECIMAL(5,4)) AS VARCHAR) --> '1.1000'

Example

Cast a date string into a time-stamp:

SELECT CAST('1997-10-22' AS TIMESTAMP)

FROM Foo;

“Data type conversion” on page 53 provides details about converting types.

TO_CHAR() converts the timestamp to a character string of specified format.

TO_DATE() converts a character string to a date.

FILENET BAM SERVER REFERENCE
CEIL

102
CEIL
This scalar function returns the smallest integer, rounded up from zero, greater than or equal to a number.

Syntax

CEIL(numeric)

Parameters

• numeric - Number to round.

Return type

Same data type are numeric result.

Example

CEIL(1234.56) returns 1235.00.

CEIL(-2.75) returns -2.00.

FLOOR() returns the largest value less than or equal to a number.

CHARACTER_LENGTH
This scalar function returns the length of a string.

Syntax

CHARACTER_LENGTH(string)

Parameters

• string - String or VARCHAR expression result whose length to evaluate.

Return type

INTEGER.

Remarks

Alternate spelling is:

CHAR_LENGTH(string)

Returns an integer that is the length of the string. Returns NULL if the string is NULL.

The length of a string is determined by its displayable characters, and not necessarily the storage length of
the string. For example, a Unicode character requires 16-bits of storage — which might be considered as 2
characters of storage on some systems — but the actual character length is 1.

FILENET BAM SERVER REFERENCE
CONCAT

103
CONCAT
This scalar function returns a string that is the concatenation of two characters or strings.

Syntax

CONCAT(string1, string2)

Parameters

• string - A character string value or VARCHAR expression result.

Return type

VARCHAR.

Remarks

Returns string2 appended to the end of string1. Returns NULL if either string is NULL.

The || operator (“String operators” on page 213) is identical to this function.

Examples

CONCAT('a', 'b') returns 'ab'.

'a'||'b' returns 'ab'.

concatList() returns a string that is the concatenation of a list of characters or strings.

concatSet() returns an alphabetically ordered set of strings.

“String operators” on page 213 describes the || operator.

FILENET BAM SERVER REFERENCE
concatList

104
concatList
This scalar function returns a string that is the concatenation of a list of characters or strings.

Syntax

concatList(string1, string2 [, … stringN])

Parameters

• string - An expression that evaluates to a VARCHAR

Return type

VARCHAR.

Remarks

Returns string2 appended to the end of string1, string3 appended to string2, and so on.

Ignores NULL values unless all values are NULL, in which case returns an empty string.

Examples

concatList('a','b','c') returns 'abc'.

CONCAT() returns a string that is the concatenation of two characters or strings.

concatSet() returns an alphabetically ordered set of strings.

“String operators” on page 213 describes the || operator.

FILENET BAM SERVER REFERENCE
concatSet

105
concatSet
This set function returns an alphabetically ordered set of strings.

Syntax

concatSet(stringExp)

Parameters

• stringExp - An expression that evaluates to a VARCHAR. Typically the argument is a column in a view.

Return type

VARCHAR.

Remarks

Returns a string that is the ordered set of all the strings passed into the function.

Ignores NULL values unless all values are NULL, in which case returns an empty string.

Examples

Consider this statement:

SELECT concatSet(item) AS item_list FROM GroceryList

If the items in GroceryList are presented as follows in this order:

'banana'

'egg'

'apple'

'donut'

NULL

'carrot'

The order in item_list in the new view is:

'apple,banana,carrot,donut,egg'

Subsequently, if ‘bagel’ is added to GroceryList, the new order in the new view is:

'apple,bagel,banana,carrot,donut,egg'

CONCAT() returns a string that is the concatenation of two characters or strings.

concatList() returns a string that is the concatenation of a list of characters or strings.

“String operators” on page 213 describes the || operator.

FILENET BAM SERVER REFERENCE
COUNT

106
COUNT
This set function returns the count of rows in a view or set.

Syntax

COUNT(*)

Return type

INTEGER.

Remarks

Returns zero (0) if the view or set is empty.

This is also known as the “count star” function.

Rows that include NULLs are counted.

MOV_COUNT() returns the count of a moving set.

C-SQL Function for a complete list of functions.TUMBLE_COUNT() returns the count of a tumbling set.

CURRENT
This set function returns a value from the latest or last row in a set.

Syntax

CURRENT(columnName)

Parameters

• columnName - Column or alias to retrieve.

Return type

Same data-type as argument.

Remarks

Returns a value from the latest row in the set based on the event timestamp. When all rows in the set have
the same timestamp, returns the value from the last row in the set.

FILENET BAM SERVER REFERENCE
CURRENT_TIMESTAMP

107
Example

Gather all stock feed bids and group them by stock symbol. The “current” row will always be the last one
received, and as such, will contain the current bid price:

SELECT symbol, CURRENT(bid) AS Bid, MAX(bid) AS High, MIN(bid) AS LOW

FROM Stock_feed

GROUP BY symbol

symbol Bid High Low

------- ------ ------ -----

K 31.25 31.28 30.72

IBM 80.79 80.04 82.55

VCLR 22.60 24.42 22.00

Moving set semantics

Cannot be used with a moving or tumbling set.

PREV() returns a value from the row previous to the current one.

CURRENT_TIMESTAMP
This scalar function returns the current date and time in the server time zone.

Syntax

CURRENT_TIMESTAMP()

Return type

Date-Time.

Example

LAST_DAY(CURRENT_TIMESTAMP()) returns the date of the last day of the current month.

TO_CHAR() converts a timestamp to a character string.

LAST_DAY() returns the date of the last day of a month.

DATE_ADD() adds a duration to a date-time.

DATE_DIFF() subtracts a duration from a date-time.

TIMESTAMP_DIFF() returns a time interval between two timestamps.

FILENET BAM SERVER REFERENCE
CURRENT_USER

108
CURRENT_USER
This scalar function returns the login name of the current user.

Syntax

CURRENT_USER()

Return type

VARCHAR.

Remarks

Returns the user’s login name as defined in FileNet Business Activity Monitor, in the same character case,
and as it appears in the FileNet BAM Workbench. As such, when using in a comparison, be sure to match
the character case exactly.

This function is primarily for use in access filters. See “Access Filters” on page 17, especially the section
“Users as context” on page 19, for examples and uses.

DATE_ADD
This scalar function adds a duration of time to a date-time value.

Syntax

DATE_ADD(timestamp, [durationType,] duration)

Parameters

• timestamp - The date-time to adjust.

• durationType - Type of the duration value; one of these literals:

• SECOND

• MINUTE

• HOUR

• DAY (default)

• MONTH

• YEAR

• duration - Duration of time to add; a literal positive integer.

Return type

Date-Time.

Remarks

Uses Gregorian calendar addition rules.

FILENET BAM SERVER REFERENCE
DATE_DIFF

109
Example

DATE_ADD(CURRENT_TIMESTAMP(), 2) returns a date-time two days in the future from now.

DATE_ADD(aTimestamp, DAY, 14) returns a value 2 weeks after the data.

DATE_DIFF() subtracts a duration from a date-time.

CURRENT_TIMESTAMP() returns the current date and time.

TIMESTAMP_DIFF() returns a time interval between two timestamps.

DATE_DIFF
This scalar function subtracts a duration from a date-time value.

Syntax

DATE_DIFF(timestamp, [durationType,] duration)

Parameters

• timestamp - The date-time from which to subtract some duration of time.

• durationType - Type of the duration value; one of these literals:

• SECOND

• MINUTE

• HOUR

• DAY (default)

• MONTH

• YEAR

• duration - Duration of time to subtract; a literal positive integer.

Return type

Date-Time.

Remarks

Uses Gregorian calendar subtraction rules.

Durations that span leap year days and seconds generally ignore the leap value. For example, subtracting
1 year from 3 March 1976 results in 3 March 1975 without being affected by the 29 February 1976 leap
day. However, subtracting 1 year from 29 February results in a 28 February date.

Examples

DATE_DIFF(CURRENT_TIMESTAMP(), 2) returns a date-time two days ago from now.

DATE_ADD() adds a duration to a date-time.

CURRENT_TIMESTAMP() returns the current date and time.

FILENET BAM SERVER REFERENCE
DISPLAY_MONEY

110
TIMESTAMP_DIFF() returns a time interval between two timestamps.

DISPLAY_MONEY
This scalar function formats a number as a currency value.

Syntax

DISPLAY_MONEY(number [, languageCode, countryCode])

Parameters

• number - Number to format.

• languageCode - A two-letter ISO 639 language code. Helps determine the currency symbol to display.

• countryCode - A two-letter ISO 3166 country code. Specifies the thousands separator, decimal
separator, and count of decimal digits to display based on what is appropriate for the country.

Return type

VARCHAR.

Remarks

Returns a the number formatted as a currency string.

Omitting the languageCode and countryCode uses the symbol and format appropriate for country that your
computer is configured to use by default.

Some currency symbols require that the browser be configured to the correct code-page for the language.

Examples

Here are some examples that format the number 12345.678:

Language/country Formula Result

English/USA DISPLAY_MONEY(12345.678,'en','us') $12,345.68

Swedish/Sweden DISPLAY_MONEY(12345.678,'sv','se') 12 345,68 kr

German/Germany DISPLAY_MONEY(12345.678,'de','de') 12.345,68 dm

FILENET BAM SERVER REFERENCE
DISPLAY_MONEY

111
Common codes

Here are some common ISO 639 two-letter language codes:

Here are some of the common ISO 3166 two-letter country codes.

Language Code Language Code Language Code

Afrikaans af Fiji fj Dutch nl

Arabic ar Faroese fo Norwegian no

Catalan ca French fr Punjabi pa

Corsican co Hebrew he Polish pl

Czech cs Hindi hi Portuguese pt

Danish da Croatian hr Russian ru

German de Italian it Serbo-
Croatian

sh

Greek el Inuktitut iu Swedish sv

English en Japanese ja Turkish tr

Spanish es Korean ko Urdu ur

Persian fa Mongolian mn Yoruba yo

Finnish fi Nepali ne Chinese zh

Country Code Country Code

AUSTRALIA AU NEPAL NP

AUSTRIA AT NETHERLANDS NL

BRAZIL BR NEW ZEALAND NZ

CANADA CA NORWAY NO

CHINA CN OMAN OM

CROATIA (local name:
Hrvatska)

HR PAKISTAN PK

DENMARK DK PITCAIRN PN

FIJI FJ POLAND PL

FINLAND FI PORTUGAL PT

FILENET BAM SERVER REFERENCE
EXP

112
EXP
This scalar function returns e raised to a specific power.

Syntax

EXP(power)

Parameters

• power - The power (DOUBLE) to which to raise e.

Return type

DOUBLE PRECISION.

Remarks

Returns e raised to the nth power, where e = 2.71828183...

Example

EXP(4) raises e to the 4th power and returns 54.59815.

LOG() returns the logarithm of a number from a specific base

POWER() raises a number to a specific power.

FRANCE FR SAUDI ARABIA SA

GERMANY DE SOUTH AFRICA ZA

GREECE GR SPAIN ES

HONG KONG HK SWEDEN SE

INDIA IN SWITZERLAND CH

IRAN (Islamic republic of) IR TAIWAN TW

ISRAEL IL TURKEY TR

ITALY IT UNITED ARAB EMIRATES AE

JAPAN JP UNITED KINGDOM GB

KOREA (Demo. people's
republic of)

KP UNITED STATES US

MEXICO MX — —

Country Code Country Code

FILENET BAM SERVER REFERENCE
FLOOR

113
FLOOR
This scalar function returns largest integer less than or equal to an expression.

Syntax

FLOOR(numeric)

Parameter

• numeric - Number to floor.

Return type

Numeric, same data-type as numeric argument.

Example

FLOOR('1234.56') returns the integer 1234.00, after first implicitly casting the string literal to a
DECIMAL.

FLOOR(-2.75) returns -3.00.

NOTE: This function behaves identical to the Microsoft Excel INT() function.

CEIL() returns smallest integer rounded up.

gammaDist
This scalar function returns the gamma distribution of a value.

Syntax

gammaDist(number, alphaNumber, betaNumber, isCumulative)

Parameter

• number - Positive number to evaluate, may be zero (0).

• alphaNumber - Alpha parameter (positive number, may be zero) to the gamma distribution equation.

• betaNumber - Beta parameter (positive number, may be zero) to the gamma distribution equation.

• isCumulative - Boolean that determines the form of the function of number based on alphaNumber and
betaNumber:

• TRUE uses the cumulative distribution function.

• FALSE uses the probability mass function.

Return type

DOUBLE PRECISION.

Remarks

When alphaNumber is one (1), returns an exponential distribution.

When alphaNumber is a positive integer, the result is a Erlang distribution.

FILENET BAM SERVER REFERENCE
GREATEST

114
Example

Populate a view with the probability mass for a gamma distribution of alpha=9 and beta=2:

SELECT TimeToFail,

gammaDist(TimeToFail, 9, 2, FALSE) AS GammaDist

FROM UnitTests

ORDER BY TimeToFail

logNormDist() returns the cumulative lognormal distribution of a value.

GREATEST
This scalar function returns the greatest of a list of expression results.

Syntax

GREATEST(value, value [, value …])

Parameters

• value - A value to be used for the comparison. All values after the first are converted to the data type of
the first.

Return type

Same data-type as argument.

Example

Selects the string with the greatest value:

SELECT Greatest(

'SCHOLAR',

'SKYLER',

'SHUELLER')

FROM Foo;

Greatest

SKYLER

LEAST() determines the least value from a list.

MAX() returns the maximum value from a set.

“Function types” on page 90 discusses moving sets.

FILENET BAM SERVER REFERENCE
IS_RAISED

115
IS_RAISED
This scalar function returns true when the specified alert is in a raised state.

Syntax

IS_RAISED('alertName')

Parameters

• alertName - Fully qualified name of an alert: the name must include the containing business activity
and scenario names, like this 'activityName.scenarioName.alertName'.

Return type

Boolean.

Remarks

Returns True if the alert exists and is in a raised state; otherwise, if the alert is in a lowered state or if it
doesn’t exist, returns False.

NOTE: Because this function returns False when the alert does not exist, there is no test to ensure that
the name you entered is a valid alert in the system. As such, misspelling the name will cause the function
to always return False.

Use this function in a rule condition to test the state of an alert, and to generate a new alert when the tested
alert remains raised for a period of time.

When used in a view definition, the following conditions apply:

• this function can only appear in the WHERE clause

• the view definition cannot have a set function.

See “Monitoring alerts” on page 259 for a detailed discussion of using this function.

Alert states.

Monitoring alerts.

FILENET BAM SERVER REFERENCE
LAST_DAY

116
LAST_DAY
This scalar function returns the date of the last day of the month that contains a specified date.

Syntax

LAST_DAY(dateTime)

Parameters

• dateTime - A valid date (TIMESTAMP).

Return type

Date-Time.

Example

LAST_DAY(CURRENT_TIMESTAMP()) returns the date of the last day of the current month.

CURRENT_TIMESTAMP() returns the current date and time.

LEAST
This scalar function returns the least value of a list of expressions.

Syntax

LEAST(value, value [, value …])

Parameters

• value - A value to be used for the comparison. All values after the first are converted to the data type of
the first.

Return type

Same data-type as argument.

Example

SELECT Least(

'SCHOLAR',

'SKYLER',

'SHUELLER')

FROM Foo;

Least

SCHOLAR

GREATEST() determines the greatest value from a list.

MIN() returns the minimum value from a set.

“Function types” on page 90 discusses moving sets.

FILENET BAM SERVER REFERENCE
LOG

117
LOG
This scalar function returns the logarithm of a number from a specific base.

Syntax

LOG(numeric [, base])

Parameters

• numeric - Number (DOUBLE) from which to retrieve the logarithm; must be greater than 1.

• base - Base (DOUBLE) of the logarithm; must be greater than zero (0). Omit this option to use the
natural log of numeric.

Return type

DOUBLE PRECISION.

Remarks

This can be expressed mathematically as “lognumeric base”.

Example

LOG(8,64) returns 2.0.

LOG(2) returns 0.301029…

EXP() raise e to a specific power.

POWER() raises a value to a specific power.

FILENET BAM SERVER REFERENCE
logNormDist

118
logNormDist
This scalar function returns the cumulative lognormal distribution of a value.

Syntax

logNormDist(number, meanNumber, stdNumber)

Parameters

• number - Value to evaluate.

• meanNumber - Mean average of ln(number).

• stdNumber - Standard deviation of ln(number).

Return type

DOUBLE PRECISION.

Remarks

Returns the cumulative lognormal distribution of a value, where ln(number) is normally distributed with
mean and standard deviation.

gammaDist() returns gamma distribution of a value.

LOWER
This scalar function converts all uppercase characters in a string to lower case.

Syntax

LOWER(string)

Parameters

• string - String to convert.

Return type

VARCHAR.

Example

LOWER('Stage Right') returns ‘stage right’.

UPPER() converts to all uppercase.

FILENET BAM SERVER REFERENCE
LPAD

119
LPAD
This scalar function inserts one or more instances of a string into the start of another string.

Syntax

LPAD(string, length, [padChar])

Parameters

• string - Character or string to alter.

• length - The display length of the returned string. Must be zero (0) or greater. When using multi-byte
characters, the length is the count of characters that display or print, not the count of multi-bytes.

• padChar - Character or string to insert. Default is a single space or blank character (‘ ’).

Return type

VARCHAR.

Remarks

Returns a string in the same character type as the string parameter.

When length is smaller than the length of string, returns the string truncated to length.

Examples

LPAD('ABC',6,'x') returns ‘xxxABC’.

LPAD('ABC',6,'xo') returns ‘xoxABC’.

LPAD('ABC',4) returns ‘ ABC’.

LPAD('ABC', 2, 'x') returns ‘AB’.

RPAD() adds characters to the end of a string.

FILENET BAM SERVER REFERENCE
LTRIM

120
LTRIM
This scalar function removes characters from the start of a string.

Syntax

LTRIM(wholeString [, setString])

Parameters

• wholeString - String to trim.

• setString - Characters to remove; default is a single blank space (‘ ’).

Return type

VARCHAR.

Remarks

Recursively removes all instances of setString from the start of wholeString until wholeString no longer
starts with setString, and returns the result.

Examples

LTRIM(' ZZZ') returns ‘ZZZ’.

LTRIM('aaaZZZ','a') returns ‘ZZZ’.

LTRIM('ababaZZZ','ab') returns ‘aZZZ’.

LTRIM('abcabaZZZ','abc') returns ‘abaZZZ’.

RTRIM() removes characters from the end of a string.

FILENET BAM SERVER REFERENCE
MAX

121
MAX
This set function returns the maximum value from a set.

Syntax

MAX(expression)

Parameters

• expression - An expression that evaluates to any data type and which cannot reference a rank function
function. Typically the argument is a column in a view.

Return type

Same data-type as expression argument.

Remarks

For Boolean, True is greater than False.

For String, ‘z” is greater than ‘A’.

Example

Return the maximum price from all the rows in Foo:

SELECT MAX(price) FROM Foo;

PRICE

770.00

Moving set semantics

When used as a MOV_function(), returns the maximum value for the moving set.

MOV_MAX(numeric, window, size [,timestampColumn])

MOV_MAX() returns the maximum value from a moving window set.

TUMBLE_MAX() returns the maximum value from a tumbling window set.

MIN() returns the minimum value from a set.

GREATEST() returns the maximum value from a list.

FILENET BAM SERVER REFERENCE
median

122
median
This set function returns the median (middle) number in a set.

Syntax

median(numericExp)

Parameters

• numericExp - An expression that evaluates to numeric and which cannot reference a rank function
function. Typically the argument is a column in a view.

Return type

INTEGER when all results of numericExp are integer; otherwise DOUBLE PRECISION when any of the
results are decimal.

Remarks

This function sorts the values in the set and then returns the median of the ordered set.

When the count of values is odd, the median is the middle number of the set. For example, the median of
2,1,5 is 2: the middle value of the ordered set.

Otherwise, when the count is even, the median is the average value of the two middle numbers in the set.
For example, the median of 2,1,5,4 is 3: the average of 2 and 4. Further, when the result of the average is
a decimal value, the result is “floored” to the integer: the median of 2 and 3 is 2, which is floor(2.5).

Ignores NULL values.

Examples

Consider this statement:

SELECT median(Value) AS MedianV FROM NumberList

The result is 1.5 (the average of 1.0 and 2.0 after ignoring the NULLs) when the items in NumberList are
presented in this order:

3.0

NULL

0.0

2.0

1.0

NULL

NULL

The result is 1 if the set is

1

2

Because the values are integers, the result must also be an integer. As such the average which is 1.5 is
floored to 1.

AVG() returns the mean average value of a set.

mode() returns the most frequently occurring number in a set.

FILENET BAM SERVER REFERENCE
MIN

123
MIN
This set function returns the minimum value from a set.

Syntax

MIN(expression)

Parameters

• expression - An expression that evaluates to any data type and which cannot reference a rank function
function. Typically the argument is a column in a view.

Return type

Same data-type as expression argument.

Remarks

For Boolean, True is greater than False.

For String, ‘z” is greater than ‘A’.

Example

Return the minimum price from all the rows in set Foo:

SELECT MIN(price) FROM Foo;

PRICE

100.00

Moving set semantics

When used as a MOV_function(), returns the minimum value for the moving set.

MOV_MIN(numeric, window, size [,timestampColumn])

MOV_MIN() returns the minimum value from a moving window set.

TUMBLE_MIN() returns the minimum value from a tumbling window set.

MAX() returns the maximum value from a set.

LEAST() returns the smallest value from a list.

MOD
This scalar function returns the modulus (remainder) of a division.

Syntax

MOD(dividend, divisor)

Parameters

• dividend - Numeric to divide.

FILENET BAM SERVER REFERENCE
MOD

124
• divisor - Numeric to divide by.

Return type

INTEGER.

Remarks

When divisor is zero (0), returns dividend.

This function behaves differently from the classical mathematical modulus function when dividend is
negative. The classical modulus can be expressed with this formula:

dividend - divisor * FLOOR(dividend/divisor)

This function uses this updated formula:

SIGN(dividend) *

(ABS(dividend) - ABS(divisor * FLOOR(ABS(dividend/divisor))))

This table illustrates the difference between the MOD function and the classical modulus formula:

Note: Most database management systems use the same formula as FileNet Business Activity Monitor,
while spreadsheet applications like Microsoft Excel use the classical modulus.

Example

Return the remainder of dividend divided by divisor:

SELECT MOD(11,4) "Modulus" FROM Foo;

Modulus

3

Dividend Divisor MOD (Dividend,Divisor) Classical Modulus

11 4 3 3

11 -4 3 -1

-11 4 -3 1

-11 -4 -3 -3

FILENET BAM SERVER REFERENCE
mode

125
mode
This set function returns the most frequently occurring number in a set.

Syntax

mode(numericExp)

Parameters

• numericExp - An expression that evaluates to numeric and which cannot reference a rank function
function. Typically the argument is a column in a view.

Return type

Same type as numericExp result.

Remarks

When multiple different values occur with the same frequency, mode() returns the first one it encountered.
See the example.

Ignores NULL values.

Examples

Consider this set of numbers, fed into mode() in this order:

1

3

4

1

3

The mode() function returns 1 because it occurs with the most frequency, and is encountered before 3,
which occurs with the same frequency. Had the set been fed into mode() in reverse order, it would have
returned 3.

For this set of numbers, mode returns 1.0:

1

3

NULL

2.0

NULL

NULL

1

The NULLs are ignored, and the 2.0 causes mode() to return a DOUBLE PRECISION value.

See also

AVG() returns the mean average number in a set.

median() returns the median (middle value) for a set.

“C-SQL Function” on page 95 for a complete list of functions.

FILENET BAM SERVER REFERENCE
MOV_function

126
MOV_function
This scalar function limits the rows used in a set function calculation to a set of the latest rows in the view.

Moving set functions

The moving window set functions are:

NOTE: Moving set functions are shorthand for simple query windows. For a complete discussion, see
“Query Windows” on page 228.

Syntax

All moving set functions have this syntax:

mov_function(numeric, window, size [,timestampColumn])

where functionName is an existing set function. The return type of the moving function is the same as that
of the named function. The numeric is typically a column in the view, but may contain other functions and
operators, though it cannot reference another set function, moving set function, or rank function.

The window and size arguments specify which rows are included in the set. The window argument
determines if size is the count of rows in the set (EVENT), or a duration of time (SECOND, MINUTE,
HOUR, DAY. MONTH, or YEAR). For example a set of the last 6 events limits the set to no more than 6

Argument Description

MOV_AVG Returns the moving average value (arithmetic mean) of a moving
window set of numeric values.

MOV_COUNT Returns the count of rows in a moving window set.

MOV_MAX Returns the maximum value from a moving window set.

MOV_MIN Returns the minimum value from a moving window set.

MOV_SUM Returns the sum of a moving window set of numeric values.

MOV_STD_DEVIATION Returns sample standard deviation of a moving window set of
numbers.

MOV_VARIANCE Returns the square of the sample standard deviation of a moving
window set of numbers.

FILENET BAM SERVER REFERENCE
MOV_function

127
events (per group when using the GROUP BY clause). Note that some events generate multiple rows; do
not confuse events with rows.

When using time-series span (instead of event span), the size of the set varies depending on when the
events were recorded in the view. For example when using a time-series of 1 hour, only those rows that
entered the view in the last hour are used in the calculation.

NOTE: It is possible, but highly unlikely, for an event to arrive in the system in time to be included in a
view, but to be discarded because by the time it reaches the view, it is no longer in the view’s time span.
For example, if the event enters the event table a few milliseconds before it would excluded from a derived
view, it might be included or excluded depending on how long it takes to process and propagate the event
in base views.

The optional timestampColumn argument instructs the system to use the value of a field in the view as the
reference point for starting the time-series span. When you omit this option, the system calculates the time-
series based on the system clock, such as the last hour from now. When you name a timestamp column

03:22 12.34
Time Price

03:47 33.50
03:49 10.87
03:53 20.00
04:06 14.66

03:22 12.34
Time Price

03:47 33.50
03:49 10.87
03:53 20.00
04:06 14.66
04:26 32.42
04:56 15.95
05:30 14.22

03:22 12.34
Time Price

03:47 33.50
03:49 10.87
03:53 20.00
04:06 14.66
04:26 32.42
04:56 15.95

03:22 12.34
Time Price

03:47 33.50
03:49 10.87
03:53 20.00
04:06 14.66
04:26 32.42

MOV_SUM(Price, EVENT, 6)

123.79
127.40

108.12

91.37

Note: Only 5 events in set.

SUM(Price) OVER (EVENT '5' PRECEDING REFERENCE FRAME)

Complete window expression:

MOV_SUM(Price, EVENT, 6)

03:22 12.34
Time Price

03:47 33.50
03:49 10.87
03:53 20.00
04:06 14.66

03:22 12.34
Time Price

03:47 33.50
03:49 10.87
03:53 20.00
04:06 14.66
04:26 32.42
04:56 15.95
05:30 14.22

03:22 12.34
Time Price

03:47 33.50
03:49 10.87
03:53 20.00
04:06 14.66
04:26 32.42
04:56 15.95

03:22 12.34
Time Price

03:47 33.50
03:49 10.87
03:53 20.00
04:06 14.66
04:26 32.42

MOV_SUM(Price, HOUR, 1)

111.45
82.95

30.17

91.37

SUM(Price) OVER (RANGE '1' HOUR PRECEDING REFERENCE OPERATOR)

Complete window expression:

FILENET BAM SERVER REFERENCE
Time-series spans

128
instead, the calculation is based on the time span from the value in the most recent value in the column
from any row in the view.

Time-series spans
Time span calculations use the Gregorian calendar and are calculated to the second that the event was
recorded in the system (recorded in the vc_timestamp column). For example, if the span is 1 day and an
event arrives just before midnight, it excludes almost all events on the previous day; however, an event
arriving just after midnight includes almost all of the events on the previous day. Here are some additional
semantics:

• In locales where daylight savings time is observed, durations of days, months, and years are adjusted
accordingly. As such, while 1 day is typically 24 hours long, it may be 23 or 25 hours depending on the
time of year.

• Month calculations are based on the day of the month: a 1 month span on 5 April includes all dates
after 5 March. When the day of the month does not exist at the start of the window, the end of the
month is used. For example, a 1 month span on 31 May starts after 30 April.

• Similarly, year calculations are based on the day of the year, and adjust as necessary for leap years.

• For the purposes of parallel execution, you may choose to not process events in the order in which
they are timestamped. In this case the order of the data within a group is arbitrary and will only
produce approximate Moving Set values that may not be reproducible for the same input events during
a subsequent evaluation of the same set.

• The set of events included in a moving window view are determined when a new event enters the view.
Events that are filtered out of a view before they enter the view, such as when excluded by a WHERE
clause, do not affect the view and do not cause the view to update.

View warning
Do not use a moving set function in a derived view to perform a calculation on a moving set function result
in a base view. This is because the derived function will always return the current value in the base view,
regardless of the span of the window. If you need such a aggregation, place the functions in the same view.
See the example in “AVG” on page 99 for details.

30.17

MOV_SUM(Price, HOUR, 1, Time)

03:47 33.50
Time Price

03:22 12.34
04:06 14.66
03:53 20.00
05:30 14.22
04:26 32.42
04:56 15.95
03:49 10.87

Events of the last hour from the
most recent event based on its
Time column value, not
necessarily the order that the
events entered the view.

SUM(Price) OVER (ORDER BY Time

RANGE '1' HOUR PRECEDING

REFERENCE OPERATOR)

Complete window expression:

FILENET BAM SERVER REFERENCE
Interacting with GROUP BY

129
Interacting with GROUP BY
Using a moving set function on a view defined with a GROUP BY clause populates the groups as follows:

Time-series spans

Time-series spans apply to all events in all groups. Only events that fall within the time span are included in
the groups. Events that do not meet time span definition are excluded. When all events have been
removed from a group set, the group is empty. If no other columns retain the group, it is removed from the
view. Consider this example where average prices are tracked in groups by product for the last hour. When
a Product no longer has events in the last hour, that Product’s group is removed.

SELECT MOV_AVG(Price,HOUR,1) AS Av_pr

FROM …

GROUP BY Product

However, in this variation the presence of the SUM() function causes the view to retain every event group,
but the average price for a group of the last hour may be empty. Querying an empty group returns NULL.

SELECT MOV_AVG(Price,HOUR,1) AS Av_pr,

SUM(Price) AS Total

FROM …

GROUP BY Product

Event spans

Event spans apply their size to each group in the view; each group tracks a count of events determined by
the size of the span. Groups are never removed from the view, and events are removed from the sets only
when they are pushed out by a newer event. Consider the view in this example where MOV_AVG() tracks
up to 3 events per group. When the fourth event whose Ix value is 100 is inserted, the first is dropped from
the moving average calculation of the Ix=100 group. However, within this example, once the 200 group is
created, its set remains constant with the one event:

For event spans that have events with multiple rows in the view, the entire event is treated as one item in
the set based on the timestamp (vc_timestamp) and event ID (vc_event_id).

NOTE: All columnNames referred directly by a rank function or scalar function must appear in the set of
columns listed in the GROUP BY list.

SELECT IX,

MOV_AVG(Price,EVENT,3) AS Av_pr,

COUNT(*) AS Ct

FROM …

GROUP BY Ix

First event only.

100
Ix

200
100
100
100

12.00
Price

33.50
10.00
10.00
10.00

12.00
Av_pr

1
Ct

11.00
Av_pr

33.50
2
Ct

1

10.67
Av_pr

33.50
3
Ct

1

10.00
Av_pr

33.50
3
Ct

1

100
Ix

100
Ix

200

100
Ix

200

100
Ix

200
First event dropped.

Includes Ix=200.

Has 3 Ix=100.

Event

FILENET BAM SERVER REFERENCE
MOV_AVG

130
MOV_AVG
This moving set function returns the moving average value (arithmetic mean) of a moving window set of
numeric values.

Syntax

MOV_AVG(numeric, window, size [,timestampColumn])

Parameters

• numeric - An expression that evaluates to a numeric and which cannot reference a rank function
function. Typically the argument is a column in a view. See individual function descriptions for
additional restrictions.

• window - Determines if size is the count of events in the set (EVENT), or a duration of time (SECOND,
MINUTE, HOUR, DAY. MONTH, or YEAR).

• size - Duration or count of window to use for determining the size of the set. Must be an integer greater
than zero (0).

• timestampColumn - (optional) Use the value of the field as the starting point for the time-series span.
The calculation is based on the time span from the most recent value in the column from any row in the
view. Omit this option to use the system clock as the time basis.

Return type

Numeric, same data-type as numeric argument.

Remarks

Returns NULL if the group is empty.

Example

Return the average price of all the events that arrive within a 7 day interval:

MOV_AVG(price, DAY, 7, trade_time) AS Avg_7_day_price

“Function types” on page 90 discusses moving sets.

AVG() returns the mean average for a set.

TUMBLE_AVG() returns the tumbling average for a set.

FILENET BAM SERVER REFERENCE
MOV_COUNT

131
MOV_COUNT
This moving set function returns the count of rows in a moving window set.

Syntax

MOV_COUNT(*, window, size [,timestampColumn])

Parameters

• window - Determines if size is the count of events in the set (EVENT), or a duration of time (SECOND,
MINUTE, HOUR, DAY. MONTH, or YEAR).

• size - Duration or count of window to use for determining the size of the set. Must be an integer greater
than zero (0).

• timestampColumn - (optional) Use the value of the field as the starting point for the time-series span.
The calculation is based on the time span from the most recent value in the column from any row in the
view. Omit this option to use the system clock as the time basis.

Return type

INTEGER.

Remarks

Returns zero (0) if the set is empty.

Rows that include NULLs are counted.

When used with a GROUP BY returns the count of rows in the group set. See the discussion and example
in “Interacting with GROUP BY” on page 129 for more information.

Example

Return the count of all the events that arrive within the current 8 hour interval:

MOV_COUNT(*, HOUR, 8, trade_time) AS Total

The above function is shorthand for this in-line window expression:

COUNT(*) AS Total OVER (ORDER BY trade_time '8' HOUR)

This expression is equivalent to the following after filling in all default values:

COUNT(*) AS Total OVER (ORDER BY trade_time

RANGE INTERVAL '8' HOUR PRECEDING

REFERENCE OPERATOR)

NOTE: The eight-hour window begins when the first event arrives in the view. To begin the window at the
top of the hour instead, include INITIALIZE '2003-03-05 00:00:00.000'.

“Function types” on page 90 discusses moving sets.

COUNT() returns the count of a view or set.

C-SQL Function for a complete list of functions.TUMBLE_COUNT() returns the count of a tumbling window
set.

FILENET BAM SERVER REFERENCE
MOV_MAX

132
MOV_MAX
This moving set function returns the maximum value from a moving window set.

Syntax

MOV_MAX(numeric, window, size [,timestampColumn])

Parameters

• numeric - An expression that evaluates to a numeric and which cannot reference a rank function
function. Typically the argument is a column in a view. See individual function descriptions for
additional restrictions.

• window - Determines if size is the count of events in the set (EVENT), or a duration of time (SECOND,
MINUTE, HOUR, DAY. MONTH, or YEAR).

• size - Duration or count of window to use for determining the size of the set. Must be an integer greater
than zero (0).

• timestampColumn - (optional) Use the value of the field as the starting point for the time-series span.
The calculation is based on the time span from the most recent value in the column from any row in the
view. Omit this option to use the system clock as the time basis.

Return type

Same data-type as expression argument.

Remarks

For Boolean, True is greater than False.

For String, ‘z” is greater than ‘A’.

Example

Return the maximum price of all the events that arrive within a 7 day interval:

MOV_MAX(price, DAY, 7, trade_time) AS Max_7_day_price

MAX() returns the maximum value from a moving window set.

TUMBLE_MAX() returns the maximum value from a tumbling window set.

MIN() returns the minimum value from a set.

GREATEST() returns the maximum value from a list.

“Function types” on page 90 discusses moving sets.

FILENET BAM SERVER REFERENCE
MOV_MIN

133
MOV_MIN
This moving set function returns the minimum value from a moving window set.

Syntax

MOV_MIN(numeric, window, size [,timestampColumn])

Parameters

• numeric - An expression that evaluates to a numeric and which cannot reference a rank function
function. Typically the argument is a column in a view. See individual function descriptions for
additional restrictions.

• window - Determines if size is the count of events in the set (EVENT), or a duration of time (SECOND,
MINUTE, HOUR, DAY. MONTH, or YEAR).

• size - Duration or count of window to use for determining the size of the set. Must be an integer greater
than zero (0).

• timestampColumn - (optional) Use the value of the field as the starting point for the time-series span.
The calculation is based on the time span from the most recent value in the column from any row in the
view. Omit this option to use the system clock as the time basis.

Return type

Same data-type as expression argument.

Remarks

For Boolean, True is greater than False.

For String, ‘z” is greater than ‘A’.

Example

Return the minimum price of all the events that arrive within a 7 day interval:

MOV_MIN(price, DAY, 7, trade_time) AS Min_7_day_price

MIN() returns the minimum value from a view or set.

TUMBLE_MIN() returns the minimum value from a tumbling window set.

MAX() returns the maximum value from a set.

LEAST() returns the smallest value from a list.

“Function types” on page 90 discusses moving sets.

FILENET BAM SERVER REFERENCE
MOV_SUM

134
MOV_SUM
This moving set function returns the sum of a moving window set of numeric values.

Syntax

MOV_SUM(numeric, window, size [,timestampColumn])

Parameters

• numeric - An expression that evaluates to a numeric and which cannot reference a rank function
function. Typically the argument is a column in a view. See individual function descriptions for
additional restrictions.

• window - Determines if size is the count of events in the set (EVENT), or a duration of time (SECOND,
MINUTE, HOUR, DAY. MONTH, or YEAR).

• size - Duration or count of window to use for determining the size of the set. Must be an integer greater
than zero (0).

• timestampColumn - (optional) Use the value of the field as the starting point for the time-series span.
The calculation is based on the time span from the most recent value in the column from any row in the
view. Omit this option to use the system clock as the time basis.

Return type

Numeric, same data-type as numeric argument. Returns NULL if the set is empty.

Example

Total the price of all events that arrive in current hour:

MOV_SUM(Price, HOUR, 1)

Which is shorthand for this in-line window expression:

SUM(Price) OVER (RANGE '1' HOUR PRECEDING

REFERENCE OPERATOR)

SUM() returns the sum of a view or set.

TUMBLE_SUM() returns the sum of a tumbling window set.

“Function types” on page 90 discusses moving sets.

FILENET BAM SERVER REFERENCE
MOV_STD_DEVIATION

135
MOV_STD_DEVIATION
This moving set function returns sample standard deviation of a moving window set of numbers.

Syntax

MOV_STD_DEVIATION(numeric, window, size [,timestampColumn])

Parameters

• numeric - An expression that evaluates to a numeric and which cannot reference a rank function
function. Typically the argument is a column in a view. See individual function descriptions for
additional restrictions.

• window - Determines if size is the count of events in the set (EVENT), or a duration of time (SECOND,
MINUTE, HOUR, DAY. MONTH, or YEAR).

• size - Duration or count of window to use for determining the size of the set. Must be an integer greater
than zero (0).

• timestampColumn - (optional) Use the value of the field as the starting point for the time-series span.
The calculation is based on the time span from the most recent value in the column from any row in the
view. Omit this option to use the system clock as the time basis.

Return type

DOUBLE PRECISION.

Remarks

Returns 0 when there is only a single row of input. Returns NULL if the set is empty.

The result is computed using the formula , where n is the number of elements in the sample

and X is the sample mean.

Example

Return the standard deviation in salaries for the last year’s worth of events:

SELECT MOV_STD_DEVIATION(salary, YEAR, 1) AS "Dev. for the last year"

FROM employees;

Which in turn is equivalent to the following after filling in all default values:

SELECT STD_DEVIATION(salary) AS "Dev. for the last year" OVER (

RANGE INTERVAL '1' YEAR PRECEDING

REFERENCE OPERATOR)

STD_DEVIATION() returns the standard deviation of a view or set.

TUMBLE_STD_DEVIATION() returns the standard deviation of a tumbling window set.

VARIANCE() returns the square of the standard deviation.

“Function types” on page 90 discusses moving sets.

Xi X–()2

n
-----------------------∑

FILENET BAM SERVER REFERENCE
MOV_VARIANCE

136
MOV_VARIANCE
This moving set function returns the square of the sample standard deviation of a moving window set of
numbers.

Syntax

MOV_STD_DEVIATION(numeric, window, size [,timestampColumn])

Parameters

• numeric - An expression that evaluates to a numeric and which cannot reference a rank function
function. Typically the argument is a column in a view. See individual function descriptions for
additional restrictions.

• window - Determines if size is the count of events in the set (EVENT), or a duration of time (SECOND,
MINUTE, HOUR, DAY. MONTH, or YEAR).

• size - Duration or count of window to use for determining the size of the set. Must be an integer greater
than zero (0).

• timestampColumn - (optional) Use the value of the field as the starting point for the time-series span.
The calculation is based on the time span from the most recent value in the column from any row in the
view. Omit this option to use the system clock as the time basis.

Return type

DOUBLE PRECISION.

Remarks

Returns zero (0) when the expression set contains only one element. Returns NULL if the set is empty.

The result is computed using the formula , where n is the number of elements in the sample

and X is the sample mean.

Example

Return the variation in salaries for each calendar year:

SELECT MOV_STD_VARIATION(salary, YEAR, 1) AS "Variation for last year"

FROM employees;

Which in turn is equivalent to the following after filling in all default values:

SELECT VARIATION(salary) AS "Variation for last year" OVER (

RANGE INTERVAL '1' YEAR PRECEDING

REFERENCE OPERATOR)

VARIANCE() returns the variance of a view or set.

STD_DEVIATION() returns a standard deviation.

TUMBLE_VARIANCE() returns the variance of a tumbling window set.

“Function types” on page 90 discusses moving sets.

Xi X–()2

n
-----------------------∑

FILENET BAM SERVER REFERENCE
NTILE

137
NTILE
This rank function determines the tier rank of each value in a set with respect to the entire set.

Syntax

NTILE(toRank, tiers)

Parameters

• toRank - A expression of any data type, and which typically references a column of values to rank.

• tiers - Count of tiers in which to partition the results; an integer greater than zero (0). When this value is
greater than the count of items to rank, all items are given the same rank.

Return type

INTEGER.

Remarks

Returns an integer for each row in the set that represents the tier that the row belongs to, where one (1) is
the highest tier holding the greatest value. When toRank results in NULL, that result is assigned to the
lowest rank.

NOTE: This function cannot be used as an argument in a set function, moving set function, or rank
function. For example, SUM(NTILE()) is illegal.

An ntile function ranks rows by attempting to evenly distribute them throughout a fixed set of tiers. For
example, when there is a set of six expression results {D, B, E, C, A, and B} to rank into two tiers, NTILE()
assigns each a rank of either 1 (for C, D, and E) or 2 (for A, B, and B). Results with the same value are
always placed in the same tier.

When a set of values is not divisible by the tiers, the function evenly distributes any leftover rows into
higher-level groups. For example, the following table demonstrates how the letter items are distributed into
various counts of tiers:

tiers: 1 2 3 4 5 6 7

A 1 2 3 3 4 5 1

B 1 2 2 2 3 4 1

B 1 2 2 2 3 4 1

C 1 1 2 1 2 3 1

D 1 1 1 1 1 2 1

E 1 1 1 1 1 1 1

FILENET BAM SERVER REFERENCE
POSITION

138
Example

The following query ranks sales of coffee and tea products into six tiers by their sales rankings. The
ranking is in sixths, so each product name receives a value from 1 to 6. This example requires that there
be just one unique entry for each product:

SELECT prod_name, NTILE(dollars, 6) AS sales_rank

FROM (lineitem INNER JOIN product

ON lineitem.item_id=product.productid)

WHERE product.classkey IN (1, 2, 4, 5);

PROD_NAME SALES_RANK

Demitasse M 1

Xalapa Lapa 1

Cafe Au Lait 2

Aroma Roma 2

Veracruzano 3

Colombiano 3

Darjeeling Special 4

Irish Breakfast 4

English Breakfast 5

Earl Grey 5

Gold Tips 6

RANK() ranks rows within the entire set.

“Function types” on page 90 discusses moving sets.

POSITION
This scalar function returns the position of a character or string within a string.

Syntax

POSITION(sourceForString , searchInString)

Alternate form: POSITION(sourceForString IN searchInString)

Parameters

• sourceForString - String to search for.

• sourceInString - String expression result in which to search.

Return type

INTEGER.

Remarks

Returns the position, starting from 1, of the 1st instance of sourceForString in the sourceInString result.
When CHARACTER_LENGTH(sourceForString) is zero (0), returns 1. Returns NULL when either
argument is NULL.

FILENET BAM SERVER REFERENCE
POWER

139
Examples

POSITION('a' IN 'banana') returns 2.

POSITION('ana' IN 'banana') returns 2.

POSITION('A' IN 'banana') returns 0.

POSITION('M' IN 'banana') returns 0.

POSITION('' IN 'banana') returns 1.

POSITION(NULL IN 'banana') returns NULL.

SUBSTRING() extracts a character or substring from a string.

POWER
This scalar function returns a value raised to a specific power.

Syntax

POWER(numeric, power)

Parameters

• numeric - Number to raise.

• power - Power to raise numeric. Must be an integer when numeric is negative.

Return type

Same data-type as numeric argument.

Remarks

This can be expressed mathematically as “numberpower”.

Example

POWER(3,5) returns 243.

EXP() raise e to a specific power.

LOG() returns the logarithm of a number from a specific base.

FILENET BAM SERVER REFERENCE
PREV

140
PREV
This set function returns a value from the next to last row in a set.

Syntax

PREV(columnName)

Parameters

• columnName - Column or alias of any data type to evaluate.

Return type

Same data-type as argument.

Remarks

Returns values from the row before the “current” row in a set, where the current row is the latest row in the
set based on the event timestamp, or when all have the same timestamp, is last row in the set.

Example

Gather all stock feed closing prices and group them by stock symbol. The “current” row will always be the
last one received, and as such, will contain the current closing price. The previous row will be the previous
day’s close:

SELECT symbol, CURRENT(close) AS "Last Trade",

PREV(close) AS "Prev Cls",

(CURRENT(close) - PREV(close)) AS Change

FROM Stock_feed

GROUP BY symbol

symbol Last Trade Prev Cls Change

------- ----------- --------- -------

K 31.25 31.28 -0.03

IBM 80.79 80.04 0.75

VCLR 24.42 22.60 1.82

Moving set semantics

Cannot be used with a moving or tumbling set.

CURRENT() returns the value from the latest or last row in a set.

PRIOR_VALUE() returns the prior value of a column, alias, or expression.

“Function types” on page 90 discusses moving sets.

FILENET BAM SERVER REFERENCE
PRIOR_VALUE

141
PRIOR_VALUE
This scalar function returns the prior value of a column, alias, or expression.

Syntax

PRIOR_VALUE(columnName)

Parameters

• columnName - Column or alias of any data type to evaluate.

Return type

Same data-type as argument.

Remarks

Returns a NULL if there is no prior value — the first time the function is called on the columnName.

Use PRIOR_VALUE() when the data (events) enter the system grouped and ordered,

This function is not permitted in the WHERE clause of a view definition.

Example

Consider this query that identifies the how long a task took to complete — as a percentage of an hour —
based on minutes since the previous task completed:

SELECT Task, CAST(

(TIMESTAMP_DIFF(PRIOR_VALUE(Completed), Completed, MINUTE) /60

, DECIMAL(5,4)

) AS Hours

FROM Tasks_Completed

Task Hours

--------------- ------

Startup

Initialize 0.0887

Begin job 0.1012

Finish job 4.3243

Clean up 0.2500

Shut down 0.1285

Have milk shake 0.6667

PREV() returns a value from the next to last row in a set.

FILENET BAM SERVER REFERENCE
RANK

142
RANK
This rank function determines the rank of each value in a set with respect to the entire set.

Syntax

RANK(expression)

Parameters

• expression - A expression of any data type, and which typically references a column.

Return type

INTEGER.

Remarks

Returns an integer for each row in the set that is the row’s ranking within the entire set, where the greatest
value is ranked 1. When expression results in NULL it is ranked last in the result list. For example, the
ranking of (10, NULL, 20) ranks the 10 as 2, the 20 as 1, and NULL as 3.

When the values to be ranked are equal, they are assigned the same rank, and the next rank is skipped.
For example values 4.5, 4.5, 1.0 will be assigned rank values of 1, 1, and 3 respectively.

NOTE: This function cannot be used as an argument in a set function, rank function, or moving set
function. For example, SUM(RANK(…)) is illegal. Nor can RANK() be used on an stateless view.

When the set contains only one row, RANK() returns 1. For example, RANK(SUM(sales)) = 1.

Examples

Rank product sales by region:

SELECT RANK(SUM(sales)) AS R, SUM(sales) AS S, region

FROM product_orders

GROUP BY region

R S region

1 100000 north

2 50000 south

Rank product sales by product:

SELECT prod_name, SUM(dollars) AS prod_sales,

RANK(SUM(dollars)) AS prod_rank

FROM product, lineitem

WHERE lineitem.classkey = product.classkey

AND lineitem.prodkey = product.prodkey

GROUP BY prod_name;

PROD_NAME PROD_SALES PROD_RANK

Demitasse Ms 656401.50 1

Xalapa Lapa 577450.00 2

Aroma Roma 479330.25 5

Verona 467234.00 6

NA Lite 557655.00 3

Lotta Latte 533454.50 4

NTILE() ranks rows and places them in a finite set of tiers.

FILENET BAM SERVER REFERENCE
RATIO_TO_REPORT

143
“Function types” on page 90 discusses moving sets.

RATIO_TO_REPORT
This rank function calculates the ratio of a value to the sum of the values for the entire set.

Syntax

RATIO_TO_REPORT(numeric)

Parameters

• numeric - Any numeric data type expression, typically a reference a numeric column.

Return type

DOUBLE PRECISION.

Remarks

Returns an number for each row in the set that is the row’s ratio to the sum of the entire set. When
expression results in NULL, the function returns NULL. When the sum of the set is zero (0), the ratio is also
zero.

NOTE: This function cannot be used as an argument in a set function, moving set function, or rank
function. For example, SUM(RATIO_TO_REPORT(…)) is illegal.

Example

Determine what percentage each product sales is to the total sales of all products, for the last 20 weeks:

SELECT prod_description DESC,

SUM(dollars) as sales,

RATIO_TO_REPORT(SUM(li_amount)) * 100 AS ratio_dollars

FROM lineitem, product

WHERE lineitem.li_prod_id = product.prod_id

GROUP BY prod_description;

DESC SALES RATIO_DOLLARS

Widget 896931.15 12.88

Basket 514830.00 7.39

Football 507022.35 7.28

Oil Drum 503493.10 7.23

Computer 437863.00 6.29

Chair 429637.75 6.17

Desk 424215.00 6.09

Mesh Bag 421205.75 6.05

Shoelace 417261.00 5.99

Powder 397102.50 5.70

Telephone 394086.50 5.66

Cord 392377.75 5.64

Mouse 389378.25 5.59

Monitor 305859.75 4.39

Case 294982.75 4.24

Cup 236772.75 3.40

FILENET BAM SERVER REFERENCE
ROUND

144
ROUND
This scalar function returns a number rounded up to a specified count of decimal places.

Syntax

ROUND(number, [places])

Parameters

• number - The numeric expression to round

• places - Count of decimal places to round to. A negative integer rounds to whole number digits. Default
is zero (0) to remove any fractional components.

Return type

Numeric, same data-type as number argument.

Examples

ROUND(1294.5078) returns 1294.

ROUND(1294.5078, 0) returns 1294.

ROUND(1294.5078, 1) returns 1294.5.

ROUND(1294.5078, 2) returns 1294.51.

ROUND(1294.5078, -2) returns 1300.

TRUNC() removes digits from a number.

RPAD
This scalar function adds one or more instances of a string to the end of another string.

Syntax

RPAD(string, length, [padChar])
Parameters

• string - Character or string to alter.

• length - The display length of the returned string. When using multi-byte characters, the length is the
count of characters that display or print, not the count of multi-bytes.

• padChar - Character or string to append. Default is a single space or blank character (‘ ’).

Return type

VARCHAR.

Remarks

When length is smaller than the length of string, returns the string truncated to length.

FILENET BAM SERVER REFERENCE
RTRIM

145
Examples

RPAD('ABC', 6, 'x') returns ‘ABCxxx’.

RPAD('ABC', 6, 'xo') returns ‘ABCxox’.

RPAD('ABC', 4) returns ‘ABC ’.

RPAD('ABC', 2, 'x') returns ‘AB’.

LPAD() inserts characters to the start of a string.

RTRIM
This scalar function removes characters from the end of a string.

Syntax

RTRIM(sourceString [, setString])

Parameters

• sourceString - String to trim.

• setString - Characters to remove; default is a single blank space (‘ ’).

Return type

VARCHAR.

Remarks

Recursively removes all instances of setString from the end of sourceString until sourceString no longer
ends with set, and returns the result.

Examples

RTRIM('ZZZ ') returns ‘ZZZ’.

RTRIM('ZZZaaa', 'a') returns ‘ZZZ’.

RTRIM('ZZZababab', 'ab') returns ‘ZZZ’.

RTRIM('ZZZababc', 'abc') returns ‘ZZZab’.

LTRIM() removes characters from the start of a string.

FILENET BAM SERVER REFERENCE
SIGN

146
SIGN
This scalar function identifies the arithmetic sign of a number.

Syntax

SIGN(number)

Parameters

• number - The numeric value to evaluate.

Return type

INTEGER.

Remarks

Returns 1 if the number is positive, 0 if the number is zero, and -1 if the number is negative.

Note that these expressions return identical results:

(number * SIGN(number))

ABS(number)

ABS() returns the absolute value of a number.

SQRT
This scalar function returns the square root of a number.

Syntax

SQRT(number)

Parameters

• number - The number (DOUBLE) to evaluate. Must be greater than zero (0).

Return type

DOUBLE PRECISION.

Example

SQRT(42) returns 6.480…

FILENET BAM SERVER REFERENCE
SUBSTRING

147
SUBSTRING
This scalar function returns a substring of a specified string.

Syntax

SUBSTRING(string, position, [length]).
Alternate forms:

SUBSTR(string, position, [length])

SUBSTRING(string FROM position [FOR length])

Parameters

• string - Character string to search.

• position - Starting position of the substring, where 1 is the first character at the start of the string, and
-1 is the last character. Negative values count backwards from the end of the string. Using zero (0) is
the same as using 1. A position not within string returns an empty string.

• length - Length of the substring to extract. Omitting length returns all characters from position through
the end of the string. Specifying a value greater than the remainder of the string returns all characters
from position through the end of the string, and pads the difference with space characters to achieve
the specified length. A negative value or zero (0) returns an empty string.

Return type

VARCHAR.

Examples

SUBSTR('breakfast', 1) returns ‘breakfast’.

SUBSTR('breakfast', 0) returns ‘breakfast’.

SUBSTR('breakfast', 30) returns ‘’ (empty string).

SUBSTR('breakfast', 1, 2) returns ‘br’.

SUBSTR('breakfast', CHARACTER_LENGTH('breakfast'), 2) returns ‘t ’.

SUBSTR('breakfast', 3, 4) returns ‘eakf’.

SUBSTR('breakfast', 3, 8) returns ‘eakfast’.

SUBSTR('breakfast', -5, 4) returns ‘kfas’.

SUBSTR('breakfast', 1, -1) returns ‘’ (empty string).

CHARACTER_LENGTH() returns the length of a character string.

POSITION() locates a character within a string.

FILENET BAM SERVER REFERENCE
SUM

148
SUM
This set function returns the sum of a set of numeric values.

Syntax

SUM(numeric)

Parameters

• numeric - An expression that evaluates to a numeric and which cannot reference a rank function
function. Typically the argument is a column in a view.

Return type

Numeric, same data-type as numeric argument. Returns NULL if the set is empty.

Example

Total the invOnHand column for all rows in the stock table:

SELECT SUM(invOnHand) "Total on hand"

FROM stock;

Total on hand

2

Moving set semantics

When used as a MOV_function(), returns the moving sum for the moving set.

MOV_SUM(numeric, windowwindow, size [,timestampColumn])

Last value in the set

When the moving set size is a single event, MOV_SUM() maintains the sum of the last order prices for
each customer, for all the customers that have placed an order since the system startup time.

SELECT os.os_cust_id, MOV_SUM(os.os_price, EVENT, 1)

FROM order_status os

GROUP BY os.os_cust_id

MOV_SUM() returns the sum of a moving window set.

TUMBLE_SUM() returns the sum of a tumbling window set.

FILENET BAM SERVER REFERENCE
STD_DEVIATION

149
STD_DEVIATION
This set function returns sample standard deviation of a set of numbers.

Syntax

STD_DEVIATION(number)

Parameters

• number - An expression that evaluates to a numeric and which cannot reference a rank function
function. Typically the argument is a column in a view.

Return type

DOUBLE PRECISION.

Remarks

Returns 0 when there is only a single row of input. Returns NULL if the set is empty.

The result is computed using the formula , where n is the number of elements in the sample

and X is the sample mean.

Example

SELECT STD_DEVIATION(salary) "Deviation"

FROM employees;

Deviation

3909.36575

MOV_STD_DEVIATION() returns the standard deviation of a moving window set.

TUMBLE_STD_DEVIATION() returns the standard deviation of a tumbling window set.

VARIANCE() returns the square of the standard deviation.

Xi X–()2

n
-----------------------∑

FILENET BAM SERVER REFERENCE
TIMESTAMP_DIFF

150
TIMESTAMP_DIFF
This scalar function returnsthe interval of time between two timestamps.

Syntax

TIMESTAMP_DIFF(startTime, endTime, unit)

Parameters

• startTime - Start Date-Time.

• endTime - End Date-Time.

• unit - Type of the time interval to return; one of these literals:

• SECOND

• MINUTE

• HOUR

• DAY
MONTH (30 days)
YEAR (12 months or 360 days)

Return type

INTEGER.

Remarks

Uses absolute time difference rounded up to the nearest whole value; does not use Gregorian calendar
arithmetic.

Rounds the result to the nearest integer. For example, the difference between 10:00 and 10:29 in HOUR
units is zero (0), but 10:00 and 10:30 return one (1).

Returns a negative value when startTime is greater than endTime.

Returns NULL if either timestamp is NULL.

Example

Return the count of days from now until the end of the month.

TIMESTAMP_DIFF(CURRENT_TIMESTAMP(),

LAST_DAY(CURRENT_TIMESTAMP()), DAY)

Return True when a problem ticket is open for more than 30 minutes:

TIMESTAMP_DIFF(ticket_opened, CURRENT_TIMESTAMP(), MINUTE) > 30

Return the number of days between two dates as a positive number, regardless of the which date is oldest:

ABS(TIMESTAMP_DIFF(father_birthdate, mother_birthdate, DAY))

DATE_ADD() adds a duration to a date-time.

DATE_DIFF() subtracts a duration from a date-time.

CURRENT_TIMESTAMP() returns the current date and time.

FILENET BAM SERVER REFERENCE
TO_CHAR

151
TO_CHAR
This scalar function converts a date-time to a character string.

Syntax

TO_CHAR(date, [format])

Parameters

• date - Date-Time value to convert.

• format - Date pattern of string identical to the one used by the Java SimpleDateFormat class, and is
described in “Date-Time formatting” on page 62. Omit this option to convert using the default format,
which is “yyyy-MM-dd HH:mm:ss.SSSSSSSSS”.

Return type

VARCHAR.

Remarks

See “Converting between date-time and strings” on page 58 for a complete discussion about the
conversion.

Examples

TO_CHAR(CURRENT_TIMESTAMP(), 'd MMMM yy') returns '5 March 03'.

CAST() converts one data type to another.

TO_DATE() converts a character string to a date.

CURRENT_TIMESTAMP() returns the current date and time.

FILENET BAM SERVER REFERENCE
TO_DATE

152
TO_DATE
This scalar function converts a character string to a date-time value.

Syntax

TO_DATE(string, [format])

Parameters

• string - Date string (VARCHAR) or literal to convert.

• format - Date pattern of string identical to the one used by the Java SimpleDateFormat class, and is
described in “Date-Time formatting” on page 62. Omit this option to convert using the default format,
which is “yyyy-MM-dd HH:mm:ss.SSSSSSSSS”.

Return type

Date-Time.

Remarks

Omitting the time values from the pattern zero-fills (0) the portion of the TIMESTAMP thereby setting the
time to midnight.

Examples

TO_DATE('2003-02-18') is identical to TO_DATE('2003-02-18', "yyyy-MM-dd").

TO_DATE('2003-02-18 12:00:00', 'yyyy-MM-dd HH:mm:ss') assigns noon as the time.

To strip the time portion off a TIMESTAMP, convert it to character and back to date:

TO_DATE(TO_CHAR(a_timestamp, 'yyyy-MM-dd'))

CAST() converts one data type to another.

TO_CHAR() converts a date to a character string.

CURRENT_TIMESTAMP() returns the current date and time.

FILENET BAM SERVER REFERENCE
TRUNC

153
TRUNC
This scalar function truncates a number to a specific count of decimal places.

Syntax

TRUNC(decimalNumber [, places])

Parameters

• decimalNumber - Number to truncate.

• places - Count of decimal places to truncate to. When omitted, truncates all decimals and returns an
integer. When negative converts digits to zero.

Return type

Numeric, same data-type as decimalNumber argument.

Examples

TRUNC(1234.567) returns 1234.

TRUNC(1234.567, 1) returns 12345.6.

TRUNC(1234.567, -2) returns 1200.

ROUND() rounds the number up to a specified count of decimal places.

FILENET BAM SERVER REFERENCE
TUMBLE_AVG

154
TUMBLE_AVG
This tumbling set function returns the average value (arithmetic mean) of a tumbling window set.

Syntax

TUMBLE_AVG(numeric, window, size [,timestampColumn])

Parameters

• numeric - An expression that evaluates to a numeric and which cannot reference a rank function
function. Typically the argument is a column in a view. See individual function descriptions for
additional restrictions.

• window - Determines if size is the count of events in the set (EVENT), or a duration of time (SECOND,
MINUTE, HOUR, DAY. MONTH, or YEAR).

• size - Duration or count of window to use for determining the size of the set. Must be a positive integer.

• timestampColumn - (optional) Use the value of the field as the starting point for the time-series span.
The calculation is based on the time span from the most recent value in the column from any row in the
view. Omit this option to use the system clock as the time basis.

Return type

Numeric, same data-type as numeric argument.

Remarks

Returns NULL if the group is empty.

Example

Return the average price of all the events that arrive within a 7 day interval:

TUMBLE_AVG(price, DAY, 7, trade_time) AS Avg_7_day_price

The above function is shorthand for this in-line window expression:

AVG(price) AS Avg_7_day_price OVER (

ORDER BY trade_time RANGE INTERVAL '7' DAY PRECEDING SLIDE)

To determine the average price of the previous 7 days, not including the current, use a window instead of a
TUMBLE_AVG(), like this:

AVG(price) AS Avg_prev_7_day_price OVER (

ORDER BY trade_time

RANGE BETWEEN INTERVAL '8' DAY PRECEDING

AND INTERVAL '1' DAY PRECEDING

SLIDE INTERVAL '7' DAY

INITIALIZE TIMESTAMP '1963-02-18 00:00:00.000'

REFERENCE OPERATOR)

AVG() returns the mean average for a set.

MOV_AVG() returns the average for a moving window set.

Tumbling Windows discusses tumbling window sets.

FILENET BAM SERVER REFERENCE
TUMBLE_COUNT

155
TUMBLE_COUNT
This tumbling set function returns the count of rows in a tumbling window set.

Syntax

TUMBLE_COUNT(*, window, size [,timestampColumn])

Parameters

• window - Determines if size is the count of events in the set (EVENT), or a duration of time (SECOND,
MINUTE, HOUR, DAY. MONTH, or YEAR).

• size - Duration or count of window to use for determining the size of the set. Must be a positive integer.

• timestampColumn - (optional) Use the value of the field as the starting point for the time-series span.
The calculation is based on the time span from the most recent value in the column from any row in the
view. Omit this option to use the system clock as the time basis.

Return type

INTEGER.

Remarks

Returns zero (0) if the set is empty.

When using an EVENT window, this function returns an integer less than or equal to the window value.

Rows that include NULLs are counted.

When used with a GROUP BY returns the count of rows in the group set.

Example

Return the count of all the events that arrive within an 8 hour interval:

TUMBLE_COUNT(*, HOUR, 8, trade_time) AS Total

The above function is shorthand for this in-line window expression:

COUNT(*) AS Total OVER (ORDER BY trade_time

RANGE INTERVAL '8' HOUR PRECEDING SLIDE)

Which in turn is equivalent to the following after filling in all default values:

COUNT(*) AS Total OVER (ORDER BY trade_time

RANGE INTERVAL '8' HOUR PRECEDING

SLIDE INTERVAL '8' HOUR

REFERENCE OPERATOR)

Note: The eight-hour window begins when the first event arrives in the view. To begin the window at the
top of the hour instead, include INITIALIZE '2003-03-05 00:00:00.000'.

COUNT() returns the count of a view or set.

MOV_COUNT() returns the count of a tumbling window set.

Tumbling Windows discusses tumbling window sets.

FILENET BAM SERVER REFERENCE
TUMBLE_MAX

156
TUMBLE_MAX
This tumbling set function returns the maximum value from a tumbling window set.

Syntax

TUMBLE_MAX(numeric, window, size [,timestampColumn])

Parameters

• numeric - An expression that evaluates to a numeric and which cannot reference a rank function
function. Typically the argument is a column in a view. See individual function descriptions for
additional restrictions.

• window - Determines if size is the count of events in the set (EVENT), or a duration of time (SECOND,
MINUTE, HOUR, DAY. MONTH, or YEAR).

• size - Duration or count of window to use for determining the size of the set. Must be a positive integer.

• timestampColumn - (optional) Use the value of the field as the starting point for the time-series span.
The calculation is based on the time span from the most recent value in the column from any row in the
view. Omit this option to use the system clock as the time basis.

Return type

Same data-type as expression argument.

Remarks

For Boolean, True is greater than False.

For String, ‘z” is greater than ‘A’.

Example

Return the maximum price of all the events that arrive within a 1 hour interval:

TUMBLE_MAX(price, HOUR, 1, trade_time) AS Max_price

The above function is shorthand for this in-line window expression:

MAX(price) AS Max_price OVER (ORDER BY trade_time

RANGE INTERVAL '1' HOUR PRECEDING SLIDE)

Which in turn is equivalent to the following after filling in all default values:

MAX(price) AS Max_price OVER (ORDER BY trade_time

RANGE INTERVAL '1' HOUR PRECEDING

SLIDE INTERVAL '1' HOUR

REFERENCE OPERATOR)

Note: The one-hour window begins when the first event arrives in the view. To begin the window at the top
of the hour instead, include INITIALIZE TIMESTAMP '2003-03-05 00:00:00.000'.

Similarly, the function TUMBLE_MAX(price, EVENT, 5) is the shorthand for this complete window:

MAX(price) OVER (ORDER BY trade_time

EVENTS BETWEEN 4 PRECEDING AND CURRENT EVENT

SLIDE 5

REFERENCE OPERATOR)

FILENET BAM SERVER REFERENCE
TUMBLE_MIN

157
MAX() returns the maximum value from a moving window set.

MOV_MAX() returns the maximum value from a tumbling window set.

MIN() returns the minimum value from a set.

GREATEST() returns the maximum value from a list.

Tumbling Windows discusses tumbling window sets.

TUMBLE_MIN
This tumbling set function returns the minimum value from a tumbling window set.

Syntax

TUMBLE_MIN(numeric, window, size [,timestampColumn])

Parameters

• numeric - An expression that evaluates to a numeric and which cannot reference a rank function
function. Typically the argument is a column in a view. See individual function descriptions for
additional restrictions.

• window - Determines if size is the count of events in the set (EVENT), or a duration of time (SECOND,
MINUTE, HOUR, DAY. MONTH, or YEAR).

• size - Duration or count of window to use for determining the size of the set. Must be a positive integer.

• timestampColumn - (optional) Use the value of the field as the starting point for the time-series span.
The calculation is based on the time span from the most recent value in the column from any row in the
view. Omit this option to use the system clock as the time basis.

Return type

Same data-type as expression argument.

Remarks

For Boolean, True is greater than False.

For String, ‘z” is greater than ‘A’.

Example

Return the minimum price of all the events that arrive within a 1 hour interval:

TUMBLE_MIN(price, HOUR, 1, trade_time) AS Min_price

The above function is shorthand for this in-line window expression:

MIN(price) AS Min_price OVER (ORDER BY trade_time

RANGE INTERVAL '1' HOUR PRECEDING SLIDE)

Which in turn is equivalent to the following after filling in all default values:

MIN(price) AS Min_price OVER (ORDER BY trade_time

RANGE INTERVAL '1' HOUR PRECEDING

SLIDE INTERVAL '1' HOUR

REFERENCE OPERATOR)

FILENET BAM SERVER REFERENCE
TUMBLE_SUM

158
Note: The one-hour window begins when the first event arrives in the view. To begin the window at the top
of the hour instead, include INITIALIZE TIMESTAMP '2003-03-05 00:00:00.000'.

Similarly, the function TUMBLE_MIN(price, EVENT, 5) is the shorthand for this complete window:

MIN(price) OVER (ORDER BY trade_time

EVENTS BETWEEN 4 PRECEDING AND CURRENT EVENT

SLIDE 5

REFERENCE OPERATOR)

MIN() returns the minimum value from a moving window set.

MOV_MIN() returns the minimum value from a tumbling window set.

MAX() returns the maximum value from a set.

LEAST() returns the smallest value from a list.

Tumbling Windows discusses tumbling window sets.

TUMBLE_SUM
This tumbling set function returns the sum of a tumbling window set of numeric values.

Syntax

MOV_SUM(numeric, window, size [,timestampColumn])

Parameters

• numeric - An expression that evaluates to a numeric and which cannot reference a rank function
function. Typically the argument is a column in a view. See individual function descriptions for
additional restrictions.

• window - Determines if size is the count of events in the set (EVENT), or a duration of time (SECOND,
MINUTE, HOUR, DAY. MONTH, or YEAR).

• size - Duration or count of window to use for determining the size of the set. Must be a positive integer.

• timestampColumn - (optional) Use the value of the field as the starting point for the time-series span.
The calculation is based on the time span from the most recent value in the column from any row in the
view. Omit this option to use the first event in the view as the basis.

Return type

Numeric, same data-type as numeric argument. Returns NULL if the set is empty.

Example

This tumbling sum expression sums all the events that arrive within a 1 hour interval:

TUMBLE_SUM(price, HOUR, 1, trade_time) AS Total

The above function is shorthand for this in-line window expression:

SUM(price) AS Total OVER (ORDER BY trade_time

RANGE INTERVAL '1' HOUR PRECEDING SLIDE)

FILENET BAM SERVER REFERENCE
TUMBLE_STD_DEVIATION

159
Which in turn is equivalent to the following after filling in all default values:

SUM(price) AS Total OVER (ORDER BY trade_time

RANGE INTERVAL '1' HOUR PRECEDING

SLIDE INTERVAL '1' HOUR

REFERENCE OPERATOR)

Note: The one-hour window begins when the first event arrives in the view. To begin the window at the top
of the hour instead, include INITIALIZE TIMESTAMP '2003-03-05 00:00:00.000'.

Similarly, the function TUMBLE_SUM(price, EVENT, 5) is the shorthand for this complete window:

SUM(price) OVER (ORDER BY trade_time

EVENTS BETWEEN 4 PRECEDING AND CURRENT EVENT

SLIDE 5

REFERENCE OPERATOR)

SUM() returns the sum of a view or set.

MOV_SUM() returns the sum of a moving window set.

Tumbling Windows discusses tumbling window sets.

TUMBLE_STD_DEVIATION
This tumbling set function returns sample standard deviation of a tumbling window set of numbers.

Syntax

TUMBLE_STD_DEVIATION(numeric, window, size [,timestampColumn])

Parameters

• numeric - An expression that evaluates to a numeric and which cannot reference a rank function
function. Typically the argument is a column in a view. See individual function descriptions for
additional restrictions.

• window - Determines if size is the count of events in the set (EVENT), or a duration of time (SECOND,
MINUTE, HOUR, DAY. MONTH, or YEAR).

• size - Duration or count of window to use for determining the size of the set. Must be a positive integer.

• timestampColumn - (optional) Use the value of the field as the starting point for the time-series span.
The calculation is based on the time span from the most recent value in the column from any row in the
view. Omit this option to use the system clock as the time basis.

Return type

DOUBLE PRECISION.

Remarks

Returns 0 when there is only a single row of input. Returns NULL if the set is empty.

FILENET BAM SERVER REFERENCE
TUMBLE_VARIANCE

160
The result is computed using the formula , where n is the number of elements in the sample

and X is the sample mean.

Example

Return the standard deviation in salaries for each calendar year:

SELECT TUMBLE_STD_DEVIATION(salary, YEAR, 1) AS "Deviation per year"

FROM employees;

Which in turn is equivalent to the following after filling in all default values:

SELECT STD_DEVIATION(salary) AS "Deviation per year" OVER (

RANGE INTERVAL '1' YEAR PRECEDING

SLIDE INTERVAL '1' YEAR

REFERENCE OPERATOR)

Note that you can use INITIALIZE to declare a fiscal year. And consider using PARTION BY to get the
deviations for different pay grades. For example:

SELECT STD_DEVIATION(salary) AS "Deviation per year" OVER (

PARTITION BY pay_grade

RANGE INTERVAL '1' YEAR PRECEDING

SLIDE INTERVAL '1' YEAR

INITIALIZE '1963-07-01 00:00:00.000'

REFERENCE OPERATOR)

STD_DEVIATION() returns the standard deviation of a view or set.

MOV_STD_DEVIATION() returns the standard deviation of a tumbling window set.

VARIANCE() returns the square of the standard deviation.

Tumbling Windows discusses tumbling window sets.

TUMBLE_VARIANCE
This tumbling set function returns the square of the sample standard deviation of a tumbling window set of
numbers.

Syntax

TUMBLE_STD_DEVIATION(numeric, window, size [,timestampColumn])

Parameters

• numeric - An expression that evaluates to a numeric and which cannot reference a rank function
function. Typically the argument is a column in a view. See individual function descriptions for
additional restrictions.

• window - Determines if size is the count of events in the set (EVENT), or a duration of time (SECOND,
MINUTE, HOUR, DAY. MONTH, or YEAR).

• size - Duration or count of window to use for determining the size of the set. Must be an integer greater
than zero (0).

Xi X–()2

n
-----------------------∑

FILENET BAM SERVER REFERENCE
TUMBLE_VARIANCE

161
• timestampColumn - (optional) Use the value of the field as the starting point for the time-series span.
The calculation is based on the time span from the most recent value in the column from any row in the
view. Omit this option to use the system clock as the time basis.

Return type

DOUBLE PRECISION.

Remarks

Returns zero (0) when the expression set contains only one element. Returns NULL if the set is empty.

The result is computed using the formula , where n is the number of elements in the sample

and X is the sample mean.

Examples

Return the variation in salaries for each calendar year:

SELECT TUMBLE_STD_VARIATION(salary, YEAR, 1)

AS "Variation for last year"

FROM employees;

Which in turn is equivalent to the following after filling in all default values:

SELECT VARIANCE(price) AS "Variation for last year"

OVER (ORDER BY trade_time

RANGE INTERVAL '1' YEAR PRECEDING

SLIDE INTERVAL '1' YEAR

REFERENCE OPERATOR)

FROM employees;

MOV_VARIANCE() returns the variance of a moving window set.

STD_DEVIATION() returns a standard deviation.

VARIANCE() returns the variance of a view or set.

“Function types” on page 90 discusses moving sets.

Xi X–()2

n
-----------------------∑

FILENET BAM SERVER REFERENCE
UPPER

162
UPPER
This scalar function converts all lowercase characters in a string to uppercase.

Syntax

UPPER(string)

Parameters

• string - Character string (VARCHAR) to convert.

Return type

VARCHAR.

Example

UPPER('Volta') returns ‘VOLTA’.

LOWER() converts to all lowercase.

FILENET BAM SERVER REFERENCE
VARIANCE

163
VARIANCE
This set function returns the square of the sample standard deviation of a set of numbers.

Syntax

VARIANCE(numeric)

Parameters

• numeric - An expression that evaluates to a numeric and which cannot reference a rank function
function. Typically the argument is a column in a view.

Return type

DOUBLE PRECISION.

Remarks

Returns zero (0) when the expression set contains only one element. Returns NULL if the set is empty.

The result is computed using the formula , where n is the number of elements in the sample

and X is the sample mean.

Example

SELECT VARIANCE(salary) "Variance"

FROM employees;

Variance

15283140.5

MOV_VARIANCE() returns the variance of a moving window set.

STD_DEVIATION() returns a standard deviation.

TUMBLE_VARIANCE() returns the variance of a tumbling window set.

Xi X–()2

n
-----------------------∑

FILENET BAM SERVER REFERENCE 164
HTTP Post

A HTTP Post event tables receive events from a HTTP Post action, either as the result of an HTML form
sent from a browser or from data encoded in a URL that connects to the table.

In this Chapter:

“How it works” on page 165

“HTTP Post Event Tables” on page 165

“Posting to an HTTP post event” on page 168

FILENET BAM SERVER REFERENCE
How it works

165
How it works
HTTP Post event data arrive embedded in an URL. The internal agent extracts the fields from the URL and
puts them in the event table. The URL may be formed as the result of an HTML form containing <INPUT>
fields, or it may be created by some other application that communicates in the HTTP protocol.

HTTP Post Event Tables
A HTTP Post event table receives new events from an HTTP Post action, which is usually the result of an
HTML form sent from a browser. In an HTML form, each <INPUT> element maps to a column in the event
table. Event data can also be published in the URL that passes the fields to the system. See “Posting to an
HTTP post event” on page 168 for examples.

Before creating an event to a HTTP Post, you must have Create permission for tables (see “Creating
permission” on page 220).

Attribute Description

Name Event table name. This name must be unique among views, events,
context, and consolidated events. See “Object namespace” on
page 211 for details.

Description Optional description that may contain any text characters.

Status Whether or not the table is enabled (monitoring for events), or
disabled (not monitoring for events).

Event table

HTTP Post events receive data
embedded in a URL, usually
from an HTML form.

http://.../Name: MyName

Send

HTML Form

FILENET BAM SERVER REFERENCE
Creating an HTTP Post event table

166
Creating an HTTP Post event table
This section shows you how to create an HTTP post event table.

To create a HTTP Post event table:

1. Open the FileNet BAM Workbench Administration Console.

2. Create a new single event.

3. Select HTTP Post as the source type.

4. Assign a name and define the columns of the event table in the Column Information fields.

Save the HTTP Post table as enabled and it will immediately be ready to receive event messages.

Post To URL URL in which to send the posted information. See “Posting to an
HTTP post event” on page 168 for examples.

Log event data for
recovery

When on, logs event data that arrived after the last checkpoint
started. This “recovery” log is used to restore the state of the system
in the event of an abnormal shutdown of the servers. See Working
with checkpoint and recovery for complete details.

Process events in
the order of arrival

Choose this option when events must be processed in the order
received. Otherwise, if events may be processed out of order, turn
this on.

Note: To join events in a view, the events must be processed in
order: leave this option off to join the events.

Disable event after
this number of
consecutive errors

Disables the event when a consecutive count of errors occur. For
example, if set to 5, disables the event after 5 consecutive errors.
However, if 4 errors occur, and then no errors followed by 2 errors,
the event remains enabled. The default is off: do not disable.

Column Information The Column Information fields define how to map the fields from the
JMS message into columns in the event table. There is one column
for every field in the event table. See “HTTP Post column
information” on page 167 for details.

Attribute Description

FILENET BAM SERVER REFERENCE
HTTP Post column information

167
HTTP Post column information
The Column Information fields define how to map the fields from the HTTP Post message into columns in
the event table. There is one field for every column in the event table, each with the following attributes:

Each field in the message can be a simple field that maps directly into a event column, or it can be a
complex field (a flat file field) that contains several fields that each map into columns in the table. Complex
fields are treated as Flat Files in either delimited (CSV), fixed-width, or XML formats. See “Flat Files” on
page 73 for detailed descriptions of these file types.

NOTE: Message fields can contain more than one row of data; however, each row is part of the same
event. This is different from flat file imports that treat each row in the file as a unique event.

To add a message field:

1. Click Add Flat File Field.

2. Choose the flat file type of the message field.

(Optional for fixed-width and delimited files.) Identify a sample file to assist in mapping the columns.
This file is a sample of the real data file. Data from this file appears in the next step to assist you as you
map the event data into the table.

Attribute Description

Field Name Name of the column in the event table.

Message
Name

Name of the field in the message. On an HTML form, this is the NAME
attribute assigned to each form element. See “Posting to an HTTP post
event” on page 168 for examples. When mapping a Flat File field, the
name for each embedded field is N/A and uneditable.

Data Type Data type of the column in the event table.

Format (optional) Format of the event column for VACHAR (string) and DECIMAL
values.

To edit the definition of a
message field, select the
<Change Format> Format.

A Flat File Field creates a
message field of embedded
fields, each of which maps to a
column in the event table.

FILENET BAM SERVER REFERENCE
Posting to an HTTP post event

168
3. For fixed-width files, define the positions of the data columns with the Set Field Widths dialog.

4. Identify the flat-file attributes. See “Flat file event tables” on page 74 for details.

5. Define the format-specific Column Information. For details about the source type, see:

• “Fixed-Width files” on page 84.

• “Delimited files” on page 83

• “XML files” on page 85

See “Multiple lines (events) of input” on page 170 for details about sending data to flat file fields.

6. Click Save Event to save the message field definition.

To edit the definition of a message field:

• In the field’s Format column, change the value from “Flat File: file type” to “<Change Formatting>”.

NOTE: When editing a message field, the sample file option for delimited and fixed-width file types is not
available.

Posting to an HTTP post event
Most HTTP Post event are generated from an HTML form. When defining the event, define one column for
each named <INPUT> element. For example, consider this HTML form:

<FORM action="http://.../filenetbam/postservlet?eventname=Example"

method="post">

<P>

<LABEL for="name">Name: </LABEL>

<INPUT type="text" name="name">

<LABEL for="name">Date (yyyy-mm-dd): </LABEL>

<INPUT type="text" name="date">

<LABEL for="amt">Amount: </LABEL>

<INPUT type="text" name="amt">

<LABEL for="switch">Switch: </LABEL>

<INPUT type="radio" name="switch" value="FALSE" checked >Off

<INPUT type="radio" name="switch" value="TRUE">On

<INPUT type="submit" value="Send">

<INPUT type="reset">

</P>

</FORM>

FILENET BAM SERVER REFERENCE
Posting to message fields

169
The four form fields map to these four columns in the event table:

Notice that the date field maps to a VARCHAR, not a TIMESTAMP. In the views that are derived from this
event, cast the values to a date-time, similar to this:

CAST(httpEvent."Date" AS TIMESTAMP)

Posting to message fields
To pass data into a message field, you can either embed the information in the URL (as described below in
Posting values in the URL”), or use an HTML <TEXTAREA> element and enter the flat-file data into that
field. For example, your HTML form might have this declaration:

<LABEL for="flatfile">Flat file text: </LABEL>

<TEXTAREA name="MessageField" rows="20" cols="80"></TEXTAREA>

In the browser, you can either enter the data manually or copy the data from a flat file and manually past it
into the field. Remember that the data must be in the format of the declared Flat File Field, such as
delimited.

Notes:

• When the event table contains more than just the Message Field column, you can enter only one row’s
worth of data into the <TEXTAREA> field. If the Message Field is the only column, then you may enter
multiple event row’s worth of data.

• Multiple rows passed through a <TEXTAREA> element are considered part of the same event, unlike
a text file where each row is a unique event.

FILENET BAM SERVER REFERENCE
Posting values in the URL

170
Posting values in the URL
When passing the field values directly in the URL, name and assign a value to each, and separate them
with ampersands (&), like this:

...?eventname=Example&name="Skyler"&date=2003-03-05&amt=9.21&switch=TRUE

However, if passing the values to a delimited flat file field, just name the field and separate the values with
the separator character (which is usually a coma), like this:

...?eventname=Example&msgFile="Skyler",2003-03-05,9.21,TRUE

Multiple lines (events) of input
To send multiple events to a flat file field, separate them with the %0D%0A (the MIME transmission for an
end-of-line: “CR LF”), like this:

...="Skyler",2003-03-05,9.21,TRUE%0D%0A"Mike",1963-02-18,9.01,FALSE

Note that if you intend to send multiple lines, the Flat File field must be the only field in event column list.
When the list includes other columns, only one “line” of input is permitted.

FILENET BAM SERVER REFERENCE 171
Java Messaging Service (JMS)

Java Messaging Service (JMS) provides access to messages produced by Java applications. The
producer application publishes topics that the FileNet Business Activity Monitor agent subscribes to. Each
new published topic message is mapped to a new event in the associated event table.

In this Chapter:

“How it works” on page 172

“JMS event” on page 172

“JMS agents” on page 176

FILENET BAM SERVER REFERENCE
How it works

172
How it works
FileNet Business Activity Monitor JMS agents communicate with JMS topic factories managed by Web
application servers. When you define the agent, you tell it how to connect to the factory. When you define a
JMS event table, you tell it to subscribe to a JMS topic managed by the factory that the agent talks to. Then
when the topic publishes a new message, the agent receives it and passes it to the event table.

NOTE: FileNet Business Activity Monitor JMS agents support JMS MapMessage body type topic-
message only. This type of message consists of name-value pairs, where the names are strings and the
values are wrappers to Java types. See “Mapping JMS data types” on page 176 for details.

JMS event
A Java Messaging Service (JMS) event receives new event data from a Java application that publishes
messages to the topic that the table subscribes to. Each new topic message is a new event in the table.

Limitations

The JMS agent supports JMS MapMessage body types only. MapMessage consists of name-value pairs,
where the names are strings and the values are wrappers to Java types. See “Mapping JMS data types”
on page 176 for details.

Prerequisites

Before creating an event to a JMS agent, you must:

• Create permission for tables (see “Creating permission” on page 220), and Read Only access
permission on the agent that will feed the table.

• Obtain access to a JMS Topic as identified by the address factory’s JNDI location.

• A sample file (optional).

If the message contains a complex string that is CSV (delimited) or fixed-width text, it is helpful to have
a sample file that contains data in the format of the actual event string. You can use this sample when

JMS agent

New message
about TopicX.

JMS Message
producer

Event table

JMS message providers
publish topics whose
messages are events.

Subscribe to: TopicX

New event
about TopicX

Subscribe to: TopicX

FILENET BAM SERVER REFERENCE
JMS event

173
you create the event to ensure that the fields map correctly into the event table by seeing how the data
lines up in the columns.

Attribute Description

Name Event table name. This name must be unique among views, events,
context, and consolidated events. See “Object namespace” on page 211 for
details.

Description Optional description that may contain any text characters.

Status Whether or not the table is enabled (monitoring for events), or disabled (not
monitoring for events).

Log event data for
recovery

When on, logs event data that arrived after the last checkpoint started. This
“recovery” log is used to restore the state of the system in the event of an
abnormal shutdown of the servers. See Working with checkpoint and
recovery for complete details.

Process events in
the order of arrival

Choose this option when events must be processed in the order received.
Otherwise, if events may be processed out of order, turn this on.

Note: To join events in a view, the events must be processed in order:
leave this option off to join the events.

JMS Agent An existing JMS agent that connects to the JMS message stream. Create
an agent with the FileNet BAM Workbench Administration tab. See “JMS
agents” on page 176 for details.

Topic Identifies the topic on which the message is being sent, and defined by the
message publisher. This is a JNDI address similar to this
com.celequest.myjmstopic on BEA WebLogic, and this topic/
com.celequest.myjmstopic on JBoss.

Message selector A Boolean expression that puts a filter condition on the messages the
publisher sends. The syntax of the condition is the same as that of the
SELECT command’s WHERE clause. For example, this filter only accepts
messages where the Supplier property contains one of three values:

Supplier IN ('Xyz, Corp', 'Ink, Inc', 'Gizmos')

Column Information The Column Information fields define how to map the fields from the JMS
message into columns in the event table. There is one column for every
field in the event table. See “JMS column information” on page 174 for
details.

FILENET BAM SERVER REFERENCE
Creating a JMS event table

174
Creating a JMS event table
This section shows you how to create a JMS event table.

To create a JMS event table:

1. Open the FileNet BAM Workbench Administration Console.

2. Create a new event.

3. Select JMS as the source type.

4. Define the values of the event table’s attributes.

5. Define the columns of the event table in the Column Information fields.

Save the JMS table as enabled and it will immediately be ready to receive event messages.

JMS column information
The Column Information fields define how to map the fields from the JMS message into columns in the
event table. There is one field for every column in the event table.

Each field in the message can be a simple field that maps directly into a event column, or it can be a
complex field (a flat file field) that contains several fields that each map into columns in the table. Complex
fields are treated as Flat Files in either delimited (CSV), fixed-width, or XML formats. See “Flat Files” on
page 73 for detailed descriptions of these file types.

Each column in the event table has the following attributes:

Attribute Description

Field Name Name of the column in the event table.

Message
Name

Name of the field in the message. When mapping a MessageField, the
name for each embedded field is N/A and uneditable.

Data Type Data type of the event column. See Mapping JMS data types,” below for
details.

Format (optional) Format of the event column for VACHAR (string) and DECIMAL
values.

FILENET BAM SERVER REFERENCE
JMS column information

175
Add columns by clicking Add Field or Add Flat File Field.

To add a message field:

1. Click Add Flat File Field.

2. Choose the flat file type of the message field.

• (Optional for fixed-width and delimited files.) Identify a sample file to assist in mapping the col-
umns. This file is a sample of the real data file. Data from this file appears in the next step to assist
you as you map the event data into the table.

3. For fixed-width files, define the positions of the data columns with the Set Field Widths dialog.

4. Identify the flat-file attributes. See “Flat file event tables” on page 74 for details.

5. Define the format-specific Column Information. For details about the source type, see:

• “Fixed-Width files” on page 84.

• “Delimited files” on page 83

• “XML files” on page 85

6. Click Save Event to save the message field definition.

To edit the definition of a message field:

• In the field’s Format column, change the value from “Flat File: file type” to “<Change Formatting>”.

NOTE: When editing a message field, the sample file option for delimited and fixed-width file types is not
available.

To edit the definition of a
message field, select the
<Change Format> Format.

A Flat File Field creates a
message field of embedded
fields, each of which maps to a
column in the event table.

FILENET BAM SERVER REFERENCE
Mapping JMS data types

176
Mapping JMS data types
The JMS mapped message data types map to FileNet Business Activity Monitor Data Types as follows.

JMS agents
A Java Messaging Service (JMS) agent communicates with a JMS message producer through a JMS topic
running in the application server environment. The agent tells the producer which messages the JMS
agents event table is interested in receiving. The producer then sends messages to the event table via the
agent.

NOTE: JMS agents are asynchronous, they receive event messages as the events occur. You cannot
retrieve context from a JMS agent.

Before creating a agent, you need:

• Create permission for agents (see “Creating permission” on page 220 for details).

• The JNDI location of the topic factory in the application server that is publishing the topics.

Java Data Type FileNet Business Activity Monitor Data
Type

boolean Boolean

byte Integer

short Integer

char Varchar

int Integer

long Decimal

float Double

double Double

String Varchar

byte[] Not supported

Event
push

Event pull Context pull

Yes No No

FILENET BAM SERVER REFERENCE
JMS agents

177
A JMS agent has the following attributes:

Attribute Description

Name Identifies the agent. This name must be unique among agents. See
“Object namespace” on page 211 for details.

Description Optional description that may contain any text characters.

Status Whether or not the agent is enabled (monitoring for events), or disabled
(not monitoring for events).

Topic factory Identifies the J2EE connection factory that maintains the desired topics.
This string identifies the factory by its JNDI lookup name. For example:

jms.ManufacturingTopic

In a BEA WebLogic environment, the factory JNDI name is identified on
the BEA WebLogic Console, Services > JMS > Connection Factories >
factoryName > General tab.

Acknowledge mode
(Auto)

Protocol to use when acknowledging receipt of the message.

• AUTO — (default) Provider acknowledges message when it is
delivered.

• CLIENT — Acknowledges the message when the agent receives it.

• DUPS OK — Tells the publisher that it is OK to send a message
more than once. Note that subsequent receipts of the same
message are treated as new and unique events.

User name User name to use to connect to the JMS factory.

Password Password for the User name.

JNDI properties Optional and additional Java naming and directory interface (JNDI)
properties necessary to make or maintain the agent to the JMS table.
These name/value pairs allow you to specify JMS properties, and
recognized by the JNDI.

Note: When the JMS topic is running in a different namespace from
the FileNet BAM Server), define the properties described below.

FILENET BAM SERVER REFERENCE
JNDI properties for connecting to a remote namespace

178
JNDI properties for connecting to a remote namespace
When the JMS topic is running in a different namespace from the FileNet BAM Server, define these JNDI
properties to make the connection:

java.naming.factory.initial

java.naming.provider.url

Further, if you are using security, also define these properties:

java.naming.security.authentication

java.naming.security.principal

java.naming.security.credentials

Examples:

BEA WebLogic JNDI

java.naming.factory.initial=weblogic.jndi.WLInitialContextFactory

java.naming.provider.url=t3://localhost:9180

IBM Websphere

java.naming.factory.initial=com.ibm.websphere.naming.WsnInitialContextFactory

java.naming.provider.url=iiop://localhost:9180

JBOSS

java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory

java.naming.provider.url=jnp://localhost:1099

Sun One Directory Server LDAP

java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory

java.naming.provider.url=ldap://russell:59226/dc=viewceler,dc=com

Also, prefix the Topic factory parameter value with: cn=

Creating a JMS Agent
To create a JMS agent:

1. Open the Administration Console.

2. Click New Agent…

3. Choose JMS as the source type

4. Fill in the fields that define the agent’s attributes.

Save the agent as enabled and it will immediately begin monitoring for events.

FILENET BAM SERVER REFERENCE 179
JDBC

JDBC (Java Database Connectivity) is a Java application programming interface for accesing standard
SQL databases from Java programs. FileNet Business Activity Monitor (a Java application) uses JDBC to:

• Retrieve context data from a relational database (DBMS), as described in “JDBC tables” on page 180
and “JDBC agents” on page 187.

• Access the metadata database that FileNet Business Activity Monitor uses to store object and state
definitions.

• Allow other Java applications to access the business view data in memory. See “JDBC Access to View
Data” on page 191 for details.

Context
Tables

DBMS

JDBC Agent

Business
Views

External
Application

System
Metadata

Metadata
DBMS

JDBC interfaces

Application Server Environment

FILENET BAM SERVER REFERENCE
JDBC tables

180
JDBC tables
Java database connectivity (JDBC) event and context tables receive their data from external relational
database systems (DBMS). The data are retrieved by either making a query on the database or by calling
a stored procedure in the DBMS.

Context tables

For Context tables, new data is retrieved only when a new event requires it. Then the agent passes the
query data to the DBMS, which then returns the result from DBMS.

Context tables

For event tables, the agent periodically polls the DBMS to see if new events are available, and then
retrieves them for inclusion in the events table. Each event returned is processed individually, regardless of
the count of events returned as a result of the polling query.

Before creating an event to a JDBC source table, you need:

• An agent — An existing JDBC agent defined with sufficient access rights to query the database, or call
the stored procedure. Create an agent with the FileNet BAM Workbench Administration tab. See
“JDBC agents” on page 187 for details.

• For queries — The schemas of the tables to query.

• For query events — A column in the source table must be an incrementing value that identifies when
new events are available. See “Polling the JDBC source” on page 184.

• For stored procedures — To define the procedure in the RDBMS and provide a list of the input and
(result set) output fields, and their data types. See “Stored procedure source” on page 185,” for details.

Data for query

Requested data

Business view

Input

Context
table

Output
columns

When the view needs context, it
identifies the requested the data in the
context table’s input columns.

DBMSJDBC Agent

The inputs passed to the DBMS as a
query whose results are fed back into
the context table’s output columns for
use by the view.

Input columns

Poll for new events

New events found

Business view

DBMSJDBC Agent

New events are found by polling the
DBMS looking for new data.

Event table

FILENET BAM SERVER REFERENCE
JDBC tables

181
• Permissions — Create permission for tables (see “Creating permission” on page 220), and Read Only
access permission on the agent that will feed the table.

A JDBC tables has the following attributes:

Attributes Description

Name Identifies the table. This name must be unique among views, events,
context, and consolidated events. See “Object namespace” on page 211 for
details.

Description Optional description that may contain any text characters.

Status Whether or not the event object is enabled (monitoring for events), or
disabled (not monitoring for events).

Log event data for
recovery

When on, logs event data that arrived after the last checkpoint started. This
“recovery” log is used to restore the state of the system in the event of an
abnormal shutdown of the FileNet BAM Server(s). See Working with
checkpoint and recovery for complete details.

Process events in
the order of arrival

Choose this option when events must be processed in the order received.
Otherwise, if events may be processed out of order, turn this on.

Note: To join events in a view, the events must be processed in order:
leave this option off to join the events.

JDBC Agent An existing JDBC source agent that accesses an RDBMS. Create an agent
with the FileNet BAM Workbench Administration tab. See “JDBC agents” on
page 187 for details.

JDBC Query SELECT statement made against the database in the native database
language. For details about the SELECT command, see the reference
documentation for the DBMS. If you change the query, click Resubmit Query
to validate it; you cannot save this form with an invalid query.

FILENET BAM SERVER REFERENCE
Creating a JDBC source event or context table

182
Creating a JDBC source event or context table
This section shows how to create JDBC source event or context table.

To create a JDBC source event or context table:

1. Open the FileNet BAM Workbench tab.

2. Click New Event or New Context.

3. Choose JDBC tables as the Source type.

4. Select the Agent source.

5. Choose either Query source or Stored Procedure source.

• Stored Procedure source calls a stored procedure in the DBMS to locate the data. See “Stored
procedure source” on page 185,” for details about this source.

• Query source makes a SELECT SQL query on the database in the native database language.
Enter the the SELECT statement in the query field. See Query source,” below, for details about this
source. When you click Continue, the FileNet BAM Workbench issues the query to validate the
query and determine the return columns.

6. Save the JDBC source as enabled.

The source will immediately be ready to receive events or context.

Disable context
after errors

Count of consecutive errors to receive before the system disables this
context. Once disabled, a context must be re-enabled manually.

Field Information Columns to populate in the event or context table. The Field Names are
derived from the JDBC Query result. When the system validates the query, it
populates this field list and identifies the JDBC Data Type of each return
value. You specify the associated Data Type of the column in the table.

The field names are the same as defined in the DBMS schema unless you
alias them with the AS operator in the SELECT statement’s select list.

Event Key (event
only)

For fixed-width and delimited files identifies key field columns for multi-row
events. See “Multi-Row events” on page 77 for details.

Caching (context
only)

Stores query results in memory and future requests retrieve data from
memory, thereby lessening the impact on the DBMS by reducing the number
of queries. See “Caching context queries” on page 47 for details about this
feature.

Polling (event only) How frequently to call the stored procedure or to query the DBMS for new
events. See Polling the JDBC source,” below, for details.

Attributes Description

FILENET BAM SERVER REFERENCE
Query source

183
Query source
A query source makes a SELECT query on the database in the source DBMS. Queries are used for both
context and events, and are in native syntax used by the DBMS. For specific syntax information, see the
DBMS documentation.

Sybase limitations

When making a query to a Sybase database, be aware of these limitations:

• All names, including tables and columns, are case-sensitive.

• All queries must be in the form SELECT * FROM table only; you cannot include any SELECT clauses.
To filter the results, load them into a business view, and then filter that view.

Example of context

Consider a view that joins an event table with a context table as follows:

SELECT Event.ID, Context.Name, Context.BDate AS Birth_Date

FROM Event, Context WHERE Event.ID = Context.ID

The context Output for this view might look like this:

Field Name JDBC Data Type Data Type

------------ -------------- ---------

Name STRING Varchar

Birth_Date DATE Timestamp

Example of event using a polling query

Consider this query of the an Events table:

SELECT * FROM Events

The resulting field information might look like this:

Field Name JDBC Data Type Data Type

------------ -------------- ---------

Event_ID TINYINT Integer

Product_ID TINYINT Integer

Product_Name STRING Varchar

Note that the polling Incrementing field is most likely Event_ID. See Polling the JDBC source, for details.

FILENET BAM SERVER REFERENCE
Polling the JDBC source

184
Polling the JDBC source
Polling tells the object how frequently to call the stored procedure or to query the DBMS for new events.

Parameter Description

Polling interval How often to call the procedure or issue the query.

Persist state across
reboots

After a restart, continue polling using the state of the polling prior to
stopping the system. At run-time the object keeps track of values returned
from the last call or query, and uses them to determine the starting point of
the next call or query. When the option is checked, that information is
saved at every check point and when the system is shutdown. See
Working with checkpoint and recovery for more information.

Otherwise, when the option is not checked, polling restarts with the initial
values defined for this object.

Disable after errors Disables the object (stops polling) after consecutive errors occur. By
default, the polling stops after five consecutive errors. To re-enable the
object, change its Object status to enabled. Set this option to zero (0) to
never disable automatically.

Incrementing field
(event query only)

Identifies the column in the source table that contains a value that
increments for every event. For example, if the table being queried
contains unique, ascending ID values, that field is the one used by the
query using the logic “where ID greater that maximum ID from last query”.

Initial value
(event query only)

Value to use the first time the object queries the DBMS for events. For
example, you might specify ID values starting with 500. For subsequent
queries, the value must be greater than the Incrementing field value
returned from the last query.

FILENET BAM SERVER REFERENCE
Stored procedure source

185
Stored procedure source
The JDBC stored procedure source requires the following attributes:

NOTE: When making a query to a Sybase database, be aware that the names, including tables and
columns, are case-sensitive.

Attribute Description

Procedure name Name of the stored procedure in the DBMS.

• JDBC events do not support multiple result-set or stored procedure output
parameters. For Oracle this means that only Oracle functions are
supported because only they return a single result.

Outputs Columns in the event or context table, their data types, and optional formatting.
The procedure returns a result set whose values map to the columns in the
order they appear in this list. The data type identifies the type of the column in
the table, and will automatically be converted from the JDBC type as defined in
Mapping JDBC data types,” described below.

Inputs (optional for events) Parameters passed to the stored procedure, and their data
types. The parameters contain values to look up in the DBMS table. Inputs are
passed as arguments to the procedure in the order they appear in the list.

The data type identifies FileNet Business Activity Monitor data type of the value
being passed to the procedure. See Mapping JDBC data types,” below for
details. Further,

For events, the procedure usually queries the DBMS looking for events
inserted since the last time the procedure was called. This is done by
identifying fields in the table that contain some incrementing or increasing
values. For example, if the table being queried contains unique, ascending ID
values, that field is the one used by the procedure using the logic “where ID
greater that maximum ID from last query”.

For events, the Initial Polling Value specifies the value to use the first time the
procedure queries the DBMS for events. For example, you might specify ID
values starting with 500. For subsequent queries, the Subsequent Polling Value
identifies a field that contains the maximum value from the last query. This
value is an Output field from the previous result.

Polling How often to call the stored procedure. See Polling the JDBC source,” below,
for details.

FILENET BAM SERVER REFERENCE
Stored procedure source

186
Example of receiving context using a stored procedure

Consider a view that joins an event table with a context table as follows:

SELECT Event.ID, Context.Name

FROM Event, Context

WHERE Event.ID = Context.ID

The context Output for this view is the Name column, and the Input to the procedure is the ID column.

Output Field Name Data Type

----------------- ---------

Name Varchar

Input Field Name Data Type

---------------- ---------

ID Integer

Example of receiving events using a stored procedure

Consider an event with the following fields. Note that Event_Timestamp is the field with the unique

and increasing value: each event record has a timestamp assigned by the DBMS.

Output Field Name Data Type

----------------- ---------

Ticket_ID Varchar

Cust_ID Varchar

Status Varchar

Topic Integer

When_Opened Timestamp

Assigned_To Varchar

Event_Timestamp Timestamp

The event input identifies a parameter that passes the value to query. The name of the input must be
unique to the list, but is otherwise insignificant. In this example, the field name is “IN1”.

Input Field Name Initial Polling Value Subsequent Polling Value

---------------- --------------------- ------------------------

IN1 2003-03-05 19:45:00 Event_Timestamp

The first time the stored procedure queries the DBMS, is issues one semantically similar to this:

SELECT * FROM events

WHERE event_time >= "2003-03-05 19:45:00"

Subsequent queries use the results from the previous query as the starting point for new events.

FILENET BAM SERVER REFERENCE
Mapping JDBC data types

187
Mapping JDBC data types
The data types of the DBMS columns are displayed as JDBC data types, and map to FileNet Business
Activity Monitor Data Types as follows.

NOTE: Do not use FileNet Business Activity Monitor Boolean data type in a WHERE predicate passed to
the JDBC source. Boolean values may be included in the Select list.

JDBC agents
A Java database connectivity (JDBC) agent communicates with a relational database (DBMS) by either
making a query on the database, or calling a stored procedure in the DBMS. The DBMS then returns one
or more rows of data, which the agent passes on to the requesting event or context JDBC tables.

NOTE: JDBC agents are synchronous, they retrieve event messages and context data as the result of a
specific request. For context, the agents access the DBMS when a new event requires context data. For

JDBC data type Character Integer Double Decimal Timestamp Boolean

CHAR yes — — — — as literal

VARCHAR yes — — — — as literal

LONGVARCHAR yes — — — — as literal

NUMERIC — yes yes yes — yes

DECIMAL — yes yes yes — yes

BIT — yes yes yes — yes

TINYINT — yes yes yes — yes

SMALLINT — yes yes yes — yes

INTEGER — yes yes yes — yes

BIGINT — yes yes yes — yes

REAL — yes yes yes — yes

FLOAT — yes yes yes — yes

DOUBLE — yes yes yes — yes

BINARY — — — — — —

VARBINARY — — — — — —

DATE — — — — yes —

TIME — — — — yes —

TIMESTAMP — — — — yes —

FILENET BAM SERVER REFERENCE
JDBC agents

188
events, the agent periodically polls the DBMS to see if new events are available, and then retrieves them
for inclusion in the events table. Each event returned is processed individually, regardless of the count of
events returned as a result of the polling query.

Before creating a JDBC agent, you need:

• Create permission for agents (see “Creating permission” on page 220 for details).

• A JDBC data source defined and managed by the application server, preferably one that pools
connections. Note, configure the connection pool as documented in your application server’s
documentation. Additionally, in the pool’s definition:

• Set the maximum number of open connections to the database to be at least 200.

• Set a refresh rate to be greater than 0, preferably to 1 or 2 minutes. This allows the database to go
down and come back up with loosing the connection from the pool. Further, you should set the
pool to test for the existence of a physical table in the database.

Attributes

A JDBC agent has the following attributes:

Event
push

Event pull Context pull

No Yes Yes

Attribute Description

Name Identifies the agent. This name must be unique among agents.
See “Object namespace” on page 211 for details.

Description Optional description that may contain any text characters.

Status Whether or not the agent is enabled (monitoring for events), or
disabled (not monitoring for events).

Database type Identifies the DBMS vendor as Oracle, Sybase, SQL Server, or
DB2.

User name User name to use to connect to the DBMS. Must have query
access rights.

Password Password for the User name. If you omit this option, the agent
uses the password specified in the JDBC Source configuration
definition in the application server.

Max rows per query Maximum count of rows to return as the query result. Useful to
keep users from returning exceptionally large results that impact
the DBMS.

FILENET BAM SERVER REFERENCE
JDBC agents

189
Type of JDBC connection How to connect to the JDBC in the application server.

• Datasource-based: Connects to a JDBC database pool via a
JNDI connection. Do not use for IBM Websphere.

• URL-based: Connects to a JDBC source via a URL.

JNDI name for JDBC Source
(Datasource only)

Name of the data source to use as a connection to the database.
The name is in JNDI form, such as
“com.celequest.products.ProductSource”.

A source gets its connection from a pool of connections maintained
by the application server. That server keeps the connections open
to reduce delays when establishing a connection.

Note: The connection pool must be configured as a non-
transactional pool; non-TxT on WebLogic.

JNDI properties
(Datasource only)

Optional and additional Java naming and directory interface (JNDI)
properties necessary to make or maintain the agent to the JDBC
source. These name/value pairs allow you to specify JDBC
properties. The names are either one of the short cuts listed below,
or a JNDI recognized property.

The agent recognizes the following names as short cuts to JNDI
properties:

• factory maps to INITIAL_CONTEXT_FACTORY.

• provider maps to PROVIDER_URL.

• security_credentials maps to SECURITY_CREDENTIALS.

• security_principal maps to SECURITY_PRINCIPAL.

JDBC URL
(URL only)

URL that maps to the JDBC connection configured in the
application server running FileNet Business Activity Monitor. For
example, a URL might look like this:
jdbc:oracle:thin:some_context/context@v480:1521:symbols

JDBC driver class
(URL only)

JDBC driver to use. This driver must reside in the classpath of the
application server running FileNet Business Activity Monitor.
Include the complete classname, such as:
oracle.jdbc.driver.OracleDriver

Attribute Description

FILENET BAM SERVER REFERENCE
Creating a JDBC agent

190
Creating a JDBC agent
The following procedures show you how to create a JDBC agent.

To create a JDBC agent:

1. Open the FileNet BAM Workbench Administration Console.

2. Click New Agent.

3. Choose JDBC as the source type

4. Fill in the fields that define the agent’s attributes.

Save the agent as enabled and it will immediately be ready to retrieve data.

FILENET BAM SERVER REFERENCE 191
JDBC Access to View Data

FileNet Business Activity Monitor provides an application programming interface (API) that allows JDBC
2.0 applications to retrieve data from a view, and to retrieve the metadata that describes the views in the
installation. The data that you can retrieve are:

• View data from the recent view. Note that if the view contains a (moving set) window, the window data
is returned.

• Event identifier (VC_EVENT_ID always included) which identifies the event that produced the most
recent row included in the view.

• Latest event identifier (VC_LATEST_EVENT_ID always included) which identifies the last event that
caused the view to update, though data from that event might not be included in the view.

• Event timestamp (VC_TIMESTAMP always included) which identifies when the last event was
included in the view.

NOTE: This is the same information that is written to a database when persisting views. See “Persisting
views to a database” on page 301 for more information.

Classpath

The classpath to FileNet Business Activity Monitor JDBC driver (cqjdbcclient.jar) needs to be added to the
client JDBC application. The client application should also link in the application server (such as
weblogic.jar) to have access to the JNDI naming service. For example, when running a program (e.g.,
Test) from a command line, the java call might look like this one on a BEA WebLogic server:

java -classpath .;c:\bea\weblogic700\server\lib\weblogic.jar;

c:\cq\cqjdbcclient\cqjdbcclient.jar JDBCAccessor

The rest of this document describes the JDBC view interfaces, and provides “JDBC accessor examples”
on page 198.

FILENET BAM SERVER REFERENCE
JDBC view interfaces

192
JDBC view interfaces
JDBC 2.0 defines interfaces for accessing data. FileNet Business Activity Monitor implements the following
interfaces for accessing its data. For complete details about the interfaces, see the JDBC documentation
at
http://java.sun.com/j2se/1.3/docs/api/java/sql/package-summary.html.

NOTE: All methods return data that meet the JDBC 1.0 standard. Further, methods defined in the JDBC
class but which not supported in FileNet Business Activity Monitor API, throw an SQLException.

These are the interfaces that FileNet Business Activity Monitor supports:

Class Member Description

Driver The JDBC SQL database driver. See “Example: Establishing a connection to the
FileNet BAM Server” on page 199 for an example. The class name is:
com.celequest.jdbc.driver.Driver

connect Attempts to make a database connection to the URL.

acceptsURL Returns true if this driver understands the specified
subprotocol.

getMajorVersion Returns the driver’s major revision number.

getMinorVersion Returns the driver’s minor revision number.

jdbcCompliant Returns false.

Connection A connection to a specific database. See “Example:
Establishing a connection to the FileNet BAM Server” on
page 199 for an example of using this interface.

createStatement Returns a newly-created Statement object

close Releases a Connection object’s JDBC resources
immediately.

getMetaData Returns a newly created DatabaseMetaData object.

isClosed Returns true if the calling Connection object is closed;
otherwise, returns false when it is still open.

Statement An SQL statement to pass to the database. See
“Example: Querying the contents of a view” on page 201
for an example of using this interface.

FILENET BAM SERVER REFERENCE
JDBC view interfaces

193
executeQuery Executes a FileNet Business Activity Monitor C-SQL
select query, returns a single ResultSet, and closes the
calling Statement object’s current ResultSet, if any. The
query statement involves a single table only, and may
contain WHERE, GROUP BY, and ORDER clauses. The
viewname references in the query are case insensitive
and my be quoted (using the double quote character).

close Releases a Statements object’s JDBC resources.

DatabaseMetaData Provides information about the view definitions defined
in FileNet Business Activity Monitor installation.

getTables Returns view definitions. See “Example: Querying View
Metadata” on page 204 for an example of using this
method.

getColumns Returns the column information for a given view. See
“Example: Querying Column Metadata” on page 203 for
an example of using this method. See getColumns()
column summary,” below, for a summary listing of the
columns:

ResultSet A table of data representing a database result set, which
is usually generated by executing a statement that
queries the database.

next Moves the cursor to the next row in the set and fixes the
current row.

close Immediately releases a ResultSet’s JDBC resources.

wasNull Returns true if the last value read was SQL NULL.

getString Returns the value of a column as a Java String.

getBoolean Returns the value of a column as a Java Boolean.

getInt Returns the value of a column as a Java int.

getDouble Returns the value of a column as a Java double.

getObject Returns the value of a column as a Java object (as
defined in the default type mapping).

getBigDecimal Returns the value of a column as a
java.math.BigDecimal object.

getTimestamp Returns the value of a column as a Java Timestamp.

getMetaData Returns the number, types, and properties of a
ResultSet object’s columns as a ResultSetMetaData
object.

Class Member Description

FILENET BAM SERVER REFERENCE
JDBC view interfaces

194
Data type mappings

The “get” functions in this class return values from FileNet Business Activity Monitor columns. This matrix
indicates which functions should be used for the various FileNet Business Activity Monitor data types.

ResultSetMetaData Provides information about the types and properties of
the columns in a ResultSet object.

getColumnCount Returns the count of columns in the ResultSet object.

getPrecision

getScale Returns the count of digits to the right of the decimal
separator.

getTableName Returns the table name from which the ResultSet was
derived.

getColumnName Returns the name of a column.

getColumnType Returns the JDBC type for the value stored in a column.
See Data type mappings,” below, for a summary of the
mappings.

getColumnTypeName Returns the FileNet Business Activity Monitor type name
for the a column.

getBoolea
n

getInt getDoubl
e

getBigDecima
l

getStrin
g

getTimestam
p

Boolean X o o o o —

Integer o X o o o —

Double o o X o o —

Decimal o o o X o —

Varchar o o o o X x

Timestamp — — — — x X

X indicates that the function returns a value compatible with FileNet Business Activity Monitor data
type.

o indicates data types that might be compatible, but whose conversion is not recommended.

Class Member Description

FILENET BAM SERVER REFERENCE
JDBC view interfaces

195
getColumns() column summary

This table is a summary of the Java documentation for DatabaseMetaData.getColumns(). See the Java
documentation for a complete list.

Column Type Description

TABLE_CAT String Table catalog (may be null)

TABLE_SCHEM String Table schema (may be null)

TABLE_NAME String Table name

COLUMN_NAME String Column name

DATA_TYPE int SQL type from java.sql.Types. See DATA_TYPE return
values,” below, for a summary.

TYPE_NAME String Data source dependent type name, for a UDT the type
name is fully qualified

COLUMN_SIZE int Column size. For char or date types this is the maximum
number of characters, for numeric or decimal types this is
precision.

BUFFER_LENGTH String Not used.

DECIMAL_DIGITS int Count of fractional digits

NUM_PREC_RADIX int Radix (typically either 10 or 2)

NULLABLE int Is NULL allowed.

• columnNoNulls - might not allow NULL values

• columnNullable - definitely allows NULL values

• columnNullableUnknown - nullability unknown

REMARKS String Comment describing column (may be null)

COLUMN_DEF String Default value (may be null)

SQL_DATA_TYPE int Not used.

SQL_DATETIME_SUB int Not used.

CHAR_OCTET_LENGTH int For char types the maximum number of bytes in the
column.

ORDINAL_POSITION int Index of column in table (starting at 1)

IS_NULLABLE String "NO" means column definitely does not allow NULL values;
"YES" means the column might allow NULL values. An
empty string means nobody knows.

FILENET BAM SERVER REFERENCE
JDBC view interfaces

196
DATA_TYPE return values

The DATA_TYPE column returns an int value that identifies the Java data type. See the java.sql.Types file
for details. This table summarizes those values.

Type Value

BIT -7

TINYINT -6

BIGINT -5

LONGVARBINARY -4

VARBINARY -3

BINARY -2

LONGVARCHAR -1

NULL 0

CHAR 1

NUMERIC 2

DECIMAL 3

INTEGER 4

SMALLINT 5

FLOAT 6

REAL 7

DOUBLE 8

VARCHAR 12

DATE 91

TIME 92

TIMESTAMP 93

OTHER 1111

JAVA_OBJECT 2000

DISTINCT 2001

FILENET BAM SERVER REFERENCE
JDBC view interfaces

197
STRUCT 2002

ARRAY 2003

BLOB 2004

CLOB 2005

REF 2006

Type Value

FILENET BAM SERVER REFERENCE
JDBC accessor examples

198
JDBC accessor examples
The examples in this section demonstrate how to connect to the FileNet BAM Server and query view data,
metadata, and metadata about the views and columns defined in the installation. The examples, include:

• “Example: Establishing a connection to the FileNet BAM Server” on page 199

• “Example: Querying the contents of a view” on page 201

• “Example: Querying a view’s column specifications” on page 201

• “Example: Querying Column Metadata” on page 203

• “Example: Querying View Metadata” on page 204

Java

Access to the JDBC driver depends on the java.sql.* classes. As such, be sure to include the following
import in your applications;

import java.sql.*;

Complete Sample

Included on the product CD-ROM is a sample application that contains the complete code for the snippets
listed in these examples. See the \samples\JDBC\ directory for the files. That directory has two files:

• readme.txt describes how to compile and run the application.

• JDBCAccessor.java is the application.

Briefly, to compile the application:

javac -classpath . JDBCAccessor.java

To run the program, load it into the application server, similar to this:

BEA WebLogic:

java -classpath .;c:\bea\weblogic700\server\lib\weblogic.jar;

c:\cq\cqjdbcclient\cqjdbcclient.jar JDBCAccessor

JBoss:

java -classpath .;C:\jboss\3.2.3\client\jnet.jar;

C:\jboss\3.2.3\client\jboss-net-client.jar;

C:\jboss\3.2.3\client\jnp-client.jar;

C:\jboss\3.2.3\client\jboss-common-client.jar;

c:\cq\cqjdbcclient\cqjdbcclient.jar JDBCAccessor

The results from the examples print to the standard output, with errors going to standard error.

FILENET BAM SERVER REFERENCE
Example: Establishing a connection to the FileNet BAM Server

199
Example: Establishing a connection to the FileNet BAM Server
This example shows how to establish a connection to the FileNet BAM Server’s JDBC driver.

Establish the connection by creating a Connection object, similar to this:

Connection connection = null;

connection = DriverManager.getConnection(url, userName, password);

The userName and password parameters identify a FileNet Business Activity Monitor account. When
querying a specific object (like a view), the user account must have at least Read Only access permission.
Otherwise, if the account has No Access to the view, the query fails as if the view does not exist.

The url parameter identifies the factory in the application server that establishes the connection to FileNet
Business Activity Monitor JDBC driver. This URL specifies the type of connection, host and port to connect
to, and the factory in the application server. Further properties vary among application servers. The sample
application names the common properties in variables that you can customize for your installation:

String userName = "system";

String password = "manager";

The sample application that builds the url parameter from the properties specific to the application server,
like this:

BEA WebLogic connection properties

String hostAndPort = "localhost:80";

String factory = "weblogic.jndi.WLInitialContextFactory";

String url = "jdbc:celequest:wl:factory="+factory+

";provider=t3://"+hostAndPort+";";

JBoss connection properties

String hostAndPort = "localhost:1099";

String factory = "org.jnp.interfaces.NamingContextFactory";

String url = "jdbc:celequest:wl:java.naming.factory.url.pkgs="+

"org.jboss.naming:org.jnp.interfaces;"+

"factory="+factory+";provider=jnp://"+hostAndPort+";";

FILENET BAM SERVER REFERENCE
Example: Establishing a connection to the FileNet BAM Server

200
Following is a more detailed example. However, to see the complete listing, examine the
JDBCAccessor.main() member.

// Common connection properties

String userName = "system";

String password = "manager";

// JBoss connection properties

String hostAndPort = "localhost:1099";

String factory = "org.jnp.interfaces.NamingContextFactory";

String url = "jdbc:celequest:wl:java.naming.factory.url.pkgs="+

"org.jboss.naming:org.jnp.interfaces;"+

"factory="+factory+";provider=jnp://"+hostAndPort+";";

// Verify the JDBC driver in the application o

try {

Class.forName("com.celequest.jdbc.driver.Driver");

} catch (ClassNotFoundException e) {

handleError("Could not find the JDBC driver class.", e);

return;

}

// Establish the connection to the JDBC driver

Connection connection = null;

try {

connection = DriverManager.getConnection(url, userName, password);

} catch (SQLException e) {

handleError("Could not connect to the JDBC driver.", e);

return;

}

FILENET BAM SERVER REFERENCE
Example: Querying the contents of a view

201
Example: Querying the contents of a view
This snippet shows how to query the entire contents of a view. The executeQuery() call passes the query
to the driver, which returns the view contents in a ResultSet object. All columns, including the internal
system columns like VC_TIMESTAMP are included in this list. Additionally, metadata about the view is
retrieved in a ResultSetMetaData object to determine the count of columns in the view.

NOTE: See the JDBCAccessor.PrintViewContents() sample for a complete code listing.

/* Query all contents of a view.

* Connection has already been established, and view name defined.

*/

String queryString = "SELECT * FROM " + VIEW_NAME ;

ResultSet rs; // Table to hold the query results.

ResultSetMetaData rmd; // Metadata about the result set.

// Query the view, and get its data and metadata.

Statement stmt = connection.createStatement();

rs = stmt.executeQuery(queryString);

rmd = rs.getMetaData();

// Print the contents of the entire view, row by row.

int columnCount = rmd.getColumnCount();

boolean isEmpty = true;

while (rs.next()) {

isEmpty = false;

System.out.print(" Row: ");

for (int i=0;i<columnCount;i++) {

// Show the column value, or "NULL"

String ts = rs.getString(i+1);

System.out.print((rs.wasNull() ? "NULL " : ts + " "));

}

System.out.println(); // Line break

}

if (isEmpty) {

System.out.println("\n *** The view is empty ***");

}

The result might look like this:

Contents of view [OrderProductTotals]:

Row: Hinges 132300.00 49 130000.00 28 2004-08-17 11:22:06.818 28

Row: Lag bolts 16400.00 41 65000.00 21 2004-08-17 11:22:06.818 28

Row: Nails 129600.00 48 150000.00 26 2004-08-17 11:22:06.818 28

Row: Nuts 337875.00 159 280000.00 27 2004-08-17 11:22:06.818 28

Row: Screws 60000.00 30 80000.00 20 2004-08-17 11:22:06.818 28

Row: Washers 122400.00 72 170000.00 23 2004-08-17 11:22:06.818 28

Row: Chip board 277200.00 126 250000.00 18 2004-08-17 11:22:06.818 28

Row: Plywood 304800.00 127 250000.00 10 2004-08-17 11:22:06.818 28

Example: Querying a view’s column specifications
This snippet shows how to query the user-defined specifications about the columns in a view. First it shows
all of the metadata available for column specifications, and then it shows the interesting specifications

FILENET BAM SERVER REFERENCE
Example: Querying a view’s column specifications

202
about each column in the view, including the internal system columns. Note that the results appear in the
order that the columns appear in the view, followed by the internal columns.

NOTE: See the JDBCAccessor.PrintColumns() sample for a complete code listing.

/* Query a view's column specifications.

* Connection has already been established, and view name defined.

*/

// Query the table to identify the columns to report on. Because the

// view contents are irrelevant here, omit them by declaring

// 'WHERE false' as the query condition.

String queryString = "SELECT * FROM " + VIEW_NAME +" WHERE false";

ResultSet rs; // Table to hold the query results.

ResultSetMetaData rmd; // Metadata about the result set.

// Query the view, and then get its metadata.

Statement stmt = connection.createStatement();

rs = stmt.executeQuery(queryString);

rmd = rs.getMetaData();

// Print the metadata about the columns in the view.

System.out.println("Column details for view [" +

rmd.getTableName(1) +"]:");

// Walk through and show the interesting metadata available for

// each column in the view. Include labels to identify what we see

// in the result.

for (int i=0;i<rmd.getColumnCount();i++) {

System.out.println(

" " + Integer.toString(i+1) +

". Name [" + rmd.getColumnName(i+1) +

"] Type [" + Integer.toString(rmd.getColumnType(i+1)) +

"] Precision [" + Integer.toString(rmd.getPrecision(i+1)) +

"] Scale [" + Integer.toString(rmd.getScale(i+1))+"]");

}

The results might look like this:

View: [ORDERPRODUCTTOTALS]

Column details for view [ORDERPRODUCTTOTALS]:

1. Name [FAMILY] Type [12] Precision [20] Scale [0]

2. Name [PRODUCT] Type [12] Precision [50] Scale [0]

3. Name [SALES] Type [3] Precision [25] Scale [2]

4. Name [QTY] Type [4] Precision [10] Scale [0]

5. Name [TARGET] Type [3] Precision [15] Scale [2]

6. Name [TARGET MIN] Type [3] Precision [15] Scale [2]

7. Name [TARGET MAX] Type [3] Precision [15] Scale [2]

8. Name [VC_EVENT_ID] Type [4] Precision [10] Scale [0]

9. Name [VC_TIMESTAMP] Type [93] Precision [0] Scale [9]

10. Name [VC_LATEST_EVENT_ID] Type [4] Precision [10] Scale [0]

FILENET BAM SERVER REFERENCE
Example: Querying Column Metadata

203
Example: Querying Column Metadata
These snippets show how to retrieve metadata about the columns view. (To retrieve the column
specifications instead, see “Example: Querying a view’s column specifications” on page 201.)

NOTE: See the JDBCAccessor.PrintColumnMeta() sample for a complete code listing.

/* Retrieve the metadata about the columns of a defined view.

*/

// NOTE: Specify 'null' instead of 'VIEW_NAME' to get the metadata

// for ALL columns in the installation.

rs = meta.getColumns(null,null,VIEW_NAME,null);

rmd = rs.getMetaData();

// Show the metadata available for view columns.

int columnCount = rmd.getColumnCount();

for (int i=0;i<columnCount;i++) {

System.out.print(rmd.getColumnName(i+1) +

((i+1)==columnCount ? "" : ","));

}

The results first lists the metadata column names (see “getColumns() column summary” on page 195 for a
description of the columns):

Getting column metadata for [OrderProductTotals]

TABLE_CAT,TABLE_SCHEM,TABLE_NAME,COLUMN_NAME,DATA_TYPE,TYPE_NAME,

COLUMN_SIZE,BUFFER_LENGTH,DECIMAL_DIGITS,NUM_PREC_RADIX,NULLABLE,

REMARKS,COLUMN_DEF,SQL_DATA_TYPE,SQL_DATETIME_SUB,CHAR_OCTET_LENGTH,

ORDINAL_POSITION,IS_NULLABLE

Next, show all of the metadata about the columns in a specific view. Note that columns do not appear in
the order that they appear in the view.

// Show the metadata values for the columns in the view.

boolean isEmpty = true;

while (rs.next()) {

isEmpty = false;

for (int i=0;i<columnCount;i++) {

String ts = rs.getString(i+1); // Metadata value

if (rs.wasNull())

System.out.print(",");

else

System.out.print(ts +

((i+1)==columnCount ? "" : ","));

}

System.out.println();

}

if (isEmpty) {

System.out.println("\n *** Either there are no columns defined "+

"for this view (unlikely), or the view is not "+

"defined (probably).");

}

FILENET BAM SERVER REFERENCE
Example: Querying View Metadata

204
Here is a sample listing of the metadata for the OrderProductTotals view. (See “Data type mappings” on
page 194 for a mapping of the data types from Java). Again, the columns do not appear in any particular
order.

,,OrderProductTotals,VC_EVENT_ID,4,VCInteger,10,,0,10,1,,,,,,1,YES

,,OrderProductTotals,VC_TIMESTAMP,93,VCTimestamp,9,,0,10,1,,,,,,3,YES

,,OrderProductTotals,Target max,3,VCDecimal,15,,2,10,1,,,,,,4,YES

,,OrderProductTotals,VC_LATEST_EVENT_ID,4,VCInteger,10,,0,10,1,,,,,,5,YES

,,OrderProductTotals,Family,12,VCVarchar,20,,0,10,1,,,,,,6,YES

,,OrderProductTotals,Target min,3,VCDecimal,15,,2,10,1,,,,,,7,YES

,,OrderProductTotals,Qty,4,VCInteger,10,,0,10,1,,,,,,9,YES

,,OrderProductTotals,Product,12,VCVarchar,50,,0,10,1,,,,,,10,YES

,,OrderProductTotals,Target,3,VCDecimal,15,,2,10,1,,,,,,11,YES

,,OrderProductTotals,Sales,3,VCDecimal,25,,2,10,1,,,,,,12,YES

Example: Querying View Metadata
These snippets show how to query view metadata. First it shows the metadata available for views, and
then it shows how to find all of the views defined in the system.

NOTE: See the JDBCAccessor.PrintAllViewsMeta() sample for a complete code listing.

/* Retrieve metadata about views.

*/

ResultSet rs;

ResultSetMetaData rmd;

DatabaseMetaData meta = connection.getMetaData();

// Use 'null' for the 3rd parameter to retrieve information about all

// of the views in the system, instead of just one.

rs = meta.getTables(null,null,null,null);

rmd = rs.getMetaData();

for (int i=0;i<rmd.getColumnCount();i++) {

System.out.println(

" ["+ rmd.getColumnName(i+1) +

"] Type [" + Integer.toString(rmd.getColumnType(i+1)) +

"] Precision [" + Integer.toString(rmd.getPrecision(i+1)) +

"] Scale [" + Integer.toString(rmd.getScale(i+1))+"]");

}

The results first describe the metadata that is available:

This metadata is available for views.

[TABLE_CAT] Type [12] Precision [255] Scale [0]

[TABLE_SCHEM] Type [12] Precision [255] Scale [0]

[TABLE_NAME] Type [12] Precision [255] Scale [0]

[TABLE_TYPE] Type [12] Precision [255] Scale [0]

[REMARKS] Type [12] Precision [255] Scale [0]

FILENET BAM SERVER REFERENCE
Example: Querying View Metadata

205
Next, list the views (table names) defined in the system:

// Use the metadata to list all of the views in the system.

final int GT_TABLE_NAME = 3; // View name

boolean isEmpty = true;

while (rs.next()) {

isEmpty = false;

System.out.println(" " + rs.getString(GT_TABLE_NAME));

}

if (isEmpty) {

System.out.println(" *** There are no views defined. ***");

}

The results look similar to this:

OrderChangeDetails

OrderTotals

8WeekOrders

8WeekOrdersAvg

OrderProductTotals

OrderSalesGrandTotal

30DayOrders

InventoryChangeDetails

SupplierAlternates

FILENET BAM SERVER REFERENCE 206
Objects

Objects manage data in FileNet Business Activity Monitor. Every object has a name, optional description,
and a status that determines if it is able to work with its intended data. Further, each object has additional
information that you define that tells the object what data to manage, and how to manage it.

In this Chapter:

“Object status” on page 207

“Object names” on page 208

“Object namespace” on page 211

FILENET BAM SERVER REFERENCE
Object status

207
Object status
Every object has one of three statuses that determine its ability to operate:

When you view a list of objects, you can see each object’s valid/invalid state, and the enabled/disabled
status. You can click on an enabled indicator in the Status column to disable it, or click on a disabled
indicator to enable it.

Icon Description

Enabled — The object is accepting new data and processing them. You can only enable
valid objects that do not depend on disabled objects. When you enable a disabled object,
you have the choice of enabling just that object, or that object and all objects that depend
on that object (cascade enable). Further, all of the dependant objects must be capable of
being enabled — none may be invalid — or the entire operation fails and no objects are
enabled.

Disabled — The object is not accepting new data. Disabling an object does not affect the
definition or existence of that object; rather, it just keeps new data from flowing into the
object and to all objects that depend on the object. For example, disabling a view also
disables all rules that monitor the view, and thereby also disables all associated alerts
and reportlets.

Disabled dependant— The object is not accepting new data because an object that this
one depends on is disabled. Enabling the referenced object will also enable this object.

Invalid — The object that has a reference to another object which cannot be satisfied,
such as one view that references a column in another view, but that column no longer
exists in the referenced view. An object can be invalid because a referenced object does
not exist or because some attribute of the object does not match the requirements of the
dependent (such as a data type mismatch or a missing column name). Invalidating an
object also invalidates all objects that depend on the object. This usually happens when
you delete an object that has dependencies, or change an object’s definition.

Click to enable.

Click to disable.

FILENET BAM SERVER REFERENCE
Object names

208
Object names
All object names must be either a regular identifier or a delimited identifier.

• Regular Identifier — The first character of a regular identifier must begin with a letter from ‘a’-‘z’ or
‘A’-‘Z’, and all subsequent characters can be from ‘a’-‘z’, ‘A’-‘Z’, ‘0’-‘9’, or ‘_’.

• Delimited Identifier — A delimited identifier must start and end with a double quote ("). The body of a
delimited identifier must be non-empty and can contain any SQL language characters including: the
Regular Identifier characters, underscore (‘_’), space(‘ ’), percent(‘%’), ampersand (‘&’), single quote,
left parenthesis (‘(’), right parenthesis (‘)’), asterisk (‘*’), plus sign (‘+’), comma (‘,’), minus sign (‘-’),
slash (‘/’), colon (‘:’), semicolon (‘;’), equals operator (‘=’), question mark (‘?’), vertical bar (‘|’) or double
quote ("") (escaped with another double quote).

NOTE: Names may not contain periods (‘.’), less than (‘<’), or greater than (‘>’) characters.

All names must be unique within their class (such as view or agents; see “Object namespace” on page 211
for details), and may not be identical to reserved words. For example, you cannot have a view named by
the regular identifier select, though you can have a delimited one named "select".

Reserved words

All identifiers beginning with “VC_” are reserved system names and may not be used. Further, all reserved
words in the SQL-99 standard are reserved in C-SQL. Following are FileNet Business Activity Monitor
reserved words:

Reserved Words

abs delete local rollback

absolute desc log round

acked describe lower rows

action descriptor lowered rpad

add diagnostics lpad rtrim

all disconnect ltrim schema

allocate distinct match scroll

alter domain max second

and double min section

any drop minute select

are else mod session

as end module session_user

asc end-exec month set

assertion escape mov_avg sign

at event mov_count size

FILENET BAM SERVER REFERENCE
Object names

209
authorization except mov_max smallint

avg exception mov_min some

begin exec mov_ntile space

between execute mov_rank sql

bit exists mov_ratio_to_report sqlcode

bit_length exp mov_std_deviation sqlerror

boolean external mov_sum sqlstate

both extract mov_variance sqrt

by false names std_deviation

cascade fetch national substr

cascaded first natural substring

case float nchar sum

cast floor next system_user

catalog for no table

ceil foreign not temporary

char found ntile then

char_length from null time

character full nullif timestamp

character_length get numeric timestamp_diff

check global octet_length timezone_hour

close go of timezone_minute

coalesce goto on to

collate grant only to_char

collation greatest open to_date

column group option trailing

commit having or transaction

concat hour order translate

connect identity outer translation

connection immediate output trim

constraint in overlaps true

Reserved Words

FILENET BAM SERVER REFERENCE
Object names

210
constraints indicator pad trunc

continue initially partial union

convert inner position unique

corresponding input power unknown

count insensitive precision update

create insert prepare upper

cross int preserve usage

current integer prev user

current_date intersect primary using

current_time interval prior value

current_timestamp into prior_value values

current_user is privileges varchar

cursor is_raised procedure variance

date isolation public varying

date_add join raised view

date_diff key rank when

day language ratio_to_report whenever

deallocate last read where

dec last_day real with

decimal leading references work

declare least relative write

default left restrict year

deferrable level revoke zone

deferred like right

Reserved Words

FILENET BAM SERVER REFERENCE
Object namespace

211
Object namespace
The namespace controls how objects are named within FileNet Business Activity Monitor. Generally,
object names must be unique among other objects of the same type, within the same container. However,
here are some exceptions:

• Alerts, rules, and reportlets can share the same name within the containing scenario; you can use the
same name for one alert, one rule, and one reportlet within a scenario. Further, each object within a
scenario may share the same name as an object of the same type in another scenario.

• Profiles must be unique within a single user; multiple users may share profile names.

• Users and business activities cannot share the same name; they must be unique within the
“containers” class. See the summary below for details.

• Views, events, context, etc., cannot share the same name; they must be unique within the “tables”
class. See the summary below for details.

• Agents must be unique within the “agents” class.

This outline summarizes the namespace constraints:

/containers

/Business activities Unique among /containers

/Scenarios

/Alerts

/Rules

/Reportlets

/Users and Roles Unique among /containers

/E-mail profiles Unique within a user

/RTD (Excel) profiles Unique within a user

/tables

/Events Unique among /tables

/Context Unique among /tables

/Consolidated events Unique among /tables

/Cube Unique among /tables

/Dimensions Unique among /tables

/Views Unique among /tables

/agents

/Flat (text) files Unique among /agents

/SOAP (Web services) Unique among /agents

/JMS Unique among /agents

/JDBC Unique among /agents

/Rendezvous (TIBCO) Unique among /agents

/Excel templates

/External actions (processes)

/Join relationships

FILENET BAM SERVER REFERENCE 212
Operators and Constants

This chapter describes the operators and constants that FileNet Business Activity Monitor and C-SQL
support in expressions and arguments.

In this Chapter:

“Numeric operators” on page 213

“String operators” on page 213

“Comparison operators” on page 214

“Logical operators” on page 215

“Constants” on page 215

FILENET BAM SERVER REFERENCE
Numeric operators

213
Numeric operators
There are two classes of numeric operators:

Prefix operators

Control the arithmetical sign of numeric values.

Infix operators

Numeric operators perform arithmetical operations on numeric values:

To perform arithmetic operations on date-time values, use DATE_ADD() and DATE_DIFF().

String operators
Concatenation (||) is the only string operator and it appends the right-side string to the end of the left-side
string. For example 'a'||'b' returns 'ab'. The behavior is identical to the CONCAT() function.

Prefix Operator Description

+ Unary plus

- Unary minus

Numeric Operator Description Example

+ Addition 11 + 3 returns 14

- Subtraction 11 - 3 returns 8

* Multiplication 11 * 3 returns 33

/ Division 11 / 3 returns 3

FILENET BAM SERVER REFERENCE
Comparison operators

214
Comparison operators
Comparison operators compare two or more values of the same data type and return a Boolean:

LIKE operator

The LIKE operator matches a pattern of characters. A percent sign (%) in the pattern is a wildcard for zero
or more characters, and an underscore (_) is a wildcard for exactly one character.

WHERE Title LIKE 'MR_'

WHERE E_Mail NOT LIKE '%.edu'

To include either ‘%’ or ‘_’ in the search string, use the keyword ESCAPE to designate an escape
character. A ‘%’ or ‘_’ following an escape character is treated as a literal. Note that the escape character
may not be used elsewhere in the search string. This example looks for “10%” anywhere in Discount:

WHERE Discount LIKE '%10$%' ESCAPE '$'

NOTE: An escape character prefixing anything other than an escape or special character is ignored.

Be careful about using LIKE when comparing against numeric types. LIKE is a string operator and as such,
searching a numeric first performs an Implicit cast of the numeric value to a string. When casting numerics
to strings, be aware of the following:

• For DECIMAL numbers, casting to string zero-pads the decimal values to match the precision and
scale defined for the column. So, for example, if a column is defined as precision 5 and scale 4, a
value of 1.1 in the column is cast as ‘1.1000’, and so searches for single digit decimals must be done
as LIKE '_._000'.

• For DOUBLE PRECISION numbers, the ‘e’ is cast to upper case. So, for example, +1e11 is converted
to ‘1.0E11’.

Operator Description Example

= Equal 1=1 returns TRUE

<> Not equal 'A'<>'a' returns TRUE

> Greater than CURRENT_DATE()>TO_DATE('02/28/1963')
returns TRUE

< Less than Age<21 returns UNKNOWN when Age is NULL

>= Greater than or equal TRUE>=FALSE returns TRUE

<= Less than or equal NULL<=NULL returns NULL

IN Is a member of a list Symbol IN ('IBM', 'MSFT', 'VCLR') or
Count NOT IN (5, 10, 15, 20)

BETWEEN/AND Is within a range SalePrice BETWEEN 50.0 AND (90.0) or
NOT BETWEEN 'M' AND 'O'

LIKE Pattern matching.
See below for details.

Title LIKE 'MR_'

FILENET BAM SERVER REFERENCE
Logical operators

215
Logical operators
Logical operators compare Boolean values, such as the result of a comparison operation.

The truth table for the equal sign (=) operator is equivalent to IS. See “Truth table for IS” on page 64 for
details.

Constants
The C-SQL Boolean constants are TRUE, FALSE, and UNKNOWN. See “Boolean” on page 64 for details
about these constants.

NOTE: NULL is ignored when computing set function, moving set function, and rank function values. For
example, the average of (3, NULL, 3) is 3, not NULL and it is not 2.

NULL is a null value. Any non-Boolean column which does not have an entry is considered NULL.

WHERE SalesPrice = NULL Returns TRUE

WHERE SalesPrice = UNKNOWN Error, cannot cast Numeric to Boolean

However, testing a Boolean column returns UNKNOWN when the column is empty.

WHERE OnSale = NULL Returns UNKNOWN (null = null)

WHERE OnSale = UNKNOWN Returns UNKNOWN (null = unknown)

WHERE OnSale IS NULL Returns TRUE

WHERE OnSale IS UNKNOWN Returns TRU

Logical Operator Description Example

AND Both true (SalesPrice>500) AND (OnSale)

 OR One must be true (ZipCode = '90210') OR (City = 'Lodi')

NOT Inverse NOT OnSale

IS Test of Boolean IS OnSale or
IS NOT OnSale

Constants Description

TRUE True.

FALSE Not true.

NULL No data.

UNKNOWN Test for Boolean value that is NULL, or where a
comparison cannot be determined such as when
comparing null to null.

FILENET BAM SERVER REFERENCE 216
Permissions

Permissions control which users may see, create, and edit FileNet Business Activity Monitor objects and
user accounts.

In this Chapter:

“Accessing permissions” on page 218

“Granting permissions” on page 221

“Creating permission” on page 220

FILENET BAM SERVER REFERENCE
Application of permissions

217
Application of permissions
Permissions can be applied in two places:

• On a specific object from the Permissions button after selecting the object in a list. When you assign a
permission a specific object, it is the maximum permission that the user has to that object. You cannot
set a user’s permission to a specific object lower than that user’s permission to the class of objects.

• At the class level from the Administration Console>Edit User dialog>Access Permissions tab. When
you assign a class level permission, it is the minimum permission that the user has to all objects of this
type. You can also assign class level permissions to a role from the Edit Role dialog>Access
Permissions tab. Roles define permissions for set of users over sets of objects.

When a user belong to one or more roles, the highest level of access between the roles and the user’s
assigned permissions is the one that applies. For detailed information about roles, see “Roles” on
page 252.

By default, every new user has No Access permissions for everything (except user accounts, to which they
have Read Only permission). However, even with this minimal set of permissions, a user may receive and
view alert notifications and reportlets generated as the result of mandatory subscriptions.

NOTE: A System user always has full permissions to every object in the installation. For information about
the System user, see “Users” on page 282.

The rest of this discussion describes the permissions in detail:

• “Permission restrictions” on page 221 details the rules for when you are allowed to change
permissions.

• “Permission inheritance and dependencies” on page 222 describes the permissions you need to
create and edit classes, and how some objects affect access to others.

FILENET BAM SERVER REFERENCE
Accessing permissions

218
Accessing permissions
Access permissions specify the level of access a user has to an object. Permissions can be assigned to an
entire class of object or to a specific object. The access permissions are:

NOTE: You cannot assign a permission to a specific object that is more restrictive than the user’s
permission on the class. For example, you cannot assign Read Only when a user has Read-Write on the
object’s class. Further, you cannot assign a permission to an object that is greater than your own for the
same object.

Class level access permissions
All class level permissions are assigned to a user or role. To see or change a class level permission, you
must first edit the user’s account or role definition.

NOTE: When viewing the list of user or roles, do not use the Permissions button. That button defines
which users and roles may access the specific user accounts or role definitions in the list. See Specific
Object Access Permissions,” below, for details of this button.

To change a user’s permissions for a class of objects:

1. In the Administration Console, select the Users folder, and double-click on the user’s account in the list.
This edit’s the user’s account.

2. On the Edit User dialog, click the Access Permissions tab.

3. Click Edit next to the permission to change. The permission dialog has three fields:

• Role-Granted Permissions shows the permission assigned by the roles that the user is a member
of. When the user belongs to multiple roles, the greatest level of access among them is applied.

• Additional User-Specific Permission is the permission that you are assigning for the user for the
class. While you can assign a permission lower than the role permissions, doing so does not lower
the users permission.

• Effective Permissions is the greatest level of permission assigned by the other two fields, and is
the permission assigned to the user for this class of objects.

For more information about this dialog, see “User Permissions tab” on page 286.

Permission On the class On a specific object

No Access Cannot see any objects of this class,
unless granted “read” on specific objects.

—

Filtered/Read-Only — Limits the rows in a view that
the user can see based on an
access filter. See “Access
Filters” on page 17 for details.

Read-Only Can see all objects of the class. Can see the object.

Read-Write Can see and edit all objects of the class. Can see and edit the object.

FILENET BAM SERVER REFERENCE
Class level access permissions

219
4. Save the changes to immediately apply them to the user.

To change a role’s permissions for a class of objects:

1. In the Administration Console, select the Roles folder, and double-click on the role in the list. This edit’s
the role’s definition

2. Click the Access Permissions tab.

3. Click Edit next to the permission to change. Set the permission to the class for this role.

4. Save the changes to immediately apply them to the role.

Specific Object Access Permissions

You access the permissions to specific objects by selecting the object in the list of objects, and clicking the
Permissions button above the list. Note that this applies to the Users and Roles lists as well. You can
assign access permissions to specific user accounts and roles in the same way you assign access to
specific views or agents.

To see user permissions for one or more specific objects:

• Select the objects in a list (such as a specific view in the Views list) and click Permissions. Your
permissions to the object are shown at the top of the dialog, and the permissions that each user has to
the object are listed below your permissions.

To change user permissions for one or more specific objects:

1. Select one or more objects and click Permissions. (Note that Filtered/Read-Only permission can only
be assigned to one view at a time.)

2. Select the users whose access permissions you want to change and click Change Permissions.

You cannot change the permissions for users that do not meet the criteria listed in “Permission
restrictions” on page 221. For example, this picture lists each user’s access permissions to the current
object, shows that three users have higher permission than the current user (because their
permissions cannot be changed), and shows that two users who are about to have their permissions
changed.

These two selected
users are about to
have their
permissions
changed.

You cannot
change the
permissions of
this users.

FILENET BAM SERVER REFERENCE
Creating permission

220
3. Set the permissions on the Basic tab. Note that when you assign permissions to a view, you have the
option of choosing a Filtered/Read-Only permission, as shown in the illustration. See “Access Filters”
on page 17 for information about this permission.

Save the permissions and they are immediately applied to the objects.

Creating permission
The Create permissions specifies which classes of objects a user may create.

When you create an object, you have Read and Write, and Grant Access permissions to that object. This
allows you to grant any Access or Grant permissions to any other users for that object.

NOTE: Once you have created an object, any other user with Grant permissions on the object can re-
assign permissions, in effect overriding any permissions you assigned.

When you create a user, the user has No Access to everything. You may assign permissions to that user
for an entire class of objects on the user’s User Permissions tab.

To see which types of objects you may create:

• Click Account Settings and view the User Permissions tab for you account.

Filtered/Read only
is available for
views only.

FILENET BAM SERVER REFERENCE
Granting permissions

221
Granting permissions
The Grant permissions allow you to assign permissions to other users. The Grant permissions are:

NOTE: The System user is the only user that is always guaranteed to have full permissions on all objects.

To grant permissions to other users:

1. Select the objects and click Permissions.

2. Select the users to modify and click Change Permissions and choose the Grant permissions on the
Advanced tab.

Permission restrictions
When granting permissions, be aware of these restrictions:

• You cannot lower another user’s permission on an object for which they have higher permission than
you.

• You cannot raise another user’s permission on an object to be higher than your own permission on that
object. You will usually encounter this restriction when attempting to assign permissions on multiple
objects are once, where your permission on one of the objects is less than your permission for the
others.

Permission Description

Grant Read Only May grant Read Only permission.

Grant Read and Write May grant Read and Write permission.

Grant Create May grant Create permission.

Grant ability to grant Read Only May grant ability to grant Read Only permission.

Grant ability to grant Read and
Write

May grant ability to grant Read and Write permission.

Grant ability to grant Create May grant ability to grant Create permission.

FILENET BAM SERVER REFERENCE
Permission inheritance and dependencies

222
Permission inheritance and dependencies
Objects that track permissions control access to the object, and to objects they may contain. Other objects
inherit their permissions from the object that they are contained in. The objects that control permissions
are:

• Agents

• Business Activities (controls access to contained scenarios, rules, alerts, and reportlets)

• Microsoft Excel templates (active reports)

• Roles

• Tables, includes Events, Contexts, and consolidated events

• Users (controls access to user accounts).

• Views

NOTE: Regardless of what permissions a user has to an alert or reportlet, the user can always see the
information in alert notifications and reportlets sent to the user.

Dependencies

When you create or edit objects, you are limited by the permissions of any dependant objects, and by the
permissions of any containing object. Here are the objects that have dependant requirements for create or
edit:

• Table — You must have Read permission to the agent that feeds the table.

• View — You must have Read permission to the event table or base view, and any context tables that
feed the view.

• Business activity — To see the definitions of any objects contained in a business activity, you need
Read permission on that business activity. Further, for contained scenarios, rules, alerts, and
reportlets:

• To see the definition of the object you need Read permission on the underlying view.

• To create a contained object, you need Read and Write permission on the business activity, and
Read permission on the underlying view.

NOTE: Permissions on one object can affect a user’s access to another, especially for restrictions on
views. For example, you might be able to edit an alert but not the alert’s reportlet when the reportlet’s view
is No Access but the alert’s view is Read Only.

FILENET BAM SERVER REFERENCE 223
Processes

A process is the set of steps (actions) that accomplish a task, such as the example below which is a four-
step process for making a request for approval. Further, a real transaction through a process is a process
instance, such as a specific request for approval.

Business process management (BPM) systems create and manage business processes and instances.
When a BPM is managing a process instance, it sends details about each step of the transaction to FileNet
Business Activity Monitor, which then develops statistics about the entire process. For example, the
system might determine how long, on average, it takes to complete the entire process, is the process
getting faster over time, what percentage of requests are rejected, or how long just the review step takes.

In this Chapter:

“How it works” on page 224

“Creating and using processes” on page 225

Review
request

Make
request

Approve
request

Reject
request

FILENET BAM SERVER REFERENCE
How it works

224
How it works
Process instance details arrive in FileNet Business Activity Monitor as events. The FileNet BAM Server
aggregates the details in views or cubes to generate the statistics. The FileNet BAM Dashboard then
presents the process as a diagram, and includes the statistics in a table. Other objects can display other
metrics, such as charts that present statistics over times.

The FileNet BAM Dashboard also provides an optional ad-hoc query to the BPM to get the details about a
specific process instance, such as where is it in the process. When a user makes such a request, the
FileNet BAM Dashboard queries a context table in the FileNet BAM Server, and that table queries the BPM
for the specific instance details. The results are then returned to the FileNet BAM Dashboard for display.

The process management system generates a process definition file that describes the process in XML. A
process definition in the FileNet BAM Workbench then associates that definition file with an aggregate view
or cube, and optionally with a search context table. The FileNet BAM Dashboard uses that object as the
source for a process chart, and to identify the associated aggregate view or cube and search context table.

FileNet BAM Server
(views and cubes)

Instance
details

Process
management
system
(processes) Statistic

FileNet BAM Dashboard
(charts and tables)

FileNet BAM DashboardProcess
management
system

Instance query
and results

Details

Query Detail Search
context table

FileNet Business
Activity Monitor

FileNet BAM Dashboard
Process
management
system

Aggregate
view or cube

Process
Definition file Process

diagrams

Detail Search
context table

FileNet Business Activity
Monitor

Process definition

FILENET BAM SERVER REFERENCE
Creating and using processes

225
Creating and using processes
To create and use processes in FileNet Business Activity Monitor, the external business process system
must:

• Generate a process definition file in an XML format recognized by FileNet Business Activity Monitor.

• Publish process step statistics as event data into the FileNet BAM Server.

• Optionally provide an interface for the process instance queries from FileNet Business Activity Monitor
context tables.

The general steps for creating process diagrams are:

1. Create an agent (if necessary) and event table to receive the process events from the BPM.

2. Create one view or cube per process.

3. (Optional) Create a context table to query the BPM.

4. Create a process definition object.

5. Create a process diagram.

Event streams
The event streams receive and aggregate the process instance statistics. Event data are received in an
event table, usually arrive through an agent. And the aggregate views are based on the event table. For
detailed information about these components, see the following topics:

• “Agents” on page 25

• “Events” on page 70

• “Views” on page 291

• “Cubes” on page 48

The following requirements also apply:

• There should be only one agent and event table per BPM.

• There should be one view or cube per process. Use a Where clause to distinguish the process events
from other processes in the event table, such as "Process Name"='Request Approval'. See Working
with process definitions for details.

FILENET BAM SERVER REFERENCE
Context search table

226
Context search table
The context table generates a query to the BPM whenever a FileNet BAM Dashboard user makes an ad
hoc query about a specific process instance. For details about context tables, see “Context” on page 42.

When the context receives a query from the FileNet BAM Dashboard, it first looks for the details in the
context cache. If the instance is not in the cache, the table then queries the BPM for the details. Be sure to
define a reasonable invalidation schedule for you business, or disable the cache if the queries need to
return the most up-to-date information about the process instance.

Process definitions
See Working with process definitions for details about this task.

Before creating a process definition, you need:

• Read Only access permission on the view or cube that aggregates the process events.

• (Optional) Read Only access permission on the context search table.

To create a process definition in the FileNet BAM Workbench:

1. Open the Process Definitions folder in the FileNet BAM Workbench and choose New Process Defini-
tion.

2. Name the object and upload the process definition file generated by the BPM.

3. Choose the aggregate view or cube, and choose the column that identifies the steps in the process.

4. (Optional) Choose the detail search context table, choose the column to search, and optionally provide
descriptive text to appear in the FileNet BAM Dashboard.

5. Save the process definition.

You can now create process diagrams based on this definition.

FILENET BAM SERVER REFERENCE
Process Diagrams

227
Process Diagrams
See Process Diagrams for details about this task.

Before creating a process diagram, you need:

• Read Only access permission on the aggregate view or cube that provides the statistics.

To create a process diagram in the FileNet BAM Dashboard:

1. Open the Process Diagrams manager and choose Create Diagram.

2. Select the process definition (as defined in the FileNet BAM Workbench).

3. Select the source columns to present as statistics.

4. Name the process diagram and save it.

The FileNet BAM Dashboard immediately presents the process diagram. The statistics update as events
arrive for the specific process.

FILENET BAM SERVER REFERENCE 228
Query Windows

A query window specifies a set of rows that are used in calculations with respect to the current row (event)
under examination in a view constructed with a C-SQL SELECT statement. (Business views created in the
FileNet BAM Workbench construct views via a well-formed SELECT statement passed to the servers.)

In this Chapter:

The rest of this discussion describes how to define and use windows.

“Overview” on page 229

“Window declarations and references” on page 230

“Event-Series windows” on page 232

“Time-Series windows” on page 233

“Window partitions” on page 238

“Window advancement” on page 241

“Window update reference” on page 245

“Window Initialization” on page 246

FILENET BAM SERVER REFERENCE
Overview

229
Overview
The calculation using a window may be for computing a moving set function, a join, or expiring rows from a
view. All such calculations use a window; however, in the default cases for these operations, you do not
need to define the window semantics. For example, in C-SQL, set functions perform calculations on sets of
rows in a view. The default set of rows for each function is all events since the view was initiated (an
“unbounded” set). Consider this view which calculates the total value of column named Qty for all events
that were ever included in the view:

SELECT SUM(Qty) AS Total_Qty FROM Orders

However, another way to express the SUM() to get the same result is the following, which says to sum over
the set of all previous events:

SELECT SUM(Qty) OVER (EVENTS UNBOUNDED PRECEDING) AS Total_Qty

FROM Orders

The OVER clause defines a window that identifies the set of rows to include. With a window you can limit
the set to a specific count of event rows, or to those events that occurred within a specific time-span. For
example, to total just the current and last five events, define a window like this:

SUM(Qty) OVER (EVENTS 5 PRECEDING) AS Total_Qty

And, to total just the current month’s events, use a time-series window, like this:

SUM(Qty) (RANGE INTERVAL '1' MONTH PRECEDING) AS Total_Qty OVER

Window types

All windows are identified by either the EVENTS or RANGE clause, and include an extent definition that
defines the size of the window.

{ RANGE | EVENTS } <window frame extent>

The extent syntax is unique to the window type and is described in detail in “Event-Series windows” on
page 232” and “Time-Series windows” on page 233. Other clauses (not shown) control how the window
behaves as new events enter the window, which items to include, and how and when the window updates
to include new events and discard old ones.

FILENET BAM SERVER REFERENCE
Window declarations and references

230
Window declarations and references
There are two ways to define windows and associate them with functions:

In-line

In-line defines the window parameters immediately following the function reference, similar to this:

SELECT PartName, SUM(Qty) OVER (EVENTS 4 PRECEDING) AS Total_Qty,

FROM Orders

GROUP BY PartName

This format is useful when you have only one window per query, though you can also use it with multiple
windows. Note that you cannot share these window definitions among functions in the same query.

Reference by name

Reference by name to use a window defined with the WINDOW clause, similar to this:

SELECT PartName,

SUM(Qty) OVER Previous4 AS Total_Qty,

AVG(Qty) OVER Previous4 AS Average_Qty

FROM Orders

GROUP BY PartName

WINDOW Previous4 AS (EVENTS 4 PRECEDING)

This format is useful when you have multiple simple window definitions because you can define them all in
one place: in the same WINDOW clause definition. This form also allows you to share the definition over
multiple functions in the same query (as shown above), and allows you to use windows that extend
another window’s definition (see Extending one window definition with another”, below).

NOTE: Functions in the select list associated with a window must have alias names defined with the AS
operator, such as AS Total_Qty in the examples above.

Multiple windows per query
The WINDOW clause defines windows that can be shared throughout the query, and which may be
extended by other windows. This example defines two windows, each used by a different function in the
query:

SELECT PartName,

SUM(Qty) OVER Previous4 AS Total_Qty_4,

AVG(Qty) OVER Previous10 AS Average_Qty_10

FROM Orders

GROUP BY PartName

WINDOW Previous4 AS (EVENTS 4 PRECEDING),

Previous10 AS (EVENTS 10 PRECEDING)

FILENET BAM SERVER REFERENCE
Extending one window definition with another

231
Extending one window definition with another
When windows share common traits, you can define those traits in one window definition, and then extend
(inherit) that definition with other, unique aspects in different windows. For example, this definition defines
one window named Common with the PARTION BY clause, and then defines additional windows that
extend the common traits with the range required for the unique windows:

SELECT PartName,

SUM(Qty) OVER Events4 AS Total_Of_Qty_4,

AVG(Qty) OVER Events10 AS Average_Of_Qty_10

FROM Orders

WINDOW Common AS (PARTITION BY PartName),

Events4 AS (Common EVENTS 4 PRECEDING),

Events10 AS (Common EVENTS 10 PRECEDING)

The WINDOW definition above is the same as this:

Events4 AS (PARTITION BY PartName EVENTS 4 PRECEDING),

Events10 AS (PARTITION BY PartName EVENTS 10 PRECEDING)

Restrictions

Window extension definitions may not include properties defined in the base window. For example, you
cannot define an ORDER BY in both the base and extension windows. Further:

• A PARTITION BY clause can appear in the base window definition only; it cannot appear in an
extensions.

• These clauses can appear in extension definitions only; they cannot appear in the base window:

BETWEEN/AND

CURRENT EVENT

EVENTS

INITIALIZE

RANGE

REFERENCE

SLIDE

UNBOUNDED

<window start integer> without an EVENTS or RANGE clause

• A window may only extend another window defined in the same query; a window in a derived view
cannot extend a window in a base view.

FILENET BAM SERVER REFERENCE
Event-Series windows

232
Event-Series windows
Event-series windows contain a maximum fixed-set of events. Initially the window is empty, but fills with
new events until it reaches its defined capacity. After that, the oldest events are discarded one-for-one as
the newest events are included.

EVENTS clause
Event-series windows are identified by the EVENTS clause. Spans of events are expressed with the
BETWEEN and AND clauses. Omit the span arguments to include just the latest events, starting with the
current event. PRECEDING is optional and provided for ANSI compatibility, it clarifies that the event rows
precede the current one.

([PARTITION BY <column>]

EVENTS [BETWEEN] {<oldestEvent> | UNBOUNDED} PRECEDING

[AND { <newestEvent> [PRECEDING] | CURRENT EVENT }]

[SLIDE <distance>]

[REFERENCE {FRAME | OPERATOR}]

• PARTITION BY creates one window frame for each <column> of events, similar to a GROUP BY
window. See “Window partitions” on page 238 for details.

• SLIDE identifies how to advance the window when new events arrive in the view. See “Window
advancement” on page 241 for a detailed description of this option.

• REFERENCE tells the window when to determine if rows have expired from the window set. The
default value is FRAME: expire rows only when new rows enter the window. The OPERATOR form is
useful only when the view has multiple PARTITION BY or GROUP BY windows. See “Window update
reference” on page 245 for a detailed description of this option.

Examples

This window contains rows limited by a count of consecutive events in the view, such as the last 5 events,

SUM(Qty) OVER (EVENTS 4 PRECEDING) AS Total_Qty

or the 10 events starting 12 events ago.

SUM(Qty) OVER (EVENTS BETWEEN 11 PRECEDING AND 2 PRECEDING)

AS Total_Qty

Notice that the size of the window frame is (<oldestEvent>–<newestEvent>+1). For example, the frame
above contains 10 events (11–2+1).

To include all of the previous events, including the current one, with the UNBOUNDED option, like this:

SUM(Qty) OVER (EVENTS UNBOUNDED PRECEDING) AS Total_Qty

Future events

Discarded events.

Older events are
discarded when the
window is full and new
events are added.

This window holds
three events.

FILENET BAM SERVER REFERENCE
Time-Series windows

233
Which is the same behavior as if no window was defined:

SUM(Qty) AS Total_Qty

Current event

In the examples above notice that the starting event is numbered 1 less than the desired starting event.
This is because the counting is zero-based: event zero (0) is the current event.

Another way to express the last 5 events is:

OVER (EVENTS BETWEEN 4 PRECEDING AND 0 PRECEDING)

Yet another way to express the range of events is to use the CURRENT EVENT literal, like this:

OVER (EVENTS BETWEEN 4 PRECEDING AND CURRENT EVENT)

Time-Series windows
Time-series windows grow to include all of the events that occur within an interval of time. Such as this
1-day window that grows as new events arrive during the day.

Similarly, a 3-day window includes all of the events within the current 3-day window.

25 1 0346

Current event

A window of 5 events,
including the current event.

Seven events ago

1 day 1 day 1 day 1 day

Latest event

Latest
event

During day 3. During day 4. During day 5.

FILENET BAM SERVER REFERENCE
RANGE clause

234
RANGE clause
Time-series windows are identified by the RANGE clause. These windows contain rows that are limited to
a time range in combinations of years, months, days, hours, minutes, or seconds. A span of time is
expressed with the BETWEEN and AND clauses. Omit the span clauses to include the latest event (the
current event). PRECEDING clarifies that the event rows precede the current one.

([PARTITION BY <column>]

[ORDER BY {<date-time column> | <integer column>} [ASC | DESC]]

RANGE [BETWEEN]

{INTERVAL <oldestTime> | <oldestInt> | UNBOUNDED} [PRECEDING]

[AND {INTERVAL <newestTime> | <oldestInt>} [PRECEDING]]

[SLIDE INTERVAL <distance>]

[REFERENCE {FRAME | OPERATOR}]

[INITIALIZE <initTimestamp>]

)

Further,

• The order-by, “oldest”, and “newest” columns are usually date-time data types. However, you can also
use an integer that represents a time-series. See “Integer Time-Series” on page 237 for details.

• PARTITION creates one window for each <column> of events, similar to a GROUP BY window. See
“Window partitions” on page 238 for details.

• ORDER BY identifies the column used to calculate the time of the event. See ORDER BY Clause,”
below for details.

• SLIDE identifies how to advance the window when new events arrive in the view. See “Window
advancement” on page 241 for a detailed description of this option.

• INITIALIZE specifies a common date-time to which to initialize all associated windows in a view. When
you use a time-series window it is best to initialize the start time to be midnight for day, month, and
year windows; to the first day of the month for month and year windows, and to the first day of the
desired range for year windows. See “Window Initialization” on page 246.

• REFERENCE tells the window when to determine if rows have expired from the window set. The
default value is FRAME: expire rows only when new rows enter the window. The OPERATOR form is
useful only when the view has multiple PARTION or GROUP BY windows. See “Window update
reference” on page 245 for a detailed description of this option.

Examples

This window totals the Qty column for the current month’s worth of events:

SUM(Qty) OVER (RANGE INTERVAL '1' MONTH PRECEDING) AS Total_Qty

You can also identify very specific ranges, such as this one which starts18 hours and 15 minutes ago, and
stops 45 seconds ago: See “Date-Time” on page 58” for detail about the date-time specifications.

OVER (RANGE BETWEEN INTERVAL '18:15' HOUR TO MINUTE PRECEDING

AND INTERVAL '45' SECOND PRECEDING

)

FILENET BAM SERVER REFERENCE
ORDER BY Clause

235
Which Events are Included

The events to include in a time-series window are determined when a new event enters the window or view
(see “Window update reference” on page 245 for more details). However, it is important to note that
interval are inclusive of events that are exactly the size of the range interval from the current event. For
example, consider a window with a one day interval:

SUM(order_qty) OVER (RANGE INTERVAL '1' DAY PRECEDING) AS TotalQty

When two events have exactly one day between them, they are both included in the window. Notice the
value of TotalQty after the two events:

order_qty TotalQty EventTime

--------- -------- ---------------------

1 1 2003-12-01 09:00:00.0

1 2 2003-12-02 09:00:00.0

When using the BETWEEN clause the <oldestTime> is included, while <newestTime> is excluded. For
example, to have two windows, one of the current week and one for the week before that, use these
definitions:

ThisWeek: RANGE INTERVAL '7' DAY PRECEDING

LastWeek: RANGE BETWEEN INTERVAL '14' DAY PRECEDING

AND INTERVAL '7' DAY PRECEDING

Notice that both ranges use '7' as a bounding value. The current week includes everything from now back
seven days inclusive, while the previous week includes the seven days before seven days ago. Another
way to define the windows above is to use '0' as the current time, like this:

ThisWeek: RANGE INTERVAL '7' DAY PRECEDING

AND INTERVAL '0' DAY PRECEDING

LastWeek: RANGE BETWEEN INTERVAL '14' DAY PRECEDING

AND INTERVAL '7' DAY PRECEDING

ORDER BY Clause
Unless defined otherwise, all times are calculated based on each event’s internal event arrival timestamp.
For example, this window contains events of the last hour in the order that they arrived in the system.

OVER (RANGE INTERVAL '1' HOUR PRECEDING)

You can designate any date-time column in the event as key. For example, you might want to use the time
that an order was placed:

OVER (ORDER BY order.order_timestamp RANGE '4' DAY PRECEDING)

The ORDER BY argument is a single column name reference; you cannot use integers to represent the
ordinal position of the column in the SELECT list. Further the default sort order is ascending (ASC); though
descending (DESC) is available too, see “Descending” on page 236 for details.

ORDER BY <columnNameReference> { ASC | DESC }

FILENET BAM SERVER REFERENCE
ORDER BY Clause

236
Out-of-Order Arrival

When the event stream is not in the expected order, the query engine attempts to insert the out-of-order
event into its correct location in the window frame, and updates all aggregations accordingly. The query
engine always uses the latest time of all the events received prior to the out-of-order event to determine if
it should be included. If the event is not within the latest window frame, it is omitted.

For example, consider a window of 1-hour that receives the following events in the order listed. Here the
second event is the latest, and as such, only events received after 08:10 (09:10 minus 1 hour) are included
in the window. The fourth event, therefore, is rejected because its timestamp is 08:04.

OVER (ORDER BY Time RANGE INTERVAL '1' HOUR PRECEDING)

Arrival

Sequence Time Amount

-------- ----- ------

1 08:45 242.69

2 09:10 103.76 << Latest timestamp sets the window

3 08:50 90.20 << Out-of-order, accepted

4 08:04 188.88 << Out-of-order, rejected

After the four events above have been processed, the view that contains them looks like this:

Arrival

Sequence Time Amount

-------- ----- ------

1 08:45 242.69

3 08:50 90.20 << Reordered

2 09:10 103.76

Descending

By default, order is assumed to be ascending: oldest events are processed first. However, you may specify
DESC for descending sort order. When events arrive and they are not already in descending order, they
are processed the same as noted above in Out-of-Order Arrival.”

OVER (ORDER BY Time DESC RANGE INTERVAL '1' HOUR PRECEDING)

Arrival

Sequence Time Amount

-------- ----- ------

1 08:45 242.69

2 09:10 103.76 << Out-of-order, expires after fourth event

3 08:50 90.20 << Out-of-order, accepted

4 08:04 188.88

After the four events above have been processed, the view that contains them looks like this:

Arrival

Sequence Time Amount

-------- ----- ------

4 08:04 188.88

1 08:45 242.69

3 08:50 90.20

FILENET BAM SERVER REFERENCE
Integer Time-Series

237
NULL Value Timestamps

When the referenced column contains a NULL value for the timestamp, the event is rejected unless the
range is UNBOUNDED. When the window frame is unbounded, all events are included, including the
NULL timestamps; though the NULL values are placed last in the set, in the order they arrived. For
example:

Arrival

Sequence Time Amount

-------- ----- ------

1 08:04 188.88

2 08:45 242.69

3 103.76 << First NULL time

4 08:50 90.20

5 157.11 << Second NULL time

When the above events are processed in ascending order by Time column, the resulting view looks like
this:

Arrival

Sequence Time Amount

-------- ----- ------

1 08:04 188.88

2 08:45 242.69

4 08:50 90.20

5 157.11 << Second NULL time

3 103.76 << First NULL time

Integer Time-Series
A time-series range is usually expressed as a range of date-time or date interval values. However, you can
also use an integer that represents a time-series. For example, consider this series of date-time values
and matching integer values:

Date_time_value Date_time_int

------------------- -------------

2003-12-01 09:00:00 3795637500

2003-12-01 13:00:00 3795654167

2003-12-02 09:00:00 3795737500

2003-12-03 09:01:00 3795837569

2003-12-04 09:00:00 3795937500

The “time” that the integers represent is entirely arbitrary and not a factor in how FileNet Business Activity
Monitor processes the values. Rather, it is up to you to understand what the values mean. For example, in
the series above, 100,000 represents one day. As such, a window of the previous two days for this data is
defined as:

ORDER BY Date_time_int

RANGE 200000 PRECEDING

Or to see just the previous day:

ORDER BY Date_time_int

RANGE BETWEEN 200000 PRECEDING AND 100000 PRECEDING

When using an integer time-series, always use the ORDER BY clause and identify the integer column as
the series order.

FILENET BAM SERVER REFERENCE
Window partitions

238
Window partitions
All events in a view are included in a single set (window) unless defined otherwise by the GROUP BY or
the PARTITION BY clause. These clauses sort events into windows based on a key value, such as a
common name or ID. Use partitioned windows to aggregate the events specific to the window. For
example, to collect the total volume for all transactions by security, the view definition might look like this:

SELECT Trades.symbol, SUM(Trades.volume) OVER Symbols AS Total_volume

FROM Trades

WINDOW Symbols AS (PARTITION BY Trades.symbol)

This is similar to a view defined with the GROUP BY clause like this:

SELECT Trades.symbol, SUM(Trades.volume) AS Total_volume

FROM Trades

GROUP BY Trades.symbol

NOTE: Querying the two views above produces very different results. The grouped view returns one row
for each group. While, the partitioned view, by default, returns just one row containing the result of the last
event that entered the view (though the information for each partition is maintained internally). To see more
rows from a partitioned view, set the view’s Maintain in view setting to a size greater than 1. For more
information, see “Historical results from partitioned views” on page 240.

PARTITION BY Clause

The PARTITION BY clause defines one or more columns that contain the values that identify a partition
window.

PARTITION BY <column> [, <column> …]

Where <column> is either the name of a column in the SELECT list, or is an ordinal integer that represents
the position of a column listed in the SELECT list of columns (the first reference is 1). When you declare a
list of columns, one partition is created for each unique value of the set. For example, this declaration
creates partitions for individuals based on unique lastname+firstname combinations:

PARTITION BY last_name,first_name

Advantage of partitions over groups
The main advantage of partitions is that you can control when to expire (remove from memory) time-series
windows using the REFERENCE OPERATOR clause (see “Window update reference” on page 245 for
details). Also, you can have multiple partitions based on different columns in the same view; while GROUP
BY applies solely to the entire view. Consider these illustrations that show what happens when a new
event arrives that is significantly newer than the most recent event already in the view:

FILENET BAM SERVER REFERENCE
Advantage of partitions over groups

239
View update for a simple GROUP BY

When an event arrives in a view with a simple GROUP BY clause, the new event is applied to the
associated group. In this case, the new event is applied to the average for all AAA events ever received:

View update for a partition with frame reference

Now consider the same event entering a view partitioned by Name, and where only the partition window
frame that identifies the event updates. In this example, the AAA event is 2 hours newer than the last AAA
event. As such, all previous values for the partition expire and are discarded, and only the new event is
used. Notice that the other partition is no affected.

View update for a partition with operator reference

Finally consider the same event entering a partitioned view that updates based on REFERENCE
OPERATOR. The reference tells all partitions to update when an new event enters the window. Here,

20.00AAA
ValueName

SELECT NAME, AVG(Value) AS AvVal
GROUP BY Name

10.00AAA
SRK 24.00

ValueName

SRK 24.00

ValueName
15.00AAA

AAA updates based on all AAA
events ever received; SRK is
unchanged; groups never
expire.

SELECT Name, AVG(Value) OVER w AS AvVal
WINDOW w AS (PARTITION BY Name

RANGE INTERVAL '1' HOUR PRECEDING
REFERENCE FRAME)

10.00AAA
SRK 24.00

ValueName
20.00AAA
ValueName

SRK 24.00

ValueName
20.00AAA

Average for AAA is latest event
only (previous events expired);
SRK is unchanged; groups never
empty.

A new event arrives that is 2 hours
newer than the most recent event
already in the partition.

FILENET BAM SERVER REFERENCE
Historical results from partitioned views

240
because none of the events tracked by the existing partitions are within the range of the last hour, all
existing partitions expire and a new one is created for the new event.

Using windows to expire GROUP BY

One disadvantage of windows is that you cannot look at the view to see the contents of the partitions;
unlike a view with GROUP BY where you can view the results of all groups in the FileNet BAM Dashboard
or in the Results tab of the FileNet BAM Workbench. A GROUP BY maintains results for each group as
long as there are data in the group. In the illustration above, if you use the view contructed with the
GROUP BY expression instead of the PARTION, you will be able to view the contents, and groups will
expire when they have had no events in the last hour.

Historical results from partitioned views
When you query a partitioned view, by default, the result is a view with one row containing the result of the
last event that entered the view (though the information for each partition is maintained internally). For
example, if you track the average price of securities, partitioned by symbol, querying SELECT * on the
view would return a result similar to this:

SELECT * FROM AveragePricesView

Symbol AvgPrice Date

------ -------- ----------

JMH 164.35 2003-07-14

In the results above, the last event that the AveragePricesView received was for the JMH symbol.

SELECT Name, AVG(Value) OVER w AS AvVal
WINDOW w AS (PARTITION BY Name

RANGE INTERVAL '1' HOUR PRECEDING
REFERENCE OPERATOR)

10.00AAA
SRK 24.00

ValueName
20.00AAA
ValueName All previous events expire

and SRK partition empties;
average for AAA is latest
event only.

* This query is almost the same as
SELECT Name,

MOV_AVG(Value,HOUR,1)
GROUP BY Name

20.00AAA
ValueName

A new event arrives that is 2 hours
newer than the most recent event
already in the partition.

FILENET BAM SERVER REFERENCE
Window advancement

241
To see more rows, set the partitioned view’s Maintain in view setting to a size greater than 1. If you have
many aggregate events, set the value to a large number, such as 500. Then, querying the view returns up
to that many rows:

Symbol AvgPrice Date

------ -------- ----------

AAA 24.35 2003-03-05

SRKH 102.07 2003-03-05

JMH 90.22 2003-03-05

SRKH 106.88 2003-03-06

AAA 25.66 2003-03-06

JMH 94.11 2003-03-06

...

The results appear in the order that the view produced them: the order of the events that last entered each
partition.

To get meaningful historical results, order the new view, such as on Symbol and Date.

SELECT * FROM AveragePricesView ORDER BY Symbol,"Date"

Symbol AvgPrice Date

------ -------- ----------

AAA 24.35 2003-03-05

AAA 25.66 2003-03-06

AAA 25.25 2003-03-07

AAA 24.92 2003-03-08

...

Window advancement
When a new event enters a window, the window determines which events to keep and which to discard
when the window is full. A window frame is full if the next row causes an existing row in the frame to expire
out of the window. When viewed in the context of future and past events in the event stream, the window
can be seen to advance or slide along the event stream as it adds and discards events.

Future events

Discarded events.

Windows “advance” along
the event stream as new
events arrive.

Older events are
discarded when the
window is full and new
events are added.

FILENET BAM SERVER REFERENCE
SLIDE clause

242
SLIDE clause
The window advance clause (SLIDE) specifies the distance to advance when the window is full. By default,
when SLIDE is omitted, event-series windows slide one event along the stream for each new event, while
time-series windows advance to include the latest event and all events within the interval defined in the
RANGE clause remain; the rest are discarded.

Including a SLIDE clause advances the window either the entire size of the window (when you omit the
argument), or advances the event distance or time interval specified by the argument.

SLIDE [<interval> | <distance>]

For example, consider an event-series window whose size is 3 events. Declaring SLIDE with no
arguments is the same effect as declaring SLIDE 3.

When a window advances more than one event, it is tumbling, as described next. Further, the TUMBLE_
functions are shorthand for complete window expressions that use this sliding behavior. See “Tumble
Functions” on page 243 for information.

NOTE: Omitting the SLIDE clause always advances 1 interval/distance. To “tumble” a window, include a
SLIDE value greater than one (1).

Tumbling Windows
A tumbling window empties its contents when it advances to include the newest event. For example, a
tumbling time-series window continues to grow until a new event enters that causes older events to be
discarded. When the SLIDE interval is the same as the window size, the window dumps all existing events
when a new one arrives and the window is full.

This functionality is useful for tracking a full interval’s worth of events during the interval. For example, if
you start an interval on a Sunday and declare a slide interval of 7 days, the window will empty and advance

EVENTS '2' PRECEDING
SLIDE 3

After advancing, the
window contains only the
new event. Future events
are added until the
window again becomes
full.

This window slides 3 events
when advancing after
being full.

This 2-day window also slides 2 days
after becoming full.

First event of
third day slides

RANGE '2' DAY PRECEDING
SLIDE 2

First event of
third day slides

FILENET BAM SERVER REFERENCE
Tumble Functions

243
every Sunday. Use the INITIALIZE clause to set the starting time appropriately. See “Window Initialization”
on page 246 for details.

Trailing tumbling windows

A trailing tumbling window empties and begins re-filling after it slides. However, it is important to
understand that the items that enter the view must fall within the window as identified by the last event. For
example, consider this 7-day window that includes values from the previous week, and which empties
every 7 days:

RANGE BETWEEN INTERVAL '14' DAY PRECEDING

AND INTERVAL '7' DAY PRECEDING

SLIDE INTERVAL '7' DAY

This window only accepts values that are older 7 days preceding the last event. Even though there might
be a full week’s worth of events, the window only contains those that are 7 days older than the last. For
example, when these events are fed into the window, only the first event is included in the window because
it is more than 7 days older than the last event:

Event_Time

2003-12-01 09:00:00 << Only event included in the window

2003-12-01 10:00:00

2003-12-02 08:45:00

2003-12-08 09:10:00 << Last event

Each of the first three events is included only after receiving an event after 08:45 on the 12-09.

Tumble Functions
Most of the set functions have associated “tumble_” functions which are shorthand for complete sliding
window expressions. For example, consider this tumbling SUM() expression which sums all the events that
arrive within a 1 hour interval:

TUMBLE_SUM(price, HOUR, 1, trade_time) AS T_Sum

The above function is shorthand for this in-line window expression:

SUM(price) OVER (ORDER BY trade_time

RANGE INTERVAL '1' HOUR PRECEDING SLIDE) AS T_Sum

Which in turn is equivalent to the following after filling in all default values:

SUM(price) OVER (ORDER BY trade_time

RANGE INTERVAL '1' HOUR PRECEDING

SLIDE INTERVAL '1' HOUR

REFERENCE OPERATOR) AS T_Sum

Similarly, the function TUMBLE_SUM(price, EVENT, 5) is the shorthand for this complete window:

SUM(price) OVER (

EVENTS BETWEEN 4 PRECEDING AND CURRENT EVENT

SLIDE 5

REFERENCE FRAME) AS T_Sum

See the descriptions of the individual tumble functions for details about their behavior. For descriptions of
tumbling windows and inheritance, see “Tumbling and moving windows using window inheritance” on
page 244.

FILENET BAM SERVER REFERENCE
Tumbling and moving windows using window inheritance

244
Tumbling and moving windows using window inheritance
The window definition inheritance feature also applies to the tumble_ and mov_ functions. (See “Tumbling
Windows” on page 242 for more information.) For example, all of the following queries are equivalent.

Tumbling sum over a referenced window

SELECT c1, TUMBLE_SUM(price,HOUR,1) OVER w AS sum_price

FROM trades

WINDOW w AS

(PARTITION BY c1

INITIALIZE TIMESTAMP '1999-10-10 0:0:0'

REFERENCE FRAME)

Tumbling sum over an in-line window

SELECT c1, TUMBLE_SUM(price,HOUR,1)

OVER (PARTITION BY c1

INITIALIZE TIMESTAMP '1999-10-10 0:0:0'

REFERENCE FRAME)

AS sum_price

FROM trades

Sum over a window over a tumbling window

SELECT c1, SUM(price) OVER w2 AS sum_price

FROM trades

WINDOW w AS (PARTITION BY c1

INITIALIZE TIMESTAMP '1999-10-10 0:0:0'

REFERENCE FRAME),

w2 AS (w RANGE INTERVAL '1' HOUR PRECEDING SLIDE)

Sum over a tumbling window

SELECT c1,

SUM(price) OVER (w RANGE INTERVAL '1' HOUR PRECEDING

SLIDE INTERVAL '1' HOUR

REFERENCE FRAME

INITIALIZE TIMESTAMP '1999-10-10 0:0:0') AS sum_price

FROM trades

WINDOW w AS

(PARTITION BY c1 ORDER BY "Date")

FILENET BAM SERVER REFERENCE
Window update reference

245
Window update reference
When a view receives a new event, one or more of the view’s windows may update to reflect the new
information. Depending each window’s reference and definition, it is possible for all events in a window to
expire and be removed from the window, or to not be affected by the update.

NOTE: Events that are filtered out before they enter the view, such as when excluded by a WHERE
clause, do not affect the view’s windows and do not cause the windows to update, regardless of the
reference point.

REFERENCE clause

A reference determines when to evaluate the set of events included in a window. The references are:

OPERATOR — the window updates whenever a new event enters the view, whether or not the event is
included in the window. For example, if a view tracks securities traded in the last hour, and partitions each
security into its own window, each window evaluates its set whenever a new trade enters the view. If a
security has not been traded in the last hour, its window becomes empty. All other windows include only
those securities traded in the last hour; older trades are removed from their windows.

SELECT Trades.symbol,

AVG(Trades.price)

OVER (RANGE INTERVAL '1' HOUR PRECEDING REFERENCE OPERATOR)

AS av_price_last_hour

GROUP BY symbol

FROM Trades

This mode is desirable — and the default — when using time-series aggregations and you want all
windows to include events referenced from the same time: the time of the last event that arrived in the
view. This mode is also useful for views where you want event-series windows to expire and thereby
reduce memory consumption by the view.

FRAME — the window updates only when a new event enters the window. For example, if the view tracks
the last 10 trades for each security, only the window that receives the new trade updates. All other
(security) windows retain their 10 event’s worth of events.

SELECT Trades.symbol,

AVG(Trades.price) OVER (EVENTS 9 PRECEDING REFERENCE FRAME)

AS av_price_last_10_trades

GROUP BY symbol

FROM Trades

This mode is desirable when you want windows to retain a set of events, regardless of when they arrived,
such as for event-based moving aggregates.

NOTE: The FRAME reference is also useful for reclaiming server memory.

FILENET BAM SERVER REFERENCE
Window Initialization

246
Window Initialization
When using a time-series window, the beginning time for the window frame is set by the first event that
arrives in the window. When a view has several group or partition frames, each might have a different
starting time. Consider these two events, which are the first to arrive in the view:

Symbol Time

IBM 09:00:00.875

CQST 09:23:02.111

If the view that receives these events places them in different group-by frames, each will start at each
event’s Time, and continue to reset based on that initialization time.

SELECT Trades.Symbol, Trades.Time,

AVG(Trades.Price) OVER An_Hour AS Avg_Price_One_Hour_Tumble

GROUP BY Trades.Symbol, Trades.Time

FROM Trades

WINDOW An_Hour AS (ORDER BY Trades.Time

RANGE INTERVAL '1' HOUR PRECEDING SLIDE)

With this view definition, an event arriving at 09:10 will cause the initial IBM event to expire, but the CQST
will remain in its window for at least another 13:02 minutes: the time remaining since it entered the view.

INITIALIZE clause
To have all windows begin at the same time, use the INITIALIZE clause. This clause defines the
initialization point for all frames based on the window definition. For example, to have all windows begin at
the same time, initialize them to a date-time older than the first event likely to arrive in the view.

WINDOW An_Hour AS (ORDER BY Trades.Time

RANGE INTERVAL '1' HOUR PRECEDING SLIDE

INITIALIZE TIMESTAMP '2003-03-05 00:00:00.000')

With this definition, all windows initialize at the same time: midnight. As such, each frame expires at the top
of the hour (when minutes is 00:00.000). Because the window includes the SLIDE clause, all previous
trades are discarded when the frame expires and only new events arriving during the current hour are
accepted.

NOTE: This clause acts as a filter in that it excludes all events before the initialization time.

The initialization time is a date-time literal value — a TIMESTAMP literal. Further, the initialization value is
static: it cannot change after the view is created.

Another example

This initialization definition defines the current fiscal year, which begins on 1 July of the calendar year:

(RANGE INTERVAL '1' YEAR PRECEDING SLIDE

INITIALIZE TIMESTAMP '1963-07-01 00:00:00')

FILENET BAM SERVER REFERENCE 247
Reportlets

Reportlets describe the contents of a view and present that information in a report that is either attached to
an alert message, or presented by an external system. Frequently reportlets provide information about an
event that puts the event into context. For example, when an inventory is low for a product and a restock
shipment is overdue, an alert might notify purchasing managers of that state and a reportlet attached to the
alert might list the alternative suppliers for that product. Reportlets are attached to all subscribers of the
associated alert.

There are two types of reportlets:

• Internal reportlets are the visual representation of the information in a view when the alert generated
the reportlet. The presentation is a table formatted in either text, HTML, or a Microsoft Excel
worksheet, and contains all of the information that was in the view.

• External (3rd-party) reportlets are produced by external reporting systems such as Business Objects
or Cognos. External reportlets present a report based on view data passed to them when the user
clicks a link to the external system. That system is responsible for generating and presenting the
report.

In this Chapter:

“Creating reportlets” on page 248

“Reportlet attributes” on page 249

“External reportlet attributes” on page 250

“Reportlet views” on page 251

FILENET BAM SERVER REFERENCE
Creating reportlets

248
Creating reportlets
To creeate a reportlet you must have:

• Create permission for business activities (see “Creating permission” on page 220 for details)

• Read and Write permission on the business activity that will contain the reportlet

• Read Only permission on the view that will feed the reportlet.

To create a reportlet:

1. Open the FileNet BAM Workbench Scenario Modeler.

2. Open an existing scenario that will contain the reportlet.

3. Select the Reportlets tab.

4. Chose New Reportlet.

5. Select the type of reportlet to create.

Reportlets are formatted as HTML tables or Microsoft Excel spreadsheets.

External (3rd-party) reportlets are defined and produced by external reporting systems based on the
data passed to them.

NOTE: The External reportlets option is only available when an external links have been defined. See
Working with external links for more information.

6. Fill in the attribute fields on the Create Reportlet dialog.

NOTE: For details, see “Reportlet attributes” on page 249, or “External reportlet attributes” on page 250.

Save the reportlet as enabled and it will immediately be ready for use.

You can also create a reportlet when creating or editing an alert. Doing so there automatically attaches the
reportlet to that alert.

FILENET BAM SERVER REFERENCE
Reportlet attributes

249
Reportlet attributes
Reportlets are formatted as HTML tables or Microsoft Excel spreadsheets. Each reportlet has the following
attributes:

Attribute Description

Name Identifies the reportlet. The name can contain letters and numerals only. This name
must be unique among reportlets within the same scenario. See “Object
namespace” on page 211 for details.

Description Optional description that may contain any text characters.

Status Whether or not the reportlet is enabled, or disabled.

Note: When the containing scenario is disabled, you cannot make the reportlet
enabled. The scenario must be enabled before the reportlet may be
enabled.

View Business view from which the report draws its data.

Excel format (optional) Specifies how to format Excel-type reportlets: Leave this setting as
<an empty spreadsheet> to produce an HTML formatted reportlet.

Template Identifies a worksheet template for formatting the reportlet.
Options are:

Select an existing template — One that has already been created
and uploaded to the FileNet BAM Server.

New Template — Opens the Add Template dialog where you
identify an existing Microsoft Excel template on your computer.
Saving and closing this dialog uploads the template from your
machine to the server.

An empty spreadsheet — Uses the Microsoft Excel default
worksheet format.

Sheet name Name of the worksheet to contain the reportlet. Default is
“Sheet1”.

Sheet
address

Location on the worksheet to present the reportlet. Default is “A1”.

FILENET BAM SERVER REFERENCE
External reportlet attributes

250
External reportlet attributes
External reportlets present reports based on view data passed to them when the user clicks a link to the
external (3rd-party) reporting system. That system is responsible for generating and presenting the report.
The external reportlet definition identifies the external link, and the view information to pass to the external
system that that system then uses to identify the report to present. For example, an external report might
present a PDF that contains the complete description of a product identified in an alert.

The URLs used to communicate with the external report system begin with the string defined for the report
in the External Links list on the FileNet BAM Workbench tab in the FileNet BAM Workbench. See Working
with external links for more information about these locators.

Attribute Description

Reportlet Name Identifies the reportlet. The name can contain letters and numerals only.
This name must be unique among reportlets within the same scenario. See
“Object namespace” on page 211 for details.

Status Whether or not the reportlet is enabled, or disabled.

Note: When the containing scenario is disabled, you cannot make the
reportlet enabled. The scenario must be enabled before the
reportlet may be enabled.

Description Optional description that may contain any text characters.

Data from View Business view from which the report draws its data. Contains the column
data to send to the external report.

Report Name Name of the report in the external system. This is the DocName element in
the URL that communicates with the external report system:

http://localhost.com?DocName=<Report Name>

Report Parameters Parameters to pass to the external system. Each parameter corresponds to
a column in the view. The reportlet substitutes the value of each named
column into the URL. For example, the URL is defined like this:

...?DocName=<Report Name>&Parameter1=PROD_ID&...

It looks similar to this when sent to the external system:

...?DocName=<Report Name>&product="product_id"&...

Display Link Shows the complete, qualified URL that will appear in the alert message
and is the link to the external report system.

FILENET BAM SERVER REFERENCE
Reportlet views

251
Reportlet views
Reportlets retrieve their information from the business view that the alert is based on, or from any view
derived from the same event source (in the same event stream). For example, consider a rule that
generated the customer alert is based on the view InventoryLow. Another view, AvailableSuppliers adds
context by indicating alternative suppliers. The reportlet attached to the alert may draw information from
either of these views. Further, because ShippingNotices is derived from the same event source, you could
also retrieve information from it. However, you cannot retrieve information from OrderDetails because it is
on an different event stream.

For more details about the information that appears in the reportlet view, see “Reportlet filtering” on
page 36.

Note that the reportlet view may not be a synchronized join. See “Synchronized joins” on page 294 for
details.

ShippingNotices

AvailableSupplier

SupplierCustomer WarehouseEvent

InventoryLow

Product OrderEvent

OrderDetails

FILENET BAM SERVER REFERENCE 252
Roles

Roles define the minimum sets of Permissions associated with Users. Roles provide a way to quickly
assign the same permissions to an object or class of objects, for groups of users without having to set
those permissions for each individual user of the group. For example, an “operator” role might provide full
permissions to agents, but not to events or business activity objects. While a “application developer” role
might have full permissions on all objects except agents.

Users may belong to none, one, or more roles. To see which roles a user belongs to edit the user account
and view the User Details tab. To see which roles you belong to, click Account Settings and view the tab.

A user’s permission for a particular operation is the maximum of all the permissions associated with that
user’s roles, and with any individual permissions assigned to the user for the object. Consider a user with
two roles: one has Read-only access to the views class, and the other has read and write access. The
maximum permission on views for this user is Read and Write, and as such, this user can edit views.

Role 1

Read

Read

Role 2

When a user has multiple roles with
overlapping permissions on an
object, the greatest permission is
used. This user has Read and Write
access.

FILENET BAM SERVER REFERENCE 253
Similarly, if a user has one role and that role is limited to Read only for all views, but has been individually
assigned Read and Write to a particular view, that user may edit that view.

NOTE: For details about specific access levels, see “Permissions” on page 216. Any unusual interactions
between object permissions and roles are described in the discussions of the object.

Roles are objects maintain lists of users and associated permissions. And like all other FileNet Business
Activity Monitor objects, roles are protected by permissions. Only users with specific permissions on a role
— or on all roles — can perform that action on the role. For example, to add users to a role, you need
Read and Write permission on that role.

To see the roles defined in the installation, look at the Roles list in the Administration Console of the FileNet
BAM Workbench.

The rest of this discussion describes:

• “Creating roles” on page 254

• “Role attributes” on page 254

Specific

Read

Read

Role

When a user’s specific permission
overlaps with a role, greatest
permission is used. This user has
Read and Write access.

FILENET BAM SERVER REFERENCE
Creating roles

254
Creating roles
To create roles, you need Create permission for roles. For each object class, you can assign up to the
greatest permission that you have for that class. For example, if you have Create permission for a class,
you can assign any of No Access, Read only, Read and Write, or Create for that class.

To create a role:

1. Open the Administration Console.

2. Click Roles to see the list of all currently defined roles.

3. Click New Role.

4. Fill in the role attributes, assign access permissions, and identify the members of the role.

Save the role to begin using it.

Role attributes
Each role object has the following attributes:

Attribute Description

Name Identifies the role object. The name can contain letters and numerals only.
This name must be unique among roles. See “Object namespace” on
page 211 for details.

Description Optional description that may contain any text characters.

Access Permissions Permissions for each class of objects assigned to this role. These are the
minimum permissions. A user may have a greater permissions assigned
individually to the class (see “User Permissions tab” on page 286) or to a
specific object.

Members Users associated with this role.

FILENET BAM SERVER REFERENCE 255
Rules

Rules monitor business activities by analyzing business views looking for metrics that meet specific
conditions. Rule conditions are spreadsheet-like formulas that evaluate the changing business metrics
looking for exceptional conditions. When a condition is found to exist, an alert of that incident is sent to key
personnel.

You can create rules that send alerts every time the condition is found to exist (fire), create rules that send
alerts once and ignore subsequent events until the initial condition is resolved (raise), or create rules that
reset (lower) previously raised rules.

NOTE: Prior to Version 3.2, the rule could only monitor views derived from the scenario “default” view.
This restriction no longer applies.

In this Chapter:

“Creating rules” on page 256

“Rule attributes” on page 257

“Rule condition” on page 258

“Rule action” on page 258

“Monitoring alerts” on page 259

“Monitoring the system log” on page 260

IS Status = 'Open' ?1. Rules monitor views
evaluating expressions.

2. When the expression is
true, execute an action.

WHEN [Status = 'Open'] FIRE [myAlert]

FILENET BAM SERVER REFERENCE
Creating rules

256
Creating rules
You can create rules from scratch or clone and modify existing rules. Both require the user to have Create
permission for business activities (see “Creating permission” on page 220 for details), Read and Write
permission on the business activity that will contain the rule, and Read Only permission on the view that
will feed the rule.

To create a new rule:

1. Open the Scenario Modeler.

2. Open an existing business activity.

3. Open an existing scenario.

4. Click the New Rule button.

5. Fill in the rule attributes (described below) in Step 1 of the Rule Definition form. Additionally:

• Choose the data source that the rule will monitor.

• If the scenario has a “default view”, that one appears selected by default. Choose another source
to monitor by clicking Select Data Source.

• For a view, choose the view.

• For a cube, choose the dimension level in a cube. Optionally you may also apply a filter that further
restricts the data that the rule monitors.

If the source contains data, that data appears to provide a sample of what to expect. When the source
is empty, the form displays just the column names and the message “No Data Available”.

• For the Action Taken, identify the alert to activate when the rule condition is met. Do one of the fol-
lowing:

• Select an existing alert by clicking this alert in the Rule effect field, or

• Click Next to access the Alert Definition form, and define or review the alert. See “Alert
attributes” on page 30 for details about the fields on this form.

6. Finish creating the rule.

If the rule was saved enabled, it will immediately begin monitoring the view for events.

To clone an existing rule:

1. Edit the rule you want to clone.

2. Change the rule name, and change the other attributes that differ from the original rule.

3. Choose “Save as New Rule”.

FILENET BAM SERVER REFERENCE
Rule attributes

257
Rule attributes
Every rule has the following attributes:

Attribute Description

Data source Identifies the business view or cube that the rule monitors.

Name Identifies the rule object. The name can contain letters and numerals
only. This name must be unique among rules within the same scenario.
See “Object namespace” on page 211 for details.

Status Specifies if the rule is enabled (receiving new event information), or
disabled.

Note: When the containing scenario is disabled, you cannot make the
rule enabled. The scenario must be enabled before the rule may
be enabled.

Description Optional description that may contain any text characters.

Rule condition The spreadsheet-like, true or false formula that is evaluated against the
associated business view. When the formula evaluates to True, the
condition is said to exist and the system then sends the alert. See Rule
condition,” below, for details.

Holds for Sends the alert only when the condition holds true for an entire specified
length of time. No alert is sent if the condition becomes false at any time
during the wait. When you omit the duration the system sends the alert
as soon as the condition exists.

You can specify a value using one of the following methods:

• Specify a number to indicate the length or time or count of events to
wait.

• Specify the name of a column in the view that contains the number.
When you use this option, the rule takes the value from the event in
the view.

When specifying a count of events, the alert is sent only when the rule
condition is true for each new event entering the view, and only until the
specified count have been inserted.

Note that in locales where daylight savings time is observed, durations of
days, months, and years are adjusted accordingly. As such, while 1 day
is typically 24 hours long, it may be 23 or 25 hours depending on the time
of year.

Action taken What to do when the condition exists. Rules can send alerts every time
the condition is found to exist (fire), send alerts once and ignore
subsequent events until the initial condition is resolved (raise), or reset
(lower) previously raised rules. See Rule action,” below, for details.

FILENET BAM SERVER REFERENCE
Rule condition

258
Rule condition
A rule condition is a formula that tests the row in the associated business view looking for a specific
condition. When the condition exists the rule action activates an alert. Formulas can be simple tests for a
value in a column in the view, like Status='Resolved', or that can be complex Boolean expressions with
functions, operators, and parenthesis groupings, like this (Status='Resolved' OR Status='Assigned') AND
UPPER(cust_tier)='HIGH'.

A rule condition formula contains any number of column references, operators, and functions. However,
the formula must:

• The formula result must be Boolean: return True or False.

• All column references must be in the associated business view.

• Only scalar functions (functions that apply to a single row in a view) may be used. To see which
functions are available, click More Functions when entering the rule condition. See “Functions” on
page 95 for detailed descriptions of the functions.

Rule action
Rules can have one of three effects:

• Send alerts every time the condition is found to exist (fire). A fire action sends an alert every time a rule
identifies an exceptional condition. For example, consider a customer support center that tracks
customer problems as ticket events, an alert might be fired every time a new ticket is opened.

• Send alerts once and ignore subsequent events until the initial condition is resolved (raise). A raise
action sends an alert message when the rule’s condition applies, but ignores subsequent events until
after the initial condition is resolved. A raise action is useful when you don’t want multiple alerts for
situations where the rule condition is true for multiple, related events. For example, if an open
customer problem ticket is edited, you don’t want another alert for the edit event, even though the
status of second event is still “open.”

The “for a specific occurrence” option allows you to send alerts once for each specific occurrence of
the named column. For example, to send an alert every time a new problem ticket is opened you might
identify Ticket as the specific occurrence column. That way, one alert is sent for each ticket’s “open”
event, but ignored for all subsequent events to that ticket while its status remains “open.”

• Reset (lower) previously raised rules to allow them to send alerts.

FILENET BAM SERVER REFERENCE
Monitoring alerts

259
Specific occurrences

When a Raise rule activates an alert, the alert does not activate again — subsequent Raise rules for the
alert are ignored — until a Lower rule first resets it. For example, when a rule condition is “Status=Open”,
the first event below activates the alert, but the subsequent ones are ignored unless the alert’s state is first
lowered.

Ticket Status

------ ------

0703 Open << Raise

0706 Open << Ignore

0704 Open << Ignore

0705 Open << Ignore

In this example it is more likely that you would want an alert for each Open event. To do that, you can use
a “For a specific” condition which activates an instance of the alert for each unique occurrence of the
values in the specified columns.

Raise someAlert when Status = 'Open' for unique occurrences of Ticket.

By identifying Ticket as the specific column, an alert instance will be activated, and a message sent, every
time for each Open event that does not already have an instance for the specific ticket number. Similarly,
you can reset each alert instance individually with specific Lower rules.

Lower someAlert when Status = 'Open' for unique occurrences of Ticket.

NOTE: If you ignore the specific fields in the Lower rule, the rule will reset all instances of the alert that
have been raised.

Monitoring alerts
Rules typically analyze Business Views looking for metrics that meet specific conditions. However, rules
can also monitor generated alerts looking for conditions that require further attention with the IS_RAISED()
function.

For example, if an alert was sent 4 hours earlier and is still in a raised state, another rule might notice that
fact and generate a new, escalated alert. Consider these rule descriptions where EscalateAlert is raised
only when OpenAlert remains raised for at least 4 hours.

Raise OpenAlert when Status = 'Open'

Reset OpenAlert when Status <> 'Open'

Raise EscalateAlert when IS_RAISED('OpenAlert') holds for 4 HOUR.

Reset EscalateAlert when NOT IS_RAISED('OpenAlert')

Monitor an alert and send a
second one when the first
remains raised.

First rule

Second

First Alert

Second

FILENET BAM SERVER REFERENCE
Monitoring the system log

260
Specific alerts

When an alert is generated for unique occurrences of fields, the system tracks each alert by those field
values. For example, this rules raises alerts and tracks the open ones by the unique values of the Ticket
field:

Raise OpenAlert when Status = 'Open' for unique occurrences of Ticket

To properly track this alert, the rule with the IS_RAISED() needs the same specific condition:

Raise EscalateAlert when IS_RAISED('OpenAlert') holds for 4 HOUR

for unique occurrences of Ticket

If you were to omit the specific field condition, the EscalateAlert would be raised for the first OpenAlert
only. Similarly, you must reset the alerts with rule conditions specific to the same fields, or you will reset all
of the raised alerts.

Reset OpenAlert when Status <> 'Open' for unique occurrences of Ticket

Reset EscalateAlert when NOT IS_RAISED('OpenAlert')

for unique occurrences of Ticket

Monitoring the system log
FileNet Business Activity Monitor generates messages that facilitate software service and maintenance by
producing reports suitable for analysis by end users, system administrators, support engineers, and
software development teams. See Understanding logging for details about the logging system.

You can build a rule that monitors the messages looking for high priority error conditions, and then report
them to key administrators. To do that, follow the steps in Monitoring the logs.

FILENET BAM SERVER REFERENCE 261
Scenarios

A scenario is a collection of rules, alerts, and reportlets that identify exceptional business conditions. The
rules in the scenario are the tests that determine when the exceptional condition exists, or when it no
longer exists.

Tips:

• Deleting a scenario deletes its contained rules, alerts, and reportlets.

• Disabling a scenario disables its contained rules, alerts, and reportlets.

In this Chapter:

“Creating scenarios” on page 262

“Scenario attributes” on page 262

“Deleting scenarios” on page 263

Business Activity

Scenarios identify exceptional
conditions within a business activity.

Business Activities are collections of
possible scenarios.Scenario

Rule
Rule
Rule
Alert
Reportlet

Scenario
Rule
Alert

FILENET BAM SERVER REFERENCE
Creating scenarios

262
Creating scenarios
To create a scenario, you must have the following:

• Create permission for business activities (see “Creating permission” on page 220 for details)

• Read and Write permission on the business activity that will contain the scenario

• (Optional) Read Only permission on the default view for the scenario.

To create a new scenario:

1. Open the Scenario Modeler.

2. Select a Business Activity to contain the scenario

3. Click New Scenario

4. Fill in the fields of the New Scenario dialog.

Scenario attributes
Every scenario has the following attributes:

Attribute Description

Folder Status Specifies if the rule is enabled (receiving new event information), or
disabled. When an scenario is disabled, all of its rules, alerts, and reportlets
are also disabled.

Note: When the containing business activity is disabled, you cannot
make the scenario enabled. The business activity must be enabled
before the scenario may be enabled.

Scenario Name Identifies the scenario object. The name can contain letters and numerals
only. This name must be unique among scenarios. See “Object
namespace” on page 211 for details.

Description Optional description of the scenario that may contain any text characters.

View Identifies the default business view that the rules of this scenario monitor,
and reportets report on. “No default view” requires that you pick a view for
rules and reportlets when you create them.

View Description Displays the description of the selected View.

FILENET BAM SERVER REFERENCE
Deleting scenarios

263
Deleting scenarios
Deleting a scenario deletes its contained rules, alerts, and reportlets. Once deleted, they cannot be
restored.

To delete a scenario:

1. Open the Scenario Modeler.

2. Select the business activity that contains the scenario.

3. Select the scenario to remove.

4. Click Delete Scenario.

FILENET BAM SERVER REFERENCE 264
SELECT

C-SQL SELECT statements define the views that manage information in FileNet Business Activity Monitor.
FileNet BAM Workbench constructs SELECT statements based on the views you define in its graphical
user interface, and then passes them to the FileNet BAM Server(s) for instantiation. You can see the
complete SELECT statement that defines a view in the FileNet BAM Workbench by clicking the Displaying
SQL expressions option when creating or editing a view.

Some of the advanced features of the SELECT command cannot be expressed by the options in the
FileNet BAM Workbench. For example, complex join conditions, query windows, and table expressions
must be entered manually in fields in the user interface.

This topic describes the syntax and features of the C-SQL SELECT command in detail.

NOTE: The C-SQL SELECT command is a subset and extension of ANSI SQL-99, a query language
standard. The C-SQL implementation supports outer joins using the ANSI outer join (left outer join and
right outer join) syntax, and aggregation functions in the select clause. Further, each individual statement is
treated as a transaction and is committed as soon as it executes.

Syntax

The operators that define the SELECT specifications are:

SELECT selectList

FROM joinClauses

[WHERE searchCondition]

[GROUP BY groupClause]

[WINDOW windowClause]

[ORDER BY orderClause]

The operators are applied in the following order:

5. FROM clause — specifies the base tables or views that provide data to this view.

6. WHERE clause (optional) — filters the input to match specified criteria.

7. GROUP BY clause (optional) — groups the resulting table on one or more columns.

8. Select list — defines the columns to appear in the resulting table.

9. WINDOW clause (optional) — defines windows used by aggregate functions in the Select list. This
clause is described in the separate topic: “Query Windows” on page 228.

10. (optional) — orders (sorts) the resulting table.

FILENET BAM SERVER REFERENCE
Select list

265
Select list
Defines the columns to appear in the resulting virtual table.

The select list immediately follows the SELECT keyword and has two forms:

• Just an asterisk (*) to choose all columns that are part of the source table.

SELECT * …

The resulting view contains the columns of each of the input tables or views, in the order that they
occur in the source, and in the order listed in the FROM clause. For Outer joins, resulting columns that
do not exist in both references are assigned NULL values.

• A list of unique column names or derived columns.

SELECT columnNameList

Where each columnName is separated by a comma (,) and is defined as

columnName [[AS] aliasName [OVER (windowClause)]]

The AS option assigns a new name to the associated column. The literal “AS” is optional.

The OVER option defines an in-line window. See “Query Windows” on page 228 for details.

Where each columnName is one of the following:a

• simple column reference — the column name

current_rental_price

• qualified column reference — one prefaced by the table name

movie_titles.current_rental_price

To select all columns from one table while selecting some columns from other tables, use a qualified
column reference and specify an asterisk (*) for the column name. For example, this selects all movie_title
columns, and two columns from the media table:

movie_titles.*, media.media_type, media.name

• derived column — an expression (possibly a case expression, see below for details):

MAX((movie_titles.current_rental_price/2)) AS Half_Price

For derived columns the aliasName is required.

FILENET BAM SERVER REFERENCE
Select list

266
CASE expression

A CASE expression returns the result of an expression that corresponds to a matching true condition.
Optionally, each condition may return NULL instead. If no condition is found to be true, the expression
returns the result of the ELSE condition, or NULL when ELSE is omitted.

There are two forms of CASE expressions:

• Simple condition — Evaluates the caseExpression and compares it against the result of each
equalsExpression until one matches, then returns the corresponding resultExpression result. Each of
the equalsExpression must of a type comparable to the caseExpression.

CASE caseExpression

[{ WHEN equalsExpression THEN { resultExpression | NULL }}...]

[ELSE { resultExpression | NULL }]

END

• Search condition — Evaluates each searchCondition until one is found to be true, then returns the
corresponding resultExpression result.

CASE WHEN searchExpression THEN { resultExpression | NULL }

[{ WHEN searchExpression THEN { resultExpression | NULL }}...]

[ELSE { resultExpression | NULL }]

END

These CASE expressions have the same result:

SELECT Tier AS

CASE WHEN Tier = 'High' THEN 'Priority customer'

...

SELECT Tier AS

CASE Tier WHEN 'High' THEN 'Priority customer'

...

Here is an example that generates running totals for each ticket status at each tier level:

CREATE VIEW VTotal_Tickets AS

SELECT Tier,

SUM(CASE Status WHEN Open THEN 1 ELSE 0 END) AS Opens,

SUM(CASE Status WHEN Reopen THEN 1 ELSE 0 END) AS Reopens,

SUM(CASE Status WHEN Resolved THEN 1 ELSE 0 END) AS Closes,

(Opens+Reopens-Closes) AS Pending

FROM VCustomerTickets

GROUP BY Tier

Tier Opens Reopens Closes Pending

High 2 0 0 2

Medium 1 2 3 0

Low 1 1 1 1

FILENET BAM SERVER REFERENCE
FROM clause

267
FROM clause
Specifies the tables and views from which to build the new view.

FROM reference [[AS] aliasName]
[, reference [[AS] aliasName] …]

Where a reference is:

• Simple reference:

tableOrView

• Join operation (see Join operations” below, for details):

(reference [{LEFT | RIGHT} [OUTER] | INNER]

JOIN reference ON searchCondition)

• Table expression (see “Table expressions” on page 269 for details):

(SELECT selectList FROM joinClauses [WHERE searchCondition]

[GROUP BY groupClause] [WINDOW windowClause])

Specifying a single, simple reference creates a view that is a snapshot view of the source table or view.
Including more than one reference specifies a join operation.

View constraints

Views have these constraints of the sources to the FROM clause:

• A view may be derived from an event table or another view.

• A view may join an event table or view, and one or more context tables.

• A view may not join two or more event streams, or views based on different event streams. (A
Consolidated Event is a special-case join of event streams.)

• A view may not be derived from context tables only.

Join operations
The C-SQL SELECT supports these join operations:

• Cross joins

• Inner joins

• Outer joins

• Nested joins

Including more than one reference causes a join operation. The resulting view is cross join unless you
either use the JOIN operator to specify another type of join condition, or include a WHERE clause that
specifies a join condition

FILENET BAM SERVER REFERENCE
Join operations

268
Cross joins

If you omit the JOIN operator, you define a a view that is a cross join of the input views (also know as a
cartesian product), such as this join of the Product and Manufacturer views:

FROM Product AS P, Manufacturer AS M

NOTE: DO NOT create a cross join unless you are sure that is what you want. A cross join creates a view
whose count of rows is the equal to the count of rows in the first view times the count in the second view
(rowsjoin = rowsview1 * rowsview2). This severely impacts the system and does not usually produce the view
you desire.

Instead of creating a cross join, you should specify another type of join with the JOIN clause:

reference [joinType] JOIN reference ON searchCondition

Inner joins

The JOIN clause performs an inner join unless you specify a joinType. An inner join is one where the rows
in the result table are the rows from the first table that meet the specified criteria, combined with the
corresponding rows from the second table that meet the specified criteria.

FROM (Product AS P INNER JOIN Manufacturer AS M

ON P.productName = M.ProductName)

NOTE: Inner joins are sometimes called equi-joins.

Outer joins

An outer join is where the rows in the result table are the rows that would have resulted from an inner join
plus the rows from the first table (LEFT OUTER JOIN) or the second table (RIGHT OUTER JOIN) that had
no matches in the other table. For example:

FROM (Product AS P LEFT OUTER JOIN Manufacturer AS M

ON P.productName = M.ProductName

NOTE: The first table in a LEFT OUTER JOIN and the second table in a RIGHT OUTER JOIN must be an
event table or a view; it cannot be a context table.

Resulting columns that do not exist in both references are assigned NULL values.

Nested joins

Joins can be nested and there is no practical limit on the maximum level of nesting. For example:

FROM (Product AS P LEFT OUTER JOIN Manufacturer AS M

ON P.productName = M.ProductName)

AS Temp, inventoryContext AS INVvt

FILENET BAM SERVER REFERENCE
Table expressions

269
Table expressions
A table expression, also called an in-line view, is a sub-query that creates a view that can be referenced by
the containing query. It is essentially a SELECT statement, bounded by parenthesis, and appearing in the
FROM clause. For example, here is a table expression contained in a query:

SELECT *

FROM Warehouse AS wh,

(SELECT *

FROM WarehouseQtyChange AS wqc,

Product AS pr

WHERE wqc.wprod_id = pr.pprod_id) AS sv,

WHERE sv.warehouse_id = wh.wh_region_id

The example above has the same result as WHRegionView in this example:

SummaryView:

SELECT *

FROM WarehouseQtyChange AS wqc,

Product AS pr

WHERE wqc.wprod_id = pr.pprod_id

WHRegionView:

SELECT *

FROM Warehouse AS wh,

SummaryView AS sv

WHERE sv.warehouse_id = wh.wh_region_id

Syntax

A table expression is a limited SELECT statement, enclosed in parenthesis, and with restrictions.

(SELECT selectList FROM joinClauses

[WHERE searchCondition]

[GROUP BY groupClause]

[WINDOW windowClause]) AS aliasName

Restrictions

In-line views have the same semantic restrictions as standard views. For example, a derived column in an
in-line view cannot have the same name or alias as a column in the containing selectList list. Additionally,
they have these restrictions and limitations:

• Must be enclosed in parenthesis.

• Must be in the same event stream (have the same base event table) as the other views and tables in
the containing query.

• Must be defined in the FROM clause only.

“HAVING” example

Some SQL implementations include a HAVING clause that allows you to filter the aggregate results of a
view; C-SQL does not include HAVING. However, you can construct a HAVING by using a WHERE clause
to filter the results of an in-line view. Essentially:

SELECT * FROM (inlineView) WHERE filterCondition

FILENET BAM SERVER REFERENCE
WHERE clause

270
For example, to create a view that filters the result of an aggregation, you first need to perform the
aggregation in an in-line view, and then filter the results with the containing view. This in-line view sums the
total sales for each product line, and then the containing view displays — in descending order — only
those results greater than $1,000,000.

SELECT FamilyTotals.family AS "Product Line",

FamilyTotals.sales_for_family AS "Total Sales"

FROM (SELECT family,

SUM(total_price) AS sales_for_family

FROM OrdQtyDemand

GROUP BY Family

) AS FamilyTotals

WHERE "Total Sales" > 1000000

ORDER BY "Total Sales" DESC;

In the example above, as new events enter the OrdQtyDemand view, the totals are updated and the order
of product families can change. In fact, new families can enter the view as their sales totals exceed a
million.

WHERE clause
Examines each row in the input and accepts only those that match the specified condition.

WHERE searchCondition

A searchCondition is a combination of Boolean predicates that together make a test. Only those input row
that pass the test are inserted into the new view. Rows that do not meet the condition are discarded, not
tracked, and not included in the calculations of a set function, moving set function, or rank function.

NOTE: All dependant views update and their functions recalculate, regardless of whether or not the input
met the condition. See “Updating views through event propagation” on page 298 for more information.

Predicates

A predicate is an Boolean expression that asserts a fact about values. Each expression may be stated
alone or compared to one of the Boolean test values. For example, these expressions are equivalent

WHERE (Age >= 21)

WHERE (Age >= 21) IS TRUE

The predicates that the WHERE clause supports are listed in “Operators and Constants” on page 212.

Predicates may include functions, but functions that reference columns may only reference event columns.

Aliases

C-SQL extends the ANSI standard to permit alias references in the WHERE clause. For example:

SELECT user_age AS Age

FROM user_list

WHERE (Age >= 21)

GROUP BY clause
Groups the resulting virtual table one or more columns.

GROUP BY [tableName.]columnName [, [tableName.]columnName …]

FILENET BAM SERVER REFERENCE
GROUP BY clause

271
Where tableName is a source table or view. All columnNames in the Select list that are not referred directly
by a rank function or scalar function, must appear in the GROUP BY list.

NOTE: Another, and more powerful way to group data is with the windows PARTION clause. See “Window
partitions” on page 238 for details.

The Group by option produces summary information for groups of rows whose values in the selected fields
are the same. Consider this set of data:

Name Quantity

------------ --------

Nano Webber 10

Fizzy Lifter 700

Nano Webber 50

Nano Webber 20

Nano Webber 15

Smoke Shifter 310

If you create a view that groups by Name and determines the sum of the quantity for each group, it would
look like this:

SELECT product.name AS Name, SUM(product.quantity) AS Qsum

FROM product

GROUP BY product.name

Name Qsum

------------ ----

Nano Webber 95

Fizzy Lifter 700

Smoke Shifter 310

You can also group on multiple fields, like this:

SELECT product.name AS Name, product.location AS Locale,

SUM(product.quantity) AS Qsum

FROM product

GROUP BY product.name, product.location

Name Location Qsum

------------ -------- ----

Nano Webber West 10

Fizzy Lifter East 700

Nano Webber East 85

Smoke Shifter West 310

When the Select list includes a Moving set function, each group contains a result for the moving set.

Aliases

C-SQL extends the ANSI standard to permit alias references in the GROUP BY clause. For example:

SELECT product.name AS Name, product.location AS Locale,

SUM(product.quantity) AS Qsum

FROM product

GROUP BY Name, Locale

FILENET BAM SERVER REFERENCE
ORDER BY clause

272
Derived views

When a view is defined with a GROUP BY clause, any view derived from that view has an implicit
GROUP BY clause. This is known as view merging or view expansion. For example, even though the
SELECT statement for View2 does not include a GROUP BY clause, its results include the same groups
as View1.

Stateful view semantics

When a view contains a GROUP BY clause, that view is a stateful view: it maintains information from
previous events, not just the most recent event. [See Stateless and stateful views” for details.] As such,
View2 in the example above is stateful even though its SELECT definition does not contain a set function
or an explicit GROUP BY clause; rather it is stateful because it is derived from a stateful view.

ORDER BY clause
Orders (sorts) the resulting view based on column names or on expression results.

ORDER BY columnName [{ASC|DESC}] [, [columnName [{ASC|DESC}]] …

Without this clause there is no guarantee that the same query will produce rows in the same order on
subsequent queries.

NOTE: Any sort key mentioned in the ORDER BY must refer to a column name in the Select list.

By default, the view is ordered in ascending order (ASC). To order in descending order, specify the DESC
option.

Here’s an example that orders the view first by supplier name in ascending order, and the by price in
descending order within each supplier:

SELECT Product.prod_id AS ProductID,

orderStatusEvent.OS_PRICE AS Price,

Supplier.supp_name AS SupplierName

FROM orderStatusEvent, Product, Supplier

WHERE orderStatusEvent.OS_PROD_ID = Product.prod_id AND

Product.prod_supp_id = Supplier.supp_id

ORDER BY Supplier.supp_name ASC, orderStatusEvent.OS_PRICE DESC

QtyNam
Item 3

Cost
15.50CostNam

Item 15.50

QtyNam
Item 6

Event

Context

Item 10.00
Item 24.95

SELECT Name, Qty, Cost
FROM Event, Prices
GROUP BY Name
WHERE Event.Name = Context.Name

Item 6 10.00

SELECT Name, (Qty*Cost) AS Total
FROM View1

TotalNam
Item 46.50

View2

Item 60.00

View1

FILENET BAM SERVER REFERENCE 273
TIBCO Rendezvous

TIBCO Rendezvous is a messaging system for business applications. Business applications publish
messages to the stream managed by TIBCO Rendezvous transport servers. Each message has a name
that identifies the subject of the message. Other applications monitor the stream looking for messages
that, when found, are provided to other applications, such as FileNet Business Activity Monitor TIBCO
Rendezvous agents.

How it works

FileNet Business Activity Monitor event tables receive TIBCO Rendezvous messages as events. Each
event table corresponds to a single message subject. The tables identify the message subjects to a
listening daemon application via the agent. When the daemon locates a new message of the requested
subject, it passes the message to the table via the agent. The table definition then maps the message into
the table as a new event.

In this Chapter:

“TIBCO Rendezvous tables” on page 274

“Creating a TIBCO Rendezvous event table” on page 276

“TIBCO Rendezvous agents” on page 280

CAS agent
New message

TIBCO
Rendezvous

Event

Applications publish messages to
TIBCO Rendezvous by subject, each of
which map to new events.

Listen for SubjectX

New event

Listen for SubjectX

FILENET BAM SERVER REFERENCE
TIBCO Rendezvous tables

274
TIBCO Rendezvous tables
A TIBCO Rendezvous event table receives messages from a business application via a TIBCO
Rendezvous message stream. Each message is identified by subject, and each new message for a
subject is a new event. When the table receives a new message, it first maps the message data into the
event table data types.

Limitations

All messages for an event subject must be in the same form: every message must have the same fields,
though a field may be empty. Further:

• FileNet Business Activity Monitor does not support nested messages.

• Some TIBCO Rendezvous data types are not supported and cannot be mapped into a FileNet
Business Activity Monitor event. See Mapping TIBCO Rendezvous Data types,” below, for details.

Prerequisites

Before creating a TIBCO Rendezvous event, you need:

• Permission — Create permission for tables (see “Creating permission” on page 220), and Read Only
access permission on the agent that will feed the table.

• An agent — An existing TIBCO Rendezvous agent that connects to the TIBCO Rendezvous message
stream. Create an agent with the FileNet BAM Workbench Administration tab. See “TIBCO
Rendezvous agents” on page 280 for details.

• The subject name — Each TIBCO Rendezvous message has a subject name that identifies the event
source. You identify the subject name and the agent will monitor the message stream looking for the
messages. When it finds one, it passes the message information to the event table. Subject names
consist of one or more elements separated by dot characters (periods), such as: SUPPORT.TICKETS

• The format of the message — Each TIBCO Rendezvous message contains fields of information. You
tell the event object what fields to extract from the message, and how they map into FileNet Business
Activity Monitor data types.

• A sample file — (optional) If the message contains a complex string, it is helpful to have a sample file
that contains data in the format of the actual event string. You can use this sample when you create the
event to ensure that the fields map correctly into the event table by seeing how the data lines up in the
columns.

FILENET BAM SERVER REFERENCE
TIBCO Rendezvous tables

275
For the details of the subject name and message format, consult the IT specialist who maintains your
TIBCO Rendezvous system.

Attribute Description

Name Identifies the event object. This name must be unique among views,
events, context, and consolidated events. See “Object namespace”
on page 211 for details.

Description Optional description that may contain any text characters.

Status Whether or not the table is enabled (monitoring for events), or
disabled (not monitoring for events).

Log event data for recovery When on, logs event data that arrived after the last checkpoint
started. This “recovery” log is used to restore the state of the system
in the event of an abnormal shutdown of the servers. See Working
with checkpoint and recovery for complete details.

Process events in the order
of arrival

Choose this option when events must be processed in the order
received. Otherwise, if events may be processed out of order, turn
this on.

Note: To join events in a view, the events must be processed in
order: leave this option off to join the events.

TIBCO Rendezvous agent An existing agent that connects to the TIBCO Rendezvous message
stream. Create an agent with the FileNet BAM Workbench
Administration tab. See “TIBCO Rendezvous agents” on page 280
for details.

Subscription Identifies the subject on which the message is being sent, and
defined by the message publisher. Typically this string looks similar
to this: com.celequest.mytibcotopic.

Column Information The Column Information fields define how to map the fields from the
TIBCO Rendezvous message into columns in the event table. There
is one column for every field in the event table. See “TIBCO column
information” on page 276 for details.

FILENET BAM SERVER REFERENCE
Creating a TIBCO Rendezvous event table

276
Creating a TIBCO Rendezvous event table
This section shows you how to create a TIBCO Rendezvous event table.

To create a TIBCO Rendezvous event table:

1. Open the FileNet BAM Workbench Administration Console.

2. Create a new event.

3. Select TIBCO Rendezvous as the agent type.

4. Identify the Subject of the message events to collect. See Prerequisites above, for details.

5. Select an existing TIBCO Rendezvous agent.

6. Identify the fields in the message, and how they map to FileNet Business Activity Monitor data types.
See TIBCO column information for details.

Save the TIBCO Rendezvous table as enabled and it will immediately be ready to receive event
messages.

TIBCO column information
The Column Information fields define how to map the fields from the TIBCO Rendezvous message into
columns in the event table. There is one column for every field in the event table.

Each field in the message can be a simple field that maps directly into a event column, or it can be a
complex field (a flat file field) that contains several fields that each map into columns in the table. Complex
fields are treated as Flat Files in either delimited (CSV), fixed-width, or XML formats. See “Flat Files” on
page 73 for detailed descriptions of these file types.

Each column in the event table has the following attributes:

Attribute Description

Field Name Name of the column in the event table.

Message Name Name of the field in the message. When mapping a MessageField, the
name for each embedded field is N/A and uneditable.

Data Type Data type of the event column. See Mapping TIBCO Rendezvous Data
types,” below for details.

Format (optional) Format of the event column for VACHAR (string) and DECIMAL
values.

FILENET BAM SERVER REFERENCE
TIBCO column information

277
Add columns by clicking Add Field or Add Flat File Field.

To edit the definition of a
message field, select the
<Change Format> Format.

A Flat File Field creates a
message field of embedded
fields, each of which maps to a
column in the event table.

FILENET BAM SERVER REFERENCE
Mapping TIBCO Rendezvous Data types

278
To add a message field:

1. Click Add Flat File Field.

2. Choose the flat file type of the message field.

• (Optional for fixed-width and delimited files.) Identify a sample file to assist in mapping the col-
umns. This file is a sample of the real data file. Data from this file appears in the next step to assist
you as you map the event data into the table.

3. For fixed-width files, define the positions of the data columns with the Set Field Widths dialog.

4. Identify the flat-file attributes. See “Flat file event tables” on page 74 for details.

5. Define the format-specific Column Information. For details about the source type, see:

• “Fixed-Width files” on page 84.

• “Delimited files” on page 83

• “XML files” on page 85

6. Click Save Event to save the message field definition.

To edit the definition of a message field:

• In the field’s Format column, change the value from “Flat File: file type” to “<Change Formatting>”.

NOTE: When editing a message field, the sample file option for delimited and fixed-width file types is not
available.

Mapping TIBCO Rendezvous Data types
Each message is a set of fields that each contain one data item of a specific data type. You identify each
field by its defined name, and specify the field’s associated FileNet Business Activity Monitor data type.

The TIBCO Rendezvous data types map to FileNet Business Activity Monitor Data Types as follows.

TIBCO Rendezvous Type FileNet Business Activity
Monitor Type

Custom Data Types Not Supported

BOOL Boolean

DATETIME Timestamp

F32 Double

F32ARRAY Not Supported

F64 Double

F64ARRAY Not Supported

I16 Integer

I16ARRAY Not Supported

FILENET BAM SERVER REFERENCE
Mapping TIBCO Rendezvous Data types

279
I32 Integer

I32ARRAY Not Supported

I64 Decimal

I64ARRAY Not Supported

I8 Integer

I8ARRAY Not Supported

IPADDR32 Not Supported

IPPORT16 Not Supported

MSG Not Supported

OPAQUE Not Supported

STRING (see note below) Varchar

U16 Integer

U16ARRAY Not Supported

U32 Decimal

U32ARRAY Not Supported

U64 Decimal

U64ARRAY Not Supported

U8 Integer

U8ARRAY Not Supported

XML Varchar

TIBCO Rendezvous Type FileNet Business Activity
Monitor Type

FILENET BAM SERVER REFERENCE
TIBCO Rendezvous agents

280
TIBCO Rendezvous agents
A TIBCO Rendezvous agent communicates with a TIBCO Rendezvous daemon running in the application
server environment. The daemon listens for messages on a TIBCO Rendezvous message stream. When
the daemon finds a message requested by on of the TIBCO Rendezvous tables, it retrieves the message
data and passes it to the table via the agent.

NOTE: TIBCO Rendezvous agents are asynchronous, they receive event messages as the events occur.
You cannot retrieve context from a TIBCO Rendezvous agent.

Prerequisites

Before creating a agent, you need to:

• Create permission for agents (see “Creating permission” on page 220 for details).

• Connect to the TIBCO Rendezvous listener daemon.

NOTE: To connect, you need the Service, Network, and Daemon names. Consult the IT specialist who
maintains your TIBCO Rendezvous system for specific values.

Event
push

Event pull Context pull

Yes No No

FILENET BAM SERVER REFERENCE
Creating a TIBCO Rendezvous Agent

281
Attributes

A TIBCO Rendezvous agent has the following attributes:

Creating a TIBCO Rendezvous Agent
This section shows you how to create a TIBCO Rendezvous agent.

To create a TIBCO Rendezvous agent:

1. Open the FileNet BAM Workbench Administration Console.

2. Click New Agent…

3. Choose TIBCO Rendezvous as the source type

4. Fill in the fields that define the agent’s attributes.ef

Save the agent as enabled and it will immediately begin monitoring for events.

Attribute Description

Name Identifies the agent. This name must be unique among agents. See “Object
namespace” on page 211 for details.

Description Optional description that may contain any text characters.

Service TIBCO Rendezvous service port. Leave this blank to use the default port 7500.
Change this value only if your TIBCO Rendezvous administrator gives you another
port.

Network Identifies the network interface to use when the host is connected to more than one
network, or when the host supports multi-casting (in which case the address will look
something like ;222.1.2.3). Change this value only when the host machine is not on
the default network, and then use the IP address provided by your TIBCO
Rendezvous administrator.

Daemon Port of the routing daemon on the TIBCO Rendezvous host found on the network
identified by the Network attribute. Leave this blank to use the default port 7500.
Change this value only if your TIBCO Rendezvous administrator gives you another
port.

Status Whether or not the agent is enabled (monitoring for events), or disabled (not
monitoring for events).

FILENET BAM SERVER REFERENCE 282
Users

Each user that interacts with FileNet Business Activity Monitor is known to the system by their user
account information. When administrators create or edit accounts, or when users views their Account
Settings, they access specific account information from these tabs:

• “User Details tab” on page 283, details the attributes that describe a user.

• “Delivery Profiles tab” on page 284 specifies how and where a user may receive alerts.

• “User Preferences tab” on page 286 describes the settings that the user sets to affect the FileNet BAM
Workbench.

• “User Permissions tab” on page 286 provides access to the permissions assigned to the user.

To edit you own account information:

• Click Account Settings at any time.

To create, edit, or delete a user account:

1. Open the Administration Console.

2. Click Users to see a list of all users currently defined in the system. To

• Create a new user account, click New User and specify the user’s User Details tab and Delivery
Profiles tab. Optionally, you can specify User Permissions tab as well.

• Edit an existing user’s account information by double-clicking the name in the list.

• Delete an existing user by selecting one or more users in the list and clicking Delete Users. Note
that you cannot delete the system user or yourself.

System user

Every installation has a default system user who is identified during installation and who has all
permissions. That user creates other users and assigns permissions. Among the permissions that system
user may grant is the ability to create users. See the Release Notes or contact FileNet Corporation to learn
your installation’s default system user username and password.

FILENET BAM SERVER REFERENCE
User Details tab

283
User Details tab
User details identify a user with the following attributes:

Attribute Description

Username Login name of the user. The name can contain letters and numerals only. This
name must be unique among business activities and users; you cannot have a
user with the same name as a business activity. See “Object namespace” on
page 211 for details.

Password User password. Any combination of letters, numerals, or characters.

Default profile Default profile used to deliver alerts to this user. See Delivery Profiles tab,” below,
for details.

Roles Roles that this user may belong too, and which ones the user does belong to.
See “Roles” on page 252 for details.

FILENET BAM SERVER REFERENCE
Delivery Profiles tab

284
Delivery Profiles tab
Delivery profiles specify where and how to deliver alerts and data feeds to the user. Users may have
multiple profiles, and in the Alert Manager in the FileNet BAM Dashboard, they can identify which profiles
receive which alerts. Further, every user has at least one profile: Dashboard Profile sends notifications to
the Alert Manager in the FileNet BAM Dashboard.

At least one of the profiles must be designated as the one to use when subscribing to an alert. All profile
flagged as Auto are automatically added to new alert subscriptions.

The profile types are the possible delivery mechanisms available in the installation, and they include:

• Dashboard Profile — The Alert Manager in FileNet BAM Dashboard. You cannot delete this profile.

• E-mail — An e-mail account to receive the generated alert message.

• RTD (real-time data) — A server that updates a Microsoft Excel spreadsheet as the alert’s status and
context changes.

• Web Service — A Web services method that receives the alert notification and attached reportlet as
XML data.

E-mail

An address where the user receives e-mail messages.

Attribute Description

Profile Name Identifies this profile. The name can contain letters and numerals only.

E-mail address E-mail address to use.

FILENET BAM SERVER REFERENCE
Delivery Profiles tab

285
RTD

RTD metrics appear in the FileNet BAM Dashboard (see FileNet Business Activity Monitor generates
metrics about your business’ activities. Metrics are measurements taken over time that monitor, assess,
and communicate vital information about an activity, and are presented in a spreadsheet. The Excel
Dashboard tab in FileNet BAM Workbench is where you view and pick the metrics you a wish to receive,
and specify how the metrics get populated in the spreadsheet. for details). The profile identifies the RTD
server that provides data feeds.

Web Service

Web Service to receives the alert notification and any attached reportlets as XML data.

To use a Web Service, your administrator will need to reference the WebServicesAlert.xsd file which is the
Web service definition language file (WSDL) that describes the subscription service, the data it provides,
and how to exchange data with the service. Note that this service publishes a SOAP doc-style message,
not an RPC style message.

Your administrator can locate the file on FileNet Business Activity Monitor CD-ROM at this location:

FileNet Business Activity Monitor/Server/config/wsalert/WebServicesAlert.xsd

For more information about FileNet Business Activity Monitor use of Web Services, see “Web services” on
page 303.

Attribute Description

Profile Name Identifies this profile. The name can contain letters and numerals only.

RTD Host Host machine that serves the RTD to the clients.

RTD Port Port number (Integer) on the host that receives the data feed.

Attribute Description

Web service
URL

HTTP location of the application providing the DOC (SOAP) service.
Note that RPC style messages are not supported.

Method Method of the Web service to use.

Username (optional) Account name to use when connecting to the service.

Password (optional) Password for the account.

FILENET BAM SERVER REFERENCE
User Preferences tab

286
User Preferences tab
User preferences are settings that the user may specify that affect the FileNet BAM Workbench.

Dashboard polling

Dashboard polling tells the FileNet BAM Dashboard how frequently to update the list of alerts received.

NOTE: Clicking on the FileNet BAM Dashboard tab or the Alerts tab in the FileNet BAM Dashboard
always polls the server before displaying the list of active alerts.

User Permissions tab
User permissions are the global permissions that a user may have. From this tab the user can see what
Create permissions they have, and administrators can assign the user’s permissions to classes of objects.
For a detailed discussion about permissions, see “Permissions” on page 216.

NOTE: Every new user has No Access permissions for everything. This allows the user to receive and
view alerts and reportlets as the result of mandatory subscriptions, but they may not subscribe to any.

When a user views their own permissions, they see which classes of objects that they may create.

Attribute Description

Offline Do not poll the servers looking for new alerts.

Polling Interval How frequently to poll the server looking for new alerts.

FILENET BAM SERVER REFERENCE
User Permissions tab

287
When an administrator creates or edits permissions, they can specify which objects a user may create and
assign permissions to all existing objects.

For a detailed discussion about assigning permissions, see “Permissions” on page 216.

FILENET BAM SERVER REFERENCE
Creating and using a UDF

288
User-Defined Functions

User-defined functions (UDFs) provide a mechanism for extending C-SQL by defining your own functions
for use in queries, views, and rules. With this feature you can define a scalar function or set function by
implementing the appropriate FileNet Business Activity Monitor Java interfaces.

UDFs are Java programs that take arguments and return a value, just like the internal FileNet Business
Activity Monitor functions. For example, you might have a UDF that takes a set of values and concatenates
them alphabetically while ignoring NULL values. You would use that UDF in an expression like this:

ConcatSet(Product.Name)

After compiling the Java program, you deploy (load) it into FileNet Business Activity Monitor where it is
then available to all users who can create or edit queries, views, and rules.

For information about creating user-defined functions, see Creating and using a UDF,” below. Further, for
details about the interfaces, see “com.celequest.api.function” in the Javadoc documentation. You can
access the Javadoc documentation with a Web browser directly from FileNet Business Activity Monitor
CD-ROM by pointing your browser to: <cd>/helpdocs/javadoc/index.htm.

UDF restrictions

User-defined functions have these restrictions:

• Scalar and set functions only; no rank functions.

UDFs can define Scalar functions by implementing the IUDScalarFunction interface, or Set functions
by implementing the IUDAggregateFunction and IUDAggregateState interfaces. See
“com.celequest.api.function” in the Javadoc documentation for details.

• UDFs are not exposed to the FileNet BAM Workbench.

The formula editor does not recognize UDFs. As such, you are responsible to keeping track of which
UDFs are registered with the system.

• All users have access to all UDFs.

You cannot apply access permissions to a UDF. Similarly, multiple users may define different UDFs
with the same name. In that case, the system uses the first on it finds.

• Set functions must implement object serialization and maintain backward compatibility.

Failure to implement meaningful serialization/deserialization routines may result in unpredictable
behavior in many areas including checkpoint and recovery, and parallel execution.

• UDFs are never pushed as predicates to a remote source.

Essentially, UDFs are never sent to a DBMS for evaluation. See “Context column limitations in queries”
on page 45 for more details.

Creating and using a UDF
These instructions use the ConcatSet sample UDF included on the product CD-ROM in the /samples/udf/
directory. To follow along using the sample, first copy the contents of that directory to a location on your
local machine. See the README.txt file in that directory for more information about the sample.

FILENET BAM SERVER REFERENCE
Creating and using a UDF

289
To create and use a UDF:

1. Implement the interfaces.

2. Create your UDF by implementing the appropriate com.celequest.api.function interfaces.

NOTE: See the Javadoc documentation for details about the interfaces.

3. Compile your implementation.

When you compile your UDF implementation, include the celequestAPI.jar file. (The file in on the
product CD-ROM in the /FileNet Business Activity Monitor/CelequestAPI/ directory.) For example:

javac -classpath <CD-ROM>/FileNet Business Activity Monitor/CelequestAPI/celequestAPI.jar src/

samples/udf/concatset/*.java src/samples/udf/concatlist/*.java src/samples/udf/util/*.java -d

jar

4. Create a manifest for the UDF JAR file.

A manifest is an XML file that describes the UDF JAR file to FileNet Business Activity Monitor. For a
description of the file and a sample listing, see “Manifest files” on page 290.

5. Create the UDF JAR:

• Create a JAR file containing your class(es) (such as ConcatSet.class) and the manifest (mani-
fest.xml). The manifest must appear under com/celequest/manifest in the jar. For example:

jar -cvf udf.jar samples/* com/celequest/manifest/manifest.xml

6. Upload the JAR to the FileNet Business Activity Monitor server.

• Open the Workbench tab in the FileNet BAM Workbench, select the JAR Files folder, and choose
New Jar.

• Assign a meaningful name to the JAR, and optionally provide a description.

• Locate the JAR file in the Path.

• Choose Upload JAR File.

7. Add the UDF to the list of available UDFs.

• Select the User Defined Functions folder and choose New User Defined Function.

• Identify the source by choosing the existing JAR file that you just uploaded, and choose Continue.

• Select the functions to add, and optionally assign new names to them.

• Choose Finish to add the UDFs to the list.

8. Use the UDF in formulas. Once the UDF is deployed, you can use it in formulas, similar to this:

ConcatSet(Product.Name)

This completes the steps for creating and using a UDF.

To alter an existing UDF:

1. Change the implementation and create an updated JAR file.

2. Upload the JAR over the existing one.

3. Re-add the UDFs to the list of User Defined Functions.

FILENET BAM SERVER REFERENCE
Manifest files

290
Manifest files
A manifest is an XML file that describes the contents of the UDF JAR to FileNet Business Activity Monitor.
For every function in your jar file, define <UDF> and <name> elements. Further, for every data-type that
the function can return, define a <UDFDescriptor> element. Finally, if subsequent calls to the same
function with the same argument values can return different values, set the <isVariant> element to true. For
example, the CURRENT_TIMESTAMP() internal function takes no arguments, but returns a different result
each time it is called. That function is “variant”.

Here is a sample manifest for the ConcatSet() function. This listing is adapted from the file in the samples
directory at /samples/udf/jar/com/celequest/manifest.xml.

Sample manifest.xml

<?xml version="1.0" encoding="UTF-8"?>

<jarManifest

xmlns="http://www.celequest.com"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.celequest.com jarManifest.xsd"

>

<jarManifestXSDVersion>1</jarManifestXSDVersion>

<author>Celequest Corporation</author>

<UserDefinedFunctions>

<UDF>

<name>ConcatSet</name>

<description><![CDATA[

Function which concatenates a set of values

alphabetically into a large string. Null values

are ignored.

]]></description>

<implementor>samples.udf.concatset.ConcatSet</implementor>

<UDFDescriptors>

<UDFDescriptor>

<result>VARCHAR</result>

<argument>ANY</argument>

</UDFDescriptor>

</UDFDescriptors>

<isVariant>false</isVariant>

</UDF>

</UserDefinedFunctions>

</jarManifest>

FILENET BAM SERVER REFERENCE 291
Views

Business views are data models that provide a real-time picture of a business activity. Records of changes
and transactions in your business enter FileNet Business Activity Monitor as events. Each new event
drives an immediate update of the views — the business models — derived from that event, thereby
providing a real-time picture of the business metrics. Further, after a view has been updated, the system
evaluates the rules associated with the view looking for exceptional business conditions that require
attention.

A business view is a virtual table that resides in memory and whose contents come from one or more
sources as defined by an C-SQL SELECT query statement. You define views with the graphical user
interface in the FileNet BAM Workbench. That system then constructs a well-formed SELECT statement
before passing it to the FileNet Business Activity Monitor servers for execution and maintenance. For
details about the SELECT statement and its syntax and usage, see “SELECT” on page 264.

In this Chapter:

“Creating views” on page 292

“View attributes” on page 293

“View constraints” on page 294

“Synchronized joins” on page 294

“Consolidated events” on page 296

“Aggregate views” on page 297

“Updating views through event propagation” on page 298

“Stateless and stateful views” on page 298

“View initialization” on page 299

“Maintaining events in stateless views” on page 300

“Persisting views to a database” on page 301

You can limit the rows that a user sees by associating an access filter to the view, and applying the filter to
users or roles that see the view. See “Access Filters” on page 17 for complete details.

NOTE: The data in the context views are static or slowly changing. As such, the query engine does not
update the view due to changes in the context tables. Changes in the context table are, however, reflected
in the view when the context table is joined with the next event row.

FILENET BAM SERVER REFERENCE
Creating views

292
Creating views
You need Create permission for views (see “Creating permission” on page 220), and Read Only access
permission on the table (and optional views) that will feed the new view.

To create views with the FileNet BAM Workbench:

1. Click the New View button.

2. Select the existing event, view, or views on which to build your view.

3. Fill in the fields in the Create View form.

To create views for a specific events with the FileNet BAM Workbench:

1. Select the existing event, view, or views on which to build your view.

2. Click the New View For This Event button.

3. Fill in the fields in the Create View form.

Copying a view
You can also copy the definition of an existing view to a new view.

To clone an existing view:

1. Edit the view you want to copy.

2. Change the view name, and change the other attributes that differ from the original view.

3. Choose “Save as New View”.

FILENET BAM SERVER REFERENCE
View attributes

293
View attributes
Every view has the following attributes:

Attribute Description

Name Identifies the view object. The name can contain letters and numerals only. This
name must be unique among views, events, context, and consolidated events.
See “Object namespace” on page 211 for details.

Status Specifies if the view is enabled (receiving new event information), or disabled.
When an view is disabled, all objects that depend on the view are also
disabled, including rules, alerts, and reportlets.

Description Optional description that may contain any text characters.

Workset Event table and or views on which the view is derived.

Field list Columns to include in the view, including columns whose values are derived
from formulas. This is the Select list in the underlying SELECT statement.

The Group By option identifies columns on which to group the results. This is
the GROUP BY clause in the underlying SELECT statement.

Maintain in view Allows tracking of past event information for stateless views. See Maintaining
events in stateless views” for details.

From clause How to join the information from multiple tables and views in the Workset. This
is the FROM clause in the underlying SELECT statement.

Where clause Identifies which source information to include in the new view. Events which do
not meet the specification are not included in the view. This is the WHERE
clause in the underlying SELECT statement.

Note that even though an event’s information might be discarded, derived
views will still update, though they too will not contain the event information.
See Updating views through event propagation” for details.

Window clause Defines windows for aggregating sets of rows in the view. See “Query
Windows” on page 228 for details.

Order by clause Sorts the resulting view based on column names or on expression results. This
is the in the underlying SELECT statement.

View Persistence Save view data to a database for later analysis. See Persisting views to a
database” for details.

FILENET BAM SERVER REFERENCE
View constraints

294
View constraints
FileNet Business Activity Monitor views have these constraints:

• A view may be derived from an event table or another view.

• A view may not join different event steams. (Though a Consolidated Event is a union of two identical
event streams; see Consolidated events” for details.)

• A view may join two views of the same event stream. (A synchronized join is a view derived from
multiple views based on the same event stream; see Synchronized joins” for details)

• A view may join an event table and one or more context tables.

• A view may join a view and one or more context tables.

• A view may not be derived from context tables only.

Synchronized joins
A synchronized join is a view derived from two views based on the same originating event stream. In a
synchronized join, the resulting view contains rows that are the combination of the same events in the
source views.

Synchronized joins are always based on the event’s internal ID; there is an implicit join condition on the
internal event column. However, you still should define a WHERE clause or join condition in the FROM
clause to avoid a possible cross join result (see “Cross joins” on page 268 for details).

NOTE: A synchronized join stream always results in a stateless view.

Restriction

A synchronized join requires that events be processed in the order that they arrive. As such, the source
event object must have Process events in the order of arrival turned on.

Example

One example, of a synchronized join is this one which determines the ratio of total sales by region. One
view (SalesTotal) determine the total sales for all events, while the other (SalesByRegion) determines the

View

Synchronized
A view that is a synchronized join
combines rows from the same
source event.

Context

View

View

Event

FILENET BAM SERVER REFERENCE
Synchronized joins

295
totals for each region. Finally, the synchronized join (SalesRatiosByRegion) determines the percentage of
each region by joining the two “total” views and dividing the region totals into the grand total.

SELECT SalesByRegion.Region AS Region,
(SalesByRegion.TotalForRegion/
SalesTotal.TotalSales) AS RatioOfTotal

FROM SalesByRegion, SalesTotal

SalesRatiosByRegion

The SalesRatiosByRegion view determines the ratio
of sales that each region represents.

SalesByRegion

SalesTotal

SalesEvents

SELECT SUM (SalesEvents.Amount) AS TotalSales
FROM SalesEvents

SELECT SalesEvents.Region AS Region,
SUM (SalesEvents.Amount) AS TotalForRegion

FROM SalesEvents
GROUP BY Region

FILENET BAM SERVER REFERENCE
Consolidated events

296
Note that the above synchronized join is a cross join, which in this case is acceptable. However, consider
this example that determines each sales representatives ratio relative to the total sales:

In the above illustration, you do not want a cross join because it creates one row for each sales
representative in every region, including the regions that the representatives do not belong too. Instead,
the SalesRatiosPerRepRegion view declares an inner join to limit the results by region.

Consolidated events
Consolidated events are special views that accept events from two different event streams. See Working
with consolidated events for a detailed discussion.

SalesRatiosPerRepRe

The SalesRatiosPerRepRegion view
determines a representative sales as a
ratio of the total.

SalesByRegi

SalesEvents

SELECT SalesTotalsByRepRegion.Rep AS Rep,
SalesByRegion.Region AS Region,
SalesTotalsByRepRegion.Amount /
SalesByRegion.TotalForRegion AS RatioPerRe

FROM SalesTotalsByRepRegion
INNER JOIN SalesByRegion
ON SalesByRegion.Region =

SalesTotalsByRepRegion.Region

SELECT SalesEvents.Region AS Region,
SUM (SalesEvents.Amount) AS TotalForRegion

FROM SalesEvents
GROUP BY Region

SELECT SalesEvents.Region AS Region,
SalesEvents.Rep AS Rep,
SUM (SalesEvents.Amount) AS Amount

FROM SalesEvents
GROUP BY Region, Rep

SalesTotalsByRepRegi

FILENET BAM SERVER REFERENCE
Aggregate views

297
Aggregate views
A key power of business views is the ability to aggregate event and context information; to extract,
analyze, and combine the information into meaningful business metrics. Aggregate views have at least
one field definition that includes an aggregation or GROUP BY clause.

For example, consider this simple view that tracks the total count of events that arrived in the last hour.
Every time a new event arrives the MOV_COUNT() function recalculates the count of all events in the view,
thereby providing a real-time metric about the event stream:

SELECT MOV_COUNT(*, HOUR, 1) AS "Events in the last hour"

FROM Events

You can make the example a little more complex by limiting the events that the view sees. For example, to
count only those events whose Status value is Open:

SELECT MOV_COUNT(*, HOUR, 1) AS "Opens in the last hour"

FROM Events

WHERE Status='Open'

By combining the aggregate information with other context, you can generate more meaningful metrics.
For example, this view reports the count of events whose Status value is Open, and groups them by
Feature:

SELECT Context.Topic AS Topic,

MOV_COUNT(*, HOUR, 3) AS "Opens in 3 hours"

FROM Events INNER JOIN Context ON Event.Feature = Context.Feature

WHERE (Status='Open')

GROUP BY Feature

Feature Opens in 3 hours

-------------- ----------------

Configuration 12

Install 3

Servers 6

For detailed information about aggregate and moving set functions, see Function types.

FILENET BAM SERVER REFERENCE
Updating views through event propagation

298
Updating views through event propagation
When a view receives a new event, it attempts to update itself with the new information, and if the update
occurred the view then notifies all dependant views to also update. However, these exceptions can keep
the view from updating:

• If a view is empty when it receives an event, and it remains empty after processing the event, it never
notifies the dependant views.

• If a stateful view becomes empty as a result of a deletion, such as when an existing event is discarded
from a moving set function set, all dependant views are notified to update as well.

• An update may cause a stateless view to become empty, and any dependant views will also be empty.
If subsequent event also results in an empty view, the view will appear to have not updated, though it
had.

• If the new event is discarded because it does not meet some criteria, the stateful view is not updated.
However, it still publishes a snapshot of itself to all dependant views which can cause dependant
moving set functions to update their views.

If an error occurs when processing an event while updating a view, all rows related to the entire event are
discarded, and the view remains valid and enabled.

Stateless and stateful views
All views in FileNet Business Activity Monitor are either stateless or stateful:

Stateful views contain the results of aggregations derived from past events in a single row. A view is
stateful if it

• contains an set function, or moving set function in the SELECT clause, or

• contains a GROUP BY clause (in which case each group contains only one row), or

• is derived from a stateful view.

Stateless views are any views that are not stateful.

Generally, a stateless view shows the information about a single event, such as a single purchase order. A
stateful view, on the other hand, shows the aggregate information about multiple events, such as the
average price of multiple purchase order events.

FILENET BAM SERVER REFERENCE
View initialization

299
View initialization
Each view maintains two snapshots of the data it contains:

• Current view — This is the data currently in the view. For a stateful view, the snapshot shows all rows
in the view. For a stateless view, it shows all the rows corresponding to the last event, which after
aggregation might be an empty set.

• Recent view — A snapshot of the last non-empty current view. When the view has a moving set
window, the recent view contains the last non-empty rows in the window. For example, if the window is
2 days, the recent view contains the last 2-day set that was not empty, event if the current view is
empty. A recent view is what appears in the FileNet BAM Workbench when editing an object that
displays view results, and what is used by derived views during view initialization.

When you create or enable a view, it is initialized to a state based on the data in the base view as follows.
When a view is derived from a

• stateful view, the new view is initialized with the data in the base view’s current view snapshot. For
example, consider a stateful base view which tracks sales by region:

SELECT region, SUM(sales) AS region_sales GROUP BY region

When you derive a new view from sales_by_region, the new view is immediately populated with the
data in sales_by_region’s current view.

SELECT SUM(region_sales) AS total_sales FROM sales_by_region

• stateless view, the new view is initialized with the data in the base view’s recent view snapshot. For
example, consider this stateless view. This view’s current snapshot is empty when no sales are greater
than 1,000,000.

SELECT region, sales WHERE sales > 1000000

However, a view derived from this view will be initialized with the data in the view’s recent view
snapshot

• event table, the new view is empty; event tables do not maintain snapshots.

FILENET BAM SERVER REFERENCE
Maintaining events in stateless views

300
Maintaining events in stateless views
By default, a stateless view contains only rows representing the last event and which satisfied the view
condition; rows from previous events are discarded. If the event did not meet the condition, the view will be
empty. With the Maintaining events in a stateless view option you can specify a set of recent non-empty
event information to maintain in the view.

Use this option to include the recent events in

• The FileNet BAM Workbench when displaying a the view’s contents on the Results tab. This tab
displays the current rows in the view.

• External applications that receive the view as a real-time data feed. This allows the external
application to perform trend or historical analysis.

To maintain events in a stateless view:

1. Open the View Editor on a view to persist.

• On an existing view choose Edit View, or

• When creating a new view…

2. Check Maintain in view.

3. Enter either the count or time-span of events to retain.

• An event count is the maximum number of non-empty events to maintain. The view discards the
oldest event rows that do not fit in the specified size.

• A time interval defines a set of the most recent events. The count of events in the view varies
depending on the number of events in the interval when the view was updated. For example, if an
event arrived that did not meet the view criteria, it is excluded from the view, but the view recalcu-
lates the interval that time.

NOTE: The set of events is determined when the last event was inserted, not at the current time. For
example, an interval of one hour shows all the events that arrived in the view for the hour previous to the
last update. If no events were inserted in the last day, the view might still show an hour’s worth of events
from the previous day. However, as soon as new event arrives at the view, all those events are discarded.

See also “Moving set functions” on page 126 for a means of performing aggregations on sets of recent
events.

FILENET BAM SERVER REFERENCE
Persisting views to a database

301
Persisting views to a database
FileNet Business Activity Monitor can persist business view data to an external DBMS for future reporting
by third party tools. The information in the table is sufficient for the reporting tools to recreate a complete
snapshot of the view. When persisting, the view information is written to a table in the DBMS at a rate
following a policy that you define.

NOTE: FileNet Business Activity Monitor can create the table automatically, or you can pre-define the
table in the DBMS. See the View persistence attributes,” table below for details.

To activate view persistence:

1. An application specialist must have first define a JDBC Agentto the RDBMS that will store the view
data. See “JDBC agents” on page 187 for details about creating this agent.

2. Open the View Editor on a view to persist.

• On an existing view choose Edit View, or

• When creating a new view…

3. Check Persist data from view to a database.

4. Choose Define Database Connection…

5. Fill in the fields in the Define Database Connection dialog.

The view begins persisting data as soon as it is enabled.

FILENET BAM SERVER REFERENCE
Persisting views to a database

302
View persistence attributes

The database connection attributes include:

View columns to persist

The database receives all of the columns and rows currently in the view. Additionally, each row contains
these additional internal columns:

Attribute Description

JDBC Agent Agent to the RDBMS defined in 1 above.

Table Target table in the RDBMS to receive the persisted data. If you omit this
name, the table will have the same name as the business view.

The columns in the target table must have the same names as the columns
in the view, appear in the same order as in the view, and they must be at
least the same width as the columns in the view. When a column width in
the target is smaller, the RDBMS either silently truncates the data to fit or
generates an error. Similarly, the target table must support row lengths at
least as long as the rows in business view.

Create this table if
it isn’t there

Indicates that the application specialist or database administrator has not
already created the named table. If this option is selected, FileNet Business
Activity Monitor attempts to create the target table using a CREATE TABLE
command in the JDBC user’s default table space.

Persistence policy Defines when to write the view data to the target table. The system caches
the rows of data and writes them to the target after exceeding either a count
of rows, or an interval of time.

Stop logging after Specifies how many consecutive errors to write to the error log before
suspending error logging of the messages. Use this option to avoid rapidly
filling the error log.

Note, the system continues persisting view snapshots as long as the view is
enabled, even when errors occur in the target, such as in “Out of space”
conditions.

Column Description

VC_EVENT_ID Event identifier identifies the event that produced the most recent row
included in the view.

VC_LATEST_EVENT_ID Latest event identifier identifies the last event that caused the view to
update, though data from that event might not be included in the view.

VC_TIMESTAMP Event timestamp identifies when the last event was included in the
view.

FILENET BAM SERVER REFERENCE 303
Web services

A Web service is an interface to an application running on a Web application server. The service can be a
simple database lookup script, or a complex enterprise application integration (EAI) product, like those
provided by Siebel or SAP. FileNet Business Activity Monitor connects to Web services to do the following:

• Receive events, (as describe in “Web service events” on page 304),

• Retrieve context (as described in “Web service context” on page 306),

• Publish alert messages as follows:

• to a subscriber’s delivery profile, (see “Delivery Profiles tab” on page 284 for details)

• on an individual basis as initiated by a user viewing the message in the FileNet BAM Dashboard
(“Web service external processes” on page 313 for details).

FILENET BAM SERVER REFERENCE
Web service events

304
Web service events
Web services publish event data as XML via HTTP directly to the FileNet Business Activity Monitor
servers. All Web service publishers use the same URL. As such, encoded in XML with the event data is the
name of the event to receive the data, and the FileNet Business Activity Monitor account that has access
to the event table. When the servers receive the event data, they parse the XML, decode the data, and
insert it into the identified event stream.

Web service event attributes

Each Web service event table has the following attributes:

Attribute Description

Name Identifies the table and is the name accessed by the Business Views that
depend on this table. This name must be unique among views, events,
context, and consolidated events. See “Object namespace” on page 211 for
details.

Description (optional) Description of the table.

Web services
application

Event table The Web service event table
maps the data from XML into
the event stream.

http://.../filenet/webservice/eventstream

Web services publish event data
as XML via HTTP to FileNet
Business Activity Monitor.

FileNet Business
Activity Monitor

Event data as XML

FILENET BAM SERVER REFERENCE
Creating a Web Service Event

305
Creating a Web Service Event
Before creating a Web service event table, you need to create permission for tables (see “Creating
permission” on page 220).

To publish event from a Web service:

1. Create and the event in the FileNet BAM Workbench.

2. (Optional) Create a FileNet Business Activity Monitor user account for the Web service to use when
publishing the event. The account must have at least Read-Write on the event table to publish to the
event stream.

3. Retrieve the event WSDL definition using HTTP.

http://<host:port>/filenetbam/wsdl/eventstream.wsdl

The eventstream.wsdl file describes all defined FileNet Business Activity Monitor Web service events
streams. See the documentation in the WSDL for descriptions of the XML elements and attributes.

4. Create the Web service publisher and define the XML event data to conform to the WSDL.

This example of XML carries data to the OrderWSEvent event stream.

• Tthe account used to access the event stream (WSInputAccount)

• there are four columns of data defined in the <OrderWSEventData> element

<?xml version="1.0" encoding="UTF-8"?>

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

Status Whether or not the object is enabled (able to receive and pass data), or
disabled (not receiving or passing data).

Log event data for
recovery

When on, logs event data that arrived after the last checkpoint started. This
“recovery” log is used to restore the state of the system in the event of an
abnormal shutdown of the servers. See Working with checkpoint and
recovery for complete details.

Process events in
the order of arrival

Choose this option when events must be processed in the order received.
Otherwise, if events may be processed out of order, turn this on.

Note: To join events in a view, the events must be processed in order:
leave this option off to join the events.

Disable event after
this number of
consecutive errors

Disables the event when a consecutive count of errors occur. For example, if
set to 5, disables the event after 5 consecutive errors. However, if 4 errors
occur, and then no errors followed by 2 errors, the event remains enabled.
The default is off: do not disable.

Column Information The Column Information fields define the columns in the event table, and are
the same name as the fields in the XML message, as described in the WSDL
for the event.

Attribute Description

FILENET BAM SERVER REFERENCE
Web service context

306
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Body>

<OrderWSEvent_input xmlns="http://www.celequest.com">

<cqesi>

<eventname>OrderWSEvent</eventname>

<username>WSInputAccount</username>

<password>wspwd</password>

</cqesi>

<OrderWSEventData>

<ProdName>Plywood</ProdName>

<OrderQuantity>150</OrderQuantity>

<OrderTotal>987.34</OrderTotal>

<IsBackordered>true</IsBackordered>

</OrderWSEventData>

</OrderWSEvent_input>

</soapenv:Body>

</soapenv:Envelope>

5. Publish events to the URL identified in the eventstream.wsdl file, similar to this:

http://<host:port>/filenetbam/webservice/eventstream.wsdl

If you later change the machine that hosts the FileNet Business Activity Monitor servers, be sure to re-
query the WSDL file to determine the correct URL.

This completes the steps for creating and using a Web service event.

Web service context
Business views request rows from a context table that match one or more input values, such as a list of
suppliers that supply an item, where the item ID is the input. That input is then passed to the Web service
application via the agent as XML. The application then returns one or more rows of data as XML, which are
then mapped into the context table. The table then passes the requested data to the requesting business
view.

FileNet Business Activity Monitor Web service agents are synchronous: they retrieve context data as the
result of a specific request. When requesting data, the agent uses Simple Object Access Protocol (SOAP
binding) to communicate with the application via an HTTP connection. The application then returns one or

Web
services

Data for

Requested

Business

Input

Web
services Contex

Outpu
t

Web services provide context
data in response to a request
from a context table.

FILENET BAM SERVER REFERENCE
Web service context

307
more rows of data in XML following the Web service definition language (WSDL) format, Doc-type format.
(Note that WSDL RPC-style is not supported.)

NOTE: For details about context agents, see “Web service agents” on page 312

Before creating a Web service context table, you must:

• Create permission for tables (see “Creating permission” on page 220)

• Have a Web service agent that will feed the table (see “Web service agents” on page 312 for details)

• Read Only access permission on the agent.

A Web services table has the following attributes:

Attribute Description

Name Context table name. This name must be unique among views, events, context,
and consolidated events. See “Object namespace” on page 211 for details.

Description Optional description that may contain any text characters.

Status Whether or not the table is enabled (monitoring for events), or disabled (not
monitoring for events).

Web Service
Agent

An existing Web service agent that connects to a Web service application. Create
an agent with the FileNet BAM Workbench Administration tab. See “Web service
agents” on page 312 for details. This value cannot be changed.

Method Method of the Web service to use. When the service provides multiple methods,
you need to choose which one to use. This value cannot be changed in this
release.

XPath Root Identifies the XPath root of the repeating elements in the output, typically /
Envelope/Body. This path is prepended to all paths in the Output Field Name list.

Disable context
after errors

Count of consecutive errors to receive before the system disables this context.
Once disabled, a context must be re-enabled manually.

Outputs Columns that receive the information from the Web service. See “Output
columns” on page 309 for details.

Inputs Columns that contain the data which identify what to look up in the query. See
“Input columns” on page 310 for details.

Caching See “Caching context queries” on page 47 for details about this feature.

FILENET BAM SERVER REFERENCE
Creating a Web Service Context Table

308
Creating a Web Service Context Table
This section describes how to create a Web service context table.

To create a Web service context table:

1. In the FileNet BAM Workbench, Workbench tab, create a New context and choose Web service as the
table type.

2. Select an existing Web service agent.

3. Select the service method to use. Each Web service provides one or more methods for accessing the
data it provides according its WSDL file definition (the URL location of which you specified when
creating the Web service agent). Choose the method that performs the query your context needs.

4. Define columns that receive information from the Web service — the Output columns. By default, the
editor defines one column for each element returned by the method. See Output columns,” below for
details of defining these columns.

5. Define the columns that contain the data that identify what to look up in the query — the Input columns.
By default, the editor defines one column for each element returned by the method. See Input
columns,” below for details.

6. Specify how many results to cache, if any. See “Caching context queries” on page 47 for details about
this feature.

Save the Web services table as enabled and it will immediately be ready to receive context.

FILENET BAM SERVER REFERENCE
Output columns

309
Output columns
The Output columns receive the information from the Web service and define the table to receive the data.
The editor automatically defines one column for each element returned by the method. Further, each
column has the following attributes:

To exclude columns from the result, open the Hide/Show dialog and deselect the fields to exclude.

Attribute Description

Column Name Name of the table column that contains the result returned by the Web
service. By default, the name is the same as the element in the Output Field
Name. You may assign any valid name.

Output Field Name (Cannot be changed.) Identifies the element in the XML returned by the
service. Note that you can view the entire path to the element by opening the
Hide/Show dialog.

XSD Data Type (Cannot be changed.) Identifies the data type of the element in the XML.

Note that only the basic data types are supported: numbers, strings, dates,
and boolean. Complex types like ANY and ARRAY, and mime types are not
supported.

FileNet Business
Activity Monitor
Data Type

Data type of the column in the table. Choose a data type appropriate to the
data returned.

Formatting Formats the String, Date-Time, or DECIMAL value returned. This option is
not available for other data types. See “Data Types” on page 52 for details.

FILENET BAM SERVER REFERENCE
Input columns

310
Input columns
The Input columns pass information to the Web service to identify the information to return (the Outputs).
The editor automatically defines one column for each element identified by the method. Each column has
the following attributes:

To exclude unnecessary columns from the query, open the Hide/Show dialog and deselect the fields to
exclude.

Attribute Description

Column Name Name of the column that contains the information passed to the Web
service query. For example, it might contain an ID that identifies a
product to look up. This column is populated by the business view that
requires the context information. By default, the name is the same as the
element in the Input Field Name. You may assign any valid name.

Input Field Name (Cannot be changed.) Identifies the element in the XML passed to the
service. Note that you can view the entire path to the element by opening
the Hide/Show dialog.

String Replacement
Text

A string to pass to the service which contains values inserted by the
business view requesting the information. See String replacement
templates,” below for details.

XSD Data Type (Cannot be changed.) Identifies the data type of the element in the XML.

Note that only the basic data types are supported: numbers, strings,
dates, and boolean. Complex types like ANY and ARRAY, and mime
types are not supported.

FileNet Business
Activity Monitor Data
Type

Data type of the Column Name attribute. Choose a data type appropriate
to the data to pass.

Formatting Formats the String, Date-Time, or DECIMAL value returned. This option
is not available for other data types. See “Data Types” on page 52 for
details.

FILENET BAM SERVER REFERENCE
String replacement templates

311
String replacement templates
Use a String Replacement Template when the Web service requires a string with embedded lookup data.
For example, some services require an expression that is the query to issue to the data source. This
illustration contains returns context where Part_ID and Qty_On_Hand values are provided by the business
view requiring the information. Here each Column Name (Alias) is a column in the context table. When the
Web service is queried, the values in those columns are inserted in the string passed to the service.

To use string replacement templates:

1. Click on the (…) to open the template editor.

2. Type the template expression and enter a question mark (?) for each piece of information to retrieve
from a column. Each question mark corresponds to one replacement field. The fields are the column
names in the context table and appear in the order that the question marks appear in the expression.

Save the template to update the Inputs column display.

FILENET BAM SERVER REFERENCE
Web service agents

312
Web service agents
A Web service agent communicates with an application running on a Web application server for the
purpose of retrieving context data. The agent connects to the application via an HTTP connection using
Simple Object Access Protocol (SOAP).

NOTE: Web service agents are synchronous, they retrieve context data as the result of a specific request.

Before creating a Web services agent, you need:

• To create permission for agents (see “Creating permission” on page 220 for details).

• To know the HTTP location of the WSDL file that defines the service to use. Note that the service must
publish its data in SOAP binding; RPC binding is not supported.

Web service agent attributes

A Web service agent has the following attributes:

Event
push

Event pull Context pull

No No Yes

Attribute Description

Name Identifies the agent. This name must be unique among agents. See “Object
namespace” on page 211 for details.

Description Optional description that may contain any text characters.

Status Whether or not the agent is enabled (monitoring for events), or disabled (not
monitoring for events).

URL HTTP location of the Web service definition language file (WSDL) that describes
the service, the data it provides, and how to exchange data with the service. Note
that returned data must be a SOAP doc-style message; RPC binding is not
supported.

User name (optional) User name to use when connecting to the service. This parameter is
passed to the server when the server requires a user name.

Password (optional) User password to use when connecting to the service. This parameter
is passed to the server when the server requires a password.

FILENET BAM SERVER REFERENCE
Creating a web service agent

313
Creating a web service agent
To create a Web service agent:

1. In the FileNet BAM Workbench, Administration Console, click New Agent…

2. Choose Web Service as the source type.

3. Fill in the fields that define the agent’s attributes.

Save the agent as enabled and it will immediately be ready to retrieve data.

Web service external processes
External Web service processes are methods that receive XML documents that describe the alert
message or dashboard object that a FileNet BAM Dashboard user is viewing, and which was sent to the
service by the user. The XML document describes all of the data in the item that the user was viewing.

How it works

To publish an item to an external Web service:

1. Define the external process to receive the message in the FileNet BAM Workbench. See Creating an
External Process.

2. Send the item from the FileNet BAM Dashboard. When viewing an alert message or dashboard object,
select Take Action > Initiate Process and select the process.

3. The external service receives the item as an XML document and processes it. See “Implementing the
external service” on page 314 for details about the document.

External process attributes

Each external process has the following attributes:

Attribute Description

Name External process name to appear in the Initiate Process dialog in the FileNet
BAM Dashboard. This name must be unique among external processes. See
“Object namespace” on page 211 for details.

Description Optional description that may contain any text characters. This description
appears in the Initiate Process dialog in the FileNet BAM Dashboard.

Status Whether or not the process is enabled (sending XML documents), or disabled
(not sending documents).

Web Service
URL

HTTP location of the application providing the RPC (SOAP binding) service. Note
that DOC style messages are not supported.

Method Method of the Web service to use.

Username (Optional) Account to use when connecting to the service.

Password (Optional) Password for the account.

FILENET BAM SERVER REFERENCE
Creating an External Process

314
Creating an External Process
Define an external process in the Administration Console of the FileNet BAM Workbench.

Before creating a Web services external process, you need:

• An already defined, external Web service method to receive the published method. You will need to
know the URL for connecting to the service, the name of the method that will receive the message, and
any user or account name and password required by the service. See Implementing the external
service for additional details.

• Create permission for external processes (see “Creating permission” on page 220 for details).

To create an external process

1. In the FileNet BAM Workbench, open Administration Console > External Processes list, and click New
Process.

2. Define the attributes for the process.

3. Save the process and it is immediately available to all users with access to it.

To use the process, in the FileNet BAM Dashboard, choose Take Action > Initiate Process and select the
process.

NOTE: To see and use a process from the FileNet BAM Dashboard, users will need Read permission for
that process. You can assign permissions for the new object by clicking Permissions in the External
Processes list, or an administrator can grant Read access to the class of external processes for the users.
See “Accessing permissions” on page 218 for details.

Implementing the external service
To implement the external Web service,

• define it to receive a SOAP binding message with the fields in the external action XSD, and

• create a WSDL (definition file) following FileNet Business Activity Monitor target and import
requirements.

Message fields

The XML message fields are defined in the invokeExternalAction.xsd definition file. Find this (and all XSD
files) in the /api/metadata directory on the product CD-ROM file. For more information about XML and XSD
files in FileNet Business Activity Monitor, see “XML/XSD” on page 317.

NOTE: You will also need the common.xsd located in the same directory.

Every message contains at least these fields:

• description — Description of the external process defined in the FileNet BAM Workbench

• actionName — Name of the external process defined in the FileNet BAM Workbench.

• severity — Severity either of the original alert message, or as chosen by the user that initiated the
message.

Other fields are included as necessary based on the object that the user was viewing in the FileNet BAM
Dashboard when they initiated the action, such as the subject of an alert message, or the row set of the
data in the view on which a chart was presenting. See the XSD file for details.

FILENET BAM SERVER REFERENCE
Implementing the external service

315
Web service WSDL

When implementing the Web service, define it to receive a SOAP message and with the following
attributes:

Attribute Value Comment

style rpc Do not use “document”.

target namespace (tns) http://www.celequest.com —

encoding (soap:body) encoded Do not use “literal”.

import namespace http://www.celequest.com/2 Defines FileNet Business Activity
Monitor data types. Alternatively, you
can define the types in the WSDL, but
that is beyond the scope of this
document.

import location Installation-specific Location of invokeExternalAction.xsd in
your installation.

FILENET BAM SERVER REFERENCE
Implementing the external service

316
Here's an example WSDL that handles the invokeExternalAction message on a machine and port named
host:80. Note that it imports the invokeExternalAction.xsd definition file.

<?xml version="1.0" encoding="utf-8" ?>

<definitions

xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"

xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"

xmlns:impl="http://www.celequest.com/2"

xmlns:tns="http://www.celequest.com"

targetNamespace="http://www.celequest.com"

xmlns="http://schemas.xmlsoap.org/wsdl/">

<import namespace="http://www.celequest.com/2"

location="/celequest/api/metadata/invokeExternalAction.xsd"/>

<message name="invokeExternalActionRequest">

<part name="request" element="impl:invokeExternalAction" />

</message>

<portType name="invokeExternalActionPortType">

<operation name="invokeExternalActionOperation">

<documentation>Receives a Celequest external action.

</documentation>

<input message="tns:invokeExternalActionRequest"/>

</operation>

</portType>

<binding name="invokeExternalActionBinding"

type="tns:invokeExternalActionPortType">

<soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="rpc" />

<operation name="invokeExternalActionOperation">

<soap:operation soapAction=""/>

<input>

<soap:body

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

namespace="http://www.celequest.com" use="encoded"/>

</input>

</operation>

</binding>

<service name="invokeExternalActionService">

<port name="invokeExternalActionService"

binding="tns:invokeExternalActionBinding">

<soap:address

location="http://host:80/axis/services/invokeExternalActionService"/>

</port>

</service>

</definitions>

FILENET BAM SERVER REFERENCE 317
XML/XSD

All FileNet Business Activity Monitor Objects and many system operations can be expressed in XML
format and uploaded into the system. The XML must be properly formatted as defined by XML schema
files (XSD). For a complete list of the objects define and operations you can perform, see “FileNet
Business Activity Monitor XSD files” on page 327.

NOTE: Details about XML and XSD are beyond the scope of this documentation. For information about
XML and XSD, see www.xml.org.

In this Chapter:

“About XML and XSD files in FileNet Business Activity Monitor” on page 318

“Uploading XML files” on page 319

“Defining an object with XML” on page 321

“Defining multiple objects with XML” on page 322

“Altering an existing object with XML” on page 324

“Issuing commands with XML” on page 325

“FileNet Business Activity Monitor XSD files” on page 327

FILENET BAM SERVER REFERENCE
About XML and XSD files in FileNet Business Activity Monitor

318
About XML and XSD files in FileNet Business Activity
Monitor
All XML files in FileNet Business Activity Monitor have schema files that define the structure of the XML.
The XSD files and sample XML files, are provided on the product CD-ROM.

/api/metadata XSD files

/samples/metadata Sample XML files

In addition to the samples, another way to see properly defined XML files is to first create objects in the
FileNet BAM Workbench or FileNet BAM Dashboard, and then use the Administration Console to export
the entire set. All exported objects are written as XML files to the export directory on the server. See
Importing/exporting metadata for more information about this procedure.

Dependencies

Most of the objects in the system depend on other objects. When you define a new object, all of its
dependences must be defined first. Do that by defining and uploading base objects in the order of
dependency, or by defining them in batch as described in “Defining multiple objects with XML” on
page 322.

White space

When an XML element value contains multiple, contiguous white space characters that must be retained,
direct the system to keep the spaces with xml:space="preserve". Otherwise, the XML specification says to
remove extra spaces. For example, without the preservation directive, this description would be trimmed of
the trailing spaces and would have only one space between the words:

<description xml:space="preserve">A note </description>

Escape characters

The characters “<” and “&” are illegal in XML. Some other characters are legal, but can cause confusion
when looking at them. For these characters, use these XML escape entities instead.

For example, when expressing a query that contains a less-than symbol, use < instead, like this:

<query>SELECT c1, c2 FROM event1 WHERE c3<=100 AND c2='CQST'</query>

Sequence Result

< < Less than

> > Greater than

& & Ampersand

' ' Apostrophe

" " Quotation mark

FILENET BAM SERVER REFERENCE
Uploading XML files

319
Character data

Instead of using escape characters, another way to express special characters is to use a CDATA tag. This
tag tells the parser to ignore all special characters and treat them as literals. For example:

<query><![CDATA[SELECT c1, c2 FROM event1

WHERE c3<=100 AND c2='CQST']]></query>

Uploading XML files
There are two ways to upload XML files into FileNet Business Activity Monitor:

• From a command line with the cqupload.jar utility.

• From a Web Browser with the fileupload.jsp script.

Both methods require that the FileNet Business Activity Monitor server be running. Also, each method
uses a FileNet Business Activity Monitor user account to log in to the server and perform the action. In
each case, the account must have create rights to the class of objects to create, or administration rights to
the operations to perform. See “Users” on page 282 for information about user accounts.

From a command line
From a command line use the cqupload.jar utility to upload files. You can find it on the product CD-ROM in
the /FileNet Business Activity Monitor/CQUpload/ directory.

This utility has three options:

For example, to upload an XML using the default system administrator account:

java -jar <CD-ROM>/FileNet Business Activity Monitor/CQUpload/cqupload.jar -s http://

<applicationServer>/filenet createUserSkyler.xml

To include a username or password:

java -jar cqupload.jar -u skyler -p roo -s ...

Option Description

-s applicationURL A URL that locates FileNet Business Activity Monitor

-u userName (Optional) User account to use. Omit this option to use the default system
administrator account.

-p password Password for the user account. Required if you include -u.

FILENET BAM SERVER REFERENCE
From a Web Browser

320
A successful operation occurs silently; however, if the operation fails, the utility returns an error message to
the command window. Review the error message to identify the problem. For example, this message
indicates an error in the XML:

Error uploading file: createUserSkyler.xml

--

java.io.IOException: Error parsing an XML document. Ensure that the

XML conforms exactly to the XML schema definition. The XML that

cannot be parsed is:

Further down the message you can find the actual cause: an invalid element:

Caused by:

javax.xml.bind.UnmarshalException: Unexpected element

{http://www.celequest.com/2}:nome

From a Web Browser
The fileupload.jsp script presents a form where you identify the XML file to upload. It includes a file picker
where you to identify the XML file to load, and displays a message with the results of the upload.

To upload from a Web browser:

1. Run the fileupload.jsp script. Use an address similar to the following URL. Use the localhost only if you
are running the browser on the same host as FileNet Business Activity Monitor servers; otherwise, use
the same location that you use to run the FileNet BAM Workbench.

http://localhost/filenet/jsp/fileupload.jsp

2. Identify the user name and password of the FileNet Business Activity Monitor account to use.

3. Identify the XML file to upload.

4. Choose Upload to perform the action.

The results page displays the name of the XML file uploaded and its result. If the Status is Failed, review
the exception to see what went wrong and correct the problem. For example, this message reveals that the
operation failed because the user object Rolf did not exist.

Exception Encountered

com.celequest.exception.VCException: Cannot alter the [User]

named [Rolf] because that object does not exist.

FILENET BAM SERVER REFERENCE
Defining an object with XML

321
Defining an object with XML
This discussion describes how to define and upload a single XML definition. To upload multiple XML files
— especially objects with dependencies — follow the instructions in the next section, “Defining multiple
objects with XML” on page 322.

To define an object with XML:

1. Create XML definition. Use the associated XSD file to determine the valid elements of the XML file.
See “Example: Create user” on page 321,” below, for an example of a complete XML file.

2. Ensure that FileNet Business Activity Monitor is running.

3. Upload the XML file.

Use either of the methods described in “Uploading XML files” on page 319. To upload the file from the
command line with the cqupload.jar utility:

java -jar <CD-ROM>/FileNet Business Activity Monitor/CQUpload/cqupload.jar -s http://

<applicationServer>/filenetbam createUserSkyler.xml

This completes the steps for creating a new object.

Example: Create user
<?xml version="1.0" encoding="UTF-8"?>

<createUser

xsi:schemaLocation="http://www.celequest.com/2

../../api/metadata/createUser.xsd"

xmlns="http://www.celequest.com/2 "

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

>

<name>Skyler</name>

<description xml:space="preserve">A power user</description>

<Password>roo</Password>

</createUser>

FILENET BAM SERVER REFERENCE
Defining multiple objects with XML

322
Defining multiple objects with XML
When defining multiple objects — especially objects with dependencies — use commandBatch.xsd: the
“batch mode” XML definition object. When you use the batch mode, include all of the XML in a single file,
and then upload that file. All of the operations must be valid or none of them are accepted. To define and
upload a single XML object, follow the instructions in “Defining an object with XML” on page 321.

To define multiple objects with XML:

1. Create an XML batch file. Use commandBatch.xsd as the definition. Within the file, nest each definition
within a <command> element, and place them all in a single <commands> element, in the order that
they objects must be defined.

NOTE: See “Example: Batch command” on page 323,” below for a listing that defines multiple, dependant
objects.

2. Ensure that FileNet Business Activity Monitor is running.

3. Upload the batch XML file. Use the cqupload.jar utility to upload the XML file the application server
running FileNet Business Activity Monitor. For example, to upload the example batch file:

java -jar <CD-ROM>/FileNet Business Activity Monitor/CQUpload/cqupload.jar -s http://

<applicationServer>/filenetbam commandBatchSkyler.xml

This completes the steps for defining multiple objects.

FILENET BAM SERVER REFERENCE
Example: Batch command

323
Example: Batch command
This batch command defines a user account, two delivery profiles for the user, a user preference, and
assigns one permission to the user.

<?xml version="1.0" encoding="UTF-8"?>

<commandBatch

xsi:schemaLocation="http://www.celequest.com/2

../../api/metadata/commandBatch.xsd"

xmlns="http://www.celequest.com/2"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

>

<commands>

<command>

<createUser>

<name>Skyler</name>

<description xml:space="preserve">A power user</description>

<Password>roo</Password>

</createUser>

</command>

<command>

<createUserProfile>

<name xml:space="preserve">Work e-mail</name>

<UserName>Skyler</UserName>

<isDefault>true</isDefault>

<EmailProfile><typeName/>

<emailAddress>skyler@celequest.com</emailAddress>

</EmailProfile>

</createUserProfile>

</command>

<command>

<createUserProfile>

<name xml:space="preserve">Second profile</name>

<UserName>Skyler</UserName>

<isDefault>false</isDefault>

<EmailProfile><typeName/>

<emailAddress>skyler@viewceler.com</emailAddress>

</EmailProfile>

</createUserProfile>

</command>

<command>

<setUserPreferences>

<userName>Skyler</userName>

<userPreference>

<operation>set</operation>

<name>polling_interval</name>

<value>5</value>

</userPreference>

</setUserPreferences>

</command>

<command>

<setPrivilege>

<operation>GRANT</operation>

FILENET BAM SERVER REFERENCE
Altering an existing object with XML

324
<privilegeTuple>

<objectType>VIEW</objectType>

<privilege>UPDATE</privilege>

<accessorType>USER</accessorType>

<accessorName>Skyler</accessorName>

</privilegeTuple>

<withGrant>false</withGrant>

</setPrivilege>

</command>

</commands>

</commandBatch>

Altering an existing object with XML
To alter an existing object’s definition, use the same XML and schema as when creating the object, but
include an <alterInformation> element to identify the alter operation. (The <alterInformation> element is
defined in common.xsd.) For example, this definition renames a view from OldName to NewName; note
that it uses the createView.xsd schema:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<createView xsi:schemaLocation="http://www.celequest.com/2

/api/metadata/createView.xsd"

xmlns="http://www.celequest.com/2" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

>

<alterInformation>

<previousName>OldName</previousName>

</alterInformation>

<name>newName</name>

<description>My test view</description>

<query>SELECT c1, c2 FROM event1 WHERE c3<=100</query>

</createView>

No matter what change you are implementing, you must use <previousName>. If you are not changing the
object’s name, use the same name for both <previousName> and <name> elements, like this:

...

<alterInformation>

<previousName>OldName</previousName>

</alterInformation>

<name>OldName</name>

<description>New description</description>

<query>SELECT c1, c2 FROM event1 WHERE c3<555</query>

...

By default, an alter operation fails if the existing object does not exist. However, you can force the object to
be created regardless of the existence of the existing object by including a <createIfNotFound> element,
like this:

...

<alterInformation>

<previousName>OldName</previousName>

<createIfNotFound>true</createIfNotFound>

</alterInformation>

...

FILENET BAM SERVER REFERENCE
Issuing commands with XML

325
Dependencies

When you alter an existing object all other objects that depend on the altered object are evaluated and
made “invalid” if their definition is broken as a result of the change. You will have to alter the invalid objects
and correct their definitions before they can be re-enabled.

Issuing commands with XML
Many system operations can be performed with XML commands. Here are some of the common
operations:

Following are two example operations.

Operation Schema

Enable an object enableObject.xsd

Disable an object disableObject.xsd

Drop (delete) an object dropObject.xsd

Set a system property setProperty.xsd

Import or export the system metadata performImportExport.xsd

Stop or restart the system systemCommand.xsd

Perform a “checkpoint” systemCommand.xsd

FILENET BAM SERVER REFERENCE
Example: Enabling an object and its dependencies

326
Example: Enabling an object and its dependencies
To enable an object and all of its dependencies, use the enableObject.xsd schema. You must identify the
name of the object and its object type. (The valid <type> values are defined in common.xsd by the
<VCEnableObjectType> element.)

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<enableObject xsi:schemaLocation="http://www.celequest.com/2

/api/metadata/enableObject.xsd"

xmlns="http://www.celequest.com/2" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

>

<name>MyView</name>

<type>VIEW</type>

<cascade>true</cascade>

</enableObject>

This example enables all dependent objects because <cascade> is set to true. Omit this element, or set it
to false to enable just the named object.

Example: Restarting the system
To shutdown and restart the FileNet Business Activity Monitor servers, use the <stop> element from the
systemCommand.xsd schema, and declare <restart> to be true (false stops without restart)

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<systemCommand xsi:schemaLocation="http://www.celequest.com/2

/api/metadata/systemCommand.xsd"

xmlns="http://www.celequest.com/2" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

>

<stop>

<restart>true</restart>

</stop>

</systemCommand>

FILENET BAM SERVER REFERENCE
FileNet Business Activity Monitor XSD files

327
FileNet Business Activity Monitor XSD files
These are FileNet Business Activity Monitor XML schema files, arranged by category:

• “Users, Profiles, and Roles” on page 327” (below)

• “Dashboard” on page 328

• “Rules, Alerts, and Reportlets” on page 328

• “Events, context, cubes, and views” on page 329

• “Scenarios and business activities” on page 330

• “Agents” on page 330

• “System administration” on page 330

• “Object management” on page 331

• “Miscellaneous files” on page 331

The files are located are located on the product CD-ROM in this directory: /api/metadata

Users, Profiles, and Roles

Schema Description

addMembersToRole.xsd Adds one or more existing users to an existing role.

addMemberToRole.xsd Adds an existing user to an existing role.

createRole.xsd Creates a user role object.

createSecurityFilter.xsd Creates an access filter

createUser.xsd Creates a user object.

createUserProfile.xsd Creates a user delivery profile object.

setPrivilege.xsd Sets a user’s or role’s permission on an object or class of
objects.

setUserPreferences.xsd Set a user’s preferences.

FILENET BAM SERVER REFERENCE
FileNet Business Activity Monitor XSD files

328
Dashboard

Schema Description

createBookmarks.xsd Creates a dashboard bookmark

createDashboard.xsd Creates a dashboard

createPlan.xsd Creates dashboard references and plans

createPortlet.xsd Creates a dashboard object

createTask.xsd Creates a dashboard task

createTaskMessage.xsd Creates a dashboard task message

Rules, Alerts, and Reportlets

Schema Description

alertCommon.xsd Common alert XSD definitions.

alertMessage.xsd Alert message to be delivered to a Web Service.

alterAlertState.xsd Alters the state of an existing alert.

alterRule.xsd Alters an existing rule object.

createAlert.xsd Creates an alert object.

createExcelTemplate.xsd Creates a Excel Template object that describes the template
that a reportlet might use.

createReportlet.xsd Creates a reportlet object.

createRule.xsd Creates a rule object.

createRuleBundle.xsd Specifies the values associated with parameters in a rule
template, and generates the rules, alerts and reportlets
based on the template definition.

createRuleTemplate.xsd Creates a template of parameterized definitions of a set of
rules, the alert used by the rules, and the reportlets
associated with the alert.

ruleCommon.xsd Contains common rule XSD definitions.

FILENET BAM SERVER REFERENCE
FileNet Business Activity Monitor XSD files

329
Events, context, cubes, and views

Schema Description

createConsolidatedEventView.xsd Creates a consolidated event view based on an
existing event stream and one or more additional
event streams or views.

createContext.xsd Creates a context object based on an existing
source.

createCube.xsd Creates a cube object.

createDimension.xsd Creates a cube dimension

createEventStream.xsd Creates an event (stream) object based on an
existing source.

createView.xsd Creates a view object based on an existing source
table (event stream) and other, optional (joined)
tables (event or context).

createViewPersistence.xsd Creates a view persistence definition.

ffsourceType.xsd A flat-file event object.

jdbcSource.xsd A JDBC context object.

messageSource.xsd A message object passed from an agent to an event
or context, used by JMS, TIBCO RV, log4j, and
HTTP.

queryCube.xsd Issues a query on a cube against measures in
dimensions.

queryInformation.xsd Contains the elements of a query (SELECT
statement).

sourceDefinition.xsd Source types (agent types) supported by the
system.

sourceDefinition.xsd Contains common source definitions for event and
context object XSD definitions.

tableDefinition.xsd Supports event source definition.

webServiceSource.xsd A Web Service event object.

FILENET BAM SERVER REFERENCE
FileNet Business Activity Monitor XSD files

330
Scenarios and business activities

Schema Description

createBusinessActivity.xsd Creates a business activity object.

createScenario.xsd Creates a scenario object in an existing business view and
linked to an existing view.

Agents

Schema Description

FFConnection.xsd A flat-file agent.

jdbcConnection.xsd A JDBC agent.

JMSTopicConnection.xsd A JMS agent.

log4jConnection.xsd A log4j messaging agent (used internally for logging).

procSource.xsd Stored procedure definitions.

RVConnection.xsd A TIBCO RV agent.

SOAPConnection.xsd A Web Service connection.

xmlBuffer.xsd An XML buffer, holds part of a message.

System administration

Schema Description

propertyTypeDefinition.xsd Describes a system property.

setLogLevel.xsd Sets the logging level is a system logger (logging
module).

setProperty.xsd Command to set a system property.

systemCommand.xsd Performs a checkpoint, shutdown, or restart.

FILENET BAM SERVER REFERENCE
FileNet Business Activity Monitor XSD files

331
Object management

Schema Description

createKeyRelationship.xsd Creates a relationship between two objects.

disableObject.xsd Disables an object.

dropObject.xsd Deletes an object

enableObject.xsd Enables an object.

setObjectRelation.xsd Relates two objects.

Miscellaneous files

Schema Description

commandBatch.xsd Defines multiple objects to be loaded (defined) in batch.
All definitions must be valid or no objects are defined.

common.xsd Contains common XSD definitions used by most XSD
schemas.

createJar.xsd Creates a JAR object.

createUDF.xsd Creates a UDF object.

invokeExternalAction.xsd Describes an external action message sent to a Web
service. For more information about this file, see “Web
service external processes” on page 313.

jarManifest.xsd Defines the manifest in a JAR.

performImportExport.xsd Command to the system to perform an import or export

schedule.xsd Contains common schedule and schedule interval
definitions used by XSD definitions.

FILENET BAM SERVER REFERENCE 332
Glossary

business data modeling

A technique for describing the events, context, views, and rules that depict how your business functions.

cascade

A operation that propagates the exact same operation to all dependant objects.

consolidated event

An event table that captures events from different, but similar event sources and combines them into a
single event stream. See Working with consolidated events for details.

current view

A snapshot of the data currently in a view. For a stateful view, the snapshot shows all rows in the view. For a
stateless view, it shows all the rows corresponding to the last event, and might be an empty set. See “View
initialization” on page 299 for details.

delivery profile

Specifies where and how to deliver alerts and data feeds to the user. See “Delivery Profiles tab” on page 284
for details.

enabled

An object that is accepting new data and is processing them. All objects are created enabled. See “Object
status” on page 207 for details.

disabled

An object that is not accepting new data. Disabling an object does not affect the definition or existence of
that object; rather, it just keeps new data from flowing into the object and to all objects that rely on the
target object. See “Object status” on page 207 for details.

inner join

A join where the rows in the resulting view are the rows from the first table or view that meet the specified
criteria, combined with the corresponding rows from the second view that meet the specified criteria. Inner
joins are sometimes called equi-joins.

invalid

An object that has a reference to another object which cannot be satisfied. A reference can be invalid
because an object does not exist or because some attribute of an object does not match the requirements
of the dependent (such as a data type mismatch), not because the dependent is disabled. Note that all
objects that depend on an invalid object are also invalid. See “Object status” on page 207 for details.

invalid and disabled

An object that is both disabled and invalid; it cannot receive data and it has no state. See “Object status” on
page 207 for details.

FILENET BAM SERVER REFERENCE 333
metrics

Measurements taken over time that monitor, assess, and communicate vital information about the results of
a program or activity. See Understanding active reports for details.

moving set function

A function that performs calculations on a set of the latest rows in a view. The set of rows to include is
determined only when a new event arrives. For more information, see “Moving set” on page 91.

outer join

A join where the rows in the result table are the rows that would have resulted from an inner join and the
rows from the first table (LEFT OUTER JOIN) or the second table (RIGHT OUTER JOIN) that had no matches in
the other table.

query window

Specifies a set of rows that are used in calculations with respect to the current row (event) under
examination. The calculation may be for computing a moving set function, a join, or expiring rows from a
view. See “Query Windows” on page 228 for details.

rank function

A function that computes the scalar result for each value in a set, with respect to the entire set. A rank
function may only be used in the selection list of a SELECT statement. For more information, see “Rank” on
page 91.

recent view

A snapshot of the last non-empty current view. A recent view is what appears in the FileNet BAM Workbench
when editing an object that displays view results. See “View initialization” on page 299 for details.

scenarios

Test business data models for expected or possible outcomes, and to identify exceptional business
conditions. See “Scenarios” on page 261 for detailed information.

scalar expression

An expression without a set function.

scalar function

A function operates within the bounds of a single event and provides a single result for each row, such as
the absolute value of a number or concatenation of two strings. These functions may appear in any C-SQL
expression. For more information, see “Scalar” on page 90.

set function

A function performs calculations on a column in a set of rows in a view, such as the average value of the
cost of some similar product orders. A set function may only be used in the selection list of a SELECT
statement. For more information, see “Set” on page 91.

snapshot view

FILENET BAM SERVER REFERENCE 334
A view that is a replica of a view at the time the query executed; constructed with SELECT *. Note that the
view might not reflect those events which have arrived in the system but which have not yet been
processed at the time of the query.

stateful view

A view that contains the results of aggregations derived from past events in a single row. A view is stateful if
it contains an set function or moving set function in the SELECT clause, or contains a GROUP BY clause (in
which case there is one row for each group), or is derived from a stateful view. See “Stateless and stateful
views” on page 298 for details.

stateless view

A view that is not a stateful view. See “Stateless and stateful views” on page 298 for details.

terminal set function

a set function that has only scalar arguments.

terminal rank function

A rank function that has only scalar arguments.

tumbling set function

A function that performs calculations on a windowed set of the rows in a view. The set of rows to include is
determined when a new event arrives, and the set empties when full. For more information, see “Tumbling
Windows” on page 242.

user-defined functions

(UDFs) provide a mechanism for extending C-SQL by defining and your own functions for use in formulas,
including queries, field expressions, and rules. See “User-Defined Functions” on page 288 for detailed
information.

virtual table

A table or view where the rows are derived as they are required in memory.

window

See query window.

FILENET BAM SERVER REFERENCE 335
Index
A
ABS() 98
absolute value 98
access filters 17

assigning 23
behavior 20
condition 18
cubes, creating on 22
restrictions 20
user context 19
views, creating on 21

access permissions 218
acknowledged alerts 34
Activity Dashboard

alerts polling 286
addition, decimal results 56
addMembersToRole.xsd file 327
addMemberToRole.xsd file 327
administrator, see system user 282
AgentProperties.xml file 80
agents 25

altering 27
creating 26
editing 27
flat file 78
JDBC 187
JMS 176
Rendezvous 280
TIBCO Rendezvous 280
Web service 312
XSD file 330

aggregate views 297
aggregation functions 94
alert functions 92
alert states, testing for raised 115
alertCommon.xsd file 328
alertMessage.xsd file 328
alerts 28

acknowledged 34
escalation 34
fired 34
graphics, embedded 31
HTML, embedded 31
importance 30
mandatory subscriptions 32
message text 31
messages, consolidated 35
monitoring with rules 259
optional subscriptions 32

permissions for 222
raised 34
reportlets 35
stateful 34
stateless 34
subscribers 32
updating list of received 286
XSD file 328

aliases in dimensions 66
Allow Short Rows, delimited files option 83
alterAlert.xsd file 328
<alterInformation> element 324
alterRule.xsd file 328
AND operator 215
ANSI SQL-99 264
appending string lists 104
appending strings 103, 105
application interface, JDBC API 191
archiving view data 301
AS option 265
average 95, 99

MACD moving average example 99
moving 130
tumbling 154

AVG() 99

B
BETWEEN operator 214
bookmarks

XSD file 328
Boolean

data types 64
functions 92
truth tables 64

business activities 40
attributes 41
creating 41
deleting 41
XSD file 330

business views 291

C
caching context query results 47
cartesian product 268
cascade operation 332
CASE expression 266
CAST() 101
casting data types 53

numeric to string 55

FILENET BAM SERVER REFERENCE 336
numeric types 55
CDATA 319
CEIL() 102
celequestAPI.jar file 289
CHAR_LENGTH() 102
CHARACTER_LENGTH() 102
characters

length of a string 102
lowercase conversion 118
uppercase conversion 162

checkpoint
XSD file 330

column references 265
naming in selection 265

columns, value of previous row 141
combining numeric types 55
comma separated value 83
commandBatch.xsd file 322, 331
commit 264
common.xsd file 331
comparison operators 214
CONCAT() 103
concatenating strings 103

lists 104
sets 105

concatList() 104
concatSet() 105
ConcatSet() sample UDF 288
Connection interface 192
connection pool 189
consolidated alert messages 35
consolidated events 296

XSD file 329
constants 215
constraints on views 267, 294
context 42

creating 44
editing 45
how it works 43
limitations in queries 45
query caching 47
query limitations 45
tables, name 44
Web services 306
XSD file 329

converting data types 53
count star function 106

tumbling window set 155
count star function, moving set 131
COUNT() 106
country codes 111
cqjdbcclient.jar driver 191

cqupload.jar utility 319, 321
Create permission 220
createAlert.xsd file 328
createBookmarks.xsd file 328
createBusinessActivity.xsd file 330
createConsolidatedEventView.xsd file 329
createContext.xsd file 329
createCube.xsd file 329
createDashboard.xsd file 328
createDimension.xsd file 329
createEventStream.xsd file 329
createExcelTemplate.xsd file 328
<createIfNotFound> element 324
createJar.xsd file 331
createKeyRelationship.xsd file 331
createPlan.xsd file 328
createPortlet.xsd file 328
createReportlet.xsd file 328
createRole.xsd file 327
createRule.xsd file 328
createRuleBundle.xsd file 328
createRuleTemplate.xsd file 328
createScenario.xsd file 330
createSecurityFilter.xsd file 327
createTask.xsd file 328
createTaskMessage.xsd file 328
createUDF file 331
createUser.xsd file 327
createUserProfile.xsd file 327
createView.xsd file 329
createViewPersistence.xsd file 329
cross joins 268
CSV 83
cubes 48

creating 51
XSD file 329

cumulative distribution function 113
currency, displaying money 110
current date and time 107
current view snapshot 299
CURRENT() 106
CURRENT_TIMESTAMP() 107
CURRENT_USER() 108
C-SQL

data types 52
functions 95

D
dashboard objects

XSD file 328
Dashboard Profile

delivery profile 284

FILENET BAM SERVER REFERENCE 337
dashboards
XSD files 328

data flow
context entering the system 43
events entering the system 70

data from external sources 70
data types 52

Boolean 64
casting 53
casting order of precedence 53
converting to other types 53
date-time 58, 59
DECIMAL 54
DECIMAL, casting to string 55
DOUBLE 54
DOUBLE, casting to string 55
INTEGER 54
Java int data type values 196
JDBC 187

numeric 54
JMS 176
numeric 54
Rendezvous 278
string 57
TIBCO Rendezvous 278
VARCHAR 57

DATA_TYPE column, values 196
DatabaseMetaData JDBC interface 193
Data-Driven Subscription tab 32
date functions 92
DATE_ADD() 108
DATE_DIFF() 109
date-time data types 58

adding a duration 108
comparisons 59
converting between strings 58
current 107
formatting 62
interval between two 150
last day of a month 116
locale 58
strings, converting to 151
subtracting a duration 109
time-zone 58

date-time intervals 60
day-time intervals 61
DB2

JDBC agent to 188
DECIMAL data type 54

casting to string 55
decimals 56

precision and scale results 56

removing from a number 153
truncating 102

delimited
file format 83
identifiers (object names) 208

delivery profiles 284
Dashboard Profile 284
e-mail 284
RTD 285
Web service 285

derived column 265
dimensions 65

alias names 66
creating 69
examples of 65
hierarchy of levels 66
key columns 67
XSD file 329

disabled state 207
disableObject.xsd file 331
disabling objects 207
DISPLAY_MONEY() 110
division

decimal results 56
remainder 123

doc (WSDL) format 307
DOUBLE data type 54

casting to string 55
Driver JDBC interface 192
dropObject.xsd file 331

E
e constant 112
e-mail

delivery profile 284
importance of alert messages 30

enabled objects 207
enabled state 207
enableObject.xsd file 331
equi-joins 268
Erlang distribution 113
esape characters in XML 318
Escape character (delimited files) 83
event identifier 302
Event Key field 77
event timestamp 302
events 70

consolidated events 296
creating 72
editing 72
how it works 70
HTTP Post 164

FILENET BAM SERVER REFERENCE 338
multiple-row events 77
order of processing 70
propagating to views 298
properties 71
table name 71, 304
TIBCO Rendezvous source 274
URLS, data embedded in 168
Web service 304
XSD file 329

EVENTS clause 232
event-series windows 232
eventstream.wsdl file 305
examples

JDBC 198
EXP() 112
explicit casting of data types 53
exponential distribution 113
exponents 112
export

XSD file 331
external process 313

XML format 314
external sources 70

F
FALSE constant 64
FFConnection.xsd file 330
ffsourceType.xsd file 329
fields, replacement in context query 311
FileAgent.xml file 81
files

agent program 79
agents 78
delimited format 83
event tables 74
event tables, creating 76
fixed-width format 84
flat text files 73
XML samples 318
XML schema files (XSD) 327

fileupload.jsp script 320
Filtered / Read only permission 23
filters

access filters 17
fired alerts 34
fixed-width, file format 84
flat file 73

agent program 79
agents 78
event tables 76
events 74
multi-row events 77

FLOOR() 113
for a specific clause 259
formulas 89
FROM clause 267
functions

ABS() 98
AVG() 99
CAST() 101
categories 92
CEIL() 102
CHAR_LENGTH() 102
CHARACTER_LENGTH() 102
CONCAT() 103
concatList() 104
concatSet() 105
count star 106
count star, moving set 131
count star, tumbling window set 155
COUNT() 106
CURRENT() 106
CURRENT_TIMESTAMP() 107
DATE_ADD() 108
DATE_DIFF() 109
descriptions 95
DISPLAY_MONEY() 110
EXP() 112
FLOOR() 113
formulas, usages in 90
gammaDist() 113
GREATEST() 114
IS_RAISED() 115
LAST_DAY() 116
LEAST() 116
list of all 95
LOG() 117
logNormDist() 118
LOWER() 118
LPAD() 119
LTRIM() 120
MAX() 121
median() 122
MIN() 123
MOD() 123
mode() 125
MOV_AVG() 130
MOV_COUNT() 131
MOV_MAX() 132
MOV_MIN() 133
MOV_STD_DEVIATION() 135
MOV_SUM() 134
MOV_VARIANCE() 136
moving set 91

FILENET BAM SERVER REFERENCE 339
NTILE() 137
POSITION() 138
POWER() 139
PREV() 140
PRIOR_VALUE 141
rank 91
RANK() 142
RATIO_TO_REPORT() 143
reference 95
ROUND() 144
RPAD() 144
RTRIM() 145
set 91
SIGN() 146
SQRT() 146
STD_DEVIATION() 149
SUBSTR() 147
SUBSTRING() 147
SUM() 148
TIMESTAMP_DIFF() 150
TO_CHAR() 151
TO_DATE() 152
TRUNC() 153
tumble 243
TUMBLE_AVG() 154
TUMBLE_COUNT() 155
TUMBLE_MAX() 156
TUMBLE_MIN() 157
TUMBLE_STD_DEVIATION() 159
TUMBLE_SUM() 158
TUMBLE_VARIANCE() 160
tumbling set 92
types of 90
UPPER() 162
VARIANCE() 163

G
gamma distribution 113
gammaDist() 113
grant permissions 221
graphics in alerts 31
GREATEST() 114
GROUP BY clause

implicit 272
moving sets, interacting with 129
stateful views 272

H
HAVING clause 269
hierarchy of dimension levels 66
Holds for attribute, rules 257
HTML

code in alerts 31
forms (event posting) 168

HTTP Post event 164
event tables 165
posting data to 168
tables, creating 166
URL 168

I
identifiers 208
implicit casting of data types 53
import

XSD file 331
importance 30
IN operator 214
Individual Subscription tab 32
INITIALIZE clause 246
in-line

query windows 230
views 269

inner joins 268
INT() function, MS Excel 113
INTEGER data type 54
integer time-series query windows 237
interfaces (API) 192
INTERVAL data type

literal 60
intervals

date-time 60
day-time 61
year-month 60

invalid
objects 207
state 207

invokeExternalAction.xsd 314
IS operator 215
IS_RAISED() 115

J
JAR

manifest, XSD file 331
XSD file 331

jarManifest.xsd file 331
Java

data type values 196
date-time data type 59
numeric data type 54
SimpleDateFormat class 62
string data type 57

Java Database Connectivity
See JDBC

Java Messaging Service

FILENET BAM SERVER REFERENCE 340
JDBC 179
agents 187
API 191
context tables 180
data types 187
date-time 59
event tables 180
interface examples 198
interfaces 192
polling 184

JDBC data types
date-time 59
numeric 54
string 57

jdbcConnection.xsd file 330
jdbcSource.xsd file 329
JMS

agents 176
data types 176
event tables, creating 174
events 172
MapMessage body type 172

JMSTopicConnection.xsd file 330
joins

cross, declaring 268
inner 268
nested 268
outer 268
synchronized 294

K
key columns

dimensions 67

L
language codes 111
largest value of a set 114
LAST_DAY() 116
latest row in a set 106
leap second 109
leap year 109
LEAST() 116
LIKE operator 214
limitations of views 267, 294
literals

INTERVAL 60
TIMESTAMP 59

locale 58
LOG() 117
log4jConnection.xsd file 330
logarithm 117
logging

XSD file 330
logical functions 92
logical truth tables 64
loging name

returning 108
lognormal distribution 118
logNormDist() 118
LOWER() 118
lowercase conversion 118
LPAD() 119
LTRIM() 120

M
MACD 99
maintaining events in stateless views 300
mandatory subscriptions 32
manifest files, user-defined functions 290
MapMessage JMS body type 172
math functions 93
MAX() 121
mean average 95, 99

moving 130
tumbling 154

measures 48
median() 122
message text, alerts 31
messageSource.xsd file 329
metrics, in real-time 297
MIN() 123
mixing numeric types 55
MOD() 123
mode() 125
modulus function 123
money, displaying currency 110
months, last day of 116
MOV_AVG() 130
MOV_COUNT() 131
MOV_MAX() 132
MOV_MIN() 133
MOV_STD_DEVIATION() 135
MOV_SUM() 134
MOV_VARIANCE() 136
moving averages, MACD example 99
moving sets 126

See also sets
functions 91
GROUP BY, interacting with 129

moving windows of stateless view 300
multiple row events 77
multiplication, decimal results 56

FILENET BAM SERVER REFERENCE 341
N
name

event 71, 304
names, restrictions on 208
namespace 211
nested joins 268
"No Data Available" in rule definition 29, 256
No Access permission 218
NOT operator 215
NTILE() 137
NULL

constant, testing for 215
value semantics 64

number sign 146
numbers

rounding 102
rounding down 113
rounding up 144
truncating 153

numeric
casting 55
combining 55
data types 54
decimal precision results 56
operators 213

O
objects 206

altering 207
altering with XML 324
defining with XML 321
disabling 207
enabling 207
invalidating 207
management XSD files 331
name restrictions 208
name uniqueness constraints 211
relationship, XSD file 331
status 207

operators 212
optional subscriptions 32
OR operator 215
Oracle

date-time data type 59
dstring data type 57
JDBC agent to 188
numeric data type 54

ORDER BY (query window) clause 235
ORDER BY (SELECT) clause 272
outer joins 268

P
PARTITION BY clause 238
partitions 238
performImportExport.xsd file 331
permissions 216

access 218
Create 220
dependencies 222
Filtered / Read only permission 23
grant 221
inheritance 222
No Access permission 218
Read-Only permission 218
Read-Write permission 218
restrictions 221
setting 286

persisting view data 301
plans

XSD file 328
pool, connection 189
POSITION() 138
POWER() 139
precision and scale, declaring 56
PREV() 140
previous row in a set 140
PRIOR_VALUE functions 141
probability mass function 113
process order of events 70
processes 223
procSource.xsd file 330
profiles 284
properties

XSD file 330
propertyTypeDefinition.xsd file 330

Q
qualified column reference 265
query windows 228

advancement 241
declarations 230
event-series windows 232
frames 229
initialization 246
in-line declarations 230
integer time-series 237
partitions 238
reference, update 245
references 230
sliding 241
time-series windows 233
tumbling 242
update references 245

FILENET BAM SERVER REFERENCE 342
queryCube.xsd file 329
queryInformation.xsd files 329

R
raised alerts 34
RANGE clause 234
rank functions 91
rank values

as a ration to the set 143
by percentage of set 143
into tiers 137
within the entire set 142

RANK() 142
ranking functions 93
RATIO_TO_REPORT() 143
Read-Only permission 218
Read-Write permission 218
real-time metrics 297
recent view snapshot 299
recovery file for event data 71, 305
REFERENCE clause 245
references

XSD file 328
regular identifiers 208
Relative XPath 85
remainder of a division 123
Rendezvous, See TIBCO Rendezvous
replacement fields 311
reporting on view data 301
Reportlet data based on option 38
reportlets 247

access filters, interaction with 20
alerts, attached to 35
creating 248
external attributes 250
FileNet BAM attributes 249
filtering 36
permissions for 222
XSD file 328

reserved words 208
restart

XSD file 330
restart using XML 326
ResultSet JDBC interface 193
ResultSetMetaData JDBC interface 194
roles 252

access filters, with 23
attributes 254
creating 254

ROUND() 144
rounding numbers

ceiling 102

down 113
up 144

rows
current 106
latest 106
previous 140

RPAD() 144
RPC style messages 312
RPC, WSDL 307
RTD delivery profile 285
RTRIM() 145
ruleCommon.xsd file 328
rules 255

access filters, interaction with 20
action 258
alerts, monitoring 259
for a specific clause 259
functions 93
Holds for attribute 257
permissions for 222
XSD file 328

RV, See TIBCO Rendezvous
RVConnection.xsd file 330

S
samples

ConcatSet() UDF 288
XML objects 318

SAP 303
Save as New Alert option 29
Save as New Rule option 256
Save as New View option 292
scalar expression 333
scalar function 333
scenarios 261

attributes 262
creating 262
deleting 263
permissions for 222
XSD file 330

schedule.xsd file 331
schedules

XSD file 331
Schema XPath 85
See JMS
SELECT command 264

FROM clause 267
ORDER BY clause 272
select list 265
WHERE clause 270

select list 265
Separator character 83

FILENET BAM SERVER REFERENCE 343
set functions 91
setLogLevel.xsd file 330
setObjectRelation.xsd file 331
setPrivilege.xsd file 327
setProperty.xsd file 330
sets

See also moving sets
current row 106
latest row 106
previous row 140

setUserPreferences.xsd file 327
shutdown

XSD file 330
shutdown using XML 326
Siebel 303
sign of a number 146
SIGN() 146
simple column reference 265
Simple Object Access Protocol 306
SimpleDateFormat, Java class 62
SLIDE clause 241, 242
sliding window

See moving sets
snapshot view 333
SOAP 306
SOAPConnection.xsd file 330
sourceDefinition.xsd file 329
sources of external data 70
space characters in XML files 318
SQL-99 264
SQLException 192
SQL-Server

date-time data type 59
JDBC agent to 188
numeric data type 54
string data type 57

SQRT() 146
square root 146
standard deviation 149

moving window set 135
tumbling window set 159

stateful
alerts 34
views 298
views and GROUP BY 272

stateless
alerts 34
maintaining more than one event 300
views 298

Statement JDBC interface 192
statistical functions 93

AVG() 99

median() 122
mode() 125

status 207
STD_DEVIATION() 149
string replacement templates (Web Service) 311
strings

appending characters 144
appending lists of 104
appending to 103
appending to a set 105
concatenating 103
concatenating a list 104
concatenating a set 105
converting to non-string data types 58
data types 57
dates, converting to 152
functions 94
inserting characters 119
length, determining 102
lowercase conversion 118
operators 213
padding, left 119
removing characters 120
removing characters from right 145
search for a character in a 138
substring 147
uppercase conversion 162
width declaration 57

subscribers 32
subscriptions

mandatory 32
optional 32

SUBSTR() 147
SUBSTRING() 147
subtraction, decimal results 56
SUM() 148
superuser 282
Sybase

JDBC agent to 188
limitations 46

synchronized joins 294
system

administraction, XSD files 330
property, XSD file 330
restart using XML 326
shutdown using XML 326
user 282

systemCommand.xsd file 330

T
table names

events 71, 304

FILENET BAM SERVER REFERENCE 344
tableDefinition.xsd file 329
tables

expressions 269
names, context 44
virtual 334
virtual, declaring 264

tasks
message XSD file 328
XSD file 328

text
files 73
functions 94

Text qualifier 83
TIBCO Rendezvous 273

agents 280
data types 176, 278
event table, prerequisites 274
event tables 274
event tables, creating 276
limitations 274

time
current date-time 107
functions 92
See date-time data types

time-series
aggregations, functions for 94
aggregations, spans 128
See moving set functions
windows 233
windows, integer based 237

TIMESTAMP data type
formatting 62
interval between two 150
literal 59

TIMESTAMP_DIFF() 150
time-zone 58
to a set 105
TO_CHAR() 151
TO_DATE() 152
total

moving 134
set, of a 148
tumbling 158

transaction 264
TRUE constant 64
TRUNC() 153
truth tables 64
tumble functions 243
TUMBLE_AVG() 154
TUMBLE_COUNT() 155
TUMBLE_MAX() 156
TUMBLE_MIN() 157

TUMBLE_STD_DEVIATION() 159
TUMBLE_SUM() 158
TUMBLE_VARIANCE() 160
tumbling

set functions 92
windows 242

U
UDFs, See user-defined functions
Unicode, character length 102
UNKNOWN constant 64
upload utility 319, 321
UPPER() 162
uppercase conversion 162
user name, returning 108
user-defined functions 288

altering 289
creating 288
manifest file 290
restrictions 288
XSD file 331

users 282
access filters, with 23
attributes 283
context, as 19
creating 282
delivery profiles 284
details 283
profiles 284
system user 282

V
valid state 207
VARCHAR data type 57

width declaration 57
VARIANCE() 163
VC_<string> reserved names 208
VC_EVENT_ID column 302
VC_LATEST_EVENT_ID column 302
VC_TIMESTAMP column 302
view expansion 272
view merging 272
views 291

access filtered, derived from 20
access, limiting 17
aggregation 297
API 191
archiving, see persisting views
attributes 293
consolidated events 296
constraints 267, 294
creating 292

FILENET BAM SERVER REFERENCE 345
current snapshot 299
derived from GROUP BY views 272
filtered access 17
functions specific to 94
initialization 299
in-line views 269
limitations 267, 294
persisting to database 301
recent snapshot 299
restricted access 17
retaining events in stateless views 300
stateful 298
stateful when using GROUP BY 272
stateless 298
table name, context 44
tables 71, 304
updating for new events 298
workset 293
XSD file 329

virtual tables 334
declaring 264

W
Web services 303

agents 312
context 306
context, creating 308
delivery profile 285
events 304
external process 313
external process, XML format 314

WebServicesAlert.xsd file 285
webServiceSource.xsd file 329
WHERE clause 270
white space in XML files 318
WINDOW clause 230
windows

stateless view, of 300
See also moving sets
See query windows

workset 293
WSDL

doc format 307
RPC format 307

X
XML 317

altering an object with 324
CDATA 319
character literals 319
defining an object with 321
escape characters 318

example files 318
sample files 318
schema files 327
souce files (flat-file agent) 85
upload errors 320
uploading files 319
white space in files 318
XSD files 327

XML format
external Web service process 314

xmlBuffer.xsd file 330
XPaths 85

relative 85
schema 85

XSD
data types (flat-file agent) 86
files 327
See also XML

Y
year-month intervals 60

	Contents
	Introduction
	Access Filters
	Access filter conditions
	Access filter behavior and restrictions
	Creating a view access filter
	Creating a cube access filter
	Assigning an access filter to users and roles

	Agents
	Creating agents
	Editing agents

	Alerts
	Creating alerts
	Alert attributes
	Message subject and body text
	Alert subscribers
	Managing alert notification messages
	Alert states
	Alert escalation

	Consolidating multiple messages
	Alert reportlets
	Reportlet filtering

	Business Activities
	Creating business activities
	Business activity attributes
	Deleting business activities

	Context
	How it works
	Creating context tables
	Editing context tables
	Context column limitations in queries
	Caching context queries

	Cubes
	Creating cubes

	Data Types
	Data type conversion
	Numeric
	Third party data types
	Combining numeric types
	Casting numeric types
	Decimal precision results

	String
	Date-Time
	TIMESTAMP literal
	INTERVAL literal
	Date-Time formatting

	Boolean

	Dimensions
	Creating dimensions

	Events
	Event properties
	Creating event tables
	Editing event tables

	Flat Files
	How it works
	Flat file event tables
	Creating a flat-file source event
	Multi-Row events

	Flat file agents
	Creating a flat file agent
	Configuring the file agent program

	Delimited files
	Fixed-Width files
	XML files
	XML field information
	XML data types

	Formulas
	Functions
	Function types
	Function categories

	Functions
	ABS
	AVG
	CAST
	CEIL
	CHARACTER_LENGTH
	CONCAT
	concatList
	concatSet
	COUNT
	CURRENT
	CURRENT_TIMESTAMP
	CURRENT_USER
	DATE_ADD
	DATE_DIFF
	DISPLAY_MONEY
	EXP
	FLOOR
	gammaDist
	GREATEST
	IS_RAISED
	LAST_DAY
	LEAST
	LOG
	logNormDist
	LOWER
	LPAD
	LTRIM
	MAX
	median
	MIN
	MOD
	mode
	MOV_function
	Time-series spans
	View warning
	Interacting with GROUP BY

	MOV_AVG
	MOV_COUNT
	MOV_MAX
	MOV_MIN
	MOV_SUM
	MOV_STD_DEVIATION
	MOV_VARIANCE
	NTILE
	POSITION
	POWER
	PREV
	PRIOR_VALUE
	RANK
	RATIO_TO_REPORT
	ROUND
	RPAD
	RTRIM
	SIGN
	SQRT
	SUBSTRING
	SUM
	STD_DEVIATION
	TIMESTAMP_DIFF
	TO_CHAR
	TO_DATE
	TRUNC
	TUMBLE_AVG
	TUMBLE_COUNT
	TUMBLE_MAX
	TUMBLE_MIN
	TUMBLE_SUM
	TUMBLE_STD_DEVIATION
	TUMBLE_VARIANCE
	UPPER
	VARIANCE

	HTTP Post
	How it works
	HTTP Post Event Tables
	Creating an HTTP Post event table
	HTTP Post column information

	Posting to an HTTP post event
	Posting to message fields
	Posting values in the URL
	Multiple lines (events) of input

	Java Messaging Service (JMS)
	How it works
	JMS event
	Creating a JMS event table
	JMS column information
	Mapping JMS data types

	JMS agents
	JNDI properties for connecting to a remote namespace
	Creating a JMS Agent

	JDBC
	JDBC tables
	Creating a JDBC source event or context table
	Query source
	Polling the JDBC source
	Stored procedure source
	Mapping JDBC data types

	JDBC agents
	Creating a JDBC agent

	JDBC Access to View Data
	JDBC view interfaces
	JDBC accessor examples
	Example: Establishing a connection to the FileNet BAM Server
	Example: Querying the contents of a view
	Example: Querying a view’s column specifications
	Example: Querying Column Metadata
	Example: Querying View Metadata

	Objects
	Object status
	Object names
	Object namespace

	Operators and Constants
	Numeric operators
	String operators
	Comparison operators
	Logical operators
	Constants

	Permissions
	Application of permissions
	Accessing permissions
	Class level access permissions

	Creating permission
	Granting permissions
	Permission restrictions
	Permission inheritance and dependencies

	Processes
	How it works
	Creating and using processes
	Event streams
	Context search table
	Process definitions
	Process Diagrams

	Query Windows
	Overview
	Window declarations and references
	Multiple windows per query
	Extending one window definition with another

	Event-Series windows
	EVENTS clause

	Time-Series windows
	RANGE clause
	ORDER BY Clause
	Integer Time-Series

	Window partitions
	Advantage of partitions over groups
	Historical results from partitioned views

	Window advancement
	SLIDE clause
	Tumbling Windows
	Tumble Functions
	Tumbling and moving windows using window inheritance

	Window update reference
	Window Initialization
	INITIALIZE clause

	Reportlets
	Creating reportlets
	Reportlet attributes
	External reportlet attributes
	Reportlet views

	Roles
	Creating roles
	Role attributes

	Rules
	Creating rules
	Rule attributes
	Rule condition
	Rule action
	Monitoring alerts
	Monitoring the system log

	Scenarios
	Creating scenarios
	Scenario attributes
	Deleting scenarios

	SELECT
	Select list
	FROM clause
	Join operations
	Table expressions

	WHERE clause
	GROUP BY clause
	ORDER BY clause

	TIBCO Rendezvous
	TIBCO Rendezvous tables
	Creating a TIBCO Rendezvous event table
	TIBCO column information
	Mapping TIBCO Rendezvous Data types

	TIBCO Rendezvous agents
	Creating a TIBCO Rendezvous Agent

	Users
	User Details tab
	Delivery Profiles tab
	User Preferences tab
	User Permissions tab

	User-Defined Functions
	Creating and using a UDF
	Manifest files

	Views
	Creating views
	Copying a view

	View attributes
	View constraints
	Synchronized joins
	Consolidated events
	Aggregate views
	Updating views through event propagation
	Stateless and stateful views
	View initialization
	Maintaining events in stateless views
	Persisting views to a database

	Web services
	Web service events
	Creating a Web Service Event

	Web service context
	Creating a Web Service Context Table
	Output columns
	Input columns
	String replacement templates

	Web service agents
	Creating a web service agent

	Web service external processes
	Creating an External Process
	Implementing the external service

	XML/XSD
	About XML and XSD files in FileNet Business Activity Monitor
	Uploading XML files
	From a command line
	From a Web Browser

	Defining an object with XML
	Example: Create user

	Defining multiple objects with XML
	Example: Batch command

	Altering an existing object with XML
	Issuing commands with XML
	Example: Enabling an object and its dependencies
	Example: Restarting the system

	FileNet Business Activity Monitor XSD files

	Glossary
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

