Cloudscape - Support (Tech Info) Page 1 of 13

;r);f‘
Cloudscape

[||
]

g
T
-|||I
L
@

Praducts | Partners | Support | News | About Us | Site Map I—

[

Creating a Query Tool

Table Of Contents

Table Of Contents
Introduction
Quick Start

Setting up The Environment
Installing the Query Tool

Getting Down to Business: Using Cloudscape with Enhydra
Setting Up the Environment

Creating the Application
Query_Tool.html
SubmitQuery.jsp
Section 1: Collecting Parameters
Section 2: Submitting the Query
Section 3: Display the Results
DemoConnect.java
Register and Start Your Application

Summary
Resource Links (A list of the links referenced in this paper)

Introduction

This paper describes how to create a JavaServer Pages (JSP) based query tool for your Cloudscape 3.5 database. It include
code and details on developing a Web Application using Java. For this paper, we will use the following tools:

e Enhydra 3.0.1 Java Application Server
o Redhat 6.1 Linux
e Blackdown JDK 1.2.2

These tools were selected because they are all available for free download. The application and Cloudscape should work v
any Java application server that supports JSP, any version 2 JDK, and any OS that supports a version 2 JDK. (See the
Cloudscape JVM Compatibility Chart).

We will examine how to use Cloudscape as the database engine for your web-based application by looking at a simple data
query tool using an HTML file, JSP and a bean.

To just get the query tool application up and running quickly, go to “Quick Start”. To get step-by-step details, skip to “Gett
Down To Business”.

Quick Start

The rest of this paper details the anatomy of the query tool application. If you just want to get it running here are some qu
start steps.

The examples use /7home as the root location.

Cloudscape - Support (Tech Info) Page 2 of 13

Setting Up the Environment

1

8

. Install the Blackdown JDK 1.2.2 in /home/jdk1.2.2Blackdown
* Any 1.2 JDK should work
. Edit your path to include /home/jdk1.2.2Blackdown/bin :
a. Bash/ksh: export PATH=$PATH:/home/jdk1.2.2Blackdown/bin
. Install Cloudscape in /home/cloudscape:
a. Download Cloudscape: http://www.cloudscape.com/Evaluations/index.html
b. Follow the directions in the install.html file that accompanies your software or see Installing Cloudscape.
. Create a Directory to store the database
mkdir —p /home/cloudscape/data
. Install Enhydra
a. Download Enhydra3.0.1
b. Run: rpm —i Enhydra-3.0.1-1.i386.rpm
The default directory for Enhydra 3.0.1 is /usr/local/enhydra3.0.1.
. Configure Enhydra:
/usr/local/enhydra3.0.1/configure /home/jdk1.2.2Blackdown
. Edit /usr/local/enhydra3.0.1/bin/multiserver

Change
CLASSPATH=${NEWCP}
to:
CLASSPATH=${NEWCP}:/home/cloudscape/lib/cloudscape.jar:/home
. Edit your CLASSPATH (for bash/ksh)

export CLASSPATH= $CLASSPATH:/home/cloudscape/lib/cloudscape.jar:/home

Note: If you're going through “Getting Down To Business”, go back to “Setting Up Your Environment” at this point.

Installing The Query Tool

1

© N

. Download the QueryTool.tar:
QueryTool.tar

. Expand the tar file into /home
tar —xf /home QueryTool.tar

. If you do not want your database created in /home/cloudscape/data
a. Edit /home/jdbc/Paper/DemoConnect.java

b. Change:
p.put(“cloudscape.system.home", "/home/cloudscape/data");
to:
p.put(“cloudscape.system.home", "/{yourPath}/data");

c. Recompile:
Javac DemoConnect.java

. As root, Start Enhydra:
/usr/local/enhydra3.0.1/bin/multiserver &

. Open a web browser and open the Enhydra administration interface:
http://{yourSystem}:8001

. Log in using the default username and password:

Username: admin
Password: enhydra

Click Add.
Select “War”.
Enter:

Name = QueryTool
Doc Root = /home/public_html/Paper

10. Click OK.

Cloudscape - Support (Tech Info) Page 3 of 13

11.
12.
13.

14.
15.
16.
17.
18.
19.
20.

Select the Connections tab
Click Create
Enter:

URL Prefix = /Cloudscape
Port Number = 1000

Click OK

Click OK again

Click Save State to save the changes.
Click OK

Click OK again

Select QueryTool from the list

Click Start.

Test The Query Tool

1. Your application is now running. To use the application, open a web browser and open the URL:

2.

3.

http://{yourSystem}:1000/Cloudscape/Query_Tool.html.
In the text window enter the query “Select * from sys.systables”
(Do not put a semi-colon “;” at the end of the query text)
Click Submit Query.

NOTE: When you run the application for the first time, it creates and start the database which might take a ft
minutes.

4. Your query tool is done! If you would like to know how it works read-on.

Getting Down to Business: Using Cloudscape with Enhydra

Using Java Server Pages (JSP) allows for quick development and easy integration with Cloudscape. To demonstrate this, w
create a simple tool. Our first application will be a JSP, based query tool for Cloudscape. In this section, we will:

1.

a b W N

Install:

JDK 1.2.2
Cloudscape 3.5
Enhydra 3.0.1

. Configure Enhydra.

. Create the application files.

. Start the application.

. Run a query using the newly created query tool.

Setting Up the Environment

Before we create our application, we must set up the environment necessary to run the application. We will start by creatir
directories for the application files:
Note: The examples will install everything in /home

1.
2.

3.

4.

5.

Go to Quick Start and complete the steps in Setting Up the Enviornment.
Create a directory for the .java and .class files:
mkdir —-p /home/jdbc/Paper
Create a directory for the *.jsp, *.gif, *.html files
mkdir —p /home/public_html/Paper
Start Enhydra:

/usr/local/enhydra3.0.1/bin/multiserver &
The Enhydra server is now running.

Open a web browser and go to the Enhydra administration interface:

Cloudscape - Support (Tech Info) Page 4 of 13

http://{yourSystem}:8001
6. Log in using the default username and password:

Username: admin
Password: enhydra

If you can log into the Enhydra Administration tool, you have successfully set up Enhydra. Now that we have the environme
ready, it is now time to create our query tool.

Creating the Application

To create the query tool we, must create 3 files:

|Fi|e ||Description |
|Query_Too|.htmI ||This is the input form for the application. |
SubmitQuery.jsp This is the Java Server page which will execute the query and

display the results as HTML.

DemoConnect.java This will create a connection to the database and instantiate
an instance of the Cloudscape JDBC driver if needed.

Note: These files are available for download from
files/QueryTool.tar

Query_Tool.html

We will start with the HTML file which is used to enter and submit the query to the JSP. This HTML file contains a single for
with an input text box, drop down list of databases, Submit and Reset buttons.

<htnl >

<head>

<title>Cl oudscape Query Tool </title>
</ head>

<body bgcol or ="#6699FF" background="cl ouds. gi f" bgproperti es="fi xed">

<p><i >
Cl oudscape Query Tool : </ font></i ></p>
<hr>
<f or m net hod="PCOST" acti on="Subm t Query.jsp">
<textarea rows="15" nane="query_text" col s="71"></textarea>
<p>Dat abase: </ b> <sel ect size="1" nanme="dat abase" >
<opti on>denpbDB</ opt i on></ sel ect ></ p>
<p><i nput type="submit" value="Submit Query" nane="Subm tQuery" >
<input type="reset" val ue="Reset" nane="B2"></p>
</forne

</ body>
</ htr >

This form will post the fields “query_text” and “database” to SubmitQuery.jsp for processing. When you are done creating
Query_Tool.html, copy it to /home/public_html/Paper/Query_Tool.html.

SubmitQuery.jsp

This JSP actually submits the query to the database and displays the results in an HTML table with column headers. In this

Cloudscape - Support (Tech Info) Page 5 of 13

there are three sections to the code: Collecting the parameters, submitting the query and displaying the results. We will loo
each section in detail.

Section 1: Collecting Parameters

<%

int maxRows = 50;

[/VWe will Iimt the nunber of output rows

bool ean naxRowsHit = fal se;

String queryText = "";

String database = "";

Java. sql . Connection connection = null;

[/ Get the paraneters from query_tool.htm

/1 The "request" object is a JSP built in to

//access data sent by POST

queryText = request.getParaneter("query_text");

//We Cannot Run a query w thout Text So let's

[/ Catch this Situation

if (queryText.equal sl gnoreCase(""))

{
/I NOTE: "out" is a built in HTM. printwiter for JSP
out. println("

Pl ease Enter Your SQ Query");
out.println("
Use the BACK button on your browser “+

“and try again.\n");

return;

}

/ /W need the database name

dat abase = request.get Paraneter("database");

%

Section 2: Submitting the Query

<htnl >
<head>
<title>Query Results</title>
</ head>
<cent er >Your Query Resul ts: </center>

<body bgcol or=#ffffff>
<CENTER>
<TABLE Border="2" Cell paddi ng="3" Cel | spaci ng="3">

<%

try {
//We will use our DenpbConnect C ass to get
//a new connection to the database
j dbc. Paper . DenbConnect newConn = new j dbc. Paper. DenpConnect () ;

connecti on = newConn. get Connecti on(dat abase);

/1 Send the query to the database

/] Normally for performance reasons we woul d
/] use a PreparedStatenment or a

/] stored prepared statenent in an application.
[/l In this case the query

/] is Dynamic so we will use a statenent.

Java. sql . Statenment statement =

Cloudscape - Support (Tech Info)

connection. createStatenent();
st at enent . execut e(queryText);

Section 3:

Displaying The Results

/]l Process results of the select.

Java. sql . Resul t Set result = statenent.getResultSet();
int numRows = 1;

int numCols = 2;

//***

[/ Print Header |nformation
//We will use the ResultSetMetaData to get the col um nanes
/land print themas the first row of our table
Java. sql . Resul t Set Met aDat a dat aParans =
resul t.get MetabData();
out.print("<TR><TD Align=\"center\">" +
dat aPar ans. get Col umNane(1));

//We build this in a | oop because we do not
[/ know how nmany col umms of output were requested.
for (nunCols = 2; nunCols <= dataParans. get Col utmCount () ;
nunCol s++)
out.print("</TD Align=\"center\"> “+
“<TD Align=\"center\">" +
dat aPar ans. get Col utmNane(nuntol s)) ;

//Print the closing info for the row

out.println("</TD Align=\"center\"></TR>");
//***
//Print the query Results

String resultData = "";

while (result.next())
{
resultbData = "<TR><TD Align=\"center\">" +
result.getString(1);
for (numCols = 2;
nunCol s <= dat aPar ans. get Col umCount () ;

nunCol s++)
{
resultbData = resultData +
"</TD Align=\"center\"><TD Align=\"center\">"+
result.getString(nunCol s);
} //End for

resultData = resultData + "</ TD Align=\"center\">";
out.println(resultData);

/I Keep track of the nunber of Rows processed
if (numRows == naxRows)

{
maxRowsHi t = true;
br eak;

}

nunmRows ++;

}//1End While nore data rows

/I Explicitly close all statenents, connecitons etc

Page 6 of 13

Cloudscape - Support (Tech Info) Page 7 of 13

result.close();
statenent. cl ose();
}
cat ch(Exception ex){
out. println("<p>
Exception during SQ query: "+ex);

}
/1 Make sure the connection is closed even if there is a failure
finally {
connection. cl ose();
}

out. println("</TABLE></ CENTER>") ;
[/Print a message if we hit the nmaxi mum nunber of output rows
if (maxRowsH t == true)
out. println("<CENTER>
Return A Maxi um of "+
maxRows+" Rows
</ CENTER>") ;

%
</ body>
</ htr >

Section 1: Collecting Parameters

We start the JSP by collecting the parameters “database” and “query_text” posted from the HTML form. JSP support a buil
“request” object which is the same as javax.servlet.ServletRequest.

queryText = request.getParanmeter("query_text");
dat abase = request.get Paraneter("database");

For simplicity, the only error we look for is the existence of query_text. For this condition, we print the message to HTML ar
the processing of the JSP. In a JSP, “out” is a built-in HTML java.io.PrintWriter. Using out.println we can write the error to -
browser by writing:

out.println("

Pl ease Enter Your SQ. Query");

If query text was provided, we are ready to submit the query to the database.

Section 2: Submitting the Query
To submit a query to the database we must obtain a connection, create a statement, and execute the statement.

To obtain a connection, we call DemoConnect.getConnection() which returns a connection object. We will discuss
DemoConnect.class in the next section. DemoConnect.getConnection() takes a String containing the database name as an
argument:

connection = newConn. get Connecti on(dat abase);

Once we have a connection object, we can create a statement. First, we create a statement object:

St at enent statenment = connection.createStatenent();

Then, we execute the statement:

statement.execute(queryText);

We are using java.sql.Statement() in this case because we do not know ahead of time what the query will be. In most

Cloudscape - Support (Tech Info) Page 8 of 13

applications, the text of the query is known ahead of time. For queries with known text, use java.sql.PeparedStatement or,
yet, Cloudscape stored prepared statements.

Take a look at the Tuning Cloudscape for information on these statement types. The Stored Prepared Statements Perform
Tips contains information about the performance impacts of using the different statement types.

We have collected the parameters and submitted the query, now we need to display the results of the query.

Section 3: Display the Results
We will display the query results in an HTML table. To display the results, we will use a java.sql.resultSet().

Since this is an ad-hoc query tool, we do not know how many columns of data are expected. To determine the number of
columns and the text for the column headers, we will use java.sql.resultSetMetaData(). Using the resultSetMetaDat
methods getColumnCount() and getColumnName() we create the header row for the HTML table. (See Code Section
“Display The Results”)

We start by printing the start of the row (<tr>) and the first column header:

Resul t Set Met aDat a dat aParans = result.get MetaData();
out.print("<TR><TD Align=\"center\">" +
dat aPar ans. get Col utmNane(1));

Then, we print the rest of the column headers:

for (numCols = 2; nunCols <= dataParans. get Col umCount (); nunCol s++)
out.print("</TD Align=\"center\"><TD Align=\"center\">" +
dat aPar ans. get Col umNane(nuntCol s)) ;

When we are done with column headers we print the end-of-row information for the HTML table:

out.println("</TD Align=\"center\"></TR>");

Then we process the rest of the result set in the same manner until we run out of rows or we reach maxRows. Except this
instead of looking at the metaData we use the resultSet.get... methods.

When we are done with any resultSet, Connection or Statement it should be explicitly closed. We will first close result
statement:

resul t.cl ose();
st at ement . cl ose();

The Connection should be closed in the finally{...} section of the try{...} block. This way if there is an error in the proce:
of the query, the database connection is not left open:

finally {
connection. cl ose();

}

The last thing we do is print a message if we reached the maximum number of rows so we verify that we are seeing the
complete result:

if (maxRowsH t == true)
out. println("<CENTER>
Return A Maxi um of "+
maxRows+" Rows
</ CENTER>") ;

When you are done creating SubmitQuery.jsp, copy it to /home/public_html/Paper/SubmitQuery.jsp. Now that you have cr
the JSP to process and display the results, you need to create the DemoConnect.java which is referenced in SubmitQuery.js

Cloudscape - Support (Tech Info)

DemoConnect.java

Page 9 of 13

DemoConnect.java returns a connection to the Cloudscape database. We only need to instantiate the Cloudscape JDBC ¢

when one does not exist.

Package j dbc. Paper;
i mport Java.sql.*;
import Java.util.*;
public class DembConnect
{
publ i ¢ DenpoConnect ()
{
}
public Connection getConnection(String database)
throws SQLException
{
Connection conn = null;
/1 Open a connection to the database
try {
//We will connect to the database or
//create a database if one does not exist
conn = Dri ver Manager . get Connecti on("j dbc: cl oudscape: " +
dat abase+"; create=true","","");
}
//1f there is no Driver start one and try the connection again
catch (SQ.Exception ex) {
try {
Properties p = System getProperties();
/W& set cloudscape. system honme to the
//directory where the database is or should exist
p. put ("cl oudscape. syst em hone",
"/ hone/ cl oudscape/ data") ;
//We are running in enbedded node usi ng
//the cl oudscape JDBCDri ver
Cl ass. f or Nane(" COM cl oudscape. core. JDBCDri ver") . newl nst ance
()
conn =
Dri ver Manager . get Connecti on("j dbc: cl oudscape: " +
dat abase+"; create=true","","");
} catch (Exception e) {
Systemout. println("Exception in Start Driver: "+e);
}
} catch (Exception e) {
System out. println("Exception in DemoConnect: "+e);
}
return(conn);

Cloudscape - Support (Tech Info) Page 10 of 13
}

We created a method called getConnection() which takes a String containing the database name as an argument. Most
the time there will be an instance of the driver so we will first try to establish a connection.

Connection conn = null;

conn = DriverManager. get Connection("jdbc: cl oudscape: "+
dat abase+"; create=true","","");

In most cases, this is all we need to do before returning the connection object. If java.sqgl.Connection throws an
SQLException, we will assume that this meant there was no instance if the JDBC driver, so we will instantiate the JDBC driv
try the connection again. Since we are using Cloudscape in the same JVM as our application and the Enhydra server, we ar
using the embedded JDBC driver for the connection. The cloudscape.system.home property must be set before instanti
the driver. Properties can be set in your application like we did here or in the cloudscape.properties file.

p. put ("cl oudscape. syst em hone", "/ hone/ cl oudscape/ data");

Then, we instantiate the driver:

Cl ass. f or Name(" COM cl oudscape. core. JDBCDri ver"). new nstance();

Now that the driver is started, we attempt the connection again and return the connection object.

When you are done creating the DemoConnect.jar file compile it to create a DemoConnect.class.

Javac DenpConnect.java

When you are done creating DemoConnect.class, copy DemoConnect.* to /home/jdbc/Paper/*. We now have al
files necessary to start our application. Let's register our query tool with Enhydra.

Register and Start Your Application:

Open a web browser and go to the Enhydra administration interface:

1. http://{yourSystem}:8001
2. Log in using the default username and password:

Username: admin
Password: enhydra

3. In the Multiserver Admin bar on the left click Add.

The “Add New Application/Servlet “ dialogue appears
4. Select War.

Fields will be added to the dialogue.
5. Enter

Name = QueryTool
Doc Root = /home/public_html/Paper

6. Click OK on the application successfully added dialogue.
7. Select the Connections tab
8. Click Create.
The “Add New Connection” dialogue appears”
9. Enter:

URL Prefix = /CloudscapePort
Number = 1000

Cloudscape - Support (Tech Info) Page 11 of 13

10. Click OK.
The success dialog appears.
11. Click OK again.
12. In the Multiserver Admin bar on the left click Save State to save the changes
13. Click OK.
The write warning dialogue appears.
14. Click OK again.
The success dialog appears.
15. Select QueryTool from the list.
16. Click Start

Your application is now running. To use the application open a web browser and enter the URL: http://
{yourSystem}:1000/Cloudscape/Query_Tool.html. You should see the HTML page you created.

+ - Cloudscape Query Tool - Nekscape __lim_ﬂ
ﬂa Edit Wew Go Communicsbor Help

i&!’&a@di.é%i

Fatward Flehul Hesre Seaich Nelicape Pnnr Eeculy Shap Sl

| -q.!’_ Bookmaks & Gotx |hhpc.mmeira 21000/ Cloudscape Qusty._T ook him] | @ What's Related

£

Cloudscape Query Tool:

aeglect * from sys.syatables d

4] _IJ
Datahase: |demoDB vl

Submit Query I Resel |

~|
== Diocumert: Done = e Y

Figure 1

Type the query “Select * from sys.systables” (Do not put a semi-colon “;” at the end of the query text) into the text windo

Cloudscape - Support (Tech Info) Page 12 of 13

Click Submit Query to send the request to SubmitQuery.jsp. Your query results should look like Figure 2. Remember, tr
time you run this tool, it will take a few minutes to complete the query because it must first create and start the database.

i (uery Bsolls - Mot ape ol s
D e e Gterandatis - Ll - : = - 5
4§ A % a & < & O A
& Tk TN T S T S EECINY -
i 14’ ostrais suu1mfma'uum:qurs-mym i
Your Query Resulis:
TABLED TARLENAME TAELETYFE SCHEMAIL LOCE GEAMNTLARITY

BO0010- 00404773 d5- 0000000k 1500 | STSCONGLOMERATES | & FONC0004-00d0- 4 77- 3e45- 000 080 1 500 E

BOO000 18- ORI 5 a0k 19060 SYSTABLES ' 5 SO00CA0A-00 SE-E4TT- 3800 48T 1500 B

[B000ONTe- L0477 TadB- 000040 1900 | SYSCOLTMNS g BG4 TT- 300) T 1500 R

OO O F T Tt I00a0aik 1900 | STSSCHEMAS 5 SONGO00 40 AR T7- 3648000 w0 1900 R

00000 - D077 T3 D a1 900 | ey:mp,"rﬂ'smr; T =5 SOD0O00 40T T- a8 -000) 4 1500 | B

OO 0040 _FAT7 - SedB_ 000200k 1500 | SYSCOMSTRAINTS = SO000 A (04T TR O00a0aTh 500 | R

BOG0GE. (040 £477- S22 0 0ialalk 1 500 | SYSKEYS g S0000004-00 40477 3edB-00a0a0 1500 | E

| 30000036 COMD-F77- TadB- 100a0a0k1900 | SFSDEPENTS s SO000004-00 406477, 3048 0008000 1900 B

0138004, 0047 - b d-0Be=-000al5T 1 1400 SYSALIASES s SO000004-0040- 6477 3e48- 000 ada0h 1500 R

BOEMICH - OO0 £477- 322100 0ark: 1900 SYSVIEWS s SNO0004-0040-F477- 3e48- 000 a00h 1200 £

BOOO056-000-E4T7- Ja 2- 100 a0a0k 1906 SYECHECKS s BI040 A0-E4 - 3048000 T 5600 E

BOOND0 - (04477 Tadi-000analk 1900 | SYSFOREIGHEEYS 5 EADO00 -0 A0 AT 08 -0)T 1 500 E

[O00062-0040-f477- S i00anate 1800 | STSERRORZ] 0000407 TrdB- 00K W) R0 100 R

[30000000-0041 2137 -ab T0_000a0a0e 1300 | STSSTATEMENTS g SON000 4040 F4 77 A 000 g0 1300 | R

[B0000000-0043- ¢ 222 BT 00020208 1900 | SYSFILES s SN000A- (040477~ T 000 alaih 500 | R

o0 30004 0047025 80R.000a0ed 11200 | SYSTRIGOERS s SO00000 4005477 Ted8 (00 a0z Tb 1500 | E
[B Dot Lo Sl e o2 FE o

Figure 2

You have now created a useful query tool you can use with your Cloudscape Database.

Summary

In this example, we created a simple yet useful web-based query tool for your Cloudscape database. You can use the
methodology used here to create any type of web application with dynamic content. For an example of an eBusiness applici
using this methodology, see “Bubbas CloudBooks: A Cloudscape ePerformance Test”.

Resource Links

Downloads

Enhydra:
http://www.enhydra.org/software/downloads/enhydra/index.html
Blackdown JDK:
http://www.blackdown.org/Java-linux/mirrors.html
Red Hat Linux:
http://www.redhat.com/apps/download/

Reference

Installing Cloudscape:

Cloudscape - Support (Tech Info)

http://www.cloudscape.com/support/doc_35/install/

Cloudscape JVM Compatibility Chart
http://www.cloudscape.com/Engineering/vm.html

Performance Tip: Using Stored Prepared Statements
i.CloudscapePerf-PrepStmts.html

Bubbas CloudBooks: A Cloudscape ePerformance Test
i-Cloudscape-Bubbas.html

Author:
Scott Fadden
Cloudsscape Performance
Informix Software, Inc.
scottfa@informix.com

©2001 IBM, Inc. All Rights Reserved. [Terms of Use] [Webmaster]

Page 13 of 13

