
Sterling Multi-Channel Selling Solution

Developer Guide

Release 8.0

Copyright © 1998-2007.
Sterling Commerce, Inc.
ALL RIGHTS RESERVED

STERLING COMMERCE SOFTWARE
TRADE SECRET NOTICE

THE STERLING COMMERCE SOFTWARE DESCRIBED BY THIS DOCUMENTATION ("STERLING
COMMERCE SOFTWARE") IS THE CONFIDENTIAL AND TRADE SECRET PROPERTY OF STERLING
COMMERCE, INC., ITS AFFILIATED COMPANIES OR ITS OR THEIR LICENSORS, AND IS PROVIDED
UNDER THE TERMS OF A LICENSE AGREEMENT. NO DUPLICATION OR DISCLOSURE WITHOUT
PRIOR WRITTEN PERMISSION. RESTRICTED RIGHTS.

This documentation, the Sterling Commerce Software it describes, and the information and know-how they contain
constitute the proprietary, confidential and valuable trade secret information of Sterling Commerce, Inc., its affiliated
companies or its or their licensors, and may not be used for any unauthorized purpose, or disclosed to others without
the prior written permission of the applicable Sterling Commerce entity. This documentation and the Sterling
Commerce Software that it describes have been provided pursuant to a license agreement that contains prohibitions
against and/or restrictions on their copying, modification and use. Duplication, in whole or in part, if and when
permitted, shall bear this notice and the Sterling Commerce, Inc. copyright notice.

U.S. GOVERNMENT RESTRICTED RIGHTS. This documentation and the Sterling Commerce Software it
describes are "commercial items" as defined in 48 C.F.R. 2.101. As and when provided to any agency or
instrumentality of the U.S. Government or to a U.S. Government prime contractor or a subcontractor at any tier
("Government Licensee"), the terms and conditions of the customary Sterling Commerce commercial license
agreement are imposed on Government Licensees per 48 C.F.R. 12.212 or § 227.7202 through § 227.7202-4, as
applicable, or through 48 C.F.R. § 52.244-6.

These terms of use shall be governed by the laws of the State of Ohio, USA, without regard to its conflict of laws
provisions. If you are accessing the Sterling Commerce Software under an executed agreement, then nothing in these
terms and conditions supersedes or modifies the executed agreement.

Third Party Software and other Material
Portions of the Sterling Commerce Software may include or be distributed with or on the same storage media as
products ("Third Party Software") offered by third parties ("Third Party Licensors"). Sterling Commerce Software
may be distributed with or on the same storage media as Third Party Software covered by the following copyrights:
Copyright (c) 1999-2005 The Apache Software Foundation. Copyright 2003-2007 CyberSource Corporation.
Copyright (C) 2004-2006 Distributed Computing Laboratory, Emory University. Copyright (c) 1987-1997 Free
Software Foundation, Inc., Java Port Copyright (c) 1998 by Aaron M. Renn. Copyright (C) 2000-2004 Jason Hunter
& Brett McLaughlin. Copyright 1997-2004 JUnit.org. Copyright 2003-2007 Luck Consulting Pty Ltd. Copyright (c)
2005-2006 Mark James http://www.famfamfam.com/lab/icons/silk/. Copyright (c) 2002 Pat Niemeyer. Copyright (c)
1994-2006 Sun Microsystems, Inc. Copyright (c) 1996-2001 Ronald Tschalär. Copyright (c) Mark Wutka. All rights
reserved by all listed parties.

Third Party Software which is distributed with or on the same storage media as the Sterling Commerce Software
where use, duplication, or disclosure by the United States government or a government contractor or subcontractor, is
provided with RESTRICTED RIGHTS under Title 48 CFR 2.101, 12.212, 52.227-19, 227.7201 through 227.7202-4,
as applicable.

Additional information regarding certain Third Party Software is located at <installdir>\thirdpartylicenses

This product includes software developed by the Apache Software Foundation (http://www.apache.org). This
product includes software developed by the JDOM Project (http://www.jdom.org/). This product includes software
developed by Mark Wutka (http://www.wutka.com/). SUN, SOLARIS, JAVA, JINI, FORTE, and iPLANET
trademarks and all SUN, SOLARIS, JAVA, JINI, FORTE, and iPLANET related trademarks, service marks, logos
and other brand designations are trademarks or registered trademarks of Sun Microsystems, Inc. All trademarks and
logos are trademarks of their respective owners.
1-7.1.1-1-01

THE APACHE SOFTWARE FOUNDATION SOFTWARE
The Sterling Commerce Software is distributed with or on the same storage media as the following software products
(or components thereof): Apache Ant v1.6.5, avalon-framework-4.0.jar, batik-1.5-fop-0.20-5.jar, Apache Jakarta
Commons Collections v2.1, Apache Commons EL v1.0, Apache Commons Logging v1.0.4, Apache FOP v0.20.5,
Apache Jakarta Regexp v1.4, Apache log4j v1.2.8, Apache Lucene v2.0, Apache Xalan v2.7.0, Apache Xerces
v2.8.0, xml-apis-01.3.03.jar, commons-codec-1.2.jar, commons-httpclient-3.0.1.jar (collectively, "Apache 2.0
Software"). Apache 2.0 Software is free software which is distributed under the terms of the Apache License
Version 2.0. A copy of License Version 2.0 is found in the following locations and applies only to the individual
pieces of the Apache 2.0 Software found in the directory location(s) specified below for that copy of License Version
2.0:

<installdir>\thirdpartylicenses\Apache_Ant_1.6.5_license_OrderSelling.doc applies to the Apache 2.0 Software
located at <installdir>\WEB-INF\lib\ ant-1.6.5.jar;

<installdir>\thirdpartylicenses\Apache_Avalon_Framework_4.0_license_OrderSelling.doc applies to the Apache 2.0
Software located at <installdir>\WEB-INF\lib\avalon-framework-4.0.jar;

<installdir>\thirdpartylicenses\Apache_FOP_0.20.5_license_OrderSelling.doc applies to the Apache Software
located at <installdir>\WEB-INF\lib\batik-1.5-fop-0.20-5.jar;

<installdir>\WEB-INF\lib\Apache_Commons_Collections_2.1_license_OrderSelling.doc applies to the Apache 2.0
Software located at <installdir>\WEB-INF\lib\commons-collections-2.1.jar

<installdir>\thirdpartylicenses\Apache_Commons_EL_1.0_license_OrderSelling.doc applies to the Apache 2.0
Software located at <installdir>\WEB-INF\lib\commons-el-1.0.jar;

<installdir>\thirdpartylicenses\Apache_Common_ Logging_1.0.4_license_OrderSelling.doc applies to the Apache
2.0 Software located at <installdir>\WEB-INF\lib\commons-logging-1.0.4.jar;

<installdir>\thirdpartylicenses\Apache_FOP_0.20.5_license_OrderSelling.doc applies to the Apache 2.0 Software
located at <installdir>\WEB-INF\lib\fop-0.20.5.jar;

<installdir>\thirdpartylicenses\Apache_Jakarta_Regexp_1.4_license_OrderSelling.doc applies to the Apache 2.0
Software located at <installdir>\WEB-INF\lib\jakarta-regexp-1.4.jar;

<installdir>\thirdpartylicenses\Apache_log4j_1.2.8_license_OrderSelling.doc applies to the Apache 2.0 Software
located at <installdir>\WEB-INF\lib\log4j-1.2.8.jar;

<installdir>\thirdpartylicenses\Apache_Lucene_2.0_license_OrderSelling.doc applies to the Apache 2.0 Software
located at <installdir>\WEB-INF\lib\lucene-core-2.0.0.jar, <installdir>\WEB-INF\lib\lucene-demos-2.0.0.jar;

<installdir>\thirdpartylicenses\Apache_Xalan_2.7.0_license_OrderSelling.doc applies to the Apache 2.0 Software
located at <installdir>\WEB-INF\lib\xalan-2.7.0.jar

<installdir>\thirdpartylicenses\Apache_Xerces_2.8_license_OrderSelling.doc applies to the Apache 2.0 Software
located at <installdir>\WEB-INF\lib\xercesImpl-2.8.0.jar;

<installdir>\thirdpartylicenses\Apache_xml_apis_1.3.03_license_OrderSelling.doc applies to the Apache 2.0
Software located at <installdir>\WEB-INF\lib\xml-apis-1.3.03.jar

Unless otherwise stated in a specific directory, the Apache 2.0 Software was not modified. Neither the Sterling
Commerce Software, modifications, if any, to Apache 2.0 Software, nor other Third Party Code is a Derivative Work
or a Contribution as defined in License Version 2.0. License Version 2.0 applies only to the Apache 2.0 Software
located in the specified directory file(s) and does not apply to the Sterling Commerce Software or to any other Third
Party Software.

BEANSHELL SOFTWARE
The Sterling Commerce Software is distributed with or on the same storage media as the BeanShell v1.2b7 (bsh-
1.2b7.jar) software (Copyright (c) 2002 Pat Niemeyer) ("BeanShell Software"). The BeanShell Software is
independent from and not linked or compiled with the Sterling Commerce Software. Sterling Commerce has not
made any modifications to the BeanShell Software. The BeanShell Software is free software which can be
distributed and/or modified under the terms of the Sun Public License Version 1.0 as published by Sun Microsystems,
Inc.
1-7.1.1-1-01

A copy of the Sun Public License is provided at <installdir>\thirdpartylicenses\beanshell_license_OrderSelling.doc.
This license only applies to the BeanShell Software located at <installdir>\WEB-INF\lib\bsh-1.2b7.jar and does not
apply to the Sterling Commerce Software, or any other Third Party Software.

The BeanShell Software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express
or implied. See the license for the specific language governing rights and limitations under the license. The Original
Code is BeanShell. The Initial Developer of the Original Code is Pat Niemeyer. Portions created by Pat Niemeyer are
Copyright (C) 2002. All Rights Reserved. Contributor(s): None Known.

Sterling Commerce has not made any modifications to the BeanShell Software. Source code for the BeanShell
Software is located at http://www.beanshell.org

THE BEANSHELL SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION, WARRANTIES THAT THE
BEANSHELL SOFTWARE IS FREE OF DEFECTS, MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE
OR NON-INFRINGING.

CYBERSOURCE SOFTWARE
The Sterling Commerce Software is distributed with or on the same storage media as the CyberSource Simple Order
API v5.0.2 software (or components thereof) (Copyright 2003-2007 CyberSource Corporation) ("Cybersource
Software"). Cybersource Software is free software which is distributed under the terms of the Apache License
Version 2.0. A copy of the License Version 2.0 is found at
<installdir>\thirdpartylicenses\Cybersource_v5.02_license_OrderSelling.doc and only applies to the Cybersource
Software found at <installdir>\WEB-INF\lib\cybsclients-5.0.2.jar, <installdir>\WEB-INF\lib\cybssecurity-5.0.2.jar

Unless otherwise stated in a specific directory, the Cybersource Software was not modified. Neither the Sterling
Commerce Software, modifications, if any, to the Cybersource Software, nor other Third Party Code is a Derivative
Work or a Contribution as defined in License Version 2.0. License Version 2.0 applies only to the Cybersource
Software in the specified directory file(s) and does not apply to the Sterling Commerce Software or to any other Third
Party Software. License Version 2.0 includes the following provision:

"Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor
provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-
INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely
responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated
with Your exercise of permissions under this License."

EHCACHE SOFTWARE AND JINI SOFTWARE
The Sterling Commerce Software is distributed with or on the same storage media as the ehcache software (or
components thereof) (Copyright 2003-2007 Luck Consulting Pty Ltd) (the "Ehcache Software") and Jini Technology
Starter Kit v2.1 software (or components thereof, including including jini-core.jar and jini-ext.jar) (Copyright 2005,
Sun Microsystems, Inc.) ("Jini Software"). The Ehcache Software and Jini Software are free software which is
distributed under the terms of the Apache License Version 2.0. A copy of License Version 2.0 is found in the
following locations and applies only to the Ehcache Software and Jini Software, respectively, found in the specified
directory files:

Ehcache Software - <installdir>\thirdpartylicenses\ehcache_1.2.4_license_OrderSelling.doc applies to the Ehcache
Software located <installdir>\WEB-INF\lib\ehcache-1.2.4.jar.

Jini Software - <installdir>\thirdpartylicenses\Jini_2.1_license_OrderSelling.doc applies to the Jini Software located
at <installdir>\WEB-INF\lib\jini-core-2.1.jar, <installdir>\WEB-INF\lib\jini-ext-2.1.jar .

Unless otherwise stated in the specific directory, the Ehcache Software and Jini Software were not modified. Neither
the Sterling Commerce Software, modifications, if any, to Ehcache Software or the Jini Software, nor other Third
Party Code is a Derivative Work or a Contribution as defined in License Version 2.0. License Version 2.0 applies
only to the Ehcache Software and Jini Software which is the subject of the specific directory file and does not apply
to the Sterling Commerce Software or to any other Third Party Software. License Version 2.0 includes the following
provision:
1-7.1.1-1-01

"Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor
provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-
INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely
responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated
with Your exercise of permissions under this License."

GETOPT SOFTWARE AND HTTPCLIENT SOFTWARE
The Sterling Commerce Software is distributed with or on the same storage media as the Getopt v1.0.12 software (or
components thereof) (Copyright (c) 1987-1997 Free Software Foundation, Inc., Java Port Copyright (c) 1998 by
Aaron M. Renn (arenn@urbanophile.com)) ("Getopt Software") and the HttpClient version 0.3-2 software (or
components thereof) (Copyright (c) 1996-2001 Ronald Tschalär) ("HttpClient Software"). The Getopt Software and
HttpClient Software are independent from and not linked or compiled with the Sterling Commerce Software. The
Getopt Software and HttpClient Software are free software products which can be distributed and/or modified under
the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either, with
respect to the Getopt Software, version 2 of the License or any later version, or, with respect to the HttpClient
Software, version 2 of the License or any later version.

A copy of the GNU Lesser General Public License is provided at
<installdir>\thirdpartylicenses\Getopt_1.0.12_license_OrderSelling.doc,
<installdir>\thirdpartylicenses\HttpClient_0.3.2_license_OrderSelling.doc

This license only applies to the Getopt Software located at <installdir>\WEB-INF\lib\getopt-1.0.12.jar and
HttpClient Software located at <installdir>\WEB-INF\lib\HTTPClient-0.3.2.jar, and does not apply to the Sterling
Commerce Software, or any other Third Party Software.

Source code for the Getopt Software is located at http://www.urbanophile.com

Source code the HttpClient Software is located at http:// www.innovation.ch

The Getopt Software and HttpClient Software are distributed WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

JUNIT SOFTWARE
The Sterling Commerce Software is distributed on the same storage media as the JUnit Software (or components
thereof) (Copyright 1997-2004 JUnit.org.) ("JUnit Software"). Sterling Commerce has not made any additions or
changes to the JUnit Software. The Sterling Commerce Software is not a derivative work of the JUnit Software. The
Sterling Commerce Software is not a Contribution as defined in the Common Public License - v 1.0.

The source code for the JUnit Software is available at
http://sourceforge.net/project/downloading.php?groupname=junit&filename=junit3.8.1.zip&use_mirror=superb-east

The source code is available from Sterling Commerce under the Common Public License - v 1.0. Contact Sterling
Commerce Customer Support in the event that the source code for the JUnit Software is no longer available at the
respective, above-listed sites. A copy of the Common Public License - v 1.0 is provided at
<installdir>\thirdpartylicenses\Junit_3.8.1_license_OrderSelling.doc. This license applies only to the JUnit Software
located at <installdir>\WEB-INF\lib\junit-3.8.1.jar and does not apply to the Sterling Commerce Software or any
other Third Party Licensor Software.

SUN MICROSYSTEMS
The Sterling Commerce Software is distributed with or on the same storage media as certain redistributable portions
of the following software products: Sun JavaBeans™ Activation Framework ("JAF") (activation.jar) version 1.1, Sun
JavaHelp version 2.0 ("JavaHelp"), and Sun JavaMail version 1.4 (mail.jar) (collectively, "Sun Software"). Sun
Software is free software which is distributed under the terms of the specific Sun Microsystems, Inc. license
agreement for each individual Sun products. A copy of the specific Sun Microsystems, Inc. license agreement
relating to the Sun Software are found in the following locations and apply only to the individual pieces of the Sun
Software located in the specified directory file(s):
1-7.1.1-1-01

SUN JAF - The specific Sun Microsystems, Inc. license agreement located at
<installdir>\thirdpartylicenses\Sun_activation_jar_JAF_1.1_license_OrderSelling.doc applies to the Sun Software
located at <installdir>\WEB-INF\lib\activation-1.1.jar.

SUN JavaHelp - The specific Sun Microsystems, Inc. license agreement located
at<installdir>\thirdpartylicenses\JavaHelp_2.0_license_OrderSelling.doc applies to the Sun Software located at
<installdir>\WEB-INF\lib\javahelp-2_0_02.jar

SUN JavaMail - The specific Sun Microsystems, Inc. license agreement located at
<installdir>\thirdpartylicenses\Sun_JavaMail_1.4_license_OrderSelling.doc applies to the Sun Software located at
<installdir>\WEB-INF\lib\mail-1.4.jar

Such licenses only apply to the Sun Software located in the specified the specified directory file(s) and does not apply
to the Sterling Commerce Software or to any other Third Party Software.

WARRANTY DISCLAIMER
This documentation and the Sterling Commerce Software which it describes are licensed either "AS IS" or with a
limited warranty, as set forth in the Sterling Commerce license agreement. Other than any limited warranties
provided, NO OTHER WARRANTY IS EXPRESSED AND NONE SHALL BE IMPLIED, INCLUDING THE
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR USE OR FOR A PARTICULAR PURPOSE. The
applicable Sterling Commerce entity reserves the right to revise this publication from time to time and to make
changes in the content hereof without the obligation to notify any person or entity of such revisions or changes.

The Third Party Software is provided "AS IS" WITHOUT ANY WARRANTY AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. FURTHER, IF
YOU ARE LOCATED OR ACCESSING THIS SOFTWARE IN THE UNITED STATES, ANY EXPRESS OR
IMPLIED WARRANTY REGARDING TITLE OR NON-INFRINGEMENT ARE DISCLAIMED.

Without limiting the foregoing, the BeanShell Software, GetOpt Software, HttpClient Software, and JUnit Software,
are all distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.

Sterling Commerce, Inc.
4600 Lakehurst Court Dublin, OH 43016-2000 *
614/793-7000
1-7.1.1-1-01

Preface
Welcome to the Sterling Multi-Channel Selling Solution. This Developer Guide
and the associated documentation provides all the information required for you to
implement the Sterling Multi-Channel Selling Solution at your enterprise.

Purpose
This guide provides an overview to extending current Sterling Commerce
applications and developing new applications for the Sterling Multi-Channel
Selling Solution. It presents a description of the system architecture, the main Java
classes, and a description of the Sterling Multi-Channel Selling Solution Software
Development Kit (SDK).

Audience
This guide presupposes an advanced level of information systems knowledge,
familiarity with basic network and database concepts, Java (including the J2EE
specification) and XML. Readers must have a firm understanding of developing
Web applications in Java.
Sterling Multi-Channel Selling Solution Developer Guide vii

viii St
Conventions
Throughout this guide, we will use the following conventions shown in Table 1,
"Conventions", on page viii:

TABLE 1. Conventions

Type Convention

File names Sample.txt

Paths and directory
names

/top_level/next_level/next_level/destination_directory/

Sample code extracts public void method(String s)

Values to be provided <value supplied by developer>
erling Multi-Channel Selling Solution Developer Guide

Contents
STERLING COMMERCE SOFTWARE...ii
Third Party Software and other Material ..ii
THE APACHE SOFTWARE FOUNDATION SOFTWARE.................... iii
BEANSHELL SOFTWARE... iii
CYBERSOURCE SOFTWARE.. iv
EHCACHE SOFTWARE AND JINI SOFTWARE................................... iv
GETOPT SOFTWARE AND HTTPCLIENT SOFTWARE v
JUNIT SOFTWARE.. v
SUN MICROSYSTEMS.. v
WARRANTY DISCLAIMER ..vi

CHAPTER 1 Introduction to J2EE Web Applications.....1
Architecture ... 1
Web Applications .. 1
web.xml File .. 2
JSP Pages... 3
Model 2 Architecture... 4
Controllers ... 5
Model... 7
View... 7
Sterling Multi-Channel Selling Solution Developer Guide ix

x St
Further Reading... 7

CHAPTER 2 New Features .. 9
Segmentation... 9
Reporting... 9
Data Service .. 10
Web Services ... 10
Wish Lists/Templates/Registries ... 10
API Changes ... 10
Software Development Kit...11

CHAPTER 3 System Architecture.................................. 13
Sterling Multi-Channel Selling Solution Web Application........... 14
Processing Requests .. 16

Default Elements..18
Key Java Classes ... 18

Wrapper Classes ..18
Servlets...20
Controller Classes ...21
DataBean Classes ..22
ObjectManager and OMWrapper Classes...22
Business Logic Classes ..26
Presentation Logic Classes..26
AppExecutionEnv Class...26
AppsLookupHelper Class ..26
ComergentAppEnv Class ...27
Global Class ..28
GlobalCache Interface...28
LegacyFileUtils Class..29
OutOfBandHelper Class ..29
Preferences Class...30
PriceCheckAPI Class...31

Transactions .. 32
Message Conversion Classes .. 32

Converter Classes ..32
erling Multi-Channel Selling Solution Developer Guide

Support for Lookup Codes .. 33

CHAPTER 4 Platform Modularity35
Overview ... 36
Platform Modules .. 37
Module Interfaces .. 38

Invoking Interfaces ..38
Platform Module Descriptions .. 38

Access Policy ...38
Authentication..38
Base64..38
Classpath Appender...39
Cryptography Service ..39
Data Services ...39
Dispatch Authorization..39
Dispatch Framework ...39
Email Service ...39
Event Service ...39
Exception Service...39
Global Cache Service ..40
Help..40
Initialization Service ..40
Internationalization ...42
Logging ..42
Memory Monitor ..45
Message Type Entitlement ...45
Object Manager ...45
Out Of Band Response...46
Preferences Service..46
Tag Libraries..47
Thread Management ..47
XML Message Converter ...48
XML Message Service..48
XML Services ...49

CHAPTER 5 Bizlets ...51
Using Bizlets for Message Processing .. 51
Sterling Multi-Channel Selling Solution Developer Guide xi

xii St
Bizlet Interfaces and Implementation ..52
BizletInvoker Classes...54
BizletSession Classes ...54
Invoking Bizlets..55

Example Bizlet Usage ... 55
Message Types ...55
Bizlets...58

CHAPTER 6 Introducing Data Beans and Business
Objects .. 63

What are Data Beans? ... 63
Lifecycle of a Data Bean..64
Defining a Data Bean ..65
Defining the Structure of a Data Object ..65
Data Bean and Business Object Creation ...66
DataContext ...66
List Data Beans..70

Application, Entity, and Presentation Beans 71
Using Stored Procedures ... 72
Data Bean Methods... 73

IData Methods ...73
IRd and IAcc Interface Methods ..74
Restoring and Persisting Data...75
Miscellaneous Methods ...77
Child Data Objects ..77
Extending Data Objects ...78

Data Bean Example... 80
DsElement Tree... 85

DsElements ..86
DsElement MetaData...87

BusinessObject Methods... 88

CHAPTER 7 Using the Security Mechanisms............... 91
Managing Message Types ... 92

Checking for Entitlement ...92
Managing User Types ... 93
erling Multi-Channel Selling Solution Developer Guide

Adding a Role to a User Type ..93
Creating a User Type ...94

Managing Access to Data Objects Using Access Policies 94
Overview ..95
AccessPolicy.xml Configuration File...96
Example ...98

Managing Access to Data Objects Using ACLs.......................... 102
Data Bean Methods ...102
Attaching an ACL to a Data Object...102

Creating an ACL.. 104
Troubleshooting ACL Issues ... 104
Password Policies .. 106

Configuration...106
Creating a Custom Password Policy ...108

Passing Login Data Through a URL ... 108

CHAPTER 8 Logging .. 111
Overview ... 111

log4j.debug System Property ... 112
Auditing Changes to Data Objects .. 113

CHAPTER 9 Events...115
Overview ... 115

Firing an Event .. 116
Processing an Event... 116
events.xml DTD.. 117

Events .. 117
Vetoable Interface .. 118

Automated Task Creation .. 118
Example ... 119

Event Classes ... 119
DispatchServlet Changes...121
events.xml File ...121
Testing the Example ...121
Sterling Multi-Channel Selling Solution Developer Guide xiii

xiv St
CHAPTER 10 Sending Email from the Sterling Multi-
Channel Selling Solution............. 123

Framework .. 123
Current Usage of the Framework ..125

Generating URLs .. 126
Example .. 126

CHAPTER 11 Modularity and Generated Interfaces.. 131
Overview... 131
Modules... 132
Module Interfaces ... 133

Invoking Interfaces ..134
Generated Interfaces ... 135

Example of a Generated Interface...136

CHAPTER 12 Implementing Logic Classes 139
Key Concepts .. 139

Application Logic Classes ...140
Business Objects ..141
XML Schema..141

Naming Service... 141
NamingService Example ..142

CHAPTER 13 Implementing Application Logic Classes ..
143

bizAPI Classes .. 143
Business Logic Classes ... 144
Controller Classes ... 144

CHAPTER 14 Software Development Kit 147
Project Organization.. 147
erling Multi-Channel Selling Solution Developer Guide

Project File and Directory Locations ..148
Java Source Files...148
JSP Pages ..148
Schema Files ..149

CHAPTER 15 Tailoring the Sterling Multi-Channel
Selling Solution.............................151

Overview ... 151
Customization Components... 152

Platform Components ..153
Extensions and Maintenance ... 154

Extending the Presentation Layer..154
Page Flow..156
Extending the Data Services Layer..157
Extending the Application Logic Layer ...160
System Configuration Files..161

CHAPTER 16 Upgrading the Sterling Multi-Channel
Selling Solution.............................163

Upgrading in General .. 163
Overview of Upgradability ..163
Upgrade Considerations by Customization Technique164

Upgrading from Release 7.2 to Release 8.0 166
API Changes ..166

Upgrading from Release 7.0.2 to Release 7.1 166
API Changes ..166
Changes to Reports..171

Upgrading from Release 6.7 to Release 7.0 172
Access Control ...172
API Changes ..172
Database Schema...176
System Properties...176
Tag Libraries..176
Sterling Multi-Channel Selling Solution Developer Guide xv

xvi St
CHAPTER 17 Customization Examples 179
Setting up the SDK ... 179
Presentation... 180

Headers and Sidebars..181
Home Page Widgets ...182
Cascading Style Sheets ..183
Modifying Table Columns ..184

Adding a Shortcut Link... 185
Extending and Modifying Existing Data Objects 187

Using the custom Schema Directory..188
Extending a Data Object ...189
Modifying a Data Object ...192

Adding Functionality to an Application...................................... 194
Comment Data Object ...195
Generating the Comment and CommentList Data Beans....................196
Database Schema Modification ...197
Updating the ObjectMap.xml File ...197
JSP Pages ..198
Managing the Business Logic ..199
Updating the MessageTypes.xml File ..202
Modifying the Controller Classes ..203
Modifying the JSP Page...205

Customizing Access to the Business Objects 206
Access Policy Approach...206
ACL Approach ...208
Modifying the BusinessRules.xml File ...209

Pagination.. 209
Pagination Controller.. 211

CHAPTER 18 Developer Guidelines............................ 213
Overview... 213
Platform Variations ... 214

Browsers ..214
Databases ..214
Application Servers..214
Operating Systems ...214

Security ... 215
erling Multi-Channel Selling Solution Developer Guide

Access Policies...215
ACLs ..215
Roles ..215
Encoding Data in JSP Pages...216

General Application Issues.. 216
XML Messages...216
Assembly and Configurations ..216

Internationalization.. 217
Resource Bundles...217
Locales...217
JSP Pages ..217

Data.. 218
Minimal Data...218
Reference Data...218
Sorting and Searching ...218

Browser Usage... 219
Cookies ..219
Enter Key ...219
Back and Forward Buttons ..219
Session Timeout ...220
Refresh Button..220
Field Types and Lengths ..220

Developer Testing.. 221
Database Requests and User Operation..221
API and Exceptions..221
Javadoc ..221
HTML Validation ...221

Threads .. 222
File Uploads... 222

Forms for File Upload...222
Saving Files on the Sterling Multi-Channel Selling Solution223
File Processing ..224

Summary.. 225

CHAPTER 19 User Interface and Style Guidelines227
Overview ... 227
Tables and Data Lists... 228

General ..228
Sterling Multi-Channel Selling Solution Developer Guide xvii

xviii St
Columns ...228
Formatting ...229
Buttons ...230

Forms .. 230
Text Fields..231
Drop-Down Lists and List Boxes ...231

Workflow Conventions ... 231
Popup Windows .. 232
Search and Find Windows... 232
Registration Pages... 232
Using the Calendar Widget ... 233
Using the Tree Viewer... 236
Using the Entity Picker ... 238
Images ... 242

CHAPTER 20 JSP Pages.. 243
JSP Page Location... 244
Page Structure ... 244

Included JSP Pages ...247
Using the Session Context .. 248
Scriptlets.. 249
Javascript... 251
Forms .. 251
Frames... 253
Cascading Style Sheets ... 254

Sterling Multi-Channel Selling Solution Style Sheets255
Buttons .. 256
Tables .. 257
Securing JSP Pages from Cross-Scripting Attacks 257
JSP Fragments... 258
Debugging JSP Pages.. 258
JSP Page Naming Conventions... 258

Standard Naming Convention..259
Examples..259

Resources .. 259
erling Multi-Channel Selling Solution Developer Guide

Wait JSP Pages .. 260
Redirecting to Full Page Access.. 261

CHAPTER 21 Online Help..263
Architecture ... 263

Configuration Files..265
Tag Library ..267

Customizing Online Help .. 267
Page Format ..267
Screen Shots ...267
Content Pages..268
Adding Content Files ...268
Adding Views..268

Localization ... 269

CHAPTER 22 Data Services Guidelines.......................271
How to Specify a Query .. 271

QueryHelper Methods ...272
DsQuery Methods ..275
DataBean Methods ..276
Using LIKE Calls...276
Examples..276
How to Specify Sort Order...280
Query Constants ..281

Using UpdateHelper and DsUpdate .. 282
UpdateHelper Methods..283
IDsUpdate Methods ...284
Operators ...284
Example ...285

Oracle Hints... 285
What are Oracle Hints? ...285
What support is available for Oracle Hints?.......................................285
When should I use Oracle Hints? ..286
How do I specify an Oracle Hint for the primary query?....................286
How do I specify an Oracle Hint for a sub-query?286
What is the Oracle Hints syntax? ..286
Sterling Multi-Channel Selling Solution Developer Guide xix

xx St
Stored Procedures.. 286
What support is available for Stored Procedures in Release 6.0?.......287
What Stored Procedure support has been added in Release 6.3?........287
What are the limitations on Stored Procedure support?......................287
How do I map a data object to a database stored procedure?288
Examples..288

Pagination.. 290
Performance Optimization .. 291

Optimizing Ad Hoc Queries...291
Optimizing Data Retrieval Sizes ..292
Left-Outer and Equi-Joins ...293
Reference and Child Data Objects ..293
Using Distinct Tables for Customer Extensions293
Using Stored Procedures..293
Oracle Hints...294

Join Types.. 294
What is an Equi-Join? ...294
What is a Left-Outer Join? ..295
What is a Right-Outer Join? ..296
What is a Cross Join? ..296
What is our Default Join Mechanism? ..297
Which Joins do we Support?..297
How do I tell the Data Services Layer to use an Equi-Join?...............297

Transactions .. 297
How to use the ActiveTransaction Class ...300

Detailed Commit Functionality Description 300
Commit with one Database Server ..301
Commit with Multiple Database Servers ...301
Commit with a Database Server and non-Database Server Data Source .
301

SQL Injection.. 301

CHAPTER 23 Resources .. 303
Overview... 303
JSP Page Layer.. 305
Data Services Layer .. 305
erling Multi-Channel Selling Solution Developer Guide

CHAPTER 24 State Machines.......................................307
Overview ... 307
State Machine Configuration Files .. 309

StateMachineList.xml Configuration File..309
StateMachine.xml Configuration File..309
Action Events ... 311

Customizing a State Machine .. 312
Changing the Business Logic associated with a Change in State312
Changing the Available State Transitions..313
Adding a New State..314

CHAPTER 25 Widgets ...317
Overview ... 317
Widget Tag... 318
Guidelines.. 318
Integrating a Widget in a Portal Page .. 320
Example ... 320

Container JSP Page...320
MessageTypes.xml Entry..321
WidgetController ...321
Widget JSP Page..322

CHAPTER 26 Customizing Advanced Search323
Overview ... 323

Building Indexes ..325
Customizing Dictionary Mappings ..326
Processing Search Requests...327
Lucene Classes...327

IndexBuilder and IndexSetBuilder Classes 328
IndexBuilders ...328
IndexSetBuilders ..330

Search Terms ... 331
Search Term Types ...332

Processing Results ... 333
Customizing IndexBuilders ... 335
Sterling Multi-Channel Selling Solution Developer Guide xxi

xxii St
CHAPTER 27 Web Services.. 337
Overview... 337

WSDL Files ..338
Web Service Clients..338
Example ...339

Web Services Provided by Sterling Multi-Channel Selling Solution
340

Attribute Management ...342
Attribute Group Management ..342
Catalog Management...343
Invoice Management..343
Lead Management ...343
OIL Management ...343
Order Management..344
Partner Management ...344
Promotion Management...344
Proposal Management ...344
Quote Management..345
Return Management...345
Sales Contract Management..345
Service Contract Management ..345
Task Management ..346
User Management..346
Common Components ..346

Creating a Web Service ... 347
WSDL...349
Business API ..350
Bizlet Class ..351
Message Conversion Files ...352

CHAPTER 28 Maintaining History for Data Objects . 357
Framework .. 357
Example .. 358

CHAPTER 29 Coding Conventions 361
Using Session and Cache Objects ... 361
erling Multi-Channel Selling Solution Developer Guide

Using the Web Application ..361
Using the Client Application ...363

File Access... 363
Naming Conventions ... 364
Source File Organization ... 365

Package Organization ...365
Source Files ...365

Style and Presentation ... 366

CHAPTER 30 Comergent Tag Library369
Overview ... 369
General Usage ... 370
Tag Library .. 371

encode Tag ...371
frame Tag ...372
getAttribute Tag ...373
getPrice Tag ...374
getProperty Tag..374
getResource Tag...374
if Tag ..375
ifResource Tag..376
link Tag ..376
list Tag..377
paramtext Tag ..379
text Tag...379
url Tag..381
widget Tag..381

CHAPTER 31 Comergent Internet Commerce Tag
Library...383

Overview ... 384
Tag Specification..385
Nesting CIC Tags ...386
Customizing Tags ...386
JSP Expression Language..386

General Usage ... 387
Sterling Multi-Channel Selling Solution Developer Guide xxiii

xxiv St
Example ...387
Tag Library.. 393

cic:banner Tag ...393
cic:checkbox Tag..394
cic:column Tag...394
cic:columnHeader Tag...395
cic:command_link Tag ...395
cic:concat Tag..396
cic:date Tag..396
cic:div Tag..396
cic:el Tag..397
cic:img Tag...397
cic:input Tag ..397
cic:inputDate Tag...398
cic:javascriptLink Tag ...399
cic:link Tag...399
cic:options Tag...400
cic:outputLink Tag ...400
cic:param Tag ..401
cic:property Tag...401
cic:quickSearch Tag...402
cic:quickSearchParam Tag ..403
cic:select Tag ...404
cic:span Tag ...405
cic:table Tag...405
cic:title Tag ..406
cic:whitespace Tag...406
cic:workspace Tag ...407
cic:workspace_command Tag..408

JSP Expression Language ... 408
Overview ..408
Tag Changes...409

CHAPTER 32 Internationalization 413
Overview... 413
Supporting Locales ... 414

Presentation and Session Locales..414
JSP Pages and Properties Files...415
Failover Behavior ..418
erling Multi-Channel Selling Solution Developer Guide

Methods to Retrieve Locales..419
Using Properties Files in Code ...420

Data for Internationalization.. 420
Email Templates .. 421
HTML Pages ... 422
Images.. 422
Javascript ... 423
JSP Pages... 423

Calendar Widget ..424
Reports... 425
Style Sheets.. 425
System Properties .. 425
Resource Bundles and Formats ... 426

PropertyResourceBundles and Properties Files426
ResourceBundles..426
NumberFormats and DateFormats..427

CHAPTER 33 Exceptions..429
Comergent Exception Hierarchy ... 429

Exception Root...429
Subsystem Grouping ..430
Subsystem by Subsystem Exception Policy ..431

Exception Chaining ... 431
Throwing, Catching, and Logging Exceptions............................ 432

When to Throw Exceptions ..432
Throwing Runtime or Compile Time Exceptions432
Catch Clauses and Throws Declarations ..432
Logging Exceptions ...433

Displaying Exceptions... 433

CHAPTER 34 Implementing Cron Jobs.......................435
Overview ... 435

CronManager and CronScheduler...436
CronJob Interface ..436
Sterling Multi-Channel Selling Solution Developer Guide xxv

xxvi St
CHAPTER 35 Customizing Catalog Exports............... 439
Overview... 439
DataSyndicationConfig.xml Configuration File 439
Handlers .. 441

ExtrinsicFieldHandler Class ...441
Writing a Custom Handler...441

CHAPTER 36 Customizing Sterling Configurator...... 443
Custom Controls ... 443

Customizing an Existing Control ...444
Creating a New Control...444

Control Handlers ... 445
Function Handlers ... 445

Overview ..445
Writing a Custom Function Handler ...446
Function Handler Example..446
Web Service Function Handlers...448

CHAPTER 37 Filters .. 449
Filters Overview.. 449
Available Filters .. 450

DosFilter..450
WSDLFilter..451

CHAPTER 38 Managing and Displaying Constrained
Fields .. 453

Options .. 453
Criteria .. 454

CHAPTER 39 Wish Lists, Templates, and Registries .. 457
Overview... 457
erling Multi-Channel Selling Solution Developer Guide

Architecture ... 457
Tables ...458
Data Objects ..458
Default/Active Lists..459
Registry Addresses ...460
Lokup Types ...461
APIs..461

CHAPTER 40 Deprecated Concepts463
DsElement Tree ... 463

DsElements ..464
DsElement MetaData...466

BusinessObject Methods ... 466
Business Logic Classes.. 468

Business Logic Class Example ..469
Global Class ..471

CHAPTER 41 Upgrading Legacy Sterling Multi-Channel
Selling Solutions475

Overview of Upgradability.. 475
Customer Upgrade Scenarios..476

Upgrade Considerations by Customization Technique 476
Upgrading Presentation ..476
Specific Considerations for Upgrading Presentation for Release 3.x.478
Upgrading Business Objects and XML Messaging478
Upgrading Business Logic...479
Other Considerations for Upgrade..481
A Sample Upgrade Task Flow ...481

Specific Upgrade Scenarios... 482
Overview of changes for Releases 4 and 5 ..482
Upgrading Release 3 ...483
Upgrading Release 4.x...485
Upgrading Release 5.x to future Releases ...489

Index ...491
Sterling Multi-Channel Selling Solution Developer Guide xxvii

xxviii St
erling Multi-Channel Selling Solution Developer Guide

CHAPTER 1 Introduction to J2EE Web
Applications
This chapter presents an overview of the Java 2 Platform, Enterprise Edition (J2EE)
and how it is used to deploy Web applications. If you are already familiar with this
architecture, then you can skip this chapter.

Architecture
Release 8.0 of the Sterling Multi-Channel Selling Solution is designed to conform
to the Java 2 Platform, Enterprise Edition (J2EE) architecture as defined in Java 2
Platform Enterprise Edition Specification, v 1.2 published by Sun Microsystems,
Inc.

The Sterling Multi-Channel Selling Solution is deployed as a Web application that
comprises a set of Java classes together with accompanying configuration files,
HTML templates, and JSP (JavaServer Pages) pages. It must be installed into a
servlet container that conforms to the J2EE standard.

Web Applications
A J2EE Web application is built to conform to a J2EE specification. You add Web
components to a J2EE servlet container in a package called a Web application
archive (WAR) file. A WAR file is a JAR (Java archive) file compressed file.

A WAR file usually contains other resources besides Web components, including:
Sterling Multi-Channel Selling Solution Developer Guide 1

Introduction to J2EE Web Applications

2 St
• Server-side utility classes

• Static web resources (configuration files, HTML pages, image and sound
files, and so on)

• Client-side classes (applets and utility classes)

The directory and file structure of a Web application deployed as a WAR file
conforms to a precise structure. A WAR file has a specific hierarchical directory
structure. The top-level directory of a WAR file is the document root of the
application. The document root is the directory under which JSP pages, client-side
classes and archives, and static Web resources are stored. The document root
contains a subdirectory called WEB-INF/, which contains the following files and
directories:

• web.xml: the Web application deployment descriptor. It describes the
structure of the Web application.

• Tag library descriptor files.

• classes/: a directory that contains server-side classes: servlet, utility
classes, and Java Beans components.

• lib/: a directory that contains JAR archives of libraries (tag libraries and
any utility libraries called by server-side classes).

web.xml File
Every Web application deployed in a servlet container must have a web.xml file
present in its WEB-INF/ directory. The structure of every web.xml conforms to a
DTD published as part of the J2EE specification.

The purpose of the web.xml is to specify the general configuration of the Web
application as required by the J2EE standard. Specifically:

• initialization parameter values are provided for the Web application

• servlet classes used by the Web application may be declared and given
names

• each servlet class is mapped to one or more URL patterns: when the
servlet container receives a request whose URL matches a pattern defined
in the web.xml file, then the corresponding servlet is used to process the
request

• initialization parameter values are provided for each servlet if required
erling Multi-Channel Selling Solution Developer Guide

JSP Pages
• session information (such as time out)

• the location of custom tag libraries used by the JSP pages

JSP Pages
Early Java-based Web applications used only servlets to generate the HTML that
was sent back to users’ Web browsers. Over time, template mechanisms were
introduced that enabled Web developers to generate dynamic content by using
templates to generate the HTML. Several such template systems are available,
however the J2EE architecture has settled on the use of JSP (JavaServer pages)
pages to display content.

When a J2EE application receives a request from a user’s browser, it first processes
the request to extract parameters from the request and to perform business logic
initiated by the request. Once the processing is complete, the Web application must
dispatch the request to a JSP page: it does this by using a request dispatcher.
Typically, the servlet context invokes a request dispatcher by passing the target JSP
page to the dispatcher and then the request and response objects are forwarded by
the request dispatcher.

A JSP page comprises a combination of HTML, JSP tags, and scripting elements
such as scriptlets.

• HTML: a JSP page can include any amount of normal HTML. This
content is passed right through to the browser page without change.

• JSP tags: tags are used to populate the dynamically-generated HTML with
values calculated as the page is being generated. There are standard JSP
tags such as <jsp:getProperty>, <jsp:include>, and <jsp:forward>. These
are available to anyone creating a JSP page. In addition, you can specify
that your Web application uses one or more custom tag libraries. Each
custom tag library must be declared in the web.xml file for the Web
application and the declaration must specify both the URI for the tag
library and the location of the tag library descriptor (TLD) file.

• Scripting elements: You can intersperse the HTML and JSP tags in a JSP
page with Java code that is contained between the scriptlet opening tag <%

Attention: In the Sterling Multi-Channel Selling Solution, the use of the tag libraries
is now deprecated. For performance reasons, we suggest that you use
scriptlets. JSP tags can still be used in some existing applications or
specialized integration tasks.
Sterling Multi-Channel Selling Solution Developer Guide 3

Introduction to J2EE Web Applications

4 St
(or <jsp:scriptlet>) and the closing tag %> (or </jsp:scriptlet>). Scriptlets
are most commonly used to manage complex flow control in a JSP page.

Note that most JSP scripting elements can be invoked using a shorter form as
described in the following table.

Data is passed to a JSP page using a variety of mechanisms, the most important of
which are implicit objects and beans.

• Implicit objects: Every JSP page provides the Web developer with objects
that can be used to display data on the generated HTML page. The most
important of these are the page, request, session, config, and application
objects.

• Beans: Most of the data generated by the business logic of the application
is passed to the JSP page by adding Java beans to one of the implicit
objects listed above.

Model 2 Architecture
The Sterling Multi-Channel Selling Solution is designed to conform to Sun’s
“Model 2” architecture. In this architecture, three functional components referred to
as the Model, View, and Controller (MVC) partition the functionality of the Web
application into logically distinct components.

TABLE 2. Short Forms of Standard JSP Tags

Short form XML form

<% <jsp:scriptlet>

<%= <jsp:expression>

<%! <jsp:declaration>

<%@ <jsp:directive>
erling Multi-Channel Selling Solution Developer Guide

Controllers
FIGURE 1. Model 2 Architecture
• Model: this component manages the data and business objects that are

used by the system.

• View: this component is responsible for generating the content displayed
to the user.

• Controller: this component determines the logical flow of the application.
It determines what actions are performed on the model and manages the
communication between model and view components.

Controllers
In the Model 2 architecture, controllers are Java classes intended to manage the
processing of an inbound request and then to forward the request to an appropriate
JSP page. The basic structure of a Sterling Multi-Channel Selling Solution
controller follows this form:

public class GenericController extends Controller
{

Sterling Multi-Channel Selling Solution Developer Guide 5

Introduction to J2EE Web Applications

6 St
public void execute() throws Exception
{

//Dispatch some business logic
BizObjs resultBizObjects = calculate();
//Generate the beans
Vector beans = generateBeans(resultBizObjs);
//Attach the beans to the request
attachBeans(beans);
// Dispatch to JSP page
String pageName = choosePageLogic();
// Dispatch to JSP page
Dispatcher rd = request.getDispatcher(pageName);
rd.forward(request, response);

}

protected BizObjs calculate() throws Exception
{

//do some processing
return resultBizObjs;

}

protected Vector generateBeans(BizObjs bizObjs)
{

//create beans from business objects
return beans;

}

protected void attachBeans(Vector beans)
{

Iterator it = beans.iterator();
while (it.hasNext())
{

DataBean bean= (DataBean) it.next();
request.setAttribute (beanName, bean);

}
}

protected String choosePageLogic()
{

//logic to determine where to forward the request
return pageString;

}
}

erling Multi-Channel Selling Solution Developer Guide

Model
Model
In the Model 2 architecture, the objects that represent data in the system are
maintained by the model component. It is common to distinguish the business
objects from the beans used in the JSP pages.

Once the business logic finishes creating and transforming the business objects, the
controller class transforms the business objects into their corresponding beans. The
beans are then passed to the JSP page for presentation.

View
The user interface of the Web application is served to the browser using JSP pages.
Data is passed to each JSP page in the form of beans. These are classes with defined
accessor methods that enable the logic on the JSP page to retrieve values using tags
of the general form:

<%
DataBean dataBean = request.getAttribute("nameOfBean");
String stringProperty =

dataBean.getNamedProperty("nameOfProperty");
%>

Note that it is possible to use a combination of scriptlets, simple JSP tags, and more
sophisticated custom tags to manage page layout and the display of data.

Further Reading
The published literature on Web applications, J2EE, servlets, and JSP pages is vast.
The following are recommended books for further reading:

• Hall, Core Servlets and JavaServer Pages, Second Edition, Prentice Hall,
2003

• Hunter, Java Servlet Programming, Second Edition, O’Reilly, 2001

• Fields and Kolb, Web Development with JavaServer Pages, Second
Edition, Manning, 2001
Sterling Multi-Channel Selling Solution Developer Guide 7

Introduction to J2EE Web Applications

8 St
erling Multi-Channel Selling Solution Developer Guide

CHAPTER 2 New Features
This chapter presents an overview of the changes made to the Sterling Multi-
Channel Selling Solution that affect the way you work to implement, customize,
and develop applications. A description of new functionality in Release 8.0 is
documented in the Sterling Multi-Channel Selling Solution Overview Guide.

Segmentation
Data related to user segmentation resides on the segmentation database, which is
distinct from the Knowlegebase used by the application for transactional data. For
performance reasons, we recommend a configuration in which the segmentation
database and the transactional database are on distinct DBMS instances on separate
physical servers. Other possible configurations include two distinct DBMS
instances on a single physical server, and two databases on the same DBMS
instance and same physical server. See Chapter 9 “Segmentation Database
Schema” in the Sterling Multi-Channel Selling Solution Reference Guide and
Chapter 5 “Installing the Sterling Multi-Channel Selling Solution” in the Sterling
Multi-Channel Selling Solution Implementation Guide for further information

Reporting
Release 8.0 does not support the reporting features of the Sterling Analyzer and the
Actuate software.
Sterling Multi-Channel Selling Solution Developer Guide 9

New Features

10 St
Data Service
Data services provides constants to set default limits on the number of rows to
restore. The DsConstants.USE_DEFAULT constant can be passed as a parameter to
the appropriate setter method of DataContext. See "How do Max Results and Num
Per Page work?" on page 68 for further information.

Web Services
The files for Web Services are now located in the dXML/5.1 directory.

Two new web services have been added: Attribute and AttributeGroup.

See "Web Services" on page 337 for further information.

Wish Lists/Templates/Registries
To support the new Wish List/Template/Registry features, new data objects and
Knowledgebase tables have been created. These extend the OrderInquiryList data
object and the CMGT_OIL table. See "Wish Lists, Templates, and Registries" on
page 457 for further details.

API Changes
The following packages have been added to the API:

com.comergent.api.apps.attribute

com.comergent.api.apps.customerSegmentation

com.comergent.api.apps.giftCard

com.comergent.api.apps.mktAnalytics.identification

com.comergent.api.apps.mktAnalytics.logging

com.comergent.api.apps.mktMgr.mailingList

com.comergent.api.apps.pricingMgr.pricingService.bizlet

com.comergent.api.apps.profileMgr.userMgr.sync

com.comergent.api.apps.registry

com.comergent.api.apps.templatecarts
erling Multi-Channel Selling Solution Developer Guide

Software Development Kit
com.comergent.api.apps.wishlist

com.comergent.api.appservices.attributeService

com.comergent.api.appservices.availability

com.comergent.api.appservices.customerSegmentation

com.comergent.api.appservices.customerSegmentation.bizlet

com.comergent.api.appservices.customerSegmentation.helper

com.comergent.api.appservices.customerSegmentation.registry

com.comergent.api.appservices.payment.giftCard

com.comergent.api.appservices.productService.sync

com.comergent.api.appservices.sync

com.comergent.api.appservices.trackingService

com.comergent.api.appservices.uiComponent

com.comergent.api.cipherupdater

com.comergent.api.segmentation

com.comergent.api.tools.columnEncrypter

com.comergent.api.tools.columnEncrypter.exception

See the Javadocs for details about the classes and interfaces included in each of the
new packages.

For information about packages that have changed names or classes that have
changed packages from previous releases see "Upgrading the Sterling Multi-
Channel Selling Solution" on page 163.

Software Development Kit
All the SDK targets in SDK 3.4 are still supported in SDK 3.5 and the behavior of
these targets has not changed.
Sterling Multi-Channel Selling Solution Developer Guide 11

New Features

12 St
The following new targets have been added to SDK 3.5:

See the Sterling Multi-Channel Selling Solution SDK Guide for further information
about these targets.

TABLE 3.

Target Description

addMigrateSegData Updrades the Segmentation data from one release to another

createSegDB Creates the database tables for the Segmentation DB

loadMatrixSegDB Loads the Matrix reference data into the Segmentation DB

loadSegDB Loads the minimal dataset into the Segmentation DB

MigrateSegDB Updrades the Segmentation DB schema from one release to
another

setupDB Creates the Transactional DB schema and loads minimal
dataset

setupMatrixDB Creates the Segmentation DB schema and loads the Matrix
reference data
erling Multi-Channel Selling Solution Developer Guide

CHAPTER 3 System Architecture
This chapter presents a detailed description of the architecture of the Sterling Multi-
Channel Selling Solution. It assumes a thorough understanding of the J2EE
architecture. It also provides an introduction to some of the important Java classes
used by the Sterling Multi-Channel Selling Solution and its applications.

This chapter is intended to help you if you want to modify or extend existing
Sterling Commerce applications or write new applications. Note that not all parts of
the Sterling Multi-Channel Selling Solution conform to this architectural
description. Legacy components that do not match this architecture need to be
customized by trained Sterling Commerce professional services staff.
Sterling Multi-Channel Selling Solution Developer Guide 13

System Architecture

14 St
FIGURE 2. Sterling Multi-Channel Selling Solution Architecture

Sterling Multi-Channel Selling Solution Web
Application
When you install the Sterling Multi-Channel Selling Solution into your servlet
container, it installs as a WAR file, Sterling.war. When the WAR file deploys, it
erling Multi-Channel Selling Solution Developer Guide

Sterling Multi-Channel Selling Solution Web Application
unjars into a directory called Sterling/. See the Sterling Multi-Channel Selling
Solution Implementation Guide for complete instructions to install the Sterling
Multi-Channel Selling Solution. See the Sterling Multi-Channel Selling Solution
Reference Guide for a complete description of the directory structure under the
Sterling/ directory.

The WEB-INF/ sub-directory contains the web.xml file for the application.

The most important configuration settings in this file are:

• The definition of the InitServlet and DispatchServlet:

• InitServlet loads when the servlet container starts. InitServlet reads in all
of the configuration information for the Sterling Multi-Channel Selling
Solution using the value of the propertiesFile element: by default this is
Comergent.xml. See the Sterling Multi-Channel Selling Solution
Reference Guide for a complete description of the configuration files and
their settings.

• DispatchServlet is the main servlet used to process inbound requests. Most
of the URLs defined in the servlet mapping section resolve to the
DispatchServlet.

• The servlet mapping section maps most URL patterns to the
DispatchServlet. Note that “/msg/*” is used to map requests to the
MessagingServlet: this ensures that inbound XML messages are processed
by this servlet class.

• The session configuration element sets a session timeout value of 30
(minutes). Each implementation of the Sterling Multi-Channel Selling
Solution must carefully consider an appropriate value for this parameter.
Bear in mind the following:

• End users of the system may leave their browsers unattended while they
step away from their desks. If an unscrupulous user can access the browser
when a session is still valid, then they can access the system.

• End users may punch out to other external systems in the course of using
the Sterling Multi-Channel Selling Solution. The session timeout value
must give enough time for users to punch out and return.

• Each session uses system resources. The greater the session timeout value,
then the greater the memory usage of the system.

• The location of the Comergent tag library descriptor (TLD) file is
provided. The Comergent tag libraries are documented in CHAPTER 30,
Sterling Multi-Channel Selling Solution Developer Guide 15

System Architecture

16 St
"Comergent Tag Library" and CHAPTER 31, "Comergent Internet
Commerce Tag Library".

Processing Requests
When the Sterling Multi-Channel Selling Solution receives a request from a user’s
browser, it must determine how to process the request and how to display the result
to the user. It does this using the MessageTypes.xml configuration files. These files
determine the mapping between a request and the logic processing classes and JSP
pages used.

1. When a request is received, the message type is identified and the appropriate
controller invoked.

2. Additional business logic may be invoked using a business logic or bizAPI
class.

3. The controller then forwards the request to the specified JSP page to render the
output back to the user’s browser.

The messageTypeFilename element of the GeneralObjectFactory element of the
Comergent.xml file specifies the comma-delimited list of MessageTypes.xml file
used to specify the message types. Each MessageTypes.xml file declares a list of
message types organized by message group.

Each request specifies the message type as the cmd parameter. For example, if the
URL is of the form:

../Sterling/catalog/matrix?cmd=search

then the name of the message type is “search”.

Each message type is identified by the Name attribute of its MessageType element.
The Name attribute identifies which message type is being requested when a user
clicks a URL.

Attention: You must make sure that each message group and message type have a
unique name. You must check the collection of MessageTypes.xml files
to ensure that you have not defined message groups and message types
with the same name. See "Overriding MessageType Definitions" on
page 17 for an exception to this rule.

We suggest that you list message types alphabetically by name within
message groups as a means of quickly identifying the duplication of mes-
sage type names.
erling Multi-Channel Selling Solution Developer Guide

Processing Requests
MessageType elements have one or more of the following child elements:

• BizletMapping: used for message processing, it associates a Bizlet class
and a method of this class to process the message.

• BLCMapping: associates a business logic class (BLC) to be used to
process the request.

• ControllerMapping: associates a controller to be used to process the
request. For message processing, you can specify a BizRouter class to
invoke a Bizlet class to process the message.

• JSPMapping: associates a JSP page to be used to display the result of
processing the request.

See CHAPTER 5, "Bizlets" for more information about the use of bizlets. A
MessageType element may specify any combination of these three elements.

• If no ControllerMapping element is specified, then, by default, the
ForwardController class is used. This class simply forwards the request to
the JSP page specified by the JSPMapping element. If no JSPMapping
element is found or if the specified JSP page is missing, then an error page
is displayed.

• If the SimpleController is specified in the ControllerMapping element,
then the business logic class specified by the BLCMapping element is
invoked to process the request (see "Business Logic Classes" on page 26).

• If a custom controller is specified, then it may process the request itself
(see "Controller Classes" on page 21), or it can invoke a business logic
class using the runAppJob() method of the AppExecutionEnv class (see
"AppExecutionEnv Class" on page 26).

• If no JSPMapping element is specified, then the business logic class or
controller must specify which JSP page is to be used.

Each request or message is validated against the entitlements system to verify that
the user can execute the message type. Not all users can execute all message types:
see the Sterling Multi-Channel Selling Solution Reference Guide for a discussion of
how the entitlements mechanism manages message types as part of the security of
the Sterling Multi-Channel Selling Solution.

Overriding MessageType Definitions
The MessageType element has an optional attribute: IsOverlay. If this attribute is
set to “true”, then the MessageType definition overrides any previous definition of
Sterling Multi-Channel Selling Solution Developer Guide 17

System Architecture

18 St
this message type given in any earlier MessageTypes.xml file listed in the
messageTypeFilename element.

If two or more definitions are given for the same message type without one
specifying the isOverlay attribute, then an initialization error is displayed and the
first definition of the message type is used.

Note that the IsOverlay attribute does not change the location of the MessageType:
this is still determined by the message group to which the first definition belongs or
by the MessageTypeRef element that references the message type.

 For example, to override the definition of the adirectLogin message type, you can
define an element as follows:

<MessageType Name="adirectLogin" IsOverlay="true">
<ControllerMapping>

com.comergent.apps.common.controller.MyLoginController
</ControllerMapping>
<JSPMapping>../common/adirectPageLoader.jsp</JSPMapping>

</MessageType>

The IsOverlay attribute can also be used for MessageGroup declarations so that you
can overwrite the definition of a message group, but its use is not recommended.

Default Elements
For each message group, you can specify default BizletMapping, BLCMapping
(deprecated), ControllerMapping, and JSPMapping elements. These are used when
no mapping is specified for a message type that belongs to the message group.

In general, if no default mapping is specified in a message group, then the system
looks for a default mapping in the parent message group of the current message
group. If no mapping is found anywhere in the message group tree, then values
specified in the MessageGroupDefaults message group are used.

Key Java Classes
At a schematic level, the Sterling Multi-Channel Selling Solution applications all
have the same structure: they are composed of controllers, business objects and
business logic classes (BLCs), and JSP pages.

Wrapper Classes
Several of the standard classes used in J2EE Web applications have been wrapped
in wrapper classes to manage any minor idiosyncrasies among the supported servlet
containers:
erling Multi-Channel Selling Solution Developer Guide

Key Java Classes
ComergentContext
This class is used to wrap the servlet container context. You can use it to retrieve
the Env object for environment information. Note that any context attribute that is
set must be serializable. An exception is thrown if you attempt to set a non-
serializable attribute.

It provides the getResourceAsStream() method: this method can be used to access a
file as a stream for read-only access. You must use the adjustFileName() method of
the LegacyFileUtils class for write access to a file.

ComergentDispatcher
This class is a lightweight wrapper of the standard RequestDispatcher class: it
provides forward() and include() methods.

ComergentRequest
This class wraps the standard HttpRequest class and provides helper methods to
parse the inbound requests and messages.

ComergentResponse
This class wraps the standard HttpResponse class. It provides a localRedirect()
method to pass a request with a new message type. For example, you may want a
controller to process a request, and then to pass the result on to another controller:
you do this by calling:

response.localRedirect(request, "messageType");

This has the effect of submitting the request to the DispatchServlet as if it had been
received as an HTTP request.

ComerentSession
This class wraps the standard HttpSession class. When a user first logs in, a User
data bean is created and added to the ComergentSession object. You can access user
information through the ComergentSession getUser() method.

For example:

session.getUser().getUserKey()

will return the current user’s key; and

session.getUser().getPartnerKey()

returns the key of the partner to whom the user belongs.

The ComergentSession object is used to store information that must be persistent
for more than one request of a user’s session. Use the
Sterling Multi-Channel Selling Solution Developer Guide 19

System Architecture

20 St
setAttribute(String s, Object o) method to set an object in the session and
getSession(String s) to retrieve it. Objects stored in the session must implement the
Serializable interface: all generated data beans implement this interface and so
these may be stored in the session.

The ComergentSession class also provides a logout() method: invoking this method
immediately invalidates the servlet container session.

Servlets
The main servlets used are:

• InitServlet: this servlet loads when the servlet container starts. Its
init(ServletConfig config) method initializes the ComergentAppEnv class.

• DispatchServlet: this servlet is used to service almost all requests
processed by the Sterling Multi-Channel Selling Solution. Its principle
method call is:

void dispatch(HttpServletRequest request, HttpServletResponse
response)

This method creates a controller to handle the request with:
Controller controller createController(ComergentRequest comergen-
tRequest)

and then invokes:
controller.init(comergentContext, comergentSession,

comergentRequest, comergentResponse);
controller.execute();

Note that the instance of the Controller class created by the
createController() method is a function of the request. The request message
type determines the Controller class because the controller is created by the
GeneralObjectFactory class. The GeneralObjectFactory uses the
MessageTypes.xml file to map from the request message type to a
Controller class. See the Sterling Multi-Channel Selling Solution Reference
Guide for more information about the configuration files.

• DebsDispatchServlet: this servlet is used to process XML messages
posted from another system to the Sterling Multi-Channel Selling
Solution. If the content type of the request starts with “application/x-icc-
xml” or “text/xml”, then it invokes the MessagingController to process the
request.
erling Multi-Channel Selling Solution Developer Guide

Key Java Classes
Controller Classes
The Sterling Multi-Channel Selling Solution offers two different ways of using
controllers to process requests:

Custom Controllers
You can write your own Controller class by extending the
com.comergent.dcm.caf.controller.Controller class. When you do this, you must
provide the application logic to determine the JSP page to which the request should
be forwarded. For example:

boolean processingSuccess = false;
/*
 *
 * Business logic processes request and sets processingSuccess to
 * true if successful.
*/

if (processingSuccess)
{

callJSP("SuccessMessageType");
}
else
{

callJSP("FailureMessageType");
}

protected void callJSP(String messageType) throws
ControllerException, ICCException, IOException

{
String resource = getJSPName(messageType);
ComergentDispatcher rd =

request.getComergentDispatcher(resource);
rd.forward(request, response);

}

protected String getJSPName(String messageType) throws ICCException
{

JSPObjectID id = new JSPObjectID(messageType);
return GeneralObjectFactory.getGeneralObjectFactory().-

getMapping(id);
}

SimpleController
You can extend the SimpleController class to process the request if there is only
one exit point from the application logic. The SimpleController uses the message
type of the request to determine the JSP page to which the request is forwarded
Sterling Multi-Channel Selling Solution Developer Guide 21

System Architecture

22 St
once the application logic is finished. To extend the SimpleController class,
overwrite the calculate() method.

MessagingController
This class is used to process XML requests (such as price and availability or
shopping cart transfer requests from other systems).

DataBean Classes
Access to data in the Sterling Multi-Channel Selling Solution is managed through
data objects: these are XML documents that describe the business entities such as
partners, users, products, and so on. They describe the fields of the data object
together with information about how they map to database tables in the
Knowledgebase. Each data object XML file is used to generate a corresponding
DataBean Java class.

The DataBean classes are the main classes used to represent each business entity in
the Sterling Multi-Channel Selling Solution. Each business entity such as a user,
partner, product, and so on, is represented in memory by an instance of the
appropriate DataBean class. See CHAPTER 6, "Introducing Data Beans and
Business Objects" for more information. Some legacy application may still use the
BusinessObject class, but in general the use of the BusinessObject class is
deprecated.

DataBean classes are also used to pass data to JSP pages. Any data object definition
in the Sterling Multi-Channel Selling Solution XML schema may be used to
generate a DataBean class by running the generateBean target (see the CHAPTER
14, "Software Development Kit" for more details).

The DataBean class is a general abstract class and all generated data bean classes
extend this class. Each DataBean class provides restore() and persist() methods that
retrieve and save data in the database respectively.

Some applications make use of application beans: see "Application, Entity, and
Presentation Beans" on page 71 for a discussion of how these beans are used.

ObjectManager and OMWrapper Classes
In Release 8.0, you should not instantiate DataBean classes by using their
constructors. Instead use the ObjectManager and OMWrapper classes to create new
instances of objects as your applications require them. These classes follow the
Factory pattern in that they provide a class designed to generate object instances as
they are required. They enable you to switch from one object class to another
without changing the application code that creates and uses the objects.
erling Multi-Channel Selling Solution Developer Guide

Key Java Classes
Creating Objects
In general, you should use the OMWrapper class rather than the ObjectManager
class, but both can be used. You use these classes to create objects with the
following methods:

ObjectClass temp_ObjectClass =
(ObjectClass) OMWrapper.getObject("ObjectName");

or

ObjectManager temp_ObjectManager = ObjectManager.getInstance();
ObjectClass temp_ObjectClass =

(ObjectClass) temp_ObjectManager.getObject("ObjectName");

Mapping Object Names to Object Classes
The ObjectManager and OMWrapper classes use the ObjectMap.xml
configuration file (located in debs_home/Sterling/WEB-INF/properties/) to
determine which type of object is created from the object name provided in the
getObject() method.

Each Object element is of the form:

<Object ID="ObjectName">
<ClassName>ObjectClass</ClassName>

</Object>

When the getObject("ObjectName") method is invoked, an instance of the
ObjectClass class is returned. The ObjectName must be the name of a Java class or
interface and the ObjectClass must be a subclass of the ObjectName class (possibly
itself) or a class that implements the ObjectName interface.

If the ObjectMap.xml file does not have an Object element whose ID attribute
matches the ObjectName parameter, then the ObjectManager or OMWrapper
creates an instance of the ObjectName class. That is, it behaves as if there is an
element of the form:

<Object ID="ObjectName">
<ClassName>ObjectName</ClassName>

</Object>

For example, suppose that the ObjectMap.xml file contains the element:

<Object ID="com.comergent.bean.productMgr.ProductBean">
<ClassName>

com.comergent.bean.productMgr.MatrixProductBean

Attention: Do not add comments to the ObjectMap.xml file: these can cause errors
on initialization.
Sterling Multi-Channel Selling Solution Developer Guide 23

System Architecture

24 St
</ClassName>
</Object>

Then the following method invocation will create an instance of the
MatrixProductBean class:

ProductBean temp_ProductBean = (ProductBean)
OMWrapper.getObject("com.comergent.bean.productMgr.ProductBean");

Note that the MatrixProductBean must extend the ProductBean class: otherwise a
ClassCastException would be thrown at runtime. However, if there is no element
whose ID attribute is com.comergent.bean.productMgr.ProductBean, then the same
call would return an instance of the com.comergent.bean.productMgr.ProductBean
class.

Restrictions
Note that you cannot create Object definitions so that the class specified in the
ClassName element in one Object element is the ID attribute in another Object
element. The only exception to this rule is when the class is used both as the ID and
ClassName values for a single Object element. In particular, if you extend a data
object (see "Extending Data Objects" on page 65), then:

1. Define an Object element that maps the extended class to the extending class:

<Object ID="<Extended class>">
<ClassName><Extending class></ClassName>

</Object>

2. Make sure that you replace any reference to the extended data object in any
ClassName elements to the extending data object.

Passing Parameters
If you need to pass parameters to the object constructors, then the following
OMWrapper method is also available:

ObjectClass temp_ObjectClass = (ObjectClass)
OMWrapper.getObjectArg("ObjectName", Object arg1, ... ,

Object arg10);

In this form, you can pass up to ten parameters as Objects into the method
invocation. The following OMWrapper and ObjectManager method calls enable
you to pass in an unlimited number of parameters as an array of objects:

ObjectClass temp_ObjectClass = (ObjectClass)
OMWrapper.getObject("ObjectName", Object[] args);

or

ObjectClass temp_ObjectClass = (ObjectClass)
erling Multi-Channel Selling Solution Developer Guide

Key Java Classes
temp_ObjectManager.getObject("ObjectName", Object[] args);

For example, suppose that the ObjectMap.xml file contains the element:

<Object ID="com.comergent.bean.productMgr.OrderBean">
<ClassName>com.comergent.bean.matrix.MatrixOrderBean</ClassName>

</Object>

Here, the MatrixOrderBean class is a subclass of the OrderBean class. Suppose that
the MatrixOrderBean has a constructor of the form
MatrixOrderBean(CartBean cb).

Then the following method invocation will create an instance of the OrderBean
class using an instance of the CartBean class as a parameter:

Cart temp_CartBean = (CartBean)
OMWrapper.getObject("com.comergent.bean.partnerMkt.CartBean");

/*
Code that processes the cart bean object

*/
OrderBean temp_OrderBean = (OrderBean)

OMWrapper.getObjectArg("com.comergent.bean.productMgr.OrderBean",
temp_CartBean);

Object Pooling
If you expect some classes of object to be created and used frequently, then you can
use the ObjectManager and OMWrapper classes to create a pool of objects. The
parent object (identified by the ID attribute) must implement the poolable interface.
This interface is a part of the com.comergent.dcm.objmgr package. It declares one
method reset() that you must implement.

When you are finished with a poolable object, you can return it to the object pool
by using the return() method as follows:

1. In the ObjectMap.xml entry for a pooled class, set the MaxPoolSize attribute
to the number of objects you want created in the pool:

<Object ID="ObjectName" MaxPoolSize="n">
<ClassName>ObjectClass</ClassName>

</Object>

2. Create instances of the object class using OMWrapper and ObjectManager as
described above.

3. When you are finished with the object, then return the instance to the pool
using:

OMWrapper.return(temp_ObjectClass);

4. or
Sterling Multi-Channel Selling Solution Developer Guide 25

System Architecture

26 St
temp_ObjectManager.return(temp_ObjectClass);

Note that if you create an object by passing in parameters as described in "Passing
Parameters" on page 24, then a new object is created rather than re-using an object
from the pool.

Business Logic Classes
Each business logic class (BLC) is a subclass of the BLC abstract class. This
abstract class implements the ApplicationObject interface. BLCs can perform the
business logic of your implementation of the Sterling Multi-Channel Selling
Solution.

Each BLC contains a table of business objects such as session, user, product inquiry
list for example. In executing the service() method of a BLC, it invokes the persist()
and restore() methods of these business objects.

Presentation Logic Classes
Presentation logic classes are deprecated. Do not use them.

AppExecutionEnv Class
The AppExecutionEnv class can be used to run business logic classes. However,
the use of business logic classes is deprecated, so use this class only to support
legacy applications. You use the static methods runAppObj() to invoke the creation
of a business logic class and to execute its prolog and service methods.

In its most common form, you can use:

AppExecutionEnv.runAppObj(String messageType, BizObjTable bizObjects)

The AppExecutionEnv class invokes the business logic class determined by the
messageType string and which takes the BizObjTable vector of business objects as
the input business objects.

AppsLookupHelper Class
There are many situations in the Sterling Multi-Channel Selling Solution where the
status of a data object is managed using a lookup code. For example, the order
status of an order can change several times through the placing of an order. There
are also several examples of display fields such as the Title of a user which can take
several well-defined values and which need to be managed for different locales.
This data is stored in the CMGT_LOOKUPS table of the Knowledgebase database

Note: The use of BLC classes is deprecated. You should use either bizAPI classes
or controllers.
erling Multi-Channel Selling Solution Developer Guide

Key Java Classes
schema. See the Sterling Multi-Channel Selling Solution Reference Guide for
further information about this table.

For each lookup type, there can be one or more lookup codes and each code has an
associated description string. For example:

You can use the AppsLookupHelper class to map a lookup code to a description
string. By invoking the appropriate method of the AppsLookupHelper class, pass in
the lookup code as a parameter and the corresponding String is returned. Depending
on which lookup type you are interested in, you choose the appropriate method for
that lookup type. The method used determines which lookup type is used to retrieve
the lookup code from the CMGT_LOOKUPS table. For example, to retrieve an
order status code string, you can write:

String orderStatusString =
AppsLookupHelper.getOrderStatusForCode(orderStatusCode);

Conversely, you can retrieve the lookup code using:

int orderStatusCode =
AppsLookupHelper.getCodeForOrderStatus(orderStatusString);

Most, though not all, lookup types have helper methods defined. Check the Java
doc for the AppsLookupHelper class for details. For further information, see
"Support for Lookup Codes" on page 33.

ComergentAppEnv Class
Use the ComergentAppEnv class to provide your code with environment
information specific to the application. It provides the following useful methods:

• adjustFileName(): this method has been moved to the LegacyFileUtils
class. See "LegacyFileUtils Class" on page 29.

• constructExternalURL(): use this method to construct a URL that enables
a client to be re-directed back to the server. Primarily, you use this method
to generate a redirect URL to enable the server to restore session
information.

• getEnv(): this method returns the environment object.

TABLE 4. Lookup Example

Lookup Type Lookup Code Description

AddressType 10 Billing

AddressType 20 Shipping
Sterling Multi-Channel Selling Solution Developer Guide 27

System Architecture

28 St
• getContext(): this method returns the application context.

Global Class
The use of this class is deprecated. See "Global Class" on page 471 for a
description of its legacy methods. Its logging function has been replaced by the
log4j API: see CHAPTER 8, "Logging" for more information. Its support for
retrieving the values of properties has been replaced by the Preferences mechanism.
If you need to continue to use code that uses the Global class, then replace each
usage by the LegacyPreferences class.

GlobalCache Interface
This interface is used to define a cache that provides access to cached objects used
by all Sterling Multi-Channel Selling Solution applications. It can be used to
support a clustered environment in which the Sterling Multi-Channel Selling
Solution is running on more than one machine.

To use a cache class that implements the GlobalCache interface, you must
implement the methods of the interface. The cache class is loaded when the
InitServlet init() method is invoked. You must provide the name of the class as the
General.globalCacheImplClass element of the Comergent.xml file. A default
implementation is provided with Sterling Multi-Channel Selling Solution:
com.comergent.dcm.cache.impl.AppContextCache.

You access the implementation of the GlobalCache interface by:

GlobalCache globalCache = ComergentAppEnv.getGlobalCache();

The interface supports the following methods:

• public String store(Serializable entry): stores an object in the global cache,
which remains until the application cleans it up.

• public boolean store(String id, Serializable entry): stores an object in the
global cache, which remains until the application cleans it up.

• public String cache(Serializable entry): stores an object in the global
cache. The object is available as long as the application is using it, but the
cache system cleans it up automatically.

• public String cache(Serializable entry, long lease)

• public boolean cache(String id, Serializable entry)

• public boolean cache(String id, Serializable entry, long lease)
erling Multi-Channel Selling Solution Developer Guide

Key Java Classes
• public boolean contains(String id): checks if the cache contains the
specific object.

• public Object get(String id): retrieves the cacheable object.

• public Object remove(String id): removes a cacheable object.

• public boolean gc(): This method should be called by a Cron job so the
cache can clean up unused entries.

LegacyFileUtils Class
The LegacyFileUtils class provides helper methods for working with files. Its use is
deprecated, but it provides support for methods previously provided by the
ComergentAppEnv class:

• adjustFileName(): It returns the real path name of a file. Use this method
to access files for either reading or writing: do not use the getRealPath()
method because this can return null.. In a clustered envrionment, the
adjustFileName() method ensures that all members of the cluster access
the same file. You must use this method with four parameters:

adjustFileName(String fileName, boolean share, boolean xPublic,
boolean xLoadable);

Use of the one-parameter form of this method is deprecated. The boolean
parameters are used to determine the location of the file using the
configuration parameters specified in the WritableDirectory element of the
web.xml file.

OutOfBandHelper Class
The OutOfBandHelper class provides a means to generate an output stream using a
JSP page as a template. An example of its use is given here:

ComergentRequest request = ComergentAppEnv.getRequest();
ComergentResponse response = ComergentAppEnv.getResponse();
ByteArrayOutputStream stream = new ByteArrayOutputStream();
OutOfBandHelper outOfBandHelper = new OutOfBandHelper(request,

response, stream);
outOfBandHelper.getRequest().setAttribute(

ComergentRequest.COMERGENT_SESSION_ATTR,
request.getComergentSession());

outOfBandHelper.callJSP(messageType);
/*
 * Initialize SendSMTP and use the stream to to set the body of the
 * message
*/
String mimeType = "text/html";
Sterling Multi-Channel Selling Solution Developer Guide 29

System Architecture

30 St
String smtpHost = Global.getString(
"C3_Commerce_Manager.SMTP.SMTPHost");

SendSMTP smtp = new SendSMTP(smtpHost);
StringBuffer sb = new StringBuffer(subject);
String message = null;
String enc = ComergentI18N.getComergentEncoding();
message = stream.toString(enc);
//Send the mail
smtp.send(from, to, cc, subject, message, mimeType);

In this example, you can see how the OutOfBandHelper class is initialized using
the existing request and response objects and an output stream. Its callJSP()
method, generates the output stream by passing the request and response objects to
the JSP page determined by the message type parameter, and the output stream can
be used by the application to retrieve the content.

The OutOfBandHelper class makes use of session and context information when
mapping a message type to a JSP page. Consequently, you can use different JSP
pages for different locales in the same way as you do for processing browser
requests and the OutOfBandHelper class will resolve which locale’s JSP page to
use and apply the same failover logic as described in "Failover Behavior" on
page 418.

Preferences Class
The Preferences module provides the mechanism for accessing Sterling Multi-
Channel Selling Solution properties. It is one of the modules provided in the
platform modules: see "Preferences Service" on page 46 for more information. The
basic usage of the Preferences API is as follows:

private static Preferences temp_Preferences =
Preferences.getPreferences();

String temp_MyPropertyString =
temp_Preferences.getString("MyProperty");

The main methods it supports to retrieve properties are:

• public String getString(String key, String def)

• public boolean getBoolean(String key, boolean def)

• public double getDouble(String key, double def)

• public float getFloat(String key, float def)

• public int getInt(String key, int def)

• public long getLong(String key, long def)
erling Multi-Channel Selling Solution Developer Guide

Key Java Classes
There are corresponding putType() methods for each getType() method: for
example:

• public void putString(String key, String value)

If you invoke the getPreferences() method without a parameter, then you retrieve
the singleton Preferences object that the Sterling Multi-Channel Selling Solution
supports. If you pass in the name of a class (for example
getPreferences(MyClass.class)), then the object you retrieve is scoped: that is, the
name of the properties whose values you retrieve using the Preferences object have
the package path of the class prepended to the property name you provide.

For example, suppose that MyClass is in the com.comergent.myApplication
package. Then the following fragments of code are equivalent:

private static Preferences temp_Preferences =
Preferences.getPreferences();

String temp_MyPropertyString =
temp_Preferences.getString("com.comergent.myApplication.MyProperty");

and:

private static Preferences temp_Preferences =
Preferences.getPreferences(com.comergent.myApplica-

tion.MyClass.class);

String temp_MyPropertyString =
temp_Preferences.getString("MyProperty");

PriceCheckAPI Class
The PriceCheckAPI class provides the main means for applications to retrieve
pricing information for products. It provides a number of static methods: these take
as arguments a Vector of pricing line items and partner keys for the current user and
the partner serving up the prices: either the enterprise or one of the Partner.com
partners.

The main method is Check(): this method has several forms, but in general they all
specialize the following method:

public static Vector Check (Vector lineItems, Timestamp date,
Long partnerKey, Long storeFront, Long verticalKey,
Long currencyKey)

All products must be passed in the Vector of pricing line items: these are objects of
the PricingLineItem class. You can specify a quantity in each pricing line item. The
date parameter enables you to retrieve prices as they would appear on a specified
date: if the parameter is null, then the current date is used. The partnerKey
parameter is the partner key of the user whereas the storeFront parameter is the
Sterling Multi-Channel Selling Solution Developer Guide 31

System Architecture

32 St
partner key of the current storefront: that is, think of the partnerKey as representing
the buyer and the storefrontKey as the seller. The verticalKey parameter is the key
of the current customer type and currencyKey is the key of the current currency.

It also provides methods to retrieve a list of price lists:

• getAssignedPriceListKey() returns a List of all price list keys assigned to
the partner of the current user regardless of the current selection of
currency and customer type.

• getInContextPricePriceListKey() returns a List of all price list keys
assigned to the partner of the current user based on the session settings for
currency and customer type.

Transactions
The Sterling Multi-Channel Selling Solution for provides support for transactions:
database actions that span one or more atomic operations. In general, you use the
Transaction class to manage situations in which several data objects must be
persisted together, and if one fails, then they should all fail. See "Transactions" on
page 297 for more information.

Message Conversion Classes
Converter Classes
The Sterling Multi-Channel Selling Solution must be able to transform XML
documents from one form to another. The system uses converters for this purpose:
these are classes that implement the Converter interface.

Message Categories
In order to convert from one document format to another, you must specify the
source and target formats precisely. Each message must belong to a message family
and a message version: together these define a message category. There can only be
one form of a given message type within a message category.

For example, the message family dXML and the message version 5.0 uniquely
determine a message category. Within this message category, there is only one form
of the message type ShoppingCartTransfer.

Note: The converter makes use of stylesheets: these can be compiled into Java
classes. A system property setting, compileStyleSheets, controls whether the
stylesheets are compiled or not.
erling Multi-Channel Selling Solution Developer Guide

Support for Lookup Codes
Converter Interface
The Converter interface is defined by:

public interface Converter
{

public void setConfig(MessageConversion mc);
public MessageConversion getConfig();
public Object getProperty(String name);
public void setNext(Converter next);
public Converter getNext();
public String getIncomingMessageType();
public String getConvertedMessageType();
public void setSource(Document doc);
public void setSource(InputStream is);
public void setSource(Reader reader);
public void setSource(DefaultHandler handler);
public void setTarget(Document doc);
public void setTarget(OutputStream os);
public void setTarget(Writer writer);
public void setTarget(DefaultHandler handler);
public void setParameter(String paramName, String paramValue);
public void convert() throws ConverterException;

}

To create a converter class, you must implement these methods. In your code, you
create a converter using the ConverterFactory:

ConverterFactory cf = ConverterFactory.getConverterFactory();
Converter converter = cf.getConverter(String sourceMsgType,

String sourceMsgCategory, String targetMsgCategory);

The static getConverter() method of the ConverterFactory class uses several
parameters to identify which Converter class should be instantiated. It reads from
the MessageMap.xml using the source and target message categories together with
the message types to determine which Converter class must be used. Once created,
the converter converts from a source document to a target document:

converter.setSource(srcDoc);
converter.setTarget(targetDoc);
converter.convert();

Note that the input and ouptut to the conversion process can either be documents or
streams.

Support for Lookup Codes
The Sterling Multi-Channel Selling Solution uses lookup codes to provide a
mechanism for maintaining and displying locale-specific strings to users. For each
Sterling Multi-Channel Selling Solution Developer Guide 33

System Architecture

34 St
lookup type, you can define one or more lookup codes, and for each lookup code,
you can define a string for each supported locale. See the Sterling Multi-Channel
Selling Solution Reference Guide for more information.

What lookup support does the Sterling Multi-Channel Selling Solution
provide?
The Sterling Multi-Channel Selling Solution has the capability of automatically
providing lookups between code values and their corresponding strings and from
lookup code strings to code values.

If the “code” DsElement is set, then the “string” is automatically populated from
the lookup cache. If the “string” value is set, then the “code” is looked up using the
string value.

Are string values localized?
Yes. For a code-to-string lookup, the mechanism uses the user’s locale to determine
which string value to use. For a string-to-code lookup, the mechanism uses the
user’s locale when searching on a string value to find a corresponding code.

How do I define a code to string mapping?
Code-to-string relationships are defined in the DsDataElement.xml schema file. If
both of the “code” and “string” DsDataElements are then used in a data object, then
the code-to-string mapping is handled automatically.

The following is an example of a DataElement code-string pair.

<DataElement Name="OrderStatus" Description="Order Status"
DataType="LONG" MaxLength="20" LookupType="OrderStatus"
LookupString="OrderStatusString"/>

<DataElement Name="OrderStatusString" Description="Order Status"
DataType="STRING" MaxLength="260" LookupType="OrderStatus"
LookupCode="OrderStatus"/>

Are lookups performed for XML messages?
Yes. If a dataobject used for messaging contains a code-string pair, then the string
value will automatically be used to look up the code.

How is the lookup cache loaded?
The lookup cache is loaded at system startup.
erling Multi-Channel Selling Solution Developer Guide

CHAPTER 4 Platform Modularity
The Sterling Multi-Channel Selling Solution modular architecture is designed to
make implementations easy to customize and upgrade. This chapter provides an
overview of modular architecture, platform modules, and the module interfaces,
and descibes each module. It covers the following topics:

• "Overview" on page 36

• "Platform Modules" on page 37

• "Access Policy" on page 38

• "Authentication" on page 38

• "Base64" on page 38

• "Classpath Appender" on page 39

• "Cryptography Service" on page 39

• "Data Services" on page 39

• "Dispatch Authorization" on page 39

• "Dispatch Framework" on page 39

• "Email Service" on page 39

• "Event Service" on page 39
Sterling Multi-Channel Selling Solution Developer Guide 35

Platform Modularity

36 St
• "Exception Service" on page 39

• "Global Cache Service" on page 40

• "Help" on page 40

• "Initialization Service" on page 40

• "Internationalization" on page 42

• "Logging" on page 42

• "Memory Monitor" on page 45

• "Message Type Entitlement" on page 45

• "Object Manager" on page 45

• "Out Of Band Response" on page 46

• "Preferences Service" on page 46

• "Tag Libraries" on page 47

• "Thread Management" on page 47

• "XML Message Converter" on page 48

• "XML Message Service" on page 48

• "XML Services" on page 49

Overview
The Sterling Multi-Channel Selling Solution platform architecture enables building
the platform in a more modular way, so that changes and upgrades to the platform
can be made more quickly and simply, and so that the modules can be re-used to
support different products built using them.

The benefits of providing a means of delivering platform functionality in platform
modules and requiring that modules make calls to other modules only through their
external interfaces areas follows:

• It is easier to compartmentalize the functionality of applications.

• It is easier to understand and manage the dependencies between parts of
the Sterling Multi-Channel Selling Solution.

• It is easier to contain the customizations to single modules and understand
what effect changes made in a module have on the whole system.
erling Multi-Channel Selling Solution Developer Guide

Platform Modules
• Modules can be more easily upgraded independently of each other,
minimizing the effect that an upgrade may have.

• Upgrades to modules that have not been customized will not affect
customizations made in other modules.

• New functionality can be delivered in the form of a module that may be
dropped into an existing deployment of the Sterling Multi-Channel Selling
Solution.

Platform Modules
The Sterling Multi-Channel Selling Solution platform is developed as a set of
interdependent modules that conform to a common organizational structure. In
general, each platform module corresponds to a functional component of the
Sterling Multi-Channel Selling Solution such as a service or a component of the
Sterling Multi-Channel Selling Solution platform. The platform modules provide a
Java API to other modules. Some modules provide a set of “helper” classes which
are used by a number of other modules.

In general, each platform module has the following structure:

• Java classes: organized into the following trees. At build time, the
directories for the module are assembled into a single JAR file.

• com.comergent.api.module: external API interfaces: used by other
modules to access functionality provided by the module. In general, when
one module makes a call to another module’s class, it must do so through
the other module’s external API. This is the com.comergent.api package
for the module.

• com.comergent.module: implementation classes: the implementation of
the external API interfaces. When another module makes a call to the
module’s external API, then the actual classes used are the implementing
classes of the module’s interface. The implementation packages may
include internal classes: used by the implementation classes, but not
exposed to the outside world and not part of the supported Javadoc.

• Configuration files specific to the module such as properties files. These
are intended to live in the class hierarchy so that they can be referenced
through getResource() calls.
Sterling Multi-Channel Selling Solution Developer Guide 37

Platform Modularity

38 St
Module Interfaces
Each platform module must provide an external interface so that all calls to Java
classes and interfaces within the module are invoked through the interface. This
external interface provides a comprehensive set of Javadoc pages so that writers of
other modules can use the external interface reliably and easily.

The external interfaces are organized under the following main packages:

• com.comergent.api: this package has all the external APIs supported by
the modules. These are organized by module:
com.comergent.api.converter, com.comergent.api.logging, and so on.

Invoking Interfaces
You can invoke an interface from a Java class by casting any object or child
interface to the interface and then invoke any method that the interface declares.
Each module uses one or other of these techniques, but not both. As you work on an
existing module or create a new one, be consistent in how you invoke the
interfaces. It will make it easier for your colleagues to work on the same module.

In general, you should always try to work with interfaces provided by the
com.comergent.api packages: these are the interfaces that the platform modules
will support from one release to the next, even though the underlying
implementations of the interfaces may change.

Platform Module Descriptions
This section provides a brief description of the purpose of each platform module
and examples of its use.

Access Policy
This module provides the service used to check access policies.

Authentication
This module provides the APIs used to authenticate credentials and users.

Base64
This module provides the classes used to convert data to and from Base 64 notation.
erling Multi-Channel Selling Solution Developer Guide

Platform Module Descriptions
Classpath Appender
This module provides classes used to add paths to the classpath.

Cryptography Service
This module provides the services used to encrypt and decrypt data. See the
Sterling Multi-Channel Selling Solution Implementation Guide for more
information on this subject.

Data Services
This module provides a re-packaging and clean-up of the existing data services
functionality. Its API has been moved out to a separate
com.comergent.api.dataservices package. Data services now uses the same
preferences mechanism as the rest of the Sterling Multi-Channel Selling Solution to
manage its properties. Connection pooling has been unified into one pool, and is
tunable. Pagination has been updated, and no longer relies on pagination files being
written to the file system.

Dispatch Authorization
This module manages access checking that enusres that each user sees only those
parts of the application to which they have been granted access.

Dispatch Framework
This module manages the dispatch framework of the Sterling Multi-Channel
Selling Solution classes that wrap the servlet request, response, context, and session
classes together with the base controller classes used by the dispatch mechanism.

Email Service
This module provides the basic APIs to initiate sending email from the Sterling
Multi-Channel Selling Solution.

Event Service
This module provides the classes used by the EventBus and Events. See CHAPTER
9, "Events" for more information on how to use events.

Exception Service
This module provides the basic exception framework and classes used by the
Sterling Multi-Channel Selling Solution.
Sterling Multi-Channel Selling Solution Developer Guide 39

Platform Modularity

40 St
Global Cache Service
This module provides the APIs to be used to access the cache.

Help
This module provides the ComergentHelpBroker class: this is a simple wrapper
class to the ServletHelpBroker class of the JavaHelp 2.0 implementation. See
"Online Help" on page 263 for more information.

Initialization Service
The Initialization module provides the Initialization service. This is a package that
helps you initialize the Sterling Multi-Channel Selling Solution using a consistent
framework of classes and methods.

The Initialization Manager provides a focal point in which:

• Initialization tasks can be defined

• Policy on failed initialization can be enforced

• Configuration fragments can be aggregated

The Initialization Manager main responsibility is to act on a list of initialization
tasks in a well-defined and predictable manner. That implies an ordered list which:

• either, can be defined programatically

• or, can be specfied as an XML-format file

The following code extract provides a typical example of using the InitManager
class.

InitManager initManager = InitManager.getInitManager();
try
{

String resourceName = args[0];
initManager.init(resourceName);
// or programatically created
//List modules = initModules();
//ResourceLocator resourceLocator = createNewResourceLocator();
//initManager.init(modules, resourceLocator);

}
catch (InitManagerException ime)
{

log.error(ime, ime);
System.exit(1);

}
// Initialization completed. OK to go on //
erling Multi-Channel Selling Solution Developer Guide

Platform Module Descriptions
...

You can specify the initialization process using an configuration file. Here is a
sample file:

<?xml version="1.0" encoding="UTF-8"?>
<initializationManager>
<resourceLocator>

<path>/a/b/c</path>
<path>.</path>
<path>CLASSPATH</path>
</resourceLocator>

<module name=”ObjectManager”
initClass=”com.comergent.objectManager.InitHelper>
<config name="Preferences">
/com/comergent/objectManager/preferences.xml
</config>
<init-param name=”param0”>param0Value</init-param>

</module>
<module name=”module1” initClass=”com.comergent.module1.InitHelper>

<config name="ObjectManager">
/com/comergent/module1/objectMap.xml

</config>
<config name="MessageTypes">

/com/comergent/module1/messageTypes.xml</config>
<config name="Preferences">

/com/comergent/modules1/preferences.xml
</config>
<init-param name=”param1”>param1Value</init-param>

</module>
<module name=”module2” initClass=”com.comergent.module2.InitHelper>

<config name="ObjectManager">
/com/comergent/module2/objectMap.xml

</config>
<config name="MessageTypes">

/com/comergent/module2/messageTypes.xml
</config>
<config name="Preferences">

/com/comergent/modules2/preferences.xml
</config>
<init-param name=”param2”>param2Value</init-param>

</module>
<!-- it is allowable to have no initClass -->
<module name=”custom1” >

<config name="ObjectManager">
/com/comergent/module1/overlay/objectMap.xml

</config>
</module>
</initializationManager>
Sterling Multi-Channel Selling Solution Developer Guide 41

Platform Modularity

42 St
In this example, when the following method is called by the Initialization Manager:

com.comergent.objmgr.ObjManagerInitHelper.init(initParams,
configFragments, resourceLocator)

the following information is available:

• initParams has a list of key-value pairs: param0-param0Value

• configFragments has a list of:

• /com/comergent/module1/objectMap.xml

• /com/comergent/module12/objectMap.xml

• resourceLocator can find the resource along the path of: /a/b/c, current,
and the current classpath.

Internationalization
This module provides basic support for the internationalization capabilites provided
by the Sterling Multi-Channel Selling Solution. See CHAPTER 32,
"Internationalization" for more details on how this module can be used.

Logging
This module provides access to the logging service used to record activity in the
Sterling Multi-Channel Selling Solution. Its property file, log4j.properties, is used
to configure the behaviour of the logging service. The module is based on the log4j
open source project and uses the same syntax for its configuration as follows:

Log4j has the following main components: loggers, appenders, and layouts. These
three types of components work together to enable developers to log messages
according to message type and level, and to control at runtime how these messages
are formatted and where they are reported.

Configuration
You configure the logging platform module using the log4j.properties configuration
file by specifying the properties of its loggers, appenders, and layout. For example,
the following snippet is used to configure the root logger and the CMGT appender:

Set root category priority
#log4j.rootCategory=info, CMGT
log4j.rootCategory=info, STDOUT
#log4j.rootCategory=info, CMGT, RTS

START - CMGT
CMGT appender
log4j.appender.CMGT=com.comergent.logging.ComergentRollingFileAp-
erling Multi-Channel Selling Solution Developer Guide

Platform Module Descriptions
pender
#log4j.appender.CMGT=com.comergent.logging.ComergentDailyRolling-
FileAppender

#log4j.appender.CMGT.layout=org.apache.log4j.PatternLayout
log4j.appender.CMGT.layout=com.comergent.logging.ConversionPattern

The log format defaults to the "classic" format. This format is
recommended for actual deployment to allow a log analyzer to
work correctly.
log4j.appender.CMGT.layout.ConversionPattern=%d{yyyy.MM.dd
HH:mm:ss:SSS} Env/%t:%p:%c{1} %m%n

Loggers

Loggers are named entities. Logger names are case-sensitive and they follow the
hierarchical naming rule: a logger is said to be an ancestor of another logger if its
name followed by a dot is a prefix of the descendant logger name. A logger is said
to be a parent of a child logger if there are no ancestors between itself and the
descendant logger.

For example, the logger named “com.foo” is a parent of the logger named
“com.foo.Bar”. Similarly, “java” is a parent of “java.util” and an ancestor of
“java.util.Vector”. This naming scheme should be familiar to most developers.

The root logger resides at the top of the logger hierarchy. It is exceptional in two
ways:

• It always exists;

• It cannot be retrieved by name.

Invoking the class static Logger.getRootLogger() method retrieves it. All other
loggers are instantiated and retrieved with the class static
Logger.getLogger(String name) method. This method takes the name of the desired
logger as a parameter. For example:

private static final org.apache.log4j.Logger log =
org.apache.log4j.Logger.getLogger(PriceCheckAPI.class);

log.debug("got current date: " + date);

Loggers may be assigned levels. The set of possible levels, that is DEBUG, INFO,
WARN, ERROR and FATAL are defined in the org.apache.log4j.Level class. If a
given logger is not assigned a level, then it inherits one from its closest ancestor
with an assigned level. More formally:
Sterling Multi-Channel Selling Solution Developer Guide 43

Platform Modularity

44 St
Level Inheritance: the inherited level for a given logger, is equal to the first
non-null level in the logger hierarchy, starting at the logger and proceeding
upwards in the hierarchy towards the root logger.

To ensure that all loggers can eventually inherit a level, the root logger always has
an assigned level.

Appenders

The ability to selectively enable or disable logging requests based on their logger is
only part of the picture. More than one appender can be attached to a logger.

The addAppender method adds an appender to a given logger. Each enabled
logging request for a given logger will be forwarded to all the appenders in that
logger as well as the appenders higher in the hierarchy. In other words, appenders
are inherited additively from the logger hierarchy. For example, if a console
appender is added to the root logger, then all enabled logging requests will at least
print on the console. If in addition a file appender is added to a logger, then enabled
logging requests for the logger and its children will print on a file and on the
console. It is possible to override this default behavior so that appender
accumulation is no longer additive by setting the additivity flag to false.

The rules governing appender additivity are summarized below:

• The output of a log statement of logger C will go to all the appenders in C
and its ancestors. This is the meaning of the term "appender additivity".

• However, if an ancestor of logger has the additivity flag set to false, then
logger’s output will be directed to all its appenders and its ancestors up to
and including the ancestor, but not the appenders in any of the ancestors
the ancestor.

• Loggers have their additivity flag set to true by default.

Layouts

Sometimes, you may wish to customize not only the output destination but also the
output format. This is accomplished by associating a layout with an appender. The
layout is responsible for formatting the logging request according to your wishes,
whereas an appender takes care of sending the formatted output to its destination.
The PatternLayout, part of the standard log4j distribution, lets you specify the
output format according to conversion patterns similar to the C language printf
function.

For example, the PatternLayout with the conversion pattern:
erling Multi-Channel Selling Solution Developer Guide

Platform Module Descriptions
%r [%t] %-5p %c - %m%

will output something like this:

176 [main] INFO PriceCheckAPI - got current date: 10/22/2005.

The first field is the number of milliseconds elapsed since the start of the program.
The second field is the thread making the log request. The third field is the level of
the log statement. The fourth field is the name of the logger associated with the log
request. The text after the “-” is the message of the statement.

Memory Monitor
This module provides classes used to monitor and log memory consumption.

Message Type Entitlement
This module provides the service that checks the entitlement of users to invoke
message types.

The interfaces are defined in the com.comergent.api.dispatchAuthorization
package. This package contains factory classes, interfaces, and exceptions needed
for the service. The implementation classes are in the
com.comergent.dispatchAuthorization package.

The main entry point for this module is the class EntitlementRepository. An
instance of this class is obtained from the EntitlementFactory class. Applications
can create named instances of the the EntitlementRepository class. Named
instances will facilitate unit testing, and may be useful for alternative deployment
environments.

An application needing to specify dispatch rules or other message type entitlement
objects will execute logic similar to the following:

import com.comergent.api.dispatchAuthorization.EntitlementRepository;
import com.comergent.api.dispatchAuthorization.EntitlementFactory;
import javax.xml.dom.Document;
…
Document document = ...;
…
EntitlementRepository repository =

EntitlementFactory.getEntitlementRepository();
repository.setRules(document);

Object Manager
This module provides the classes used to instantiate objects: see "ObjectManager
and OMWrapper Classes" on page 22 for details.
Sterling Multi-Channel Selling Solution Developer Guide 45

Platform Modularity

46 St
Out Of Band Response
This module is used to send output to output streams other than the standard JSP
pages. See CHAPTER 10, "Sending Email from the Sterling Multi-Channel Selling
Solution" for an example of how it is used.

Preferences Service
The Preferences module is used to retrieve and set configuration properties used by
the Sterling Multi-Channel Selling Solution. You can retrieve properties along
these lines:

private static final Preferences prefs =
Preferences.getPreferences(MyClass.class);

// implict scope of "com.comergent.apps.module.MyClass"
int max = prefs.getInt("PromotionManager.maxValue", 100);
int min = prefs.getInt("PromotionManager.minValue", 1);

The second parameter in the getInt() calls specify the value to return if no property
with that name is found. The configuration file in which the property is defined is
assumed to be on the classpath: for example in the file
com.comergent.apps.module.Preferences.xml. If the XML properties file is read
in using the Preferences service, then make sure that the XML file uses the
Comergent root element. For example:

<Comergent>
<PromotionManager>

<maxValue>50</maxValue>
<minValue>20</minValue>

</PromotionManager>
</Comergent>

You can ensure that the Preferences service is used to initialize the properties by
customizing the WEB-INF/properties/init.xml configuration file by adding an
element along these lines:

<module name="PromotionMgr">
<config name="Preferences">

com/comergent/reference/apps/mktMgr/controller/Init.xml
</config>

</module>

The Preferences class provides methods to get and put property values. For
example:

prefs.putInt("PromotionManager.maxValue", 25);
prefs.putObject("currentShoppingCart", cartBean);
erling Multi-Channel Selling Solution Developer Guide

Platform Module Descriptions
When using the putObject() method, the object must meet the requirements of the
XMLEncoder API: essentially, that the object’s fields must provide getter and setter
methods.

Tag Libraries
The tag libraries provided by the Sterling Multi-Channel Selling Solution are
produced as a platform module. They are documented in CHAPTER 30,
"Comergent Tag Library" and CHAPTER 31, "Comergent Internet Commerce Tag
Library", and in the accompanying Javadoc.

Thread Management
This module provides a centralized facility for handling threads: their creation,
obtaining their status, and re-use. It is provided by the
backport-util-concurrent.jar library. In general, an application developer will no
longer have to invoke:

Thread t = new Thread(new MyRunnable());
Instead, having a centralized facility will allow you to:

• Pool and re-use thread when appropriate

• Track all running threads to help provide better accounting for CPU and
resource usage.

• Provide simple status reporting (scoreboard strategy: central shared
location where running thread can report its status).

• Provide simple aborting and interrupt signal via Thread.interrupt()
invocations to allow long running (but looping) thread to quit early.

The module provides the following functionality:

1. Transparently provide pooling and re-use of thread.

2. For administrative functionality, provide means to query all running threads
tracked by the thread manager.

3. For user of thread service, provide means to report current thread status to a
common scoreboard.

4. Provide guidance to following simple loop or check interrupted status protocol
to allow a long running or looping thread to quit early.

5. Provide a timer facility to allow running thread to be notified when a timer
expired. This can be used to implement a simple time-out or timeshare policy.
Sterling Multi-Channel Selling Solution Developer Guide 47

Platform Modularity

48 St
API and Usage
The API will continue to follow the Runnable() pattern: the application obtains a
Thread-like object and use it to execute.

Excutor executor = ExecutorFactory.getPooledExecutor();
executor.execute(new MyComergentRunnable());

XML Message Converter
This module provides a facility for converting XML documents from one message
category (family and version) to another. The package name for the API is
com.comergent.api.converter and com.comergent.converter for the implementation
classes.

The API package includes:

• ConverterFactory: this is the Factory class to create converters.

• Converter: this is the class that converts a document from one message
category to another. It can take either documents or streams as the source
and targets for conversion.

See "Converter Classes" on page 32 for more information.

XML Message Service
This module is used to create and post outbound messages as XML documents. The
API includes MsgContext interface, MsgService interface, MsgServiceFactory
class, and theMsgServiceException classes in the com.comergent.api.msgService
package and the implementation classes are in the com.comergent.msgService
package.

The MsgService interface contains a generic service() method to post a databean
and an XML document as specified in the message context.

The general usage pattern is as follows:

1. create a MsgContext instance using the MsgContextFactory;

2. set appropriate attributes on the context object;

3. create a MsgService instance for the target message family;

4. post a message by invoking the service method with a data bean and message
context.

For example:

MsgContext ctx = new MsgContext();
ctx.setMessageType("ERPOrderCreateRequest");
erling Multi-Channel Selling Solution Developer Guide

Platform Module Descriptions
ctx.setURL("http://www.server.com");
ctx.setMessageCategory("ERPOrderCreateRequest");
ctx.setContentType("text/xml");
ctx.setRemoteUser(username);
ctx.setRemotePassword(password);
MsgService msgService =

MsgServiceFactory.getMsgService(ctx.getMessageCategory());
resultBean = msgService.service(requestBean, ctx);

XML Services
This module encapsulates functionality for XML parsing, XSL transformation,
DOM wrappers, and utility classes.
Sterling Multi-Channel Selling Solution Developer Guide 49

Platform Modularity

50 St
erling Multi-Channel Selling Solution Developer Guide

CHAPTER 5 Bizlets
Using Bizlets for Message Processing
The Sterling Multi-Channel Selling Solution makes use of a bizlet framework for
handling inbound XML messages posted to the system. This replaces the use of
BLCs that earlier releases of the Sterling Multi-Channel Selling Solution used. This
framework can be used to expose functionality of the Sterling Multi-Channel
Selling Solution to client applications through the combination of HTTP and XML.
See "Example Bizlet Usage" on page 55 for an example of using bizlets in this way.

Each inbound message has a message type such as “OrderChangeRequest”
declared as the MessageType element of its MessageHeader element. When the
message is posted into the system (typically using the
http://<machine:port>/Sterling/msg/matrix URL), the value of the message type
element determines that the appropriate Bizlet processes the message.

The content type of the inbound message must correspond to a content type
declared in the MessageCrackerMap.xml configuration file. For example:

<URLExt Name="integrator">
<ContentType Name="application/x-icc-xml">

<MessageCrackerImpl>
com.comergent.dcm.messaging.ComergentMessageCrackerEx

</MessageCrackerImpl>
<ControllerImpl>
Sterling Multi-Channel Selling Solution Developer Guide 51

Bizlets

52 St
com.comergent.dcm.messaging.MessagingController
</ControllerImpl>
<Request>com.comergent.dcm.messaging.XMLRequest</Request>
<Response>com.comergent.dcm.messaging.XMLResponse</Response>

</ContentType>
</URLExt>

Standard content types are “text/xml”, “application/xml”, and “application/
x-icc-xml”.

Bizlet Interfaces and Implementation
Each Bizlet that you create should be defined as an interface: for example, the
following is the interface for the OrderBizlet used to process inbound Order
processing messages:

package com.comergent.apps.orderMgmt.bizlet;

public interface OrderBizlet extends Bizlet
{

public OrderBean createOrder(OrderBean orderBean)
throws ICCException;

public OrderBean createOrderEx(OrderBean orderBean)
throws ICCException;

public OrderBean changeOrder(OrderBean orderBean)
throws ICCException;

public OrderBean cancelOrder(OrderBean orderBean)
throws ICCException;

}

Currently beans are the only supported parameters for the interface methods.

Bizlet interfaces must be created in packages whose last component is “bizlet”: for
example com.comergent.apps.orderMgmt.bizlet. This ensures that the SDK
generates the IDL files when the project target is run.

You should create a corresponding implementation class that implements the bizlet
methods. Update the ObjectMap.xml file so that when an instance of the bizlet
class is required an appropriate object is returned. For example, if OrderBizletImpl
implements the OrderBizlet interface, then add the following to ObjectMap.xml:

<Object ID="com.comergent.apps.orderMgmt.orders.bizlet.OrderBizlet">

Note: Do not use encoded content types such as “application/
x-www-form-urlencoded” because the servlet container will attempt to
unencode the message before the message cracker.

Note: The naming convention for the parameters is that you must use the
same name as the bean with first letter being in lower case.
erling Multi-Channel Selling Solution Developer Guide

Using Bizlets for Message Processing
<ClassName>
com.comergent.apps.orderMgmt.orders.bizlet.OrderBizletImpl

</ClassName>
</Object>

Each implementation class should extend the AbstractBizlet class (which includes a
default definition of the init() method) and implement its appropriate interface. For
example, here is a fragment of the OrderBizletImpl source code:

public class OrderBizletImpl extends AbstractBizlet
implements OrderBizlet
{
 /**
 * The BizletFactory will call this method upon instantiation,
 * and Bizlet session maintains the previous session state.
 */
public void init(BizletSession state)
{

// initialization code goes here
}

/**
 * Create an order that corresponds to the incoming order
 * @param OrderBean orderBean incoming order
 * @return OrderBean created order
 * @exception BizletException
 */
public OrderBean createOrder(OrderBean orderBean)

throws BizletException
{

// Business logic code goes in here
}

Logging the Inbound XML Messages
You can capture the inbound XML message for logging purposes using code along
these lines:

XMLRequest xReq = (XMLRequest) ComergentAppEnv.getRequest();
XMLRequestAccessor xAcc =

(XMLRequestAccessor) xReq.getParameterAccessor();

To retrieve messages before they are converted, use:

ComergentDocument comergentDocument = xAcc.getInboundMessage();

To retrieve messages after they have been converted, use:

ComergentDocument comergentDocument = xAcc.getMessage();
Sterling Multi-Channel Selling Solution Developer Guide 53

Bizlets

54 St
BizletInvoker Classes
Bizlets are invoked indirectly using BizletInvoker classes. The Invoker classes
manage the method invocation to ensure that the correct parameters are passed to
the method. By default, these Invoker classes take the same name as the Bizlet
interface, but with “Invoker” appended to the class name. For example, OrderBizlet
and OrderBizletInvoker.

Invoker classes are generated classes using the following process.

1. A target (typically doGenerateIDL) identifies all interfaces that extend the
Bizlet interface. For each such interface, it generates an interface definition
language (IDL) file.

2. For each IDL file, a BizletInvoker class is generated: each BizletInvoker
implements the corresponding Bizlet interface.

3. You should declare each BizletInvoker class in the ObjectMap.xml file.

<Object ID="com.comergent.apps.orderMgmt.orders.bizlet.-
OrderBizletInvoker">
<ClassName>
com.comergent.apps.orderMgmt.orders.bizlet.-

OrderBizletInvokerImpl
</ClassName>

</Object>

A standard Invoker class is automatically generated for each bizlet, and
unless you need to perform some special processing as part of invoking the
bizlet, you should be able to use the generated Invoker classes unchanged.
Note that a naming convention will ensure that if no BizletInvoker class is
declared, then the BizRouter will invoke a class whose name is the name of
the declared Bizlet appended with “Invoker”.

BizletSession Classes
BizletSession classes provide session-oriented state information to the bizlet
classes. The naming convention for the session object is to append “Session” to the
Bizlet name (for example, OrderBizletSession). Use BizletSession classes to set
and retrieve any state that has session scope. When the Bizlet is invoked, its
initialization method is called and you can provide initialization information:

public void init(BizletSession state)
{

// initialization code goes here
}

erling Multi-Channel Selling Solution Developer Guide

Example Bizlet Usage
Invoking Bizlets
Bizlets are invoked by mapping message types to bizlet methods using the
BizletMapping elements of MessageTypes.xml files. For example:

<MessageType Name="OrderChangeRequest">
<ControllerMapping>

com.comergent.dcm.bizlet.BizRouter
</ControllerMapping>
<BizletMapping>

com.comergent.apps.orderMgmt.orders.bizlet.OrderBizlet.-
changeOrder

</BizletMapping>
</MessageType>

The ControllerMapping element ensures that the correct BizRouter class is used to
invoke the correct BizletInvoker class and method. Note that the interface is
referenced in the BizletMapping element and that it provides the name of the
method that should be invoked to process this message type.

Example Bizlet Usage
In this section, we provide an example of how to use a bizlet to access Sterling
Multi-Channel Selling Solution functionality. We create a bizlet that can provide
support to create, delete, or view shopping carts. Once you have done the work
described below, then your client application can simply HTTP post XML
messages as described below, and then process the reply once it is received.

You must make sure that the content type used to post the inbound message is
declared in the MessageCrackerMap.xml configuration file.

Message Types
We must support the following mesage types:

• ShoppingCartXMLCreateRequest

• ShoppingCartXMLDeleteRequest

• ShoppingCartXMLLookupRequest

We want to create the messages along these lines:

• ShoppingCartXMLCreateRequest.xml: we use this to create a new
shopping cart.

<?xml version="1.0" encoding="UTF-8" ?>
<Comergent>
Sterling Multi-Channel Selling Solution Developer Guide 55

Bizlets

56 St
<MessageHeader>
<MessageType>ShoppingCartXMLCreateRequest</MessageType>
<MessageVersion>4.0</MessageVersion>
<MessageID/>
<SessionID/>

</MessageHeader>
<RemoteUser>
<UserLogin>cchen</UserLogin>
<UserFullName/>
<UserAuthenticator>cchen</UserAuthenticator>
</RemoteUser>
<OrderInquiryList type="BusinessObject">

<Name>Toro Demo</Name>
<LineItemList>

<LineItem>
<SKU>MX-LNXA</SKU>
<Quantity>101</Quantity>

</LineItem>
</LineItemList>

</OrderInquiryList>
</Comergent>

• ShoppingCartXMLDeleteRequest.xml: we use this to delete a shopping
cart.

<?xml version="1.0" encoding="UTF-8" ?>
<Comergent>

<MessageHeader>
<MessageType>ShoppingCartXMLDeleteRequest</MessageType>
<MessageVersion>4.0</MessageVersion>
<MessageID/>
<SessionID/>

</MessageHeader>
<RemoteUser>

<UserLogin>cchen</UserLogin>
<UserFullName/>
<UserAuthenticator>cchen</UserAuthenticator>

</RemoteUser>
<OrderInquiryList type="BusinessObject">

<ShoppingCartKey>600568</ShoppingCartKey>
</OrderInquiryList>

</Comergent>

• ShoppingCartXMLLookupRequest.xml: we use this to view an existing
shopping cart.

<?xml version="1.0" encoding="UTF-8" ?>
<Comergent>

<MessageHeader>
<MessageType>ShoppingCartXMLLookupRequest</MessageType>
erling Multi-Channel Selling Solution Developer Guide

Example Bizlet Usage
<MessageVersion>4.0</MessageVersion>
<MessageID/>
<SessionID/>

</MessageHeader>
<RemoteUser>

<UserLogin>cchen</UserLogin>
<UserFullName/>
<UserAuthenticator>cchen</UserAuthenticator>

</RemoteUser>
<OrderInquiryList type="BusinessObject">

<ShoppingCartKey>600568</ShoppingCartKey>
</OrderInquiryList>

</Comergent>

You must create DTDs for the requests and their replies, and copy them to the
WEB-INF/messages/ directory. For example, these are the DTDs for
ShoppingCartXMLCreateRequest.dtd and
ShoppingCartXMLCreateReply.dtd, the DTDs for the request to create a
shopping cart:

<?xml version="1.0" encoding="UTF-8"?>
<!--

ShoppingCartXMLCreateRequest
Document Type Declaration (DTD)
Version 4.0 Comergent
14-June-2004
Authors:

Comergent
Contact: (650) 232-6000

support@comergent.com
-->
<!ENTITY % MessageHeader SYSTEM "MessageHeader.dtd">
%MessageHeader;
<!ENTITY % RemoteUser SYSTEM "RemoteUser.dtd">
%RemoteUser;
<!ENTITY % OrderInquiryList SYSTEM "../bizobjs/OrderInquiryList.dtd">
%OrderInquiryList;
<!ELEMENT Comergent (MessageHeader, RemoteUser, OrderInquiryList)>

and

<?xml version="1.0" encoding='UTF-8' ?>

<!--
ShoppingCartXMLCreateReply
Document Type Declaration (DTD)
Version 4.0 Comergent
14-June-2004
Authors:

Comergent
Sterling Multi-Channel Selling Solution Developer Guide 57

Bizlets

58 St
Contact: (650) 232-6000
support@comergent.com

-->

<!ENTITY % MessageHeader SYSTEM "MessageHeader.dtd">
%MessageHeader;
<!ENTITY % ReplyHeader SYSTEM "ReplyHeader.dtd">
%ReplyHeader;
<!ENTITY % OrderInquiryList SYSTEM "../bizobjs/OrderInquiryList.dtd">
%OrderInquiryList;
<!ELEMENT Comergent (MessageHeader, RemoteUser, OrderInquiryList)>

Bizlets
We create the ShoppingCartBizlet interface as follows:

package com.comergent.apps.channelMgmt.bizlet;

import com.comergent.dcm.bizlet.Bizlet;
import com.comergent.dcm.util.ICCException;
import com.comergent.bean.simple.OrderInquiryListBean;

public interface ShoppingCartBizlet extends Bizlet
{
public OrderInquiryListBean lookupShoppingCart(OrderInquiryListBean

orderInquiryListBean) throws ICCException;

public OrderInquiryListBean createShoppingCart(OrderInquiryListBean
orderInquiryListBean) throws ICCException;

public OrderInquiryListBean deleteShoppingCart(OrderInquiryListBean
orderInquiryListBean) throws ICCException;

}

We also create the corresponding implementation class:

/*
 * ShoppingCartBizletImpl.java
 * Copyright (c) 2004 Comergent. All rights reserved.
 */
package com.comergent.apps.channelMgmt.bizlet;

import com.comergent.dcm.bizlet.Bizlet;
import com.comergent.dcm.bizlet.AbstractBizlet;
import com.comergent.dcm.dataservices.DataBean;
import com.comergent.dcm.util.ICCException;
import com.comergent.bean.simple.OrderInquiryListBean;
import com.comergent.bean.simple.OrderInquiryListLineItemBean;
import com.comergent.api.apps.commerce.IInquiryList;
import com.comergent.api.apps.commerce.CommerceAPI;
erling Multi-Channel Selling Solution Developer Guide

Example Bizlet Usage
import com.comergent.api.apps.commerce.IInquiryListTypes;
import com.comergent.api.apps.pricingMgr.APIPriceListAttribute;

import java.util.Iterator;

public class ShoppingCartBizletImpl extends AbstractBizlet
implements ShoppingCartBizlet

{
public OrderInquiryListBean lookupShoppingCart(OrderInquiryListBean

orderInquiryListBean) throws ICCException
{

IInquiryList list = CommerceAPI.getFactory(
IInquiryListTypes.ORDER_INQUIRY_LIST).getInquiryList(
orderInquiryListBean.getShoppingCartKey(), true);

return (OrderInquiryListBean) list.getDataBean();
}

public OrderInquiryListBean createShoppingCart(OrderInquiryListBean
orderInquiryListBean) throws ICCException

{
String name = orderInquiryListBean.getName();
if ((name == null) || (name.length() == 0))
{

name = "New Cart";
}
Long currencyCode = orderInquiryListBean.getCurrencyLookupCode();
if (currencyCode == null)
{

currencyCode = APIPriceListAttribute.getDefaultCurrencyCode();
}
Long customerTypeCode =

orderInquiryListBean.getCustomerTypeCode();
if (customerTypeCode == null)
{

customerTypeCode =
APIPriceListAttribute.getDefaultCustomerType();

}
IInquiryList list = CommerceAPI.getFactory(

IInquiryListTypes.ORDER_INQUIRY_LIST).createNewInquiryList(
name, currencyCode, customerTypeCode);

Iterator it = orderInquiryListBean.getLineItemIterator();
while (it.hasNext())
{

OrderInquiryListLineItemBean oilLineItemBean =
(OrderInquiryListLineItemBean) it.next();

list.addLineItem(oilLineItemBean.getSKU(),
oilLineItemBean.getQuantity());

}
list.save();
Sterling Multi-Channel Selling Solution Developer Guide 59

Bizlets

60 St
return (OrderInquiryListBean)list.getDataBean();
}

public OrderInquiryListBean deleteShoppingCart(OrderInquiryListBean
orderInquiryListBean) throws ICCException

{
IInquiryList list = CommerceAPI.getFactory(

IInquiryListTypes.ORDER_INQUIRY_LIST).getInquiryList(
orderInquiryListBean.getShoppingCartKey(), true);

list.delete();
return (OrderInquiryListBean)list.getDataBean();

}
}

You must add the following element to the ObjectMap.xml to map the interface to
the implementation class:

<Object
ID="com.comergent.apps.channelMgmt.bizlet.ShoppingCartBizlet">
<ClassName>

com.comergent.apps.channelMgmt.bizlet.ShoppingCartBizletImpl
</ClassName>

</Object>

You must add the message types to the appropriate MessageTypes.xml file:

<MessageType Name="ShoppingCartXMLCreateRequest">
<ControllerMapping>

com.comergent.dcm.bizlet.BizRouter
</ControllerMapping>
<BizletMapping>

com.comergent.apps.channelMgmt.bizlet.-
ShoppingCartBizlet.lookupShoppingCart

</BizletMapping>
</MessageType>

<MessageType Name="ShoppingCartXMLLookupRequest">
<ControllerMapping>

com.comergent.dcm.bizlet.BizRouter
</ControllerMapping>
<BizletMapping>

com.comergent.apps.channelMgmt.bizlet.-
ShoppingCartBizlet.createShoppingCart

</BizletMapping>
</MessageType>

<MessageType Name="ShoppingCartXMLDeleteRequest">
<ControllerMapping>

com.comergent.dcm.bizlet.BizRouter
</ControllerMapping>
erling Multi-Channel Selling Solution Developer Guide

Example Bizlet Usage
<BizletMapping>
com.comergent.apps.channelMgmt.bizlet.-
ShoppingCartBizlet.deleteShoppingCart

</BizletMapping>
</MessageType>
Sterling Multi-Channel Selling Solution Developer Guide 61

Bizlets

62 St
erling Multi-Channel Selling Solution Developer Guide

CHAPTER 6 Introducing Data Beans and Business
Objects
This chapter presents a brief tutorial that demonstrates how you can use the Sterling
Multi-Channel Selling Solution to work easily with data beans and business
objects. You can also consult the Sterling Multi-Channel Selling Solution Reference
Guide for more information on data beans and business objects.

What are Data Beans?
A data bean is a data source-independent representation of a real-world entity in the
Sterling Multi-Channel Selling Solution. The Sterling Multi-Channel Selling
Solution uses an external schema (defined as a set of XML files) to define the
structure of each type of data bean. For example, data beans are used as data
structures for users, product inquiry lists, partners, products, and workspaces.

• Use the OMWrapper and ObjectManager classes to create instances of the
DataBean classes. See "ObjectManager and OMWrapper Classes" on
page 22 for more information.

Attention: In Release 6.4 and later, the use of business objects is not supported. You
should use data beans wherever possible. See CHAPTER 40, "Deprecated
Concepts" for more information about business objects.
Sterling Multi-Channel Selling Solution Developer Guide 63

Introducing Data Beans and Business Objects

64 St
• You can create a DataBean using the DataManager. Invoke the
DataManager method getDataBean(String beanName) to create a
DataBean of the named type. This method throws an
InvalidBizobjException if no such DataBean class exists.

Lifecycle of a Data Bean
In general, the basic flow of working with a data object is:

1. Instantiate a data bean object using the OMWrapper class.

2. Add data to the bean by using the set methods to directly insert values into the
data fields.

3. Persist the data bean to save the new data object to its data source for the first
time.

4. Subsequently, you can retrieve the same data object by setting the value for key
fields, and then performing a restore() on the data bean to retrieve the current
data field values from its data source.

5. Perform any business logic required on the data bean. This may change the
in-memory values of fields, but not the values stored in the data bean’s data
source.

6. Save the changes to the data bean by persisting the data bean to its data source.

7. Later, you may want to delete the data object if it is no longer in use.

8. Eventually, you may want to remove the data from the data source entirely by
erasing the data object.

In the case of data objects whose underlying data source is a database, the
following table summarizes the Java method calls and the corresponding SQL
methods called.

Note: The use of this method is deprecated because it does not support extensions
of the data object.

TABLE 5. Data Bean Lifecycle

Step Java Method SQL Method

Instantiate data object OMWrapper.getObject()

Populate data fields setDataField()

Persist for the first time persist() INSERT

Retrieve data object restore() SELECT
erling Multi-Channel Selling Solution Developer Guide

What are Data Beans?
Defining a Data Bean
Data beans are defined using an XML schema. Data beans provide accessor
methods to get and set values of particular data fields. In general, you should use
data beans when customizing Sterling Multi-Channel Selling Solution applications.

Defining the Structure of a Data Object
Each data object must have a defined structure to enable the Sterling Multi-Channel
Selling Solution to create an instance of the data object. The structure of a data
object is defined in its schema XML file: it specifies what fields the data object has
and whether it has child objects.

Each data object corresponds to a Java class that extends the DataBean class. We
refer to these as data bean classes. The data bean classes are generated
automatically as part of the SDK merge process. When you generate the
corresponding data bean class, it provides methods that access the fields and child
data beans that are declared in the data object XML file.

You can change the definition of the XML schema and hence of data objects and
their corresponding data bean classes by editing the XML schema files.

The DsRecipes.xml configuration file is used to link each data object and its data
source. It also specifies whether the ordinality of the data object is “1” or “n”. The
data object file is used to specify the precise structure of the data object, and the
DsDataElements.xml configuration file is used to specify the data type (LIST,
LONG, STRING, and so on) of each element.

Extending Data Objects
When you define a data object with an XML schema file, you can declare that it
extends another data object by using the Extends attribute. This capability is used in
two ways:

Business logic that updates
field values

getDataField()

setDataField()

Save changes persist() UPDATE

Delete data object delete() UPDATEa

Erase data object erase() DELETE

a. The Delete operation updates the ACTIVE_FLAG column of the underlying database
table row: it does not remove the record from the table.

TABLE 5. Data Bean Lifecycle

Step Java Method SQL Method
Sterling Multi-Channel Selling Solution Developer Guide 65

Introducing Data Beans and Business Objects

66 St
• You can use one data object as the parent of several different extending
data objects which all share a common set of data fields. For example,
many data objects in the Sterling Multi-Channel Selling Solution extend
the C3PrimaryRW data object: this data object provides the basic
OwnedBy and AccessKey data fields used to manage access control.

• You can customize a data object by creating a data object that extends it.
By adding data fields to the extending data object, you can add attributes
that you need to use as part of your customization. By using the
ObjectManager, you can ensure that the extending data object is created
when the system is called upon to create a data object of the extended
type. Provided that existing code uses the ObjectManager to instantiate
instances of the extended data object, then when this code is invoked,
instances of the extending data object are created, but these still support
the extended data object’s interfaces, and so the existing code will
continue to work.

The DataManager uses a recipe and a data object to determine the element
structure of the data bean or business object and the location of the data source that
provides the element values. When you change the definition of data objects or
create new definitions, you must re-run the generateDTD and generateBean SDK
targets to create and compile the DataBean classes. See CHAPTER 14, "Software
Development Kit" for more details. See "Extending Data Objects" on page 78 for
alternate ways to extend data objects.

Data Bean and Business Object Creation
The Sterling Multi-Channel Selling Solution’s ObjectManager and OMWrapper
classes create data beans, and business logic classes and controllers process them.
See "ObjectManager and OMWrapper Classes" on page 22 for more information.

Business logic classes are invoked by controllers: each controller is responsible for
determining which business logic class (if any) must be created in response to a
message and its message type.

The use of business objects and the BusinessObject class is deprecated. Where
possible, you should use data bean classes, and use business objects only to
maintain legacy code.

DataContext
The restore() method takes an instance of the DataContext class as a parameter. The
DataContext class is used to specify information about the context in which the
restore() operation is being performed. It can be used to specify the maximum
number of results to be returned and for determining the number of results on each
erling Multi-Channel Selling Solution Developer Guide

What are Data Beans?
page (pagination). It can also be used to specify whether an access check should be
performed on the results of the restore() operation. By default, an access check is
performed.

For example, the following code snippet creates a DataContext, sets some context
values, and then uses the context and a query to restore a data bean:

DataContext temp_DataContext = new DataContext();
temp_DataContext.setMaxResults(DsConstants.NO_LIMIT);
temp_DataContext.setNumPerPage(-1);
skuMappingListBean.restore(temp_DataContext, query);

When a DataContext object is initialized, it retrieves from the configuration files
values of the DataServices.General.MaxResults and
DataServices.General.NumPerCachePage element to set these parameters for the
restore operation. By default, no limit is set on either. There are accessor methods
available if the behavior of the DataContext needs to be modified. See the
DataContext Javadoc for further information.

The DataContext class provides a setCacheId(String cacheId) method to support
pagination: it identifies the particular cache being used.

What is the DataContext class?
The DataContext class is used to control the behavior of restore and persist
operations.

What behavior can be controlled?

A DataContext instance can control the following:

• Whether ACL checking is performed.

• How many query results appear on a page.

• The maximum number of query results that will be processed.

• The use of multiple page sets per Data Bean type and Session.

How do I control ACL checking?

In certain special cases it may be useful to disable ACL checking. This can improve
the performance of large requests, but it should only be done if access permissions
have already been verified.

The DataContext class provides the following methods to control ACL checking on
Data Bean restore and persist requests:
Sterling Multi-Channel Selling Solution Developer Guide 67

Introducing Data Beans and Business Objects

68 St
• void disableAccessCheck(): Turns off ACL checking for persist and
restore operations.

• void enableAccessCheck(): Turns on ACL checking for persist and
restore operations.

• boolean doAccessCheck(): Returns the current setting for ACL checking.

What are the Cache Id methods for?
The Cache Id methods allow an application to specify a unique identifier for
pagination of result sets. This new capability allows an application to maintain
multiple distinct result sets for a given Data Bean and Session.

If an application does not specify a Cache Id then a combination of Bean name and
Session Id are used to identify the cache. In this case any subsequent attempt to
restore the same Data Bean within the same session will overwrite any results.

The DataContext class provides the following methods to control Cache Id on Data
Bean restore requests:

• void setCacheId(String cacheId): Sets a new cache id. This string is used
in combination with the Bean name and session id to generate a unique
identifier.

• String getCacheId(): Returns the current cache id (or null if it is not set).

How do Max Results and Num Per Page work?
The setting of Max Results determines the maximum number of records that can be
retrieved during a restore. When that number is reached the request is freed.

The setting of Num Per Page determines how many records are saved in each result
cache page. If the number found is less than Num Per Page, then no result cache is
created.

Note that this combination of attributes allow the application to retrieve a set of
paginated results while still specifying a maximum number of records to retrieve.

The DataContext class provides the following methods to Max Results and Num
Per Page on Data Bean restore and persist requests:

• void setMaxResults(int maxResults) sets the maximum number of results
returned for non-paginated results

• int getMaxResults() gets the maximum number of results to return for
non-paginated results
erling Multi-Channel Selling Solution Developer Guide

What are Data Beans?
• void setMaxPaginatedResults(int maxResults) sets the maximum number
of results returned for paginated results

• int getMaxPaginatedResults() gets the maximum number of results to
return for paginated results

• void setNumPerPage(int numPerPage)

• int getNumPerPage()

If an application wants to use the data services default limits, the appropriate
property in DataContext must be set to DsConstants.USE_DEFAULT. The
following are the default values:

• maxResults: 125

• maxPaginatedResults: 125

• numPerPage: 25

If the application does not specify a value for numPerPage, then the value specified
in prefs.xml will be used. If a value is not set by the application nor the prefs.xml
file, a value of -1 will be used, which means the request will not be paginated.

In addition, the following methods provide result set limits that are passed directly
to the database as part of the SQL query. Since the Sterling Multi-Channel Selling
Solution may discard results as part of its access policy checking (for example,
does the user have the right to see this data?), these methods allow you to set a
higher result set limit.

• public void setDBResultLimit(int limit)

• public int getDBResultLimit()

You can also set the DataServices.General.LimitDBResults preference. If
LimitDBResults is set to true, results are automatically limited to the number
allowed by MaxResults (or by MaxPaginatedResults for paginated results). Access
policies must be expressed as SQL to use this mechanism. For Oracle databases, do
not set the LimitDBResults preference to true.

Our access policies are handled in one of two ways. Many are converted to SQL
WHERE clauses that are applied to the query. This allows the database to handle
the access policy. If the policy is too complex (for example, it relies on a hierarchy
of partners), then the access policy can be applied only when processing the results
from the database. Such policies cannot be converted to SQL.

With Oracle, there are some cases in which the SQL generation will require that
column aliases be defined in the XML schema. This is necessary only when the
Sterling Multi-Channel Selling Solution Developer Guide 69

Introducing Data Beans and Business Objects

70 St
query joins multiple tables that use the same column name. This is not an issue for
SQL Server or DB2.

How do I instantiate a DataContext instance?

A new DataContext instance is currently instantiated using the standard “new”
mechanism:

DataContext dc = new DataContext();

What are the Default Settings for a new DataContext?

When “new DataContext()” is invoked, the attributes receive the following default
values:

List Data Beans
A special class of business objects are called list data beans and list business
objects. You use these classes to manage a list of data objects of the same type.
Whenever a data object element is declared with ordinality “n” in a Recipe element,
then a list data bean is created. Access entitlements are still managed at the level of
the singular business object.

In general, you do not need to create DataBeans for list data objects: they are
created automatically. See "DataBean Classes" on page 22 for more information.
They support automatically generated methods that return a list of the data objects.
For example, the following code fragment demonstrates how to restore a list of
users. A DataContext object identified by “context” and a DsQuery object
identified as “query” are used to restrict the users returned by the restore() call:

UserListBean userList = (UserListBean)
OMWrapper.getObject("com.comergent.bean.simple.UserListBean");

TABLE 6. DataContext Default Values

Attribute Default Value

doAccessCheck true

maxResults DataServices.xml maxResults property

numPerPage DataServices.xml numPerPage property

CacheId null

Note: Earlier versions of data objects defined ordinality in the data object defini-
tion file. Now it is the recipe file that determines the ordinality of a data
object. In Version 6.0 data objects, the ordinality attribute is still used to
declare child, reference, and included data objects.
erling Multi-Channel Selling Solution Developer Guide

Application, Entity, and Presentation Beans
// Restore the list.
userList.restore(context, query);
// Return immediately if no results found.
if (userList.getUserCount() == 0)
{

return;
}
// At least one user in list, so walk through the list of users
ListIterator userIterator = userList.getUserIterator();
while (userIterator.hasNext())
{

UserBean user = (UserBean) userIterator.next();
// Perform any business logic on each user.

}

Note the use of the DataContext and DsQuery parameters in the restore() method:
these are used to manage how the query is executed against the Knowledgebase.
See CHAPTER 22, "Data Services Guidelines" for more information about the use
of the DsQuery class.

See "Adding Functionality to an Application" on page 194 for an example of using
a list data bean.

Application, Entity, and Presentation Beans
There are several main sorts of data beans used in the Sterling Multi-Channel
Selling Solution: data beans, application beans, entity beans, and presentation
beans. This section describes the main differences between them.

• Data beans are the Java classes created automatically from the XML
schema description of the business objects. Running the generateBean
SDK target generates the source code for each data bean. These beans
comprise the com.comergent.bean.simple package.

Where possible, you should you use the instanceof command to determine
the class of a data bean rather than querying for the business object type.

• Application beans are Java classes created to add functionality that simple
beans do not support. For example, an application bean may provide extra
methods that cannot be automatically generated, or it may combine two or
more simple beans to pass data to a JSP page. The application beans are
organized by application and each application has a package for its
Sterling Multi-Channel Selling Solution Developer Guide 71

Introducing Data Beans and Business Objects

72 St
application beans whose name is
com.comergent.apps.<application name>.bean

Application beans can be subclasses of simple beans, but more often they
are Java classes that contain one or more simple beans as member variables.
For example, the
com.comergent.appservices.productService.productMgr.BizProductBean
application bean class is a Java class that contains a member variable that
implements the com.comergent.bean.simple.IDataProduct interface. The
BizProductBean application bean class delegates methods such as
getProductID() to the com.comergent.bean.simple.IDataProduct member
variable, but in addition it provides methods to retrieve a product’s features,
its supersession chain, and prices. Note the use of the IDataProduct
interface rather than the ProductDataBean itself: this is an example of using
a generated interface rather than the class. See "Generated Interfaces" on
page 135 for more information on the generation and use of these interfaces.
By convention, if you create an application bean to wrap a data bean, then
you must provide a method called getDataBean() that retrieves the data
bean.

• Presentation beans are also used to pass data to JSP pages: typically, they
differ from application beans in that they do not provide business logic.
They may aggregate several data beans into a single class for ease of use,
or provide formatting information. As with application beans, presentation
beans must provide a method to provide access to the underlying data
bean. For example, the IPresProduct interface provides the
getIRdProduct() method: this returns the IRdProduct interface and you can
downcast this to the underlying data bean or extended data bean if need
be.

• Entity beans were used in prior releases of the Sterling Multi-Channel
Selling Solution. They performed the same role as application beans.
Their use is deprecated.

Using Stored Procedures
You can make use of stored procedures to restore data objects. The name of the
stored procedure is declared in the ExternalName element of the data object. See
"Stored Procedures" on page 286 for more information.
erling Multi-Channel Selling Solution Developer Guide

Data Bean Methods
When you define data objects, take care to specify the SourceType attribute. It can
take the following values:

• “1”: the underlying data source uses a table. This is the default value.

• “2”: the underlying data source uses a stored procedure.

If no SourceType attribute is defined, then the default value means that a table is the
underlying source type for the data object.

Data Bean Methods
In general, you should make use of the generated interfaces that each data bean
provides: these organize the accessor and data methods to help you manage access
to the data objects during their lifcycle. See "Generated Interfaces" on page 135 for
more information. In addition, see "Data Bean Methods" on page 102 for
information about the access-checking methods supported by data beans.

IData Methods
The IData interface has these important methods:

• copyBean(): this method can be used to copy the values of data fields from
one bean to another. It takes one argument: this must be a bean that is
either an instance of the same class or a sub-class of the bean invoking this
method.

• delete(): this method marks the corresponding data object as deleted: the
ACTIVE_FLAG column of the database table corresponding to this data
object is set to “N” when the object is persisted. Note that you must call
persist() after calling delete(): if you do not, then the deletion does not
take effect.

• erase(): this method removes the database record corresponding to the
business object. Note that removing records from database tables can lead
to data integrity problems if other tables refer to keys that have been
deleted. In general, you should use this method only if you can account for
all usages of the record and its keys and can delete the corresponding
records from other tables.

• generateKeys(): this method populates the key fields of the data bean. You
can call this method without invoking persist(). By invoking this method,
you can use the generated keys to create other objects that require the
keys.
Sterling Multi-Channel Selling Solution Developer Guide 73

Introducing Data Beans and Business Objects

74 St
• setDataContext(): this method sets the data context so that restore() and
persist() calls use the right values for parameters such as the number of
results per page in a paginated data set. See "DataContext" on page 66 for
more information on the DataContext class.

• persist(): this method saves the data in the data bean to its data source.

• prune(): this method is used to mark the bean for deletion in memory.
Calling restore() after prune() has no effect on the bean’s underlying data
source.

• restore(): this method retrieves the data for the data bean from its data
source. See "DataContext" on page 66 for information on the use of the
DataContext class in the restore() method. See CHAPTER 22, "Data
Services Guidelines" for information on using the DsQuery class to
specify queries as part of the restore() operation.

• update(): this method updates the database record corresponding to this
business object.

Note that any method calls that change state must be followed by a persist() call to
actually make the change to the database record.

The IData interface also provides the methods, isRestorable() and isPersistable(),
that check whether a data object may be restored or persisted respectively.

IRd and IAcc Interface Methods
The IRd interface provides the read-only accessor methods to the data object fields.
The IAcc interface extends the IRd interface by adding the set accessor methods for
each data field. Distinguishing between these two interfaces provides you with the
ability to pass a read-only object to a client application or JSP page.

For example, suppose that in the Condition data object file, Condition.xml,a
DataField element is specified as follows:

<DataField Name="ControlType"
Writable="y" Mandatory="y"
ExternalFieldName="CONTROL_TYPE"/>

Then, in the automatically-generated IRdCondition interface, there is a method
called:

public Long getControlType()

In the automatically-generated IAccCondition interface, there is a method called:

public void setControlType(Long value) throws ICCException
erling Multi-Channel Selling Solution Developer Guide

Data Bean Methods
The signatures of these accessor methods is determined by the corresponding
DataElement definition in the DsDataElements.xml file:

<DataElement Name="ControlType" DataType="LONG"
Description="Condition Control Type" MaxLength="20" />

Restoring and Persisting Data
These important operations may be performed on a data object: delete(), persist(),
and restore().

• By calling the delete() method on a data object, you mark this object as
deleted, and no other application will retrieve this data object. The
ACTIVE_FLAG column of the underlying database table has its value set
to ’N’. Note that the data object data is not deleted from the data source. If
the underlying database table for data object does not have an
ACTIVE_FLAG column, then do not use the delete() method. You can
still use the erase() method to remove such data objects from the
Knowledgebase.

• When you persist a data bean, the Sterling Multi-Channel Selling Solution
saves the data held in the data object’s DsElement tree to its external data
source(s). Note that the Sterling Multi-Channel Selling Solution manages
both the update of existing data objects and the creation of new data
objects with the persist() method.

• When you restore a data bean or business object the Sterling Multi-
Channel Selling Solution retrieves its data from its external data source(s).
If no query object is specified in the restore() method, then all of the data
objects whose values in the key fields match those in the data bean are
restored.

• Note that if you call restore() on a non-list data bean, then you should
expect that its data is uniquely retrievable from the values set in its key
fields. When the restore() call is issued, no check is performed to verify
that only one record is retrieved, and so the first record retrieved will be
used to populate the data bean. If no record is retrieved, then the restore()
call throws an ICCException.

• When you call restore() on a list data bean, then you must usually specify
a DsQuery. If no DsQuery is specified, then the restored list data bean will

Note: If you set the Writable attribute of a data field to “n”, then the corresponding
setDataField() method is not generated.
Sterling Multi-Channel Selling Solution Developer Guide 75

Introducing Data Beans and Business Objects

76 St
contain all the data beans of this type. See CHAPTER 22, "Data Services
Guidelines" for more information about the DsQuery class.

restore() Method
This section provides description of the main forms of the DataBean restore()
method.

public void restore(DataContext dataContext, DsQuery dsQuery)

The principal form of the restore() method. Use the dsQuery parameter to specify
query to be executed by the restore operation. The dataContext parameter
determines the maximum number of objects returned, and for pagination the
number of results per page. Use the dataContext parameter to specify whether to
check that the current user has the correct entitlements to perform this operation.
By default, an access check is performed, so you have to override the access check
if you do not want this to be done, using the disableAccessCheck() method.

public void restore(DataContext dataContext)

This is equivalent to calling restore(dataContext, null).

Here is an example of using the DataContext and DsQuery classes together to
manage the restore() call:

try
{

DataContext dataContext = new DataContext();
if (doAccessCheck == true)
{

dataContext.enableAccessCheck();
}
else
{

dataContext.disableAccessCheck();
}
dataContext.setNumPerPage(pageSize);
DsQuery dsQuery = QueryHelper.newWhereClause("PartnerKey",

DsConstants.EQUALS, partnerKey);
LightWeightPartnerBean partnerBean =
(com.comergent.bean.simple.LightWeightPartnerBean)
com.comergent.dcm.util.OMWrapper.getObject(

"com.comergent.bean.simple.LightWeightPartnerBean");
partnerBean.restore(dataContext, dsQuery);
QueryHelper.freeQuery(dsQuery);
return partnerBean;

}
catch (ICCException e)
{

erling Multi-Channel Selling Solution Developer Guide

Data Bean Methods
throw (new ProfileMgrException(e));
}

persist() Method
This section provides description of the main forms of the DataBean persist()
method.

public void persist(DataContext dataContext)

If the dataContext specifies that an access check should be performed, then this
form of the persist() method performs an access check before performing the
operation. If the user does not have the appropriate entitlement, then the operation
is not performed.

Miscellaneous Methods

getBizObj() Method
If you want to retrieve a business object representation of the data object and its
data, then you can invoke the getBizObj() method. This is useful if you want to
display the internal structure of the object. For example:

BusinessObject bo = bean.getBizobj();
ComergentDocument doc = bo.serializeToXml();
doc.prettyPrint();

Note that this is now a deprecated method.

writeExternal() Method
Use this method to write out an XML representation of the data bean and its data.

Child Data Objects
Many data objects declare child data objects using the ChildDataObject element.
For example, the ShoppingCart data object declares LineItem as a child data object
as follows:

<DataObject Name="ShoppingCart" Extends="C3PrimaryRW"
ExternalName="CMGT_CARTS" ObjectType="JDBC" Version="6.0">

...
<ChildDataObject Access="RWID" Name="LineItem">

<Relationship CascadeDelete="y" CascadeErase="n"
ChangeUpdatesParent="y">
<JoinKeys>

 <JoinKey DstJoinField="ShoppingCartKey"
SrcJoinField="ShoppingCartKey"/>

</JoinKeys>
</Relationship>
Sterling Multi-Channel Selling Solution Developer Guide 77

Introducing Data Beans and Business Objects

78 St
</ChildDataObject>
...
</DataObject>

Its Relationship element has attributes that describe how child objects should be
managed when the parent is updated and whether to update the parent when a child
is changed. The JoinKey elements describes how to restore the child data objects:
typically, by specifying how values in the parent data object are used to set values
in the child data object.

When the parent data bean is generated, it generates a method called
getChildDataObjectIterator() which returns an ListIterator object containing the
child data beans. By iterating through the objects, you can examine each child data
bean in turn and access its fields using the standard accessor methods.

For example, the ShoppingCartBean class supports the getLineItemIterator()
method. The following lines of code demonstrate how to retrieve a field of a line
item:

/*
shoppingCartBean is a ShoppingCartBean object that has already been
restored
*/
ListIterator lineItemIterator =

shoppingCartBean.getLineItemIterator();
LineItemBean lineItemBean =

(LineItemBean) lineItemIterator.getLineItemBean(0);
Long quantity = lineItemBean.getQuantity();

When a parent data object is restored, the child data objects are not restored. They
are restored only when the application accesses the children as described above.

Extending Data Objects
It is common for any implementation of the Sterling Multi-Channel Selling
Solution to need to add data fields to data objects or to create data objects that
extend existing data objects.

We recommend storing the additional data in a new database table. A new
DataObject should then be defined that accesses the new table. Another new
DataObject is then defined that extends the original DataObject by adding a new
IncludeDataObject.

For example, suppose that you need to add a new data field to the Order data object
to track “hosted” orders: orders that are placed at storefront partners. The extra data
field is the partner key of the storefront partner. The recommended approach is as
follows:
erling Multi-Channel Selling Solution Developer Guide

Data Bean Methods
1. Create a new data object called HostedPartner that has exactly two fields: an
OrderKey and a PartnerKey. Set it up to point to a two-column table:
CMGT_ORDER_X_PARTNER with columns ORDER_KEY and
PARTNER_KEY.

<?xml version="1.0"?>
<DataObject Name="HostedPartner"

ExternalName="CMGT_ORDER_X_PARTNER" ObjectType="JDBC"
Version="6.0">
<KeyFields>

<KeyField Name="OrderKey" ExternalName="ORDER_KEY"/>
<KeyField Name="PartnerKey" ExternalName="PARTNER_KEY"/>

</KeyFields>
<DataFieldList>

<DataField Name="OrderKey" ExternalFieldName="ORDER_KEY"
Mandatory="n" Writable="y"/>

<DataField Name="PartnerKey"
ExternalFieldName="PARTNER_KEY"
Mandatory="n" Writable="y"/>

</DataFieldList>
</DataObject>

2. Create a new data object called HostedOrder that extends Order. The
HostedOrder.xml file looks like this:

<?xml version="1.0"?>
<DataObject Name="HostedOrder" Extends="Order" ObjectType="JDBC"

Version="6.0">
<IncludedDataObject Access="RWID" Name="HostedPartner"

Ordinality="1">
<Relationship CascadeDelete="y" CascadeErase="n"

ChangeUpdatesParent="y">
<JoinKeys>

<JoinKey DstJoinField="OrderKey"
SrcJoinField="OrderKey"/>

</JoinKeys>
</Relationship>

</IncludedDataObject>
</DataObject>

There are three basic approaches that can be used:

1. You can use extension to simply add any additional DataFields and override
the table name. This allows you to include all of the data in a new table. This
approach is most useful when you need the same data, but need a distinct copy
of it. (Perhaps you maintain a snapshot of how an Order looked before it was
turned into a HostedOrder)
Sterling Multi-Channel Selling Solution Developer Guide 79

Introducing Data Beans and Business Objects

80 St
2. You can extend Order to add an IncludedDataObject for HostedOrder, where
HostedOrder only defines additional data for storage in another table. This
means that changes to the original Order DataFields will still be persisted to
the Order table, but the additional data for HostedOrder will be persisted to a
different table. This is the recommended approach described above.

3. You can define HostedOrder specifying that Order is a IncludedDataObject.
This accomplishes the same thing as the second alternative. The problem with
this approach is that a HostedOrder does not extend Order, and can no longer
be treated as an Order by application code.

Note: Using two tables has a slight disadvantage in performance, but query
execution has not been a problem area. Using two tables may reduce data
redundancy (depending on your requirements).

If you only occasionally reference the customer extension, then you may want to
use a ChildDataObject to take advantage of the lazy link mechanism.

Data Bean Example
This section presents the process of defining and using a data object. Suppose that
you want to use a data object to represent a simple enquiry from a customer. This
will comprise:

• an email address for the customer

• the date the enquiry was made

• the date a response was returned (optional)

• the content of the enquiry

• the content of the response (optional)

• the product ID of the product about which the enquiry was made
(optional)

To Create a Data Object Definition

1. Create the business object element Enquiry and add it to the
DsBusinessObjects.xml file.

<BusinessObject Name="Enquiry" Version="6.0"
Description="Customer enquiry"/>
erling Multi-Channel Selling Solution Developer Guide

Data Bean Example
Use the Version attribute to manage different versions of business objects that
may be in use simultaneously. Note that the Version attribute is also used to
determine whether access checks are performed automatically (Version 5.0 or
higher) or not.

2. Create the recipe for this business object and add it to the DsRecipes.xml file.

<Recipe Name="Enquiry" Version="6.0" Ordinality="n"
Description="Customer enquiry">
<DataObjectList>

<DataObject Name="Enquiry"
DataSourceName="ENTERPRISE" />

</DataObjectList>
</Recipe>

The Name attribute of the recipe must match exactly (it is case-sensitive) to the
Name of the business object. In Release 8.0, each recipe may have more than
one data object defined in the data object list, but only one may be a writable
data object. The data objects define the data source names as an attribute of
each data object element. It is these entries that determine the sources from
which the business object retrieves its data and the source to which the
business object may be persisted.

3. Create a file called Enquiry.xml to define the data object. The Name of the
data object element must match exactly (it is case-sensitive) the Name attribute
defined in the DataObject entry of the recipe element.

In this example, the data for these data objects is held in a database table called
CMGT_ENQUIRY, and the ExternalFieldName attribute of each DataField
element specifies which column is to be used to retrieve the DataField value.
For example, the EMAIL_ADDRESS column of the CMGT_ENQUIRY table
holds the email address value associated with an enquiry.

<?xml version="1.0"?>
<DataObject Name="Enquiry" Extends="C3PrimaryRW" Version="6.0"

ExternalName="CMGT_ENQUIRY"
Access="R" ObjectType="JDBC">
<KeyFields>

<KeyField Name="Key" ExternalName="ENQUIRY_KEY"/>
</KeyFields>
<DataFieldList>

<DataField Name="EnquiryKey"
Writable="n" Mandatory="y"
ExternalFieldName="ENQUIRY_KEY"/>

<DataField Name="EmailAddress"
Writable="n" Mandatory="y"
ExternalFieldName="EMAIL_ADDRESS"/>

<DataField Name="EnquiryDate"
Sterling Multi-Channel Selling Solution Developer Guide 81

Introducing Data Beans and Business Objects

82 St
Writable="n" Mandatory="y"
ExternalFieldName="ENQUIRY_DATE"/>

<DataField Name="ResponseDate"
Writable="n" Mandatory="n"
 ExternalFieldName="RESPONSE_DATE"/>

<DataField Name="TimeToRespond"
Writable="n" Mandatory="n"/>

<DataField Name="EnquiryContent"
Writable="n" Mandatory="y"
ExternalFieldName="ENQUIRY_CONTENT"/>

<DataField Name="ResponseContent"
Writable="y" Mandatory="n"
ExternalFieldName="RESPONSE_CONTENT"/>

<DataField Name="SKU"
Writable="n" Mandatory="n"
ExternalFieldName="SKU"/>

</DataFieldList>
</DataObject>

Note the definition of the TimeToRespond data field: it has no
ExternalFieldName attribute because it does not correspond to a database
column. Values for this field are calculated at runtime and are set in the
EnquiryBean so that its value can be displayed.

4. Define Enquiry and EnquiryList DataElements in DsDataElements.xml:

<DataElement Name="Enquiry" Description="Enquiry"
DataType="HEADER"/>

<DataElement Name="EnquiryList" Description="Enquiry list"
DataType="LIST"/>

5. Define a DataElement for each DataField in DsDataElements.xml.
DataElements provide data type information used by the DataManager when it
is retrieving or saving data for this business object type. For example:

<DataElement Name="EnquiryKey" LongName="Enquiry Key"
DataType="LONG"MaxLength="20" />

<DataElement Name="EnquiryDate" LongName="Enquiry Date"
DataType="DATE" />

<DataElement Name="ResponseDate" LongName="Response Date"
DataType="DATE" />

<DataElement Name="EnquiryContent" LongName="Enquiry content"
DataType="STRING" MaxLength="256" />

<DataElement Name="ResponseContent" LongName="Response content"
DataType="STRING" MaxLength="256" />

Note that we have not included a DataElement for EmailAddress and SKU.
The DataElements for these DataFields are already defined and you can re-use
erling Multi-Channel Selling Solution Developer Guide

Data Bean Example
DataElements any number of times (as long as the data type is the same in each
occurrence).

6. Create entries in the ObjectMap.xml file for this data bean. For example:

<Object ID="com.comergent.bean.simple.EnquiryBean">
<ClassName>com.comergent.bean.simple.EnquiryBean</ClassName>

</Object>
<Object ID="com.comergent.bean.simple.IRdEnquiry">

<ClassName>com.comergent.bean.simple.EnquiryBean</ClassName>
</Object>
<Object ID="com.comergent.bean.simple.IAccEnquiry">

<ClassName>com.comergent.bean.simple.EnquiryBean</ClassName>
</Object>
<Object ID="com.comergent.bean.simple.IDataEnquiry">

<ClassName>com.comergent.bean.simple.EnquiryBean</ClassName>
</Object>

7. Finally, define a data source element to correspond to the DataSourceName
attribute defined in the DataObject element. This data source is defined in the
DsDataSources.xml file as part of the schema. In most cases, this data source
will already be defined: You only need define a new one if you are using a
different database or other data source than the rest of the Knowledgebase. For
example:

<DataSource Name="ENTERPRISE" Version="2.0">
<Primary Type="SQL" DataService="JdbcService"

SubType="ORACLE"
ConnectionString="jdbc:<driver>:<server>:<port>:<sid>"
UserId="userid" Password="password" />

<Alternate Type="SQL" DataService="JdbcService"
SubType="MSSQL"
ConnectionString="jdbc:<driver>:<server>:<port>:<sid>"
UserId="userid" Password="password" />

</DataSource>

The DataService attribute of the Primary and Alternate elements determine which
class is used to process the EnquiryBean restore() and persist() methods. The
remaining attributes determine exactly how the external source is accessed.

8. Run the generateBean SDK target to generate the source code for the new
EnquiryBean and EnquiryListBean data beans and the corresponding
interfaces. See "Generated Interfaces" on page 135 for more information on
these interfaces.

You can now use Enquiry data beans and its interfaces in business logic classes. To
create an instance of an Enquiry data bean, you invoke a method of the form:

OMWrapper().getObject("com.comergent.bean.simple.EnquiryBean")
Sterling Multi-Channel Selling Solution Developer Guide 83

Introducing Data Beans and Business Objects

84 St
This returns an EnquiryBean data bean and its structure is as specified in the
Enquiry DataObject. Once you have an instance of the QueryBean class, then
populate its key fields and restore the bean to retrieve its data:

int queryIndex = 0;
try
{

String queryKey = request.getParameter("querykey");
queryIndex = Integer.parseInt(queryKey);

}
catch (Exception e)
{

//Throw exception if parameter not valid
}
QueryBean queryBean = (QueryBean)

OMWrapper().getObject("com.comergent.bean.simple.EnquiryBean");
queryBean.setKey(queryIndex);
queryBean.restore();

To retrieve a list of enquiries:

// Use default settings for DataContext parameters
DataContext context = new DataContext();
// Retrieve enquiries relating to a particular product ID, MXWS-7000
DsQuery query =

QueryHelper.newWhereClause("SKU", DsQueryOperators.EQUALS,
"MXWS-7000");

EnquiryListBean enquiryList = (EnquiryListBean)
OMWrapper.getObject("com.comergent.bean.simple.EnquiryListBean");

// Restore the list.
enquiryList.restore(context, query);
// Walk through the list...
ListIterator enquiryIterator = enquiryList.getEnquiryIterator();
while (enquiryIterator.hasNext())
{

boolean isModified = false;
EnquiryBean enquiry = (EnquiryBean) enquiryIterator.next();
// Process each enquiry

}

In general, you should try to ensure that applications that use the EnquiryBean use
one of the generated interfaces rather than the data bean itself. This will enable the
application to separate out the implementation of the data object from its interface
and let you manage what access the application has to the object’s data. To retrieve
an instance of a class that implements the IAccEnquiry interface, you can use:

IAccEnquiry temp_IAccEnquiry = (IAccEnquiry)
OMWrapper.getObject("com.comergent.bean.simple.IAccEnquiry");
erling Multi-Channel Selling Solution Developer Guide

DsElement Tree
DsElement Tree
This section describes methods to retrieve metadata about databeans. It also
describes the DsElement tree used to store data in the data object and business
object classes. It is covered here only to support legacy applications: all new
applications that use the data bean classes should not need to be concerned with it.

Data objects are created as objects of data bean classes. Each data object holds its
content as a tree of components called DsElements (see "DsElements" on page 86).
Their content is retrieved from external systems using the XML schema, and the
recipes and data sources defined in the XML schema.

FIGURE 3. Business Object
When the DataManager creates a data bean or business object, it uses the XML
schema to determine the structure of its DsElement tree. The DsElement tree is the
Java representation of the structure of the business object. The schema also
determines the data types that may be inserted at leaf nodes and whether constraints
are placed on the values of the node. You access the DsElement tree by invoking
the business object method getRootElement().
Sterling Multi-Channel Selling Solution Developer Guide 85

Introducing Data Beans and Business Objects

86 St
DsElements
Each DsElement contains data and a DataMap that defines how its data corresponds
to its data source. A DsElement may be the child of another DsElement (its parent).
A DsElement tree is a collection of DsElements, all but one of which have another
element in the tree as its parent. By definition, the DsElement with a null parent is
the root DsElement.

FIGURE 4. DsElement Methods
The DsElement class provides various additional methods to support navigating
through a DsElement tree, notably children() that returns an Iterator of the child
DsElements of a given DsElement. As well as getRootElement(), the business
object class also provides the getElementByName() method to access directly a
named DsElement in its tree.

All DsElements that have the same name, for example child_name, and which are
children of a DsElement must have a parent whose name is <child_name>List. The
XML schema identifies such elements by defining their ordinality to be “n” as
opposed to “1”. A DsElement maintains its children in a Vector called m_children.

The DsElement has these important methods:
erling Multi-Channel Selling Solution Developer Guide

DsElement Tree
• addChild(): adds a new DsElement defined by the DataMap of this
DsElement.

• cloneDsElement(): returns a copy of this DsElement.

• delete(): sets the DsElemState to DsElemState.DELETED.

• deleteChild(): removes a child from the vector m_children by specifying it
as a DsElement.

• getName(): returns the name of the element as defined by its MetaData.

• getParent(): returns the parent of this DsElement.

• getType(): returns the type of the element as defined by its DataMap.

DsElement MetaData
It is sometimes useful to retrieve information about a data field and its underlying
DsElement. You can use the IData interface method getMetaData(String
elementName) to this. It returns an object that implements the IMetaData interface.
This interace supports the following methods:

• public int getDataType(): returns values as defined in DsDataTypes

• public long getMaxLength(): returns maximum length in bytes

• public long getMaxCharLength(Locale locale): returns maximum length
in characters

• public Object getMinValue(): returns the minimum allowed value (or null
if there is no minimum)

• public Object getMaxValue(): returns the maximum allowed value (or null
if there is no maximum)

• public int getCountAllowedValues()

• public ListIterator getAllowedValueIterator()

• public Object getDefaultValue()

Note that each generated DataBean class implements the IData interface, and so
these methods are available to all the generated data beans.
Sterling Multi-Channel Selling Solution Developer Guide 87

Introducing Data Beans and Business Objects

88 St
BusinessObject Methods
Use of business objects is deprecated. This section provides information about
some business object methods for reference only.

restore() Method
This section provides description of the main forms of the BusinessObject restore()
method.

public void restore(BusinessObject queryObj, int maxResults,
boolean accessCheck)

The principal form of the restore() method. Use the queryObj parameter to specify
query to be executed by the restore operation. The maxResults parameter
determines the maximum number of objects returned. Use the accessCheck
parameter to specify whether to check that the current user has the correct
entitlements to perform this operation. Once the access check has been performed,
then the restore(BusinessObject queryObj, int maxResults) is called.

public void restore(BusinessObject queryObj, int maxResults)

This method calls the restore() method restore(this, queryObj, maxResults, false)of
the underlying data object.

public void restore(BusinessObject queryObj)

This is equivalent to calling restore(queryObj, 0).

public void restore()

This form of the method calls the restore(null, 0) method.

persist() Method
This section provides descriptions of the main forms of the BusinessObject
persist() method.

public void persist(boolean synch, boolean commit,
boolean accessCheck)

The boolean parameters determine respectively whether the persist operation is
synchronized, should be committed to the underlying data source, and whether an
access check should be performed prior to persisting.

public void persist(boolean synch, boolean commit)
erling Multi-Channel Selling Solution Developer Guide

BusinessObject Methods
This form of the method is equivalent to persist(synch, commit, false) for business
objects whose Version attribute is 4.0 or less. It is equivalent to persist(synch,
commit, true) for business objects whose Version attribute is 5.0 or more.

public void persist()

This form of the method calls persist(false, true).

The BusinessObject class also has these methods:

• delete(): empties the business object by deleting its DsElement tree.

• getRootElement(): returns the root DsElement of the DsElement tree.

• getType(): returns the name of the root element of the DsElement tree.
This is the type of the business object.

• setRootElement(): sets the root element of this business object.
Sterling Multi-Channel Selling Solution Developer Guide 89

Introducing Data Beans and Business Objects

90 St
erling Multi-Channel Selling Solution Developer Guide

CHAPTER 7 Using the Security Mechanisms
The Sterling Multi-Channel Selling Solution offers developers several mechanisms
to manage security in their applications. This chapter describes how you can use the
entitlements, access control lists, and access policies to manage what users can do:
what functions they may perform and what access they to have data objects. It
covers:

• "Managing Message Types" on page 92

• "Managing Access to Data Objects Using Access Policies" on page 94

• "Managing Access to Data Objects Using ACLs" on page 102

• "Creating an ACL" on page 104

• "Troubleshooting ACL Issues" on page 104

• "Password Policies" on page 106

• "Passing Login Data Through a URL" on page 108

Please consult the Sterling Multi-Channel Selling Solution Reference Guide for a
description of the underlying security architecture.
Sterling Multi-Channel Selling Solution Developer Guide 91

Using the Security Mechanisms

92 St
Managing Message Types
As you customize the Sterling Multi-Channel Selling Solution, you must take into
account which types of users can execute which message types and which Web
pages should be accessible to which users.

Each message type corresponds to a request that the user’s browser makes to the
server. Message types are organized into message groups. A role is defined as a
collection of message groups that are either granted or denied to the role.

<RoleDefinition Name="Partner.SalesRep">
<Description>

This is the role associated with the Lead Users.
Lead Users can work leads that are assigned to them.

</Description>
<Grant>LeadMgmtDetailGroup</Grant>
<Grant>ProposalGroup</Grant>

</RoleDefinition>

In Release 8.0, roles are aggregated into functions: a function is intended to be the
collection of roles that correspond to a business function such as finance or sales.
Users are assigned functions, and the set of functions available to be assigned to a
user depends on their user type. A function is declared in the Entitlements.xml
configuration file using an element of this form:

<UserFunctionMapping Name="IndirectSalesExecutive">
<Description>Sales</Description>
<Role>Partner.IndirectBuyer</Role>
<Role>Partner.SalesRep</Role>
<Role>Partner.SalesManager</Role>
<Role>Partner.CustomerServiceRepresentative</Role>

</UserFunctionMapping>

The same role can be included in more than one function. Consequently, you can
define functions that overlap in some roles, or define a function that is only a subset
of another function.

Checking for Entitlement
The system will test whether a user can execute a message type when a request is
received. However, to prevent users from seeing error pages, in general, you should
perform an entitlement check for each link on a JSP page to test that the user can
execute the message type associated to the link.

You can use the canRequest(String messageType) method of the User class. You
can retrieve the current User object from the session as follows:
erling Multi-Channel Selling Solution Developer Guide

Managing User Types
User sessionUser = comergentSession.getUser();

For example, the following lines in a JSP page are used to determine whether the
current user can access a promotion detail page.

User sessionUser = comergentSession.getUser();
...
<% if (sessionUser.canRequest("PromotionDetailDisplay")

{
%>

<A HREF="<%= link("partnerMkt", "PromotionDetailDisplay",
"PromotionKey=<%= promotion.getKey() %>")%>) %>">

<%= ph(promoName)%>
<%

} else {
%>

<%= ph(promoName)%>
<%

}
%>

Managing User Types
There may be situations in which you need to modify an existing user type or you
may need to create a new user type.

Adding a Role to a User Type
The definitions of user types are declared in the UserTypeDefinition elements in
Entitlements.xml. For example, in Release 8.0, this is the definition of the
RegisteredUser user type:

<UserTypeDefinition Name="RegisteredUser">
<Description>

Known direct commerce users with no partner affiliation.
</Description>
<Label>User</Label>
<MandatoryRoleSet>
<Role>Registered.User</Role>
<Role>Review.User</Role>
</MandatoryRoleSet>

</UserTypeDefinition>

You can add a function or role to a user type simply by editing the
Entitlements.xml file accordingly and by granting appropriate message groups to
the new role. Note that you must restart the Sterling Multi-Channel Selling Solution
for the new function to be available for assignment.
Sterling Multi-Channel Selling Solution Developer Guide 93

Using the Security Mechanisms

94 St
The MandatoryRoleSet element specifies the set of roles that cannot be removed
from a user’s entitlements. All users of this user type have these roles.

Creating a User Type
You can create the definition of a new user type simply by adding it to the
Entitlements.xml file. Each user type is associated with partner types. The
PartnerTypeDefinition elements of the Entitlements.xml configuration file
determine which user types are available to which partners, so that only users of
those types can be created for each partner. For example, consider the following
PartnerTypeDefinition element:

<PartnerTypeDefinition Name="IndirectPartner">
<Description>

An IndirectCommercePartnerType partner has a
relationship with the enterprise for
the purpose of indirect commerce.

</Description>
<UserType>IndirectUser</UserType>

</PartnerTypeDefinition>

This says that when a user is created for a partner whose type is IndirectPartner,
then only the IndirectUser user type may be selected.

Managing Access to Data Objects Using Access
Policies
Release 6.4 of the Sterling Multi-Channel Selling Solution introduced a new
mechanism to manage access to data object: access policies. Access policies are
designed to adhere more closely to the Java Authentication and Authorization
Services (JAAS) model. You can chose to use ACLs or access policies to control
access to data objects, but for each data object type you must choose one method or
the other.

Access policies are particularly important for data objects that can be modified
using the DsUpdate functionality introduced in Release 6.4. If your implementation
of the Sterling Multi-Channel Selling Solution uses DsUpdate, then you must use
access policies to manage the data objects updated using DsUpdate.

Access policies are applied to a data object by use of a ResourceClass element. For
example:

<ResourceClass>com.comergent.bean.simple.PartnerBean</ResourceClass>
erling Multi-Channel Selling Solution Developer Guide

Managing Access to Data Objects Using Access Policies
This element is declared within an AccessPolicy element. You can apply the same
access policy to several different data objects by listing each of them as a
ResourceClass element. Access policies are inherited by data objects that extend
other data objects. For example, if an access policy declares the ShoppingCart as a
ResourceClass, then the same access policy is also applied to the
ChannelShoppingCart data object because it extends the ShoppingCart data object.

If an access policy is defined for a data object in the AccessPolicy.xml
configuration file, then it determines access to the data object. If no access policy is
defined, then the legacy ACL mechanism is used. See "Managing Access to Data
Objects Using ACLs" on page 102 for details.

Release 7.1 and higher support predictive access control: when a data object
controlled by an access policy is restored, the data services layer will attempt to
amend the restoring query to reflect the access privileges defined in the access
policy. If the data services layer does this, then it will not perform the access policy
check on the returned result set.

Overview
An access policy controls access to a data object by specifying the conditions under
which a user can perform an action on the data object, referred to as the resource.
The following actions can be performed on data objects:

• Create

• Delete

• Restore

• Update

The conditions are specified as evaluating principals and expressions, and
comparing them to the permitted values of the access policy. In general, principals
are attributes of the user attempting an action on the data object, but they may be
defined more generally. Expressions may be likened to SQL queries: they act as
filters on the lists of data object being tested for access.

For example, suppose that you want to use an access policy to specify that only
users that belong to a partner can update their partner profile. In this case, the action
is Update and the condition that you want to define is that if you evaluate the
partner key of the user object, then it must equal the partner key of the partner data
object. In this example, the principal being evaluated is the partner key of the user.
Sterling Multi-Channel Selling Solution Developer Guide 95

Using the Security Mechanisms

96 St
Inheritance
When you define an access policy on a data object, it is inherited by all the data
objects that extend it. Note that this means that if one data object extends another
and you want to define different access policies for each, then you must declare
distinct access policies for each of them.

AccessPolicy.xml Configuration File
You define access policies using an AccessPolicy.xml configuration file. Each
AccessPolicy element declared in this file can be applied to one data object type:
the data object is specified as the DataObject attribute of the AccessPolicy element.

Principal Qualifiers
Principal qualifiers are defined using the PrincipalQualifierDefinition element of
the AccessPolicy.xml configuration file. Principal qualifiers are essentially Java
classes that implement the PrincipalQualifier interface.

<PrincipalQualifierDefinition PrincipalType="UserType"
Class="com.comergent.dcm.entitlement.UserTypeQualifier"/>

Access Policies
Each AccessPolicy element specifies which PrincipalQualifier is to be used to
evaluate the principal conditions by specifying the name of the PrincipalQualifier
as the PrincipalQualifier attribute of the AccessPolicy element.

<AccessPolicy Name="UserPolicy" DataObject="UserContact"
PrincipalQualifier="UserType">

Access Checkers
AccessChecker elements are used to define the individual checks that can be made
to determine whether a user can access a data object. Each AccessPolicy element
declares one or more AccessChecker elements. Each AccessChecker element
specifies the permitted values of the principal to be compared, the action type to be
checked, and any expressions to be evaluated to filter the data objects that can be
acted on.

<AccessChecker>
<Principal Select="Partner.DirectCommerceUser"/>
<Principal Select="Partner.User"/>
<ActionType Type="Restore"/>
<BooleanExpression>

<ComparativeExpression Operator="Equals">
<Term>user.PartnerKey</Term>
<Term>resource.PartnerKey</Term>

</ComparativeExpression>
erling Multi-Channel Selling Solution Developer Guide

Managing Access to Data Objects Using Access Policies
</BooleanExpression>
</AccessChecker>

In this example of an AccessChecker element, the action type being checked for is
“Restore”. The access policy is checked by comparing the user role of the user to
see if one matches either “Partner.DirectCommerceUser” or “Partner.User”. The
Expression element is evaluated to see if the PartnerKey field of the data object is
equal to the partner key of the user, and this filter is applied to the data objects in
question.

If there is more than one BooleanExpression element in an AccessChecker element,
then use the Operator attribute to specify whether the boolean expressions should
be combined using AND or OR. If no Operator attribute is specified, then OR is
used by default.

Access Services
You can make use of access services to help retrieve information used to check
access policies. Each AccessServiceDefinition element provides a name and a
class. For example:

<AccessServiceDefinition Name="ownersPartnerKey" Type="resource" >
com.comergent.reference.dcm.entitlement.OwnersPartnerKeyService
<Description>

Returns the partner key as a Long value for the owner of the
resource if the resource extends C3PrimaryRWBean. Otherwise
returns null.

</Description>
</AccessServiceDefinition>

This access service retrieves the owner key of the resource on which access is being
checked.

Boolean Expressions
BooleanExpression elements are used to express the exact conditions under which
access is granted to objects. They may be nested and they take an Operator attribute
to specify how child elements should be combined.

As well as child BooleanExpression elements, you can also use
ComparativeExpression elements, SetExpression elements, and Not elements to
build up complex conditions:

• ComparativeExpression: use this element to compare the values of two
fields.

• SetExpression: use this element to test membership of lists.
Sterling Multi-Channel Selling Solution Developer Guide 97

Using the Security Mechanisms

98 St
• Not: use this to wrap another expression so that the opposite boolean value
is used.

Example
This fragment of the AccessPolicy.xml configuration file provides an example of
how access policies are used. It determines access to order inquiry lists as described
below.

<AccessPolicy Name="OrderInquiryListPolicy"
PrincipalQualifier="UserRole">
<Description>

Controls access to Order Inquiry Lists.
</Description>
<ResourceClass>

com.comergent.bean.simple.OrderInquiryListBean
</ResourceClass>
<ResourceClass>

com.comergent.bean.simple.LightWeightOILBean
</ResourceClass>
<AccessChecker>

<Description>
Direct partner users with the listed roles can read an
inquiry list if they own it or routed it to another user.

</Description>
<Principal>Anonymous.User</Principal>
<Principal>Registered.User</Principal>
<Principal>Partner.DirectBuyer</Principal>
<Principal>Partner.ProcurementUser</Principal>
<Principal>StorefrontCustomer*.TransferUser</Principal>
<Principal>StorefrontCustomer*.User</Principal>
<Principal>StorefrontCustomer*.AnonymousUser</Principal>
<Principal>StorefrontCustomer*.RegisteredUser</Principal>
<ActionType>Restore</ActionType>
<BooleanExpression Operator="Or" >

<ComparativeExpression Operator="Equals">
<Term>user.UserKey</Term>
<Term>resource.OwnedBy</Term>

</ComparativeExpression>
<ComparativeExpression Operator="Equals">

<Term>user.UserKey</Term>
<Term>resource.RouteFromUserKey</Term>

</ComparativeExpression>
<BooleanExpression Operator="And">

<SetExpression Operator="Intersection" >
<Set>
<Term>"Partner.BasicAdministrator"</Term>
</Set>
<Set>user.roleNameSet</Set>
erling Multi-Channel Selling Solution Developer Guide

Managing Access to Data Objects Using Access Policies
</SetExpression>
<ComparativeExpression Operator="Equals">

<Term>user.PartnerKey</Term>
<Term>service.ownersPartnerKey</Term>

</ComparativeExpression>
</BooleanExpression>

</BooleanExpression>
</AccessChecker>
<AccessChecker>

<Principal>Anonymous.User</Principal>
<Principal>Registered.User</Principal>
<Principal>Partner.DirectBuyer</Principal>
<Principal>Partner.ProcurementUser</Principal>
<Principal>StorefrontCustomer*.TransferUser</Principal>
<Principal>StorefrontCustomer*.User</Principal>
<Principal>StorefrontCustomer*.AnonymousUser</Principal>
<Principal>StorefrontCustomer*.RegisteredUser</Principal>
<ActionType>Update</ActionType>
<ActionType>Create</ActionType>
<ActionType>Delete</ActionType>
<BooleanExpression Operator="Or">

<ComparativeExpression Operator="Equals">
<Term>user.UserKey</Term>
<Term>resource.OwnedBy</Term>

</ComparativeExpression>
<BooleanExpression Operator="And">

<SetExpression Operator="Intersection" >
<Set>
<Term>"Partner.BasicAdministrator"</Term>
</Set>
<Set>user.roleNameSet</Set>

</SetExpression>
<ComparativeExpression Operator="Equals">

<Term>user.PartnerKey</Term>
<Term>service.ownersPartnerKey</Term>

</ComparativeExpression>
</BooleanExpression>

</BooleanExpression>
</AccessChecker>
<AccessChecker>

<Description>CustomerServiceRepresentatives can create,
modify or delete any enterprise cart, but not storefront
carts.
</Description>
<Principal>

Enterprise.CustomerServiceRepresentative
</Principal>
<ActionType>Restore</ActionType>
<ActionType>Update</ActionType>
Sterling Multi-Channel Selling Solution Developer Guide 99

Using the Security Mechanisms

100 St
<ActionType>Create</ActionType>
<ActionType>Delete</ActionType>
<BooleanExpression Operator="And">

<Not>
<SetExpression Operator="Intersection">

<Set><Term>service.ownersUserType</Term></Set>
<Set>
<Term>"StorefrontCustomerUser"</Term>
<Term>"StorefrontCustomerAnonymousUser"</Term>
<Term>"StorefrontCustomerRegisteredUser"</Term>
</Set>

</SetExpression>
</Not>
<SetExpression Operator="Intersection">

<Set>service.csrAssignedPartners</Set>
<Set><Term>service.ownersRootPartnerKey</Term></Set>

</SetExpression>
</BooleanExpression>

</AccessChecker>
<AccessChecker>

<Principal>*</Principal>
<ActionType>Restore</ActionType>
<ActionType>Create</ActionType>
<ActionType>Update</ActionType>
<ActionType>Delete</ActionType>
<BooleanExpression>

<Never/>
</BooleanExpression>

</AccessChecker>
</AccessPolicy>

The way to read this fragment is as follows:

• This access policy determines access to OrderInquiryListBeans and
LightWeightOILBeans

• Users who have one of the listed roles (Anonymous.User,
Registered.User, and so on) may have Restore access (that is, have read
access to the resource) if they satisfy one of the declared
BooleanExpressions:

• Either:

• The user’s key is equal to the owner key of the resource.

• Or:

• The user’s key is equal to the routed from key of the resource.

• Or:
erling Multi-Channel Selling Solution Developer Guide

Managing Access to Data Objects Using Access Policies
• The user has the Partner.BasicAdministrator role;

And

• The user’s partner key is the same as the partner key of the owner of
the resource.

• Users who have one of the listed roles (Anonymous.User,
Registered.User, and so on) may have Update, Create, Delete access (that
is, have write, create, and delete access to the resource) if they satisfy one
of the declared BooleanExpressions:

• Either:

• The user’s key is equal to the owner key of the resource.

• Or:

• The user has the Partner.BasicAdministrator role;

And

• The user’s partner key is the same as the partner key of the owner of
the resource.

• Users who have the Enterprise.CustomerServiceRepresentative role may
have Restore, Update, Create, Delete access (that is, have read, write,
create, and delete access to the resource) if they satisfy all of the declared
BooleanExpressions:

• First:

• The resource’s owner is not a storefront user;

• And:

• The resource’s owner root partner key is one of the keys of partners
assigned to the user.

If you wanted to change this access policy so that all the users of a partner had read
access to an inquiry list owned by one partner user, then you could remove the
section of the Restore AccessChecker element that refers to the
Partner.BasicAdministrator role.
Sterling Multi-Channel Selling Solution Developer Guide 101

Using the Security Mechanisms

102 St
Managing Access to Data Objects Using ACLs
The following access privileges are defined for each data object that extends the
C3PrimaryRW data object:

• delete

• insert

• read

• write

If you want to control access to a data object using ACLs, then an access control list
(ACL) must be attached to it when it is created. When an application retrieves a
data object, you can query the data object to determine what access the current user
has to it.

Data Bean Methods
• boolean isReadable(): returns true if the specified user has read access to

the specified business object; otherwise, returns false. This method is
declared in the IRdC3PrimaryRW interface.

• boolean isWriteable(): returns true if the specified user has write access to
the specified business object; otherwise, returns false. This method is
declared in the IAccC3PrimaryRW interface.

• boolean isInsertable(): returns true if the specified user has insert access to
the specified business object; otherwise, returns false. This method is
declared in the IAccC3PrimaryRW interface.

• boolean isDeletable(): returns true if the specified user has delete access to
the specified business object; otherwise, returns false. This method is
declared in the IAccC3PrimaryRW interface.

• boolean CheckPermission(int i): is a general method to check for
permissions on data objects that extend the C3PrimaryRW data object.
The int parameter is typically one of AccessControl.READ_PERMIT,
AccessControl.WRITE_PERMIT, and so on, but it may be any permission
bit mask.

Attaching an ACL to a Data Object
In general, you simply need to perform the following steps:
erling Multi-Channel Selling Solution Developer Guide

Managing Access to Data Objects Using ACLs
1. Create the data bean. Typically, if you are creating a new data bean, then this
step comprises using the ObjectManager to retrieve a new data bean and then
setting its fields using the standard accessor methods.

2. Retrieve or create the ACL.

• You can retrieve ACLs by name using the AccessControlFactory class
getAccessControlListByName(String s) method. Note that uniqueness of
ACL name is not enforced by the system, so take care to enforce
uniqueness as you create ACLs.

• You can create an ACL by first calling AccessControlFactory class
getEditableAccessControlList() method: this returns an instance of the
EditableAccessControlList class. You can then use its accessor methods to
set the users, groups, fixed, and roles fields as required. Then call its
save() method to persist the new ACL to the Knowledgebase.

3. Attach the ACL to the data bean. Use the attachACL() method of the
com.comergent.api.dcm.entitlement.AccessControlAPI class: it takes as
parameters the data bean, the ACL, the user key of the current user, and a
boolean to indicate whether a persist() call should be made to save the data
object. A check is performed to verify that the current user is entitled to attach
the ACL to the data object.

Examples
Here is a fragment of code indicating how an existing, named ACL is attached to a
data object.

Long userKey = CommerceUtils.getCurrentUserKey();
IOrderInquiryList temp_IOrderInquiryList = (IOrderInquiryList)

OMWrapper.getObject("com.comergent.api.apps.orderMgmt.oil.
IOrderInquiryList");

...
various fields are set
...
AccessControlList temp_AccessControlList =
AccessControlFactory.getAccessControlListByName("Inquiry List ACL");
AccessControlAPI.attachACL(temp_AccessControlList,

temp_IOrderInquiryList, userKey, true);

Here is a fragment of code indicating how a newly-created ACL is attached to a
data object.

Long userKey = CommerceUtils.getCurrentUserKey();
IOrderInquiryList temp_IOrderInquiryList = (IOrderInquiryList)

OMWrapper.getObject("com.comergent.api.apps.orderMgmt.oil.
IOrderInquiryList");
Sterling Multi-Channel Selling Solution Developer Guide 103

Using the Security Mechanisms

104 St
...
various fields are set
...
EditableAccessControlList temp_EditableAcessControlList =
AccessControlFactory.getEditableAccessControlList();
temp_EditableAcessControlList.setName("New Inquiry List ACL");
//Prevent owner from deleting object
temp_EditableAcessControlList.addUser(AccessControl.DELET_PERMIT,

false, userKey);
//Allow users in owner’s group or owner’s root group to modify object
temp_EditableAcessControlList.addFixed(AccessControl.WRITE_PERMIT,

true, AccessControl.GROUP);
temp_EditableAcessControlList.addFixed(AccessControl.WRITE_PERMIT,

true, AccessControl.ROOT);
//Allow world to read object
temp_EditableAcessControlList.addFixed(AccessControl.READ_PERMIT,

true, AccessControl.WORLD);
AccessControlAPI.attachACL(temp_EditableAcessControlList,

temp_IOrderInquiryList, userKey, true);

Creating an ACL
In the previous section, an example is given of creating an ACL using the available
EditableAccessControlList methods. In addition, you can use the ACLBuilder class
to create an ACL or to modify an ACL attached to a data object. It provides helper
methods designed to make the process of creating a new ACL as simple as possible.

Note that if you do create custom ACLs for individual data objects, then this can be
a performance drag on the system. You should consider carefully whether an
appropriate general ACL can be attached to all data objects of a particular type.

Use the AccessControlFactory class getAccessBuilder() method to create an
AccessBuilder. By default, an object of the AccessControlAdapter class is returned.
Its grantAccess() and denyAccess() methods act directly on the ACL attached to a
data object. Consequently, if you use these methods to modify an ACL attached to a
data object, then bear in mind that the underlying ACL may also be attached to
other data objects and changes will affect changes to these data objects too.

Troubleshooting ACL Issues
This section describes a simple use case to illustrate how to identify and fix
problems that you can encounter when modifying or creating ACLs.
erling Multi-Channel Selling Solution Developer Guide

Troubleshooting ACL Issues
In this example, a user tries to log in, but clicking the Login button causes an error
page to be displayed with the following message: “User akite does not have READ
permission on: Partner”. This means that when the access check is being performed
on the partner object, the ACL attached to the partner does not grant read access to
akite.

1. Find additional information about the user “akite” in the
CMGT_USER_CONTACTS table. For example:

SELECT * FROM CMGT_USER_CONTACTS WHERE USER_NAME = ’akite’

Results:

• the USER_KEY is 57901

• the ROLES are Partner.User, Partner.DirectCommerce

• the user’s group key is 4

• the user’s partner key is 4

2. Find information about the user’s partner in the CMGT_PARTNERS table. For
example:

SELECT * FROM CMGT_PARTNERS WHERE PARTNER_KEY = 4

Results:

• this partner object has ACL key 3 (ACL key is the ACCESS_KEY field in
the CMGT_PARTNERS table)

• this partner’s owner is identified by USER_KEY 0

3. Find the relevant lines in the CMGT_ACCESSLIST table.

The error message tells us that either akite is not being granted read access
by virtue of their user key or group membership or that the roles that are
assigned to akite do not have access to the partner object. From Step 2, we
know that the partner object has an ACL key = 3. So, we need to find all
rows in the CMGT_ACCESSLIST table with ACL_KEY = 3 and
PERMISSION = 0 (read) to investigate if at least one of these rows allows
Partner.User or Partner.DirectCommerce read access. Use the SQL query:
SELECT USER_KEY, GROUP_KEY, FIXED, ROLES FROM CMGT_ACCESSLIST
WHERE ACL_KEY = 3 and Permission = 0

Inspect the USER_KEY, GROUP_KEY, and FIXED columns: typically, you
should look to see that akite’s user key is listed in one of the USER_KEY
columns; or that akite’s group is in one of the GROUP_KEY columns; or
Sterling Multi-Channel Selling Solution Developer Guide 105

Using the Security Mechanisms

106 St
that the akite is included by virtue of one of the FIXED values. Since the
owner of the partner object has user key 0, you can identify the group to
which this user belongs as follows:
SELECT GROUP_KEY FROM CMGT_GROUP_USERS WHERE USER_KEY = 0

If there are roles defined, then make sure that either Partner.User or
Partner.DirectCommerce are listed as roles in any row which grant read
access to akite.

4. In this particular example, you may find that the fix is to update
CMGT_ACCESSLIST to append the Partner.User role to one of the rows
whose ACL_KEY = 3.

Password Policies
Users authenticate themselves when they log in to the Sterling Multi-Channel
Selling Solution using a username and a password. The Sterling Multi-Channel
Selling Solution supports the ability to specify explicit password policies: these
control the length and format of passwords as well as how passwords are created.
Password policies are also used to determine what to do if a number of unsuccessful
attempts are made to log in to the Sterling Multi-Channel Selling Solution. You can
customize the password policies for your implementation. This section describes
the password policies configuration file and how you can customize your password
policies.

Configuration
The configuration of your password policies is managed in the
PasswordPolicies.xml configuration file. This file declares each policy, the class
used to implement the policy, and the parameters associated with the policy. For
example, the following PasswordPolicy element specifies the policy governing the
permitted lengths of passwords:

<PasswordPolicy Name="PasswordLengthPolicy" Type="Password"
Enabled="true">
<Description>

This is the Policy to enforce password length
</Description>
<PolicyClass>
com.comergent.reference.authentication.password.PasswordLength
</PolicyClass>
<ParamList>

<Param Name="MinLength" Value = "5"/>
<Param Name="MaxLength" Value = "15"/>

</ParamList>
erling Multi-Channel Selling Solution Developer Guide

Password Policies
</PasswordPolicy>

The PolicyClass element declares the class used to test the policy. Each policy class
must implement the IPolicyClass interface. The ParamList element provides the
specific parameters used to test policies. In this example, the minimum length for
passwords is set to be five characters and the maximum length is set to twelve
characters.

Each policy has a type: this determines when the policy is exercised. The current
types are:

• Initialization: policies of this type are used to determine how passwords
are created.

• Password: policies of this type are exercised whenever a password is
created or modified.

• Creation: policies of this type are used when passwords are created.

• Login: policies of this type are used to manage what to do when users log
in.

You can customize the PasswordPolicies.xml configuration file using the SDK. By
changing the parameter values you can change the behavior of the current
out-of-the-box policies. You can also add your own policies: see "Creating a
Custom Password Policy" on page 108.

The current password policies include:

• UserCreatePolicy: This policy specifies whether passwords can be created
by users or whether they must be system generated.

• PasswordLengthPolicy: This policy specifies the permitted lengths of
passwords. The value of PasswordLengthPolicy’s “MaxLength”
parameter must be less than the value set in the UserAuthenticator field in
the DsDataElements.xml file.

• DictionaryCheckPolicy: This policy checks for strings that cannot be used
for passwords.

• PasswordReusePolicy: This policy controls the re-use of passwords by
users.

• PasswordExpirationPolicy: This policy determines how frequently
passwords must be changed by users.
Sterling Multi-Channel Selling Solution Developer Guide 107

Using the Security Mechanisms

108 St
• IncorrectLoginPolicy: This policy determines how many unsuccessful
logins can be attempted before a user is locked out of the Sterling Multi-
Channel Selling Solution.

Creating a Custom Password Policy
You can create your own password policy. Your policy class must implement the
IPolicyClass interface. This interface declares the following method:

public PolicyCheckResult checkPolicy(IPasswordPolicy pp, HashMap hm);

The IPasswordPolicy interface is documented in the Javadoc provided with the
Sterling Multi-Channel Selling Solution. The Hashmap object is used to pass in the
parameters required for the policy.

The PolicyCheckResult class has a hasError() method. If this returns true, then you
should handle the error condition appropriately.

Passing Login Data Through a URL
Most users of the Sterling Multi-Channel Selling Solution enter the system by
pointing their browsers to the appropriate login page. However, sometimes, you
may want to enable users to access a specific page such as the detail page of an
order directly.

You can do this simply by constructing the URL as you would like it to be, for
example:

http://server/Sterling/en/US/direct/matrix?cmd=OrderDisplay&-
ShoppingCartKey=600501

When a user clicks on this link, their request is routed to the appropriate login page.
In the login form, the request data from the original URL is automatically encoded
as hidden form parameters, for example:

<input type="hidden" name="cmd" value="directLogin" >
<input type="hidden" name="validate" value="true" >
<input type="hidden" name="LoginData-messageType"

value="OrderDisplay"/>
<input type="hidden" name="LoginData-ShoppingCartKey"

value="600501"/>
<input type="hidden" name="LoginData-entryPoint" value="direct"/>

When the login form is submitted, if the login is successful, then the parameters
that begin with “LoginData-” are processed by the LoginController and added back
to the request object with “LoginData-” removed from the parameter names. When
erling Multi-Channel Selling Solution Developer Guide

Passing Login Data Through a URL
the request is forwarded to the message type specified by the
LoginData-messageType parameter, the original parameters are now available to
the controller and JSP pages used to process the request.

Note that in general the message type in the original URL will be changed to the
fallback redirect message type for the message type or message group to which the
message type belongs. Consequently, take care that your intended message type is
the fallback redirect message type for its message group.

You specify the fallback redirect mesage type along these lines:

<MessageGroup Name="AdvisorGroup">
<FallbackRedirect>
<Redirect EntryPoint="partnerMkt">PartnerHomePageDataDisplay"
</Redirect>
<Redirect EntryPoint="catalog">MatrixHomePageDisplay"</Redirect>
<Redirect EntryPoint="advisor">MatrixHomePageDisplay"</Redirect>
<Redirect EntryPoint="configurator">MatrixHomePageDisplay"
</Redirect>
</FallbackRedirect>
...
Message type definitions
...

</MessageGroup>

The way to read this XML extract is as follows: if an unauthenticated request is
tries to execute any message type in the AdvisorGroup of message types, then
redirect them to the PartnerHomePageDisplay message type if the entrypoint of the
request is “partnerMkt” or redirect them to the MatrixHomePageDisplay message
type if the entrypoint is one of the other three declared.

The LoginData-entrypoint is used to specify which entry point is used to access the
system. It is retrieved from the original URL to ensure that the user is directed to
the correct login page. A message group may have more than one default message
type: they are differentiated by their Key attribute that specifies different entry
points. For example:

<GroupDefault Key="partnerMkt" Value="IndirectWorkspaceDisplay" />
<GroupDefault Key="marketPlace" Value="DirectWorkspaceDisplay" />
Sterling Multi-Channel Selling Solution Developer Guide 109

Using the Security Mechanisms

110 St
erling Multi-Channel Selling Solution Developer Guide

CHAPTER 8 Logging
This chapter describes the logging mechanism provided by the Sterling Multi-
Channel Selling Solution. It enables application writers to log activity in the
Sterling Multi-Channel Selling Solution. It uses the log4j API and log4j.properties
configuration files to configure the logging behavior.

The logging capability also provides support for auditing changes to data objects.
See "Auditing Changes to Data Objects" on page 113 for more information.

Overview
The log4j API provides a flexible and extensible logging framework to manage the
logging behavior of the Sterling Multi-Channel Selling Solution. Its basic
configuration and use is described in the Sterling Multi-Channel Selling Solution
Implementation Guide. This section describes the use of the framework as you
customize and extend the Sterling Multi-Channel Selling Solution.

Note that this framework replaces the previous framework used by the Sterling
Multi-Channel Selling Solution: this used the Global class and its logLevel()
methods. These are now deprecated. See "Global Class" on page 471 for more
information on these methods.

To use the log4j API, you should create a Logger class in each class file along these
lines:
Sterling Multi-Channel Selling Solution Developer Guide 111

Logging

112 St
private static final org.apache.log4j.Logger log =
org.apache.log4j.Logger.getLogger(NameOfClass.class);

When you want to make a log entry call:

log.info("This is a log entry");

The method you call depends on the logging level at which you want to record the
message. You can use the following methods:

• debug()

• error()

• fatal()

• info()

• warning()

You can also use log(priority, message), but in general the listed methods should be
sufficient.

log4j.debug System Property
By setting the log4j.debug system property to true, you can echo out the current log
settings. For example, include the following in the servlet container startup script:

-Dlog4j.debug=true

On startup, you should see logging output like this:

log4j: Trying to find [log4j.xml] using context classloader
sun.misc.Launcher$AppClassLoader@136228.
log4j: Trying to find [log4j.xml] using sun.misc.Launcher$AppClass-
Loader@136228 class loader.
log4j: Trying to find [log4j.xml] using ClassLoader.getSystemRe-
source().
log4j: Trying to find [log4j.properties] using context classloader
sun.misc.Launcher$AppClassLoader@136228.
log4j: Using URL [jar:file:/home/hle/ws/32-cmgt-modules/modules.cryp-
tography-tool/target/cmgt-cryptography-tool-2.0.0-SNAPSHOT-app.jar!/
log4j.properties] for automatic log4j configuration.
log4j: Reading configuration from URL jar:file:/home/hle/ws/32-cmgt-
modules/modules.cryptography-tool/target/cmgt-cryptography-tool-
2.0.0-SNAPSHOT-app.jar!/log4j.properties
log4j: Parsing for [root] with value=[WARN, A1].
log4j: Level token is [WARN].
log4j: Category root set to WARN
log4j: Parsing appender named "A1".
log4j: Parsing layout options for "A1".
log4j: Setting property [conversionPattern] to [%-4r [%t] %-5p %c %x -
erling Multi-Channel Selling Solution Developer Guide

Auditing Changes to Data Objects
%m%n].
log4j: End of parsing for "A1".
log4j: Parsed "A1" options.
log4j: Finished configuring.

Auditing Changes to Data Objects
In many implementations, you may want to provide an audit trail that tracks
changes made to data in the Sterling Multi-Channel Selling Solution. In Release
7.0.1 and higher, you can do this by logging any changes made to data objects. If
you set the logging level to INFO or higher in any DataBean class, then whenever
persist() is invoked on an instance of this class, a log message is written out to the
Logger for the class. For example: the following is a sample line that is written out
when a change is made to a partner:

2006.01.18 13:41:05:546 Env/http-8080-Processor23:INFO:PartnerBean
Updating: com.comergent.bean.simple.PartnerBean KeyFields - Partner-
Key: 301 Changes -PartnerKey -> old: 301 new: 301PartnerName -> old:
Scalar2 new: Scalar2 LegalName -> old: null new: null ParentCompany -
> old: null new: nullStatus -> old: A new: A DunBradID -> old: null
new: nullBusinessID -> old: Scalar2-001 new: Scalar2-
001PartnerTypeCode -> old: 10 new: 10PartnerLevelCode -> old: 20 new:
20XMLMessageVersion -> old: dXML 4.0 new: dXML 4.0BusinessTransaction
-> old: SELL new: SELL NetWorth -> old: null new: null NumEmployees -
> old: null new: null PotRevCurrFy -> old: null new: null PotRevNextFy
-> old: null new: null ReferenceUseFlag -> old: null new: null Coterm-
DayMonth -> old: null new: nullURL -> old: http:///www.scalar.com new:
http:///www.scalar2.com LogoURL -> old: null new: null DistiAccess ->
old: null new: null YearEstd -> old: null new: null AnalysisFy -> old:
null new: null FyEndMonthCode -> old: null new: null AccountManagerKey
-> old: null new: null MessageURL -> old: null new: null EmailAddress
-> old: null new: nullCommerceCategory -> old: 2 new: 2 PartnerRefNum
-> old: null new: null ParentKey -> old: null new: null RootPartnerKey
-> old: null new: null ParentCode -> old: null new: null CustomField1
-> old: null new: null CustomField2 -> old: null new: null
CustomField3 -> old: null new: null CustomField4 -> old: null new:
null CustomField5 -> old: null new: null PartnerCom -> old: null new:
null Storefront -> old: null new: null URLName -> old: null new: null
ContentType -> old: null new: nullPartnerStatusCode -> old: 10 new:
10OrganizationType -> old: DirectPartner new: DirectPartner Inherited-
PartnerStatusCode -> old: null new: nullCreditLimit -> old: 0.0000
new: 0.00AvailableCredit -> old: 0.0000 new: 0.0000CreditCurrencyCode
-> old: 23 new: 23 MaxAssignableReps -> old: null new: null Remote-
Prices -> old: null new: null RemotePriceExpiryInterval -> old: null
new: nullCoopPercentage -> old: 0.000000 new: 0.000CoopAccountMax ->
old: 0.000000 new: 0.00 PartnerID -> old: null new: nullOwnedBy ->
old: 0 new: 0AccessKey -> old: 5601 new: 5601UpdateDate -> old: 2006-
Sterling Multi-Channel Selling Solution Developer Guide 113

Logging

114 St
01-18 13:39:33.0 new: 2006-01-18 13:41:05.484UpdatedBy -> old: 0 new:
0CreateDate -> old: 2006-01-04 13:19:38.0 new: 2006-01-04
13:19:38.0CreatedBy -> old: 0 new: 0

You can dynamically change the logging level for any class in the Sterling Multi-
Channel Selling Solution through the administration UI: see the Sterling Multi-
Channel Selling Solution Administration Guide for details. However, if you do this,
then the change to the logging level is not persistent, and will be lost if the servlet
container is restarted. In addition, the logging is written out to the standard
Appender which may not be secure.

You should specify any audit logging by customizing the log4j.properties
configuration file: this ensures that the auditing will continue to be done even if the
servlet container is restarted, and you can specify a custom Appender to process the
audit information. For example, you can specify that the Appender posts the
logging message to a remote Web server which can be secured independently of the
Sterling Multi-Channel Selling Solution.

As an example, the following entries in the log4j.properties configuration file
ensure that all changes to the UserContact data object are audited:

log4j.logger.com.comergent.bean.simple.UserContactBean=info
log4j.appender.com.comergent.bean.simple.UserContactBean=com.comer-
gent.logging.ComergentRollingFileAppender
log4j.appender.com.comergent.bean.simple.UserContactBean.layout =
org.apache.log4j.PatternLayout

If you want to specify that a remote log server can connect asa client in order to
save audit information from the Sterling Multi-Channel Selling Solution, then you
could specify:

log4j.appender.com.comergent.bean.simple.UserContact-
Bean=org.apache.log4j.net.SocketHubAppender
log4j.appender.com.comergent.bean.simple.UserContactBean.port=4321
erling Multi-Channel Selling Solution Developer Guide

CHAPTER 9 Events
This chapter describes the use of the event mechanism provided by the Sterling
Multi-Channel Selling Solution. It enables application writers to fire events from an
application and to have one or more applications respond to the event.

Overview
Events are a means for applications to signal to other applications when a notable
incident has occurred in the Sterling Multi-Channel Selling Solution: examples of
events include users logging in, orders being placed, price lists being assigned to
partners, leads being assigned to partners, and so on.

Applications fire events by instantiating an event producer, using it to create an
event, and then invoking the EventBus to fire the event. Applications use event
consumers to respond to events: the EventBus instantiates event consumers for
each type of event. One event can be processed by one or more consumers.
Sterling Multi-Channel Selling Solution Developer Guide 115

Events

116 St
FIGURE 5. Applications and Events
Events are identified by their class: all event classes must implement the
ComergentEvent interface, but can otherwise be created to suit the needs of the
communication between its event producer and its event consumers.

Firing an Event
Application writers can fire events from their application by using the EventBus
class as follows:

ApplicationEventProducer applicationEventProducer =
new ApplicationEventProducer();

ApplicationEvent applicationEvent =
applicationEventProducer.createEvent();

EventBus.getInstance().fireEvent(applicationEvent);

The event producer class (in this case, ApplicationEvent Producer) is created by the
application developer: it must implement the EventProducer interface, though
currently this interface defines no methods. It must have one or more methods to
create events: by convention these methods are called createEvent(), and they may
take zero or more arguments: typically, you pass into the event the information that
the event consumers will need to process the event. The application event must
implement the ComergentEvent interface. In particular, it must implement the
getSource() method that returns the event producer responsible for creating the
event.

Processing an Event
Application writers who want to respond to an event must write an event consumer
class that implements the EventConsumer interface. This interface declares the
handleEvent(ComergentEvent event) method. The application writer must register
the event consumer by adding it to the events.xml configuration file as follows:
erling Multi-Channel Selling Solution Developer Guide

Events
<event class ="com.comergent.api.apps.application.ApplicationEvent">
<description>

This event is used to signal an event in this application.
</description>
<consumers-list>

<consumer>
com.comergent.api.apps.consumingApplication.ApplicationEventConsumer

</consumer>
<consumer>

com.comergent.api.apps.consumingApplication2.DifferentEventConsumer
</consumer>

</consumers-list>
</event>

When an event is fired, each of the registered event consumers for events of this
type is instantiated and each processes the event in the order they are declared in
events.xml in turn until one of the consumers vetoes the event. At that point or
when there are no more event consumers to be used, the EventBus returns control
to the application that fired the event and the application continues. If no event
consumer vetoes the event, then control is returned when the last consumer has
completed processing the event.

events.xml DTD
Here is the DTD for the events.xml configuration file:

<?xml version='1.0' encoding='UTF-8' ?>

<!ELEMENT events (event*) >
<!ELEMENT event (description?, consumers-list) >
<!ATTLIST event

class CDATA #REQUIRED
>
<!ELEMENT description (#PCDATA)>
<!ELEMENT consumers-list (consumer*) >
<!ELEMENT consumer (#PCDATA)>

Events
Every event must implement ComergentEvent interface and must also implement
either the IREvent (for read-only events) or IRWEvent interfaces (for read-write
events). Currently, both these interfaces declare no methods.

An event that implements the Vetoable interface is used in situations where you
want to allow for the possibility that one event consumer can block other event
consumers from processing the event. Once an event consumer has vetoed an event,
then no other event consumers can process the event.
Sterling Multi-Channel Selling Solution Developer Guide 117

Events

118 St
Vetoable Interface
This interface declares the following methods:

• public void veto(): used by an event consumer to veto an event.

• public boolean isVetoed(): used to test whether an event has been vetoed.

Automated Task Creation
Tasks can be created automatically when end-users perform specific actions such as
requesting a price negotiation. You can modify the default automated task creation
behavior by customizing or making configuration changes to the code for the
automatically-generated tasks.

Typically, the automatically-generated tasks are created by state machine event
handlers, such as the following sample code from the Order on Credit Hold event.

/*
* Create task for the given Order on Credit hold event
*/
public void createTask()
{
ResourceBundle rbs = com.comergent.api.i18nbase.ComergentI18N.getBun-
dle("com.comergent.reference.apps.taskMgr.TaskMgrResourceBundle");

try {
// Grab the Bean off the event model
IOrder order = (IOrder)m_event.getObject();
IRdOrder orderBean = (IRdOrder)order.getDataBean();
ITaskFactory iTaskFactory = (ITaskFactory)OMWrapper.getOb-
ject(ITaskFactory.class);
Long commerceKey = orderBean.getShoppingCartKey();
Long partnerKey = orderBean.getPartnerKey();
Long ownedBy = orderBean.getOwnedBy();
iTaskFactory.createSystemTask(rbs.get-
String("CMGT_SYSTEM_GENERATED_ORDER_ON_CREDIT_HOLD_NAME"),
TaskControllerConstants.SYSTEM_GENERATED_TASK_COMMERCE_FUNCTION,
commerceKey,
new Long(IInquiryListTypes.ORDER),
partnerKey,
ownedBy);

} catch (Exception ex) {
log_0.info(ex.getMessage());
}
}

erling Multi-Channel Selling Solution Developer Guide

Example
Since the order state machine generates events for most of the state transitions, you
can listen to these events and, in the event handler, send email to the user if a
particular event fires.

The Sterling Multi-Channel Selling Solution generates email for the various state
transitions of an order. For an example, look at the OrderOnCreditHoldEvent
entries in the WEB-INF/properties/events.xml and WEB-INF/emails/
OrdersEmails.xml files. These entries list the actions, tasks, and emails generated
as the result of an order moving into the OrderOnCreditHold state. For example, the
entry for the OrderOnCreditHoldEvent in the OrdersEmail.xml file is as follows:

<EmailEvent Name="OrderOnCreditHoldEvent">
 <EmailList>
 <Email>
 <From>@SMTP_SENDER@</From>
 <To>@OWNER@</To>
 <ContentType>text/html</ContentType>
 <Subject Bundle="com.comergent.reference.apps.order-
Mgmt.orders.OrdersResourceBundle">ORDER_ON_CREDIT_HOLD</Subject>
 <Body>OrderEventEmail</Body>
 </Email>
 </EmailList>
 </EmailEvent>

Example
This section presents a simple example showing how to use events. The
DispatchServlet class will produce an event that records the message type of the
inbound request. Each such event will be consumed by a class that logs the message
type to the log stream.

Event Classes

MessageTypeEvent
package com.comergent.dcm.core;

import com.comergent.api.eventbus.*;

public class MessageTypeEvent implements ComergentEvent, IREvent
{

private MessageTypeEventProducer m_MessageTypeEventProducer;
private String m_MessageTypeString;

public MessageTypeEvent(MessageTypeEventProducer mtep, String s)
{

Sterling Multi-Channel Selling Solution Developer Guide 119

Events

120 St
m_MessageTypeEventProducer = mtep;
m_MessageTypeString = s;

}

public String getMessageType()
{

return m_MessageTypeString;
}

/**
 * Returns the sender of this message.
 */
public EventProducer getSource()
{

return m_MessageTypeEventProducer;
}

}

MessageTypeEventProducer
package com.comergent.dcm.core;

import com.comergent.api.eventbus.*;
import com.comergent.dcm.util.*;

public class MessageTypeEventProducer implements EventProducer
{

public MessageTypeEvent createEvent(ComergentRequest cr)
{

String temp_MessageTypeString = null;
try
{

temp_MessageTypeString = cr.getMessageType();
}
catch (ICCException icce)
{

//Log the fact that no message type could be retrieved
temp_MessageTypeString = "NO MESSAGE TYPE RETRIEVED";

}
return new MessageTypeEvent(this, temp_MessageTypeString);

}
}

MessageTypeEventConsumer
package com.comergent.dcm.core;

import com.comergent.api.eventbus.*;

public class MessageTypeEventConsumer implements EventConsumer
erling Multi-Channel Selling Solution Developer Guide

Example
{
public boolean handleEvent(ComergentEvent ce)
{

String temp_MessageTypeString =
((MessageTypeEvent) ce).getMessageType();

Global.logInfo("Message type is " + temp_MessageTypeString);
return true;

}
}

DispatchServlet Changes
Add this code to the executeController() method of the DispatchServlet class:

MessageTypeEventProducer messageTypeEventProducer =
new MessageTypeEventProducer();

MessageTypeEvent messageTypeEvent =
messageTypeEventProducer.createEvent(comergentRequest);

EventBus.getInstance().fireEvent((ComergentEvent) messageTypeEvent);

The fireEvent() method throws an EventBusException, so be prepared to catch and
handle the exception.

events.xml File
Add this event to the events.xml configuration file:

<event class ="com.comergent.dcm.core.MessageTypeEvent">
<description>

This event is used to record the message type of inbound
requests.

</description>
<consumers-list>

<consumer>
com.comergent.dcm.core.MessageTypeEventConsumer

</consumer>
</consumers-list>

</event>

Testing the Example
Build the Sterling Multi-Channel Selling Solution with these changes. When you
start the system and log in, then you should see logging messages for each message
type executed by the DispatchServlet.
Sterling Multi-Channel Selling Solution Developer Guide 121

Events

122 St
erling Multi-Channel Selling Solution Developer Guide

CHAPTER 10 Sending Email from the Sterling
Multi-Channel Selling Solution
This chapter describes how to generate an email message that can be sent from the
Sterling Multi-Channel Selling Solution. This functionality can be used to notify
users of events such as the creation of a new invoice or to provide them with a
confirmation such as the placing of an order.

Framework
In Release 6.4, two new mechanisms are used to send email messages:

• The OutOfBandHelper class is used to generate the body of email
messages using JSP pages. See "OutOfBandHelper Class" on page 29 for
an example of its use.

• The Event mechanism is used to determine which email is sent out when
an event such as a user placing an order occurs. See CHAPTER 9,
"Events" for more information on events.

This framework provides support for sending different email messages to users
based on their locale. For example, you can use different JSP pages as the email
templates for en_US and fr_FR users.

Typically, this is how these mechanisms are used:
Sterling Multi-Channel Selling Solution Developer Guide 123

Sending Email from the Sterling Multi-Channel Selling Solution

124 St
1. An application invokes business logic to process a request. As part of the
business logic, you want to send an email from the Sterling Multi-Channel
Selling Solution.

2. Define an event that will be used to initiate sending the email and declare it in
the events.xml file. For example:

<event class="com.comergent.api.apps.orderMgmt.orders.-
OrderPlaceEmailEvent">
<description>This event is fired when an Order is placed
</description>
<consumers-list>

<consumer>
com.comergent.reference.apps.orderMgmt.orders.-

OrderEmailEventHandler
</consumer>

</consumers-list>
</event>

3. Add code to fire the event from the application. See "Firing an Event" on
page 116 for some sample code to do this.

4. Write the event consumer that will receive and process this event from the
EventBus. This event consumer will actually send the email using the
OutOfBandHelper class. For example, the OrderEmailEventHandler class
marshalls data from the event, and then calls:

com.comergent.reference.apps.commerce.OutOfBandMailHelper.-
sendMail(from, to, cc, subject, messageType, requestAttributes);

The OutOfBandMailHelper class uses the OutOfBandHelper class to
generate the body of the email message as follows:
ComergentRequest request = ComergentAppEnv.getRequest();
ComergentResponse response = ComergentAppEnv.getResponse();
ByteArrayOutputStream stream = new ByteArrayOutputStream();
// Now create an out of band helper
OutOfBandHelper outOfBandHelper =

new OutOfBandHelper(request, response, stream);
Set keys = attributeMap.keySet();
Iterator iter = keys.iterator();
while (iter.hasNext())
{

String key = (String)iter.next();
Object value = attributeMap.get(key);
request.setAttribute(key, value);

}
outOfBandHelper.getRequest().setAttribute(

ComergentRequest.COMERGENT_SESSION_ATTR,
request.getComergentSession());
erling Multi-Channel Selling Solution Developer Guide

Framework
//The message type is mapped to a JSP page using the standard
//message type mapping files.
outOfBandHelper.callJSP(messageType);

Current Usage of the Framework
Release 7.0.1 uses the framework described above. It uses the following files and
data to configure the system:

• *Emails.xml: a number of configuration files are maintained in the
WEB-INF/emails/ directory. These map the email events to the form of
the email that should be sent. For example, the OrdersEmail.xml
configuration file includes the following element:

<EmailEvent Name="OrderChangeEvent">
<EmailList>

<Email>
<From>@SMTP_SENDER@</From>
<To>@OWNER@</To>
<ContentType>text/html</ContentType>
<Subject Bundle="com.comergent.reference.apps.order-

Mgmt.orders.OrdersResourceBundle">
ORDER_CHANGE_SUBMITTED_MSG_SUBJECT
</Subject>
<Body>OrderEventEmail</Body>

</Email>
</EmailList>

</EmailEvent>

This means that when an OrderChangeEvent is fired, an email should be
sent to the owner of the order and that the subject line should be read from
the OrdersResourceBundle properties file. Tokens can be used for system
properties (such as SMTP_SENDER) and for request-specific properties
(such as OWNER).

• The body of the email will be generated using the JSP page that the
OrderEventEmail message type maps to:

<MessageType Name="OrderEventEmail">
<JSPMapping>

../orderMgmt/Orders/OrderDownload.jsp
</JSPMapping>

</MessageType>

• The JSP page used to render order email messages is
OrderDownload.jsp.
Sterling Multi-Channel Selling Solution Developer Guide 125

Sending Email from the Sterling Multi-Channel Selling Solution

126 St
Generating URLs
URLs included in the email messages are generated by a call to the
constructAppURL() method of the ComergentAppEnv class. For example:

protected String getOrderDisplayPage() throws ICCException
{

Long cartKey = iro.getShoppingCartKey();
String orderPage = null;
try
{

orderPage = ComergentAppEnv.-
constructAppURL(I18NOkayConstants.LOWER_CASE_DIRECT,
OrdersConstants.ORDER_DISPLAY_PAGE,
I18NOkayConstants.SHOPPING_CART_KEY + "=" + cartKey);

}
catch(Exception e)
{

throw new ICCException(e);
}
return orderPage;

}

This method generates a string that looks like this:

http://<server:port>/Sterling/en/US/direct/matrix?
cmd=OrderDisplayPage&ShoppingCartKey=5

The parameters in the constructAppURL() method set the "direct",
"OrderDisplayPage", and "ShoppingCartKey" sub-strings of the URL. The
"Comergent" string is the Web application context which you may have changed as
part of your implementation of the Sterling Multi-Channel Selling Solution, and
"matrix" is the value of the DefaultHostedPartner element in your Comergent.xml
file.

Example
In this section, we present a simple example of how to use the email template
mechanism. It follows the generation of the email used to confirm the placing of an
order.

The first method call is invoked by the Java class that is processing the creation of
an order. If the order is successfully created, then the class invokes
sendCreateOrderEmail() to generate and send the email message. For example:

public void sendCreateOrderEmail(IOrder ior)
erling Multi-Channel Selling Solution Developer Guide

Example
The method is called by passing in an IOrder object. This object provides the
relevant user and order information required to retrieve the To email address and to
build up the order details.

sendCreateOrderEmail() invokes:

notifyByEmail(ior, OrdersConstants.ORDER_CREATE_EMAIL_FILENAME,
com.comergent.dcm.util.ComergentI18N.getBundle(-
"com.comergent.reference.apps.orderMgmt.orders.-
OrdersResourceBundle").getString("ORDER_CREATE_MSG_SUBJECT"));

The notifyByEmail() method takes the IOrder object, together with the name of the
email template to be used for the order creation template and a subject line retrieved
from the appropriate resource bundle. Its body (simplified) looks like this:

boolean SEND_ORDER_EMAILS =
Global.getBoolean(OrdersConstants.RULE_SEND_ORDER_EMAILS);

if (!SEND_ORDER_EMAILS)
return;

String owner_email = ior.getAccOrder().getEmailAddress();
String mail_template = Global.getString(tfile);
String locale_mail_template =

OrdersUtils.getLocaleSpecificTemplate(mail_template);
try
{

OrderLocalEmail ole = (OrderLocalEmail)
OMWrapper.getObject("com.comergent.apps.-
orderMgmt.orders.bizAPI.OrderLocalEmail");

String message = ole.formMessage(ior, locale_mail_template);
String file_ext =

OrdersUtils.getFileExtension(locale_mail_template);
if(owner_email != null)

OrdersUtils.SMTPSend(owner_email, null, subj,
message, file_ext);

}
catch(Exception e)
{

if(THROW_EMAIL_EXCEPTION)
throw new ICCException("Unable to send email");

}

The key method is formMessage(). This method does the following:

protected String formMessage(IOrder inIor,
String locale_mail_template) throws ICCException

{
ior = inIor;
iro = ior.getAccOrder();
email_orderCurrency = iro.getCurrencyLookupCode();
IPartnerMgrAPI iPartnerMgrAPI = (IPartnerMgrAPI)
Sterling Multi-Channel Selling Solution Developer Guide 127

Sending Email from the Sterling Multi-Channel Selling Solution

128 St
com.comergent.dcm.util.OMWrapper.getObject(
"com.comergent.api.apps.profileMgr.partnerMgr.IPartnerMgrAPI");
IRdPartnerHelper ph =

iPartnerMgrAPI.getEnterprisePartnerHelper();
enterprisePartner = ph.getDataBean();
String msg = formEmailMessage(locale_mail_template);
String message = OrdersUtils.formatMessage(msg);
return message;

}

The key method is formEmailMessage(): it takes only the template as an argument,
retrieving other data from the field variables set in the formMessage() method:

protected String formEmailMessage(String rawPOFileName)
throws ICCException

{
StringBuffer strBuf = new StringBuffer();
try
{

String createFileName =
ComergentAppEnv.adjustFileName(rawPOFileName);

BufferedReader in =
new BufferedReader(new FileReader(createFileName));

String s = null;
while((s = in.readLine())!= null)
{

String s1 = processLine(s);
strBuf.append(s1);
strBuf.append(I18NOkayConstants.STRING_NEWLINE);

}
in.close();

}
catch(Exception e)
{

OrdersUtils.logVerbose("Unable to form email message - " + e);
}
return strBuf.toString();

}

The processing work is done in the processLine() and processLine_Repeat()
methods as follows:

protected String processLine(String s) throws ICCException
{

String ret = s;
int i = 0;
while (true)
{

String foo = OrdersUtils.getToken(s);
if (foo == null || foo.length() < 1)
erling Multi-Channel Selling Solution Developer Guide

Example
{
return s;

}
s = processLine_Repeat(s, foo);

}
}

protected String processLine_Repeat(String s, String foo)
throws ICCException

{
String ret = s;
if(foo.equalsIgnoreCase(I18NOkayConstants.-

STRING_MANUFACTURER_EMAIL))
{

String val = enterprisePartner.getEmailAddress();
ret = OrdersUtils.replaceInstancesInString(s, foo, val);

}
else if(foo.equalsIgnoreCase(OrdersI18NOkayConstants.-

EMAIL_TOKEN_ORDERNUMBER_STRING))
{

String email_OrderNumber = iro.getOrderNumber();
ret = OrdersUtils.replaceInstancesInString(s, foo,

email_OrderNumber);
}
...
else if (foo.equalsIgnoreCase(OrdersI18NOkayConstants.-

EMAIL_TOKEN_ORDERRETRIEVALWEBPAGE_STRING))
{

String val = getOrderDisplayPage();
ret = OrdersUtils.replaceInstancesInString(s, foo, val);

}
else
{

//Cannot find value for this token
ret = OrdersUtils.replaceInstancesInString(s, foo,

I18NOkayConstants.EMAIL_TOKEN_UNKNOWN_TOKEN);
}
return ret;

}

Note the call to the getOrderDisplayPage() method: this builds up the URL to the
order. See "Generating URLs" on page 126.
Sterling Multi-Channel Selling Solution Developer Guide 129

Sending Email from the Sterling Multi-Channel Selling Solution

130 St
erling Multi-Channel Selling Solution Developer Guide

CHAPTER 11 Modularity and Generated Interfaces
Release 8.0 of the Sterling Multi-Channel Selling Solution has undergone the
following architectural changes designed to make implementations easier to
customize and upgrade:

• "Modules" on page 132

• "Generated Interfaces" on page 135

These changes are related in that the interfaces are organized by modules and that
changes to interfaces may be contained to changes within individual modules.

Overview
The motivation to make these architectural changes are to ensure that
customizations are more contained and can be better preserved during upgrade
from one release of the Sterling Multi-Channel Selling Solution to another.

By providing a means of delivering functionality in modules and by requiring that
modules make calls to other modules only through their external interfaces, the
following benefits are achieved:

• It is easier to compartmentalize the functionality of applications.

• It is easier to understand and manage the dependencies between parts of
the Sterling Multi-Channel Selling Solution.
Sterling Multi-Channel Selling Solution Developer Guide 131

Modularity and Generated Interfaces

132 St
• It is easier to contain the customizations to single modules and understand
what effect changes made in a module have on the whole system.

• Modules can be more easily upgraded independently of each other,
minimizing the effect that an upgrade may have.

• Upgrades to modules that have not been customized will not effect
customizations made in other modules.

• New functionality can be delivered in the form of a module that may be
dropped into an existing deployment of the Sterling Multi-Channel Selling
Solution.

Modules
The Sterling Multi-Channel Selling Solution is developed as a set of interdependent
modules that conform to a common organizational structure. In general, each
module corresponds to a functional component of the Sterling Multi-Channel
Selling Solution such as an application or a component of the Sterling Multi-
Channel Selling Solution platform. Some modules may support both a Java API
and a user interface whereas other may just support a Java API provided to other
modules. Some modules provide a set of “helper” classes, JSP pages, and other
files such as Javascript files and images which are used by a number of other
modules.

In general, each module has the following structure:

• Java classes: organized into three trees. At build time, the directories for
all of the modules are assembled in to a single tree under the
com.comergent package.

• external API interfaces: used by other modules to access functionality
provided by the module. In general, when one module makes a call to
another module’s class, it must do so through the other module’s external
API. This is the com.comergent.api package for the module.

• implementation classes: the implementation of the external API interfaces.
When another module makes a call to the module’s external API, then the
actual classes used are the implementing classes of the module’s interface.
The implementation packages may include internal classes: used by the
implementation classes, but not exposed to outside world and not part of
the supported Javadoc. This is the com.comergent.apps or
com.comergent.appservices package for the module.
erling Multi-Channel Selling Solution Developer Guide

Module Interfaces
• reference components: Controller classes and JSP pages always comprise
part of the reference implementation and their source is provided with the
Sterling Multi-Channel Selling Solution. Resource bundles are also
provided as part of the reference. This is the com.comergent.reference
package for the module.

• JSP pages: possibly organized into directories depending on the
organization of the module. They should always access other modules’
classes through the external APIs exposed by the other modules. This
ensures that JSP pages can be re-used from release to release provided that
the external APIs are supported.

• Resource bundles, Javascript, and static files (such as images and HTML
fragments).

• Configuration files specific to the module such as MessageTypes.xml
files and business rules.

Module Interfaces
Each module must provide an external interface so that all calls to Java classes and
interfaces within the module are invoked through the interface. This external
interface provides a comprehensive set of Javadoc pages so that writers of other
modules can use the external interface reliably and easily.

The external interface for each module will typically be a combination of
handcrafted interfaces and automatically-generated interfaces. Most modules
provide handcrafted interfaces for presentation beans that enable presentation beans
to manipulate data beyond the simple accessor methods of the generated data bean
interfaces. The presentation beans usually wrap a data bean and implement the
same interfaces, but in addition they implement helper methods and some business
logic.

The external interfaces are organized under the following main packages:

• com.comergent.api: this package has all the module external APIs. These
are organized into:

• apps: these are the application hand-crafted APIs. Typically, these are
presentation bean interfaces, utility interfaces, and factory classes.

• appservices: these are the packages provided by the service modules used
by other applications.
Sterling Multi-Channel Selling Solution Developer Guide 133

Modularity and Generated Interfaces

134 St
• dcm: these are the external APIs offered by the Sterling Multi-Channel
Selling Solution platform.

• com.comergent.bean.simple: this package has all the
automatically-generated bean interfaces and the data bean classes
themselves.

The generated interfaces are provided for each of the data objects declared in the
XML schema files. These are organized to provide appropriate levels of access to
the data fields of the underlying data beans. This helps to ensure that there is a
clearer separation between presentation and business logic in the Sterling Multi-
Channel Selling Solution. See "Generated Interfaces" on page 135 for more
information about the generated interfaces.

Invoking Interfaces
You can invoke an interface from a Java class by casting any object or child
interface to the interface and then invoke any method that the interface declares. In
the Sterling Multi-Channel Selling Solution, use one of the following techniques to
do this:

• "Using the Object Manager" on page 134

• "Using Factory Classes" on page 135

Each module uses one or other of these techniques, but not both. As you work on an
existing module or create a new one, be consistent in how you invoke the
interfaces. It will make it easier for your colleagues to work on the same module.

In general, you should always try to work with interfaces provided by the
com.comergent.api packages: these are the interfaces that the modules will support
from one release to the next, even though the underlying implementations of the
interfaces may change.

Using the Object Manager
You can use the ObjectManager class to return an appropriate interface as follows.
Suppose that you want to retrieve the IAccProduct interface to set the data fields of
a product. Then make a call along these lines:

IAccProduct temp_IAccProduct =
(com.comergent.bean.simple.IAccProduct)

com.comergent.dcm.util.OMWrapper.getObject(
"com.comergent.bean.simple.IAccProduct");

Provided that there is an entry in the ObjectMap.xml file that specifies the object
to be returned and provided that the object implements the IAccProduct interface,
erling Multi-Channel Selling Solution Developer Guide

Generated Interfaces
then this call will succeed and methods on the interface can be invoked. For
example, if the ObjectMap.xml file contains:

<Object ID="com.comergent.bean.simple.IAccProduct">
<ClassName>com.comergent.bean.simple.ProductBean</ClassName>

Then, the ObjectManager returns a com.comergent.bean.simple.ProductBean
object and this can be cast to the IAccProduct interface because the
com.comergent.bean.simple.ProductBean class implements the
com.comergent.bean.simple.IAccProduct interface.

Using Factory Classes
Calls to an interface can be provided by Factory classes that return an instance of
the interface. For example, the package com.comergent.api.apps.commerce
provides a public interface IInquiryListFactory. If another module needs an
instance of this Factory interface, then it calls the CommerceAPI class’s
getFactory(int i) method. The int parameter determines what sort of Factory class is
returned. In turn, the calling module can now invoke methods on the
IInquiryListFactory to return inquiry list interfaces of the appropriate type. For
example,
getInquiryList(Long listKey, boolean bFillPrices) returns an object that implements
the IInquiryList interface.

Generated Interfaces
When you need to access data on a particular data object, you must use the
generated interfaces that each data object provides. These generated interfaces are
created and compiled when the SDK generateBean target is run as part of the
deployment of your Sterling Multi-Channel Selling Solution.

For each data object declared as a DataObject within the DsRecipes.xml file, and
for any parent, reference, or child data objects, the following classes and interfaces
are generated and compiled in the com.comergent.bean.simple package:

• <Name>.java: this is the data bean class. It implements the interfaces
listed here. In addition, if the data object extends another data object, then
the bean extends the <Parent>.java bean.

• IAcc<Name>.java: this interface extends the IRd<Name>.java by
providing the write (set) accessor methods on all of the data fields of the
data object. In addition, if the data object extends another data object, then
the IAcc interface extends the IAcc<Parent>.java interface.
Sterling Multi-Channel Selling Solution Developer Guide 135

Modularity and Generated Interfaces

136 St
• IData<Name>.java: this interface extends the IAcc<Name>.java by
providing restore() and persist() methods on the data object. In addition, if
the data object extends another data object, then the IData interface
extends the IData<Parent>.java interface.

• IRd<Name>.java: this interface provides the read-only (get) accessor
methods to the data fields of the data object. In addition, if the data object
extends another data object, then the IRd interface extends the
IRd<Parent>.java interface.

• In addition, list beans also implement the IData<Name>List.java
interface. Each list interface extends the IDataList.java interface as well as
the list interface of any parent object.

In general, you should use the IRd interface for any objects to be passed to JSP
pages so that the objects are effectively read-only. Only use objects that implement
the IData interface when you know that you need to either restore or persist the data
object.

Example of a Generated Interface
Consider the ACL data object: the ACL.xml file reads:

<?xml version="1.0"?>
<DataObject Name="ACL" Extends="C3PrimaryRW"

ExternalName="CMGT_ACLS"
Access="RWID" Ordinality="1"
ObjectType="JDBC" Version="5.0">
<KeyFields>
<KeyField Name="AccessKey" ExternalName="ACL_KEY"

KeyGenerator="ACLKey"/>
</KeyFields>
<DataFieldList>

<DataField Name="AccessKey"
Writable="n" Mandatory="n"
ExternalFieldName="ACL_KEY"/>

<DataField Name="ACLName"
Writable="y" Mandatory="n"
ExternalFieldName="NAME"/>

</DataFieldList>
<ChildDataObject Name="Access" />

</DataObject>

Consequently, the IRdACL.java class declares:

public interface IRdACL extends IRdC3PrimaryRW

and exposes the methods:
erling Multi-Channel Selling Solution Developer Guide

Generated Interfaces
• public Long getAccessKey();

• public String getACLName();

The IAccACL.java class declares:

public interface IAccACL extends IAccC3PrimaryRW, IRdACL

and exposes the methods:

• public void setACLName(String value) throws ICCException;

• public void addAccess(AccessBean bean) throws ICCException;

The IDataACL.java class declares:

public interface IDataACL extends IAccACL,IDataC3PrimaryRW, IData

In general, this interface may declare no additional methods beyond those declared
in the IData interface because all the standard methods to read and write data from
external data sources are declared in this interface.
Sterling Multi-Channel Selling Solution Developer Guide 137

Modularity and Generated Interfaces

138 St
erling Multi-Channel Selling Solution Developer Guide

CHAPTER 12 Implementing Logic Classes
This chapter and the next two chapters present a description of how to implement
business logic classes (BLCs) at an implementation of the Sterling Multi-Channel
Selling Solution. Before reading this chapter, you must have a working
understanding of the basic architecture of the Sterling Multi-Channel Selling
Solution and of Java.

Key Concepts
To understand fully how the Sterling Multi-Channel Selling Solution works as an
application, you must understand its architecture.

An installation of Sterling Multi-Channel Selling Solution processes requests as
they are received from users’ browsers, and messages from other Sterling Multi-
Channel Selling Solutions and from external systems. You must configure the
Sterling Multi-Channel Selling Solution to process each type of request and
message.

The core of the Sterling Multi-Channel Selling Solution is the Sterling Commerce
Manager. This powerful and flexible server is designed to seamlessly integrate a

Note: The use of BLCs is deprecated. In general, new applications should use
bizlets, controllers, and BizAPIs to implement their business logic.
Sterling Multi-Channel Selling Solution Developer Guide 139

Implementing Logic Classes

140 St
network of channel partners and the external systems that make up the e-commerce
environment of each partner.

Each Sterling Multi-Channel Selling Solution server in the network of sales
partners works both as a server in relation to inbound requests from browsers and as
a client as it retrieves information from other Sterling Multi-Channel Selling
Solution servers and external systems.

To customize the Sterling Multi-Channel Selling Solution in your environment, you
need to consider how the system retrieves data from your external systems. In
general, you can use the schema and Service classes to retrieve data from a local
database source or from another Sterling Multi-Channel Selling Solution server by
exchanging messages. However, you have to produce custom BLCs to retrieve
information from an external system other than these.

Application Logic Classes
Application logic classes are implemented as bizAPI, business logic , or controller
classes.

• bizAPI classes are used to manage the business logic of business objects.
Conceptually, each bizAPI class corresponds to a business object and its
methods correspond to the actions that can be performed on the business
object. For example, the OrderInquiryList bizAPI class provides the
following methods: duplicate(), copyLineItem(), and changeOwner()
which correspond to actions that can be performed on a product inquiry
list. It implements the
com.comergent.api.apps.orderMgmt.oil.IOrderInquiryList interface.

The bizAPI classes are defined in the
com.comergent.apps.<application>.bizAPI packages. Typically, they
implement an interface declared in the corresponding
com.comergent.api.apps.<application> package.
For example, the Order bizAPI class is in the
com.comergent.apps.orderMgmt.orders.bizAPI package. It extends the
OrderInquiryList class and implements the
com.comergent.api.apps.orderMgmt.orders.IOrder interface.

• Each BLC is a subclass of the BLC abstract class. This class implements
the ApplicationObject interface. BLCs perform the business logic of your
implementation of the Sterling Multi-Channel Selling Solution. Each BLC
contains a table of business objects such as session, user, and shopping
erling Multi-Channel Selling Solution Developer Guide

Naming Service
cart for example. In executing the service() method of a BLC, it invokes
the persist() and restore() methods of these business objects.

• Some Sterling Multi-Channel Selling Solution use controller classes to
perform business logic. These classes are to be found in the
com.comergent.reference.apps.<application>.controller packages for each
application.

The Sterling Multi-Channel Selling Solution comes with a number of standard
bizAPI classes, BLCs, controllers, and JSP pages. However, you may need to create
new logic classes or modify the existing classes. CHAPTER 13, "Implementing
Application Logic Classes" provides guidance on how to do this.

Business Objects
See CHAPTER 6, "Introducing Data Beans and Business Objects" for more
information.

XML Schema
The Sterling Multi-Channel Selling Solution Reference Guide covers the schema
and Service classes in detail. You should manage data access using these features if
possible.

Naming Service
To retrieve parameters at runtime, the Sterling Multi-Channel Selling Solution
provides a naming service to access either a flat file or a database to recover
parameters.

Application logic classes can invoke a naming service by calling the static class
NamingManager methods getInstance() and getInstance(int i). Both these methods
return an object that implements the NamingService interface.

• If no integer argument is provided, then an object of default type is
created, either a NamingServiceProperties object or a
NamingServiceDatabase object.

• If the integer argument is the constant NamingManager.DATABASE, then
a NamingServiceDatabase object is created.

• If the integer argument is the constant NamingManager.PROPERTIES,
then a NamingServiceProperties object is created.

Note: In general, the use of BLC classes is deprecated. You should use either
controllers or bizAPI classes to manage your business logic.
Sterling Multi-Channel Selling Solution Developer Guide 141

Implementing Logic Classes

142 St
• If the integer argument is not one of these two, then an object of default
type is created.

In all cases, the Sterling Multi-Channel Selling Solution accesses the
Comergent.xml file to determine exactly how the NamingService object should be
created:

• If a NamingServiceDatabase object is to be created, then the
NamingManager.database entries are used to specify the connection to the
database.

• If a NamingServiceProperties object is to be created, then the
NamingManager.properties entry is used to determine which properties
file holds the parameter values.

Once the NamingService object is created, you use the methods listed below to
retrieve the parameters as a NamingResult class:

• public NamingResult get(int key)

• public NamingResult get(Long key)

• public NamingResult get(String key)

The key parameter provides a means of retrieving only those parameters whose
name begins with the key string.

The NamingResult class provides the get(String parameter) method to return the
value of the parameter.

NamingService Example
For example the following code fragment recovers the value of the message URL
parameter for a distributor referred to by its partner key.

NamingService namingService = NamingManager.getInstance();
NamingResult namingResult = namingService.get(partnerKey);
String url = namingResult.get(NamingResult.MESSAGE_URL);

Note that by default, the type of NamingService created is a
NamingServiceDatabase object because in Comergent.xml the NamingManager
defaultType element is set to "database".
erling Multi-Channel Selling Solution Developer Guide

CHAPTER 13 Implementing Application Logic
Classes
This chapter presents a detailed description of how to implement application logic
classes at an installation of Sterling Multi-Channel Selling Solution. Before reading
this chapter, you must have a working understanding of the basic architecture of the
Sterling Multi-Channel Selling Solution and of Java. It covers:

• "bizAPI Classes" on page 143

• "Business Logic Classes" on page 144

• "Controller Classes" on page 144

bizAPI Classes
You can manage the business logic of an application by creating bizAPI classes.
They must be invoked from the controller class specified by the message type of the
request.

There is no standard interface or abstract class for bizAPI classes. Typically, each
bizAPI class corresponds to a business object such as a product inquiry list or a
quote. It provides methods that correspond to the actions that you can perform on
the business object. It may also provide helper methods to support the business
logic such as tax calculations or looking up currency codes.
Sterling Multi-Channel Selling Solution Developer Guide 143

Implementing Application Logic Classes

144 St
Business Logic Classes
The use of BLC classes is deprecated in Release 6.4 and later. See "Business Logic
Classes" on page 468 if you need to support a legacy use of business logic classes.

Controller Classes
Every inbound request received by the DispatchServlet is processed by a controller:
the message type determines which controller class is used. There are some
lightweight controllers such as ForwardController and SimpleController. These
make use of the MessageTypes.xml files to determine the JSP page to which the
request is forwarded.

Most requests are handled by a custom controller: the message type determines
which controller class is used. Each custom controller must override the execute()
method declared by the Controller class: it is called by the DispatchServlet when
the servlet container receives the request. This method executes the business logic
required to process the request either by itself or through invoking bizAPI classes.

A typical execute() method looks like this:

public void execute() throws ControllerException, ICCException,
IOException

{
//Get the cart key
Long cartKey = getCartKey();
//If from update update the order
ShoppingCart updatedCart = (ShoppingCart) updateCart(cartKey);
Hashtable supersededSKUsFromAdd = getSupersededSKUs();
//Get order factory
try
{

boolean bShowPromos = true;
String szShowPromos = ComergentAppEnv.getEnv().-

getProperty(I18NOkayConstants.SHOW_PROMO_BUSINESS_RULE);
if ((szShowPromos != null) &&

(szShowPromos.equalsIgnoreCase(
I18NOkayConstants.STRING_FALSE)))

{
bShowPromos = false;

}
ChannelCartPresentationBean cartDisplay =

(ChannelCartPresentationBean)
getPresentationBean(cartKey, bShowPromos);

/*
erling Multi-Channel Selling Solution Developer Guide

Controller Classes
If this is an update message for addSKUs, then fill it
with vector for bad SKUs

*/
cartDisplay.setUpdate(isUpdate);
cartDisplay.setOperation(updateOperation);
cartDisplay.setAddSKUErrors(vBadSKUs);
cartDisplay.setSupersededSKUs(supersededSKUsFromAdd);
//Set the beans for the request
request.setAttribute("cartPresentation", cartDisplay);
callJSP();

}
catch(Exception e)
{

throw new ICCException(e);
}

}

Sterling Multi-Channel Selling Solution Developer Guide 145

Implementing Application Logic Classes

146 St
erling Multi-Channel Selling Solution Developer Guide

CHAPTER 14 Software Development Kit
You can use the Sterling Multi-Channel Selling Solution Software Development
Kit (SDK) to install and customize your implementation of the Sterling Multi-
Channel Selling Solution. The HTML documentation provided with each version
of the SDK is intended to provide you with a basic overview of how the SDK works
and its use to manage projects. This chapter is devoted to describing the basic
structure of a customization project. In particular, follow the guidelines here to
organize your project so that it follows the customizations guidelines.

Project Organization
Each project built using the SDK is created on top of a release of the Sterling Multi-
Channel Selling Solution. When you create the project using the newproject target,
the SDK creates a set of project files that are suitable for that release. All of the
customizations that you make in the project are made by adding files to the project.
Files can be added to the project in these ways:

• Use the customize target to copy a file from the release into the project.
When you use the customize target, the file is automatically copied into
the appopriate sub-directory of the project.

• Create the file manually in the appopriate sub-directory of the project.

See "Project File and Directory Locations" on page 148 for information on where
files must be located.
Sterling Multi-Channel Selling Solution Developer Guide 147

Software Development Kit

148 St
Project File and Directory Locations
In this section, we assume that you have created a project called project, and so you
will have a project directory called sdk_home/projects/project/. You must make
sure that each of the project files is in the appropriate location under the project
directory as follows:

• Java source files: these must be placed under the project/src/ directory,
and follow the package organization for the Sterling Multi-Channel
Selling Solution.

• JSP pages: these are organized by module and locale under the project/
WEB-INF/web/ directory.

• Schema files: these comprise the data object files and the supporting data
services files. All your customizations should be maintained under the
project/WEB-INF/schema/custom/ directory. Make sure that the
schemaRepositoryExtn element is set to “WEB-INF/schema/custom”.

Java Source Files
Under the project/src/ directory, we suggest that you follow these guidelines to
organize your customizations to the Sterling Multi-Channel Selling Solution:

• Use the com/comergent/api/ packages to add your extensions to the
Sterling Multi-Channel Selling Solution API. In general, you should
create new classes that extend the existing API: do not overwrite the
release API because that can affect any upgrade.

• Use the com/comergent/apps/ and com/comergent/appservices/ packages
to add implementation classes: these may be entirely new classes or new
classes that extend existing implementation classes.

• Use the com/comergent/reference/ packages for controller classes. You
can customize existing controller classes or create new controller classes.

JSP Pages
Under the project/WEB-INF/web/ directory, we suggest that you follow these
guidelines to organize your customizations to the Sterling Multi-Channel Selling
Solution:

• Where appropriate, use the existing organization of JSP pages to add new
JSP pages or to customize existing ones.
erling Multi-Channel Selling Solution Developer Guide

Project Organization
• If you are adding a new functionality module, then create a new directory
under the appropriate locale(s) for the module, and follow the same
naming conventionas you do for Java classes created for the module.

Schema Files
Under the project/WEB-INF/schema/custom/ directory, we suggest that you
follow these guidelines to organize your customizations to the Sterling Multi-
Channel Selling Solution:

• To add new data objects:

• Put the XML definition of the data object in project/WEB-INF/schema/
custom/. For example, create the file project/WEB-INF/schema/custom/
Comment.xml

• Modify project/WEB-INF/schema/custom/DsBusinessObjects.xml by
adding the new business object. For example:

<?xml version="1.0"?>
<Schema Name="project" Description="project Custom Schema"

Version="6.0">
<BusinessObject Name="Comment" Version="6.0"

Description="Comment BusinessObject"/>
</Schema>

• Modify project/WEB-INF/schema/custom/DsDataElements.xml by
adding the new data elements for the header and list data objects, together
with any new fields declared by the data object. For example:

<?xml version="1.0"?>
<Schema Name="project" Description="project Custom Schema"

Version="6.0">
<DataElement Name="Comment" Description="Comment data object"

DataType="HEADER"/>
<DataElement Name="CommentList" Description="Comment list data

object" DataType="HEADER"/>
<DataElement Name="CommentKey" Description="Comment Key"

DataType="LONG" MaxLength="20"/>
</Schema>

• Modify project/WEB-INF/schema/custom/DsRecipes.xml by adding a
recipe element. For example:

<Schema Name="project" Description="project Custom Schema"
Version="6.0">
<Recipe Name="Comment" BusinessObject="Comment"

Description="Default Approvals List Recipe" Version="6.0">
<DataObjectList>
Sterling Multi-Channel Selling Solution Developer Guide 149

Software Development Kit

150 St
<DataObject Name="Comment" Access="RWID"
DataSourceName="ENTERPRISE" Ordinality="n"
Version="6.0"/>

</DataObjectList>
</Recipe>

</Schema>

• Modify the appropriate key generator file, for example project/WEB-INF/
schema/custom/OracleKeyGenerators.xml, by adding any new keys
required:

<?xml version="1.0"?>
<Schema Description="project Custom Schema" Name="project"

Version="6.0">
<KeyGenerator Name="CommentKey" KeyProcedureName="COMMENTKEY"

GeneratorType="PROCEDURE" />
</Schema>
erling Multi-Channel Selling Solution Developer Guide

CHAPTER 15 Tailoring the Sterling Multi-Channel
Selling Solution
Overview
Embracing all channels, all selling partners, and all products, the Sterling Multi-
Channel Selling Solution enables the most powerful collaborative commerce
experience available. With the Sterling Multi-Channel Selling Solution, companies
can successfully pursue e-business strategies by seamlessly integrating their
existing channel partners into Web commerce, offering vast opportunities for their
partners to contribute value-add during the selling process. By guiding customers
through the entire sales process, streamlining the selection of complex products and
services, allowing purchases to be consummated across channel partners, and
providing insight into the effectiveness of commerce activities, Sterling Commerce
maximizes e-business sales potential while strengthening relationships with a
company’s channel partners.

The Sterling Multi-Channel Selling Solution is a complete suite of enterprise-class
applications developed using open, standards-based technologies such as Java,
XML, and Java 2 Enterprise Edition (J2EE). The Sterling Multi-Channel Selling
Solution is not a collection of code stubs or building blocks to help jump-start the
custom development of complex e-commerce applications. The Sterling Multi-
Channel Selling Solution applications are pre-packaged solutions that are ready to
deploy, easy to configure, and easy to administer. The Sterling Multi-Channel
Sterling Multi-Channel Selling Solution Developer Guide 151

Tailoring the Sterling Multi-Channel Selling Solution

152 St
Selling Solution enables companies to rapidly implement technology solutions to
business problems and reduce time to market for a competitive advantage.

The Sterling Multi-Channel Selling Solution is deployed as a Java J2EE Web
application, using the services provided by commercial Java application servers.
This provides an open foundation for the integration of Sterling Multi-Channel
Selling Solution with other applications as well as the extension of Sterling Multi-
Channel Selling Solution functionality. In addition, the Sterling Multi-Channel
Selling Solution application architecture itself has been designed to meet the key
goals of extensibility and integration.

A key requirement for any Web-based enterprise application is the ability to
configure, customize, and extend the application to meet the needs of the customer.
The Sterling Multi-Channel Selling Solution has been designed throughout to
support customization, extension, and integration with other applications. This
document describes how this is accomplished.

Customization Components
The following components and source code are delivered as part of the SDK
installation of the Sterling Multi-Channel Selling Solution to allow for the
capability to make specific extensions and customizations:

• Presentation Layer Components: JavaServer Pages (JSPs) Template
Source Code Files, Cascading Style Sheets (CSSs), Java Resource Bundle
Files, Javascript files, Java source code for Controllers (as in the Model/
View/Controller paradigm, see "Controllers" on page 157) defining end
user page flows.

• DataServices Layer Components: Business Object Schema Definition
Files, Knowledgebase Database Definition Scripts, Document Type
Definition (DTD) Files for all XML messages supported by the system

• Application and Kernel Configuration Files: The XML configuration
files are used to modify the behavior of the Sterling Multi-Channel Selling
Solution platform.

• API and Developer Documentation: Developers Guide, Administration
Guide, Implementation Guide, and Reference Guide PDF files. The
JavaDocs, the industry standard HTML-based documentation format,
generated directly from the source code detailing the input/output
parameters and usage guidelines for all public and protected methods in all
Sterling Commerce packages is provided along with a higher level index
tying together Presentation, Logic, and Data Layer components.
erling Multi-Channel Selling Solution Developer Guide

Customization Components
Platform Components
The shaded areas in the diagram below represent the internal architectural modules
of the Sterling Multi-Channel Selling Solution system. These modules are
documented and serve as the platform upon which applications are written.

• Sterling Multi-Channel Selling Solution Platform: This module
represents the underlying platform-level mechanisms of the Sterling
Multi-Channel Selling Solution architecture, including the Data Services
module, the system-to-system messaging manager including XSL/XSLT-
based conversion services, and the security, authentication and data
entitlement system.

• Sterling Multi-Channel Selling Solution Application Engine: This
module represents the supporting framework for Sterling Multi-Channel
Selling Solution applications. It defines the Java Interfaces that must be
implemented by the various business logic modules associated with
applications, provides the mechanism for interfacing between JSP pages
and the underlying business logic, and provides common application
services that are used by the application logic.
Sterling Multi-Channel Selling Solution Developer Guide 153

Tailoring the Sterling Multi-Channel Selling Solution

154 St
FIGURE 6. Sterling Multi-Channel Selling Solution Architecture

Extensions and Maintenance
This section describes in greater detail the various mechanisms within the Sterling
Multi-Channel Selling Solution environment that support the customization and
extension of the application suite. The source code and customization components
detailed on the previous page are sufficient to extend the application when applied
in the following manner:

Extending the Presentation Layer
The Sterling Multi-Channel Selling Solution application suite is deployed as part of
the overall Web site of a company and as such must be able to be customized to
integrate with the look-and-feel of that site.

Look-and-feel customizations are achieved by making changes to the JSP pages for
each application page, by editing the resource string files, and by adjusting the font
size and color specifications in the cascading style sheet file.
erling Multi-Channel Selling Solution Developer Guide

Extensions and Maintenance
Page flow customizations are achieved through modification of server-side Java
components known as “Controllers” which contain the reference page flow logic.

JSP Pages
All Sterling Multi-Channel Selling Solution applications support a “thin client”
user interface based on the HTML Web standard. Users connect to Sterling Multi-
Channel Selling Solution applications using a standard Web browser; no special
software installation or download is required at the client side. One of the key
benefits of HTML is its flexibility. Web-based user interfaces can be created that
satisfy a large variety of look and feel requirements. In addition, adhering to the
thin-client HTML model of user interface ensures that Sterling Multi-Channel
Selling Solution applications can be smoothly integrated into the appearance and
functionality standards of any Web site.

The Sterling Multi-Channel Selling Solution user interface is implemented using
the Java Server Pages (JSP) standard, defined as part of the overall Java 2
Enterprise Edition (J2EE) standard. Each screen within the Sterling Multi-Channel
Selling Solution user interface is defined by a JSP page. JSP pages define a
mechanism for interleaving HTML formatting directives with Java source code.
This provides a way to support both the dynamic content (for example, an order’s
line-item list) and the static content (the site navigation buttons) of the page in a
single source file.

All Sterling Multi-Channel Selling Solution applications are implemented using
“Model 2” JSP pages, which means that there is a strict separation between the
business logic of an application screen and its presentation to the user. The business
data and logic are made available to the JSP page through the underlying Sterling
Multi-Channel Selling Solution architecture, but the JSP page itself contains only
formatting directives and control structure. This provides a very flexible user
interface infrastructure, supporting conditional display of text, etc. while still
keeping the JSP pages clean and simple. The JSP pages can be customized to any
look and feel by administrators who are HTML capable but have little or no Java
programming experience.

All Sterling Multi-Channel Selling Solution JSP pages make extensive use of the
HTML Cascading Style Sheets (CSS) mechanism. This allows most look-and-feel
parameters (font, color, spacing, size, and so on) to be defined in a separate CSS
file and referenced by name in the JSP pages themselves. This allows the
appearance of the page to be significantly modified via changes to the CSS file,
without modifying the JSP pages themselves.

Sterling Commerce supplies source code template files for each Java Server Page
as part of any implementation. This allows any customer to control the
Sterling Multi-Channel Selling Solution Developer Guide 155

Tailoring the Sterling Multi-Channel Selling Solution

156 St
look-and-feel of the Sterling Multi-Channel Selling Solution applications at their
site, both upon initial implementation and over the life-cycle of the site.

Page Layout and Branding
Overall page layout and appearance, including background colors and branding
images, can be modified by editing the JSP page(s) associated with each Web page.
The JSP page consists primarily of HTML text that specifies the page layout and
structure. Components on the page can be re-sized or rearranged by editing the
HTML.

All page image references can be changed to new graphics files containing the
appropriate pictures and company logos.

Resource Strings
All text strings defined by the applications, including error message text are defined
in resource files that are separated from the application code. These strings can be
modified by editing the Java Resource Bundle implementations. Java Resource
Bundles are a standard mechanism within the Sun Java Development Kit to support
internationalization efforts.

Style Sheets
All aspects of text font style and color are controlled via the HTML Cascading
Style Sheets mechanism. The style sheet files define HTML element classes that
specify the font, text color and background colors of text displayed within the
pages.

A new graphic design can be applied to all the pages simply by editing the style
sheet file to assign new font style size and color attributes to the various elements
displayed within the page.

Page Flow
It is sometimes desirable to alter the page flow of a Sterling Multi-Channel Selling
Solution application or to incorporate the services or capabilities of an outside
application into the Sterling Multi-Channel Selling Solution page flow. This can be
accomplished in a number of ways.

HTTP Links
The URL linkages between pages can be edited within the JSP template itself. A
new button can be created that invokes an alternate application functionality and
page flow, or the URL of an existing command button can be edited to reference a
different page. In addition, in-line Java code can be inserted in a JSP page that can
erling Multi-Channel Selling Solution Developer Guide

Extensions and Maintenance
include arbitrary Java packages and invoke the incorporated Java code to call out to
external systems or provide information to be displayed within the page.

Controllers
Sterling Multi-Channel Selling Solution JSP pages follow the Model 2 standard,
implementing the “Model/View/Controller” (MVC) paradigm that helps to cleanly
separate business logic from presentation. Controller code is typically responsible
for:

• validating and converting HTTP request parameters, usually form posts, to
the appropriate data objects on which the Sterling Multi-Channel Selling
Solution application logic acts;

• matching application results to specific JSP pages for presentation to the
user;

• performing any conditional routing of page flow based on normal or
exception results returned or raised by requested application logic.

Controllers are essentially lightweight orchestrators of logic request flows initiated
via Web browsers, bridging Web clients to the presentation independent Sterling
Multi-Channel Selling Solution application logic.

New controllers can be written as part of a Sterling Multi-Channel Selling Solution
installation that can alter the flow between existing Sterling Multi-Channel Selling
Solution application pages without modifying any of the underlying business logic
implemented by the operations within a page. Further, source code for the
Controllers user for end user page flows can be modified appropriately. Controller
implementers must limit themselves to documented Sterling Multi-Channel Selling
Solution APIs to achieve compatibility with future releases of the Sterling Multi-
Channel Selling Solution.

Extending the Data Services Layer
All access to business information or data is mediated through the Sterling Multi-
Channel Selling Solution Data Object mechanism. The data object definition
mechanism (described in CHAPTER 6, "Introducing Data Beans and Business
Objects") can be used to extend these objects to contain additional information.

Data Object Schemas
All business information that is used and managed using Sterling Multi-Channel
Selling Solution applications (for example, orders, user profiles, product data) is
accessed through a set of data objects defined by the applications. These data
Sterling Multi-Channel Selling Solution Developer Guide 157

Tailoring the Sterling Multi-Channel Selling Solution

158 St
objects define the various readable and writable fields and attributes of business
data.

Each data object is defined by an XML schema file that defines the field names and
data types of the data object. A data object can be customized through sub-classing
or by editing its associated schema file to add new fields and delete or rename
existing ones. The sub-classing mechanism isolates customizations in a new XML
schema file. This is the most upgrade-friendly approach and, therefore, the
recommended one.

The fields of a data object can be accessed by name from within the UI code in a
JSP page. This means that changes to a data object can easily be reflected in the UI
of a Sterling Multi-Channel Selling Solution application without any Java coding.

Extending a Data Object
An existing Sterling Multi-Channel Selling Solution data object can be extended by
editing its XML schema definition file. For example, a new data field can be added
to an existing data object by inserting the appropriate XML element(s) in the
schema definition file.

The XML schema file is then processed to produce the associated Java class for the
data object and to generate the Java bean that can be referenced by JSP pages that
interact with that data object.

Presentation code within a JSP page can reference the new data object data field
just like any built-in field of the object. The value can be read and displayed or set
from a form field, all without requiring any programming outside the XML schema
file, controllers, and the JSP page.

Creating a New Data Object
New data objects can be created with the same XML-based mechanism. A new data
object’s content can be referenced through the automatically-generated Java bean
interface by any interested JSP page and Controller pair.

We recommend that when you create a new data object, you create a new database
table to store the corresponding data. Name the table with a prefix that reflects the
project title rather than the standard CMGT prefix. This ensures that there is no risk
of a naming collision when upgrades take place.

Data Source Mapping
The Sterling Multi-Channel Selling Solution Data Services module is responsible
for managing all interaction between the Sterling Multi-Channel Selling Solution
erling Multi-Channel Selling Solution Developer Guide

Extensions and Maintenance
applications and various data sources, including relational databases, XML
messaging, and data management system APIs.

The Data Services module provides a variety of built-in data interface modules.
One provides access to relational databases via the Java JDBC standard. Another
provides access to remote data via system-to-system XML messages.

Each data interface module is built using the module API provided by the Data
Services mechanism. New data interface modules can be written using this API to
access data that is managed by various legacy systems or other mechanisms.

XML Message DataService
The set of XML messages supported by the Sterling Multi-Channel Selling
Solution application suite is defined via a message map definition file. The message
map file can be edited to define new messages that can be mapped to existing or
new business logic.

System-to-System Messages
The Sterling Multi-Channel Selling Solution architecture supports integration with
other applications through the exchange of XML messages via the HTTP protocol.
Any business logic operation provided by a Sterling Multi-Channel Selling
Solution application can be invoked using this XML interface. The specific
operation to be performed along with all of its required input parameters are
specified as part of the XML structure defined by an XML Document Type
Definition (DTD).

Sterling Multi-Channel Selling Solution also defines a set of XML messages to
support pre-defined business processes required by the applications. One example
is the remote pricing and availability check performed between a manufacturer and
a distributor site. Another is a catalog content syndication export. These business
messages are defined via a Sterling Multi-Channel Selling Solution-specific XML
message that defines all possible aspects of the interaction. These “master
messages” can then be converted into different specific XML syntax structures via
the use of the XSLT standard that provides for the transformation between XML
document structures.

The set of XML operations is defined as part of the Sterling Multi-Channel Selling
Solution system configuration in the “message map” file. New messages can be
defined and existing messages modified or extended by changing the entries in the
message map.
Sterling Multi-Channel Selling Solution Developer Guide 159

Tailoring the Sterling Multi-Channel Selling Solution

160 St
Message Syntax Conversion
Sterling Multi-Channel Selling Solution supports the use of the XML style sheet
translation mechanism to convert messages of one XML syntax into an alternate
syntax. Thus, all existing Sterling Multi-Channel Selling Solution messages
supporting various business processes can be mapped into the specific XML syntax
of a variety of XML standards that support those same operations.

Simultaneous Support for Multiple Message Formats
Sterling Multi-Channel Selling Solution can also keep track of which syntax
structure or message version is supported by the various business partners of a
Sterling Multi-Channel Selling Solution installation and simultaneously exchange
different message sets with different partners.

Extending the Application Logic Layer
Occasionally in the course of implementing a Sterling Multi-Channel Selling
Solution e-commerce site it is necessary to create a new business logic module for
some operation specific to that customer’s business. Sterling Multi-Channel Selling
Solution supports the definition of new business logic classes and the extension of
existing classes using the Java interfaces defined by the application architecture and
even through the sub-classing of existing business logic classes.

Application Logic
The Sterling Multi-Channel Selling Solution application suite functionality is
implemented via a set of Business Logic Classes defined as Java class objects,
known as the Sterling Multi-Channel Selling Solution Application Logic. See
CHAPTER 13, "Implementing Application Logic Classes" for more information.
The core of the Sterling Multi-Channel Selling Solution is a collection of business
logic class implementations that cover a wide variety of operations.

Occasionally in the course of deploying the Sterling Multi-Channel Selling
Solution system it is necessary to implement new business logic or modify existing
business logic operations. This is easily accomplished by writing new Java code
within the overall Sterling Multi-Channel Selling Solution framework.

Code implementing new business logic must be written to conform to the overall
set of Java interfaces defined by the Sterling Multi-Channel Selling Solution
architecture. These interfaces are documented in the reference documentation for
the product. New business logic operations can be invoked from JSP pages or using
XML messages, just like the built-in business logic of the applications.

The definition of all the Sterling Multi-Channel Selling Solution Java packages,
classes, and methods can be found in the product Javadoc. Javadocs are an industry
erling Multi-Channel Selling Solution Developer Guide

Extensions and Maintenance
standard format, developed by JavaSoft, for displaying the internal input/output
parameters and usage guidelines.

There are cases where it may be desirable to modify existing application business
logic. This can be accomplished by defining a subclass of an existing business logic
class. The subclass can perform additional or alternate operations, invoking the pre-
defined business logic operation at the appropriate time. Definitions for
understanding how to correctly subclass the existing business logic classes can be
found in the Javadoc. The source code for the Application Logic can also be
referenced for this purpose as well, if necessary.

Writing New Application Logic
The Sterling Multi-Channel Selling Solution Application Logic class interface
defines the execution environment for a new piece of business logic, including the
parameter definitions and values (from either a Web page form or a system-to-
system XML message), and the session state object. New business logic code can,
of course, be completely free-form, doing whatever it wants to within the context of
how it is invoked, loading and calling outside Java or non-Java software modules,
etc. However, it is more common to define new business logic in the existing
Sterling Multi-Channel Selling Solution architectural framework, utilizing new or
existing business object definitions and interacting with back-end data stores
through the Sterling Multi-Channel Selling Solution Data Services module. In this
way new business logic can reap the benefits of the Sterling Multi-Channel Selling
Solution architecture, including independence from specific databases or data
source types.

Extending Existing Application Logic
It is also possible to extend existing business logic. This is typically done by
defining a new Java subclass of an existing business logic class. The new subclass
is again free to implement its mission however it sees fit, but it will commonly
perform some activity that is complementary to or supervisory of the existing
business logic, and invoke the base class to execute that business logic at the
appropriate time. In this way it is possible to significantly extend or control existing
Sterling Multi-Channel Selling Solution business logic in a way that is external to
the definition of that code and is therefore maintainable and can be supported
across upgrades of the underlying Sterling Multi-Channel Selling Solution system.

System Configuration Files
Because the source code for the Sterling Multi-Channel Selling Solution Platform
is Sterling Commerce proprietary information, it is not provided to the customer.
The Sterling Multi-Channel Selling Solution Architecture has instead been
Sterling Multi-Channel Selling Solution Developer Guide 161

Tailoring the Sterling Multi-Channel Selling Solution

162 St
designed to use XML configuration files to specify values for all tunable
parameters in the Sterling Multi-Channel Selling Solution platform. The XML
configuration files can be edited by hand or, more intuitively, modified through the
Sterling Multi-Channel Selling Solution Enterprise Administration interface.
erling Multi-Channel Selling Solution Developer Guide

CHAPTER 16 Upgrading the Sterling Multi-
Channel Selling Solution
This chapter describes how to plan your approach to upgrading your Sterling Multi-
Channel Selling Solution. It covers:

• "Upgrading in General" on page 163

• "Upgrading from Release 7.0.2 to Release 7.1" on page 166

• "Upgrading from Release 6.7 to Release 7.0" on page 172

Upgrading in General
Overview of Upgradability
The Sterling Multi-Channel Selling Solution has been designed from the ground up
to meet the dual challenges of providing out-of-the-box application functionality
against common business scenarios while providing the necessary flexibility to
handle the extensions and customizations that occur in the normal course of
deployment.

The software installation includes all the necessary source code, configuration files,
data initialization scripts, and other tools necessary to perform the kinds of
modifications described in this Sterling Multi-Channel Selling Solution Developer
Guide. This chapter describes upgrade considerations and process for each
Sterling Multi-Channel Selling Solution Developer Guide 163

Upgrading the Sterling Multi-Channel Selling Solution

164 St
supported customization technique as described in CHAPTER 15, "Tailoring the
Sterling Multi-Channel Selling Solution".

The Sterling Multi-Channel Selling Solution System supports a progressive
sequence of customization techniques designed to make the most common
customizations the easiest to implement initially and to roll forward during an
upgrade.

Customer Upgrade Scenarios
This section enumerates and explores the common reasons for upgrading the
Sterling Multi-Channel Selling Solution. The motivations for upgrade can directly
impact the style and scope of the upgrade activity.

Upgrade Motivations
The following motivations are considered and occasionally referenced in the
material which follows:

• Upgrading to obtain stability and performance benefits from the latest
release.

• Upgrading to implement a new module which requires the latest Platform
version.

• Upgrading to obtain across the board functionality and/or usability
enhancements.

• Upgrading to obtain additional platform or standards support.

• Upgrading to implement a specific feature enhancement which involves
inter-module communication and interaction.

• Upgrading to obtain inter-enterprise communication enhancements.

• Upgrading to obtain enhanced administration tools.

Upgrade Considerations by Customization Technique
The following categories of customization are supported by the Sterling Multi-
Channel Selling Solution architecture.

Upgrading Presentation
Presentation is typically the most extensively customized area. At minimum, the
application of custom-branding is generally required during deployment to make
the reference UI conform to the customer’s Web UI style guidelines and standards.
erling Multi-Channel Selling Solution Developer Guide

Upgrading in General
Re-applying existing customizations to a new version of the Reference UI requires
the fairly manual but mechanical process of comparing and merging individual JSP
pages and Controller files. In that upgrade scenario, upgrade cost will be directly
proportional to the extent of page reorganization and modification.

Alternatively, upgrade may focus on retaining the previously customized UI on the
latest server-side APIs with minimal functional modifications to existing pages.
This may be the case where upgrade is driven primarily by the desire to implement
additional Sterling Multi-Channel Selling Solution modules. In this case, upgrade
focuses on backward compatibility of existing, customized JSP pages and Java-
based controllers.

Upgrade Considerations for Customized JSP Files
The Model 2 JSP architecture is the foundation of presentation in the Sterling
Multi-Channel Selling Solution. This employs a Model/View/Controller, or MVC,
design pattern with JSP as the Web page templating language and Java-based
Controller classes as the orchestrators of page flow and request routing and
processing. JSP pages have dependencies on specific Data and Logic Beans, for
example, the Order Detail page depends on the OrderPresentationBean from which
it acquires its data for display. The Order detail page itself controls specific layout
and display of the order. In this case, the OrderPresentationBean provides both
formatting specific logic and access to the underlying order business data.

The following are typical presentation customizations which must be re-applied or
otherwise accounted for during upgrade.

• Application of custom branding in the form of images and text styles

• Addition of surrounding page content to the reference UI, for example,
adding a site-wide navigation frame and branding header to Sterling
Multi-Channel Selling Solution Order Management

• Re-organization of page content

• Page flow modification

Page flow changes are accomplished by modifying or creating new Java
Controllers, so typically some degree of Controller customization is performed
along with JSP customization.

Administration pages are not intended to be branded or otherwise customized and
therefore should not be affected during the upgrade process.
Sterling Multi-Channel Selling Solution Developer Guide 165

Upgrading the Sterling Multi-Channel Selling Solution

166 St
Upgrading from Release 7.2 to Release 8.0
This section describes specific issues to be aware of while upgrading from Release
7.0.2 to Release 7.1.

API Changes
Release 8.0 does not include the C3 Analyzer, which connected the Knowledgebase
to Actuate software for reporting. Therefore the package
com.comergent.api.apps.mktAnalyzer, which provided access to the
C3 Analyzer, has been removed.

Upgrading from Release 7.0.2 to Release 7.1
This section describes specific issues to be aware of while upgrading from Release
7.0.2 to Release 7.1.

API Changes
The modularization of the Sterling Multi-Channel Selling Solution platform has
included the creation of new APIs and some reorganization of the existing platform
packages and classes. As a result, some of your custom code may need to be
changed to match the new APIs. This section describes the changes by listing the
Release 7.0.2 packages and classes that have new Release 7.1 equivalents.

The following packages have been renamed.

TABLE 7. Package Changes

Release 7.0.2 Release 7.1

com.comergent.api.dcm.authentication com.comergent.dcm.core

com.comergent.api.dcm.messageType com.comergent.api.messageType

com.comergent.dcm.messageType com.comergent.api.messageType

com.comergent.dcm.space com.comergent.api.space

com.comergent.dcm.cache.impl.fs com.comergent.globalcache.fs

com.comergent.dcm.cache.impl.space com.comergent.globalcache.space

com.comergent.dcm.cache.impl com.comergent.api.globalcache
erling Multi-Channel Selling Solution Developer Guide

Upgrading from Release 7.0.2 to Release 7.1

Release 7.0.2

com.comergent.api.dcm.enti

com.comergent.api.dcm.enti
Service

com.comergent.api.dcm.enti
urationException

com.comergent.api.dcm.enti
tionException

com.comergent.api.dcm.enti

com.comergent.api.dcm.enti
alQualifier

com.comergent.api.dcm.enti
Builder

com.comergent.api.dcm.enti
uffer

com.comergent.api.dcm.enti

com.comergent.api.dcm.enti

com.comergent.api.dcm.enti

com.comergent.api.dcm.enti

com.comergent.api.dcm.enti
r

com.comergent.api.dcm.enti

com.comergent.api.dcm.enti
ntaxException

com.comergent.api.dcm.enti

com.comergent.api.dcm.enti

com.comergent.api.dcm.enti

com.comergent.api.dcm.enti
n

The following classes also moved packages.

TABLE 8. Class Changes

Release 7.1

tlement.EntitlementContext com.comergent.api.accessPolicy.EntitlementContext

tlement.PolicyManagerAccess com.comergent.api.accessPolicy.PolicyManagerAccessSer
vice

tlement.PolicyManagerConfig com.comergent.api.accessPolicy.PolicyManagerConfigurat
ionException

tlement.PolicyManagerInvoca com.comergent.api.accessPolicy.PolicyManagerInvocation
Exception

tlement.PolicyManager com.comergent.api.accessPolicy.PolicyManager

tlement.PolicyManagerPrincip com.comergent.api.accessPolicy.PolicyManagerPrincipalQ
ualifier

tlement.PolicyManagerQuery com.comergent.api.accessPolicy.PolicyManagerQueryBuil
der

tlement.PolicyManagerTraceB com.comergent.api.accessPolicy.PolicyManagerTraceBuff
er

tlement.Principal com.comergent.api.accessPolicy.Principal

tlement.PrincipalType com.comergent.api.accessPolicy.PrincipalType

tlement.DomainDefinition com.comergent.api.dispatchAuthorization.DomainDefiniti
on

tlement.Domain com.comergent.api.dispatchAuthorization.Domain

tlement.DomainNameResolve com.comergent.api.dispatchAuthorization.DomainNameR
esolver

tlement.DomainRole com.comergent.api.dispatchAuthorization.DomainRole

tlement.EntitlementDomainSy com.comergent.api.dispatchAuthorization.EntitlementDo
mainSyntaxException

tlement.EntitlementFactory com.comergent.api.dispatchAuthorization.EntitlementFact
ory

tlement.EntitlementRepository com.comergent.api.dispatchAuthorization.EntitlementRep
ository

tlement.FormalRole com.comergent.api.dispatchAuthorization.FormalRole

tlement.InvalidRolesExceptio com.comergent.api.dispatchAuthorization.InvalidRolesEx
ception
Sterling Multi-Channel Selling Solution Developer Guide 167

Upgrading the Sterling Multi-Channel Selling Solution

168 St

com.comergent.api.dcm.enti

com.comergent.api.dcm.enti

com.comergent.api.dcm.enti

com.comergent.api.dcm.enti

com.comergent.api.dcm.enti

com.comergent.dcm.entitlem

com.comergent.dcm.entitlem

com.comergent.dcm.entitlem

com.comergent.dcm.entitlem

com.comergent.dcm.entitlem
er

com.comergent.dcm.entitlem

com.comergent.dcm.entitlem

com.comergent.dcm.entitlem
on

com.comergent.dcm.entitlem
pl

com.comergent.dcm.entitlem

com.comergent.dcm.entitlem

com.comergent.dcm.entitlem
alizer

com.comergent.dcm.entitlem

com.comergent.dcm.entitlem

com.comergent.dcm.entitlem

com.comergent.dcm.entitlem

com.comergent.dcm.entitlem

com.comergent.dcm.entitlem

com.comergent.dcm.entitlem

com.comergent.dcm.entitlem

com.comergent.dcm.entitlem
useQueryBuilder

Release 7.0.2
tlement.InvalidUserException com.comergent.api.dispatchAuthorization.InvalidUserExc
eption

tlement.PartnerType com.comergent.api.dispatchAuthorization.PartnerType

tlement.Role com.comergent.api.dispatchAuthorization.Role

tlement.UserFunction com.comergent.api.dispatchAuthorization.UserFunction

tlement.UserType com.comergent.api.dispatchAuthorization.UserType

ent.MyErrorHandler com.comergent.accessPolicy.MyErrorHandler

ent.PMAccessChecker com.comergent.accessPolicy.PMAccessChecker

ent.PMAccessor com.comergent.accessPolicy.PMAccessor

ent.PMAccessPolicy com.comergent.accessPolicy.PMAccessPolicy

ent.PMAccessServiceInitializ com.comergent.accessPolicy.PMAccessServiceInitializer

ent.PMBinaryOperator com.comergent.accessPolicy.PMBinaryOperator

ent.PMBooleanExpression com.comergent.accessPolicy.PMBooleanExpression

ent.PMComparativeExpressi com.comergent.accessPolicy.PMComparativeExpression

ent.PMEntitlementContextIm com.comergent.accessPolicy.PMEntitlementContextImpl

ent.PMPrincipalExpression com.comergent.accessPolicy.PMPrincipalExpression

ent.PMPrincipalImpl com.comergent.accessPolicy.PMPrincipalImpl

ent.PMPrincipalQualifierIniti com.comergent.accessPolicy.PMPrincipalQualifierInitializ
er

ent.PMPrincipalTypeImpl com.comergent.accessPolicy.PMPrincipalTypeImpl

ent.PMQueryBuilder com.comergent.accessPolicy.PMQueryBuilder

ent.PMSetExpression com.comergent.accessPolicy.PMSetExpression

ent.PMSet com.comergent.accessPolicy.PMSet

ent.PMSetOperator com.comergent.accessPolicy.PMSetOperator

ent.PMTerm com.comergent.accessPolicy.PMTerm

ent.PMTraceBuffer com.comergent.accessPolicy.PMTraceBuffer

ent.PolicyManagerImpl com.comergent.accessPolicy.PolicyManagerImpl

ent.PolicyManagerWhereCla com.comergent.accessPolicy.PolicyManagerWhereClause
QueryBuilder

TABLE 8. Class Changes (Continued)

Release 7.1
erling Multi-Channel Selling Solution Developer Guide

Upgrading from Release 7.0.2 to Release 7.1

com.comergent.dcm.entitlem

com.comergent.dcm.entitlem
Builder

com.comergent.dcm.entitlem

com.comergent.dcm.entitlem

com.comergent.dcm.entitlem

com.comergent.dcm.entitlem
pl

com.comergent.dcm.entitlem

com.comergent.dcm.entitlem

com.comergent.dcm.entitlem

com.comergent.dcm.entitlem

com.comergent.dcm.entitlem

com.comergent.dcm.entitlem

com.comergent.dcm.entitlem

com.comergent.dcm.entitlem

com.comergent.dcm.entitlem

com.comergent.dcm.messagi

com.comergent.dcm.bizlet.C

com.comergent.dcm.bizlet.C

com.comergent.dcm.core.Da

com.comergent.dcm.core.JSP

com.comergent.dcm.caf.blc.B

com.comergent.dcm.cache.G

com.comergent.dcm.util.Bea

com.comergent.dcm.util.Bro

com.comergent.dcm.util.DC

com.comergent.dcm.util.File

Release 7.0.2
ent.Utility com.comergent.accessPolicy.Utility

ent.PolicyManagerSubQuery com.comergent.api.accessPolicy.PolicyManagerSubQuery
Builder

ent.DomainDefinitionImpl com.comergent.dispatchAuthorization.DomainDefinitionI
mpl

ent.DomainImpl com.comergent.dispatchAuthorization.DomainImpl

ent.DomainRoleImpl com.comergent.dispatchAuthorization.DomainRoleImpl

ent.EntitlementRepositoryIm com.comergent.dispatchAuthorization.EntitlementReposit
oryImpl

ent.EntitlementSAXHandler com.comergent.dispatchAuthorization.EntitlementSAXHa
ndler

ent.FormalRoleImpl com.comergent.dispatchAuthorization.FormalRoleImpl

ent.PartnerTypeImpl com.comergent.dispatchAuthorization.PartnerTypeImpl

ent.PseudoResourceBundle com.comergent.dispatchAuthorization.PseudoResourceBu
ndle

ent.RoleImpl com.comergent.dispatchAuthorization.RoleImpl

ent.UserFunctionImpl com.comergent.dispatchAuthorization.UserFunctionImpl

ent.UserFunctionMap com.comergent.dispatchAuthorization.UserFunctionMap

ent.UserTypeDefinition com.comergent.dispatchAuthorization.UserTypeDefinition

ent.UserTypeImpl com.comergent.dispatchAuthorization.UserTypeImpl

ng.rosettanet.Base64 com.comergent.base64.Base64

onverter com.comergent.api.Converter

omergentRuntimeException com.comergent.api.exception.ComergentRuntimeExceptio
n

taConverter com.comergent.dcm.bizlet.DataConverter

ObjectID com.comergent.api.messageType.JSPObjectID

LCErrors com.comergent.reference.apps.common.blc.BLCErrors

lobalCache com.comergent.api.globalcache.GlobalCache

nUtil com.comergent.api.apps.appUtils.BeanUtil

wserSniffer com.comergent.api.apps.appUtils.BrowserSniffer

MSimpleDateFormat com.comergent.api.apps.appUtils.DCMSimpleDateFormat

NameUtil com.comergent.api.apps.appUtils.FileNameUtil

TABLE 8. Class Changes (Continued)

Release 7.1
Sterling Multi-Channel Selling Solution Developer Guide 169

Upgrading the Sterling Multi-Channel Selling Solution

170 St

com.comergent.dcm.util.File

com.comergent.dcm.util.I18N

com.comergent.dcm.util.Nam

com.comergent.dcm.util.Nam

com.comergent.dcm.util.Nam

com.comergent.dcm.util.Web

com.comergent.dcm.util.Sen

com.comergent.dcm.util.Com

com.comergent.dcm.util.Com

com.comergent.dcm.util.Com

com.comergent.dcm.util.ICC

com.comergent.dcm.util.Hel

com.comergent.dcm.util.Hel

com.comergent.dcm.util.Com

com.comergent.dcm.util.Enc

com.comergent.dcm.util.Tran

com.comergent.dcm.util.Res

com.comergent.dcm.util.Ran

com.comergent.dcm.util.File

com.comergent.dcm.util.Req

com.comergent.dcm.util.Res

com.comergent.dcm.util.Sof

com.comergent.dcm.util.Tim

com.comergent.dcm.util.Cac

Release 7.0.2
Processor com.comergent.api.apps.appUtils.FileProcessor

Util com.comergent.api.appservices.productService.util.I18NU
til

eResolutionService com.comergent.api.appservices.productService.util.Name
ResolutionService

eResolutionServiceManager com.comergent.api.appservices.productService.util.Name
ResolutionServiceManager

eResolutionServiceUtility com.comergent.api.appservices.productService.util.Name
ResolutionServiceUtility

I18NUtil com.comergent.api.appservices.productService.util.WebI1
8NUtil

dSMTP com.comergent.api.email.SendSMTP

ergentExceptionInterface com.comergent.api.exception.ComergentExceptionInterfac
e

ergentException com.comergent.api.exception.ComergentException

ergentRuntimeException com.comergent.api.exception.ComergentRuntimeExceptio
n

Exception com.comergent.api.exception.ICCException

pFileMap com.comergent.api.help.HelpFileMap

pUtil com.comergent.api.help.HelpUtil

ergentI18N com.comergent.api.i18nbase.ComergentI18N

odeUtility com.comergent.api.i18nbase.EncodeUtility

scodeUtility com.comergent.api.i18nbase.TranscodeUtility

ourceBundleHelper com.comergent.api.i18nweb.ResourceBundleHelper

domString com.comergent.apps.orderMgmt.orders.bizAPI.RandomStr
ing

ChangedWriter com.comergent.apps.visualModeler.translate.FileChanged
Writer

uestTimer com.comergent.dcm.core.RequestTimer

ponseSizeStat com.comergent.dcm.core.ResponseSizeStat

tHashMap com.comergent.dcm.core.SoftHashMap

er com.comergent.dcm.core.Timer

hedInputStream com.comergent.dcm.messaging.CachedInputStream

TABLE 8. Class Changes (Continued)

Release 7.1
erling Multi-Channel Selling Solution Developer Guide

Upgrading from Release 7.0.2 to Release 7.1

com.comergent.dcm.util.Mu

com.comergent.dcm.util.Mu

com.comergent.dcm.util.Bas

com.comergent.dcm.util.Mak

com.comergent.dcm.util.Spa

com.comergent.dcm.util.MIM

com.comergent.dcm.util.Mo

com.comergent.dcm.xml.dom

com.comergent.dcm.xml.dom

com.comergent.dcm.xml.dom

com.comergent.dcm.xml.dom

com.comergent.dcm.xml.dom
eption

com.comergent.dcm.xml.dom

com.comergent.dcm.xml.dom

com.comergent.dcm.xml.dom

com.comergent.dcm.xml.dom

com.comergent.dcm.xml.dom

com.comergent.dcm.xml.dom

com.comergent.dcm.xml.dom

com.comergent.dcm.xml.dom

com.comergent.preferences.c
ences

Release 7.0.2
For further information regarding platform module API changes, please contact
Sterling Commerce.

Changes to Reports
The introduction of new storefront functionality in Release 7.1 has included the use
of the C3PrimaryStorefrontRW and C3StorefrontRW data objects. Data objects that

ltipartParser com.comergent.dcm.messaging.MultipartParser

ltipartStream com.comergent.dcm.messaging.MultipartStream

e64 com.comergent.base64.Base64

eGTINPriceList com.comergent.dcm.messaging.rosettanet.MakeGTINPrice
List

ceOKProperties com.comergent.dcm.messaging.rosettanet.SpaceOKProper
ties

E2Java com.comergent.reference.apps.systemAdmin.common.MI
ME2Java

difiedString com.comergent.reference.apps.systemAdmin.common.Mo
difiedString

.Util com.comergent.api.xml.Util

.Util com.comergent.api.xml.XMLChar

.FormatPrintVisitor com.comergent.api.xml.visitor.FormatPrintVisitor

.NOOPVisitor com.comergent.api.xml.visitor.NOOPVisitor

.ToNextSiblingTraversalExc com.comergent.api.xml.visitor.ToNextSiblingTraversalExc
eption

.ToXMLStringVisitor com.comergent.api.xml.visitor.ToXMLStringVisitor

.TreeTraversalException com.comergent.api.xml.visitor.TreeTraversalException

.TreeTraversal com.comergent.api.xml.visitor.TreeTraversal

.Visitee com.comergent.api.xml.visitor.Visitee

.Visitor com.comergent.api.xml.visitor.Visitor

.ComergentDocument org.w3c.dom.Document

.ComergentNode org.w3c.dom.Node

.ComergentElement org.w3c.dom.Element

omergentXML.LegacyPrefer com.comergent.api.preferences.LegacyPreferences

TABLE 8. Class Changes (Continued)

Release 7.1
Sterling Multi-Channel Selling Solution Developer Guide 171

Upgrading the Sterling Multi-Channel Selling Solution

172 St
extend these are “storefront-aware”: restore and persist operations on them make
use of a StorefrontKey field to track on which storefornt the object lives.
Correspondingly, this has required the addition of a STOREFRONT_KEY column
to tables that support these data objects.

Consequently, the out-of-the-box reports have been updated to use the
STOREFRONT_KEY columns. Customized reports should be updated to make use
of the same columns as appropriate.

Upgrading from Release 6.7 to Release 7.0
This section describes specific issues to be aware of while upgrading from Release
6.7 to Release 7.0. It addresses:

• "Access Control" on page 172

• "API Changes" on page 172

• "Database Schema" on page 176

• "System Properties" on page 176

• "Tag Libraries" on page 176

Access Control
Release 7.0 deprecates support for access control lists (ACLs) and replaces them
with access policies. If you use ACLs in your implementation of the Sterling Multi-
Channel Selling Solution, then you must migrate them to be defined as access
policies. See CHAPTER 7, "Using the Security Mechanisms" for descriptions of
ACLs and access policies.

API Changes
The modularization of the Sterling Multi-Channel Selling Solution platform has
included the creation of new APIs and some reorganization of the existing platform
packages and classes. As a result, some of your custom code may need to be
erling Multi-Channel Selling Solution Developer Guide

Upgrading from Release 6.7 to Release 7.0

Release 6.7 Packgagea

a. All packagenames begin

R

dcm.converter *

dcm.core C
(

dcm.core C
o

dcm.core C

dcm.core G

dcm.core G

dcm.dataservices *

dcm.dataservices I

dcm.dataservices I

dcm.dataservices D

dcm.dataservices D

dcm.dataservices T

dcm.eventbus *

dcm.objmgr *

dcm.util O

dcm.xml.dom *

dcm.xml.util *
changed to match the new APIs. This section describes the changes by listing the
Release 6.7 packages and classes that have new Release 7.0 equivalents.

Logging

If you have logging calls that look like:

Global.logInfo("Your logging message");

You must change these to calls along these lines:

Logger log = org.apache.log4j.Logger.getLogger(OrdersAPI.class);
log.info("Your logging message");

TABLE 9. API Changes by Package

 with com.comergent, and so this is omitted in package names here.

elease 6.7 Class Release 7.0
Package

Release 7.0 Class

converter *

omergentAppEnv.adjustFileName
)

dcm.core LegacyFileUtils.adjustFileName()

omergentAppEnv.getEnv().getPr
perty()

preferences Preferences

omergentHelpBroker help ComergentHelpBroker

lobal.logLevel methods org.apache.log4j Logger

lobal.getProperty methods preferences Preferences

api.dataservices *

Acc* api.dataservices IData*

Rd* api.dataservices IData*

sQuery api.dataservices IDsQuery

sUpdate api.dataservices IDsUpdate

ransactionSupport api.dataservices ITransactionSupport

api.eventbus *

objmgr *

MWrapper api.objmgr OMWrapper

api.xml *

api.xml *
Sterling Multi-Channel Selling Solution Developer Guide 173

Upgrading the Sterling Multi-Channel Selling Solution

174 St
Object Manager

If you have calls to:

com.comergent.dcm.util.OMWrapper.getObjectArg("com.comer-
gent.apps.salesContracts.bizAPI.SalesContractACLs", this);

You must change these to:

com.comergent.api.objmgr.OMWrapper.getObjectArg("com.comer-
gent.apps.salesContracts.bizAPI.SalesContractACLs", this);

There are also some changes to the calls that are available. When calling with
multiple arguments, you have to call by passing in the class. For example:

OMWrapper.getObjectArg("com.comergent.apps.salesCon-
tracts.bizAPI.SalesContractACLs", this);

has to be changed to:

OMWrapper.getObject(com.comergent.apps.salesContracts.bizAPI.Sales-
ContractACLs.class, this);

Calls to the getObjectArg() method in which you pass a number of parameters to
the constructor have been removed. You should now pass in in array of objects for
the parameters: OMWrapper.getObjectArg(String s, Object[] o).

Properties

If you have calls to retrieve property values such as:

String mergeLines =
Global.getString("Quotes.mergeLineItemsInProductList");

You must change these to calls along these lines:

com.comergent.preferences.Preferences prefs =
Preferences.getPreferences(MyClass.class);

String mergeLines =
prefs.getString("Quotes.mergeLineItemsInProductList", "Never");

You must make the corresponding changes for calls to Global.getBoolean().

SDK Upgrade Tool

If you use the SDK to upgrade your Release 6.7 project to Release 7.0.1, then it will
update most of the API usages in your project that have changed between the two
releases. However, it does not update the following:

• BusinessObject: You should remove usages of this class.
erling Multi-Channel Selling Solution Developer Guide

Upgrading from Release 6.7 to Release 7.0
• ComergentDocument: this class used to have a addTextElement() method
which has been removed.

• ConverterFactory: The getNativeMessageFactory() methods have been
moved to the com.comergent.dcm.messaging.MessagingHelper class.

• Global: the debugStream variable has been removed.

• IData: deprecated methods such as the following:

• copyBean()

• generateKeys()

• getUser()

• getValueByName()

• setUser()

• updateWORestore()

• IDataList: the getRootElement() has been removed.

• Logger: the two String form of the info() and debug() methods must be
updated manually.

• ObjectManager.getObject(String s): if the argument is not provided as a
quoted string.

• Transaction.init(): You should remove instances of this method from your
project code.

• Classes that implement the
com.comergent.api.appservices.productService.IProdServBeanRoot
interface. You should modiy these so that they use the new method
restoreAndReturnBoolean() to replace their uses of restore().

• TableController: you should migrate controllers that extend this class to
use the new CIC UI tags. If you must continue to use this class, then
extract its source file from your Release 6.7 release, and copy it into your
project.

• XMLParser: this class now returns instances of the
org.w3c.dom.Document class and so code that expects instances of the
ComergentDocument class will break. In cases where you need to use a
deprecated method of the ComergentDocument class, you should change
your code from:
Sterling Multi-Channel Selling Solution Developer Guide 175

Upgrading the Sterling Multi-Channel Selling Solution

176 St
doc = new XMLParser().parse(parserReader);

to:
doc = new ComergentDocument(XMLParser().parse(parserReader);

• XMLUtils: this class used to have a formatTS() method which has been
removed. The method is now available using the
com.comergent.api.appservices.productService.util.ProdMgrUtils class.

Database Schema
The database schema has changed in Release 7.0.1 with the addition of new tables,
new columns to existing tables, and other new database objects such as sequences,
indexes,and so on. You must migrate your current database schema to a Release
7.0.1 schema by following the instructions provided in the Sterling Multi-Channel
Selling Solution Implementation Guide.

System Properties
In earlier releases of the Sterling Multi-Channel Selling Solution, the system
properties that determined how the Sterling Multi-Channel Selling Solution
behaved were maintained in the Comergent.xml configuration file and other files
that it referenced. Release 7.0 and higher uses a Preferences-based system to
manage properties and so you must migrate your configuration files to the new
preferences files. See "Preferences Service" on page 46 for more information about
Preferences.

Tag Libraries
Earlier releases than Release 7.0 provided JSP tags in two tag libraries: the
Comergent tags and the CIC tags. These are documented in CHAPTER 30,
"Comergent Tag Library" and CHAPTER 31, "Comergent Internet Commerce Tag
Library" respectively. Release 7.0 has introduced changes to the CIC library which
mean that earlier usages of the CIC tags may break.

Consequently, Release 7.0 provides a backward-compatible set of tags that behave
identically to the older CIC tags. These are referenced as cic67 tags and are
one-for-one equivalent to the Release 6.7 cic tags of the same name.

All the tag classes are supported in the cmgt-taglib.jar JAR file. They are declared
in cmgtinclude.jspf by the following:

<%@ taglib uri="/cic67" prefix="cic67" %>
<%@ taglib uri="/cic" prefix="cic" %>
<%@ taglib uri="/cmgt" prefix="cmgt" %>
erling Multi-Channel Selling Solution Developer Guide

Upgrading from Release 6.7 to Release 7.0
If you have used CIC tags in your custom JSP pages, then you have the following
choices:

1. Either: change your use of the cic tags to cic67 in your pages. For example,
change:

<cic:column width="11%" ...>

to:
<cic67:column width="11%" ...>

2. Or: update the syntax of your cic tags to reflect the new syntax of Release 7.0
tags.
Sterling Multi-Channel Selling Solution Developer Guide 177

Upgrading the Sterling Multi-Channel Selling Solution

178 St
erling Multi-Channel Selling Solution Developer Guide

CHAPTER 17 Customization Examples
This chapter presents detailed descriptions of sample enhancements to the Sterling
Multi-Channel Selling Solution. They demonstrate the main steps required to
modify the system.

The first examples demonstrate how the look-and-feel of pages can be changed.
The last of these is a simple exercise to demonstrate how to re-use existing message
types and controllers.

The subsequent examples lead you through more complex steps that show how
controllers, data objects, business logic classes, data beans, and JSP pages are used:

• We show how a new data object and data bean are defined and how they
are used to save data provided by a user.

• We show how to create a list data object and data bean and use them to
display a table of data to users.

• We show how the access control mechanism is used to manage access to
data. This example also shows how to create and use a system parameter
as a business rule.

Setting up the SDK
Before starting work on the examples, you should set the SDK up on your system.
You can use the SDK to ensure that as you modify your Sterling Multi-Channel
Sterling Multi-Channel Selling Solution Developer Guide 179

Customization Examples

180 St
Selling Solution, the changes that you make are all managed in one location. At
minimum, you should follow the following steps:

1. Install the SDK on your system.

2. Run the install target to install your release of the Sterling Multi-Channel
Selling Solution into the SDK.

3. Run the newproject target to create an SDK project for your work. We will
refer to the name of the project as project in the following examples.

4. Database targets:

a. If you plan to run against an Oracle database server, then run the
installOracle target. Then run the env.setDBType target to specify that the
project uses an Oracle database.

b. If you plan to run against a SQL Server database server set up as an ODBC
data source, then run the installODBC target. Then run the env.setDBType
target to specify that the project uses an ODBC database.

c. If you plan to run against a DB2 database server, then run the installDB2
target. Then run the env.setDBType target to specify that the project uses a
DB2 database.

5. Enter the database connection information in the project_dev.properties file.
This ensures that the connection information is built into the data sources files
and the database-specific data objects are used.

6. Run the merge target: this verifies that the basic build process can run in your
environment.

7. Run the createDB and loadDB targets: these create the Knowledgebase schema
and load the minimal data into it.

8. Run the dist target: this creates a new version of the Sterling.war file. You
should be able to verify that you can deploy this WAR file into your servlet
container and that it runs successfully.

If you run into difficulties during one of these steps, then you should troubleshoot
the problem before continuing with these examples. See CHAPTER 14, "Software
Development Kit" for more information.

Presentation
This section provides a number of examples of changing the look-and-feel of
pages. Bear in mind that all of the JSP pages are organized by locale. All of the
erling Multi-Channel Selling Solution Developer Guide

Presentation
instructions below are relative to a locale directory such as debs_home/Sterling/
WEB-INF/web/en/US/. If you want the same change to be effective in more than
one locale, then you must change the relevant files for each locale: resources files
of JSP and HTML pages.

Headers and Sidebars
As part of the process of branding the Sterling Multi-Channel Selling Solution, you
can customize the customer-facing pages. Most of the reference customer-facing
pages use two frames:

• a header frame generated from home/matrix_header.jsp

• a data frame generated from data JSP pages such as orderMgmt/Orders/
OrderDisplayData.jsp

You can customize the header frame to brand these pages simply by modifying the
matrix_header.jsp file or by substituting a different URL in the src attribute of the
frame element of the frameset page such as fs_home.jsp or fs_directHome.jsp.

Using the SDK
In this example, we will change several of the end-user facing pages. We will
replace the Matrix branding of the reference pages with branding for a different
company called Anderel. For example, to modify the matrix_header.jsp file,
perform the following steps:

1. Run the customize target as follows:

sdk customize matrix_header.jsp

This copies the matrix_header.jsp page under the web/ sub-directory of
your project folder.

2. Make your modifications to the JSP page file.

a. For example, change the color of the banner by changing the line:

<table bgcolor="#2f4f88" cellpadding="0" cellspacing="0"
border="0" height="45" width="100%">

to:
<table bgcolor="#ee9999" cellpadding="0" cellspacing="0"

border="0" height="45" width="100%">

b. Change the logo by changing the line:

<th><img src="../htdocs/manufacturer/images/matrix_logo.gif"
border="0"></th>

to:
Sterling Multi-Channel Selling Solution Developer Guide 181

Customization Examples

182 St
<th><img src="../htdocs/manufacturer/images/anderel_logo.gif"
border="0"></th>

Place a GIF image called anderel_logo.gif in the sdk_home/projects/
project/en/US/htdocs/manufacturer/ directory.

3. Run the merge target to copy the modified file over to the build/ directory:

sdk merge

Customer-facing pages in the reference implementation use two frames arranged
vertically using the rows attribute of the frameset element:

<FRAMESET rows="50,*" border="0" framespacing="0" frameborder="NO">

By using the cols attribute of the frameset element, you can move the navigation
bar to the left or right of the data frame. For example, customize the
fs_HomeLoggedIn.jsp page by changing the frameset as follows:

<FRAMESET cols="62,*" border="0" framespacing="0" frameborder="NO">
<FRAME name="navigation"

src="<%=link("*","MatrixHeaderDisplay") %>"
marginwidth="0" marginheight="0" scrolling="no">

<FRAME name="data"
src="<%=link("*", "OrderDataDisplay") %>"
marginwidth="0" marginheight="0" scrolling="Auto">

</FRAMESET>

Home Page Widgets
Users who are not administrators or Customer Service Representatives see all home
page widgets, such as the Orders, Quotes, Returns, Tasks, Contracts, and Invoices
widgets when they log in to your e-commerce Web site. Enterprise users such as
Customer Service Representatives and administrators see only the Tasks widget
when they log in. If you want your administrators and Customer Service
Representatives to see other widgets, you can make a change to the WEB-INF/
web/en/US/enterpriseMgr/home/HomeData.jsp page.

Using the SDK

To modify the HomeData.jsp page, perform the following steps:

1. Run the customize target as follows:

sdk customize WEB-INF/web/en/US/enterpriseMgr/home/HomeData.jsp

This copies the HomeData.jsp page under the en/US/enterpriseMgr/home/
sub-directory of your project directory.

2. Modify HomeData.jsp as follows:
erling Multi-Channel Selling Solution Developer Guide

Presentation
a. Search for the string WidgetFlag. This takes you to the JSP widget code.
Note that each widget has a Boolean flag, enableNameWidgetFlag, that
is commented out. For example, the Orders widget has the following flag:

// enableOrdersWidgetFlag = true;

b. For each widget that you want to enable, uncomment the flag.

c. Save your changes.

3. Run the merge target to copy the modified file over to the builds/project/
directory:

sdk merge

Cascading Style Sheets
Use cascading style sheets wherever possible to manage the look-and-feel of Web
pages. They provide a mechanism to ensure that your customer-facing pages have a
uniform look-and-feel and changes to the page style need be made in only one place
rather than on every page.

If you want to make a change to the style of your customer-facing Web pages, then
you can make the change to the css/ie_main.css and css/nn_main.css cascading
style sheets. For example, changing the table.standardBackgroundColor,
tr.standardBackgroundColor, and td.standardBackgroundColor elements to
#f2de14 will change the table displays to a yellow from the current pale blue.

Cascading style sheets are maintained separately in each locale. Thus you can
maintain different look-and-feels for different locales, but correspondingly if you
want the same style change in every locale, then you must make the change in each
locale’s cascading style sheets.

Using the SDK
For example, to modify the ie_main.css file, perform the following steps:

1. Run the customize target as follows:

sdk customize ie_main.css

This copies the ie_main.css page under the en/US/css/ sub-directory of your
project directory.

2. Make your modifications to the CSS file.

3. Run the merge target to copy the modified file over to the builds/project/
directory:

sdk merge
Sterling Multi-Channel Selling Solution Developer Guide 183

Customization Examples

184 St
Modifying Table Columns
In many parts of the customer-facing pages, the Sterling Multi-Channel Selling
Solution displays lists of business objects to users. For example, when a direct
commerce customer clicks My Lists, the orderMgmt/oil/workspace/
WorkspaceActiveOILData.jsp page displays a list of their current active inquiry
lists in the form of a table. It uses a JSP page fragment,
WorkspaceActiveListsDataTable.jspf, to display the table.

Each row of such tables comprises table cells of the form:

<td class="dataTable" align="center"><%=ph(elementString)%></td>

where the elementString is calculated from an attribute of each data object.

You can change the order in which the columns of the table are displayed simply by
editing the JSP page to change the relative position of the table cells in the row. You
can remove a column simply by removing the corresponding cell from the row. You
can add columns by adding the new table cell to the table row. Make sure that the
data bean includes the information you want to display. If it does not, then you will
need to modify the data object definition. (See "Extending and Modifying Existing
Data Objects" on page 187.)

For example, suppose that you want to change the table of active product inquiry
lists to include the status of each inquiry list. Make the following changes to the
orderMgmt/oil/workspace/WorkspaceActiveListsDataTable.jspf page:

1. Run the customize target as follows:

sdk customize WorkspaceActiveListsDataTable.jspf

This copies the WorkspaceActiveListsDataTable.jspf page under the
WEB-INF/web/ sub-directory of your project folder.

2. Modify the scriptlet that generates the display strings for each inquiry list by
adding the line:

String status = acart.getCartStatus();

3. Add two cells to the header of the table: one for the text, say “List Status” and
one for the spacer element to separate it from the next column:

<th class="dataTable" align="center">
<cmgt:text id="*">List Status</cmgt:text>
</th>
<th width="-1%"><img src="../images/spacer.gif" width="1"

Note: Note that whenever you make changes to the cells of a table, then you must
modify the header rows too.
erling Multi-Channel Selling Solution Developer Guide

Adding a Shortcut Link
height="1" border="0"></th>

Note the use of the text tag: this ensures that the table header text can be
localized through the use of resource bundles. See CHAPTER 32,
"Internationalization" for more information on localizing JSP pages.

4. In the corresponding location in the body row of the table, add two cells:

<td class="dataTable" align="center"><%=ph(status)%></td>
<td width="-1%"><img src="../images/spacer.gif" width="1"

height="1" border="0"></td>

5. Run the merge target to copy the modified file over to the build/ directory:

sdk merge

Notes
Note that JSP fragments (denoted by *.jspf files) are often used as included
fragments of other JSP pages: for example:

<%@ include file="./WorkspaceActiveListsDataTable.jspf"%>

These fragments may not get automatically re-compiled when the Web application
is re-deployed. Take care to check that the pages are re-compiled by the servlet
container or force their re-compilation by deleting the compiled classes from the
servlet container’s working directory.

Note the use of the method ph(status) to wrap the displayed text: this is a protection
from cross-site scripting attacks. It ensures that any HTML tags in the displayed
string are displayed as text rather than interpreted as tags. See "Scriptlets" on
page 249 for more information.

Adding a Shortcut Link
Description
In this example, we add a link to the Enterprise Home page that takes an enterprise
user directly to their user profile. Do the following:

1. Create a link on the existing Enterprise Home page.

2. Specify a controller to process the request.

We make use of the fact that an appropriate controller already exists. This is not
always possible and in the following examples we have to modify existing
controllers and write a new Controller class. Similarly, we do not have to create a
new JSP page: the UserDetail JSP page already exists: we ensure that the right user
bean is passed to the page for display.
Sterling Multi-Channel Selling Solution Developer Guide 185

Customization Examples

186 St
Enterprise Home Page
The current Enterprise Home page uses two subsidiary JSP pages to generate the
two frame page. The navigation frame is generated using the enterpriseMgr/
home/HomeNav.jsp page and we shall leave this frame unchanged. The data frame
is generated using the enterpriseMgr/home/HomeData.jsp page and we will add
a link to this page as follows:

1. Run the customize target as follows:

sdk customize HomeData.jsp

This copies the HomeData.jspp page under the WEB-INF/web/ sub-
directory of your project folder.

2. Edit the HomeData.jsp by inserting the following:

<%
String userKey = user.toString();
String groupKey = user.getGroupKey().toString();
String parameterString = "UserKey=" + userKey + "&GroupKey=" +

groupKey + "&Command=update";
%>
<TD>
<A TARGET="_top"

HREF=’<%= link("enterpriseMgr","SysUserDetailDisplay",
parameterString)%>’>

<cmgt:text id="*">My User Profile</cmgt:text>

</TD>

Note that the User object present in the session is used to retrieve the user key
and group key information so that they may be passed as parameters. The link()
method is used to generate the URL in the correct form. See "Scriptlets" on
page 249 for more information about the use of this method.

3. Run the merge target to copy the modified file over to the build/ directory:

sdk merge

When a user clicks this link, this is how the Sterling Multi-Channel Selling
Solution processes the request:

1. The request is received by the DispatchServlet. It creates a ComergentRequest
object and instantiates a controller by calling
createController(comergentRequest).

2. The createController method retrieves the message type from the request and
calls the GeneralObjectFactory to create a controller. In turn, the
GeneralObjectFactory uses the MessageTypes.xml file to see what controller
erling Multi-Channel Selling Solution Developer Guide

Extending and Modifying Existing Data Objects
class should be created for the command (cmd) “SysUserDetailDisplay”. The
message type entry for this message type is:

<MessageType Name="SysUserDetailDisplay">
<JSPMapping>

../profileMgr/userContact/SysUserDetailFrame.jsp
</JSPMapping>
<ControllerMapping>

com.comergent.dcm.caf.controller.ForwardController
</ControllerMapping>

</MessageType>

Consequently, the GeneralObjectFactory creates an instance of the
ForwardController class.

3. Next, the DispatchServlet initializes the controller and then calls its execute()
method.

The ForwardController is a very lightweight controller. Its execute() method
simply calls callJSP(). This method retrieves the message type from the
request and calls callJSP(String messageType). In turn, this method
retrieves the appropriate JSP page from the message type:
../profileMgr/userContact/SysUserDetailFrame.jsp

Then it creates a Dispatcher using this JSP page and forwards the request.

4. The JSP page, SysUserDetailFrame.jsp, is made up of several frames. The
source for each is generated from a dynamically generated URL. For example
the URL to generate the data frame is generated from:

<%= link("partnerMkt", "SysUserDetailData") %>

Each of the frame requests is processed along the same lines: the cmd
parameter is evaluated and the appropriate business logic class (BLC),
controller, and JSP page are used to generate its content.
In this example, the SysUserDetailData message type, has a mapping to the
com.comergent.apps.profileMgr.userMgr.controller.-
UserContactGetController controller. This controller is invoked in order to
populate the request with the GroupBean, PartnerBean, and
UserContactBean used in the JSP page to which SysUserDetailData maps:
../profileMgr/userContact/UnifiedSysUserInfoData.jsp.

Extending and Modifying Existing Data Objects
In many implementations of the Sterling Multi-Channel Selling Solution, you have
to make changes to the functionality of the system. In particular, you may find that
Sterling Multi-Channel Selling Solution Developer Guide 187

Customization Examples

188 St
you must either extend the functionality of an existing data object or modify its
structure. You may need to add or modify an attribute, or store different information
with the data object.

For example, an implementation may require that products have an additional
attribute such as the associated product manager or that users provide not only their
username and password when they log in, but also another piece of data such as the
name of their company.

Note that there are essentially two different ways in which you can modify a data
object.

• For business objects whose corresponding data object’s Version attribute
is 5.0 or higher, you can also define a new data object that extends the
current data object. See the Sterling Multi-Channel Selling Solution
Reference Guide for more details on extending data objects.

• For business objects whose data object’s Version attribute is 4.1 or lower,
you can only modify them by modifying the data object element that
corresponds to the business object.

In general, you should extend existing data objects rather than modify them: this
will make easier the process of upgrading the Sterling Multi-Channel Selling
Solution from one release to another.

Using the custom Schema Directory
It is possible to manage your customizations to the schema using a special sub-
directory of the schema directory as follows:

1. In your project templates directory make sure that the DataServices.xml file
declares the schemaRepositoryExtn element:

<schemaRepositoryExtn controlType="text" runtimeDisplayed="true"
ChangeOnlyAtBootTime="true" visible="true" boxsize="45"
displayQuestion="Schema Repository Directory Location"
defaultChoice="WEB-INF/schema" help="Enter the path of the XML
schema Repository.">WEB-INF/schema/custom</schemaRepositoryExtn>

2. Check that your project has a directory called: sdk_home/projects/project/
WEB-INF/schema/custom/. It should contain empty copies of the standard
DsBusinessObjects.xml, DsDataElements.xml, and DsRecipes.xml files.

3. As you create new data objects or extend existing ones, make sure that the new
data object XML files are placed in the custom/ sub-directory. Update the
DsBusinessObjects.xml, DsDataElements.xml, and DsRecipes.xml files in
erling Multi-Channel Selling Solution Developer Guide

Extending and Modifying Existing Data Objects
this directory to add new business objects, data objects, and data elements as
you create them.

4. When you build your project by running the merge target, the new data objects
are merged in from this sub-directory and beans are generated for each of the
new data objects.

Extending a Data Object
In this example, we show how a data object of the reference implementation is
extended to add functionality. We will add a field to the Product data object that can
be used to associate a user with the product. For example, this field might be used
to associate a product manager with each product.

1. Locate the main schema files under the project directory: they are in the
sdk_home/projects/project/WEB-INF/schema/ sub-directory.

2. Create a new business object declaration in the DsBusinessObjects.xml file:

<BusinessObject Name="MatrixProduct" Version="5.0"
Description="Matrix product business object"/>

3. Create a new recipe in the DsRecipes.xml file:

<Recipe Name="MatrixProduct" Version="6.0"
BusinessObject="MatrixProduct"
Description="Product object for Matrix implementation">
<DataObjectList>

<DataObject Name="MatrixProduct" Access="RWID"
DataSourceName="ENTERPRISE"/>

</DataObjectList>
</Recipe>

4. Create new data elements for MatrixProduct and MatrixProductList in the
DsDataElements.xml file:

<DataElement Name="MatrixProduct"
Description="Product for Matrix implmentation"
DataType="HEADER"/>

<DataElement Name="MatrixProductList"
Description="Product list for Matrix implmentation"
DataType="LIST"/>

5. Define the new MatrixProduct data object. Create a new file,
MatrixProduct.xml in the schema directory. The file specifies the data object
as follows:

<?xml version="1.0"?>
<DataObject Name="MatrixProduct" Extends="Product"

ExternalName="CMGT_PRODUCT"
Sterling Multi-Channel Selling Solution Developer Guide 189

Customization Examples

190 St
Access="RWID" Ordinality="n"
ObjectType="JDBC" Localized="y"
Version="6.0">
<DataField Name="EnterpriseUser"

Description="Enterprise user acting as product manager
for product"

Writable="y" Mandatory="n"
ExternalFieldName="ENTERPRISE_USER" />

</DataObject>

Notice that that this data object will use the underlying table
CMGT_PRODUCT. It extends the Product data object by adding one data
field.

6. Create a new data element for EnterpriseUser in the DsDataElements.xml
file:

<DataElement Name="EnterpriseUser" Description="Enterprise user"
DataType="LONG" MaxLength="20"/>

7. Add a column to the CMGT_PRODUCT table:

ALTER TABLE CMGT_PRODUCT ADD (ENTERPRISE_USER NUMBER(20))

Note: this is is the Oracle syntax: it is different for other database servers. If
you have existing users in the CMGT_PRODUCT table, then you may
manually update their rows to add a non-null value to this column. If you
are altering the table before populating the Knowledgebase, then you must
modify the ProductList XML file by adding the EnterpriseUser element to
each Product element before you load the data.

8. Regenerate the DTDs and regenerate the data bean classes and interfaces. You
can use the SDK targets provided as part of the Software Development Kit.
From the command line, run the SDK script specifying the merge target to
generate automatically the new Bean classes as follows.

sdk merge

This copies over the new schema files to the builds directory and generates
the corresponding databean classes and interfaces. See CHAPTER 14,
"Software Development Kit" for more details.

9. Modify the ObjectMap.xml file so that whenever a product is instantiated
using the ObjectManager, then the MatrixProductBean class is used:

<Object ID="com.comergent.bean.simple.ProductBean">
<ClassName>com.comergent.bean.simple.MatrixProductBean

</ClassName>
erling Multi-Channel Selling Solution Developer Guide

Extending and Modifying Existing Data Objects
10. Run the merge target to copy the modified files over to the sdk_home/builds/
project/ directory:

sdk merge

If you now deploy the modified Sterling Multi-Channel Selling Solution, then the
system should run as before. No business logic has been changed, but every time a
product is accessed the actual class instantiated is now the MatrixProductBean.

To use the extended data object, you must determine how a product manager
enterprise user can be associated with a product using the Sterling Multi-Channel
Selling Solution administrative interface and how this information might be used
by applications. For example, when an enterprise administrator creates a new
product, you can provide a drop-down list of enterprise users so that one can be
selected as the responsible product manager for the product.

• When you are creating or modifying an instance of the extended data
object, then you must be able to set a value for this new field. Typically,
the object is wrapped in an application bean (see "Application, Entity, and
Presentation Beans" on page 71). To set the value, you must modify the
controller managing the class so that the field can be accessed along these
lines. For example, in the ProdMgrProdGenController class, the
application bean is an instance of an object implementing the IBizProduct
interface. This interface provides access to the data bean through its
getIaccProduct() method. The IBizProduct object is refered to as pb, and
so you can add:

String enterpriseUser = request.getParameter("EnterpriseUser");
MatrixProductBean mpb =

(MatrixProductBean) pb.getIAccProduct();
mpb.setEnterpriseUser(enterpriseUser);

• On pages that you want to display the new field, you may find that a
presentation bean is being used to provide the data. For example, on the
ProdMgrProdGen.jsp page, product detail data is displayed using an
object that implements the IPresProduct interface. This object is referred
to as pb and is retrieved fromthe request passed to the JSP page. You can
display the new field with code along these lines:

ph(((MatrixProductBean) pb.getIRdProduct()).getEnterpriseUser());

Note: In this example, note that the product export and import functionality needs
to be customized in order to include the new field. You must modify the
ImportHandler and ExportHandler classes to do this.
Sterling Multi-Channel Selling Solution Developer Guide 191

Customization Examples

192 St
Similarly, you can customize business logic and JSP pages so that as end users
browse products, they have the opportunity to contact the relevant product manager
to request more information. For example, you could add a button next to each
product in the product catalog, that would initiate an email enquiry directly to the
product manager.

Modifying a Data Object
In this example, we add a field to the User data object to ensure that each user
identifies the partner organization to which they belong when they log in. This is a
mandatory field that must be entered when the user is created and it must be
supplied by the user when they enter their login details.

Note that from the viewpoint of upgrading this implementation of the Sterling
Multi-Channel Selling Solution, these changes will cause problems in that any
changes to the User and UserContact data object made in the next release of the
Sterling Multi-Channel Selling Solution will have to be manually introduced into
this implementation.

1. Locate the main schema files under the project directory: they are in the
sdk_home/projects/project/WEB-INF/schema/ sub-directory.

2. Add a DataField element to the UserContact data object:

<DataField Name="Organization" Writable="y" Mandatory="y"
ExternalFieldName="ORGANIZATION"/>

3. Add a DataField element to the User data object:

<DataField Name="Organization" Writable="y" Mandatory="y"
ExternalFieldName="ORGANIZATION"/>

4. Add a DataElement for Organization to the DsDataElements.xml file:

<DataElement Name="Organization" Description="Organization name"
DataType="STRING" MaxLength="16" />

5. Add a column to the CMGT_USER_CONTACTS table:

ALTER TABLE CMGT_USER_CONTACTS ADD (ORGANIZATION VARCHAR2(16))

Note: this is is the Oracle syntax: it is different for other database servers. If
you have existing users in the CMGT_USER_CONTACTS table, then you
must manually update their rows to add a non-null value to this column. If
you are altering the table before populating the Knowledgebase, then you
must modify the UserContact XML file by adding the Organization
element to each UserContact element before you load the data.

6. Regenerate the DTDs using the merge target.
erling Multi-Channel Selling Solution Developer Guide

Extending and Modifying Existing Data Objects
7. Modify the login pages so that there is an additional textfield in which users
can enter their organization when they login:

<INPUT TYPE="text" NAME="organization" SIZE="16" MAXLENGTH="16">

For example, the enterprise use login page is enterpriseMgr/Login/
FullPageLogin.jsp.

8. Modify the user detail pages used to display user details and used when
creating new users. Add an extra mandatory textfield as follows so that is
displayed when viewing user details. The field label ("Organization") is
wrapped in the text tag for localization.

<tr valign=top>
<td class="Attribute"><cmgt:text id="*">

Organization
</cmgt:text></td>
<td class="Attribute">
<%if (isWritable){ %>
<INPUT NAME="Organization" TYPE="Text"

VALUE="<%=ph(replaceNullWithEmpty(userContact.-
getOrganization()))%>"

SIZE="16" MAXLENGTH="16">
<%}%>
</td>

</tr>

Optionally, you can add to the checkInput() Javascript function to verify
that an organization has been provided when a user is being created:
if (f.Organization.value == "")
{

alert("<cmgt:text id="*">Please provide organization for this
user.</cmgt:text>")

return false;
}

9. Modify the login authentication logic to add the organization information when
the user is authenticated. This requires changes to classes as follows:

a. Modify the com.comergent.dcm.authentication.User class to add methods
setOrganization() and getOrganization() that manage the Organization
element of the user business object. Create a new form of the getInstance()
method which takes three String parameters:

static public User getInstance(String user, String password,
String organization) throws ICCException,
InvalidBizobjException
{

DataManager dm = DataManager.getDataManager();
BusinessObject userBizobj = dm.getBusinessObject("User");
Sterling Multi-Channel Selling Solution Developer Guide 193

Customization Examples

194 St
DsElement root = userBizobj.expand();
root.expand(userBizobj);
DsElement el = root.getByName("UserLogin");
el.setStringValue(user);
el = root.getByName("UserAuthenticator");
el.setStringValue(password);
el = root.getByName("Organization");
el.setStringValue(organization);
return new User(userBizobj);

}

b. Extend the com.comergent.dcm.authentication.UserPasswordCredentials
class by creating a MatrixCredentials class that has an additional member
variable, m_organization, and a constructor MatrixCredentials(String
username, String password, String organization). Its verify() method uses
the User.getInstance(String username, String password, String
organization) method to restore the user business object.

c. Extend the com.comergent.dcm.authentication.LoginController class by
creating a MatrixLoginController class. In this class, overwrite the
getCredentials() method by adding code to retrieve the organization
parameter from the request object and return a MatrixCredentials object.

10. In the MessageTypes.xml files, replace entries of the form:

<ControllerMapping>LoginController</ControllerMapping>

with:
<ControllerMapping>MatrixLoginController</ControllerMapping>

11. Run the merge target to copy the modified files over to the sdk_home/builds/
project/ directory:

sdk merge

Adding Functionality to an Application
In this next example, we show you how to add functionality to an application. We
will enable users to add comments about products by customizing the Product
Detail page and creating a new page for adding a comment and reading the
comments of other users. This functionality could be used to help customers read
product reviews written by other customers.

This customization will include

• creating a new data object called Comment

• generating the DataBean classes
erling Multi-Channel Selling Solution Developer Guide

Adding Functionality to an Application
• modifying the database schema

• modifying the ObjectMap.xml file

• modifying a JSP page and creating a new one

• writing new Controller classes

• modifying the MessageTypes.xml file

Comment Data Object
Thi section describes changes to the data services schema. Follow the guidelines in
"Schema Files" on page 149 to ensure that you manage these changes in the
recommended way.

We create a new data object called Comment:

1. Add a new business object declaration to the DsBusinessObjects.xml file:

<BusinessObject Name="Comment" Version="6.0"
Description="Comment on product by user"/>

2. Add a new recipe to the DsRecipes.xml file:

<Recipe Name="Comment" Version="6.0" BusinessObject="Comment"
Description="Comment Recipe">
<DataObjectList>

<DataObject Name="Comment" Access="RWID"
 Ordinality="n" DataSourceName="ENTERPRISE"/>

</DataObjectList>
</Recipe>

3. Create a new DataObject definition file called Comment.xml:

<?xml version="1.0"?>
<DataObject Name="Comment" Extends="C3PrimaryRW"

ExternalName="MTRX_COMMENT"
Access="RWID"
ObjectType="JDBC"
Version="6.0">
<KeyFields>

<KeyField Name="CommentKey" ExternalName="COMMENT_KEY"
KeyGenerator="CommentKey"/>

</KeyFields>
<DataFieldList>

<DataField Name="CommentKey"
Writable="y" Mandatory="y"
ExternalFieldName="COMMENT_KEY"/>

<DataField Name="ProductID"
Writable="y" Mandatory="y"
ExternalFieldName="SKU_NAME"/>
Sterling Multi-Channel Selling Solution Developer Guide 195

Customization Examples

196 St
<DataField Name="Description"
Writable="y" Mandatory="n"
ExternalFieldName="DESCRIPTION"/>

</DataFieldList>
</DataObject>

Note that:

• This data object extends an existing data object, C3PrimaryRW. The
C3PrimaryRW data object is a standard one provided by the Sterling
Multi-Channel Selling Solution. Do not modify this data object. All data
objects that use the ACL mechanism to protect access to them must extend
the C3PrimaryRW data object.

• In general, use a project-specific table name for any database tables: this
ensures that there is no likelihood of an upgrade overwriting the table and
its data.

• Its ordinality is set to "n" in its recipe: this means that a CommentListBean
will also be created when the generateBean target is run. This list bean is
used to hold a list of comments.

4. Create the following new DsDataElements in the DsDataElements.xml file:

<DataElement Name="Comment" Description="Product comment"
DataType="HEADER"/>

<DataElement Name="CommentList" Description="Product comment list"
DataType="LIST"/>

<DataElement Name="CommentKey" Description="Comment Key"
DataType="LONG" MaxLength="20"/>

Note that you do not have to add DataElements for ProductId and
Description DataFields: you can re-use the DataFields already defined.

5. Add a new key generator to the appropriate DsKeyGenerators.xml file (for
example, OracleKeyGenerators.xml):

<KeyGenerator Name="CommentKey"
KeyProcedureName="COMMENTKEY"
GeneratorType="PROCEDURE" />

Generating the Comment and CommentList Data Beans
Rather than produce bean classes manually for the Comment and CommentList
data beans, we can use the generateBean target to generate them for us:

1. Run the generateBean target. If it runs correctly, then it will display a series of
messages that it has successfully generated and compiled Bean classes for each
erling Multi-Channel Selling Solution Developer Guide

Adding Functionality to an Application
data object. The compiled classes are in debs_home/Sterling/WEB-INF/
classes/com/comergent/bean/simple/.

2. Check that the Java classes called CommentBean and CommentListBean are
created and compiled.

Database Schema Modification
Modify the database schema definition as follows:

1. Create a new table using the following SQL statements:

prompt 'About to create table MTRX_COMMENT'

drop table MTRX_COMMENT;

create table MTRX_COMMENT(
COMMENT_KEY number(20) NOT NULL,
SKU_NAME varchar2(120) NOT NULL,
DESCRIPTION varchar2(240),
UPDATE_DATE date,
UPDATED_BY number(20) NOT NULL,
CREATION_DATE date default sysdate,
CREATED_BY number(20) NOT NULL,
OWNED_BY number(20) NOT NULL,
ACCESS_KEY number(20),
ACTIVE_FLAG varchar2(1) default 'Y',
PRIMARY KEY (COMMENT_KEY));

2. Create a new sequence for the business object:

drop sequence comment_key_seq;
create sequence comment_key_seq;

3. Create a new procedure for the sequence:

create or replace procedure commentkey(p_key out number)
as
begin

select comment_key_seq.nextval
into p_key
from dual;

end commentkey;
/

Updating the ObjectMap.xml File
To ensure that the correct object is instantiated whenever you want to use a
comment or comment list, then add the following elements to the ObjectMap.xml
file:
Sterling Multi-Channel Selling Solution Developer Guide 197

Customization Examples

198 St
<Object ID="com.comergent.bean.simple.IRdComment">
<ClassName>com.comergent.bean.simple.CommentBean</ClassName>

</Object>
<Object ID="com.comergent.bean.simple.IAccComment">

<ClassName>com.comergent.bean.simple.CommentBean</ClassName>
</Object>
<Object ID="com.comergent.bean.simple.IDataComment">

<ClassName>com.comergent.bean.simple.CommentBean</ClassName>
</Object>
<Object ID="com.comergent.bean.simple.IRdCommentList">

<ClassName>com.comergent.bean.simple.CommentListBean</ClassName>
</Object>
<Object ID="com.comergent.bean.simple.IAccCommentList">

<ClassName>com.comergent.bean.simple.CommentListBean</ClassName>
</Object>
<Object ID="com.comergent.bean.simple.IDataCommentList">

<ClassName>com.comergent.bean.simple.CommentListBean</ClassName>
</Object>

JSP Pages

Customizing the Product Detail JSP Page
The JSP page used to generate the HTML of the Product Detail page is the file
debs_home/Sterling/WEB-INF/web/en/US/catalog/CatalogProductDetail.jsp.
In this example, we add a button that opens up a new window to display the
comments for the product. We add it to the product detail table as a table cell as
follows:

<td class="dataTable">
<a href="JavaScript:getComments('<%= pj(pb.getProductID()) %>')">

</td>

The Javascript function getComments() is:

function getComments(productID)
{

count=0;
window.open("", "ChildDetailWindow_"+count, "directories=no,

toolbar=no,menubar=no,scrollbars=yes,
resizable=no,height=540,width=720");

document.dataForm.action="<%= pu(link("catalog",
"catProductComments")) %>";

document.dataForm.target="ChildDetailWindow_"+count;
document.dataForm.productID.value=productID;
document.dataForm.submit();
count++;
return;
erling Multi-Channel Selling Solution Developer Guide

Adding Functionality to an Application
}

Creating the Product Comments Page
The page in the new window is generated by creating a new page debs_home/
Sterling/WEB-INF/web/en/US/catalog/CatalogProductCommentsPopup.jsp.

To begin with, it just contains a form with a text area element into which users can
enter comments about the product:

<%
IPresProduct pb = (IPresProduct) request.getAttribute("product");

%>

<p>Enter a comment about this product: <%= pj(pb.getName()) %></p>
<form method="POST" action="<%= link("adirect", "addComment",

"productID=" + pb.getProductID()) %>">
<textarea name="commentDescription" rows="4" cols="80">
<cmgt:text id="*">Enter your comments here.</cmgt:text>
</textarea>
<input type="SUBMIT" name="COMMENT"

value="<cmgt:text id="*">ADD COMMENT</cmgt:text>">
</form>

Note that the command parameter used is "addComment" and that we use the
product bean to retrieve the product key for this product. This object is passed in
through the request object. Note also that the product bean class is not
com.comergent.bean.simple.ProductBean, but rather
com.comergent.api.appservices.productService.IPresProduct. This is a common
way of wrapping a standard generated bean in a class that provides methods useful
in presenting the bean in JSP pages. The Javadoc for this class is provided as part of
the SDK.

Managing the Business Logic
We will need two controllers to manage this new functionality:

• a controller to process the catProductComments command executed to
open the product comments window;

• a controller to process the addComment command executed to add a new
comment.

There are two ways in which you can create the business logic to process each
request:

• You can create a business logic class (BLC) and perform the necessary
logic there. This approach is now deprecated.
Sterling Multi-Channel Selling Solution Developer Guide 199

Customization Examples

200 St
• You can create a custom controller.

We recommend creating a custom controller in conjunction with a bizAPI class to
manage any business or presentation logic that may be required. By convention, in
Release 6.0 and higher, controllers are regarded as part of the reference package
organization. In this example, we create the controller classes in the
com.comergent.reference.apps.catalog.controller package: you must manually
create the com/comergent/reference/apps/catalog/controller/ hierarchy of
directories under the src/ directory of the project directory.

Try to structure the execute() method of the controllers so that the phases of the
method are clear:

1. Extract parameters from request and perform any server-side validation.

2. Perform processing on the data objects.

3. Prepare data objects and presentation wrappers and marshall them to pass to
the JSP page using the request and session objects.

4. Forward to JSP page.

Creating the CatalogProductCommentsController Class
Initially, simply to display the product comments page, we just pass the product to
the JSP page. The CatalogProductCommentsController extends the
ForwardController by overwriting its execute() method as follows:

public void execute() throws ControllerException, ICCException,
IOException

{
String productID = request.getParameter("productID");
// Restore the product and attach it to the request
com.comergent.appservices.productService.BizProductBean msBean =
(com.comergent.appservices.productService.BizProductBean)
com.comergent.dcm.util.OMWrapper.getObject(
com.comergent.appservices.productService.BizProductBean.class);
msBean.setProductID(productID);
msBean.restore();
msBean.restoreFeatures(true);
msBan.restoreAssemblyItems();
msBean.computePrice();
request.setAttribute("product", msBean);
callJSP();

}

erling Multi-Channel Selling Solution Developer Guide

Adding Functionality to an Application
Creating the CreateCommentController Class
To add a comment about a product, a user enters text into the text area of the form,
and then clicks the ADD COMMENT button. We need to add business logic to the
application so that this request is processed by the Sterling Multi-Channel Selling
Solution. We create a custom Controller class called CreateCommentController to
process the request. This class extends the ForwardController class by overwriting
its execute() method as follows:

public void execute() throws ControllerException, ICCException,
IOException

{
//Retrieve request parameter
String productID = request.getParameter("productID");
// create the new comment data bean
CommentBean newComment = getNewComment(productID);
// set the top level fields
setCommentFirstLevelFields(newComment);
// save the new comment
DataContext temp_DataContext = new DataContext();
newComment.persist(temp_DataContext);
// Restore the product and attach it to the request
com.comergent.appservices.productService.BizProductBean msBean =
(com.comergent.appservices.productService.BizProductBean)
com.comergent.dcm.util.OMWrapper.getObject(
com.comergent.appservices.productService.BizProductBean.class);
msBean.setProductID(productID);
msBean.restore()
msBean.restoreFeatures(true);
msBean.restoreAssemblyItems();
msBean.computePrice();
request.setAttribute("product", msBean);
callJSP();

}

protected CommentBean getNewComment(String s) throws ICCException
{

String desc = request.getParameter("commentDescription");
//Create comment bean
CommentBean comment = (CommentBean)

OMWrapper.getObject(
com.comergent.bean.simple.CommentBean.class);

comment.setProductID(s);
comment.setDescription(desc);
return comment;

}

protected void setCommentFirstLevelFields(CommentBean comment)
throws ICCException
Sterling Multi-Channel Selling Solution Developer Guide 201

Customization Examples

202 St
{
ComergentSession session = ComergentAppEnv.getCurrentSession();
User myUser = session.getUser();
Long userKey = myUser.getUserKey();
comment.setUpdatedBy(userKey);
comment.setCreatedBy(userKey);
comment.setOwnedBy(userKey);

}

Note the following:

• The new comment is created and persisted in the controller. Some
applications manage all these activities in bizAPI classes.

• The controller must ensure that the product bean is restored and added to
the request object. The CatalogProductCommentsPopup.jsp page is
expecting to retrieve the product bean from the request to retrieve the
product ID.

Using the ForwardController Class
Note that in this example, the CreateCommentController class extends the
ForwardController class. Consequently, you must specify a JSP page in this
MessageType element. If you subsequently want to specify a different JSP page,
then you have only to change the MessageTypes.xml file: you do not have to
modify and re-compile the CreateCommentController Java class. In addition, you
do not have to manage the use of multiple JSP pages in the Controller source to
manage different locales.

Updating the MessageTypes.xml File
We add these two message types to the MessageTypes.xml file as follows:

<MessageType Name="catProductComments">
<JSPMapping>

../catalog/CatalogProductCommentsPopup.jsp
</JSPMapping>
<ControllerMapping>

com.comergent.reference.apps.catalog.controller.-
CatalogProductCommentsController

</ControllerMapping>
</MessageType>
<MessageType Name="addComment">

<JSPMapping>
../catalog/CatalogProductCommentsPopup.jsp

</JSPMapping>
<ControllerMapping>

com.comergent.reference.apps.catalog.controller.-
CreateCommentController
erling Multi-Channel Selling Solution Developer Guide

Adding Functionality to an Application
</ControllerMapping>
</MessageType>

Add message type references to the appropriate message group (say, CatalogGroup)
as follows:

<MessageTypeRef Name="catProductComments" />
<MessageTypeRef Name="addComment" />

Note that the addComment message type returns the user to the product comments
page. The user must manually close this window when they have finished with it.

Modifying the Controller Classes
In addition to adding comments, users will want to read what other users have to
say about a product. We need to display the comments using the same JSP page,
CatalogProductCommentsPopup.jsp. To do this, we want to pass a bean to the
page that contains a list of all of the comments made by users that relate to the
product. We will use a list data object to do this. We use the list data bean
automatically generated from the Comment data object definition (its Ordinality
attribute is set to "n" in its Recipe element), and customize the
CatalogProductCommentsPopup.jsp page to iterate through the list bean.

In general, you should bear in mind that the result of restoring a list data bean can
be a list with many data beans. To display the resulting list on a browser page may
give rise to unacceptable usability and performance problems. Consequently, you
should consider using the pagination functionality supported by the Sterling Multi-
Channel Selling Solution. See "Pagination" on page 209.

We need to add code to the execute() method of the Controller classes
CatalogProductCommentsController and CreateCommentController because they
forward requests to the CatalogProductCommentsPopup.jsp page.

We are going to make use of a bizAPI interface ICommentList to retrieve the list of
comments for the specified product. Note the use of the OMWrapper class to
instantiate an instance of the class that implements the interface. The corresponding
entry in the ObjectMap.xml file is:

<Object ID="com.comergent.api.apps.catalog.ICommentList">
<ClassName>
com.comergent.apps.catalog.bizAPI.CommentList
</ClassName>

</Object>

The code for the ICommentList interface is:

package com.comergent.api.apps.catalog;
Sterling Multi-Channel Selling Solution Developer Guide 203

Customization Examples

204 St
import com.comergent.bean.simple.IRdCommentList;

public interface ICommentList
{

public abstract void setSKU(String sku);
public abstract String getSKU();
public abstract IRdCommentList getDataBean();
public abstract IRdCommentList getCommentList(String sku);

}

The code for the CommentList class that implements the interface is:

package com.comergent.apps.catalog.bizAPI;

import com.comergent.api.apps.catalog.ICommentList;
import com.comergent.bean.simple.*;
import com.comergent.dcm.core.Global;
import com.comergent.api.dataservices.*;
import com.comergent.api.objmgr.OMWrapper;

public class CommentList implements ICommentList
{

protected IDataCommentList clb;
protected String sku;

public CommentList()
{

clb = null;
}

public IRdCommentList getCommentList(String sku)
{

try
{
this.sku = sku;
clb = (com.comergent.bean.simple.IDataCommentList)
OMWrapper.getObject(

com.comergent.bean.simple.IDataCommentList.class);
DsQuery temp_DsQuery =

QueryHelper.newWhereClause("ProductID",
DsQueryOperators.EQUALS_IGNORE_CASE, sku);

clb.restore(new DataContext(), temp_DsQuery);
}
catch(Exception e)
{

Global.logInfo(e.toString());
}
return (IRdCommentList) clb;

}

erling Multi-Channel Selling Solution Developer Guide

Adding Functionality to an Application
public String getSKU()
{

return sku;
}

public void setSKU(String sku)
{

this.sku = sku;
}

public IRdCommentList getDataBean()
{

return (IRdCommentList) clb;
}

}

Note the use of the DsQuery and QueryHelper classes to ensure that the restore()
operation retrieves only those comments whose ProductID field is the product we
are interested in.

Add the following lines to the execute() method of both
CatalogProductCommentsController.java and CreateCommentController.java
immediately before the callJSP() call:

ICommentList clBean = (ICommentList)
OMWrapper.getObject(
com.comergent.api.apps.catalog.ICommentList.class);
IRdCommentList readCLBean = clBean.getCommentList(productID);
request.setAttribute("comments", readCLBean);

Modifying the JSP Page
We must add a table to the JSP page that displays the comments,
CatalogProductCommentsPopup.jsp. To do this we use a scriptlet as follows:

1. Add the following to the header of the page:

<%
com.comergent.bean.simple.IRdCommentList commentListBean =

(com.comergent.bean.simple.IRdCommentList)
request.getAttribute("comments");

%>

2. Add the following to the body of the page:

<%
ListIterator iter = commentListBean.getCommentIterator();

request.setAttribute("commentList", iter);
%>
<cic:table datasourceRef="${commentList}" var="comment"
Sterling Multi-Channel Selling Solution Developer Guide 205

Customization Examples

206 St
showSelect="false" sortAscending="true" labelrowcss="label"
rowcss="normal,alternate" >
<cic:column width="10%" css="left">

<cic:columnHeader><cic:span value="ID"/></cic:columnHeader>
<cic:span value="${comment.commentKey}"/>

</cic:column>
<cic:column width="10%" css="left">

<cic:columnHeader><cic:span value="CreatedBy"/>
</cic:columnHeader>
<cic:span value="${comment.createdBy}"/>

</cic:column>
<cic:column width="80%" css="left">

<cic:columnHeader><cic:span value="Comment"/>
</cic:columnHeader>
<cic:span value="${comment.description}"/>

</cic:column>
</cic:table>

The enumeration loop iterates through the commentListBean Iterator.

Customizing Access to the Business Objects
Our last example extends the previous one by demonstrating the use of the Sterling
Multi-Channel Selling Solution security mechanisms to manage access to business
objects. By default, when any Version 5.0 data object (that is, whose Version
attribute is set to “5.0” or higher) is persisted or restored, a security check is
performed to verify that the current user is authorized to perform the action. You
can use one of these approaches to manage access:

• "Access Policy Approach" on page 206

• "ACL Approach" on page 208

Release 6.4.1 and earlier releases have used the ACL mechanism whereas Release
6.7 and later releases primarily use the access policy mechanism. In general, you
should use access policies for all your customization work.

Access Policy Approach
You can use an access policy to manage access to any resource in the Sterling
Multi-Channel Selling Solution. This section describes how to create an access
policy so that only users who belong to the same partner as the user who made the
comment can view the comment. See "Managing Access to Data Objects Using
Access Policies" on page 94 for more information on access policies.

You want to define an access policy that expresses the requirement that users can
see only comments made by users who belong to the same partner as them. In this
erling Multi-Channel Selling Solution Developer Guide

Customizing Access to the Business Objects
case, the resource being managed by the access policy is the CommentBean, so
begin by declaring the access policy as follows:

<AccessPolicy Name="CommentPolicy" PrincipalQualifier="UserRole">
<Description>

This policy determines that comments can be viewed only
by users who belong to the partner as the creater of the
comment.

</Description>
<ResourceClass>

com.comergent.bean.simple.CommentBean
</ResourceClass>
<AccessChecker>

<Principal>Partner.User</Principal>
<ActionType>Restore</ActionType>
<BooleanExpression>

<ComparativeExpression Operator="Equals">
<Term>service.usersRootPartnerKey</Term>
<Term>service.ownersRootPartnerKey</Term>

</ComparativeExpression>
</BooleanExpression>

</AccessChecker>
<AccessChecker>

<Principal>Partner.User</Principal>
<ActionType>Create</ActionType>
<BooleanExpression>

<Always/>
</BooleanExpression>

</AccessChecker>
</AccessPolicy>

Note that each access policy must have a unique name. You use the
PrincipalQualifier attribute to define what property is going to be compared in the
access check. In this case UserRole will qualify the principal by check that at least
one of the user’s roles matches the value of the Principal element.

• The first access checker is used to check for read access to a comment.
You can read this as saying: compare the root partner key of the current
user to the root partner key of the owner of the resource, a comment. If
they are equal, then permit the restore operation. Note the use of the
usersRootPartnerKey service to retrieve the partner key of the root partner
for the current user and the ownersRootPartnerKey service to retrieve the
partner key of the root partner of the owner of the resource.

• The second access checker specifies who can create comments, in this
case all partner users. The Always element always evaluates to true.
Sterling Multi-Channel Selling Solution Developer Guide 207

Customization Examples

208 St
Add this new access policy to the AccessPolicy.xml configuration file and restart
your servlet container. If you create comments as two users who belong to two
different partners, then you will see that each cannot see the comments made by the
other. However, two users from the same partner will be able to see each other’s
comments.

ACL Approach
When an object is created, a default ACL is applied to it unless the application
creating the object specifies an ACL. Defined as the System Base ACL in the
minimal data set, the default ACL allows the owner of the object to perform any
action on the object, and allows users who belong to the same group as the owner to
have read access. In our current example, the effect is to limit the comments that a
user can see to comments made by themselves and by other users of the same group
(try this!).

We now modify the controller classes to allow users to see all comments made by
all users about a product. This entails a change to one line in the getCommentList()
method in the CommentList bizAPI class described above:

Replace:

clb.restore(new DataContext(), temp_DsQuery);

with:

DataContext temp_DataContext = new DataContext();
if (Global.getBoolean("BusinessRule.ProductMgr.viewAllComments"))
{

temp_DataContext.disableAccessCheck();
}
clb.restore(temp_DataContext, temp_DsQuery);

This additional code checks whether or not the business rule element
ProductMgr.viewAllComments is set to true or false.

• If the business rule element is set to true, then the access check is disabled.

• If it is false, then the list of comments restored in the CommentList
business object is filtered by the access check mechanism built into the
restore() call.

In our example, when a comment is created, no ACL is set in the AccessKey field.
Consequently, the default access control rules are applied: these give read access to
all users who belong to the same group as the owner of the business object and deny
access to all other users.
erling Multi-Channel Selling Solution Developer Guide

Pagination
Modifying the BusinessRules.xml File
Add the following element to the ProductMgr element of the BusinessRules.xml
file:

<viewAllComments ChangeOnlyAtBootTime="false"
controlType="select" button="radio"
multipleChoice="false"
runtimeDisplayed="true"
visible="true" boxsize="45"
displayQuestion="Enable users to see all comments"
displayOptions="true,true,false,false"
defaultChoice="true"
help="Allow users to see all comments made about a product">
false

</viewAllComments>

If you now restart your Sterling Multi-Channel Selling Solution and log in as an
enterprise administrator with business rule manager rôle, then you see that there is
now a new business rule that enables you to toggle this variable between true and
false.

• If you leave the variable set to false, then you can verify that users see
only comments that other users in their group have been made.

• By changing this variable to true, you can verify that users can now see all
comments irrespective of who made them.

Pagination
In certain circumstances, restoring a list of data beans may mean that your list has
more items than you want to display on a single browser page. To enable users to
browse through the complete list, you must use pagination to enable users to view
one page after another. This section sketches briefly one approach to pagination
using the example described in the previous sections.

You can make use of the restoreToCache() and restoreFromCache() methods to
manage the restoration of the list data bean. The controllers must be passed in two
parameters that enable the controller to calculate what subset of the list data bean to
display on any particular page.

1. Modify the execute() method of the relevant controller classes as follows:

a. Perform a check to see whether the list data bean has already been created
using restoreToCache(). You can set a flag in the session or even just a
request parameter for this purpose. Create a new comment list bean object.
Sterling Multi-Channel Selling Solution Developer Guide 209

Customization Examples

210 St
• If the flag has been set, then the restoreToCache() method has already
been called and you do not need to call it again.

• If the flag has not been set, then, using the comment list bean, call
restoreToCache() using the same Query business object used by the
getCommentList() method above and specify the number of results
per page as an int parameter.

b. Retrieve the two parameters that determine which page of results should
be displayed next. For example, PageNumber (the number of the current
page) and PageCommand (“None”, “Previous”, or “Next” to specify
whether the user wants to move back or forward through the pages).

c. Calculate the number of the requested page. For example:

• If PageNumber=7 and PageCommand=Next, then the user would like
to see Page 8 of the result set.

• If PageNumber=2 and PageCommand=Previous, then the user would
like to see Page 1 of the result set.

d. On the comment list bean created in Step a, call restoreFromCache(int i),
passing in the calculated page number from Step c.

e. Set the following in the request object:

• The resulting comment list bean restored in Step d.

• The new page number as calculated in Step c.

• As required, set attributes to determine whether there are previous or
next pages when the new page is displayed. You can use a restore-
FromCache(int i) call to check if there should be a next page (use the
value one greater than the calculated page number from Step c): it
will return false if there is no more data.

2. Modify the CatalogProductCommentsPopup.jsp page to add Previous and
Next links. Each of these links should be wrapped with a test to check whether
the link should be displayed using the attributes created in Step e above. Each
link should provide the following parameters:

a. The PageCommand and PageNumber parameters.

b. The standard cmd=detail parameter.

Note that the restoreFromCache() method restores data using the session and
business object type to determine which cached data set to retrieve. Take care that
erling Multi-Channel Selling Solution Developer Guide

Pagination
you do not need to maintain two data sets of the same business object type in the
same session.

Pagination Controller
You can make use of the PaginatedListController class: this provides a number of
helper methods to manage paginated lists. It is found in the
com.comergent.reference.apps.common.controller package. To use it, create a
controller class that extends it, and implement the three methods:

• protected abstract IDataList restoreAndCacheList() throws ICCException

• protected abstract IDataList retrieveListFromCache()

• protected abstract String getListKey()

For an example of this usage, see the PriceListPartnerAssignmentListController
class.
Sterling Multi-Channel Selling Solution Developer Guide 211

Customization Examples

212 St
erling Multi-Channel Selling Solution Developer Guide

CHAPTER 18 Developer Guidelines
This chapter describes guidelines that will help you maintain and customize your
Sterling Multi-Channel Selling Solution.

Overview
In working on either customizing your Sterling Multi-Channel Selling Solution
implementation or creating a Sterling Multi-Channel Selling Solution application,
bear in mind that your work may be tested in a number of different environments:
such as on different application servers, against different database servers, and by
users using different browsers. This chapter provides some helpful guidelines to
ensure that your application works well and is as bug-free as it can be.

The following topics are items that you should keep in mind while developing
applications for the Sterling Multi-Channel Selling Solution. It is based on the
experience of Sterling Multi-Channel Selling Solution developers and a summary
of types of bugs found in the releases of the Sterling Multi-Channel Selling
Solution.

Apart from the feature you are developing, you should also keep in mind to code
and test to get coverage on these types of issues. Users of your Sterling Multi-
Channel Selling Solution or application may work with a combination of one or
more of the following items and could potentially find a bug. When you are done
Sterling Multi-Channel Selling Solution Developer Guide 213

Developer Guidelines

214 St
with developing your application, you should review your code against this
checklist.

Platform Variations
Browsers
If your Sterling Multi-Channel Selling Solution application provides a Web-based
user interface, then you must make sure that your application works properly and
equally well in supported versions of both Netscape Navigator and Internet
Explorer browsers.

Typically, if you test your application using only one browser version, then you
may miss problems that using a different browser version may expose. These
include HTML variations such as <DIV> that are supported by only one type of
browser or Javascript methods that assume a browser-specific document object
model (DOM).

See "Browser Usage" on page 219 for further issues relating to users working with
a browser interface.

Databases
The Sterling Multi-Channel Selling Solution supports three database server
platforms: IBM DB2 Universal Server, Microsoft SQL Server, and Oracle Server.
Make sure that you test your work against all three database server platforms while
you work, and then you will ensure that once you deliver your application, it will
run safely in any supported database platform environment.

Application Servers
In your development environment, you may make use of only one application
server, such as JRun or Tomcat. Our experience has been that people work in one
environment until the feature works, and then assume that it is going to work
similarly with other application server. We have found variations between different
application servers and so you should make sure that your application runs properly
in other application server environments too.

Operating Systems
In principle, application servers written to conform to the J2EE standard insulate
application developers from the operating system environment. In practice
however, there are differences between the way in which application servers
behave from one operating system to another. Consequently, you should test your
erling Multi-Channel Selling Solution Developer Guide

Security
application on different machines running different applications. At minimum,
these should include a version of Windows and a version of UNIX.

Security
As you write your application, bear in mind that access to the application’s
functionality and business objects can and should be controlled so as not to expose
sensitive information or allow unauthorized modification of data. The principal
means to do this are:

• Access Policies

• ACLs

• Roles

Access Policies
In Release 7.0 and higher, you should use access policies to protect access to data
objects. The use of ACLs is deprecated. See "Managing Access to Data Objects
Using Access Policies" on page 94 for more information.

ACLs

Data objects to which access must be managed must extend the C3PrimaryRW data
object. You should make sure that whenever such a data object is created, that it has
an appropriate ACL attached to it. Subsequent accesses to the data object should
always be checked to verify that the user is authorized to act on the data object as
intended.

Make sure that all of your data objects have gone through this ACL exercise. Make
sure your application has implemented the security controls. Double-check that
ACLs are set properly in reference data and minimal data sets.

Roles
Your application may need to be run by users with different roles. Some
applications change behavior depending on the roles assigned to users and others
do not. Typically you should develop and test your application with different users
and roles in mind. However, it is very important that you consider all type of roles
of users who can potentially access your application and make sure that it behaves
as expected.

Note: The use of ACLs is deprecated
Sterling Multi-Channel Selling Solution Developer Guide 215

Developer Guidelines

216 St
For example, testing using the reference data often means that you log in as ajones
to run internal applications. Since ajones has both the enterprise user and enterprise
administrator roles, your application may work as anticipated. What happens when
you log in as djones who is only an enterprise user? Similarly you should cover
issues such as reading, writing, updating, and deleting objects created by users of
different roles. For example, a customer support representative can read orders
created by anonymous, registered, and direct commerce partner users: what
privileges should such a user have on orders?

Be sure to test your work by logging as different users and stepping through the
application functionality to verify that each user can perform what you intend they
should be able to.

Encoding Data in JSP Pages
If you are writing JSP pages to develop the user interface of your application, then
you need to take care to use the ph(), pj(), and pu() methods to address some
security issues. For example, malicious users can enter scripting commands into
data fields that execute when the data is next displayed. Make sure that you use the
static methods provided to appropriately encode data strings in HTML pages. See
CHAPTER 20, "JSP Pages" for more information.

General Application Issues
XML Messages
Your application has business logic and presentation layers. The business logic
layer can be executed by posting XML messages into a Sterling Multi-Channel
Selling Solution, just as an HTTP request can be posted to the system. These XML
messages are another aspect of your application, and they could become the APIs
for your application, and mode of integration with other systems. Hence, it is very
important that you ask yourself if there is a need to develop and test these XML
messages.

Assembly and Configurations
If your application deals with products, then it is very important that you test it with
products that are assemblies or which are configurable. For example, if you allow
editing of sub-line items, then you should consider how the feature differs between
assemblies and configurable products. You should be careful about display and
editing of these.

You should also consider sending and receiving assemblies and configurations in
XML messages. How will third-party software components deal with them, for
erling Multi-Channel Selling Solution Developer Guide

Internationalization
example ERP systems, or Ariba and CommerceOne sites? If you allow editing of
major line items, then should you allow editing of minor line items? How do you
calculate prices for these types of products? These are all issues to consider for
these types of products.

Internationalization
Resource Bundles
Have you programmed for an internationalized and localizable product before? The
Sterling Multi-Channel Selling Solution is a truly global product. You have to make
sure that all user-visible pages behave correctly according to the locale of each user.

Make sure that you consider all data fields of business objects to determine whether
they should be localized. Make sure that strings used to track the status of objects or
that are displayed in drop-down lists are localized suitably. These two steps are
important to make your application internationalized and ready for localization. See
CHAPTER 32, "Internationalization" for more details.

Locales
Users may choose to work in their preferred locale as they interact with the Sterling
Multi-Channel Selling Solution. You are responsible to test your application with at
least two locales. Typically, developers develop and test their applications using the
en_EN locale. You should also normally test your application using the fr_FR
locale as early as possible to catch potential localization issues. Including this in
your testing again is one more important item to consider. Do not leave
internationalization testing until the end of the development cycle because any
problems found may require changes to business objects and lookup tables.

Retrieving Locales
You can retrieve a user’s current locale using one of these calls:

Locale current_Locale = session.getLocale();
Locale current_Locale = ComergentI18N.getComergentLocale();

JSP Pages
Pay attention to character encoding. This is set in a meta element of JSP pages. It is
commonly set to:

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

If you change this to accommodate a particular localization effort, then you must do
it across all of the relevant pages.
Sterling Multi-Channel Selling Solution Developer Guide 217

Developer Guidelines

218 St
Data
In general, you should test your application using both the scenarios in which only
the minimal data has been installed and in which the reference data has been
installed. In particular, take care to determine whether your application will require
any additions or modifications to the minimal data: that is, must some data be
present for your application to work which cannot be created using the Sterling
Multi-Channel Selling Solution?

Minimal Data
The minimal data set is designed to provide the absolute minimum of data that will
enable a Sterling Multi-Channel Selling Solution implementation to be started up
and for users to create the full implementation using the Web user interface. During
your development phase, you should consider whether your application requires
any data that cannot be entered through the Web user interface. If this data is
required for your application to run successfully, then this should be added to the
minimal data set.

Currently, the minimal data set includes root nodes of business object hierarchies
and ACLs for business objects. In addition, it contains the basic partner and group
business objects, and defines the enterprise master price list.

Reference Data
You are responsible to maintain and test the reference data that should be used to
test your application as part of a deployment of our reference system. Make sure
that your testing allows for edge cases as part of the reference data and you should
review it for consistency with the rest of the reference data set.

In Release 8.0 and higher, the reference data is designed to be applied as a layer on
top of the minimal data set. You should review your reference data to verify that it
makes the right separation between minimal and reference data. See "Minimal
Data" on page 218 for more information about the minimal data set.

Sorting and Searching
If you are developing an application that provides a Web interface, then review it to
check for places where users can do sorting or initiate a search. Check that the sort
and search functionality works correctly and that it treats non-ASCII characters
correctly.
erling Multi-Channel Selling Solution Developer Guide

Browser Usage
Browser Usage
In general, Sterling Multi-Channel Selling Solution applications are designed to
work in a browser. Consequently, in writing your applications, you should take care
to consider typical patterns of browser usage as described below:

• Cookies

• Enter Key

• Back and Forward Buttons

• Session Timeout

• Refresh Button

• Field Types and Lengths

Cookies
Users of your application can set up their browsers with cookies either on or off.
Your application should function equally well with either setting. Take care to
encode every URL to include session information, and take care not to store
information in browser-side cookies. Nonetheless, you cannot assume that you
have caught every potential pitfall, and so you should continue to test your
applications with both cookies on and off.

Enter Key
If a user hits the Enter key while working in a form on the browser page, then the
browser will submit the form. This is functionality that users expect and expect it to
work like other applications on their desktop. If you have a user interface
component containing form fields, then make sure that hitting the Enter key does
not break anything. To fix problems with the Enter key is not trivial, and cannot be
fixed in one place for all applications. Your form parameter validation and
verification has to be designed with this kind of usage in mind. Make sure you
address this when you design your user interface.

Back and Forward Buttons
Users are used to using the browser Back and Forward buttons as part of their
navigation through a Web-based application. When these buttons are used, the
browser may repost a request or reload a page from its memory. You should
consider what effect this can have on your application’s business logic.
Sterling Multi-Channel Selling Solution Developer Guide 219

Developer Guidelines

220 St
In particular, there can be a number of issues when the Back button is used to
navigate. Applications fail to function properly or at least confuse the user by not
behaving as they expect. Consider this when developing your application.

Session Timeout
Browser users may also let their session timeout, either deliberately or accidentally.
For example, a user is working with your application, but decides to go for lunch in
the middle of completing a task. They come back to continue working with your
application and their session has timed out. Now what? How should your
application behave here? Typically, the user has to be routed to a suitable login page
and then brought back to the application again.

Refresh Button
This is another area of concern for Web-based application developers. Users may
use the Refresh button either because they are not sure that a particular action
completed or has been successful or because they are impatient to see the results of
their action. Web applications are also vulnerable to attacks that repeatedly post the
same request to the application server.

You should ask yourself: If a user clicks the Refresh button, then what should
happen? What would a user expect to happen? If a user sees something unexpected
happen, then can they undo that effect? Make sure your application behaves the
way user expects here.

Field Types and Lengths
Forms are the means by which users enter data into the Sterling Multi-Channel
Selling Solution. The data is saved into the Knowledgebase by inserting or
updating records in the database tables. You should ensure that users are guided as
much as possible to enter data of the correct form into each form field. However,
your application must also handle situations in which users either accidentally or
maliciously enter invalid data. These include: entering a negative number where
only positive ones make sense; entering non-integers where only integers are
expected; entering alphabetical characters instead of numeric characters.

As far as possible, you should apply client-side validation to form field entries so
that bad data is caught as quickly as possible: it is better for the user and saves a
server hit as well. However, you should also apply server-side checks and catch bad
data gracefully to provide constructive feedback to users.

In particular, when using forms, make sure that you control the maximum length of
form field entries in order that users do not enter more data into a field than your
application can hold. On the server-side pay particular attention to cases where
erling Multi-Channel Selling Solution Developer Guide

Developer Testing
users might be able to “attack” your application by entering massively long strings
as field values.

Developer Testing
Database Requests and User Operation
When you are done developing your application, use the Sterling Multi-Channel
Selling Solution logging capabilities to assess your application’s performance. The
application server log can show you how long it takes your application to service
each user request, and what resource usage it takes.

For example, you can use the log viewer tool to check how many database
operations your application is making for each request. This is important. This test
allows you to verify that the database access is as you expect or makes you aware of
how the application interacts unexpectedly with the database server. Developers
sometimes find that an apparently simple persist or restore operation gives rise to a
database-intensive operation such as a very time-consuming query.

API and Exceptions
As part of your application development you may develop some APIs for other
modules to use. It is important that you consider possible error conditions and that
your application throws appropriate exceptions. See CHAPTER 33, "Exceptions"
for general information about recommended exception policies.

Take care to consider also that the reference data you create is largely used to test
the successful running of your application. You should also consider designing for
error conditions that are not present in the minimal and reference data sets, but
which may arise if data is loaded from some external source.

Javadoc
If you are developing APIs, then it is very important that you provide reasonable
Javadoc comments for use by client applications. Do not forget to add
package-level documentation using Package.html files in each package directory.

HTML Validation
HTML validator tools can check that the HTML produced by your JSP pages are in
conformance to the HTML 4.0 standard. It is possible that the HTML produced by
your application is not conformant. You should check for this and fix problems. It
will also improve the performance of your application.
Sterling Multi-Channel Selling Solution Developer Guide 221

Developer Guidelines

222 St
Threads
In some situations, you may want to initiate a process as a separate thread. For
example, typically, a user may execute a request that initiates a long-running
process such as index generation. In these situations, you may want to handle this
by creating a new thread that executes the task while the original request is
completed and a response is returned to the user.

When you do this, the new thread process can continue to run even when the main
servlet container process is terminated. To prevent this, you should always call the
setDaemon(true) method after creating a thread. For example:

Thread t = new Thread(...);
t.setDaemon(true);

This ensures that these threads will be terminated at the same time as the servlet
container is shut down.

File Uploads
You may need to enable the upload of files into the Sterling Multi-Channel Selling
Solution: typically, this is how partner users will create templates and logos in the
Sterling Multi-Channel Selling Solution, and it can also be used to upload data such
as campaign mailing lists and leads.

You must consider the following:

Forms for File Upload
Use the standard file upload HTML elements to create a file upload form:

<FORM ACTION="" METHOD="POST" NAME="UploadLeadForm"
onSubmit ="return uploadFile()">

<INPUT TYPE="hidden" NAME="cmd" VALUE="LeadUploadStatus">
<INPUT TYPE="hidden" NAME="leadFile" VALUE="">
<INPUT TYPE="file" NAME="leadFileName" VALUE="">
<IMG ALIGN="TOP"

SRC="../htdocs/shared_images/uploadUglyButton1.gif"
WIDTH=81 HEIGHT=22 ALT="Upload" BORDER="0">

</FORM>

Note the use of a Javascript method uploadFile() in the form: it is referenced twice
to manage both the case when a user clicks the Upload button and when they hit
enter in the file field.
erling Multi-Channel Selling Solution Developer Guide

File Uploads
In the JSP page, the uploadFile() method looks like this:

function uploadFile()
{

if (trim(document.UploadLeadForm.leadFileName.value) != '')
{

document.UploadLeadForm.encoding="multipart/form-data";
document.UploadLeadForm.leadFile.value=

document.UploadLeadForm.leadFileName.value;
document.UploadLeadForm.leadFile.action="<cmgt:link

app='*'></cmgt:link>"
document.UploadLeadForm.submit();
return true;

}
else
{

alert("You must enter a file name.");
setFocus();

}
}

The important thing to notice is that the encoding is set to “multipart/form-data”.
When this request is submitted to the Sterling Multi-Channel Selling Solution,
some pre-processing is performed on the the request before passing it to the
controller used to process the request. The controller can retrieve the uploaded file
by calling the FileUploadCache class: this class provide methods to retrieve the
uploaded file as an InputStream or InputStreamReader object. For example, this
code fragment retrieves the file uploaded from the form described above:

String FileID = request.getParameter("leadFile");
InputStream is = FileUploadCache.getInputStream(FileID);

From this point on, the controller can determine what to do with the uploaded file
as your business logic requires.

Saving Files on the Sterling Multi-Channel Selling Solution
Bear in mind that when you save a file in the Sterling Multi-Channel Selling
Solution, you must bear in mind how the file will need to be accessed in the future.
For example:

• If the file is a GIF file, then is it to be displayed to users?

• Is it a data file that can be discarded once it has been processed?

• Will it need to be maintained in a versioned manner?

In general, you should use the adjustFileName() method of the ComergentAppEnv
class to save files to the file system. This method provides standard ways to specify
Sterling Multi-Channel Selling Solution Developer Guide 223

Developer Guidelines

224 St
what sort of file you are saving and this determines where the file is saved. See
"ComergentAppEnv Class" on page 27 for more details.

File Processing
Bear in mind that file processing can be both processor-intensive and error-prone.
You need to consider the possibility of offloading the file processing task to a
separate thread and what to do if errors occur that mean some or all of the file data
is invalid.

One technique to offload processing to a separate thread is to attach the file to
message and post it back into the Sterling Multi-Channel Selling Solution so that it
is processed as a separate request. For example, the following code does this for
uploaded lead files:

LeadCreateListResultBean result =
postComergentXMLMessage(is, format);

processResult(result);

Here, the postComergentXMLMessage() method is used to post the message to the
Sterling Multi-Channel Selling Solution and to return a result.

private LeadCreateListResultBean postComergentXMLMessage(
InputStream is, String format) throws Exception

{
ConverterFactory cf = ConverterFactory.getConverterFactory();
Converter converter =

cf.getIncomingConverter("LeadCreateListRequest", format);
converter.setSource(is); // pass the stream that you have read
ByteArrayOutputStream out = new ByteArrayOutputStream();
converter.setTarget(out);
converter.convert();
String tmp = out.toString();
String msgURL = CronManagerHelper.getCronMessageURL();
LocalPost iccPost = new LocalPost(msgURL, null);
ComergentDocument replyDoc = iccPost.postString(tmp);
XMLResponseAccessor xmlAccessor = new
XMLResponseAccessor(ConverterFactory.getNativeMessageCategory());
BizObjTable retBusObjTable =

xmlAccessor.xmlReplyToBeans(null, replyDoc);
LeadCreateListResultBean bean = (LeadCreateListResultBean)

retBusObjTable.getBean(LeadCreateListResultBean.class);
return bean;

}

erling Multi-Channel Selling Solution Developer Guide

Summary
Summary
The application development in Sterling Multi-Channel Selling Solution involves a
number of considerations apart from the actual feature development of your
application. By using the topics described above as a checklist, you will be able to
meet many of the issues before your customers do!
Sterling Multi-Channel Selling Solution Developer Guide 225

Developer Guidelines

226 St
erling Multi-Channel Selling Solution Developer Guide

CHAPTER 19 User Interface and Style Guidelines
Overview
As you work on tailoring the Sterling Multi-Channel Selling Solution or on
developing a new Sterling Multi-Channel Selling Solution application, bear in mind
that your work should be consistent with the overall look-and-feel of the Sterling
Multi-Channel Selling Solution user interface. This chapter provides a summary of
the guidelines used by all of the current applications. If you use these to guide your
work, then your customizations to existing applications and new applications will
be immediately familiar to users and enable them to quickly become comfortable
using them.

This chapter also covers the use of the following UI components:

• calendar widget: a flexible, re-usable UI component to support locale-
specific date selection and entry. See "Using the Calendar
Widget" on page 233.

• tree viewer: a flexible, re-usable UI component to display tree structures
of data objects. See "Using the Tree Viewer" on page 236.

• entity picker: a flexible, re-usable UI component to display sets of entities
from which selections can be made. See "Using the Entity
Picker" on page 238.
Sterling Multi-Channel Selling Solution Developer Guide 227

User Interface and Style Guidelines

228 St
Tables and Data Lists
General
When you display a list of business objects to a user, be consistent in how the list
behaves:

• If a user creates a new object, then by default the newly-created item
should appear at the top of the list.

• If a list is displayed that has no items on it (such as a search that matches
no objects), then display a message that makes it explicit that the list has
zero items.

Columns
In general, you should use the following left-to-right display order for the table
columns:

• Check boxes (if any): if the user can act on the list of business objects by
checking or unchecking a check box against each item on the list, then
these check boxes should appear as the far left column. As far as the user
is concerned, the action is performed on all checked rows of the table
simultaneously.

The action buttons should be displayed at both the top and bottom of the
table, preferably above and below the check boxes column. Provide buttons
for “Select All” and “Deselect All”.
Examples: Assigning price lists to partners, copying product inquiry lists.

• Name: The first text column should be the “primary name or key” column.
Entries in this column must uniquely identify each business object: if the
user is able to navigate to the detail of the business object, then this
column should provide the link to the detail page.

Examples: Partner name on the Partner Profile List page, product ID on the
Product Catalog page, price list name on the Price List List page.

• Additional information columns: provide other informational columns as
required by the application to the right of the Name column. In general,
you should make the columns sortable so that the user can sort and group
the items by useful attributes.

Examples: Type, Level, and Category on the Partner Profile List page, Full
Names, Roles on the User List page.
erling Multi-Channel Selling Solution Developer Guide

Tables and Data Lists
• Action buttons: If actions can be performed on individual items, then there
should be an action button for each possible action on each row, and these
should all be in the far right column of the table. Note that if there is only
one relevant action, then you can also display the action as a link: for
example, Delete. The title of the column should be “Actions”.

A legend to identify the action buttons should be displayed at the top of the
page, immediately above the table and preferably above the Actions
column. If there is no space at the top of the page, then place the legend at
the foot of the table.
Examples: Duplicate Promotion and Delete Promotion on the Promotion
List page, Delete Product and Assign Rules on the Price List Detail page.

• Text alignment in columns. Follow these rules where possible:

• Left justify names, product IDs and other unique identifiers, and text that
may vary in length such as description fields.

Examples: Partner on the Partner Profile List page, Name and
Description on the Price List List page.

• Center fields whose values do not vary in length or which come from a
fixed set of values (typically determined at the time of implementation).

Examples: Level and Type on the Partner Profile List page, Currency
and Type on the Price List List page.

• Right justify fields whose values are numbers and prices. Use a fixed-
width font for such fields.

• Sorting by columns: Sort order is indicated by an up or down arrow next to
the table heading text. Clicking the table heading text should have the
effect of sorting the table by ascending values of that column. If the table
is already sorted by the column (as indicated by the arrow), then clicking
on either the heading text or the arrow should toggle the sort order
between ascending and descending.

In general, all columns that contain text or status information should be
sortable. The field used to sort a column should always be visible.

Formatting
Use the standard text format for names, descriptions, and other text attributes for
each column. Names of people should be displayed as Family name (Last name),
Given name (First name) and sorting by the column should sort by Family name.
Sterling Multi-Channel Selling Solution Developer Guide 229

User Interface and Style Guidelines

230 St
Dates should be displayed in the numerical format (for example, 10/23/2002, not
October 23rd, 2002) determined by the user’s current locale.

Buttons
Use a consistent convention between buttons and their resulting actions. These are
the standard buttons: use these wherever possible.

• Apply

• Assign

• Cancel

• Delete

• Details

• Done

• Edit

• OK

• Remove

• Save

• Update

Forms
HTML forms are the chief means by which users will add or modify information in
the Sterling Multi-Channel Selling Solution. Make sure that your forms are clear
and well-designed so that a user can enter the information easily. The more
guidance you can provide users so that they enter correct and valid information in
each field, the better the application works.

In particular, where possible:

• Provide a clear label for each text field and other input components such
as drop-down lists, list boxes, radio buttons, and check boxes. Provide
explanatory text where appropriate.

• If a field may only take one of a certain number of values, then provide the
values as a drop-down list. In general, consider whether the values are to
be defined in the JSP page or as the result of a database query: there may
be localization issues to address in either case.
erling Multi-Channel Selling Solution Developer Guide

Workflow Conventions
• Clearly mark required fields with an asterisk (“*”) and provide a legend
that reads “* Required Fields”.

Text Fields
When a user is creating a new business object, then fields should be blank unless a
default value will be used if none is provided by the user. If a default value will be
used, then display the default value at the time the user is viewing the form.
Validate each text field to determine that the user-entered value is appropriate.
Constrain text fields so that users are not permitted to enter more characters than
allowed by the business object definition.

If there is space, then provide additional information to help the user enter correct
information: for example, “Enter a number with no more than two decimal places.”
or “Enter the telephone number in the form (xxx) yyy zzzz.”.

Drop-Down Lists and List Boxes
Drop-down list and list box values should not be provided in a random order. Users
should see the same list of values in the same order each time they visit the page.
Where possible, sort values in a drop-down list or list box so that the user can easily
find values. For example, order values by alphabetical order (such as US states) or
by some well-understood ordering (Gold, Silver, Bronze). Pay attention to
internationalization issues that may mean that values are displayed in a different
order for a different locale.

Where a drop-down list or list box values provide additional information as part of
the text string, then use a fixed-width font. For example:

MOD: Workstation
MOD: Server
MG: Computers
OCSA: Monitor

If no default value is provided, then use the text “-- Select --” (or “--” for short
values) to indicate to a user that they must select a value from a drop-down list. If
the field is optional, then display a blank entry rather than an optional value.

Workflow Conventions
In general, create an object when a user clicks Add or New. Display the new object
with pre-filled fields and then allow the user to edit the object.
Sterling Multi-Channel Selling Solution Developer Guide 231

User Interface and Style Guidelines

232 St
Users should specify an assignment of one object to others and then click Assign;
they should not have to click a button simply to be taken to a page on which they
perform the assignment.

If a user wants to modify an object, then typically they should click Edit to view
the object details. Once they have changed values of fields, they should click
Update to apply the changes.

Popup Windows
Popup windows are used to enable users to enter information in situations where
you do not want to disrupt the main page flow. Follow these guidelines:

• Popup windows should have titles that describe the purpose of the
window. For example: “Change Locale”.

• Action buttons should be displayed in the lower right of the window.

• Do not use the windows “Popup” or “Dialog” in the text or title of these
windows.

Search and Find Windows
When displaying the results of a search, display the search criteria at the top of the
page. For example: “Search result for the product ID: MXWS-7550”. Include all
the search criteria used such as Partner Name and Partner Type.

Registration Pages
Make sure that you enable users to enter their registration information naturally
using clearly understood fields. For example:

• Address1

• Address2

• City

• State/Province

• Postal Code

Telephone numbers should be left justified and followed localizable formats. Types
(Business, Fax, Cell, and so on) should appear in a separate column or as a
drop-down list.
erling Multi-Channel Selling Solution Developer Guide

Using the Calendar Widget
Using the Calendar Widget
The calendar widget is a UI component which can be used to enable users to
specify dates. By providing a simple point-and-click component, users can select
the desired date from a calendar. The format of the calendar matches the user’s
chosen locale preferences and automatically validates their selection to prevent
them from selecting dates such as March 43rd. It also provides the usability cues
that help users to select the correct date using information such as days of the week.

The calendar widget should be used instead of the three drop-down lists currently
used to input the date. The calendar widget can also replace any current text fields
used to input a date.

There are two supported components to the calendar widget:

• A calendar popup that allows the user to graphically select a date from a
calendar: most of the code is in calendarPopup.js

• Date formatting and verification of the date entered into the date text field:
the code is in date.js.

To Use the Calendar Widget

1. Include these JavaScript files in your JSP page.

<SCRIPT LANGUAGE="JavaScript" SRC="../js/PopupWindow.js">
</SCRIPT>
<SCRIPT LANGUAGE="JavaScript" SRC="../js/CalendarPopup.js">
</SCRIPT>
<SCRIPT LANGUAGE="JavaScript" SRC="../js/date.js">
</SCRIPT>
<SCRIPT LANGUAGE="JavaScript" SRC="../js/I18N.js">
</SCRIPT>

2. Add an input text field and anchored image as follows:

<INPUT type="text" size="10" name="<Name of field>" value=""> <A
href="javascript:popupCal.showCalendar('anchor1',
'<Name of form>.<Name of field>','<%=ComergentI18N.getLocaleDate-
Pattern()%>')" NAME="anchor1" ID="anchor1">

The name of the input text field must match the name specified in the
showCalendar() method so that the user’s selection is set correctly in this
field once it is picked.

3. Define three hidden form elements with the following names.
Sterling Multi-Channel Selling Solution Developer Guide 233

User Interface and Style Guidelines

234 St
<INPUT TYPE="HIDDEN" NAME="<Name of field>Date" VALUE="">
<INPUT TYPE="HIDDEN" NAME="<Name of field>Month" VALUE="">
<INPUT TYPE="HIDDEN" NAME="<Name of field>Year" VALUE="">

4. Add an onsubmit=processDate() call to the FORM element. The onSubmit
function processDate() must at minimum invoke the
extractDateFromDateField() function provided in the date.js Javascript
package. This function converts the data from the text field and populates the
three hidden input fields. In addition, you can add other processing to the date
field such as comparing it to the system date.

5. When processing the form, you retrieve the values of the selected day, month,
and year by calling:

• request.getParameter("<Name of field>Date"): as an integer between 1 and
31.

• request.getParameter("<Name of field>Month"): as an integer between 0
and 11.

• request.getParameter("<Name of field>Year"): as an integer, say “2003”.

To Replace Three Drop-down Lists
Some current Sterling Multi-Channel Selling Solution applications use three text
fields in forms to enable users to enter and modify dates. In general, you should
work to replace these text fields with an instance of the calendar widget as follows:

1. Include these JavaScript files in your JSP page.

<SCRIPT LANGUAGE="JavaScript" SRC="../js/PopupWindow.js">
</SCRIPT>
<SCRIPT LANGUAGE="JavaScript" SRC="../js/CalendarPopup.js">
</SCRIPT>
<SCRIPT LANGUAGE="JavaScript" SRC="../js/date.js"></SCRIPT>
<SCRIPT LANGUAGE="JavaScript" SRC="../js/I18N.js"></SCRIPT>

2. Comment out the three drop-down lists and replace them with a text field and a
calendar widget icon. Here is the example code. The “anchor1” anchor is used
to position the popup calendar near the text field.

<INPUT type="text" size="10" name="CreateStartDateField" value="">
<A href="javascript:popupCal.showCalendar('anchor1','query-
Form.CreateStartDateField','<%=ComergentI18N.getLocaleDatePat-
tern()%>')" NAME="anchor1" ID="anchor1">

The text field in this case is named CreateStartDateField.
erling Multi-Channel Selling Solution Developer Guide

Using the Calendar Widget
3. Define the three hidden form elements with the names of the three drop-down
lists that are being replaced.

<INPUT TYPE="HIDDEN" NAME="CreateStartDate" VALUE="">
<INPUT TYPE="HIDDEN" NAME="CreateStartMonth" VALUE="">
<INPUT TYPE="HIDDEN" NAME="CreateStartYear" VALUE="">

4. Populate these three form fields from the date text field defined in Step 3.

function verifyDateField()
{

var theDate;
theDate = extractDateFromDateField("Creation Start Date",

"queryForm.CreateStart",
"<%=ComergentI18N.getLocaleDatePattern()%>",
false, true);

if (theDate == false) return false;
}

Name = <dateForm>
Text field = <dateForm> + "DateField”
Year value = <dateForm> + "Year"
Month value = <dateForm> + "Month"
Date value = <dateForm> + "Date"

Naming Example
If Name is ‘CreateStart”, then the name of the text field is “CreateStartDateField”,
and extractDateFromDateField() will extract the date and set the following hidden
fields: CreateStartDate, CreateStartMonth, and CreateStartYear.

To Replace a Text Field by the Calendar Widget
Some current Sterling Multi-Channel Selling Solution applications use a single text
field in forms to enable users to enter and modify dates. In general, you should
work to replace each such text field with an instance of the calendar widget as
follows:

1. Include these JavaScript files in your JSP page.

<SCRIPT LANGUAGE="JavaScript" SRC="../js/PopupWindow.js">
</SCRIPT>
<SCRIPT LANGUAGE="JavaScript" SRC="../js/CalendarPopup.js">
</SCRIPT>
<SCRIPT LANGUAGE="JavaScript" SRC="../js/date.js"></SCRIPT>

Note: It is important to note that the extractDateFromDateField() function requires
the field names follow the following naming convention. The primary design
goal of the extractDateFromDateField() function is to reduce the amount of
code needed to verify and set the three date variables to one Javascript
function call.
Sterling Multi-Channel Selling Solution Developer Guide 235

User Interface and Style Guidelines

236 St
<SCRIPT LANGUAGE="JavaScript" SRC="../js/I18N.js"></SCRIPT>
Comment out the text field and replace them by a text field and a
calendar icon.
<INPUT type="text" size="10" name="CreateStartDateField" value="">
<A href="javascript:popupCal.showCalendar('anchor1','query-
Form.CreateStartDateField','<%=ComergentI18N.getLocaleDatePat-
tern()%>')" NAME="anchor1" ID="anchor1">

The text field in this case is named as ‘CreateStartDateField’, which is the
name of the original text field.

Notes

The call to showCalendar() takes these arguments:

1. The Anchor: the position where the calendar will pop up.

2. The Form element: the calendar widget reads the date from this element and
opens the calendar to show the current date. If there is no value in this form
element, then it opens the calendar with the current date; otherwise the current
displayed date is shown as selected. Also on selecting a date by clicking on the
calendar this field is populated from the calendar.

3. The Format String: the calendar expects a date format and returns the date in
the form field in the same format.

Using the Tree Viewer
A useful UI component provided with the Sterling Multi-Channel Selling Solution
is a tree viewer component. It provides a means to display complex hierarchical
information in the form of a tree of expandable and collapsible nodes. You can use
the tree viewer to display hierarchies such as the product catalog and the model
group hierarchy. Different object types can be displayed in the hierarchy which can
be represented by different icons and which execute different message types when
selected.

You must implement the tree view as a frame. The frame must be populated using a
message type that is processed by a controller that extends the TreeViewController
class as described in Step 2 below.

Follow these steps to create a tree view for your hierarchy:

1. Create a tree view class that implements the TreeViewEntity interface. This
interface extends the PresentationEntity interface and among the methods you
must implement are the main “tree” methods:
erling Multi-Channel Selling Solution Developer Guide

Using the Tree Viewer
• getID()

• getName()

• getDisplayName()

• getType()

• getChildren()

• getTopLevelEntities()

2. Create a controller that will process the request to populate the frame used to
display the tree. This controller must extend the abstract TreeViewController
class and you must implement the newTreeViewEntity(String s) method. This
method must return an instance of the tree view class created in Step 1. The
String parameter may not be used: this will depend on your implementing
class.

The execute() method of the TreeViewController class invokes the init()
method which returns as a String the TreeViewEntity returned by the
newTreeViewEntity() method. The String rendering is set as the value of a
request attribute named “TreeView.CodeBody”.

3. Create the JSP page used to display the tree within a browser page. The tree
must be created within a frame on the JSP page. The frame should be
populated using the TreeView message type. For example:

<FRAME src='<%= link("productMgr", "TreeView",
"TreeView.ParamFile=../js/cmgtProdMgrTreeViewParam.js&Tree-
View.MsgType=productMgr&TreeView.Cmd=ProdMgrPCHierarchy") %>'
name="TreeView" FRAMEBORDER='no' NORESIZE SCROLLING="no">

Note that the link() method passes a standard message type, TreeView,
whose definition is:
<MessageType Name="TreeView">

<JSPMapping>
../uiComponent/TreeViewFrameSet.jsp

</JSPMapping>
<ControllerMapping>

com.comergent.dcm.caf.controller.ForwardController
</ControllerMapping>
Sterling Multi-Channel Selling Solution Developer Guide 237

User Interface and Style Guidelines

238 St
</MessageType>

You must pass as parameters the name of the parameter Javascript file
cmgtProdMgrTreeViewParam.js and the name of the message type
defined in Step 5 as the TreeView.Cmd parameter. The parameter file
defines the mapping between node types and the icons used to represent
them.
You must ensure that the parent page defines a Dispatch((modName, msg,
val) Javascript method. This method defines the module name, message
type, and a value (of the selected tree node). This method is invoked when
users select nodes in the tree: typically, it is used to populate a detail frame
that displays information about the selected node.

4. Create a JSP page that will be used to render the tree view. This JSP page must
have the following scriptlet:

<%= (String) pu(request.getAttribute("TreeView.CodeBody")) %>

This scriptlet retrieves the TreeViewEntity in the form of the String created
in Step 2. It places a hidden frame of content in the tree view frame and is
accessed to retrieve the tree model data.

5. Create a message type that specifies the controller created in Step 2 and the
JSP page created in Step 4. For example:

<MessageType Name="ProdMgrPCHierarchy">
<JSPMapping>

../uiComponent/TreeViewCode.jsp
</JSPMapping>
<ControllerMapping>

com.comergent.appservices.productService.controller.-
TVProductCategoryController

</ControllerMapping>
</MessageType>

Using the Entity Picker
The entity picker provides a UI component that can be used to help users of the
Sterling Multi-Channel Selling Solution select data objects from a number of
possibilities. It supports these views:

• Hierarchy: navigate the object hierarchy to make selections

• Search: perform a search using specified criteria

• Flat list: select from a list of all of the objects, using pagination to move
through a long list
erling Multi-Channel Selling Solution Developer Guide

Using the Entity Picker
For any particular task, you should decide which of the views you want to support:
your picker can support one or more of them, but need not offer them all.

Follow these steps to create an hierarchy entity picker for your needs:

1. Create a tree view class that implements the TreeViewEntity interface. This
interface extends the PresentationEntity interface and among the methods you
must implement are the main “tree” methods:

• getID()

• getName()

• getDisplayName()

• getType()

• getChildren()

• getTopLevelEntities()

2. Create a controller class that extends the EntityPickerHierarchyViewController
class. You must implement the newTreeViewEntity(String s) method. This
method must return an instance of the tree view class created in Step 1. The
String parameter may not be used: this will depend on your implementing
class.

3. Create a message type that is to be used to display the EntityPicker window.
Typically, this is part of a URL that is the HREF attribute of a Browse...
button. For example, you might define the following message type:

<MessageType Name="EPMainFrame">
<JSPMapping>

../uiComponent/EntityPickerFrame.jsp
</JSPMapping>
<ControllerMapping>

com.comergent.dcm.caf.controller.ForwardController
</ControllerMapping>

</MessageType>

Use this in conjunction with a form such as:
<FORM name="picker" method="post"

action='<%=link("productMgr", "EPMainFrame")%>'>
<INPUT type="hidden" name="EPModule" value="visualModeler">
<INPUT type="hidden" name="EPHierarchyView"

value="DisplayMyHierarchyObjectPicker">
<INPUT type="hidden" name="EPParam"

value="../js/cmgtVM_MGMPParam.js">
<INPUT type="hidden" name="SingleSelect" value="true">
Sterling Multi-Channel Selling Solution Developer Guide 239

User Interface and Style Guidelines

240 St
</FORM>

The form must define the EPModule, EPHierarchyView, and SingleSelect
parameters.

4. Create the message type specified by the EPHierarchyView parameter of
Step 3. This message type must map to the controller class created in Step 2
and to the JSP page to be used to render the hierarchy: for example,
EntityPickerHierarchyFrame.jsp.

<MessageType Name="DisplayMyHierarchyObjectPicker">
<JSPMapping>

../uiComponent/EntityPickerHierarchyFrame.jsp
</JSPMapping>
<ControllerMapping>

com.comergent.apps.productMgr.controller.-
MyHierarchyPickController

</ControllerMapping>
</MessageType>

Follow these steps to create a search entity picker for your needs:

1. Create a search controller to process the search. The search controller must
extend the EntityPickerController and implement the following methods:

• newPresentationEntity()

• constructQuery()

• getDataContext()

• getSortFields()

• getAscending()

These methods are used to determine the presentation entity to be used,
together with the form of the query that will retrieve the objects.

2. Use the EntityPickerSearchFrame.jsp to display your Search frame. In
passing the request to this JSP page, specify the following paremeters:

• EPParam parameter to specify the parameters Javascript file to be used by
the page. This sets the icon images to be used by the page.

• EPModule parameter specifies the application module.

• EPSearchConsole specifies the message type to be used to display the
search console. The search console is the frame that specifies the search
criteria and search values.
erling Multi-Channel Selling Solution Developer Guide

Using the Entity Picker
• EPSearchView specifies the message type to be used to display the search
results.

3. Create message types for the search console and search view message types
defined in Step 2. For example:

<MessageType Name="EPProdSearchView">
<JSPMapping>

../uiComponent/EntityPickerListView.jsp
</JSPMapping>
<ControllerMapping>

com.comergent.appservices.productService.controller.-
EPProductSearchViewController

</ControllerMapping>
</MessageType>
<MessageType Name="EPProdSearchConsole">

<JSPMapping>
../productMgr/ProdMgrEPProdSearchConsole.jsp

</JSPMapping>
<ControllerMapping>

com.comergent.dcm.caf.controller.ForwardController
</ControllerMapping>

</MessageType>

Use search controller created in Step 1 as the controller in the search view
message type.

4. Create the JSP pages declared in Step 3. The search console must provide the
search criteria you support to search on the objects (such as name, ID, and so
on).

Follow these steps to create a flat list entity picker:

1. Create a controller that extends the EntityPickerController. You must
implement the following methods:

• newPresentationEntity()

• constructQuery()

• getDataContext()

• getSortFields()

• getAscending()

These methods are used to determine the presentation entity to be used,
together with the form of the query that will retrieve the objects.
Sterling Multi-Channel Selling Solution Developer Guide 241

User Interface and Style Guidelines

242 St
2. Create a message type that maps to the controller created in Step 1 and a JSP
page that supports pagination. For example:

<MessageType Name="EPProdListView">
<JSPMapping>

../uiComponent/EntityPickerListView.jsp</JSPMapping>
<ControllerMapping>

com.comergent.appservices.productService.controller.-
EPProductListViewController

</ControllerMapping>
</MessageType>

Images
Templates for images used in the administration pages are provided as Photoshop
template (*.psd) files.
erling Multi-Channel Selling Solution Developer Guide

CHAPTER 20 JSP Pages
This chapter presents a detailed description of the JSP pages of the Sterling Multi-
Channel Selling Solution and how they may be customized. It covers:

• "JSP Page Location" on page 244

• "Page Structure" on page 244

• "Using the Session Context" on page 248

• "Scriptlets" on page 249

• "Javascript" on page 251

• "Forms" on page 251

• "Frames" on page 253

• "Cascading Style Sheets" on page 254

• "Buttons" on page 256

• "Securing JSP Pages from Cross-Scripting Attacks" on page 257

• "JSP Fragments" on page 258

• "Debugging JSP Pages" on page 258

• "JSP Page Naming Conventions" on page 258

• "Resources" on page 259
Sterling Multi-Channel Selling Solution Developer Guide 243

JSP Pages

244 St
• "Wait JSP Pages" on page 260

• "Redirecting to Full Page Access" on page 261

JSP Page Location
The JSP pages are installed into the debs_home/Sterling/ directory and
subdirectories that correspond to the Sterling Multi-Channel Selling Solution
applications. Each supported locale has its own directory structure which replicates
the application subdirectories.

For example, the JSP pages used by the Partner Manager application in the English-
United States locale are installed in the
debs_home/Sterling/WEB-INF/web/en/US/partnerMgr/ directory.

Page Structure
Almost all of the JSP pages reflect the same basic structure:

• Standard file comment template: optional for external page development,
but helpful if you are programming in the Sterling Multi-Channel Selling
Solution. Start each page with the following DOCTYPE declaration:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

• Page directives: this should include the JSP pages described in
"Included JSP Pages" on page 247. Any custom tag libraries must be
referenced in this section. You should include the following on every JSP
page:

<%@ page contentType="text/simple; charset=UTF-8" %>

• Import statements: Try to import only those packages and classes that are
needed. Imported packages should be ordered from the most fundamental
to more specific ones.

Use the page directive as follows to import packages:
<@ page import="com.comergent.package.*" %>

• Attribute parameters declaration: This section should include all the
attributes and parameters that the JSP page is expecting. The name, class,
type, and scope should be specified. This section should serve as
documentation for the JSP page. JSP pages that do not expect attributes
should include an empty section.

<%--
erling Multi-Channel Selling Solution Developer Guide

Page Structure
** Request Attributes
InventoryCollectionBean inventoryCollectionList
Vector of InventoryCollectionListBean$InventoryCollectionBean

inventoryCollectionVector
BigDecimal key
String name
** Request Parameter
** Session Attributes
** Applications Attributes

--%>

• Bean referencing section: This section contains the actual definition of the
beans used in the JSP page. The section should be delimited by comments
that mark the beginning and end of the section as follows:

<%-- $$BEGIN USE BEAN --%>
<%
MyBean myBean =

(MyBean) session.getAttribute("myBean");
%>
<%-- $$END USE BEAN --%>

• Scriptlet declaration: This is an optional section for declarations to define
variables and methods at the class-scope level of the generated JSP
servlet. Declarations made between these tags are accessible from other
declarations and scriptlets in your JSP page and from other servlets. You
should avoid declaring member variables in JSP pages.

This section should be delimited with comments to mark the beginning and
end as follows:
<%-- $$BEGIN DECLARATIONS --%>
<%!

int numOfRequests=0;
%>
<%-- $$END DECLARATIONS --%>

• General scriptlet section: In this section, all the calculations that could be
performed up front should be done. The results to be displayed should be
assigned to variables:

<%
storefrontOrderStateMachine =

StorefrontAPI.getFactory().getStorefrontOrderStateMachine();
Vector transitions =

Attention: Remember that objects are shared between multiple threads being
executed in the same instance of a servlet. To guard against sharing
violations, synchronize objects where necessary.
Sterling Multi-Channel Selling Solution Developer Guide 245

JSP Pages

246 St
storefrontOrderStateMachine.getValidStateTransitionsForLine(
orderStatus, lineStatus);

int noTransitions = transitions.size();
%>

• HTML section: This section comprises the mixture of HTML and JSP
scriptlets that together generate the Web page. This section should be
written in compliance with the XHTML Transient DTD, which can be
summarized as follows:

All tag and attribute names should be in lower case (for example <html>,
<head>, <body>, and so on). All attributes values should be inside quotes (for
example, color="red", width="1", and so on). Tags should be nested correctly
as follows:

<p> This is </p> #wrong
<p> This is </p> #correct

All tags must have a matching closing tag or be closed. Almost all HTML tags
have closing tags except for tags such as the br, hr, and input tags. The Sterling
Commerce-recommended way to handle those tags are:

The br tag should be written as follows:

 #wrong: this will cause Netscape trouble.

 #correct: note the space between the ‘br’ and the slash

Input tags should be as follows:

<input name="user" type="text" />

• Head section: this section must include any meta information and declare
the cascading stye sheet to be used.

• Javascript section: try to use the standard Javascript libraries provided by
the Sterling Multi-Channel Selling Solution. See
"Javascript" on page 251.

• Body section: JSP scriptlets in the body section should be reduced to a
minimum, which includes code that cannot be calculated in the declaration
or general scriptlet sections. The following are the suggestions for
different points:

Loops: Normal Java looping instructions (for, while do, and do while)
should be used for loops, the tag cmgt:list is now deprecated due to
performance problems. An optional section should follow the loop
erling Multi-Channel Selling Solution Developer Guide

Page Structure
instruction where the values are calculated for that iteration and
assigned to variables. Those variables are referenced in the loop body
using expressions.
Conditionals: the Java if statement should be used for conditionals,
inline conditionals could be used if it will improve readability.
Expressions: expressions should be reduced to variable referencing or
inline conditionals.
Tags: The tags cmgt:encode, cmgt:link, cmgt:list, cmgt:if,
cmgt:getProperty, jsp:getProperty, and jsp:setProperty are deprecated.
These tags are replaced by Java utility methods. See
"Scriptlets" on page 249.
HTML attributes values: if tags or expressions are used to calculate
HTML tags attributes values, then XML quotes should be used as
follows:
Wrong way:
<input name="InvCollection.<%=partnerKey %>" type="checkbox"

value="<%=(partnerKey==1)?"checked":""%>" />

Correct way:
<input name="InvCollection.<%=partnerKey %>" type="checkbox"

value=’<%=(partnerKey==1)?"checked":""%>’ />

• Comments: in general, you should use the JSP comment tag:

<%-- jsp:useBean id="pgno" type="String" scope="page" --%>

This comment is visible to readers of the JSP page, but does not generate
HTML visible to readers of the generated Web page. Use the standard
HTML comment tags to embed comments in the HTML page.

Avoid using comments of the form:

<!-- jsp:useBean id="tempBean"/ -->

Some servlet containers misinterpret this syntax.

Included JSP Pages
Sterling Multi-Channel Selling Solution JSP pages declare the same error page and
an included JSP page:

• Error page: On installation, the standard error page, error.jsp, is installed
in debs_home/Sterling/WEB-INF/web/en/US/. It provides a brief error
message together with the error stack trace. The stack trace is printed
Sterling Multi-Channel Selling Solution Developer Guide 247

JSP Pages

248 St
within HTML comment tags <!-- and --> so that it is not visible to the
user.

• The included JSP page, cmgtinclude.jspf, is installed in
debs_home/Sterling/WEB-INF/web/en/US/common/. It is used to
declare the ComergentSession and ComergentRequest objects and to
provide standard scriptlet methods. See "Scriptlets" on page 249. It also
declares the Comergent tag library. If you include cmgtinclude.jspf, then
do not declare the tag library anywhere else in your page.

You can use a flag in the cmgtinclude.jspf JSP page to generate useful
debugging information in each generated HTML page. In the
writeDebugInfo() method, set the doDebug variable to true. This causes a
comment block to be generated at the top of each HTML page along these
lines:
<!-- START_OF_WRITE_DEBUG_INFO

controller=com.comergent.apps.catalog.AdvisorController
jsp=null
uri=/Sterling/en/US/catalog/ProductAdvisor.jsp
request's params

sortCriteria=default
OP=
cmd=advisorWizard
pathIndex=0
advisorCmd=continue

END_OF_WRITE_DEBUG_INFO -->

Note that for security reasons you should set this flag to false in any
production system. Note also that included JSP pages do not necessarily get
re-compiled. You may have to delete the compiled servlet from the servlet
container’s working directory to be sure that the debugging information
stops being generated.

See "JSP Fragments" on page 258 for information about including JSP fragments.

Using the Session Context
The Sterling Multi-Channel Selling Solution manages session information when it
is interacting with external systems. To do this, a ComergentSession object is used
to wrap the servlet container’s session object. Consequently, the standard use of the
session context in the jsp:useBean tag is deprecated.

Instead of using:

<jsp:useBean name="myBean" type="com.comergent.bean.MyBean"
scope="session" />
erling Multi-Channel Selling Solution Developer Guide

Scriptlets
You must use:

<%
com.comergent.bean.MyBean myBean =

(com.comergent.bean.MyBean) session.getAttribute ("myBean");
%>

You can continue to use:

<jsp:useBean name="myBean" type="com.comergent.bean.MyBean"
scope="request" />

and

<jsp:useBean name="myBean" type="com.comergent.bean.MyBean"
scope="application" />

If you do use the <jsp:useBean> tag, then make sure that the Bean class satisfies
these conditions:

• it must have a default public constructor

• it must provide accessor methods for all of its class variables

Scriptlets
You use scriptlets to manage the dynamic generation of the HTML in the JSP
pages:

• to transform Strings

• to provide looping and conditional logic

• to provide standard macros

The JSP page, cmgtinclude.jspf, provides several standard methods that almost all
JSP pages use. You should always include this page in any JSP pages that you
modify or create. It provides:

• cmgtText(): this method is used to localize text used in scriptlets. Use it to
return a localized string as follows:

cmgtText(textID, textString)

The textID is used to retrieve the corresponding text string from the
appropriate resource bundle. The textString parameter is returned if no
matching id is found in the resource bundle. It is also used as the default
value of the *_en_US.properties file if the tool provided by Sterling
Commerce is used to generate the properties file. For example:
<%
Sterling Multi-Channel Selling Solution Developer Guide 249

JSP Pages

250 St
...
out.println(cmgtText("*","My text"));

...
%>

A second form of the method takes an additional array argument:
cmgtText(textID, textString, objectArray)

Use this form when a text string uses a number of values which may be
re-arranged from one locale to another. For example:
<%
...

String[] values = new String[2];
values[0] = userBean.getFirstName();
values[1] = userBean.getLastName();
out.println(cmgtText("*","My first name is {0} and my second

name is {1}", values));
...
%>

The default value of this property is “My first name is {0} and my second
is {1}”, but a different locale may re-arrange this to use, say in French,
“Mon nom de famille est {1} et je m’appelle {0}”.

• cmgtTextBundle(): this method is used in the same way as cmgtText(), but
an extra parameter enables you to specify the name of the resource bundle
to be used.

cmgtTextBundle(textID, textString, bundle)
cmgtTextBundle(textID, textString, objectArray, bundle)

• formatPrice(): this method is used to display currency information.

• link(): this method is used to generate URLs in the generated Web pages.
There are several different forms of this method, the most common of
which is:

link(String app, String cmd, String param)

In this form, the first String parameter sets the application, the second the
cmd parameter, and the third defines any parameters to be set in the URL.
For example:
link("advisor", "addProduct", "productKey=12");

will generate:
http://<server>:<port>/Sterling/advisor?cmd=addProduct&

productKey=12

• ph(): use this method to convert HTML characters into their escape
sequence (for example, “<” to “<”). Use this method to encode all
dynamically-created text in the body of a JSP page.
erling Multi-Channel Selling Solution Developer Guide

Javascript
• pj(): use this method to convert Javascript characters to their escape
sequence (for example, “ ” to “%20”). Use this method to encode all
dynamically-created text used in Javascript scripts.

• pu(): use this method to present Java objects without encoding.

Implicit Objects
Take care not to use the names of the implicit objects in your scriptlets. In
particular, do not use exception as the name of an Exception object.

Javascript
Some standard Sterling Multi-Channel Selling Solution Javascript functions are
provided in Javascript files in the debs_home/Sterling/en/US/js/ library directory.
Note that each supported locale (la_CO) must have a corresponding la/CO/js/ sub-
directory under debs_home/Sterling/.

You can include these Javascript functions in a JSP page using elements along these
lines:

<script language="JavaScript" type="text/javascript"
src="../js/genericUtil.js"></script>

Note that the Javascript file com_Main.js defines most of the widely used
Javascript functions, and in particular is the one that invokes the pickStyleSheet()
function. See "Cascading Style Sheets" on page 254 for more information about
cascading style sheets.

Forms
A CSS, form.css, should be used to display HTML forms. This ensures that all the
Sterling Multi-Channel Selling Solution forms present a consistent look-and-feel. A
form is built up of a number of <div> elements, one for each row, each of which has
the class “row”. Individual rows will typically have two elements: one for
the label (whose class is “label”) and one for the value input field (whose class is
“value”).

If the value input field is a drop-down list or list box, then you can populate the
field using <div> elements within the value element. You can use the
cic:select and cic:options tags to create a drop-down list, and the rendered attribute
to control what fields get displayed.
Sterling Multi-Channel Selling Solution Developer Guide 251

JSP Pages

252 St
Use the fieldset element to draw a border around the form: this helps to group the
form elements visually.

Example

The following fragment of a JSP page provides an example of the use of these
styles and tags. Note the use of the cic:options tag to populate a drop-down list of
values from a LookupResult array. In this example, the array has been populated
like this:

LookupResult[] currencyList =
CommerceUtils.getListOfValidCurrencyLookupResults(partnerKey);

The “faded” class is used to make text fainter.

<form name="newList" method="post" target=""
action="<%=link("*", comergentRequest.getMessageType())%>">

<fieldset class="userinfobox">
<div class="row">

<cmgt:text id='cmgt_commerce/UserInfoBox_9'

bundle='commerce.UserInfoBoxResources'>Customer Type:
</cmgt:text>

<div id="showVertical">

<%=ph(currentVertical)%>
</div>
<div id="editVertical" style="display:none;">

<cic:span rendered="${empty verticalList}"
value="${localizedUserInfoBox['NA']}"/>
<cic:select rendered="${not empty verticalList}"

name="verticalMarkets">
<cic:options var="vertical" valueRef="${vertical.code}"

labelRef="${vertical.string}"
datasourceRef="${verticalList}"
selectedValue="${currentVerticalCode}"/>

</cic:select>
</div>

</div>
<div class="row">

<cmgt:text id='cmgt_commerce/UserInfoBox_10'
bundle='commerce.UserInfoBoxResources'>Currency:</cmgt:text>

<div id="showCurrency">
erling Multi-Channel Selling Solution Developer Guide

Frames
<%=ph(currentCurrency)%>
</div>
<div id="editCurrency" style="display:none;">

<cic:span rendered="${empty currencyList}"
value="${localizedUserInfoBox['NA']}"/>

<cic:select rendered="${not empty currencyList}"
name="currencyList">

<cic:options var="currency" valueRef="${currency.code}"
labelRef="${currency.string}" datasourceRef="${currencyList}"
selectedValue="${currentCurrencyCode}" />
</cic:select>

</div>

</div>
<div class="row">

<cmgt:text id='cmgt_commerce/UserInfoBox_11'
bundle='commerce.UserInfoBoxResources'>Last Modified:</cmgt:text>

<%=ph(updatedDate)%>

</div>
</fieldset>
<input type="hidden" name="Operation" value="Edit">
</form>

Form Submits
Make sure that you use Javascript correctly to handle the processing of form data. If
you write the Javscript incorrectly, then it is possible for form data to be submitted
twice.

Users may initiate a form submit() call either by clicking a submit button or by
hitting Enter while in the form. If you include an onSubmit=function() call in your
form definition, then either make sure that the function itself does not include a
submit() call, or if it does, then make sure that you return false immediately after
the submission. The form of the onSubmit attribute should follow this form:

<form ... onSubmit="return myEventHandler()" ... >

In general, write the function so that it must explicitly return true or false whatever
path of execution is taken.

Frames
In general, the Sterling Multi-Channel Selling Solution deprecates the use of frames
in its pages. JSP pages should be written with the assumption that the pages may be
Sterling Multi-Channel Selling Solution Developer Guide 253

JSP Pages

254 St
displayed within a frameset displayed bya Web server or other application.
Consequently, when you specify navigation links from one page of the Sterling
Multi-Channel Selling Solution to another, you should use “_self” or “” in setting
the target. For example:

<cic:outputLink target=""
href="${cic:link('*', 'ApprovalDataDisplay',
cic:concat('ShoppingCartKey=',
approval.dataBean.shoppingCartKey), false)}">

The Sterling Multi-Channel Selling Solution can be run in two modes controlled by
the InFrameEnvironment system property:

• If you set the value of this property to “false” (the default value), then the
Sterling Multi-Channel Selling Solution runs in the whole browser
window and it provides the top-level navigation bar.

• If you set the value of this property to “true”, then the Sterling Multi-
Channel Selling Solution can run in one frame of a frameset, and the top-
level navigation bar is suppressed.

However, if you use frames, then bear in mind that the child frames should be
populated by using URLs that point to the Sterling Multi-Channel Selling Solution.

For example, suppose that you wish to generate a Web page by using two frames.
Each frame must be generated by a JSP page:

<FRAMESET rows="100,*" border="0" framespacing="0" frameborder="NO">
<FRAME name="navigation"
src="<%= link("enterpriseMgr", "HomeNavDisplay") %>"

MARGINWIDTH="0" MARGINHEIGHT="0" scrolling="no">
<FRAME name="data"

src="<%= link("enterpriseMgr", "HomeDataDisplay") %>"
MARGINWIDTH="10" MARGINHEIGHT="0" scrolling="Auto">

</FRAMESET>

The link() method is used to generate dynamically the URLs that populate the
frames. The application and command parameter ensure that the right path and
parameters are generated as parts of each URL.

Cascading Style Sheets
The Sterling Multi-Channel Selling Solution makes extensive use of cascading
style sheets (CSS) to ensure a uniform look-and-feel user interface across
applications. You should use CSS for the following reasons:
erling Multi-Channel Selling Solution Developer Guide

Cascading Style Sheets
• CSS is a standard layout language for the Web. It provides a powerful
mechanism to manage a constent look-and-feel for a Web site across many
pages.

• It is easy to author by hand.

• Using CSS reduces bandwidth usage because a single style sheet can
specify styles for multiple pages. Once a browser has cached the style
sheet it does not need to be downloaded each time a reference is made to
it.

• It helps to separate style from content.

The main cascading style sheets are incorporated into JSP and HTML pages using
the Javascript function pickStyleSheet() provided in the com_Main.js Javascript
file.

If you want to make changes to the look-and-feel of Sterling Multi-Channel Selling
Solution Web pages, then you should take care to modify the appropriate cascading
style sheet rather than making changes on individual JSP or HTML pages. Do not
specify styles within individual elements: this will make it very difficult to maintain
a consistent look-and-feel.

If you need to introduce a new CSS for an application, then create a directory for
the application under debs_home/Sterling/en/US/css/application/, and place your
new style sheets in this location. References to the style sheets should take this
form:

<link rel="stylesheet" href="../css/application/custom.css"
type="text/css">

By modifying the cascading style sheet for a particular locale, you can customize
the user experience for the locale.

Sterling Multi-Channel Selling Solution Style Sheets
The following stylesheets are provided out-of-the-box:

• basestylesheet.css: provides generic styles for thebasic HTML elements
such as HTML, BODY, and so on.

• buttons.css: provides the styles for buttons. See "Buttons" on page 256
for more information.

• calendar.css: used to display calendars in forms.
Sterling Multi-Channel Selling Solution Developer Guide 255

JSP Pages

256 St
• color-csr.css and color-customer.css: used to render colors for pages that
are viewed by both customer users and enterprise customer service
representatives.

• data-table.css: used to render tables displayed to users.

• form.css: used to display forms to users. See "Forms" on page 251 for
more information.

• widget.css: used to display widgets to users.

In addition, there are the following legacy style sheets maintained to support
compatability with previous releases of the Sterling Multi-Channel Selling
Solution:

• ie_main.css

• internal.css

• nn_main.css

In general, you should avoid customizing these style sheets because their use is
deprecated.

Buttons
In general, you can use a combination of CSS and JSP tags to display buttons so
that they are consistently and efficiently displayed in the Sterling Multi-Channel
Selling Solution. Each button can be displayed by specifying its class and its
display text.

A CSS, buttons.css, provides styles for the following types of buttons commonly
used in the Sterling Multi-Channel Selling Solution:

For example:

TABLE 10. Button Styles

Button Style Background Image

Normal normal-button images/btn_normal_x.gif
Thin thin-normal-button images/btn_thin_normal_x.gif
Focus focus-button images/btn_focus_x.gif
Thin Focus thin-focus-button images/btn_thin_focus_x.gif
Mini mini-button images/btn_mini_resolve.gif
erling Multi-Channel Selling Solution Developer Guide

Tables
<a class="normal-button-small"
href="<%=link("*", "WorkspaceDataDisplay")%>">
<%=ph((String) localized.get("Cancel"))%>

or, using the cic:output tag:

<cic:outputLink rendered="${!(isCSR)}"
css="normal-button normal-button-small right"
href="javascript:changeQuantities();" >
<cic:span value="${localized["Update']}"/>
</cic:outputLink>

Depending on the text for the button, you should select the appropriate width for
the button. Except for the mini-button style, each style of button supports the
following sizes:

• small: width 54px

• medium: 71px

• large: 120px

• jumbo: 150px

Tables
Tables of data should be displayed using a combination of the JSP tags and CSS
stylesheets to ensure a common look-and-feel of tables across the Sterling Multi-
Channel Selling Solution. See "cic:table Tag" on page 405 for a description of the
cic:table tag.

The tag makes use of some pre-defined styles, notably the data-table style for the
general table class, and the “normal” and “alternate” classes to manage the display
of rows in tables.

Securing JSP Pages from Cross-Scripting Attacks
Bear in mind the possibility of a cross-scripting attack by a malicious user in which
the user enters a scripting command through a text field on one of your Web pages.
To protect against this sort of attack, you must use the methods provided to encode
user-entered data before it is displayed in the browser’s Web page.

In scriptlets, use the ph(), pj(), and pu() methods described in
"Scriptlets" on page 249. In tags, use the encode tag (<cmgt:encode>) described in
"encode Tag" on page 371.
Sterling Multi-Channel Selling Solution Developer Guide 257

JSP Pages

258 St
JSP Fragments
If you create a re-usable JSP page fragment that can be used in several places in
different JSP pages, then you can use a static include. However, note that in Release
7.0 and higher, the use of static includes is deprecated: instead, consider using
dynamic includes using the <jsp:include tag>.

If you do use a static include, then follow these guidelines:

• the naming convention is to give these files the jspf file suffix (for
example, PopupEditDetails.jspf). See
"JSP Page Naming Conventions" on page 258 for further information.

• Make sure that these fragments do not include the cmgtinclude.jspf page.

• Include in the JSP pages at the appropriate position:

<%@ include file="../includes/PopupEditDetails.jspf" %>

Debugging JSP Pages
While creating new JSP pages or modifying existing JSP pages, you may find it
helpful to insert the following at the head of the JSP page:

<%@ page buffer="1024kb" %>

The buffer attribute helps you to make full use of the errorPage attribute of the page
directive, so that you can forward the output to a user-friendly page for debugging.

You should remove this tag before deploying the JSP pages into a production
environment.

JSP Page Naming Conventions
JSP page file names should follow the following format. This file naming
convention scheme requires that the containing directory encode the “application
name”. For example, for those JSP pages belonging to Lead Management, the JSP
page files are in the leadMgmt/ directory or a sub-directory. Optionally, the
application name can be prepended to the page name. File names should be mixed
case, with the first letter of the file name capitalized.

Note: If there are no child elements of the jsp:include tag, then use the single tag
form of the jsp:include tag: <jsp:include ... />. Using the closing tag can
cause problems for some servlet containers such as Tomcat 5.5.x.
erling Multi-Channel Selling Solution Developer Guide

Resources
Standard Naming Convention
Where possible, you should follow the following naming convention for your JSP
pages. Each JSP page should be named: PageName + [FrameName] + (".jsp" or
".jspf") where:

• PageName = Descriptive name of the page (e.g. "LeadAssignments",
"Assignments", and so on)

• FrameName = Description of the frame that this page represents (for
example, "Frameset", "Body", "Header", "Popup", and so on)

• Use the suffix jsp for JSP pages that are used to generate complete HTML
pages or frames. Use the jspf suffix for JSP pages that are to be used as
re-usable fragments of other pages.

Note the following guidelines:

• Prepend the word "Common" for files used across multiple applications.

• Use "Frameset" as the FrameName for the parent frame.

• Use "Popup" as the FrameName for popup windows and dialogs.

Examples
The following table provides some examples of JSP page names.

Resources
Many entities in the Sterling Multi-Channel Selling Solution can have resources
associated with them: examples include products, features, and questions in
Advisor. To access these, you can use a scriptlet along these lines:

PresFeatureEntryBean feb = (PresFeatureEntryBean) fEntries.get(m);

TABLE 11. JSP Page Names

JSP Page Description

LeadAssignmentsFrameset.jsp Lead Assignments main frame

LeadAssignmentsBody.jsp Lead Assignments body frame

LeadCommonHeader.jsp Common Leads header frame

LeadPartnerAdminList.jsp Single frame page

LeadPartnerNotes.jsp Single frame page

CloseLeadPopup.jsp Popup single frame page
Sterling Multi-Channel Selling Solution Developer Guide 259

JSP Pages

260 St
<%
if (feb.getResourceValue("image") != null)
{

%>
<img src="<%= feb.getResourceValue("image") %>">
<%

}
%>

The parameter for getResourceValue() is the name of the resource type.

Wait JSP Pages
There are times when a user initiates a process that takes a few seconds to
complete, and you may want to provide a page that displays a waiting message to
indicate that the Sterling Multi-Channel Selling Solution is processing the request.

You can create a page to be displayed as follows:

1. Create a message type along these lines:

<MessageType Name="WaitPageDisplay">
<JSPMapping>

../common/WaitPageDisplay.jsp
</JSPMapping>
<ControllerMapping>

com.comergent.dcm.caf.controller.ForwardController
</ControllerMapping>

</MessageType>

2. Create a WaitPageDisplay.jsp JSP page in the
debs_home/Sterling/WEB-INF/web/en/US/common/ directory like this:

<%@ page contentType="text/html; charset=UTF-8" language="java"
errorPage="../error.jsp" %>

<%@ include file="../common/cmgtinclude.jspf"%>
<%

String appToRun = request.getParameter("appToRun");
String cmdToRun = request.getParameter("cmdToRun");
String originalRequest = "true";
if (request.getParameter("originalRequest")!=null &&

request.getParameter("originalRequest").trim().
equalsIgnoreCase("true"))

{
originalRequest = "false";

}
%>
<html>
<head>
erling Multi-Channel Selling Solution Developer Guide

Redirecting to Full Page Access
<title>Please Wait</title>
<script type="text/javascript" language="JavaScript"

src="../js/com_Main.js"></script>
<script type="text/javascript" language="JavaScript">
<!--
<%@ include file="../common/pickStyleSheet.jsp"%>
//-->
</script>
<script>
<!--//
function init()
{

document.location="<%=link(appToRun, cmdToRun,
"originalRequest="+originalRequest, true)%>";

}
//-->
</script>

</head>
<body topmargin="0" leftmargin="0" marginheight="0"

marginwidth="0" bottommargin="0" rightmargin="0"
onLoad="javascript:init();">
<center>

Please wait ...

</center>

</body>
</html>

3. Change the URL that executes the initial request from:

<%=link("application", "command")%>

to:
<%=link("application", "WaitPageDisplay",
"appToRun=application&cmdToRun=command", true)%>

Redirecting to Full Page Access
The Sterling Multi-Channel Selling Solution makes use of frames as it displays
pages to users of the system. In certain circumstances, a user may let their session
expire, but then click a link or button in a frame. If this happens, then the Sterling
Multi-Channel Selling Solution must redirect the user to an appropriate login page,
but this must be displayed as a full browser page rather than just in the frame
containing the clicked element.
Sterling Multi-Channel Selling Solution Developer Guide 261

JSP Pages

262 St
To handle this situation, the Sterling Multi-Channel Selling Solution makes use of
the FullPageLoader.jsp JSP page. This page is designed to resubmit the user’s
request as if it came from the top level of the browser rather than from a frame.

When the user’s request is received by the server, the DispatchServlet recognizes
an error condition (because the user’s session has expired), and so invokes the
sendError() method of the ComergentResponse class. This method determines if
the requested message type is for a full page or for a frame, and if it is for a frame,
then it invokes the sendErrorInFrame() method of the ComergentResponse class.
This method calls the localRedirect() method and specifies the PageLoader
message type. The PageLoader message type is associated with the
FullPageLoader.jsp JSP page, and so the request is forwarded to this page.

This page makes use of a form whose action element is:

<FORM NAME="LoaderForm" ACTION="<%=link(appName)%>"
METHOD="Post" TARGET="_top">

...
</FORM>

When the page is loaded by the browser, the form is automatically submitted and so
the browser now regards the response from the form submission as being for the
whole browser page. Hidden parameters within the form provide values for the
parameters associated with the user’s original request, and so the server now
executes the request: typically by forwarding the request to the appropriate login
page.
erling Multi-Channel Selling Solution Developer Guide

CHAPTER 21 Online Help
This chapter presents a detailed description of the framework used to provide
Online Help for the Sterling Multi-Channel Selling Solution.

Architecture
The Online Help system is built using the JavaHelp 2.0 framework developed for
Web-based applications. See the JavaHelp 2.0 System User’s Guide for a basic
overview of the framework and its API.

When a user points their browser to the Sterling Multi-Channel Selling Solution
and logs in, they are presented pages that provide them with access to all of the
functionality supported by your implementation of the Sterling Multi-Channel
Selling Solution. At any time, the intention is to provide access to the Online Help
through the Help button.

When users click the Help button, a Javascript function showHelp() opens a
secondary window known as the Help window. The Help window is populated
using a URL that points to a JSP page, help.jsp. The typical form of this URL is:

http://server:port/Sterling/en/US/help.jsp?id=introduc_htm_196006
Sterling Multi-Channel Selling Solution Developer Guide 263

Online Help

264 St
FIGURE 7. Help Window
The Help window comprises a Navigation panel on the left and a Content panel on
the right. Typically, if a user click a folder or page icon in the Navigation panel,
then the appropriate page is displayed in the Content panel. The Navigation panel
can provide one or more views (such as a Table of Contents view and a Search
view): each view is supported by a JSP page and an XML configuration file.

The locale information of the user is reflected in the la/CO/ part of the path of the
URL. See "Localization" on page 269 for information on how to localize Online
Help. The id parameter of the URL is used to determine what HTML page is used
to populate the Content pane of the Help window.

When the user first accesses the Help window, a ComergentHelpBroker object is
instantiated and added to their session. This object determines what content page is
displayed when the user clicks a link in the Navigation panel, and keeps track of the
user’s actions so that if the user closes the Help window and then returns to it, the
user’s current view and content page is re-displayed. The ComergentHelpBroker
uses a HelpSet object to determine what views and content is provided by the
Online Help system, and the HelpSet object is initialized using a Help Set file:
Administration.hs.

The content of the Help window is determined by a set of configuration files as
described in "Configuration Files" on page 265.
erling Multi-Channel Selling Solution Developer Guide

Architecture
Configuration Files
The HelpTopicsMap.xml configuration file maintains the basic mapping between
the page that the user sees and which topc ID should be used to invoke the Online
help. It provides mappings in this form:

<Topic>
<Page>PricingDetail</Page>
<URL>pricinga_htm_180685</URL>

</Topic>

Typically, the JSP page will specify the value of the Page element, and then a call to
the HelpUtil class getID() method will return the value of the topic ID:

String helpTopicID =
com.comergent.dcm.util.HelpUtil.getID(helpTopicPage);

For example:

String helpTopicID =
com.comergent.dcm.util.HelpUtil.getID("PricingDetail");

With the exception of the HelpTopicsMap.xml configuration file, all of the Online
Help configuration and content files are stored in the Sterling/en/US/htdocs/help/
directory and its sub-directories. The starting point for the Online Help system is its
HelpSet file: this is an XML file that describes the help set: the mapping between
IDs and content pages and what views are provided. The default HelpSet file is
Administration.hs.

The HelpSet file can be loaded by the HelpSet class from any URL: if you use a
standard HTTP URL, then you can use the URL as the “base” URL to retrieve the
content files; if you use a file URL, then you must resolve the location of the
content files relative to the URL used to access the help.jsp page.

HelpSet File

A standard HS file looks like this:

<?xml version='1.0' encoding='ISO-8859-1' ?>
<!DOCTYPE helpset

PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp HelpSet Version
1.0//EN"

"http://java.sun.com/products/javahelp/helpset_1_0.dtd">

<helpset version="1.0">
<title>Administration</title>
<maps>

<homeID>introduc_htm_196006</homeID>
<mapref location="Administration.jhm" />
Sterling Multi-Channel Selling Solution Developer Guide 265

Online Help

266 St
</maps>
<view>

<name>Contents</name>
<label>Administration</label>
<type>javax.help.TOCView</type>
<data>administ.xml</data>

</view>
<view>

<name>Search</name>
<label>Search</label>
<type>javax.help.SearchView</type>
<data engine="com.sun.java.help.search.DefaultSearchEngine">

JavaHelpSearch
</data>

</view>
</helpset>

The maps element specifies the location of the mapping file (in this case,
Administration.jhm) that maps topic IDs to content HTML files. Each type
element specifies the JSP page that will be used to display its view together with a
data element that specifies how the data for the JSP page is to be retrieved.

Mapping File

The mapping file determines the relationship between the help IDs and the content
pages:

<?xml version='1.0' encoding='ISO-8859-1' ?>
<!DOCTYPE map
PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp Map Version 1.0//EN"

"http://java.sun.com/products/javahelp/map_1_0.dtd">

<map version="1.0">
<mapID target="defaultID" url="default.htm" />
<mapID target="menu_open" url="images/menu_folder_open.gif" />
<mapID target="introduc_htm_196006" url="introduc.htm" />
<mapID target="introda2_htm_211183" url="introda2.htm" />

...
</map>

Table of Contents File

The table of contents view is controlled by the administ.xml configuration file.

<?xml version='1.0' encoding='ISO-8859-1' ?>
<!DOCTYPE toc
PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp TOC Version 1.0//EN"

"http://java.sun.com/products/javahelp/toc_1_0.dtd">
erling Multi-Channel Selling Solution Developer Guide

Customizing Online Help
<toc version="1.0" categoryclosedimage="menu_closed"
categoryopenimage="menu_open" topicimage="topic" >
<tocitem text="Online Help">

<tocitem target="introduc_htm_196006"
text="CHAPTER 1 Introduction" expand="false">

<tocitem target="introda2_htm_211183"
text="Managing the Sales Channel" expand="false"/>

<tocitem target="introda3_htm_218019"
text="Using C3 Partner.com" expand="false"/>

...
</toc>

The toc element contains a nested set of tocitem elements that can be organized
hierarchically to provide the Table of Contents elements. Each tocitem’s target
attribute provides the target ID for its content and a text attribute whose value is
displayed in the Table of Contents view.

Search Files

The configuration files used to provide the Search functionality are contained in the
JavaHelpSearch/ sub-directory. Typically, these are generated files using a utility
such as the jhindexer utility that comes with JavaHelp 2.0.

Tag Library
A small tag library is used to help render the Navigation panel: this is provided by
the jh.jar library file and specified by the jhlib.tld tag library descriptor file.

Customizing Online Help
You can customize the Online Help for your implementation of the Sterling Multi-
Channel Selling Solution in different ways. This section describes some of these in
ascending order of complexity.

Page Format
You can change the look-and-feel of the Online Help pages by making
modifications to the help.css cascading style sheet file.

Screen Shots
If you have changed the look-and-feel of the Sterling Multi-Channel Selling
Solution pages, then you can take new screen shots of the new pages, and overwrite
the corresponding GIF files provided by the out-of-the-box Online Help. These are
all located in the images/ sub-directory under the help/ directory.
Sterling Multi-Channel Selling Solution Developer Guide 267

Online Help

268 St
Content Pages
If your implementation has made changes to Sterling Multi-Channel Selling
Solution that go beyond the look-and-feel of the pages, such as adding new fields
on administration pages, then you can update the corresponding HTML files and
merge them into the deployed WAR file.

For example, suppose that you want to change the description of the To Assign an
Account to an Enterprise Node task which is covered in the account3.htm content
file. Simply use the customize target of the SDK to extract this file into your
project, and edit the file as required. When you next build your project, the
modified file will be built into the Online Help.

Adding Content Files
If your changes to the Sterling Multi-Channel Selling Solution mean that you need
to make greater changes to the Online Help, then you may need to create new
HTML content pages. When you do so, you should bear in mind the following
factors:

• Where in the overall flow of the Online Help do you want to insert the new
content? New pages will need to be added to the TOC file (administ.xml)
and you may need to fix the Next and Previous links of pages on either
side so that users clicking through pages will get the right sequence of
pages.

• What topic IDs should be used to point to the new content? Edit the JHM
file to add these topic IDs and their corresponding references.

• Re-run the Search utility (such as jhindexer) to ensure that the new content
is searchable.

Adding Views
It is possible to add new views to the Navigation panel. For example, you might
want to provide access to the Index through a view, or you may want to provide a
view that lists all the tasks supported by the Sterling Multi-Channel Selling
Solution or frequently asked questions.

To add a view, you must add a new view element to the Administration.hs HelpSet
file, and provide the corresponding JSP page used to render the view. For example,
you can use the following view element to add an Index view:

<view>
<name>Index</name>
<label>Index</label>
<type>javax.help.IndexView</type>
erling Multi-Channel Selling Solution Developer Guide

Localization
<data>adminind.xml</data>
</view>

The adminind.xml file would provide the list of index entries. Its standard format
is:

<?xml version='1.0' encoding='ISO-8859-1' ?>
<!DOCTYPE index
PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp Index Version 1.0//EN"

"http://java.sun.com/products/javahelp/index_1_0.dtd">

<index version="1.0">
</indexitem>
<indexitem text="$">
<indexitem target="advvisu2_htm_232095"

text="notation in models"/>
<indexitem target="pricing6_htm_202726"

text="used to denote shared price lists"/>
...
</index>

The javax.help.Indexview.jsp page can be used to render this view.

Bear in mind that custom views will require new JSP pages and often new tag
classes to render the content of the new view. You must also consider how to create
the content for the new view or how to link to existing content from the new view.

Localization
You can provide Online Help for as many as different locales as your
implementation of the Sterling Multi-Channel Selling Solution supports. To add
support for a new locale, say la_CO, follow these steps:

1. As part of the addition of the new locale to the Sterling Multi-Channel Selling
Solution, you should have already created a new directory structure for the new
locale under the Sterling/ directory: say, Sterling/la/CO/, and copied over all
of the static content (including the Online Help files) from the Sterling/en/US/
directory.

2. In the Sterling/la/CO/htdocs/help/ directory, modify the administ.xml file by
translating the text attribute of each tocitem.

3. Translate each HTML file in Sterling/la/CO/htdocs/help/ for your new locale.

4. Make other changes as appropriate to the HTML pages as described in
"Customizing Online Help" on page 267.
Sterling Multi-Channel Selling Solution Developer Guide 269

Online Help

270 St
Note that the current content for the Online Help system is generated automatically
using WebWorks Publisher from the FrameMaker files that are used to create the
Sterling Multi-Channel Selling Solution Administration Guide. If your translation
project is intended to re-create the entirety of the Online Help system for a new
language, then it will be more efficient to translate the source FrameMaker files,
and then use WebWorks to re-generate the Online Help for the new language.
erling Multi-Channel Selling Solution Developer Guide

CHAPTER 22 Data Services Guidelines
This chapter covers a number of topics related to the use of the data services layer
of the Sterling Multi-Channel Selling Solution:

• "How to Specify a Query" on page 271

• "Using UpdateHelper and DsUpdate" on page 282

• "Oracle Hints" on page 285

• "Stored Procedures" on page 286

• "Pagination" on page 290

• "Performance Optimization" on page 291

• "Join Types" on page 294

• "Transactions" on page 297

• "Detailed Commit Functionality Description" on page 300

How to Specify a Query
This section describes the use of the DsQuery and QueryHelper classes to create
and modify complex SQL queries that can be used in restore() operations. Data
beans and the IData interfaces support restore() methods that take a DsQuery object
Sterling Multi-Channel Selling Solution Developer Guide 271

Data Services Guidelines

272 St
as a parameter. These parameters enable you to specify a more complex SQL query
to be used to retrieve data from the data source.

DsQuery classes are intended to replace the use of the
com.comergent.dcm.qbe.Query class which is now deprecated. In general, you
should exclusively use the DsQuery class to create complex queries.

For example, using the QueryHelper to build a DsQuery, you can specify that only
data objects whose values of a particular data field match specified values should
be returned, or you can specify the sort order in which data objects should be
returned.

A new QueryHelper class exists to support the creation of custom search queries. It
contains a number of methods that return DsQuery instances. These methods can
either create new WHERE clauses, or combine existing ones. The resulting
DsQuery tree is passed as a parameter to the DataBean restore() method.

The following methods are provided by the QueryHelper class:

• newWhereClause Methods

• newSubQuery Method

• joinWhereClauses Method

• addWhereClause Method

• addSubQuery Method

• freeQuery Method

The following methods are provided by the DsQuery class:

• debugPrintTree Method

DataBean classes provide the following method to help you debug problems with
restore and persist calls.

• debugPrintSql Method

QueryHelper Methods
The QueryHelper class supports the following methods:

newWhereClause Methods
public static DsQuery newWhereClause(String elementName,

int comparisonOperator,
Object value)

This method creates a WHERE clause element of the form:
erling Multi-Channel Selling Solution Developer Guide

How to Specify a Query
(element comparisonOperator value)

Using an ArrayList of Values
public static DsQuery newWhereClause(String elementName,

int comparisonOperator,
ArrayList values)

This method will create a WHERE clause of the form:

((element comparisonOperator value1) OR (element comparionsOperator
value2) OR ...)

This may be transformed to:

(element IN (value1, value2...))

newSubQuery Method
public static DsQuery newSubQuery(String elemName,

String subqueryDataObjNm
DsQuery subquery)

This method creates a WHERE clause element of the form:

(element IN (SELECT...))

It uses the first key of the DataObject as output from the subquery.

public static DsQuery newSubQuery(String elemName,
String subqueryDataObjNm,
String returnElemName,
DsQuery subquery)

This method differs in that it allows the application to specify which element value
to return from the sub-query Data Object.

public static newSubQuery(String elementName,
String subqueryDataObjName,
String returnElement,
DsQuery subquery)

This method enables you to specify the return element name from a sub-query as
opposed to the other forms of this method which return the first key element.

joinWhereClauses Method
public static DsQuery joinWhereClauses(DsQuery left,

int logicalOperator,
DsQuery right)

This method applies a logical operator to two previously created DsQuery
elements. If you have created the following:
Sterling Multi-Channel Selling Solution Developer Guide 273

Data Services Guidelines

274 St
q1 = QueryHelper.newWhereClause("CartKey", DsQueryOperators.EQUALS,
new Long(1));

q2 = QueryHelper.newWhereClause("CartName", DsQueryOperators.EQUALS,
"My Cart");

then

query = QueryHelper.joinWhereClauses(q1, DsQueryOperators.OR, q2);

will generate a SQL WHERE clause of the form:

((CART_KEY = 1) OR (CART_NAME = 'My Cart'))

Joining a List of WHERE Clauses
You can provide a list of DsQuery objects and these will be joined using the
specified operator as follows:

public static DsQuery joinWhereClauses(int logicalOperator,
ArrayList nodes)

This method applies a logical operator to an ArrayList of previously created
DsQuery elements. If you have created the following:

q1 = QueryHelper.newWhereClause("CartKey", DsQueryOperators.EQUALS,
new Long(1));

q2 = QueryHelper.newWhereClause("CartKey", DsQueryOperators.EQUALS,
new Long(2));

q3 = QueryHelper.newWhereClause("CartKey", DsQueryOperators.EQUALS,
new Long(3));

nodeArrayList.add(q1);
nodeArrayList.add(q2);
nodeArrayList.add(q3);

then

query = QueryHelper.joinWhereClauses(DsQueryOperators.OR,
nodeArrayList);

will generate a SQL WHERE clause of the form:

((CART_KEY = 1) OR ((CART_KEY = 2) OR (CART_KEY = 3)))

addWhereClause Method
You can add to WHERE clauses as follows:

public static DsQuery addWhereClause(DsQuery query,
int logicalOperator,
String elementName,
int comparisonOperator,
Object value)

This is a helper method, equivalent to:
erling Multi-Channel Selling Solution Developer Guide

How to Specify a Query
q1 = QueryHelper.newWhereClause(oldQuery, element,
comparisonOperator, value);

query = QueryHelper.joinWhereClauses(oldQuery, logicalOperator, q1);

This method adds a WHERE clause element of the form:

(oldQuery) logicalOperator (element comparisonOperator value)

addSubQuery Method
public static DsQuery addSubquery(DsQuery query,

int logicalOperator,
String element,
String subqueryDataObjNm,
DsQuery subquery)

This is a helper method, equivalent to:

q1 = QueryHelper.newSubquery(element, subqueryDataObjName, subquery);
q2 = QueryHelper.joinWhereClauses(oldQuery, logicalOperator, q1);

This method adds a subquery of the form:

(oldQuery) logicalOperator (element IN (SELECT...))

It uses the first key of the DataObject as output from the subquery.

public static DsQuery addSubquery(DsQuery query, int logicalOperator,
String elementName,
String subqueryDataObjName,
String returnElement,
DsQuery subquery)

This form of the method enables you to specify the returned element as opposed to
the first key element.

freeQuery Method
public void freeQuery(DsQuery query)

This method releases all nodes of a DsQuery tree to the pool for reuse.

DsQuery Methods
The following methods are provided by the DsQuery class.

debugPrintTree Method
public void debugPrintTree(String heading, PrintStream stream)

Attention: It is important that the application invoke this method when the query is
no longer needed.
Sterling Multi-Channel Selling Solution Developer Guide 275

Data Services Guidelines

276 St
This method is for debugging. It prints a formatted dump of the DsQuery tree. The
heading parameter is a mandatory text string that will prefix all printed lines.

DataBean Methods
The following method is available on the DataBean class.

debugPrintSql Method
public void debugPrintSql(DataContext context,

DsQuery query,
String heading,
PrintStream stream)

This method is for debugging. It generates the resulting SQL query and writes a
formatted version to the PrintStream. The heading parameter is a mandatory text
string that will prefix all printed lines. This method has to be on the DataBean in
order to have appropriate context to generate the SQL.

Using LIKE Calls
There is no explicit LIKE operator. You can use EQUALS or
EQUALS_IGNORE_CASE and transform to the equivalent of a LIKE clause using
wild card characters.

For example, suppose that you have a case where the data in the Knowledgebase is
in mixed case, and the condition you want in the WHERE clause is
‘toupper(PartnerName) like "%ABC%"’. In this case, you use the
EQUALS_IGNORE_CASE operator: for example:

DsQuery temp_DsQuery =
QueryHelper.newWhereClause(“PartnerName”,
DsQueryOperators.EQUALS_IGNORE_CASE, "*ABC*");

If you use “*”, then you can also use other wildcard characters that the database
server will understand: such as “_” and “%” with Oracle and “_” with SQL Server.

Note that using * to the left of a String in the value parameter to indicate that you
want to match occurrences of a string with any preceding string can significantly
impact the performance of the query and hence of the application.

Examples

Example 1: Simple Search Query
Search for Partner Name containing “micro” in any case.

DataContext context = new DataContext();
PartnerBean partner = new PartnerBean();
erling Multi-Channel Selling Solution Developer Guide

How to Specify a Query
DsQuery qry = QueryHelper.newWhereClause(“PartnerName”,
DsQueryOperators.EQUALS_IGNORE_CASE, “*micro*”);

partner.restore(context, qry);
qry.free();

During the restore operation, this will generate:

SELECT CMGT_PARTNERS.PARTNER_KEY…
FROM CMGT_PARTNERS
WHERE UPPER(CMGT_PARTNERS.PARTNER_NAME) LIKE ‘%MICRO%’;

Example 2: Search Query with Three Values
Search for Partner in Territory 1, 2, or 3.

DataContext context = new DataContext();
Integer i1 = new Integer(1);
Integer i2 = new Integer(2);
Integer i3 = new Integer(3);
ArrayList values = new ArrayList (3);
values.add(i1);
values.add(i2);
values.add(i3);
PartnerBean partner = new PartnerBean();
DsQuery qry = QueryHelper.newWhereClause(“TerritoryKey”,

DsQueryOperators.EQUALS, values);
partner.restore(context, qry);
qry.free();

During the restore, this will generate:

SELECT CMGT_PARTNERS.PARTNER_KEY…
FROM CMGT_PARTNERS
WHERE CMGT_PARTNERS.TERRITORY_KEY IN (1, 2, 3);

Example 3: Sub-query with Two Values
Search for Partners in State “CA” and in City “San Francisco”.

DataContext context = new DataContext();
DsQuery query;
PartnerBean partner = new PartnerBean();
// match the State
query = QueryHelper.newWhereClause(“State”,

DsQueryOperators.EQUALS, “CA”);
// Add a match on City

query = QueryHelper.addWhereClause (query, DsQueryOperators.AND,
“City”, DsQueryOperators.EQUALS, “San Francisco”);

// Convert it to a subquery of PartnerAddress
query = QueryHelper.addSubQuery(“AddressKey”,

“PartnerAddress”, query);
partner.restore(context, query);
Sterling Multi-Channel Selling Solution Developer Guide 277

Data Services Guidelines

278 St
query.free();

During the restore operation, this will generate:

SELECT CMGT_PARTNERS.PARTNER_KEY…
FROM CMGT_PARTNERS
WHERE CMGT_PARTNERS.ADDRESS_KEY IN
(SELECT CMGT_ADDRESSES.ADDRESS_KEY
FROM CMGT_ADDRESSES
WHERE CMGT_ADDRESSES.STATE = ‘CA’
AND CMGT_ADDRESSES.CITY = ‘San Francisco’);

Example 4: INTERSECT with Two Values
Find products for two different features.

DataContext context = new DataContext();
DsQuery q1, q2, finalQuery;
ProductBean product = new ProductBean();
// specify the first Feature and convert it to a subquery
q1 = QueryHelper.newWhereClause(“FeatureKey”,

DsQueryOperators.EQUALS, fKey1);
q1 = QueryHelper.newSubQuery(“ProductId”,

“ProductXFeature”, q1);
// specify the second Feature and convert it to a subquery
q2 = QueryHelper.newWhereClause(“FeatureKey”,

DsQueryOperators.EQUALS, fKey2);
q2 = partner.newSubQuery(“ProductId”,

“ProductXFeature”, q2);
// INTERSECT the 2 subqueries

finalQuery = QueryHelper.joinWhereClauses(q1,
DsQueryOperators.INTERSECT, q2);

product.restore(context, query);
finalQuery.free();

During the restore, this will generate:

SELECT CMGT_PRODUCTS.PRODUCT_ID…
FROM CMGT_PRODUCTS
WHERE CMGT_PRODUCTS.PRODUCT_ID IN
INTERSECT
((SELECT CMGT_PRODUCT_X_FEATURE.PRODUCT_ID
FROM CMGT_PRODUCT_X_FEATURE
WHERE CMGT_PRODUCT_X_FEATURE.FEATURE_KEY = ?)
INTERSECT
((SELECT CMGT_PRODUCT_X_FEATURE.PRODUCT_ID
FROM CMGT_PRODUCT_X_FEATURE

Attention: The INTERSECT operator can only be applied to subqueries, and those
subqueries must return identical result columns.
erling Multi-Channel Selling Solution Developer Guide

How to Specify a Query
WHERE CMGT_PRODUCT_X_FEATURE.FEATURE_KEY = ?)

Example 5: Using Two Sub-queries
Assume that we have a Partner data object which has an Address child data object
and a Vertical child data object. If we want to find all Partners which have
Partner.type = “XYZ” and Address.city = “Boston” and Vertical.name =
“Government”:

DataContext context = new DataContext();
DsQuery query, subq1, subq2;
PartnerBean partner = new PartnerBean();
// Specify the Partner.type
q1 = QueryHelper.newWhereClause(“Type”,

DsQueryOperators.EQUALS, “XYZ”);
// Specify the Address.city
subq1 = QueryHelper.newWhereClause(“City”,

DsQueryOperators.EQUALS, “Boston”);
// Tell it to use the “Address” DataObject for the subquery
subq1 = QueryHelper.newSubQuery(“AddressKey”,

“Address”, subq1);

// Join the 1st where clause with the subquery
query = QueryHelper.joinWhereClauses(query,

DsQueryOperators.AND, subq1);
// Specify the Vertical.Name
subq2 = QueryHelper.newWhereClause(“Name”,

DsQueryOperators.EQUALS, “Government”);
// Tell it to use the “Vertical” DataObject for the subquery
subq2 = QueryHelper.newSubQuery(“VerticalKey”,

“Vertical”, subq1);
// Add this new subquery to the existing one.
query = QueryHelper.joinWhereClauses(query,

DsQueryOperators.AND, subq2);
partner.restore(context, query);
finalQuery.free();

During the restore, this generates:

SELECT CMGT_PARTNERS.PARTNER_KEY…
FROM CMGT_PARTNERS
WHERE CMGT_PARTNERS.TYPE = ‘XYZ’
AND CMGT_PARTNERS.ADDRESS_KEY IN
(SELECT CMGT_ADDRESSES.ADDRESS_KEY
FROM CMGT_ADDRESSES
WHERE CMGT_ADDRESSES.CITY = ‘Boston’)
(SELECT CMGT_VERTICALS.VERTICAL_KEY
FROM CMGT_VERTICALS
WHERE CMGT_VERTICALS.NAME = ‘Government’);
Sterling Multi-Channel Selling Solution Developer Guide 279

Data Services Guidelines

280 St
Note: This works even if the Partner Business Object does not have Vertical or
Address data objects included as children. The new query mechanism is capable of
generating subqueries from DataObjects that are not referenced in the data object.

Example 6: Subquery Using the Child of a Child
Assume that you have an Order data object which has a LineItem child data object
which itself has a SerialItem child data object. If we want to find all Orders which
have SerialItem.type = “XYZ”, then code along these lines will work:

DataContext context = new DataContext();
DsQuery query;
OrderBean order = new OrderBean();
// Specify the Partner.type
query = QueryHelper.newWhereClause(“Type”, DsQueryOperators.EQUALS,

“XYZ”);
// Tell it to use the new WHERE clause in a subquery of the
// “Vertical” DataObject
query = QueryHelper.newSubQuery(“LineItemKey”, “SerialItem”, subq1);
// Tell it to use the subquery results in a subquery of the
// “LineItem” DataObject
query = QueryHelper.newSubQuery(“OrderKey”, “LineItem”, query);
order.restore(context, query);

During the restore, this will generate:

SELECT CMGT_ORDERS.ORDER_KEY…
FROM CMGT_ORDERS
WHERE CMGT_ORDERS.ORDER_KEY IN

(SELECT CMGT_ORDER_LINES.ORDER_KEY
FROM CMGT_ORDER_LINES
WHERE CMGT_ORDER_LINES.LINE_ITEM_KEY IN

(SELECT CMGT_ORDER_SERIAL_ITEMS.LINE_ITEM_KEY
FROM CMGT_ORDER_SERIAL_ITEMS
WHERE CMGT_ORDER_SERIAL_ITEMS.TYPE = ‘XYZ’));

How to Specify Sort Order
The following methods are available on the DataBean class:

• addSort Method

• insertSort Method

• clearSort Method

They provide a simple interface for adding sort criteria, or modifying existing
criteria. The sort criteria are preserved following a restore operation. This allows an
existing sort to be qualified by adding or inserting additional criteria. If this is not
desired, then the clearSort method can be used to drop the existing criteria.
erling Multi-Channel Selling Solution Developer Guide

How to Specify a Query
addSort Method
public void addSort(String sortBy, boolean ascending)

This method appends to the sort order.

insertSort Method
public void insertSort(String sortBy, boolean ascending)

This method inserts into the sort order. This is setting the high order sort entry.

clearSort Method
public void clearSort()

This method clears all current sort settings.

Example 1: Sort on One Element Ascending
AddressListBean addrList = new AddressListBean();
AddrList.addSort(“State”, DsConstants.ASCENDING);
AddrList.restore(contetx, null);

Example 2: Sort on One Element Ascending, One Element Descending
AddressListBean addrList = new AddressListBean();
AddrList.addSort(“State”, DsConstants.ASCENDING);
AddrList.addSort(“City”, DsConstants.DESCENDING);
AddrList.restore(contetx, null);

Example 3: Add New High Order Sort
AddressListBean addrList = new AddressListBean();
AddrList.addSort(“City”, DsConstants.DESCENDING);
AddressList.restore();
// Now modify it to first sort on “State”
AddrList.insertSort(“State”, DsConstants.ASCENDING);
AddrList.restore(contetx, null);

Query Constants

DsQueryOperators
The DsQueryOperators interface defines string constants for both logical and
comparison operators specified in a DsQuery.

package com.comergent.dcm.dataservices;

public interface DsQueryOperators
{

public static final int NOT_SET = -1;
public static final int AND = 0;
public static final int OR = 1;
Sterling Multi-Channel Selling Solution Developer Guide 281

Data Services Guidelines

282 St
public static final int INTERSECT = 2;
public static final int MAX_LOGICAL_OP = 2;
public static final int MIN_COMPARISON_OP = 3;
public static final int EQUALS = 3;
public static final int EQUALS_IGNORE_CASE = 4;
public static final int NOT_EQUALS = 5;
public static final int GT = 6;
public static final int GE = 7;
public static final int LT = 8;
public static final int LE = 9;
public static final int LIKE = 10;
public static final int CONTAINS = 11;
public static final int SUBQUERY = 12;
public static final int NOT_IN_SUBQUERY = 13;
public static final int LEFT_OUTER_EQUALS = 14;
public static final int INVALID = 15;

}

DsConstants
The DsConstants interface defines string constants for use by Data Services clients.
This class extends DsQueryOperators in order to provide a single source, but not
break existing code.

package com.comergent.dcm.dataservices;

public interface DsConstants extends DsQueryOperators
{

public static final boolean ASCENDING = true;
public static final boolean DESCENDING = false;
public static final int NO_LIMIT = -1;
public static final String NULL = "NULL";

}

Using UpdateHelper and DsUpdate
There are times when you need to update multiple data objects with the same
change. The DsUpdate class provides a mechanism to do this as described in this
section. In general, you should use the UpdateHelper class to work with DsUpdate
because it provides a number of methods that help construct DsUpdate objects.

You use an instance of the DsUpdate class in conjunction with the DataContext
class. You use the addFieldUpdate() method of a DsUpdate object to specify which
field should be updated and with what value. Each field to be updated is
represented by a DsUpdateField object. When persist() is invoked on a data bean,
and the associated DataContext has a specified DsUpdate object, then the fields of
the databean are updated with the values as specified by the DsUpdateField objects.
erling Multi-Channel Selling Solution Developer Guide

Using UpdateHelper and DsUpdate
The UpdateHelper class provides three methods that return IDsUpdate interfaces.
These methods can be used to request an Update, Delete (logical delete), or Erase
(database delete) operation.

The following steps are required to issue a request:

1. Use the QueryHelper to create a DsQuery that specifies the WHERE clause for
the request.

2. Obtain an instance of the DataBean for which the update operation is to be
performed.

3. Use one of the methods on the UpdateHelper to specify the desired type of
operation and obtain an IDsUpdate interface.

4. Optionally specify additional SET statements (for updates only) using the
IDsUpdate interface.

5. Invoke persist() on the IDsUpdate.

Note the following:

• All UpdateHelper methods are static. The UpdateHelper does not need to
be directly instantiated.

• The IDsUpdate interfaces cannot currently be enlisted in a Transaction or
ActiveTransaction.

For a detailed examples of how to create complex WHERE clauses, please refer to
"DsQuery Methods" on page 275.

UpdateHelper Methods

newDelete Method
public static IDsUpdate newDelete(IData bean, IDsQuery query)

This method creates a MARK INACTIVE request of the form:

UPDATE TABLE SET ACTIVE_FLAG = ‘N’ WHERE where clause from query

newErase Method
public static IDsUpdate newErase(IData bean, IDsQuery query)

This method creates a DELETE request of the form:

DELETE FROM TABLE WHERE where clause from query

newUpdate Method
public static IDsUpdate newUpdate(IData bean, String elementName,
Sterling Multi-Channel Selling Solution Developer Guide 283

Data Services Guidelines

284 St
int updateOperator, Object value, DsQuery query)

This method will create an UPDATE request of the form:

UPDATE TABLE SET COLUMN = COLUMN UPDATEOPERATOR VALUE WHERE where
clause from query
Or for an assignment operator:

UPDATE TABLE SET COLUMN = VALUE WHERE where clause from query

IDsUpdate Methods

addFieldUpdate Method
public void addFieldUpdate(String elementName, int updateOperator,

Object value)
This method adds a “SET” clause to the request. This must be invoked once for
each additional Element to be updated.

persist Method
public void persist() throws ICCException

This method persists and commits the request.

debugPrint Method
public void debugPrint(String heading, PrintStream stream)

This method performs a formatted dump of the internal DsUpdate and DsQuery
structures.

debugPrintSql Method
public void debugPrintSql(String heading, PrintStream stream)

throws ICCException

This method dumps the SQL that would be generated by the specified DsUpdate
request.

Operators
You can use the following operators in the update operation:

• ASSIGN

• ADD

• SUBTRACT

• MULTIPLY

• DIVIDE
erling Multi-Channel Selling Solution Developer Guide

Oracle Hints
Example
Suppose that you want to update all partner profiles for partners whose name
includes the string “micro” by setting their partner type to “2”.

PartnerBean partner = new PartnerBean();
DsQuery query = QueryHelper.newWhereClause("PartnerName",

DsQueryOperators.EQUALS_IGNORE_CASE,
"*micro*");

IDsUpdate update = UpdateHelper.newUpdate(partner, PartnerType,
DsUpdateOperators.ASSIGN, new Long(2), query);

update.persist();

During the persist operation, this will generate the following SQL:

UPDATE CMGT_PARTNERS
SET PARTNER_TYPE = 2
WHERE UPPER(PARTNER_NAME) LIKE ‘%MICRO%’;

Oracle Hints
If your Knowledgebase is running on an Oracle database server, then you can take
advantage of Oracle Hints to improve the performance of your system. This section
describes how to use Oracle Hints. It covers:

• What are Oracle Hints?

• What support is available for Oracle Hints?

• When should I use Oracle Hints?

• How do I specify an Oracle Hint for the primary query?

• How do I specify an Oracle Hint for a sub-query?

• What is the Oracle Hints syntax?

What are Oracle Hints?
The Oracle database server provides a "Hints" mechanism that is used to provide
information to the Oracle Query Optimizer on how best to execute a SQL request.
These "Hints" are embedded directly in the SQL to be executed.

What support is available for Oracle Hints?
Beginning in Release 6.3, the Sterling Multi-Channel Selling Solution has added
support for “Hints” in both the primary query and in sub-queries specified using the
DsQuery mechanism.
Sterling Multi-Channel Selling Solution Developer Guide 285

Data Services Guidelines

286 St
When should I use Oracle Hints?
Oracle Hints should be used if there are performance issues with a specific database
query. The Oracle Query Optimizer can be used to evaluate execution plans and
estimated costs for a query. The query execution plan can then be fine-tuned using
the hints mechanism and the appropriate hint can then be provided at execution
time.

How do I specify an Oracle Hint for the primary query?
The DataBean and IData interface now provide the following method to specify an
Oracle Hint:

public void setQueryHint(String queryHint)

This method is available on all generated Bean classes and all generated IData
interfaces. It adds the specified queryHint to the SQL statement immediately
following the SELECT keyword.

How do I specify an Oracle Hint for a sub-query?
The Sterling Multi-Channel Selling Solution added an overload of the
newSubQuery() method to the QueryHelper class that includes a Hint parameter.
The full method signature is:

public static DsQuery newSubQuery(String elementName,
String subqueryDataObjName, String returnElement,
DsQuery subquery, boolean showInactive, String queryHint)

The queryHint is inserted immediately following the SELECT keyword for the
specified subquery.

What is the Oracle Hints syntax?
For detailed information on the Oracle Hints syntax, please refer to the
version-specific Oracle documentation. Since the Sterling Multi-Channel Selling
Solution directly inserts the provided string into the SELECT statement, we can
support all possible hints.

Stored Procedures
This section describes the use of stored procedures in data objects.

• What support is available for Stored Procedures in Release 6.0?

• What Stored Procedure support has been added in Release 6.3?

• What are the limitations on Stored Procedure support?
erling Multi-Channel Selling Solution Developer Guide

Stored Procedures
• How do I map a data object to a database stored procedure?

• Examples

• Sample DataObject using Output Parameters

• Sample DataObject using Result Parameters

• Sample Oracle Stored Procedure returning a Result Set

What support is available for Stored Procedures in Release 6.0?
• Only Oracle stored procedures are supported.

• Input and Output parameters are supported.

• IN/OUT parameters and result sets are not supported.

What Stored Procedure support has been added in Release 6.3?
In Release 6.3 and later, the Sterling Multi-Channel Selling Solution has added
support for the following:

• Microsoft SQL Server stored procedures are now supported.

• The Sterling Multi-Channel Selling Solution supports returning result sets
from stored procedures.

What are the limitations on Stored Procedure support?
The Sterling Multi-Channel Selling Solution does not support IN/OUT parameters.
These are not available in all supported database servers. The Sterling Multi-
Channel Selling Solution does not support the use of output parameters and result
sets within the same data object. It is possible for a data object to specify a child
data object that also references a stored procedure. The Sterling Multi-Channel
Selling Solution does not support Collection-based parameters such as Oracle’s
support of Vectors of values.

Database stored procedures do not support variable parameter lists. This imposes
some limitations on qualifying what data will be returned by a stored procedure.
Data objects can only be mapped to a single database stored procedure. This means
that it is not possible to use one stored procedure for retrieval of data and a different
stored procedure for persistence. Non-result set based stored procedures can be
written so that a parameter indicates the type of operation to be performed, but this
significantly complicates the logic of the stored procedure.

Due to the limitations of database stored procedures, it is not possible to persist
changes to data retrieved using the stored procedure result set mechanism.
Sterling Multi-Channel Selling Solution Developer Guide 287

Data Services Guidelines

288 St
Database stored procedures do not support variable parameter lists. This imposes
some limitations on qualifying what data will be returned by a stored procedure.

How do I map a data object to a database stored procedure?
Tying a data object to a stored procedure can be accomplished as follows. In the
XML data object definition file for the data object:

1. Specify the stored procedure name in the ExternalName attribute of the
DataObject. For Oracle, the stored procedure name should be prefixed by its
package name.

2. Specify the SourceType attribute for the data object and assign it a value of
“2”.

3. Specify all input parameters as data fields with a ParameterType attribute value
of “IN”.

4. Ensure all input parameters are also specified as key fields.

5. Specify all output parameters as data fields with a ParameterType attribute
value of “OUT”. You must also specify an ExternalFieldName attribute for
these fields. This is not used and so you can set any value for the attribute.

6. Specify all result parameters as data fields with a ParameterType attribute
value of “RESULT”. Note that the result set is returned directly by the
procedure call. The result parameters correspond to the columns that comprise
the result set.

Examples

Sample DataObject using Output Parameters
<DataObject Name="SampleProcedure"

ExternalName="SAMPLE_PROCEDURE.SEARCH_BY_DESC"
Access="RWID" Ordinality="n" ObjectType="JDBC" SourceType="2"
Version="6.3">
<KeyFields>

<KeyField Name="ProductID"/>
</KeyFields>
<DataFieldList>

<DataField Name="ProductID" Writable="y" Mandatory="n"
ParameterType="IN"/>

<DataField Name="Name" Writable="n" Mandatory="n"
ParameterType="OUT" ExternalFieldName="placeholder" />

<DataField Name="Description" Writable="n" Mandatory="n"
ParameterType="OUT" ExternalFieldName="placeholder" />

</DataFieldList>
</DataObject>
erling Multi-Channel Selling Solution Developer Guide

Stored Procedures
Sample DataObject using Result Parameters
<?xml version="1.0"?>
<DataObject Name="SampleProcedure"

ExternalName="SAMPLE_PROCEDURE.SEARCH_BY_DESC" Access="RWID"
Ordinality="n" ObjectType="JDBC" SourceType="2" Version="6.3">
<KeyFields>

<KeyField ExternalName="DESCRIPTION"/>
<KeyField ExternalName="ROWNUM"/>

</KeyFields>
<DataFieldList>

<DataField Name="SearchString" Writable="y" Mandatory="n"
ParameterType="IN"/>

<DataField Name="MaxRowCount" Writable="y" Mandatory="n"
ParameterType="IN"/>

<DataField Name="ProductID" Writable="n" Mandatory="n"
ParameterType="RESULT"/>

<DataField Name="Name" Writable="n" Mandatory="n"
ParameterType="RESULT"/>

<DataField Name="Description" Writable="n" Mandatory="n"
ParameterType="RESULT"/>

</DataFieldList>
</DataObject>

Sample Oracle Stored Procedure returning a Result Set
CREATE OR REPLACE PACKAGE
sample_procedure AS
TYPE search_rec IS RECORD(
sku_name cmgt_product.sku_name%TYPE,
NAME cmgt_product_locale.NAME%TYPE,
DESCRIPTION cmgt_product_locale.DESCRIPTION%TYPE);
TYPE search_result
IS REF CURSOR RETURN search_rec;
FUNCTION
search_by_desc(desc_str in varchar2, max_row_count in number) RETURN
search_result;
END sample_procedure;
/
show errors

CREATE OR REPLACE PACKAGE BODY
sample_procedure AS
FUNCTION search_by_desc(desc_str in varchar2, max_row_count in number)
RETURN search_result IS
rc search_result;
BEGIN
OPEN rc for
SELECT cmgt_product.sku_name,
cmgt_product_locale.NAME,
Sterling Multi-Channel Selling Solution Developer Guide 289

Data Services Guidelines

290 St
cmgt_product_locale.DESCRIPTION
FROM cmgt_product, cmgt_product_locale
WHERE rownum < max_row_count
AND UPPER(cmgt_product_locale.DESCRIPTION)
LIKE desc_str
AND cmgt_product_locale.sku_name
= cmgt_product.sku_name(+)
AND cmgt_product_locale.locale
= 'en_US'
ORDER BY cmgt_product.sku_name;
RETURN rc;
END;
END sample_procedure;
/
show errors

Pagination
This section describes how you can use the built-in pagination capabilities to
handle large lists of data objects. An example of its usage is provided in
"Pagination" on page 209.

How do I get a Paginated Result Set?
When a DataListBean restore() is invoked, the first page of results is returned
immediately. If there is more than a single page of data, then page files will be
created asynchronously.

How do I tell if I have more than one page of results?
The DataListBean moreResults() method will return true.

How do I tell if there are more pages in the page set?
The DataListBean morePages() method will return true.

What happens if I ask for a page that does not exist?
If the page is still being created, then the DataListBean getNextPage() method will
wait. If the pagination set has been completely built and the requested page does
not exist, then getNextPage() will return false.

If I make changes, then will they appear in the page files?

If you perform a persist() on a paginated DataListBean, then the changes are first
persisted to the database, and only then is the relevant page file rewritten.
erling Multi-Channel Selling Solution Developer Guide

Performance Optimization
How do I control the number of results per page?
By default, the number of results per page is controlled by the NumPerCachePage
element in the DataServices.xml property file. A value of “-1” indicates no limit.
This can be overridden by specifying a DataContext during restore.

Is there a limit on the number of page files?
By default, the maximum number of results is controlled by the MaxResults
element in the DataServices.xml property file. A value of “-1” indicates no limit.
This can be overridden by specifying a DataContext during restore.

When are the page files deleted?
Page files can be explicitly released by invoking DataListBean freeCache()
method. By default, they will be released as soon as the session terminates. They
will also be reused by a subsequent restore request from the same session on the
same DataListBean.

Can I have multiple paged result sets in the same session?
Normal behavior is to support one result page set per DataListBean type per
Session. A subsequent attempt to restore the same DataListBean would normally
overwrite a previously created one.

It is possible to create multiple page sets by naming the page set using a
DataContext during the restore. If the page set is not named, then it will overwrite
an existing page set for that data bean and session combination.

Can I control where the page files are written?
Yes, the directory path for page files is controlled by the rsCachePath element in the
DataServices.xml property file.

Performance Optimization
This section describes factors that come into play when considering performance
issues associated with the data services layer of the Sterling Multi-Channel Selling
Solution. Bear in mind that these are guidelines and that they should be
complemented by a thorough understanding of the database server in use.

Optimizing Ad Hoc Queries
The new QueryHelper class exists to support the creation of ad hoc search queries.
It contains a number of methods that return DsQuery instances. These methods can
either create new WHERE clauses, or combine existing ones. The resulting
DsQuery tree is passed as a parameter to the DataBean restore method.
Sterling Multi-Channel Selling Solution Developer Guide 291

Data Services Guidelines

292 St
The order in which selection criteria are added using the QueryHelper directly
translates to how the resulting WHERE clauses are generated. RDBMS provide
proprietary tools that can be used to evaluate the execution cost of queries. These
tools can be used to determine the best ordering of WHERE clauses. There may be
additional efficiencies to be gained through the use of sub-queries and the ordering
of these sub-queries. The optimal WHERE clause for a specific request is
dependent on:

1. The RDBMS

2. The available indices (and the type of each index)

3. The amount of data in each table to be joined

4. The use of RDBMS cost-based vs. syntax-based query optimizers

5. How recently database statistics have been generated (where appropriate for
the specific RDBMS)

6. The uniqueness of the selection criteria

7. Whether the RDBMS has cached any of the relevant tables or indices

8. The on-disk distribution of database tables and indices

Due to the number of factors that influence query performance, query tuning
recommendations should be obtained from your proprietary database
documentation. Query tuning is typically a combination of WHERE clause and
index optimization.

While we have attempted to create appropriate indexing for common queries issued
by the Sterling Commerce software, customizations may involve additional
selection criteria that will perform more efficiently with additional database
indexing. We strongly recommend that the DsQuery mechanism be used whenever
non-key queries are issued.

Optimizing Data Retrieval Sizes
The DataContext mechanism can be used to set the number of records per page and
the maximum number of records to retrieve.

If a fast initial page display is required, then setting a smaller number of records per
page will result in a faster initial response. Remaining data will be automatically
retrieved using a background thread.

To limit overall processing overhead, the maximum number of records can be
limited. This is especially appropriate in areas such as retrieving a list of products.
It is unlikely that an end user will want to scroll through several thousand products.
erling Multi-Channel Selling Solution Developer Guide

Performance Optimization
A more reasonable approach is to limit the number of products to 100 or even 50,
and then to allow the user to specify additional selection criteria.

Left-Outer and Equi-Joins
Our default join mechanism is the left-outer join. This mechanism provides the
behavior expected by most application developers. We have discovered several
cases where an RDBMS generated a sub-optimal execution plan for some queries
that used left-outer joins. If a specific query is having performance problems, then
you may want to determine if there are left-outer joins that can be converted to
equi-joins. For additional information, please refer to"Join Types" on page 294.

Reference and Child Data Objects
Reference DataObjects are intended for 1-to-1 relationships. Child DataObjects are
typically used for 1-to-many relationships. There are some circumstances in which
you may wish to use a Child DataObject to represent a 1-to-1 relationship.

Remember that Child DataObjects use a lazy link mechanism. This does result in a
separate query being issued for the child data, but it also means that the data is not
retrieved until it is directly referenced. For data that is infrequently referenced the
Child DataObject may be more appropriate.

Using Distinct Tables for Customer Extensions
There has been some concern raised regarding the concept of storing custom data in
separate tables. In most cases, this new data has a 1-to-1 relationship to existing
tables. This allows the use of Reference DataObjects resulting in a single query to
obtain the combined data. In addition, it should be possible to access the custom
table by indexed primary key resulting in a very low retrieval cost.

While adding an additional table to a query will always have an impact on the
retrieval cost, we feel that cost should be minimal in most cases. The key benefit of
using distinct tables for custom data is the ease of upgrade to new releases of the
Sterling Commerce software and schema. By using a separate table combined with
our XML schema inheritance, the customer can be isolated from both database and
XML schema changes. The Object Manager also makes these customizations
transparent to the Sterling Commerce software. This combination of factors
dramatically simplifies the upgrade process.

Using Stored Procedures
In some extreme cases, there may be a significant performance advantage if
RDBMS stored procedures are used in place of a dynamic query.

Stored procedures have the following advantages:
Sterling Multi-Channel Selling Solution Developer Guide 293

Data Services Guidelines

294 St
1. The database can normally cache the SQL execution plan.

2. There may be less network traffic required to execute the stored procedure than
for an equivalent SQL statement.

3. It may be possible to execute more complex SQL statements.

Stored procedures have the following disadvantages:

1. There is additional maintenance overhead for each stored procedure that is
created. This may result in additional work during product upgrades.

2. Stored procedures do not easily handle variable parameter input. This can be
accomplished but it tends to result in an extremely complex and possibly
inefficient stored procedure.

3. Currently, data beans can only be mapped to a single stored procedure. This
means that it is not possible to map to one procedure for data retrieval and a
second procedure for update.

In general, we suggest that stored procedures only be considered if they can provide
a significant performance benefit. In most cases, with appropriate indexing, the
DsQuery mechanism is capable of providing very efficient query execution. For
further information, please refer to "Stored Procedures" on page 286.

Oracle Hints
Release 6.3 added support for Oracle hints as described in "Oracle Hints" on
page 285. We have found very few instances where this has provided performance
improvements that could not be accomplished by restructuring the DsQuery.
However, this mechanism is available if query analysis shows it can provide a
significant benefit.

Join Types
What is an Equi-Join?
An equi-join is a table join that requires corresponding values to exist in the joined
tables. For example given the following two tables:

TABLE 12. Table T1

C1 C2

A 1

A 2
erling Multi-Channel Selling Solution Developer Guide

Join Types
The following query:

SELECT * FROM T1, T2 WHERE T1.C2 = T2.C1

will return:

Notice that there are no values returned for T1.C2 = 2 or T1.C1 = B. This is due to
the mandatory join requirement.

What is a Left-Outer Join?
A left-outer join will return all rows from the left-side table even when the
right-side table in a join does not contain any rows that match the join criteria.

If the above query is revised to use left-outer join syntax as follows:

SQL Server: SELECT * FROM T1 LEFT OUTER JOIN T2 ON T1.C2 = T2.C1
Oracle Syntax: SELECT * FROM T1, T2 WHERE T1.C2 = T2.C1 (+)

will return:

A 3

B 2

TABLE 13. Table T2

C1 C2

1 X

3 Y

4 X

TABLE 14. Result Set Table

T1.C1 T1.C2 T2.C1 T2.C2

A 1 1 X

A 3 3 Y

TABLE 15. Result Set Table

T1.C1 T1.C2 T2.C1 T2.C2

A 1 1 X

A 2

TABLE 12. Table T1 (Continued)

C1 C2
Sterling Multi-Channel Selling Solution Developer Guide 295

Data Services Guidelines

296 St
What is a Right-Outer Join?
A right-outer join is similar to the left-outer join, except that it returns rows in the
right-side table even if there are no matching rows in the left-side table.

If the above query is revised to use right-outer join syntax as follows:

SQL Server: SELECT * FROM T1 RIGHT OUTER JOIN T2 ON T1.C2 = T2.C1
Oracle Syntax: SELECT * FROM T1, T2 WHERE T1.C2 (+) = T2.C1

will return::

What is a Cross Join?
A cross-join is the cross product of the rows in both tables. It can be achieved by
not specifying any selection criteria. This type of join is rarely of any practical use.

If the above query is revised to use cross join syntax as follows:

SELECT * FROM T1, T2

will return:

A 3 3 Y

B 2

TABLE 16. Result Set Table

T1.C1 T1.C2 T2.C1 T2.C2

A 1 1 X

A 1 3 Y

4 Z

TABLE 17. Result Set Table

T1.C1 T1.C2 T2.C1 T2.C2

A 1 1 X

A 1 3 Y

A 1 4 Z

A 2 1 X

A 2 3 Y

TABLE 15. Result Set Table (Continued)

T1.C1 T1.C2 T2.C1 T2.C2
erling Multi-Channel Selling Solution Developer Guide

Transactions
What is our Default Join Mechanism?
By default, the Sterling Multi-Channel Selling Solution uses a left-outer join
because this is typically what an application wants, and because this mechanism
can perform lazy evaluation of joins for child data objects.

Which Joins do we Support?
We support the left-outer join, the equi-join, .

How do I tell the Data Services Layer to use an Equi-Join?
An equi-join is specified by adding the following attribute to the Relationship
element in the data object definition XML file:

JoinOperator="EQUI"

Remember that an equi-join will not return rows unless a match is found for the join
criteria.

Transactions
This section describes the support provided by the Sterling Multi-Channel Selling
Solution for transactions: database actions that span one or more atomic operations.
In general, you use the Transaction class to manage situations in which several data
objects must be persisted together, and if one fails, then they should all fail.

Default Transaction Support
All business objects and generated data beans that reference one or more database
tables provide implicit transaction integrity. Any persist() operation performed on a
business object or data bean ensures that all resulting INSERT, UPDATE, and
DELETE requests occur within the context of a single physical database

A 2 4 Z

A 3 1 X

A 3 3 Y

A 3 4 Z

A 2 1 X

A 2 3 Y

A 2 4 Z

TABLE 17. Result Set Table (Continued)

T1.C1 T1.C2 T2.C1 T2.C2
Sterling Multi-Channel Selling Solution Developer Guide 297

Data Services Guidelines

298 St
transaction. If any of the resulting operations fail, then all requests are rolled back.
Note that if a data bean has children, then these are also persisted within the same
transaction.

Support Using the Transaction Class
In certain circumstances it may be necessary to persist multiple distinct business
objects or data beans within the same transaction. This can be accomplished
through the use of the Transaction class. See "Transaction Class Methods" on
page 298 for details.

When you use the Transaction class, data beans are enlisted into a Transaction
object. When the commit() method is invoked on the Transaction object, persist()
operation are invoked on the individual data beans:

• If any of the persist() operations fail, then they are all rolled back.

• If all of the persist() operations succeed, then they are all committed
together.

Support Using the ActiveTransaction Class
In extraordinary circumstances it may be necessary to ensure that the persistence of
multiple data beans occur within the same transaction, and that these changes are
persisted immediately to allow restore requests within the same transaction to see
the changes in real time. This can be accomplished using the ActiveTransaction
class.

It must be noted that the ActiveTransaction class uses long running transactions
that can have a negative impact on performance and concurrent access.
ActiveTransactions should only be used as a last resort when all other possibilities
have been discarded. See "How to use the ActiveTransaction Class" on page 300
for more details.

Transaction Class Methods
The Transaction class changes the behavior of the underlying data beans. A
persist() call to a data bean that is enlisted in a Transaction will be a no-op. The
actual persistence of changes will occur when the Transaction commit() method is
invoked. This allows the use of short duration database transactions, which
minimize locking and improve concurrent access. The Transaction class provides
the following public methods:

• public Transaction(): the default constructor

• public void enlist(BusinessObject bizObj) throws ICCException: this
method is used to enlist a business object in an existing Transaction.
erling Multi-Channel Selling Solution Developer Guide

Transactions
• public void enlist(TransactionSupport bean) throws ICCException: this
method is used to enlist a data bean in an existing Transaction. The data
bean must implement the TransactionSupport interface. All generated data
beans automatically implement this interface.

• public void commit() throws ICCException: this method will persist all
changes made to the enlisted objects and if successful it will then commit
those changes. If any persist operations fail, then the entire transaction will
be rolled back.

• public void rollback() throws ICCException: this method restores all
enlisted objects, discarding all changes.

To manage the logical transaction you must keep a reference to the Transaction
instance.

If a business object or data bean is enlisted in a Transaction, then the persist()
method will be a no-operation method. Invoking the transaction class’s commit()
method will first persist the changes and then commit the database transaction.

The Transaction class is extremely lightweight and should incur minimal overhead.
This technique does not use a two-phase commit mechanism due to performance,
concurrency, and database maintenance issues.

Limitations

1. Changes applied to a business object cannot be recovered if the server fails
prior to committing the transaction. This is an inherent limitation of any
transaction mechanism.

2. Transactions that span multiple database servers cannot be guaranteed.

3. Transactions that involve non-database server data sources cannot be
guaranteed.

Sample Usage
An application that wants to update multiple business objects within the context of
a transaction will perform the following steps along the lines of this sample code
extract:

ShoppingCartBean scBean = new ShoppingCartBean();
OrderBean oBean = new OrderBean();
Transaction trans = new Transaction();
trans.enlist(scBean);
trans.enlist(oBean);
...
Restore and make any changes to scBean and oBean.
Sterling Multi-Channel Selling Solution Developer Guide 299

Data Services Guidelines

300 St
Changes can be made in any order.
...
trans.commit();

See "Detailed Commit Functionality Description" on page 300 for more
information on how the commit operation is managed when one or more data
sources are involved.

How to use the ActiveTransaction Class
The ActiveTransaction methods and usage are identical to those of the Transaction
class. The difference lies in the database transaction duration and persist timing.

When a persist() operation is invoked against a data bean that is enlisted in an
ActiveTransaction, this immediately begins a database transaction and applies all
update operations. This database transaction will be used by all enlisted data beans
that use the same Data Source. The ActiveTransaction commit() will commit the
database transaction.

In order to provide this functionality, the ActiveTransaction exhibits the following
behavior:

An active database connection is established and tied up for the duration of the
ActiveTransaction. Since the transaction duration is indeterminate, it may remove
the connection from the available pool for several minutes. The connection will
also remain tied up if the ActiveTransaction is not committed or rolled back. This
makes the ActiveTransaction unsuitable for browser based usage.

An active database transaction is established and tied up for the duration of the
ActiveTransaction. Depending on the nature of the database operations that are
performed, this may result in restrictive locks being held against database
resources. In the worst case, these locks may limit concurrent access for the
duration of the transaction.

Because the ActiveTransaction uses long duration database transactions, there is an
increased risk of database deadlocks.

ActiveTransactions should only be used as a last resort, and even then only for
administrative or message based applications.

Detailed Commit Functionality Description
This section describes how a commit operation is managed ina transaction.
erling Multi-Channel Selling Solution Developer Guide

SQL Injection
Commit with one Database Server
The commit() method will apply updates to all enlisted objects within the same
transaction and connection. If the updates succeed, then it will commit the
transaction. If any of the updates fail, then the transaction will be rolled back.

Commit with Multiple Database Servers
The commit method will apply updates to all enlisted objects. It will not be possible
to apply these updates within the same transaction. Only if the all of the updates
succeed will it commit each physical transaction. If any of the updates fail, then all
transactions will be rolled back.

Commit with a Database Server and non-Database Server Data
Source
The commit() method will apply updates to all enlisted objects that reference a
database server. If the updates succeed, then it will then apply updates to the non-
database server objects. If those updates succeed, then and only then, will it commit
the original updates.

This leaves open a small window for failure, but the size of that window is
minimized. The failure could only be connection-related. Logical failures should be
caught by this technique.

SQL Injection
A potential security risk for a Web-based application is that of SQL injection: users
enter SQL into text input fields with the aim of inserting SQL that, when it
executes, will expose or corrupt data.

The Sterling Multi-Channel Selling Solution Data Services layer always uses
bound parameters for SQL. Since bound parameters are simply variables and are
not executed as part of the SQL request, this eliminates the possibility of SQL
injection.

Note that the SQL logging may be misleading in this regard. In the log output, we
substitute the parameter values into the SQL to clarify what was being executed. In
the actual request we always use parameter markers.
Sterling Multi-Channel Selling Solution Developer Guide 301

Data Services Guidelines

302 St
erling Multi-Channel Selling Solution Developer Guide

CHAPTER 23 Resources
This chapter describes how to use resources to enhance the end-user experience.

Overview
Resources provide a general mechanism to attach attributes to data objects without
specifying the attributes as data fields. Typically, you use resources in situations
where some, but not all data objects of a particular type, need an attribute such as
datasheet or image associated to them.

For example, you might want to associate product datasheets with some products,
though not with all products, or an image with some Sterling Advisor questionnaire
pages, but not with all.

Each resource has a resource type: out of the box, the following resource types are
supported:

• image

• datasheet

• longtext

• video

• audio
Sterling Multi-Channel Selling Solution Developer Guide 303

Resources

304 St
More resource types can be created at implementation time simply by adding them
to the ResourceTypeList XML data file. Each data object can have zero or more
resources, but it can have only one resource of a particular type.

When you want to retrieve resources for a particular data object, you first retrieve
the resource key, and then restore a resource list data object as follows:

DataContext dataContext = new DataContext();
Long resourceKey = msBean.getResourceKey();
ResourceListBean resourceListBean =
(com.comergent.bean.simple.ResourceListBean)
OMWrapper.getObject("com.comergent.bean.simple.ResourceListBean");
DsQuery dsQuery = QueryHelper.newWhereClause("ResourceKey",

DsQueryOperators.EQUALS, resourceKey);
resourceListBean.restore(dataContext, dsQuery);
QueryHelper.freeQuery(dsQuery);

To retrieve the value of a resource of a particular type (say, an image), you must
iterate through the ResourceListBean to identify the appropriate resource:

ListIterator resourceList = resourceListBean.getIterator();
ResourceBean resourceBean = null;
while (resourceList.hasNext())
{

resourceBean = (ResourceBean) resourceList.next();
if (resourceBean.getResourceTypeKey().intValue() == 1020)
{

break;
}

}
if (resourceBean != null)
{

String valueString = resourceBean.getResourceValue();
}
else
{

/* Handle the case where there is no image resource */
}

Note that helper class and beans have been created in various parts of the Sterling
Multi-Channel Selling Solution. For example, ResourceHelper is a class that is
used by presentation beans to retrieve resources by type. It supports methods such
as:

String getResourceValue(String type)

The abstract class ProdServResource provides a wrapper around this class and
presentation beans such as BizConditionBean in the productService packages
extend this class to provide easy access to resources.
erling Multi-Channel Selling Solution Developer Guide

JSP Page Layer
JSP Page Layer
Resources can be used to "decorate" pages used to display data objects. For
example, if you associate a resource of type image with a questionnaire page, then
you can display the image on the questionnaire page by adding the following to the
AdvisorBody.jsp JSP page:

<IMG SRC="<%= qpb.getResourceValue("image") %>"/>

In this example, you are using the fact that the IPresQueryPage class extends the
IProdServResource interface and implements the getResourceValue() method.

Data Services Layer
At the data services level, data objects are linked to resources using a ResourceKey
data field: this maps to a RESOURCE_KEY column in the table that underpins the
data object. For example, the Product data object declares a ResourceKey data field
and this maps to the RESOURCE_KEY column of the CMGT_PRODUCT table.

Resources are maintained in the CMGT_RESOURCE and
CMGT_RESOURCE_LOCALE tables. The RESOURCE_KEY column in a data
object table is a foreign key to the RESOURCE_KEY column of the
CMGT_RESOURCE table: this and the RESOURCE_TYPE_KEY column
comprise the primary key for the CMGT_RESOURCE table: that is, a resource key
and resource type uniquely determine the resource and its value.

A resource key is automatically generated for a data object when the first resource
is assigned to the data object. The resource key value is unique across all data
objects in the Sterling Multi-Channel Selling Solution: no other data object will use
that resource key, and only resources that are assigned to that data object will have
that resource key.
Sterling Multi-Channel Selling Solution Developer Guide 305

Resources

306 St
erling Multi-Channel Selling Solution Developer Guide

CHAPTER 24 State Machines
In many situations, a data object has a state field which is used to manage the data
object’s life cycle. This chapter provides an overview of how to use state machines
to manage the life cycle: what state transitions are permitted and what happens as a
data object transitions from one state to another. It covers:

• "Overview" on page 307

• "State Machine Configuration Files" on page 309

• "Customizing a State Machine" on page 312

Overview
Release 6.4 introduces the ability to manage data objects and their transition from
one state to another using state machines. Each state machine manages the
transitions for a specific data object, such as orders or order line items. The state
machine is specifed as an XML file. See "State Machine Configuration Files" on
page 309 for the structure of a state machine file.

You instantiate a state machine for a data object by calling the
getStateMachine(String s) method of the StateMachineFactory class. This method
returns an object that implements the IStateMachine interface. This is the state
machine class that will manage state transitions for the data object. For example:

IStateMachine sm = smf.getStateMachine("OrderStateMachine");
Sterling Multi-Channel Selling Solution Developer Guide 307

State Machines

308 St
An additional parameter can be passed in to specify the state machine for a
particular partner:

IStateMachine sm = smf.getStateMachine("OrderStateMachine", key);

When a state machine is instantiated, it reads in the corresponding
StateMachine.xml configuration file. This file specifies the precise processing that
each input request should undergo, and how the data object should be moved from
one state to another. The mapping from state machine to StateMachine.xml file is
defined in the StateMachineList.xml configuration file.

Each Input element specifies the actions that should be taken when the request is
made by calling the performInput() method of the state machine. This method has a
parameter to specify the ID of the input. Typically, there will be a Helper class, such
as the OrderStateMachineHelper class that provides a mapping between the input
name, such as “ORDER INPUT XML PLACE” and an integer value (in this case,
25). The Roles attribute of the Input element determines which users can perform
the action.

The signature of the IStateMachine state machine interface performInput() method
is:

performInput(Long inputId, Object obj, IRdUser user, Hashtable ht)

The second parameter in the method call is used to pass in the object that will be
processed by the business logic. The Hashtable parameter is used to pass in any
other processing parameters that the handler classes may need.

If the input is not valid for this state, then an InputFailedException is thrown, and
this should be caught and handled by the apropriate business logic. If the input is
valid, then the ActionHandler classes are called, in the order listed in the
ActionHandlerList element. Each ActionHandler must implement the
IActionHandler interface by providing the performInputAction() method: this is the
busines logic used to process the input request.

The signature of the IActionHandler interface performInputAction() method is:

performInputAction(IInput input, Object obj, IRdUser user,
Hashtable ht)

The second parameter in the method call is used to pass in the object that will be
processed by the handler. The Hashtable parameter is used to pass in any other
processing parameters that the handler class may need.

If any of the ActionHandlers throw an InputFailedException, then the processing of
the input request is stopped and the object stays in its current state. If all the
erling Multi-Channel Selling Solution Developer Guide

State Machine Configuration Files
ActionHandlers succeed, then the object is moved into the state specified by the
NextState element.

The ActionEvents declared in the ActionEventList element are fired: these should
be handled by the EventBus (see CHAPTER 9, "Events" for more information).
You should use ActionEvents to trigger processing that should not affect the main
business logic used to process the action, but which should happen if the business
logic successfully completes. For example, sending out email notifications in the
event that an order is successfully placed can be handled using ActionEvents.

State Machine Configuration Files
StateMachineList.xml Configuration File
The state machines are declared in the StateMachineList.xml configuration file.
By default, its location is debs_home/Sterling/WEB-INF/statemachines/ and its
location is specified in the StateMachines element of the Comergent.xml
configuration file.

Each state machine is defined by specifying the name of its StateMachine.xml
configuration file. For example:

<StateMachine>EnterpriseOrderStateMachine.xml</StateMachine>

It is possible to define different state machines for different storefront partners
using the StorefrontStateMachines element. For example, the following example
declares the state machine for the storefront partner whose partner key is “21”:

<StorefrontStateMachines StorefrontKey="21"
StorefrontName="Allnet">
<StateMachine>AllnetOrderStateMachine.xml</StateMachine>

</StorefrontStateMachines>

For a given storefront, if no StateMachine element is defined, then the
corresponding state machine of the DefaultStateMachines element is used.

StateMachine.xml Configuration File
Each StateMachine.xml configuration file defines a state machine for a particular
application. It specifies how state transitions should be processed for a data object.
It comprises a StateMachine element and a child StateList element that contains a
set of State elements: each State element specifies through its child elements what
the valid inputs are for the state, and how each input should be processed.

The StateMachineName attribute of the StateMachine element is used by the
StateMachineFactory class to retrieve a named state machine.
Sterling Multi-Channel Selling Solution Developer Guide 309

State Machines

310 St
The value, lookupType, of the LookupType element of the StateMachine.xml is
used to retrieve the lookup codes from the CMGT_LOOKUPS table.

• Each State element must correspond to a lookup code whose lookup type
is lookupTypeState so that user-viewable names can be displayed for each
supported locale.

• Each Input element must correspond to a lookup code whose lookup type
is lookupTypeInput.

Note that for legacy reason, some data objects (Order and RFQ) use their Status
lookup type. For example, there are lookup codes for the OrderStatus and
OrderInput lookup types and these are used by the OrderStateMachine because it
declares its LookupType by:

<LookupType>Order</LookupType>

A typical State element looks like this:

<State Name="Open" Start="true">
<Description>
This is the initial State in the Ordering flow.
</Description>
<InputList>
<Input Name="ORDER INPUT USER PLACE"

Roles="Partner.DirectCommerceUser;Registered.User;
Enterprise.CustomerServiceRepresentative">

<Description>This is the "Place" action.</Description>
<NextState>Order Submitted</NextState>

<ActionHandlerList>
<ActionHandler>

com.comergent.apps.orderMgmt.orders.bizAPI.OrderPlaceHandler
</ActionHandler>
<ActionHandler>

com.comergent.apps.orderMgmt.orders.bizAPI.OrderPersistHandler
</ActionHandler>
<ActionHandler>

com.comergent.apps.orderMgmt.orders.bizAPI.SaveDiscounts
</ActionHandler>
<ActionHandler>

com.comergent.apps.orderMgmt.orders.bizAPI.WriteHistoryHandler
</ActionHandler>

</ActionHandlerList>
<ActionEventList>

<ActionEvent>OrderPlaceEmailEvent</ActionEvent>
</ActionEventList>

</Input>
<Input Name="ORDER INPUT XML PLACE"

Roles="Partner.DirectCommerceUser;Registered.User">
erling Multi-Channel Selling Solution Developer Guide

State Machine Configuration Files
<Description>This is the "Place" action.</Description>
<NextState>Order Submitted</NextState>
<ActionHandlerList>

<ActionHandler>
com.comergent.apps.orderMgmt.orders.bizAPI.PreProcessXMLPlaceHandler

</ActionHandler>
<ActionHandler>

com.comergent.apps.orderMgmt.orders.bizAPI.OrderPlaceHandler
</ActionHandler>
<ActionHandler>

com.comergent.apps.orderMgmt.orders.bizAPI.OrderPersistHandler
</ActionHandler>
<ActionHandler>

com.comergent.apps.orderMgmt.orders.bizAPI.SaveDiscounts
</ActionHandler>
<ActionHandler>

com.comergent.apps.orderMgmt.orders.bizAPI.WriteHistoryHandler
</ActionHandler>

</ActionHandlerList>
<ActionEventList>

<ActionEvent>OrderPlaceEvent</ActionEvent>
</ActionEventList>

</Input>
</InputList>

</State>

The Roles attribute of the Input element is used to check that only appropriate users
can act on the object when it is in a given state. Note that the list of roles is
delimited by semi-colons (“;”).

Action Events
When an input has finished being processed, the state machine can also fire action
events. These are events that can be broadcast to other parts of the Sterling Multi-
Channel Selling Solution so that they can take appropriate actions if need be.
Action events are propagated using the event bus framework. see CHAPTER 9,
"Events" for details.

You declare the action events using the ActionEventList element: an input can
declare zero or more ActionEvent elements. Each such event must be declared in
the events.xml configuration file. For example, for the ActionEvent declared
above, there should be the corresponding entry in the events.xml configuration file:

<event
class="com.comergent.api.apps.orderMgmt.orders.OrderPlaceEvent">
<description>This event is fired when an Order is placed
</description>
<consumers-list>
Sterling Multi-Channel Selling Solution Developer Guide 311

State Machines

312 St
<consumer>
com.comergent.reference.apps.orderMgmt.orders.OrderEmailEventHandler

</consumer>
<consumer>

com.comergent.reference.apps.orderMgmt.orders.OrderAtStorefrontEmai-
lEventHandler

</consumer>
<consumer>

com.comergent.reference.apps.salesContracts.SalesContractOrder-
EventHandler

</consumer>
</consumers-list>

</event>

Customizing a State Machine
In your implementation of the Sterling Multi-Channel Selling Solution you may
need to modify the way in which a state machine works for a data object. Typically,
this will involve one or more of the following:

• "Changing the Business Logic associated with a Change in State" on
page 312

• "Changing the Available State Transitions" on page 313

• "Adding a New State" on page 314

Changing the Business Logic associated with a Change in State
If you want to modify the logic that is executed when an object changes from one
state to another, then you must modify the list of ActionHandler elements
associated with the state and input.

Example

For example, suppose that you want to replace the SaveDiscount ActionHandler
class with a custom class in the logic that is executed when an Order in the Open
state receives the ORDER INPUT USER PLACE input.

1. First, you must create your custom class, say the CustomSaveDiscount class.
This class must implement the IActionHandler interface as described above.

Then you modify the ActionHandlerList element by changing the corresponding
ActionHandler element in the list of ActionHandlers:

<Input Name="ORDER INPUT USER PLACE"
Roles="Partner.DirectCommerceUser;Registered.User;

Enterprise.CustomerServiceRepresentative">
erling Multi-Channel Selling Solution Developer Guide

Customizing a State Machine
<Description>This is the customized "Place" action.</Description>
<NextState>Order Submitted</NextState>

<ActionHandlerList>
<ActionHandler>

com.comergent.apps.orderMgmt.orders.bizAPI.OrderPlaceHandler
</ActionHandler>
<ActionHandler>

com.comergent.apps.orderMgmt.orders.bizAPI.OrderPersistHandler
</ActionHandler>
<ActionHandler>

com.comergent.apps.orderMgmt.orders.bizAPI.CustomSaveDiscounts
</ActionHandler>
<ActionHandler>

com.comergent.apps.orderMgmt.orders.bizAPI.WriteHistoryHandler
</ActionHandler>

</ActionHandlerList>
</Input>

Changing the Available State Transitions
If you want to modify the available state transitions for a state, then you must
modify the InputList element by adding or removing the input associated with the
state transition.

Example

For example, suppose that you want to allow an order that is is in the Open state to
receive an input that suspends the order. Because we want to use a new input, we
must create a corresponding new lookup code along these lines:

<LightWeightLookup state="INSERTED">
<LookupType state="INSERTED">OrderInput</LookupType>
<LookupCode state="INSERTED">1020</LookupCode>
<Locale state="INSERTED">en_US</Locale>
<Description state="INSERTED">ORDER INPUT SUSPEND</Description>

</LightWeightLookup>

Then, in the State element for Open orders, add an input element along these lines:

<Input Name="ORDER INPUT SUSPEND"
Roles="Partner.DirectCommerceUser;Registered.User;

Enterprise.CustomerServiceRepresentative">
<Description>This is the customized "Place" action.</Description>
<NextState>Order Suspended</NextState>

<ActionHandlerList>
<ActionHandler>

com.comergent.apps.orderMgmt.orders.bizAPI.OrderSuspendHandler
</ActionHandler>
<ActionHandler>

com.comergent.apps.orderMgmt.orders.bizAPI.WriteHistoryHandler
Sterling Multi-Channel Selling Solution Developer Guide 313

State Machines

314 St
</ActionHandler>
</ActionHandlerList>

</Input>

Note that in this example, we want the next state to be a new state (Order
Suspended) that does not yet exist in the system, and so we must also add this state
as described in "Adding a New State" on page 314.

Adding a New State
You may sometimes need to add a new state for an object to the ones that come
with the Sterling Multi-Channel Selling Solution. To do so, you must consider what
inputs from other states should put an object into the new state, and what valid
inputs will change an object’s state from the new state to one of the existing ones.

First, you should add the new lookup codes to reflect the new state and new inputs.
Having done so, you will need to add Input elements to the existing State elements
to support the transitions to the new state, and you will need to add a new State
element that defines the valid inputs that the new state supports.

Example

For example, suppose that we want to add an Order Suspended state for the Order
object. We want to allow for Open orders to be placed in the Order Suspended state,
and the only valid input we want to support for an order in the Order Suspended
state is to “reopen” the order by putting it back into the Open state.

1. First, we add the new state to the Order state lookup codes:

<LightWeightLookup state="INSERTED">
<LookupType state="INSERTED">OrderStatus</LookupType>
<LookupCode state="INSERTED">1020</LookupCode>
<Locale state="INSERTED">en_US</Locale>
<Description state="INSERTED">Order Suspended</Description>

</LightWeightLookup>

Note the use of the OrderStatus lookup type as noted above.

2. Next, we add the input lookup codes needed to get orders into and out of the
new state:

<LightWeightLookup state="INSERTED">
<LookupType state="INSERTED">OrderInput</LookupType>
<LookupCode state="INSERTED">1020</LookupCode>
<Locale state="INSERTED">en_US</Locale>
<Description state="INSERTED">ORDER INPUT SUSPEND</Description>

</LightWeightLookup>
<LightWeightLookup state="INSERTED">

<LookupType state="INSERTED">OrderInput</LookupType>
erling Multi-Channel Selling Solution Developer Guide

Customizing a State Machine
<LookupCode state="INSERTED">1030</LookupCode>
<Locale state="INSERTED">en_US</Locale>
<Description state="INSERTED">ORDER INPUT REOPEN</Description>

</LightWeightLookup>

3. Now we modify the Open State element of the order state machine by adding
the new input that is used to suspend an open order:

<Input Name="ORDER INPUT SUSPEND"
Roles="Partner.DirectCommerceUser;Registered.User;

Enterprise.CustomerServiceRepresentative">
<Description>This is the customized "Place" action.</Description>
<NextState>Order Suspended</NextState>

<ActionHandlerList>
<ActionHandler>

com.comergent.apps.orderMgmt.orders.bizAPI.OrderSuspendHandler
</ActionHandler>
<ActionHandler>

com.comergent.apps.orderMgmt.orders.bizAPI.WriteHistoryHandler
</ActionHandler>

</ActionHandlerList>
</Input>

4. Now we add a new State element to say what inputs an order in the Order
Suspended state can accept:

<State Name="Order Suspended" Start="true">
<Description>
This is the suspended State in the Ordering flow.
</Description>
<InputList>
<Input Name="ORDER INPUT REOPEN"

Roles="Partner.DirectCommerceUser;Registered.User;
Enterprise.CustomerServiceRepresentative">

<Description>This is the "reopen" action.</Description>
<NextState>Open</NextState>

<ActionHandlerList>
<ActionHandler>

com.comergent.apps.orderMgmt.orders.bizAPI.OrderReopenHandler
</ActionHandler>
<ActionHandler>

com.comergent.apps.orderMgmt.orders.bizAPI.OrderPersistHandler
</ActionHandler>
<ActionHandler>

com.comergent.apps.orderMgmt.orders.bizAPI.SaveDiscounts
</ActionHandler>
<ActionHandler>

</ActionHandlerList>
<ActionEventList>

<ActionEvent>OrderReopenEmailEvent</ActionEvent>
Sterling Multi-Channel Selling Solution Developer Guide 315

State Machines

316 St
</ActionEventList>
</Input>
</InputList>

</State>
erling Multi-Channel Selling Solution Developer Guide

CHAPTER 25 Widgets
This chapter describes how to use widgets in your Sterling Multi-Channel Selling
Solution applications. Widgets are primarily used for Sterling Portal pages, but may
be used throughout the system.

Overview
A widget is a custom tag that can be used in a JSP page (referred to here as the
container JSP page) to provide a UI component in the generated Web page. It is
self-contained in that the widget tag may be moved from one part of a JSP page to
another without effecting the look-and-feel of the rest of the page and the widget
content is generated independently of the rest of the page.

Widgets work by making a separate call to the Sterling Multi-Channel Selling
Solution which executes a different message type to the rest of the container JSP
page. By executing a distinct message type, you can call a different controller and
use a distinct JSP page to generate the output for the widget content. The
controllers used by widgets should always extend the WidgetController class. This
controller extends the IncludeController class which invokes the include() method
on the RequestDispatcher as opposed to the more commonly used forward()
method.

Widgets work as HTML includes and so they re-use the same cascading style
sheets as the rest of the Web page. Care must be taken in defining Javascript
Sterling Multi-Channel Selling Solution Developer Guide 317

Widgets

318 St
functions and form variables to avoid name duplication with other elements of the
Web page. See "Guidelines" on page 318.

Widget Tag
The widget tag takes these named attributes:

• height: the height of the widget element in pixels

• name: the name of the widget is the message type executed by the Sterling
Multi-Channel Selling Solution

• width: the width of the widget element in pixels

Note that the height and width parameters may not always be realized in the Web
page seen by the user. These set the height and width of the HTML table attributes,
but the user’s browser renders the page in the light of all of the HTML it receives
for the Web page.

In addition, you can define any number of parameters in the body of the tag. These
are passed to the controller and BLC through the request object. Each parameter
takes the form name=value and each pair is separated by an ampersand (“&”) from
the next. For example:

<cmgt:widget name="MyOrdersWidget" height="300" width="500">
numberOfRows=5&orderBy=lastupdate

</cmgt:widget>

Guidelines
Follow these steps to create a widget:

1. Define the message type in the appropriate MessageTypes.xml file. Typically,
it will be of this form:

<MessageType Name="MyOrdersWidget">
<ControllerMapping>

com.comergent.apps.orderMgmt.orders.controller.-
MyOrdersWidgetController

</ControllerMapping>
<JSPMapping>

../orderMgmt/Orders/MyOrdersWidget.jsp
</JSPMapping>

</MessageType>

2. Create the controller class declared in the ControllerMapping element to
process the request. You should extend the WidgetController class by
erling Multi-Channel Selling Solution Developer Guide

Guidelines
overwriting its execute() method. By calling the WidgetController’s method
callJSP(), you can forward the request to the JSP page defined by the
JSPMapping element.

3. Create the JSP page declared in the JSPMapping element. You must follow
these rules in writing this JSP page:

• Widgets should use the widget style for display: this ensures that they have
a common look-and-feel throughout the Sterling Multi-Channel Selling
Solution.

• Begin and end the HTML content of this page with <table> and
</table>. All widgets define their content in the context of a table. Use
only HTML tags and syntax that are valid in an HTML table.

• The JSP page must include the cmgtinclude.jspf page through the
standard JSP <@ include> directive.

• Adopt a naming convention for all parameters, functions, and variables in
the JSP page so that they do not conflict with other usages on the container
JSP page. We recommend a convention that prepends the name of the
widget before the object name. For example: MyOrdersWidget_function or
MyOrdersWidget_formName.

• Take care that actions performed on the widget’s JSP page do not act on
the container page. Links or buttons on a widget’s page should take a user
to a new Web page.

4. You can retrieve parameters defined in the widget tag through the request
object. For example, using the example above, you can retrieve the value of the
orderBy parameter by:

String temp_ParameterString = request.getParameter("orderBy");

As with any request parameter, it is returned as a String, so you must parse
a parameter to recover a numeric value.

5. You can retrieve session information through a standard call to the
ComergentSession object. In particular, you can retrieve the session user by the
following:

User temp_User = comergentSession.getUser();

6. Add the widget to the container JSP page with the following:

<% out.flush(); %>
<cmgt:widget name="widgetName"

height="heightInPixels" width="widthInPixels">
parameter1=value1¶meter2=value2&...¶metern=valuen
Sterling Multi-Channel Selling Solution Developer Guide 319

Widgets

320 St
</cmgt:widget>

Note that you must flush the contents of the output stream before the
widget. If you do not do this, then the HTML generated by the widget is
dispatched to the browser before the rest of the HTML stream.

7. Make any desired modifications to the ErrorWidget.jsp JSP page. This page
is displayed in the area defined for the widget if an unhandled error condition
arises.

Integrating a Widget in a Portal Page
If you have your own portal application and you want to add a Sterling Multi-
Channel Selling Solution widget into a portal page, then you can do this as follows:

1. Create your Sterling Multi-Channel Selling Solution widget by following the
steps described in "Guidelines" on page 318.

2. In your portal application, declare the portlet using the syntax required to set
up a portlet. The portlet type of Sterling Multi-Channel Selling Solution
portlets is HTML.

3. To specify the URL required to provide the portlet content, use a URL like this:

http://<server:port>/Sterling/en/US/direct/matrix?login=user-
name&passwd=password&cmd=directLogin&LoginData-messageType=MyO-
rdersWidget&LoginData-displayBorders=false&LoginData-
entryPoint=direct&validate=true

The login and password parameters need to be generated dynamically based
on the user, and so you will need to be able to retrieve the username and
password for the user to identify themselves to the Sterling Multi-Channel
Selling Solution.
The LoginData-messageType parameters is used to specify the widget’s
message type. If other parameters are required by the widget, then pass
them in as part of the URL too.

Example
In this example, we show how the MyOrdersWidget is used to display a small panel
of current orders to a user.

Container JSP Page
The container JSP page has the following text:
erling Multi-Channel Selling Solution Developer Guide

Example
<% if (isDirect) { %>
<% out.flush(); %>
<cmgt:widget name="MyOrderWidget" height="300" width="500" >

numberOfOrders=5
</cmgt:widget>

<% } %>

Note the use of the boolean variable isDirect to determine whether the user is a
direct commerce user (and hence a user who can create orders).

MessageTypes.xml Entry
The following entry is added to the direct commerce user message group:

<MessageType Name="MyOrdersWidget">
<ControllerMapping>

com.comergent.apps.orderMgmt.orders.controller.-
MyOrdersWidgetController

</ControllerMapping>
<JSPMapping>

../orderMgmt/Orders/MyOrdersWidget.jsp
</JSPMapping>

</MessageType>

WidgetController
A new class MyOrdersWidgetController is created which extends the
WidgetController class. Its execute() method overwrites the execute() method of the
WidgetController class with:

public void execute() throws
ControllerException, ICCException, IOException

{
try
{

String numberOfRowsStr = null;
int numberOfRows = DEFAULT_NUMBER_OF_ROWS;
numberOfRowsStr = request.getParameter("numberOfRows");
if (numberOfRowsStr != null && !(numberOfRowsStr.equals("")))
{

numberOfRows = Integer.parseInt(numberOfRowsStr);
}
boolean bAscending = false;
IOrderFactory fac = OrdersAPI.getFactory();
IRdLightWeightOrdersList orderedCarts =
fac.getListOfOrders(numberOfRows, "UpdateDate", bAscending);
request.setAttribute("orderedCarts",

(IRdLightWeightOrdersList) orderedCarts);
}
catch (Exception e)
Sterling Multi-Channel Selling Solution Developer Guide 321

Widgets

322 St
{
sendWidgetError(e);

}
// Dispatch
callJSP();

}

The final call callJSP() forwards the request to the widget JSP page:
MyOrdersWidget.jsp. Note the use of the OrdersAPI class and IOrderFactory
interface to retrieve carts of the appropriate type.

Widget JSP Page
Every widget JSP page has these important components:

• the include tag for cmgtinclude.jspf

• a scriptlet section that recovers the height, width, and other parameters
from the request

• the HTML table that provides the content of the widget

See the MyOrdersWidget.jsp file for an example widget JSP page. It is in
debs_home/Sterling/WEB-INF/web/en/US/orderMgmt/Orders/MyOrdersWid-
get.jsp.
erling Multi-Channel Selling Solution Developer Guide

CHAPTER 26 Customizing Advanced Search
The Sterling Multi-Channel Selling Solution offers a sophisticated search
capability. It is based on the Apache Lucene project. This chapter provides a guide
to customizing the search capabilities to meet your implementation requirements.

Overview
The advanced search capabilities of the Sterling Multi-Channel Selling Solution are
based on the creation of search indexes. A search index is a set of files that index
the occurrence of search terms in data objects. At any one time, there may be many
search index sets stored in the Sterling Multi-Channel Selling Solution.

Different search applications can access the same or different search index sets, but
at any one time each search application can use only one active index set.

When an end-user performs a search, the search engine is used to search through
the index for the requested terms and to return the search results. The search results
are filtered prior to the results being displayed to the end-user to remove products
that they should not be able to see: for example, by virtue of the price list
assignment to their partner or effectivity dates on the products.
Sterling Multi-Channel Selling Solution Developer Guide 323

Customizing Advanced Search

324 St
FIGURE 8. Advanced Search Concepts
Conceptually, the process comprises these steps:

1. An enterprise administrator initiates the creation of a search index. You can
click the Generate New button in the Search Administration tab of the Product
Manager application or create a cron job to generate search indexes at regular
intervals.

2. The index set is created by an index set builder class and the index builder
classes it invokes: these work through the product catalog by instantiating data
beans for each product, feature, and so on.

3. The index builders create index documents and write out the documents to the
file system on the Sterling Multi-Channel Selling Solution machine. Each
index set is created in a separate directory, for example as: debs_home/
Sterling/WEB-INF/data/searchIndex/en_US/MasterIndex_101/. In the
directory, a number of index files are created: they contain a binary
representation of the index set using a Lucene file format.
erling Multi-Channel Selling Solution Developer Guide

Overview
4. An end-user initiates a search either by performing a simple search using the
Find button on the catalog pages or by navigating to the Advanced Search
page and creating a search query using search terms.

5. The Sterling Multi-Channel Selling Solution processes the request as follows:

a. A list of search terms is created based on the terms entered by the user.

b. A searcher is instantiated and initialized with the search terms: one for
each row of the Advanced Search Terms form entered by the user.

c. The search() method is invoked on the searcher. First, the query search
terms are used to retrieve a raw list of search results, and then the filter
search terms are used to refine the list by filtering out search results that
should be excluded by virtue of factors such as the effectivity dates and
price lists. The result is a list of hits.

d. The hits are transformed into a list of objects representing the search
results.

6. The search results are passed to the JSP page and displayed to the end-user.

Building Indexes
Search indexes are built using instances of the IndexBuilder classes and its
sub-classes. All the builders implement the IIndexBuilder interface and should
extend the abstract BasicBuilder class. The main IndexBuilder method used to
create an index is build(). This method generates a document based on the list of
entities passed to it.

Index builders can contain one or more child index builders, and so you can have a
nested hierarchy of index builders. You can add and remove child index builders
from parent index builders. In general, the hierarchy of index builders should
reflect the relationships between the entities being indexed. For example, you
should use a child index builder to index the data fields of child data objects.

Each index builder is associated with a prefix: the prefixes are used to build up a
concatenated list of prefixes that reflect the hierarchy of index builders. When a
child index builder creates index entries, its entries are prefixed by the prefix of its
parent.

The hierarchy of index builders and associated prefixes are specified using the
SearchConfigurationProperties.xml file. The index builders are declared in a
nested set of Builder elements and each index builder is declared by specifying its
prefix and the data field it indexes. The prefix is the key attribute of the Builder
element and the index fields are declared as a list of IndexField elements.
Sterling Multi-Channel Selling Solution Developer Guide 325

Customizing Advanced Search

326 St
FIGURE 9. Index Builder Hierarchy
Note that the SearchConfigurationProperties.xml file is a shared file: access to it
should use the adjustFileName() method and use the boolean values to access a
shared, private, noloadable file.

Customizing Dictionary Mappings
If a user is searching for “color”, then you might want them to find items that use
the terms “colour” or “hue”. You specify the equivalence of search terms and words
using the CatalogDictionary.mappings file. Each line of this file takes the form:

term,word,word,word,...

The first string is referred to as the “term” and the following words are equivalent
words. You can add terms or edit terms to specify the word equivalences you want.
When a search is performed, occurrences of these words are regarded as equivalent
to occurrences of the term. If a user searches for the term, they will see results that
contain any of the other words. For example, suppose that you have in the
mappings file:

color,colour,hue

Searches for “color” will also return references to “colour” and “hue”; however,
searches for “hue” will not return references to “color” and “colour” unless you
have another line that reads:
erling Multi-Channel Selling Solution Developer Guide

Overview
hue,color,colour

Note that the CatalogDictionary.mappings file is a shared file: access to it should
use the adjustFileName() method and use the boolean values to access a shared,
private, noloadable file.

Processing Search Requests
Each end-user search request is handled by a sequence of these controllers:

1. CatalogAdvancedSearchController:

a. Receives the search request and sets the session context: the
SessionContext class is instantiated with a string that identifies the index
set to be used. The SessionContext class is used to hold information about
the user’s context such as their current locale, their price lists, and so on.

b. It pre-processes the request by updating any filters to be used to filter the
results.

c. It creates a list of search terms as a List of search terms: each term is an
instance of the SearchTerm class.

d. The controller forwards the search request to the
CatalogSearchResultController class.

2. CatalogSearchResultController: this class executes the search as follows:

a. Initialize the SearchContext with information from the user’s session.

a. Create a Searcher using the List of SearchTerms created by the
CatalogAdvancedSearchController.

b. Invoking search() on the Searcher object. This returns a list of hits as a
Hits object.

c. The Hits object is transformed into a List of data beans: this is set in the
request object and control is passed to the display controller and JSP page.

d. Search results can be displayed either by rank or by category: the
controller determines which display view has been requested, and
forwards the request either using the message type
“catSearchResultByCategory” or “catSearchResultByRank”.

Lucene Classes
The advanced search functionality uses the APIs provided by the Apache Lucene
project. You should not need to modify these classes in any way. In particular, the
following important classes are used:
Sterling Multi-Channel Selling Solution Developer Guide 327

Customizing Advanced Search

328 St
• Analyzer: the class used to parse, stem, and tokenize index entries.

• Document: the class used to hold index fields and to write them out to the
index set files.

• Field: an index entry together with flags that indicate how it is to be used
in searches.

• Filter: used to filter search results. It is extended by the CmgtFilter class.

• Hits: this class encapsulates the results of a search of the index set. The
SearchResultBuilder class provides the process() method that transforms a
Hits object into a List of results. The score(int i) method returns a score for
the hit indexed by i: this reflects how well the hit matches the search
criteria specified by the user.

• IndexReader: used to read index entries from the Lucene file format files.

• IndexWriter: used to write documents out in the Lucene file format.

• Query: the basic search object used to retrieve search results.

• Searcher: the basic class used to initiate searches over an index set. Its
search() method typically takes a Query and a Filter and returns a Hits
object.

IndexBuilder and IndexSetBuilder Classes
IndexBuilders
Index builders are Java classes that implement the IIndexBuilder interface. They
are used to create index entries based on the values of fields in objects. The abstract
BaseBuilder class implements the interface and all IndexBuilders should extend
BaseBuilder. The principal methods that must be implemented are:

• public Document build() throws ComergentException: builds the index
given the current document.

• public Document build(Document doc, IIndexBuilder parentBuilder)
throws ComergentException: used when the index builder is a child of
another index builder. The parent builder object is used to add the parent’s
key prefix to the current index builder’s prefix. The List of entities is
initialized with the parent’s List of entities. The BaseBuilder class defines
this method so that it first calls buildSelf() and then recursively calls the
build() method of the child index builders.
erling Multi-Channel Selling Solution Developer Guide

IndexBuilder and IndexSetBuilder Classes
• protected Document buildSelf(Document doc) throws
ComergentException: the method used to create the index entries for this
index builder. Each entry is an instance of the Field class: the document is
built up by creating each field and then adding each to the document. For
example:

IndexFieldConfiguration iconf =
this.conf.getIndexFieldConfiguration(id);

Field field = new Field(this.getPrefix()+iconf.getKey(),
result, iconf.getIsStore(), iconf.getIsIndex(),
iconf.getIsTokenize());

doc.add(field);

In creating a custom IndexBuilder, this method is overwritten with the
specific index building method required to create the custom index entries.

• public void addBuilder(IIndexBuilder builder): add a child index builder
to the current index builder.

• public List getEntities(): get the List of objects currently being indexed.

• public String getEntityType(): get the name of the class that is indexed by
this index builder. For example,
"com.comergent.bean.simple.ProductBean".

• public String getPrefix(): get the full prefix for entries created by this
index builder. For example, "product.name".

• public void init(List entities) throws ComergentException: initializes the
index builder with the list of entities to be indexed. Its main purpose is to
take the list of entities passed in and build the list of entities that it must
index. For example, for an index builder working on features, if the init()
method is passed a list of products, it might be used to build a list of
features that are assigned to the products along these (simplified) lines:

for (int i = 0; i < entities.size(); i++)
{

IBizProduct prod = null;
try
{

prod = (IBizProduct) entities.get(i);
prod.restoreFeatures(true, context.getLocale());
this.addEntities(getVisibleFeatures(prod.getFeatures()));

}
catch(ComergentException e)
{

throw new ComergentException(e.toString());
}

Sterling Multi-Channel Selling Solution Developer Guide 329

Customizing Advanced Search

330 St
}

• public void removeBuilder(int i) throws ComergentException: remove a
child index builder.

A GenericBuilder class can be used for simple index builders: it can perform the
basic index building required for data fields of data beans. Each builder contains its
configuration as a BuilderConfiguration class: this is passed in its constructor. The
BuilderConfiguration class holds the key to be used while indexing: this can be
accessed using getKey() and setKey() methods. It also identifies the Entity class (for
example, ProductBean) and a Map of IndexFieldConfiguration classes: each
IndexFieldConfiguration class is a mapping between a key and an ID. The ID
identifies the field of the entity class whose values are to be indexed. The key is the
string is to be used to uniquely identify this key from the other keys being generated
by building the index.

For example, if the Name data field of the ProductBean data object is to be indexed
by an index builder whose key is “prod” and it must index using the key “name”,
then you would use the following calls while creating the index builder:

BuilderConfiguration productBuilderConfiguration =
new BuilderConfiguration();

productBuilderConfiguration.setKey("prod");
productBuilderConfiguration.setEntityClass(

"com.comergent.bean.simple.ProductBean");
IndexFieldConfiguration productName = new IndexFieldConfiguration();
productName.setKey("name");
productName.setID("Name");
productBuilderConfiguration.addIndexFieldConfiguration(productName);
GenericBuilder productIndexBuilder =

new GenericBuilder(productBuilderConfiguration);

Index entries that it creates are retrieved using the “prod.name” key: this is the
concatenation of the index builder’s key with the index field’s key. If the index
builder is itself a child index builder of a parent index builder whose key is
“catalog”, then the key to retrieve entries is “catalog.prod.name”.

IndexSetBuilders
Each index set is created by invoking an IndexSetBuilder. The IndexSetBuilder
class is an abstract class: you must create a sub-class that implements its build()
method.

The build() method does the work of indexing the objects and writing out the
results to the file system. For example, the CatalogIndexSetBuilder class
implements the build() method by:
erling Multi-Channel Selling Solution Developer Guide

Search Terms
1. Instantiating the root index builder specified in the
SearchConfigurationProperties.xml file. Typically, this is done using the
getRootIndexBuilder() method of the IndexSetBuilder class. It invokes a
factory method that creates the hierarchy of index builders.

2. Creating an index writer: this manages writing out the index document to the
index files.

3. Retrieving the list of products.

4. For each product in the list of products:

a. Pass the product to the builder as a parameter. It gets added to the list of
entities in the index builder.

b. Create the index document by invoking build() on the index builder.

c. Writing out the document to the index writer.

5. Tidying up by logging the completion time.

Search Terms
Search terms are used to specify what index entries should be returned by the
Searcher class. The SearchTerm class is used to specify a single search term and
then a list of search terms is passed to the searcher by invoking the
addSearchTerm() method: this takes a List of SearchTerms as its parameter.

Search terms can be aggregated: by adding search terms together you build up the
complete search term used to perform the search.

The SearchTerm class has the following important methods:

• addTerm(): adds a search term to the current search term.

• setCondition(): specify whether this search term is looking for a field that
must or must not be in the search results. You can also use:

setCondition(SearchTerm.CONDITION_PREFER);

in situations where the user has expressed this preference.

• setFieldName(): set the name of the index field to be searched.

• setOP(): specifies the operator to be used to compare the search term value
to the field values.

• setType(): specifies whether the search term is to be used as a query search
term or a filter search term.
Sterling Multi-Channel Selling Solution Developer Guide 331

Customizing Advanced Search

332 St
• setValue(): the value to search for.

• setWeight(): set the weight to place on this search term when a hit is found.
This is used to evaluate the score for the hit.

For example, here is an example code fragment in which the search term is defined
to retrieve those prod.name fields with the value of “MXWS-7890”.

//Create a new advanced searcher
ICmgtSearcher temp_Searcher = new AdvancedSearcher();
//initialize with the a session context
SessionContext temp_Context = createSessionContext();
temp_Searcher.init(temp_Context);
//Create a search term
SearchTerm temp_SearchTerm = new SearchTerm();
temp_SearchTerm.setCondition(SearchTerm.CONDITION_MUST);
temp_SearchTerm.setFieldName("prod.name");
temp_SearchTerm.setOP(SearchTerm.OP_EQUAL);
temp_SearchTerm.setType(SearchTerm.TYPE_QUERY);
temp_SearchTerm.setValue("MXWS-7890");
temp_SearchTerm.setWeight(1.0);
//Add search term to list of search terms
List allSearchTerms = new ArrayList();
allSearchTerms.add(temp_SearchTerm);
temp_Searcher.addSearchTerm(allSearchTerms);
//Execute the search, retrieving results as a Hits object
Hits hits = temp_Searcher.search();

Search Term Types
There are different types of search terms:

• Query: these search terms are used to build the initial query which is used
to search the index set.

• Filter: these search terms are used to filter the results returned from the
initial search query.

• Filtering Query: this is a helper type of search term used when the search
request has a “Must Have” condition.

Filters
Each search result is represented as an instance of the Document class. Filter search
terms can act on each document to determine whether the result meets the
requirements of the filter or to filter the result out. The following code example
demonstrates the use of filter search terms: it creates a combination of search terms
that exclude products whose effectivity dates mean that the product would not be
available at the time of the search.
erling Multi-Channel Selling Solution Developer Guide

Processing Results
// Create parameters used in defining search terms
String now = DateField.dateToString(new Date());
SearchFieldConfiguration sconf =

cntx.getIndexSet().getSearchFieldConfiguration("prodSDate");
SearchFieldConfiguration econf =

cntx.getIndexSet().getSearchFieldConfiguration("prodEDate");
// Create top-level search term
SearchTerm allTerms = new SearchTerm();
// Create top-level filter term
SearchTerm top = new SearchTerm();
top.setFieldName("effectivityCheck");
top.setCondition(SearchTerm.CONDITION_MUST);
top.setNeedParsing(false);
top.setType(SearchTerm.TYPE_FILTERING_QUERY);
// term for checking effective start date
SearchTerm st1 = new SearchTerm();
st1.setFieldName(sconf.getKey());
st1.setCondition(SearchTerm.CONDITION_MUST);
st1.setNeedParsing(false);
st1.setOP(SearchTerm.OP_LET);
st1.setValue(now);
// term for checking for effective end date
SearchTerm st2 = new SearchTerm();
st2.setFieldName(econf.getKey());
st2.setCondition(SearchTerm.CONDITION_MUST);
st2.setNeedParsing(false);
st2.setOP(SearchTerm.OP_GET);
st2.setValue(now);
//Add filter terms to top-level filter term
top.addTerm(st1);
top.addTerm(st2);
//Add filter term to top-level search term
allTerms.add(top);

Note the use of the OP.LET and OP.GET operators: these are the "less than or
equal" and "greater than or equal" operators used to compare dates represented as
Strings.

Processing Results
Once the search has returned its list of results in the form of a Hits object, you must
ready the results to pass them to the JSP page used to display them. You can use a
SearchResultBuilder class for this purpose: this abstract class provides methods to
process the results, and sub-classes of this class can provide custom processing.
Sterling Multi-Channel Selling Solution Developer Guide 333

Customizing Advanced Search

334 St
The getProdScoresAndTrim() method is used to turn the Hits object into an
ArrayList of Document objects, one for each hit. It also creates a HashMap of
scores that is used to order the results by score.

The key method that sub-classes must implement is the process() method. Its
purpose is to turn the Hits into a list of objects that can be rendered on the JSP page:
typically, this is an ArrayList of data beans or presentation beans.

Here is a simplified example of what the process method does:

public List process(Hits hits, int pageNum, SessionContext cntx)
throws ICCException, IOException

{
this.indexSet = cntx.getIndexSet();
Long stopCount = cntx.getStopCount().longValue()
ArrayList docs = super.getProdScoresAndTrim(hits, stopCount);
super.setTotalBeforeStopCount(hits.length());
super.setTotalAfterStopCount(docs.size());
super.setCurPageNum(pageNum);
// Sort the result.
this.doSort(docs, super.getSortCriteria(),

super.isSortAscending());
// gets price stored in the index.
this.getProductPrices(docs);
// get results for the page
ArrayList pageDocs = getPage(docs, pageNum, super.getPageSize());
// get product ids
SearchFieldConfiguration sconf =

this.indexSet.getSearchFieldConfiguration("prodID");
ArrayList productIDs =

this.getProductIDs(pageDocs, sconf.getKey());
// create query
DsQuery query = getProductQuery(productIDs);
// restore products based on the query
IBizProductList pl = restoreProducts(super.getDc(),

query, super.isShowPromotions());
// Need to re-order results returned from query
List pList = pl.getProducts();
pList = filterByEffectivity(pList);
setPrices(pList);
pList = reorderResults(productIDs, pList);
return pList;

}

Typically, a controller constructs the appropriate results builder, uses it to processes
the results, and then passes off the result to the JSP page:

SearchResultBuilder temp_ResultBuilder = new ProductListBuilder();
List resultList = temp_ResultBuilder.process(hits, pageNumber, cntx);
erling Multi-Channel Selling Solution Developer Guide

Customizing IndexBuilders
request.setAttribute("products", resultList);

Customizing IndexBuilders
Typically, you can customize index building in these ways:

• Modify the configuration using the configuration files and creating new
index builders.

• Create complex search terms using the query, filter, and filtering query
search term types.

• Apply filters that limit the objects to be indexed: building filters that
perform complex comparisons of terms.

• Add or remove fields to be indexed: modifying the
SearchConfigurationProperties.xml file to add new index fields and
corresponding index builders for the new fields.

• Customize the stemming and parsing logic: either extend the existing
CatalogSearchAnalyzer class or create a new Analyzer class that extends
the Lucene Analyzer class.
Sterling Multi-Channel Selling Solution Developer Guide 335

Customizing Advanced Search

336 St
erling Multi-Channel Selling Solution Developer Guide

CHAPTER 27 Web Services
The Sterling Multi-Channel Selling Solution provides a set of Web services that can
be used to execute Sterling Multi-Channel Selling Solution functionality from
remote clients. Release 7.0 and higher provide an extensible framework in which
SOAP messages can be handled, and some specific Web services that can be used
out-of-the-box. This chapter covers:

• "Overview" on page 337

• "Web Services Provided by Sterling Multi-Channel Selling Solution" on
page 340

• "Creating a Web Service" on page 347

The Web services also provide the basic capability to provide portlets that display
the data returned by the Web services. See the Sterling Multi-Channel Selling
Solution Implementation Guide for details.

Overview
Web services provide a framework that enables Web applications to expose
functionality in a standard way to remote clients. They use a combination of XML
and HTTP to communicate between client and server. Most Web services use the
Simple Object Access Protocol (SOAP) to exchange the remote procedure calls,
although other protocols can also be supported.
Sterling Multi-Channel Selling Solution Developer Guide 337

Web Services

338 St
The basic rules in writing a new Web service and WSDL Interface definition are:

1. The input message should have a single part and is an element.

2. The Element should have the same name as the operation name.

3. The elements complex type should not have attributes.

4. The response element should be operationName appended with “Response”.

WSDL Files
When a Web application provides a Web service, it declares them using a Web
Services Description Language (WSDL) file: this is an XML file that describes the
Web service: it specifies the location of the Web service and the methods that it
exposes. For example, the following fragment of a WSDL file is used to obtain a
stock quote:

<portType name="StockQuotePortType">
<operation name="GetLastTradePrice">

<input message="tns:GetLastTradePriceInput"/>
<output message="tns:GetLastTradePriceOutput"/>

</operation>
</portType>

In this example, the Web service, StockQuotePortType, supports a method called
GetLastTradePrice that takes one parameter, an object of type
GetLastTradePriceInput, and it returns an object of type GetLastTradePriceOutput.
The precise structure of the GetLastTradePriceInput and GetLastTradePriceOutput
types are also defined in the same WSDL document.

Web Service Clients
In order to access the Web service, you must write a client that generates SOAP
messages and sends them to the Web application in such a way that the Web
application can process the messages and respond. The client can be written in any
programming language, provided that it can correctly issue and receive SOAP
messages.

Writing the client entirely by hand could be a laborious task: fortunately, tools are
available to generate the client code. The tools use the WSDL file to generate the
client “stub” classes that can handle the SOAP communication between client and
Web application, and so all you need to do is to write the application logic for the
client.
erling Multi-Channel Selling Solution Developer Guide

Overview
Most modern integrated development environments (IDEs) such as Eclipse and
Visual Studio support the generation of client classes, and an open source software
project, AXIS, can also be used.

Typically, you use the automatically-generated “locator class” to instantiate a client
class that can invoke the Web service, and then the client class can invoke one of
the Web service operations in way which is entirely invisible to the client
application.

Example
For example, the OrderInterface.wsdl WSDL file provided by the Sterling Multi-
Channel Selling Solution contains the following XML fragments:

<xsd:element name="OrderCreateRequest">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="MessageHeader" type="tns:MessageHeaderType" />
<xsd:element name="RemoteUser" type="tns:RemoteUserType" />
<xsd:element name="Order" type="tns:OrderCreateParams" />
</xsd:sequence>
</xsd:complexType>

</xsd:element>

If you run one of the Java-based tools against this WSDL, then you will see that
(among others) the following classes are generated:

• OrderCreateServiceLocator.java

• OrderCreateParams.java

• OrderCreatePortType.java

• OrderCreateRequest.java

• OrderCreateResponse.java

By using these classes in your client application, you can invoke the Web service
along these lines:

try
{

OrderCreateServiceLocator temp_OrderCreateServiceLocator =
new OrderCreateServiceLocator();

OrderCreatePortType temp_OrderCreatePortType =
temp_OrderCreateServiceLocator.getOrderCreatePort();

MessageHeaderType temp_MessageHeaderType =
new MessageHeaderType();

MessageTypeType temp_MessageTypeType =
MessageTypeType.fromString("dXML");
Sterling Multi-Channel Selling Solution Developer Guide 339

Web Services

340 St
temp_MessageHeaderType.setMessageType(temp_MessageTypeType);
MessageVersionType temp_MessageVersionType =

MessageVersionType.fromString("5.1");
temp_MessageHeaderType.setMessageVersion(

temp_MessageVersionType);
temp_MessageHeaderType.setMessageID("Fred");
RemoteUserType temp_RemoteUserType = new RemoteUserType();
temp_RemoteUserType.setUserLogin("ERPAdmin");
temp_RemoteUserType.setUserAuthenticator("ERPAdmin");
OrderCreateParams temp_OrderCreateParams =

new OrderCreateParams();
temp_OrderCreateParams.setCurrencyCode("USD");
... set the values of other order fields
DXMLOrderType temp_DXMLOrderType =

temp_OrderCreatePortType.orderCreateRequest(
temp_MessageHeaderType,
temp_RemoteUserType, temp_OrderCreateParams);

OrderResponseType temp_OrderResponseType =
temp_DXMLOrderType.getOrder();

OrderCreateResponse temp_OrderCreateResponse =
temp_OrderCreatePortType.orderCreate(temp_OrderCreateRequest);

}
catch (Exception e)
{

System.out.println("Throwing exception " + e.toString());
e.printStackTrace(System.out);

}
...

The key lines are the ones that create the OrderCreateServiceLocator locator class,
use the locator class to create the OrderCreatePortType, create the
OrderCreateParams class, and then the line that invokes the service and receives
back an instance of the DXMLOrderType class. Note the use of a try-catch block to
capture any problems asscociated with invoking the Web service. The SOAPFault
mechanism is used to capture any server-side errors and using the printStackTrace()
method on the exception will help you to identify the cause of an error.

Web Services Provided by Sterling Multi-Channel
Selling Solution
The Sterling Multi-Channel Selling Solution provides the following Web services:

• "Attribute Management" on page 342

• "Attribute Group Management" on page 342

• "Catalog Management" on page 343
erling Multi-Channel Selling Solution Developer Guide

Web Services Provided by Sterling Multi-Channel Selling Solution
• "Invoice Management" on page 343

• "Lead Management" on page 343

• "OIL Management" on page 343

• "Order Management" on page 344

• "Partner Management" on page 344

• "Promotion Management" on page 344

• "Proposal Management" on page 344

• "Quote Management" on page 345

• "Return Management" on page 345

• "Sales Contract Management" on page 345

• "Service Contract Management" on page 345

• "Task Management" on page 346

• "User Management" on page 346

The Web services are declared in the Interface WSDL files to be found in the
debs_home/Sterling/dXML/5.1/ directory:

• AttributeInterface.wsdl

• AttributeGroupInterface.wsdl

• CatalogInterface.wsdl

• InvoiceInterface.wsdl

• LeadInterface.wsdl

• OILInterface.wsdl

• OrderInterface.wsdl

• PartnerInterface.wsdl

• PromotionInterface.wsdl

• ProposalInterface.wsdl

• QuoteInterface.wsdl

• ReturnInterface.wsdl

• SalesContractInterface.wsdl
Sterling Multi-Channel Selling Solution Developer Guide 341

Web Services

342 St
• ServiceContractInterface.wsdl

• TaskInterface.wsdl

• UserInterface.wsdl

Before you notify your customers of the Web services, be sure to check that you
know the URL that should be used to access the WSDL files. For example, suppose
that the main URL used to access the Sterling Multi-Channel Selling Solution is:

http://www.matrix.com:8080/Sterling/en/US/enterpriseMgr/matrix

Here, the last portion of the URL is “matrix”: this is a skin used to enter the Sterling
Multi-Channel Selling Solution. Then you use a URL along these lines to retrieve
the WSDLs:

http://www.matrix.com:8080/Sterling/dXML/5.1/
GetWSDL.jsp?sfName=matrix&fileName=ServiceInterface.wsdl

Attribute Management
You can access the following Attribute-related services:

• AttributeDelete

• AttributeGet

• AttributeUpdate

You can access the Attribute Management WSDL at:

http://<server:port>/Sterling/dXML/5.1/
GetWSDL.jsp?sfName=matrix&fileName=AttributeInterface.wsdl

Attribute Group Management
You can access the following Attribute Group-related services:

• AttributeGroupDelete

• AttributeGroupGet

• AttributeGroupUpdate

You can access the Attribute Group Management WSDL at:

http://<server:port>/Sterling/dXML/5.1/
GetWSDL.jsp?sfName=matrix&fileName=AttributeGroupInterface.wsdl

Note If you are adding the URL in a .bat or .sh script you may need to add a “^”
(caret) symbol immediately before the “&” (ampersand), depending on your
interpretor.
erling Multi-Channel Selling Solution Developer Guide

Web Services Provided by Sterling Multi-Channel Selling Solution
Catalog Management
You can access the following Catalog-related services:

• ProductGet

• ProductSearch

You can access the Catalog Management WSDL at:

http://<server:port>/Sterling/dXML/5.1/
GetWSDL.jsp?sfName=matrix&fileName=CatalogInterface.wsdl

Invoice Management
You can access the following Invoice-related services:

• InvoiceChange

• InvoiceCreate

• InvoiceGet

• InvoiceListGet

You can access the Invoice Management WSDL at:

http://<server:port>/Sterling/dXML/5.1/
GetWSDL.jsp?sfName=matrix&fileName=InvoiceInterface.wsdl

Lead Management
You can access the following Lead-related services:

• LeadGet

• LeadSearch

You can access theLead Management WSDL at:

http://<server:port>/Sterling/dXML/5.1/
GetWSDL.jsp?sfName=matrix&fileName=LeadInterface.wsdl

OIL Management
You can access the following OIL-related services:

• OILCreate

• OILGet

• OILSearch

• RoutedOILSearch
Sterling Multi-Channel Selling Solution Developer Guide 343

Web Services

344 St
You can access the OIL Management WSDL at:

http://<server:port>/Sterling/dXML/5.1/
GetWSDL.jsp?sfName=matrix&fileName=OILInterface.wsdl

Order Management
You can access the following Order-related services:

• OrderCreate

• OrderGet

• OrderSearch

• OrderStatus

You can access the Order Management WSDL at:

http://<server:port>/Sterling/dXML/5.1/
GetWSDL.jsp?sfName=matrix&fileName=OrderInterface.wsdl

Partner Management
You can access the following Partner-related services:

• PartnerCreate

• PartnerChange

You can access the Partner Management WSDL at:

http://<server:port>/Sterling/dXML/5.1/
GetWSDL.jsp?sfName=matrix&fileName=PartnerInterface.wsdl

Promotion Management
You can access the following Promotion-related services:

• PromotionGet

• PromotionSearch

You can access the Promotion Management WSDL at:

http://<server:port>/Sterling/dXML/5.1/
GetWSDL.jsp?sfName=matrix&fileName=PromotionInterface.wsdl

Proposal Management
You can access the following Proposal-related services:

• ProposalCreate
erling Multi-Channel Selling Solution Developer Guide

Web Services Provided by Sterling Multi-Channel Selling Solution
• ProposalSearch

You can access the Proposal Management WSDL at:

http://<server:port>/Sterling/dXML/5.1/
GetWSDL.jsp?sfName=matrix&fileName=ProposalInterface.wsdl

Quote Management
You can access the following Quote-related services:

• QuoteGet

• QuoteSearch

You can access the Quote Management WSDL at:

http://<server:port>/Sterling/dXML/5.1/
GetWSDL.jsp?sfName=matrix&fileName=QuoteInterface.wsdl

Return Management
You can access the following Return-related services:

• ReturnGet

• ReturnSearch

You can access the Return Management WSDL at:

http://<server:port>/Sterling/dXML/5.1/
GetWSDL.jsp?sfName=matrix&fileName=ReturnInterface.wsdl

Sales Contract Management
You can access the following Quote-related services:

• SalesContractGet

• SalesContractSearch

You can access the Sales Contract Management WSDL at:

http://<server:port>/Sterling/dXML/5.1/
GetWSDL.jsp?sfName=matrix&fileName=SalesContractInterface.wsdl

Service Contract Management
You can access the following Service Contract-related services:

• ServiceContractSearch

• ServiceContractGet
Sterling Multi-Channel Selling Solution Developer Guide 345

Web Services

346 St
You can access the Service Contract Management WSDL at:

http://<server:port>/Sterling/dXML/5.1/
GetWSDL.jsp?sfName=matrix&fileName=ServiceContractInterface.wsdl

Task Management
You can access the following Task-related services:

• TaskGet

• TaskSearch

You can access theTask Management WSDL at:

http://<server:port>/Sterling/dXML/5.1/
GetWSDL.jsp?sfName=matrix&fileName=TaskInterface.wsdl

User Management
You can access the following User-related services:

• UserGet

• UserUpdate

You can access the Shopping Cart Management WSDL at:

http://<server:port>/Sterling/dXML/5.1/
GetWSDL.jsp?sfName=matrix&fileName=UserInterface.wsdl

Common Components
These files make use of common definitions defined in the dXML schema
definition XSD files:

• dXML-AttributeGroupObjectDefinitions.xsd

• dXML-AttributeObjectDefinitions.xsd

• dXML-BasicComponents.xsd

• dXML-CatalogObjectDefinitions.xsd

• dXML-InvoiceObjectDefinitions.xsd

• dXML-LeadObjectDefinitions.xsd

• dXML-OILObjectDefinitions.xsd

• dXML-OrderObjectDefinitions.xsd

• dXML-PartnerObjectDefinitions.xsd
erling Multi-Channel Selling Solution Developer Guide

Creating a Web Service
• dXML-PromotionObjectDefinitions.xsd

• dXML-ProposalObjectDefinitions.xsd

• dXML-QuoteObjectDefinitions.xsd

• dXML-ReturnObjectDefinitions.xsd

• dXML-SalesContractDefinitions.xsd

• dXML-ServiceContractDefinitions.xsd

• dXML-TaskObjectDefinitions.xsd

• dXML-UserObjectDefinitions.xsd

The dXML-BasicComponents.xsd XSD file defines elements that are common to
all the Web services supported by the Sterling Multi-Channel Selling Solution, and
the other XSD files are specific to each of the Interface Web services.

Creating a Web Service
This section describes how to go about creating a Web service using the Sterling
Multi-Channel Selling Solution APIs. Throughout this section we use the example
of creating a Web service to provide pricing information for a user.

To create a Web service for an existing API, you must provide the following
components:

• WSDL: create a WSDL which declares the form of the request and
response used to invoke the Web service. The WSDL file can include
XSD files that define specific types used by the WSDL.

• Business API: either identify or create the business API used to perform
the business logic and retrieve the required information.

• Bizlet Class: you must implement a Bizlet class to process the inbound
service request.

• Message Conversion Files: these are entries in the corresponding
converter definition files (dxml_5_1_to_comergent_4_0.xml and
native_to_dxml_5_1.xml for the inbound and outbound messages
resepctively), and the stylesheets used to convert the messages.

The following diagram provides a picture of how the components work together:
Sterling Multi-Channel Selling Solution Developer Guide 347

Web Services

348 St
FIGURE 10. Sterling Multi-Channel Selling SolutionWeb Services
In developing your Web service, you will find it very helpful to have the following
components set up:

• Logging set to debug in the business API that your Web service invokes.

• Logging set to debug in the messaging layer: this will enable you to view
the form of the dXML 5.1 and Comergent 4.0 XML messages, and verify
that the stylesheets are correctly converting from one to the other.

• A tool such as the Axis TCPMon tool: this enables you to view the form of
the XML message being sent by your client application into the Sterling
Multi-Channel Selling Solution and the form of the XML message being
returned from the Sterling Multi-Channel Selling Solution to your client
application.
erling Multi-Channel Selling Solution Developer Guide

Creating a Web Service
WSDL
You must create WSDL file that defines the Web service. This must declare the
form in which the request must be packaged and the form in which the response is
packaged. Using a tool such as TCPMon, you can verify that the client application
is sending and receiving XML mesages that match the specification declared in the
WSDL file and its included XSD files.

In our example, we declare the form of the PricingGetRequest and
PricingGetRequestResponse in a PricingInterface.wsdl file as follows:

<xsd:element name="PricingGetRequest">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="MessageHeader" type="cmgt:MessageHeaderType"/>
<xsd:element name="RemoteUser" type="cmgt:RemoteUserType"/>
<xsd:element name="PriceAvailabilityRequest"

type="cmgt:PriceAvailabilityRequest"/>
</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="PricingGetRequestResponse">

<xsd:complexType>
<xsd:sequence>
<xsd:element name="dXML" type="cmgt:dXMLPriceAvailabilityType"/>
</xsd:sequence>
</xsd:complexType>

</xsd:element>

The names of xsd:elements will determine the names of XML elements within the
XML message passing over the wire. The types must be defined in the WSDL file
(or files included using the xsd:include tag). For example, the
cmgt:dXMLPriceAvailabilityType is declared as:

<xsd:complexType name="dXMLPriceAvailabilityType">
<xsd:sequence>
<xsd:element name="MessageHeader" type="cmgt:MessageHeaderType"/>
<xsd:element name="ResponseHeader"

type="cmgt:ResponseHeaderType"/>
<xsd:element name="PriceAvailability"

type="cmgt:PriceAvailabilityResponseType"/>
</xsd:sequence>

</xsd:complexType>

In the same way, the cmgt:PriceAvailabilityResponseType is declared with its
subsidiary types as:

<xsd:complexType name="PriceAvailabilityResponseType">
<xsd:sequence>
Sterling Multi-Channel Selling Solution Developer Guide 349

Web Services

350 St
<xsd:element name="CurrencyCode" type="cmgt:StringType"
minOccurs="0" maxOccurs="1"/>

<xsd:element name="CustomerType" type="cmgt:StringType"
minOccurs="0" maxOccurs="1"/>

<xsd:element name="PaLineList" type="cmgt:PaLineArray"
minOccurs="0" maxOccurs="1"/>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="PaLineArray">

<xsd:sequence>
<xsd:element name="PaLine" type="cmgt:PaLine"

minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name="PaLine">
<xsd:sequence>

<xsd:element name="SKU" type="cmgt:SKUType"/>
<xsd:element name="Quantity" type="cmgt:QuantityType"

minOccurs="0" maxOccurs="1"/>
<xsd:element name="ListPrice" type="cmgt:AmountType"

minOccurs="0" maxOccurs="1"/>
</xsd:sequence>

Once the WSDL and included files are writtten, you should drop them into the
debs_home/Sterling/dXML/5.1/ directory, and verify that you can generate client
stub classes by running a Web services tool such as the Axis WSDL2Java script
against this WSDL.

If you write a client application using the generated client stub classes, then you
should be able to run the client application and verify that an error message is
reported by the Sterling Multi-Channel Selling Solution messaging layer (because
you have not yet defined the message type that you want to use to invoke the Web
service).

Business API
Web services provide a mechanism to expose some of your business logic so that it
can be executed by remote clients. You may already have created the business logic
or you may have to create it as part of the process of creating the Web service.

In this section, we are using the example of the business API used to retrieve prices.
Specifically, we want to invoke the check(pricing Cart pc) method of the
com.comergent.api.apps.pricingMgr.PriceCheckAPI class. To do this, our Bizlet
implementation class will need to assemble a PricingCart object from the inbound
message: this PricingCart encapsulates all the information that the pricing engine
requires: the partner key, the customer type, the currency, and the product IDs.
erling Multi-Channel Selling Solution Developer Guide

Creating a Web Service
Bizlet Class
CHAPTER 5, "Bizlets" provides an introduction to the use of Bizlets in the Sterling
Multi-Channel Selling Solution, and so this section concentrates on the specific
implementation we use in this example. Bizlets use beans to specify their
interfaces, and so we must use either a pre-existing data object definition or create
one, so that the bean class is generated. The data object definition can be used to
generate the corresponding Comergent 4.0 DTD: it is this DTD that determines
how the stylesheet will transform the inbound dXML message into the Comergent
4.0 XML form that is used to create the data bean used by the Bizlet class.

Together with the Bizlet class, you must declare the MessageType entry in one of
the MessageTypes.xml configuration files: this provides the mapping between the
message type and the Bizlet class. In our example, we simply create an entry in the
PricingAdminAndAssignGroup message group along these lines:

<MessageType Name="PriceAvailabilityRequest">
<ControllerMapping>

com.comergent.dcm.bizlet.BizRouter
</ControllerMapping>
<BizletMapping>
com.comergent.apps.priceCheck.bizlet.PriceCheckBizlet.checkPrices
</BizletMapping>

</MessageType>

In our example, we will use the PriceAvailability data object: its XML data object
definition file is part of the Release 8.0 WAR release, and its DTD is generated as
part of an SDK installation. The Bizlet interface we create is called
PriceCheckBizlet and its corresponding implementation class is
PriceCheckBizletImpl. The interface supports one method:

public PriceAvailabilityBean checkPrices(PriceAvailabilityBean
priceAvailabilityBean)

The implementation class provides the following implementation of the
checkPrices() method:

public PriceAvailabilityBean checkPrices(PriceAvailabilityBean
priceAvailabilityBean) throws ICCException

{
PricingCart temp_InboundPricingCart =

convertPABeanToPricingCart(priceAvailabilityBean);
PricingCart temp_OutboundPricingCart =

PriceCheckAPI.check(temp_InboundPricingCart);
convertPricingCartToPABean(temp_OutboundPricingCart,

priceAvailabilityBean);
return priceAvailabilityBean;

}

Sterling Multi-Channel Selling Solution Developer Guide 351

Web Services

352 St
Here, helper methods are used to convert between the bean used by the Bizlet API
and the PricingCart used by the PriceCheck API.

At this point, you should be able to verify that the Bizlet class is being invoked
correctly, by directly posting into the Sterling Multi-Channel Selling Solution
messages that match the Comergent 4.0 representation of the bean that your Bizlet
uses.

Message Conversion Files
This section covers the conversion of the inbound XML message from the client
applicaiton, and the outbound message back to the client. This involves creating
stylesheets, and in addition to the stylesheets, you must update the converter
configuration files to declare the new stylesheets
(dxml_5_1_to_comergent_4_0.xml and native_to_dxml_5_1.xml for the
inbound and outbound messages respectively).

Inbound Conversion

When the client application invokes the Web service by means of the stub classes, it
sends a dXML message as an inbound post into the Sterling Multi-Channel Selling
Solution. The inbound message is transformed using a stylesheet that converts the
dXML into Comergent 4.0 (the “native” format) XML, and then the messaging
layer can convert this into the bean that the Bizlet class is expecting. Consequently,
a stylesheet has to be created to convert the inbound dXML message into the
Comergent 4.0 form.

For example, to mange the conversion of the inbound PricingGetRequest, the
following entry is added to the dxml_5_1_to_comergent_4_0.xml file:

<MessageType Name="PricingGetRequest">
<ConvertedMessageType>PriceAvailabilityRequest</ConvertedMessageType>
<ConverterImpl>com.comergent.converter.ConverterImpl</ConverterImpl>
<Stylesheet>

/WEB-INF/stylesheets/dXML51toCmgt40_PriceAvailability_Req.xsl
</Stylesheet>
</MessageType>

In the dXML51toCmgt40_PriceAvailability_Req.xsl stylesheet file, the
following element is used to convert the MessageHeader element of the inbound
dXML message into the corresponding MessageHeader element of the Comergent
4.0 message:

<xsl:template match="cmgtws:MessageHeader">
<xsl:variable name="messageType"

select="'PriceAvailabilityRequest'"/>
<xsl:variable name="messageVersion" select="'4.0'"/>
erling Multi-Channel Selling Solution Developer Guide

Creating a Web Service
<MessageHeader>
<MessageType>

<xsl:value-of select="$messageType"/>
</MessageType>
<MessageVersion>

<xsl:value-of select="$messageVersion"/>
</MessageVersion>
<MessageID>

<xsl:value-of select="/cmgtws:PricingGetRequest/
cmgtws:MessageHeader/cmgtws:MessageID"/>

</MessageID>
<SessionID>

<xsl:value-of select="/cmgtws:PricingGetRequest/
cmgtws:MessageHeader/cmgtws:SessionID"/>

</SessionID>
</MessageHeader>

</xsl:template>

Similarly, the following element converts the PriceAvailabilityRequest element:

<xsl:template match="cmgtws:PriceAvailabilityRequest">
<PriceAvailability type="BusinessObject" state="INSERTED">

<CurrencyCode>
<xsl:value-of select="/cmgtws:PricingGetRequest/

cmgtws:PriceAvailabilityRequest/cmgtws:CurrencyCode"/>
</CurrencyCode>
<OrderType>
<xsl:value-of select="/cmgtws:PricingGetRequest/

cmgtws:PriceAvailabilityRequest/cmgtws:CustomerType"/>
</OrderType>

<PaLineItemList state="INSERTED">
<xsl:for-each select="/cmgtws:PricingGetRequest/cmgtws:PriceAv-

ailabilityRequest/cmgtws:PaLineList/cmgtws:PaLine">
<PaLineItem>

<SellerSKU>
<xsl:value-of select="cmgtws:SKU"/>

</SellerSKU>
<BuyerSKU>

<xsl:value-of select="cmgtws:SKU"/>
</BuyerSKU>
<Quantity>

<xsl:value-of select="cmgtws:Quantity"/>
</Quantity>

</PaLineItem>
</xsl:for-each>
</PaLineItemList>
</PriceAvailability>

</xsl:template>
Sterling Multi-Channel Selling Solution Developer Guide 353

Web Services

354 St
Outbound Conversion
The conversion from Comergent 4.0 back to dXML 5.1 is declared in the
native_to_dxml_5_1.xml. For example:

<MessageType Name="PriceAvailabilityReply">
<ConvertedMessageType>PricingGetResponse</ConvertedMessageType>
<ConverterImpl>com.comergent.converter.ConverterImpl</Converter-

Impl>
<Stylesheet>
WEB-INF/stylesheets/NativetodXML51_PricingGet_Rep.xsl
</Stylesheet>

</MessageType>

The stylesheet uses the following elements to convert the Comergent 4.0
PriceAvailability element:

<xsl:template match="PriceAvailability">
<PriceAvailability>
<xsl:call-template name="PriceAvailability"/>
<xsl:apply-templates select="PaLineItemList" />
</PriceAvailability>

</xsl:template>
<xsl:template name="PriceAvailability">
<CurrencyCode>
<xsl:value-of select="/Comergent/PriceAvailability/CurrencyCode"/>
</CurrencyCode>
<CustomerType>
<xsl:value-of select="/Comergent/PriceAvailability/OrderType"/>
</CustomerType>
</xsl:template>
<xsl:template name="PaLineItemList" match="PaLineItemList">

<PaLineList>
<xsl:for-each select="PaLineItem">
<PaLine>
<SKU>

<xsl:value-of select="SellerSKU"/>
</SKU>
<Quantity>

<xsl:value-of select="Quantity"/>
</Quantity>
<ListPrice>

<xsl:value-of select="ListPrice"/>
</ListPrice>
</PaLine>
</xsl:for-each>

</PaLineList>
</xsl:template>
erling Multi-Channel Selling Solution Developer Guide

Creating a Web Service
At this point, you should be able to verify that the Bizlet class is being invoked
correctly, by directly posting into the Sterling Multi-Channel Selling Solution
messages that match the dXML 5.1 form of the message that your Web service
uses. If this succeeds, then you should be able to test the system end-to-end by
running your client application class.
Sterling Multi-Channel Selling Solution Developer Guide 355

Web Services

356 St
erling Multi-Channel Selling Solution Developer Guide

CHAPTER 28 Maintaining History for Data Objects
This chapter describes how to keep track of the history of a data object as it is
created and modified. This information can be useful to users to understand what
changes have been made to objects such as order, invoices, quotes, and so on. In
addition, the history gives an audit trail of changes in cases where it becomes
critical to understand which user made which changes to an object.

Framework
The recommended approach is to save the history of changes to a data object by
using a history data object that takes a “snapshot” of the data object, and then
persisting the history data object to the Knowledgebase. Before saving the snapshot
you can add or remove information that you do not need to record from the history
data object. Typically, the orginal data object has a field that acts as its unique
unique key: this key can be used to retrieve all of the history data objects that relate
to each original data object.

The approach taken is to define the history data object by extending the orginal data
object. Using the copyBean() method to copy the data from the orginal bean to the
history data bean is possible because the history data bean class extends the original
bean class. Depending on what history is required to save, you can have additional
fields in the history data object which should be populated before calling persist()
on the history data bean.
Sterling Multi-Channel Selling Solution Developer Guide 357

Maintaining History for Data Objects

358 St
Example
In this example, we use the OrderLine Item as the data object whose history we
want to record. So assume that there is an OrderLineItem.xml file defining the
structure of the data object, and that a corresponding simple bean and list bean have
been generated: OrderLineItemBean.java and OrderLineItemListBean.java.

Here is a simplified form of the data object file:

<DataObject Extends="OrderInquiryListLineItem" Name="OrderLineItem"
ObjectType="JDBC" Version="6.0">
<DataFieldList>

<DataField ExternalFieldName="LIST_PRICE" Mandatory="n"
Name="OrderListPrice" Writable="y"/>

...
</DataFieldList>

</DataObject>

1. Define a new data object to capture line item history. This should extend the
OrderLineItem data object to keep it forwardly compatible with
OrderLineItem across any changes. For example:

<DataObject Name="OrderLineItemHist" Extends="OrderLineItem"
ExternalAlias="LI" ExternalName="CMGT_OIL_LI_H"
ObjectType="JDBC" Version="6.0">
<KeyFields>

<KeyField Name="HistoryLineKey"
ExternalName="HISTORY_LINE_KEY"
KeyGenerator="HistoryLineKey"/>

</KeyFields>
<DataFieldList>

<DataField Name="HistoryLineKey"
ExternalFieldName="HISTORY_LINE_KEY"
Mandatory="n" Writable="y"/>

</DataFieldList>
</DataObject>

Note that in this example, the OrderLineItemHist data object uses a different table
than the OrderLineItem. This is not strictly necessary. There are some additional
data fields which may be relevant for the history capture. It defines a key field that
uniquely identifies this version of the line history.

2. Make the relevant entries in the DsDataElements.xml,
DsBusinessObjects.xml, and DsRecipes.xml files.

3. Run the bean generator to generate the data beans and their interfaces.
erling Multi-Channel Selling Solution Developer Guide

Example
4. In the application that creates and modifies the OrderLineItem data objects,
add the following to capture history. It uses the copyBean() method to transfer
the data from the OrderLineItemBean class to the corresponding
OrderLineItemHistBean class. Assume that you have an instance, olib, of the
order line item bean for which you want to capture history:

OrderLineItemBean olib = instance of OrderLineItemBean
//Create an instance of the History bean
OrderLineItemHistBean newBean = (OrderLineItemHistBean)

OMWrapper.getObject(OrderLineItemHistBean.class.getName());
//Call copyBean method to copy to new bean
olib.copyBean(newBean);
// Optional step to remove shipping information
int cnt1 = newBean.getOrderLineItemShipInfoCount();
Vector v1 = newBean.getOrderLineItemShipInfoVector();
for (int i = 0; i < cnt1; i++)
{

OrderLineItemShipInfoBean foo1 =
(OrderLineItemShipInfoBean) v1.elementAt(i);

foo1.prune();
}
// Optional step to remove configuration information
int cnt2 = newBean.getCartConfigurationCount();
Vector v2 = newBean.getCartConfigurationVector();
for (int i = 0; i < cnt2; i++)
{

CartConfigurationBean foo2 =
(CartConfigurationBean) v2.elementAt(i);

foo2.prune();
}
//Persist this new history bean
newBean.persist();
Sterling Multi-Channel Selling Solution Developer Guide 359

Maintaining History for Data Objects

360 St
erling Multi-Channel Selling Solution Developer Guide

CHAPTER 29 Coding Conventions
The following conventions are Sterling Commerce coding conventions. By
following them, you ensure that your code can be maintained easily.

Using Session and Cache Objects
When writing applications for the Sterling Multi-Channel Selling Solution, bear in
mind that you have the following available mechanisms for storing information:

• Using the Web Application: storing information on the server running the
Sterling Multi-Channel Selling Solution.

• Using the Client Application: storing information on the user’s browser.

Using the Web Application

ComergentSession
Use the ComergentSession object when you need to persist information from one
request of a user’s session to another. If you are using a clustered installation of the
Sterling Multi-Channel Selling Solution, then you must use a ComergentSession
and its setAttribute() method to ensure that data can be retrieved from one request
to the next. See "Wrapper Classes" on page 18 for more information about
ComergentSession. Objects stored in a ComergentSession must be serializable.
Sterling Multi-Channel Selling Solution Developer Guide 361

Coding Conventions

362 St
• Use setAttribute(String s, Object o) when the data must be persistent for
the lifetime of the session. The object must be small and serializable.
Retrieve the object with getAttribute(String s).

• Use cache(String s, Object o) when the data is sufficiently recoverable if it
is garbage collected. The object need not be serializable and will not be
available to other members of a cluster. There is no constraint on its size.
Retrieve the object with retrieve(String s).

GlobalCache
Data stored in the GlobalCache is available to all applications running as part of the
Sterling Multi-Channel Selling Solution. It is also available to other machines
running as part of the same cluster. See the Sterling Multi-Channel Selling Solution
Implementation Guide for implementation steps to support clustering. You should
bear in mind the possibility of another application using the same String as a key.

Information stored in the GlobalCache is subject to garbage collection. If you store
an object in the GlobalCache using cache(), then you must check for null when you
retrieve the object, and you must be able to re-create the object if it is no longer in
the cache. See "GlobalCache Interface" on page 28 for more information regarding
the methods available to store and retrieve information in the GlobalCache.

• Use cache(String s, Object o) when the data is volatile and may be
recovered if garbage collected. Objects need not be serializable and are not
restricted in size. Retrieve the object with get(String s).

• Use set(String s, Object o) when the data must be safe from garbage
collection. This method is deprecated. Objects need not be serializable and
are not restricted in size. Bear in mind that the object will not be available
to other members of a cluster. Retrieve the object with get(String s).

In general, you should try to use the ComergentSession for data that must persist
from one request to another and which must be available irrespective of which
machine in a clustered deployment of the Sterling Multi-Channel Selling Solution
is serving a request.

For performance reasons, you should otherwise limit your use of
ComergentSession and use the GlobalCache mechanism for other data. However,
bear in mind the cost of retrieving an object if it has been removed from the
GlobalCache before you want to re-use it.

ComergentContext
You can access the ComergentContext to store server-wide data that needs to be
accessed by different Sterling Multi-Channel Selling Solution applications. Objects
erling Multi-Channel Selling Solution Developer Guide

File Access
stored in the ComergentContext are not shared across a cluster. There is no
restriction on the size of objects stored in the ComergentContext. In general, you
should its setAttribute() and getAttribute() methods to manage storing and
retrieving data. Data stored in the ComergentContext is not garbage-collected, so
bear in mind memory-consumption issues.

Using the Client Application
In addition to storing data as part of the Web application, you can also store data in
a user’s Web browser so that it can be retrieved as part of the execution of a user’s
request.

Form Data
When you generate a Web page as part of a Sterling Multi-Channel Selling Solution
application, you can store data that you would like to have returned as part of the
request using a hidden input field in a form or as a URL parameter. For example:

<FORM ACTION="http://<server:port>/Sterling/partnerMkt/
matrix?cmd=CartDisplay>
<INPUT TYPE="HIDDEN" NAME="cartKey" VALUE="17">
</FORM>

or

http://<server:port>/Comergent/partnerMkt/matrix?cmd=CartDis-
play&cartKey=17

Note that users can edit the values of hidden input variables or URL parameters
before posting a form request or URL, and so your application must verify that the
variables are returned unchanged or check for access entitlements.

Cookies
You can store data as a cookie in the user’s browser. Note that if a user has disabled
the use of cookies in their browser, then any application that relies on the use of
cookies may break. For this reason, we recommend against using cookies unless
you can safely require that users must enable cookies in their browser. In addition,
cookies may be hacked so you should not store user-sensitive or application-critical
data in a cookie.

File Access
You should write your applications so that they are ready to support the deployment
of the Sterling Multi-Channel Selling Solution in a clustered environment. In
particular, make sure that when your application accesses files that it uses methods
Sterling Multi-Channel Selling Solution Developer Guide 363

Coding Conventions

364 St
that will ensure that the location of the files is independent of which server in a
cluster is making the access. Use the following classes and methods:

• ComergentContext provides the getResourceAsStream(): this method
provides read-only access to a file as a stream. See "ComergentContext"
on page 19 for more information.

• ComergentAppEnv provides the adjustFileName() method: this method
must be used in its four-parameter form. See "ComergentAppEnv Class"
on page 27 for more information.

Naming Conventions
These naming conventions are useful to improve the readability of the code.

TABLE 18. Naming Conventions

Type Description Examples

Packages Base packages should start at the
com.comergent level, followed by
the product and then module group
name. All components of package
names should be lower-case.

com.comergent.dcm.protocol

Classes and
Interfaces

Class names should be nouns, in
mixed case with the first letter of
each internal word capitalized. Try
to keep class names simple and
descriptive.

Interface names should begin with
"I".

DataManager

ProductBean

IAccProduct

IChannelCart

Constants
(static final
variables)

Constants should be all uppercase
with words separated by
underscores ("_").

REPLY_HEADER

REPLY_STATUS_CODE

Methods Method names should be verbs and
be in mixed case with the first
letter lowercase, and the first letter
of each internal word capitalized.
(This rule also applies to variables
and parameters.)

listen()

parseProps(DcmsEnv env)
erling Multi-Channel Selling Solution Developer Guide

Source File Organization
Source File Organization
Each Java source file should contain a single class or interface. Avoid associating
more than one class or interface in one file except inner classes. (Inner classes
should be avoided in general.)

Package Organization
You should follow the overall structure of the Sterling Multi-Channel Selling
Solution source code in which a distinction is made between API classes,
implementation classes, and reference classes. See CHAPTER 11, "Modularity and
Generated Interfaces" for more information.

Source Files
Java source files should observe the following ordering:

• Standard file comment template

• Package statement

• Import Statements

• Class or Interface Declarations

Import Statements
Try to import only the packages and classes that are needed, packages imported
should be ordered from the most fundamental package to more specific ones. For
example:

import java.io.*;
import java.util.*;
import com.ibm.xml.parser.*;
import com.comergent.dcm.DataServices.DsElement;

Member
Variables

Member variables must start with
"m_" and should be short yet
meaningful.

private int m_statusCode

Variables
and
Parameter

Variable names should be intuitive
to the casual reader. One-character
variable names should be avoided.

int idx

long sessionID

String tmp

TABLE 18. Naming Conventions (Continued)

Type Description Examples
Sterling Multi-Channel Selling Solution Developer Guide 365

Coding Conventions

366 St
For classes that import many packages, a blank line can be used to separate package
groups.

Class or Interface Declarations
The general organization of classes should be as follows:

• Class/interface documentation comment that complies with the Javadoc
syntax (that is, /**...*/).

• Class or interface statement.

• Class or interface implementation comment, if necessary. This comment
should be included where there is class-specific information, such as
implementation or algorithmic details that are not appropriate for formal
documentation.

• Constants, class variables, and the keyword static, should start the
statements (for example, static public final int
OBJECT_NOT_FOUND_ERROR = 404;).

• Member variables, organized in a semantically meaningful way.

• Constructor(s) of the class.

• Methods, organized in a semantically meaningful order.

Style and Presentation
Comment style Javadoc comments should be provided for all classes and methods,
including private and package private entities. Additional documentation, such as
@see, @param, @return and other tags should be used where additional values
can be provided.

For comments within methods, C++ comment style: //, should be used as opposed
to Standard C comment style, that is /* ... */. The C comment style should be
used only to comment out code segments (and for the file comment template).

Comments should be indented to the level of the code that follows. There should be
a blank line before every comment and a blank line after every multi-line comment.
Trailing comments should be avoided.

There should be two blank lines between methods, and no blank lines between
method descriptions and bodies.

Example of method description and body:

/**
erling Multi-Channel Selling Solution Developer Guide

Style and Presentation
 * This method returns the width of the object.
 */

public int getWidth()
{

return this.m_width;
}

/**
 * This method returns the y coordinate of the object.
 */

public int getY()
{

return this.m_y;
}

Sterling Multi-Channel Selling Solution Developer Guide 367

Coding Conventions

368 St
erling Multi-Channel Selling Solution Developer Guide

CHAPTER 30 Comergent Tag Library
This chapter describes the Sterling Commerce tag library that may be used with
Web pages served by the Sterling Multi-Channel Selling Solution.

Overview
A servlet-based product can use the technology of Java Server Pages (JSP) to serve
content to users. A JSP page comprises a mixture of standard HTML content and
special "tags" that are processed dynamically as the page content is generated. JSP
tags may be used to generate HTML dynamically and to control the flow of the
page based on attributes of the tag.

Sterling Multi-Channel Selling Solution provides some custom tags in a tag library.
The tag library is declared in a Tag Library Descriptor (TLD) file, cmgt.tld, found
in the cmgt-taglibs.jar file of your installation. The following tags are used:

• encode Tag (deprecated)

• frame Tag (deprecated)

• getAttribute Tag (deprecated)

• getEscaped Tag (deprecated)

• getPrice Tag (deprecated)

• getProperty Tag (deprecated)
Sterling Multi-Channel Selling Solution Developer Guide 369

Comergent Tag Library

370 St
• getResource Tag (deprecated)

• if Tag (deprecated)

• ifResource Tag (deprecated)

• link Tag (deprecated)

• list Tag (deprecated)

• paramtext Tag

• text Tag

• url Tag (deprecated)

• widget Tag (deprecated)

We refer you to standard JSP books for more detail regarding the creation and use
of JSP tags. This chapter is limited to providing a description of the custom tags
provided by the Sterling Multi-Channel Selling Solution.

General Usage
You must use the jsp:useBean tag as follows:

1. The controller class that is used to process the request creates beans that are set
as attributes. Typically the bean is an attribute of the incoming request or is set
in the current session. However, it is possible to set a bean as an attribute in the
page or context.

2. The tag retrieves the bean through the name attribute of the tag.

3. The tag uses the bean to determine its actions; such as looping through a set of
objects or evaluating the truth or falsity of a test condition.

Each JSP page used by the Sterling Multi-Channel Selling Solution must declare all
the beans passed into the JSP page with the standard <jsp:useBean> tag at the top
of the page. These declarations must follow the page and taglib statements.

You must use the fully-qualified class name for each bean; do not rely on import
statements to provide package information. Note that if you have not passed the
JSP page a bean of the appropriate id, then the JSP page creates a bean of the
specified type.

For example, to declare a product list bean whose id is "productList" and that has
been set as an attribute of the request, enter the following at the start of the JSP
page:
erling Multi-Channel Selling Solution Developer Guide

Tag Library
<jsp:useBean id="productList"
class="com.comergent.apps.catalog.bean.entity.ProductList"
scope="request" />

Tag Library
This section describes all the custom tags used by the Sterling Multi-Channel
Selling Solution. The tag attributes are described, and we include an example of
their use.

encode Tag
Use this tag to encode the body content to be HTML and Javascript friendly.

Attributes

• type = "HTML | JavaScript" (required)

• convertSpace = "true | false": this optional attribute determines whether to
convert a space to (ASCII code 160). Note that if convertSpace is
set to true, then the returned string may not be equal to the original string
because space characters (ASCII code 32) are changed to . The
default value is false (do not convert).

If a string has one space between words, then the space is preserved.
However, two or more spaces are converted to a space followed by the
appropriate number of . Thus, “one space” is converted to “one
space”, whereas “two spaces” is converted to “two spaces”.

Usage
HTML pages use a specific set of characters in them. For example, “<” to denote
the start of a tag, “>” to end a tag, and so on. When you want to include HTML
special characters in strings, you must encode the string in order to avoid breaking
the page. Furthermore, Javascript string literals do not support '\n', '\r', ' (single
quote), and " (double quote) characters. These characters need to be escaped
whenever they occur in Javascript strings.

The following examples illustrate different ways to use the tag. We use SKU name
in these examples because it is frequently system-generated and can contain any
character.

1. Suppose that you need to put the SKU name, which is a property string, in a
form hidden variable.

<INPUT type="hidden" name="skuName" value='<cmgt:encode
Sterling Multi-Channel Selling Solution Developer Guide 371

Comergent Tag Library

372 St
type="HTML"><jsp:getProperty name="currSku" property="SKUName"/>
</cmgt:encode>'/>

Note that convertSpace is not set here.

2. Suppose that you need to put an attribute string in a hidden variable.

<cmgt:encode type="HTML"><%= request.getAttribute("SkuName")%>
</cmgt:encode>

3. Suppose that you need to put SKU name in a HTML table cell to display.

<TD>SKU Name: <cmgt:encode type="HTML" convertSpace="true">
<jsp:getProperty name="currSku" property="SKUName"/>
</cmgt:encode>
</TD>

Note that convertSpace is set to true here.

The general rule is that if you want to display a string, then set convertSpace to
“true”. If the value needs to be sent to the Sterling Multi-Channel Selling Solution,
then set it to “false”.

4. Suppose that you need to assign a SKU name string to a Javascript variable.

var skuName = '<cmgt:encode type="JavaScript"><jsp:getProperty
name="idSkus" property="SKUName"/></cmgt:encode>';

5. Suppose that you need to call a JavaScript function when a user clicks a SKU
name hyperlink on your HTML page.

<A id='aItem<%=i%>' href="javascript:ProcessSku-
Click('<cmgt:encode type="HTML">
<cmgt:encode type="JavaScript">
<jsp:getProperty name="idSkus" property="SKUName"/>
</cmgt:encode>
</cmgt:encode>')">
<cmgt:encode type="HTML" convertSpace="true">
<jsp:getProperty name="idSkus" property="SKUName"/>
</cmgt:encode>

Note that in this example the string is converted first to Javascript and then to
an HTML escape string.

frame Tag
This tag is used as a workaround if the servlet contiiner appends session
information to a URL in the wrong place. It is principally used when a URL is built
up in a Javascript function from several fragments.
erling Multi-Channel Selling Solution Developer Guide

Tag Library
Attributes

• name="frame name" (required)

• src="URL to frame content" (required)

Usage
Instead of using:

<frame name="Header" src="URL to header content">

you can use:

<cmgt:frame name="Header" src="URL to header content" />

getAttribute Tag
This tag is used to get and display an attribute from the page, request, session, or
application scope. The scopes are searched in that order.

Attributes

• name="attribute name" (required)

• alt="alternate text"

Usage
To display the attribute, using its implicit toString method, use:

<cmgt:getAttribute name="thisProduct" alt="Not available" />

getEscaped Tag
This tag is used to retrieve a String property and to replace escape sequences to
make the String Javascript friendly.

Attributes

• name="name of bean" (required)

• property="name of the property in the bean" (required)

Usage
To retrieve a String property of a bean as an escaped String, use the tag like this:

<cmgt:getEscaped name="thisProduct" property="name" />

Note: This tag is deprecated. You should use the encode tag instead.
Sterling Multi-Channel Selling Solution Developer Guide 373

Comergent Tag Library

374 St
In this example, if the Name variable of this particular product as a Java string is
‘15" Monitor’, then this tag returns ‘15\" Monitor’.

getPrice Tag
This tag is used to display the price of a named bean which may be a Product. It
uses the getPrice() method of the Bean. The price is formatted for locale and
currency. It also rounds numbers appropriately if they have been calculated.

Attributes

• name="name of bean" (required)

• alt="alternate text to display if price is null" (optional)

Usage
To display the price of a product that has been passed to the JSP page as a bean, use
the tag like this:

<cmgt:getPrice name="thisProduct" alt="Price unavailable"/>

If the product bean has a null value for the price, then the alternate text will be
displayed.

getProperty Tag
This tag is used to extend the functionality of the standard JSP getProperty tag. It
enables you to specify a default value if the property value is null.

Attributes

• name="name of bean" (required)

• property="name of the property in the bean" (required)

• default="default value in case the property value is null" (optional)

Usage
Use the tag to enable the JSP page to display a default value like this:

<cmgt:getProperty name="thisProduct" property="description"
default="Description not available" />

getResource Tag
This tag is used to get and display a resource from a named bean given the resource
type. The field attribute is used to specify whether the resource value, label, or
description should be displayed.
erling Multi-Channel Selling Solution Developer Guide

Tag Library
Attributes

• name="resource name" (required)

• type="type of resource" (required)

• field = "ResourceValue | ResourceLabel | ResourceDescription" (required)

Usage
To display a resource associated to a bean, use the tag like this:

<cmgt:getResource name="thisProduct" type="URL"
field="ResourceValue" />

if Tag
A body tag which is used to include the body of the tag conditionally on the
evaluation of the test condition.

Attributes

• name="bean name | attribute name" (required)

• property="bean property" (optional)

• test="defined | undefined | true | false | eq | lt | gt" (required)

• value="integer" (optional)

Usage
Extending the example of list tag, suppose that you wish to control the appearance
of an HTML page by indicating whether or not a particular product is configurable.
Suppose that the Product class has a boolean variable, boolean_Config with an
accessor method getConfigurable(). Then, you can modify the JSP page along the
following lines:

<TABLE>
<TR><TH>Name</TH><TH>Click to configure</TH></TR>
<cmgt:list id="thisProduct" name="productList" property="products">

<!-- Body of list loop. For example: -->
<TR>
<TD>
<jsp:getProperty name="thisProduct" property="name"/>
</TD>
<cmgt:if name="thisProduct" property="configurable" test="true">

<TD>
<IMAGE SRC="images/configurable.gif">
</TD>

</cmgt:if>
Sterling Multi-Channel Selling Solution Developer Guide 375

Comergent Tag Library

376 St
<cmgt:if name="thisProduct" property="configurable" test="false">
<TD>
<IMAGE SRC="images/notconfigurable.gif">
</TD>

</cmgt:if>
</TR>

</cmgt:list>
</TABLE>

ifResource Tag
This tag is used to test the existence or value of a resource for a bean. You use the
type attribute to specify the resource type. The field attribute distinguishes between
a resource’s value, label, or description.

Attributes

• name="bean name | attribute name" (required)

• type="resource type" (required)

• field = "ResourceValue | ResourceLabel | ResourceDescription" (required)

• test="defined | undefined | true | false | eq | ne | lt | gt" (required)

• value="integer" (optional)

link Tag
You use this tag to generate an appropriately encoded url. If the user’s browser has
disabled cookies, then the session information is encoded as part of the generated
URL. URL parameters are encoded to escape characters such as spaces. The URL
path information is specifed as attributes of the tag whereas the body of the tag is
used to pass parameters.

Note that the URL contains an identifier that is used to determine which instance of
the Sterling Multi-Channel Selling Solution should service the request. In a
standard installation of the Sterling Multi-Channel Selling Solution, this is defined
as the default partner in the Comergent.xml configuration file. In a hosted partner
implementation of the Sterling Multi-Channel Selling Solution, the identifier
distinguishes between the hosted partners.

Attributes

• app="name of the application examples: catalog, debs, and so on"
(required). Note that “debs” is used to point to a special class of message
types, and the syntax of the generated URLs is consequently different.
erling Multi-Channel Selling Solution Developer Guide

Tag Library
• cmd="name of the message type" (optional)

• forwardParam="a flag that is false by default, you can set it to true to
forward the current request parameters to another url" (optional)

Usage
Here are some example usages of the link tag:

list Tag
A body tag used to iterate through a list of member beans, repeating the body
content for each element. The counter attribute can be used to refer to an index for
each member bean.

Attributes

• counter = "index" (optional)

• id = "user element name" (required): the id attribute is used within the
body of the list to refer to the member bean in the list

• name = "bean name | attribute name" (required): the name attribute refers
to the list bean. Typically, the list bean has been passed to the JSP page
through the request or session object

• property = "bean property" (optional): the property attribute is the member
variable of the list bean that accesses the list of member beans.

• type = "fully qualified name of class" (required): this is the class of the
member beans. If the list bean is a generated bean, then typically this is an
inner class of the list bean.

Usage
In this section, imagine that you are creating a list of products that you wish to
display as a list on an HTML page. You want to generate an HTML table that lists
the products one for each row of the table.

JSP tag URL on the generated page

<cmgt:link app="debs"
cmd="Display">UserKey=3</cmgt:link>

debs/matrix/Display?UserKey=3

<cmgt:link app="catalog" cmd="Display"
forwardParam="true">UserName=Brent
Wells</cmgt:link>

catalog/
matrix?cmd=Display&Username=Brent%
20Wells

<cmgt:link app="pricing" cmd="find" /> pricing/matrix&cmd=find
Sterling Multi-Channel Selling Solution Developer Guide 377

Comergent Tag Library

378 St
1. The controller creates the list object. This may be either:

• an Enumeration, Hashtable, Vector, or an array

or

• an object that holds the list as a member variable accessible through an
accessor method.

In our example, we use a class called ProductList that contains a Vector member
variable, m_ProductsVector. This Vector is intended to hold one or more products.
Each product is an instance of a Product class. The m_ProductsVector can be
accessed through an accessor method getProducts(). The Product class has member
variables Name and Sku accessible through standard accessor methods getName()
and getSku() respectively.

Suppose that the controller creates a ProductList object called temp_ProductList.
The controller sets the object as a bean in the request or session. For example:

getRequest().setAttribute("productList", temp_ProductList);

2. The list object is retrieved in the JSP page use of the list tag. In our example,

<TABLE>
<TR><TH>Name</TH><TH>SKU</TH></TR>
<cmgt:list id="thisProduct" name="productList" property="products"

type="com.comergent.apps.catalog.bean.entity.Product"
counter="count">
<!-- Body of list loop. For example: -->
<TR>
<TD>
<cmgt:getAttribute name="count"/>
</TD>
<TD>
<jsp:getProperty name="thisProduct" property="name"/>
</TD>
<TD>
<jsp:getProperty name="thisProduct" property="sku"/>
</TD>
</TR>

</cmgt:list>
</TABLE>

If the list object is itself an Enumeration, Hashtable, Vector, or array, then you do
not have to use the property attribute in the list tag. For example, if you had set:

getRequest().setAttribute ("productList", m_ProductsVector);

then you can retrieve the list object through the tag:

<cmgt:list id="thisProduct" name="productList">
erling Multi-Channel Selling Solution Developer Guide

Tag Library
paramtext Tag
A body tag used to prepare strings used in a text tag. Typically, the values of the tag
are derived from scriptlets. It must be used within the body of a text tag. Each
occurrence of the paramtext tag is stored in an array and is retrieved using the
notation {0}, {1}, and so on.

Usage
The following example uses paramtext twice to manage the display of two strings
in a sentence:

<%
Weather tWeather = (Weather) session.getAttribute("weather");
Date tDate = new Date();

%>
...
<cmgt:text id="*">

<cmgt:paramtext>
<%= DateFormat.getDateInstance().format(tDate) %>

</cmgt:paramtext>
<cmgt:paramtext>

<%= tWeather.getState() %>
</cmgt:paramtext>
Today is {0}: it is {1} out.

</cmgt:text>

Here, the value of the second string is assumed to have been localized prior to
having been set in the Weather object whereas the date is localized using the
DateFormat class.

text Tag
A body tag used to manage the display of locale-specific text. Use it to prepare your
JSP pages for localization for new locales. It is used in conjunction with resource
bundles that are created and maintained for each JSP page and JSP fragment. You
can maintain resource bundles manually or use the tool provided as part of the
Software Development Kit.

Its behavior is governed by configuration parameters set in the
Internationalization.xml configuration file.

Attention: Do not use this tag in scriptlets. When you need to localize text in
scriptlets, use the cmgtText() method. See "Included JSP Pages" on
page 247 for more information.
Sterling Multi-Channel Selling Solution Developer Guide 379

Comergent Tag Library

380 St
Attributes

• bundle: specifies the resource bundle in which the display text is specified.
This is primarily for use in JSP fragments which are included in multiple
JSP pages.

• id: identifies a tag uniquely within a JSP page or JSP fragment.

Usage
To prepare text for locale-substitution, wrap each displayed string in the text tag:

<cmgt:text id="1234">Display text</cmgt:text>

In general, formatting tags and font tags should be outside the text tag. That is:

<cmgt:text id="1234">Display text</cmgt:text>

For each id value, make sure that you have a corresponding name-value pair in each
of the supported locales properties files. For example:

1234 = Welcome to Matrix

in the <Name of JSP page>_en_US.properties file and

1234 = Bienvenue á Matrix

in the <Name of JSP page>_fr_FR.properties file.

If you plan to use the SDK tool to generate the ids automatically, then set the id to
“*”. If you set the id to “!”, then the tag is ignored: this is useful for text that is
constant in every locale: for example the “*” character that denotes required fields.
You can ensure that the same text is displayed in two different places on the same
JSP page by using the same value for the id attribute.

You can control the behavior of the tag using the following elements of the
Internationalization.xml configuration file:

• debugJSPResouceBundle: a value of “true” will display error messages if
the text id is not found in the resource bundle, or if the id is “*” as follows:

'Username' error: missing text for id: 'user'##

• enableJSPResouceBundle: a value of “false” will render the cmgt:text tag
as a no-op: that is, the body of the tag is passed through unprocessed.

• enableJSPResouceBundleCaching: a value of “false” will make the page
load the resourcebundle every time.

Use the HTML sequences for “{” and “}”: these are { and }
respectively.
erling Multi-Channel Selling Solution Developer Guide

Tag Library
url Tag
A body tag used to perform URL rewriting if required. If the browser has cookies
disabled, then this tag re-writes the body URL to contain session information. Note
that the way in which session information is encoded is servlet container-specific.
If the browser is cookie-enabled, then the URL is not encoded with the session
information.

Attributes
None

Usage
To encode a URL, wrap it in the url tag:

<A HREF="<cmgt:url>ProductSelect</cmgt:url>">Select a product

widget Tag
This tag is used to deploy UI widgets in Sterling Multi-Channel Selling Solution
application pages. See the CHAPTER 25, "Widgets" for more information on the
use of widgets.

Attributes

• height: the height of the widget element in pixels

• name: the name of the widget is the message type executed by the Sterling
Multi-Channel Selling Solution

• width: the width of the widget element in pixels

Note: This tag is deprecated. You should use the link tag.
Sterling Multi-Channel Selling Solution Developer Guide 381

Comergent Tag Library

382 St
erling Multi-Channel Selling Solution Developer Guide

CHAPTER 31 Comergent Internet Commerce Tag
Library
This chapter describes the Comergent Internet Commerce (CIC) tag library. This
tag library is designed to be used as a set of UI components that can be used in JSP
pages of the Sterling Multi-Channel Selling Solution. It covers the following tags:

• "cic:banner Tag" on page 393

• "cic:checkbox Tag" on page 394

• "cic:column Tag" on page 394

• "cic:columnHeader Tag" on page 395

• "cic:command_link Tag" on page 395

• "cic:concat Tag" on page 396

• "cic:date Tag" on page 396

• "cic:div Tag" on page 396

• "cic:el Tag" on page 397

• "cic:img Tag" on page 397

• "cic:input Tag" on page 397

• "cic:inputDate Tag" on page 398

• "cic:javascriptLink Tag" on page 399
Sterling Multi-Channel Selling Solution Developer Guide 383

Comergent Internet Commerce Tag Library

384 St
• "cic:link Tag" on page 399

• "cic:options Tag" on page 400

• "cic:outputLink Tag" on page 400

• "cic:param Tag" on page 401

• "cic:property Tag" on page 401

• "cic:quickSearch Tag" on page 402

• "cic:quickSearchParam Tag" on page 403

• "cic:select Tag" on page 404

• "cic:span Tag" on page 405

• "cic:table Tag" on page 405

• "cic:title Tag" on page 406

• "cic:whitespace Tag" on page 406

• "cic:workspace Tag" on page 407

• "cic:workspace_command Tag" on page 408

In addition to this chapter, the Javadoc provided with the SDK index
documentation documents the classes that implement the tags.

Overview
We refer you to standard JSP books for more detail regarding the creation and use
of JSP tags. This chapter is limited to providing a description of the custom CIC
tags provided by the Sterling Multi-Channel Selling Solution. These tags provide a
set of re-usable UI components intended to support customization of Sterling
Multi-Channel Selling Solution JSP pages. These tags are declared in the cic.tld tag
library descriptor file to be found in the cmgt-taglibs.jar file. A set of legacy tags
to support backward-compatability with Release 6.7 is declared in the cic67.tld tag
libray descriptor file. They can be used together with or independently from the
tags declared in the cmgt.tld tag library descriptor file and described in CHAPTER
30, "Comergent Tag Library".

CIC tags give you the ability to create pages that look and behave similarly using
the same components. For example:

• Column sorting behavior is built into the cic:column tag
erling Multi-Channel Selling Solution Developer Guide

Overview
• Inquiry list-like objects can be displayed using the cic:table tag

CIC tags provide common ways to pass properties and parameters to UI
components which make the UI easier to maintain and customize.

CIC tags are also intended to be modelled on the JavaServer Faces (JSF)
framework and consequently will make it easier both to use JSF components and to
migrate pages to JSF-style presentation logic in the future.

Tag Specification
Each CIC tag is declared in the com.comergent.taglib.cic package or a
sub-package. Typically, you should use tags already created in the
com.comergent.taglib.cic.commerce package or create your own custom package
for your UI tags.

Each CIC tag is designed to be used as a UI component whose basic structure is
defined by a JSP page. The CIC tags that extend the cicComponent class have a
member variable called JSPMessageType. Setting this variable to the name of the
message type is what determines which JSP page is used to render the content for
the tag.

Tags come in two flavors: atomic tags and component tags.

Atomic Tags
Atomic tags are used for rendering HTML that requires no customization. For
example, the comand_link tag is used to generate the opening and closing tags for
the anchor element: <a> and . Each atomic tag builds a formattable object and
this object renders the HTML.

Component Tags
Component tags render UI components such as workspace tabs. Component tags
reflect the MVC architecture in that the tag implementation creates a component
model object in memory and uses a JSP page to render the view of the model as
HTML. The models follow the Java Swing model pattern whereby the model holds
all the data required to render the component. If the look-and-feel of a component is
to be changed, then the JSP page can be modified without changing the underlying
model.

An example of a component tag is the cicCommerceProductList tag: this tag
specifies the "cicCommerceProductList" as the value of the JSPMessageType
variable. In the cicMessageTypes.xml file, there is a message type element as
follows:

<MessageType Name="cicCommerceProductList">
Sterling Multi-Channel Selling Solution Developer Guide 385

Comergent Internet Commerce Tag Library

386 St
<JSPMapping>../cic/cicCommerceProductList.jsp</JSPMapping>
</MessageType>

Thus the cicCommerceProductList.jsp JSP page is used to render content
whenever the cicCommerceProductList tag is used.

Table-based tags such as the cicWorkspace tag makes use of the cic:column tag.
Column tags should be used in the order that the columns are displayed in the table
and they can include atomic tags within them to display links and other content.

Nesting CIC Tags
The CIC component tags are designed to be nested. For example, the table tags
typically use column tags within them to control the display of table columns.

Customizing Tags
You can create and use custom tags in the following ways:

• Changing the Look-and-Feel

• Extending a Tag

Changing the Look-and-Feel
By modifying the JSP page of a component tag, you change the way in which the
tag renders the underlying model.

Extending a Tag
You can create a new tag by extending an existing one. Make sure that you decalre
the new tag in the cic.tld file. In the case of a new component tag, make sure to
create a message type and corresponding JSP page to render the HTML. The
message type to JSP page mapping should be added to the appropriate
MessageTypes.xml file.

JSP Expression Language
The Sterling Multi-Channel Selling Solution also supports the use of the JSP 2.0
expression language as specified in the JSP specification 1.2. Note that this support
is only for J2EE 1.3 or above servlet containers. See "JSP Expression Language" on
page 408 for more information.

rendered Attribute

The rendered attribute can be used to mark an element to be skipped if a condition
is not met. For example:

<cic:outputLink rendered="${line.promoKey != null}"
erling Multi-Channel Selling Solution Developer Guide

General Usage
href="javascript:displayPromo('${line.promotionCount}')">
<cic:img src="../images/ico_sale.gif"/>

</cic:outputLink>

In this cic:outputLink, the link will be displayed if the promoKey is not null; that is,
the link will not be displayed if the promoKey field of the line item is null.

To evaluate booleans in the rendered attribute, you must set the booleans in one of
the page, request, or session contexts. For example, to use an expression such as:

<cic:column rendered="${isDealer || isInternal || isExternal}"
css="left">

You must include code along the following lines before this tag:

pageContext.setAttribute("isDealer", new Boolean(isDealer));
pageContext.setAttribute("isInternal", new Boolean(isInternal));
pageContext.setAttribute("isExternal", new Boolean(isExternal));

General Usage
You set the CIC tags in JSP pages simply by declaring them as part of the JSP page.
For example:

<cic:commerceProductList beanName="cartPresentation"
formAction='<%=link("*","ShoppingCartDataDisplay")%>'>

...
</cic:commerceProductList>

Tag attributes serve to pass in parameters to the JSP page. For example, the
beanName attribute is used to pass in the bean used to provide the data for the
content of the page. Properties in the bean can be retrieved using the cic:property
tag. For example:

<cic:commerceProductListColumn width="25%" align="left">
<cic:title><cmgt:text id="*">Name</cmgt:text></cic:title>
<cic:property name="Name" />

</cic:commerceProductListColumn>

Example
Suppose that you would like to display a list of leads in a table that looks like this:

FIGURE 11. CIC Tag Table Example
Sterling Multi-Channel Selling Solution Developer Guide 387

Comergent Internet Commerce Tag Library

388 St
In HTML, the table looks like this:

<table cellpadding="0" cellspacing="0" border="0" width="100%">
<tr>

<td class="standardBackgroundColor" colspan="2" rowspan="2"
width="-1%">
<img src="../images/grph_crn_tplft.gif" width="2"
height="2">

</td>
<td class="columnHeaderBorderColor" colspan="9" width="100%">

<img src="../images/spacer.gif" width="1" height="1"
border="0">

</td>
<td class="standardBackgroundColor" colspan="2" rowspan="2"
width="-1%"><img src="../images/grph_crn_tprt.gif" width="2"

height="2">
</td>
<td width="-1%">
</td>

</tr>
<tr>

<td class="standardBackgroundColor" colspan="9" width="-1%">
<img src="../images/spacer.gif" width="1" height="1"
border="0">

</td>
</tr>
<tr class="standardBackgroundColor">

<!-- a width of -1% is needed for Netscape //-->
<td class="columnHeaderBorderColor" width="-1%">

<img src="../images/spacer.gif" width="1" height="1"
border="0">

</td>
<td class="standardBackgroundColor" width="-1%">

<img src="../images/spacer.gif" width="1" height="1"
border="0">

</td>
<td class="dataTableHeader" height="18" width="20%"

nowrap="true" align='center'>
ID

</td>
<td class="columnHeaderBorderColor" width="-1%" >

<img src="../images/spacer.gif" width="1" height="1"
border="0">

</td>
<td class="dataTableHeader" height="18" width="20%"

nowrap="true" align='center'>
Name

</td>
<td class="columnHeaderBorderColor" width="-1%" >
erling Multi-Channel Selling Solution Developer Guide

General Usage
<img src="../images/spacer.gif" width="1" height="1"
border="0">

</td>
<td class="dataTableHeader" height="18" width="20%"

nowrap="true" align='center'>

Priority

</td>
<td class="columnHeaderBorderColor" width="-1%" >

<img src="../images/spacer.gif" width="1" height="1"
border="0">

</td>
<td class="dataTableHeader" height="18" width="20%"

nowrap="true" align='center'>

Lead Status

</td>
<td class="columnHeaderBorderColor" width="-1%" >

<img src="../images/spacer.gif" width="1" height="1"
border="0">

</td>
<td class="dataTableHeader" height="18" width="20%"

nowrap="true" align='center'>
Created By

</td>
<td class="standardBackgroundColor" width="-1%">

<img src="../images/spacer.gif" width="1" height="1"
border="0">

</td>
<td class="columnHeaderBorderColor" width="-1%">

<img src="../images/spacer.gif" width="1" height="1"
border="0">

</td>
</tr>
<tr>

<td class="standardBackgroundColor" rowspan="2" colspan="2"
width="-1%">
<img src="../images/grph_crn_btlft.gif" width="2"
height="2">

</td>
<td class="standardBackgroundColor" colspan="9">

<img src="../images/spacer.gif" width="1" height="1"
border="0"></td>

<td class="standardBackgroundColor" rowspan="2" colspan="2"
width="-1%">
<img src="../images/grph_crn_btrt.gif" width="2"
height="2">

</td>
<td width="-1%">
Sterling Multi-Channel Selling Solution Developer Guide 389

Comergent Internet Commerce Tag Library

390 St
</td>
</tr>
<tr>

<td class="columnHeaderBorderColor" colspan="9">
<img src="../images/spacer.gif" width="1" height="1"
border="0">

</td>
</tr>
<tr>

<td width="-1%">
<img src="../images/spacer.gif" width="1" height="1"
border="0">

</td>
<td width="-1%">

<img src="../images/spacer.gif" width="1"
height="1" border="0">

</td>
<td class="dataTable" height="18" align='left'>600501
</td>
<td width="-1%">

<img src="../images/spacer.gif" width="1"
height="1" border="0">

</td>
<td class="dataTable" height="18" align='left'>

Western Sales Conference 1
</td>
<td width="-1%">

<img src="../images/spacer.gif" width="1"
height="1" border="0">

</td>
<td class="dataTable" height="18" align='left'>Low
</td>
<td width="-1%"><img src="../images/spacer.gif" width="1"

height="1" border="0"></td>
<td class="dataTable" height="18" align='left'>

Unassigned
</td>
<td width="-1%"><img src="../images/spacer.gif" width="1"

height="1" border="0">
</td>
<td class="dataTable" height="18" align='left'>1
</td>
<td width="-1%"><img src="../images/spacer.gif" width="1"

height="1" border="0">
</td>
<td width="-1%"><img src="../images/spacer.gif" width="1"

height="1" border="0">
</td>

</tr>
erling Multi-Channel Selling Solution Developer Guide

General Usage
<tr>
<td class="standardBackgroundColor" colspan="11">

<img src="../images/spacer.gif" width="1" height="1"
border="0">

</td>
</tr>
<tr>

<td width="-1%"><img src="../images/spacer.gif" width="1"
height="1" border="0">

</td>
<td width="-1%"><img src="../images/spacer.gif" width="1"

height="1" border="0">
</td>
<td class="dataTable" height="18" align='left'>

600500
</td>
<td width="-1%"><img src="../images/spacer.gif" width="1"

height="1" border="0">
</td>
<td class="dataTable" height="18" align='left'>

Table Lead
</td>
<td width="-1%"><img src="../images/spacer.gif" width="1"

height="1" border="0">
</td>
<td class="dataTable" height="18" align='left'>Low
</td>
<td width="-1%">

<img src="../images/spacer.gif" width="1" height="1"
border="0">

</td>
<td class="dataTable" height="18" align='left'>

Unassigned
</td>
<td width="-1%"><img src="../images/spacer.gif" width="1"

height="1" border="0">
</td>
<td class="dataTable" height="18" align='left'>1
</td>
<td width="-1%"><img src="../images/spacer.gif" width="1"

height="1" border="0">
</td>
<td width="-1%"><img src="../images/spacer.gif" width="1"

height="1" border="0">
</td>

</tr>
<tr>

<td class="standardBackgroundColor" colspan="11">
<img src="../images/spacer.gif" width="1" height="1"
Sterling Multi-Channel Selling Solution Developer Guide 391

Comergent Internet Commerce Tag Library

392 St
border="0">
</td>

</tr>
</table>

Using the cic:table tag, we can generate this table from the LeadListBean as
follows:

<%
ListIterator iterator = leadList.getLeadLightWeightIterator();
request.setAttribute("iterator", iterator);

%>
<cic:table datasourceRef="iterator" var="lead" showSelect="false"

sortAscending="<%= sortOrderAscending %>">
<cic:column width="20%" sortProperty="LeadKey" align="left">

<cic:columnHeader><cic:span value="ID"/></cic:title>
<cic:span value="${lead.leadKey}"/>

</cic:column>
<cic:column width="20%" sortProperty="Name" align="left">

<cic:columnHeader><cic:span value="Name"/></cic:columnHeader>
<cic:span value="${lead.name}"/>

</cic:column>
<cic:column width="20%" sortProperty="LeadPriorityString"

align="left">
<cic:columnHeader><cic:span value="Priority"/>
</cic:columnHeader>
<cic:span value="${lead.leadPriortyString}"/>

</cic:column>
<cic:column width="20%" sortProperty="LeadStatusString"

align="left">
<cic:columnHeader><cic:span value="Lead Status"/>
</cic:columnHeader>
<cic:span value="${lead.leadStatusString}"/>

</cic:column>
<cic:column width="20%" sortProperty="CreatedBy" align="left">

<cic:columnHeader><cic:span value="Created By"/>
</cic:columnHeader>
<cic:span value="${lead.createdBy}"/>

</cic:column>
</cic:table>

The cic:table tag uses the datasourceRef attribute to specify which Iterator object is
to be used to display rows in the table. You must set the Iterator object in the
request so that the tag can retrieve it.

Each cic:column tag declares a column of the table: they specify the column
heading (using the cic:title tag), and the data object property whose data should
populate the column. Each cic:property name attribute must be the same as a data
field name of the bean objects in the iterator. In this example, the lead data object
erling Multi-Channel Selling Solution Developer Guide

Tag Library
has fields called LeadKey, Name, and so on. The cic:whitespace tag is used to
provide a little separator space around each string.

Tag Library
This section describes all the main CIC tags used by the Sterling Multi-Channel
Selling Solution. The tag attributes are described, and we include an example of
their use.

cic:banner Tag
Use this tag to generate the banner at the top of HTML pages. Its attributes,
renderHelp, renderHome, and so on, take the values “true” or “false” and are used
to specify whether buttons are displayed for these general navigation functions.

Attributes

• helpTopic="topic": determines which help page is displayed. The mapping
from topic to topic ID is maintained in the HelpTopicsMap.xml
configuration file: see "Configuration Files" on page 265 for more
information.

• navigationTarget="target": specifies the value of the target attribute of the
links rendered in the banner.

• renderHeader="true": determines if the header is displayed.

• renderHelp="true": determines if Help button is displayed.

• renderHome="true": determines if Home button is displayed.

• renderLogout="true": determines if Logout button is displayed.

• renderWorkspace="true": determines if a Workspace page is to be
displayed.

• workspaceTab="Tab Header": determines which tab is displayed.

Usage
<cic:banner renderHeader="true" renderHelp="true"

helpTopic="<%=ph(helpTopic)%>">
<cic:span css="banner"
value="${localized['UserListHeaderText']}"/>
<cic:el> </cic:el>
<cic:span rendered="${partnerInScope}" css="banner-small"

value="${partnerScopeName}"/>
</cic:banner>
Sterling Multi-Channel Selling Solution Developer Guide 393

Comergent Internet Commerce Tag Library

394 St
cic:checkbox Tag
The use of this tag is deprecated. Use this tag to display check boxes.

Attributes

• property="Property": specifies the value of the checkbox. The
corresponding data bean must have a method called getProperty().

Usage
<cic:checkbox property="Property"/>

Example
<cic:checkbox property="InvoiceKey"/>

cic:column Tag
Use this tag to specify the column of a table.

Attributes

• align="alignment": takes the standard HTML alignment values of
"center", "left", and "right".

• width="width%": the width of this column as a percentage of the width of
the entire table.

Usage
<cic:column width="x%" align="align">
...
</cic:column>

Example
<cic:column width="17%" align="left">

<cic:columnHeader><cic:span value="List Name"/>
</cic:columnHeader>
<cic:command_link target="_top">

<cic:link app="partnerMkt" cmd="OILDisplay">
<cic:param name="ShoppingCartKey">

<cic:property name="ShoppingCartKey" />
</cic:param>

</cic:link>
<cic:property name="Name" />

</cic:command_link>
</cic:column>
erling Multi-Channel Selling Solution Developer Guide

Tag Library
cic:columnHeader Tag
Use this tag to specify what text should be displayed in the header for a table
column.

Attributes

• sortProperty="sortProperty": the property on which to sort the table if the
header of this column is clicked.

Usage
<cic:columnHeader sortProperty="${localized['ProductID']}">

<cic:span value ="${localized['ProductID']}"/>
</cic:columnHeader>

cic:command_link Tag
The use of this tag is deprecated. Use this tag to generate a clickable link.

Attributes

• None

Usage
<cic:command_link>
...
</cic:command_link>

The value of the tag is displayed as the clickable link. Within the cic:command tag,
you must specify the type of link to be used using one of:

• cic:javascriptLink

• cic:link

Example
<cic:command_link>

<cic:javascriptLink methodName="processDetail" >
<cic:param name="SKU">

<cic:property name="SKU" />
</cic:param>

</cic:javascriptLink>
<cic:property name="SKU" />

</cic:command_link>

This tag will be replaced by the string href="javascript:processDetail(SKU)", where
SKU is determined by the use of the cic:property tag.
Sterling Multi-Channel Selling Solution Developer Guide 395

Comergent Internet Commerce Tag Library

396 St
cic:concat Tag
Use this tag to concatenate strings. You can nest the usage of this tag to concatenate
more than two strings.

Attributes

• None

Usage
<cic:span value="${cic:concat(cic:concat(invoice.dataBean.lastName,
', '), invoice.dataBean.firstName)}"/>

cic:date Tag
The use of this tag is deprecated. Use this tag to display a date. Typically, the date is
retrieved using the cic:property tag from a data bean.

Attributes

• None

Usage
<cic:date>
...
</cic:date>

Example
<cic:date>

<cic:property name="CreateDate" />
</cic:date>

cic:div Tag
Use this tag to generate an HTML DIV tag.

Attributes

• css="class": specifes the CSS class used to format the link.

• id="id": used to set an ID for this DIV element.

Usage
<cic:div css="box no-border">
<cic:span css="instruction"
value="${localized['InstructionalText']}"/>
</cic:div>
erling Multi-Channel Selling Solution Developer Guide

Tag Library
cic:el Tag
Use this tag to include HTML tags such as
 or . You can use this tag to
add hidden field in forms:

<cic:el>
<input type="hidden" name="parameterName" value="parameterValue">
</cic:el>

You can also use the rendered attribute of the cic:el tag to mark a particular section
of HTML as being displayed if a condition is met. For example:

<cic:el rendered="${line.isMajorLine && line.isEditable}">
Renderable content
</cic:el>

You can read this to say: only display this content if the line is a major line item and
it is editable. If you want to use boolean values to control this tag, then the booleans
must be added to the request object. For example:

<%
boolean rule = true;
request.setAttribute("rule", new Boolean(rule));

%>
<cic:el rendered="${rule}"><hr></cic:el>

cic:img Tag
Use this tag to display images when you want to test for a condition to determin eif
the image should be displayed.

Attributes

• rendered="true": determines whether the image is displayed.

• src="URL": specifies the URL for the image source.

You can also specify the other standard image attributes used by the IMG HTML
tag.

Usage
<cic:img src="../images/btn_add.gif"

width="37" height="19" border="0" />

cic:input Tag
Use this tag to specify the input field use to enter values. the id attribute
distinguishes between input fields. The value attribute is used to specify the
name-value combination of the request parameter that is returned to the server.
Sterling Multi-Channel Selling Solution Developer Guide 397

Comergent Internet Commerce Tag Library

398 St
The type attribute of a cic:input tag can be used to specify different forms of input
field, such as “checkbox”, “hidden”, ”input”, “radio”, and so on.

You can specify the following HTML attributes as being true or false:

• disabled

• readonly

• ismap

• multiple

• checked

• nowrap

• selected

Example
<cic:input id="QuickSearchCartSKU" selected="true"

value="${cic:equals(param['CommerceQuery_SearchField'],
'CommerceQuery_SKU')?
param['CommerceQuery_SearchFieldValue']:''}"/>

cic:inputDate Tag
Use this tag to create an input field with a calendar widget associated with it. To use
this tag, you must include the Calendar.jsp JSP page and reference the required
Javascript files as follows:

<jsp:include page="../common/Calendar.jsp"/>
<script type="text/javascript" src="../js/commerce.js"></script>
<script type="text/javascript" src="../js/com_DateUtils.js"></script>

Attributes

• id="field": identifes the name of the parameter associated with the input
field.

• value="value": the displayed value if it exists.

Usage
<cic:inputDate id="CommerceQuery_ContractStartDateStart"

value="${cic:formatDate(query.dateFieldsMap['ContractStart-
Date'].startDate, null)}" />
erling Multi-Channel Selling Solution Developer Guide

Tag Library
cic:javascriptLink Tag
The use of this tag is deprecated. Use this tag to generate a clickable link that
invokes a Javascript method when clicked.

Attributes

• methodName="MethodName": name of Javascript method (required).

Usage
<cic:javascriptLink methodName="MethodName" >
...
</cic:javascriptLink>

You must provide any parameters to the tag using the cic:param tag.

Example
<cic:javascriptLink methodName="processDetail" >

<cic:param name="SKU">
<cic:property name="SKU" />

</cic:param>
</cic:javascriptLink>

This tag will be replaced by the string href="javascript:processDetail(SKU)", where
SKU is determined by the use of the cic:property tag.

cic:link Tag
The use of this tag is deprecated. Use this tag to generate a clickable link that points
to a standard hypertext link.

Attributes

• app="ApplicationName": name of application (required).

• cmd="CommandName": name of message type to be specifed as the cmd
parameter in the URL.

Usage
<cic:link app="ApplicationName" cmd="MessageType">
...
</cic:link>

You must provide any parameters to the tag using the cic:param tag.

Example
<cic:command_link target="_top">

<cic:link app="*" cmd="PartnerProfileDisplay">
Sterling Multi-Channel Selling Solution Developer Guide 399

Comergent Internet Commerce Tag Library

400 St
<cic:param name="PartnerKey">
<cic:property name="ContactPartnerKey" />

</cic:param>
</cic:link>
<cic:property name="PartnerName" />

</cic:command_link>

This tag will be replaced by the string:

<a href="http://server:port/Sterling/en/US/catalog/matrix?
cmd="PartnerProfileDisplay&PartnerKey=21">Anderel

cic:options Tag
Use this tag to specify the values that may be selected from a drop-down list. It can
be used to retrieve all values of the specified lookup type.

Attributes

• labelRef="reference" is the value of the description field of the lookup
code.

• selectedValue="value": the value displayed when the page is first
rendered.

• valueRef="reference" is usually the valueof the lookup code.

Users see the labelRef values, and their choice of search value is passed back to the
server as the valueRef value.

Example
<cic:options var="statusCode" valueRef="${statusCode.code}"

labelRef="${statusCode.string}" datasourceRef="${states}"
selectedValue="${cic:equals(param['CommerceQuery_SearchField'],
'CommerceQuery_InvoiceStatusCode')?
param['CommerceQuery_SearchFieldValue']:''}"/>

In this example, the lookup type is the InvoiceStatus, so that the valueRef and
labelRef fields will take pairs of values such as 10 and “New” as determined by the
CMGT_LOOKUPS table values.

cic:outputLink Tag
Use this tag to generate links. The href attribute can use the link() method to
generate the hyperlink and the cic:span tag is used to generate the displayed text for
the link.
erling Multi-Channel Selling Solution Developer Guide

Tag Library
Attributes

• css="class": specifes the class used to format the link.

• href="URL": the hyperlink behind the visible link.

• rendered="boolean": used to specify if the link should be displayed.

• target="target": used to specify the target window or frame to populate
when the link is clicked.

Example
<cic:outputLink rendered="${isLineCount}"

css="focus-button focus-button-small right"
href="javascript:createMemo();">
<cic:span value="${localized['Create']}"/>

</cic:outputLink>

cic:param Tag
The use of this tag is deprecated. Use this tag to generate parameters in the form
name=value.

Attributes

• name="ParameterName": name of parameter (required).

Usage
<cic:parameter name="ParameterName">Value
</cic:parameter>

You must provide the value of the parameter as the value of the cic:parameter tag.

Example
<cic:param name="SKU">

<cic:property name="SKU" />
</cic:param>

This tag will be replaced by the string SKU=SKU, where SKU is determined by the
use of the cic:property tag.

cic:property Tag
The use of this tag is deprecated. Use this tag to retrieve values from a bean. The
bean is usually specified in the component tag that includes the cic:property tag as a
child element.
Sterling Multi-Channel Selling Solution Developer Guide 401

Comergent Internet Commerce Tag Library

402 St
Attributes

• name = "PropertyName": name of property (required). There must be a
corresponding getPropertyName() method defined on the bean. If no such
method exists, then the tag will attempt to retrieve a data bean from the
bean by first calling getDataBean() on the bean, and then calling the
getPropertyName() method if it is defined on the retrieved data bean.

Usage
<cic:property name="PropertyName" />

Example
Suppose that you have a Cart data object and a corresponding CartBean data bean,
and suppose that for presentation purposes, you have created a
CartPresentationBean as a wrapper to the CartBean class. Suppose that you use the
cic:property tag like this:

<cic:commerceProductList beanName="cartPresentation"
formAction=’<%=link("*","ShoppingCartDataDisplay")%>’>

...
<cic:property name=”SKU”>

...
</cic:commerceProductList>

This tag will be replaced by the value returned by getSKU() invoked on the
cartPresentation bean. If the cartPresentation bean has no getSKU() method, then
the tag will effectively try to call:

CartBean cartBean = cartPresentationBean.getDataBean();
cartBean.getSKU();

This will display the result of calling getSKU() on the cartBean data bean.

cic:quickSearch Tag
Use this tag to display a Search widget on a page. Use the cic:quickSearchParam
tag to specify which fields should be displayed in the drop-down list of search
criteria. Use the cic:outputLink tag to display other links within the Search widget
(such as More and Advanced Search links).
erling Multi-Channel Selling Solution Developer Guide

Tag Library
FIGURE 12. Example Quick Search Widget
The left-hand field is where users enter their search values, and the right-hand field
is where they select on which field they want to search.

Example
<cic:quickSearch css="box medium padded-bottom"

title="${localized['QuickSearchTitle']}"
idToSubmit="CommerceQuery_SearchField"
idValueToSubmit="CommerceQuery_SearchFieldValue"
action='<%=link("*", "InvoiceWorkspaceDisplay")%>'>
<cic:quickSearchParam name="CommerceQuery_OrderNumber"

label="${localized['OrderNumber']}">
<cic:input id="QuickSearchOrderNumber"
value="${cic:equals(param['CommerceQuery_SearchField'],

'CommerceQuery_OrderNumber')?param['CommerceQuery_SearchFieldValue']:
''}"/>

</cic:quickSearchParam>
...

Possibly other cic:quickSearchParam tags
...

<cic:outputLink css="edit" href='<%=link("*",
"InvoiceWorkspaceDisplay", "ShowAll=true")%>'>
<cic:span value="${localized['ShowAll']}"/>

</cic:outputLink>
<cic:outputLink css="edit" href='<%=link("*",

"InvoicesAdvancedSearch")%>'>
<cic:span value="${localized['AdvancedSearch']}"/>

</cic:outputLink>
</cic:quickSearch>

cic:quickSearchParam Tag
Use this tag within a cic:quickSearch tag. Each quickSearchParam tag specifies a
different selectable search field. The cic:input tag specifies the name of the
parameter that will be passed back to the server and how the search value is
retrieved.
Sterling Multi-Channel Selling Solution Developer Guide 403

Comergent Internet Commerce Tag Library

404 St
Example

In this form of the cic:quickSearchParam tag, the name of the search field is
specified through the use of the cic:equals function, and the value field is left blank
for free-form entry of the search value.

<cic:quickSearchParam name="CommerceQuery_OrderNumber"
label="${localized['OrderNumber']}">
<cic:input id="QuickSearchOrderNumber"
value="${cic:equals(param['CommerceQuery_SearchField'],

'CommerceQuery_OrderNumber')?param['CommerceQuery_SearchFieldValue']:
''}"/>
</cic:quickSearchParam>

In the following form of the cic:quickSearchParam tag, the search values field is
pre-populated by the valid values of the field:

<cic:quickSearchParam name="CommerceQuery_InvoiceStatusCode"
label="${localized['InvoiceStatus']}">

<cic:select id="QuickSearchStatusCode">
<cic:options var="statusCode" valueRef="${statusCode.code}"
labelRef="${statusCode.string}" datasourceRef="${states}"
selectedValue="${cic:equals(

param['CommerceQuery_SearchField'],
'CommerceQuery_InvoiceStatusCode')?
param['CommerceQuery_SearchFieldValue']:''}"/>
</cic:select>

</cic:quickSearchParam>

The valid values are determined by the cic:options tag. This uses the valueRef and
datasourceRef attributes to retrieve the valid values of this lookup type from the
Knowledgebase.

cic:select Tag
Use this tag to generate a drop-down list of values. It uses a cic:options tag to
generate the list of valid option elements with their labels and values. The id
attribute is used to distinguish between cic:select tags.

Attributes

• displayAsText="true": determines whether the component is read-only.

• id="id": identifies the input field.

• onchange="function": associates a Javascript function if the selected value
in the drop-down list changes.

• rendered="true": determines whether the drop-down list is displayed.
erling Multi-Channel Selling Solution Developer Guide

Tag Library
Example
<cic:select id="QuickSearchStatusCode">

<cic:options var="statusCode" valueRef="${statusCode.code}"
labelRef="${statusCode.string}" datasourceRef="${states}"
selectedValue="${cic:equals(param['CommerceQuery_SearchField'],
'CommerceQuery_InvoiceStatusCode')?
param['CommerceQuery_SearchFieldValue']:''}"/>

</cic:select>

cic:span Tag
Use this tag to generate display text. You can manage the display of localised text
by using the ${localized[’String’]} function: this will retrieve the locale-specific
form of the String value from the resource bundle for the JSP page.

Example
<cic:span value="${localized['AdvancedSearch']}"/>

cic:table Tag
Use this tag to display tables that take their data from ListBean objects. Within this
tag, each column is declared using the cic:column tag.

Attributes

• css="data-table": this attribute specifies the style used to render the table.

• datasourceRef="${majorLines}": specifies an object to be used to iterate
through the rows of the table. The object must be either of type Iterator,
Collection, or Array. You must add the object to the request object and
then retrieve it from the request. For example:

<%
ListIterator iter = commentListBean.getCommentIterator();

request.setAttribute("commentList", iter);
%>
<cic:table datasourceRef="${commentList}" var="comment"

showSelect="false" sortAscending="true" labelrowcss="label"
rowcss="normal,alternate" >

• jsp="../cic/cicCommerceProductList.jsp":specifies a JSP page to be used
to render the table. By default, cic/cicTable.jsp is used.

• labelrowcss="label": specifies the style used for the table labels.

• listBeanParam="List Iterator": this attribute is a deprecated attribute, you
should use the datasourceRef attribute. It specifies the iterator used to
iterate through the list of beans. Typically, you get this object by calling
Sterling Multi-Channel Selling Solution Developer Guide 405

Comergent Internet Commerce Tag Library

406 St
the getObjectIterator() method on the list bean whose items you want to
display.

• messageType: specifies the message type that is used to identify which
JSP page is used to render the tag.

• rowcss="normal,alternate": specifies the styles used to display rows.

• showHeaderRow="true": specifies whether the table has a header row. If
this attribute is set to “true”, then you should specify a cic:columnHeader
in each cic:column tag.

• showPagination="true": specifes whether to show the Previous and Next
links to navigate back and forth through a paginated data set.

• showSelect: not used in this release.

• sortAscending: takes “true” or “false” to specify whether the table should
be sorted ascending or descending.

cic:title Tag
The use of this tag is deprecated. Use this tag to set the title of a column in a table.

Attributes

• None

Usage
<cic:title>Title</cic:title>

Example
<cic:title><cmgt:text id="*">List Name</cmgt:text></cic:title>

This column in which this cic:title tag is used will have the title "List Name" (or
whatever this text tag maps to in the generated JSP properties file.

cic:whitespace Tag
The use of this tag is deprecated. Use this tag to add space around text in a table.

Attributes

• None

Usage
<cic:whitespace/>
erling Multi-Channel Selling Solution Developer Guide

Tag Library
cic:workspace Tag
The use of this tag is deprecated. Use this tag to display workspace tabs in the
Sterling Multi-Channel Selling Solution UI.

Attributes

• cartListParam="id of List Bean to be used to display rows"

• sortAscending="Sort order"

• sortFieldName="Field on which to sort"

• formName="FormName"

• formAction="FormAction"

Usage
<cic:workspace cartListParam="workspaceLists"

sortAscending="sortOrder" sortFieldName="sortField"
formName="FormName" formAction="FormAction" >

...
</cic:workspace>

Example
<cic:workspace cartListParam="workspaceLists"

sortAscending="<%=sortOrder%>"
sortFieldName="<%=sortField%>" formName="domMyLists"
"formAction='<%=link("*","WorkspaceDisplay")%>'>
<cic:workspace_command operation="optionCommand" action="email"

description="<cmgt:text id='cmgt_invoicing/
WorkspaceInvoiceData_11' bundle='invoicing.WorkspaceInvoiceDataRe-
sources'>Email Selected Invoices</cmgt:text>"

type="option"/>
<cic:workspace_command operation="optionCommand"

action="download" description="<cmgt:text id='cmgt_invoicing/
WorkspaceInvoiceData_12' bundle='invoicing.WorkspaceInvoiceDataRe-
sources'>Download Selected Invoices</cmgt:text>"

type="option"/>
<cic:column width="3%">

<cic:checkbox property="InvoiceKey"/>
</cic:column>
<cic:column width="12%" sortProperty="InvoiceNumber"

align="left">
<cic:title>

<cmgt:text
id='cmgt_invoicing/WorkspaceInvoiceData_13'
bundle='invoicing.WorkspaceInvoiceDataResources'>

Invoice Number
Sterling Multi-Channel Selling Solution Developer Guide 407

Comergent Internet Commerce Tag Library

408 St
</cmgt:text>
</cic:title>
<cic:command_link target="_top">

<cic:link app="*" cmd="InvoiceDisplay">
<cic:param name="invoiceKey">

<cic:property name="InvoiceKey" />
</cic:param>

</cic:link>
<cic:property name="InvoiceNumber" />

</cic:command_link>
</cic:column>
... some columns omitted

</cic:workspace>

cic:workspace_command Tag
Use this tag to add commands to a workspace tab defined using the cic:workspace
tag.

Attributes

• operation="OptionCommand"

• action="Action"

• description="Description of command"

• type="Type of command"/>

Usage
<cic:workspace_command operation="OptionCommand" action="Action"

description="Description of command" type="Type of command"/>

Example
<cic:workspace_command operation="optionCommand" action="email"

description="<cmgt:text id='cmgt_invoicing/
WorkspaceInvoiceData_11' bundle='invoicing.WorkspaceInvoiceDataRe-
sources'>Email Selected Invoices</cmgt:text>"

type="option"/>

JSP Expression Language
Overview
To address the current restrictions on column cell customization, the Sterling Multi-
Channel Selling Solution now supports use of the expression language defined in
erling Multi-Channel Selling Solution Developer Guide

JSP Expression Language
the JSP 2.0 specification. This adoption allows for greater customizability for the
column cells while making compatible with the future specifications.

The expression language introduces a new “el” tag and modifies the “if” and “icon”
tags to use expression languages for defining conditions. For a more detailed
explanation of the full capability of the expression language please refer to JSP 2.0
specifications and the J2EE 1.4 tutorial mentioned above.

Tag Changes

el tag
The “el” tag allows the JSP page designer to write expression language scripts that
will be evaluated on each iteration to render the tables. Those scripts can access the
request, session parameters, and JSP page variables. The examples below use the
current lineItem bean for the row being rendered using the identifier “lineItem”.

You can access three methods to protect from cross-site scripting attacks as follows.
The methods are “cic:pu”, “cic”ph” and “cic:pj”: these all take a single string and
return a string.

An example of the usage of the “el” tag follows:

<cic:el>
<table cellpadding="0" cellspacing="3" border="0">
<tr>

<td>
${cic:pu(lineItem.formattedComputedPrice)}

</td>
</tr>
<tr>

<td>
${cic:pu(lineItem.formattedDiscountMarkupComputedPrice)}

</td>
</tr>
</table>

</cic:el>

In this example, you can see that the “el” tag can incorporate normal text and an
expression enclosed with the “${}” syntax. The “cic:pu” call gives access to the
“pu” function that protects against cross-site scripting, while the “lineItem”
reference gives access to the current row bean.

The following example shows how to access the properties in the data bean
associated with the presentation bean; this is accomplished using the dot notation.

<cic:el>
<input type = "text"
Sterling Multi-Channel Selling Solution Developer Guide 409

Comergent Internet Commerce Tag Library

410 St
name = "Discount${cic:pu(lineItem.dataBean.lineKey)}"
value = "${cic:pu(lineItem.discount)}" />

</cic:el>
Note that the property name must have its first character in lower case.

if and icon Tags
Note that the use of the cic:if tag is deprecated. Use the rendered attribute to
manage tests for conditions that control the display of elements. The rest of this
section is included to support legacy code.

For the if and icon tags, there is an alternate usage to make use of the expression
language. Instead of using the “property” and “testValue” attribute to specify a
condition, you can use the new “test” attribute to specify an expression that will
evaluate to true or false. Using expression language allows the access to the data
bean’s properties and to the request and session attributes as well as page variables.

The following examples demonstrate how to use the new attribute instead of the old
ones. Here is an example of the usage of the if tag from earlier releases:

<cic:if property "isEditable” testValue=”true”>
<cic:then>

...
</cic:then>
<cic:else>

...
</cic:else>

</cic:if>

This is an example of the new usage:

<cic:if test="${lineItem.isEditable}">
<cic:then>

...
</cic:then>
<cic:else>

...
</cic:else>

</cic:if>

This example does not show much difference in format, but it makes it easier to
identify the property to the line item bean.

In earlier releases, you have to nest if tags to test for two conditions:

<cic:if property "isEditable” testValue=”true”>
<cic:then>

<cic:if property "IsInvalidProduct” testValue=”true”>
<cic:then>
...
erling Multi-Channel Selling Solution Developer Guide

JSP Expression Language
</cic:then>
</cic:then>

</cic:if>

You can now implement this as:

<cic:if test="${lineItem.isEditable && lineItem.isInvalidProduct}">
<cic:then>

...
</cic:then>
<cic:else>

...
</cic:else>

</cic:if>

In this example we see that we can use a single if tag to specify an “and” condition
instead of having to nest if tags.

The next example shows how to access a data bean property.

<cic:if test="${lineItem.dataBean.lineKey=’44’}">
<cic:then>

...
</cic:then>
<cic:else>

...
</cic:else>

</cic:if>

The next example shows how to access the request parameter called “productId”.

<cic:if test=”${param[‘productId']==’6’} ">
<cic:then>

...
</cic:then>
<cic:else>

...
</cic:else>

</cic:if>
Sterling Multi-Channel Selling Solution Developer Guide 411

Comergent Internet Commerce Tag Library

412 St
erling Multi-Channel Selling Solution Developer Guide

CHAPTER 32 Internationalization
This chapter describes the internationalization (i18n) and localization (l10n) issues
that you must bear in mind as you work on Sterling Multi-Channel Selling Solution
applications.

Overview
The Sterling Multi-Channel Selling Solution is internationalized: that is, it has
built-in support for:

• multiple currencies

• multiple languages

• number and date formats

• character sets

In addition, you can manage other aspects of localization for specific markets such
as:

• local laws and regulations

• currency processing

• shipping and export information

• taxes
Sterling Multi-Channel Selling Solution Developer Guide 413

Internationalization

414 St
Support for internationalization is managed using locales. Each locale identifies a
language and country. By identifying which locale is to be used when displaying
information to a user, you ensure that the user sees information that is both specific
to their locale and presented as they would expect to see it. See the Sterling Multi-
Channel Selling Solution Implementation Guide for more information regarding
locales.

When users log in to the Sterling Multi-Channel Selling Solution, a locale is
assigned to the session: this is the preferred locale specified in the user’s profile.
Users can change their preferred locale in their user profile, but the change will
only take effect when they next log in. User administrators can change a user’s
preferred locale just as they can change other aspects of a user’s profile. See
Sterling Multi-Channel Selling Solution Administration Guide for more
information about user administration.

In addition, the system default locale is specified in the Internationalization.xml
configuration file using the defaultSystemLocale element. In addition, you can
specify a default locale for each language: see "Failover Behavior" on page 418 for
more information.

The Sterling Multi-Channel Selling Solution offers full Unicode support for data
entry and display.

A significant amount of localization can be performed using Java
ResourceBundles: see "Resource Bundles and Formats" on page 426 for more
details.

Supporting Locales
If you plan to implement the Sterling Multi-Channel Selling Solution to provide
support for more than the en_US locale, then you must produce pages to reflect
local language and other locale-specific information (such as office locations).

Presentation and Session Locales
When a user logs in to the Sterling Multi-Channel Selling Solution, the
authentication process retrieves their preferred locale: this is defined in their user
profile. The system makes use of two logically distinct locales:

• session locale: this determines what data is retrieved for data objects from
the Knowledgebase.

• presentation locale: this determines what JSP pages and resource bundles
are used to render HTML pages to the user.
erling Multi-Channel Selling Solution Developer Guide

Supporting Locales
In general, the set of locales that you support as presentation locales must be a
subset of the possible session locales. For example, you choose to maintain fr_CA,
fr_CH, and fr_FR as session locales, but only support fr_FR and fr_CA as
presentation locales.

When a user first logs in, the system calculates a presentation locale for the user
session as follows:

1. If the user’s preferred locale is declared in the Sterling Multi-Channel Selling
Solution web.xml file, then set this to be the presentation locale.

2. If not, then consult the Internationalization.xml file: if the
useCountryDefaulting element is set to "true", then identify the default country
locale for the language of the user’s preferred locale. Check to see if the default
country locale is declared in the web.xml file. If it is, then set the presentation
locale to this.

3. If either the useCountryDefaulting element is set to "false" or the default
country locale is not present in the web.xml file, and if the
useGeneralDefaulting element is set to "true", then set the user’s presentation
locale to the default system locale specified by the defaultSystemLocale
element.

4. If the Defaulting elements are set to false or if no locale is identified that is
declared in the web.xml file, then the presentation locale is set to the session
locale.

This presentation locale is used to determine the user’s experience as they navigate
through the Sterling Multi-Channel Selling Solution by controlling which JSP
pages and properties files are used to render the Web pages that they see. At the
same time, the preferred locale is also set as their session locale: this session locale
is used to determine what data is retrieved from the database when localized data
objects are displayed to the user.

JSP Pages and Properties Files
1. For each JSP page, there must be at least one JSP page located in the

appropriate module sub-directory under the system default locale directory.
When you first install the Sterling Multi-Channel Selling Solution, the default

Attention: You must make sure that every locale you create in the database either has
a corresponding set of entries in the web.xml file or that its default coun-
try locale has entries in the web.xml file and you enable country default-
ing. If you do not do this, then some users may not be able to access the
system.
Sterling Multi-Channel Selling Solution Developer Guide 415

Internationalization

416 St
system locale is set to en_US. Consequently a full set of JSP pages is provided
under debs_home/SterlingWEB-INF/web/en/US/. If you change the default
system locale, then take care to fully populate the corresonding directories for
the new locale.

2. All visible text on each page is declared using the Comergent tag library text
tag or the corresponding cmgtText() method. For example:

<cmgt:text id='cmgt_channelMgmt/channelCartDisplay/
ChannelCartDisplayData_7' bundle='channelMgmt.channelCartDis-
play.ChannelCartDisplayDataResources'>Build Product List
</cmgt:text>

or
String title =

cmgtText("cmgt_commerce/search/AdvancedSearchBody_2",
"Inquiry Lists Search");

The bundle attribute must correspond to a file in the
com.comergent.reference.jsp package of the class tree. For the example
above, there must be a file called
ChannelCartDisplayDataResource.properties in the debs_home/Sterling/
WEB-INF/classes/com/comergent/reference/jsp/channelMgmt/
channelCartDisplay/ directory. The id attribute must be unique within the
properties file. For the example above, there should be a line of the form:
cmgt_channelMgmt/channelCartDisplay/
ChannelCartDisplayData_7=Build Product List

3. For each additional supported locale (say, la_CO), you must copy the
following directories from debs_home/Sterling/WEB-INF/web/en/US/ to
debs_home/Sterling/WEB-INF/web/la/CO/:

• cic/

• common/

• home/

4. For each additional supported locale (say, la_CO) and for each JSP page, you
must:

a. Either create a new JSP page for the locale and put it in the corresponding
directory location in the Web application: a directory under debs_home/
Sterling/WEB-INF/web/la/CO/. If the same page can be used for more
than one locale in the same language (for example, fr_FR and fr_CA),
then make sure that you put it in the default locale for the language. See
"Failover Behavior" on page 418 for more information about default
locales for languages.
erling Multi-Channel Selling Solution Developer Guide

Supporting Locales
b. Or prepare a properties file that contains the appropriate text for each id.
These properties files are organized so that there is one for each JSP page
and JSP fragment.

The properties files must conform to the Java standard for properties
files used by resource bundles. Specifically, they should follow this
naming convention: <Name of JSP
page>Resources_la_CO.properties. They must be text files in which
each line should take this form:
cmgt_module/package/JSPname_n=Display text for this locale

For example:
cmgt_channelMgmt/channelCartDisplay/
ChannelCartDisplayData_7=Build Product List

The properties files are all located in the debs_home/Sterling/WEB-
INF/classes/com/comergent/reference/jsp/ directory and are organized
by module within this directory in the same way that the module JSP
pages are organized within a module. Note that if you want to change
the location of these resource bundles, then you must customize the text
tag to retrieve the resource bundles from their new location.

If you add text to a JSP page, then take care to update the corresponding
locale JSP pages or properties files, either with amended text for an existing
tag id or by adding a new id.

Notes
Note the following:

• The length of the translated text can be significantly different: this can
affect the layout of a Web page.

• Drop-down lists and Javascript functions can have text that if translated
will affect the logic of the Sterling Multi-Channel Selling Solution. See
"Javascript" on page 423 and "JSP Pages" on page 423.

• Local regulations can effect the display of information (such as the display
of prices in both Euros and a local currency).

• Take particular care if the logical flow of pages must change to reflect
local practice (such as the display of an export notice or tax information).

Note: HTML and Javascript characters such as "<", ">", "’", and so on must not be
included in the property values. These characters must be escaped using the
HTML or Javascript mechanisms to escape characters. For example: use
"<" for "<" in HTML and "\’" for "’" in Javascript.
Sterling Multi-Channel Selling Solution Developer Guide 417

Internationalization

418 St
Debugging
You can use the debugJSPResouceBundle element of the Internationalization.xml
configuration file to help you identify missing strings. Set this element to "true" and
if a string is missing from the referenced resource bundle, then an error message is
displayed on the browser page. You should set this value to "false" in your
production systems.

Failover Behavior
This section describes what happens when resources (JSP pages or properties) are
not defined for the user’s current presentation locale. Note that the failover
behaviors are slightly different for JSP pages and resource bundles:

• JSP pages can fail over from a specific locale to the default country for the
language locale and then to the system default locale. For example: fr_CA
to fr_FR to en_US.

• Resource bundles fail over according to the Java specification:
*_fr_CA.properties to *_fr.properties to *.properties.

Two properties in the Internationalization.xml configuration file are used to
manage failover behavior for JSP pages:

• useCountryDefaulting: if this is set to true, then default to the country
specifed in the appropriate language element if no resource is present for
the presentation locale.

• useGeneralDefaulting: if this is set to true, then default to the system
locale if no resource is available for the presentation locale.

Resource Bundles
You do not need to translate all text strings into each locale. If a text string is not
present for a given id in a resource bundle properties file, then the standard Java
failover process is followed. For example, if the
ChannelCartDisplayDataResource_fr_CA.properties does not define the
cmgt_channelMgmt/channelCartDisplay/ChannelCartDisplayData_7 string, then,
if it exists the ChannelCartDisplayDataResource_fr.properties file is
consulted. If this file does not exist or does not have an entry for this id, then the
ChannelCartDisplayDataResource.properties file is consulted.

JSP Pages
Not all the JSP pages need be available for all supported locales. For example, you
may choose to use en_US pages for all but a small number of pages viewed by
erling Multi-Channel Selling Solution Developer Guide

Supporting Locales
en_CA users. This section describes what happens when a message type is
processed:

The request is forwarded to the JSP page specified by the JSPMapping element of
the message type in the appropriate MessageTypes.xml.

1. If the JSP page does exist for the current locale, then this page is used to
generate the Web page.

2. If the JSP page does not exist for the current locale, then the failover
mechanism identifies the default locale for the language of the current locale.
This is declared as the defaultCountry element for the language in the
Internationalization.xml configuration file.

3. If a JSP page exists in the language-default locale, then this page is used to
generate the Web page. For example, the following element in
Internationalization.xml specifies that US is the default country for the en
language locales, and so if a JSP page is not present for the en_CA locale, then
the corresponding en_US JSP page is used.

<en visible="false">
<defaultCountry ...>US</defaultCountry>

</en>

4. If there does not exist a JSP page for the default country, then the failover
mechanism identifies the default system locale. This is declared as the value of
the defaultSystemLocale element of the Internationalization.xml file. If a
JSP page exists in the system default locale, then this page is used to generate
the Web page.

5. Finally, if no JSP page exists in the default system locale, then an exception is
thrown and an error page is displayed.

Methods to Retrieve Locales
Most of the time you should be able to make use of the Sterling Multi-Channel
Selling Solution’s built-in support to display appropriate content to users for their
locales. If you do need to manually access locales, then the ComergentI18N class
can be used. It provides the following methods:

• getDefaultLocale(): returns the system default locale.

• getComergentLocale(boolean b): if b is true, then returns the user’s
presentation locale; otherwise returns the user’s session locale.

• findPresentationLocale(Locale sessionLocale): used to calculate what
presentation locale should be used for a given session locale.
Sterling Multi-Channel Selling Solution Developer Guide 419

Internationalization

420 St
Using Properties Files in Code
You can make use of properties files in your Java code too. For example, to retrieve
the locale-specific String that corresponds to the String keyString defined in the
com.comergent.reference.jsp.AdvisorBodyResources.properties file, use:

String temp_NamedPopertiesFile =
"com.comergent.reference.jsp.AdvisorBodyResources.properties";

ResourceBundle temp_ResourceBundle =
com.comergent.dcm.util.ComergentI18N.-

getBundle(temp_NamedPopertiesFile);
String temp_LocalisedString =

temp_ResourceBundle.getString("keyString");

This uses the current locale of the user as stored in the user’s session. If you want to
force the use of a different locale, then use:

Locale specific_Locale = new Locale("fr", "CA");
String temp_NamedPopertiesFile =

"com.comergent.reference.jsp.AdvisorBodyResources.properties";
ResourceBundle temp_ResourceBundle =

com.comergent.dcm.util.ComergentI18N.-
getBundle(temp_NamedPopertiesFile, specific_Locale);

String temp_LocalisedString =
temp_ResourceBundle.getString("keyString");

Data for Internationalization
If you expect enterprise users and end-users to be entering data in multi-byte
characters, then you need to consider the length of data fields and their
corresponding database table columns. In our experience, data entered into the
Sterling Multi-Channel Selling Solution that uses multi-byte characters can be up to
three times as long in the database as the strings used for the en_US locale.
Consequently, you should review the length of fields in which you expect data to be
entered that will take multi-byte characters: notably name and description fields.

If you want to change the length of fields, then bear in mind that you have to both
change them in the DsDataElements.xml configuration file and make the
corresponding change to the SQL script that is used to generate the Knowledgebase
schema.

For example, to make the Description field of the Product data object suitably long
for multi-byte characters, you must do the following:

1. Identify the data field that is used to hold product descriptions. Because the
Product data object is a localizable data object (Localized=“y”), this is the
erling Multi-Channel Selling Solution Developer Guide

Email Templates
Description field of the ProductLocale data object. Its corresponding database
table and column is CMGT_PRODUCT_LOCALE.DESCRIPTION.

<DataField Name="Description" ExternalFieldName="DESCRIPTION"
Mandatory="n" Writable="y"/>

2. Suppose that you want to allow for descriptions that are up to 240 characters
long:

<DataElement Name="Description" DataType="STRING"
Description="Description" MaxLength="240" />

3. Change the corresponding SQL statement that creates the
CMGT_PRODUCT_LOCALE table so that the DESCRIPTION column is set
to VARCHAR2(720):

DESCRIPTION VARCHAR2(720) DEFAULT 'Not available',

4. Run the appropriate SDK targets (merge and createDB) to make the changes to
your implementation of the Sterling Multi-Channel Selling Solution.

Note that in this example, the Description data field is widely used by many
different data objects and so changing its definition in the DsDataElements.xml
configuraton file can have unanticipated side-effects elsewhere. An alternative
approach is to create a new data field called ProductDescription and to use this in
the ProductLocale data object. Thus, you could put in the ProductLocale.xml file:

<DataField Name="ProductDescription"
ExternalFieldName="DESCRIPTION" Mandatory="n" Writable="y"/>

Then put in the DsDataElements.xml configuration file:

<DataElement Name="ProductDescription" DataType="STRING"
Description="This is the product description field"
MaxLength="240" />

Note also that if you provide a Javascript methods to validate that users have
entered valid data in fields, then when you check for length of fields, check for the
length specified in the corresponding DataElement.

Email Templates
If your system supports languages other than English and your installation of the
Sterling Multi-Channel Selling Solution uses email templates to generate messages
that are sent to users, then bear in mind that these need to translated.

Release 6.4 has introduced the ability to use JSP pages to generate email messages:
see CHAPTER 10, "Sending Email from the Sterling Multi-Channel Selling
Sterling Multi-Channel Selling Solution Developer Guide 421

Internationalization

422 St
Solution" for more information. This provides support for internationalizing email
messages by using the existing framework for internationaizing JSP pages.

For legacy applications, you can use the default templates provided by the Sterling
Multi-Channel Selling Solution: these are located in debs_home/Sterling/WEB-
INF/templates/.

HTML Pages
Static HTML pages must be translated where appropriate. If you want to provide
support for multiple languages simultaneously, then you should take care to
produce pages for each language. Provided that you maintain the location of these
pages consistently across your locale directory structure, then the relative
references to these pages will always resolve correctly to the correct HTML page.

For example, the following JSP fragment will dynamically generated URLs to
point to a locale-specific Example.html page:

<A HREF="<cmgt:link app="catalog">
/static/Example.html
</cmgt:link>">
resourceBundle.getString("ExamplePage")

In this example, a resource bundle is used to determine the displayed text for the
link.

Images
In general, use images that do not have embedded text. Doing so, ensures that you
can use the same images in more than one locale: thereby reducing the cost of
localization and maintenance.

However, where necessary you should provide localized versions of images. Just as
for static HTML pages, you can use relative URLs to ensure that locale-specific
images are retrieved from the correct location relative to the JSP page.

In particular, remember that all of the buttons in externally facing pages are image
buttons with text. Where necessary, you should create localized versions of each
button. The image source URLs can then be generated as follows:

<IMG ALT="Locale-specific alternate text goes here"
SRC="../images/button.gif">
erling Multi-Channel Selling Solution Developer Guide

Javascript
Javascript
Take care to localize displayed text used in your Javascript. For example, alert
dialog boxes should reflect the user’s locale in the displayed text.

• Some Javascript files are included in the Web pages along these lines:

<script language='JavaScript' src='../js/genericUtil.js'>
</script>

You must maintain these Javascript files for each locale so that the browser
can correctly include these in the generated Web pages.

• When Javascript is defined within a JSP page or an included JSP
fragment, then display text must be wrapped in the text tag. For example:

alert("<cmgt:text id="*">Product ID is missing.</cmgt:text>");

When these tags are processed as part of the SDK tool, then the id attribute
is changed into a unique ID, and the ID and body of the tag are added to the
resource bundle for the JSP page or fragment.

JSP Pages
In general, all localization for labels, explanatory text, populated lists, and
locale-specific formatting for dates and currencies should be reflected in the JSP
pages created for a locale.

A useful organizing principle is to create a HashMap of all localized strings on
page, and then to refer to this throughout the rest of the page. For example:

HashMap localized = new HashMap();
localized.put("TaskListHeader",

cmgtText("cmgt_taskMgr/TaskWorkspaceData_3","Task List:"));
localized.put("QuickSearchTitle",

cmgtText("cmgt_taskMgr/TaskWorkspaceData_4","Search for Tasks"));
localized.put("TaskID",

cmgtText("cmgt_taskMgr/TaskWorkspaceData_5","ID"));
localized.put("TaskName",

cmgtText("cmgt_taskMgr/TaskWorkspaceData_6","Name"));
localized.put("Status",

cmgtText("cmgt_taskMgr/TaskWorkspaceData_7","Status"));
localized.put("Priority",

cmgtText("cmgt_taskMgr/TaskWorkspaceData_8","Priority"));
localized.put("CreateDate",

cmgtText("cmgt_taskMgr/TaskWorkspaceData_9","Create Date"));
request.setAttribute("localized", localized);
Sterling Multi-Channel Selling Solution Developer Guide 423

Internationalization

424 St
You can reference these strings using the scripting capabilities along these lines:

<cic:span css="banner" value="${localized['TaskListHeader']}"/>

This technique has the advantages that JSP pages are more readable, that you can
re-use localized strings easily, and it is closer to the JSF model.

See "Calendar Widget" on page 424 for information about localizing this UI
component. For example, populate a drop-down list of days of the week for a
French-language locale as follows:

<SELECT Name="DayOfWeek">
<OPTION VALUE=0>dimanche</OPTION>
<OPTION VALUE=1>lundi</OPTION>
<OPTION VALUE=2>mardi</OPTION>
<OPTION VALUE=3>mercredi</OPTION>
<OPTION VALUE=4>jeudi</OPTION>
<OPTION VALUE=5>juin</OPTION>
<OPTION VALUE=6>vendredi</OPTION>
<OPTION VALUE=7>samedi</OPTION>
</SELECT>

You can also use resource bundles to manage locale-specific display information.
For example, this would be an alternate method for populating a drop-down list of
days of the week in the Gregorian calendar:

<SELECT Name="DayOfWeek">
<OPTION VALUE=0><%= resourceBundle.getString("Sunday") %></OPTION>
<OPTION VALUE=1><%= resourceBundle.getString("Monday") %></OPTION>
<OPTION VALUE=2><%= resourceBundle.getString("Tuesday") %></OPTION>
<OPTION VALUE=3><%= resourceBundle.getString("Wednesday") %></OPTION>
<OPTION VALUE=4><%= resourceBundle.getString("Thursday") %></OPTION>
<OPTION VALUE=5><%= resourceBundle.getString("Friday") %></OPTION>
<OPTION VALUE=6><%= resourceBundle.getString("Saturday") %></OPTION>
</SELECT>

Calendar Widget
When you use the calendar widget (see "Using the Calendar Widget" on page 233)
in a JSP page, then it must be localized. You do this by customizing the I18N.js
Javascript file to be found in the locale directory
debs_home/Sterling//la/CO/js/. For example, to support the de_DE locale, create a
file called debs_home/Sterling/de/DE/js/I18N.js that reads:

// DEFAULT LOCALE (English)
var MONTH_NAMES = new Array('Januar', 'Februar', 'Maerz', 'April',
'Mai', 'Juni', 'Juli', 'August', 'September', 'Oktober', 'November',
'Dezember', 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug',
'Sep', 'Okt', 'Nov', 'Dez');
var DAYOFWEEK_HEADER_NAMES = new
erling Multi-Channel Selling Solution Developer Guide

Reports
Array("So","Mo","Di","Mi","Do","Fr","Sa");
var WEEK_START_DAY = 0;
// Create CalendarPopup object
var popupCal = new CalendarPopup();

Reports
Bear in mind that all the Sterling Analyzer reports have labels and text. Localized
text for each report is maintained in the Knowledgebase
CMGT_ANALYZER_TEXT table. You must maintain this data for each supported
locale to ensure that users see the appropriate locale-specific text in each report.

If you add a new locale, then you must add text for each of the text codes and report
codes for the new locale. See the Sterling Multi-Channel Selling Solution Reference
Guide for more information.

Style Sheets
The Sterling Multi-Channel Selling Solution uses cascading style sheets to set the
formatting of HTML elements. If you use fonts for a specific locale, then make sure
that you create a style sheet that specifies these fonts. For each locale save this
locale-specific style sheet in the same relative location.

In JSP pages, you can include a locale-specific cascading style sheet, say
customer.css, with the following:

<LINK rel="stylesheet" href="../css/customer.css" type="text/css">

System Properties
In general, the configuration files only present data to administrators. To localize
these files, you should not need to change the names or values of elements, but you
should consider changing the Help text for elements. Note that there is only one set
of configuration files for each Sterling Multi-Channel Selling Solution, and so you
should use the language of the default system locale for these files.
Sterling Multi-Channel Selling Solution Developer Guide 425

Internationalization

426 St
Resource Bundles and Formats
PropertyResourceBundles and Properties Files
The Sterling Multi-Channel Selling Solution makes extensive use of properties files
to manage locale-specific data. These have replaced the use of ResourceBundle
Java classes. See "Supporting Locales" on page 414 for more details.

ResourceBundles
A useful mechanism to manage localization is the use of Java ResourceBundles.

These are classes that manage locale-specific information. ResourceBundle classes
used in the Sterling Multi-Channel Selling Solution all extend the
ListResourceBundle. These define the mapping between name Strings and the
value Strings returned when the getString (String nameString) method is invoked.

By following the naming convention for ResourceBundles, you can create
locale-specific ResourceBundles for all of the locales you need to support. For
example, you can create the following ResourceBundles to be used in a new
application called Inventory:

• InventoryResourceBundle

• InventoryResourceBundle_fr

• InventoryResourceBundle_fr_FR

• InventoryResourceBundle_fr_CA

The following scriptlet can retrieve the appropriate resource bundle for use in a JSP
page:

<%
String baseName = "AdvisorResourceBundle";
ResourceBundle resourceBundle =

AdvisorResourceBundle.getBundle (baseName,
session.getLocale());

%>

Note: The use of resource bundles classes in the Sterling Multi-Channel Selling
Solution is deprecated. You should use properties files as described in "Sup-
porting Locales" on page 414.
erling Multi-Channel Selling Solution Developer Guide

Resource Bundles and Formats
NumberFormats and DateFormats
You can use the NumberFormat class to help you display numbers in locale-specific
ways. You create an instance of a NumberFormat by passing in the locale to the
constructor.

For example, the following scriptlet displays the total number of shopping carts in a
format appropriate to the locale:

<%
NumberFormat numberFormat =
NumberFormat.getInstance(session.getLocale());
int number = request.getParameter("ShoppingCartsTotal");

%>
<P>The number of active shopping carts in use is:
<%= numberFormat.format(number) %>
</P>

Similarly, use the DateFormat class to help you display date in locale-specific
ways. You create an instance of a DateFormat by passing in the locale to the
constructor.

For example, the following scriptlet displays the current date in a format
appropriate to the locale:

<%
DateFormat dateFormat =
DateFormat.getInstance(session.getLocale());
Date todaysDate = new Date();

%>
<P>It is now:
<%= dateFormat.format(todaysDate) %>
</P>
Sterling Multi-Channel Selling Solution Developer Guide 427

Internationalization

428 St
erling Multi-Channel Selling Solution Developer Guide

CHAPTER 33 Exceptions
This chapter describes the framework for exception handling in the Sterling Multi-
Channel Selling Solution. You should follow this to ensure consistency across your
implementation of the system, and to help other people working on the
implementation.

Comergent Exception Hierarchy
Exception Root

ComergentException
All compile time exception classes declared in the production software should
inherit ultimately from com.comergent.dcm.util.ComergentException class. This
class extends java.lang.Exception to provide chaining and an independent user
message.

ICCException
ICCException provides a convenience subclass of ComergentException. Rather
than create a set of exception classes for a subsystem, you can use the
ICCException class uniformly across a subsystem.
Sterling Multi-Channel Selling Solution Developer Guide 429

Exceptions

430 St
ComergentRuntimeException
All runtime exception classes should inherit from
com.comergent.dcm.util.ComergentRuntimeException, which extends
java.lang.RuntimeException to provide identical functionality.

Subsystem Grouping
A subsystem of the Sterling Multi-Channel Selling Solution is defined to be either a
distinct and separable application, or an application level or a system level service.
A subsystem is a logical organization. It may span multiple packages in the Java
package hierarchy or comprise part of a package.

Each logical subsystem is expected to declare its own exception root class. This
root inherits from ComergentException and is the parent class of all compile time
exceptions within the subsystem. The subsystem is defined to be either a distinct
and separable application, or an application level or a system level service. A
subsystem is a logical organization. It may span multiple packages in the Java
package hierarchy or comprise part of a package, although you should organize
your package structure in conformance with the logical subsystem organization.

For example, suppose there is a subsystem named Foo. There should be a class
FooException:

public class FooException extends ComergentException
{

public FooException(String msg)
{

super(msg);
}

public FooException(String msg, Exception ex)
{

super(msg, ex);
}

}

Suppose Foo responds to a bad initialization state by throwing
BadInitializationException for all subsequent requests. This exception would
inherit from FooException:

public class BadInitializationException extends FooException
{

...
}

erling Multi-Channel Selling Solution Developer Guide

Exception Chaining
Subsystem by Subsystem Exception Policy
Each subsystem should implement a consistent policy for differentiating
exceptions. Either it should subclass the subsystem exception class for each distinct
exception type (this is the standard Java style policy) or the subsystem's root
exception should inherit from ICCException, and should set the status parameter to
differentiate exceptions (this is the ICCException policy).

For example, if subsystem Foo chooses a Java style exception policy, then
FooException should extend ComergentException. If subsystem Bar chooses an
ICCException policy, then FooException should extend ICCException (which in
turn extends ComergentException).

public class BarException extends ICCException
{

...
}

Exception Chaining
Each subsystem is expected to throw only exceptions from its own subsystem to its
caller. If an underlying service throws an exception that a given subsystem cannot
handle, then it is expected to catch that exception and rethrow an exception that is
meaningful in its own context. The new exception should use a chaining
constructor to include the original exception, so that when the exception is finally
handled and logged, the original exception is not lost.

For example, suppose subsystem Foo attempts to open a property file and could
incur an IO exception. If it implements a Java style exception policy, then it may
declare a new exception class, FooPropertyFileException, which extends
FooException. The IO Exception catch statement would throw a new
FooPropertyFileException with a constructor that passes a message and the original
I/O exception.

try
{

...
Properties props = new Properties();
props.load(input);
...

}
catch (IOException ex)
{

// chain the io exception
throw new FooPropertyFileException("Loading file" + filename, ex);

}

Sterling Multi-Channel Selling Solution Developer Guide 431

Exceptions

432 St
Throwing, Catching, and Logging Exceptions
When to Throw Exceptions
Exceptions should be thrown when the contract between a method and its caller
cannot be fulfilled. This is the usage identified in the Java Language Specification.
Unfortunately, this provides only a little guidance since the contract can be defined
so broadly that exceptions are unnecessary, or defined so narrowly that exceptions
occur frequently. As a general rule of thumb, exception usage should balance the
following two opposing goals:

Exceptions should not be the norm.

• They involve the creation of an additional object, so, if only from a
performance standpoint, it is problematic if exceptions can occur
frequently.

• Mixing data and control should be avoided. The alternative to throwing an
exception is often returning a null value from a method. This means that
the return value encapsulates two meanings (success or failure and
whatever the data means when present). It is good programming practice
to avoid this usage where possible.

If null is a reasonable value for the stated purpose of a method, or if a
method is expected to fail often in the normal course of operation, then it is
reasonable to return null to indicate failure; otherwise it is better to throw an
exception.

Throwing Runtime or Compile Time Exceptions
According to the Java Language Specification, runtime exceptions should be
thrown when the caller has provided erroneous input (in essence, breached the
method contract) and it would be burdensome to declare a compile time exception.
For example, if a caller invokes a method passing a negative value for a parameter
that is an array index, it is reasonable to throw a runtime exception. Otherwise
throw compile time exceptions.

Catch Clauses and Throws Declarations
Catch clauses and throws declarations should avoid being overly general. If the
called method throws, for example, FileNotFoundException, then the caller should
catch FileNotFoundException, not Exception or Throwable. The reason for this is
that if the underlying code changes to throw a new exception, or ceases throwing
erling Multi-Channel Selling Solution Developer Guide

Displaying Exceptions
this exception, then it is desirable that the change produces a compilation error to
signal to the programmer to consider the new situation.

There are exceptions to this rule where practicality should prevail. If the variety of
exceptions that can be thrown is large and our response is the same in all cases, then
there is no reason to catch each individually.

Logging Exceptions
If a method catches an exception and handles it (that is, does not rethrow it) then it
should log it. Presumably this method knows the significance of the exception, and
knows whether to log it with an error severity or some other lower level severity.
Empty catch statements should be regarded with great suspicion.

Never do this:

catch (SomeException ex)
{

}

Do this:

catch (SomeException ex)
{

Global.logVerbose(ex);
}

Or this:

catch (SomeException ex)
{

ex.printStackTrace(Global.debugStream);
}

When exceptions from underlying subsystems or third party packages are caught
and chained to a new exception, there is no need to log the exception. Some process
further up the hierarchy will eventually catch and handle it, and the process will
know how to log it.

Displaying Exceptions
In general, users of the Sterling Multi-Channel Selling Solution should not see
exceptions: the appropriate subsystem must handle the exception gracefully by
responding appropriately to the error condition.
Sterling Multi-Channel Selling Solution Developer Guide 433

Exceptions

434 St
The Sterling Multi-Channel Selling Solution error pages place the exception stack
trace between HTML comments. By viewing the source of the displayed Web page,
you can read the stack trace.

If an exception stack trace is passed to the JSP page, then bear in mind that the
buffer limits of the JSP page may prevent a full exception message from being
passed to the Web page. If a long exception stack trace is passed to a JSP page, then
you can display it by modifying the buffer of the JSP page. Use the buffer tag as
follows:

<%@ page buffer=1024kb %>

Once the error condition has been diagnosed and fixed, then you should remove
this tag because it impacts performance.
erling Multi-Channel Selling Solution Developer Guide

CHAPTER 34 Implementing Cron Jobs
This chapter describes the creation of cron jobs that run as part of the Sterling
Multi-Channel Selling Solution.

Overview
Certain tasks within an implementation of the Sterling Multi-Channel Selling
Solution are not initiated in response to user input. For example, the hourly
synchronization of order data with an external system or the weekly import of
catalog data from a third party is best done without user intervention. These jobs
can be scheduled to run at suitable intervals using the Job Scheduler functionality
provided by the Sterling Multi-Channel Selling Solution.

Cron jobs can be defined either as system cron jobs or as application cron jobs.

• A system cron job is run by the Sterling Multi-Channel Selling Solution
and is not associated with any user. A system cron job calls Sterling Multi-
Channel Selling Solution classes directly. A system cron job must be run
by a class that extends the SystemCron abstract class. Typically, system
cron jobs perform tasks such as cleaning the cache.

• Each application cron job is run as a user: the username and password of
the user are provided when the cron job is created using the Job Scheduler
user interface. Application cron jobs work by posting XML messages to
the Sterling Multi-Channel Selling Solution which are then processed by
Sterling Multi-Channel Selling Solution Developer Guide 435

Implementing Cron Jobs

436 St
the system. An application cron job must be run by a class that extends the
ApplicationCron abstract class. Typically, you use application cron jobs to
perform necessary administrative tasks that touch user or product data
such as order synchronization.

CronManager and CronScheduler
The definition and creation of cron jobs is managed by the CronManager class.
Cron job configuration information is represented in memory by the
CronConfigBean data bean. The definition of cron jobs are maintained in the
Knowledgebase.

The scheduling and running of cron jobs is managed by the CronScheduler class.
This singleton class is instantiated at server startup time.

CronJob Interface
Each cron job is a Java class that implements the CronJob interface:

public interface CronJob extends java.lang.Runnable
{

/**
 * Specify the Cron Configuration bean object.
 *
 * @param config Cron configuration bean object.
 */
public void setCronConfiguration(CronConfigBean config);

/**
 * Return the Cron Configuration bean object.
 *
 * @return CronConfigBean object.
 */
public CronConfigBean getCronConfiguration();

 /**
 * Initialization function. This function is called
 * immediately after the object is created.
 *
 * @return true if initialization success, false otherwise.
 */
public boolean init();

Attention: Note that a system cron job should not attempt restore() and persist()
operations itself. There is no user associated with the cron job class and so
the access checking built in to the data access methods will throw an
exception.
erling Multi-Channel Selling Solution Developer Guide

Overview
/**
 * Return the current scheduled time.
 *
 * @return Current schedule time in Calendar object.
 */
public Calendar getSchedule();

/**
 * Reschedule the cron to reflect the changes made to the
 * cronfiguration parameter. This function is called by the
 * Cron Manager whenever cron configuration changes.
 */
public void reschedule();

/**
 * Whether the job needs to be run again. This function is
 * useful if there is some problem in the current run and you
 * want to retry at specified time.
 *
 * @return true if the job is allowed to retry if the job
 * did not run successfully
 * on the last time of execution
 */
public boolean retry();

/**
 * Determines whether to stop this cron job from running.
 *
 * @return true if the job has been slated to not run again
 */
public boolean stopRun();

/**
 * Compute next cron run time: this is usually based on the cron
 * run interval.
 */
public void computeNextSchedule();

/**
 * Check to determine if the cron job is
 * in a good state to run before triggering the thread to run.
 *
 * @return true or false. True means ready to run.
 */
public boolean isOKtoRun();

/**
 * Is called when the thread starts.
Sterling Multi-Channel Selling Solution Developer Guide 437

Implementing Cron Jobs

438 St
 *
 * @return false if the job needs to be stopped. Return true to
 * continue running.
*/
public boolean service();

/**
 * Checks whether the next run time is later than the end run date.
 *
 * @return true if next run time greater than end run time
 */
public boolean isExpired();

}

To create a new cron job, follow these steps:

1. Write a CronJob class: you must extend either the SystemCron or
ApplicationCron classes. Both these classes are abstract and they both extend
the abstract class AbstractCronJob.

The only method that you need to implement is service(). This is the
method that processes the inbound post initiated by the CronScheduler.

• If the job is passed parameters that are defined using the Job Scheduler
user interface, then you can retrieve the parameters using the
getParameter(String s) and getParameters() methods of the
AbstractCronJob class. These methods behave identically to the
corresponding methods of the HttpServletRequest class.

• If you want the result of the job to be saved to the database, then the
service() method must call the setExecutionOutcome(String s) method.

• You can specify that the cron job should be re-executed at a later time by
calling the setRetry(Calendar c) method of the AbstractCronJob class. Use
the Calendar parameter to specify when the job should be re-executed.

2. Using the Job Scheduler user interface provided as part of the system
administration application, define the cron job by specifying the cron job class,
the schedule to determine when it is run, and any parameters to be passed to the
cron job at runtime. If the cron job is to run as an application cron job, then you
must also provide the username and password of the user. See the
Administration Guide for further information.

Parameters are passed in to the cron job using the same syntax as for HTTP
request parameters. For example: Name1=Value1&Name2=Value2.
erling Multi-Channel Selling Solution Developer Guide

CHAPTER 35 Customizing Catalog Exports
This chapter describes how you can customize the process of exporting products
using the export functionality in Sterling Product Manager.

Overview
The Sterling Multi-Channel Selling Solution provides the ability to export some or
all of the product catalog as a dXML file. This is useful when you want to
synchronize your catalog with another catalog installation, or to import your
catalog in another catalog application.

When a user initiates a request to export products, the
ProdMgrRunDataSyndController class invokes the ExportManager class to manage
the export of the catalog data. The ExportManager class invokes the
CatalogItemsExportHandler class to export the fields of the data object. This class
uses the DataSyndicationConfig.xml configuration file to determine how to
export each of the fields of data objects. By adding elements to this file, you can
provide additional instructions on how fields are to be exported.

DataSyndicationConfig.xml Configuration File
The purpose of the DataSyndicationConfig.xml configuration file is to specify
exactly how data objects should be exported and imported. Its basic structure is to
Sterling Multi-Channel Selling Solution Developer Guide 439

Customizing Catalog Exports

440 St
specify how entities should be exported and imported, and it does this by specifying
what Java class should be invoked to process the entity. For example, this is an
sample element:

<Entity
Class="com.comergent.api.appservices.productService.IBizProduct">
<EntityHandler Type="export"

Class="com.comergent.apps.productMgr.dataSynd.ProductExportHandler">
<Element Name="ProductUpdate" Action="FullUpdateOrInsert"/>

</EntityHandler>
</Entity>

It specifies that when instances of the class IBizProduct are exported, the
ProductExportHandler class should be used to export instances of the IBizProduct.

• The Name attribute determines the element name of the output from the
handler. In this case, the output will begin with “<ProductUpdate>” and
end with “</ProductUpdate>”.

• The Type attribute specifies whether the handler should be used for export,
import, or both (Type="all").

The ProductExportHandler exports all of the fields in the IBizProduct data object,
and so you need only add a custom field handler if you have added a new field to
the IBizProduct that you want to export.

Field elements can be added to the Entity element to specify an additional handler
for fields that are not exported by the main entity handler class. For example,
suppose that Weight is declared as an extrinsic field of the BizProduct data object.
Then the following element is used to specify that the ExtrinsicFieldHandler is used
to handle the Weight field of the BizProduct data object.

<Field Mandatory="no" Localized="no"
ElementName="Weight" BeanProperty="Weight">
<FieldHandler Type="all"

Class="com.comergent.apps.productMgr.dataSynd.-
ExtrinsicFieldHandler"/>

</Field>

The ElementName attribute is used to specify the element name of the output. The
BeanProperty attribute specifes the name of the data field which is to be exported.
Thus for a particular IBizProduct object, the output for this field will look like this:

<Extrnisic Name="Weight">n</Extrinsic>

Here the value n is the value returned from a call to getWeight() on the IBizProduct
object.
erling Multi-Channel Selling Solution Developer Guide

Handlers
Handlers
ExtrinsicFieldHandler Class
The dXML DTD for catalog export supports the definition of Extrinsic elements.
Typcially, these are used to manage data fields that are added to data objects as part
of the customization process. Release 6.3 provides a generic field handler, the
ExtrinsicFieldHandler class, that can be used to handle fields that are added to a
data object by exporting them as Extrinsic elements. This class provides a
lightweight means to export custom data fields without creating your own field
handler.

To use the ExtrinsicFieldHandler class, simply add the appropriate Field element to
the Entity element. For example:

<Field Mandatory="no" Localized="no" ElementName="Weight"
BeanProperty="Weight">
<FieldHandler Type="all"

Class="com.comergent.apps.productMgr.dataSynd.-
ExtrinsicFieldHandler"

</Field>

ElementName is the element name when the field is exported, and its value is
determined by the call to the getWeight() method of the data bean. Make sure that
the data object does have a data field called Weight (and hence a corresponding
method getWeight()).

Writing a Custom Handler
Custom handlers for fields must implement the FieldExportHandler interface and
its getField() method. For example, the following is an example implementation of
getField() in class called PartNumberHandler:

public String getField(EntityField field, Object bean)
{

IBizProductBean bizProductBean = (IbizProductBean) bean;
String productID = bizProductBean.getProductID();
PartNumberListBean pnlBean = new PartNumberListBean();
pnlBean.restore(productID);
StringBuffer temp_StringBuffer = new StringBuffer();
temp_StringBuffer.append("<PartNumbers>");
for {int i = 0; i < pnlBean.getCount(); i++)
{

PartNumberBean pnBean = pnlBean.getPartNumberBean(i);
temp_StringBuffer.append("<PartNumber>" +
pnBean.getPartNumber() + "</PartNumber>");

}

Sterling Multi-Channel Selling Solution Developer Guide 441

Customizing Catalog Exports

442 St
temp_StringBuffer.append("</PartNumbers>");
return temp_StringBuffer.toString();

}

Having written and compiled the custom handler, you must add it to the
DataSyndicationConfig.xml file:

<Field Manadatory="no" Localized="no" ElementName="PartNumbers"
BeanProperty="none">
<FieldHandler Type="export"
Class="com.comergent.apps.productMgr.PartNumberHandler" />

</Field>

The ElementName attribute determines the name of the element used to enclose the
output from the handler. When the product catalog is exported, then the XML file
will include text along these lines:

<PartNumbers>
<PartNumber>PN-10056</PartNumber>
<PartNumber>PN-10058</PartNumber>
</PartNumbers>
erling Multi-Channel Selling Solution Developer Guide

CHAPTER 36 Customizing Sterling Configurator
This chapter describes how you can customize the Sterling Configurator. It covers:

• "Custom Controls" on page 443

• "Control Handlers" on page 445

• "Function Handlers" on page 445

Custom Controls
When option classes and option items are displayed to end-users you can control
how they are displayed by specifying which control should be used to display their
content. Out of the box, the Sterling Multi-Channel Selling Solution supports the
following choice of controls:

• Radio button

• Checkbox

• Drop down list

• Listbox

• Multiple Selection Listbox

• Display All Children
Sterling Multi-Channel Selling Solution Developer Guide 443

Customizing Sterling Configurator

444 St
• User Entered Values

• Tabular Display

When modelers are creating the model for configurations, they determine which
control is used for an option class by selecting it from the Control drop-down list on
the Display tab of the option class detail page.

Each control corresponds to a JSP page and this correspondence is defined in the
control.properties configuration file in debs_home/Sterling/WEB-INF/
properties/. For example:

RADIO.name=Radio Button
RADIO.jsp=controls/radio.jsp
RADIO.behavior=single

This specifies that for the radio button control, the radio.jsp JSP page should be
used to render the option class to end-users. The behavior property determines how
the Sterling Configurator will handle picks in this control:

• entry: used for user-entered controls.

• expand: expand all the children of this control if the control itself is
picked.

• multiple:allow one or more option items to be picked from this control.

• single: if an option item is picked, then remove any previous picks from
this option class.

Customizing an Existing Control
You can customize an existing control by modifying the corresponding JSP page or
by creating a new JSP page and modifying the control.properties file to point to
the new JSP page.

Creating a New Control
You can define a new control by adding the name of the control to the list of
controls declared. For example, to add a MATRIX_CUSTOM control:

controls=MATRIX_CUSTOM,RADIO,CHECKBOX,COMBOBOX,LISTBOX,
MULTISELLISTBOX,ALLPICKED,UEV,DISPLAY

Then declare the properties of the new control as follows:

MATRIX_CUSTOM.name=Matrix Custom Control
MATRIX_CUSTOM.jsp=controls/MatrixCustom.jsp
MATRIX_CUSTOM.behavior=single
erling Multi-Channel Selling Solution Developer Guide

Control Handlers
Customizing and modifying controls does not require a server restart because this
file is read each time a Visual Modeler or Sterling Configurator session is launched.

Control Handlers
Control handlers are a mechanism for invoking Java code to handle special actions
that may be difficult to handle in a JSP page alone. For example, the
DynamicInstantiationControlHandler class dynamically adds child option items to
a model when it is retrieved from the cache and removes them (the dynamic items)
when the model is returned to the model cache.

The control handlers must implement the IControlHandler interface (typically they
extend the StandardControlHandler class). They implement (or override the
implementation of a base class) the methods:

• public void initializeControl(IModelBean model, IOptionClassBean
optionClass)

• public void resetControl(IModelBean model, IOptionClassBean
optionClass)

• public void handleComergentRequest(IModelBean
model,ComergentRequest request,Map picks)

The initializeControl() method is called just after the model is fetched from the
cache. The resetControl() method is called just before the model is returned to the
cache. The handleComergentRequest() method is called to construct the picks map
used to apply picks.

Function Handlers
This section describes how to implement function handler classes in the Sterling
Multi-Channel Selling Solution. These Java classes are used to define custom
functions that can be invoked by the Sterling Configurator rule engine.

Overview
The Sterling Multi-Channel Selling Solution provides a rule engine that is used to
evaluate rules defined for each implementation. The rule engine can invoke custom
functions to handle situations where existing functions are incapable of solving a
configuration specification.

The function handlers are declared in the functionHandlers.properties
configuration file. This file declares a name for each function handler and the
Sterling Multi-Channel Selling Solution Developer Guide 445

Customizing Sterling Configurator

446 St
directory in which the function handler class is. For example, here is a sample
fragment from the file:

WEB-INF/classes/com/comergent/apps/configurator/functionHan-
dlers=CheckLookupFunctionHandler,ChildSum,CountFunctionHandler,IsSele
ctedHandler,LengthFunctionHandler,ListFunctionHandler,LookupFunctionH
andler,MaxFunctionHandler,MinFunctionHandler,ParentFunctionHandler,Pr
opValHandler,SumFunctionHandler,ValueFunctionHandler,WebServiceLookup
CheckLookupFunctionHandler=com.comergent.apps.configurator.function-
Handlers.CheckLookupFunctionHandler

Writing a Custom Function Handler
Follow these steps to create a function handler class:

1. Create a new Java class with the
com.comergent.apps.configurator.functionHandlers package declaration. The
class declaration must declare that the class extends the
AbstractRuleFunctionHandler class.

2. Implement the following methods:

• public String getFuncName(): return the function name, such as “sum” or
“max”. This is case-sensitive: you can use different function handlers to
manage “sum” and “SUM”.

• public int getType(): return the type of value returned by the function. This
should be a constant defined in the
com.comergent.api.appsservices.rulesEngine.Value class. The
AbstractRuleFunctionHandler class method returns Value.STRING, and
so you must override this method if the function returns any other type.

• public Value handle(State state, String prop): return the Value calculated
for the function.

• public boolean isPublicHandler(): return true if the function handler may
be used by any client application; otherwise return false. The
AbstractRuleFunctionHandler class method returns true, and so you must
only overwrite this method if the function handler is private.

Function Handler Example
The following example of function handler class implements the “max” function:

package com.comergent.apps.configurator.functionHandlers;

import com.comergent.api.appservices.rulesEngine.*;
import com.comergent.apps.configurator.model.*;
import java.util.*;
erling Multi-Channel Selling Solution Developer Guide

Function Handlers
/**
 * Handles the logics of <i>Max</i> function for a <code>Property
 * </ code>, given the <code>State</code>.
 *
 * @author Comergent Technologies
 * @version 1.0
 *
 * @see Value
 * @see Property
 * @see State
 */

public class MaxFunctionHandler extends AbstractRuleFunctionHandler
{

/**
 * Name of the function, this particular handler serves.
 */
private static final String m_name = "max"/*I18NOK:23c81106*/;

/**
 * Return the name of the function this handler supports
 * @return the function name
 */
public String getFuncName()
{

return m_name;
}

/**
 * Return the value type this particular function handler
 * returns.
 * Returns <code>Value.NUMERIC</code>, as the type.
 * @return the numeric value.
 * @see Value the container for different types.
 */
public int getType()
{

return IValue.NUMERIC;
}

/**
 * Return the <i>Maximum</i> value asigned to the property,
 * given <code>State</code>.
 * <code>Value</code> is returned as a result.
 * Extracts all the matching properties given the name, and
 * sorts them and extracts
 * the maximum value.
 *
 * Returns <i>null</i>, if the requested <code>Property</code>
Sterling Multi-Channel Selling Solution Developer Guide 447

Customizing Sterling Configurator

448 St
 * does not exist.
 *
 * @param state the property pool
 * @param prop the property to evaluate the function.
 * @return Value the <code>Property</code>, that contains
 * the maximum value.
*/
public IValue handle(IState state, String prop)
{

//double max = 0;
double [] propList = state.getMatchingNumericProperties(prop);
if (propList != null)
{

Arrays.sort(propList);
return new ConfigValue(new Double(

propList[propList.length -1]),IValue.NUMERIC);
}
return null;

}
}}

In this example, the handle() method calculates the maximum value of a property
by sorting the list of property values and then returns the last value in the sorted
array. The function returns a number of type IValue.NUMERIC. It is a public
function handler.

Web Service Function Handlers
You can write function handlers that invoke Web services. These classes should
extend the com.comergent.api.apps.configurator.IConfigWebService interface.
They make use of the webServiceLookup.properties configuration file: this file
specifies how the handler should invoke the Web service. These fragment functions
reference Web services:

• checkwslookup: this determines whether the correct properties exist to call
the Web service

• wslookup: invokes the Web service

An example function handler is provided by
com.comergent.reference.apps.configurator.SampleWebService.
erling Multi-Channel Selling Solution Developer Guide

CHAPTER 37 Filters
This chapter describes how you can use filters. It covers:

• "Filters Overview" on page 449

• "Available Filters" on page 450

Filters Overview
A filter is an object that performs filtering tasks on either the request to a resource
(a servlet or static content), or on the response from a resource, or both. They are
defined as part of the J2EE 2.3 specification.

Filters perform filtering in the doFilter() method. Every Filter has access to a
FilterConfig object from which it can obtain its initialization parameters, a
reference to the ServletContext which it can use, for example, to load resources
needed for filtering tasks.

Filters are configured in the deployment descriptor of a Web application. Examples
of typical filters include:

• Authentication Filters

• Logging and Auditing Filters

• Image conversion Filters
Sterling Multi-Channel Selling Solution Developer Guide 449

Filters

450 St
• Data compression Filters

• Encryption Filters

• Tokenizing Filters

• Filters that trigger resource access events

• XSLT filters

• Mime-type Chain Filters

Available Filters
This section describes some of the filters provided in the Sterling Multi-Channel
Selling Solution. All the filters are part of the com.comergent.dcm.core.filters
package. It covers:

• "DosFilter" on page 450

• "WSDLFilter" on page 451

DosFilter
This filter can be used as the basis for filters to protect the Web application from
denial-of-service attacks.

To use this filter, write a class that extends the
com.comergent.dcm.core.filters.DosFilter class, and in it, override the
isRequestDenied() method to implement the logic you want to use to identify and
block denial-of-service attacks.

Then, modify the web.xml configuration file, to declare your implementing class as
a filter like this:

<filter>
<filter-name>DosFilter</filter-name>
<filter-class>

com.comergent.dcm.messaging.CustomDosFilter
</filter-class>

</filter>

and

<filter-mapping>
<filter-name>DosFilter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>
erling Multi-Channel Selling Solution Developer Guide

Available Filters
WSDLFilter
The WSDLFilter class is used to transform the Web service WSDLs if they are
accessed using the standard URLs: http://server:port/s/dXML/5.0/
OrderInterface.wsdl, and so on.
Sterling Multi-Channel Selling Solution Developer Guide 451

Filters

452 St
erling Multi-Channel Selling Solution Developer Guide

CHAPTER 38 Managing and Displaying
Constrained Fields
This chapter covers the topic of managing constrained data fields which can take
only one of a number of values: we called these data fields constrained. Examples
include partner levels (such as “Gold”, “Silver”, and so on), partner territories (such
as “North-west”, “Benelux”, and so on), and skill levels (such as “Expert”,
“Certified”, and so on). You can manage these data fields in different ways in the
Sterling Multi-Channel Selling Solution. Your choice depends on how they are to
be maintained and used.

Options
You have the following options to specify a constrained data field and the permitted
data fields:

• Maintain the data field as a set of values in a database table. Assign values to
business objects either by a cross-reference table or by references to a key for
each value in the business object table.

• Maintain the values as a constraint element in the XML schema (declared in
the DsConstraints.xml file). Specify the constraint as an attribute of the
DataElement associated with the data field.
Sterling Multi-Channel Selling Solution Developer Guide 453

Managing and Displaying Constrained Fields

454 St
• Embed the permitted values as values of a <SELECT> form element in an
HTML template.

We recommend that you maintain the permitted values for a field as a database
table unless:

• the values are not going to be modified at run-time

• the data field may take only one value in each business object

• the values can be displayed in a natural order that is determined by the
values themselves such as their alphabetical order.

We recommend against using the third option for the following reasons:

• It becomes a maintenance problem to update templates or application code
if you want to modify the list of permitted data values.

• It represents a security problem because users may modify the HTML to
pass back forbidden values. You have to either add Javascript (that a user
can remove) to validate the selection or validate the returned value as part
of the business logic.

Criteria
Your selection depends on the functionality of the data field. Ask yourself these
questions to determine how the data field is being used:

1. Can you assign a business object only one or multiple values of a constrained
data field?

If your answer is that multiple values may be assigned to the same business
object (example: a partner that may operate in multiple territories), then you
must use a database table for the field values and a cross-reference table to
assign values to the business object.

2. Can you enter new values of the data field when creating a new business object
or do you need to verify that a value entered for the data field is a valid
member of the constraint set?

If only single values are permitted, and your answer to Question 2 is that new
values are permitted, then you must use a database table to hold the field
values. However, you do not have to use a cross-reference table to assign data
field values to business objects. You cannot dynamically add values to the list
of permitted values of a constraint element through the current Sterling Multi-
Channel Selling Solution interface.
erling Multi-Channel Selling Solution Developer Guide

Criteria
3. Are the possible values that the constrained data field may take maintained
dynamically or are they read once at start-up?

If your answer to Question 1 was single value, and your answer to Question 2
is that new values are not permitted, but you do require dynamic updating, then
you must use a database table. If the constrained values are unchanged once the
Sterling Multi-Channel Selling Solution has started, then you can use a
constraint element.

4. Do you need to sort the constrained data values for display? If yes, then is it
sorted by value (say, alphabetically) or by some defined order that cannot be
inferred from the values themselves?

Finally, if the data field values need to be sorted by an order not inherent in the
values themselves, then this ordering information must be maintained in a
database table. However, if you only order the values using some self-evident
ordering (such as alphabetical), then you can use the constraint element choice.
Sterling Multi-Channel Selling Solution Developer Guide 455

Managing and Displaying Constrained Fields

456 St
erling Multi-Channel Selling Solution Developer Guide

CHAPTER 39 Wish Lists, Templates, and Registries
Overview
Users can create and maintain the following types of lists of items:

• Wish List: A wish list is a list of items that a user wants someone else to
purchase for him. A wish list can be shared among users.

• Template: A template is a list of items that a user purchases frequently.
Templates cannot be shared among users. Users can purchase items only
from their own templates and to do so they must first copy the items to
their cart and then place the order.

• Registry: A registry is a list of items that a user may want someone else to
purchase for him for special occasions, such as the birth of a baby or a
wedding. Registries can be of two types: Baby Registry and Wedding
Registry. Users can have more than one registry of each type but not more
than one active registry of each type at any given time. Registries can be
shared among users.

Architecture
The implementation of wish lists, templates, and registries remain close to that of a
cart in order to leverage the functionality of schema from tables CMGT_OIL and
Sterling Multi-Channel Selling Solution Developer Guide 457

Wish Lists, Templates, and Registries

458 St
CMGT_OIL_LI and the OrderInquiryList and OrderInquiryListLineItem data
objects.

Tables
The CMGT_OIL table includes the following OIL_TYPES:

The template, wish list, and registry each have a header (EXTN) table:

• CMGT_WISHLIST_EXTN

• CMGT_TEMPLATE_EXTN

• CMGT_ REGISTRY_EXTN

See Chapter 8 "Knowledgebase Schema" in the Sterling Multi-Channel Selling
Solution Reference Guide for details about these tables.

Data Objects
The Wishlist and Template data objects both extend the OrderInquiryList object.
The Registry object extends the Wishlist object.

Furthermore, the WishList data object includes WishListLineItem as a child object,
which extends OrderInquiryListLineItem [CMGT_OIL_LI] and includes
WishListLineItemExtension [CMGT_WISHLIST_LI_EXTN].

The following diagram demonstrates the relationship between the different objects.
(Note: The diagram may deviate from strict UML guidelines.)

TABLE 19.

OIL_TYPE Code Oil Type

2 Order

3 Quote

11 Proposal

40 Sales Contract

100 Cart

130 Wish List

140 Template

150 Registry
erling Multi-Channel Selling Solution Developer Guide

Architecture
Default/Active Lists
A user may have multiple wish lists, templates, and registries at one time, but only
one of these will be the default or active list of its type. The default list is applicable
to wish lists/registries; the active list is applicable to templates.

The CMGT_USER_X_CARTDEFAULTS table indicates the default/active list for
each list type.

The DEFAULT_TYPE column can include the following values:

TABLE 20.

DEFAULT_TYPE Code Description

10 Cart

20 Template

30 Wish List
Sterling Multi-Channel Selling Solution Developer Guide 459

Wish Lists, Templates, and Registries

460 St
Registry Addresses
A wish list or registry may have several address associated with it. These list
addresses are included in the CMGT_WISHLIST_ADDRESSES table and the
WishListAddress data object.

The following address types are available:

Note that both the current and future shipping address have a value of 10. Whether
an address is current or future will be determined by the date in the
EFFECTIVE_DATE column.

40 Baby Registry
50 Wedding Registry

TABLE 21.

Address_Type Code Description

10 Shipping address

10 Future shipping address

20 Registrant’s billing address

30 Co-Registrant’s billing address

TABLE 20.

DEFAULT_TYPE Code Description
erling Multi-Channel Selling Solution Developer Guide

Architecture
Lokup Types
The following lookup types related to wish list/registry/template features are
included in the lookup table:

BabyGender
EventType
InquiryListType
Priority
RegistryType
RelativeReminderDate
ReminderFrequency
ShareCode
TemplateSort
WishListSort

See “Lookup Codes” in the Sterling Multi-Channel Selling Solution Reference
Guide for details.

APIs
The following packages provide APIs related to the wish list/registry/template
features:

com.comergent.api.apps.registry
com.comergent.api.apps.templatecarts
com.comergent.api.apps.wishlist

See the Javadoc for further details.
Sterling Multi-Channel Selling Solution Developer Guide 461

Wish Lists, Templates, and Registries

462 St
erling Multi-Channel Selling Solution Developer Guide

CHAPTER 40 Deprecated Concepts
This chapter covers concepts that have been covered in earlier versions of this
document, but which have now become deprecated. The material here is intended
to be used to support legacy applications and should not be used to create new
functionality.

DsElement Tree
This section describes methods to retrieve metadata about databeans. It also
describes the DsElement tree used to store data in the data object and business
object classes. It is covered here only to support legacy applications: all new
applications that use the data bean classes should not need to be concerned with it.

Data objects are created as objects of data bean classes. Each data object holds its
content as a tree of components called DsElements (see "DsElements" on
Sterling Multi-Channel Selling Solution Developer Guide 463

Deprecated Concepts

464 St
page 464). Their content is retrieved from external systems using the XML schema,
and the recipes and data sources defined in the XML schema.

FIGURE 13. Business Object
When the DataManager creates a data bean or business object, it uses the XML
schema to determine the structure of its DsElement tree. The DsElement tree is the
Java representation of the structure of the business object. The schema also
determines the data types that may be inserted at leaf nodes and whether constraints
are placed on the values of the node. You access the DsElement tree by invoking
the business object method getRootElement().

DsElements
Each DsElement contains data and a DataMap that defines how its data corresponds
to its data source. A DsElement may be the child of another DsElement (its parent).
A DsElement tree is a collection of DsElements, all but one of which have another
element in the tree as its parent. By definition, the DsElement with a null parent is
the root DsElement.
erling Multi-Channel Selling Solution Developer Guide

DsElement Tree
FIGURE 14. DsElement Methods
The DsElement class provides various additional methods to support navigating
through a DsElement tree, notably children() that returns an Iterator of the child
DsElements of a given DsElement. As well as getRootElement(), the business
object class also provides the getElementByName() method to access directly a
named DsElement in its tree.

All DsElements that have the same name, for example child_name, and which are
children of a DsElement must have a parent whose name is <child_name>List. The
XML schema identifies such elements by defining their ordinality to be "n" as
opposed to "1". A DsElement maintains its children in a Vector called m_children.

The DsElement has these important methods:

• addChild(): adds a new DsElement defined by the DataMap of this
DsElement.

• cloneDsElement(): returns a copy of this DsElement.

• delete(): sets the DsElemState to DsElemState.DELETED.
Sterling Multi-Channel Selling Solution Developer Guide 465

Deprecated Concepts

466 St
• deleteChild(): removes a child from the vector m_children by specifying it
as a DsElement.

• getName(): returns the name of the element as defined by its MetaData.

• getParent(): returns the parent of this DsElement.

• getType(): returns the type of the element as defined by its DataMap.

DsElement MetaData
It is sometimes useful to retrieve information about a data field and its underlying
DsElement. You can use the IData interface method getMetaData(String
elementName) to this. It returns an object that implements the IMetaData interface.
This interace supports the following methods:

• public int getDataType(): returns values as defined in DsDataTypes

• public long getMaxLength(): returns maximum length in bytes

• public long getMaxCharLength(Locale locale): returns maximum length
in characters

• public Object getMinValue(): returns the minimum allowed value (or null
if there is no minimum)

• public Object getMaxValue(): returns the maximum allowed value (or null
if there is no maximum)

• public int getCountAllowedValues()

• public ListIterator getAllowedValueIterator()

• public Object getDefaultValue()

Note that each generated DataBean class implements the IData interface, and so
these methods are available to all the generated data beans.

BusinessObject Methods
Use of business objects is deprecated. This section provides information about
some business object methods for reference only.

You can create each business object as an instance of the Java class BusinessObject.
The BusinessObject class is a sub-class of the CacheableAdapter class. This super
erling Multi-Channel Selling Solution Developer Guide

BusinessObject Methods
class provides a means of caching information during the lifetime of the business
object. Each business object has a type: it defines the structure of the data it holds.

In Release 6.3.1 and earlier releases, you could retrieve a business object
representation of a business entity from the corresponding data bean by calling the
data bean’s getBizobj() method. This method is not supported in later releases.

In Release 6.3.1 and earlier releases, you could create a data bean from a business
object by using the DataBean constructor method that takes the business object as
its one argument. This constructor throws an InvalidBizobjException if the
business object type does not match the data bean. This method is not supported in
later releases.

restore() Method
This section provides description of the main forms of the BusinessObject restore()
method.

public void restore(BusinessObject queryObj, int maxResults,
boolean accessCheck)

The principal form of the restore() method. Use the queryObj parameter to specify
query to be executed by the restore operation. The maxResults parameter
determines the maximum number of objects returned. Use the accessCheck
parameter to specify whether to check that the current user has the correct
entitlements to perform this operation. Once the access check has been performed,
then the restore(BusinessObject queryObj, int maxResults) is called.

public void restore(BusinessObject queryObj, int maxResults)

This method calls the restore() method restore(this, queryObj, maxResults, false)of
the underlying data object.

public void restore(BusinessObject queryObj)

This is equivalent to calling restore(queryObj, 0).

public void restore()

This form of the method calls the restore(null, 0) method.

persist() Method
This section provides descriptions of the main forms of the BusinessObject
persist() method.

public void persist(boolean synch, boolean commit,

Note: In general, where possible, you should avoid the use of business object
classes: they are primarily a legacy of Release 4.0 and earlier releases.
Sterling Multi-Channel Selling Solution Developer Guide 467

Deprecated Concepts

468 St
boolean accessCheck)

The boolean parameters determine respectively whether the persist operation is
synchronized, should be committed to the underlying data source, and whether an
access check should be performed prior to persisting.

public void persist(boolean synch, boolean commit)

This form of the method is equivalent to persist(synch, commit, false) for business
objects whose Version attribute is 4.0 or less. It is equivalent to persist(synch,
commit, true) for business objects whose Version attribute is 5.0 or more.

public void persist()

This form of the method calls persist(false, true).

The BusinessObject class also has these methods:

• delete(): empties the business object by deleting its DsElement tree.

• getRootElement(): returns the root DsElement of the DsElement tree.

• getType(): returns the name of the root element of the DsElement tree.
This is the type of the business object.

• setRootElement(): sets the root element of this business object.

Business Logic Classes
The base business logic class is BLC class. It implements the ApplicationObject
interface and in particular defines prolog() and service() methods.

Note: The use of BLCs is deprecated. This section is provided to support legacy
applications that still use BLCs.
erling Multi-Channel Selling Solution Developer Guide

Business Logic Classes
FIGURE 15. Business Logic Class
The BLC class implements prolog() by populating its business object table, and by
recovering the session object. The business object table class, BizObjTable, is
passed a vector of business objects when the controller creates the business logic
class.

The BLC base class implements service() by returning null. Its subclasses
overwrite service() to process the business objects.

In turn, each BLC class that extends BLC defines exactly how the prolog() and
service() methods process the business object table it receives. Typically, the
prolog() method of a BLC processes the business object table to look for an
business object of the correct business object type, and then it creates a business
object of that type. The service() method of the BLC then calls the persist() or
restore() method of the corresponding business object class to either save the data
to the database or to retrieve data from an external system.

Business Logic Class Example
As an example, consider the code for the BLC PriceAvailabilityGet. The purpose of
this BLC is to process a request for price availability.
Sterling Multi-Channel Selling Solution Developer Guide 469

Deprecated Concepts

470 St
The prolog() method receives a set of business objects in the form of a BizObjTable
and parses it to find a business object of type PriceAvailability. It places the
business object in the m_PriceAvailability variable.

When the service() method of the BLC is called, it invokes the restore() method of
the PriceAvailability object that retrieves the price availability information. A new
BizObjTable is created and returned.

/**
* Copyright (c) 1999 Comergent Technologies Inc. All Rights Reserved.
*/
package com.comergent.dcms.blc;

import java.util.*;
import java.io.*;

import com.comergent.dcm.caf.blc.*;
import com.comergent.dcm.core.*;
import com.comergent.dcm.util.ICCException;
import com.comergent.dcm.dataservices.*

/**
 * A class which performs the pricing and availability on the given
 * shopping cart
 *
 * @author Comergent Technologies
 * @version 1.0
 * @see BLC
 */
public class PriceAvailabilityGet extends BLC
{
/**
Initialize the object with the business objects in the given vector.
@param v the array of business objects
@param os the output stream to which the html is written
*/

public void prolog(BizObjTable vector, OutputStream os)
throws ICCException

{
super.prolog(vector, os);
 // find the price availability BizObj in the vector
for (Enumeration enum = vector.elements();

enum.hasMoreElements();)
{

Object object = enum.nextElement();
if (object instanceof BusinessObject)
{

BusinessObject bizObj = (BusinessObject) object;
if (bizObj.getType().equals(
erling Multi-Channel Selling Solution Developer Guide

Business Logic Classes
BusinessObjectTypes.PRICE_AVAILABILITY))
m_priceAvailability = bizObj;

else
{

throw new ICCException(
this.getClass().getName() + ":" +

BLCResourceBundle.getDefaultBLCResourceBundle().getString(
BLCErrors.NON_BUSINESS_OBJECT));
}

}

if (m_priceAvailability == null)
{

throw new ICCException(
this.getClass().getName() + ":" +

BLCResourceBundle.getDefaultBLCResourceBundle().getString(
BLCErrors.NO_PRICE_AVAILABILITY_OBJECT));

}
}

/**
* Perform the requested operation
*
* @return a vector containing the populated PricingAvailability
* business object.
*/

public BizObjTable service() throws ICCException
{

/**
On the enterprise server, a restore on pa object will send a message
to the partner server and retrieve the data. On the partner server, a
restore on pa object will obtain the actual numbers from a local data
source.
*/

m_priceAvailability.restore();
BizObjTable vector = new BizObjTableDefault();
vector.put(m_priceAvailability);
return vector;

}
protected BusinessObject m_priceAvailability;

}

Global Class
The Global class is used for two main purposes: it provides access to the log stream
and it provides values for system-wide parameters.
Sterling Multi-Channel Selling Solution Developer Guide 471

Deprecated Concepts

472 St
Logging
You can output logging information to the log stream by invoking one of the static
logLevel methods: logVerbose(), logInfo(), logWarning(), and logError(). These
methods take the logging message as a String parameter.

You can specify a package flag as part of the method call:

Global.logVerbose("<Package name>", "<Log message>");

For example:

Global.logVerbose("SQLTRACE", "Starting query " + queryString);

By setting the names of particular package flags in the packageFlags element of
Comergent.xml, you can manage which logging messages are generated as the
Sterling Multi-Channel Selling Solution runs. This is particularly useful if you want
to customize some code, and track its behavior as you debug the customization
because you can isolate the logging messages from other logging messages using a
custom flag.

You can use any string you like as a package flag: for example:

Global.logVerbose("MyProject", "This is my customization");

The following flags are pre-defined in Release 8.0 of Sterling Multi-Channel
Selling Solution:

TABLE 22. Current Package Flags

Flag Usage

AUTH Authentication (user, login, logout, and so on)

CONFIGURATOR Configurator

CONVERTER Converter (converting XML message into internal
representation)

CORE Core packages (wrapper, dispatch servlet, and so on)

CRON Cron jobs

DATASERVICES Data layer

ENTL Entitlement

Events Event bus

GlobalCache Global caching

LOADDATOBJ Schema loader

MC Not used

MESSAGING XML messaging layer (include RosettaNet)
erling Multi-Channel Selling Solution Developer Guide

Business Logic Classes
Note that if you are using the SDK, then you can specify which flags should be
logged using the DEBUG_FLAGS property set in your properties files.

Parameters

When the Sterling Multi-Channel Selling Solution starts up, it reads in system
configuration parameters from the Comergent.xml configuration file and its
ancillary configuration files. These parameters are accessed by the Sterling Multi-
Channel Selling Solution applications using the static methods Global.getString()
and Global.getBoolean(). These methods take a String as an argument: the String
must uniquely identify the name of a configuration parameter.For example, the call
Global.getString ("General.ServerName") returns the value of the ServerName
child element of the General element defined in the Comergent.xml file.

If you need to retrieve a number from one of the configuration file parameters, then
you retrieve it as a String using the Global.getString() method and then you must
use one of the standard methods to convert it to a number. You must capture and
handle any exceptions that can be thrown. For example:

int requestTimeout = -1;
String strRequestTimeout =

Global.getString("C3_Commerce_Manager.General.-
partnerRequestTimeout");

if (strRequestTimeout != null)

METADATA Data layer

ModelTabXMLHandler Visual Modeler

MSG Messaging controller

MSGT MessageTypes

PunchOut PunchOut

RearrangeLookUpValues Data layer

RULES Congigurator rules

showHeader Show incoming HTTP headers

showRequest Show incoming HTTP request (URl with query strings)

SQLTRACE Show SQL statements

UTIL Not used

VM Visual Modeler

XMLU XML

TABLE 22. Current Package Flags (Continued)

Flag Usage
Sterling Multi-Channel Selling Solution Developer Guide 473

Deprecated Concepts

474 St
{
try
{

requestTimeout = (new Integer(strRequestTimeout)).intValue();
}
catch (NumberFormatException nfe)
{

requestTimeout = -1;
}

}

If the top-level element of the parameter points to an ancillary file, then the second
and subsequent components of the parameter name point to elements in the
ancillary file. For example, consider the call:

Global.getString("DataServices.General.schemaRepository")

This accesses the child element schemaRepository of the General element in the
configuration file whose location is specified by the DataServices element of
Comergent.xml.

Both getString() and getBoolean() can take an optional second parameter that
specifies a default value to be returned if the parameter does not exist in the
configuration files.
erling Multi-Channel Selling Solution Developer Guide

CHAPTER 41 Upgrading Legacy Sterling Multi-
Channel Selling Solutions
This chapter provides a description of the legacy issues concerned with upgrading
earlier releases of the Sterling Multi-Channel Selling Solution. Current upgrades
are covered in CHAPTER 16, "Upgrading the Sterling Multi-Channel Selling
Solution".

Overview of Upgradability
The Sterling Multi-Channel Selling Solution has been designed from the ground up
to meet the dual challenges of providing out-of-the-box application functionality
against common business scenarios while providing the necessary flexibility to
handle the extensions and customizations that occur in the normal course of
deployment.

The software installation includes all the necessary source code, configuration files,
data initialization scripts, and other tools necessary to perform the kinds of
modifications described in this Sterling Multi-Channel Selling Solution Developer
Guide. This chapter describes upgrade considerations and process for each
supported customization technique as described in CHAPTER 15, "Tailoring the
Sterling Multi-Channel Selling Solution".

The Sterling Multi-Channel Selling Solution System supports a progressive
sequence of customization techniques designed to make the most common
Sterling Multi-Channel Selling Solution Developer Guide 475

Upgrading Legacy Sterling Multi-Channel Selling Solutions

476 St
customizations the easiest to implement initially and to roll forward during an
upgrade.

Customer Upgrade Scenarios
This section enumerates and explores the common reasons for upgrading the
Sterling Multi-Channel Selling Solution. The motivations for upgrade can directly
impact the style and scope of the upgrade activity.

Upgrade Motivations
The following motivations are considered and occasionally referenced in the
material which follows:

• Upgrading to obtain stability and performance benefits from the latest
release.

• Upgrading to implement a new module which requires the latest Platform
version.

• Upgrading to obtain across the board functionality and/or usability
enhancements.

• Upgrading to obtain additional platform or standards support.

• Upgrading to implement a specific feature enhancement which involves
inter-module communication and interaction.

• Upgrading to obtain inter-enterprise communication enhancements.

• Upgrading to obtain enhanced administration tools.

Upgrade Considerations by Customization
Technique
The following categories of customization are supported by the Sterling Multi-
Channel Selling Solution architecture.

Upgrading Presentation
Presentation is typically the most extensively customized area. At minimum, the
application of custom-branding is generally required during deployment to make
the reference UI conform to the customer’s Web UI style guidelines and standards.

Re-applying existing customizations to a new version of the Reference UI requires
the fairly manual but mechanical process of comparing and merging individual JSP
erling Multi-Channel Selling Solution Developer Guide

Upgrade Considerations by Customization Technique
pages and Controller files. In that upgrade scenario, upgrade cost will be directly
proportional to the extent of page reorganization and modification.

Alternatively, upgrade may focus on retaining the previously customized UI on the
latest server-side APIs with minimal functional modifications to existing pages.
This may be the case where upgrade is driven primarily by the desire to implement
additional Sterling Multi-Channel Selling Solution modules. In this case, upgrade
focuses on backward compatibility of existing, customized JSP pages and Java-
based controllers.

Upgrade Considerations for Customized JSP Files
The Model 2 JSP architecture is the foundation of Presentation in Sterling Multi-
Channel Selling Solution. This employs a Model/View/Controller, or MVC, design
pattern with JSP as the Web page templating language and Java-based Controllers
as the orchestrators of page flow and request routing and processing. JSP pages
have dependencies on specific Data and Logic Beans, for example, the Order Detail
page depends on the OrderPresentationBean from which it acquires its data for
display. The Order detail page itself controls specific layout and display of the
Order. In this case, the OrderPresentationBean provides both formatting specific
logic and access to the underlying Order business data.

The following are typical presentation customizations which must be re-applied or
otherwise accounted for during upgrade.

• Application of custom branding in the form of images and text styles

• Addition of surrounding page content to the reference UI, for example,
adding a site-wide navigation frame and branding header to Sterling
Multi-Channel Selling Solution Order Management

• Re-organization of page content

• Page flow modification

Page flow changes are accomplished by modifying or creating new Java
Controllers, so typically some degree of Controller customization is performed
along with JSP customization.

Administration pages are not intended to be branded or otherwise customized and
therefore should not be affected during the upgrade process.
Sterling Multi-Channel Selling Solution Developer Guide 477

Upgrading Legacy Sterling Multi-Channel Selling Solutions

478 St
Specific Considerations for Upgrading Presentation for
Release 3.x

Upgrading HTML Templates to JSP
Releases of the Sterling Multi-Channel Selling Solution prior to Release 4.x
predated the availability of mature, third-party servlet containers. Instead a
lightweight, Sterling Commerce proprietary, JSP-like presentation templating
scheme overlaid on HTML was implemented and employed by those early releases
of the Sterling Multi-Channel Selling Solution. With Release 4.x, these proprietary
implementations of presentation templating and request dispatch were replaced
with standard JSP and servlet container usage and dependence (see "Overview of
changes for Releases 4 and 5" on page 482). Along with the many benefits of this
necessary technology transition, a consequence of the shift is that upgrading
presentation from Release 3.x to Release 5.x will require re-application of existing
presentation customizations to the new JSP format. This may result in roughly the
same cost as the initial implementation for the presentation portion.

Also prior to Release 4.x, page flow and parameter validation was orchestrated by
lightweight java logic classes known as Presentation Logic Classes, or PLCs. Page
flow customization implemented through PLCs will have to be re-applied to Java
Controller classes under the JSP Model 2 Architecture of Release 4.x and higher.
The implementation effort will range from simple cut-and-paste of source code to
re-implementation of the original page flow customizations.

An additional complication is that the end-user User Interface was re-designed for
Release 5.x based on customer and user feedback on early deployments.

For all the reasons previously noted, the full scope of presentation upgrade from
Release 3.x is likely to amount to re-implementation of the original presentation
customizations.

Upgrading Business Objects and XML Messaging
Data objects are essentially XML-based data maps, mapping the logical schema
used by applications to the actual data sources, local and remote, within the
customer deployment environment. As such, they are easy to extend, and the cost
of performing the mappings comprises a small fraction of the cost of a complete
deployment. Upgrading consists of re-applying the original mappings by merging
the existing schema mapping files into the new reference schema mapping files.
Using standard file merge tools, this process should result in few conflicts and thus
require minimal manual intervention.
erling Multi-Channel Selling Solution Developer Guide

Upgrade Considerations by Customization Technique
Starting with Release 5, data object extensions can be accomplished through an
inheritance mechanism which isolates extensions into separate XML schema map
files. Customizations done in this way need only be reapplied by copying the files
over to the new installation. An object factory mechanism known as the Object
Manager is used to enable the product code to create and manipulate the
customized, superclassed data objects.

Data objects are often directly associated with XML message definitions to support
integration with internal and external data sources. At runtime, incoming XML
messages are converted to Business Objects by an extensible Converter subsystem.
Conversions are implemented as XSL/XSLT-based XML translations. Conversely,
outgoing XML messages are generally converted from data objects to a
corresponding XML message format, also by the Converter.

In general, standard message formats, including Sterling Commerce’ dXML
formats, are supersets of all possible fields required to execute particular
operations. For this reason, it is unlikely that any message mapping customizations
will have to be re-applied during upgrade. Existing conversions can simply be
re-registered in the new system. In cases where a new release contains messaging
version upgrades, backward compatibility conversions are supplied to support
messaging with previous message versions. This means that existing message-
based integrations need not be upgraded unless features of the new messaging are
desired. Proprietary message formats can be similarly supported during upgrade.

Upgrading Business Logic
Business logic modifications in the form of Java source code become necessary
during customer deployment for a variety of reasons including

• To modify existing decision logic (conditionals), possibly to include
custom data fields in the decision logic

• To alter default behaviors that are not controllable via system
configuration

• To enhance default behaviors where product functionality falls short of the
specific deployment needs

• To enhance default behaviors to align with functionality needed now but
planned for a future product release

• To implement new logic specific to a given deployment

• To implement custom Data Services for data integrations specific to a
given deployment
Sterling Multi-Channel Selling Solution Developer Guide 479

Upgrading Legacy Sterling Multi-Channel Selling Solutions

480 St
• To modify Controllers to alter page flow, parameter validation and error
handling behavior (see "Upgrading Presentation" on page 476)

As with other aspects of upgrade, the general upgrade approach is to reapply
existing logic customizations to the new release. The effort needed to bring logic
modifications forward to the latest release is directly dependent on how those
modifications were originally implemented. Modifications in the field are
performed in a number of ways which have progressively more impact on upgrade.
In all cases, if the logic modifications reference customized data objects, those data
object customizations must first be brought forward for the logic to execute
properly. The following is a brief summary of upgrade impact for each
customization technique:

• Extending an existing or implementing a new Data Service – changes of
this kind should be forward compatible.

• Extending existing logic to add or change behavior without any product
source modifications – changes of this kind should be forward compatible
with the caveat that the sub-classed method or class may become
deprecated in a future release.

• Extending existing logic to add or change behavior by creating a new
method in the product source – changes of this kind should be forward
compatible when approved by Sterling Commerce Support with the caveat
that the sub-classed method or class may become deprecated in a future
release.

• Implementing distinct, new functionality by creating new message types
and logic handler classes – changes of this kind should execute in the new
release; however, changes in underlying product behavior may break the
customization or render it obsolete.

• Overloading existing logic by replicating product source in a subclass –
changes of this kind should execute but will hide any enhancement to the
base class implementation which is likely to create problems at runtime
and hurt supportability of the deployment going forward. In most if not all
cases, the overload can either be discarded, if made obsolete by the latest
release, or should be converted to a proper extension of the product code
for increased upgradability going forward.

• Modifying product source directly – this should never be done without a
specific strategy to intersect with a supported patch or future product
release of the Sterling Multi-Channel Selling Solution.
erling Multi-Channel Selling Solution Developer Guide

Upgrade Considerations by Customization Technique
Other Considerations for Upgrade
In addition to migrating customizations forward, the following areas of deployment
activity have considerations for upgrade.

Data Loading and Migration
Migration of business data from one schema version to another is a fairly
straightforward process generally best handled by SQL scripts based on table level
comparisons of the releases. Where tables have been merged or schema names and
types altered, Business Object level (XML) migration is a good option, which may
be preferable for a future release. Business Object changes are documented for each
new release.

In some cases, Sterling Commerce provides a set of reference migration scripts
which will migrate data from the reference version of a previous release to a
reference version of the current release. They are intended to serve as a foundation
from which specific migration scripts can be derived. Automated and manual
comparison of the source schema version against the target schema version would
be performed in order to produce a final migration SQL script. The magnitude of
effort would be roughly one to two person-weeks.

Customizations to scripts to accomplish the creation of the underlying schema must
be re-applied to the new reference schema creation script.

Configuration and Converter Migration
Modifications made to configuration files to support logic customizations during
deployment must be reapplied for those logic customizations that remain relevant.
Again, this is a simple matter of file merge for those files modified. Configuration
modifications include any updates needed to the Converter Map to pick up any
custom XSL/XSLT conversions. In all cases, configuration files are in XML
format.

A Sample Upgrade Task Flow
The following is a likely sequencing of top level activities in performing an
upgrade of the Sterling Multi-Channel Selling Solution:

1. Installation of the latest release.

2. Data migration.

3. Reapplication of Professional Services Stored Procedures.

4. Reapplication of Business Object customizations.

5. Reapplication of Messaging customizations.
Sterling Multi-Channel Selling Solution Developer Guide 481

Upgrading Legacy Sterling Multi-Channel Selling Solutions

482 St
6. Reapplication of Business Logic customizations.

7. Reapplication of Presentation customizations.

8. Test, certify, rollout.

Specific Upgrade Scenarios
Overview of changes for Releases 4 and 5
Major changes to the underlying technology, user interface, and page flow occurred
in Releases 4 and 5. These pose particular challenges to upgrade of previous
releases.

Changes for Release 4
To bring Release 4 into compliance with maturing technologies under the Java 2
Enterprise Edition (J2EE) standards umbrella, a major technology shift from
Release 3 was effected, namely:

• The replacement of proprietary request dispatch mechanism (Listener/
Dispatcher) with reliance on and conformance to the J2EE servlet
container API.

• The replacement of proprietary presentation template processing with Java
Server Pages (JSP).

• To enable JSP-based presentation, statically and dynamically generated
Java Bean wrappers around Release 3 Business Objects were employed by
applications. This represents a shift from pure message-based dispatch of
logic to a mix of method and message-based invocation.

Although Release 4 maintained backward compatibility support for the business
logic and presentation application frameworks of Release 3, the previous
mechanisms are deprecated and largely incompatible with the new ones. Further,
underlying logic differences in Release 4 may cause Release 3-based logic
customizations to behave differently than intended or not at all without some
modification. For this reason, re-applying existing customizations is only
recommended for code areas where further development is not expected, that is, for
stable and isolated functions which are themselves not expected to require further
development. For all other customizations, re-implementation in the latest
framework is recommended to insure the maintainability of those customizations
going forward.
erling Multi-Channel Selling Solution Developer Guide

Specific Upgrade Scenarios
Changes for Release 5
No fundamental technology shifts were made for Release 5; however, significant
refinement of in the form of enhancement of platform services and a redesign of the
end-user facing User Interface was performed.

In particular, the following changes are of interest with respect to upgrade:

• Business Objects continued their shift towards Java Beans through Data
Integration Layer enhancements to support dynamically generated,
updateable beans with inheritance. For applications, all new and most
existing applications were implemented or modified to rely on the new
Release 5 Business Objects.

• To enhance usability and ease integration, the base User Interface for end-
user pages was redesigned to be frameless and to support task-based user
flow via a wizard metaphor. The changes are most significant for Order
Management customers.

• To leverage standard technology, the Converter Service was redesigned to
be based on XSL/XLST transformations. This enables XML to XML
conversions to be implemented as declarative descriptions (Style Sheets),
removing the need for programming in order to accomplish and maintain
messaging transformations.

The direct impact of the Business Object enhancements on customizations is
limited as Release 5 is backward compatible with previous schema definition
formats. However, it is recommended that customizations that will be modified as
part of an upgrade also be re-implemented to use the Release 5 Business Objects or
Data Beans. In particular, Business Object customizations previously made directly
to a particular reference Business Object definition should be reapplied to the
equivalent Release 5 definition via the new sub-classing mechanism to increase
maintainability going forward.

The redesign of the Release 4 User Interface for Release 5 will further complicate
any upgrade of presentation from Release 3 since both the syntax and structure of
the pages will differ. Essentially, reapplying User Interface customizations will be
roughly equivalent to re-implementation of those customizations in Release 5
excepting that the overall scope of changes should be significantly reduced by an
improved, frameless Release 5 starting point.

Upgrading Release 3
As previously stated, major changes to the underlying technology and user
interface and page flow occurred in Releases 4 and 5 of the Sterling Multi-Channel
Selling Solution. For Release 3, these add up to an upgrade effort that will likely be
Sterling Multi-Channel Selling Solution Developer Guide 483

Upgrading Legacy Sterling Multi-Channel Selling Solutions

484 St
tantamount to re-implementation with respect to coding effort. Design effort should
be substantially reduced as the initial implementation generally involves significant
analysis of and some refinement to existing business practices. The specific, top
level task flows for each area of customization are enumerated below.

Data Migration
Data Migration of Release 3 to Release 5 will consist of the following steps:

1. Creation of the Release 5 schema in a new table space or database via supplied
script.

2. Manual construction of SQL-based conversion scripts specific to the
deployment from analysis of the new Release 5 schema.

3. Execution of those scripts to migrate existing business data to the new
Release 5 schema.

Business Objects and Messaging
Upgrade of Business Object customizations from Release 3 to Release 5 will
consist of the following steps:

1. Install Release 5 on a development server.

2. Perform a difference analysis between deployed schema and Release 5
reference schema.

Depending on the scope of the changes, the following approaches may be
taken:

a. Reapply the changes through standard file compare/merge techniques.

b. Re-implement the changes via inheritance starting from the Release 5
reference schema and using the deployment schema definitions as a guide.

3. Messaging and Converter customizations will be compatible with Release 5.
However, for maintainability going forward, it is advisable to upgrade any
Java-based conversions to XSL/XSLT-based conversions. This will enable the
conversions to be maintained through updates to the XML-based conversion
map instead of any Java programming.

Business Logic
Although Release 3 Business Logic Extensions should execute without
modification in Release 5, changes to logic flow in the referenced APIs underlying
the customizations are likely to be so substantial as to cause some degree of
regression. In those cases, re-implementation in Release 5 is recommended over
erling Multi-Channel Selling Solution Developer Guide

Specific Upgrade Scenarios
reapplication of Release 3 changes to Release 5 to increase maintainability going
forward.

In cases where reapplication of Business Logic from Release 3 to Release 5 is
advisable, the upgrade will consist of the following steps:

1. Perform migration of data, Business Objects, and Messages on a development
server.

2. Copy customized BLCs and Java classes to an executable location on
development server.

3. Reapply message mapping modifications to link in the customized BLCs.

4. Start Release 5 and unit test BLCs with XML messages or UI.

5. Evaluate degree of regression and consider re-implementation where
regression is substantial or customization was minor.

Presentation
Due to the substantial changes made to both the implementation technology and
design of the User Interface since Release 3, reapplication of Release 3
presentation templates to Release 5 is not recommended. Instead, presentation
should be re-implemented starting from the Release 5 reference UI. Because the
Release 5 User Interface is JSP-based, frameless, and improved with respect to
usability, it is anticipated that far fewer modifications will be necessary during
upgrade.

Upgrading Release 4.x
As described in "Changes for Release 5" on page 483, major usability
enhancements were made in the Release 5 release, including moving all end user
facing pages to a frameless UI. Modifications to JSP pages written in the Release 4
release will have to be mapped conceptually to the new reference UI to determine if
they are still relevant. Simple branding and style modifications should be reapplied
to the new UI. More substantial changes may no longer be relevant or may need to
be re-implemented under the new UI scheme in order to properly leverage the new
Release 5 UI. Modifications to page flow made to Java Controllers will have to be
reapplied to Release 5. Due to the nature of UI page flow changes for Release 5, it
is unlikely that customized Release 4 Controllers will execute without modification
within Release 5.

Data Migration
Data Migration of Release 4 to Release 5 consists of the following steps:
Sterling Multi-Channel Selling Solution Developer Guide 485

Upgrading Legacy Sterling Multi-Channel Selling Solutions

486 St
1. Creation of the Release 5 schema in a table space or database via supplied
script.

2. Manual construction of SQL-based conversion scripts specific to the
deployment from analysis of the new Release 5 schema.

3. Execution of those scripts to migrate existing business data to the new
Release 5 schema.

Business Objects and Messaging
Upgrade of Business Object customizations from Release 4 to Release 5 consists of
the following steps:

1. Install Release 5 on a development server.

2. Perform a difference analysis between deployed schema and Release 5
reference schema.

Depending on the scope of the changes, the following approaches may be
taken:

a. Reapply the changes through standard file compare/merge techniques.

b. Re-implement the changes via inheritance starting from the Release 5
reference schema and using the deployment schema definitions as a guide.

3. Messaging and Converter customizations will be compatible with Release 5.
However, for maintainability going forward, it is advisable to upgrade any
Java-based conversions to XSL/XSLT-based conversions. This will enable the
conversions to be maintained through updates to the XML-based conversion
map instead of any Java programming.

Business Logic
In many cases, Release 4 Business Logic Extensions should execute without
modification in Release 5. However, there may be cases where changes to page
flow for improved usability caused underlying logic flow changes which render a
particular Release 4 logic customization incompatible with Release 5. In those
cases, re-implementation in Release 5 is recommended over reapplication of
Release 4 changes to Release 5 to increase maintainability going forward.

In cases where reapplication of Business Logic from Release 4 to Release 5 is
advisable, the upgrade consists of the following steps:

1. Perform migration of data, Business Objects, and Messages on a development
server.
erling Multi-Channel Selling Solution Developer Guide

Specific Upgrade Scenarios
2. Copy customized BLCs and Java classes to an executable location on
development server.

3. Reapply message mapping modifications to link in the customized BLCs.

4. Start Sterling Multi-Channel Selling Solution Release 5 and unit test BLCs and
Java classes with XML messages or UI.

5. Evaluate degree of regression and consider re-implementation where
regression is substantial or customization is minor.

Presentation
In upgrading Release 4 to Release 5, impact to customized presentation can vary
widely depending on the nature and purpose of the Release 4 customizations
performed (see "Upgrading Presentation" on page 476). In particular, the following
customization scenarios will lead to distinct upgrade paths:

• Case 1: Customization was done primarily to apply branding and UI basic
style conventions.

• Case 2: Customization was done to remove frames and modify page flows
in addition to application of branding and style.

• Case 3: Customization involved a major reworking of the Sterling Multi-
Channel Selling Solution UI to conform to a substantially different
corporate look and feel and/or to support substantial functional
customizations during deployment in addition to application of branding
and style.

The following sections detail the upgrade path for each of these cases.

Presentation Upgrade Case 1
Because the Release 5 UI redesign included the switch to a frameless UI,
reapplication of branding should be more straightforward and less effort than that
for the original deployment. The following steps will be necessary:

• Perform migration of data, Business Objects, and Messages on a
development server.

• Perform upgrade and migration of any Logic customizations on which the
presentation customizations rely.

• Migrate customized graphics to the Release 5 development server.

• Working from the Release 5 reference UI, re-apply branding headers as
included HTML or JSP pages to the reference JSPs.
Sterling Multi-Channel Selling Solution Developer Guide 487

Upgrading Legacy Sterling Multi-Channel Selling Solutions

488 St
• If image names were changed during customization of Sterling Multi-
Channel Selling Solution Release 4, then fix up any broken image
references by renaming the customized image files, not the Sterling Multi-
Channel Selling Solution Release 5 image tag references.

• Start the server and test the new UI, noting any regressions. Identify any
new Sterling Multi-Channel Selling Solution reference buttons that will
require re-branding.

• Identify and reapply any relevant changes to text descriptions, column
header names, labels, etc. from the previous deployment to the new JSP
pages.

Presentation Upgrade Case 2
Presentation customizations done to remove frames will not need to be reapplied
since Release 5 reference UI is frameless. The following steps will be necessary:

1. Ignoring any customizations performed to remove frames, perform migration
and upgrade of UI branding and style to Release 5.

2. Re-evaluate page flow customizations. Page flow improvements in Release 5
should render usability oriented page flow customizations obsolete. Discard
those going forward. Page flow customization performed to insert additional
pages into the flow to model customer-specific business process must be
reapplied as follows:

a. Convert the pages as appropriate to conform to the look and feel of the
upgraded UI in Release 5. For example, remove frames if the added pages
contained them.

b. Reapply the Controller customizations to Release 5 reference Controllers
via file merge/compare techniques. If minimal changes to flow were done
or flow changes were performed through sub-classing of Controllers,
migrating the customized Controllers as is to the development server is an
option.

c. Regress the changes and bug fix as needed.

Presentation Upgrade Case 3
Where substantial reworking of the UI has been done without regard to the
resulting upgrade implications, presentation customizations must be either wholly
re-implemented or migrated from the perspective of preserving the customized UI
as is.
erling Multi-Channel Selling Solution Developer Guide

Specific Upgrade Scenarios
If the upgrade is timed to coincide with a general Web site face lift, then re-
implementation of the UI customizations will be required in any case and should
represent a small portion of that overall cost. If the overall site UI is not due for
redesign, then it may be more cost effective to ignore any UI enhancements and
attempt to migrate the old UI to the new installation. For migration of the old UI,
the following steps will be necessary:

1. Copy the previously customized UI including JSP pages and Controllers to the
Release 5 development server.

2. Reapply message mapping changes to the Release 5 development server.

3. Regression test the old UI on the new Release 5 platform. Regression will
occur where logic APIs have changed from Release 4 and backward
compatible, deprecated APIs were not maintained. Repairing regression will
consist of “rewiring” the old UI to the new Release 5 APIs.

4. Evaluate the scope of repairing the old UI on the new installation. If for any
reason, the projected scope of repairing regression approaches or exceeds the
cost of re-implementation, discontinue migration and perform re-
implementation.

Upgrading Release 5.x to future Releases
Release 5 resulted in a new level of maturity with respect to both the features of the
application suite itself and to the relatively young industry standard platforms on
which it is built. Along with refinements to deployment process and methodology
including the release of the Software Developer Kit (SDK), upgradability is also
substantially improved over previous releases. The following sections describe
some of the upgrade related improvements Release 5 customers will be able to
leverage if customization procedures as outlined in this document are consistently
followed.

Data Migration
For future releases, a roadmap of improved reference migration scripts and tools
are planned including reference XML-based data bridges. These should
substantially ease both migration of data for upgrade and implementation of data
loading and synchronization from new sources.

Support and tools for automated schema profiling and data migration will be added
to the reference migration process enabling both better analysis and smoother
execution of data migration.
Sterling Multi-Channel Selling Solution Developer Guide 489

Upgrading Legacy Sterling Multi-Channel Selling Solutions

490 St
Business Objects and Messaging
Future releases will include automated support for profiling and performing schema
map migration. These will further leverage the rich potential of the XML-based
mappings by providing structured comparison and merging of changes.

Going forward from Release 5, all custom message conversions should be
performed in XSL/XSLT removing programming from the maintenance and
upgrade process.

Business Logic
Future releases will increase the emphasis on specific internal and external
interface connections between modules and applications. This will enable
automated profiling of Logic changes to greatly improve analysis and execution of
upgrades.

The emphasis on module interfacing will enable improved documentation and
deprecation of the Business Logic APIs to greatly extend backward compatibility
coverage at the Business Logic level.

Additional user extension techniques and mechanisms including a formal User
Callout mechanism will be provided to increase the isolation of customizations
from the product code.

Presentation
A maturing and improved UI will require fewer if any structural modifications
during deployment. A UI Style Guide will streamline the look-and-feel analysis and
design phase of deployments.

Web UI presentation technology will mature to enable UI component definition and
reuse. This will centralize and isolate look and feel changes reducing both
development and maintenance costs related to presentation customization. For
example, XML Style Sheets will likely play a greater role in controlling page
formatting and layout, separating page appearance from structure.

The emphasis on more formal modularity and API versioning will enable future
release to remain compatible with old UIs. This will not only ease migration to
newer releases but also give more scope control to the customer during an upgrade
project. For example, pages may not have to be altered during an upgrade, but the
customer may choose to change or enhance them anyway to achieve improvements
ultimately motivated by business goals.
erling Multi-Channel Selling Solution Developer Guide

Index
Symbols
% wildcard 276
* wildcard 276
^ symbol

used in Web services URL 342
_ wildcard 276

A
AbstractBizlet class 53
AbstractCronJob class 438
AbstractRuleFunctionHandler class 446
access control list 102
access control lists 91

upgrading 172
access entitlements 70, 363
access policies 91, 94

conditions 95
example 206
resource 95
upgrading 172

access policy
inheritance 95

access services 97
AccessChecker element 96, 97
AccessControlAdapter class 104
AccessControlAPI class 103
AccessControlFactory class 103, 104

accessor methods
effect of Writable attribute 75

AccessPolicy element 95, 96
AccessPolicy.xml configuration file 96,

208
AccessServiceDefinition element 97
ACLBuilder class 104
ACLs

default 208
troubleshooting 104

action events 311
ActionEvent element 311
ActionEventList element 309, 311
ActionEvents 309
ActionHandler class 308
ActionHandlerList element 308
ACTIVE_FLAG column 75

use to mark objects as deleted 73
ActiveTransaction class 300
addBuilder method 329
addChild method 87, 465
addFieldUpdate method 282, 284
adding a role to a user type 93
addSearchTerm method 331
addSort method 281
addSubQuery method 275
addTerm method 331
Sterling Multi-Channel Selling Solution Developer Guide 491

492 St
addTextElement method 175
addWhereClause method 274
adjustFileName method 19, 27, 29, 173,

364
used in file upload 223

Alternate element 83
alternate style 257
Always element 207
Analyzer class 328, 335
Analyzer reports 425
AppContextCache class 28
AppExecutionEnv class 17, 26
application beans 22, 71, 72
application logic classes 143
application/x-icc-xml 52
application/xml 52
application/x-www-form-urlencoded

content type 52
ApplicationCron class 436, 438
ApplicationObject interface 468
AppsLookupHelper class 27
assemblies

testing product assemblies 216
attachACL method 103
attribute

rows 182
AttributeInterface.wsdl file 341
attributes

alt 373, 374
app 376
buffer 258
bundle 380
cmd 377
cols 182
convertSpace 371
counter 377
DataService 83
DataSourceName 83
errorPage 258
ExternalFieldName 81
field 375, 376
forwardParam 377
ID 23
id 377, 380
IsOverlay 17
MaxPoolSize 25
Name 16, 81
name 373, 374, 375, 376, 377, 401,

402

Ordinality 203
property 375, 377
src 181
test 375, 376
type 371, 375, 376, 377
value 375, 376
Version 81, 89, 188, 206, 468

audit trail 113

B
BaseBuilder class

abstract super class 328
basestylesheet.css style sheet 255
BasicBuilder class 325
beanName attribute

use in CIC Tags 387
behavior property 444
bizAPI classes 140
Bizlet class 17
Bizlet content types 51
Bizlet interface 52, 54
bizlet methods 55
BizletInvoker class 54
BizletMapping

default value for message group 18
BizletMapping element 17, 55
bizlets 51
BizletSession class 54
BizObjTable class 469, 470
BizRouter class 17, 55
BLC abstract class 140
BLC class 468
BLCMapping

default value for message group 18
BLCMapping element 17
BLCs

replaced by bizlets for message
processing 51

BooleanExpression element 97
bound parameters

used to protect against SQL injection
attacks 301

browser buttons
Refresh 220
testing Back and Forward 219

buffer attribute 258
build method 325, 328, 330
Builder element 325
BuilderConfiguration class 330
erling Multi-Channel Selling Solution Developer Guide

buildSelf method 329
bundle attribute 380, 416
business logic class

BLCMapping 17
business logic classes 26, 66, 139, 179

implementation 63, 139, 143
business objects

constructor 467
lists 70
type 467
User 19

business rule element 208
BusinessObject class 89, 174, 468
BusinessRules.xml configuration file 209
buttons.css style sheet 255

C
C3PrimaryRW data object 66, 215
C3PrimaryStorefrontRW data object 171
C3StorefrontRW data object 171
cache method 362
caching data 362
calendar 424
calendar widget 233, 398

localizing 424
calendar.css style sheet 255
callJSP method 30, 319
canRequest method 92
caret symbol

used in Web services URL 342
cascading style sheets 183, 251, 254, 425
CatalogAdvancedSearchController

class 327
CatalogDictionary.mappings configuration

file 326
CatalogInterface.wsdl file 341
CatalogItemsExportHandler class 439
CatalogSearchAnalyzer class 335
CatalogSearchResultController class 327
character encoding

in JSP Pages 217
character sets 413
Check method 31
checkPolicy method 108
checkwslookup function 448
child data objects 77
ChildDataObject element 77
children method 86, 465
cic

equals function 404
CIC tag library 383
CIC tags

Javadoc 384
cic.tld tag library descriptor file 384
cic:banner tag 393
cic:column tag 394, 406
cic:column tag example 392
cic:columnHeader tag 395, 406
cic:command tag 395
cic:concat tag 396
cic:div tag 396
cic:el tag 397
cic:if tag

deprecated 410
cic:img tag 397
cic:input tag 397, 403
cic:inputDate tag 398
cic:javascriptLink

use in cic:command tag 395
cic:link

use in cic:command tag 395
cic:options tag 251, 400, 404
cic:output tag

example 257
cic:outputLink tag 400, 402

use of ignore attribute 387
cic:param tag 399, 401
cic:property example 392
cic:property tag 387, 401
cic:quickSearch tag 402
cic:quickSearchParam tag 402, 403
cic:select tag 251, 404
cic:span tag 400, 405
cic:table tag 405
cic:table tag example 392
cic:title tag 406
cic:title tag example 392
cic:whitespace tag example 393
cic67 tags 176
cic67.tld tag libray descriptor file 384
cicComponent class 385
classes 20

AbstractBizlet 53
AbstractCronJob 438
AbstractRuleFunctionHandler 446
AppExecutionEnv 17, 26
ApplicationCron 436, 438
Bizlet 17
Sterling Multi-Channel Selling Solution Developer Guide 493

494 St
BizletInvoker 54
BizletSession 54
BizobjBean 70
BizObjTable 469, 470
BizRouter 17, 55
BLC 26, 468
BusinessObject 89, 466, 468
CacheableAdapter 466
ComerentSession 19
ComergentAppEnv 20, 27
ComergentContext 19, 362
ComergentDispatcher 19
ComergentException 429
ComergentRequest 19, 248
ComergentResponse 19
ComergentRuntimeException 430
ComergentSession 248, 361, 362
ConverterFactory 33
CronConfigBean 436
DataBean 22, 276
DataContext 66
DataManager 82, 85, 464
DataMap 87, 465
DataService 83
DebsDispatchServlet 20
DispatchServlet 15, 20
DsElement 86, 465
DsQuery 272, 275
Env 19
Exception 429
ForwardController 187
GeneralObjectFactory 20, 186
Global 471
HttpRequest 19
HttpResponse 19
HttpServletRequest 438
HttpSession 19
ICCException 429
importing 365
InitServlet 15, 20, 28
MessagingController 20, 22
MetaData 87, 466
naming conventions 364
NamingManager 141
NamingResult 142
NamingServiceDatabase 141
NamingServiceProperties 141
ObjectManager 22, 63, 66
OMWrapper 22, 63

PriceAvailability 470
PriceAvailabilityGet 469
QueryHelper 272
RequestDispatcher 19
ResourceBundle 426
RuntimeException 430
SimpleController 21, 22
SystemCron 435, 438
Transaction 298
User 92
Value 446
WidgetController 318

ClassName element 23, 24
clearSort method 280, 281
cloneDsElement method 87, 465
clustered deployment

file access 363
clustered environment 28
clustered installation 361
clustered operation

storing data in the GlobalCache 362
cmgt.tld tag library descriptor file 384
CMGT_LOOKUPS table 26, 310, 400
CMGT_RESOURCE table 305
CmgtFilter class 328
cmgtText method 249, 379, 416
cmgtTextBundle method 250
code examples

retrieving locales 217
using locale properties files 420

color-csr.css style sheet 256
color-customer.css style sheet 256
cols attribute 182
com.comergent.api.dataservices

package 39
com.comergent.api.dispatchAuthorization

package 45
com.comergent.api.msgservice package 48
com.comergent.apps.configurator.function

Handlers package 446
com.comergent.dcm.caf.controller.Controll

er class 21
com.comergent.dcm.core.filters

package 450
com.comergent.dcm.objmgr package 25
com.comergent.dcm.qbe package

deprecated 272
com.comergent.dispatchAuthorization

package 45
erling Multi-Channel Selling Solution Developer Guide

com.comergent.msgservice package 48
com.comergent.reference.jsp package 416
com.comergent.taglib.cic.commerce

package 385
Comergent Internet Commerce tag

library 383
Comergent.xml configuration file 16, 376
ComergentAppEnv class 20, 27, 126, 173

used in file upload 223
ComergentContext class 19, 362, 364
ComergentDispatcher class 19
ComergentDocument class 175
ComergentEvent interface 117
ComergentHelpBroker class 40, 173
ComergentI18N class 419
ComergentRequest class 19
ComergentResponse class 19, 262
ComergentSession class 19, 361, 362
command

instanceof 71
commit method 299, 301

use in Transaction class 298
ComparativeExpression element 97
compiled stylesheets 32
compileStyleSheets system property 32
conditions

access policies 95
configuration files 2, 473

Comergent.xml 15, 16, 473
DsBusinessObjects.xml 80, 195
DsConstraints.xml 453
DsDataElements.xml 196
DsKeyGenerators.xml 196
DsRecipes.xml 81, 195
Internationalization.xml 414
MessageMap.xml 33
MessageTypes.xml 16, 20, 186
ObjectMap.xml 23
web.xml 2, 3, 15

constants
naming conventions 364

constrained data field 453
constructAppURL method 126
constructing URLs 126
content type 20, 55
content types

for BIzlet processing 51
context

setting attributes 19

control handlers 445
control.properties configuration file 444
Controller class 144
Controller classes 21

as part of reference
implementation 133

See also extending Controller classes
ControllerMapping

default value for message group 18
ControllerMapping element 17, 55, 318
controllers 179
controls

used in Sterling Configurator 443
ConverterFactory class 48, 175
cookies 219, 363
copyBean

use in creating data object history 359
copyBean method 73, 175

used to save history of data object 357
createController method 20, 186
createDB target 180
creating a waiting page 260
cron jobs 435
CronConfigBean class 436
CronJob interface 436
CronManager class 436
CronScheduler class 436
cross-site scripting attacks 185
css attribute 396, 401, 405
currencies 413, 423
currency 374

used in pricing 32
custom tag libraries 3
customer types

used in pricing 32
customize target 181, 182, 183, 184, 186
customizing controls 443

D
data bean

generating classes and interfaces 190
data beans 179
data element 266
data fields metadata 87, 466
data object

history 357
data objects 66, 179

accessing child data objects 77
C3PrimaryRW 196
Sterling Multi-Channel Selling Solution Developer Guide 495

496 St
customizing 66, 188
database table names 158
extending 24, 65
ordinality 65
stored procedures 72

data services
performance optimizing 291

database schema
modifying 197
upgrading 176

DataBean class 22, 276
DataContext

overriding maximum number of
results 291

overriding number of results per
page 291

DataContext class 66, 74
use in restore 71

DataField element 81
DataObject attribute 96
DataObject element 83
DataService attribute 83
DataService class 83
DataServices element 474
DataServices.General.LimitDBResults

preference 69
DataSourceName attribute 83
datasourceRef attribute 405
DataSyndicationConfig.xml configuration

file 439
data-table style 257
data-table.css style sheet 256
date formatting 230
dates 423
DebsDispatchServlet class 20
debug method 112, 175
DEBUG_FLAGS property 473
debugging information

generated in HTML pages 248
debugging JSP pages 258
debugging JSP resource bundles 418
debugJSPResouceBundle element 380,

418
debugPrint method 284
debugPrintSql method 276, 284
debugPrintTree method 275
default ACL 208
default locale

failover mechanism 419

default values 474
defaultCountry element 419
DefaultHostedPartner element

used in constructAppURL
method 126

DefaultStateMachines element 309
defaultSystemLocale element 414, 415,

419
defaultType element 142
delete method 73, 87, 89, 465, 468
deleteChild method 87, 466
denyAccess method 104
deployment files

Sterling.war 14
dictionary definitions for search 326
disableAccessCheck method 68, 76
Dispatch method

used in displaying trees 238
DispatchServlet class 20, 144
displayAsText attribute 404
DisptachServlet class 121
dist target 180
doAccessCheck method 68
Document class 328, 332
doDebug variable 248
doFilter method 449
doGenerateIDL target 54
DosFilter class 450
DsDataElements.xml configuration file

setting the lengths of data fields 420
DsElement

child 86, 464
parent 86, 464
root 86, 464

DsElement tree 85, 464
legacy applications only 85, 463

DsElements 85, 463
DsQuery class 75, 173, 272, 275

example of use 205
use in restore 71

DsUpdate class 173, 282
DsUpdateField class 282
dXML message family 32
dXML-

AttributeGroupObjectDefinitions
.xsd file 346

dXML-AttributeObjectDefinitions.xsd
file 346

dXML-BasicComponents.xsd file 346
erling Multi-Channel Selling Solution Developer Guide

dXML-CatalogObjectDefinitions.xsd
file 346

dXML-InvoiceObjectDefinitions.xsd
file 346

dXML-LeadObjectDefinitions.xsd file 346
dXML-OILObjectDefinitions.xsd file 346
dXML-OrderObjectDefinitions.xsd

file 346
dXML-PartnerObjectDefinitions.xsd

file 346
dXML-PromotionObjectDefinitions.xsd

file 347
dXML-ProposalObjectDefinitions.xsd

file 347
dXML-QuoteObjectDefinitions.xsd

file 347
dXML-ReturnObjectDefinitions.xsd

file 347
dXML-SalesContractDefinitions.xsd

file 347
dXML-ServiceContractDefinitions.xsd

file 347
dXML-TaskObjectDefinitions.xsd file 347
dXML-UserObjectDefinitions.xsd file 347
dynamic includes 258
DynamicInstantiationControlHandler

class 445

E
EditableAccessControlList class 103, 104
el tag 409
elements

Alternate 83
BizletMapping 17
BLCMapping 17
ControllerMapping 17, 318
DataElements 82

re-use 82
DataField 81, 82
DataObject 83
defaultSystemLocale 414
ExternalName 72
frame 181
frameset 182
GeneralObjectFactory 16
globalCacheImplClass 28
JSPMapping 17, 319
MessageType 16, 202
messageTypeFilename 16

Primary 83
propertiesFile 15
schemaRepositoryExtn 188
ServerName 473

email messages
generating URLs 126

email templates 421
location 422

Emails.xml configuration files 125
enableAccessCheck method 68
enableJSPResouceBundle element 380
enableJSPResouceBundleCaching

element 380
encode tag 371
enlist method 298
EntitlementFactory class 45
entitlements 91
Entitlements.xml configuration file 92
entity beans 71
Entity element 440
EntityPickerHierarchyViewController

class 239
entry point 109
EntryPoint attribute 109
Env class 19
env.setDBType target 180
EQUALS operator 276
EQUALS_IGNORE_CASE operator 276
equi-joins 293

specifying in data objects 297
erase method 73
error method 112
errorPage attribute 258
event consumer 116
event producers 115
EventBus 309
EventBus class 116
EventBusException class 121
EventConsumer interface 116
EventProducer interface 116
events 115

example usage 119
Events.xml configuration file 116
events.xml configuration file 121

used in state machines 311
example access policy 206
exception handling 429
Exceptions 429

displaying 433
Sterling Multi-Channel Selling Solution Developer Guide 497

498 St
exceptions
InvalidBizobjException 467

execute method 319
executeController method 121
export

catalog export 439
exporting products 439
ExportManager class 439
Expression element 97
expression language 408
extending Controller classes 201
Extends attribute 65
ExternalFieldName attribute 81, 288
ExternalName attribute

used to specify a stored procedure 288
ExternalName element 72
extractDateFromDateField function 234
Extrinsic elements 441
ExtrinsicFieldHandler class 440, 441

F
Factory pattern 22
failover behavior 418
failover mechanism for JSP pages 418
failover mechanism for resource

bundles 418
fallback redirect message type 109
FallbackRedirect element 109
fatal method 112
Field class 328
Field element 440
FieldExportHandler interface 441
fieldset element 252
file access

writing for a clustered
environment 363

file upload 222
FileUploadCache class 223
Filter

type of search term 332
Filter class 328
filter search term 331
filter search terms 325
Filtering Query

type of search term 332
filters

J2EE filters 449
findPresentationLocale method 419
fireEvent method 116, 121

fonts 425
form data

submitted twice 253
form.css style sheet 256
formatPrice method 250
formatting

dates 230
formatTS method 176
forward method 317
ForwardController class 144
frame element 181
frames

running in a frameset 254
frameset element 182
free method 275
freeCache method 291
FullPageLoader.jsp page 262
function handler classes 445
function handlers

that invoke Web services 448
functionHandlers.properties configuration

file 445
functions 92

pickStyleSheet 255

G
garbage collection 362
General element 474
GeneralObjectFactory class 20
GeneralObjectFactory element 16
generateBean target 22, 66, 71, 83, 135,

196
generated interfaces

use in application beans 72
generateDTD target 66
generateKeys method 73, 175
GenericBuilder class 330
get method 142, 362
getAccessBuilder method 104
getAccessControlList method 103
getAccessControlListByName method 103
getAllowedValueIterator method 87, 466
getAssignedPriceListKey method 32
getAttribute method 362, 363
getAttribute tag 373
getBizObj method 77
getBoolean method 30
getCacheId method 68
getChildren method 237, 239
erling Multi-Channel Selling Solution Developer Guide

getComergentLocale method 217, 419
getCountAllowedValues method 87, 466
getDataBean method 72
getDataType method 87, 466
getDefaultLocale method 419
getDefaultValue method 87, 466
getDisplayName method 237, 239
getDouble method 30
getElementByName method 86, 465
getEntities method 329
getEntityType method 329
getEscaped tag 373
getField method 441
getFloat method 30
getFuncName method 446
getIaccProduct method 191
getID method 237, 239, 265
getInContextPricePriceListKey method 32
getInputStream() method 223
getInstance method 116, 141
getInt method 30, 46
getIRdProduct method 72
getKey method 330
getLocale method 217
getLong method 30
getMaxCharLength method 87, 466
getMaxLength method 87, 466
getMaxPaginatedResult 69
getMaxResults method 68
getMaxValue method 87, 466
getMetaData method 87, 466
getMinValue method 87, 466
getName method 87, 237, 239, 466
getNativeMessageFactory method 175
getNextPage method 290
getNumPerPage method 69
getObject method 23
getObjectArg method 174
getParameter method 438
getParameters method 438
getParent method 87, 466
getPreferences method 31
getPrefix method 329
getPrice tag 374
getProdScoresAndTrim method 334
getProperty tag 374
getRealPath method 29
getResource tag 374
getResourceAsStream method 19, 364

getResourceValue method 260, 304
getRootElement method 85, 86, 89, 175,

464, 465, 468
getRootIndexBuilder method 331
getSession method

ComergentSession class 20
getSource method 116
getStateMachine method 307
getString method 30
getTopLevelEntities method 237, 239
getType method 87, 89, 237, 239, 446,

466, 468
getUser method 175
getValueByName method 175
Global class 173, 175, 471

deprecated use for logging 111
replaced by Preferences 28

GlobalCache interface 28, 362
grantAccess method 104
group key 186

H
handle method 446
handleComergentRequest method 445
handleEvent method 116
hasError method 108
help system 263
helpTopic attribute 393
HelpTopicsMap.xml configuration

file 265, 393
HelpUtil class 265
hidden input variables 363
Hint parameter

use in newSubQuery method 286
hints

support for Oracle hints 285
history

data objects 357
Hits class 327, 328
href attribute 401
HTML standard 221
HttpRequest class 19
HttpResponse class 19
HttpServletRequest class 438
HttpSession class 19

I
IAcc interface 74
IAccC3PrimaryRW interface 102
Sterling Multi-Channel Selling Solution Developer Guide 499

500 St
IActionHandler interface 308
IBizProduct interface 191
icon tag 410
IConfigWebService interface 448
IControlHandler interface 445
ID attribute 23, 24
id attribute 380, 398, 404

re-using in text tag 380
used in text tag 416

IData interface 73, 74, 175
accessing metadata 87, 466

IDataList interface 175
IDL

see Interface definition language
IDL files 52
IDsQuery interface 173
IDsUpdate interface 173, 283
ie_main.css style sheet 256
if tag 410
IIndexBuilder interface 325, 328
images

cic tags 397
template files 242

IMetaData interface 87, 466
include method 317
IncludeController class 317
index set 324
index sets 323
IndexBuilder classes 325
IndexField element 325
IndexFieldConfiguration class 330
IndexReader class 328
IndexSetBuilder class 330, 331
IndexWriter class 328
info method 112, 175
InFrameEnvironment system property 254
init method 329
initializeControl method 445
InitManager class 40
InitServlet class 20
inner classes 365
Input element 308, 311
InputFailedException class 308
insertSort method 281
install target 180
installDB2 target 180
installODBC target 180
installOracle target 180
instanceof command 71

interface definition language 54
interfaces

ApplicationObject 468
Converter 32, 33
GlobalCache 28, 362
IAcc 74
IData 73
Ird 74
naming conventions 364
NamingService 141
poolable 25
TransactionSupport 299

internal.css style sheet 256
internationalization 217, 413

cascading style sheets 425
failover mechanism for JSP pages 418
failover mechanism for resource

bundles 418
reports 425

Internationalization.xml configuration
file 379, 380, 414, 418, 419

InvalidBizobjException 467
InvoiceInterface.wsdl WSDL file 341
IPasswordPolicy interface 108
IPolicyClass interface 107, 108
IProdServBeanRoot interface 175
IRd interface 74
IRdC3PrimaryRW interface 102
IREvent interface 117
IRWEvent interface 117
isDeletable method 102
isInsertable method 102
IsOverlay attribute 17
isPersistable method 74
isPublicHandler method 446
isReadable method 102
isRequestDenied method 450
IsRestorable method 74
IStateMachine interface 307
isVetoed method 118
isWriteable method 102
ITransactionSupport interface 173

J
J2EE 1
Java 2 Platform, Enterprise Edition 1
Java source file 365
Javadoc 221

for CIC tags 384
erling Multi-Channel Selling Solution Developer Guide

Javadoc comments 366
Javadoc parameters 366
JavaHelp 2.0 263
Javascript 246, 251

submit function 253
Javascript functions 251
JoinKey element 78
JoinOperator attribute 297
joins

supported by data services layer 297
joinWhereClauses method 273
jsp

include tag 258
useBean 248, 249

jsp attribute 405
JSP expression language 408
JSP fragments 258
JSP pages 1, 179, 317

as part of reference
implementation 133

cmgtinclude.jsp 247
cmgtinclude.jspf 248, 249
comments 247
container page 317
debugging 258
debugging localization 418
error page 247
error.jsp 247
localization 423
localization using the text tag 379
page buffer 434
used in email templates 29
waiting page 260

JSPMapping
default value for message group 18

JSPMapping element 17, 319, 419
JSPMessageType variable 385

K
Key attribute 109
key attribute

used to define prefix in IndexBuilder
definitions 325

Knowledgebase 436

L
labelRef attribute 400
labelrowcss attribute 405
languages 413

lazy evaluation of joins 297
lazy link mechanism 293
LeadInterface.wsdl WSDL file 341
left-outer joins 293
LegacyFileUtils class 19, 29, 173
LegacyPreferences class 28
length of data fields 420
LIKE operator 276
link method 186, 250

use in cic:outputLink tag 400
used in creating tree views 237

link tag 376
list business objects 70
list data objects

example 203
listBeanParam attribute 405
loadDB target 180
locale 374
locales 414

preferred locale 414
presentation 415
retrieving current 217
session 415
testing 217

localization 413
images 422
Javascript 423

localized function 405
localRedirect method 19, 262
log method 112
log4j API 111
log4j.debug system property 112
log4j.properties configuration file 111
Logger 173
Logger class 173, 175
logging 221

package flags 472
logging levels 472
logging methods

debug 112
error 112
info 112
log 112
warning 112

login form
passing request parameters 108

logLevel methods 111
logout method 20
lookup codes 26, 34
Sterling Multi-Channel Selling Solution Developer Guide 501

502 St
mapping to strings 27
lookup types 27, 34
LookupResult class 252
LookupType element 310

M
MandatoryRoleSet element 94
maps element 266
MaxPoolSize attribute 25
MaxResults element 67, 291
merge target 180, 182, 183, 185, 186, 191,

194
message category 32
message family 32
message group

fallback redirect message type 109
message groups 16

assigning to new role 93
entry points 109
used to specify default mappings 18

message types 16, 32, 92, 179
security mechanism 17
using with widgets 318

message version 32
MessageCrackerMap.xml configuration

file 51, 55
MessageHeader element 51
messages 139
messageType attribute 406
MessageType element 16, 51

child elements 17
messageTypeFilename element 16, 18
MessageTypeRef element 18
MessageTypes.xml configuration file 16
MessagingController 20
MessagingController class 20, 22
MessagingHelper class 175
MessagingServlet class 15
metadata

for data fields 87, 466
methodName attribute 399
methods

addChild 87, 465
addSubQuery 275
addWhereClause 274
adjustFileName 27
cache 362
calculate 22
callJSP 187, 319

canRequest 92
children 86, 465
cloneDsElement 87, 465
commit 299, 301
constructExternalURL 27
copyBean 73
createController 20, 186
debugPrintSql 276
debugPrintTree 275
delete 73, 87, 89, 465, 468
deleteChild 87, 466
dispatch 20
enlist 298
erase 73
execute 187, 201, 319
formatPrice 250
forward 19
free 275
generateKeys 73
get 142, 362
getAttribute 362, 363
getBoolean 473, 474
getContext 28
getConverter 33
getDataBean 72
getElementByName 86, 465
getEnv 27
getFuncName 446
getGlobalCache 28
getInstance 141
getName 87, 466
getObject 23
getParameter 438
getParameters 438
getParent 87, 466
getPartnerKey 19
getPrice 374
getResourceValue 260
getRootElement 85, 86, 89, 464, 465,

468
getString 473, 474
getType 87, 89, 446, 466, 468
getUser 19
getUserKey 19
handle 446
include 19
init 20, 28
isDeletable 102
isInsertable 102
erling Multi-Channel Selling Solution Developer Guide

isPersistable 74
isPublicHandler 446
isReadable 102
IsRestorable 74
isWriteable 102
joinWhereClauses 273
link 186, 250, 254
logError 472
logInfo 472
logVerbose 472
logWarning 472
naming conventions 364
newSubQuery 273
persist 22, 26, 74, 77, 83, 88, 141,

299, 467, 469
ph 250, 257
pj 251, 257
prolog 468, 469
prune 74
pu 251, 257
reset 25
restore 22, 26, 74, 75, 76, 83, 88, 141,

467, 469, 470
retrieve 362
return 25
rollback 299
runAppJob 17
runAppObj 26
service 26, 141, 438, 468
set 362
setAttribute 362, 363
setCacheId 67
setDataContext 74
setRetry 438
setRootElement 89, 468
style 366
update 74
writeDebugInfo 248

methods setExecutionOutcome 438
minimal data set 218
morePages method 290
moreResults method 290
MsgContext interface 48
MsgService interface, 48
MsgServiceException class 48
MsgServiceFactory class 48
multi-byte characters 420

N
Name attribute 16, 81
name attribute 401, 402

in cic:property tag 392
naming service 141
NamingManager class 141
NamingResult class 142
NamingServiceDatabase 141
NamingServiceDatabase class 141
NamingServiceProperties class 141
navigationTarget attribute 393
newDelete method 283
newErase method 283
newproject target 147, 180
newSubQuery method 273
newSubQuerymethod

use in Oracle Hints 286
newTreeViewEntity method 237, 239
newUpdate method 283
Next link 406
NextState element 309
nn_main.css style sheet 256
normal style 257
Not element 97
number and date formats 413
NumPerCachePage element 67, 291

O
object 188
Object element 23, 24
object pools 25
ObjectManager class 22, 63, 66, 175, 190
ObjectMap.xml configuration file 23
OILInterface.wsdl file 341
OMWrapper class 22, 63, 173
onchange attribute 404
Online Help 263
onSubmit attribute 253
Operator attribute 97
Oracle hints 285
OrderChangeEvent event 125
OrderDownload.jsp JSP page 125
OrderEventEmail message type 125
OrderInterface.wsdl WSDL file 339, 341
OrdersEmail.xml configuration file 125
OrderStateMachineHelper class 308
Ordinality attribute 203
org.apache.log4j.Level class 43
org.w3c.dom.Document class 175
Sterling Multi-Channel Selling Solution Developer Guide 503

504 St
OutOfBandHelper class 29, 123
ownersRootPartnerKey service 207

P
package flags

used for logging 472
packageFlags element 472
packages

com.comergent.dcm.objmgr 25
importing 365
naming conventions 364

page files
deleting 291

page sets
multiple 291

PageLoader message type 262
PaginatedListController class 211
pagination 203, 209, 290

deleting page files 291
parameters

application 254
command 254

ParameterType attribute 288
ParamList element 107
paramtext tag 379
partner key

used in pricing 31
PartnerInterface.wsdl WSDL file 341
PartnerTypeDefinition element 94
password policies 106
password policy types 107
PasswordPolicies.xml configuration

file 106, 107
PasswordPolicy element 106
passwords

policies 106
performance issues 291
performInput method 308
performInputAction method 308
persist method 22, 26, 74, 77, 83, 88, 141,

284, 297, 299, 467, 469
behavior in transactions 298
call after delete method 73
optional while attaching ACL 103

ph method 216, 250, 257
example 185

pickStyleSheet function 255
pj method 216, 251, 257
PolicyCheckResult class 108

PolicyClass element 107
poolable interface 25
pooling objects 25
popup windows 232
predictive access control 95
Preferences API 30
Preferences class 173
prefixes

used by index builders 325
presentation beans 71
presentation locale 415
presentation logic classes 26
PresentationEntity interface 236, 239
Previous link 406
PriceCheckAPI class 31
pricing

Check method 31
getting prices for products 31

PricingLineItem class 31
Primary element 83
Principal element 207
PrincipalQualifier attribute 96, 207
PrincipalQualifier interface 96
PrincipalQualifierDefinition element 96
principals

access policies 95
printStackTrace method 340
process method 328, 334
ProdMgrProdGenController class 191
ProdMgrRunDataSyndController class 439
ProdMgrUtils class 176
ProdServResource class 304
product assemblies 216
ProductExportHandler class 440
project target 52
prolog method 468, 469
PromotionInterface.wsdl file 341
ProposalInterface.wsdl file 341
prune method 74
PSD files

templates for images 242
pu method 216, 251, 257
putInt method 46
putString method 31

Q
Query

type of search term 332
Query class
erling Multi-Channel Selling Solution Developer Guide

deprecated 272
from Lucene API 328

query search term 331
query search terms 325
QueryHelper class 272

example of use 205
QuoteInterface.wsdl file 341

R
Recipe element

declaring ordinality 70
recipes 66
Redirect element 109
redirecting a request 19
reference data 218
Relationship element 78, 297
removeBuilder method 330
rendered attribute 251, 386, 397, 401, 404
renderHeader attribute 393
renderHelp attribute 393
renderHome attribute 393
renderLogout attribute 393
renderWorkspace attribute 393
reports

affected by storefronts 172
request dispatcher 3
RequestDispatcher class 19
requests 139
required fields 231
reset method 25
resetControl method 445
resource bundle

specifying in method 250
resource bundles 417
resource type 376
RESOURCE_KEY column 305
ResourceClass element 94
ResourceHelper class 304
ResourceKey data fields 305
resources 259

controlling access 95
restore method 22, 26, 74, 76, 83, 88, 141,

467, 469, 470
example using DataContext and

DsQuery 76
stored procedures 72
use in list beans 71
use of DsQuery class 271

restoreAndReturnBoolean method 175

restoreFromCache method
example 209

restoreToCache method
example 209

retrieve method 362
retrieving current locale 217
return method 25
ReturnInterface.wsdl file 341
roles 92
Roles attribute 308, 311
rollback method 299
rowcss attribute 406
rows attribute 182
rsCachePath element 291
rule engine 445
runAppJob method 17

S
SalesContractInterface.wsdl file 341
save method 103
schemaRepositoryExtn element 148, 188
score 332

search results 328
score method 328
scripting elements 3
scriptlets 3, 245, 248
SDK 147
SDK properties files

setting DEBUG_FLAGS 473
SDK tool to generate resource bundles

ids 380
search

setting dictionary definitions 326
search indexes 323
search method 327, 328
search stemming and parsing logic 335
search terms 327

types 332
SearchConfigurationProperties.xml file

access using adjustFileName
method 326, 327

Searcher class 327, 328
searching 218
SearchResultBuilder clas 328
SearchResultBuilder class 333
SearchTerm class 331
security

cross-scripting attack 257
selectedValue attribute 400
Sterling Multi-Channel Selling Solution Developer Guide 505

506 St
sendError method 262
sendErrorInFrame method 262
serializable 361
serializable context attributes 19
Serializable interface 20
service method 48, 141, 438, 468
ServiceContractInterface.wsdl file 342
servlet context

setting attributes 19
session 248
session context in JSP pages 248
session locale 415
session timeouts 220
SessionContext class 327
set method 362
setAttribute method 362, 363

ComergentSession class 20
setCacheId method 67, 68
setCondition method 331
setDaemon method 222
setDataContext method 74
setExecutionOutcome method 438
SetExpression element 97
setFieldName method 331
setKey method 330
setMaxPaginatedResult 69
setMaxResults method 68
setNumPerPage method 69
setOP method 331
setRetry method 438
setRootElement method 89, 468
setType method 331
setUser method 175
setValue method 332
setWeight method 332
showCalendar function 233, 236
showHeaderRow attribute 406
showHelp function 263
showPagination attribute 406
showSelect attribute 406
SimpleController class 21, 144
SOAP 337
SOAPFault 340
Software Development Kit 147
sortAscending attribute 406
sorting 218
sorting lists of beans 281
sorting methods 280
sortProperty attribute 395

SourceType attribute 73, 288
SQL injection 301
src attribute 181, 397
standard

HTML 4.0 221
StandardControlHandler class 445
State element 309
state machines 307
StateList element 309
StateMachine element 309
StateMachineFactory class 307
StateMachineName attribute 309
StateMachines element 309
static includes 258
stemming and parsing logic

used in search 335
Sterling Analyzer reports 425
Sterling Multi-Channel Selling Solution

SDK 190
stored procedures 72, 286

IN/OUT parameters 287
performance issues 293

storefront
pricing for storefronts 32

STOREFRONT_KEY column 172
StorefrontKey field 172
StorefrontStateMachines element 309
stylesheets

compiled 32
subsystem 430
supported locales 244
System Base ACL 208
system parameters 473
system properties

upgrading 176
SystemCron class 435, 438

T
TableController class 175
tag libraries 3, 244

CIC 383
upgrading 176

tag library descriptor 3, 15
tags

encode 371
getAttribute 373
getEscaped 373
getPrice 374
getProperty 374
erling Multi-Channel Selling Solution Developer Guide

getResource 374
link 376
paramtext 379
text 379
url 381
widget 318, 381

target attribute 267
use in cic:outputLink tag 401

targets
customize 181, 182, 183, 184, 186
generateBean 22, 66, 71, 83, 135, 196
generateDTD 66
install 180
merge 182, 183, 185, 186, 191, 194
newproject 180

TaskInterface.wsdl file 342
text attribute 267
text tag 379, 416

example of use 185
SDK tool 380

text/xml 52
threads 222
TLD. See tag library descriptor
toc element 267
tocitem element 267
Transaction class 32, 298

init method removed 175
transactions 297

behavior of persist method 298
use of ActiveTransaction class 300

TransactionSupport class 173
TransactionSupport interface 299
tree viewer component 236
TreeViewController class 236, 237
TreeViewEntity interface 236, 239
troubleshooting

ACLs 104
type attribute

for cic:input tag 398
type element 266
types

password policies 107

U
Unicode support 414
update method 74
UpdateHelper class 282, 283
updateWORestore method 175
uploading files 222

URL
used to retrieve WSDLs 342

URL patterns
mapping to servlets 2

url tag 381
URLs

generated for email messages 126
useCountryDefaulting element 415, 418
useGeneralDefaulting element 415, 418
User class 92
user key 186
user types 93
UserInterface.wsdl WSDL wsdl 342
UserRole principal qualifier 207
users 19, 185, 201

accessing pages directly 108
retrieving from session 19

usersRootPartnerKey service 207
UserType element 94
UserTypeDefinition element 93
using JSP pages as templates 29
using restore in list beans 71
UTF-8 character encoding 217

V
value attribute 398
Value class 446
valueRef attribute 400
variable names 365
Version attribute 89, 188, 206, 468
veto method 118
Vetoable interface 117
vetoing an event 117

W
waiting page

creating 260
warning method 112
Web services 337

creating 347
function handlers 448

web.xml configuration file 450
webServiceLookup.properties

configuration file 448
widget style 319
widget tag 318, 381
widget.css style sheet 256
WidgetController class 317, 318
widgets 317
Sterling Multi-Channel Selling Solution Developer Guide 507

508 St
wild card characters
in DsQuery 276

workspaceTab attribute 393
Writable attribute 75
WritableDirectory element 29
writeDebugInfo method 248
writeExternal method 77
WSDLFilter class 451
wslookup function 448

X
XML messages 20
XML representations of data beans 77
XML schema 85, 464
XML transformation 32
XMLParser class 175
XMLUtils class 176
erling Multi-Channel Selling Solution Developer Guide

	Preface
	Purpose
	Audience
	Conventions

	Contents
	Index 491

	CHAPTER 1 Introduction to J2EE Web Applications
	Architecture
	Web Applications
	web.xml File
	JSP Pages
	Model 2 Architecture
	Controllers
	Model
	View
	Further Reading

	CHAPTER 2 New Features
	Segmentation
	Reporting
	Data Service
	Web Services
	Wish Lists/Templates/Registries
	API Changes
	Software Development Kit

	CHAPTER 3 System Architecture
	Sterling Multi-Channel Selling Solution Web Application
	Processing Requests
	Overriding MessageType Definitions
	Default Elements

	Key Java Classes
	Wrapper Classes
	ComergentContext
	ComergentDispatcher
	ComergentRequest
	ComergentResponse
	ComerentSession

	Servlets
	Controller Classes
	Custom Controllers
	SimpleController
	MessagingController

	DataBean Classes
	ObjectManager and OMWrapper Classes
	Creating Objects
	Mapping Object Names to Object Classes
	Restrictions
	Passing Parameters
	Object Pooling

	Business Logic Classes
	Presentation Logic Classes
	AppExecutionEnv Class
	AppsLookupHelper Class
	ComergentAppEnv Class
	Global Class
	GlobalCache Interface
	LegacyFileUtils Class
	OutOfBandHelper Class
	Preferences Class
	PriceCheckAPI Class

	Transactions
	Message Conversion Classes
	Converter Classes
	Message Categories
	Converter Interface

	Support for Lookup Codes
	What lookup support does the Sterling Multi-Channel Selling Solution provide?
	Are string values localized?
	How do I define a code to string mapping?
	Are lookups performed for XML messages?
	How is the lookup cache loaded?

	CHAPTER 4 Platform Modularity
	Overview
	Platform Modules
	Module Interfaces
	Invoking Interfaces

	Platform Module Descriptions
	Access Policy
	Authentication
	Base64
	Classpath Appender
	Cryptography Service
	Data Services
	Dispatch Authorization
	Dispatch Framework
	Email Service
	Event Service
	Exception Service
	Global Cache Service
	Help
	Initialization Service
	Internationalization
	Logging
	Configuration
	Loggers
	Appenders
	Layouts

	Memory Monitor
	Message Type Entitlement
	Object Manager
	Out Of Band Response
	Preferences Service
	Tag Libraries
	Thread Management
	API and Usage

	XML Message Converter
	XML Message Service
	XML Services

	CHAPTER 5 Bizlets
	Using Bizlets for Message Processing
	Bizlet Interfaces and Implementation
	Logging the Inbound XML Messages

	BizletInvoker Classes
	BizletSession Classes
	Invoking Bizlets

	Example Bizlet Usage
	Message Types
	Bizlets

	CHAPTER 6 Introducing Data Beans and Business Objects
	What are Data Beans?
	Lifecycle of a Data Bean
	Defining a Data Bean
	Defining the Structure of a Data Object
	Extending Data Objects

	Data Bean and Business Object Creation
	DataContext
	What is the DataContext class?
	What behavior can be controlled?
	How do I control ACL checking?
	What are the Cache Id methods for?
	How do Max Results and Num Per Page work?
	How do I instantiate a DataContext instance?
	What are the Default Settings for a new DataContext?

	List Data Beans

	Application, Entity, and Presentation Beans
	Using Stored Procedures
	Data Bean Methods
	IData Methods
	IRd and IAcc Interface Methods
	Restoring and Persisting Data
	restore() Method
	persist() Method

	Miscellaneous Methods
	getBizObj() Method
	writeExternal() Method

	Child Data Objects
	Extending Data Objects

	Data Bean Example
	To Create a Data Object Definition

	DsElement Tree
	DsElements
	DsElement MetaData

	BusinessObject Methods
	restore() Method
	persist() Method

	CHAPTER 7 Using the Security Mechanisms
	Managing Message Types
	Checking for Entitlement

	Managing User Types
	Adding a Role to a User Type
	Creating a User Type

	Managing Access to Data Objects Using Access Policies
	Overview
	Inheritance

	AccessPolicy.xml Configuration File
	Principal Qualifiers
	Access Policies
	Access Checkers
	Access Services
	Boolean Expressions

	Example

	Managing Access to Data Objects Using ACLs
	Data Bean Methods
	Attaching an ACL to a Data Object
	Examples

	Creating an ACL
	Troubleshooting ACL Issues
	Password Policies
	Configuration
	Creating a Custom Password Policy

	Passing Login Data Through a URL

	CHAPTER 8 Logging
	Overview
	log4j.debug System Property

	Auditing Changes to Data Objects

	CHAPTER 9 Events
	Overview
	Firing an Event
	Processing an Event
	events.xml DTD

	Events
	Vetoable Interface

	Automated Task Creation
	Example
	Event Classes
	MessageTypeEvent
	MessageTypeEventProducer
	MessageTypeEventConsumer

	DispatchServlet Changes
	events.xml File
	Testing the Example

	CHAPTER 10 Sending Email from the Sterling Multi-Channel Selling Solution
	Framework
	Current Usage of the Framework

	Generating URLs
	Example

	CHAPTER 11 Modularity and Generated Interfaces
	Overview
	Modules
	Module Interfaces
	Invoking Interfaces
	Using the Object Manager
	Using Factory Classes

	Generated Interfaces
	Example of a Generated Interface

	CHAPTER 12 Implementing Logic Classes
	Key Concepts
	Application Logic Classes
	Business Objects
	XML Schema

	Naming Service
	NamingService Example

	CHAPTER 13 Implementing Application Logic Classes
	bizAPI Classes
	Business Logic Classes
	Controller Classes

	CHAPTER 14 Software Development Kit
	Project Organization
	Project File and Directory Locations
	Java Source Files
	JSP Pages
	Schema Files

	CHAPTER 15 Tailoring the Sterling Multi-Channel Selling Solution
	Overview
	Customization Components
	Platform Components

	Extensions and Maintenance
	Extending the Presentation Layer
	JSP Pages
	Page Layout and Branding
	Resource Strings
	Style Sheets

	Page Flow
	HTTP Links
	Controllers

	Extending the Data Services Layer
	Data Object Schemas
	Extending a Data Object
	Creating a New Data Object
	Data Source Mapping
	XML Message DataService
	System-to-System Messages
	Message Syntax Conversion
	Simultaneous Support for Multiple Message Formats

	Extending the Application Logic Layer
	Application Logic
	Writing New Application Logic
	Extending Existing Application Logic

	System Configuration Files

	CHAPTER 16 Upgrading the Sterling Multi- Channel Selling Solution
	Upgrading in General
	Overview of Upgradability
	Customer Upgrade Scenarios
	Upgrade Motivations

	Upgrade Considerations by Customization Technique
	Upgrading Presentation
	Upgrade Considerations for Customized JSP Files

	Upgrading from Release 7.2 to Release 8.0
	API Changes

	Upgrading from Release 7.0.2 to Release 7.1
	API Changes
	Changes to Reports

	Upgrading from Release 6.7 to Release 7.0
	Access Control
	API Changes
	Logging
	Object Manager
	Properties
	SDK Upgrade Tool

	Database Schema
	System Properties
	Tag Libraries

	CHAPTER 17 Customization Examples
	Setting up the SDK
	Presentation
	Headers and Sidebars
	Using the SDK

	Home Page Widgets
	Using the SDK

	Cascading Style Sheets
	Using the SDK

	Modifying Table Columns
	Notes

	Adding a Shortcut Link
	Description
	Enterprise Home Page

	Extending and Modifying Existing Data Objects
	Using the custom Schema Directory
	Extending a Data Object
	Modifying a Data Object

	Adding Functionality to an Application
	Comment Data Object
	Generating the Comment and CommentList Data Beans
	Database Schema Modification
	Updating the ObjectMap.xml File
	JSP Pages
	Customizing the Product Detail JSP Page
	Creating the Product Comments Page

	Managing the Business Logic
	Creating the CatalogProductCommentsController Class
	Creating the CreateCommentController Class
	Using the ForwardController Class

	Updating the MessageTypes.xml File
	Modifying the Controller Classes
	Modifying the JSP Page

	Customizing Access to the Business Objects
	Access Policy Approach
	ACL Approach
	Modifying the BusinessRules.xml File

	Pagination
	Pagination Controller

	CHAPTER 18 Developer Guidelines
	Overview
	Platform Variations
	Browsers
	Databases
	Application Servers
	Operating Systems

	Security
	Access Policies
	ACLs
	Roles
	Encoding Data in JSP Pages

	General Application Issues
	XML Messages
	Assembly and Configurations

	Internationalization
	Resource Bundles
	Locales
	Retrieving Locales

	JSP Pages

	Data
	Minimal Data
	Reference Data
	Sorting and Searching

	Browser Usage
	Cookies
	Enter Key
	Back and Forward Buttons
	Session Timeout
	Refresh Button
	Field Types and Lengths

	Developer Testing
	Database Requests and User Operation
	API and Exceptions
	Javadoc
	HTML Validation

	Threads
	File Uploads
	Forms for File Upload
	Saving Files on the Sterling Multi-Channel Selling Solution
	File Processing

	Summary

	CHAPTER 19 User Interface and Style Guidelines
	Overview
	Tables and Data Lists
	General
	Columns
	Formatting
	Buttons

	Forms
	Text Fields
	Drop-Down Lists and List Boxes

	Workflow Conventions
	Popup Windows
	Search and Find Windows
	Registration Pages
	Using the Calendar Widget
	To Use the Calendar Widget
	To Replace Three Drop-down Lists
	Naming Example
	To Replace a Text Field by the Calendar Widget
	Notes

	Using the Tree Viewer
	Using the Entity Picker
	Images

	CHAPTER 20 JSP Pages
	JSP Page Location
	Page Structure
	Included JSP Pages

	Using the Session Context
	Scriptlets
	Implicit Objects

	Javascript
	Forms
	Example
	Form Submits

	Frames
	Cascading Style Sheets
	Sterling Multi-Channel Selling Solution Style Sheets

	Buttons
	Tables
	Securing JSP Pages from Cross-Scripting Attacks
	JSP Fragments
	Debugging JSP Pages
	JSP Page Naming Conventions
	Standard Naming Convention
	Examples

	Resources
	Wait JSP Pages
	Redirecting to Full Page Access

	CHAPTER 21 Online Help
	Architecture
	Configuration Files
	HelpSet File
	Mapping File
	Table of Contents File
	Search Files

	Tag Library

	Customizing Online Help
	Page Format
	Screen Shots
	Content Pages
	Adding Content Files
	Adding Views

	Localization

	CHAPTER 22 Data Services Guidelines
	How to Specify a Query
	QueryHelper Methods
	newWhereClause Methods
	Using an ArrayList of Values
	newSubQuery Method
	joinWhereClauses Method
	Joining a List of WHERE Clauses
	addWhereClause Method
	addSubQuery Method
	freeQuery Method

	DsQuery Methods
	debugPrintTree Method

	DataBean Methods
	debugPrintSql Method

	Using LIKE Calls
	Examples
	Example 1: Simple Search Query
	Example 2: Search Query with Three Values
	Example 3: Sub-query with Two Values
	Example 4: INTERSECT with Two Values
	Example 5: Using Two Sub-queries
	Example 6: Subquery Using the Child of a Child

	How to Specify Sort Order
	addSort Method
	insertSort Method
	clearSort Method
	Example 1: Sort on One Element Ascending
	Example 2: Sort on One Element Ascending, One Element Descending
	Example 3: Add New High Order Sort

	Query Constants
	DsQueryOperators
	DsConstants

	Using UpdateHelper and DsUpdate
	UpdateHelper Methods
	newDelete Method
	newErase Method
	newUpdate Method

	IDsUpdate Methods
	addFieldUpdate Method
	persist Method
	debugPrint Method
	debugPrintSql Method

	Operators
	Example

	Oracle Hints
	What are Oracle Hints?
	What support is available for Oracle Hints?
	When should I use Oracle Hints?
	How do I specify an Oracle Hint for the primary query?
	How do I specify an Oracle Hint for a sub-query?
	What is the Oracle Hints syntax?

	Stored Procedures
	What support is available for Stored Procedures in Release 6.0?
	What Stored Procedure support has been added in Release 6.3?
	What are the limitations on Stored Procedure support?
	How do I map a data object to a database stored procedure?
	Examples
	Sample DataObject using Output Parameters
	Sample DataObject using Result Parameters
	Sample Oracle Stored Procedure returning a Result Set

	Pagination
	How do I get a Paginated Result Set?
	How do I tell if I have more than one page of results?
	How do I tell if there are more pages in the page set?
	What happens if I ask for a page that does not exist?
	If I make changes, then will they appear in the page files?
	How do I control the number of results per page?
	Is there a limit on the number of page files?
	When are the page files deleted?
	Can I have multiple paged result sets in the same session?
	Can I control where the page files are written?

	Performance Optimization
	Optimizing Ad Hoc Queries
	Optimizing Data Retrieval Sizes
	Left-Outer and Equi-Joins
	Reference and Child Data Objects
	Using Distinct Tables for Customer Extensions
	Using Stored Procedures
	Oracle Hints

	Join Types
	What is an Equi-Join?
	What is a Left-Outer Join?
	What is a Right-Outer Join?
	What is a Cross Join?
	What is our Default Join Mechanism?
	Which Joins do we Support?
	How do I tell the Data Services Layer to use an Equi-Join?

	Transactions
	Default Transaction Support
	Support Using the Transaction Class
	Support Using the ActiveTransaction Class
	Transaction Class Methods
	Limitations
	Sample Usage
	How to use the ActiveTransaction Class

	Detailed Commit Functionality Description
	Commit with one Database Server
	Commit with Multiple Database Servers
	Commit with a Database Server and non-Database Server Data Source

	SQL Injection

	CHAPTER 23 Resources
	Overview
	JSP Page Layer
	Data Services Layer

	CHAPTER 24 State Machines
	Overview
	State Machine Configuration Files
	StateMachineList.xml Configuration File
	StateMachine.xml Configuration File
	Action Events

	Customizing a State Machine
	Changing the Business Logic associated with a Change in State
	Example

	Changing the Available State Transitions
	Example

	Adding a New State
	Example

	CHAPTER 25 Widgets
	Overview
	Widget Tag
	Guidelines
	Integrating a Widget in a Portal Page
	Example
	Container JSP Page
	MessageTypes.xml Entry
	WidgetController
	Widget JSP Page

	CHAPTER 26 Customizing Advanced Search
	Overview
	Building Indexes
	Customizing Dictionary Mappings
	Processing Search Requests
	Lucene Classes

	IndexBuilder and IndexSetBuilder Classes
	IndexBuilders
	IndexSetBuilders

	Search Terms
	Search Term Types
	Filters

	Processing Results
	Customizing IndexBuilders

	CHAPTER 27 Web Services
	Overview
	WSDL Files
	Web Service Clients
	Example

	Web Services Provided by Sterling Multi-Channel Selling Solution
	Attribute Management
	Attribute Group Management
	Catalog Management
	Invoice Management
	Lead Management
	OIL Management
	Order Management
	Partner Management
	Promotion Management
	Proposal Management
	Quote Management
	Return Management
	Sales Contract Management
	Service Contract Management
	Task Management
	User Management
	Common Components

	Creating a Web Service
	WSDL
	Business API
	Bizlet Class
	Message Conversion Files
	Inbound Conversion
	Outbound Conversion

	CHAPTER 28 Maintaining History for Data Objects
	Framework
	Example

	CHAPTER 29 Coding Conventions
	Using Session and Cache Objects
	Using the Web Application
	ComergentSession
	GlobalCache
	ComergentContext

	Using the Client Application
	Form Data
	Cookies

	File Access
	Naming Conventions
	Source File Organization
	Package Organization
	Source Files
	Import Statements
	Class or Interface Declarations

	Style and Presentation

	CHAPTER 30 Comergent Tag Library
	Overview
	General Usage
	Tag Library
	encode Tag
	Attributes
	Usage

	frame Tag
	Attributes
	Usage

	getAttribute Tag
	Attributes
	Usage
	Attributes
	Usage

	getPrice Tag
	Attributes
	Usage

	getProperty Tag
	Attributes
	Usage

	getResource Tag
	Attributes
	Usage

	if Tag
	Attributes
	Usage

	ifResource Tag
	Attributes

	link Tag
	Attributes
	Usage

	list Tag
	Attributes
	Usage

	paramtext Tag
	Usage

	text Tag
	Attributes
	Usage

	url Tag
	Attributes
	Usage

	widget Tag
	Attributes

	CHAPTER 31 Comergent Internet Commerce Tag Library
	Overview
	Tag Specification
	Atomic Tags
	Component Tags

	Nesting CIC Tags
	Customizing Tags
	Changing the Look-and-Feel
	Extending a Tag

	JSP Expression Language
	rendered Attribute

	General Usage
	Example

	Tag Library
	cic:banner Tag
	Attributes
	Usage

	cic:checkbox Tag
	Attributes
	Usage
	Example

	cic:column Tag
	Attributes
	Usage
	Example

	cic:columnHeader Tag
	Attributes
	Usage

	cic:command_link Tag
	Attributes
	Usage
	Example

	cic:concat Tag
	Attributes
	Usage

	cic:date Tag
	Attributes
	Usage
	Example

	cic:div Tag
	Attributes
	Usage

	cic:el Tag
	cic:img Tag
	Attributes
	Usage

	cic:input Tag
	Example

	cic:inputDate Tag
	Attributes
	Usage

	cic:javascriptLink Tag
	Attributes
	Usage
	Example

	cic:link Tag
	Attributes
	Usage
	Example

	cic:options Tag
	Attributes
	Example

	cic:outputLink Tag
	Attributes
	Example

	cic:param Tag
	Attributes
	Usage
	Example

	cic:property Tag
	Attributes
	Usage
	Example

	cic:quickSearch Tag
	Example

	cic:quickSearchParam Tag
	Example

	cic:select Tag
	Attributes
	Example

	cic:span Tag
	Example

	cic:table Tag
	Attributes

	cic:title Tag
	Attributes
	Usage
	Example

	cic:whitespace Tag
	Attributes
	Usage

	cic:workspace Tag
	Attributes
	Usage
	Example

	cic:workspace_command Tag
	Attributes
	Usage
	Example

	JSP Expression Language
	Overview
	Tag Changes
	el tag
	if and icon Tags

	CHAPTER 32 Internationalization
	Overview
	Supporting Locales
	Presentation and Session Locales
	JSP Pages and Properties Files
	Notes
	Debugging

	Failover Behavior
	Resource Bundles
	JSP Pages

	Methods to Retrieve Locales
	Using Properties Files in Code

	Data for Internationalization
	Email Templates
	HTML Pages
	Images
	Javascript
	JSP Pages
	Calendar Widget

	Reports
	Style Sheets
	System Properties
	Resource Bundles and Formats
	PropertyResourceBundles and Properties Files
	ResourceBundles
	NumberFormats and DateFormats

	CHAPTER 33 Exceptions
	Comergent Exception Hierarchy
	Exception Root
	ComergentException
	ICCException
	ComergentRuntimeException

	Subsystem Grouping
	Subsystem by Subsystem Exception Policy

	Exception Chaining
	Throwing, Catching, and Logging Exceptions
	When to Throw Exceptions
	Throwing Runtime or Compile Time Exceptions
	Catch Clauses and Throws Declarations
	Logging Exceptions

	Displaying Exceptions

	CHAPTER 34 Implementing Cron Jobs
	Overview
	CronManager and CronScheduler
	CronJob Interface

	CHAPTER 35 Customizing Catalog Exports
	Overview
	DataSyndicationConfig.xml Configuration File
	Handlers
	ExtrinsicFieldHandler Class
	Writing a Custom Handler

	CHAPTER 36 Customizing Sterling Configurator
	Custom Controls
	Customizing an Existing Control
	Creating a New Control

	Control Handlers
	Function Handlers
	Overview
	Writing a Custom Function Handler
	Function Handler Example
	Web Service Function Handlers

	CHAPTER 37 Filters
	Filters Overview
	Available Filters
	DosFilter
	WSDLFilter

	CHAPTER 38 Managing and Displaying Constrained Fields
	Options
	Criteria

	CHAPTER 39 Wish Lists, Templates, and Registries
	Overview
	Architecture
	Tables
	Data Objects
	Default/Active Lists
	Registry Addresses
	Lokup Types
	APIs

	CHAPTER 40 Deprecated Concepts
	DsElement Tree
	DsElements
	DsElement MetaData

	BusinessObject Methods
	restore() Method
	persist() Method

	Business Logic Classes
	Business Logic Class Example
	Global Class
	Logging
	Parameters

	CHAPTER 41 Upgrading Legacy Sterling Multi- Channel Selling Solutions
	Overview of Upgradability
	Customer Upgrade Scenarios
	Upgrade Motivations

	Upgrade Considerations by Customization Technique
	Upgrading Presentation
	Upgrade Considerations for Customized JSP Files

	Specific Considerations for Upgrading Presentation for Release 3.x
	Upgrading HTML Templates to JSP

	Upgrading Business Objects and XML Messaging
	Upgrading Business Logic
	Other Considerations for Upgrade
	Data Loading and Migration
	Configuration and Converter Migration

	A Sample Upgrade Task Flow

	Specific Upgrade Scenarios
	Overview of changes for Releases 4 and 5
	Changes for Release 4
	Changes for Release 5

	Upgrading Release 3
	Data Migration
	Business Objects and Messaging
	Business Logic
	Presentation

	Upgrading Release 4.x
	Data Migration
	Business Objects and Messaging
	Business Logic
	Presentation
	Presentation Upgrade Case 1
	Presentation Upgrade Case 2
	Presentation Upgrade Case 3

	Upgrading Release 5.x to future Releases
	Data Migration
	Business Objects and Messaging
	Business Logic
	Presentation

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

