
Comergent eBusiness System

Release 7.2

Best Practices Guide

ii Comergent eBusiness System Best Practices Guide

Comergent eBusiness System Best Practices Guide

Documentation part number: 1-7.2-8-02

© 1998-2007 Comergent Technologies, Inc. All rights reserved.

This manual, as well as the software described in it, is furnished under license and
may only be used or copied in accordance with the terms of such license. The
information in this manual is furnished for information use only, is subject to
change without notice, and should not be construed as a commitment by Comergent
Technologies, Inc. Comergent Technologies, Inc. assumes no responsibility or
liability for any errors or inaccuracies that may appear in this book.

Except as permitted by license, no part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form, or by any means,
electronic, mechanical, recording, or otherwise, without the prior written
permission of Comergent Technologies, Inc.

Comergent and the Comergent logo are registered trademarks of Comergent
Technologies, Inc. Comergent eBusiness System, Comergent C3 Analyzer,
Comergent C3 Advisor, Comergent C3 Commerce Manager, Comergent C3
Configurator, Comergent C3 Integrator, Comergent C3 Marketplace, Comergent
C3 Promotions, Comergent Message Adapters, Comergent Knowledgebase,
Comergent C3 Pricing, and Comergent C3 Product Manager are trademarks of
Comergent Technologies, Inc.

Actuate and e.Analysis are registered trademarks of Actuate Corporation. Java and
all Java-based marks are trademarks or registered trademarks of Sun Microsystems,
Inc. in the U.S. and other countries. All other company and product names may be
trademarks of the respective companies with which they are associated. Docushare
is a registered trademark of Xerox Corporation. This product includes software
developed by the Apache Software Foundation (http://www.apache.org/).

Preface
Welcome to the Comergent eBusiness System. This Best Practices Guide and the
associated documentation provides all the information required for you to
implement the Comergent eBusiness System at your enterprise.

Purpose
This guide provides a detailed description of how best to implement the Comergent
eBusiness System and the key factors that affect a successful deployment.

Audience
This guide presupposes an advanced level of information systems knowledge,
familiarity with basic network and database concepts, and Java for certain
implementation steps.
 Comergent eBusiness System Best Practices Guide iii

iv
Conventions
Throughout this guide, we will use the following conventions shown in Table 1,
"Conventions", on page iv:

Comments
We welcome your feedback. Our aim is to provide our customers with the best
quality documentation possible. Let us know about any inaccuracies or missing
information in our documentation. We also welcome suggestions for enhancements
to our documentation. Our email address is:

support@comergent.com

TABLE 1. Conventions

Type Convention

File names Sample.txt

Paths and directory
names

/top_level/next_level/next_level/destination_directory/

Sample code extracts public void method(String s)

Values to be provided <value supplied by developer>
Comergent eBusiness System Best Practices Guide

Contents
CHAPTER 1 Introduction ...1

CHAPTER 2 Security Best Practices3
Introduction ... 3
Role Definition and Security Policies ... 5

Administration Model ..5
Data Center Roles..8

Information Assets... 8
Encryption of Persistent Data ...8
Information Assets ...9
Roles Schematic ...10

Protection Mechanism for Information Assets.............................. 11
Credit Card Information .. 11
User Passwords ...12

Protection of Critical Functions... 12
Setting Application’s Database User and Password12
Storing Sensitive Data in the Database ...13

Threat Scenarios .. 14
Transport..14
Restores from Backup ..14
Comergent eBusiness System Best Practices Guide v

vi
Log Files ..14
Bogus Account to Access Customer Records...14
Credit Card Number Theft ...15
DBA Password Theft..15

HTTP Sessions .. 15

CHAPTER 3 Backup and Recovery Best Practices....... 17
Introduction... 17
Deployment Architecture Overview ... 18
Infrastructure ... 18
Backup Strategies.. 20

Database Recovery ..20
Application Server and Web Server Recovery21

CHAPTER 4 Database Management Best Practices..... 23
Introduction... 23
Archiving Data .. 24
Monitoring Database Tables ... 24

Key Tables To Monitor...24
Purging Data ...25
Creating and Using History Tables ...25

Updating Statistics .. 26
Updating Statistics For an Oracle Database ..27
Updating Statistics For a SQL Server Database27

CHAPTER 5 Performance Best Practices 29
Introduction... 29
Performance Concepts .. 29
Building a Performance-Optimized System 30

Performance Is the Priority ...31
Ensuring a Sound Infrastructure ...31
Taking Inventory of System Components ...31
Establishing a Performance Baseline..32
Setting Realistic Performance Expectations..32
Comergent eBusiness System Best Practices Guide

Verifying Performance... 32
Load Testing...33
Basic Sequence of Testing..36
Ensuring Load Test Repeatability..38
Database Tools ..38
Log Analysis...38
Using Stubs to Isolate Performance Issues..38
Network Considerations ..39

Solving Performance Problems ... 39
Confirming the Problem ..40
Is This a New Problem?...40
Troubleshooting Check-List ...41

CHAPTER 6 C3 Configurator Best Practices43
Introduction ... 43

About Absolute and Relative Paths..44
Planning Considerations .. 44
Models ... 45

Make Models as Small and Simple as Possible45
Use popup-qty Controls for Entering Quantity48

Properties ... 50
Use Meaningful Property Names...50
Do Not Use the Same Property to Mean Two Different Things.............51
Define Properties at the Appropriate Level in the Model Hierarchy52
Using Multiple Properties with the Same Value53
Use Worksheets to Simplify Property Assignment54
Avoid Chaining Property Formulas...55

Rules .. 56
Rule Firing Conditions ..56
Order Rule Fragments So That Rules Fire Only When Necessary........56
Create General-Purpose Rules ..57
Use Formulas Where Appropriate...57
Avoid Specifying Paths to Instances of Items or Properties58
Constraint Tables vs. Rules..58

Modular Development... 59
Tools .. 59

Using the Trace Log...60
Using the Model Reporting Tool..63
Comergent eBusiness System Best Practices Guide vii

viii
Using Load Testing Tools...63
Cache Status ..63

Performance .. 63
Rules ..63
Properties...64

Introduction... 65
JVM Memory and Tuning Guidelines .. 65

Adjusting JVM Memory Settings ...66
Additional Performance Tuning ..67
Tracing Garbage Collection Activities ..67

Log Analyzer Tool .. 69
Setting Up Log Analyzer Daily Reports...71
Comergent eBusiness System Best Practices Guide

CHAPTER 1 Introduction
This guide provides a description of the best practices that Comergent
Technologies, Inc. development and professional services engineers have identified
in implementing the Comergent eBusiness System.

CHAPTER 2, “Security Best Practices”, describes a best practices security model
for a Comergent eBusiness System implementation, including role definition and
security policies, information assets, and protecting your information assets and
critical functions. This chapter also outlines some threat scenarios.

CHAPTER 3, “Backup and Recovery Best Practices”, describes best practices for
developing backup and recovery strategies.

CHAPTER 4, “Database Management Best Practices”, describes best practices for
managing the data in your database.

CHAPTER 5, “Performance Best Practices”, describes best practices for ensuring
the optimal performance of your Comergent eBusiness System, including basic
principles, how to isolate performance problems, performing load testing, and
using the Log Analyzer tool.

CHAPTER 6, “C3 Configurator Best Practices” describes best practices for
designing and implementing the Comergent eBusiness System application model,
including project planning considerations, the art of model-making, business rule
design, and performance considerations.
Comergent eBusiness System Best Practices Guide 1

Introduction

2
 Comergent eBusiness System Best Practices Guide

CHAPTER 2 Security Best Practices
Introduction
This chapter outlines a Best Practices security model behind the Comergent
eBusiness System. It covers the following topics:

• “Role Definition and Security Policies” on page 5

• “Information Assets” on page 8

• “Protection Mechanism for Information Assets” on page 11

• “Protection of Critical Functions” on page 12

• “Threat Scenarios” on page 14

• “HTTP Sessions” on page 15

A Web-based application operating as an e-commerce site is likely to be regulated
by industry consortiums or must comply with widely-accepted good development
practices. In general, most of these situations will involve some guidelines that
attempt to not only help develop robust applications, but also provide a relatively
secure environment that can adequately safeguard the use of personal or financial
information at the site. The range of regulatory or best practice guidelines is fairly
extensive. Some provide regulations for which compliance is mandatory for doing
business in a particular market; some provide corporate-wide process and
Comergent eBusiness System Best Practices Guide 3

Security Best Practices

4

procedures that aid in specific goals, such as protecting personal information; some
are more focused on good software engineering practices. Some examples include:

• The Open Web Application Security Project (OWASP)

OWASP is a development community that recommends software best
practices.

• ISO 17799 - ISO/IEC Security Standard

ISO 17799 is a standard establishing guidelines and general principles for
initiating, implementing, maintaining, and improving information security
management in an organization.

• Payment Card Industry (PCI)

PCI is an industry consortium that regulates sites that accept and process
credit card transactions.

• Sarbanes-Oxley (SOX)

SOX is a US legal requirement for public corporations.

• American Institute of Certified Public Accountants SAS 70 (AICPA)

AICPA’s Statement on Auditing Standards no. 70 (SAS 70) is an auditing
standard by which organizations can assure that they have adequate
safeguards and controls in place for hosting or processing data belonging to
their customers.

Guidelines and practices included through these and other bodies range from good
software engineering practices to building secure networks to corporate accounting
practices. In keeping with this environment, this chapter presents the basic building
blocks that are likely to be needed to operate a robust and secure site. Not all
aspects of all organizations’ guidelines will apply to any one site, but it is likely that
some of these guidelines could be mandatory. Use this chapter as a starting point in
providing a compliant solution, but more in-depth practices may be needed.

This chapter covers:

• “Role Definition and Security Policies” on page 5

• “Information Assets” on page 8

• “Protection Mechanism for Information Assets” on page 11

• “Protection of Critical Functions” on page 12

• “Threat Scenarios” on page 14
Comergent eBusiness System Best Practices Guide

Role Definition and Security Policies
Role Definition and Security Policies
Administration Model
This section describes the entities assumed to be present in the administrative
domain in which the Comergent eBusiness System resides, including networks,
servers, and administrative roles. This is likely not an exhaustive list. It is likely
that various network devices will exist within this environment, and perhaps other
servers.

Networks
The following network zones are assumed to exist. These networks are connected
to themselves as outlined below through gateways.

• External Network: Directly visible from the Internet. Hosts the Web server
with static content. The External network is accessible to the Internet
through a firewall. It is assumed that the firewall and appropriate standard
security practices are sufficient to prevent shell level access from the
Internet. The external network has a gateway to the De-Militarized Zone
(DMZ) that permits highly controlled access from the Web server to the
application server.

• DMZ: This network is not directly visible from the Internet. A constrained
gateway permits the Web server residing on the External Network to
access the Application server residing on this network and another,
similar, gateway permits access from the DMZ network to the Internal
Network. Web server routes messages to the application server through
dedicated ports.

• Internal Network: Not visible from the Internet, nor from the External
Network. Database resources reside here. Application servers in the DMZ
connect to Database Servers in this network through a constrained
gateway.

Servers in the DMZ and Internal Network spaces have private addresses,
complying with RFC 1918. In general, only the minimal access needed to operate
the systems should be allowed.

Servers
The following servers are assumed to exist. The term “server” here represents a
software application that is more or less continuously listening on one or more
network ports, responding to requests received on the ports. Software servers reside
Comergent eBusiness System Best Practices Guide 5

Security Best Practices

6

on computer hardware. Generally, though not necessarily, there will be a one-to-
one relationship between a server software system, and a server hardware entity.

• Web server resides in the External Network. It responds to HTTP and
HTTPS requests from the Internet or internal corporate intranets.

• Application server resides in DMZ. Some HTTP and HTTPS requests are
delegated to the Application server for dynamically generated response.
The Application server maintains connections with the Database server.

• Database server resides in the Internal Network or DMZ.

Roles
This section describes roles within the administrative context of the Comergent
System. These are roles assigned to data center personnel acting as employees or
agents of the Enterprise. They are distinguished from the roles of individuals who
interact directly with the Comergent eBusiness System Web application (online
users). Online users have capabilities managed directly by two Comergent System
Entitlement services. Dispatch (or “MessageType”) Entitlement service manages
page flow privileges. The Access Policy service manages fine-grained data-level
access.

• Database Administrator

• Responsible for Database Servers.

• Can log into database server.

• Can read, create, update, or delete databases, database tables, indexes, and
other database resources.

• Can create backups and restore from backups.

• Can create Database users and manage them.

• Sets the application user access and authentication.

• Does not have root level authority in server OS.

• Does not have direct access to Application Server machine (or network).

• Does not have Comergent application access

• System Administrator

• Responsible for Server Hardware, and Server Software.

• Has root access to server machines within their zone of responsibility.
Comergent eBusiness System Best Practices Guide

Role Definition and Security Policies
• Has the authority to start and stop server processes.

• As root, can read, write, update, or delete files in file systems.

• Can back up and restore files. Can create OS-level users and manage
them.

• Does not have access to log in to database server.

• Deploys the Comergent eBusiness System application in the production
infrastructure.

• Loads the minimal data set in the XML files to the database.

• Does not have Comergent eBusiness System access.

• Developer

• Responsible for preparation of deployment Web archives (“WAR” files).

• Has the authority to create Web archives representing the Comergent
eBusiness System executable.

• Can set properties and business rules governing Comergent eBusiness
System operation, including properties that configure access to the
database, properties that configure the JCE Key store, and so on.

• Has the authority to create or modify the initial Comergent eBusiness
System dataset. This dataset is a part of the deployment archive.

• Does not have any kind of access to the Production Database or
Application servers.

• Does not have username/password to access production Comergent
eBusiness System.

• Does not move code from development/QA environments to production.

• Network Administrator

• Configures and manages network.

• Has authority to create and assign network resources, including domain
names, IP addresses, firewall level, and so on.

• Does not have database access.

• Does not have Comergent eBusiness System application access.
Comergent eBusiness System Best Practices Guide 7

Security Best Practices

8

Data Center Roles
The following are assumed about Data Center administrative roles:

• Roles are segregated. System Administrators cannot be Developers,
Network Administrators, nor Database Administrators. Database
Administrators cannot be Developers, System Administrators, nor
Network Administrators, and so on.

• System Administrator Roles are partitioned on network boundaries. A
system administrator for the DMZ should not be a system administrator
for the Internal Network.

• Data Center Administrators do not have Comergent eBusiness System
online administration roles.

Information Assets
Encryption of Persistent Data
This section describes the encryption of persistent data in the Comergent eBusiness
System.

1. What data is encrypted?

This is configurable within the Comergent eBusiness System configuration files.
Please see other sections for the details of which data fields and the contents of
which data fields are encrypted.

2. What encryption libraries are used?

By default, the Sun implementation of JCE is used for encryption, with policy files
enabling strong encryption. This is the recommended option.

3. What encryption algorithms are used?

This is configurable among secret key encryption algorithms supported by JCE.
The recommended algorithm is AES. The Comergent eBusiness System also
supports 168 bit DES encryption.

4. Where are keys stored?

In a password protected JCE Key Store file. By default this file is located in the
home directory of the user that initiates the Comergent eBusiness System
application, but this can be altered within a configuration file.

5. How is the Key Store password protected?
Comergent eBusiness System Best Practices Guide

Information Assets
By default the key store password is encoded in Java. The Comergent eBusiness
System supports two phase initialization, if desired, in order to employ a password
provided at run time. In this mode of operation, the Comergent eBusiness System
will come up partially and await a special HTTPS message containing the key store
and key passwords to complete initialization and respond to requests. This
technique means that the application server system administrator will not have
access to the Comergent eBusiness System password, but it requires more than one
person to bring up the Comergent eBusiness System.

6. How are passwords saved within the Comergent eBusiness System?

Either by a cryptographically secure digest (MD5 or SHA-1) or by secret key
encryption as described above.

Information Assets
This section introduces the critical information assets that are dealt with by the
Comergent eBusiness System.

Account profile
The user’s account information is maintained in the Account profile. The user’s
account is identified by the (unique) account-id. The account profile contains
personal financial details such as credit card numbers and BillTo and ShipTo
addresses. Implementation can be customized, so this profile may contain
additional or fewer details, encrypted fields, and so on.

Transaction and System Log
According to the type of data and level of role separation required, Comergent
eBusiness System logging can be configured to capture all transactional and non-
transactional requests to file locations outside of the Comergent eBusiness System
deployment infrastructure. Certain aspects of order and account history can also be
captured in the Comergent eBusiness System database for administrative and end
user interaction purposes but do not represent a secure audit trail.

Network considerations need to be included for remote and/or more secure logging.

Key Store File
The Key Store file stores the encryption keys that protect Comergent eBusiness
System data. This file normally resides in the home directory of the user that
initiates the Comergent eBusiness System Web application, but this can be altered
within a configuration file.
Comergent eBusiness System Best Practices Guide 9

Security Best Practices

10
WAR local key store file
The WAR local key store file stores the keys that protect the database username and
password used by the Comergent eBusiness System. It is contained in the
Comergent eBusiness System WAR file structure.

User passwords
Comergent user names, passwords, and user profile information are stored in the
user authentication and user contact tables. The passwords are protected as
described in “Protection Mechanism for Information Assets” on page 11.

Roles Schematic
The following indicates the spheres of access for the following classes of
administrators:

• NA: Network Administrators

• SA: Security Administrators

• WA: Web Administrators

• SA: System Administrators

• DBA: Database Administrators

Attention: The Key Store file is a requisite to encrypt or decrypt data in the
knowledgebase. This Key Store file must be well protected. With this Key
Store file, the encrypted data can be read, so it must never be included on
the same media as a database backup. If the Key Store file is lost, then data
cannot be read from the database.
Comergent eBusiness System Best Practices Guide

Protection Mechanism for Information Assets
Protection Mechanism for Information Assets
This section discusses the encryption mechanisms used to protect the integrity of
the critical data fields of the Comergent eBusiness System.

Credit Card Information
The following data fields are encrypted using the DES 168 bit encryption by
default:

• Credit Card Number
Comergent eBusiness System Best Practices Guide 11

Security Best Practices

12
• Credit Card Holder Name

User Passwords
User passwords are protected by 1-way encryption (MD5 or SHA-1 Message
Digest).

Only the digests of the passwords are stored in the Comergent eBusiness System
database. Alternatively, at the discretion of the customer, the password can be
encrypted with DES 168 bit encryption or other encryption as noted in the section
“Credit Card Information” on page 11.

Protection of Critical Functions
Performing functions such as creating and setting database users and passwords and
storing sensitive data in a database are critical from both a security and an
operational perspective. Equally critical is protecting the performance of these
functions from potential attacks or misuse. This section documents the process of
performing these functions and explains how that process prevents attacks or
misuse.

Setting Application’s Database User and Password
1. The DBA creates a user in the database, assigns a password, and sets

appropriate database privileges.

2. The DBA informs the developer.

3. The developer encrypts the password using the key in the WAR local Key
Store.

4. The developer initializes connection information in WEB-INF/schema/
DataSource.xml.

5. The developer prepares the WAR file and gives it to the application server SA.

6. The application server SA deploys the WAR file

Note: The InlineDES encryption is not considered a strong encryption for purposes
of a PCI compliance audit on a production server. For a system to meet that
level of compliance, a specific cryptography configuration must be
implemented for production. See “Storing Data in Encrypted Form” in the
chapter General Security Considerations of the Comergent eBusiness
System Implementation Guide for configuration details.

See the PCI Compliance Guide, http://www.pcicomplianceguide.org, for
more general information about PCI compliance.
Comergent eBusiness System Best Practices Guide

Protection of Critical Functions
7. The application decrypts the password and uses it to connect to the database.

Assertions

• The developer knows the password but does not have access to the
database, so cannot use the password.

• The application server SA does not know the password, so cannot access
the database.

• The DBA has the password and can access data, but does not have access
to the Web application. Sensitive data is encrypted. The DBA does not
have access to the system without having access to encryption keys.

Storing Sensitive Data in the Database
1. The developer specifies encrypted fields for sensitive data in the database

schema.

2. Where necessary, schema fields are redefined to incorporate correlative data to
prevent relocation. For example, account balances may be converted strings
combined with an account id to provide the ability to detect field copies.

3. The developer specifies the encryption algorithm and location and type of key
store.

4. The developer specifies the key store password.

5. The developer prepares the WAR file and delivers it to the application server
SA.

6. The application server SA deploys the WAR file and starts the application
server.

7. When sensitive data fields are set, data services invoke the encryption service.
Data is encrypted. Eventually, data is persisted to the database.

Assertions

• The DBA has access to the database, but does not have the ability to
decrypt sensitive fields.

• The application server SA has access to the key store, but not to the key
store password.

• The developer has access to the key store password, but not to the key
store.
Comergent eBusiness System Best Practices Guide 13

Security Best Practices

14
Threat Scenarios
Transport
Scenario: The Network Administrator intercepts clear text values in
communication between the application server and database server, for example,
over a JDBC transport stream.

Preventative Measures: Sensitive data is encrypted before transport and would not
be usable. The encryption key is never transported.

Restores from Backup
Scenario: The DBA restores database tables from backup to some earlier state in
order to create a vulnerability.

Preventative Measures: The Comergent eBusiness System provides no means to
prevent this type of attack. Rely upon Data Center practices and procedures.

Detection: It is theoretically possible to detect this attack by correlation to
Comergent eBusiness System debug logs and Web server access logs.

Log Files
Scenario: The application server SA edits the Comergent eBusiness System debug
log files to conceal some activity. Comergent recommends that operational systems
configure debug logging at the “INFO” level. At this level, Web request start and
end events, JSP dispatch events, session events, login events, and CRON events are
logged. Scenarios such as an attack that could be concealed therefore involve an
attack by a logged in and authorized user.

Preventative Measures: The application server SA has root access to the file
system. One can not prevent this sort of activity.

Bogus Account to Access Customer Records
Scenario: The Comergent eBusiness System administrator creates a super CSR who
has access to all accounts. The Comergent eBusiness System administrator uses
super-CSR to get credit card info, change balances, charge customer credit cards,
and so on.

Preventative Measures: CSRs should not be able to see the unmasked or
unencrypted credit card numbers. Any activity that involves charges against the
valid customer credit cards will be logged to the account transaction log.
Comergent eBusiness System Best Practices Guide

HTTP Sessions
Detection: All account activities are logged in the account transactions log table.
Unusual activity from a specific CSR can be detected by reviewing the logs in a
timely manner.

Credit Card Number Theft
Scenario: A CSR or CSR manager gets a customer’s credit card number(s) and
commits fraud.

Preventative Measures: When a customer’s credit card number is displayed to the
CSR, it is masked so that only the last four digits are displayed, and the Card
Verification Value (CVV) number is not stored in the database or log files.

CSR’s only see the entire credit card number and associated information when they
create the account or edit the credit card information on behalf of the customer.
There is no practical way to prevent the CSR from stealing this information.

DBA Password Theft
Scenario: A System Administrator obtains the DBA password and performs
unauthorized activities on the database.

Preventative Measures: Use best practices rules for password creation and
appropriate policies to expire and rotate the passwords periodically. As the
Comergent eBusiness System money fields are encrypted using keys and
combinational fields, the DBAs will not be able to decrypt and modify the values.

Detection: Review of the database level audit files can detect such activities.

HTTP Sessions
Protecting HTTP sessions in Java servlet-based web applications is key to
providing system security. If you do not take appropriate measures to protect
sessions conducted on your e-commerce web site, you risk your site’s security,
expose confidential data, and permit unauthorized control of sessions.

The Comergent eBusiness System is designed to be deployed in environments
requiring varying degrees of security. For some environments, all HTTP or mixed
HTTP/HTTPS page flow may be sufficient. However, if your system needs to
protect confidential information that has significant value, configure the Comergent
eBusiness System to require HTTPS from the login page forward.

Web server logs and the logs of any other server in the web application data path
should be inspected to ensure that they are not capturing application server session
IDs.
Comergent eBusiness System Best Practices Guide 15

Security Best Practices

16
Many sites are set up to conduct sessions using mixed mode HTTP and HTTPS
with the assumption that the user name and password are the only confidential
pieces of information. However, in anything but a pure SSL environment, the
session ID is what protects identity: it is a time-limited token for the user name and
password that gives a user access to all the data in the session, including the
authority acquired as part of that session. Everywhere that you protect the username
and password, you should also protect the session ID. Robust session protection
requires SSL from login to logout. If you use mixed mode, you cannot know that
you are conducting a session with the same individual for the entire session.

In Release 7.2 and higher, the Comergent eBusiness System hashes session IDs in
logs to increase the security of sessions.

Please note the following information about HTTP sessions:

• An HTTP session is tracked either by a session ID (JSESSIONID:...)
embedded in each URL or by a session cookie.

• Sessions expire after a configurable period of inactivity, usually 30
minutes.

• Sessions are not correlated to any particular IP address or hostname. If
someone accesses your system with a valid session ID they will be given
access regardless of the computer from which they make the request.

• If a session cookie is created from an HTTPS request, it is marked as a
secure cookie. Properly written client applications will not transmit that
cookie when issuing an HTTP request. However, the fact that a cookie
was created as a secure cookie is not subsequently known to the server and
client applications can transmit a supposedly-secure session cookie.

If it is important for your e-commerce site to guarantee the confidentiality of the
interaction between a user and your server, then that session must be HTTPS from
the moment the user logs in until they log out. Mixed HTTP/HTTPS sessions are
simply not secure.
Comergent eBusiness System Best Practices Guide

CHAPTER 3 Backup and Recovery Best Practices
Introduction
The best recovery plans focus on prevention. By setting up a robust environment,
putting redundant systems in place, establishing regular backup and restore
policies, and conducting regular tests that you can recover from backup, you can
limit the effects of disasters by providing safeguards for each layer of your
deployment infrastructure.

Some decisions about backup and restore policies must be made based upon
business criteria. What is the value of the site being available per day for your
business? How much data can you afford to lose? How long can your e-commerce
Web site be unavailable to customers? What are the time and cost trade-offs for
various backup and restore solutions? Answers to these questions will help to
determine your backup and recovery requirements.

The simplest backup system might be saving data and a copy of your application to
tape or other remote devices and storing that data at a remote data center. A better
strategy is to put redundant systems in place for each part of your deployment so
that if one system fails, another is already available. The most robust solution is to
maintain a mirror image of your site at a remote location and synchronize the image
with the live data regularly. The latter solution is the most costly, but is immediately
recoverable. The former solutions are less expensive, but require more time and
effort to perform recovery.
Comergent eBusiness System Best Practices Guide 17

Backup and Recovery Best Practices

18
This chapter covers:

• “Deployment Architecture Overview” on page 18

• “Infrastructure” on page 18

• “Backup Strategies” on page 20

Deployment Architecture Overview
Setting up a rich development environment not only allows for easier site updates
and maintenance, but also provides a quick path to rebuild a complete application
as a recovery step, if needed. The deployment architecture includes the following
elements:

• Build environment: a predictable, known build environment containing all
the elements needed to build the deployment, including:

• JDK’s

• SDK’s

• Code repository (such as CVS)

• Libraries

The steps required to go from code to production vary and may be iterative,
but the build environment should contain everything required to rebuild
your deployment in a predictable way if necessary.

• QA area: a separate environment for performing quality assurance tasks.
QA is the first environment in which work from (possibly) several
engineers is integrated to run as a unit.

• Staging area: a separate environment in which the work integrated in QA
now runs in a specific context that emulates production.

Infrastructure
A common strategy for establishing a robust infrastructure is “double everything”:
put redundant systems in place so that when a primary system fails, a secondary
system comes online as quickly as possible. The following figure shows a typical
infrastructure consisting of three tiers:

• Web tier: all components handling requests from and serving content to
Web browsers.
Comergent eBusiness System Best Practices Guide

Infrastructure
• Application tier: all components processing requests from and serving
dynamic content to the Web tier, usually with data from the database tier.

• Database tier: all components serving data to the application tier.

FIGURE 1. Typical Deployment Infrastructure
Two Web servers ensure that if one fails, the other can continue functioning.
Having a second firewall in place to provide additional protection to data also
satisfies certain regulatory requirements for securing data. See CHAPTER 2,
“Security Best Practices” for more information about securing data.

One strategy for providing physical protection for your data is to store production
data in a RAID device. If a single drive fails, then there is no loss of data. There is a
mechanical threshold with such a strategy: depending upon your configuration, if

Web Server

Firewall

Firewall

Web Server

Application Server(s)

Database Server(s)

Web

Web Tier

Application Tier

Database Tier

Data Store(s)RAID Array(s)
Comergent eBusiness System Best Practices Guide 19

Backup and Recovery Best Practices

20
more than the threshold’s number of drives fails, you will lose data. That is
something to consider as you determine your requirements.

Backup Strategies
There are different backup strategies for protecting data and for recovering your
application servers and Web servers. Most backup strategies come down to saving
copies of what is already running on the application and Web tiers. The following
sections describe backup strategies for databases, application servers, and Web
servers.

Database Recovery
Your backup strategy determines how quickly you can recover data after a disaster.
Determine your acceptable timeline for getting your database back up and running,
including time needed to rebuild the OS and reload the database if necessary, and
plan your backup policy accordingly.

The following are the types of database backups you should perform:

• Checkpoint backups: database servers log activity on the transaction level
as transactions are committed. Checkpoint backups write a log of
transactions since the last time a checkpoint backup was done. Write the
checkpoint log to a separate physical device. This creates a snapshot of the
database activity on a transaction level. If the database fails, there’s a
chain of records that enable reconstructing the activity.

The interval at which your deployment performs checkpoint backups is a
business decision. If your site does millions of dollars of business each
hour, doing checkpoint backups several times each hour would be advisable.
If your site has only a few transactions each hour, you can do checkpoint
backups less frequently. Determine an interval that allows data recovery at
your level of business activity.

• Daily incremental backups: incremental backups save only those files that
change each day. Performing daily incremental backups to a different
facility, rather than using physical media, is a good strategy. The backup is
effectively a disk-to-disk copy.

• Weekly full backups: full backups save the entire database, not just the
files that have changed since the last backup. Performing full backups to a
different facility is a good strategy.

A typical recovery scenario might be:
Comergent eBusiness System Best Practices Guide

Backup Strategies
1. Perform the initial restore from the last full backup.

2. Next, perform restores in date order from the daily incremental backups.

3. Finally, reconstruct the last few hours’ activity using the checkpoint backups.

Application Server and Web Server Recovery
When planning recovery policies for your application and Web servers, plan to be
able to build exact replacements if either application or Web servers fail: this is the
“build another one and go” principle.

Ensure that you have copies of everything that makes your application and Web
server deployments unique: configuration files, properties files, the JVM, original
source code from your CVS repository, and so on. Back up all static data kept on
the Web tier, such as any custom JSP pages. Make sure that your backup process
includes coverage for Web server and container configuration files or other files
needed to operate your site, but which may not be considered as source code and
are therefore not kept in a source code repository.

Use your QA and staging environments as starting points for rebuilding your
servers and getting back to an operational state.
Comergent eBusiness System Best Practices Guide 21

Backup and Recovery Best Practices

22
 Comergent eBusiness System Best Practices Guide

CHAPTER 4 Database Management Best
Practices
Introduction
This chapter describes database management best practices and the activities that
support those practices. Database management practices protect your data, ensure
data integrity, and address database performance issues. Database management
activities include:

• Archiving active data

• Monitoring database tables

• Sizing database tables and purging old data at intervals dictated by
business requirements or regulatory audit compliance, such as Sarbanes-
Oxley or HIPAA

• Updating indexes and managing database statistics

For recommended database archival practices, see CHAPTER 3, “Backup and
Recovery Best Practices”.

This chapter covers:

• “Archiving Data” on page 24 presents general guidelines for archiving
data.
Comergent eBusiness System Best Practices Guide 23

Database Management Best Practices

24
• “Monitoring Database Tables” on page 24 presents guidelines for
monitoring and sizing database tables, key tables to monitor, guidelines
for purging data, and creating and using history tables to retain old data
online in compliance with regulatory or business requirements.

• “Updating Statistics” on page 26 presents scripts for updating the database
statistics for an Oracle and a SQL Server database.

Archiving Data
Managing your data is key to protecting your business. Archive your production
data regularly and set up primary and secondary locations for storing your database
archives, preferably off-site. Establish a regular schedule of archival activities,
including daily incremental backups and weekly full backups (more often if your
business volume demands it). See CHAPTER 3, “Backup and Recovery Best
Practices” for more information about database backup strategies.

Monitoring Database Tables
Auditing compliance requirements such as Sarbanes-Oxley and HIPAA may dictate
how long you must store production data online. In general, performance starts to
degrade when the number of rows in a database table grows to between 50 million
and 100 million rows. To avoid performance problems, monitor the size of your
database tables and start transferring data to history tables when the number of rows
in a particular table reaches about one million rows. Data that is no longer needed
by your application, such as data that is over one year old, should be considered
historical data and transferred to history tables. History tables are tables that are
online but that are not accessed by the Comergent eBusiness System application
and therefore do not affect performance.

Key Tables To Monitor
While you should monitor the size of all the Comergent eBusiness System database
tables (including custom tables added during your implementation), the following
tables tend to grow quickly and should be monitored on a daily basis.

CMGT_CART_CONFIGURATION

CMGT_CART_CONFIGURATION_LINES

CMGT_CART_LINES

CMGT_CATALOG_TO_CART_LOG
Comergent eBusiness System Best Practices Guide

Monitoring Database Tables
CMGT_CATALOG_TO_CONFIGURE_LOG

CMGT_NOTE

CMGT_OIL

CMGT_OIL_HEADER

CMGT_OIL_LI

CMGT_ORDER_ADDRESSES

CMGT_ORDER_EXTN

CMGT_ORDER_LI_EXTN

CMGT_ORDER_LI_SHIP

CMGT_ORDER_SERIAL_ITEMS

CMGT_QUOTE_EXTN

CMGT_RFQ_EXTN

CMGT_RFQ_LI_EXTN

Purging Data
Business requirements and regulatory compliance requirements will dictate how
long you must retain data, whether online or in offline archives. Establish
notification protocols and procedures to handle purging data appropriately for your
requirements.

Creating and Using History Tables
The names of history tables are appended with _H. See “Key Tables To Monitor”
on page 24 for more information about the key database tables to monitor.

Some history tables are created during the Comergent eBusiness System
implementation, such as CMGT_INVOICE_LI_H, CMGT_OIL_LI_H, and
CMGT_ORDER_LI_EXTN_H. If you need to trim the size of a database table that
does not already have an associated history table, then you can create one. To
transfer historical data to a history table:
Comergent eBusiness System Best Practices Guide 25

Database Management Best Practices

26
1. Create a new table with exactly the same structure as the table whose size you
need to trim. The name must be of the following format:

TABLE_NAME_H
TABLE_NAME is the name of the table to contain the historical data and _H
indicates that this is a history table, not to be used in indexing and not to be
accessed by the Comergent eBusiness System application. The name should
be similar to the name of the original table. For example, the history table
CMGT_INVOICE_LI_H contains historical data for the
CMGT_INVOICE_LINES transactional table.

2. Transfer the historical data to the history table from the original (transactional)
table, using business criteria to determine which data is no longer needed. For
example, you might place data that is more than a year old into a history table.

The following sample SQL statement transfers historical data to a history table:

INSERT INTO CMGT_TABLE_NAME_H SELECT * FROM CMGT_TABLE_NAME WHERE
ACTIVE_FLAG = ‘N’;

You can also use the DBMS export command, import the data to the appropriate
history table, and then delete the transferred data from the original table.

The following sample SQL statement deletes transferred data from the original
table:

DELETE FROM CMGT_TABLE_NAME WHERE ACTIVE_FLAG = ‘N’

You can still see and access any history tables if necessary by doing SQL queries on
the database. When the data ages past its required retention time, you can use
standard tools to purge it. If you do not have auditing compliance requirements,
other business decisions may determine when you should purge your data.

Updating Statistics
Updating the database statistics allows the database query optimizer to re-examine
database indexes and re-compute the most efficient paths for retrieving data.This
section presents two scripts: one to update statistics for an Oracle database, and one
to update statistics for a SQL Server database.

Please consult your DBA to get the statistics updated on the tables properly or refer
to your database documentation for further help.
Comergent eBusiness System Best Practices Guide

Updating Statistics
Updating Statistics For an Oracle Database
The following example shows how to update statistics for an Oracle database at the
schema level. Replace schema name, owner name, and table name with the
appropriate schema, owner, and table names.

EXEC DBMS_STATS.GATHER_SCHEMA_STATS(
ownname=> ‘schema name’ ,
cascade=> TRUE,
estimate_percent=> DBMS_STATS.AUTO_SAMPLE_SIZE,
degree=> DBMS_STATUS.AUTO_DEGREE,
granularity=>’AUTO’,
method_opt=> ‘FOR ALL COLUMNS SIZE AUTO’);

The following example shows how to update statistics for an Oracle database at the
table level.

exec dbms_stats.gather_table_stats(
ownname=> ‘owner name’,
tabname=> 'table name’,
estimate_percent=> DBMS_STATS.AUTO_SAMPLE_SIZE,
cascade=> DBMS_STATS.AUTO_CASCADE,
degree=> null,
no_invalidate=> DBMS_STATS.AUTO_INVALIDATE,
granularity=> 'AUTO',
method_opt=> 'FOR ALL COLUMNS SIZE AUTO');

You can also update statistics at the database or indexes level depending on your
requirements.

Updating Statistics For a SQL Server Database
The following example shows how to update statistics for a SQL Server database at
the table level. Replace table name and index name with the appropriate table and
index names.

UPDATE STATISTICS ON <table name> [. <index name>]
 WITH FULLSCAN {, NORECOMPUTE }
Comergent eBusiness System Best Practices Guide 27

Database Management Best Practices

28
 Comergent eBusiness System Best Practices Guide

CHAPTER 5 Performance Best Practices
Introduction
This chapter describes performance optimization best practices. It discusses the
three primary questions relevant to project implementation:

• How do you build a performance-optimized system?

• How do you verify what you have built?

• How do you solve problems that arise?

This chapter covers the following topics:

• “Performance Concepts” on page 29

• “Building a Performance-Optimized System” on page 30

• “Verifying Performance” on page 32

• “Solving Performance Problems” on page 39

Performance Concepts
This section describes performance optimization concepts. Subsequent sections go
into these concepts in more detail.
Comergent eBusiness System Best Practices Guide 29

Performance Best Practices

30
1. Set performance as the number one priority from the very beginning of the
implementation process.

2. Ensure that your infrastructure is sound. This will help in isolating problem
areas when your project enters the testing phase, and if problems arise after
your project goes live.

3. Know your system components. Take an inventory of all components that
make up your system, check that all components are functioning properly, and
keep the inventory up-to-date.

4. Establish a performance baseline.

Establishing a performance baseline and taking regular baseline
measurements allows troubleshooters to return to the last known good state
and to measure the effect that each component has on overall system
performance.

5. Set realistic performance expectations.

Setting realistic performance expectations allows you to recognize when
performance tuning has been successful.

There are two types of performance optimization:

• On-going: an established, daily routine of monitoring and recording your
deployment’s performance.

• Troubleshooting: identifying and resolving problems that affect the ability
to conduct business on your e-commerce site.

As the system is deployed and continues to evolve, monitor and verify its
performance against the goals set during the implementation process. Establishing
an on-going performance optimization routine allows you to avoid troubleshooting
situations while providing a way to easily track changes in performance and make
improvements as needed. Use a log analysis tool such as the one described in “Log
Analyzer Tool” on page 69 to measure system performance and to assist in
performance optimization and troubleshooting.

See “Solving Performance Problems” on page 39 for information about
troubleshooting performance problems.

Building a Performance-Optimized System
Ensuring that your infrastructure is sound, knowing your system components, and
taking baseline performance measurements all factor into building a performance-
Comergent eBusiness System Best Practices Guide

Building a Performance-Optimized System
optimized system. You should also have an end-game plan. What are the
expectations for performance metrics? Are the expectations reasonable?

Performance Is the Priority
Building in performance from the very beginning is preferable to, and more
efficient than, troubleshooting performance problems down the line. Before you
add a component to the system, take baseline performance readings. After you add
the component, check the component’s effect on overall performance. Examine
data such as the number of SQL queries, total time spent servicing requests, how
many times requests go to the database or introduce client-side redirects, and
compare with the baseline. Proceeding in this way allows you to measure the effect
that a particular component has on the overall system.

Ensuring a Sound Infrastructure
Ensuring that your infrastructure is sound before you start a Comergent eBusiness
System implementation assures that you are building on a solid foundation.

Taking Inventory of System Components
Take an inventory of your system’s components and keep the inventory up to date.
Doing this will help in identifying performance bottlenecks.

A system inventory includes:

• An up-to-date network diagram.

• An inventory (even if it is hand-drawn or just a list) of the Web server,
Web browsers, Web containers, application server, database, router,
firewalls, and a list of the operating system, CPU types, available memory,
and so on. Such an inventory will be useful when you are evaluating
possible bottlenecks.

• Note applications, including the version number and any installed patches.

• Note your network bandwidth.

• Ensure that integration points are configured correctly. For example,
ensure that third-party applications such as a pricing or shipping
application or web services such as a geocode lookup service, are
configured correctly and functioning properly.

• Having a current list of contacts who are responsible for supporting each
component of your system and keeping the list up to date.
Comergent eBusiness System Best Practices Guide 31

Performance Best Practices

32
Establishing a Performance Baseline
The purpose of taking baseline measurements is twofold:

• To allow troubleshooters to return to the last known good state of the
system.

• To isolate the performance impact of each system component and
account for how that component contributes to overall performance.

Taking baseline performance measurements is not a one-time activity, performed
only before you start implementing a system: it is also part of daily performance
monitoring activities. Establishing a baseline performance record and monitoring
performance on a daily basis allows you to identify and resolve trouble spots early.

Use a log analysis tool to assist in monitoring performance and use the tool at all
phases of your implementation: to take baseline performance measurements, to
verify your built system’s performance, as part of monitoring performance on a
daily basis, and for troubleshooting. For example, use the log analysis tool to
generate daily reports, then compare the reports day by day. Log analysis tools
capture exceptions which you can then use as a to-do list to resolve performance
issues. The daily reports are useful during troubleshooting: if you keep a daily log
with running commentary, confirming the problem and identifying the bottleneck is
easier in a troubleshooting situation.

Setting Realistic Performance Expectations
Taking baseline performance measurements allows you to set realistic performance
goals that are achievable given the system infrastructure and its components.

For example, taking baseline measurements of an existing system, excluding any
Comergent eBusiness System components, will assist in determining realistic
post-Comergent-deployment performance goals. If response time is one second
without Comergent, it would be unrealistic to expect that response time will
remain one second once Comergent is deployed.

Verifying Performance
Once you build your system, verify its performance and do any needed
performance optimization tuning to bring performance in line with your goals.
Load testing verifies system performance under load. Use a log analysis tool to
measure system performance and to assist in performance optimization.
Comergent eBusiness System Best Practices Guide

Verifying Performance
Load Testing
Load testing is the process by which you measure how the implementation
performs under load and determine whether the production implementation will
meet its performance requirements.

Load tests should be repeatable: that is, you should document your starting point
sufficiently to allow re-creating the test, either in the same environment or in a
different one. Make a complete copy of your last good environment, from the Web
server to the database image. This ensures that you can fall back to the last known
test run that had good results, and that you have something reliable to compare
against to check your progress.

Use techniques such as stubbing and simplifying to troubleshoot problems.
Stubbing or simplifying execution can provide good insight into load issues.
Stubbing is particularly useful if you are using a third-party service, such as SOAP
calls to a map service, and you need to quantify its contribution. See “Using Stubs
to Isolate Performance Issues” on page 38 for more information.

You should also:

• Have a network diagram of the testing infrastructure.

• Know the single-user timing before you allow multi-user load testing. If
you don't know the single-user timing for a particular test scenario, find
out. If the single-user timing is already bad (with some requests taking
more than a second), do not proceed to multi-user load testing.

• Do not allow other external processes to run during load testing. If the
load test result is bad, how do you isolate the cause of the problem,
whether the cause is your Comergent deployment, or other processes
taking memory or CPU cycles?

• Start in a clean state. For example, a testing scenario progressively adds
items to a user cart. Subsequent logins to display the carts will get
progressively long. Try to re-set the database if you can. Restart the Web
and application server before each load test if you can.

• Always archive good results and establish your baseline values. Once you
are getting good results, archive and save everything that is needed to
replicate the same environment. Doing so will come in handy if you need
to go back at some point, for example if there are changes to your
environment and your load testing results are now bad.

• Start small. Too often, the load tester wants to start at the end: the so-
called most realistic scenario (which is often the complicated scenario). It
Comergent eBusiness System Best Practices Guide 33

Performance Best Practices

34
is best to start simple and build up. For example, try the following
progression:

• Only static pages

• Dynamic pages: display only the home page

• Simple scenario: Log in, then log out

• Read-only: Log in, display an order, then log out

• Simple configuration: as an anonymous user (or a test user), search a
configurable item, configure the item, but don’t add the item to a cart

If all of the above items perform well, then try one of the more complicated
scenarios.

• Know the effects of third-party software on your deployment. If third-
party integration is involved, test it separately to prove that it functions
correctly outside of your Comergent eBusiness System deployment. At a
minimum, use the stubbing technique to bypass the third-party software
and eliminate any effects it might have on your deployment’s
performance.

• Be prepared to collect sufficient data while the load test is running. To put
the load test results into context, you need to know the following:

• CPU usage on all servers (Web, application, database)

• Web server log (for example, the mod_jk log for Tomcat)

• Application server log

• Network interface statistics, such as:

netstat -i

Preparation
Before you start load testing, consider the following:

1. Is the application server configured to accept a reasonable number of incoming
requests? For example:

• For WebLogic, check the work thread settings. For information about
WebLogic settings, see:

http://e-docs.bea.com/wls/docs81/perform/WLSTuning.html

• For Tomcat, check the value in conf/server.xml for maxThreads:
Comergent eBusiness System Best Practices Guide

Verifying Performance
<Connector port="8580" maxHttpHeaderSize="8192"
maxThreads="150" minSpareThreads="25" maxSpareThreads="75"
enableLookups="false" redirectPort="8443" acceptCount="100"
connectionTimeout="20000" disableUploadTimeout="true" />

2. Check your test script scenario. Is the think-time reasonable? (3-7 seconds for
the extreme case; 7-15 seconds is more reasonable.)

3. Are you testing using one user? Multiple users?

4. Is your environment in a clean state before you start the test? Remember to
reset the database after running a test. For example, if you use one user to
create 1000 carts, be sure to reset your environment before you re-run the test.

5. Where is the client in relation to the server? For example, running the test from
home using a DSL line is not optimal; the line is unlikely to be able to handle
large amounts of transmitted data.

6. What is the network diagram? Do you know all the touch points? Is there a
proxy server somewhere that might limit the number of requests that the
network can handle?

7. While the test is running, have someone monitor the application server: CPU,
threads, memory usage, and (for WebLogic), the work queue.

8. Is there anything else running on this application server instance at around that
time (other than the Web application) that might affect such resources as CPU
cycles or threads?

9. If the results do not make sense, then try a simpler case. For example, have the
test client retrieve static HTML pages. This will remove the Comergent
implementation from the equation. When you do that, check whether or not
you see the same performance degradation.

10. Do you need to monitor the database server as well? Is the database loaded? Is
the CPU okay during the test?

11. If the Web application uses a third-party service (mapping, pricing, credit card
processing, and so on), ensure that this is not the choke point.

12. Has this infrastructure been load tested before for other Web applications?
How was that experience?

13. What are the JVM memory settings?

14. Is the problem area using out-of-the-box code or custom code?
Comergent eBusiness System Best Practices Guide 35

Performance Best Practices

36
Basic Sequence of Testing
The following is a sample load testing check list for a customer using WebLogic
and a load testing tool on Linux and Windows.

Before the Load Test Run

1. Capture machine information, including CPU, memory, JDK, and JVM
settings:

• On Windows, retrieve CPU information using this tool:

http://www.cpuid.com/cpuz.php

• On Linux, retrieve CPU information using the following command:

cat /proc/cpuinfo

2. Synchronize the machine clocks among the application server, database server,
and load testing tool controller. Synchronization does not have to be exact but
it will help later to correlate events if the clocks are close.

3. Construct a simple network diagram of where each of the servers are: load
testing tool controller, Web server (if any), application server, and database
server. Note any possible choke points, such as firewalls or a small pipe (for
example, a DSL line from home).Use the ping command to find out how many
network hops there are between any two servers.

4. Everyone should know and understand the load testing scenario. For example,
a simple scenario might be login, browse the product catalog, and configure
model XYZ. One should be able to duplicate the same scenario using a Web
browser in a single user test.

5. Use a Web browser to go manually through the test scenario once. Make sure
that there are no errors both in the Web browser and in the Comergent
eBusiness System application log file. Make notes of elapsed times for each
click. This can be used later as one of the baselines.

The following are tools that can help tracking elapsed times as well as other
statistics such as number of requests per click and response size:

• For FireFox: https://addons.mozilla.org/firefox/1743/

• Use a proxy: Contact Comergent Technologies, Inc. for information about
using an HTTP proxy tool.

6. You will need access to all servers so that CPU usage can be monitored while
load testing is running.
Comergent eBusiness System Best Practices Guide

Verifying Performance
During the Load Test Run
During the run, perform the following tasks:

1. Connect to each server: Web server, application server, database server, and
load testing tool controller. Use appropriate tools, such as TaskManager, to
keep an eye on CPU usage on all layers: Web, application, and database, while
the load test is running.

2. Using the load testing tool, run the test once for one user. Make sure there are
no errors both in the load testing tool and from the log file. Compare the timing
results against the manual Web browser case. If the results are significantly
different, then you need to reconcile them before running a multi-user load test.

3. For each load test run, note:

• start/end time

• number of vusers (virtual users)

• startup delay (starting N users for M seconds)

4. Make sure that log files are preserved if the server is restarted between runs.

After the Load Test Run
Consider the following questions as you evaluate the test results.

1. Is customer timing matched up with your log timing?

Use a log analysis tool to determine whether the customer timing matches
the log timing.

2. What is the incoming request rate? Use the application server access log to
estimate the number of incoming requests per second/minute. Is the rate
reasonable? Ask the Web administrator if the infrastructure is capable of
handling that rate.

3. What if you use jLoad to test? Do you see the same degradation?

4. Is this slowdown across the board or occurring in just a few cases?

5. Is the page in question large? Does it use a large number of SQL persists or
restores? Check the log analysis report to be sure.

6. Forward the load test report and other information such as start/end time,
number of vusers, and startup delay to Comergent Technologies.

7. Forward the Comergent eBusiness System logs to Comergent Technologies for
log analysis. Include information about CPU usage (for example, 10% usage
Comergent eBusiness System Best Practices Guide 37

Performance Best Practices

38
on the load test controller, 80-90% CPU on application server, 30% on
database server).

Ensuring Load Test Repeatability
You may need to re-create your performance testing in either the same environment
or in a different one. Make sure that you establish a base camp: this is a complete
copy of your last good environment, from the Web server to the database image.
Having a base camp ensures that you can fall back to the last known run that had
good results, and that you have something reliable to compare against to see if you
are making progress.

Establish your base camp as soon as you have a good load-testing run. Archive
everything that will be needed to replicate the same environment. At a minimum,
save the Web application as follows:

• The Web server. The easiest method is to jar up the whole Web server
directory.

• The Application server. The easiest method is to jar up the whole
application server directory.

• Save a binary database image and verify that you can restore the database
from it.

Database Tools
If you are using an Oracle database, then familiarize yourself with tkprof. Contact
Comergent Technologies to obtain a tool that can be used to display tkprof output.

Log Analysis
Use a log analysis tool to get independent confirmation from your load test results.
For example, if the load test results on the client side say that the average response
time is 20 seconds, are you seeing the same results on the server side from the log
analysis report? See “Log Analyzer Tool” on page 69 for more information about
using a log analysis tool.

Using Stubs to Isolate Performance Issues
Remember the power of stubbing and simplifying. When things are bad, stubbing
or simplifying execution can provide good insight into load issues. Stubbing is
particularly useful if you are using a third-party service, such as SOAP calls to a
map service, and you need to quantify its contribution.

For example:
Comergent eBusiness System Best Practices Guide

Solving Performance Problems
• If you suspect that the pricing is taking too much time, add a stub to
always return 0.00.

• If a particular JSP is taking too long, replace the JSP with one that simply
displays "Hello world".

• Move the load testing driver to the same server as the Web or application
server to reduce network traffic.

• Hitting the application server build-in listener directly instead of the Web
server to remove the Web server contribution.

Network Considerations
It is possible that network issues between one or more of the layers are contributing
to performance issues. Contact Comergent Technologies, Inc. to obtain information
about performing sanity checks and using the HTTP 1.1 expiration and response
compression facilities to improve performance.

For example, try this approach to test for network latency:

1. Run the log analysis tool to confirm system slowness. Compare the timing
record in the log file against what users claim to experience.

2. Take stock of the internal network architecture, including the proxy server,
firewall, and virus scanning on the firewall, proxy, and on the user desktop.
This will help account for other possible contributing factors.

3. Take the basic network transfer measurement.

Contact Comergent Technologies, Inc. for more information about taking
the basic network transfer measurements.

4. In general, moving to an Apache/Tomcat stack can help because you can
implement some additional optimizations such as compression and expiration.

Contact Comergent Technologies, Inc. for more information about
implementing additional optimizations.

These optimizations can reduce the number of requests/bytes transferred and thus
will speed up response time.

Solving Performance Problems
If the ability to conduct business on your e-commerce site is at risk or severely
impaired, you must first confirm the problem, perform triage to determine the
Comergent eBusiness System Best Practices Guide 39

Performance Best Practices

40
nature of the problem, and then resolve the problem as quickly and efficiently as
possible.

The following lists the steps to take during the problem analysis process:

• Use a log analysis tool to confirm the problem.

• Establish the priority of the problem.

• Identify the last known acceptable checkpoint.

• Identify the bottleneck, formulate a modification plan, and establish a fall-
back procedure.

• Evaluate the solution risk vs. reward.

• Provide feedback to Support.

Having a baseline is an important tool for successfully identifying the cause of
performance problems. The baseline also helps you to determine when the system
last performed acceptably, and when the slowdown started.

The following sections describe the problem analysis process.

Confirming the Problem
To confirm the problem, look for the following types of indicators:

• A spike in response time. The response time chart provided by log
analysis tools gives an overview of your system’s responsiveness. Check
for sudden increases in response times.

• An exception list. Most log analysis tools automatically compile a list of
exceptions. Check for such lists and examine their timestamps to
determine when the problem started.

• Bad log entries. Were there bad log entries during a particular period of
time?

Is This a New Problem?
This step is where an established baseline becomes critical. Having the baseline
allows you to more readily correlate problems with specific events, such as
software updates or an increase in requests.

To determine whether or not this problem is new, do the following:

• Compare the current log analysis report with baseline report(s) from the
same time period yesterday, last week, or even last month as needed.
Comergent eBusiness System Best Practices Guide

Solving Performance Problems
• Identify when the degrade in response time started and note performance
indicators during that time. Did memory use spike? Was there a spike in
requests?

Using Performance Metrics
Certain metrics can help you to compare current performance with baseline values,
and to help resolve the problem.

The following are some metrics you can use to compare current performance with
baseline values.

• Total number of requests: was there any change in load?

• Response time: what is the percentage of requests under n seconds?

• Request load: was there a change in the total number of concurrent
requests?

• Session load.

The following are some metrics you can use to help resolve the problem.

• Memory usage: note consistently high memory usage, large swings in
memory usage, and whether the system is operating near the maximum
allocated memory.

• Thread usage: high thread usage is a candidate for further examination.

• Request load: is the request load higher than expected?

• Note the worst offenders: which requests have the highest response times,
use the most resources, or perform unusually high numbers of inquiries to
the database?

• Response time per message type: is the problem specific to a particular
message type or to a small set of message types?

• Hanging requests: requests hanging or timing out are candidates for
further examination.

Troubleshooting Check-List
• Use a log analysis tool to confirm the problem and identify the bottleneck.

A daily log report with running commentary is useful for this part of the
process.

• Look for out of range values, including large numbers of SQL statements,
HTTP requests, or large datasets.
Comergent eBusiness System Best Practices Guide 41

Performance Best Practices

42
• Perform a quick sanity check of all your deployment layers and
components, including the Web browser, network bandwidth, front-end
Web server, application server, and database.

• Check your resource usage: CPU, memory, and threads. If your system is
hanging, do a Java thread dump.

• If you have third-party software, check for new .jar files in WEB-INF/
lib/. Ensure that any third-party software is performing correctly.

• Change one variable at a time.

• Try simplified, stand-alone (non-DEBS) tests to obtain the lowest
response-time number.

• Communicate: let everyone know what you are doing so that you do not
duplicate work.

• Before applying a change, consider whether it is worth the risk. Always
have a fall-back plan.
Comergent eBusiness System Best Practices Guide

CHAPTER 6 C3 Configurator Best Practices
Introduction
Mapping eBusiness requirements to the features provided by Comergent eBusiness
System’s C3 Configurator can be daunting. Understanding how C3 Configurator
works in a variety of circumstances and studying examples demonstrating common
usage patterns can help.

This chapter covers:

• “Planning Considerations” on page 44 describes planning considerations
for designing and implementing a Comergent eBusiness System
application model.

• “Models” on page 45 provides an overview of models and best practice
design principles.

• “Properties” on page 50 provides tips and procedures for working with
properties.

• “Rules” on page 56 describes how to define and use rules to promote
efficiency in your model.

• “Performance” on page 63 describes considerations for writing models
that provide the best performance.
Comergent eBusiness System Best Practices Guide 43

C3 Configurator Best Practices

44
About Absolute and Relative Paths
This chapter refers to the use of absolute or relative paths to specify entities such as
properties and rules. Paths have the following form:

<model group root node>.<path to the option item that has the property or
rule>.<property name or rule name>

For example, consider the following absolute path to the property
memoryProvided:

MXDS-7500.memory.sim256.memoryProvided

The model group’s root node is MXDS-7500; the path to the option item that has
the property memoryProvided is memory.sim256; memoryProvided is the property
name.

If you plan to use a property or rule in more than one model, you can use special
symbols to specify relative paths. For example, the "*" in the following path
indicates that the path begins at the root of the model group hierarchy:

*.memory.sim256.memoryProvided

Beginning the path with a period (.) indicates “from the attachment point of the
rule”. For example, the "." in the following path indicates that "an option item
called sim256 in an option class called memory in the current model".

.memory.sim256

Planning Considerations
A model represents a configurable product. When you sit down to plan a
Comergent eBusiness System implementation, you start by considering how to
design a model of the product. There is no one “right” way to model a particular
product. On the other hand, there are an endless number of ways to create models
that, while technically correct, are inefficient and hard to maintain.

The following are among the trade-offs to keep in mind.

• Cost factors: creation, maintenance, and performance.

You must balance the cost of creating the model, compared with. the cost of
maintaining it, compared with its expected performance. The cost of
creating the model represents the one-time effort expended to develop it; the
cost of maintaining the model represents the effort expended over time to
maintain and enhance it, while the performance represents the execution
speed of the model on a particular hardware platform. You can optimize for
Comergent eBusiness System Best Practices Guide

Models
any one of these factors, but be mindful that trying to optimize for more
than one of them means, in most cases, that you have competing goals. For
example, a complex model might run fast, but would be hard to maintain.

• Implementers’ roles: model builder only, model builder and maintainer,
model maintainer only.

The implementer’s role influences their bias. For example, a consultant
given a month to implement a model which will then be handed off to
another group for maintenance may focus on designing the model quickly,
rather than designing a model that will be easy to maintain. If the
implementer will also maintain the model, the model may take longer to
design and perhaps not run as fast, but will be easy to maintain long-term.
Whatever your role, your goal should be to set up a model that will avoid
problems down the road.

Models
This section covers product model design considerations and provides examples of
designs that work, compared with designs that work best.

Make Models as Small and Simple as Possible
Model size matters. Large models take longer to render in the browser, are harder
to maintain, and during configuration the Configurator "walks" the model structure
a number of times to get prices, fire rules, and so on. Keeping the model size as
small as possible through the use of subassemblies and other techniques described
in this chapter improves performance and decreases maintenance costs.

For example, suppose that you have a number of cable suppliers, each of which
supplies a number of different lengths of cables. You want to allow the user to
select the quantity, length and cable supplier. One way to do this is to create option
Comergent eBusiness System Best Practices Guide 45

C3 Configurator Best Practices

46
items in your model to represent every single one of the available options, as shown
in the following figure.

FIGURE 2. Cable Inventory Model by Supplier
This approach will work, although it may be a bit tedious to implement and
maintain and creates a model with many options that will never be of interest to the
end user.

An alternative approach might be to implement the different cable length option
items as an option item group, then include the cable length option item group
under each of the manufacturers. This would ease maintenance: the modeler would
have to look in only one place to update the cable option item information.
However, this approach presents the end user with a huge list of cables to choose
from and does not improve performance since there’s still a large model to walk.

A better alternative is to create a submodel that allows the user to select a cable
manufacturer and length, then use dynamic instantiation to let the user add as many
different cable types and lengths as necessary, as shown in the following figure.
Comergent eBusiness System Best Practices Guide

Models
FIGURE 3. Dynamic Cable Inventory Model
The following figure shows a sample cable selection UI that uses dynamic
instantiation to allow end users to configure their cable selections.

FIGURE 4. Cable Selection Screen
As you can see, this approach keeps the model small. Maintaining this model will
be easier since the modeler no longer has to deal with a huge number of duplicate
option items, performance is better since the model is smaller, and configuration is
easier for the end user since there isn’t a long list of cable types and manufacturers
to look through in order to find the right one.
Comergent eBusiness System Best Practices Guide 47

C3 Configurator Best Practices

48
Use popup-qty Controls for Entering Quantity
Sometimes the modeler wants to allow users to select an item, then enter the
number of items they want. The best way to do this is to set the Option Class
Display to popup-qty. When the end user selects an item, a quantity box will
display, allowing the end user to enter the number of items they want.

Some modelers do not like the placement of the quantity box, so instead use the
User Entered Values (UEV) control to display an edit field next to the item in
which users can enter a quantity. The problem is that the behavior of the popup-qty
control differs significantly from the behavior of UEV controls: the popup-qty
control has quantity processing built in, while UEV controls require additional
work.

When an end user enters a quantity in a popup-qty box, the application
automatically selects the quantity of the selected item. Any properties attached to
the item are included in the configurator state (property pool), and the values of any
numeric properties are multiplied by the quantity entered.

When a value is entered in a UEV control, nothing else happens. UEV controls
were designed simply to capture some additional information from the user. To get
the UEV to behave as a quantity, the modeler must write an expansion rule that
takes the value entered in the UEV control and picks that many of the selected item.
Using the value entered in the UEV control to set the _quantity property using an
assignment rule will not work as expected, since this does not automatically create
instances of the item's properties in the property pool.

To display a popup-qty box beside the item selected, use the popup-qty Option
Class Display style and one of the tabular displays with quantity controls. This will
ensure the correct number of items are selected and the correct properties are
copied to the property pool.

For example, the following figure shows how to set up a popup-qty control using
the Visual Modeler. From the Models and Groups panel, select the model you wish
to modify, then click the Edit Model icon. The Model navigation page appears.
Click the option group you wish to modify, click the Display tab, then select Multi-
select Tabular Display from the UI Control drop-down list, as shown in the
following figure.
Comergent eBusiness System Best Practices Guide

Models
FIGURE 5. Setting up a popup-qty control: selecting Multi-select Tabular
Display

Scroll to the bottom of the page and enter the Column Headings, Column
Properties, and Column Alignment settings. The following figure shows sample
settings.

FIGURE 6. Sample Column Headings, Properties, and Alignment Settings
Finally, compile and test the model. You should see a popup-qty control placed as
you specified on the Product Configurator page.
Comergent eBusiness System Best Practices Guide 49

C3 Configurator Best Practices

50
FIGURE 7. A Sample Product Configurator Page Showing popup-qty Controls

Properties
Properties are ubiquitous in the C3 Configurator. Modelers attach properties to
models, option classes and option items and then write rules that work on these
properties in order to display messages, show, hide, or select items, and even set the
values of other properties. Considering the important part that properties play in
modeling a configurable product, some care should be given to how properties are
defined and used. This section outlines some useful tips and procedures to follow
when defining and attaching properties.

Use Meaningful Property Names
Sometimes when developing a model, especially when under severe time
constraints, the modeler is tempted to take shortcuts in order to speed the
development process. One of the most common shortcuts is to create properties
with short, and often vague or cryptic, names. This may speed the development of
the model in the short term, but dramatically increases the amount of effort required
to maintain the model. The modeler should always design their models so that it is
immediately obvious what a given property represents. The more meaningful the
name you give to a property, the easier it will be to debug and maintain the model
now and in the future.

Consider the following example:
Comergent eBusiness System Best Practices Guide

Properties
FIGURE 8. Using Cryptic Property Names
At first glance it may not be obvious what the properties assigned to this model are
trying to accomplish. With a little more time spent creating meaningful names it
becomes much easier to grasp the essence of all the properties and how they relate
to one another.

FIGURE 9. Using Meaningful Property Names

Do Not Use the Same Property to Mean Two Different Things
Often, in their haste to implement a particular feature, a modeler will reuse an
existing property instead of creating a new property designed specifically for the
problem at hand. This has two possible implications:

• The model may be harder to understand if the existing property name
bears no relation to the problem at hand.
Comergent eBusiness System Best Practices Guide 51

C3 Configurator Best Practices

52
• Re-use of the property name may actually cause errors in the model if the
re-use conflicts with the property’s original use.

Let us revisit our example from the previous section. Suppose that our modeler
created a property to store memory required and called it “memory” (see previous
section for why that was a bad choice to begin with). Now when he is determines
that he needs a property to store memory provided, he notices that he has a property
called memory and decides to use it instead of creating a new property.

FIGURE 10. Using One Property Name For Different Purposes
Now, at first glance, it looks like all option items require some amount of memory,
instead of two items requiring memory and two providing it. Not only that, but our
total_memory_required property will no longer have the correct value, since it now
performs a sum of both memory required and memory provided. If modeled in this
fashion, then the modeler will have to do extra work to separate out the specific
instances of the properties he needs: such as using full or relative paths to the items
containing the appropriate property instances. (See “Rules” on page 56 on why
using paths to specific instances of properties can be a bad idea.)

Define Properties at the Appropriate Level in the Model
Hierarchy
Properties may defined at any level in the model group hierarchy, from the root
model group level to the individual model level. Where a property is defined
determines which models can see and make use of the property. A little thought
during the design of your models will speed model development and help prevent
property clutter. Use the following guidelines to determine where a property should
be defined:
Comergent eBusiness System Best Practices Guide

Properties
• If a property will only be used in a particular model, then define the
property at the model level.

• If a property will be used in more than one model within a particular
model group, then define the property at that model group level.

• If a property will be used in models that span model groups, then define
the property in the first model groups that contains all of the model groups
whose models will use the property.

As a last resort, define the property at the root model group node.

Using Multiple Properties with the Same Value
Multiple properties with the same value can sometimes make a model easier to
build and maintain.This concept may be confusing at first and is best demonstrated
by an example. Suppose that you are building a model that allows the user to
choose from a selection of disks arrays. Each type of disk array has some number of
disks associated with it. The user can choose multiple disk arrays of any type. One
of the pieces of information that you need to calculate is the total number of disks
that the user has selected (see below).

FIGURE 11. Using Multiple Property Names to Clarify Purpose
Now let us assume that you realize that you also need to know the number of
100GB disk arrays and the number of 250GB disk arrays. Instead of calculating
these values by specifying item paths to the properties that we want, or writing
rules that have to be attached at a particular point in the model, or re-working all the
disk and total_disk properties, we can simply define a couple of new properties that
have the same values as our old disk property (see below).
Comergent eBusiness System Best Practices Guide 53

C3 Configurator Best Practices

54
FIGURE 12. Using Additional Properties for Simple Calculations
Now, if we want the total disks, we can still get sum(disks). If we want the
individual values, then we can get those as well: and all without specifying paths to
individual properties or modifying the work that we had already done.

Use Worksheets to Simplify Property Assignment
When developing a model, it is often necessary to assign the same set of properties
to multiple option classes or option items. Worksheets are very useful in this case,
since they allow you to rapidly set the values for a particular property on any
number of option classes or items. this is especially true when using a formula to
set the value of a property in multiple places. The modeler can simply copy and
paste the formula onto all the items he wishes. An example of this is shown below.
Here we have some display properties that are set for each item within a tabular
display. We use a worksheet to allow us to easily cut and paste the formulas for
col1 and col2 to each item in the option class.
Comergent eBusiness System Best Practices Guide

Properties

FIGURE 13. Using Worksheets to Simplify Property Assignment
An added benefit of using worksheets is that can provide a concise picture of a
section of the model. With a little thought and planning, a worksheet can provide an
overview of a particular section of the model or a complete representation of the
solution to a particular problem. Below is a different view of the same option class.
In this case, we are interested in seeing all the min and max properties that are set
for each of the option items.

FIGURE 14. Worksheet Showing Min and Max Properties For Each Option
Item

Avoid Chaining Property Formulas
Properties attached to an item do not have any notion of sequence. By this we mean
that, when using formulas to set property values, we cannot rely on any particular
order of evaluation of the formulas. If property A contains a formula and property
B contains a formula that relies on property A, then we have no guarantee that the
rule created from formula B will fire after the rule created for formula A. In order to
get around this issue, the modeler has two choices:

• Turn the first formula into a rule that fires before the second formula is
evaluated. All rules generated from formulas have a priority of 50. By
creating a rule for the first formula, and setting its priority to be less than
50, we ensure that the value of property A will be set before the value of
property B is calculated.

• Turn on repeat rule firing. In this case the first phase of rule-firing will
calculate the value for property A. The second pass of the rule-firing loop
Comergent eBusiness System Best Practices Guide 55

C3 Configurator Best Practices

56
will calculate the value of property B based on the value of property A
computed in the first pass. Note: massive amounts of chaining of formulas
in this way may result in degradation of performance due to the number of
passes through the rule-firing loop necessary to satisfy all the conditions.
For this reason, we recommend the first alternative and advocate limiting
formula chaining as much as possible.

Rules
Rules affect the efficiency and ease of maintenance of your model. This section
describes considerations to keep in mind while writing rules.

Rule Firing Conditions
Rule conditions are created by applying boolean operations to relational
expressions. A relational expression is the comparison of one function/property
pair with another function/property pair using relational operations such as less
than, equal to, greater than, in, not in, and so on. The result is either true or false.
Boolean operators like AND and OR wrap sets of these relational expressions. The
relational expressions are called fragments, as they are fragments of a rule. The left-
hand-side of the relational operator is often abbreviated LHS, while RHS stands for
right-hand-side.

Order Rule Fragments So That Rules Fire Only When Necessary
The evaluation of rule fragments determines when a rule fires, so the order in which
fragments appear in a rule is important. The more quickly the model can determine
whether a rule is true or false, the more efficient the model can be. And of course,
the more quickly the model determines that a rule should not be fired, the sooner
the model can continue to other processing. Placing rule fragments in order, from
most likely to prevent the rule from firing to least likely to prevent the rule from
firing, can improve performance.

Always test your rules to ensure that they fire only when appropriate. Knowing
under what circumstances a rule’s results will or will not be used is also important.
For example, an expansion rule that always fires but will not pick something in the
expansions section if the quantity formula results in zero, or if there are not any
matches for the formula in the > and <= fields in the expansions section, is very
inefficient.
Comergent eBusiness System Best Practices Guide

Rules
Create General-Purpose Rules
Whenever possible, write rules that are as general as possible. For example, the
following rule can be attached to any product to which the productType and
handsetType properties are attached:

If propval(productType) != value(selectProductType)
and propval(handsetType) != value(phonePreference)
 set _isVisible=0

This rule fires only for products where the productType property is attached AND
does not match the selected product types AND if the selected phone preferences
do not match the current product’s preferences. A general rule such as this one can
replace dozens of other specific rules such as the following specific ones:

If propval(productType) == literal("handset")
and propval(handsetType) != literal("camera")
and value(phonePreference) == literal("camera")
 set _isVisible=0
If propval(productType) == literal("handset")
and propval(handsetType) != literal("flip")
and value(phonePreference) == literal("flip")
 set _isVisible=0
…

Use Formulas Where Appropriate
In many circumstances, formulas can be used instead of rules. During modeling,
formulas are maintained as attached properties that have as their value an
expression that is evaluated at runtime. If any of the functions referenced in the
expression cannot be evaluated, the formula acts like a rule that hasn’t fired. If
multipass rule firing is turned on, the formula will be reevaluated during each firing
pass until rule firing ends or until the formula produces its result.

Use a formula rather than a rule when the only condition for requiring that you
compute a result is that the function/properties used in the formula have values.

For example, suppose that you want to compute the turning radius for truck
components such as axel and wheelbase to ensure that a user’s choice of truck
components makes sense. You might attach a formula to the relevant truck
components to compute the turningRadius as follows:

turningRadius = value(axelTurnFactor) * value(wheelBaseTurnFac-
tor)* sum(turningElements)

This formula will fire when each of the value(axelTurnFactor),
value(wheelBaseTurnFactor), and sum(turningElements) expressions all produce
numeric results.
Comergent eBusiness System Best Practices Guide 57

C3 Configurator Best Practices

58
The equivalent rule is as follows:

if (value(axelTurnFactor) >= 0 or value(axelTurnFactor) < 0)
and (value(wheelBaseTurnFactor)>= 0 or value(wheelBaseTurnFactor)<
0)
and (sum(turningElements) >=0 or sum(turningElements) <0)
 turningRadius = value(axelTurnFactor) * value(wheelBaseTurn-
Factor)* sum(turningElements)

The condition portion of the rule is quite long and seems to always evaluate to true.
However, functions can return NULL if a property that they reference does not
exist, so this rule is really checking that the result is non-NULL by evaluating
whether a returned value is >= 0 or < 0.

Avoid Specifying Paths to Instances of Items or Properties
The LHS and RHS of a rule fragment consist of a function and a property name.
The property name can contain both relative and absolute path information.
However, specifying a property’s path information in a rule fragment can result in
the rule becoming inoperable if the path information or option classes change.

For example, the following rule references wheelSize and wellSize using fully
specified path information. If the modeler ever needs to rename either the wheels or
fender option classes, or wishes to reuse the rule in some other model, the rule may
not operate correctly.

If value(*.wheels.wheelSize) == literal("17in")
and value(*.fender.wellSize) < literal(17)
 set _isVisible=0

Use path information only if you want to access one specific instance of a property,
and then only if it isn’t possible to make a new property type to hold this value. If
you must reference a property’s path name, it is often better to use relative
pathnames rather than absolute pathnames.

Constraint Tables vs. Rules
This section explains the trade-off between using constraint tables to limit customer
choices vs. using rules. Constraint tables limit a customer’s choice of one or more
option items based on the customer’s choice of another option item. For example,
the choice of an exterior color for a car might limit the choice of interior colors.

Constraint tables work best for simple validation, for example, an option item does
or doesn’t work with another option item. Simple constraint tables are easier to
maintain than rules. However, large, complex constraint tables can be hard to
maintain and can lead to performance issues.

Constraint tables are turned into rules internally.
Comergent eBusiness System Best Practices Guide

Modular Development
Rules are best for expressing complex validation issues, and are more versatile than
constraint tables. While both constraint tables and rules can display error messages,
you can also create rules to set properties or make choices.

Modular Development
This section explains some of the techniques for simplifying model creation and
maintenance. Selecting the appropriate technique may have a significant impact on
model performance.

• Using Option Class Groups, Option Item Groups, and Sub-assemblies:

This technique works well when a group of options is repeated in many
different models.
For example, suppose that every computer you sell includes a list of hard
drives that the user can choose from. Creating Option Class Groups, Option
Item Groups, and Sub-assemblies allows the modeler to create and maintain
common information in one place, then use it in many places.
One drawback is that this technique can lead to overly large models if a
sub-assembly is included in the same model many times.

• Sub-model punch-in and punch-out:

This technique is useful when a configuration contains a selection that is
also configurable. You can use sub-model punch-in and punch-out to nest
complex configurations within one overall selling model.
One drawback is that all copies of the configured product will have the
same configuration.

• Dynamic instantiation:

This technique allows multiple instances of a configured product within a
single model. Each instance can have a different configuration

Tools
Modeling can be a time consuming and tedious exercise, but in the end the
correctness of the modeling and the scalability of the created solution are key to the
success of the project. To aid in creating scalable and correct models, we have
developed a collection of tools that can be used in various phases of development to
guide the modeler. During development, the trace log and the model reporting tool
can help the modeler determine which models to debug. Before pushing models
Comergent eBusiness System Best Practices Guide 59

C3 Configurator Best Practices

60
into production, their scalability and stability can be tested using the load testing
platform. Finally, during execution, the model cache status page can provide
insights into the model’s usage of the system, and the log analyzer can be used to
make sense out of megabytes worth of log information.

Using the Trace Log
The trace log shows the execution of the rules engine. This is often, though not
always, the most time consuming part of each request that the configurator makes
to the server. The trace log is designed to provide the information necessary to
debug rules that are misbehaving and to track the execution time of rules, so always
start your debugging by reviewing the trace log.

You create trace logs using the Visual Modeler. To do so:

1. Go to Model Group navigation and navigate to the model you wish to debug.

2. Select the model from the Models and Groups panel.

The model displays in the Model Preview tab.

3. Click the Test icon.

The model runs in a separate window.

4. Click Debug.

The trace log appears in a separate window.

The log consists of two sections. The first section is the rule firing trace and the
second section is the property pool as it exists at the end of rule firing.

The following illustration shows a section of a sample rule firing trace.
Comergent eBusiness System Best Practices Guide

Tools
FIGURE 15. Sample Rule Firing Trace
The rule firing trace has three columns:

• A sequence number, useful for communicating with others about rule
issues. It’s easy to tell someone, "See line 42 where it says Xxx?".

• Elapsed time. This logs how long it took from the time the log entry was
made until the start of rule firing.

• The body of the trace log. This shows aspects of the rule firing, such as a
condition being evaluated, an assignment occurring, the start of a rule or
the conclusion of a rule, and so on.

The log shows the number of milliseconds needed to fire a rule after each rule firing
entry. The total number of milliseconds needed to run the model is logged at the
end of the rule firing trace.

The property pool trace also presents three columns:

• Name is the full path name to the item and the property on that item.
Comergent eBusiness System Best Practices Guide 61

C3 Configurator Best Practices

62
• Type is the property type for the named property, such as Numeric, List,
or String.

• Value is the value of the property after the rule has fired.

The following illustration shows a section of a sample property pool trace.

FIGURE 16. Sample Property Pool Trace
Use this log "single user" to get a feel for how extensive the rules are per click.
Check how long is it taking to fire the rules. If the answer is more than 100-200ms
Comergent eBusiness System Best Practices Guide

Performance
you may have scalability problems. If you do, use the trace log to figure out if any
particular rules are performing badly.

Using the Model Reporting Tool
The model reporting tool can provide an overview of a model’s size relative to
other models. Use it to help make decisions about which models to test. You can
track the test results over time so that you can determine the amount of change to
the model.

Using Load Testing Tools
Load testing tools help you determine how your model will perform once deployed.
Before using the load testing tools:

• Understand what is being tested.

• Isolate your test cases so that you know what the impact means (local vs.
remote LAN testing, testing with and without clustering, with and without
web fronting, and so on).

• Understand that as models change, so must any scripts that you use to
perform testing and replay test scenarios.

For more information about load testing, see “Verifying Performance” on page 32.

Cache Status
• cmd=configstatus shows the current contents of the cache

Performance
Rules
• Excessive paths to items:

• A rule that adds memory by:

totalMem = value(*.adapter.1.memory) + value(*.adapter.2.memory) +
value(*.adapter.3.memory) + value(*.adapter.4.memory)

will perform much more slowly than:
totalMem = sum(memory)

• If the memory property exists in other places for other uses so that
sum(memory) would produce the wrong value, then introduce additional
properties on the adapter items 1-4 called adapterMemory, and use:
Comergent eBusiness System Best Practices Guide 63

C3 Configurator Best Practices

64
totalMem = sum(adapterMemory).

• This is much less maintenance effort that maintaining:

totalMem = value(*.adapter.1.memory) + value(*.adapter.2.memory) +
value(*.adapter.3.memory) + value(*.adapter.4.memory)

• Write rules to fire only when they are needed:

• A rule that assigns totalMem = sum(mem) only needs to fire if
count(mem) > 0

Properties
• Define properties at the correct position in the model group hierarchy:

• If they are local only to this model, then define them in the model.

• If they may be used by other models within this model group, then define
them in the current model group.

• If they are more global than the current model group, then define them at
the lowest point in the model group tree that is an ancestor of a model
where you wish to use the property.
Comergent eBusiness System Best Practices Guide

APPENDIX A JVM Tuning and Log Analysis
Introduction
This chapter describes the following performance optimization items:

• “JVM Memory and Tuning Guidelines” on page 65 describes general
guidelines for Java Virtual Machine (JVM) performance tuning. You
should be familiar with your JVM and servlet container environment to
apply these guidelines.

• “Log Analyzer Tool” on page 69 describes an open source log analysis
tool, Log Analyzer. Contact your Comergent Technologies representative
for information about obtaining this tool.

JVM Memory and Tuning Guidelines
When you encounter memory-related issues, adjusting the JVM memory settings
can get you back to a sane, working environment. This section presents guidelines
for JVM memory settings and performance tuning. You should be familiar with
your JVM and servlet container environment to apply these guidelines.
Comergent eBusiness System Best Practices Guide 65

66
Adjusting JVM Memory Settings
In general, you should allocate as much memory as possible to the JVM running
your application server. You can do this by setting the JVM memory configuration
as follows:

• -Xmx should be between 80% and 100% of the machine’s physical
memory. If you set -Xmx too small, the application server may fail with an
OutOfMemory error. If you set -Xmx too large, the memory’s footprint is
larger and you run the risk of the Java’s heap being swapped out, causing
other performance problems.

• -Xms should be approximately half of the -Xmx setting. If you have
historical data about your application server’s stable memory-usage point,
then set -Xms to be around that value.

Another option is to set -Xms to the memory-usage value observed at the
end of InitServlet.This will ensure that, at a minimum, DEBS initialization
will complete with as little garbage collection as possible. To get the
memory usage value, perform the following steps:

a. Set -Xms to be the same as -Xmx

b. Start up your Comergent eBusiness System deployment and wait until
initialization is complete

c. Access your e-commerce site’s home page

d. Open the debs.log file in a text editor and examine the log entry that is
similar to the following:

2003.03.18 ... END Request ... Mem=129380744/388726784/391291344 ...

e. The first number after Mem= is the current memory usage after
initialization. Set -Xms to that number: in the above example, use the
value -Xms128m.

• -XX:MaxPermSize controls the allocation size for system-like reflective
objects such as Class and Method. Its recommended initial value is 128m.

For Web applications, the allocated space fills up quickly because the *.jsp
files are converted into*.java files, then into *.class files which are loaded
into the memory space specified by -XX:MaxPermSize. Starting with Java
version 1.4.2, you can use -XX:+PrintGCDetails to monitor the details of
this space, named permanent generation.
Comergent eBusiness System Best Practices Guide

JVM Memory and Tuning Guidelines
Be careful not to make memory-related changes that might contradict what the
application server currently supports. DEBS needs to co-exist with the application
server in the same VM so when in doubt, double-check the application server
documentation or contact your application server’s Support organization. For
example, suppose that the current application server documentation states that the
JVM setting -server is not supported. In that case, don't set -server.

As a last troubleshooting resort, start the VM with no additional arguments and
incrementally add one argument, restart, observe the results, then add one more,
continuing until you get good results.

Additional Performance Tuning
Additional performance tuning can be done around Java garbage collection
activities and by adjusting memory settings for other areas, such as for threads,
JVM stacks, or native structures or code. Use the Log Analyzer tool or check the
debs.log file directly to make observations and determine performance problem
areas.

Tracing Garbage Collection Activities
If you observe unexplained pausing, then it is possible that the VM is being paused
for a full garbage collection. To confirm that this is what is happening, use the JVM
setting -verbose:gc to enable recording of garbage collection events in the debs.log.
Garbage collection events are of the following types:

[GC 325816K->83372K(776768K), 0.2454258 secs]
[Full GC 267628K->83769K(776768K), 1.8479984 secs]

A minor collection should be less than half a second. A major garbage collection
should be less than three seconds. Anything more than three seconds indicates an
out-of-range condition and should be looked into.

Other garbage collection trace settings you might want to look into are:
Comergent eBusiness System Best Practices Guide 67

68
• The JVM -server setting: this setting adjusts some initial Java heap
settings so that they are more appropriate for a server environment. Set the
-server value unless your application server does not support it.

There is a known problem with the -server setting related to a bug in JIT
(just-in-time) compilation which causes the value used by the data service
to change unexpectedly. The result is that DEBS will fail to initialize
(InitServlet fails). Contact Comergent Technologies to learn how to disable
JIT compilation for certain methods.
Some application servers recommend using the VM setting -server. In
particular, the value of -XX:NewRatio for -server is 2 (the default value for
the -client setting is 8). For more information about the -server and -client
settings, see the Sun documentation at the following URL’s:
http://java.sun.com/docs/books/performance/1st_edition/html/
JPAppHotspot.fm.html#998292
http://java.sun.com/docs/books/performance/1st_edition/html/
JPAppHotspot.fm.html#998359

• The -Xincgc setting: this setting enables incremental garbage
collection.Setting -Xincgc reduces large pauses due to full garbage
collection. When you use this setting, bear in mind that you are shifting
the time spent to perform one major collection to several minor
collections. There is an overhead cost associated with this shift, usually
around 10%.

• If you are getting OutOfMemoryError messages, the you should first
increase the value of -Xmx, ensuring that -Xmx is no more than the value
of the machine's physical memory. If it appears that you are getting
OutOfMemoryError messages when the current heap usage (where new
objects are allocated) is nowhere near the value of -Xmx, then there is a
possibility that other areas of memory allocation are exhausted. Examine
the Log Analyzer report and check the following possible areas:

• Due to Classes: try setting -XX:MaxPermSize=128m

• Due to Threads: try adjusting the stack using -Xss=512k

• Due to JVM Stacks: try adjusting the stack using -Xss=512k

• Due to Native data structures: try adjusting the OS swap size

• Due to Native codes: try adjusting the OS swap size
Comergent eBusiness System Best Practices Guide

Log Analyzer Tool
Log Analyzer Tool
The Log Analyzer is an open source tool that can help with your analysis of the
Comergent eBusiness System debs.log entries. The tool provides a view of key
performance indicators: threads, memory, requests, and sessions, as well as
response times sorted by user and request type. Contact your Comergent
Technologies representative for information about obtaining this tool.

Using the Log Analyzer as part of a daily routine of monitoring your deployment
provides these advantages:

• Daily log analyzer reports add reliability and stability to your deployment.
The generated data can provide an early warning about potential problems,
making it possible to prevent outages. For example, using the daily log
analyzer reports, you can pro-actively plan to re-start an application server
when it reaches near-maximum memory usage.

• Daily log analyzer reports provide the basis for troubleshooting a current
problem. By examining the reports, you can determine when the problem
started and correlate it with events such as an OS upgrade.

• Daily log analyzer reports provide a focal point for making incremental
improvements. By reviewing the log analyzer report daily, you can
generate a to-do list to plan when to restart your application server, clean
up any exception lists, track down hanging threads, or to provide feedback
to developers about long-running requests or requests that are using
substantial resources, such as returning large rows from a database.

Contact Comergent Technologies to obtain the Log Analyzer tool. The Log
Analyzer is a .jar file that can be saved and unjarred in any convenient location.
The Log Analyzer expects that the format of DEBS log entries is similar to the
following:

<YYYY.MM.DD HH:MM:SS:mss ThreadName:LogLevel:LogTag:messages>

For example:

2006.10.12 06:00:00:171 Env/http-8580-Processor48:INFO:WrappingFil-
ter ...

Since the process of analyzing a log file can be memory-intensive, specify as much
JVM memory as possible to avoid OutOfMemoryError messages. For example,
start the Log Analyzer as follows:
Comergent eBusiness System Best Practices Guide 69

70
java -Xms256m -Xmx512m -jar logAnalyzer-1.1.1-SNAPSHOT-app.jar

The following screen displays:

FIGURE 17. Log Analyzer Initial Screen
Enter the following information:

• Source: enter the full pathname of the location of a DEBS log file, or
directory containing multiple DEBS log files.

• Input:

• DEBS 6.4 or later is automatically checked. If you are analyzing a log file
from a pre-Release 6.4 Comergent eBusiness System, then uncheck this
checkbox.

• From WebLogic: click this checkbox to indicate that the log files are
generated from a BEA WebLogic application server.

• Output: click the Output checkbox to generate a response-time chart
grouped by message type.

• Output dir: enter the full pathname of the directory to contain the report
output.

Click Start analyzing to start the log analysis process. The Log Analyzer displays
messages as it progresses, then places the log analysis output in the specified output
directory when it finishes.
Comergent eBusiness System Best Practices Guide

Log Analyzer Tool
Setting Up Log Analyzer Daily Reports
This section describes a procedure for automating daily log analyzer report
generation. The procedure described here uses Ant, since Ant is portable, well-
used, and has good documentation. Ant is available from http://ant.apache.org.

The goals of this procedure are to:

• Set up a cron job to run reports nightly, and organize output by date (year/
month/day) to ease navigation.

• Compress log files when possible to save space.

• Set up the automation in a way that is easy to duplicate so that log files
from multiple deployments can be hosted from a single log server.

To automate log analyzer report generation, you need:

• Java and Ant

• Read access to the DEBS log files

• Write access to the report output directory, <out.dir>. The contents of
<out.dir> are accessible via a Web server.

Daily Reports Workflow
The following describes the general workflow for automating log analyzer daily
reports.

1. DEBS generates log files to the application server or servlet container logs
directory.

For example, the logs directory in a Tomcat deployment is <tomcat-
home>\logs.
The log file is named debs.log.n, where n is a number. For example,
debs.log.1, debs.log.2, and so on.

2. Set up a cron job to run daily (perhaps very early in the morning) to
concatenate all the log files from the log directory into a temp file.

3. From the temp file, extract yesterday’s log entries into the log analyzer output
directory using the directory naming pattern year/month/day/log.suffix.

4. The year/month/day/log.suffix file is further compressed using gzip to save
space.

5. Start the log analyzer to parse the year/month/day/log.suffix.gz file and
generate the report to the year/month/day/html/ directory.
Comergent eBusiness System Best Practices Guide 71

72
Setting Up the Daily Reports

1. If you have not already done so, contact Comergent Technologies to obtain the
following files:

• The Log Analyzer .jar file

• logAnalyzer-daily.xml

• logAnalyzer-daily.properties

2. Save the Log Analyzer files to a temporary location.

3. See “Configuration” on page 74 for information about configuration values.

4. Use the following command to run the daily log analyzer report:

ant -Dproperties.file.name="logAnalyzer-daily.properties" -f
logAnalyzer-daily.xml

5. Examine the output. The location is similar to the following:

sites/default/app-server/logAnalyzer-out.d/dailySplit/YYYY/MM/DD/
html/index.html

Recommended directory layout

The following figure illustrates the recommended log analyzer directory layout.
This layout is especially recommended if you plan to host log files from multiple
sites.
Comergent eBusiness System Best Practices Guide

Log Analyzer Tool
FIGURE 18. Recommended Log Analyzer Directory Structure
Site information is kept under the sites directory, which contains a directory for
each site. The site directory name can be any unique string; the example above uses
siten, where n is a number: site1, site2, and so on.

Each site directory contains a logAnalyzer-daily.properties file that contains that
site’s specific settings.

Each site’s log files are kept in the siten/app-server/logs/ directory.

The sites directory is read-only. Output is written to the siten/app-server/
logAnalyzer-out.d directory.

Using the above layout, you can start a cron job with just the site name. For
example, for a site named bbfb-01:

Tell Ant to set the site.name and use a build script name:
logAnalyzer-daily.xml
ant -Dsite.name=bbfb-01 -f logAnalyzer-daily.xml

If you rename logAnalyzer-daily.xml to build.xml, then you can then skip the -f
logAnalyzer-daily.xml argument. For example, for a site named bbfb-01:

ant -Dsite.name=bbfb-01
Comergent eBusiness System Best Practices Guide 73

74
Configuration

Deployment-specific settings are set in a property file. The default property file is
sites/${site.name}/logAnalyzer-daily.properties. You can also set the property
file name at the command line as follows:

ant -Dproperties.file.name="path_to_file.properties" ...

The following lists the configuration properties in the logAnalyzer-
daily.properties file.

• log.dir: the full path to the location of the directory containing the DEBS
log files. For example:

default is ./logs
log.dir=/home/hle/tomcat/logs

• out.dir: where to write the generated reports. For example:

default is logAnalyzer-out.d
out.dir=/home/hle/public_html/logAnalyzer-out.d

• logAnalyzer.jar: the location of the logAnalyzer .jar file. For example:

default is ./logAnalyzer-1.1.1-SNAPSHOT-app.jar
logAnalyzer.jar=target/logAnalyzer-1.1.1-SNAPSHOT-app.jar

• is.weblogic: true if the log files was generated by WebLogic. For example:

default is false
is.weblogic=true

• genChart.perMessageType: false to skip messageType charts generation.
For example:

default is true
genChart.perMessageType=false

• log.prefix: the DEBS log prefix. You rarely have to change this. For
example:

default is debs.log
log.prefix=Midwest.log

• target.date.offset: Auto-set the target.date. The default is 1, which means
yesterday. For example, set target.date.offset to 7 to extract log files for a
week ago:

default is yesterday: 1
target.date.offset=7
Comergent eBusiness System Best Practices Guide

Log Analyzer Tool
• target.date: Limit processing to log entries for this day. The most likely
usage for this setting is to manually re-generate an old set of log files. For
example:

default is yesterday (auto-evaluated)
target.date=2006/07/24
Comergent eBusiness System Best Practices Guide 75

76
 Comergent eBusiness System Best Practices Guide

Index
A
Administrative domain

application server 6
database server 6
DMZ 5
entities 5
external network 5
internal network 5
network zones 5
networks 5
roles 6
servers 5
Web server 6

Analyzing debs.log 69
Automating Log Analyzer reports 71

B
Backup and recovery strategies 20
Backups

checkpoint backup 20
daily backup 20
full 20
incremental backup 20
weekly backups 20

Baseline
purpose 32

C
Cryptographically secure digests 9

D
Data

protecting 19
timeline for recovery 20

Database management 23
performance 24
practices 23

Database tables
monitoring size 24

Deployment architecture 18
build environment 18
QA area 18
staging area 18

E
Encryption

algorithms 8
DES 168 11, 12
encryption keys 9
Key Store 9

JCE Key Store 8
password protection 8
two phase initialization support 9

libraries 8
Comergent eBusiness System Best Practices Guide 77

78
MD5 message digest 9, 12
mechanisms 11
persistent data 8
secret key 9
SHA-1 message digest 9, 12
WAR local key store file 10

Entitlement services 6
access policy service 6
data-level access 6
dispatch service 6
page flow privileges 6

F
firewall 39

H
History tables 24

_H naming convention 25
creating 26
transferring data to 26

I
Incremental garbage collection

-Xincgc 68
Infrastructure

application tier 19
database tier 19
typical 18
Web tier 18

Inventory
system components 31

J
jLoad 37
JVM

-server 68
-verbose

gc 67
-Xincgc 68

K
Key performance indicators 69
Key Store file 9

L
Load test

and third-party software 34
collecting data 34
preparing for 33, 34

repeatability 33, 38
sequence 36
stubbing 33, 38

Load testing 33
log analyzer 37, 38
Log Analyzer tool 69

directory structure 72
properties file 74

log analzyer tool 32

M
Memory allocation

areas to check 68
model size 45

N
network latency 39

O
Online users 6
Open Web Application Security Project

(OWASP) 4

P
Performance 30

baseline 30
building in 31
memory issues 65
network latency 39
out of memory error 68
setting expectations 30
setting goals 32
troubleshooting 40, 41

Performance optimization 29
Performance tuning

garbage collection 67
properties 50

defining at correct location 64
property names 50
proxy server 39

R
Recovery policies 21
Recovery scenario 20
Redundancy 18
Regulatory guidelines

AICPA 4
ISO 1799 4
OWASP 4
Comergent eBusiness System Best Practices Guide

PCI 4
Sarbanes-Oxley 4
SAS 70 4

RFC 1918 compliance 5
Roles

Data Center administrative roles 8
Responsibilities

Database administrator 6
Developer 7
Network administrator 7
System administrator 6

S
Secure logging 9
Secure storage

account information 9
passwords 12
user information 10

Security
regulatory guidelines

ISO 17799 4
OWASP 4
PCI 4
Sarbanes-Oxley 4
SAS 70 4

Security model 3
size of models 45
Strategies

backup and recovery 20
submodels 46
System inventory 31

T
Threat scenarios 12
tkprof 38
Tomcat

thread settings 34

U
Update statistics

Oracle 27
SQL Server 27

V
virus scanning 39

W
WebLogic

thread settings 34

X
-Xmx setting 68
Comergent eBusiness System Best Practices Guide 79

80
 Comergent eBusiness System Best Practices Guide

	Preface
	Purpose
	Audience
	Conventions
	Comments

	Contents
	CHAPTER 1 Introduction
	CHAPTER 2 Security Best Practices
	Introduction
	Role Definition and Security Policies
	Administration Model
	Networks
	Servers
	Roles

	Data Center Roles

	Information Assets
	Encryption of Persistent Data
	Information Assets
	Account profile
	Transaction and System Log
	Key Store File
	WAR local key store file
	User passwords

	Roles Schematic

	Protection Mechanism for Information Assets
	Credit Card Information
	User Passwords

	Protection of Critical Functions
	Setting Application’s Database User and Password
	Assertions

	Storing Sensitive Data in the Database
	Assertions

	Threat Scenarios
	Transport
	Restores from Backup
	Log Files
	Bogus Account to Access Customer Records
	Credit Card Number Theft
	DBA Password Theft

	HTTP Sessions

	CHAPTER 3 Backup and Recovery Best Practices
	Introduction
	Deployment Architecture Overview
	Infrastructure
	Backup Strategies
	Database Recovery
	Application Server and Web Server Recovery

	CHAPTER 4 Database Management Best Practices
	Introduction
	Archiving Data
	Monitoring Database Tables
	Key Tables To Monitor
	Purging Data
	Creating and Using History Tables

	Updating Statistics
	Updating Statistics For an Oracle Database
	Updating Statistics For a SQL Server Database

	CHAPTER 5 Performance Best Practices
	Introduction
	Performance Concepts
	Building a Performance-Optimized System
	Performance Is the Priority
	Ensuring a Sound Infrastructure
	Taking Inventory of System Components
	Establishing a Performance Baseline
	Setting Realistic Performance Expectations

	Verifying Performance
	Load Testing
	Preparation

	Basic Sequence of Testing
	Before the Load Test Run
	During the Load Test Run
	After the Load Test Run

	Ensuring Load Test Repeatability
	Database Tools
	Log Analysis
	Using Stubs to Isolate Performance Issues
	Network Considerations

	Solving Performance Problems
	Confirming the Problem
	Is This a New Problem?
	Using Performance Metrics

	Troubleshooting Check-List

	CHAPTER 6 C3 Configurator Best Practices
	Introduction
	About Absolute and Relative Paths

	Planning Considerations
	Models
	Make Models as Small and Simple as Possible
	Use popup-qty Controls for Entering Quantity

	Properties
	Use Meaningful Property Names
	Do Not Use the Same Property to Mean Two Different Things
	Define Properties at the Appropriate Level in the Model Hierarchy
	Using Multiple Properties with the Same Value
	Use Worksheets to Simplify Property Assignment
	Avoid Chaining Property Formulas

	Rules
	Rule Firing Conditions
	Order Rule Fragments So That Rules Fire Only When Necessary
	Create General-Purpose Rules
	Use Formulas Where Appropriate
	Avoid Specifying Paths to Instances of Items or Properties
	Constraint Tables vs. Rules

	Modular Development
	Tools
	Using the Trace Log
	Using the Model Reporting Tool
	Using Load Testing Tools
	Cache Status

	Performance
	Rules
	Properties

	APPENDIX A JVM Tuning and Log Analysis
	Introduction
	JVM Memory and Tuning Guidelines
	Adjusting JVM Memory Settings
	Additional Performance Tuning
	Tracing Garbage Collection Activities

	Log Analyzer Tool
	Setting Up Log Analyzer Daily Reports
	Daily Reports Workflow
	Setting Up the Daily Reports
	Recommended directory layout
	Configuration

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

