
Sterling Supply Chain
Applications

Performance Management Guide
Release 7.9

October 2006

Copyright Notice
Copyright © 1999 - 2006.

Sterling Commerce, Inc.

ALL RIGHTS RESERVED.

STERLING COMMERCE SOFTWARE

TRADE SECRET NOTICE

THE STERLING COMMERCE SOFTWARE DESCRIBED BY THIS DOCUMENTATION (STERLING COMMERCE
SOFTWARE) IS THE CONFIDENTIAL AND TRADE SECRET PROPERTY OF STERLING COMMERCE, INC., ITS
AFFILIATED COMPANIES OR ITS OR THEIR LICENSORS, AND IS PROVIDED UNDER THE TERMS OF A
LICENSE AGREEMENT. NO DUPLICATION OR DISCLOSURE WITHOUT PRIOR WRITTEN PERMISSION.
RESTRICTED RIGHTS.

This documentation, the Sterling Commerce Software it describes, and the information and know-how
they contain constitute the proprietary, confidential and valuable trade secret information of Sterling
Commerce, Inc., its affiliated companies or its or their licensors, and may not be used for any
unauthorized purpose, or disclosed to others without the prior written permission of the applicable
Sterling Commerce entity. This documentation and the Sterling Commerce Software that it describes
have been provided pursuant to a license agreement that contains prohibitions against and/or
restrictions on their copying, modification and use. Duplication, in whole or in part, if and when
permitted, shall bear this notice and the Sterling Commerce, Inc. copyright notice.

U.S. GOVERNMENT RESTRICTED RIGHTS. This documentation and the Sterling Commerce Software it
describes are "commercial items" as defined in 48 C.F.R. 2.101. As and when provided to any agency or
instrumentality of the U.S. Government or to a U.S. Government prime contractor or a subcontractor at
any tier (Government Licensee), the terms and conditions of the customary Sterling Commerce
commercial license agreement are imposed on Government Licensees per 48 C.F.R. 12.212 or 227.7202
through 227.7202-4, as applicable, or through 48 C.F.R. 52.244-6.

These terms of use shall be governed by the laws of the State of Ohio, USA, without regard to its conflict
of laws provisions. If you are accessing the Sterling Commerce Software under an executed agreement,
then nothing in these terms and conditions supersedes or modifies the executed agreement.

Sterling Commerce, Inc.
4600 Lakehurst CourtDublin, Ohio
43016-2000

Copyright © 1999 - 2006

THIRD PARTY SOFTWARE

Portions of the Sterling Commerce Software may include products, or may be distributed on the same
storage media with products, (Third Party Software) offered by third parties (Third Party Licensors).
Sterling Commerce Software may include Third Party Software covered by the following copyrights:
Copyright © 1999-2005 The Apache Software Foundation. Copyright © 2004 Cognos Incorporated.
Copyright 1997-2003, 2004 by Thomas E. Dickey (dickey@invisible-island.net). Copyright © 1987-2005
ILOG S.A. Copyright © 2003 Infragistics, Inc. Copyright (C) Microsoft Corp. 1981-1998. Copyright ©
1995-2003 Northwoods Software Corporation. Copyright © 2001 LOOX Software, Inc. Copyright ©
1996-1998 Original Reusable Objects, Inc. Copyright © 1995-1998 Purple Technology, Inc. Copyright (c)
1996 - 2004, Daniel Stenberg (daniel@haxx.se). Copyright (c) 2000 Sun Microsystems, Inc. Copyright
© 1998-2003 Daniel Veillard. Copyright © 2001 VisualSoft Technologies Limited. Copyright ©
2000-2004 Sun Microsystems, Inc. All rights reserved by all listed parties.

The Sterling Commerce Software is distributed on the same storage media as certain Third Party
Software covered by the following copyrights: Copyright © 2000-2005 The Apache Software Foundation.
Copyright © 1999, 2000-2005 The Apache Software Foundation. Copyright (c) 2001-2003 Ant-Contrib
project. Copyright © 1999-2005 Apache XML Project. Copyright © 2000, 2005 Eclipse contributors and
others.

Certain components of the Sterling Commerce Software are distributed on the same storage media as
certain Third Party Software not listed above. Additional Third Party Software information for such
components of the Sterling Commerce Software is located at: installdir/README.htm.

Those portions of the Sterling Commerce Software which include, or are distributed on the same storage
media with, the Third Party Software where use, duplication, or disclosure by the United States
government or a government contractor or subcontractor, are provided with RESTRICTED RIGHTS under
Title 48 CFR 2.101, 12.212, 52.227-19, 227.7201 through 227.7202-4, DFAR 252.227-7013(c) (1) (ii)
and (2), DFAR 252.227-7015(b)(6/95), DFAR 227.7202-3(a), FAR 52.227-14(g)(2)(6/87), and FAR
52.227-19(c)(2) and (6/87) as applicable.

Additional information regarding certain Third Party Software is located at installdir/README.txt.

This product includes software developed by the Apache Software Foundation (http://www.apache.org).
This product includes software developed by the Ant-Contrib project
(http://sourceforge.net/projects/ant-contrib). This product includes code licensed from RSA Data
Security (via Sun Microsystems, Inc.). Sun, Sun Microsystems, the Sun Logo, Java, JDK, the Java Coffee
Cup logo, JavaBeans, JDBC, JMX and all JMX based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. All other trademarks and logos are trademarks of their respective
owners.

ANT SOFTWARE, COMMONS COLLECTIONS SOFTWARE, COMMONS POOL SOFTWARE, LOG4J SOFTWARE,
SOAP SOFTWARE, XALAN SOFTWARE, XERCES SOFTWARE THE APACHE SOFTWARE FOUNDATION
SOFTWARE

The Sterling Commerce Software is distributed with or on the same storage media as certain software
provided by the Apache Software Foundation, which may be subject to Apache License 2.0, such as
Apache Ant versions 1.6.1 or higher (Ant Software), commons-collections-3.1.jar (Commons Collections
Sottware), commons-pool-1.2.jar (Commons Pool Software), log4j-1.2.11.jar (Log4j Software),
soap-2_3_1.jar (SOAP SOFTWARE), xalan.jar (v2.7) and serializer.jar (v2.7) (Xalan Software),
xercesImpl.jar (v2.7.1) and xml-apis.jar (v2.7.1) (Xerces Software), (collectively, Apache 2.0 Software).
Apache 2.0 Software is free software which is distributed under the terms of the Apache License Version
2.0. A copy of License Version 2.0 is found at <install_dir>/lib/license.txt and, with respect to the Ant
Software piece of the Apache 2.0 Software, at <install_dir>/apache-ant-1.6.5/docs/license.html.

Neither the Sterling Commerce Software nor other Third Party Software is a Derivative Work or a
Contribution as defined in License Version 2.0. License Version 2.0 applies only to the Apache 2.0
Software and does not apply to the Sterling Commerce Software or to any other Third Party Software.

mailto:dickey@invisible-island.net
mailto:daniel@haxx.se
http://sourceforge.net/projects/ant-contrib
http://www.apache.org

THE ECLIPSE FOUNDATION SOFTWARE

The Sterling Commerce Software is also distributed with or on the same storage media as the following
software com.ibm.icu_3.4.4.1.jar, org.eclipse.core.commands_3.2.0.I20060605-1400.jar,
org.eclipse.core.contenttype_3.2.0.v20060603.jar,
org.eclipse.core.expressions_3.2.0.v20060605-1400.jar,
org.eclipse.core.filesystem.linux.x86_1.0.0.v20060603.jar,
org.eclipse.core.filesystem_1.0.0.v20060603.jar, org.eclipse.core.jobs_3.2.0.v20060603.jar,
org.eclipse.core.runtime.compatibility.auth_3.2.0.v20060601.jar,
org.eclipse.core.runtime_3.2.0.v20060603.jar, org.eclipse.equinox.common_3.2.0.v20060603.jar,
org.eclipse.equinox.preferences_3.2.0.v20060601.jar, org.eclipse.equinox.registry_3.2.0.v20060601.jar,
org.eclipse.help_3.2.0.v20060602.jar, org.eclipse.jface.text_3.2.0.v20060605-1400.jar,
org.eclipse.jface_3.2.0.I20060605-1400.jar, org.eclipse.osgi_3.2.0.v20060601.jar,
org.eclipse.swt.gtk.linux.x86_3.2.0.v3232m.jar, org.eclipse.swt_3.2.0.v3232o.jar,
org.eclipse.text_3.2.0.v20060605-1400.jar,
org.eclipse.ui.workbench.texteditor_3.2.0.v20060605-1400.jar,
org.eclipse.ui.workbench_3.2.0.I20060605-1400.jar, org.eclipse.ui_3.2.0.I20060605-1400.jar
(collectively, Eclipse Software). All Eclipse Software is distributed under the terms and conditions of the
Eclipse Foundation Software User Agreement and/or terms and conditions of the Eclipse Public License
Version 1.0 (EPL) or other license agreements, notices or terms and conditions referenced for the
individual pieces of the Eclipse Software. A copy of the Eclipse Foundation Software User Agreement is
found at <install_dir>/rcpdependencies/windows/eclipse/plugins/notice.html and
<install_dir>/rcpdependencies/gtk.linux_x86/eclipse/plugins/notice.html. A copy of the EPL is found at
<install_dir>/rcpdependencies/windows/eclipse/plugins/epl-v10.html and
<install_dir>/rcpdependencies/gtk.linux.x86/eclipse/plugins/epl-v10.html. The references to the license
agreements, notices or terms and conditions governing each individual piece of the Eclipse Software are
found in the following directory files for the individual pieces of the Eclipse Software:

<install_dir>/rcpdependencies/windows/eclipse/plugins/about_com.ibm.icu_3.4.4.1.html
<install_dir>/rcpdependencies/windows/eclipse/plugins/about_org.eclipse.core.commands_3.2.0.I20060605-1400.html
<install_dir>/rcpdependencies/windows/eclipse/plugins/about_org.eclipse.core.contenttype_3.2.0.v20060603.html
<install_dir>/rcpdependencies/windows/eclipse/plugins/about_org.eclipse.core.expressions_3.2.0.v20060605-1400.html
<install_dir>/rcpdependencies/windows/eclipse/plugins/about_org.eclipse.core.filesystem.win32.x86_1.0.0.v20060603.ht
ml
<install_dir>/rcpdependencies/windows/eclipse/plugins/about_org.eclipse.core.filesystem_1.0.0.v20060603.html
<install_dir>/rcpdependencies/windows/eclipse/plugins/about_org.eclipse.core.jobs_3.2.0.v20060603.html
<install_dir>/rcpdependencies/windows/eclipse/plugins/about_org.eclipse.core.runtime.compatibility.auth_3.2.0.v200606
01.html
<install_dir>/rcpdependencies/windows/eclipse/plugins/about_org.eclipse.core.runtime.compatibility.registry_3.2.0.v200
60603.html
<install_dir>/rcpdependencies/windows/eclipse/plugins/about_org.eclipse.core.runtime_3.2.0.v20060603.html
<install_dir>/rcpdependencies/windows/eclipse/plugins/about_org.eclipse.equinox.common_3.2.0.v20060603.html
<install_dir>/rcpdependencies/windows/eclipse/plugins/about_org.eclipse.equinox.preferences_3.2.0.v20060601.html
<install_dir>/rcpdependencies/windows/eclipse/plugins/about_org.eclipse.equinox.registry_3.2.0.v20060601.html
<install_dir>/rcpdependencies/windows/eclipse/plugins/about_org.eclipse.help_3.2.0.v20060602.html
<install_dir>/rcpdependencies/windows/eclipse/plugins/about_org.eclipse.jface.text_3.2.0.v20060605-1400.html
<install_dir>/rcpdependencies/windows/eclipse/plugins/about_org.eclipse.jface_3.2.0.I20060605-1400.html
<install_dir>/rcpdependencies/windows/eclipse/plugins/about_org.eclipse.osgi_3.2.0.v20060601.html
<install_dir>/rcpdependencies/windows/eclipse/plugins/about_org.eclipse.swt.win32.win32.x86_3.2.0.v3232m.html
<install_dir>/rcpdependencies/windows/eclipse/plugins/about_org.eclipse.swt_3.2.0.v3232o.html
<install_dir>/rcpdependencies/windows/eclipse/plugins/about_org.eclipse.text_3.2.0.v20060605-1400.html
<install_dir>/rcpdependencies/windows/eclipse/plugins/about_org.eclipse.ui.workbench.texteditor_3.2.0.v20060605-140
0.html
<install_dir>/rcpdependencies/windows/eclipse/plugins/about_org.eclipse.ui.workbench_3.2.0.I20060605-1400.html
<install_dir>/rcpdependencies/windows/eclipse/plugins/about_org.eclipse.ui_3.2.0.I20060605-1400.html
<install_dir>/rcpdependencies/gtk.linux.x86/eclipse/plugins/about_com.ibm.icu_3.4.4.1.html
<install_dir>/rcpdependencies/gtk.linux.x86/eclipse/plugins/about_org.eclipse.core.commands_3.2.0.I20060605-1400.ht
ml
<install_dir>/rcpdependencies/gtk.linux.x86/eclipse/plugins/about_org.eclipse.core.contenttype_3.2.0.v20060603.html
<install_dir>/rcpdependencies/gtk.linux.x86/eclipse/plugins/about_org.eclipse.core.expressions_3.2.0.v20060605-1400.
html

 v

<install_dir>/rcpdependencies/gtk.linux.x86/eclipse/plugins/about_org.eclipse.core.filesystem.win32.x86_1.0.0.v200606
03.html
<install_dir>/rcpdependencies/gtk.linux.x86/eclipse/plugins/about_org.eclipse.core.filesystem_1.0.0.v20060603.html
<install_dir>/rcpdependencies/gtk.linux.x86/eclipse/plugins/about_org.eclipse.core.jobs_3.2.0.v20060603.html
<install_dir>/rcpdependencies/gtk.linux.x86/eclipse/plugins/about_org.eclipse.core.runtime.compatibility.auth_3.2.0.v20
060601.html
<install_dir>/rcpdependencies/gtk.linux.x86/eclipse/plugins/about_org.eclipse.core.runtime.compatibility.registry_3.2.0.v
20060603.html
<install_dir>/rcpdependencies/gtk.linux.x86/eclipse/plugins/about_org.eclipse.core.runtime_3.2.0.v20060603.html
<install_dir>/rcpdependencies/gtk.linux.x86/eclipse/plugins/about_org.eclipse.equinox.common_3.2.0.v20060603.html
<install_dir>/rcpdependencies/gtk.linux.x86/eclipse/plugins/about_org.eclipse.equinox.preferences_3.2.0.v20060601.ht
ml
<install_dir>/rcpdependencies/gtk.linux.x86/eclipse/plugins/about_org.eclipse.equinox.registry_3.2.0.v20060601.html
<install_dir>/rcpdependencies/gtk.linux.x86/eclipse/plugins/about_org.eclipse.help_3.2.0.v20060602.html
<install_dir>/rcpdependencies/gtk.linux.x86/eclipse/plugins/about_org.eclipse.jface.text_3.2.0.v20060605-1400.html
<install_dir>/rcpdependencies/gtk.linux.x86/eclipse/plugins/about_org.eclipse.jface_3.2.0.I20060605-1400.html
<install_dir>/rcpdependencies/gtk.linux.x86/eclipse/plugins/about_org.eclipse.osgi_3.2.0.v20060601.html
<install_dir>/rcpdependencies/gtk.linux.x86/eclipse/plugins/about_org.eclipse.swt.win32.win32.x86_3.2.0.v3232m.html
<install_dir>/rcpdependencies/gtk.linux.x86/eclipse/plugins/about_org.eclipse.swt_3.2.0.v3232o.html
<install_dir>/rcpdependencies/gtk.linux.x86/eclipse/plugins/about_org.eclipse.text_3.2.0.v20060605-1400.html
<install_dir>/rcpdependencies/gtk.linux.x86/eclipse/plugins/about_org.eclipse.ui.workbench.texteditor_3.2.0.v20060605
-1400.html
<install_dir>/rcpdependencies/gtk.linux.x86/eclipse/plugins/about_org.eclipse.ui.workbench_3.2.0.I20060605-1400.html
<install_dir>/rcpdependencies/gtk.linux.x86/eclipse/plugins/about_org.eclipse.ui_3.2.0.I20060605-1400.html

These licenses only apply to the Eclipse Software and do not apply to the Sterling Commerce Software, or
any other Third Party Software.

The org.eclipse.core.runtime_3.2.0.v20060603.jar piece of the Eclipse Software was modified slightly in
order to remove classes containing encryption items. The org.eclipse.core.runtime_3.1.0.jar was modified
to remove the Cipher, CipherInputStream and CipherOutputStream classes and rebuild the
org.eclipse.core.runtime_3.2.0.v20060603.jar.

WARRANTY DISCLAIMER

This documentation and the Sterling Commerce Software which it describes are licensed either "AS IS" or
with a limited warranty, as set forth in the Sterling Commerce license agreement. Other than any limited
warranties provided, NO OTHER WARRANTY IS EXPRESSED AND NONE SHALL BE IMPLIED, INCLUDING
THE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR USE OR FOR A PARTICULAR PURPOSE. The
applicable Sterling Commerce entity reserves the right to revise this publication from time to time and to
make changes in the content hereof without the obligation to notify any person or entity of such revisions
or changes.

The Third Party Software is provided ’AS IS’ WITHOUT ANY WARRANTY AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. FURTHER, IF YOU ARE LOCATED OR ACCESSING
THIS SOFTWARE IN THE UNITED STATES, ANY EXPRESS OR IMPLIED WARRANTY REGARDING TITLE OR
NON-INFRINGEMENT ARE DISCLAIMED.

Without limiting the foregoing, the Eclipse Software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

vi Performance Management Guide

vii

Contents

Preface

Intended Audience .. xix
Structure ... xix
Sterling Supply Chain Applications Documentation.. xxii
Conventions ..xxiii

1 Introduction

1.1 Lifecycle .. 1
1.2 System Components and Roles ... 1
1.3 Principles ... 3
1.3.1 Having Your Cake and Eating It Too.. 3
1.3.2 Keep It Simple Strategy .. 4
1.3.3 Your Mileage May Vary.. 4
1.3.4 Performance Recommendations Graveyard .. 4
1.3.5 System Test Before Going Live... 5
1.3.6 Measure Thrice, Check Twice, Cut Once... 6
1.3.7 Cascading Failure ... 6
1.3.8 Only the Facts Jack .. 7

2 Performance Recommendations Checklist

2.1 Performance Checklist ... 9
2.1.1 Planning Checklist .. 9
2.1.2 Architectural Checklist ...10
2.1.3 Computer Node Implementation Checklist ..10

viii Performance Management Guide

2.1.4 Java Virtual Machine Implementation Checklist................................. 11
2.1.5 Application Server Checklist... 14
2.1.6 Sterling Supply Chain Applications Checklist..................................... 15
2.1.7 Sterling WMS Application Checklist ... 16
2.1.8 Database Checklist ... 17
2.1.9 Oracle Database Checklist ... 17
2.1.10 UDB Database Checklist .. 18
2.1.11 Monitoring Checklist ... 18
2.2 Performance Recommendations Graveyard ... 19

Part I Computer Systems

3 Computer System

3.1 Overview ... 23
3.2 Planning... 23
3.2.1 Supported Configurations .. 23
3.2.2 Capacity Sizing/Resource Requirements .. 24
3.2.2.1 Pre-Sales Server Sizing ... 24
3.2.2.2 Capacity Plan.. 24
3.2.2.3 Database Disk Sizing ... 24
3.3 Implementation .. 24
3.3.1 Time Synchronization ... 24
3.3.2 Network Connectivity.. 25
3.3.2.1 Data Center Network ... 25
3.3.2.2 Auto-Negotiation ... 25
3.3.2.3 Network Bandwidth ... 26

4 IBM AIX

4.1 Implementation .. 27
4.1.1 Page Space Allocation Policy .. 27
4.1.2 Database Server Nodes... 29
4.1.2.1 Oracle.. 29
4.1.3 Network Connectivity.. 30
4.1.3.1 Auto-Negotiation ... 30

 ix

5 HP HP-UX11i

5.1 Network Connectivity..33
5.1.1 Auto-Negotiation...33

6 Red Hat Enterprise Linux

6.1 Certification...35
6.2 32-bit versus 64-bit..35
6.3 Network Connectivity..36
6.3.1 Auto-Negotiation...36

7 Sun Solaris

7.1 Implementation ...37
7.1.1 Network Connectivity...37
7.1.1.1 Auto-Negotiation..37

Part II Java Virtual Machines

8 General JVM Recommendations

8.1 Overview ..41
8.2 Supported Configuration ...42
8.3 Implementation ...42
8.3.1 Recommended JVM Command Line Options42
8.3.1.1 JVM Identifier ..42
8.3.1.2 Java Version..43
8.3.1.3 Garbage Collection Statistics..44
8.3.1.4 Distributed Garbage Collection ...44
8.3.2 Optional JVM Command Line Settings ..45
8.3.2.1 Stack Size ...45
8.4 Monitoring...46
8.4.1 Hanging Threads/Deadlocks/Infinite Loops..46
8.4.2 Memory and Paging...47
8.4.3 OutOfMemory Exceptions ...48
8.4.3.1 Diagnosing OutOfMemory Exceptions ..49

x Performance Management Guide

9 HotSpot JVM

9.1 Implementation .. 51
9.1.1 Starting Recommendations .. 52
9.1.1.1 Virtual Machine Mode... 52
9.1.1.2 Permanent Generation ... 53
9.1.2 Heap Memory and Garbage Collection ... 54
9.1.2.1 Sun and HP-UX Generational Collectors 54
9.2 Monitoring.. 60
9.2.1 Garbage Collection Statistics.. 60
9.2.1.1 Comprehensive HP GC Logs .. 60
9.2.2 SUN ... 63
9.2.2.1 Potential Memory Leak ... 64

10 IBM JVM

10.1 Implementation .. 67
10.1.1 Starting Recommendations .. 67
10.1.1.1 JIT and MMI ... 67
10.1.1.2 PSALLOC and NODISCLAIM (AIX only) 68
10.1.2 Heap Memory and Garbage Collection ... 68
10.1.2.1 IBM JVMs ... 69
10.1.2.2 Starting Recommendations ... 70
10.2 Monitoring.. 71
10.2.1 Garbage Collection Statistics.. 71
10.2.1.1 Frequency of GC Health Check .. 72
10.2.1.2 GC Times ... 72
10.2.1.3 Potential Memory Leak ... 72
10.2.1.4 Potential JVM Fragmentation... 73
10.2.2 Heapdump .. 75

11 BEA JRockit

11.1 Implementation .. 77
11.1.1 Starting Recommendations .. 77
11.1.1.1 Heap Settings ... 78
11.1.1.2 Garbage Collection Statistics... 78

 xi

Part III Application Servers

12 BEA WebLogic

12.1 Implementation ...81
12.1.1 WebLogic Tuning...81
12.1.1.1 Server Tuning..81
12.1.1.2 Application Server Instances..82
12.1.1.3 WebLogic Connection Pool ...82
12.1.1.4 JSP Pre-Compilation ...84
12.1.1.5 WebLogic Server Cluster ...86
12.1.2 HTTP Load-Balancing ...86
12.1.2.1 HTTP Session Replication...86
12.2 Monitoring..87

13 IBM WebSphere

13.1 Implementation ...89
13.1.1 WebSphere Tuning ..89
13.1.1.1 WebSphere Queuing Network...89
13.1.1.2 WebSphere Connection Pool ..90
13.1.1.3 JSP Pre-Compilation ...92
13.1.2 HTTP Load-Balancing ...93
13.2 Monitoring...93

Part IV Databases

14 Database Management System

14.1 Overview ..97
14.2 Planning ...97
14.2.1 Supported Configuration ..97
14.2.2 Server Sizing..98
14.2.3 Disk Subsystem ..98
14.2.3.1 Disk Technology...98
14.2.4 Sterling Supply Chain Schema ..100
14.2.4.1 Indices ...100

xii Performance Management Guide

15 Oracle10g

15.1 Implementation ...103
15.1.1 Recommended Oracle Parameters ...103
15.1.1.1 processes..104
15.1.1.2 compatible ..106
15.1.1.3 sga_max_size, sga_target, pga_aggregate_target106
15.1.1.4 cursor_sharing...106
15.1.1.5 optimizer_mode ...107
15.1.1.6 hpux_sched_noage...107
15.1.1.7 open_cursors...107
15.1.1.8 query_rewrite_enabled and query_rewrite_integrity....................108
15.1.2 Redo Logs ..108
15.1.2.1 Redo File Size ..108
15.1.3 Server Mode ...109
15.1.4 Sterling Supply Chain Schema ..109
15.1.4.1 Oracle Index Monitoring and Tuning..109
15.1.4.2 Tablespaces...110
15.1.4.3 Index and Table Statistics ...111

16 IBM Universal Database (UDB)

16.1 Implementation ...115
16.1.1 Recommended UDB dbset Registry Variables115
16.1.2 Recommended DBM CFG Parameters ...117
16.1.3 Recommended DB CFG Parameters..120
16.1.3.1 UDB Event Monitors..123
16.1.3.2 Table and Index Statistics ...124
16.1.3.3 CLI Packages ...125
16.1.4 Sterling Supply Chain Schema ..126
16.1.4.1 UDB Index Monitoring and Tuning...126
16.1.4.2 Index and Table Statistics ...126

17 Microsoft SQL Server

17.1 Implementation ...129
17.1.1 Parameters...129

 xiii

17.1.2 SQL Server Index Monitoring and Tuning..129
17.1.3 Statistics..130

18 Advanced Database Topic - Oracle10g Real Application
Cluster Database

18.1 Overview ..131
18.2 Planning ...131
18.2.1 Supported DB Platforms ...131
18.2.2 Supported Filesystems...132
18.2.3 Oracle RAC Support Limitations...132
18.2.3.1 OLTP Applications and Oracle RAC Concerns132
18.2.4 Recommendations...133
18.2.4.1 Sequence Numbers ..133
18.2.5 High Availability ..134
18.2.5.1 WebLogic Connection Pool Properties ..135
18.2.5.2 TCP/IP ..136
18.2.5.3 Fast Application Notification Support ...136

Part V Java Message Services

19 Java Message Services

19.1 Overview ..139
19.1.1 Agent Queues...139
19.1.2 Integration Queues..140
19.2 Implementation ...140
19.2.1 Persistence...140
19.2.2 Dedicated Queues ...141
19.2.3 Queue File Placement ..142
19.2.3.1 Performance..142
19.2.3.2 Availability ..142
19.2.4 Parameters ..142

20 BEA WebLogic JMS

20.1 WebLogic JMS Recommendations ...145

xiv Performance Management Guide

20.1.1 Dedicated JMS Server ..145
20.1.1.1 Integration Queues...145
20.2 Message and Byte Paging ..146

21 IBM WebSphere MQ

21.1 WebSphere MQ Parameters ...147
21.1.1 Channel ...147
21.1.2 Log Files ..148
21.2 Placement of MQ Log and Data Files ...148

Part VI Sterling Supply Chain Applications Application

22 Sterling Supply Chain Applications - General

22.1 Planning..152
22.1.1 Scalability Requirements ..152
22.1.2 System Test ...153
22.2 Sterling Supply Chain Applications User Interface154
22.2.1 Sterling Supply Chain Application Consoles154
22.2.1.1 Customization..155
22.2.1.2 HTML Compression ...155
22.2.1.3 Temporary Internet Files ...157
22.2.1.4 SSL Acceleration ..157
22.2.1.5 Search Screens ..158
22.2.1.6 JSP Pre-compilation ..160
22.2.1.7 HTML Limitations..160
22.2.2 Sterling Supply Chain Applications Configurator...............................160
22.2.3 Rich Client Program Interface..161
22.2.3.1 Enabling SSL Encryption and Content Compression161
22.2.3.2 Selective SSL...162
22.2.3.3 Images ...162
22.3 Integration Adapters/Sterling Supply Chain Applications Agents..............163
22.3.1 Agent Thread Levels ..165
22.3.1.1 Excessive Agent Scheduling ...166
22.4 Java Message Service ...167

 xv

22.4.1 Integration Queues..167
22.4.2 Dedicated JMS Destination ...168
22.4.3 JMS Persistence ..168
22.4.4 Performance Feature - Reference Data Caching168
22.4.4.1 Caching Strategies ...170
22.4.4.2 Enabling Reference Data Caching ...172
22.4.4.3 Limiting the Number of Records Cached172
22.4.4.4 Caching for the Application Servers...173
22.4.4.5 Caching for the Sterling Supply Chain Applications Agents and

Monitors ...174
22.4.4.6 Strategies for Enabling Reference Data Caching..........................175
22.4.4.7 Monitoring Cache ...175
22.4.5 JNDI..177
22.4.6 Sterling Supply Chain Applications Services177
22.4.7 Sterling Supply Chain Applications APIs..178
22.4.7.1 API Output XML Files ..178
22.4.7.2 List APIs ...178
22.4.7.3 User Exits and Events ...179
22.4.8 Wildcard Characters ..180
22.4.9 log4j Logging..181
22.4.9.1 Logging Level ..181
22.4.9.2 Log Destinations ..182
22.4.10 Property Files ...183
22.4.10.1 Application Server Connection Pool Parameters184
22.4.10.2 Integration/Agent Server Connection Parameters185
22.4.10.3 Reference Data Cache Parameters ..185
22.4.10.4 User Interface Control...186
22.4.10.5 API Control..187
22.4.10.6 Statistics...187
22.4.10.7 Inventory Locking ..188
22.4.11 Performance Feature - Hot SKU...189
22.4.11.1 Determining The Amount Of Inventory Lock Contention...............189
22.4.11.2 Conditions For Inventory Lock Contention..................................192
22.4.11.3 Optimization..192
22.4.11.4 Hot SKU Feature ..193
22.4.11.5 Consolidate Additional Inventory Agent197

xvi Performance Management Guide

22.4.11.6 Hot SKU Activity Monitoring ...197
22.4.11.7 Hot SKU Controls ...199
22.4.11.8 Three Usage Scenarios..200
22.4.11.9 Limitations ..201
22.4.12 Sort Order and Deadlocks...201
22.4.12.1 Sort Order...202
22.4.13 Application Servers..202
22.4.14 MS Internet Explorer ...203
22.4.14.1 Temporary Internet Files ...203
22.5 Monitoring...203
22.5.1 System Management Console and Health Monitor Agent204
22.5.2 Sterling Supply Chain Applications Statistics204
22.5.3 Inbox ..205
22.5.4 Application Logs ..206

23 Sterling Supply Chain Applications - Distributed Order
Management

23.1 Sterling Supply Chain Applications Distributed Order Management Agents208
23.1.1 Schedule Agent for Backorder Efficiency ...208
23.1.2 Real-Time Inventory Availability Monitor for ATP Efficiency................208
23.1.3 Getters with Enterprise Code ..209
23.1.4 Sort Order and Deadlocks...210
23.1.4.1 Sort Order...210
23.1.5 Agent Throughput ...211
23.1.5.1 Order Creation Throughput ..211
23.1.5.2 Order LifeCycle Throughput ...212
23.1.5.3 Order Kit Line Creation Throughput...214
23.1.5.4 Throughput Query Limitations ..214

24 Sterling Warehouse Management System

24.1 Property Files ..217
24.2 WMS Agents ..219
24.2.1 Scheduling Using Agent Criteria Group ...219
24.2.2 Processing Concurrency ...220

 xvii

24.2.2.1 Create Wave..220
24.2.2.2 Release Wave ..220
24.2.2.3 Agents Between Create Wave to Release Wave221
24.2.3 Purge ..222
24.3 Database ..222
24.3.1 Long Running Transactions in UDB ..222
24.4 JVM Settings ...223
24.4.1 Java Stack Size...223
24.5 User Interfaces ..223
24.5.1 Sterling Supply Chain Applications UI Console223
24.5.1.1 Asynchronous Manifest Closure ..223
24.5.2 Asynchronous Batch Confirmation ...224
24.5.3 Mobile Devices..224

25 References

Index

xviii Performance Management Guide

 xix

Preface

This document provides implementation, tuning and monitoring
recommendations and guidelines for the Sterling Supply Chain
Applications Release 7.9 application.

Intended Audience
This manual is intended for technical architects, performance engineers,
application administrators, database administrators, and system
administrators who have to implement, monitor and optimize the Sterling
Supply Chain Applications running in production.

Structure
This manual contains the following sections:

Chapter 1, "Introduction"
This chapter introduces this document.

Chapter 2, "Performance Recommendations Checklist"
As a quick reference, this chapter lists the recommendations found in this
guide in a checklist format.

Chapter 3, "Computer System"
This chapter provides general performance recommendations for
computer servers.

xx Performance Management Guide

Chapter 4, "IBM AIX"
This chapter provides performance recommendations for AIX computer
servers.

Chapter 5, "HP HP-UX11i"
This chapter provides performance recommendations for HP-UX
computer servers.

Chapter 6, "Red Hat Enterprise Linux"
This chapter provides performance recommendations for Red Hat
Enterprise Linux computer servers.

Chapter 7, "Sun Solaris"
This chapter provides performance recommendations for Solaris
computer servers.

Chapter 8, "General JVM Recommendations"
This chapter provides general performance recommendation for Java
Virtual Machines.

Chapter 9, "HotSpot JVM"
This chapter provides performance recommendations for SunSoft JVMs.

Chapter 10, "IBM JVM"
This chapter provides performance recommendations for IBM JVMs.

Chapter 11, "BEA JRockit"
This chapter provides performance recommendations for BEA JRockit
JVMs.

Chapter 12, "BEA WebLogic"
This chapter provides tuning recommendations for BEA WebLogic
application servers.

Chapter 13, "IBM WebSphere"
This chapter provides tuning recommendations for IBM WebSphere
application servers.

 xxi

Chapter 14, "Database Management System"
This chapter provides performance recommendations for database
servers.

Chapter 15, "Oracle10g"
This chapter provides performance recommendations for Oracle10g.

Chapter 16, "IBM Universal Database (UDB)"
This chapter provides performance recommendations for IBM UDB.

Chapter 17, "Microsoft SQL Server"
This chapter provides performance recommendations for Microsoft SQL
Server.

Chapter 18, "Advanced Database Topic - Oracle10g Real
Application Cluster Database"
This chapter guides you through the planning and implementation of
Oracle10g Real Application Cluster as a clustered database for scalability
and availability.

Chapter 19, "Java Message Services"
This chapter provides a high level overview of how the Sterling Supply
Chain Applications application uses JMS and general recommendations.

Chapter 20, "BEA WebLogic JMS"
This chapter provides recommendations on how to configure the BEA
WebLogic JMS.

Chapter 21, "IBM WebSphere MQ"
This chapter provides recommendations on how to configure the IBM
WebSphere MQ.

Chapter 22, "Sterling Supply Chain Applications - General"
This chapter provides general recommendations on how to configure the
Sterling Supply Chain Applications.

xxii Performance Management Guide

Chapter 23, "Sterling Supply Chain Applications - Distributed
Order Management"
This chapter provides recommendations on how to configure the Sterling
Distributed Order Management.

Chapter 24, "Sterling Warehouse Management System"
This chapter provides recommendations on how to configure the Sterling
Warehouse Management System.

Chapter 25, "References"
This chapter lists books, articles, and web sites referenced in this
document.

Sterling Supply Chain Applications
Documentation

For more information about the Sterling Supply Chain Applications
Platform® components, see the following manuals in the Sterling Supply
Chain Applications® documentation set:

Sterling Supply Chain Applications® Release Notes

Sterling Supply Chain Applications® Installation Guide

Sterling Supply Chain Applications® Upgrade Guide

Sterling Supply Chain Applications® Performance Management Guide

Sterling Supply Chain Applications® High Availability Guide

Sterling Supply Chain Applications® System Management Guide

Sterling Supply Chain Applications® Localization Guide

Sterling Supply Chain Applications® Customization Guide

Sterling Supply Chain Applications® Integration Guide

Sterling Supply Chain Applications® Product Concepts

Sterling Warehouse Management System® Concepts Guide

Sterling Supply Chain Applications Platform® Configuration Guide

Sterling Distributed Order Management® Configuration Guide

Sterling Supply Collaboration® Configuration Guide

 xxiii

Sterling Global Inventory Visibility® Configuration Guide

Sterling Product Management® Configuration Guide

Sterling Logistics Management® Configuration Guide

Sterling Reverse Logistics® Configuration Guide

Sterling Warehouse Management System® Configuration Guide

Sterling Supply Chain Applications Platform® User Guide

Sterling Distributed Order Management® User Guide

Sterling Supply Collaboration® User Guide

Sterling Global Inventory Visibility® User Guide

Sterling Logistics Management® User Guide

Sterling Reverse Logistics® User Guide

Sterling Warehouse Management System® User Guide

Sterling Supply Chain Mobile Application® User Guide

Sterling Supply Chain Analytics® Guide

Sterling Supply Chain Applications® Javadocs

Sterling Supply Chain Applications® Glossary

Sterling Parcel Carrier Adapter® Guide

Sterling Application Server® Installation Guide (for optional
component)

Conventions
The following conventions may be used in this manual:

Convention Meaning

. . . An ellipsis represents information that has been
omitted.

< > Angle brackets indicate user-supplied input.

mono-spaced text Mono-spaced text indicates a file name, directory
path, attribute name, or an inline code example or
command.

xxiv Performance Management Guide

/ or \ Slashes and backslashes are file separators for
Windows, UNIX and LINUX operating systems. The
file separator for the Windows operating system is
"\" and the file separator for Unix and Linux
systems is "/". The Unix convention is used unless
otherwise mentioned.

<YANTRA_HOME> User-supplied location of the Sterling Supply Chain
Applications installation directory.

<YFS_HOME> Location of the generated <YANTRA_
HOME>/Runtime directory.

<YANTRA_HOME_OLD> User-supplied location of the Sterling Supply Chain
Applications installation directory for previously
installed releases. This is only applicable for Release
7.7 or above.

<YFS_HOME_OLD> This is the <YANTRA_HOME_OLD>/Runtime
directory of previously installed releases.

Convention Meaning

Introduction 1

1
Introduction

This document is the Performance Management Guide for the Sterling
Supply Chain Applications Release 7.9.

Performance Management is defined as all the activities one performs to
ensure responsive service and processing throughput that meet the
business needs at an acceptable cost.

1.1 Lifecycle
Performance Management activities occur throughout the project
lifecycle. They could range from initial hardware sizing studies during the
presales phase, architectural trade-off studies and risk mitigation studies
during the design phase, load or system tests prior to implementation, to
continual system monitoring and tuning in production.

1.2 System Components and Roles
Performance Management activities are wide-ranging and effect all
aspects of the system ranging from computer nodes, network, disks,
application servers, to the Sterling Supply Chain Applications.

One person (or role) may be responsible for one, several or all of the
components. Some typical roles include:

Hardware Engineer

System Administrator

Local Area Network Engineer

Wide Area Network Engineer

WebLogic or WebSphere System Administrator

2 Performance Management Guide

System Components and Roles

Database Administrator

Sterling Supply Chain Applications Administrator

Capacity Planner

Performance Analyst

Architect/Planner

Given the diversity of interest and responsibilities, we have arranged this
document into the following parts.

For example, the chapters in Part I, "Computer Systems" present the
steps needed to configure the computer system nodes for the Sterling
Supply Chain Applications. This section should be of interest to the
Hardware Engineers, System Administrators, Local Area Network
Engineers, and Wide Area Network Engineers.

The chapters in Part II, "Java Virtual Machines" explain how to configure
the Java Virtual Machine (JVM). The JVM is the operating environment for
Java applications which includes the WebLogic and WebSphere
application server, and the Sterling Supply Chain Applications
Agent/Monitor Servers, and so forth. This chapter should be of interest to
the WebLogic and WebSphere System Administrator and the Sterling
Supply Chain Applications Administrator.

The chapters in Part III, "Application Servers" presents the steps needed
to configure the BEA WebLogic and IBM WebSphere application servers.
This component provides the run time environment for the Sterling
Supply Chain Applications. This chapter should be of interest to the
WebLogic or WebSphere System Administrators.

The chapters in Part IV, "Databases" discusses the key recommendations
for the Oracle, UDB and SQL Server database servers.

Chapter 18, "Advanced Database Topic - Oracle10g Real Application
Cluster Database" discusses recommendations for implementing
Oracle10g Real Application Cluster for scalability and high availability.

Part VI, "Sterling Supply Chain Applications Application" discusses how to
configure the Sterling Supply Chain Applications. This chapter should be
of interest to the Sterling Supply Chain Applications Administrator.

The Performance Analyst or the person who is responsible for monitoring
the Sterling Supply Chain Applications system in production should read
all chapters.

Principles

Introduction 3

The Architect or Planner who is responsible for architecting and designing
the entire system should read all chapters.

1.3 Principles
When performing the performance management activities, you should
keep in mind the following principles.

1.3.1 Having Your Cake and Eating It Too
Performance and scalability are critical architectural attributes. In an
ideal world, we would have the luxury of configuring systems with an
infinite number of the latest and fastest system components. In reality,
we have to construct systems that balance performance with other
architectural attributes such as availability, affordability, security,
maintainability, operability, interoperability, scalability, and many other
words that end in "ility".

Take for example the following simple trade-off study between only three
attributes - affordability, scalability and maintainability. If you want to
configure a database with very fast I/O (maximize scalability) with a
limited software budget (maximize affordability), you could implement
your database files on raw devices which, to some, can be more difficult
to manage. However, if you think that approach comes with unacceptable
maintainability and operability burdens, you could implement the
database files on the regular Unix file system. This approach would
improve maintainability and operability at no additional cost but may not
scale under high transaction volumes. If performance is important, you
may opt to implement a specialized file system that provides raw-device
performance and the maintainability of file systems. Here you would
choose to maximize performance and maintainability at the expense of
additional cost - you will have to purchase this specialized software.

The example above is a fairly simple trade-off study. Recognizing this
reality, this document identifies major decision junctures, provides the
context of how they fit within the overall system, provides rationale for
our recommendations, and assists you in arriving at your own decision
that is relevant to your organization’s needs.

The planning sections are not recipe books. We will not provide a specific
set of instructions that you can blindly follow to completion because we

4 Performance Management Guide

Principles

recognize that you may have unique business or operational
requirements.

1.3.2 Keep It Simple Strategy
There are a large number of settings that can be tuned in a complex
system. On HP-UX, there are over 100 TCP/IP, UDP and IP settings, over
50 HP-UX kernel parameters, close to 550 undocumented Oracle
parameters, and over 250 documented Oracle parameters. The
permutations and combinations of these settings are staggering. Some
adjustments are beneficial - some not. Some may negate the benefit of
others.

This Performance Management Principle proposes that systems be
implemented with their default settings and that changes only be made
when necessary.

This document will identify those adjustments that we believe are critical
or beneficial. These include connection pooling, reusable SQL, Java heap
settings. We will identify the parameters which we believe are optional
and that you can set when there is a clear need.

1.3.3 Your Mileage May Vary
One day, an inquisitive little girl asked her mother why she trimmed the
sides of the roast before putting it into the oven. The mother said that
that was how her mother cooked. The little girl, still curious, asked the
grandmother. After finishing laughing, the grandmother explained to the
little girl that a long time ago, she had a tiny oven. She had to trim the
side of the roast to prevent it from touching the side of the oven.

You should not take our recommendations (or recommendations from
any book) as absolute truths. Recommendations may apply to most but
not all systems. We will identify those recommendations that we believe
are critical. We highly recommend that you understand the context and
the implications of each recommendation. We also highly recommend
that you test each recommendation prior to production.

1.3.4 Performance Recommendations Graveyard
Technology changes rapidly. Processors double in speed every eighteen
months. There are major performance enhancements every software
release. As a result, recommendations that were at one time critical to a

Principles

Introduction 5

particular release of the Sterling Supply Chain Applications can become
deprecated. In addition to applying the recommendations, you may at
times have to remove obsoleted recommendations.

In conjunction with the Keep It Simple Strategy and the Your Mileage
May Vary Principles, you should

apply tuning optimization changes when needed but only after testing

capture these changes in a formal change management system

document the changes from the default settings and why they were
deemed necessary

question their applicability as the system evolves - for example,
during upgrades, operating system changes, and so forth.

We present a list of deprecated recommendations in Section 2.2,
"Performance Recommendations Graveyard".

1.3.5 System Test Before Going Live
We cannot over-emphasize the importance of system tests before going
live. You will see this recommendation throughout this document. Your
system is different from other Sterling Supply Chain Applications systems
because it

has its own unique set of external systems that it connects to,

has groups of users performing work that is specific to your business,
and so forth,

is configured differently from other systems, and so forth.

has different levels of customization

may have some screens or processes that, although are optimized for
general use, may not be optimal for your specific use

As a result, we strongly encourage all our customers to system test the
entire system, which is made up of the Sterling Supply Chain
Applications system and all the external systems, under anticipated peak
transaction volumes prior to implementation into production.

6 Performance Management Guide

Principles

1.3.6 Measure Thrice, Check Twice, Cut Once
An old adage in carpentry is to Measure Thrice, Check Twice and Cut
Once.

In the heat of a performance problem, it is very tempting to try different
tuning parameters without fully understanding the root-cause of the
problem. Some changes or combination of changes can have a negative
impact on the system. After trying many tuning changes, it is possible
that some of the non-beneficial changes are not rolled back.

From past experiences, we found that system optimization is often more
effective and efficient if the problem is correctly analyzed and the root
cause clearly identified. An approach that we have adopted is as follows

(measure) measure the system to establish the baseline performance
and throughput

(measure) measure the system when performance issues arise

(check) given the symptoms, formulate theories as to the root-cause
of the problem and the potential tuning changes

(check) ensure you can explain why certain tuning recommendations
can help alleviate the problem and to formulate the expected
behavior if the tuning change is applied

(cut) make one (or a few) tuning change at a time - in some cases,
multiple changes could negate the benefit of other changes

(measure) measure the system and see if the system gained the
intended benefits

Measure Thrice, Check Twice, Cut Once.

1.3.7 Cascading Failure
A defense logistics officer, once gruffly reminded a group of young pilots
that their new fighter jet was nothing more than 50,000 parts flying in
tight formation.

This message has many parallels to any large computing systems. A
large application system has many working components ranging from
physical disk drives, operating systems, interfaces to external systems,
application servers to database. All of these highly interconnected and
dependent components must work well for the system to perform.

Principles

Introduction 7

Lets assume that a Sterling Supply Chain Applications transaction calls
out to an external system to check on item availability. If that external
system is unable to scale or performs poorly, that Sterling Supply Chain
Applications transaction will wait which will result in a thread being
blocked. If there are many requests for that transaction, the system
could become stalled when all the threads become blocked. As a result, a
poorly tuned system could have a ripple effect on integrated systems.

This document will present some of these interdependencies along with
approaches to monitoring them.

1.3.8 Only the Facts Jack
This document does not attempt to rewrite the vast body of tuning
knowledge found in the public domain. This document also does not
serve as a substitute for third party vendor training such as IBM, BEA
and Oracle. Instead, this document provides recommendations that
supplement or deviate from conventional recommendations or
recommendations that are specific to the Sterling Supply Chain
Applications. We have liberally referenced many excellent sources of
information - be they the web, books, magazine articles, and so forth -
that we found useful. A list of these references are found in Chapter 25,
"References".

8 Performance Management Guide

Principles

Performance Recommendations Checklist 9

2
Performance Recommendations Checklist

This chapter provides a list of some of the recommendations found in this
document in a checklist format. We encourage you to fully understand
the rationale behind these recommendations and their implications to the
overall system.

2.1 Performance Checklist
In the following tables, the columns "Dev" and "Prod" indicate whether
the recommendations are Recommended (R), Critical (C) or Not
Applicable (NA) in a Development or Production environment
respectively.

2.1.1 Planning Checklist
The following are long-lead time planning elements. For example, you
need to ask for a server node sizing in order to know how much
computer resources to acquire. Some configurations could have more
than one month lead-time.

Table 2–1 Planning Recommendations

Recommendation Section Dev Prod Comments

Server Node Sizing 3.2.2.1

3.2.2.2

NA C You must ensure you have
sufficient computing capacity to
process peak transaction
volumes.

Database Disk
Sizing

3.2.2.3 NA C You must have sufficient disk
space for database server

10 Performance Management Guide

Performance Checklist

2.1.2 Architectural Checklist
The following recommendations are architectural or design related.

2.1.3 Computer Node Implementation Checklist

Table 2–2 Planning Recommendations

Recommendation Section Dev Prod Comments

Ensure user exit or
event processing
times are minimal
when holding on to
critical locks.

22.4.7.3 C C When defining or coding user
exits or events, make sure you
are aware of locks held and the
amount of time you could spend
in the exit or event.

Record Sorting
Strategy to avoid
deadlocks

22.4.12 C C Apply this recommendation to
custom code or the manner in
which records are locked to avoid
deadlocks.

Table 2–3 Computer Server Node Implementation Recommendations

Recommendation Section Dev Prod Comments

OS Version and OS
Kernel Parameters

3.2.1 C C Make sure you install the Sterling
Supply Chain Applications system
on certified OS versions and
levels.

Network Speed and
Duplex Negotiation

3.3.2.2 C C Make sure your network cards
are operating at the highest
speeds. The network interface
card and the network switch can
negotiate to lower speed and
duplex. When that happens,
performance will noticeably
degrade even under low
transaction volumes.

AIX Recommendations

Performance Checklist

Performance Recommendations Checklist 11

2.1.4 Java Virtual Machine Implementation Checklist

Page Space
Allocation

4.1.1 C C AIX’s default page space
allocation policy does not reserve
swap space when processes
allocate memory allocations. This
could lead to swap space
over-commitment which will force
AIX to kill processes when it runs
out of swap space. Either

ensure sufficient swap space
or

set the environment variables
 PSALLOC=EARLY
 NODISCLAIM=TRUE

AIX/Oracle Recommendations

asynchronous I/O
parameters

4.1.2.1.1 NA C The default asynchronous I/O
parameters are set too low.

WebLogic / AIX Recommendations

udp_sendspace 4.1.2.1.1 C C WebLogic’s multicast packets are
larger than AIX’s udp_sendspace
buffers. At the default level, you
will get multicast errors.

set udp_sendspace to 32768

Table 2–4 JVM Implementation Recommendations

Recommendation Section Dev Prod Comments

JVM Version 8.2 C C Make sure you install the Sterling
Supply Chain Applications system
on certified JVM versions and
levels.

Table 2–3 Computer Server Node Implementation Recommendations

Recommendation Section Dev Prod Comments

12 Performance Management Guide

Performance Checklist

Add
-showversion to
the JVM command
line

8.3.1.2 R R During the JVM startup, the JVM
version and mode will be
displayed. This simple step will
help eliminate cases where the
wrong JVM is used.

Verbose GC
Statistics

8.3.1.4 NA C Enable verbose GC statistics
collection. Understanding the
"health" of GCs for each JVM is
critical for performance.

Defer distributed
garbage collection
to a long interval
by setting
-Dsun.rmi.dgc.
server.gcInter
val

8.3.1.4 NA C The default distributed garbage
collection setting unnecessarily
forces expensive Full Garbage
Collections every minute. The
impact is noticeable especially for
large heaps that are larger than
600MB.

You should set this parameter on
both the Sterling Supply Chain
Applications agents and the
application servers.

Monitor for Paging 8.4.2 C C The JVM heap must be resident in
memory. Performance will
noticeably degrade if the OS has
to page portions of the heap out
to disk.

Monitor for
OutOfMemory
exceptions

8.4.3 C C OutOfMemory exceptions can
cause unpredictable application
behaviors. As a safety measure,
Sterling Supply Chain Applications
will stop the JVM when it catches
an OutOfMemory exception.

For HotSpot JVMs

JVM VM modes 9.1.1.1 C C For HotSpot JVMs, the server
mode is more applicable for long
running workloads.

Table 2–4 JVM Implementation Recommendations

Recommendation Section Dev Prod Comments

Performance Checklist

Performance Recommendations Checklist 13

For HotSpot JVMs
running WebLogic,
set
-XX:MaxPermSiz
e=256m

9.1.1.2 C C The default permanent generation
space setting is too small for Sun
and HP JVMs. If you don’t
increase this setting, the JVM will
fail and throw a cryptic
java.lang.OutOfMemory
exception.

For HP JVMs,
ensure amount of
free space in the
Old Generation is
larger than the
combined size of
the Eden plus the
occupied space in
the survivor space.

9.1.2.1.2 C C Sun and HP JVMs implement a
conservative policy called the
Young Generation Guarantee (see
[8]) that states that the amount
of free space in the Old must be
larger than the eden and survivor
space on the chance that every
object is still alive after the GC. If
the Old free is too small, the JVM
will revert to Full GCs.

Customers migrating from JDK
1.3.1 may have to increase their
overall heap size or decrease the
eden.

Heap Size 9.1.2.1.3 C C Configuring the JVM Heap
correctly is not only critical for
performance but also for
availability. If the heap is sized
too big, the GC pauses could be
very long. If the heap is larger
than physical memory, the system
could "thrash". If the heap is too
small, the JVM could experience
outOfMemory exceptions.

Table 2–4 JVM Implementation Recommendations

Recommendation Section Dev Prod Comments

14 Performance Management Guide

Performance Checklist

2.1.5 Application Server Checklist

Table 2–5 Application Server Implementation Recommendations

Recommendation Section Dev Prod Comments

Connection Pool 12.1.1.3

13.1.1.2

C Database connection
establishments are very expensive
operations. If connection pooling is
not enabled in the application
servers, transactions from
application server will not scale.

The Sterling Supply Chain
Applications agents are
automatically started with a
connection pool that is
implemented in the agent
infrastructure.

Assign each
Sterling Supply
Chain Applications
agent to its own
JMS destination

19.2.2 NA C For production, dedicated JMS
queues are critical for
performance. They are also easier
to monitor. For ease of
configuration and deployment in
development, you can continue to
use the single DefaultAgentQueue
for all agents.

Assign integration-
based queues to a
separate JMS
server

19.1.2 NA C Put integration-based queues
(e.g., queues used to receive
orders from an external system)
into a separate JMS server
especially if the number of
messages in that queue could
grow to large numbers.

Precompile the
JSPs

12.1.1.4

13.1.1.3

R C The application servers compile
JSPs the first time they are used.
The compilation phase can take
over 30 seconds which could lead
users to perceive poor user
interface response times.

Note: For WebLogic 8.1, we
recommend the use of
weblogic.appc over the use of
weblogic.jspc.

Performance Checklist

Performance Recommendations Checklist 15

2.1.6 Sterling Supply Chain Applications Checklist

Table 2–6 Sterling Supply Chain Applications Implementation
Recommendations

Recommendation Section Dev Prod Comments

Reference Data
Cache

22.4.4 C Reference Data Caching is critical
for scalability for customers who
have high transaction volumes.

Reference Data Caching is also
critical for UI screen
responsiveness.

Starting in Yantra 5x 5.0 SP2, the
reference data cache is enabled
by default.

For Development or
non-production environments that
are memory constrained, you can
selectively enable Reference Data
Caching. For example, for
responsive UI, you need to, at a
minimum, cache the yfs_
resource and yfs_resource_
permissions tables.

Agents and
Messaging
Configuration

22.3.1 C For production, configure the
optimum threading level, the
assignment of agents to message
queues or destinations, and the
placement of message
destinations on message servers.

16 Performance Management Guide

Performance Checklist

2.1.7 Sterling WMS Application Checklist

Statistics 22.5.2 NA R Sterling Supply Chain Applications
generate statistics for internal
product use as well as use by
Sterling Commerce personnel.
These statistics can be used to
monitor throughput and to assist
in performance diagnosis.

We recommend leaving statistics
generation on and regularly
purging old statistics (e.g.,
greater than 3 weeks).

Please be aware that the content
and/or structure of the metrics
can change without warning.

Table 2–7 Sterling WMS Application Checklist

Recommendation
s Section Dev Prod Comments

Increase Java stack
size for create
wave and batch
wave agents if you
want to process
waves with large
number of
shipments

24.4.1 NA C These agents need large stack
sizes to perform wave
optimization calculations.

Run WMS Task
Purge on a daily
basis

24.2.3 NA C Purge will move completed YFS_
TASK records to the YFS_TASK_H
history table.

RCP clients 22.2.3 NA C Modify locations.ycfg to set the
SSL and compression features.
For remote users, we strongly
recommend setting compression.

Table 2–6 Sterling Supply Chain Applications Implementation
Recommendations

Recommendation Section Dev Prod Comments

Performance Checklist

Performance Recommendations Checklist 17

2.1.8 Database Checklist

2.1.9 Oracle Database Checklist

Table 2–8 Database Checklist

Recommendation
s Section Dev Prod Comments

Monitor and adjust
indices

14.2.4 C C The Sterling Supply Chain
Applications schema comes with a
default set of indices for general
use. In some cases, the indices
may not apply to your operational
environment.

Regularly monitor the resource
cost of frequently used queries.
See if additional indices are
needed. Also monitor if indices can
be deleted.

Table 2–9 Oracle Database Checklist

Recommendation
s Section Dev Prod Comments

Oracle: Check if
histograms are
needed

15.1.4.3 NA C As you start to populate the
database, check to see if there are
indexed columns that have
skewed data distribution - for
example, most rows have the
same value (e.g., space). These
could include fields like derived_
from_order_header_key,
chained_from_order_header_
key, derived_from_order_
line_key, chained_from_order_
line_key.

If there are skewed columns, add
a histogram. The performance
impact is very noticeable. One
customer saw a query that took
30 seconds drop to sub-second.

18 Performance Management Guide

Performance Checklist

2.1.10 UDB Database Checklist

2.1.11 Monitoring Checklist

Table 2–10 UDB Database Checklist

Recommendation
s Section Dev Prod Comments

Optimizer Statistics 16.1.4.2 NA C Regularly run runstats to keep
table and index statistics up to
date to ensure the UDB optimizer
picks appropriate execution plans.

Parameters
governing UDB
locking strategy

16.1.1 C C Set DB2_EVALUNCOMMITTED,
DB2_SKIPDELETED and DB2_
SKIPINSERTED to reduce lock
contention.

Volatile Table 16.1.3.2.
1

NA C Mark tables that change
significantly as volatile.

Table 2–11 Monitoring Recommendations

Recommendation Section Dev Prod Comments

Monitor CPU
utilization

NA C Monitor CPU utilization to ensure
there are no CPU contention.

Monitor Swap
Usage

C C If there is not enough space left
on the swap device (or paging
file), the OS could prevent
another process from starting or
in some cases be forced to kill
running processes.

Performance Recommendations Graveyard

Performance Recommendations Checklist 19

2.2 Performance Recommendations Graveyard
This section lists performance recommendations that were deprecated by
this release.

Monitor Paging 8.4.2 C C The Java Virtual Machines and
Database Management Systems
rely on large memory buffers or
heaps and are sensitive to
paging. Performance will
noticeably degrade if there is not
enough memory to keep the JVM
heap in memory - even in
Development.

Monitor paging levels using
standard operating system or
third party measurement tools.
For example,

n on Unix and Linux, you
could use SAR.

n On Windows, use System
Monitor

Monitor Heap
Garbage Collection
Performance

C Monitoring heap GC performance
is critical for performance and
availability. For example, if the
amount of heap free after a GC is
continually increasing and
approaching the maximum heap
size, the JVM could experience
outOfMemory exceptions.

Table 2–12 Deprecated Performance Recommendations

Deprecated
In

Deprecated
Recommendations Comments

Yantra 7x, 7.7
in Oracle10g

Oracle Parameters - shared_
pool_size

Use Oracle10g Automatic Memory
Management (AMM) sga_max_
size, sga_target and pga_
aggregate_target.

Table 2–11 Monitoring Recommendations

Recommendation Section Dev Prod Comments

20 Performance Management Guide

Performance Recommendations Graveyard

Yantra 7x, 7.7
in Oracle10g

Statistics gathering Oracle10g automatically
schedules statistics gathering
during its maintenance window.
See new recommendations in
Section 15.1.4.3, "Index and
Table Statistics"

Yantra 7x, 7.5
and Oracle10g
RAC

In the past, we adhered to
Oracle’s recommended
setting for max_commit_
propagation_delay of 700
centiseconds (or 7 seconds).
Oracle has revised its
recommendation to 0
effectively disabling the
Lamport scheme.

For existing Oracle instances,
reset max_commit_propagation_
delay so that the default value is
0.

Table 2–12 Deprecated Performance Recommendations

Deprecated
In

Deprecated
Recommendations Comments

21

Part I
Computer Systems

This part of the book provides implementation, configuration, monitoring
and tuning recommendations for computer systems which include the
physical server nodes and the operating systems.

22 Performance Management Guide

Computer System 23

3
Computer System

This chapter provides recommendations on how to plan, implement,
configure, monitor, and tune the operating system and the computer
nodes.

3.1 Overview
Generally speaking, from a performance perspective, the server nodes
for the Sterling Supply Chain Applications fit into two broad categories.

database server node

mid-tier server nodes that run the Sterling Supply Chain Applications
such as the agents and application servers

3.2 Planning
The computer systems have long lead time planning elements such as
developing the configuration specifications, soliciting bids, procuring the
configuration. The lead time to delivery and set up could take up to a
month.

The choice of hardware and vendors is typically dictated by your
organization although that choice must conform to the Sterling Supply
Chain Applications certified technology stack.

3.2.1 Supported Configurations
Please refer to the Sterling Supply Chain Applications Installation Guide
for a list of the support operating systems and computer servers.

24 Performance Management Guide

Implementation

3.2.2 Capacity Sizing/Resource Requirements
Sterling Supply Chain Applications provide two tools to help you size your
computer configuration.

3.2.2.1 Pre-Sales Server Sizing
Early in the sales phase, you can request a Sterling Supply Chain
Applications Server Sizing study to get an estimate of the processor,
memory and network requirements for the standard/baseline Sterling
Supply Chain Applications.

3.2.2.2 Capacity Plan
Once you have fully developed the system, you can also engage Sterling
Commerce Professional Services to conduct a capacity plan study of your
system. This involves measuring your system and using the
measurements to forecast resource requirements at anticipated peak
periods.

The benefit of this approach is that the forecasting model is based on
your system which includes all your customization, and your specific
configuration.

3.2.2.3 Database Disk Sizing
The size of the database disk subsystem could range widely from a few
hundred gigabytes to terabytes. The size will depend on the business
order transaction volumes, the complexity of each order, the length of
time you want to keep the orders in the active and the history database.
The Sterling Supply Chain Applications Installation Guide has a section to
help you estimate the space requirements for your database.

3.3 Implementation

3.3.1 Time Synchronization
Although this is not a performance recommendation, we strongly
recommend that you keep the system time synchronized across all
computer nodes using a time synchronization protocol such as Network
Time Protocol (NTP). Keeping the system time synchronized will allow
you to:

Implementation

Computer System 25

correlate events in the database, the Sterling Supply Chain
Applications and the application server logs

correlate workload arrival, as recorded in the application server’s
access.log, to system measurements (such as SAR, vmstat, and so
forth.)

3.3.2 Network Connectivity

3.3.2.1 Data Center Network
The performance of the Sterling Supply Chain Applications system is
critically dependent on the performance of the data center network. Here
are some areas to consider:

correct auto-negotiation to the optimum bandwidth and with full
duplex

network bandwidth

3.3.2.2 Auto-Negotiation
By design, Ethernet network interface cards (NIC) automatically
negotiate the best speed and duplex with the switch that it is connected
to. Generally, auto-negotiation work. We have, however, seen many
cases where auto-negotiation drops the connection to sub-optimal levels
(e.g., 10mps half-duplex) after a server boot.

The impact of an incorrectly negotiated network card is dramatic. For
example, at one customer, application servers took over 20 minutes to
start when the network card on the administration server negotiated the
wrong settings.

If both the network interface card and the switch are capable of
full-duplex 100mbps or 1000mbps, you can let then auto-negotiate.
Alternatively, you can manually set the higher speed and duplex as
described in the "Auto-negotiation" sections in the subsequent chapters.

An easy way to check the NIC negotiation is to FTP, SCP or RCP a large
file (e.g., 256MB) file from a test node to all other nodes.

From the database server node, create a 256MB file using the following
command

dd if=/dev/zero of=/tmp/egg bs=16384 count=16384

26 Performance Management Guide

Implementation

Assuming that you have three nodes (applservernode1 to
applservernode3) and you can rcp or scp into each node, issue the
following

export ALLHOSTS="applservernode1 applservernode2 applservernode3"
for i in $ALLHOSTS
do

time rcp /tmp/egg $i:/tmp/egg
done

If you cannot rcp or scp, you can issue an FTP transfer.

The time to transfer the 256MB file should be around 20 seconds for
100mbps Fast Ethernet. You likely have a network negotiation problem if
the transfer times are much slower (for example 200 seconds).

Please see the following sections on how to monitor and set the network
speed and bandwidth

AIX - see Section 4.1.3.1, "Auto-Negotiation"

HP-UX11i - see Section 5.1.1, "Auto-Negotiation"

Red Hat Linux - see Section 6.3.1, "Auto-Negotiation"

Solaris - see Section 7.1.1.1, "Auto-Negotiation"

3.3.2.3 Network Bandwidth
The network cards on the nodes running the Sterling Supply Chain
Applications must be configured with at least a 100 Mbps full-duplex link.
In some cases, for example, you may have to implement gigabit network
cards if you have high enough transactions going through the network.
Our Pre-Sales Server Sizing (see Section 3.2.2.1, "Pre-Sales Server
Sizing") specifies the anticipated minimum network speeds.

In production, you should monitor the network bandwidth utilization. One
approach is to monitor the traffic utilization at the switch.

The application will stop scaling when the network is the bottleneck.

IBM AIX 27

4
IBM AIX

This chapter provides recommendations on how to plan, implement,
configure, monitor, and tune an IBM AIX server node.

4.1 Implementation

4.1.1 Page Space Allocation Policy
AIX, by default, implements a late page space allocation policy. When a
program asks for a large memory allocation, AIX will grant the virtual
memory allocation but will not allocate the space on the backing store (or
swap) until it is actually used. In contrast, early page space allocation
will first allocate the space in swap before granting the virtual memory.

With late page space allocation, AIX could successfully start many
processes. However, as these processes use their virtual memory, AIX
could run low on swap. When this happens, AIX will choose the youngest
process to kill. The following message on the application server’s console
indicates that it was killed.

./startManagedWebLogic.sh[216]: 13550 Killed

You will see the following error message in the AIX error log if your
application server instance was killed because of late page space
allocation.

Date/Time: Thu May 30 17:35:37
Sequence Number: 39
Machine Id: 000F257F4C00
Node Id: ibm04
Class: S
Type: PERM

28 Performance Management Guide

Implementation

Resource Name: SYSVMM

Description
SOFTWARE PROGRAM ABNORMALLY TERMINATED

Probable Causes
SYSTEM RUNNING OUT OF PAGING SPACE

Failure Causes
INSUFFICIENT PAGING SPACE DEFINED FOR THE SYSTEM
PROGRAM USING EXCESSIVE AMOUNT OF PAGING SPACE

 Recommended Actions
 DEFINE ADDITIONAL PAGING SPACE
 REDUCE PAGING SPACE REQUIREMENTS OF PROGRAM(S)

Detail Data
PROGRAM
java
USER'S PROCESS ID:
 19194
PROGRAM'S PAGING SPACE USE IN 1KB BLOCKS
 295388

You can reduce the likelihood of a late page space allocation kill by
increasing the amount of swap space. However, the recommended
approach is to selectively turn on early page space allocation by
exporting the following environment variables.

export PSALLOC=early
export NODISCLAIM=true

For Sterling Supply Chain Applications agents and BEA WebLogic
application servers, you can issue the commands in the startup scripts.
For IBM WebSphere, you can define the environment variables in the
Environment dialog box in the administrative client.

If you make that change and not increase the swap space, you will get
the following error message immediately on startup.

Unable to alloc heap of requested size, perhaps the maxdata value is too
small - see README.HTML for more information.
Unable to allocate an initial java heap of 1073741824 bytes.
Out of memory, aborting

Implementation

IBM AIX 29

*** panic: JVMST016: Cannot allocate memory for initial java heap

The exception above is actually the desired behavior because AIX is
stating that it is unable to guarantee that there is enough swap space for
all potential requirements.

4.1.2 Database Server Nodes

4.1.2.1 Oracle

4.1.2.1.1 Asynchronous I/O AIX supports both kernelized
asynchronous I/O to data files on raw or Veritas Quick I/O devices and
threaded asynchronous I/O. With KAIO, the Oracle process queues I/O
requests in the kernel and are notified of I/O completion by an interrupt.
In contrast, Oracle implements threaded asynchronous I/O with multiple
threads - each thread issues a synchronous I/O.

The default Asynchronous I/O Tunable Parameters may be set too low for
Oracle Databases on large systems with 4 CPUs or more if you are using
threaded asynchronous I/O.

The asynchronous I/O parameters are too low in your configuration if you
find the following messages in the DBWR, CKPT, or LGWR files in the
ORACLE_BASE/admin/<dbname>/bdump directory.

Warning: lio_listio returned EAGAIN
Performance degradation may be seen

The EAGAIN from the lio_listio function indicates that "the resources
necessary to queue all the I/O requests were not available" (see lio_listio
subroutine documentation in the AIX Technical Reference: Base
Operating System and Extensions Volume 1).

You can find out the current asynchronous I/O settings by issuing the
following command

> lsattr -El aio0
autoconfig available STATE to be configured at system restart True
fastpath enable State of fast path True
kprocprio 39 Server PRIORITY True
maxreqs 4096 Maximum number of REQUESTS True
maxservers 10 MAXIMUM number of servers per cpu True
minservers 1 MINIMUM number of servers True

30 Performance Management Guide

Implementation

You can change the asynchronous I/O parameters with the following
command

chdev -l aio0 -a maxservers=NewValue

The change should be effective immediately and is permanent.

The following MetaLink Notes discusses the issue and provide
recommendations for maxreqs, minservers and maxservers.

265491.1 - AIX: DBWR trace warning: LIO_LISTIO RETURNED
EAGAIN

271444.1 - AIX Kernel Parameters - Required for Asynchronous I/O
Tuning

4.1.3 Network Connectivity

4.1.3.1 Auto-Negotiation
See Section 3.3.2.2, "Auto-Negotiation" for a general discussion on
network negotiations.

On AIX, you can check the link using SMIT. In SMIT, go to Devices >
Communication > Ethernet Adapter > Adapter > Change / Show
Characteristics of an Ethernet Adapter. Select the network interface. The
link speed and mode configuration will be displayed in the Media Speed
field.

Alternatively, you can issue the following commands:

$ lsparent -C -k ent
ent0 Available 40-58 IBM 10/100 Mbps Ethernet PCI Adapter (23100020)

$ lsattr -E -l ent0 -a media_speed
media_speed Auto_Negotiation Media Speed True

To find out the actual negotiated speed and duplex, issue the following
command:

$ netstat -v ent0 | grep Media
Media Speed Selected: Auto negotiation
Media Speed Running: 100 Mbps Full Duplex

If the auto-negotiation failed, you can set the NIC from SMIT or by
issuing the following commands:

Implementation

IBM AIX 31

$ chdev -l ent0 -a media_speed=100_Full_Duplex -P
ent0 changed

reboot

32 Performance Management Guide

Implementation

HP HP-UX11i 33

5
HP HP-UX11i

This chapter provides recommendations on how to plan, implement,
configure, monitor, and tune HP HP-UX11i server nodes running on HP
PA-RISC or Itanium processors.

5.1 Network Connectivity

5.1.1 Auto-Negotiation
See Section 3.3.2.2, "Auto-Negotiation" for a general discussion on
network negotiations.

On HP-UX, you can check the link by issuing the following commands:

$ lanscan
Hardware Station Crd Hdw Net-Interface NM MAC HP-DLPI DLPI
Path Address In# State NamePPA ID Type Support Mjr#
0/0/0/0 0x00306E09612B 0 UP lan0 snap0 1 ETHER Yes 119

$ lanadmin -x 0
Current Speed = 100 Full-Duplex Auto-Negotiation-ON

If the auto-negotiation failed, you can manually set the NIC by issuing
the following commands:

$ lanadmin -X 100FD 0

WARNING: an incorrect setting could cause serious network problems!!!

Driver is attempting to set the new speed
Reset will take approximately 11 seconds

34 Performance Management Guide

Network Connectivity

Red Hat Enterprise Linux 35

6
Red Hat Enterprise Linux

This chapter provides recommendations on how to plan, implement,
configure, monitor, and tune Red Hat Enterprise Linux (RHEL) 4
Advanced Server (AS) or Enterprise Server (ES) operating system
running on

Intel Xeon IA-32 processors

Intel EM64T processors

Intel Itanium 2 processors.

6.1 Certification
The Sterling Supply Chain Applications 7.9 are only certified to run with
Red Hat Enterprise Linux 4 Advanced or Enterprise Servers both 32-bit
and 64-bit versions.

6.2 32-bit versus 64-bit
You can run the RHEL 4 operating system on a number of processor
families including the Intel 32-bit IA-32, Intel 64-bit EM64T/AMD64, and
Intel Itanium 2 processors.

Given a choice between IA-32 or EM64T/AMD64, we prefer the 64-bit
EM64T processors for the following reasons:

for compatibility, the EM64T processors will allow you to run both the
32-bit or the 64-bit RHEL 4 operating system. If you purchase the
32-bit Xeon IA-32 processors, you will only be able to run the 32-bit
RHEL operating systems.

36 Performance Management Guide

Network Connectivity

strategically, hardware vendors are primarily shipping servers based
on EM64T processors. The industry is past the tipping point where
more 64-bit Xeon based servers are being shipped than the 32-bit
versions.

availability, with the 64-bit RHEL OS, you should face less 32-bit
memory constrained issues - for example, running out of LOWMEM in
the 32-bit OS. You will also be able to allocate and use more memory
for applications like Oracle or UDB.

6.3 Network Connectivity

6.3.1 Auto-Negotiation
See Section 3.3.2.2, "Auto-Negotiation" for a general discussion on
network negotiations.

For Linux, you can check the link speed and duplex by issuing the
following command. The "FD" in the output below denotes full-duplex.

$ mii-tool
eth0: negotiated 100baseTx-FD flow-control, link ok
eth1: no link

Sun Solaris 37

7
Sun Solaris

This chapter provides recommendations on how to plan, implement,
configure, monitor, and tune a Sun Solaris computer server.

7.1 Implementation

7.1.1 Network Connectivity

7.1.1.1 Auto-Negotiation
See Section 3.3.2.2, "Auto-Negotiation" for a general discussion on
network negotiations.

On Solaris, you can check a gigabit (GE), Quad-Fast Ethernet (QFE) and
Fast-Ethernet (HME) links with the following process:

#ifconfig -a
lo0: flags=1000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4> mtu 8232 index 1
 inet 127.0.0.1 netmask ff000000
hme0: flags=1000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4> mtu 1500 index 2
 inet 10.10.10.10 netmask ffffff00 broadcast 10.10.10.255

In the example above, the server has a single HME interface. To query
the HME settings, issue the following commands.

ndd -get /dev/hme link_speed
1
ndd -get /dev/hme link_mode
1

For QFE or GE, substitute in /dev/qfe or /dev/ge respectively.

The results of the commands above are as follows

38 Performance Management Guide

Implementation

If the auto-negotiation failed, you can manually set the NIC by issuing
the following commands:

ndd -set /dev/hme instance 0
ndd -set /dev/hme adv_100T4_cap 0 disables T4 cabling
ndd -set /dev/hme adv_100fdx_cap 1 enables 100mps full duplex
ndd -set /dev/hme adv_100hdx_cap 0 disables 100mps half duplex
ndd -set /dev/hme adv_10fdx_cap 0 disables 10mps full duplex
ndd -set /dev/hme adv_10hdx_cap 0 disables 10mps half duplex
ndd -set /dev/hme adv_autoneg_cap 0 disables autonegotiation

You can preserve the commands above across reboot by adding the
following commands to /etc/system:

set hme:hme_adv_autoneg_cap=0
set hme:hme_adv_100T4_cap=0
set hme:hme_adv_100fdx_cap=1
set hme:hme_adv_100hdx_cap=0
set hme:hme_adv_10fdx_cap=0
set hme:hme_adv_10hdx_cap=0

You also need to manually set the switch ports to 100mps full-duplex.
Please see your switch documentation.

Table 7–1 NDD Results

NDD Variable Results

link_speed 0 = 10mps

1 = 100mps

link_mode 0 = half-duplex

1 = full-duplex

39

Part II
Java Virtual Machines

This part of the book provides information on how to implement, monitor
and tune the Java Virtual Machine (JVM). The JVM is the core technology
that provides the runtime environment that the Sterling Supply Chain
Applications runs on.

Configuring and operating the JVM efficiently is critical for performance.
Suboptimal JVM settings will cause poor application performance at best.
It could cause application outages at worst.

The first chapter in this part, Chapter 8, "General JVM
Recommendations", provides an overview of the JVM technology and
general JVM recommendations. The subsequent chapters provide detailed
JVM recommendations specific to the JVM families.

The subsequent chapters provide recommendations specific to a JVM
family. The JVM families include:

SunSoft HotSpot JVM

IBM JVM

BEA JRockit

The genesis of the JVM families is the Sun JavaSoft’s Reference JVM
Implementation. From that baseline, Sun SunSoft division produces a
productionized JVM version called the SunSoft HotSpot JVM. This JVM
technology is licensed to HP. As a result, the HP and SunSoft HotSpot
JVM share a lot of the same command line options, performance
characteristics and in some cases bugs. As a result, you should read
Chapter 9, "HotSpot JVM" if you are planning to run the Sterling Supply
Chain Applications

on Solaris server nodes

40 Performance Management Guide

on HP-UX11i server nodes

You should read Chapter 10, "IBM JVM" if you plan to run the Sterling
Supply Chain Applications with IBM WebSphere on

IBM AIX server nodes or

Linux on Intel Xeon processor based servers

You should read Chapter 11, "BEA JRockit" if you plan to run Sterling
Supply Chain Applications with BEA WebLogic on

either Linux based or Windows based servers running on Intel Xeon
processors

General JVM Recommendations 41

8
General JVM Recommendations

This chapter provides general recommendations on how to plan,
implement, configure and tune Java Virtual Machines that is applicable to
all the supported JVM families.

8.1 Overview
The Java language is designed to be "Written Once and Run Anywhere"
(WORA). When you compile a Java source, you get an intermediate Java
file called the Java class. The class file is made up of bytecodes
representing abstract instruction codes. These codes are not directly
executable by any computer processor. In contrast, languages like C
compile their source code to native instructions for a specific processor.

To run a Java program, you start a JVM and pass the class file to the
JVM. The JVM provides many services including loading the class file and
interpreting (executing) the byte codes. The JVM is the core technology
that provides the runtime environment in which a Java application runs
in.

Each Java program or application runs in its own JVM. For example, if
you configured an application server cluster with ten managed server
instances that is controlled by one administrative instance, your
configuration will run eleven JVM processes.

Since the JVM is the underlying engine for the Sterling Supply Chain
Applications, it is critical that the JVMs are optimally configured and
running efficiently. Incorrect JVM settings could cause poor application
performance. At worse, it could lead to JVM outages.

42 Performance Management Guide

Implementation

8.2 Supported Configuration
Please see the Sterling Supply Chain Applications Installation Guide for
the list of supported configurations.

To find out the JVM version, issue the following command

$JAVA_HOME/bin/java -version

Note: A common mistake is to verify the version for one JDK installation
but accidentally use another JDK installation. Ensure that all startup
scripts reference the correct java executable.

8.3 Implementation
This section provides general recommendations on how to implement,
configure and run the JVMs. JVM family specific recommendations, such
as Permanent Generation settings for SunSoft JVMs, are found in the
subsequent chapters.

8.3.1 Recommended JVM Command Line Options
We recommend that you specify the following command line options on
all JVMs.

JVM identifier using the -D option

-showversion

-verbosegc

set a high Distributed Garbage Collection interval

8.3.1.1 JVM Identifier
In any moderately complex Sterling Supply Chain Applications
configuration, you will have to manage many JVMs. To ease the
management and monitoring of JVMs, we recommend you use the -D
Java option to "tag" the Sterling Supply Chain Applications JVMs with an
appropriate identifier. For example

java -Dyfsag=SCHEDULE <class name> and
java -Dyfsas=server01 <class name>

Implementation

General JVM Recommendations 43

The -D option lets you set a system property variable. In the examples
above, we use the -D option to set a name/value pair to help identify the
purpose of the JVM. The names, yfsag and yfsas, indicates the type of
workload - in this case a Sterling Supply Chain Applications agent and an
application server respectively. The values, SCHEDULE and server01,
indicate the instance of the workload. If you issue the following
command

ps -ef | grep java

you will see

 UID PID PPID C STIME TTY TIME CMD
 user03 6420 6418 2 08:20:21 pts/29 0:04 java -Dyfsag=SCHEDULE -server
 user03 6456 6443 2 08:23:32 pts/29 0:23 java -Dyfsas=server01 -server

If you follow this convention, you can easily list all the Sterling Supply
Chain Applications JVMs by issuing

ps -ef | grep Dyfs

The tagging and some simple scripting will allow you to automate a lot of
management tasks. For example, to generate a thread dump on all the
application servers, you could issue the following command

for i in ‘ps -ef | grep Dyfsas | awk ’{print $2}’‘
do

kill -3 $i
echo "Issued thread dump for pid=$i"

done

8.3.1.2 Java Version
A common but difficult problem to diagnose is one where the wrong JVM
version or level was started. You can easily spot this problem if you start
the JVM with the -showversion option. If you ran the following command
on an IBM JVM on Linux,

> java -showversion <class name>

you will get the following output

java version "1.4.2"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.2)
Classic VM (build 1.4.2, J2RE 1.4.2 IBM build cxia321420-20040626 (JIT
enabled: jitc))

44 Performance Management Guide

Implementation

We recommend setting the -showversion option for all JVMs in
production. This simple and inexpensive step provides valuable
information that can help ensure that the correct JVM version and mode
are used.

8.3.1.3 Garbage Collection Statistics
Garbage collection statistics are critical and should be enabled in
production. The statistics is the only window you have into the behavior
of the JVM heap management and the efficiency of the JVM. Issue the
following command line option to enable garbage collection statistics.

> java -verbosegc <class name>

For HP’s HotSpot JVM, use the following command line option. The GC
statistics will be sent to the specified filename.

> java -Xverbosegc:filename <class name>

8.3.1.4 Distributed Garbage Collection
When a Java client program creates a remote object on a server, the
server leases out that object to the client for a fixed amount of time. The
client is responsible for renewing the lease if it needs the remote object
for a longer period of time. The client should notify the server if it no
longer needs that remote object so that the server can collect that
object.

If the lease is not renewed, the distributed garbage collector assumes
the client no longer requires the remote object and will automatically
mark that object as clean (and available for collection).

To ensure that unreachable remote objects are collected in a timely
manner, the Distributed Garbage Collector by default issues a System.gc
every 60 seconds.

The default interval is too short and will unnecessarily force GCs every
minute regardless of the amount of free space in the heap. In internal
testing, we have successfully lengthened the time between distributed
garbage collection to 1 hour by adding the following directive

java -Dsun.rmi.dgc.server.gcInterval=3600000

Implementation

General JVM Recommendations 45

We suggest you do not disable the JVM’s ability to issue System.gc() by
setting the -XX:+DisableExplicitGC flag. In some cases, you may (for
example on application servers) want the flexibility to request the JVM to
manually force a GC. If this flag is set, the JVM will ignore the GC
request.

You can set the gcInterval to a high number to effectively disable explicit
GCs.

-Dsun.rmi.dgc.server.gcInterval=0x7FFFFFFFFFFFFFF0

Note: As of December 2, 2004, Sun has acknowledged that the DGC
timeout intervals were set too low and have set the timeout default
values to 1 hour for JDK 5. (see http://bugs.sun.com/bugdatabase/view_
bug.do?bug_id=6200091). For JDK 1.4.2 JVMs, you will still have to set
the parameters to 1 hour as recommended above.

8.3.2 Optional JVM Command Line Settings
The following are optional settings that can be applied when needed.

8.3.2.1 Stack Size
Each time a method is called, a stack frame is created and pushed on to
the thread’s stack. The stack frame contains, at a minimum, the
method’s local variables and the method arguments. You can get a
java.lang.StackOverflowError exception if you reach the maximum
allowable stack limit of a thread. This can happen if

the method call depth is very deep (for example, in the Create Wave
agent, the wave optimizer call depth is roughly equal to the number
of shipments assigned to a shipment group).

the stack frame is very large

You can set the -Xss option to increase the maximum stack size per
thread.

Please see related section Section 24.4.1, "Java Stack Size" if you are
running the Sterling Warehouse Management System.

46 Performance Management Guide

Monitoring

8.4 Monitoring

8.4.1 Hanging Threads/Deadlocks/Infinite Loops
In some rare exceptions, the JVM may have threads that are not
progressing, possibly because of one of the following reasons:

threads are deadlocked

threads are in an infinite loop

threads are waiting for an external event

JVM bug

You can often find these offending threads by taking several successive
thread dumps and seeing if there are any threads that seem "stuck" in
the same processing point. On HP-UX and Solaris, issue the following
command where pid is the process id of the JVM.

kill -3 pid

If you have a hanging or deadlocked thread, in the best case, all they do
is tie up a number of scarce worker (execute) threads. There currently
isn’t any way to kill hung or deadlock threads except to schedule a
restart of the JVM.

In the worst case, these offending threads hold on to crucial shared
resources (such as database record locks) and are blocking other threads
in this or other JVMs. This situation could lead to a system-wide
slowdown as more and more threads block behind these offending
threads.

If you have infinite looping threads, at best, all they do is make the
server node busier. In the worst case, they start to impact the
performance of transaction running in that node or they hold critical
resources needed by other threads.

Recommendations

If you suspect a JVM has a hung or looping thread,

take three thread dumps for that JVM. Space the thread dumps a
minute apart.

Monitoring

General JVM Recommendations 47

look at the stacktrace for the Default Queue in the successive thread
dumps - see if there are any threads that are active and in the same
code path in each thread dump.

If you suspect transactions are slow across many JVMs,

look in your database for blocking chains - specifically, what sessions
are blocking whom. Find out what servers the root blockers are
coming from, the types of locks that they are holding and what was
the latest SQL executed

identify the JVMs that have the root blockers. You may have to
shutdown those JVMs if the blocking sessions are spreading to a
system-wide shutdown.

8.4.2 Memory and Paging

You must make sure paging levels are minimal. The JVM manages its
heap with the assumption that the entire heap is in memory. If
significant portions of the heap are on the swap devices, the node could
find itself in a "thrashing" situation where it spends most of its time
shuffling pages between real memory and swap. This situation could
arise for many reasons including:

starting a JVM with a heap size that is larger than physical memory

Best Practice: Since thread dumps are invaluable
diagnostic tools, you should be very comfortable taking
thread dumps when the need arises. For example, you
should occasionally take thread dumps from all JVMs (e.g.,
all application server instances, all agent/monitor servers)
during non-peak processing periods. This will give you a
chance to find out where the thread dumps are written to
and how to read the thread dumps.

Important: The JVM will perform very badly, even in low
transaction volume environments if the OS has to
continually page the JVM heap to disk.

48 Performance Management Guide

Monitoring

starting too many JVMs and other workloads such that the combined
working set size is larger than the physical memory

8.4.3 OutOfMemory Exceptions

JVMs throw OutOfMemory exceptions when they cannot find enough
space for new object allocation request. This situation arises for two
primary reasons:

the JVM heap was sized too small to accommodate the day-to-day
processing requirements of that JVM.

the application running in that JVM has a memory leak

JVMs try to recover gracefully when OutOfMemory exceptions occur -
unfortunately, the outcome of the recovery can be unpredictable. We
have seen situations where threads have disappeared (they don’t show
up in the thread dumps), threads have gone into infinite loops, or
database connections from failed threads remain opened and in some
cases, hold on to record locks.

For these and many other reasons, Sterling Supply Chain Applications
will deliberately stop JVMs that encounter OutOfMemory exceptions.
When that occurs, you should see the following message in the
application log.

java.lang.OutOfMemoryError
Yantra encountered Java Virtual Machine Error, verify your JVM settings
Halting the system................

This measure is preferable to potentially unpredictable application
behaviors.

In production, you should periodically check for the occurrence of the
message above in the Sterling Supply Chain Applications log and to take
appropriate actions - this could include alerting the application
administrator or restarting the JVM.

Important: Sterling Supply Chain Applications will stop a
JVM that throws an OutOfMemory exception.

Monitoring

General JVM Recommendations 49

8.4.3.1 Diagnosing OutOfMemory Exceptions
An outOfMemory exception could be caused by a memory leak or a
temporary abnormally high memory requirement (possibly for a very
large order or wave). If you encounter an outOfMemroy exception, we
recommend you perform the following

restart the JVM with a much larger heap (for example, 1.5GB)

monitor the amount of space used. For Sun and HP HotSpot JVMs,
you need to look at the heap used after Full GCs. If you see this value
steadily growing and never shrinking, you may likely have a memory
leak. If the heap used increases by a large value (larger than your
original heap setting) but eventually drops down to its original level,
you may have encountered a large order or wave. You may want to
investigate the nature of that order to see if the order was an
anomaly or if it is going to be recurring. You can use the GC statistics
to set you JVM heap sizes.

If you believe you have a memory leak, you can do the following

for IBM JVMs, generate a heapdump and use the IBM Memory Dump
Diagnostic tool to identify the memory leak. We have found this tool
to be easy to use and easy to identify memory leaks. The IBM JVM
will automatically generate the heapdump when it runs into an
OutOfMemory exception. You can also request a heapdump using a
Kill -3 by first setting the following environment variables

export IBM_HEAPDUMP=true
export IBM_HEAP_DUMP=true
export IBM_HEAPDUMPDIR=<directory to store the heap dumps>

for Sun and HP HotSpot, try generating the hprof memory dump - the
IBM Memory Dump Diagnostic tool is capable of analyzing hprof
dumps. Otherwise, you may have to resort to using a tool like Quest
JProbe Memory Debugger

for BEA JRockit, you can use the BEA JRockit Memory Leak Detector
which is part of the JRockit Management Console. The Memory Leak
Detector will tell you which object is growing the fastest, what
percentag of the heap they are occupying, and the number of
instances.

50 Performance Management Guide

Monitoring

HotSpot JVM 51

9
HotSpot JVM

This chapter provides recommendations on how to plan, implement,
configure, monitor, and tune the HotSpot Java Virtual Machines.

You will use the Sun HotSpot JVM when you deploy the Sterling Supply
Chain Applications with BEA WebLogic or the IBM WebSphere application
servers on Sun Solaris operating system running on Sun UltraSPARC
processor based servers.

You will use the HP HotSpot JVM when you deploy the Sterling Supply
Chain Applications with BEA WebLogic application servers on HP
HP-UX11i operating system running on HP PA-RISC processor based
servers.

Note: BEA no longer supports the use of the SunSoft JVM on Linux in
production.

9.1 Implementation
It is a mixed blessing that HotSpot JVMs provide many tuning
parameters because tuning the JVMs can appear to be part art and part
guess work. There isn’t a golden set of JVM settings that apply to all
customers and conditions. The settings, especially memory settings
(which we will discuss below) are highly dependent on the transaction
mix, the amount of data cached, the complexity of the transactions,
concurrency levels, and so forth.

Fortunately, the HotSpot JVMs provide good measurement feedback that
will allow you to measure the effectiveness of the settings.

As a starting point, we recommend you configure your JVMs with the
following initial values and to review and adjust the settings as you run
the JVMs under representative workloads and traffic volumes.

52 Performance Management Guide

Implementation

9.1.1 Starting Recommendations
As a starting point, you should configure the JVMs as follows

set the JVM mode to server mode

set the permanent generation to 128MB

9.1.1.1 Virtual Machine Mode
The Java language is designed to be platform independent. When you
compile a Java source, you get an intermediate Java class which is made
up of bytecodes representing abstract instructions. In contrast,
languages like C compile to native binary code that a specific hardware
processor can run. To run the program, you start a JVM and pass the
class file to the JVM. The JVM will load the class file and interpret
(execute) the byte codes.

Interpretation and execution of bytecodes is much slower than the
executing code that has been compiled to the native instruction set of
the host processor.

For speed and performance, the HotSpot JVM will, on-the-fly or
just-in-time (JIT), compile frequently used methods into native code (see
[6] and [7] for more detail).

The HotSpot JVMs support two different compiler modes: -client and
-server. Each supports differing levels of optimization.

The server VM mode is designed to maximize performance of long
running workloads by applying more aggressive optimizations. The client
VM mode, in contrast, is designed to reduce application startup time and
memory footprint. The client VM mode is typically better suited for
applets running in browsers.

For optimal performance, you generally want to run long running
workloads in server mode. In some cases, you may have to switch to
client mode if there are issues with the server mode. This was the case in
earlier versions of the JVM and less so today.

You should always check the platform recommendations for BEA
WebLogic and IBM WebSphere. The following table lists Sterling
Commerce’s recommended VM modes

Implementation

HotSpot JVM 53

To run the JVM in the server mode, you need to add the -server
directive when starting up the JVM. For example, to start WebLogic in
server mode, issue:

java -server weblogic.Server

To run WebLogic in the client mode, issue the following command:

java -client weblogic.Server

9.1.1.2 Permanent Generation
The HotSpot JVM sets aside an area, called permanent generation, to
store the JVM’s reflective data such as class and method objects. The
size of this area is set to 64MB by default. Due to the number of classes
used by application servers, you must set the permanent generation
space setting to at least 128MB. If you use the default values, you will
likely experience OutOfMemory exceptions during application server
initialization.

To increase the permanent generation space, issue the following
command

java -server -XX:MaxPermSize=256m java_class

This recommendation applies to the application server JVM as well as to
the Sterling Supply Chain Applications agents.

Table 9–1 Recommended VM Mode

Operating
Environment WebLogic WebSphere

Sterling Supply
Chain
Applications
Agents/Monitors

HP HP-UX11 server mode not supported server mode

SUN Solaris 2.9 server mode server mode server mode

Microsoft Windows
2000

server mode not supported server mode

Note: The agent server JVM only requires 128mb.

54 Performance Management Guide

Implementation

9.1.2 Heap Memory and Garbage Collection
The JVM run-time environment uses a large memory pool called the heap
for object allocation. The JVM automatically invokes garbage collections
in order to clean up the heap of unreferenced or dead objects. In
contrast, memory management in legacy programming languages like
C++ was left to the programmer.

If the JVM heap settings are not set correctly, the garbage collection
overhead can make the system appear unresponsive. In the worst case,
your transactions or the JVM could abort due to outOfMemory exceptions
(please see Section 8.4.3, "OutOfMemory Exceptions").

In the past, garbage collection overhead was quite substantial and the
impact to end-user response times noticeable. Many garbage collection
techniques have been proposed and implemented - all with their own
strengths and weaknesses. Garbage collection techniques are constantly
being improved. For example, the Sun JDK 1.3.1 JVM currently supports
a mainly "stop-the-world" garbage collector - all transactions have to
pause in a safe point for the entire duration of the garbage collection. In
Sun JDK 1.4, the JVM supports a parallel concurrent collector where
transactions can continue running during most of the collection.

9.1.2.1 Sun and HP-UX Generational Collectors
The Sun and HP JVM organized its heap into generations to improve the
efficiency of its garbage collection, and to reduce the frequency and
duration of user-perceivable garbage collection pauses. The premise
behind generational collection is that memory is managed in generations
or in pools of memory with different ages (see Figure 9–1, "Heap
Layout").

Implementation

HotSpot JVM 55

Figure 9–1 Heap Layout

New objects are allocated in the eden. When the eden fills up, the JVM
issues a scavenge GC or minor collection to move the surviving objects
into one of the two survivor or semi spaces. The JVM does this by first
identifying and moving all referenced objects in the eden to one of the
survivor space. At the end of the scavenge GC, the eden will be empty
(since all the referenced objects are now in the survivor space) and
ready for object allocation.

The scavenge GC’s efficiency depends on the amount of referenced
objects it has to move to the survivor space and not on the size of the
eden. The higher the amount of referenced objects, the slower the
scavenge GC. Studies, however, have shown that most Java objects live
a very short time. Since most objects live for a short time, one can
typically create large edens.

Referenced objects in the survivor space bounce between the two
survivor spaces at each scavenge GC until it either becomes
unreferenced or the number of bounces has reached the tenuring
threshold. If the tenuring threshold is reached, that object is migrated up
to the old heap.

When the old heap fills up, the JVM issues a Full GC or major collection.
In a Full GC, the JVM has to first identify all the referenced objects. When
that is done, the JVM sweeps the entire heap to reclaim all free memory
(for example, because the object is now dead). Finally, the JVM will then
move referenced objects in order to defragment the old heap. The

semi-spacesemi-spaceeden

survivor-space

young generational heap

heap

old

56 Performance Management Guide

Implementation

efficiency of the Full GC is dependent on the amount of referenced
objects and the size of the heap. For more information see [6] and [8].

9.1.2.1.1 Heap Settings It is both a curse and a blessing that the
SunSoft based JVMs provide many parameters to control the JVM heap
configuration. Tuning the SunSoft generational collectors can be part art
and part guess work. You may opt for the Keep It Simple Strategy
Principle. In the following example, only specify the starting (-Xms) and
maximum (-Xmx) heap size.

java -server -Xms358m -Xmx358m weblogic.Server

When choosing the JVM settings, you should keep the following in mind:

set the initial and max heap size the same - this will eliminate the
need of the JVM to decide when to expand or shrink the heap. This
could also prevent a class of outOfMemory exceptions where there is
not enough swap space when the JVM needs to expand the overall
heap.

by default, Sterling Supply Chain Applications caches reference data
for performance. Depending on your data setup, you may have to
increase the heap size or reduce the numbers of cached records. See
Section 22.4.4, "Performance Feature - Reference Data Caching" for
more information on the caching feature.

ensure that the node has enough physical memory so that portions of
the heap are not paged out

When setting the young heap, keep the following recommendations in
mind:

Note: Please make sure you test your JVM heap settings
with representative workloads and data under anticipated
peak processing rates. In addition, you should run these
tests for a number of days. Depending on your processing
mix, the JVM heap settings could be different for the JVMs
running the agents, the application servers and the JMS
servers.

Implementation

HotSpot JVM 57

set the initial and max eden size the same - this will eliminate the
need of the JVM to decide when to expand or shrink the eden

the cost of a scavenge GC is dependent on the amount of active
objects that has to be moved to the survivor space and not on the
size of the eden. Therefore, one can usually allocate a large eden.

allocate the eden large enough so that the scavenge GCs are not
occurring too frequently (e.g., less than once per minute) and the
collection service time is reasonably short (e.g., less than 0.3
seconds).

alternatively, create more JVMs to spread out the load. This will
reduce the amount of active objects in a JVM which will reduce the
frequency and the duration of the scavenge GC.

Keep in mind the following when configuring the survivor spaces:

the survivor spaces must be large enough to store all the active
objects coming from the eden as well as the sum of active objects
that have an age that is less than the tenuring threshold.

Keep in mind the following when configuring the old heap:

The amount of free space in the old heap must be larger than both
the eden size plus one of the survivor space. If the free space is less,
the JVM will resort to using Full GCs (see Section 9.1.2.1.2, "Young
Generation Guarantee" below).

The cost of a Full GC is dependent on the amount of active objects as
well as the size of the old heap. A Full GC is typically a lot more
noticeable to the end user than a scavenge GC. A Full GC on a 256MB
old heap can take up to three seconds.

Keep in mind that Sterling Supply Chain Applications provides the
ability to cache records. If you activate this feature, you should
monitor the occurrence of full GC to see if the old generation is large
enough. See Section 22.4.4, "Performance Feature - Reference Data
Caching" for more information on the caching feature.

Therefore, you should allocate the old heap large enough so that Full GCs
are not occurring too frequently (e.g., more than once in 15 minutes)
and the collection service time is less than 2 seconds

9.1.2.1.2 Young Generation Guarantee Starting in JDK 1.3.1_05,
the Sun/HP JDKs implemented a conservative garbage collection policy

58 Performance Management Guide

Implementation

called the Young Generation Guarantee. Before starting a GC, the JVM
checks if the free space in the old heap (OLD FREE) is larger than the
sum of the eden. The premise is that it is possible (though highly
unlikely) that every object in the eden (remains alive and uncollected)
the collection and has to be promoted to the old heap. If that ever
happens, the Young Generation Guarantee will ensure that there is
enough free space in the old heap for all the promoted objects.

Please see Sun’s JDK 1.4.2 Garbage Collection document [7] for a
detailed description of the Young Generation Guarantee.

9.1.2.1.3 Starting Recommendations We recommend that you try
the default generational settings with a 384M and a 768M heap for your
agents and application servers respectively.

java -server -Xms768m -Xmx768m \
 -XX:MaxPermSize=256m \
 weblogic.Server

Another approach is to set the overall heap to 1024MB with a 200MB
young generation. For Solaris, you would issue the following command:

java -server -Xms1024m -Xmx1024m \
 -XX:NewSize=200m -XX:MaxNewSize=200m \
 -XX:MaxPermSize=256m \
 weblogic.Server

For HP-UX, you would issue the following command:

java -server -Xms1024m -Xmx1024m \
 -Xmn200m \
 -XX:MaxPermSize=256m \
 weblogic.Server

You have to regularly monitor the "health" of the garbage collection and
adjust accordingly. For example,

if you notice that the amount of heap free after a Full GC is
approaching 500MB (the capacity of the old heap), you could
eventually get java.lang.OutOfMemory exceptions. You should
investigate why your JVM is keeping that many live objects. For
example, with your data, you may have large reference data
caches (see Section 22.4.4, "Performance Feature - Reference
Data Caching").

Implementation

HotSpot JVM 59

conversely, if the amount of heap free after a Full GC is much
smaller than the old heap (and the load test is representative),
you may consider reducing the old heap

increase the overall heap size - however, make sure the Full GC
takes less than 2 seconds

you must ensure that the node has enough physical memory so
that portions of the heap are not paged out

The optimum JVM heap setting depends on your workload characteristics,
your workload concurrency levels, your workload complexity, and so
forth. The JVM heap setting can be (and often is) different between the
application servers and agents. In addition, the settings may be different
between some agents. As a result, you will have to periodically check the
effectiveness of each JVM’s heap setting.

9.1.2.1.4 Garbage Collection Statistics We recommend that you
continuously collect garbage collection statistics for all JVMs even in
production. The collection overhead is minor compared to the benefit.
With the statistics, you will be able to tell if:

a JVM has or is about to run into a memory leak

the garbage collection is efficient

your JVM heap settings are optimal

For a Sun JVM, you will get the following statistics if you enable
-XX:+PrintGCDetails, -XX:+PrintGCTimeStamps, and -Xloggc.

0.000: [GC 0.001: [DefNew: 32192K->511K(33152K), 0.0383176 secs]
32192K->511K(101440K), 0.0385223 secs]
1.109: [GC 1.110: [DefNew: 32703K->198K(33152K), 0.0344874 secs]
32703K->697K(101440K), 0.0346844 secs]

Please see [8] for a detailed explanation of the statistics.

For an HP JVM, you will get the following statistics if you enable
-Xverbosegc:file.

<GC: 1 0 13848.360276 8 16400 31 429520056 0 429522944 0 2328104 53673984
100687544 100687544 536870912 69787968 69787968 69992448 0.162748 >
<GC: 1 0 73541.610471 9 48 31 429522944 0 429522944 2328104 9051392 53673984
100687544 100687544 536870912 70708000 70708000 70778880 0.249739 >

60 Performance Management Guide

Monitoring

Best Practice: Create the GC log file name with the name of the
workload and the starting time. In the example below the
-XX:+PrintGCTimeStamps directive provides relative times of the GC
from the time the JVMs started for the WebLogic server. The starting time
in the file name will allow you to determine when the GCs occurred.

WORKLOAD=SCHEDULE
gclog_file=${WORKLOAD}_‘date +%Y%m%d-%H%M%S‘
java -verbosegc -XX:+PrintGCTimeStamps -Xloggc:${gclog_file} weblogic.Server

9.2 Monitoring

9.2.1 Garbage Collection Statistics
In our opinion, garbage collection statistics are critical and should be
enabled in production. The statistics is the only window you have into the
behavior of the JVM heap management and the efficiency of the JVM.

This section describes three types of garbage collection statistics.

The first is a comprehensive set from HP’s JVM.

The second is a terse statistics from both the HP and Sun JVM.

9.2.1.1 Comprehensive HP GC Logs
At every garbage collection, the HP JVM prints out a statistic record with
20 fields in the following format:

At every garbage collection, the following 20 fields are printed:
<GC: %1 %2 %3 %4 %5 %6 %7 %8 %9 %10 %11 %12 %13 %14 %15 %16 %17 %18 %19 %20
>

 %1: Indicates the type of the garbage collection.
 1: represents a Scavenge (GC of New Generation only)
 %2: indicates if this is a parallel scavenge.
 0: non-parallel scavenge
 n(>0): parallel scavenge, n represents the number of
parallel GC threads

 2: represents an Old Generation GC or a Full GC

Monitoring

HotSpot JVM 61

 %2: indicates the GC reason:
 1: Allocation failure, followed by a failed scavenge,
leading to a Full GC
 2: Call to System.gc
 3: Tenured Generation full
 4: Permanent Generation full
 5: Scavenge followed by a Train collection
 6: CMS Generation full
 7: Old generation expanded on last scavenge
 8: Old generation too full to scavenge
 9: FullGCAlot
 10: Allocation profiler triggered

 3: represents a complete background CMS GC
 %2: indicates the GC reason:
 1: Occupancy > initiatingOccupancy
 2: Expanded recently
 3: Incremental collection will fail
 4: Linear allocation will fail
 5: Anticipated promotion

 4: represents an incomplete background CMS GC
 (exited after yielding to foreground GC)
 %2: n.m
 n indicates the GC reason:
 1: Occupancy > initiatingOccupancy
 2: Expanded recently
 3: Incremental collection will fail
 4: Linear allocation will fail
 5: Anticipated promotion
 6: Incremental CMS
 m indicates the background CMS state when yielding:
 0: Resetting
 1: Idling
 2: InitialMarking
 3: Marking
 4: FinalMarking
 5: Precleaning
 6: Sweeping

 %3: Program time at the beginning of the collection, in seconds

 %4: Garbage collection invocation. Counts of background CMS GCs
 and other GCs are maintained separately

62 Performance Management Guide

Monitoring

 %5: Size of the object allocation request that forced the GC,
 in bytes

 %6: Tenuring threshold - determines how long the new born object
 remains in the New Generation

 The report includes the size of each space:
 Occupied before garbage collection (Before)
 Occupied after garbage collection (After)
 Current capacity (Capacity)
 All values are in bytes

 Eden Sub-space (within the New Generation)
 %7: Before
 %8: After
 %9: Capacity

 Survivor Sub-space (within the New Generation)
 %10: Before
 %11: After
 %12: Capacity

 Old Generation
 %13: Before
 %14: After
 %15: Capacity

 Permanent Generation (Storage of Reflective Objects)
 %16: Before
 %17: After
 %18: Capacity

 %19: The total stop-the-world duration, in seconds.

 %20: The total time used in collection, in seconds.

HP provides a graphical tool called HPjtune to help you visualize the HP
JVM garbage collection activities. This tool is free and can be downloaded
from [11].

The following are additional recommendations that add on to HP’s
excellent documentation.

Monitoring

HotSpot JVM 63

9.2.1.1.1 Capacity When the JVM is in steady state, check %9 (Eden
Capacity), %12 (Survivor Sub-space Capacity), %15 (Old Generation
Capacity), and %18 (Permanent Generation Capacity) to make sure you
have allocated the JVM heap correctly.

9.2.1.1.2 Things to Monitor In a healthy heap,

during steady state, you should see mostly Scavenge GCs (%1=1)
and the occasional Full GC caused by allocation failures (%1=2,
%2=1).

the sum of the GC times (%19 and %20) should not exceed 3% of
the measurement interval - for example, in a 1-hour measurement
interval, the time taken for all GCs should not be more than 108
seconds.

if you see Full GCs due to System.gc (%1=2, %2=2), you may need
to set or adjust the -Dsun.rmi.dgc.server.gcInterval parameter (see
Section 8.3.1.4, "Distributed Garbage Collection").

if you see continuous Full GCs (%2=1), check to see if the free space
in the old heap (%15 - %13) is less than the sum of %7 and %10. If
it is, the JVM uses Full GCs even though there may be lots of free
space in the heap (see Section 9.1.2.1.2, "Young Generation
Guarantee"). This could be due to the amount of long-lived objects in
the heap (see %14 after Full GCs), the old space (%15) is too small
for the amount of long-lived objects or the eden (%9) is too big.

if the amount of long-lived objects (%14 after Full GCs) is large (e.g.,
greater than 350MB) and has been steadily growing, you may have a
memory leak. If %14 continues to grow, that JVM will eventually fail
with an outOfMemory exception (see Section 8.4.3, "OutOfMemory
Exceptions").

9.2.2 SUN
When the following flags are set

-verbose:gc -XX:+PrintGCTimeStamps -XX:+PrintGCDetails -Xloggc:filename

the Sun JVM produces the following garbage collection statistics

0.000: [GC 0.001: [DefNew: 32192K->511K(33152K), 0.0383176 secs]
32192K->511K(101440K), 0.0385223 secs]
1.109: [GC 1.110: [DefNew: 32703K->198K(33152K), 0.0344874 secs]

64 Performance Management Guide

Monitoring

32703K->697K(101440K), 0.0346844 secs]
2.408: [GC 2.409: [DefNew: 32390K->403K(33152K), 0.0227843 secs]
32889K->902K(101440K), 0.0231518 secs]

Please see [8] for a description of the statistics. See [9] for examples of
how to diagnose GC problems.

9.2.2.1 Potential Memory Leak
After running the JVM for a while, check the amount of objects remaining
after a Full GC to see if there are potential memory leaks (please see
Section 8.4.3, "OutOfMemory Exceptions").

9.2.2.1.1 Old Heap Too Small If you see successive Full GCs and the
"heap after GC" number is consistently larger than the size of the Old
Generation, the amount of live objects is larger than the Old Generation.

9.2.2.1.2 GC Times Watch for GC times that take over 2-5 seconds.
Recall that all threads are paused for the duration of the GC. A
transaction that normally takes 1 second will grow to 3-6 seconds. More
importantly, blocked threads that are holding on to database locks could
start to block other threads in other JVMs.

9.2.2.1.3 PrintGCStats Script Sun has developed a script,
PrintGCStats, to interpret the results from the output file generated by
"-Xloggc:filename". The PrintGCStats script can be downloaded from
http://java.sun.com/developer/technicalArticles/Programming/turbo/.

An example output of the script is as follows:

what count total mean max stddev
gen0(s) 9 0.591 0.06563 0.297 0.0870
gen0t(s) 9 0.600 0.06665 0.305 0.0895
gen1t(s) 9 7.890 0.87667 1.637 0.4381
GC(s) 18 8.490 0.47166 1.637 0.5175
alloc(MB) 9 721.889 80.20985 80.312 0.3079

Note: The PrintGCStats script can only produce
meaningful results of the -Xloggc:filename output if the
JVM is started with the "-verbose:gc
-XX:+PrintGCTimeStamps -XX:+PrintGCDetails" flags.

Monitoring

HotSpot JVM 65

promo(MB) 9 0.000 0.00000 0.000 0.0000

alloc/elapsed_time = 721.889 MB / 4045.460 s = 0.178 MB/s
alloc/tot_cpu_time = 721.889 MB / 32363.680 s = 0.022 MB/s
alloc/mut_cpu_time = 721.889 MB / 32295.761 s = 0.022 MB/s
promo/elapsed_time = 0.000 MB / 4045.460 s = 0.000 MB/s
promo/gc0_time = 0.000 MB / 0.600 s = 0.000 MB/s
gc_seq_load = 67.919 s / 32363.680 s = 0.210%
gc_conc_load = 0.000 s / 32363.680 s = 0.000%
gc_tot_load = 67.919 s / 32363.680 s = 0.210%

The following table describes what each of the tags in the above excerpt
means.

Table 9–2 PrintGCStats Output Statistics

Item Name Description

gen0(s) Young generation collection time in seconds

cmsIM(s) CMS initial mark pause in seconds

cmsRM(s) CMS remark pause in seconds

GC(s) All stop-the-world GC pauses in seconds

cmsCM(s) CMS concurrent mark phase in seconds

cmsCS(s) CMS concurrent sweep phase in seconds

alloc(MB) Object allocation in young generation in MB

promo(MB) Object promotion to old generation in MB

elapsed_time(s) Total wall clock elapsed time for the application run in
seconds

tot_cpu_time(s) Total CPU time = no. of CPUs * elapsed_time

mut_cpu_time(s) Total time that was available to the application in
seconds

gc0_time(s) Total time used by GC during young generation pauses

alloc/elapsed_
time(MB/s)

Allocation rate per unit of elapsed time in MB/seconds

alloc/tot_cpu_
time(MB/s)

Allocation rate per unit of total CPU time in MB/seconds

alloc/mut_cpu_
time(MB/s)

Allocation rate per unit of total application time in
MB/seconds

66 Performance Management Guide

Monitoring

There are two statistics generated by this script that are very useful in
tuning the JVM. The statistic gc_seq_load generates the total stop the
world GC time as a percent of total application time. The statistic gc_tot_
load is the total GC time for both full and scavenge GCs as a percentage
of total application time. When making changes to the JVM this script
should be run before and after to see if there is a positive change in
these numbers. It is important to note that by lowering the gc_tot_load,
and increasing the gc_seq_load, there would be a degradation in
performance of the application overall. The reason for this is that the gc_
seq_load is the total time the application spends in "Stop the World" GCs
during which all threads are stopped.

promo/gc0_time(MB/s) Promotion rate per unit of GC time in MB/seconds

gc_seq_load(%) Percentage of total time spent in stop-the-world GCs

gc_conc_load(%) Percentage of total time spent in concurrent GCs

gc_tot_load(%) Total percentage of GC time (sequential and
concurrent)

Table 9–2 PrintGCStats Output Statistics

Item Name Description

IBM JVM 67

10
IBM JVM

This chapter provides recommendations on how to plan, implement,
configure, monitor, and tune the IBM Java Virtual Machine.

You will use the IBM JVM when you deploy the Sterling Supply Chain
Applications with IBM WebSphere application servers on

IBM AIX operating system on POWER4 or POWER5 based servers or

Red Hat Enterprise Linux operating system on Intel processor based
systems

10.1 Implementation

10.1.1 Starting Recommendations
As a starting pint, you should configure the IBM JVM as follows

set JIT and MMI on (by default)

set PSALLOC=EARLY and NODISCLAIM=TRUE (IBM AIX only)

10.1.1.1 JIT and MMI
The Java language is designed to be platform independent. When you
compile a Java source, you get an intermediate Java class which is made
up of bytecodes representing abstract instructions. In contrast,
languages like C compile to native binary code that a specific hardware
processor can run. To run the program, you start a JVM and pass the
class file to the JVM. The JVM will load the class file and interpret
(execute) the byte codes.

68 Performance Management Guide

Implementation

Interpretation and execution of bytecodes is much slower than the
executing code that has been compiled to the native instruction set of
the host processor. At the same time, compiling every bytecode to native
instructions will slow down the JVM startup.

As a result, the IBM JVM uses mixed-mode interpretation (MMI) where
initially bytecodes are interpreted. When the MMI detects that bytecodes
have been interpreted multiple times, it will invoke a just-in-time (JIT)
compiler to compile those bytecodes to native instructions.

For performance, you should ensure the JIT and MMI are enabled. The
JVM performance will degrade significantly if JIT is disabled. Some third
party vendors may recommend disabling certain portions of the JIT
compiler. In those specific situations, we recommend you run controlled
performance tests with and without that specific JIT option to understand
the impact to performance.

The JDK 1.4.2 Diagnostic Guide [14] provides an excellent description of
the JIT compiler and the MMI.

10.1.1.2 PSALLOC and NODISCLAIM (AIX only)
IBM AIX implements a late page allocation policy. When you start a JVM
with a large heap, AIX does not guarantee that there is sufficient page
space to back the heap. AIX will only allocate space on the page device
when you use the heap. In some cases, AIX may have to kill JVMs when
it is low on free space on the page devices.

To prevent this, we recommend setting the following environment
variables prior to starting the JVM

PSALLOC=EARLY
NODISCLAIM=TRUE

Please see Section 4.1.1, "Page Space Allocation Policy" for more
information.

10.1.2 Heap Memory and Garbage Collection
The JVM run-time environment uses a large memory pool called the heap
for object allocation. The JVM automatically invokes garbage collections
in order to clean up the heap of unreferenced or dead objects. In
contrast, memory management in legacy programming languages like
C++ was left to the programmer.

Implementation

IBM JVM 69

If the JVM heap settings are not set correctly, the garbage collection
overhead can make the system appear unresponsive. In the worst case,
your transactions or the JVM could abort due to outOfMemory exceptions
(please see Section 8.4.3, "OutOfMemory Exceptions").

When choosing the JVM settings, you should keep the following in mind:

set the initial and max heap size the same - this will eliminate the
need of the JVM to decide when to expand or shrink the heap. This
could also prevent a class of outOfMemory exceptions where there is
not enough swap space when the JVM needs to expand the overall
heap.

by default, Sterling Supply Chain Applications caches reference data
for performance. Depending on your data setup, you may have to
increase the heap size or reduce the numbers of cached records. See
Section 22.4.4, "Performance Feature - Reference Data Caching" for
more information on the caching feature.

ensure that the node has enough physical memory so that portions of
the heap are not paged out

10.1.2.1 IBM JVMs
IBM chose not to implement generational copying garbage collectors (as
described above) but to instead focus on optimizing the three collection
phases. These three phases are

marking live objects,

sweeping the heap to look for large free chunks, and

compacting the heap to reduce fragmentation

[12] provides a very good description of collection phases. The JDK 1.4.2
Diagnostic Guide [14] provides an outstanding description of the IBM
JVM garbage collector and guidance on how to interpret the garbage
collection statistics.

The JVM is the foundation or engine which Sterling Supply Chain
Applications and the BEA WebLogic or IBM WebSphere application server
runs on. If the JVM settings are not implemented correctly, the system
can appear sluggish or unresponsive. In the worst case, the JVM will
crash.

70 Performance Management Guide

Implementation

There isn’t a golden set of JVM settings that apply to all customers and
conditions. The settings, especially memory settings (which we will
discuss below) are highly dependent on the transaction mix, the amount
of data cached, the complexity of the transactions, concurrency levels,
and so forth.

10.1.2.1.1 Heap Settings The default heap settings are appropriate
for small applications. By default, the heap on AIX starts at 4MB and can
grow to 64MB. You must adjust the heap settings for your environment.

Fortunately, the IBM JVM was designed to work with most scenarios with
less parameter tuning as compared to the HotSpot generational
collectors. From past experiences, we generally only set the initial and
maximum heap size. As a result, the IBM JVMs are easier to configure.
The IBM JVM also provides good statistics to help monitor and tune the
JVMs. See [13] for an excellent article on recommendations on setting
the heap parameters and both [12] and [14] on monitoring the JVM
performance.

10.1.2.2 Starting Recommendations
We recommend you configure the IBM JVMs with the following starting
recommendations and test the JVMs under representative workloads and
traffic volumes prior to going live in production.

As a starting point, you should configure the JVMs running the Sterling
Supply Chain Applications agents and the application servers with a
384M and a 512-768M heap respectively. The following are two sample
configurations to start the Sterling Supply Chain Applications Schedule
agent and a WebLogic application server.

export PSALLOC=EARLY # AIX Only
export NODISCLAIM=TRUE # AIX Only

java -Xms384m -Xmx384m \
-Dsun.rmi.dgc.server.gcInterval=3600000 \
-verbosegc \
com.yantra.integration.adapter.IntegrationAdapter

java -Xms768m -Xmx768m \
-Dsun.rmi.dgc.server.gcInterval=3600000 \
-verbosegc \
weblogic.Server

Monitoring

IBM JVM 71

10.1.2.2.1 Heap Settings The -Xms and -Xmx sets the initial and
maximum heap size. When setting these values, keep the following
guidelines in mind.

set the initial (-Xms) and maximum (-Xmx) heap size the same - this
will eliminate the need of the JVM to decide when to expand or shrink
the heap. This could also prevent the situation where there is not
enough swap space when the JVM needs to expand the overall heap.

you must ensure that the node has enough physical memory so that
portions of the heap are not paged out

you must ensure there is enough swap space to back the virtual
address space requirement for all concurrently running JVMs or, if you
are on AIX, ensure the JVMs are started with PSALLOC=EARLY and
NODISCLAIM=TRUE (see Chapter 4.1.1, "Page Space Allocation Policy")

10.1.2.2.2 Garbage Collection Statistics We recommend that you
continuously collect garbage collection statistics for all JVMs even in
production. The collection overhead is minor compared to the benefit.
With the statistics, you will be able to tell if:

a JVM has or is about to run into a memory leak

the garbage collection is efficient

your JVM heap settings are optimal

To enable GC statistics, set the -verbosegc option. The JDK 1.4.2
Diagnostic Guide [14] provides very good guidance on how to interpret
the garbage collection statistics.

10.2 Monitoring

10.2.1 Garbage Collection Statistics
In our opinion, garbage collection statistics are critical and should be
enabled in production. The statistics is the only window you have into the
behavior of the JVM heap management and the efficiency of the JVM.

This section describes the garbage collection statistics.

IBM provides excellent documentation on their garbage collector and how
to interpret their GC statistics (see [12], [13], [14]).

72 Performance Management Guide

Monitoring

Here is a sample of the GC log.

<AF[4655]: Allocation Failure. need 32784 bytes, 14343 ms since last AF>
<AF[4655]: managing allocation failure, action=1 (173688/265222656)
(3145728/314
5728)>
<GC(4657): GC cycle started Thu Jan 30 11:31:56 2003
<GC(4657): freed 233284808 bytes, 88% free (236604224/268368384), in 179 ms>
 <GC(4657): mark: 146 ms, sweep: 33 ms, compact: 0 ms>
 <GC(4657): refs: soft 0 (age >= 32), weak 6, final 14, phantom 3>
<AF[4655]: completed in 181 ms>

In the example above, <AF[4655]> indicates that this is the 4,655th time
an attempt to allocate memory failed and as a result, a GC was initiated.
An allocation failure is not an error in the system or code. When there is
not enough free space in the heap, the JVM will initiate a garbage
collection. The last time an allocation failure occurred was 14,343 ms ago
(or 14.343 seconds).

The lines with <GC(4657)> provides information on the collection process.
In the example above, the mark, sweep and compact phases completed
in 0.181 seconds and was able to free up 233,284,808 bytes. As a result,
the heap has 236,604,224 bytes free out of a total of 268,368,384.

10.2.1.1 Frequency of GC Health Check
You should check how often GCs are occurring by looking at the time
between allocation failures.

10.2.1.2 GC Times
You should monitor the amount of time the JVM spends in GC. Typically,
your JVM should

spend less than 0.5 seconds in each GC cycle

the percentage of time in garbage collection should be less than 3% -
this percentage can be calculated by dividing the sum of the garbage
collection times over an interval by the interval. The interval could be
a fixed 20 minutes or the last 20 GCs.

10.2.1.3 Potential Memory Leak
If the JVM is running for a while and the percentage free is continually
decreasing with each successive GC, that JVM could be heading to an

Monitoring

IBM JVM 73

outOfMemory condition. This could indicate that either the Java
application is keeping a lot of active objects (e.g., reference data
caching) or there is a memory leak.

By default, the IBM JVM will produce a HeapDump when it runs out of
memory. You can also configure the IBM JVM to produce a HeapDump on
a signal. See Section 10.2.2, "Heapdump" below.

10.2.1.4 Potential JVM Fragmentation
As mentioned in Section 10.1.2.1, "IBM JVMs", the IBM JVMs traces
objects from the stack trace to mark the live objects, sweeps the heap to
collect the dead obects and then compacts the heap to reduce
fragmentation.

Unfortunately, the IBM JVM may not be able to completely defragment
the entire heap because the JVM is unable to move dosed and pinned
objects (see [14]).

The following GC entry is an example of an LOA leading to an OOM. In
this case, the Java program needed 39,421,200 bytes (see first line)
from a heap that has 1,136,147,280 bytes free (see second line). As a
first attempt, the JVM (on sixth line) frees up 147,293,472 resulting in a
heap that is now 1,283,440,752. However, even then the JVM is still
unable to find a contiguous space big enough for the initial 39,421,200
byte allocation. After the initial collection, the JVM then tries to expand
the heap (action=3). Failing to get more space, the JVM then tries to
clear soft-references (action=4). The JVM, in this instance, freed an
additional 370,840 byte. However, even that is not enough to find a large
enough contiguous space. Finally, the JVM issues a message indicating
that it is going to stop (see action=6).

<AF[246]: Allocation Failure. need 39421200 bytes, 319 ms since last AF>
<AF[246]: managing allocation failure, action=2 (1136147280/1610611200)>
 <GC(807): freeing class Unnamed(702f2418)>
 <GC(807): unloaded and freed 1 class>
 <GC(807): GC cycle started Wed Aug 30 12:37:12 2006
 <GC(807): freed 147293472 bytes, 79% free (1283440752/1610611200), in 1525
ms>
 <GC(807): mark: 102 ms, sweep: 15 ms, compact: 1408 ms>
 <GC(807): refs: soft 0 (age >= 32), weak 0, final 66, phantom 0>
 <GC(807): moved 232289 objects, 41962656 bytes, reason=1, used 16 more
bytes>
<AF[246]: managing allocation failure, action=3 (1283440752/1610611200)>
<AF[246]: managing allocation failure, action=4 (1283440752/1610611200)>

74 Performance Management Guide

Monitoring

<AF[246]: clearing all remaining soft refs>
 <GC(808): GC cycle started Wed Aug 30 12:37:14 2006
 <GC(808): freed 370840 bytes, 79% free (1283811592/1610611200), in 1789
ms>
 <GC(808): mark: 107 ms, sweep: 17 ms, compact: 1665 ms>
 <GC(808): refs: soft 235 (age >= 32), weak 0, final 203, phantom 0>
 <GC(808): moved 1924003 objects, 127230384 bytes, reason=1, used 40 more
bytes>
<AF[246]: managing allocation failure, action=6 (1283811592/1610611200)>
JVMDG217: Dump Handler is Processing a Signal - Please Wait.
JVMDG315: JVM Requesting Heap dump file
JVMDG318: Heap dump file written to
/usr/WebSphere/AppServer/heapdump553130.1156955834.txt
JVMDG303: JVM Requesting Java core file

You may have a fragmented JVM if you see a similar pattern where the
JVM failed to find space for a large object allocation on a JVM that has a
lot of free space. In that situation, we recommend the following

restart the IBM JVM with a smaller -Xms than the -Xmx. The premise
being that the JVM would have space to grow when the lower portion
of the heap is fragmented.

In addition, add the following to the JVM command line. The st_verify
will produce additional GC statistics that will show how many objects
are pinned and dosed.

-Dibm.dg.trc.print=st_verify

<GC(VFY-SUM): pinned=6732(classes=4653/freeclasses=0) dosed=21982
movable=1332224 free=6352>

In the example above, there are 6732 objects pinned. If the
measurement was taken when the system has reached steady-state,
you could allocate a larger space in the heap to store these pinned
objects. By keeping the pinned objects in a fenced area, you reduce
the occurrences of pinned objects in the general heap area. You
should specify an area that can hold the amount mentioned above
along with a safety buffer (for example, 50%). You need to add the
following to the Java command line to specify an area that can hold
10,000 objects,

-Xk10000

Monitoring

IBM JVM 75

10.2.2 Heapdump
The IBM JVM heapdump contains information about all the live objects in
its heap. The JVM will automatically create a heapdump when the JVM
runs into an outOfMemory (OOM) exception. You can also instruct the
IBM JVM to generate a heapdump with the kill -3 command if you had
started the JVM with the IBM_HEAPDUMP=true environment variable.

The IBM Memory Dump Diagnostic is an excellent tool for analyzing the
heapdump. You can download the Memory Dump Diagnostic from
http://www-128.ibm.com/developerworks/websphere/downloads/memor
y_dump.html.

You need an IBM JVM 1.4.2 to run the Memory Dump Diagnostic tool.
That JDK is available in the same download page.

You can read up on IBM heapdumps (and a lot more) in the IBM JDK
1.4.2 Diagnostic Guide - see
http://www-128.ibm.com/developerworks/java/jdk/diagnosis/

The presentation at
http://www-1.ibm.com/support/docview.wss?uid=swg27006624&aid=1
discusses how to use the older Heapanalyzer. The techniques and screens
are similar and applicable to the Memory Dump Diagnostic tool.

76 Performance Management Guide

Monitoring

BEA JRockit 77

11
BEA JRockit

This chapter provides recommendations on how to plan, implement,
configure, monitor, and tune the BEA JRockit Java Virtual Machine.

You will use the JRockit JVM when you deploy the Sterling Supply Chain
Applications with BEA WebLogic application servers on either the Red Hat
Enterprise Linux or Windows operating system on Intel processor based
systems.

11.1 Implementation
The BEA JRockit was designed for server-side applications. One
distinguishing feature of JRockit is its adaptability. During the life of the
JVM, JRockit could change the type of garbage collector used or the size
of the heap.

11.1.1 Starting Recommendations
To exploit the adaptiveness of the JRockit JVM, we recommend the
simple starting JVM settings

java -Xms384m -Xmx384m \
-Dsun.rmi.dgc.server.gcInterval=3600000 \
-Xverbosetimestamp -verbosegc \
com.yantra.integration.adapter.IntegrationAdapter

java -Xms768m -Xmx768m \
-Dsun.rmi.dgc.server.gcInterval=3600000 \
-Xverbosetimestamp -verbosegc \
weblogic.Server

78 Performance Management Guide

Implementation

11.1.1.1 Heap Settings
 The -Xms and -Xmx sets the initial and maximum heap size. When
setting these values, keep the following guidelines in mind.

set the initial (-Xms) and maximum (-Xmx) heap size the same - this
will eliminate the need of the JVM to decide when to expand or shrink
the heap. This could also prevent the situation where there is not
enough swap space when the JVM needs to expand the overall heap.

by default, Sterling Supply Chain Applications caches reference data
for performance. Depending on your data setup, you may have to
increase the heap size or reduce the numbers of cached records. See
Section 22.4.4, "Performance Feature - Reference Data Caching" for
more information on the caching feature.

you must ensure that the node has enough physical memory so that
portions of the heap are not paged out

11.1.1.2 Garbage Collection Statistics
We recommend that you continuously collect garbage collection statistics
for all JVMs even in production. The collection overhead is minor
compared to the benefit. With the statistics, you will be able to tell if:

a JVM has or is about to run into a memory leak

the garbage collection is efficient

your JVM heap settings are optimal

To enable GC statistics, set the -verbosegc option.

79

Part III
 Application Servers

This part of the book provides information on how to implement, monitor
and tune application servers. The application server is the core
technology that provides the runtime environment that the Sterling
Supply Chain Applications runs on.

Configuring and operating the application server efficiently is critical for
performance. Suboptimal application server settings will cause poor
application performance at best. It could cause application outages at
worst.

The following chapters are included in this Part

Chapter 12, "BEA WebLogic"

Chapter 13, "IBM WebSphere"

80 Performance Management Guide

BEA WebLogic 81

12
BEA WebLogic

This chapter provides guidelines on the planning, implementation,
configuration, monitoring, and tuning of the BEA WebLogic application
servers.

12.1 Implementation

12.1.1 WebLogic Tuning
This section assumes that you:

are familiar with and have installed BEA WebLogic application server
in a clustered mode

have read BEA’s performance tuning guide [15]

This section elaborates on the recommendations found in [15].

12.1.1.1 Server Tuning

12.1.1.1.1 Work Manager Sterling Supply Chain Applications
workloads run in WebLogic’s default work manager. You should monitor
the default work manager’s pool size over time to see if the pool size is
sufficient.

If the pool size climbs to 25 or more threads, you may want to consider
= configuring additional WebLogic Server instances instead of increasing
the thread count.

82 Performance Management Guide

Implementation

12.1.1.2 Application Server Instances
Please keep in mind the following when determining the number of
WebLogic instances:

configure at most one WebLogic Server instance per processor - if
you have a 4-way node (4 processors), then configure at most 4
WebLogic Server instances on that node.

plan for a single WebLogic Server instance to be able to use at most 4
(preferably 2) processors. If you have an 8-way node, you should not
implement one WebLogic Server instance and expect it to effectively
use all processors. With this rule, to fully utilize the node, you should
plan for two to four WebLogic Server instances.

12.1.1.3 WebLogic Connection Pool
Creating database connections are very expensive operations. For
performance, the Sterling Supply Chain Applications takes advantage of
the WebLogic connection pool.

To enable connection pooling, you need to

define a data source to the Sterling Supply Chain Applications

define a connection pool in WebLogic

define a data source in WebLogic that ties the data source in the
Sterling Supply Chain Applications to the connection pool in WebLogic

12.1.1.3.1 Define Data Source in the Sterling Supply Chain
Applications To define the data source name to the Sterling Supply
Chain Applications, add the following parameter into the Sterling Supply
Chain Applications properties file - yfs.properties (see
Section 22.4.10, "Property Files").

yfs.dblogin.datasource.name=yfsdbsourceperf

At initialization, the Sterling Supply Chain Applications use the
datasource name to find the connection pool in WebLogic. In the example
above, the datasource name is yfsdbsourceperf.

Sterling Commerce recommends that you benchmark your application
prior to migration to production to ensure that these values are set
optimally. Sterling Commerce also recommends that you continually

Implementation

BEA WebLogic 83

monitor the connection pool usage levels to ensure that these
parameters are set optimally.

Initial Capacity

Bear in mind the following guidelines when setting the initial capacity
attribute

You should set the initial capacity to satisfy your daily average
connection requirements. This level can be derived by monitoring
your actual pool usage levels.

You may want to set the initial capacity to a higher number if your
system experiences frequent traffic bursts.

You may not want to set initial capacity to a very high number
because both WebLogic and database server will have to maintain a
high number of connections. For example, assume you have 8
managed server instances, each with 15 execute threads. If you set
initial and maximum connection at 17, WebLogic will create and
maintain 136 database connections.

Note: The BEA WebLogic Server Performance and Tuning manual (see
Tune the Number of Database Connections) recommends setting the
initial connection pool capacity equal to the maximum capacity.
Unfortunately, if you to follow that recommendation, you will not be able
to determine the current pool usage levels since the pool usage would be
equal to the initial and the maximum. As a result,

you will not be able to determine if there is a connection leak - for
example, if the current connection pool usage is higher than your
work manager thread utilization

you will not know if your current connection pool usage is close to the
maximum capacity.

For that reason, we prefer to keep the initial capacity lower than the
maximum capacity.

Maximum Capacity

This attribute sets the maximum number of connections your pool can
grow to within a single WebLogic Server instance. If you set this value to
27 and you have eight WebLogic Server instances, in theory, WebLogic
could create up to 216 database connections.

84 Performance Management Guide

Implementation

Bear in mind the following guidelines when setting the maximum
capacity attribute

Generally, each Sterling Supply Chain Applications transaction
requires one connection. Therefore, you will need one connection per
active thread. In practice, we set maximum capacity to be around the
active thread count plus a small number (e.g., 2 or 5) for a safety
buffer.

Monitor your application in production to confirm that the ratio of
connection usage is roughly equal to the number of active execute
threads.

Benchmark your application to see if custom code, user exits, and so
forth require additional connections.

Allow Shrinking and Shrink Frequency

This attribute pair informs WebLogic to release inactive connections if
they have been idle for the period as specified by "shrink frequency".
This has the advantage of releasing resources both at the WebLogic and
database server end.

Prepared Statement Cache Size

This attribute tells WebLogic to create a cache for each database
connection that can store prepared statements up to the value specified.

Prepared statements are precompiled SQL statements that can be
repeatedly invoked with different parameter values. Prepared statements
will reduce the need to compile the SQL statements.

To disable prepared statement caching, set the prepared statement cache
size to 0. To use the cache, you can set a value up to 300.

12.1.1.4 JSP Pre-Compilation
When users call up a JSP page the first time, WebLogic will automatically
translate the JSP file into a servlet and then compile that servlet. This
process can over 30 seconds, which could lead to user dissatisfaction.
Further, this process is performed serially even on a multiprocessor node
- if you have multiple users hitting five different pages, WebLogic will
compile these pages one at a time. As a result, we strongly recommend
precompiling the JSP pages prior to deployment into production.

Implementation

BEA WebLogic 85

To precompile, you need to build the Sterling Supply Chain Applications
enterprise archive file (yantra.ear). Please see the Sterling Supply Chain
Applications Installation Guide.

When you have the ear, issue the following

WL_HOME=BEA WebLogic LIB directoy
YFS_LIB=Yantra LIB directory
YFS_HOME=Yantra runtime directory

WLS_JARS=${JAVA_HOME}/lib/tools.jar:\
${WL_HOME}/lib/weblogic_sp.jar:\
${WL_HOME}/lib/weblogic.jar:\
${WL_HOME}/lib/ojdbc14.jar:\
${JAVA_HOME}/jre/lib/rt.jar:\
${WL_HOME}/lib/webservices.jar:

APPC_CLASSPATH=${WL_HOME}/lib/weblogic.jar:${JAVA_HOME}/lib/tools.jar

YANTRA_JARS=${YFS_LIB}/yfcremote.jar:\
${YFS_LIB}/js.jar:\
${YFS_LIB}/jstools.jar:\
${YFS_LIB}/bsf.jar:\
${YFS_LIB}/bsfengines.jar:\
${YFS_LIB}/xercesImpl.jar:\
${YFS_LIB}/xml-apis.jar:\
${YFS_LIB}/xalan.jar

YANTRA_CLASSPATH="${YANTRA_JARS}:${PATCHES}:${WLS_JARS}:${CLASSPATH}"

APPC_CLASSPATH=${WL_HOME}/lib/weblogic.jar:${JAVA_HOME}/lib/tools.jar

YANTRA_CLASSPATH=$YANTRA_CLASSPATH:$APPC_CLASSPATH

java weblogic.appc \
-output ${YFS_HOME}/drop/yantra.ear \
-forceGeneration \
-O \
-verbose
-classpath ${YANTRA_CLASSPATH} \
${YFS_HOME}/drop/yantra.ear

The precompiled JSPs will be stored back into the yantra.ear file.

86 Performance Management Guide

Implementation

12.1.1.5 WebLogic Server Cluster
For operational simplicity, you could implement the WebLogic Server as a
single (non-clustered) instance. However, for availability and
performance, many installations implement a WebLogic cluster over
separate physical nodes. When creating the cluster, consider the
following:

For performance, multiple WebLogic instances in a cluster generally
out-perform a single WebLogic instance on a large SMP node.

For availability, multiple WebLogic instances spread over multiple
physical nodes reduce the impact of losing a node.

For performance, multiple WebLogic instances spread over multiple
physical nodes reduce the impact of garbage collection on response
times to users.

For maintainability, set aside a bank of consecutive IP addresses for
the cluster so that you can multi-home the network cards. Each
WebLogic instance requires a unique IP address.

12.1.2 HTTP Load-Balancing
The Sterling Supply Chain Applications HTTP screens are stateful in the
sense that a screen preserves state information for subsequent screens.
As a result, you have to set up proxy servers or load-balancers to
load-balance HTTP requests with a “sticky” load-balancing policy. This
ensures HTTP requests go back to the server that have the session
states.

Load-balancing can improve performance for large number of HTTP users
because the user population is serviced by multiple application servers
that are managed as a cluster. Load-balancing can be implemented with
a variety of technologies ranging from the Apache proxy servers to
hardware-based load balancers.

12.1.2.1 HTTP Session Replication
Sterling Supply Chain Applications supports HTTP in-memory session
replication on the following configuration.

BEA WebLogic

Apache 2.0.44 with the WebLogic plug-in as the proxy server with
idempotent set to ’OFF’

Monitoring

BEA WebLogic 87

Please see the Sterling Supply Chain Applications Installation Guide for
instructions on how to set up WebLogic in-memory session replication.

Note: The Apache or load-balancer idempotent flag must be set to OFF.
In rare cases, for example, when a transaction completes and commits
but was unable to post the response to the proxy server, the proxy
server could retransmit the transaction. For some update transactions,
this could result in duplicate update entries.

12.2 Monitoring
You should monitor the following on a regular basis

Work Manager Thread Utilization

Track the average and maximum number of active execute
threads through third-party tools or custom-developed JMX-based
programs.

Correlate that number to the workload level issued to the
application servers.

Either using mathematical projections or system tests, estimate
the number of concurrent threads expected during your peak
operational periods. As a general rule, you should plan to keep
the average active threads to 15 or less.

Garbage Collection

Monitor the frequency and health of the JVM’s heap management.
Please see the chapter relevant to your JVM in Part II, "Java
Virtual Machines".

Connection Pool Usage

Check if Connection High is equal to the JDBC pool size - the
Connection High is the highest number of connections ever
reached. Recall, the JDBC pool to be equal to the maximum
possible transaction concurrency level plus a safety buffer of two.
The Connection High should not be the same as the JDBC pool
size.

88 Performance Management Guide

Monitoring

IBM WebSphere 89

13
IBM WebSphere

This chapter provides guidelines on the planning, implementation,
configuration, monitoring, and tuning of the BEA WebLogic application
servers.

13.1 Implementation

13.1.1 WebSphere Tuning
This section assumes that you:

are familiar with and have installed IBM WebSphere application server
in a network deployment

have read the IBM WebSphere performance tuning guide [17]

This section elaborates on the recommendations found in [17].

13.1.1.1 WebSphere Queuing Network
In [17], IBM describes transactions to WebSphere as being processed in
a network of interconnected queues that includes the network, Web
Server, Web Container, EJB container, data source, connection pool, and
the database sessions.

IBM then recommends that the queues closest to the client be large (e.g,
the network) and that downstream queues (e.g., EJB container, data
source) grow progressively smaller as it gets further from the client. One
of the reasons offered is that an application that spends 90% of its time
in a complex servlet and only 10% of its time making short JDBC queries

90 Performance Management Guide

Implementation

would require a significantly smaller database connection queue than the
Web Container queue.

We agree with the first statement that the network queue can be large
because it is preferable to queue in the network and not in the
application server. However, from our experience, the downstream
queues should be set to the same size if not larger.

In database intensive applications, such as the Sterling Supply Chain
Applications, when a transaction enters the Web Container, the APIs will
almost always require a database connection. If one were to allow 20
concurrent transactions (by setting Maximum Thread Size in the Web
Container Services) to run against a connection pool of 12, there will be
a possibility that at peak processing periods, 8 transactions would either
be forced to wait for a connection or throw an exception because it can’t
get a connection.

Using the same argument, the database instance should be able to
create more sessions than the sum of all the connections possible from
all the WebSphere instances combined. You will also need additional
database sessions for standalone Java applications that need database
services (e.g., the Sterling Supply Chain Applications agents or
monitors), real-time performance monitors, database utilities and so
forth

13.1.1.2 WebSphere Connection Pool
Creating database connections are very expensive operations. For
performance, Sterling Supply Chain Applications takes advantage of the
WebSphere connection pool.

To enable connection pooling, you need to

define a data source to the Sterling Supply Chain Applications

define a connection pool in WebSphere and then associate the
connection pool to the data source name in the Sterling Supply Chain
Applications

13.1.1.2.1 Define Data Source in the Sterling Supply Chain
Applications To define the data source name to the Sterling Supply
Chain Applications, add the following parameter into the Sterling Supply
Chain Applications properties file - yfs.properties (see
Section 22.4.10, "Property Files").

Implementation

IBM WebSphere 91

yfs.dblogin.datasource.name=yfsdbsourceperf

At initialization, the Sterling Supply Chain Applications uses the
datasource name to find the connection pool in WebSphere. In the
example above, the datasource name is yfsdbsourceperf.

13.1.1.2.2 Define a Connection Pool in WebSphere In the
WebSphere administrative console, create a new connection pool with the
following attributes.

Sterling Commerce recommends that you benchmark your application
prior to migration to production to ensure that these values are set
optimally. Sterling Commerce also recommends that you continually
monitor the connection pool usage levels to ensure that these
parameters are set optimally.

Minimum Pool Size

Bear in mind the following guidelines when setting the minimum pool size
attribute

You should set the minimum pool size to satisfy your daily average
connection requirements. This level can be derived by monitoring
your actual pool usage levels.

You may want to set the minimum pool size to a higher number if
your system experiences frequent traffic bursts.

You may not want to set minimum pool size to a very high number
because both WebSphere and the database server will have to
maintain a high number of connections.

Table 13–1 Connection Pool - Connection Settings

Attribute Value

Minimum pool size Initial number of connections to create for the
connection pool. If the pool is allowed to shrink, it will
not shrink below this number. See below for
recommendations.

Maximum pool size Maximum number of connections that can be created
for this pool. See below for recommendations.

Statement cache size The maximum number of prepared statements to
cache for the data source.

92 Performance Management Guide

Implementation

Maximum Pool Size

This attribute sets the maximum number of connections the pool can
grow to within a single WebSphere instance. If you set this value to 20
and you have ten WebSphere instances, in theory, WebSphere could
create 200 database connections.

Bear in mind the following guidelines when setting the maximum pool
size attribute

Generally, each Sterling Supply Chain Applications transaction
requires one connection. If you we set maximum pool size to be
around the maximum concurrency level at peak period plus a small
safety buffer (e.g., 2 or 5). For example, if you expect the
concurrency level to never grow higher than 15, you should set the
maximum pool size to 17 or 20.

Monitor your application in production to confirm that the ratio of
connection usage is roughly equal to the concurrency levels.

Benchmark your application to see if custom code, user exits, and so
forth require additional connections.

Statement Cache Size

This attribute tells WebSphere to create a cache at the data source level
to store prepared statements up to the value specified.

Prepared statements are precompiled SQL statements that can be
repeatedly invoked with different parameter values. Prepared statements
will reduce the need to compile the SQL statements.

To disable prepared statement caching, set the prepared statement cache
size to 0. To use the cache, you can set a value to a higher value.

13.1.1.3 JSP Pre-Compilation
When users call a JSP page the first time, WebSphere will automatically
compile that JSP. JSP compilations, however, can take a long time which
could lead to the perception that the system is slow. Some JSPs can take
over a minute to compile. You can avoid this problem by precompiling
the JSPs after deployment. To do this, issue the following
JspBatchCompiler script from was_root/bin from each WebSphere node

./JspBatchCompiler.sh \

Monitoring

IBM WebSphere 93

-enterpriseapp.name ${appName} \
-webmodule.name yantra.war \
-cell.name <customer cell name> \
-node.name <customer node name> \
-server.name <customer server name> \
-profileName <profile name> \
-keepgenerated true

The webmodule.name must be set to yantra.war.

13.1.2 HTTP Load-Balancing
The Sterling Supply Chain Applications HTTP screens are stateful in the
sense that a screen preserves state information for subsequent screens.
As a result, you have to set up proxy servers or load-balancers to
load-balance HTTP requests with a “sticky” load-balancing policy. This
ensures HTTP requests go back to the server that have the session
states.

Load-balancing can improve performance for large number of HTTP users
because the user population is serviced by multiple application servers
that are managed as a cluster. Load-balancing can be implemented with
a variety of technologies ranging from the Apache proxy servers to
hardware-based load balancers.

13.2 Monitoring
You should monitor the following on a regular basis

Execute Thread Count

Track the average and maximum number of active execute
threads through third-party tools or custom-developed JMX-based
programs.

Correlate that number to the workload level issued to the
application servers.

Either using mathematical projections or system tests, estimate
the number of concurrent threads expected during your peak
operational periods. As a general rule, you should plan to keep
the average active threads to 15 or less.

Garbage Collection

94 Performance Management Guide

Monitoring

Monitor the frequency and health of the JVM’s heap management.
Please see the chapter relevant to your JVM in Part II, "Java
Virtual Machines".

Connection Pool Usage

Check if Connection High is equal to the JDBC pool size - the
Connection High is the highest number of connections ever
reached. Recall, the JDBC pool to be equal to the maximum
possible transaction concurrency level plus a safety buffer of two.
The Connection High should not be the same as the JDBC pool
size.

95

Part IV
 Databases

The part of the book provides information on how to implement, monitor
and tune the database management systems (DBMS).

96 Performance Management Guide

Database Management System 97

14
Database Management System

This chapter provides guidelines on the implementation, configuration
and tuning of database management systems in general.

14.1 Overview
Sterling Supply Chain Applications use a database server as a repository
for the transactional, reference and history data generated and used by
the Sterling Supply Chain Applications.

14.2 Planning
This section provides planning elements that have to be completed prior
to the implementation phase. The key planning tasks include, at a
minimum,

selecting a certified database management server software and
version.

determining the size and configuration of the database server node

determining the size and configuration of the database disk
subsystem

determining the disk technology

14.2.1 Supported Configuration
Please see the Sterling Supply Chain Applications Installation Guide for a
list of the supported configurations.

98 Performance Management Guide

Planning

14.2.2 Server Sizing
At appropriate times in the project lifecycle, you can request a Server
Sizing study from your Professional Services Project Manager or Sterling
Commerce Sales Executive. This study starts with the Sterling Supply
Chain Applications Server Sizing Questionnaire. Sterling Commerce
Performance Engineering will create a sizing document that will provide
an estimated processor, memory and network requirement for the
standard/baseline Sterling Supply Chain Applications. You need to factor
in additional requirements such as other workloads on the same node
(for example, additional third party software, customization, performance
monitors, and so forth).

14.2.3 Disk Subsystem

14.2.3.1 Disk Technology
Your disk capacity requirement is a very important input to the disk
configuration planning process. This is not a simple process that involves
many other factors including

survivability -

configure the disks with the ability to survive single or multiple
disk failures (e.g., RAID-1 or RAID-10)

configure the disk array with multiple I/O paths to the server to
survive I/O path failures

configure the disks to be accessible from multiple server nodes to
tolerate a single node failure

manageability -

if you have very short time windows to backup the database,
select disk arrays that allow you to take logical backups (e.g.,
array snapshots)

scalability/performance

configure the disk array with many small disks instead of a few
large disks so that you can increase the number of I/O paths

configure the disk array with large NVRAM cache to improve read
and write performance

Planning

Database Management System 99

configure the disks with stripping (e.g., RAID-0 or RAID-10)

Let’s take for example that you need 900GB and you have disk arrays or
storage area networks (SAN) that are made up of 93GB disks. The
following table summarizes the trade-off choices for the common disk
organizations. Let’s further assume that the database is implemented
over ninety 10GB data files.

Table 14–1 Disk Organization - Trade-Off

Tech Scalability Survivability Maintainability
Num
Disks

JBOD Poor - Subject to
throughput of
individual disks

Poor - Single disk
failure will create
outage and
require database
recovery

Poor - High disk
utilization skew

10

RAID-0 Excellent -
Striping N disks
provides
read/write
throughput at N
times a single disk

Poor - Single disk
failure will create
outage and
require database
recovery

Excellent - expect
near uniform disk
utilization within a
logical unit.
Potential LUN
utilization skew.

10

RAID-1 Poor - similar
performance to
JBOD

Better - Could
survive multiple
disk failures in
different mirrored
sets

Poor - High disk
utilization skew

20

RAID-5 Excellent for read
- similar to
RAID-0.
Potentially poor
for write
performance.

Better - Able to
survive a single
disk failure.
Multiple disk
failures will create
an outage and
require database
recovery.

Excellent - low
disk util skew.
Possible LUN
utilization skew.

11

RAID-01 Excellent
read/write
performance.

Could tolerate up
to two disk
failures as long as
both failures are
not in the same
mirrored set.

Excellent - low
disk util skew.
Possible LUN
utilization skew.

20

100 Performance Management Guide

Planning

14.2.4 Sterling Supply Chain Schema
The Sterling Supply Chain Applications Installation Guide provides
directions on how to create the Sterling Supply Chain Applications
database, the Sterling Supply Chain Applications tables and their
associated indices.

These DDL statements are intended to allow you to create a simple
schema that is suitable for general use. You need to review and possibly
modify these statements for production. Specifically

The DDL statements create a minimal set of indices for general
Sterling Supply Chain Applications use. You may need to create
additional or modify existing indices for your business practice.

The DDL statements create a single tablespace with a large data file.
You may want to create additional tablespaces for manageability as
well as additional data files for I/O load balancing.

14.2.4.1 Indices
Most customers use a subset of the broad functionality in the Sterling
Supply Chain Applications. As a result, the base Sterling Supply Chain
Applications database schema with the default or starting set of indices
may have to be adjusted for your specific use. Therefore, you should
validate the starting index set to see if they support your workloads.

As a suggestion, prior to production, you should conduct a system test
where all the key screens, agents and APIs run against a copy of the
production database. During this test, you can check if additional indices
are required and if there are any unused indices you can disable or drop.

Please see the following sections on how to enable index monitoring

RAID-10 Excellent
read/write
performance.

Could tolerate up
to N disk failures
as long as there
isn’t two failures
in a mirrored set

Excellent - low
disk util skew.
Possible LUN
utilization skew.

20

Table 14–1 Disk Organization - Trade-Off

Tech Scalability Survivability Maintainability
Num
Disks

Planning

Database Management System 101

for Oracle10g - see Section 15.1.4.1, "Oracle Index Monitoring and
Tuning"

for IBM UDB - see Section 16.1.4.1, "UDB Index Monitoring and
Tuning"

for MS SQL Server - see Section 17.1.2, "SQL Server Index
Monitoring and Tuning"

14.2.4.1.1 Custom Indices Please follow the following convention
when you create a new index.

First, make sure the index name does not end with the following suffix:

"_PK" - this suffix is reserved for indices that are the primary key
for the underlying table. For example, the index, yfs_order_
header_pk, is the primary key index for the yfs_order_header
table

"_Inn" where nn is an integer value from 0 to 99 - this suffix is
reserved for secondary or alternate indices for the underlying
table. For example, the index, yfs_order_header_i1, is a
secondary index for the yfs_order_header table

The convention above will prevent situations where new base Sterling
Supply Chain Applications indices has the same name as one of your
custom index.

Secondly, to further differentiate custom indices from the base, the
custom index should start with EXTN_ as a prefix and Xnn in the index
name. For example, if you add two indices to the YFS_ORDER_HEADER
table, the index names should be EXTN_ORDER_HEADER_X1 and EXTN_
ORDER_HEADER_X2.

102 Performance Management Guide

Planning

Oracle10g 103

15
Oracle10g

This chapter provides guidelines on the implementation, configuration
and tuning of Oracle10g.

15.1 Implementation
This section assumes that you have read the following Oracle documents
that are applicable to your platform.

Release notes specific to your platform

Quick Installation Guide for your platform

Installation Guide for your platform

Performance Tuning Guide

These documents can be found in the Oracle Technology Network site at
http://otn.oracle.com. The Oracle10g Release 2 (10.2) documents are
found at http://www.oracle.com/pls/db102/homepage.

This chapter provides recommendations that we found useful or critical to
the Sterling Supply Chain Applications performance.

15.1.1 Recommended Oracle Parameters
The following table summarizes the recommended choices.

Table 15–1 init.ora Parameters

Parameters Oracle10g

db_block_size 8KB

104 Performance Management Guide

Implementation

15.1.1.1 processes
This parameter sets the limit on the number of database connections.
You have to pick a reasonably high enough number so that the combined
connection requirements from the application servers, agents, and so
forth do not exceed the connection limit during peak processing periods.
If you do, you will have to restart the Oracle instance to increase this
limit.

Fortunately, with the use of connection pooling in application servers, the
number of database connections will be less than the number of users
logged into the Sterling Supply Chain Applications. Depending on your
anticipated peak workload traffic, this parameter could range from a
small number like 25 to a large number in the thousands.

You must regularly monitor the number of concurrent connections in
production (and especially during peak periods) to ensure that it does
not reach the maximum. When the maximum session is reached, Oracle
will refuse to establish new connection requests.

processes must be greater than the number of connections
needed by the (a) application servers, (b) the
agents/monitors and (c) operational management
tools.

compatible 10.2.0.1 (or the appropriate Oracle10g Rel 2 level)

sga_max_size,

sga_target,

pga_aggregate_target

1GB to 4GB depending on the amount of physical
memory on your database node

cursor_sharing SIMILAR

timed_statistics true

optimizer_mode ALL_ROWS

hpux_sched_noage 178 (only for HP-UX)

open_cursors default (higher if prepared statement caching
used)

query_rewrite_enabled true (if using the WMS application)

query_rewrite_integrity trusted (if using the WMS application)

Table 15–1 init.ora Parameters

Parameters Oracle10g

Implementation

Oracle10g 105

See WebLogic connection pooling discussions in Section 12.1.1.3,
"WebLogic Connection Pool".

See WebSphere connection pooling discussions in Section 13.1.1.2,
"WebSphere Connection Pool".

Guidelines for Estimating Number of Connections.

You can roughly estimate the number of concurrent users required by the
Sterling Supply Chain Applications with the following formula:

where

A = maximum number of agents transaction threads that will run
concurrently (see Section 22.3.1, "Agent Thread Levels".

B = maximum application server connection pool size times the
number of application server instances. See Maximum Capacity

C = any additional connections that are opened by customized code
or user exits that do not go through the application server connection
pool. This connection requirement is specific to your implementation.

D = number of asynchronous adapters (Service Definition
Framework) times the number of connections per adapter

Sterling Supply Chain Applications agents and monitors are long running
Java applications that open and use one Oracle connection per thread.

Example: Lets assume that you plan to configure a system with the
following characteristics:

six application server instances where each application server
instance can run up to a maximum of twenty-five (25) transactions
concurrently.

twelve agent threads

four asynchronous adapters where each could have up to four threads

maximum ten connections for operational tools such as Oracle OEM
or Quest SpotLight

Lets further assume that each transaction in the application server will
only requires one database connection. Specifically, user exits do not
open their own database connection. As a result, for the example above,
you will need:

concurrentOracleConnections A B C D+ + +=

106 Performance Management Guide

Implementation

in the worst case, 25 x 6 or 150 database connections from the
application servers during the peak period if there is a possibility that
all application server threads become active. This of course would not
be a desirable state - if there ever is such a possibility, you should
configure more application server instances.

12 database connections for the agents/monitors

4 x 4 or 16 database connections from the asynchronous adapters

10 database connections from your operational monitors

As a result, you should plan for at least 150 + 12 + 16 + 10 or 188
database connections.

As always, we strongly recommend that you benchmark your system to
validate these assumptions and estimates prior to a production
implementation. During the test, you should monitor the connection pool
usage levels in each of the WebLogic Server instances, the number of
agents that you need to run in order to meet your processing and service
levels and the actual Oracle connections established.

15.1.1.2 compatible
You should set the compatible parameter to the four level release
number that your Oracle software is running at in order to take
advantage of the latest optimizer features. An example of the release
number is 10.2.0.1.

15.1.1.3 sga_max_size, sga_target, pga_aggregate_target
In Oracle10g, setting sga_target will allow Automatic Memory
Management to manage the memory inside the System Global Area
(SGA). You can dynamically change the sga_target up to the value
specified by sga_max_size.

As a result, you could either set sga_target to be equal to or less than
the value of sga_max_size.

15.1.1.4 cursor_sharing
With cursor_sharing enabled, Oracle converts dynamic (non-reusable)
SQL into reusable SQL by changing literal values into bind variables.
Enabling cursor sharing will significantly reduce shared pool and library
cache contention.

Implementation

Oracle10g 107

For optimal performance, you must set cursor_sharing=SIMILAR.

15.1.1.5 optimizer_mode
Starting in Oracle10g, the optimizer mode of CHOOSE has been
deprecated. Instead, use the default of ALL_ROWS.

15.1.1.6 hpux_sched_noage
(only applicable to HP-UX)

This parameter instructs Oracle to run the database processes at a fixed
priority. The benefit is that this parameter reduces the likelihood of
processes that are holding on to critical data locks or system latches but
are unable to run because their dispatch priority was lowered.

This parameter is useful when you have a very large number of active
database processes relative to the number of processors.

15.1.1.7 open_cursors
This parameter sets the maximum cursors (active SQL statements) per
Oracle session. Generally, the default is sufficient unless you set a high
prepared statement cache size (see Prepared Statement Cache Size in
Section 12.1.1.3.1, "Define Data Source in the Sterling Supply Chain
Applications").

To find out the number of cursors opened by sessions, issue the following
query

select sid, count(*)
from v$open_cursor
group by sid

If you suspect a cursor leak, issue the following query

select sid,substr(sql_text,1,40),count(*)
from v$open_cursor
group by sid,substr(sql_text,1,40)
having count(*) > 10

That query will identify SQL statements that potentially have more than
10 open cursors in a given session.

108 Performance Management Guide

Implementation

15.1.1.8 query_rewrite_enabled and query_rewrite_integrity
If you are using the Sterling WMS application, you have to create at
least one function-based index as part of the application installation. As a
result, Sterling supply chain schema must have QUERY REWRITE
privilege. In addition, in order for Oracle to use the function-based
indexes in queries, you have to set the Oracle parameters

QUERY_REWRITE_ENABLED to true and

QUERY_REWRITE_INTEGRITY to trusted.

15.1.2 Redo Logs
Redo logs are critical for database and instance recovery. Proper redo log
configuration is also critical for performance. Some recommendations for
redo logs configuration include:

implement redo logs on raw devices

if you prefer file systems, you should implement redo logs on file
systems that are configured to perform I/O in small data blocks to
avoid partial block writes.

Redo log buffers are typically small. If redo logs are implemented on
file systems that are configured as 8KB blocks, some redo log writes
will require the file system to read in the block, append the log buffer
to that block and then write out the block to disk.

If you are using a file system on Solaris or AIX, the redo log file
system should be configured for 512 byte blocks. For HP-UX, the file
system block size should be 1024 bytes. See
http://www.ixora.com.au/tips/use_raw_log_files.htm.

If the redo logs are placed on file systems, enable direct I/O -
specifically avoid the situation where the writes are buffered in the
file system cache before written out to disk.

consider implementing redo logs on dedicated disk devices.

consider implementing redo log group log files on alternating disks

15.1.2.1 Redo File Size
Your choice of redo file size depends on your trade-off between
performance and availability, specifically the time needed to recover the

Implementation

Oracle10g 109

Oracle instance in the event of a failure. For performance, some
installations opt to create large redo logs to reduce the frequency of log
switches. However, doing so means that there are potentially more
transactions in the redo logs that have to be replayed during recovery.
The general rule for sizing redo log files is to look at the time it takes to
switch log files. By issuing the following query you can see how often the
redo log files are changing. As a general rule the logs should not be
switching more that once every twenty to thirty minutes.

select * from v$loghist
order by first_time desc

The following is an example of the output:

THREAD# SEQUENCE# FIRST_CHANGE# FIRST_TIME SWITCH_CHANGE#
 1 97 7132082 10/20/2003 11:47:53 PM 7155874
 1 96 7086715 10/20/2003 11:32:04 PM 7132082
 1 95 7043684 10/20/2003 11:15:07 PM 7086715
 1 94 6998984 10/20/2003 11:00:57 PM 7043684
 1 93 6950799 10/20/2003 10:48:03 PM 6998984

In the example above, the logs switched every fifteen minutes.

15.1.3 Server Mode
You should create Oracle to use dedicated servers (instead of shared
servers). Shared servers can be useful in two-tier client/server
configurations where a large number of users need to access the
database directly.

In the Sterling Supply Chain Applications, the WebLogic or WebSphere
Application Server serves as a transaction manager to multiplex large
number of users into a finite number of connections to the Oracle
instance. Long running processes such as Agent Servers, by design,
maintain a single dedicated connection to Oracle. As a result, in both
cases, dedicated servers are recommended.

15.1.4 Sterling Supply Chain Schema

15.1.4.1 Oracle Index Monitoring and Tuning
As we mentioned in Section 14.2.4.1, "Indices", you may have to adjust
the base starting index set to suit your operational environment. You can

110 Performance Management Guide

Implementation

find out what indices are used (and by corollary, which ones are not
used) through index monitoring. To enable index monitoring, issue the
following commands, one for each index.

...
alter index yfs_order_header_pk monitoring usage;
alter index yfs_order_header_i1 monitoring usage;
alter index yfs_order_header_i2 monitoring usage;
...

You can generate the command above by issuing the following query

select 'alter index ' || index_name || ' monitoring usage;'
from user_indexes;

Periodically, as you run your functionality and system test, you can run
the following query to see if which indices have been used and which
have not yet been used.

select index_name, monitoring, used, start_monitoring
from v$object_usage;

INDEX_NAME MONITORING USED START_MONITORING
------------------- ---------- ---- -------------------
YFS_ORDER_HEADER_I1 YES YES 01/29/2003 01:23:03

To turn off index monitoring, issue the following command:

alter index yfs_order_header_i1 nomonitoring usage;

15.1.4.2 Tablespaces
Prior to production, you should plan the overall storage strategy.

Since there are strong preferences, the DDLs to create temporary
tablespaces and data tablespaces are left to the discretion of the
customer.

We instead provide the following recommendations for your
consideration.

You should consider creating one or more tablespaces that only store
data tables and another set of tablespaces for indices.

Implementation

Oracle10g 111

You should implement these tablespaces as locally managed
tablespaces (LMTs)You do this by specifying extent management
local when creating the tablespace.

You should implement tablespaces with automatic space management
by specifying segment space management auto.

With LMTs, you may want to consider creating tablespaces that store
small reference tables with the autoallocate extent allocation
model.

create tablespace yt1
 datafile ’/u03/dbs/pyantradb/yt1_001.dbf’ size 2047m
 extent management local autoallocate
 segment space management auto;

If you have very large tables, you may want to consider putting those
tables into their own tablespace and to use the uniform extent
allocation model.

create tablespace yfs_order_header_t1
 datafile ’/u03/dbs/pyantradb/y_order_header_t1_001.dbf’ size 2002m
 extent management local uniform size 1000m
 segment space management auto;

you should create your temporary tablespace as a temporary data file
(temp files). Temp files are used to store intermediate results (e.g.,
from large sort operations). Changes to temp files are not recorded in
the redo logs.

create temporary tablespace yfs_temp
 tempfile ’/u03/dbs/pyantradb/yfs_temp_01.dbf’ size 1024m
 extent management local
 uniform size 1m;

15.1.4.2.1 Tables After creating the tablespaces, you can modify and
use the DDL script file, $YFS_HOME/Applications/Foundation/database/
oracle/scripts/yfs_tables.sql, to create the tables. At a minimum, you
may want to modify the table to tablespace mapping.

15.1.4.3 Index and Table Statistics
Database optimizers rely on up-to-date accurate table and index
statistics to generate optimal access plans.

112 Performance Management Guide

Implementation

Unlike earlier Oracle versions, Oracle10g, by default, automatically
gather statistics during its maintenance window for tables that have
undergone sufficient changes. As part of generating the statistics, Oracle
will generate histograms for skewed columns.

Skewed columns are columns that have a non-uniform distribution of
values. For example, the enterprise_key column in the YFS_ORDER_
HEADER table may be made up of a few values where one value may be
more prevalent. In contrast, columns such as the order_no is more
uniformly distributed.

Given basic statistics such as number of rows and the number of distinct
column values, Oracle tends to choose a full table scan when faced with a
query, such as the one below, against columns with high skew and/or low
cardinality

select *
from yfs_order_header
where derived_from_order_header_key = ’2003012412213801928344’;

can result in table scans even if the columns are indexed. The example
above was from an actual case (see below).

From the optimizer’s perspective, the queries against these columns
either will return a small or a very large result set. To err on the side of
caution, the optimizer will generally choose a table scan over an index
range scan.

You can get the optimizer to choose a more optimal access plan by
providing additional statistics in the form of histograms.

By default, Oracle10g will create histograms as part of the statistics
generation. You can verify if a column has histograms by issuing the
following command

Case Study: Customer reported that the Order Detail
screen took over 4 minutes. The query that checks if the
order is a derived order resulted in a table scan of the
YFS_ORDER_HEADER table. When customer ran dbms_
stats to create histograms, Order Detail screen dropped to
1 second.

Implementation

Oracle10g 113

select table_name,column_name,histogram
from user_tab_columns

TABLE_NAME COLUMN_NAME HISTOGRAM
YFS_ORDER_LINE CHAINED_FROM_ORDER_LINE_KEY NONE
YFS_ORDER_LINE CHAINED_FROM_ORDER_HEADER_KEY NONE
YFS_ORDER_LINE DERIVED_FROM_ORDER_LINE_KEY FREQUENCY
YFS_ORDER_LINE DERIVED_FROM_ORDER_HEADER_KEY FREQUENCY

In the example above, Oracel created histograms for the two DERIVED_
FROM columns but not the CHAINED_FROM columns. To manually create
the histograms for the CHAINED_FROM columns, issue the following
command

exec dbms_stats.gather_table_stats (ownname => 'YANTRA', -
tabname=>’YFS_ORDER_LINE’, -
estimate_percent => dbms_stats.auto_sample_size, -
method_opt=>'for columns size auto CHAINED_FROM_ORDER_LINE_KEY, CHAINED_
FROM_ORDER_HEADER_KEY');

When you rerun the histogram query, you should now get

TABLE_NAME COLUMN_NAME HISTOGRAM
YFS_ORDER_LINE CHAINED_FROM_ORDER_LINE_KEY FREQUENCY
YFS_ORDER_LINE CHAINED_FROM_ORDER_HEADER_KEY FREQUENCY
YFS_ORDER_LINE DERIVED_FROM_ORDER_LINE_KEY FREQUENCY
YFS_ORDER_LINE DERIVED_FROM_ORDER_HEADER_KEY FREQUENCY

In the example above, the method_opt with the auto parameter lets
Oracle decide whether histograms are to be created based on the
column’s data distribution and the way the columns are being used by
the application.

15.1.4.3.1 Skewed Columns The following query will help you
identify columns with skewed data distribution.

select ui.table_name,ui.index_name, column_name, column_position, num_rows,
distinct_keys as dist_keys
from user_indexes ui, user_ind_columns uic
where ui.table_name = uic.table_name and
 ui.index_name = uic.index_name and
 ui.num_rows > 0 and
 ui.distinct_keys/ui.num_rows < 0.1
order by table_name, index_name, column_position

114 Performance Management Guide

Implementation

TABLE_NAME INDEX_NAME COLUMN_NAME NUM_ DIST
 ROWS _KEYS
YFS_ORDER_LINE YFS_ORDER_LINE_I3 CHAINED_FROM_ORDER_HEADER_KEY 6552586 1
YFS_ORDER_LINE YFS_ORDER_LINE_I4 DERIVED_FROM_ORDER_HEADER_KEY 6357590 1
YFS_ORDER_LINE YFS_ORDER_LINE_I5 DERIVED_FROM_ORDER_LINE_KEY 6624191 1
YFS_ORDER_LINE YFS_ORDER_LINE_I6 CHAINED_FROM_ORDER_LINE_KEY 6534969 1
YFS_ORDER_LINE YFS_ORDER_LINE_I7 DEPENDENT_ON_LINE_KEY 6457481 1

In the example above, the customer does not use derived or chained
orders.

You should ensure that histograms are added to indexed columns if the
absence of histograms causes Oracle to choose an inefficient plan.

IBM Universal Database (UDB) 115

16
IBM Universal Database (UDB)

This chapter provides guidelines on the implementation, configuration
and tuning of IBM UDB 8.2.

16.1 Implementation
This section assumes that you have read the IBM UDB Administration
Guide: Planning [3], Administration Guide: Implementation [4] and
Administration Guide: Performance [5] guides.

16.1.1 Recommended UDB dbset Registry Variables
UDB exposes close to 200 db2set registry variables. Of that, we have
found the following variables to be critical for performance. These
parameters are described in [5].

DB2_EVALUNCOMMITTED

Enabling this variable can reduce the amount of unneeded lock
contention from read share and next-key share. By default, UDB

Table 16–1 db2set registry variables

db2set registry
variables UDB 8.2

DB2_EVALUNCOMMITTED ON

DB2_SKIPDELETED ON

DB2_SKIPINSERTED ON

DB2_PARALLEL_IO see below for recommendations

DB2_SELECTIVITY ALL

116 Performance Management Guide

Implementation

requests share locks on the index or record before it checks if the record
satisfies the query predicate. Queries that scan a set of records in tables
with high frequency of inserts or updates can unnecessarily block on
records that do not belong to its result set.

When you set DB2_EVALUNCOMMITTED=ON, UDB will perform an
uncommitted read on the record to perform the predicate check. If the
record satisfies the predicate, UDB will then request a share lock on that
record.

DB2_SKIPDELETED

Enabling this variable allows index-range or table-scan queries to skip
over records that are in an uncommitted delete state. This reduces the
amount of lock contention from read share and next-key share locks
from range queries in tables with a high frequency of deletes.

When enabled, will allow, where possible, table or index access scans to
defer or avoid row locking until a data record is known to satisfy
predicate evaluation. With this variable enabled, predicate evaluation
may occur on uncommitted data.

It is applicable only to statements using either Cursor Stability or Read
Stability isolation levels. For index scans, the index must be a type-2
index. Furthermore, deleted rows are skipped unconditionally on table
scan access while deleted keys are not skipped for type-2 index scans
unless the registry variable DB2_SKIPDELETED is also set.

DB2_SKIPINSERTED

Enabling this parameter allows SELECTs with cursor stability or read
stability isolation levels to skip over uncommitted inserted rows. This
parameter setting can reduce record lock contention on tables with heavy
insert rates.

DB2_PARALLEL_IO

Enabling this variable changes the way in which UDB calculates I/O
parallelism to the tablespace. By default, UDB sets I/O parallelism to a
tablespace to be the number of containers in that tablespace. For
example, if the tablespace has four containers, prefetches to that
tablespace will be performed as four extent-sized prefetch requests.

You should set the DB2_PARALLEL_IO variable if you implement
containers on stripped devices (e.g., RAID-5, RAID-10 or RAID-01).

Implementation

IBM Universal Database (UDB) 117

If you set DB2_PARALLEL_IO=ON or DB2_PARALLEL_IO=*, UDB will assume
that containers are implemented on a RAID 5 (6+1) configuration - six
data disks plus 1 parity disk. Using the example above, prefetches to the
four-container tablespace above will be performed in 24 extent-sized
prefetch requests.

You should monitor the unread_prefetch_pages and prefetch_wait_
time monitor element from the snapshot_database monitor to assess the
effectiveness of your prefetch parallel I/O settings. The unread_
prefetch_pages monitor element tracks the number of prefetch pages
that were evicted from the buffer pool before it was used. A continually
growing number could indicate that the prefetch requests are too large
either because the prefetch size is larger than the pages needed or that
the prefetch activities are bringing in too many pages for the capacity of
the buffer pool. In either case, you may want to consider reducing the
prefetch size.

The application could be waiting for pages if you have high prefetch_
wait_time values.

DB2_SELECTIVITY

Enabling this variable allows the selectivity clause to be used in the
where clause. Without setting DB2_SELECTIVITY=ALL, UDB will only
allow the selectivity clause to be used for User Defined Functions (UDFs).

16.1.2 Recommended DBM CFG Parameters

Table 16–2 dbm cfg parameters

dbm cfg parameters UDB 8.2

INTRA_PARALLEL SYSTEM

DFT_MON_BUFPOOL

DFT_MON_LOCK

DFT_MON_SORT

DFT_MON_STMT

DFT_MON_TABLE

DFT_MON_TIMESTAMP

DFT_MON_UOW

ON

ON

ON

ON

ON

ON

ON

MON_HEAP_SZ 16384

118 Performance Management Guide

Implementation

INTRA_PARALLEL

In general, we do not recommend using intra-partition parallelism in an
online transactional application.

However, parallelism, can benefit infrequent but long running,
resource-intensive operations such as creating indices.

As a result, we recommend setting INTRA_PARALLEL=SYSTEM along with
the default degree of parallelism to none (DFT_DEGREE=1). Please see
Section 16.1.3, "Recommended DB CFG Parameters".

You can enable parallelism at the connection (application) level by setting
the following command

db2 set current degree = ’8’

In the example above, UDB will be allowed to use parallelism up to
degree 8.

DFT_MON_BUFPOOL
DFT_MON_LOCK
DFT_MON_SORT
DFT_MON_STMT
DFT_MON_TABLE
DFT_MON_TIMESTAMP
DFT_MON_UOW

We recommend enabling the monitor switches above in production.

MAXAGENTS

This parameter sets the limit on the number of database manager agents
(both coordinator or subagents) that can be concurrently running at any
given time. You have to pick a reasonably high enough number so that
the combined connection requirements from the application servers,
agents, monitoring tools, and so forth do not exceed the MAXAGENTS

MAXAGENTS must be greater than the number of connections
needed by the (a) application servers, (b) the
agents/monitors and (c) operational management
tools.

Table 16–2 dbm cfg parameters

dbm cfg parameters UDB 8.2

Implementation

IBM Universal Database (UDB) 119

limit during peak processing periods. If you do, you will have to restart
the UDB instance to increase this limit.

Fortunately, with the use of connection pooling in application servers, the
number of database connections will be less than the number of users
logged into the Sterling Supply Chain Applications. Depending on your
anticipated peak workload traffic, this parameter could range from a
small number like 25 to a large number in the thousands.

You must regularly monitor the number of concurrent connections in
production (and especially during peak periods) to ensure that it does
not reach the maximum. When the MAXAGENTS limit is reached, UDB
will refuse to establish new connection requests.

See WebLogic connection pooling discussions in Section 12.1.1.3,
"WebLogic Connection Pool".

See WebSphere connection pooling discussions in Section 13.1.1.2,
"WebSphere Connection Pool"

Guidelines for Estimating Number of Connections.

You can roughly estimate the number of concurrent users required by the
Sterling Supply Chain Applications with the following formula:

where

A = maximum number of agents transaction threads that will run
concurrently (see Section 22.3.1, "Agent Thread Levels".

B = maximum application server connection pool size times the
number of application server instances. See Maximum Capacity

C = any additional connections that are opened by customized code
or user exits that do not go through the application server connection
pool. This connection requirement is specific to your implementation.

D = number of asynchronous adapters (Service Definition
Framework) times the number of connections per adapter

Sterling Supply Chain Applications agents and monitors are long running
Java applications that open and use one database connection per thread.

Example: Lets assume that you plan to configure a system with the
following characteristics:

concurrent UDB()Connections A B C D+ + +=

120 Performance Management Guide

Implementation

six application server instances where each application server
instance can run up to a maximum of twenty-five (25) transactions
concurrently.

twelve agent threads

four asynchronous adapters where each could have up to four threads

maximum ten connections for operational tools such as Oracle OEM
or Quest SpotLight

Lets further assume that each transaction in the application server will
only requires one database connection. Specifically, user exits do not
open their own database connection. As a result, for the example above,
you will need:

in the worst case, 25 x 6 or 150 database connections from the
application servers during the peak period if there is a possibility that
all application server threads become active. This of course would not
be a desirable state - if there ever is such a possibility, you should
configure more application server instances.

12 database connections for the agents/monitors

4 x 4 or 16 database connections from the asynchronous adapters

10 database connections from your operational monitors

As a result, you should plan for at least 150 + 12 + 16 + 10 or 188
database connections.

As always, we strongly recommend that you benchmark your system to
validate these assumptions and estimates prior to a production
implementation. During the test, you should monitor the connection pool
usage levels in each of the application server instances, the number of
agents that you need to run in order to meet your processing and service
levels and the actual UDB database connections established.

16.1.3 Recommended DB CFG Parameters

Table 16–3 db cfg Parameters

db cfg parameters UDB 8.2

DBHEAP 5,000 or higher

Implementation

IBM Universal Database (UDB) 121

DBHEAP

The default DBHEAP is too small. You should set it anywhere from 5,000
or higher depending on the amount of memory available and the traffic
volume.

LOCKLIST

The DOM application is predominantly an online transaction processing
(OLTP) application characterized by high volume of short transactions. A
lock list of around 5,000 to 10,000 4K-pages should be sufficient. The
WMS application has a combination of OLTP transactions as well as
long-running transactions that update many records. This application
should have a locklist of around 10,000 or more 4K-pages.

UDB could escalate row level locks to table locks if the locklist is too
small. You should track the following monitor elements:

lock_list_in_use to see how of the locklist allocation is used

lock_escals to see if UDB had to escalate row level locks to table
locks

x_lock_escals to see UDB had to escalate row level locks to
exclusive table locks

The performance of any OLTP system can suffer when table locks are
obtained.

LOCKLIST 5,000 to 10,000 (DOM)

10,000 or more (WMS)

LOGFILSIZ 262144

LOGPRIMARY 5 to 10 or more

LOGSECOND 3

NUM_LOG_SPAN LOGPRIMARY - safety buffer

DFT_DEGREE 1

PCKCACHESZ 131072

SORTHEAP 40,000

Table 16–3 db cfg Parameters

db cfg parameters UDB 8.2

122 Performance Management Guide

Implementation

LOGFILSIZ, LOGPRIMARY, LOGSECOND

At a minimum, you should configure four transaction logs
(LOGPRIMARY=4) of 1GB (LOGFILSIZ=262144 4K-pages) for DOM and
ten transaction logs (LOGPRIMARY=10) for WMS.

As an additional precaution, you should configure at least three
secondary transaction logs (LOGSECOND=3). UDB will allocate secondary
logs when it cannot reuse any of the primary logs because of active
transactions.

You should adjust these settings as needed.

You should track the following monitor elements to assess the
effectiveness of these settings.

total_log_used and tot_log_used_top to see how much of the logs
are used. You should investigate which workloads are consuming or
holding the transaction logs when this value approaches the total
primary log capacity. If needed, you may have to adjust the
LOGPRIMARY higher.

sec_log_used_top and sec_logs_allocated to see if secondary
transaction logs are used. You should investigate how often logging
spills over to the secondary logs, what workloads are running during
the spill. In some cases, you may have to increase LOGPRIMARY to
prevent the log spills.

NUM_LOG_SPAN

Setting this parameter limits the number of logs a transaction can span,
which will prevent situations where UDB cannot switch transaction logs
because all transaction logs are active. For example,

somebody could update a record in Control Center but forget to
commit the change

there could be software bug that updates one or more database
records but not commit the work

This parameter should be set to at least 3 so that valid long running
transactions (e.g., WMS Create Wave agent) are not prematurely forced.
This parameter should be set to at most LOGPRIMARY minus a safety
buffer (e.g., 2). For example, if you have set LOGPRIMARY=10, then set
NUM_LOG_SPAN=8.

Implementation

IBM Universal Database (UDB) 123

DFT_DEGREE

This parameter sets the default degree of parallelism for intra-partition
parallelism. In general, online transactional applications, like the Sterling
Supply Chain Applications, typically experiences high volume of short
queries that do not benefit from parallel queries. As a result, we
recommend setting DFT_DEGREE=1 which will disable intra-partition
parallelism.

Parallelism can benefit long running, resource-intensive operations such
as creating indices on a large table. To enable parallelism, you need to

enable INTRA_PARALLEL (see Section 16.1.2, "Recommended DBM
CFG Parameters").

override the default degree of parallelism in the application
(connection) prior to performing the operation. For example, issue
the following command to set the degree of parallelism to 8

db2 set current degree = ’8’

PCKCACHESZ

The package cache is used to store the SQL statements and execution
plans. We recommend setting the package size to 131072 4K pages or
512MB.

SORTHEAP

This parameter sets the maximum number of pages used for sorts. You
should monitor the ratio of sort_overflows/total_sorts from the database
snapshot to see if the percentage of overflows is reasonable (for
example, less than 2%).

16.1.3.1 UDB Event Monitors
The Sterling Supply Chain Applications is written to minimize the
occurrence of deadlocks. For example, critical database records such as
inventory records are always obtained in the same order. However,
deadlocks can still happen for many reasons including

custom code may obtain records in a different order

UDB may choose an access plan that retrieves records in a different
order

124 Performance Management Guide

Implementation

To help diagnose deadlocks, we recommend setting the following event
monitor.

MON=<monitor name - e.g., DLMON>
OUTDIR=<directory to store deadlock information>

db2 -v create event monitor $MON for deadlocks with details \
 write to file $OUTDIR buffersize 64 nonblocked
db2 -v set event monitor $MON state = 1

When a deadlock occurs, issue the following.

db2 flush event monitor $MON
db2evmon -path $OUTDIR

The flush will ensure deadlock records in the buffers are written out. The
db2evmon will format the deadlock information.

16.1.3.2 Table and Index Statistics
UDB relies on good up-to-date table and index statistics in order to
generate optimal access plans. Inaccurate statistics could lead to
sub-optimal access plans; in the worst case, it could lead to deadlocks.

To generate the statistics, we recommend running the following
command for each table in the Sterling Supply Chain Applications
schema.

db2 runstats on table <table name> on key columns with distribution on key
columns and sampled detailed indexes all allow read access

The frequency at which you collect statistics depends on many factors.
You should run runstats more frequently (e.g., once per day) when the
table is growing rapidly - e.g., more than 10% each day. You can
decrease the frequency (e.g., once per week or every two weeks) if the
table has reached a sufficiently large size (e.g., greater than 1 to 5
million records).

16.1.3.2.1 Volatile Tables

In some cases, the content of tables (e.g., YFS_INVENTORY_SUPPLY_
ADDNL and YFS_INVENTORY_DEMAND_ADDNL) can fluctuate
significantly during the day. Therefore, the representativeness of the
statistics can depend on when the statistics were gathered.

Implementation

IBM Universal Database (UDB) 125

In some cases, UDB may choose to table scan a table with a large
number of records if the statistics were generated when the table was
empty. The volatility of the data makes reliance on statistics, which
represents the table at a single point in time, unreliable. In those
situations, you can mark the table as volatile with the following
command.

alter table <table name> volatile cardinality

At a minimum, we recommend setting the volatile flag on the following
tables

YFS_EXPORT

YFS_IMPORT

YFS_INVENTORY_SUPPLY_ADDNL

YFS_INVENTORY_DEMAND_ADDNL

YFS_TASK_Q

You may also have to mark small tables as volatile during their initial
growth phase. In some cases, UDB may choose to use a full table scan
when the table is small. These table scans can deadlock with other
queries. You should mark these tables as non-volatile when the table has
grown to a sufficiently large size. At that time, you want the optimizer to
choose plan based on statistics.

16.1.3.3 CLI Packages
If you configure a service as a string of API calls, all performing under a
single transaction commit boundary, that service may fail with a
SQL0805N error with a package NULLID.SYSLN203.

This happens when the number of cursors opened by a given SQL
statement goes beyond the capacity defined for the small and large CLI
packages (which are used by JDBC). In such a case, you should first
check to see if there was a cursor leak. If you are certain there isn’t a
cursor leak, you can then either break up the service into smaller chunks
or increase the number of packages bound.

The syntax for adding extra packages is

db2 bind ../sqllib/bnd/db2clipk.bnd clipkg 10

126 Performance Management Guide

Implementation

The number of packages required can differ depending on individual
situations. You should test your application under expected peak
concurrency levels and transaction rates to ensure you have sufficient
packages.

16.1.4 Sterling Supply Chain Schema

16.1.4.1 UDB Index Monitoring and Tuning
As we mentioned in Section 14.2.4.1, "Indices", you may have to adjust
the base starting index set to suit your operational environment. You can
find out what indices are used (and by corollary, which ones are not
used) You can use UDB’s Design Advisor to monitor index usage. The
Design Advisor will recommend additional indices as well as indices that
are not used.

16.1.4.2 Index and Table Statistics
The database optimizers rely on up-to-date accurate table and index
statistics to generate optimal access plans.

In addition, columns, such as enterprise_key in the yfs_order_header,
can exhibit high skew - for example, there could be many orders for one
enterprise and a few orders for another enterprise. Columns such as
derived_from_order_header_key in the yfs_order_header table could
have very high skew, which will result in low cardinality because they
only contain spaces. This can happen when customers have small
numbers of derived orders.

Queries, such as the one below, against columns with high skew and/or
low cardinality

select *
from yfs_order_header
where derived_from_order_header_key = ’2003012412213801928344’;

can result in table scans even if the columns are indexed. The example
above was from an actual case (see below).

From the optimizer’s perspective, the queries against these columns
either will return a small or a very large result set. To err on the side of
caution, the optimizer will generally choose a table scan over an index
range scan.

Implementation

IBM Universal Database (UDB) 127

You can get the optimizer to choose a more optimal access plan by
providing additional statistics in the form of histograms.

Issue the following command to create histograms in UDB,

db2 runstats on table <table name> on key columns with distribution on key
columns and sampled detailed indexes all allow read access

128 Performance Management Guide

Implementation

Microsoft SQL Server 129

17
Microsoft SQL Server

This chapter provides guidelines on the implementation, configuration
and tuning for Microsoft SQL Server 2000.

17.1 Implementation

17.1.1 Parameters
Microsoft has designed SQL Server to be easy to install and manage. The
SQL Server installation is straight-forward with little up-front choices.
The only mandatory decision points is the following collation settings
which is needed by the Sterling Supply Chain Applications to support
case-insensitive sorts:

17.1.2 SQL Server Index Monitoring and Tuning
Prior to production, you should conduct a system test where all the key
screens, agents and APIs are run against a copy of the production
database. This will be your opportunity to see if additional indices are
required.

When you add your own indices, choose a naming convention for the
indices so that the index name does not end with the following suffix:

Table 17–1 SQL Server Installation Decision Points

Description Recommendation

Collation Settings SQL Collation: Dictionary order,
case-insensitive, for use with 1252
Character Set

130 Performance Management Guide

Implementation

"_PK" - this suffix is reserved for indices that are the primary key
for the underlying table. For example, the index, yfs_order_
header_pk, is the primary key index for the yfs_order_header
table

"_Inn" where nn is an integer value from 0 to 99 - this suffix is
reserved for secondary or alternate indices for the underlying
table. For example, the index, yfs_order_header_i1, is a
secondary index for the yfs_order_header table

In addition, you should enable index monitoring to see if there are any
unused indices you can disable or drop.

In SQL Server, you can use the Index Tuning Wizard to recommend new
indices as well as indices that are not used.

17.1.3 Statistics
By default, SQL Server will automatically create statistics on indexed
fields when the index is created. If deemed beneficial, SQL Server will
also create statistics on non-indexed fields that are used in joins or filter
criteria. The information on the column’s data distribution could help the
Query Optimizer choose the optimum execution plan. Although this
feature can be disabled, we recommend leaving it on. To check if
automatic statistics creation is enabled, issue the following query.

select databasepropertyex('ywinss01','IsAutoCreateStatistics')

The result is 1 if enabled and 0 if disabled.

SQL Server will also automatically manage the statistics based on the
amount of changes to the table. When the number of changes exceed a
threshold, SQL Server will automatically generate new statistics.
Although this feature can be disabled, we recommend leaving it on. To
check if automatic statistics update is enabled, issue the following query.

select databasepropertyex('ywinss01','IsAutoUpdateStatistics')

The result is 1 if enabled and 0 if disabled.

Advanced Database Topic - Oracle10g Real Application Cluster Database 131

18
Advanced Database Topic - Oracle10g Real

Application Cluster Database

This chapter provides limited guidelines on implementing, configuring
and tuning Oracle10g Real Application Cluster (RAC). RAC is a powerful
technology offered by Oracle. This chapter will only present information
specific or applicable to the Sterling Supply Chain Applications.
Installation and tuning RAC in general is beyond the scope of this
document.

Please consult Oracle documentation, technical support and training for
all questions pertaining to RAC and the associated technologies such as
HP ServiceGuard that are integral to the RAC solution.

18.1 Overview
Oracle10g RAC is a technology that allows you to cluster multiple Oracle
instances to acts as one Oracle instance.

18.2 Planning

18.2.1 Supported DB Platforms
Sterling Supply Chain Applications Release 7.9 has been tested with
Oracle10g RAC on the following database server platforms.

HP HP-UX11i running on HP PA-RISC and Itanium 2 processors

Sun Solaris 2.9 running on Sun UltraSPARC IV or IV+ processors

Red Hat Enterprise Linux 4.0 Advanced Server running on Intel Xeon
IA-32 (32-bit), EM64T/AMD64 (64-bit) and Itanium processors

132 Performance Management Guide

Planning

18.2.2 Supported Filesystems
The Oracle10g RAC database data files can be implemented on clustered
filesystems or raw devices.

The filesystem is an important operating system component that is
critical for both performance and data integrity. Sterling Commerce
requires that the Sterling Supply Chain Applications be configured and
deployed only on filesystems that are approved and certified for use with
RAC by the Oracle Corporation.

The Sterling Supply Chain Applications has been tested with Oracle RAC
running with

raw devices

Oracle Cluster File System (running on Red Hat Enterprise Linux).

The Sterling Supply Chain Applications will not support systems that run
on non-Oracle RAC supported filesystems such as the Sistina GFS.

18.2.3 Oracle RAC Support Limitations
There are practical limits to any technology. One should not expect every
technology to scale infinitely. At this time, Sterling Supply Chain
Applications will support up to 3-node RAC configurations.

Sterling Supply Chain Applications has, to date, been either tested or
deployed on 2-node (HP RP7410 eight-way processors each for a total of
16 processors) and 3-node Intel servers running Red Hat Enterprise
Linux 3.0.

Please call Technical Support if you have questions.

18.2.3.1 OLTP Applications and Oracle RAC Concerns
For OLTP applications, including the Sterling Supply Chain Applications,
one common concern is high insertion rates and the effect on index
maintenance. In high volume OLTP applications, index leaf blocks have to
be maintained and passed among the multiple nodes to keep them all in
sync. Generally, when new records, like orders, are being indexed, they
are being written to the right most part of the index. In very high
transaction volumes, concurrent insertions could wait while a similar
request is handled by a different node. The index leaf block for the right
most part of the index cannot be released to another node until the

Planning

Advanced Database Topic - Oracle10g Real Application Cluster Database 133

request is completed. This forces more sequenced rather than
simultaneous processing and is likely to drag significantly on
performance.

Another example is the frequency with which inventory records are being
accessed and updated.

Research suggests that other OLTP app vendors are generally aware of
these issues — some only certifying for a maximum number of nodes and
other articles suggesting optimal node / CPU configurations for Oracle
RAC.

Some industry literature suggest using hash partition or reverse indices
to reduce or eliminate contention to enable OLTP applications for RAC.
What isn’t stated is that these techniques can negatively affect
application performance which could slow down query response times. At
this time, Sterling Supply Chain Applications has not tested, nor will we
support, the use of reverse indices or hash partitions for Oracle RAC
enablement. Please check with Technical Support for the latest
information.

18.2.4 Recommendations

18.2.4.1 Sequence Numbers
Sterling Supply Chain Applications uses Oracle sequence numbers to
quickly generate unique numbers. If you are upgrading from pre Yantra
5x 5.0 SP2 versions, ensure the seq_yfs_task_key sequence is created
with the NOORDER parameter. If the ORDER option is enabled, RAC will
disable the CACHE option.

The SQL command to create sequence is as follows

create sequence seq_yfs_table_key
increment by 1 start with 1
maxvalue 9999999999
minvalue 1
cycle
cache 500 noorder ;

In the example above, the CACHE option pre-allocates and stores 500
sequence numbers in the instance’s SGA for fast access. When those
sequence numbers are used up, Oracle will preallocate another group of
sequence numbers. The CACHE option should be set to a value so that

134 Performance Management Guide

Planning

sequence requests for one to two seconds during the peak period can be
satisfied in memory is critical for performance (see [1] and [2]).

For example, if the sequence cache is set to 500, the last_sequence_
number in user_sequences table should not grow by more than 500
every two seconds or 30,000 every minute. You should monitor this
value periodically during the peak hour.

The NOORDER option allows each RAC instance to preallocate its own
group of sequence numbers. The NOORDER option is enabled by default.
If the NOORDER option is disabled (or if the ORDER option is selected),
Oracle will disable the CACHE option.

Enabling the CACHE option with a sufficiently high value and the
NOORDER option are critical for Oracle10g RAC performance.

You can issue the following command to check whether the ORDER
option is disabled.

select sequence_name, order_flag, cache_size,last_number
from user_sequences
where sequence_name = ’SEQ_YFS_TABLE_KEY’

If the ORDER_FLAG is set to "N", the NOORDER option is enabled.

SEQUENCE_NAME ORDER_FLAG CACHE_SIZE LAST_NUMBER
------------------------------ ---------- ---------- -----------
SEQ_YFS_TABLE_KEY N 500 422838694

18.2.5 High Availability
Please refer to the Sterling Supply Chain Applications High Availability
Guide document for more detailed instructions.

From a performance perspective, you need to configure the Sterling
Supply Chain Applications system so that it can quickly discover the
Oracle failure and to quickly recover the connections.

The Sterling Supply Chain Applications system is made up of client
programs that connect to the Oracle instance. These include:

WebLogic or WebSphere application servers

Sterling Supply Chain Applications agents or monitors

Planning

Advanced Database Topic - Oracle10g Real Application Cluster Database 135

18.2.5.1 WebLogic Connection Pool Properties
In WebLogic, we recommend setting the following Connection Pool
properties so that WebLogic can detect stale or dead connections faster.

With the settings above, the WebLogic connection pool manager will test
idle connections every Test Frequency seconds by issuing a Select
statement to Test Table Name. Connections that do not pass the test
will be closed and a new connection reestablished. This setting will help
the connection pool manager to get rid of dead or stale connections.

Additionally, when you set Test Connections On Reserve to true, the
connection pool manager will test connections before the pool manager
gives the connection to transactions. This test adds a small delay to each
connection request.

You must set Test Table Name. The settings above are invalid without
the Test Table Name setting.

The Initial Capacity and Maximum Capacity settings should be set to
your operational requirements (see Section 12.1.1.3.1, "Define Data
Source in the Sterling Supply Chain Applications"). You should not set
Initial Capacity to zero - when WebLogic shrinks the connection pool
(at every ShrinkPeriodMinutes minutes), it will aggressively shrink all
currently unused connections, even connections that were recently
active.

You may not want to set Test Created Connections and Test
Released Connection especially if you already have enabled Test
Connections On Reserve. The probability that a connection has died
after it was created or after it was released should be very low.

Table 18–1 WebLogic Connection Pool Properties

Parameter Value

Test Frequency 120

Test Table Name SQL SELECT 1 FROM DUAL

Test Reserved Connections enable

Initial Capacity 3

Maximum Capacity see Section 12.1.1.3.1, "Define Data Source in
the Sterling Supply Chain Applications"

Shrink Frequency leave at the default of 900 seconds

136 Performance Management Guide

Planning

18.2.5.2 TCP/IP
The default time for a connection request to an unavailable node to
timeout is deliberately set to a high value. This value allows connection
requests (e.g., telnet connections) the opportunity to find the node on
the Internet. This setting is less applicable in a high-speed switched
network.

On Solaris 2.8, a telnet to a non-existent node will take about 2.75
minutes to timeout. On HPUX11, the timeout is around 75 seconds.

The connection timeout value can be tuned down by issuing the following
ndd commands.

ndd -set /dev/tcp tcp_ip_abort_cinterval 1000
ndd -set /dev/tcp tcp_rexmit_interval_initial 200
ndd -set /dev/tcp tcp_rexmit_interval_max 5000

This known phenomenon is described in the following SunSolve article
found in [10]. The settings are applicable to both Solaris and HP-UX.

18.2.5.3 Fast Application Notification Support
Fast Application Notification (FAN) provides RAC the ability to inform the
client programs the status of the cluster. With FAN, the client programs,
especially those with connection pools, can drop stale connections to
failed nodes.

The Sterling Supply Chain Applications does not support FAN because
neither the BEA WebLogic or the IBM WebSphere application servers are
aware of or are capable of exploiting FAN notifications.

137

Part V
Java Message Services

This part of the book provides information on how to implement, monitor
and tune Java Message Services (JMS).

Configuring and operating the JMS queues efficiently is critical for
performance. Suboptimal JMS queue settings will cause poor application
performance at best. It could cause application outages at worst.

The Sterling Supply Chain Applications is certified to run with the
following message queueing systems.

Chapter 20, "BEA WebLogic JMS"

Chapter 21, "IBM WebSphere MQ"

138 Performance Management Guide

Java Message Services 139

19
Java Message Services

This chapter provides guidelines on implementing, configuring and tuning
for Java Message Services (JMS) in general.

19.1 Overview
The Sterling Supply Chain Applications uses JMS extensively. For
example

the Sterling Supply Chain Applications agents use JMS as a source of
work

the Sterling Supply Chain Applications integration servers use JMS as
a means to communicate with external systems

19.1.1 Agent Queues
The Sterling Supply Chain Applications agents are designed to issue a
"getter" to look for work that needs to be processed and to create the
appropriate messages into a queue. For example, the Schedule agent on
start up will check the Schedule JMS queue. If that queue is empty, it will
automatically fire a "getter" query against the YFS_TASK_Q table looking
for tasks that need to be processed by the Schedule transaction. A JMS
message is created for each eligible task. Similarly, the Sterling Supply
Chain Applications order or inventory monitors fire "getters" to look for
orders or inventory items in a particular state (for which they are being
monitored for). As above, the appropriate messages are put into the JMS
queue.

By default, the getter will create up to 5,000 messages even when there
are more eligible work. The default is generally sufficient. You can change
the limit if you find that the agent is spending more time retrieving work

140 Performance Management Guide

Implementation

and creating the messages than in processing. This could happen if you
have a high number of processing threads or if the retrieval cost is high.
You can change the limit by changing the "Number of Records to Buffer"
in the agent’s Transaction Detail (in Platform > Process Modeling) >
Agent Criteria Definition > Agent Criteria Details > Criteria Parameter.
Please see the Sterling Supply Chain Applications Platform Configuration
Guide for more information.

19.1.2 Integration Queues
In contrast, integration queues are used for external communication. For
example, one could architect the system where multiple sales channels
capture orders. These orders are passed to the Sterling Supply Chain
Applications through an integration queue.

Similarly, the Sterling Supply Chain Applications could pass messages to
external systems on when transactions are processed.

19.2 Implementation

19.2.1 Persistence
You can define queues as being persistent or non-persistent. Messages in
non-persistent queues are lost after the queue is restarted. For example,
if you have 100 messages in the queue, all those messages are lost when
the WebLogic JMS server or the WebSphere MQ queue manager is
restarted. In contrast, messages in persistent queues are preserved after
a restart. Using the same example from above, the same 100 messages
will be in the queue after a restart.

In general, the following recommendations apply

all queues used by the Sterling Supply Chain Applications agent
should be defined as non-persistent. As we described above, the
agents can easily recreate the messages if lost.

all integration queues used for external communications, either for
messages coming from external systems to the Sterling Supply Chain
Applications or for messages going from the Sterling Supply Chain
Applications to external systems, must be defined as persistent. In
most cases, recreating integration messages can be difficult

Implementation

Java Message Services 141

especially when the information in two or more systems have to be
re-synchronized.

19.2.2 Dedicated Queues
We strongly recommend you define a dedicated queue for each agent
and service that uses JMS for work because of

performance

monitoring

For both the WebLogic JMS and WebSphere MQ, the cost of pulling up a
message is proportional to the number of messages the JMS server or
queue managers have to interrogate.

In the current WebLogic JMS implementation, a request for a message
with a certain selector results in a sequential search through the JMS
queue until a message with the specified selector is found. The JMS
manager could use a lot of CPU searching for messages if there are lots
of messages in the queue. Putting high volume messages into a separate
JMS destination eliminates the search - the JMS manager will either find
that there are no messages in that destination or it will find the message
immediately.

Similarly, in the current IBM MQSeries JMS implementation, the
consumer (client) uses the supplied mq.jar to connect to the MQSeries
queue manager. When the client asks for a message, the client code in
com.ibm.mq.jar retrieves messages from the queue and checks whether
the message has the specific selector. The mq.jar will continue to do this
until it has found the appropriate message or there are no more
messages in the queue. When there are no more messages, the mq.jar
sleeps for 5 seconds and repeats the polling cycle. Putting messages into
its own JMS destination means that the mq.jar will either find the
message immediately or sleep for 5 seconds.

In some extreme cases, the performance and cost is very noticeable.
Take the case of a queue with messages for multiple agents and 100,000
integration messages. When a message for the Schedule transaction is
created, that message is added after the existing 100,000 messages.
When the Schedule transaction getter runs, the getter will have to walk
through the entire queue looking for Schedule messages.

An exception to the above is development and possibly test
environments. In those cases, to ease configuration and management

142 Performance Management Guide

Implementation

overhead, it may be acceptable to put all the JMS destinations into a
single JMS queue.

19.2.3 Queue File Placement

19.2.3.1 Performance
The WebSphere MQ logs and files and the BEA WebLogic JMS file and
paging stores can be implemented on an internal disk. Message queues
on a single internal disk should be able to provide from 150K to 200K
messages per hour. Obviously, many factors can affect the message
throughput including the size of the message content, the burstiness of
the traffic, and so forth).

For high transaction systems, for example, a nightly upload of inventory
synchronization messages or the import of point-of-sales orders, you
should consider placing the WebSphere MQ logs and files and the BEA
WebLogic JMS file and paging stores on a SAN RAID-10 LUN, possibly
with a large NVRAM cache. The striping component in the RAID-10 will
spread the message I/Os over multiple disks. The NVRAM cache could
reduce the number of physical disk I/Os.

In extremely high transaction volume scenarios, you may have to
consider implementing multiple WebLogic JMS servers or MQ queue
managers. This is applicable to solutions where the message order is not
important.

19.2.3.2 Availability
For failover and high availability, you should consider placing the
WebSphere MQ logs and files and the BEA WebLogic JMS file stores for
persistent queues on an external SAN. In the event of a node failure, a
standby node could attach to the SAN to access the files. In addition, you
could replicate the content of the SAN to prevent message loss in the
event of a data center disaster. Please see the Sterling Supply Chain
Applications High Availability Guide for more information.

19.2.4 Parameters
Please see the following chapters for specific recommendations.

Implementation

Java Message Services 143

Chapter 20, "BEA WebLogic JMS"

Chapter 21, "IBM WebSphere MQ"

144 Performance Management Guide

Implementation

BEA WebLogic JMS 145

20
BEA WebLogic JMS

This chapter provides guidelines on implementing, configuring and tuning
the BEA WebLogic JMS.

20.1 WebLogic JMS Recommendations

20.1.1 Dedicated JMS Server
You should consider running the JMS server on one or more dedicated
WebLogic servers that is outside of the Sterling Supply Chain Applications
WebLogic cluster. These server instance should only provide JMS
services. The benefits of isolating the JMS server on its own server
include:

easier to monitor and manage

easier to diagnose issues - issues that arise, such as OutOfMemory
exceptions, must be related to JMS services or JMS messages

20.1.1.1 Integration Queues
In addition, you should consider putting integration queues into their own
dedicated WebLogic JMS servers running on separate JVMs especially if
these queues can grow unbounded or at a fast rate.

These integration queues should be configured as persistent so that
messages can be recovered after JMS failures. Recovering integration
messages can be difficult especially if they involve reconciling when there
are many systems or applications involved in processing the messages.

You should consider implementing controls so that producers cannot
significantly create messages faster than consumers can process

146 Performance Management Guide

Message and Byte Paging

messages. In extreme cases, high number of messages in the queue
could consume most of the JMS servers’s JVM heap resulting in degraded
or loss of service.

The benefits of implementing dedicated JMS servers for integration
queues include

isolating integration-based message queues that could grow
unbounded from the more predicable queues used by the Sterling
Supply Chain Applications agents

the ability to configure, manage and monitor the queues to the
expected message traffic - for example, you may want to create JVMs
with 1GB heap for integration-based JMS servers and smaller heaps
for the Sterling Supply Chain Applications agents

20.2 Message and Byte Paging
For WebLogic JMS, you should enable message and/or byte paging on
JMS queues that could grow unbounded (for example, integration-based
queues. With this facility, the message bodies (not the message headers)
are paged out of the JVM memory on to the local file system when the
paging thresholds are exceeded. This can reduce the amount of JVM
heap space used, which could prevent service degradation or loss.

Note: In extreme cases, excessively high number of message headers
can still lead to outOfMemory exceptions.

IBM WebSphere MQ 147

21
IBM WebSphere MQ

This chapter provides specific guidelines on implementing, configuring
and tuning IBM WebSphere MQ.

21.1 WebSphere MQ Parameters
Depending on your processing volumes and the number of MQ queue
consumers and producers you expect to start, you may have to change
the log and channel parameters in the qm.ini or mqs.ini file.

21.1.1 Channel
Each thread started that reads from or writes to the MQ queues requires
a channel. If you were to start 20 JVMs with 5 threads each, you will
need at least 100 channels (which is the default). You may also have to
increase the number of channels if you have workloads that open and
close the JMS connections rapidly.

If you experience messages indicating that the max channels have been
reached, do the following

check to see if there is a connection or channel leak. Run the
following command to see how many active channels are used

echo "dis chs(*)" | runmqsc | grep RUNNING | wc -l

You may have to run each workload at peak production loads in your
test environment to diagnose channel leaks

If you suspect that channels are not getting reclaimed fast enough or
if your TCP/IP connection is not reliable, you should set the following
parameters. The KeepAlive parameter tells the queue manager to
check the existence of the client. If the client is not there, the queue

148 Performance Management Guide

Placement of MQ Log and Data Files

manager will reclaim the channel. The MaxChannels defaults to 100.
In production settings, that parameter could grow to a much higher
number like 300 or 500.

TCP:
KeepAlive=YES

Channels:
MaxChannels=300
MaxActiveChannels=100

21.1.2 Log Files
MQ uses log files to maintain message integrity in the event of a queue
manager restart or a media failure.

The number of log files depends on your configuration, the size of the
messages, the logging type, and the message volumes. You should
performance test your application at or above peak production loads to
see if the default MQ log settings are sufficient. If you are using
CIRCULAR logging, the following may be reasonable starting values

Log:
LogPrimaryFiles=4
LogSecondaryFiles=1
LogFilePages=65536
LogType=CIRCULAR
LogBufferPages=0

If you use LINEAR logging (for example, to be able to survive media
failure), you will have to set LogPrimaryFiles higher.

21.2 Placement of MQ Log and Data Files
If your system has to be able to process a high message rate, you may
should consider placing your MQ log and data files on a fast SAN,
preferably configured with a large NVRAM and RAID-10. A single internal
disk should have sufficient capacity to allow up to 150K to 200K
messages per second. Files on a RAID-10 LUN should be able to get up
to around 1.5M to 2.0M messages per hour. Beyond that message rate,
you may want to consider implementing multiple queue managers with
separate data and log files.

149

Part VI
 Sterling Supply Chain Applications

Application

This part of the book provides information on how to implement, monitor
and tune the Sterling Supply Chain Applications.

This part includes the following chapters.

Chapter 22, "Sterling Supply Chain Applications - General"

Chapter 23, "Sterling Supply Chain Applications - Distributed Order
Management"

Chapter 24, "Sterling Warehouse Management System"

150 Performance Management Guide

Sterling Supply Chain Applications - General 151

22
Sterling Supply Chain Applications -

General

This chapter provides recommendations on how to plan, implement,
configure, monitor, and tune the Sterling Supply Chain Applications in
general that transcends both the Sterling Distributed Order Management
and the Sterling Warehouse Management System applications.

Sterling Supply Chain Applications with the default factory (data) settings
provides a simple configuration that is suitable for development, training
or product familiarization. That configuration is not suitable for
production except for customer with very low transaction volumes. This
chapter will guide you through the components that you have to
configure for higher transaction volumes.

This chapter assumes that you

are familiar with the installation of the Sterling Supply Chain
Applications

are familiar with the basic functionality of the Sterling Supply Chain
Applications

have read and followed all the instructions found in the Sterling
Supply Chain Applications Installation Guide

have read the Sterling Supply Chain Applications Release Notes

152 Performance Management Guide

Planning

22.1 Planning

22.1.1 Scalability Requirements
An important aspect of planning the implementation and configuration of
your Sterling Supply Chain Applications system for production is
determining your workload and business processing characteristics, and
your performance requirements. This includes (at a minimum) the
following

identifying the key or high transaction volume use case scenarios -
for example, in retail environments, you will likely have an order
capture, order returns, order modification and order authorization use
case scenarios. For each use case scenario, you should determine:

the workloads (both custom-developed and Sterling Commerce
supplied) that are executed

the forecasted peak transaction volumes

when the peak processing periods occur during the year

the external systems that the Sterling Supply Chain Applications
system will be integrated with

the groups of users, their location, and their network connectivity
to the Sterling Supply Chain Applications.

When choosing use case scenarios, you should include

workloads with anticipated high transaction volumes

workloads that are complex (for example, orders with large number
of order lines)

workloads/transactions that have to traverse long network distances
(for example, user and data center in different continents)

high volume transactions that are integrated with external systems.

For each use case scenario, you should:

perform load testing to at least the anticipated peak workload
volumes

Planning

Sterling Supply Chain Applications - General 153

measure the computing resource cost at different workload traffic
volumes

estimate the computing cost per unit work

identify and tune expensive workloads - this could include ensuring
all SQL are supported by appropriate indices (Section 14.2.4.1.1,
"Custom Indices"), custom code, and so forth

incorporate the cost per unit work into a resource capacity forecasting
or planning model

project out the resource requirements for the peak periods

If you have remote users, you have to test use case scenarios that
involve screens or network based transactions across a real or simulated
wide-area network. These could include

the use of the Sterling Supply Chain Applications screens (for
example, to enter or modify orders)

RF transactions (for example, users at a warehouse in Asia interacting
with the WMS application in North America)

The answers to the questions above are critical to how you configure the
Sterling Supply Chain Applications.

22.1.2 System Test
We strongly advise that you schedule time and resources to test the
Sterling Supply Chain Applications system (including all custom code,
integrated external systems, and so forth) prior to implementation.
Sterling Commerce tests the Sterling Supply Chain Applications to
common or general usage patterns. Your configuration could differ
greatly.

custom code - need to ensure your custom code scales and does not
have longevity issues. These are issues that show up after running
the system for many days - for example, memory or connection
leaks.

integration to external systems - need to ensure that external
systems can scale along with the Sterling Supply Chain Applications.
In the right conditions, slow external systems could tie up the

154 Performance Management Guide

Sterling Supply Chain Applications User Interface

Sterling Supply Chain Applications resource and could lead to a
system slow down.

configuration - need to test the Sterling Supply Chain Applications
system with representative data. For example, your configuration
may have much larger catalogs and ship nodes than most customers.

user locations - need to ensure users get responsive service. For
example, you may have large customer groups located in a different
continent from the Sterling Supply Chain Applications. You may also
have customers who dial in to access the Sterling Supply Chain
Applications. You need to ensure that all users get appropriate screen
response times.

22.2 Sterling Supply Chain Applications User
Interface

Out of the box, Sterling Supply Chain Applications provides the following
graphical interfaces to allow users to interact with the application.

Sterling Supply Chain Application Consoles - a thin HTML-based client
to view and manage orders

Sterling Supply Chain Applications Configurator and the Sterling
Supply Chain System Management Console - a thick client built on
Java Swing to manage the application configuration

Sterling Rich Client Platform - this is a Java/SWT thick client built on
the Eclipse RCP framework

The user interface provides the means for users to interact with the
Sterling Supply Chain Applications application to view, create, modify and
delete information.

22.2.1 Sterling Supply Chain Application Consoles
The Sterling Supply Chain Application Consoles is an HTML-based
interface. The Microsoft Internet Explorer is used to render the screens of
the Sterling Supply Chain Application Consoles.

Sterling Supply Chain Applications User Interface

Sterling Supply Chain Applications - General 155

22.2.1.1 Customization
Sterling Supply Chain Applications allows you to create or customize the
screens of the Sterling Supply Chain Application Consoles. You may want
to do so for the following reasons.

you want to reduce processing or the screen size - from the usage
scenario studies above, you may find that your users need a
subset of a detail screen (e.g., order detail). Further, you expect a
very large number of users to be located at a remote call center in
a different continent. To reduce server processing and the amount
of bytes send across the network, you can create a new screen
that only has the information needed.

in conjunction with simplifying the screens, you can also
customize an APIs output XML using templates. This will not only
reduce the number of bytes returned but can also reduce server
and database processing. See Section 22.4.7.1, "API Output XML
Files".

you may want to control the types of searches that the general
users can issue. The default search facility allows users to build up
searches by picking different criteria. For example, the order
search allows users to look for orders based on many criteria
including status, enterprise code, and so forth. Some permutation
of criteria can result in queries that require a lot of resources. You
can create a search screen for general use that has a list of
searches that you and the DBA have tested and have deemed to
be "safe" for general use. You can further develop a screen with
greater search capabilities for supervisors or application
administrators. This search screen could mandate entering the
enterprise code and a date range for the search to limit the
number of records returned. Additionally, you may want to
remove certain searches such as looking for orders in a particular
status.

Please see the Sterling Supply Chain Applications Customization Guide
for more information on how to extend or customize screens.

22.2.1.2 HTML Compression
You should consider HTML compression if you have users who are
connected to the Sterling Supply Chain Applications over high latency or

156 Performance Management Guide

Sterling Supply Chain Applications User Interface

low bandwidth network links. HTML compression can reduce the size of
the HTML pages by up to 85%.

Currently, the Sterling Supply Chain Applications Console UIs have been
tested with F5 Big-IP v9 as an off-board HTML compression engine.

If you were to use a Big-IP, you should be aware of the following Big-IP
specific configuration requirements in the HTTP Profile configuration tab

you need to set the response chunking parameter to rechunk. The
default is preserve. The reason is that the Sterling Supply Chain
Applications do not set the content length in the HTTP headers when
sending out the response. With the default setting of preserve, the
Big-IP will not attempt to compress HTML pages that do not have
content lengths set. With the rechunk setting, Big-IP will compress
the response chunks as they are received. More importantly, the
Big-IP can forward along the compressed chunks without waiting for
the entire HTML page to be compressed.

Big-IP allows you to specify the amount of compression processing
that it will attempt. The setting can range from Level 1 which tries a
minimal compression in favor of processing speed to Level 9 which
tries to find the most compression. We found that Level 1
compression was able to get up to 85% compression and that the
benefits from Level 9 undetectable. As a result, we defaulted to
testing with Level 1 compression.

we set the compression buffer size to 128KB instead of the default of
4KB. The general thought is that the buffer size should be able to
store the entire compressed response in order to set the content
header length. In our testing, we didn’t see any appreciable
differences between 4KB and 128KB. This may be due to the fact that
we had already set response chunking to rechunk - as a result, the
Big-IP does not have to set the content length on the compressed
response. However, we were advised to set the buffer size to at least
128KB.

We recognize that there are other HTML compression technologies
available including Apache deflate module and Juniper DX application
acceleration devices. Please keep in mind that we have, to date, only
tested against the F5 Big-IP v9.

Please also keep in mind that the compression is only certified for the
Sterling Supply Chain Applications Console. The Sterling Supply Chain

Sterling Supply Chain Applications User Interface

Sterling Supply Chain Applications - General 157

Applications Configuratorr and the Sterling Supply Chain System
Management Console do not support compression. The nWMS radio
frequency and VT220 terminal screens are small and should not require
compression.

22.2.1.3 Temporary Internet Files
You can reduce the number of hits against the application servers for
static content by enabling temporary Internet file cache in Microsoft
Internet Explorer. This will improve your UI response times. To enable
the cache

Go to the Internet Options dialog box

In Microsoft Internet Explorer, go to Tools > Internet Option

Click on the Settings button in the Temporary Internet Files panel

Enable the “Check for newer version of stored pages” radio button
to Automatically

Make sure there is sufficient disk space to store temporary
Internet files (e.g., 500MB or higher).

22.2.1.4 SSL Acceleration
If you have many users and are planning on encrypting the Sterling
Supply Chain Applications screens with SSL, you should consider the use
of off-board hardware-based SSL accelerators. SSL encryption/decryption
are expensive operations and can reduce application server throughput
by over 30%.

Currently, we have tested the use of an F5 Big-IP v9 as an off-board SSL
acceleration engine and as an SSL Proxy. As an SSL Proxy, all page
requests going to the F5 are sent as HTTPS. The Big-IP performs all the
SSL processing and forwards all the requests to the applications servers
in the "clear".

If you plan to use a Big-IP, you should be aware of the following Big-IP
specific configuration requirements in the HTTP Profile configuration tab

if you use BEA WebLogic application servers, you have to set the
header insert parameter to WL-Proxy-SSL: true. This header
directive informs BEA WebLogic that there is an SSL Proxy sitting in
front of the application server.

158 Performance Management Guide

Sterling Supply Chain Applications User Interface

if you use IBM WebSphere application servers, you need to configure
the redirect rewrite parameter to ALL.

We recognize that there are other SSL acceleration technologies
available. Please keep in mind that we have, to date, only tested against
the F5 Big-IP v9.

Please also keep in mind that the SSL acceleration was targeted towards
the Sterling Supply Chain Applications Console. The Sterling Supply
Chain Applications Configurator and the Sterling Supply Chain System
Management Console do not require SSL.

22.2.1.5 Search Screens
Sterling Supply Chain Applications provide a flexible search facility that
allows users to look for orders, shipments and audit records with a wide
range of criteria. Some search combinations are more expensive than
others.

We recommend that you work with the user community to identify search
combinations that are likely to be used in production. Each search
combination should be tested to ensure they are optimized and
acceptable in a production setting. When testing these searches, you
need to make sure the tables searched are sufficiently large (e.g., over 1
million records). Inefficient queries may not be evident in small
databases. In addition, ensure the tables are populated with an
appropriate data mix. For example, if the query is looking for orders with
certain attributes in the closed state, you should ensure that these
attributes and the number of closed orders are representative. Database
optimizers picks search paths that it believe are optimal for the data
distribution.

It is likely that some search combinations will require indices to be
created (see Section 14.2.4.1, "Indices").

22.2.1.5.1 Case-insensitive Search The Sterling Supply Chain
Applications search facility supports case-insensitive searches against the
YFS_PERSON_INFO table on the following columns:

FIRST_NAME

LAST_NAME

EMAILID

Sterling Supply Chain Applications User Interface

Sterling Supply Chain Applications - General 159

ADDRESS_LINE1

ADDRESS_LINE2

CITY

STATE

ZIP_CODE

COUNTRY

The data will continue to be stored in the database in mixed-case
(mixture of upper and lower case).

Oracle

To support case-insensitive searches in Oracle, you will have to add
function-based indices on the searched columns. To create an
function-based index that supports case-insensitive searches on the
emailid column, issue the following

create index yfs_person_info_cust1 on yfs_person_info(upper(emailid))

UDB

For UDB, you have to add a generated column for each searched column
and an index on that generated column. For example, as in the example
above, you need to perform the following

set integrity for yfs_person_info off

alter table yfs_person_info
 add column emailid_up generated always as (upper(emailid))

set integrity for yfs_person_info
 immediate checked force generated

create index extn_per_info_i1
 on yfs_person_info(emailid_up)

select *
from yfs_person_info
where upper(emailid) = ’SMITH’

In the example above, a generated column (emailid_up) was defined as
a generated column and indexed.

160 Performance Management Guide

Sterling Supply Chain Applications User Interface

SQL Server

In SQL Server, searches are case-insensitive by default so there are no
changes needed.

22.2.1.6 JSP Pre-compilation
Precompiling the JSPs when you "build" the application is very important
for user interface response times. If the JSPs are not precompiled, the
application servers will compile the JSP on-the-fly the first time it is used.
These compiles can take up to 30 seconds or more and could lead to the
perceptions of a badly performing system.

Please see Section 12.1.1.4, "JSP Pre-Compilation" on precompiling JSPs
in BEA WebLogic application servers.

Please see Section 13.1.1.3, "JSP Pre-Compilation" on precompiling JSPs
in IBM WebSphere application servers.

22.2.1.7 HTML Limitations
The view screens (for example, the Order Detail and Shipment Detail
screens) present the order or shipment entity and related records in their
entirety. The HTML page for large orders or shipments can be very large
and could take a long time to display especially over a wide area
network. For example, the view screen for a 200 line order could be up
to 500KB. Displaying this screen over a 128kbps line could take 30
seconds or more.

If your enterprise regularly process large orders, you may want to
consider the following

as we mentioned above, consider customizing the screens to only
return the data needed, implementing HTML/HTTP compression,
using output templates to reduce the size of the output, and so forth

22.2.2 Sterling Supply Chain Applications Configurator
The Sterling Supply Chain Applications Configurator is a Java applet that
is used to configure the Sterling Supply Chain Applications rules. You
may have to start the applet with more memory if you are modifying a
large or complex configuration. You can change the memory settings in
the JVM/JRE plug-in control panel in Microsoft Windows. Go to Start >
Control Panel > Java Plug-In > Advanced. In the Java Runtime

Sterling Supply Chain Applications User Interface

Sterling Supply Chain Applications - General 161

Properties, put in "-mx356m". In this example, the JRE’s heap will be
allowed to grow to 356MB.

22.2.3 Rich Client Program Interface
The Sterling Rich Client Platform is a Java/SWT thick client built on the
Eclipse RCP framework. A number of the Sterling Supply Chain
Applications Packaged Composite Application (PCAs), such as Customer
Order Management and Store Operations, use this graphical interface.

22.2.3.1 Enabling SSL Encryption and Content Compression
The Sterling RCP client natively supports SSL encryption and content
compression. You can selectively enable SSL and/or compression in the
locations.ycfg parameter file. Please see the Sterling Supply Chain
Applications Installation Guide for more information on how to configure
the locations.ycfg file.

You may want to consider developing multiple locations.ycfg files with
different settings. For example, you can define a locations.ycfg file for
local users with only SSL enabled and a locations.ycfg file for remote
users with both SSL and compression enabled. This will give you the
flexibility to deploy the appropriate locations.ycfg file to different user
groups.

In the following example, the remote-user location has both SSL and
compression enabled. SSL is enabled by setting the Protocol attribute to
https in the DEFAULT Config element. Compression is enabled by setting
the CompressionEnabled attribute to Y.

<Locations>
 <Location id="remote-user">
 <Config Name="DEFAULT" Protocol="https" BaseUrl="yantra.acme.com"
 PortNumber ="80" ApiUrl="/yantra/RcpServlet" CompressionEnabled="Y"
 LoginThroughBrowser="N">
 </Config>
 ...
 </Location>
</Locations>

162 Performance Management Guide

Sterling Supply Chain Applications User Interface

22.2.3.2 Selective SSL
The Sterling RCP allows you to designate which APIs to SSL. Please see
the Sterling Supply Chain Applications Installation Guide for more
information. This feature could reduce the SSL processing overhead.

22.2.3.3 Images
The RCP client has the ability to retrieve and display images in a separate
background thread. For example, when you display the order detail
screen in COM PCA, you can display small images of the item at the
order line level. When you drill into the order line, you can display a
larger image of that item.

The images are cached on your local drive after they have been
retrieved. The cache is deleted when you restart the RCP client to ensure
that you have the latest images.

You can also specify an image server that is separate from the
application server. For example, in the following example, the images
come from http://yantraimg.acme.com.

<Locations>
 <Location id="remote-user">
 <Config Name="DEFAULT" Protocol="http" BaseUrl="yantra.acme.com"
 PortNumber ="80" ApiUrl="/yantra/RcpServlet" CompressionEnabled="Y"
 LoginThroughBrowser="N">
 </Config>
 <Config Name="IMAGE" Protocol="http" BaseUrl="yantraimg.acme.com"
 PortNumber ="80" ApiUrl="/yantra/icons/rcp/$param1$.gif"
 CompressionEnabled="N">
 </Config>
 <Config Name="IMAGE_SMALL" Protocol="http" BaseUrl="yantraimg.acme.com"
 PortNumber ="80" ApiUrl="/yantra/icons/rcp/$param1$_small.gif"
 DefaultApiUrl="/yantra/icons/rcp/404.gif"
 CompressionEnabled="N">
 </Config>
 <Config Name="IMAGE_BIG" Protocol="http" BaseUrl="yantraimg.acme.com"
 PortNumber ="80" ApiUrl="/yantra/icons/rcp/$param1$_big.jpg"
 DefaultApiUrl="/yantra/icons/rcp/404.jpg"
 CompressionEnabled="N">
 </Config>
 <Config Name="HELP" Protocol="http" BaseUrl="yantra.acme.com"
 PortNumber ="80" ApiUrl="/yantradocs/yfscommon/online_
 help/$param1/wwhelp/wwhimpl/common/html/wwhelp.htm?context=$param2_
 userguide&topic=$param3">

Integration Adapters/Sterling Supply Chain Applications Agents

Sterling Supply Chain Applications - General 163

 </Config>
 </Location>
</Locations>

You can disable images for users on limited or slow networks by
removing the IMAGE, IMAGE_SMALL and IMAGE_BIG Config elements
from your locations.ycfg file.

22.3 Integration Adapters/Sterling Supply Chain
Applications Agents

Agent Servers or Integration Adapters are Java applications that run
time-triggered (agent) transactions (see the Sterling Distributed Order
Management Configuration Guide). Transactions process orders or
shipments such as moving orders from one state to another. Out of the
box, all time-triggered (agent) transactions are configured to run in a
single Agent Server (called the DefaultAgent). This simple setup is
convenient for training, development or product demos. You will need to
configure the Agent Servers to your expected transaction volumes.

164 Performance Management Guide

Integration Adapters/Sterling Supply Chain Applications Agents

The example above defines the agent criteria for the Schedule
time-triggered (agent) transaction. The Schedule transactions run in an
Agent Server which we have called the ScheduleSalesOrderServer
server. When you start an Agent Server with the Criteria ID of
SCHEDULE.0001, that server will be instructed to run four threads of the
Schedule transaction. If you need more processing threads, you can run
more instances of this Agent Server.

Best Practice: You should load test your agents with varying threading
levels to determine the optimum throughput for your specific agent. It is
advisable to run these tests for a sufficiently long enough time so that
the JVM heap has reached a steady state (in terms of heap occupancy).
By plotting the throughput over the threading level, you should be able
to find the optimum configuration. As a general recommendation, you
should start with four or six threads per JVM.

Integration Adapters/Sterling Supply Chain Applications Agents

Sterling Supply Chain Applications - General 165

All time-triggered (agent) transactions are driven by tasks in their
message queue. Currently, both BEA WebLogic JMS and IBM MQSeries
are supported. A queue may serve one or more transactions. You may
however want to configure one queue for each high volume transaction.
In this example, the Release time-triggered (agent) transaction get their
work from the ReleaseAgentQueue messaging queue. This queue name
must corresponds to a configured JMS destination.

Work tasks are placed into the messaging queue by a getter. A getter’s
job is to put qualified orders (in this example, orders that are in the
Scheduled state) into the ScheduleSalesOrderQueue queue. You can
specify how many orders the getter picks up each time it runs. By
default, the getter will pick up 5,000 orders.

Like the time-triggered (agent) transactions, a getter is also driven by
work tasks in the queue - in this case, by a getter work task instead of a
transaction work task. The getter work task is created by a trigger
server.

You should consider the following recommendations when configuring the
Agent Servers:

agent thread levels

getters that can accept enterprise code as an additional parameter

for JMS Servers

dedicated JMS Servers

excessive agent scheduling

dedicated JMS Destinations

running JMS servers in client VM mode

enabling message and byte paging

22.3.1 Agent Thread Levels
You should derive the optimum number of Agent Servers to run and the
number of transaction threads for each Agent Server. The Agent Server’s
throughput depends on many factors such as the amount of
customization or user exits, the amount of data contention, the size and
capacity of the agent servers, and so forth.

One approach you can use to derive your agent’s effective throughput is:

166 Performance Management Guide

Integration Adapters/Sterling Supply Chain Applications Agents

allow work to queue up. Make sure there are at least one to two
hours worth of work queued up.

run a single transaction thread and record the total (running) elapse
time

determine the total amount of work performed by the transaction
thread for sample monitoring scripts)

calculate the effective throughput of that agent thread by dividing
total amount of work by elapse time. The throughput rate will be
specified in terms of work per unit time (e.g., order lines per hour or
order lines per minute)

During the test, you should make sure there are no significant system
bottlenecks impeding the Agent Server’s performance. Some of the
performance indicators you should watch for include:

excessive JVM garbage collection activities (especially Full GCs)

excessive database waits (e.g., I/O, latches, and so forth)

inefficient queries (e.g., missing indices)

data lock contention

excessive thread synchronization

Make sure the Agent Server is running optimally before calculating its
potential throughput rate.

You can schedule multiple agent threads if your average processing level
is greater than the effective throughput for a single agent thread. For the
reasons mentioned above, more threads (beyond a reasonable level)
does not always mean higher throughput.

22.3.1.1 Excessive Agent Scheduling
You should not over-aggressively schedule the time-triggered (agent)
transactions - for example, configuring a time-triggered transaction to
run on many Agent Servers with high threading levels when you expect
to a low traffic volume for that transaction. If you schedule the agents
too aggressively, you could end up with a situation where the agents
(consumers) are outpacing the producers. As a result, the queue will
typically have a few transactions which are quickly processed. When
processed, the Agent Server will schedule another getter -- the frequent

Java Message Service

Sterling Supply Chain Applications - General 167

getter tasks could cause unnecessary overheads as it looks for work to
do.

In this case, "more does not necessarily mean more".

22.4 Java Message Service
The Sterling Supply Chain Applications use JMS extensively. For example

the Sterling Supply Chain Applications agents use JMS as a source of
work

the Sterling Supply Chain Applications integration servers use JMS as
a means to communicate with external systems

22.4.1 Integration Queues
Integration-based queues are queues for inbound external messages
(such as orders from external partners or inventory adjustments from
external warehouse management systems) or outbound external
messages (such as alert messages to an e-mail system).

You should consider putting these queues into one or more dedicated
JMS servers especially if these queues can grow unbounded. In addition,
these JMS destinations should be configured as persistent so that
messages can be recovered after JMS failures.

You should consider implementing controls so that producers cannot
significantly create messages faster than consumers can process
messages. In extreme cases, high number of messages in the queue
could consume most of the JMS servers’s JVM heap resulting in degraded
or loss of service.

The benefits of implementing dedicated JMS servers for integration
queues include

isolating integration-based message queues that could grow
unbounded from the more predicable queues used by the Sterling
Supply Chain Applications agents

the ability to configure, manage and monitor the queues to the
expected message traffic - for example, you may want to create JVMs
with 1GB heap for integration-based JMS servers and smaller heaps
for the Sterling Supply Chain Applications agents

168 Performance Management Guide

Java Message Service

22.4.2 Dedicated JMS Destination
You should configure a dedicated JMS Destination for each time-triggered
(agent) transaction for the following reasons

ease of monitoring - with dedicated destinations, it is easier to see
the number of messages coming into a destination, the number of
messages that require processing, the maximum number of
messages that ever existed in that destination. With that information,
you can also calculate the messaging inflow and outflow rates.

performance - with dedicated JMS destinations, the selector will be
able to quickly find the message with the specified selector/filter.

In a common JMS destination with lots of messages (e.g., greater than
20K messages), the selector could take several seconds to find the
appropriate message.

22.4.3 JMS Persistence
Many of the Sterling Supply Chain Applications agents find work to
process from message queues. These work requests are kept in
non-persistent message queues. These messages are recreated, either
when an external or internal agent trigger is issued.

Integration messages (e.g., createOrder messages from external
systems) must be kept in persistent message queues. JMS will read the
messages back into memory from the persistent store when the JMS
server is restarted.

You should implement persistent JMS queues on a RAID-10 or RAID-5
disk array for performance and availability. These RAID disk arrays,
especially for RAID-5, should be supported by a non-volatile cache to
ensure fast I/O write operations. For high persistent message volumes,
local disk queues can become an I/O bottleneck.

22.4.4 Performance Feature - Reference Data Caching
In controlled tests, reference data caching can increase application
throughput by 25% or more and can reduce contention for database
resources.

Starting in Yantra 5x 5.0 SP2, caching is enabled by default. The cached
records are stored in the JVM heap. As a result, with caching enabled,

Java Message Service

Sterling Supply Chain Applications - General 169

you should monitor the health of the JVM heap garbage collections. For
memory constrained environments, you may want to enable caching on
specific tables.

The Sterling Supply Chain Applications reference data caching is
implemented by a local, simple, lazy-loading, asynchronous-refresh
cache manager. The cache manager is a lazy-loader in the sense that it
does not read in the cacheable reference tables at start up but would
instead only cache records as they are being read. The benefit of the
lazy-loading strategy is that data is only cached where they are needed.

The cache manager implements a simple cache management policy. Data
that is cached will remain in the cache until the cache manager is
instructed to flush the cache. This could happen because the cache has
reached a certain size limit or a reference data record was changed from
a standard Sterling Supply Chain Applications API. The cache manager
does not implement cache management policies, such as record flushing
using a least recently used algorithm, in order to avoid cache
management overheads. In our controlled test, this simple cache
manager provides significant performance benefits with little
management overhead.

In keeping with the simple cache strategy, when a reference data record
is changed by a Sterling Supply Chain Applications API, the local cache
manager will notify all the other cache managers to flush the reference
data table. There is a small time-lag between when the reference data is
changed to when the last cache manager is notified.

When the cache managers receive the change notification, the cache
managers will flush all the cached entries for the affected table. As a
result, you should cache tables that are infrequently changed. More
importantly, this notification comes from the Sterling Supply Chain
Applications APIs. As a result, you should ensure that reference data are
never changed via database tools like SQL*Plus.

Recommendations

you should enable reference data caching when you need the extra
performance boost

you should ensure that the reference data is not subject to frequent
updates

170 Performance Management Guide

Java Message Service

22.4.4.1 Caching Strategies
As we stated above, with caching, you introduce the possibility of data
consistency issues. This data inconsistency may occur when an API
changes a reference data record in one JVM while another transaction is
using another copy of that reference data in another JVM.

That said, caching is a widely used technique that favors scalability,
performance and affordability against possibly maintainability, data
consistency, and accuracy.

In this section, we will describe strategies you can use to mitigate the
data consistency issues.

Strategy 1 - Trade-off Performance and Affordability against Data
Consistency

In this strategy, you may ask yourself the question. First, does the
possibility of data consistency exist? Since the refreshes are done
asynchronously, the answer is yes. The next question is, what is the
probability of a data consistency? One of the factors that this answer
depends on is the transaction volume. There may be more. For example,
if you were to make the reference data changes at night when
transaction volumes are low, you may decide that the probability of data
consistency is potentially low. The last question you need to ask is, what
is the impact of an inconsistent data? If you determine that the impact is
insignificant, then you may decide to go with this strategy. The decision
is yours to make.

Strategy 2 - Trade-off Performance and Affordability against
Maintainability while keeping Data Consistency

In this strategy, you control updates against the cacheable reference
data to eliminate any possibility of data consistency. One approach is to
place the cacheable reference tables into a separate tablespace.

In addition, with Oracle, using the following command, you alter the
tablespace to only allow reads.

alter tablespace <tablespace name> read only;

Oracle will ensure that these tables are not modified without your
knowledge. To modify the cached reference data, you then alter the
tablespace back to read/write and modify the reference data through the
Sterling Supply Chain Applications Configurator. To be safe, you would
probably do this when there is very little transactional activity o the

Java Message Service

Sterling Supply Chain Applications - General 171

system. When you are done, you can then mark that tablespace as read
only with the following command.

alter tablespace <tablespace name> read write;

22.4.4.1.1 Automatically Refreshing Data Cache When a record of
a cached table is modified by a Sterling Supply Chain Applications API,
the local cache manager sends change notification messages to all the
other cache managers in the Sterling Supply Chain Applications system.
These messages are sent sequentially - going from one cache manager
to the next. The time to notify all cache managers is dependent on the
number of cache managers - the more managers, the longer the
notification process. The list of cache managers are dynamically
maintained in the Sterling Supply Chain Applications Java Naming and
Directory Interface (JNDI) tree. The JNDI tree is updated when the
Sterling Supply Chain Applications servers, integration servers or agents
are started or terminated. At any time, the JNDI tree will have a record
for every running the Sterling Supply Chain Applications server instances
and integration server/agents.

The Sterling Supply Chain Applications servers, integration servers and
agents update the Sterling Supply Chain Applications JNDI tree that is
pointed to by parameters found in the $YANTRA_
HOME/Applications/Foundation/resources/ management.properties
file.

If your JNDI tree is kept in WebLogic, enable the following parameters in
the management.properties file.

#for WebLogic,
yfsjndi.jmx.java.naming.provider.url=
 t3://<ip address of WLS where the JNDI tree resides>:<port number>
yfsjndi.jmx.java.naming.factory.initial=
 weblogic.jndi.WLInitialContextFactory

For WebSphere, enable the following parameters.

#for WebSphere
yfsjndi.jmx.java.naming.provider.url=corbaloc::<ipAddress>:<port>
yfsjndi.jmx.java.naming.factory.initial=
 com.ibm.websphere.naming.WsnInitialContextFactory

The "Cache Clear Count" column in the System Management Console >
Table Level Cache List screen provides statistics on the number of times
the cache was cleared at the table level.

172 Performance Management Guide

Java Message Service

22.4.4.1.2 Manually Refreshing Data Cache You can manually
refresh the Sterling Supply Chain Applications cache from the System
Management Console. Go to the Details page for each application server
or the Sterling Supply Chain Applications agent instance and press the
"Clear Cache" icon.

22.4.4.2 Enabling Reference Data Caching
By default, Sterling Supply Chain Applications enable reference data
caching for

the application server instances

the Sterling Supply Chain Applications agents and monitors

The caching feature is enabled using the yfs.dbcache.classes
parameter in the yfs.properties file. In the following example, the yfs_
item, yfs_item_alias and yfs_item_exclusion tables are cached.

yfs.dbcache.classes=com.yantra.yfs.dbclasses.YFS_ItemDBCacheHome, \
 com.yantra.yfs.dbclasses.YFS_Item_AliasDBCacheHome, \
 com.yantra.yfs.dbclasses.YFS_Item_ExclusionDBCacheHome

Currently, there are about 250 reference tables that are cacheable. The
complete list is found in your yfs.properties.sample file.

The System Management Console allows you to confirm that tables are
cached.

22.4.4.3 Limiting the Number of Records Cached
By default, Sterling Supply Chain Applications cache up to 10,000
records per table. You can change this limit at the table level by setting
the following parameter in the yfs.properties file.

yfs.dbcache.com.yantra.yfs.dbclasses.YFS_QueryDBCacheHome=limit.rows=15000

In the example above, the Sterling Supply Chain Applications will cache
up to 15,000 YFS_QUERY records. You can also set a global limit for all
cached table with the following parameter

yfs.dbcache.defaults=limit.rows=15000,enabled=true

In the example above, up to 15,000 records will be cached for each table
that has been selected for caching.

Java Message Service

Sterling Supply Chain Applications - General 173

The "Objects Cached" column in the System Management Console >
Table Level Cache List provides the number of records cached for each
table.

Please keep the following in mind if you change the default settings,

Each cached record occupies space in the JVM heap. If you increase
the number of records cached, you must ensure garbage collections
are still effective and "healthy".

Conversely, do not set the cache limit too low such that the Sterling
Supply Chain Applications cache has to continually flush the cached
tables

The UI login process will take over 20 seconds if you set the cache limit
for the YFS_RESOURCE and YFS_RESOURCE_PERMISSION tables too low
(e.g., 1,000). These two tables have over 3 thousand records which are
read as part of the UI login process. By setting a low cache limit (less
than the number of records in these two tables), the Sterling Supply
Chain Applications cache will have to flush out earlier cache records when
the cache fills up. As a result, the next login will have to read the records
again.

To minimize the amount of cache management overhead, the caching
mechanism implements a simple space management strategy - when the
number of cached records for a table hits the limit specified above, the
cache manager will initialize (or refresh) that table’s cache to being
empty.

The amount of memory used by caching can be estimated with the
following formula

For example, for YFS_Query, if you expect to keep 10,000 records in the
cache and if the average record length is 380 bytes, the YFS_Query
cache will consume about 19MB of memory in the heap.

22.4.4.4 Caching for the Application Servers
To enable reference data caching for application servers,

memory MB() rows DBRowSize bytes()×
1 000 000, ,

--- 5×=

174 Performance Management Guide

Java Message Service

set the yfs.dbcache.classes parameter in the yfs.properties file
that the application servers reference.

restart the application servers

22.4.4.5 Caching for the Sterling Supply Chain Applications
Agents and Monitors
If you only want to enable caching to agents only, you must change the
agentrunner.sh shell script to reference an agent-specific cache-enabled
copy of the yfs.properties file. You should:

1. Copy the existing properties file (yfs.properties) to a new
directory.

2. Add the caching feature attributes (see above) to the new properties
file.

3. Change the agentrunner.sh shell script to use this new properties
file.

22.4.4.5.1 Creating an Agent-Specific Properties File

The Sterling Supply Chain Applications looks for its property file by
looking for a file called yfs.properties in a resources directory under
each directory listed in the CLASSPATH environment variable. For
example, if the CLASSPATH is set to:

/u01/prod:/u01/prod/yfs:/u01/prod/yfs/lib

The Sterling Supply Chain Applications will try to find the properties file
in the following sequence:

/u01/prod/resources/yfs.properties
/u01/prod/yfs/resources/yfs.properties
/u01/prod/yfs/lib/resources/yfs.properties

You need a new directory so that the application servers and the agents
can reference their own distinct yfs.properties file. As a suggestion, if
the current properties file is found in

u01/prod/yfs/resources/yfs.properties

you can create an agent specific properties file in

/u01/prod/yfsagents/resources/yfs.properties.

Java Message Service

Sterling Supply Chain Applications - General 175

In the above example, you should modify the CLASSPATH in the
agentrunner.sh to put /u01/prod/yfsagents ahead of the existing
directories. For example,

/u01/prod/yfsagents:/u01/prod:/u01/prod/yfs:/u01/prod/yfs/lib

22.4.4.6 Strategies for Enabling Reference Data Caching
The following are some suggestions to consider if you decide to cache
some or all of the reference tables.

enable reference data caching if you need the extra performance
boost

move the tables you want to cache into a separate tablespace and
monitor the read/write activities to that tablespace. That tablespace
should exhibit high read activities and almost no write activities.

cache tables that have a high read and almost no write or update
activities.

use the limit.rows parameter to limit the number of rows that can
be cached if you have very large reference tables

if you use the limit.rows parameter, monitor the frequency at which
the cache tables hit the limit and are refreshed - you should ensure
that the refresh frequency is kept low.

monitor heap garbage collection - make sure that major collection are
not occurring too frequently. If you have high frequency of major
collections, you may want to experiment with either increasing the
old generation space (using the -Xms and -Xmx parameters),
decreasing the young generation (using the -XX:MaxNewSize and
-XX:NewSize parameters), or using the limit.row parameter.

when you decide to cache tables, put the cached tables into a
read-only tablespace so that you can control the manner and
frequency in which these tables are written to or updated.

22.4.4.7 Monitoring Cache
The number of records a JVM caches depend on many factors including
the type of transaction, the data that it retrieves, the breadth of
functionality used, and possibly seasonality.

For example, an agent that is configured to Schedule Orders will only
cache records that is used by the Schedule transaction. An application

176 Performance Management Guide

Java Message Service

server, in contrast, serves a broad range of transactions and will typically
require more memory for the cache. An application server that services
both DOM and WMS will likely cache more records than one that only
services DOM.

You can monitor cache usage from the Sterling Supply Chain Applications
System Management Console. Go to the Detail page for an application
server or the Sterling Supply Chain Applications agent. Press the "Table
Level Cache" button. The following is an approach to monitoring the
cache.

Monitor the cache usage on a regular basis

Identify the table that has most of the cached records (for example,
any table with more than 100 cached records). Typically, a small set
of tables will account for most of the cached records.

For each large cache table, record or plot the number of cached
records

a table may be a good candidate for caching if the number of
cached records climbs and remain at a plateau.

a table may be a good candidate if it has high logical and low
physical read counts.

a table may also be a good candidate for caching if the time
between cache drops is long (e.g., over an hour)

a table may not be a good candidate for caching or the cache is
too small if the time between cache drops is very short (e.g.,
cache drops every minute).

22.4.4.7.1 Cache Drop Messages In addition, you can monitor when
cached tables are flushed.

2004-02-11 13:10:44,753:WARN :main: Clearing cache. Number
 cached=7787,Lists cached=2,Singletons cached=2: YFS_ResourceDBCacheHome

Look for tables that are frequently flushed. It could indicate that the
cache is too small or that table is being updated. You may want to
remove a table from the cache list if it is being flushed too often.

Java Message Service

Sterling Supply Chain Applications - General 177

22.4.5 JNDI
The Sterling Supply Chain Applications uses JNDI to record an entry for
each application server and each Sterling Supply Chain Applications
server that starts up. These entries enable the Sterling Supply Chain
Applications to manage servers and to broadcast cached data updates to
them. When a Sterling Supply Chain Applications server is shut down
normally, the corresponding entry in the JNDI registry is removed.

When a Sterling Supply Chain Applications server ends abnormally (or
whenever an application server ends) the corresponding entry remains in
the JNDI registry, even though it no longer points to a valid running
server. These pointers to servers that are no longer running are known
as "stale entries." Stale entries may cause significant slowdown when
managing servers through the System Administration Console and when
broadcasting cache updates of configuration changes from the Sterling
Supply Chain Applications Configurator.

To eliminate stale entries from the JNDI tree, Sterling Supply Chain
Applications automatically tries to remove them during the initialization
phase of any server start up. On BEA WebLogic, this process can remove
active entries as well as stale entries. This behavior may result in
conditions ranging from benign (such as an inability to see a server in
the System Administration Console) to potentially serious data integrity
issues resulting from failed cache updates.

Sterling Supply Chain Applications supply a script that enables you to
maintain an accurate JNDI registry, using the following procedure. This
script is extremely lightweight and does not require significant resources
or separate sizing estimates.

Please see the Sterling Supply Chain Applications Installation Guide for
instructions on how to run the JNDI cleanup script.

22.4.6 Sterling Supply Chain Applications Services
Sterling Supply Chain Applications provide certain standard
out-of-the-box services, which could be used on actions configured from
events. These services have been provided in synchronous mode. Some
of these services like Receipt Closure, may require to be changed to
asynchronous mode to maximize performance.

178 Performance Management Guide

Java Message Service

To make them asynchronous, you would need to copy the current
supplied service to another service flow, and change the starting point to
one of the asynchronous transports like WebLogic JMS, MQ, and so forth.

In events where the originally supplied service flows are configured to
call synchronously, you would need to create a custom service which
would publish the Input XML to an asynchronous transport component
like WebLogic JMS, MSMQ, and so forth.

For more information on defining service definitions, see the Sterling
Supply Chain Applications Platform Configuration Guide.

22.4.7 Sterling Supply Chain Applications APIs
Sterling Supply Chain Applications provide an extensive list of APIs that
client programs can invoke. Here are some recommendations for you to
consider.

22.4.7.1 API Output XML Files
The Sterling Supply Chain Applications APIs, such as getOrderDetails,
return data based on the specification of the following two XMLs files

output XML file

template XML file

The output XML file defines all the possible elements and attributes that
the API is capable of returning. The template XML file allows you to
specify a subset of the elements and attributes that the API will return.

For performance, especially for high volume APIs, you should optimize
the template XML file. Please refer to the Sterling Supply Chain
Applications Customization Guide for recommendations.

In the template XML, strive not to use the TotalNumberOfRecords
attribute. Coding this attribute will make the application issue a separate
count query against the database. The count query can be expensive if
there is a large number of records that qualify.

22.4.7.2 List APIs
List APIs allow you to retrieve sets of data from the Sterling Supply Chain
Applications database. These APIs are typically labeled getXXXList - for
example, getItemList, getLocationList, and getOrganizationList. In some

Java Message Service

Sterling Supply Chain Applications - General 179

cases, the list API could "find" a large number of records which would
cause the API to return a very large output XML. If unchecked, the
output XML could consume a large portion of the Java heap.

Developers can, and should, limit the number of records returned by
setting the attribute MaximumRecords in the list XML. For example, the
following input XML will return at most 2 records.

<Item MaximumRecords="2" />

You can also enforce a system-wide limit by setting
yantra.app.maxrecords (see Section 22.4.10.5, "API Control").

22.4.7.3 User Exits and Events
APIs give you the ability to add your own custom code in user exits or
events at well-defined points in the processing. The user exits and events
are defined in the Sterling Supply Chain Applications API Javadocs and in
the Sterling Supply Chain Applications Customization Guide.

When using user exits and events, keep the following in mind

ensure the processing time in the exit and events are short. Long exit
or event processing times will increase transaction response time
which could result in lowered throughput.

ensure that call-out (requests) to external systems can scale beyond
anticipated peak processing rates. Unscaleable or degraded call-outs
can significantly elongate user exit or event processing times.

ensure that you do not hold critical record locks during the call out.
Critical record locks are defined as those records, such as the YFS_
INVENTORY_ITEM, YFS_LOCATION, YFS_LOCATION_INVENTORY,
YFS_ORDER_HEADER, and so forth that are potentially needed by
other transactions. Please see below.

You need to be aware of whether you are holding record locks when
invoking user exits or events, especially exits or events that could take a
long time to process. For example, if your transaction is holding YFS_
INVENTORY_ITEM locks and your exit takes a minute to process, you
could potentially block other inventory processing transactions that
requires that lock.

You can find out whether you are holding on to locks during a call out by
review VERBOSE traces. Look for any SELECT... FOR UPDATE statements
issued prior to the call out.

180 Performance Management Guide

Java Message Service

Calling a user exit while holding on to locks may not be an issue if you
are certain the user exit or event will complete quickly (e.g., less than
100ms). For example, you may have coded a user exit to publish an ON_
SUCCESS message to a message queue. The call out response time is
less certain if your exit calls out to an external system. We have seen
many cases at customer sites where external systems call outs either
failed to return or have taken over two minutes.

22.4.8 Wildcard Characters
Oracle, UDB and SQL Server use the underscore character ("_") as a
single character wildcard and the percent character ("%") as a wildcard
character that can match zero or more characters. If possible, you should
avoid using these two characters in indexed fields. Take for example the
case where you have a record with ORDER_NO equal to E1_DIV01_
03215466.

The following query will be fast because only records with ’E1_DIV01_
03215466’ qualifies.

select order_header_key
from yfs_order_header
where order_no = 'E1_DIV01_03215466';

But the following query can be very slow, especially if you have millions
of records that start with "E1%".

select order_header_key
from yfs_order_header
where order_no like 'E1_DIV01_0321546%';

In the example above, records with ORDER_NO equal to
E11DIV0110321546, E11DIV01A0321546 and so on qualifies. As a
result, the database server has to find every qualifying record with
ORDER_NOs ranging from E1<low value>DIV01<low value>0321546%
to E1<high value>DIV01<high value>0321546%.

If you use wildcards as part of the column value, you can escape the
wildcards as shown in the following example.

select order_header_key
from yfs_order_header
where order_no like 'E1_DIV01_0321546%'
escape '\';

Java Message Service

Sterling Supply Chain Applications - General 181

22.4.9 log4j Logging
The Sterling Supply Chain Applications Installation Guide provides more
detail on how to configure log4j. Logs are important because they
provide information to help you detect

application problems - for example, application errors during
development

order processing exceptions - for example, the inventory levels of an
item are low and is causing orders to backorder

22.4.9.1 Logging Level
The Sterling Supply Chain Applications implementation of logging
provides the following four application logging levels

ERRORDTL

ERROR

WARN

INFO

and the following four diagnostic logging levels

TIMER

SQLDEBUG

DEBUG

VERBOSE

You can turn on all or a combination of some of these levels. You can also
designate different log destinations.

For production, you should enable either the INFO or WARN logging level.
The application logging levels are cumulative. If you enable INFO, you
will get all four levels from INFO to ERRORDTL. If you enable WARN, you
will get three levels from WARN to ERRORDTL.

When needed, you can enable diagnostic logging levels for short periods
of time in production. The DEBUG and VERBOSE consume large amount
of computing resource and generate large amount of log entries.
Enabling VERBOSE logging will also enable all diagnostic logging levels
from VERBOSE to TIMER as well as all application logging from INFO to

182 Performance Management Guide

Java Message Service

ERRORDTL. VERBOSE logs prints out lots of information including the
input, intermediate and resulting XMLs, debug information, and so forth.

The TIMER logging level produces a one-line trace entry to record when
certain processing sections are entered and exited. This diagnostic
logging level is useful for identifying areas for tuning.

The SQLDEBUG diagnostic logging level produces log entries for each
SQL statement processed. In addition, SQLDEBUG will also enable the
TIMER logging level. This logging level is useful if you suspect that there
are slow SQL statements.

You control the log4j logging levels in the log4jconfig.xml file.

22.4.9.2 Log Destinations
By default, the log4jconfig.xml.sample file defines a ROLLINGFILE_
APPENDER with a hard coded destination of /application_
path/log/yantra_application.log. If you were to start multiple JVMs
(e.g., multiple agents and/or application servers), they will all write to
the same file. In some cases, the log messages from multiple JVMs could
be interleaved.

To avoid this, you can use a parameter to define a separate log file for
each JVM. This can be accomplished as follows

in the log4jconfig.xml, set the ROLLINGFILE_APPENDER as follow

<appender name="ROLLINGFILE_APPENDER"
class="org.apache.log4j.RollingFileAppender">

<param name="MaxFileSize" value="2048KB" />
<param name="MaxBackupIndex" value="2" />
<param name="File" value="${LOGFILE}" />
<layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%d:%-7p:%t: %-60m: %-25c{1}%n"/>
</layout>

</appender>

pass in the LOGFILE parameter when starting up the JVM. In the
following example, the log file will have the agent or application
server name followed by the node name and a date and time.

AGENT_LOGFILE=${LOG_DIR}/${AGENT_NAME}_{$HOSTNAME}-`date +%Y%m%d%-H%M%S`.log
java -DLOGFILE=${AGENT_LOGFILE} \

com.yantra.integration.adapter.IntegrationAdapter

Java Message Service

Sterling Supply Chain Applications - General 183

22.4.10 Property Files
Sterling Supply Chain Applications uses the following two property files to
govern how it initializes and operates.

yfs.properties

yifclient.properties

These property files must be stored in a folder called resources. The
Sterling Supply Chain Applications looks for the property files by
checking each directory or folder in the CLASSPATH environment variable
that has a resources folder and the property file. For example, if you
have the following property files

/u01/prod/yfs/resources/yfs.properties
/u01/prod/yfsagents/resources/yfs.properties
/u01/prod/yfsspecial/resources/yfs.properties
/u01/test/yfsagents/resources/yfs.properties

and your CLASSPATH is

CLASSPATH=/u01/prod/yfs/lib/yfs.jar:/u01/prod/yfsagents

the application will pick up /u01/prod/yfsagents/resources/yfs.properties.
This technique gives you the flexibility to configure one property file for
the entire application or to have a property file specific to a workload.

Table 22–1 yfs.properties

Parameters Application
Server

Integration/Ag
ent Server

Application Server Connection Pool

 yfs.dblogin.datasource.name

Mandatory Not Applicable

184 Performance Management Guide

Java Message Service

22.4.10.1 Application Server Connection Pool Parameters
Sterling Supply Chain Applications components (e.g., EJB, servlets) that
run in the application servers use the Application Server Connection Pool
parameters to find the connection pool. Please refer to Section 12.1.1.3,
"WebLogic Connection Pool" if you are using BEA WebLogic or

Integration/Agent Server Connection Pool

 yfs.dblogin.dbtype

 yfs.dblogin.driverclass

 yfs.dblogin.jdbcurl

 yfs.dblogin.userid

 yfs.dblogin.password

 yfs.context.timeout

 yfs.context.reaptime

Not Applicable Mandatory

Reference Data Cache

 yfs.dbcache.classes

 yfs.dbcache.com.yantra.yfs.
 dbclasses.tablename.
 DBCacheHome=limit.rows

Recommended Recommended

User Interface Control

 yfs.ui.MaxRecords

 yfs.ui.queryTimeout

Optional

 default=120

Not Applicable

Not Applicable

API Control

 yantra.app.maxrecords default=5000

Statistics

 yantra.statistics.collect

 yantra.statistics.persist.interval

Recommended

Hot SKU Feature

please see Section 22.4.11.4, "Hot SKU
Feature"

Recommended

 yfs.inventory.sortandlock Please see note below

Table 22–1 yfs.properties

Parameters Application
Server

Integration/Ag
ent Server

Java Message Service

Sterling Supply Chain Applications - General 185

Section 13.1.1.2, "WebSphere Connection Pool" if you are using IBM
WebSphere for more detail.

The Application Server Connection Pool parameters are not applicable to
agents and the asynchronous adapters because they do not run in the
application server.

Note 1: If the Sterling Supply Chain Applications running in an
application server cannot get a connection through the connection pool,
it will try to establish a connection through the Direct Connection
parameters. If you do not like this behavior, you can comment out the
Direct Connection parameters in the application server-specific
yfs.properties file. The application server transactions that cannot get
a connection will abort with an exception.

22.4.10.2 Integration/Agent Server Connection Parameters
The agent and integration servers implement their own connection pool
that is controlled by the following Direct Connection parameters.

yfs.context.timeout=600
yfs.context.reaptime=900

To detect and close down idle connections, the adapter’s connection pool
implemented a Reaper process. The Reaper wakes up periodically to see
if connections have been idle for a specific period. The former is specified
by yfs.context.reaptime which currently defaults to ten minutes. The
later is specified by yfs.context.timeout which currently also defaults
to ten minutes. In the example above, the Reaper will wake up every 600
seconds and close connections that have been idle for 900 seconds.

22.4.10.3 Reference Data Cache Parameters
Reference data caching is critical for performance and scalability. By
default, the cache is enabled. Please see Section 22.4.4, "Performance
Feature - Reference Data Caching" for more detail, recommendations and
strategies.

The yfs.dbcache.classes parameter lets you specify the list of cacheable
reference tables. Not all tables can be cached - only those listed in the
yfs.properties.sample. For example

yfs.dbcache.classes=com.yantra.shared.dbclasses.YFS_ActionDBCacheHome, \
com.yantra.shared.dbclasses.YFS_Activity_ConstraintDBCacheHome, \
com.yantra.shared.dbclasses.YFS_AdapterDBCacheHome, \

186 Performance Management Guide

Java Message Service

...
com.yantra.shared.dbclasses.YFS_Routing_Guide_AttrDBCacheHome, \
com.yantra.shared.dbclasses.YFS_Routing_Guide_DetailDBCacheHome, \
com.yantra.shared.dbclasses.YFS_Ship_ConstraintsDBCacheHome

The yfs.dbcache.defaults parameter sets a global limit on the number of
records cached for each cacheable table. For example, if you set the
following parameter

yfs.dbcache.defaults=limit.rows=10000,enabled=true

the cache manager will cache at most 10,000 records per table.

22.4.10.4 User Interface Control
The UI Control parameters are only applicable to the screen workloads
(e.g., JSPs) running in the application servers. They provide system level
controls to the application administrators.

yfs.ui.maxRecords

The yfs.ui.MaxRecords parameter sets the maximum number of
records that can be displayed in the list screens on a system-wide basis.
Some of these list screens include Order Lists, Alert Lists and Item Lists.
This parameter is currently defaults to 200. In addition to this control,
the List screens have a Maximum Record field which is currently defaults
to 30. Therefore, out-of-the-box, if the user issues a search that has
1,000 records, only 30 will be displayed. The user can, at their
discretion, change the value of Maximum Record up to the value
specified by yfs.ui.MaxRecords.

There are some important points that you need to be aware of:

The yfs.ui.MaxRecords only controls the number of records (e.g.,
orders or items) that can be displayed in a list. It does not control the
amount of work the database has to perform to get those records.
For example, a user can issue a very inefficient query by asking for all
orders that "contains" the letter "Z" in the order number or in the
customer’s e-mail id. Those queries will typically result in a full table
scan of potentially large tables.

This control was put in place to limit users from trying to display a
large number of records in a list. A large list increases the number of
active objects in the JVM heap which can force more garbage

Java Message Service

Sterling Supply Chain Applications - General 187

collections which could cause transaction response times to climb.
You should test the order list transactions under concurrent loads if
you are going to increase this value.

yfs.ui.queryTimeout

The yfs.ui.queryTimeout parameter sets the maximum amount of time
a query in a UI transaction can take. By default, this parameter is set to
120 seconds. If a query takes more than 120 seconds, the query is
canceled, the transaction aborted and rolled back and an information
screen is displayed to the user.

22.4.10.5 API Control
yantra.app.maxrecords

This parameter serves as a safe guard to limit records returned by LIST
APIs to 5,000 records. Please see Section 22.4.7.2, "List APIs".

22.4.10.6 Statistics
By default, Sterling Supply Chain Applications generate application-level
statistics every 10 minutes. The statistics generation is governed by the
following parameters.

yantra.statistics.collect=y
yantra.statistics.persist.interval=10m

In the example above, statistics are persisted (or written out) every 10
minutes. These statistics are intended for internal generates statistics for
internal product use as well as use by Sterling Commerce personnel for
throughput monitoring and performance problem diagnosis. You can
disable statistics by setting yantra.statistics.collect=n. We, however,
recommend customers leave statistics enabled. The Sterling Supply
Chain Applications System Management Console (see Section 22.5.1,
"System Management Console and Health Monitor Agent") relies on these
statistics.

Please see Section 22.5.2, "Sterling Supply Chain Applications Statistics"
for more information.

188 Performance Management Guide

Java Message Service

22.4.10.7 Inventory Locking

22.4.10.7.1 Hot SKU Feature Please see Section 22.4.11.7, "Hot
SKU Controls" for information on the Hot SKU control parameters.

22.4.10.7.2 yfs.inventory.sortandlock To prevent deadlocks, the
Sterling Supply Chain Applications sort the order or shipment lines by the
items at the line level (see Section 22.4.12, "Sort Order and Deadlocks")
prior to processing. As the application processes the line, it locks the
YFS_INVENTORY_ITEM record. For example, given the following four line
order where

line 1, item A

line 2, item G

line 3, item F

line 4, item E

the Sterling Supply Chain Applications will lock the items and process the
lines in the following sequence

lock item A, process line 1

lock item E, process line 4

lock item F, process line 3

lock item G, process line 2

Transactions that follow this convention reduces the likelihood of
deadlocks. The exception is when orders has kits. Using the example
above, assume that item G in line 2 is a kit that is made up of the
following kit items D, B, and C. Since the application sorts the item at the
line level, the application will still process lines 1, 4, 3, and 2 as above.
However, when the transaction processes item G, it will potentially lock
the kit items out of sequence. Using the example above, the locking
sequence will be as follows

lock item A, process line 1

lock item E, process line 4

lock item F, process line 3

lock items B, C, and D, process line 2

Java Message Service

Sterling Supply Chain Applications - General 189

If you are processing kits and are experiencing deadlocks, you can set
the yfs.inventory.sortandlock parameter to Y. With the parameter
enabled, the application will first sort and lock all the line item and kit
items prior to processing the transaction. Using the example above, if
you enable yfs.inventory.sortandlock, the application will perform
the following.

lock item A, B, C, D, E and F first

process line 1

process line 4

process line 3

process line 2

Note: Setting the yfs.inventory.sortandlock will increase the
amount of time the YFS_INVENTORY_ITEM locks are held. That increase
may not be noticeable in small orders (for example, five line orders).
However, that increase could be noticeable if the number of lines is large
(for example, over 100 or 200 lines).

Warning: You should not set this parameter if you do not process kits.
Setting this parameter will not add any value to non-kit orders.

See Related Sections

Section 22.4.12, "Sort Order and Deadlocks"

22.4.11 Performance Feature - Hot SKU
The Sterling Supply Chain Applications locks the inventory item record
for an item before manipulating that item’s supply or demand
information. That inventory item lock is held until the transaction is
finished.

22.4.11.1 Determining The Amount Of Inventory Lock Contention
Transactions that hold inventory item record locks can block other
transactions that need the same record. A certain amount of lock
contention is acceptable especially if transactions are blocked
infrequently or for short periods of time and if there is no material impact
on processing throughput or end-user response times.

190 Performance Management Guide

Java Message Service

22.4.11.1.1 Determining Level of Lock Contention in Oracle You
can determine the level of inventory lock contention with the following
techniques. In Oracle,

use AWR to calculate the amount of lock contention

in Oracle, query the v$session table to understand the extent of the
lock contention

AWR reports provide a measure of the total amount of time (in seconds)
all transactions waited for record locks. This metric is found in the "Wait
Events for DB" section (page 2) of a AWR report. In the following
example, transactions waited for enqueues for a total of 741 seconds in
that 30-minute measurement interval.

Wait Events for DB: YRAC05 Instance: YRAC051 Snaps: 15202 -15203
 Avg
 Total Wait wait Waits
Event Waits Timeouts Time (s) (ms) /txn
---------------------------- ------------ ---------- ---------- ------ --------
db file sequential read 903,826 0 6,246 7 3.0
db file scattered read 879,659 0 4,281 5 2.9
enqueue 3,542 6 741 209 0.0
library cache pin 375 231 719 1918 0.0
buffer busy waits 116,687 0 449 4 0.4
log file sync 129,571 0 134 1 0.4

Dividing that number of enqueue wait times (741 seconds) by the
measurement interval (30 minutes) shows that the enqueue contention
was on average 0.41 blocked seconds per second. From a statistical point
of view, one transaction was blocked 41% of the time every second. If
you have ten concurrently running transactions, at one extreme, this
statistic could be interpreted as all transaction was blocked 4.1%. At the
other extreme, one transaction could have been completely blocked for
719 seconds.

In the example above, the lock contention is minimal. As a guideline,
high lock contention situations are characterized as

enqueue wait seconds per second is greater than 5 second per
second or

enqueue wait is the top wait

Java Message Service

Sterling Supply Chain Applications - General 191

If enqueue wait times are significant, run the following query to identify
the sessions that are blocked, the amount of time that they were blocked
for, and the objects they are blocked on.

select sid,last_call_et, sql_text
from v$session vs, v$sqlarea sa
where last_call_et > 0 and
 vs.sql_hash_value = sa.hash_value and
 vs.lockwait > ' '
order by last_call_et desc;

SID LAST_CALL_ET SQL_TEXT
13 1 SELECT /*YANTRA*/ YFS_ORDER_HEADER.*
 FROM YFS_ORDER_HEADER YFS_ORDER_HEADER
 WHERE ENTERPRISE_KEY =:"SYS_B_0" AND
 ORDER_NO = :"SYS_B_1" FOR UPDATE

In the example above, session (SID=31) blocked for 1 second while
trying to lock a YFS_ORDER_HEADER record.

We suggest you look at the following

determine the objects that transactions are blocked on (e.g., are
transactions blocked on YFS_INVENTORY_ITEM or some other table)

determine the amount of time these transactions block for - if the
blocks are for a few seconds (e.g., 1-2 seconds) and the number of
order lines per order are small, the level of contention may be
acceptable.

This query, along with the contention level derived from AWR, lets you
determine the extent of the lock contention.

22.4.11.1.2 Determining the Level of Lock Contention in UDB For
UDB, check the following monitor elements

lock_wait_time to determine the amount of lock contention. If you
divide this number by the measurement interval, you will get the
average lock wait (in milliseconds) per second.

check the table_name monitor element in the snapshot_lockwait
monitor to see where most of the lock contention are coming from

for each blocked agent, check the stmt_text and uow_lock_wait_
time monitor elements in the snapshot_statement monitor.

We suggest you look at the following

192 Performance Management Guide

Java Message Service

determine the objects that transactions are blocked on (e.g., are
transactions blocked on YFS_INVENTORY_ITEM or some other table)

determine the amount of time these transactions block for - if the
blocks are for a few seconds (e.g., 1-2 seconds) and the number of
order lines per order are small, the level of contention may be
acceptable.

22.4.11.2 Conditions For Inventory Lock Contention
The following three conditions must exist together for high inventory lock
contention.

sufficiently high number of concurrent transactions that require
inventory locks

sufficiently long inventory lock-holding times

presence of a few common inventory (SKU) in the orders of the
concurrently running transactions

If the transaction volume is low and only one transaction is running, this
transaction will not experience any inventory lock contention. The
likelihood of inventory lock contention grows as the number of
concurrently running inventory processing transactions (e.g.,
createOrder, schedule, release, and so forth) increases.

The impact of lock contention may be minimal if the lock-holding times
are very short. Blocked transactions eventually get and lock the
inventory item they need to process.

If there are no common SKUs, all the concurrently running transactions
will be able to process without blocking.

22.4.11.3 Optimization
If the inventory lock contention level is high, relative to your processing
concurrency levels, or if you feel that your processing throughput or
end-user response times are impacted, we suggest the following course
of action.

Look at the lock-holding times. Run each inventory processing
transaction with SQLDEBUG traces or possibly VERBOSE traces.
VERBOSE traces provides more data but can be more intrusive than
SQLDEBUG.

Java Message Service

Sterling Supply Chain Applications - General 193

See how long, on average, the transactions take.

See when the first inventory locks are obtained (and as a result, how
long they are held) within that transaction boundary. The goal is to
keep lock-holding times short.

See if there are places in the transaction that take a long time to
process and the processing occurs when inventory item locks are
held. For example,

the transaction may have a user-exit that calls out to external
systems. If that external system slows down or is unable to scale,
the user-exit time will increase. This will correspondingly elongate
the lock-holding times.

there may be SQL statements that run for a long time and can be
optimized with better database statistics or an additional index

look at the GC logs - make sure the transaction is not slowed
down by long costly garbage collection pauses

Reducing lock-holding times can have compounding effects - as
lock-holding times decreases, transactions finish faster and, as a result,
lower concurrency levels.

22.4.11.4 Hot SKU Feature
If inventory lock contention is still unacceptably high after you have
applied the optimization from above, you have two options that can
potentially reduce the level of inventory item lock:

Hot SKU Feature

Hot SKU Feature (without lock request timeout)

22.4.11.4.1 Hot SKU Feature (without lock request timeout)

In a nutshell, the Hot SKU feature tracks the time to lock inventory item
records. If a lock request for an item (called SKUA) is longer than the
yfs.hotsku.secondsToClassifyAsAbnormalTime threshold, the Hot SKU
feature increments the number of "abnormal" lock attempts for SKUA. If
the number of "abnormal" attempts in a monitoring window is more than
the yfs.hotsku.secondsToClassifyAsAbnormalTime threshold, the Hot
SKU feature will consider SKUA a Hot SKU.

194 Performance Management Guide

Java Message Service

In the example below, the first transaction was able to obtain the SKUA
lock immediatley.

As a result, the number of abnormal lock attempts (which we will assume
to have started at zero) stays at zero. The second transaction blocked
but eventually got the lock within the abnormal lock time period. Since
the request completed within the "abnormal" time, the request was not
considered abnormal - as a result, the number of abnormal lock attempts
is left at zero and SKUA is not considered a Hot SKU.

The next three transactions try to obtain the lock and were blocked for
longer than the abnormal lock time window. Each "abnormal lock"
attempt increases the abnormal lock count within that monitoring
window. SKUA turns hot when the count reaches the
yfs.hotsku.numRequestsInTrackingWindowToKeepAsHotSku threshold
(which defaults to 3).

A Hot SKU will be downgraded to a normal SKU if the number of
references to that SKU is less than the
yfs.hotsku.numRequestsInTrackingWindowToKeepAsHotSku threshold
in a monitoring window.

Transaction Obtains SKUA Lock and Is Active Transaction Tries to Obtain SKUA Lock and Is Blocked

Abnormal Time

Num Abnormal SKUA Hot?
 Lock Attempts

0 N

0 N

1 N

2 N

3 Y

Abnormal Lock Monitoring Window

Abnormal Time

Abnormal Time

Abnormal Time

Txn 1

Txn 2

Txn 3

Txn 4

Txn 5

Java Message Service

Sterling Supply Chain Applications - General 195

Hot SKU detection and enablement occurs at each JVM. For example, a
sudden high burst of demand for a single SKU could result in the
createOrder adapter to consider that SKU hot. Later, as the downstream
agents process those orders, they will independently detect and enable
those SKUs as Hot SKUs if they encounter sufficient number of
"abnormal" locks.

When an inventory item is upgraded to Hot SKU status, transactions will
not lock that inventory item before manipulating its demand or supply
information. Instead, the transactions will insert the demand or supply
information into two new tables, YFS_INVENTORY_DEMAND_ADDNL or
YFS_INVENTORY_SUPPLY_ADDNL respectively. As a result, demand or
supply information can be recorded in a non-blocking manner because
inserts will not block other transactions from proceeding. Transactions
will continue in this mode until the inventory items have been
downgraded to the normal status.

Inventory demand queries automatically check both the YFS_
INVENTORY_DEMAND and YFS_INVENTORY_DEMAND_ADDNL tables.
Similarly, inventory supply queries checks the YFS_INVENTORY_SUPPLY
and YFS_INVENTORY_SUPPLY_ADDNL tables.

The quantities in the inventory additional records are consolidated back
to their base inventory tables by the Consolidate Additional Inventory
agent.

22.4.11.4.2 Hot SKU Feature with Lock Request Timeout option

The lock request timeout option in the Hot SKU feature may be useful in
reducing the amount of lock holding time by limiting the time the lock
request blocks. This can be useful when you are primarily processing
large orders (for example, over 50 lines per order) where the
transactions could block for a very long time.

Using the previous example, with the same transaction arrival times and
processing times, we see that Transaction 1 immediately obtains SKUA’s
record lock and processes SKUA without the Hot SKU feature. Transaction
2 comes in and blocks on the Transaction 1 but eventually gets the lock
within the abnormal time. As a result, Transaction 2 also processes SKUA
without the Hot SKU feature.

196 Performance Management Guide

Java Message Service

Transaction 3 starts and is blocked by Transaction 1. Eventually,
Transaction 3’s lock request times out. When that happens, the
transaction increments SKUA’s abnormal lock attempt count to 1 and
re-issues the lock request.

Similarly, Transaction 4 is blocked by Transaction 1 until its lock request
times out. This transaction increments the abnormal lock attempt count
to 2.

When Transaction 3 times out its second lock request, the Hot SKU
feature will upgrade SKUA to Hot SKU status. When that has happened,
Transaction 3 can process SKUA even though Transaction 2 still has the
SKUA record lock.

Similarly, when Transaction 4 times out, it will be able to process SKUA.

Transaction Obtains SKUA Lock and Is Active Transaction Tries to Obtain SKUA Lock and Is Blocked

Num Abnormal Turn
 Lock Attempts SKUA Hot?

0 N

0 N

1 N

2 N

3 Y

Monitoring Window

Abnormal Time

Abnormal Time

Abnormal Time Abnormal Time

Abnormal Time

3

Transaction Processes SKUA as a Hot SKU

Y

4 already hot

Txn 1

Txn 2

Txn 3

Txn 4

Txn 5

Java Message Service

Sterling Supply Chain Applications - General 197

More importantly, when Transaction 5 comes in, it will see that SKUA is
already a Hot SKU and will not attempt to lock the SKUA record.

One important benefit to lock request timeout is in situations where the
blocker could be holding on to locks for a long time. With the timeout
option enabled, the blocked transactions has to wait up to a maximum of
abnormal lock count (yfs.hotsku. numberOfAbnormal
LocksForSwitchTo HotSKU) times the abnormal lock timeout
(yfs.hotsku. secondsToClassifyAs AbnormalTime) before the
transaction starts to process the SKU as a Hot SKU.

22.4.11.5 Consolidate Additional Inventory Agent
If you enable the Hot SKU feature, you must run the Consolidate
Additional Inventory agent (see the Sterling Supply Chain Applications
Platform Configuration Guide). This agent will consolidate the quantity in
the demand and supply additional records back into the base YFS_
INVENTORY_DEMAND or YFS_INVENTORY_SUPPLY tables. The additional
demand and supply records are deleted after the quantities are
consolidated.

Typically, you should configure this agent to run continuously with one
thread. You don’t need to overly aggressively schedule this agent - if you
do, the agent will consolidate a small number of additional records. At
the same time, you do not want to run for long periods without this
agent - if you do, you could accumulate a large number of inventory
additional records which can slow down inventory queries.

If you are using the UDB database server, you need to set the parameter
DB2_SKIPINSERTED to ON and mark the YFS_INVENTORY_SUPPLY_
ADDNL and YFS_INVENTORY_DEMAND_ADDNL tables as volatile. These
settings will reduce lock contention. Please see the following sections for
more information.

Section 16.1.1, "Recommended UDB dbset Registry Variables"

Section 16.1.3.2.1, "Volatile Tables"

22.4.11.6 Hot SKU Activity Monitoring
The following messages are logged by the Hot SKU feature.

Thread-8:2004-06-02 13:50:06,336:INFO : Turning/retaining Item:
[Acme:SKUA:EACH:A] into a hot sku as abnormal lock count has increased now
to:4: YFSAvailHotSKUItem

198 Performance Management Guide

Java Message Service

Thread-7:2004-06-02 16:14:44,871:INFO : Turning Item: [Acme:SKUA:EACH:A]
into a cold SKU as total requests in last 2 windows were :2 and 2:
YFSAvailHotSKUItem

In the example above, the inventory item, SKUA, for the Acme
organization, with UOM EACH and product class A, was upgraded to Hot
SKU status because the Hot SKU feature encountered four abnormal lock
attempts in a monitoring period. Later, SKUA was downgraded to normal
status when there was only 2 lock requests in the last two monitoring
windows.

If you see multiple "turning hot" messages for a particular SKU (for
example SKUA in the following example), you ran into a situation where
multiple threads tried to lock an inventory item, which was at that time
not considered a hot SKU, and was blocked. When those threads
eventually get the lock, it will print the message indicating that it
encountered an "abnormal" lock and has decided to turn that item hot.

Thread-8:2004-06-02 13:50:06,336:INFO : Turning/retaining Item:
[Acme:SKUA:EACH:A] into a hot sku as abnormal lock count has increased now
to:4: YFSAvailHotSKUItem
Thread-10:2004-06-02 13:50:06,417:INFO : Turning/retaining Item:
[Acme:SKUA:EACH:A] into a hot sku as abnormal lock count has increased now
to:5: YFSAvailHotSKUItem
Thread-7:2004-06-02 13:50:06,423:INFO : Turning/retaining Item:
[Acme:SKUA:EACH:A] into a hot sku as abnormal lock count has increased now
to:6: YFSAvailHotSKUItem

That item was likely successfully converted to a hot SKU if you do not
see any more subsequent "turning hot" messages for that item.

On the other hand, if you continue to see "turning hot" messages for the
same SKU in the same window, you may have a "Hot" SKU that has low
inventory. When a SKU’s inventory level is below a safety level, the Hot
SKU feature will continue to lock that inventory item to calculate the
items availability (see Section 22.4.11.9, "Limitations" below).

Java Message Service

Sterling Supply Chain Applications - General 199

22.4.11.7 Hot SKU Controls

The Hot SKU feature is controlled by the following parameters that are
found in the yfs.properties file.

Warning: The Hot SKU component is a very powerful feature
that you can deploy if your organization is experiencing true
high Hot SKU contention. These parameters may cause
performance problems if set incorrectly. Read this document
carefully. Verify that you have true Hot SKU contention before
enabling this feature or changing any settings. If in doubt, call
Technical Support.

Table 22–2 Hot SKU Control

Parameter Description

yfs.hotsku.
useHotSKUFeature

Control used to enable/disable the Hot SKU feature.

By default, this parameter is set to "N".

yfs.hotsku.useTimeOut
Locking

Control used to enable or disable the lock request
timeout option in the Hot SKU feature. By default, the
parameter is set to "N".

yfs.hotsku.
secondsToClassifyAs
AbnormalTime

Threshold used to determine when a lock request is
"abnormal".

If a lock request exceeded this threshold, that lock
request is counted as an "abnormal" lock request.

Defaults to 0.5 seconds.

yfs.hotsku.windowTime
InMinutes

Interval of one tracking window during which
"abnormal" lock requests are tracked. A subsequent
window begins once the first window ends.

Default interval is 10 minutes.

yfs.hotsku.
numberOfAbnormal
LocksForSwitchTo
HotSKU

Threshold used to determine when to promote an
inventory item to Hot SKU status.

If the number of "abnormal" lock requests for an item
exceeds this value within the tracking window, that
item is promoted to Hot SKU status.

see Section 22.4.11.8, "Three Usage Scenarios" for
recommended settings.

yfs.hotsku.numRequest
sInTrackingWindowToK
eepAsHotSku

Minimum number of requests needed within the
tracking window to keep the item in Hot SKU status.

200 Performance Management Guide

Java Message Service

22.4.11.8 Three Usage Scenarios
Currently we envisage three scenarios for the Hot SKU feature.

yfs.hotsku.showExtraM
essagesAsInfo

Enables extra messages to be displayed at info logging
level.

Default value is "N".

For Sterling Supply Chain Applications Internal Use Only

yfs.hotsku.qtyMultiplier Defaults to 30. Do not modify without Sterling
Commerce guidance.

yfs.hotsku.highRequest
QuantityMultiplier

Defaults to 2. Do not modify without Sterling
Commerce guidance.

yfs.hotsku.maxItem
MapSizeInMemory

Defaults to 1000. Do not modify without Sterling
Commerce guidance.

Table 22–3 Hot SKU Usage Scenarios

Scenario Description Parameters

Not Enabled Inventory lock contention
is minimal. The Hot SKU
feature is not needed.

yfs.hotsku.useHotSKUFeature=N

Small
Orders

Inventory lock contention
is sufficiently high and is
caused by a high volume
of small orders (around
1-5 order lines per order)

yfs.hotsku.useHotSKUFeature=Y

yfs.hotsku.numberOfAbnormalLoc
ksForSwitchToHotSKU=3

yfs.hotsku.windowTimeInMinutes=20.0

yfs.hotsku.numRequestsInTrackingWind
owToKeepAsHotSku=3

Large
Orders

Inventory lock contention
is sufficiently high and is
caused by a high volume
of large orders (more
than 50 order lines per
order)

yfs.hotsku.useHotSKUFeature=Y

yfs.hotsku.useTimeOutLocking=Y

yfs.hotsku.numberOfAbnormalLoc
ksForSwitchToHotSKU=3

yfs.hotsku.windowTimeInMinutes=5.0

yfs.hotsku.numRequestsInTrackingWind
owToKeepAsHotSku=5

Table 22–2 Hot SKU Control

Parameter Description

Java Message Service

Sterling Supply Chain Applications - General 201

22.4.11.9 Limitations
There are four situations where the Sterling Supply Chain Applications
will continue to lock the YFS_INVENTORY_ITEM records even when the
item is considered a Hot SKU.

First, the following APIs will always lock the YFS_INVENTORY_ITEM
records during supply adjustment

updateFutureInventory

getInventoryMismatch

Second, the Sterling Supply Chain Applications will always lock YFS_
INVENTORY_ITEM records for tag-controlled items, if the request is for
specific tag criteria.

Third, the Sterling Supply Chain Applications will lock the YFS_
INVENTORY_ITEM records for an item that is currently a Hot SKU in order to
calculate availability if the inventory for that item is below a safety level.

Fourth, if the ‘Summarize and Maintain Total Supply and Demand Values
For Tag Controlled Items’ Installation Rule is enabled, the Hot SKU logic
is not used, and the values of the TotalOnhandSupply, TotalOtherSupply
and TotalDemand fields are updated accordingly. For more information on
defining additional inventory rules, refer to the Sterling Global Inventory
Visibility Configuration Guide.

22.4.12 Sort Order and Deadlocks
Deadlocks occur when two or more sessions mutually block each other to
the point where neither session can progress. As a result, these sessions
will continue to block until the database management system kills one of
the deadlocked sessions in order for the others to continue.

Deadlocks occur when two or more sessions obtain resource locks in an
arbitrary fashion. For example, the following is a classic example

Txn 1 Txn 2
Locks Record A Locks Record B
Tries to Lock Record B (blocked) Tries to Lock Record A (blocked)

In the example above, Txn 1 holds the lock for Record A and Txn 2 holds
the lock for Record B. When Txn 1 tries to lock Record B, it becomes

202 Performance Management Guide

Java Message Service

blocked. When Txn 2 tries to lock Record A, it also becomes blocked.
Now, neither session can progress unless one of the transaction is killed.

If the resource locks were obtained in a consistent order, the deadlock
will not occur. For example, all transactions agree to lock the records in
ascending order (Record A then Record B).

Replaying the example above, we now have

Txn 1 Txn 2
Locks Record A Tries to Lock Record A (blocked)
Locks Record B
commits
 Locks Record A
 Locks Record B
 commits

In the example above, Txn 2 is delayed but not deadlocked. Both
transactions eventually complete.

22.4.12.1 Sort Order
When you develop custom code, you should be aware that the Sterling
Supply Chain Applications obtains YFS_INVENTORY_ITEM locks in the
following sort order

 Item ID, Product Class and UOM

If you adopt this sort order, you should greatly minimize the chance of
deadlocks.

22.4.13 Application Servers
The Sterling Supply Chain Applications UI is made up Java Server Pages
(JSPs). When users call up a JSP the first time, the application server will
automatically translate and compile the JSP file. This process can over 30
seconds, which could lead to the perception of an unresponsive system.
Further, this process is performed serially even on a multiprocessor node
- if you have multiple users hitting five different pages, WebLogic will
compile these pages one at a time. As a result, we strongly recommend
precompiling the JSP pages prior to deployment into production.

You should ensure your application server administrator precompiles the
JSPs as part of the application deployment.

Monitoring

Sterling Supply Chain Applications - General 203

Please see Section 12.1.1.4, "JSP Pre-Compilation" on precompiling JSPs
in BEA WebLogic application servers.

Please see Section 13.1.1.3, "JSP Pre-Compilation" on precompiling JSPs
in IBM WebSphere application servers.

22.4.14 MS Internet Explorer

22.4.14.1 Temporary Internet Files
You can reduce the number of hits against the application servers for
static content by enabling temporary Internet file cache in Microsoft
Internet Explorer. This will improve your UI response times. To enable
the cache

Go to the Internet Options dialog box

In Microsoft Internet Explorer, go to Tools > Internet Option

Click on the Settings button in the Temporary Internet Files panel

Enable the “Check for newer version of stored pages” radio button
to Automatically

Make sure there is sufficient disk space to store temporary
Internet files (e.g., 500MB or higher).

22.5 Monitoring
You can monitor the status and progress of the Sterling Supply Chain
Applications with the following tools or techniques

System Management Console

Throughput Queries

Sterling Supply Chain Applications Statistics

YFS_INBOX

Application Logs

204 Performance Management Guide

Monitoring

22.5.1 System Management Console and Health Monitor
Agent

The System Management Console is an application monitor. Some of the
areas you can monitor include:

the processing throughput, response time, the amount of pending
work, and the number of errors generated at the API and agent level

the status of the application servers

the number of messages in JMS queues

In addition, the System Management Console allows you to

shutdown, suspend, or resume agent and integration servers.

clear reference data cache for a single or all cached tables

enable/disable API, agents, user exits, services, and the application
consoles application traces.

The companion Health Monitor agent can be configured to alert system
administrators when problems occur such as when an application server
crashes or agent servers are not processing tasks.

The System Management Console’s functionality, screens and related
tasks are documented in detail in the Sterling Supply Chain Applications
System Management Guide.

22.5.2 Sterling Supply Chain Applications Statistics
The System Management Console gets most of its measurements from
data found in the YFS_STATISTICS_DETAIL table. These statistics are
described in the Sterling Supply Chain Applications Platform
Configuration Guide.

Sterling Supply Chain Applications Statistics records, by default, are
generated every 10 minutes for each active API and transaction running
in each application server or Integration Adapter. For example, if the
Schedule transaction was active in 3 Integration Adapters, you will have
3 sets of statistics for each measurement interval.

Time-triggered transactions, at a minimum, generate the following four
metrics.

Monitoring

Sterling Supply Chain Applications - General 205

The GetJobsProcessed metric indicates how many times Get Jobs
were issued to look for work for this transaction.

The ExecuteMessageCreated metric indicates how many records
were selected for processing

The ExecuteMessageSuccess metric indicates how many messages
were successfully processed

The ExecuteMessageFailure metric conversely indicates how many
messages were not successfully processed

With these four metrics, you could

track ExecuteMessageSuccess to see how much work the application
is processing throughout the day.

track the ratio of ExecuteMessageSuccess divided by
ExecuteMessageCreated to get an idea of the effectiveness. For
example, a ratio of 0.8 means that only 80% of the orders are
successfully processed. If the effectiveness ratio is consistently low, it
could indicate that the application is encountering a large number of
work (or orders) that repeatedly fail. This could lead to extra
processing overhead.

calculate the resource cost per unit work processed by correlating the
number of worked processed against the CPU consumed. You could
track this to see if the cost per unit work is changing. This metric is
useful for identifying areas to optimize. It is also the basis for
computing resource capacity forecasting or planning.

In addition, some transactions produce transaction specific statistics. For
example, some of the metrics the Schedule transaction generates
includes NumOrdersBackordered, NumWorkOrdersCreated, and so forth.

22.5.3 Inbox
You should monitor the number of active alerts in the YFS_INBOX table.
The Sterling Supply Chain Applications alerts come from the following
source:

transactions that are configured to raise alerts

monitor (such as the order monitor)

206 Performance Management Guide

Monitoring

Users subscribed to queues with large number of open alerts can
experience slow logins. Very large YFS_INBOX tables can impact login
times for all users.

You can find out the number of active and non-active alerts by issuing
the following query:

select active_flag,count(*)
from yfs_inbox
group by active_flag

You can find out the distribution of alerts by queue name and inbox type
by issuing the following query:

select queue_name, inbox_type, active_flag, count(*)
from yfs_inbox inb,yfs_queue q
where inb.queue_key = q.queue_key
group by queue_name, inbox_type, active_flag

You can find out the hourly rate of alert creation for July 4, 2004 by
issuing the following query:

select substr(inbox_key,1,10),count(*)
from yfs_inbox
where inbox_key > ’20040704000000’ and
 inbox_key < ’20040704999999’
group by substr(inbox_key,1,10);

22.5.4 Application Logs
You should regularly monitor the Sterling Supply Chain Applications and
application server logs for, at a minimum, the following.

application errors or business exception conditions - for example,
invalid input XML to APIs, and so forth.

system errors - e.g., Java OutOfMemory or NullPointer exceptions

Sterling Supply Chain Applications - Distributed Order Management 207

23
Sterling Supply Chain Applications -

Distributed Order Management

This chapter provides recommendations on how to plan, implement,
configure, monitor, and tune the Sterling Supply Chain Applications
Distributed Order Management system.

Sterling Distributed Order Management with the default factory (data)
settings provides a simple configuration that is suitable for development,
training or product familiarization. That configuration is not suitable for
production except for customer with very low transaction volumes. This
chapter will guide you through the components that you have to
configure for higher transaction volumes.

This chapter assumes that you

are familiar with the basic functionality of the Sterling Distributed
Order Management

have read the common Sterling Supply Chain Applications
performance concepts in Chapter 22, "Sterling Supply Chain
Applications - General"

have read and followed all the instructions found in the Sterling
Supply Chain Applications Installation Guide

have read the Sterling Supply Chain Applications Release Notes

208 Performance Management Guide

Sterling Supply Chain Applications Distributed Order Management Agents

23.1 Sterling Supply Chain Applications
Distributed Order Management Agents

23.1.1 Schedule Agent for Backorder Efficiency
If you have a large number of backordered orders and the backorders
can last a few days, you should consider creating a Schedule agent to
process new orders and another Schedule agent to process the
backorders.

The benefit of this approach is you can reduce the frequency when you
trigger the backorder Schedule agent. For example, instead of once
every minute, you could relax the triggers to once a day or immediately
after inventory supply updates.

23.1.2 Real-Time Inventory Availability Monitor for ATP
Efficiency

The Real-Time Inventory Availability Monitor is used to alert external
systems when inventory availability crosses pre-defined thresholds.
When items are flagged for real-time availability monitoring, a record is
inserted into the YFS_INVENTORY_ACTIVITY table by inventory
transactions that update supply or demand information.

This monitor checks inventory availability based on information in the
YFS_INVENTORY_ACTIVITY table. The activity records associated with an
item are deleted after the inventory check.

If you plan to use the real-time inventory availability monitor, we suggest
you start with 5 threads and monitor the number of records in the YFS_
INVENTORY_ACTIVITY table. It is highly recommended that you
aggressively monitor the YFS_INVENTORY_ACTIVITY table. Additionally,
we also recommend that you set this agent to be auto triggered with an
interval of 5 minutes.

The following query can be used to monitor build up in the YFS_
INVENTORY_ACTIVITY table. This query will tell you the oldest activity
record in the table.

select sysdate, min(inventory_activity_key) "Min Datetime"
from yfs_inventory_activity

SYSDATE Min Datetime

Sterling Supply Chain Applications Distributed Order Management Agents

Sterling Supply Chain Applications - Distributed Order Management 209

12/22/2004 3:57:57 PM 20041222155659187360102

In the example above, the query was issued at 15:57:57 and the oldest
inventory activity record was created at 15:56:59. Therefore, the
monitor is keeping up by about 1 minute.

If the time gap between the current time and the oldest record keeps
increasing over time, we recommend starting additional JVMs of this
agent.

Note: Although described as 'real-time', availability changes may not be
triggered immediately as inventory changes occur if the agent has a
backlog of messages to process. Furthermore, this monitor exists as a
time-triggered transaction, and thus monitors availability of inventory
items only when the monitor is triggered based on the configured
runtime properties.

23.1.3 Getters with Enterprise Code
The getters for the following time-triggered (agent) transactions can take
enterprise code as an additional parameter:

order monitor

shipment monitor

negotiation monitor

payment collection.

When the Agent Server processes a default getter task (a getter task
that will pick up work for any enterprise), the server will turn around and
create a getter message for each enterprise. Each of these getters will by
default pick up their own 5,000 orders. Therefore, if you have four
defined enterprises, the first getter message will result in the creation of
four enterprise-specific getter messages. Those four getter messages
could potentially create up to 20,000 task messages. If you have many
enterprises, you may want to consider

lowering the number of orders a getter puts into the message queue
or

explicitly scheduling getters with enterprise codes (instead of using
the default getter which gets orders for all enterprises).

210 Performance Management Guide

Sterling Supply Chain Applications Distributed Order Management Agents

23.1.4 Sort Order and Deadlocks
Deadlocks occur when two or more sessions mutually block each other to
the point where neither session can progress. As a result, these sessions
will continue to block until the database management system kills one of
the deadlocked sessions in order for the others to continue.

Deadlocks occur when two or more sessions obtain resource locks in an
arbitrary fashion. For example, the following is a classic example

Txn 1 Txn 2
Locks Record A Locks Record B
Tries to Lock Record B (blocked) Tries to Lock Record A (blocked)

In the example above, Txn 1 holds the lock for Record A and Txn 2 holds
the lock for Record B. When Txn 1 tries to lock Record B, it becomes
blocked. When Txn 2 tries to lock Record A, it also becomes blocked.
Now, neither session can progress unless one of the transaction is killed.

If the resource locks were obtained in a consistent order, the deadlock
will not occur. For example, all transactions agree to lock the records in
ascending order (Record A then Record B).

Replaying the example above, we now have

Txn 1 Txn 2
Locks Record A Tries to Lock Record A (blocked)
Locks Record B
commits
 Locks Record A
 Locks Record B
 commits

In the example above, Txn 2 is delayed but not deadlocked. Both
transactions eventually complete.

23.1.4.1 Sort Order
When you develop custom code, you should be aware that the Sterling
Supply Chain Applications obtains YFS_INVENTORY_ITEM locks in the
following sort order

 Item ID, Product Class and UOM

If you adopt this sort order, you should greatly minimize the chance of
deadlocks.

Sterling Supply Chain Applications Distributed Order Management Agents

Sterling Supply Chain Applications - Distributed Order Management 211

23.1.5 Agent Throughput
In addition to the data provided by the System Management Console and
the Sterling Supply Chain Applications Statistics, you can also get
application processing statistics by data mining the Sterling Supply Chain
Applications database. This technique takes advantage of the following
application characteristics

a record is created in yfs_order_header for every new order

a record is created in yfs_order_line for every order line

a record is created in yfs_order_release_status each time the order
line moves through the various states in its lifecycle

an audit record is created in yfs_order_audit each time an order or
order line is modified

an audit record is created in yfs_inventory_audit each time an
inventory item is modified.

each record has a primary key whose value is made up of two parts

a date/time component in the form of year, month, date, hours,
minutes, and seconds. For example, a record that was created on
September 21, 2003 at 4:20:14 pm will have 20030921162014 as
the first part of the key).

a monotonically-increasing sequence number.

23.1.5.1 Order Creation Throughput
For example, in Oracle, to calculate the rate at which orders were created
on a specific date (e.g., July 4, 2004), you can issue the following query:

select substr(order_header_key,1,10) time, count(*) as count
from yfs_order_header
where order_header_key > ’20040704000000’ and
 order_header_key < ’20040704999999’
group by substr(order_header_key,1,10);

This query produces a listing like this:

TIME COUNT
------------------------ ----------
2004070406 3333
2004070407 3366
2004070408 3333

212 Performance Management Guide

Sterling Supply Chain Applications Distributed Order Management Agents

For UDB, to issue the query above at the uncommitted read lock level,
issue the query with the "WITH UR" option.

select substr(order_header_key,1,10) time, count(*) as count
from yfs_order_header
where order_header_key > ’20040704000000’ and
 order_header_key < ’20040704999999’
group by substr(order_header_key,1,10)
with UR;

In SQL Server, issue the following

-- number of order headers
select substring(order_header_key,1,12) "Orders", count(*) "Meas. Minute
Rate"
from yfs_order_header
where order_header_key like '20040704%'
group by substring(order_header_key,1,12);

-- number of order lines created
select substring(order_line_key,1,12) "Order Lines", count(*) "Meas. Minute
Rate"
from yfs_order_line
where order_line_key like '20040704%'
group by substring(order_line_key,1,12);

23.1.5.2 Order LifeCycle Throughput
Similarly, you can calculate the throughput of orders going through its
various lifecycle states with the following example:

select pipeline_key, status, substr(order_release_status_key,1,10) time,
 count(*) count

Note: For UDB, you should issue throughput queries as
uncommitted reads. By default, queries run at the cursor
stability level. As a result, UDB has to obtain a read share
lock on the record it is reading. Queries against tables with
high insert or update activities will block behind records
with update or exclusive locks.

Sterling Supply Chain Applications Distributed Order Management Agents

Sterling Supply Chain Applications - Distributed Order Management 213

from yantra.yfs_order_release_status
where order_release_status_key > ’20040704000000’ and
 order_release_status_key < ’20040704999999’
group by pipeline_key,
 status,
 substr(order_release_status_key,1,10);

PIPELINE_KEY STATUS TIME COUNT
------------------------ --------------- ------------------------ ----------
2004070409425525425230 1100 2003102906 13333
2004070409425525425230 1100 2003102907 13464
2004070409425525425230 1100 2003102908 13333
2004070409425525425230 1300 2003102906 50
2004070409425525425230 1300 2003102907 23
2004070409425525425230 1300 2003102908 50
2004070409425525425230 3200 2003102906 13234
2004070409425525425230 3200 2003102907 13477
2004070409425525425230 3200 2003102908 13290

The definition of the STATUS is found in YFS_STATUS and PIPELINE_KEY
in YFS_PIPELINE. For example, status of 1100 indicates order lines being
created. In the example above, there were 13,333 order lines created for
one pipeline and another 4,333 order lines created in another pipeline.

Best Practice: You should baseline the throughput of individual agents
and key APIs to get an idea of the potential throughput. You should then
monitor the agents in production against the baseline. This continual
monitoring may reveal issues - e.g., a credit authorization agency
providing slower response times, issues with the database, and so forth.

Best Practice: You can monitor the flow of the orders on an hourly basis
by pivoting the data so that STATUS is in the column and TIME is in the
row. For example, the data above can be displayed as follows.

Time 1100 1300 3200
2004070406 13333 50 13234
2004070407 13464 23 13447
2004070408 13333 50 13290

In the pivot example above, 13,333 order lines were created on
2003/07/04 at 06am. At that same time period, 50 order lines went to
Backorder and 13,234 were Released. More importantly, one may
conclude that the flow of the orders through the pipeline is good because
order releases are keeping pace with order creation.

214 Performance Management Guide

Sterling Supply Chain Applications Distributed Order Management Agents

There are many ways to create pivot tables including Microsoft Excel (use
Data > PivotTable and PivotChart Report...).

23.1.5.3 Order Kit Line Creation Throughput
To calculate Kit Line creation, issue the following example:

select substr(order_kit_line_key,1,10) time,
 count(*) count
from yfs_order_kit_line
where order_kit_line_key > ’20040704000000’ and
 order_kit_line_key < ’20040704999999’
group by substr(order_kit_line_key,1,10);

This query produces a listing like this:

TIME COUNT
------------------------ ----------
2004070406 3333
2004070407 3366
2004070408 3333

23.1.5.4 Throughput Query Limitations
As we discussed above, the throughput queries provides processing rates
by counting the number of records created. If you run the throughput
query against the YFS_ORDER_RELEASE_STATUS table, you will get rates
at which order lines move through the pipeline statuses.

23.1.5.4.1 Reprocessing The throughput queries do not report
"unsuccessful" work and as a result can appear skewed if you have a lot
of order reprocessing. You can, however, augment these throughput
queries with data from the Sterling Supply Chain Applications Statistics
(see Section 22.5.2, "Sterling Supply Chain Applications Statistics").

For example, assume there are 10,000 orders available for scheduling.
When the Schedule agent processes the 10,000 orders, it finds that
9,000 orders cannot be scheduled because they are either awaiting
authorization or items are backordered. The throughput query will report
that the Schedule agent successfully scheduled 1,000 orders but will not
indicate that it tried to but was unable to schedule the other 9,000
orders. In these extreme cases, the Schedule agents will appear to
consume a lot of computing resources for the amount of work (as
reported by the throughput query) performed.

Sterling Supply Chain Applications Distributed Order Management Agents

Sterling Supply Chain Applications - Distributed Order Management 215

In addition to tracking the order flow, you should also track the number
of exceptions using the exception query below (see Section 22.5.3,
"Inbox").

23.1.5.4.2 Maximum Potential Throughput The throughput query
reports actual work done within each measurement or reporting period.
The rates can be less than the maximum throughput when there are idle
agent threads during the reporting period - for example, when there is
not enough work for the agents to process.

To calculate your agent configuration’s maximum throughput, you need
to create a queue of work so that all agent threads are busy the entire
reporting period and the amount of reprocessing is normal or
representative of your peak day.

216 Performance Management Guide

Sterling Supply Chain Applications Distributed Order Management Agents

Sterling Warehouse Management System 217

24
Sterling Warehouse Management

System

This chapter provides recommendations on how to plan, implement,
configure, monitor, and tune the Sterling Warehouse Management
System. Sterling WMS’s default factory (data) settings provide a simple
configuration that is suitable for development, training or product
familiarization. That configuration is not suitable for production except for
customer with very low transaction volumes. This chapter will guide you
through the components that you have to configure for higher
transaction volumes.

This chapter assumes that you

are familiar with the basic functionality of Sterling WMS

have read the common Sterling Supply Chain Applications
performance concepts in Chapter 22, "Sterling Supply Chain
Applications - General"

have read and followed all the instructions found in the Sterling
Supply Chain Applications Installation Guide

have read the Sterling Supply Chain Applications Release Notes

24.1 Property Files
The following parameters are used to influence the Sterling WMS
processing.

Table 24–1 yfs.properties

Parameters Value

yfs.solver.iterations.wavecreate 1

218 Performance Management Guide

Property Files

The Create Wave transaction uses an efficient constraint-based
optimization engine to assign shipments to waves. This engine will
iteratively assign shipments to waves and recalculate cost. Suboptimal
wave assignments are discarded and another solution set attempted. You
can limit the number of iterations by specifying the following in the
yfs.properties

yfs.solver.iterations.wavecreate=< number of iterations >

We recommend testing the Create Wave transaction for your warehouse
at the default iteration level (1) and at a higher level (e.g., iteration of 5)
to see if there is an appreciable difference in processing times and
shipment wave assignment. In some cases, setting
yfs.solver.iterations.wavecreate to a lower number results in
marginal differences in the wave assignment but a significant reduction
in processing times.

One way to test the efficacy of the yfs.solver.iterations.wavecreate
setting is to run controlled tests in your QA environment. For example,
an approach is to

create a reasonable number of shipments that are ready for the
Create Wave processing

take a backup so that you can repeat the test

run the Create Wave with increasing values and assess the resulting
waves

restore the database and repeat above

The yfs.containerization.maxshipmentsinoneround parameter sets the
number of shipments considered for containerization per iteration. The default is
75. With that setting, 75 shipments at a time are containerized and committed.
This process reduces the number of record locks held.

yfs.containerization.maxshipmentsinoneround 75

Table 24–1 yfs.properties

Parameters Value

WMS Agents

Sterling Warehouse Management System 219

24.2 WMS Agents
This section describes the run-time or performance characteristics of the
Sterling WMS agents or transactions.

24.2.1 Scheduling Using Agent Criteria Group
Sterling WMS customers with a large number of small warehouses that
require wave planning may want to use the "agent criteria group" wave
scheduling feature. By default, the wave processing agents (e.g., Create
Wave, Release Wave) are triggered individually for each node.

You could use utilities such as CRON on Unix to automatically trigger
each of the nodes at some interval. However, if you have a 100 nodes
and you would like to issue the triggers every hour, you would need to
set up CRON for the 100 nodes for each agent.

An alternative is to use agent criteria groups. This can be accomplished
in the following steps

first define an agent criteria group in the Platform > System
Administration > Agent Criteria Groups.

Next, assign one or more nodes to the appropriate agent criteria
group in the Platform > Participant Modeling. For each node, go to
the Organization Details > Roles & Participation dialog box. Select the
appropriate agent criteria group.

Next, in the Platform > Process Modeling > Wave > Outbound Picking
process model, select Transaction on the left screen. Select the
appropriate transaction (e.g., Create Wave, Release Wave, and so
forth).

Create a new Agent Criteria Definition. In that Agent Criteria Details
> Criteria Parameter, assign the agent criteria group to the
appropriate parameter.

When you start the agent and trigger for this agent criteria, you will start
the transaction for the agent criteria group. This will in turn start the
transaction for each of the nodes assigned to that agent criteria group.

For example, you may define a node group by time zones or regional
groups.

You may want to continue scheduling the wave agents for large
warehouse nodes (those with high shipment volumes) individually.

220 Performance Management Guide

WMS Agents

Putting large nodes in node groups causes nodes could result in nodes
waiting for the large nodes to complete their processing.

Please see the Sterling Supply Chain Applications Platform Configuration
Guide for more information.

24.2.2 Processing Concurrency
For scalability, the Sterling Supply Chain Applications agents are
designed to run in multiple parallel threads. Some of the Sterling
Warehouse Management System agents, by design, run single threaded
for a given warehouse node. These agents include the

Create Wave

Release Wave

24.2.2.1 Create Wave
The Create Wave agent assigns eligible shipments and shipment lines for
a warehouse node into optimum waves. By design, only one Create Wave
transaction can concurrently run for a warehouse node.

You can, however, run multiple Create Wave transactions concurrently if
you have multiple warehouse nodes - provided, as stated above, only
one Create Wave transaction is running per warehouse node. This
restriction is enforced by the application.

You can specify the number of threads in the Configurator (see
Section 22.3, "Integration Adapters/Sterling Supply Chain Applications
Agents").

24.2.2.2 Release Wave
The Release Wave transaction creates pick tasks from shipment lines in a
wave. As part of the processing, this transaction serializes access to
inventory item records for that node by locking YFS_TRANSACTION_
LOCK records to prevent concurrent updates to inventory items during
Release Wave processing. There is a YFS_TRANSACTION_LOCK record for
each inventory item/node combination.

As a result, you should only run one Release Wave thread per warehouse
node.

WMS Agents

Sterling Warehouse Management System 221

24.2.2.2.1 Allocate Task Agent You may want to use the Allocate
Task agent if you process large waves (for example, over 500 line
waves). The Release Wave acquires locks on the YFS_LOCATION_
INVENTORY record before managing the inventory at those locations. For
large waves, the locks held by the Release Wave agent could impact
other transactions, such as picks, moves, etc., that also need YFS_
LOCATION_INVENTORY record locks.

You can direct the Release Wave agent to defer inventory location
updates. This will allow the Release Wave agent to complete its
processing without acquiring these locks. A subsequent agent, the
Allocate Task, will acquire the YFS_LOCATION_INVENTORY record locks
and update the inventory at the location on a task basis. The amount of
time that the record lock is held is much shorter (essentially for the
duration of processing that task).

For more information about AllocateTask agent, refer to the Sterling
Warehouse Management System Configuration Guide.

24.2.2.3 Agents Between Create Wave to Release Wave
In general, all the agents from Create Wave through to Release Wave
inclusive, including all custom agents, should be run in a single threaded
fashion for each agent criteria group (see Section 24.2.1, "Scheduling
Using Agent Criteria Group")or for each node if you want to ensure the
waves are released in the order that they are created.

For example, assume you have 10 nodes - N01 to N10. Assume also that

nodes N01 to N03 are assigned to agent criteria group 1

nodes N04 to N08 are assigned to agent criteria group 2

N09 and N10 are scheduled individually.

Then for a given agent (say 'Assign Lane') you should run 4 JVMs (one
for each agent criteria group and one each for nodes N09 and N10). Each
of these JVMs have to be configured to run with only one thread per
transaction. These agents and transactions can run in parallel.

As we mentioned above, this is only necessary if you need your waves to
be released in the order in which the waves were created. If the ordering
is unnecessary, you can run these transactions in parallel.

222 Performance Management Guide

Database

24.2.3 Purge
We strongly recommend running the WMS Task Purge agent on a daily
basis. This agent is used to keep the YFS_TASK table small by moving
completed YFS_TASK records to the YFS_TASK_H history table. YFS_
TASK table that grows unchecked could affect the performance of WMS
task-based transactions, such as next task suggestion.

24.3 Database

24.3.1 Long Running Transactions in UDB
The WMS application is made of both short and long running
transactions. Short transactions are characterized by a small number of
database records read and possibly updated within a short processing
time under a single unit of work. At the end of the processing (or unit of
work), the workload commits the transaction. Database locks are
released.

In contrast, some workloads, by their nature, are long running
transactions. For example, the Create Wave transaction groups eligible
shipments and shipment lines into optimum waves based on
customer-specified wave constraints. The length of the processing time
depends on many factors such as the number of shipments, the
complexity of the optimization, the wave constraints, and so forth.

You should consider the following when configuring a UDB database

monitor the amount of transaction log usage - specifically monitor
TOTAL_LOG_USED, TOTAL_LOG_USED_TOP, SEC_LOG_USED_TOP, and SEC_
LOGS_ALLOCATED monitor elements. You should ensure that the
amount of log used does not approach the capacity of the primary
logs and that UDB is not spilling over to secondary logs.

monitor the APPL_ID_OLDEST_XACT monitor element - see which
transaction holds the oldest transaction log entry.

enable NUM_LOG_SPAN parameter to safeguard against a long running
transaction holding too many logs that could result in a situation
where all the transaction logs are full. Please see NUM_LOG_SPAN
discussion in Section 16.1.3, "Recommended DB CFG Parameters"

User Interfaces

Sterling Warehouse Management System 223

24.4 JVM Settings

24.4.1 Java Stack Size
You have to increase the Java stack size if you plan to create waves or
batch waves with more than 4,000 shipment lines that are assigned to a
single shipment group. You can use the following table as a guideline.

Please see Section 8.3.2.1, "Stack Size" for instructions on how to set
the Java thread stack size.

24.5 User Interfaces

24.5.1 Sterling Supply Chain Applications UI Console

24.5.1.1 Asynchronous Manifest Closure
Sterling WMS allows you to close manifests from the Sterling Supply
Chain Applications UI synchronously or asynchronously. By default, in the
synchronous mode, the user has to wait for the request to complete.
Depending on the number of shipments in a manifest, the manifest close
operation can take a long time and may result in users believing the UI is
"locked up".

Sterling WMS allows you to configure the system so that manifests are
closed asynchronously. In this mode, the request from the UI creates a
message for the CLOSE_MANIFEST agent. The screen is released to the
user after the message is created. To change to the asynchronous

Table 24–2 Stack Size Recommendations for Create Wave/Batch Wave

Shipment Lines per Shipment
Group Stack Size

4,000 2MB

10,000 4MB

15,000 6MB

20,000 8MB

25,000 10MB

224 Performance Management Guide

User Interfaces

manifest close mode, set the following property in the yfs.properties
file.

yfs.closemanifest.online=N

If this property is set, the user will need to configure the CLOSE_
MANIFEST agent for processing manifest closures requests. The users
will also have to check for alerts/errors in the Alert Console. The manifest
status "Closure Failed" indicates occurrence of errors while closing a
manifest.

24.5.2 Asynchronous Batch Confirmation
Sterling WMS allows you to confirm batch sheets from the Sterling
Supply Chain Applications UI synchronously or asynchronously. By
default, in the synchronous mode, you have to wait for the request to
complete. Depending on the number of tasks in the batch, the batch
confirmation operation can take a long time and may result in users
believing the UI is "locked up".

Sterling WMS allows you to configure the system so that batch are
confirmed asynchronously. In this mode, the request from the UI creates
a message for the REQ_BATCH_COMPLETION agent. The screen is
released to the user after the message is created. To change to the
asynchronous confirm batch mode, set the following property in the
yfs.properties file.

yfs.confirmbatch.online=N

If this property is set, the user will need to configure the REQ_BATCH_
COMPLETION agent for processing the batch confirmation requests. The
users will also have to check for alerts/errors in the Alert Console. The
batch status "Completion Failed" indicates occurrence of errors while
confirming a batch.

24.5.3 Mobile Devices
The Sterling WMS application supports two mobile device displays - a
VT100 character based display and a Microsoft PocketPC Graphical UI
display. The PocketPC display interacts with the Sterling WMS with HTML.
The VT100 display sends VT100 characters.

User Interfaces

Sterling Warehouse Management System 225

You may want to consider using the VT100 RF display if you have limited
network bandwidth.

226 Performance Management Guide

User Interfaces

References 227

25
References

Some of the books that we strongly recommend include:

Oracle

[1] Oracle10g SQL Reference, Oracle

[2] Oracle9i Real Application Cluster (RAC) Administration (9.2), Oracle

IBM UDB

[3] Administration Guide: Planning, Version 8.2, IBM

[4] Administration Guide: Implementation, Version 8.2, IBM

[5] Administration Guide: Performance, Version 8.2, IBM

Sun Java Virtual Machine

[6] The Java HotSpot Performance Engine Architecture, Sun Microsystems,
http://java.sun.com/products/hotspot/whitepaper.html

[7] The Java HotSpot Virtual Machine, v1.4.1, Sun Microsystems,
http://java.sun.com/products/hotspot/docs/whitepaper/Java_Hotspot_
v1.4.1/Java_HSpot_WP_v1.4.1_1002_1.html

[8] Tuning Garbage Collection with the 1.4.2 JavaTM Virtual Machine, Sun
Microsystems, http://java.sun.com/docs/hotspot/gc1.4.2

[9] Diagnosing a Garbage Collection problem, Sun Microsystems
http://java.sun.com/docs/hotspot/gc1.4.2/example.html

[10] Document 01363, How to reduce the time-out period for telnet
connections http://sunsolve.sun.com/pub-cgi/retrieve.pl?doc=ffaqs/01363

HP Java Virtual Machine

[11] HPjtune - visualization tool for HP JVM GC activities
http://www.hp.com/products1/unix/java/java2/hpjtune/index.html

228 Performance Management Guide

IBM Java Virtual Machine

[12] Sam Borman, Understanding the IBM Java Garbage Collector, IBM,
http://www.ibm.com/developerworks

[13] Sumit Chawla, Fine-Tuning Java Garbage Collection Performance, How to
detect and troubleshoot garbage collection issues with the IBM Java Virtual
Machine, IBM, http://www.ibm.com/developerworks

[14] IBM Developer Kit and Runtime Environment, Version 1.4.2,
SC34-6309-03

BEA WebLogic

[15] BEA WebLogic Server Performance and Tuning.
http://edocs.bea.com/wls/docs92/pdf/perform.pdf

[16] BEA WebLogic Server Administration Guide.
http://edocs.bea.com/wls/docs92/pdf/adminguide.pdf

IBM WebSphere

[17] IBM WebSphere Application Server, Advanced Edition, Tuning Guide, IBM

[18] Mark Endrei, IBM WebSphere V4.0 Advanced Edition Handbook, IBM
Redbook

[19] WebSphere InfoCenter, http://www.ibm.com
http://publib.boulder.ibm.com/infocenter/ws51help/index.jsp

229

Index

A
agent criteria. See Sterling Supply Chain

Applications Integration Adapters
AIX, 27

database server nodes, 29
early page space allocation, 27
late page space allocation, 27
network connectivity, 30
page space allocation policy, 27
PSALLOC, 28

asynchronous I/O, 29
auto-negotiation. See network interface card

B
BEA

JMS server
Sterling Supply Chain Applications

agents/monitors, 165
WebLogic

tuning
connection pool, 82
prepared statement cache, 84

C
capacity plan, 24

See also sizing tools
capacity sizing, 24
cascading failure, 6
certification

operating system, 35

checklists
application server, 14
computer node implementation, 10
JVM implementation, 11
planning, 9, 10

computer systems
overview, 23
planning, 23

capacity sizing, 24
resource requirements, 24

connection pool
See BEA WebLogic tuning
See IBM WebSphere tuning

Consolidate Additional Inventory agent, 197
cursor_sharing. See Oracle, init.ora parameters

D
database disk sizing, 24

E
early page space allocation. See AIX
environment variable

YANTRA_HOME, xxiv
YANTRA_OLD_HOME, xxiv
YFS_HOME, xxiv
YFS_OLD_HOME, xxiv

H
Hot SKU. Sterling Supply Chain Applications Hot

SKU Feature

230 Performance Management Guide

I
IBM

WebSphere
JSP precompilation, 92

implementation
network connectivity, 25
time-synchronization, 24

init.ora parameters. See Oracle
inventory locks. See Sterling Supply Chain

Applications Hot SKU Feature

L
late page space allocation. See AIX
log4j logging, 181

N
network connectivity, 25

auto-negotiation, 25
data center network, 25

network interface card
auto-negotiation

incorrect negotiation, 25

O
Oracle

dedicated servers, 109
init.ora parameters

cursor_sharing
recommendations, 103

redo log, 108
OutOfMemory exceptions, 48

P
performance management principles, 3
planning

capacity sizing, 24
resource requirements, 24

prepared statement cache
See BEA WebLogic tuning

pre-sales server sizing, 24
See sizing tools

PSALLOC. See AIX

R
RAID (Redundant Array of Independent Disks), 98
redundant array of independent disks. See RAID
reference data caching, 168

caching strategies, 170
enabling data cache, 172
limiting records cached, 172
manually refreshing cache, 172
support for agent/monitor servers, 174
support for application servers, 173

resource requirements, 24

S
server nodes

mid-tier, 23
sizing tools

capacity plan, 24
server node, 24

Sterling Supply Chain Applications
Integration Adapters

agent criteria, 164
logging. See log4 logging
System Management Console, 204

Sterling Supply Chain Applications agents/monitors
implications of excessive scheduling, 166
time-triggered transactions, 165

Sterling Supply Chain Applications Hot SKU
Feature, 188

Consolidate Additional Inventory agent, 197
System Management Console, 204

T
time-synchronization, 24
time-triggered transactions

See Sterling Supply Chain Applications
agents/monitors

231

U
UDB

volatile cardinality, 124
volatile table, 124

V
volatile cardinality. See UDB

W
WebLogic

tuning
execute thread count, 81

tuning recommendations, 81

Y
YANTRA_HOME, xxiv
YANTRA_OLD_HOME, xxiv
YFS_HOME, xxiv
YFS_OLD_HOME, xxiv

232 Performance Management Guide

	Contents
	Preface
	1 Introduction
	1.1 Lifecycle
	1.2 System Components and Roles
	1.3 Principles
	1.3.1 Having Your Cake and Eating It Too
	1.3.2 Keep It Simple Strategy
	1.3.3 Your Mileage May Vary
	1.3.4 Performance Recommendations Graveyard
	1.3.5 System Test Before Going Live
	1.3.6 Measure Thrice, Check Twice, Cut Once
	1.3.7 Cascading Failure
	1.3.8 Only the Facts Jack

	2 Performance Recommendations Checklist
	2.1 Performance Checklist
	2.1.1 Planning Checklist
	2.1.2 Architectural Checklist
	2.1.3 Computer Node Implementation Checklist
	2.1.4 Java Virtual Machine Implementation Checklist
	2.1.5 Application Server Checklist
	2.1.6 Sterling Supply Chain Applications Checklist
	2.1.7 Sterling WMS Application Checklist
	2.1.8 Database Checklist
	2.1.9 Oracle Database Checklist
	2.1.10 UDB Database Checklist
	2.1.11 Monitoring Checklist

	2.2 Performance Recommendations Graveyard

	Part I Computer Systems
	3 Computer System
	3.1 Overview
	3.2 Planning
	3.2.1 Supported Configurations
	3.2.2 Capacity Sizing/Resource Requirements
	3.2.2.1 Pre-Sales Server Sizing
	3.2.2.2 Capacity Plan
	3.2.2.3 Database Disk Sizing

	3.3 Implementation
	3.3.1 Time Synchronization
	3.3.2 Network Connectivity
	3.3.2.1 Data Center Network
	3.3.2.2 Auto-Negotiation
	3.3.2.3 Network Bandwidth

	4 IBM AIX
	4.1 Implementation
	4.1.1 Page Space Allocation Policy
	4.1.2 Database Server Nodes
	4.1.2.1 Oracle
	4.1.2.1.1 Asynchronous I/O

	4.1.3 Network Connectivity
	4.1.3.1 Auto-Negotiation

	5 HP HP-UX11i
	5.1 Network Connectivity
	5.1.1 Auto-Negotiation

	6 Red Hat Enterprise Linux
	6.1 Certification
	6.2 32-bit versus 64-bit
	6.3 Network Connectivity
	6.3.1 Auto-Negotiation

	7 Sun Solaris
	7.1 Implementation
	7.1.1 Network Connectivity
	7.1.1.1 Auto-Negotiation

	Part II Java Virtual Machines
	8 General JVM Recommendations
	8.1 Overview
	8.2 Supported Configuration
	8.3 Implementation
	8.3.1 Recommended JVM Command Line Options
	8.3.1.1 JVM Identifier
	8.3.1.2 Java Version
	8.3.1.3 Garbage Collection Statistics
	8.3.1.4 Distributed Garbage Collection

	8.3.2 Optional JVM Command Line Settings
	8.3.2.1 Stack Size

	8.4 Monitoring
	8.4.1 Hanging Threads/Deadlocks/Infinite Loops
	8.4.2 Memory and Paging
	8.4.3 OutOfMemory Exceptions
	8.4.3.1 Diagnosing OutOfMemory Exceptions

	9 HotSpot JVM
	9.1 Implementation
	9.1.1 Starting Recommendations
	9.1.1.1 Virtual Machine Mode
	9.1.1.2 Permanent Generation

	9.1.2 Heap Memory and Garbage Collection
	9.1.2.1 Sun and HP-UX Generational Collectors
	9.1.2.1.1 Heap Settings
	9.1.2.1.2 Young Generation Guarantee
	9.1.2.1.3 Starting Recommendations
	9.1.2.1.4 Garbage Collection Statistics

	9.2 Monitoring
	9.2.1 Garbage Collection Statistics
	9.2.1.1 Comprehensive HP GC Logs
	9.2.1.1.1 Capacity
	9.2.1.1.2 Things to Monitor

	9.2.2 SUN
	9.2.2.1 Potential Memory Leak
	9.2.2.1.1 Old Heap Too Small
	9.2.2.1.2 GC Times
	9.2.2.1.3 PrintGCStats Script

	10 IBM JVM
	10.1 Implementation
	10.1.1 Starting Recommendations
	10.1.1.1 JIT and MMI
	10.1.1.2 PSALLOC and NODISCLAIM (AIX only)

	10.1.2 Heap Memory and Garbage Collection
	10.1.2.1 IBM JVMs
	10.1.2.1.1 Heap Settings

	10.1.2.2 Starting Recommendations
	10.1.2.2.1 Heap Settings
	10.1.2.2.2 Garbage Collection Statistics

	10.2 Monitoring
	10.2.1 Garbage Collection Statistics
	10.2.1.1 Frequency of GC Health Check
	10.2.1.2 GC Times
	10.2.1.3 Potential Memory Leak
	10.2.1.4 Potential JVM Fragmentation

	10.2.2 Heapdump

	11 BEA JRockit
	11.1 Implementation
	11.1.1 Starting Recommendations
	11.1.1.1 Heap Settings
	11.1.1.2 Garbage Collection Statistics

	Part III Part III Application Servers
	12 BEA WebLogic
	12.1 Implementation
	12.1.1 WebLogic Tuning
	12.1.1.1 Server Tuning
	12.1.1.1.1 Work Manager

	12.1.1.2 Application Server Instances
	12.1.1.3 WebLogic Connection Pool
	12.1.1.3.1 Define Data Source in the Sterling Supply Chain Applications

	12.1.1.4 JSP Pre-Compilation
	12.1.1.5 WebLogic Server Cluster

	12.1.2 HTTP Load-Balancing
	12.1.2.1 HTTP Session Replication

	12.2 Monitoring

	13 IBM WebSphere
	13.1 Implementation
	13.1.1 WebSphere Tuning
	13.1.1.1 WebSphere Queuing Network
	13.1.1.2 WebSphere Connection Pool
	13.1.1.2.1 Define Data Source in the Sterling Supply Chain Applications
	13.1.1.2.2 Define a Connection Pool in WebSphere

	13.1.1.3 JSP Pre-Compilation

	13.1.2 HTTP Load-Balancing

	13.2 Monitoring

	Part IV Part IV Databases
	14 Database Management System
	14.1 Overview
	14.2 Planning
	14.2.1 Supported Configuration
	14.2.2 Server Sizing
	14.2.3 Disk Subsystem
	14.2.3.1 Disk Technology

	14.2.4 Sterling Supply Chain Schema
	14.2.4.1 Indices
	14.2.4.1.1 Custom Indices

	15 Oracle10g
	15.1 Implementation
	15.1.1 Recommended Oracle Parameters
	15.1.1.1 processes
	15.1.1.2 compatible
	15.1.1.3 sga_max_size, sga_target, pga_aggregate_target
	15.1.1.4 cursor_sharing
	15.1.1.5 optimizer_mode
	15.1.1.6 hpux_sched_noage
	15.1.1.7 open_cursors
	15.1.1.8 query_rewrite_enabled and query_rewrite_integrity

	15.1.2 Redo Logs
	15.1.2.1 Redo File Size

	15.1.3 Server Mode
	15.1.4 Sterling Supply Chain Schema
	15.1.4.1 Oracle Index Monitoring and Tuning
	15.1.4.2 Tablespaces
	15.1.4.2.1 Tables

	15.1.4.3 Index and Table Statistics
	15.1.4.3.1 Skewed Columns

	16 IBM Universal Database (UDB)
	16.1 Implementation
	16.1.1 Recommended UDB dbset Registry Variables
	16.1.2 Recommended DBM CFG Parameters
	16.1.3 Recommended DB CFG Parameters
	16.1.3.1 UDB Event Monitors
	16.1.3.2 Table and Index Statistics
	16.1.3.2.1 Volatile Tables

	16.1.3.3 CLI Packages

	16.1.4 Sterling Supply Chain Schema
	16.1.4.1 UDB Index Monitoring and Tuning
	16.1.4.2 Index and Table Statistics

	17 Microsoft SQL Server
	17.1 Implementation
	17.1.1 Parameters
	17.1.2 SQL Server Index Monitoring and Tuning
	17.1.3 Statistics

	18 Advanced Database Topic - Oracle10g Real Application Cluster Database
	18.1 Overview
	18.2 Planning
	18.2.1 Supported DB Platforms
	18.2.2 Supported Filesystems
	18.2.3 Oracle RAC Support Limitations
	18.2.3.1 OLTP Applications and Oracle RAC Concerns

	18.2.4 Recommendations
	18.2.4.1 Sequence Numbers

	18.2.5 High Availability
	18.2.5.1 WebLogic Connection Pool Properties
	18.2.5.2 TCP/IP
	18.2.5.3 Fast Application Notification Support

	Part V Java Message Services
	19 Java Message Services
	19.1 Overview
	19.1.1 Agent Queues
	19.1.2 Integration Queues

	19.2 Implementation
	19.2.1 Persistence
	19.2.2 Dedicated Queues
	19.2.3 Queue File Placement
	19.2.3.1 Performance
	19.2.3.2 Availability

	19.2.4 Parameters

	20 BEA WebLogic JMS
	20.1 WebLogic JMS Recommendations
	20.1.1 Dedicated JMS Server
	20.1.1.1 Integration Queues

	20.2 Message and Byte Paging

	21 IBM WebSphere MQ
	21.1 WebSphere MQ Parameters
	21.1.1 Channel
	21.1.2 Log Files

	21.2 Placement of MQ Log and Data Files

	Part VI Part VI Sterling Supply Chain Applications Application
	22 Sterling Supply Chain Applications - General
	22.1 Planning
	22.1.1 Scalability Requirements
	22.1.2 System Test

	22.2 Sterling Supply Chain Applications User Interface
	22.2.1 Sterling Supply Chain Application Consoles
	22.2.1.1 Customization
	22.2.1.2 HTML Compression
	22.2.1.3 Temporary Internet Files
	22.2.1.4 SSL Acceleration
	22.2.1.5 Search Screens
	22.2.1.5.1 Case-insensitive Search

	22.2.1.6 JSP Pre-compilation
	22.2.1.7 HTML Limitations

	22.2.2 Sterling Supply Chain Applications Configurator
	22.2.3 Rich Client Program Interface
	22.2.3.1 Enabling SSL Encryption and Content Compression
	22.2.3.2 Selective SSL
	22.2.3.3 Images

	22.3 Integration Adapters/Sterling Supply Chain Applications Agents
	22.3.1 Agent Thread Levels
	22.3.1.1 Excessive Agent Scheduling

	22.4 Java Message Service
	22.4.1 Integration Queues
	22.4.2 Dedicated JMS Destination
	22.4.3 JMS Persistence
	22.4.4 Performance Feature - Reference Data Caching
	22.4.4.1 Caching Strategies
	22.4.4.1.1 Automatically Refreshing Data Cache
	22.4.4.1.2 Manually Refreshing Data Cache

	22.4.4.2 Enabling Reference Data Caching
	22.4.4.3 Limiting the Number of Records Cached
	22.4.4.4 Caching for the Application Servers
	22.4.4.5 Caching for the Sterling Supply Chain Applications Agents and Monitors
	22.4.4.5.1 Creating an Agent-Specific Properties File

	22.4.4.6 Strategies for Enabling Reference Data Caching
	22.4.4.7 Monitoring Cache
	22.4.4.7.1 Cache Drop Messages

	22.4.5 JNDI
	22.4.6 Sterling Supply Chain Applications Services
	22.4.7 Sterling Supply Chain Applications APIs
	22.4.7.1 API Output XML Files
	22.4.7.2 List APIs
	22.4.7.3 User Exits and Events

	22.4.8 Wildcard Characters
	22.4.9 log4j Logging
	22.4.9.1 Logging Level
	22.4.9.2 Log Destinations

	22.4.10 Property Files
	22.4.10.1 Application Server Connection Pool Parameters
	22.4.10.2 Integration/Agent Server Connection Parameters
	22.4.10.3 Reference Data Cache Parameters
	22.4.10.4 User Interface Control
	22.4.10.5 API Control
	22.4.10.6 Statistics
	22.4.10.7 Inventory Locking
	22.4.10.7.1 Hot SKU Feature
	22.4.10.7.2 yfs.inventory.sortandlock

	22.4.11 Performance Feature - Hot SKU
	22.4.11.1 Determining The Amount Of Inventory Lock Contention
	22.4.11.1.1 Determining Level of Lock Contention in Oracle
	22.4.11.1.2 Determining the Level of Lock Contention in UDB

	22.4.11.2 Conditions For Inventory Lock Contention
	22.4.11.3 Optimization
	22.4.11.4 Hot SKU Feature
	22.4.11.4.1 Hot SKU Feature (without lock request timeout)
	22.4.11.4.2 Hot SKU Feature with Lock Request Timeout option

	22.4.11.5 Consolidate Additional Inventory Agent
	22.4.11.6 Hot SKU Activity Monitoring
	22.4.11.7 Hot SKU Controls
	22.4.11.8 Three Usage Scenarios
	22.4.11.9 Limitations

	22.4.12 Sort Order and Deadlocks
	22.4.12.1 Sort Order

	22.4.13 Application Servers
	22.4.14 MS Internet Explorer
	22.4.14.1 Temporary Internet Files

	22.5 Monitoring
	22.5.1 System Management Console and Health Monitor Agent
	22.5.2 Sterling Supply Chain Applications Statistics
	22.5.3 Inbox
	22.5.4 Application Logs

	23 Sterling Supply Chain Applications - Distributed Order Management
	23.1 Sterling Supply Chain Applications Distributed Order Management Agents
	23.1.1 Schedule Agent for Backorder Efficiency
	23.1.2 Real-Time Inventory Availability Monitor for ATP Efficiency
	23.1.3 Getters with Enterprise Code
	23.1.4 Sort Order and Deadlocks
	23.1.4.1 Sort Order

	23.1.5 Agent Throughput
	23.1.5.1 Order Creation Throughput
	23.1.5.2 Order LifeCycle Throughput
	23.1.5.3 Order Kit Line Creation Throughput
	23.1.5.4 Throughput Query Limitations
	23.1.5.4.1 Reprocessing
	23.1.5.4.2 Maximum Potential Throughput

	24 Sterling Warehouse Management System
	24.1 Property Files
	24.2 WMS Agents
	24.2.1 Scheduling Using Agent Criteria Group
	24.2.2 Processing Concurrency
	24.2.2.1 Create Wave
	24.2.2.2 Release Wave
	24.2.2.2.1 Allocate Task Agent

	24.2.2.3 Agents Between Create Wave to Release Wave

	24.2.3 Purge

	24.3 Database
	24.3.1 Long Running Transactions in UDB

	24.4 JVM Settings
	24.4.1 Java Stack Size

	24.5 User Interfaces
	24.5.1 Sterling Supply Chain Applications UI Console
	24.5.1.1 Asynchronous Manifest Closure

	24.5.2 Asynchronous Batch Confirmation
	24.5.3 Mobile Devices

	25 References
	Index

