
High Availability Guide
Release 7.5 SP1

May 2006

Copyright Notice

High Availability Guide, Release 7.5 SP1

Copyright © 2005 - 2006
Yantra Corporation
ALL RIGHTS RESERVED

WARNING: ANY UNAUTHORIZED DUPLICATION OF THIS DOCUMENTATION SHALL
BE AN INFRINGEMENT OF COPYRIGHT

Trade Secret Notice

This documentation, the software it describes, and the information and know-how they
contain constitute the unpublished, proprietary, confidential and valuable trade secret
information of Yantra Corporation, its affiliated companies or its or their licensors, and may
not be used for any unauthorized purpose, or disclosed to others without the prior written
permission of the applicable Yantra entity. This documentation and the software it describes
have been provided pursuant to a license agreement that contains prohibitions against
and/or restrictions on their copying, modification and use. Duplication, in whole or in part,
if and when permitted, shall bear this notice and the Yantra Corporation copyright notice.

This documentation and the software it describes are licensed either “AS IS” or with a
limited warranty, as set forth in the Yantra license agreement. Other than any limited
warranties provided, NO OTHER WARRANTY IS EXPRESSED AND NONE SHALL BE IMPLIED,
INCLUDING THE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR USE OR FOR A
PARTICULAR PURPOSE. The applicable Yantra entity reserves the right to revise this
documentation from time to time and to make changes in content hereof without the
obligation to notify any person or entity of such revisions or changes.

Yantra does not warrant or represent that use of the software described in this
documentation will insure compliance with the U.S. Department of Transportation’s (DOT)
Hazardous Materials Regulations (HMR) found in Title 49 of the Code of Federal Regulations
(49 CFR), and users of this software should consult independent legal counsel and technical
support to insure compliance with the HMR and other legal requirements.

U.S. Government Restricted Rights. This documentation and the software it describes
are each and collectively a “commercial item” as defined in 48 C.F.R. 2.101. Consequently,
as and when provided to any agency or instrumentality of the U.S. Government or to a U.S.
Government prime contractor or a subcontractor at any tier (“Government Licensee”), the
terms and conditions of the customary Yantra commercial license agreement are imposed
on Government Licensees per 48 C.F.R. 12.212 or § 227.7201, as applicable, or through 48
C.F.R. § 52.244-6.

Yantra and the Yantra logo are marks of Yantra Corporation. All other services and products
or company names are used for identification purposes only and may be marks of their
respective owners.

Yantra Corporation
One Park West
Tewksbury, MA 01876
1-978-513-6000

Copyright © 2005 -
2006

iii

Contents

Preface

Structure .. vii
Prerequisites ..ix
References...ix
Additional Information ...ix
Yantra 7x Documentation... x
Conventions ...xi

1 Availability

1.1 The 9’s .. 1
1.2 Problem with the 9’s.. 2
1.3 Availability Design and Principles... 2
1.3.1 Business Drives High Availability Requirements 2
1.3.2 Keep It Simple Strategy .. 3
1.3.3 Configuring for Higher Availability or Resilience Is Like Buying Insurance3
1.4 High Availability Motivation... 4

2 Limited Redundancy Single-Site Configuration

3 Yantra 7x Architecture

3.1 Application Server ..13
3.2 Agent and Integration Servers ...13
3.3 JNDI Service ...14

iv High Availability Guide

4 High Availability Within A Single Site

4.1 Single Points of Failure... 15
4.2 Node ... 16
4.2.1 Active/Passive Cluster Failover Configurations 17
4.3 Database Server ... 18
4.3.1 DBMS Software Failures .. 19
4.3.2 Human and Operator Errors ... 19
4.3.3 Hardware Failures .. 20
4.3.3.1 Active/Passive Failover Configurations.. 20
4.3.3.2 Active/Active Failover Configurations.. 26
4.4 SAN or Disk Subsystem.. 34
4.5 Yantra 7x Application Components... 34
4.5.1 Application Server .. 34
4.5.1.1 Stateful Sessions... 35
4.5.1.2 Stateless Sessions... 36
4.5.2 Yantra 7x Agent and Integration Server .. 36
4.6 JNDI.. 36
4.6.1 How to Eliminate SPOF.. 38
4.6.1.1 Deploy the JNDI on a Quiet Server Instance................................ 38
4.6.1.2 When the JNDI Server Instance Crashes..................................... 38
4.6.1.3 When the JNDI Node Fails .. 38
4.6.2 Limitations/Issues in JNDI Failover ... 40
4.7 Message Queues ... 41
4.7.1 Integration Queues for Yantra 7x Integration Servers........................ 41
4.7.2 Agent Queues for Yantra 7x Agent Servers 42
4.7.3 WebLogic JMS.. 42
4.7.3.1 Persistence... 43
4.7.3.2 Message Paging .. 43
4.7.3.3 Dedicated Integration JMS Server.. 44
4.7.3.4 Shared Disk Subsystem.. 44
4.7.3.5 JMS Server on a Different Application Server............................... 44
4.7.3.6 Backup JMS Server.. 44
4.7.4 WebSphere MQ .. 45
4.7.4.1 Protecting WebSphere MQ HA Using Cluster Failover 45
4.7.4.2 Implementing Message Persistence Files on SAN 46

 v

4.7.4.3 Risks ..46
4.7.5 Clustered MQ..47
4.8 Networked File Systems (NFS) ...47

5 Architectural Patterns

5.1 Asynchronous Integration..50
5.2 Caching ..50
5.3 Hot Deployment of Code, Configuration, and Fixes..................................51
5.4 Deployment Processes and Regression Testing52

6 Disaster Recovery

6.1 Disaster Recovery from a Yantra 7x Perspective53
6.2 Cold Site Recovery ...54
6.3 Warm and Hot Site Recovery ...55
6.4 Key to Disaster Recovery ..56
6.4.1 Recovery Procedures ...56
6.4.2 Database Backups and Transaction Log Files.....................................56
6.4.3 Integration Queue Replication ...57
6.4.4 Service Names Instead of IP Addresses ..57

Index

vi High Availability Guide

 vii

Preface

The Yantra Distributed Order Management (DOM) and Warehouse
Management System (WMS) applications are often deployed in an
integrated network of external systems and business partners to form a
cohesive business ecosystem. Prolonged application or system outages
can have significant business consequences.

This document describes approaches that can increase the resiliency of
Yantra 7xt to environmental, hardware or software faults or failure. It
also presents techniques or architectural patterns that can minimize the
impact on the overall ecosystem in the event of a planned or unplanned
Yantra system outage.

This document emphasizes a fairly pragmatic approach to availability
recognizing that one cannot implement highly available techniques at the
detriment of other architectural considerations such as capital cost,
ongoing total cost of ownership, or manageability.

Structure
This manual contains the following sections:

Chapter 1, "Availability"
This chapter introduces availability engineering, the often-quoted “nines”
and the “five nines” and the problems with relying on the nines as an
availability requirement. It also introduces the design principles that
Yantra adheres to when presenting the availability techniques. Yantra
strongly encourages you to read through this section.

viii High Availability Guide

Chapter 3, "Yantra 7x Architecture"
This chapter provides a very high level overview of the Yantra 7x
architecture with a focus on describing the component that needs
protection. It assumes that you are familiar with the Yantra 7x
architecture. It is preferable that you have also installed and used the
Yantra 7x.

Chapter 2, "Limited Redundancy Single-Site Configuration"
This chapter presents a simple, possibly entry-level, Yantra 7x system
that was configured with little attention to availability. In some cases,
this simple configuration may meet the customer’s business or
availability requirements. For others, this chapter serves as the baseline
for comparison as we examine the configurations with increasingly higher
levels of resiliency.

Chapter 4, "High Availability Within A Single Site"
This chapter examines common techniques deployed to ensure
application availability against faults incurred within the four walls of the
data center. It identifies all the hardware and software components used
by the Yantra 7x, all the potential single points of failures (SPOF), and
the approaches to protecting these components.

Chapter 5, "Architectural Patterns"
Adding resiliency to the system is not limited to technology. It is
important to note that developing a highly available Yantra 7x based
solution has as much, if not more, to do with the design of the overall
solution and integration points as it does with the Yantra 7x architecture
itself. This chapter presents techniques and patterns that can be used to
insulate some of these integration points from planned and unplanned
Yantra 7x downtime. In this way, even though portions of the solution
may be unavailable, there is no downtime for the service as a whole
especially as perceived by the end users or customers. More importantly,
these architectural patterns can significantly simplify or reduce the Yantra
7x application’s availability, requirements and implementation.

Chapter 6, "Disaster Recovery"
With the advent of 9/11 or the Northeast Blackout, events that disaster
planners once dismissed as implausible or far-fetched are now required
considerations as part of disaster recovery and business continuity

 ix

planning. This chapter examines commonly used techniques that can be
employed so that the Yantra 7x application can continue running at
remote sites in the event after disasters.

Prerequisites
This document assumes you are familiar with the Yantra 7x architecture.
It also assumes that you have installed and used Yantra 7x.

For More detailed information, see the following Yantra 7x documents:

Yantra 7x Installation Guide - provides detailed information on how to
install Yantra 7x

Yantra 7x Performance Management Guide - provides detailed
information on how to configure the Yantra 7x

References
[1] IBM eServer p5 590 and 595 System Handbook, SG24-9119-00, IBM
Corp, March 17, 2005

[2] NSM: Often the Weakest LInk in Business Availability, AV-13-9473,
July 3, 2001

Additional Information
There are many good reference books and material that cover high
availability engineering for the data center and the network. This
document assumes that you are familiar with high availability
engineering for general systems. This document highlights areas in the
Yantra system that are single points of failures and the approaches that
one can take to making them more resilient.

This document assumes the network is resilient. If your Yantra 7x
configuration supports a large number of users from the web, Yantra
assumes that your wide-area network deployment is configured such that
single (or multiple) faults do not cause an outage.

This document does not address security. Yantra recognizes that in
today’s connected world, security attacks and security fraud is on the
rise. Preventing security hacks from taking down systems is a large and
complex area and warrants a separate detailed study.

x High Availability Guide

This document does not address environmental or infrastructure
availability. Yantra assumes that the data center is built with redundant
power circuits, redundant cooling, and so forth, so that the infrastructure
remains available with single or multiple environmental faults. Yantra
also assume that the data center is sufficiently equipped with an
uninterruptible power supply (UPS) so that all the hardware components
can operate under brief power fluctuations and is equipped with power
generators to continue working during prolonged power outages.

Yantra 7x Documentation
For more information about the Yantra® 7x components, see the
following manuals in the Yantra® 7x documentation set:

Yantra® 7x Release Notes

Yantra® 7x Installation Guide

Yantra® 7x Upgrade Guide

Yantra® 7x Performance Management Guide

Yantra® 7x High Availability Guide

Yantra® 7x System Management Guide

Yantra® 7x Localization Guide

Yantra® 7x Customization Guide

Yantra® 7x Integration Guide

Yantra® 7x Product Concepts

Yantra® 7x Warehouse Management System Concepts Guide

Yantra® 7x Platform Configuration Guide

Yantra® 7x Distributed Order Management Configuration Guide

Yantra® 7x Supply Collaboration Configuration Guide

Yantra® 7x Inventory Synchronization Configuration Guide

Yantra® 7x Product Management Configuration Guide

Yantra® 7x Logistics Management Configuration Guide

Yantra® 7x Reverse Logistics Configuration Guide

 xi

Yantra® 7x Warehouse Management System Configuration Guide

Yantra® 7x Platform User Guide

Yantra® 7x Distributed Order Management User Guide

Yantra® 7x Supply Collaboration User Guide

Yantra® 7x Inventory Synchronization User Guide

Yantra® 7x Logistics Management User Guide

Yantra® 7x Reverse Logistics User Guide

Yantra® 7x Warehouse Management System User Guide

Yantra® 7x Mobile Application User Guide

Yantra® 7x Analytics Guide

Yantra® 7x Javadocs

Yantra® 7x Glossary

Yantra® 7x Carrier Server Guide

Yantra® 7x Application Server Installation Guide (for optional
component)

Conventions
The following conventions may be used in this manual:

Convention Meaning

. . . An ellipsis represents information that has been omitted.

< > Angle brackets indicate user-supplied input.

mono-spaced text Mono-spaced text indicates a file name, an API name, or
a code example.

/ or \ Slashes and backslashes are file separators for Windows,
UNIX and LINUX operating systems. The file separator
for the Windows operating system is "\" and the file
separator for Unix and Linux systems is "/". The Unix
convention is used unless otherwise mentioned.

xii High Availability Guide

Availability 1

1
Availability

This chapter provides guidelines on the planning, implementation,
configuration, monitoring, and tuning of the BEA WebLogic and IBM
WebSphere application servers.

1.1 The 9’s
The 9’s are often mentioned when availability is discussed. In its simplest
form, the 9’s is an indication of how much downtime an application is
allowed to incur.

Table 1–1 dramatically shows that the amount of downtime that you can
incur drops significantly as you increase the number of 9’s. A system can
only be down for 5.3 minutes if that system is required to be available
for five 9’s (an often quoted number).

Table 1–1 The 9’s

Percentage
Uptime

Percentage
Downtime

Amount of
Downtime each Year

Amount of
Downtime each
Month

98.0% 2% 7.3 days 14.6 hours

99.0% 1% 3.7 days 7.3 hours

99.8% 0.2% 17.5 hours 1.5 hours

99.9% 0.1% 8.8 hours 43.8 minutes

99.99% 0.01% 52.6 minutes 4.4 minutes

99.999% 0.001% 5.3 minutes 26.3 seconds

99.9999% 0.0001% 31.5 seconds 2.6 seconds

2 High Availability Guide

Availability Design and Principles

1.2 Problem with the 9’s
Not all outages are the same. In fact, some customers could architect
their solution to tolerate a certain level or type of outage. For example, in
Section 5.1, "Asynchronous Integration" on page 50 a customer could
integrate the customer-facing website to Yantra 7x using asynchronous
messages. With this architectural pattern, Yantra 7x could be offline
without impacting the services provided by the website.

The use of the 9’s also do not account for the different strategies or level
of availability of certain workloads. For example, during failures,
customers may want to consider shutting down lower-priority workloads
(see example in Section , "Target Utilization" on page 33).

Similarly, a slowdown or an outage that ripples or cascades to and affects
other integrated systems is a lot more serious than an outage of a low
priority workload that affects a few users.

Finally, the impact of the outages could depend on the time that the
outage occurred. For example, a five hour outage during a weekend or at
night has a different business impact than a half hour outage during a
peak period.

1.3 Availability Design and Principles
Availability design is a complex subject that can not be synthesized into a
simple number. Instead, availability design is a large optimization
exercise balancing many requirements.

To help with the availability design, we propose the following principles:

Business Drives High Availability Requirements

Keep It Simple Strategy

Configuring for Higher Availability or Resilience Is Like Buying
Insurance

1.3.1 Business Drives High Availability Requirements
High availability (HA) requirements must be driven by business and not
implemented for the sake of technology. Using five 9s as a goal could
result in an expensive, complex system that is neither needed or wanted.

Availability Design and Principles

Availability 3

In some cases, the business may be able to tolerate long periods of
outages and a simple backup and restore may suffice. Others may
require that every component from power to the database be made as
resilient as possible through redundancy and automated failover. In
addition, they may mandate geographically dispersed disaster recovery
capabilities.

High availability designs cannot be performed in isolation. As in most
worthy engineering endeavors, high availability requirements must be
balanced against other architectural choices including acquisition cost,
maintenance costs, scalability, maintainability, ease of use, impact to
business, and so forth.

1.3.2 Keep It Simple Strategy
If possible, you need to manage the complexity of the system, the
approaches to high availability and the recovery procedures. Complex
systems:

make it harder for people to understand and manage

increase the risk of failures

could make the fault recovery more difficult and in some cases more
risky

1.3.3 Configuring for Higher Availability or Resilience Is
Like Buying Insurance

In selecting insurance policies, you typically weigh the cost of the
insurance against the likelihood that the insurance is needed, whether
the insurance is required by law, and the significance of the potential loss
if you don’t have insurance.

For example, you would likely not take a flood insurance policy
regardless of the premium cost if you live on a hilltop in a desert but you
would buy a high premium flood insurance if you live in a hurricane zone
along the coast. Similarly, when procuring system hardware, you buy
servers with high reliability, availability and serviceability (RAS) built in to
ensure that hardware faults do not result in an outage. For example,
your servers may come equipped with as many as six redundant cooling
fans and power supplies.

4 High Availability Guide

High Availability Motivation

In some cases, the law may require you to purchase insurance. Similarly,
in some business sectors, regulations require business continuity and
disaster recovery plans.

At the extremes, if a business is willing and able to tolerate prolonged
outage periods, the HA requirements are few. In some cases, having
good backups may suffice.

On the other hand, if a business can only tolerate a down time of less
than 30 minutes for each outage, you may have to consider having
duplicated or redundant components for any component that can fail
especially if they are the SPOF.

At the other end of the spectrum, a company may have very high
availability requirements and can only tolerate less than five minute
downtime for each outage. In that environment, the data center may
have to be staffed around the clock, the failure detection must be quick,
failover procedures must the automated, and so forth.

1.4 High Availability Motivation
Architecting highly availability systems is not new. They are, in fact,
commonplace in industries such as financial. However, many recent
events have heightened interests and requirements in availability:

Catastrophic events such as September 11, 2001 or the Northeast
Power Blackout of 2003 have pushed availability to the foreground.
Situations that were unimaginable five years ago are now a serious
part of business continuity planning. In fact, many corporate
managers reject business continuity plans that do not incorporate
wide scale disasters.

Emerging regulations are forcing availability. In the health care
industry, the Health Insurance Portability and Accountability Act
(HIPAA) mandates business continuity and availability planning.
Section 404 of Sarbanes-Oxley specifies that corporations must
protect the systems used to report financial information. At a
minimum, corporations are forced to think about the ability to recover
those systems.

Your corporation may be part of a supply chain where inventory
needs to be available just-in-time. You may demand or are demanded
by your partners to have your systems available to ensure that
business partners can communicate. In some situations, trading

High Availability Motivation

Availability 5

partners may demand business continuity plans or disaster recovery
plans ensuring that services can be restored within a set period of
time after catastrophes.

6 High Availability Guide

High Availability Motivation

Limited Redundancy Single-Site Configuration 7

2
Limited Redundancy Single-Site

Configuration

The configuration presented in this chapter is a simple entry-level
configuration based on standard off-the-shelf products without additional
resources or configuration for availability.

An example of this configuration could be as depicted in Figure 2–1.

Figure 2–1 Limited Redundancy Single-Site Configuration

8 High Availability Guide

In Figure 2–1, the JNDI and Message Queue services are implemented on
a single (non-clustered) application server. That application server runs
on a single JVM. In addition, all the Yantra 7x time-triggered transactions
are configured to run inside a single agent server. Finally, all the
integration services run in a single integration server.

The three servers – the application, integration, and agent servers – run
on a single node (node-a) along with the database server.

This system has many single-points-of-failure (SPOF) where a single fault
can cause a partial or complete Yantra 7x system or application outage.
For example, the failure of the node (node-a) will cause a complete
system outage. Failure of the Yantra 7x agent server will cause a partial
outage – the integration and application server will continue running.

In some cases, this simple configuration may be suitable especially if the
system meets the customer’s availability requirements and represents an
appropriate balance of risk and benefits. As we mentioned earlier,
availability design must be driven from a business perspective.

In practice, we rarely see such systems used in production. Instead, the
system above is generally used for development, proof-of-concepts, or
demonstrations.

If you want to use a similar system in production, consider the following:

The ability to recover the database. At a minimum, backup the
system and database regularly. Also backup your database
transaction logs to allow rollforward recovery from the database
backups.

The backup tapes and archived database transaction logs should be
stored off-site. This prevents a data center disaster, such as fire, from
destroying not only the database server node but also all the backup
tapes.

Even with these considerations, this configuration has the following
issues:

Loss of transactions – if you lose the database server and you have to
restore the database to a different server, you will lose recent
transactions. After a database restore, you have to rollforward or
replay all the transactions found in the transaction logs created after
that database backup. Typically, the most current active transaction
log, in simple configurations, are only saved when the log closes. If

Limited Redundancy Single-Site Configuration 9

you lose the log, you have lost all the recent transactions captured in
that log after the database restore.

Loss of transactions in the integration queues – if you lose the disk on
which integration queues are kept, you will lose all the unprocessed
transactions in those queues.

10 High Availability Guide

Yantra 7x Architecture 11

3
Yantra 7x Architecture

This chapter presents the Yantra 7x application architecture at a high
level with a focus on describing the component that you have to protect.

The Yantra 7x application runs on one of the following server components
(as depicted in Figure 3–1 the following diagram).

Application server (such as an IBM WebSphere or BEA WebLogic
application server)

Yantra 7x agent server

Yantra 7x integration server

12 High Availability Guide

Figure 3–1 The Yantra 7x Architecture

These components run inside a Java Virtual Machine (JVM). As a result,
each component exists as a process in the system. You can have multiple
instances of each component. For example, you can run Yantra 7x in
multiple instances of the application server. Each instance is a separate
JVM.

The components use the following services:

Message queue

JNDI

Database server

LDAP (optional)

Agent and Integration Servers

Yantra 7x Architecture 13

3.1 Application Server
The application servers are the processes that handle synchronous
requests to provide the real-time access to the features and application
logic within the Yantra 7x application.

The most common type of requests that an application server handles
are the requests originating from clients using the Yantra 7x Application
Consoles. The application servers are always deployed using an
industrial-strength server application such as BEA WebLogic.

The Yantra 7x application server is the component that runs in
Java-based J2EE application servers. Application servers handle real-time
requests from users or programs. Requests can be sent in different
protocols such as HTTP, servlet calls, EJB/RMI calls, and so forth. The
application server runs inside either the IBM WebSphere Application
Server or the BEA WebLogic Application Server.

Typical usage scenarios include:

The call center representative uses the Yantra 7x Application Consoles
to interact with the Yantra 7x application. For example, to create,
query or modify orders, shipments or inventory. Requests come in as
HTTP requests.

Program runs transactions – calls through Remote Method Invocation
(RMI), EJB, servlet calls, and so forth.

3.2 Agent and Integration Servers
Agent and Integration Servers are Java-based processes that run in the
background to process work.

An agent server runs Yantra 7x defined “time-triggered” transactions.
These include transactions to schedule orders. In the transaction
configuration screen, you can designate transactions to an agent server.
Multiple transactions could be assigned to an agent server. You can also
specify that a transaction should run in multiple threads.

For example, if you associate both the Schedule and Release Order
transactions to an agent server (sched_rel_ord_agent) with 3 threads
each, when you start an instance of the sched_rel_ord_agent agent
server, that server will have six processing threads – three for the
Schedule Order transaction and three for the Release Order transaction.

14 High Availability Guide

JNDI Service

You can also start multiple agent server instances. For example, if you
start four sched_rel_ord_agent servers, you will see four Java processes
running in the system. Each Java process will have 3 threads of the
Schedule Order and Release Order transactions. In total, you will get 12
threads of the Schedule Order and 12 threads of the Release Order
transaction.

The agent server relies on the JNDI service. At startup, it registers itself
to the JNDI. This allows other servers to locate it.

3.3 JNDI Service
All the servers register themselves in the JNDI on startup. This allows
servers to locate other servers. One reason is to refresh the reference
data cache. The Yantra 7x servers cache reference data records for speed
and scalability. When a server modifies a reference data record, it notifies
all the servers in the JNDI list to refresh their cache.

The agent server also uses the JNDI to look for the WebSphere MQ
message queue service.

High Availability Within A Single Site 15

4
High Availability Within A Single Site

From a Yantra 7x system perspective, this chapter identifies:

All the hardware and software components used by the Yantra 7x
application

All the potential single points of failure (SPOF)

The approaches to eliminate or reduce the impact of these SPOF

4.1 Single Points of Failure
In the previous chapter, we presented a simple system that was
configured with little or no protection against faults. The number of SPOF
increases as the system grows in size and complexity. This chapter
addresses the following SPOF (within the four walls of the data center)
and the means to protect them from faults:

Node

Database Server

SAN or Disk Subsystem

Yantra 7x Application Components

JNDI

Message Queues

Networked File Systems (NFS)

16 High Availability Guide

Node

4.2 Node
The term ‘node’ refers to the physical computing hardware on which the
Yantra 7x application runs.

Fortunately, due to advancements in hardware design, component
redundancy, and automatic fault detection and correction, node failures
due to hardware fault are rare events. Take for example memory on an
industrial-strength computer. Error Checking and Correcting (ECC) codes
are built into the memory to correct single bit errors and to detect double
bit errors. If needed, parts of the memory can be selectively disabled.
Through techniques such as bit-scattering, memory chips are organized
such that failure of an entire memory module only affects a single bit
within the ECC word. In addition, with techniques such as bit-steering,
bits can be dynamically routed to spare memory chips. [1]

Similarly, servers come with multiple critical components such as power
and fans so that the server can continue to run after one or more
components fail. Most of these components are also hot swappable
allowing one to replace failed components without the need to shut down
the server.

Unfortunately, if the node fails, the mean-time-to-repair (MTTR) could be
very high. In the best case, you may only have to restart the node,
restart the services, initiate recovery and make the service available.
Depending on the size of the configuration, this could take up to 20
minutes or more.

In the worst case, for example if the fault was due to a hardware failure,
you may have to wait for replacement parts. In those situations, the
MTTR could be days.

The impact of a node outage depends on the service that runs on that
node. For example, the database server is unavailable in the event of a
database node outage.

If your tolerance for downtime is measured in minutes, you may have to
rely on automated approaches to recover or restore the service on
another node. One approach is an active/passive or primary/standby
failover configuration where one or more passive or standby nodes are
available to take over for failed nodes. See Section 4.2.1, "Active/Passive
Cluster Failover Configurations" on page 17 for more information. We
apply this approach in subsequent sections to protect critical components
such as the JNDI, message queues and database servers.

Node

High Availability Within A Single Site 17

In a more specialized case, Section 4.3.3.2, "Active/Active Failover
Configurations" on page 26 describes in the use of an active/active
clustered database failover configuration. This approach can be used to
protect the Oracle database.

4.2.1 Active/Passive Cluster Failover Configurations
Generally, in an active/passive cluster failover configuration, one or more
passive or standby nodes are available to take over for failed nodes. Only
the primary node is used for processing. When a node fails, the standby
node takes over the resources and the identity of the failed node. The
services provided by the failed node are started on the standby node.
After the “take over”, clients are able to access the services unaware that
the services are being provided by a different node.

Figure 4–1 illustrates an active/passive database failover configuration.
Both the active/passive nodes share the same disk subsystem although
only the primary database server has access to the disk subsystem. The
path from the standby node to the shared disk subsystem is not
activated.

During normal operations, the application connects to the database
server with a hostname of dbprod that gets resolved to an IP address of
192.168.10.1.

Figure 4–1 Active/Passive Database Failover Configuration

During a node failure, the following typically occurs:

18 High Availability Guide

Database Server

On the original primary node:

1. If the primary node is still up, the services on the primary node
are brought down.

2. All resources (specifically the disk subsystem) from the primary
node are released.

3. The service IP address (192.168.10.1) is released.

On the standby node:

1. The disk subsystem is brought online.

2. File systems are checked and repairs are made if needed.

3. The service IP address (192.168.10.1) is configured.

4. The services are started – database rollforward recovery is
initiated as necessary.

5. The database services are opened.

These failover or takeover steps can be automated. Some of the software
that can be used include:

IBM HACMP (only available on AIX)

Veritas Cluster Service (VCS)

HP MC/ServiceGuard

Microsoft Cluster Server (MCS)

Fully automated, the failover could take 5 to 10 minutes.

In subsequent sections, we present the use of active/passive failover
configurations to protect many of the Yantra 7x components in more
detail.

4.3 Database Server
The database server is a critical system component. The entire Yantra 7x
application is unavailable if the database server crashes. There are many
reasons why the database server can come down, including:

DBMS Software Failures

Human and Operator Errors

Database Server

High Availability Within A Single Site 19

Hardware Failures

4.3.1 DBMS Software Failures
As with any large complex software, there are bugs in the Oracle and
UDB database servers. Some of these bugs can cause instance crash or
performance degradation. In rare extreme cases, these bugs can corrupt
the database.

The best means to protect against software failures is testing. Your
testing must exercise transactions from a broad range of application
functionality and not a small subset of transactions. The tests must also
run at transaction volumes at or higher than anticipated peak production
periods. These tests are the only reliable means for identifying load,
concurrency, or integrity issues in the database management system and
the application.

You should be aware of any support or service alerts associated with or
new issues introduced with your database server release. The list of
issues is not static – new bugs are discovered as customers use the
release, existing bugs are be fixed, and so forth. Therefore, you should
check this list periodically to see if there are any new issues that could
potentially affect your system.

Additionally, you should be careful that you don’t apply all the patches
available for that database release. From our experience, you may
destabilize a database release when you apply too many individual
patches. In some cases, individual patches may conflict with each other.

For software bugs that crash the instance, the fastest recourse is to
restart the instance. For a corrupted database, your recourse may range
from trying to repair the damage using SQL to restore the database from
the last backup and performing rollforward recovery until the point
before the corruption. Either way, the MTTR will likely be very high.

4.3.2 Human and Operator Errors
A Gartner report “shows that an average of 80 percent of mission-critical
application service downtime is directly caused by people or process
failures. The other 20 percent is caused by technology failure,
environmental failure or a disaster.” [2]

The best prevention is strict change control, documented procedures,
training, and supervision.

20 High Availability Guide

Database Server

Recovery from human-induced outages could range from restarting
services to recovering a corrupted database.

4.3.3 Hardware Failures
Node failures are extremely rare. Unfortunately, when they do occur, the
MTTR can be unacceptably high for your business.

To protect the database server from node failures, you can use either
active/passive or an active/active cluster failover configurations.

4.3.3.1 Active/Passive Failover Configurations

4.3.3.1.1 IBM UDB Active/Passive Using Cluster Failover
Software Conceptually, UDB active/passive failover configurations using
cluster failover software operates as described in Section 4.3.1, "DBMS
Software Failures" on page 19. The standby node takes over the primary
node’s resources (the database files, logs) and identity (IP address, SAN
WWNN). The database service is then started on the standby node.
During the startup, UDB goes through its normal crash recovery and
ensures committed changes are made to the database and incomplete
transactions are rolled back. When UDB is finished with crash recovery,
the database service is made available.

From Yantra 7x perspective, you can expect the following to occur after
the primary node fails (and the database server is unavailable).

Transactions in the application, agent and integration servers that
were actively processing will throw a SQL error message. The
changes from those transactions will be correctly rolled back later
when the database server comes up on the standby node.

The Yantra 7x servers will continually reissue the transactions until
the database service is restored. You will not have to restart the
Yantra 7x servers during the transition to the standby node.

If the source of the work request (specifically for the agents and
integration servers) came from message queues, the messages
remain in the message queue. When the database service is restored,
these messages are processed.

Setting up and testing an active/passive failover configuration can be
tricky with many interdependencies and related parts. We strongly

Database Server

High Availability Within A Single Site 21

encourage you to contact the cluster failover vendors for assistance in
planning and implementing your cluster failover.

4.3.3.1.2 IBM UDB Active/Passive Using HADR UDB 8.2’s High
Availability Disaster Recovery (HADR) is a transaction log replication
approach that keeps a standby database server in or near synch with
changes in the primary database server. In the event of a failover, HADR
on the standby database server takes over and becomes the primary as
described in Figure 4–2.

Figure 4–2 UDB Active/Passive Using HADR

At a high level, the log writer on the primary database server records
changes to its local transaction logs. These logs are critical for crash and

22 High Availability Guide

Database Server

instance recovery. The primary HADR sends the log records to the
standby HADR where the logs are written out to the standby server’s
transaction logs. The changes are then applied to the standby server’s
database. At some point in time, the changes on the primary server are
asynchronously written to the database.

The standby database server is kept in “perpetual rollforward” mode
applying transaction log entries as they are replicated from the primary.

HADR provides many benefits over the traditional active/passive cluster
failover provided by software such as HACMP, VCS or MC/ServiceGuard.
First HADR recovery is faster because you do not have to start the
standby database server – the standby database server is always running
and is either in or near synch with the primary database server. Similarly,
you do not have to spend a lot of time in database crash recovery
because by design, the standby HADR database server is in or near peer
state. Also, you do not have to spend time releasing resources on the
failed node and acquiring resources on the standby node. With HADR, the
standby database is already connected to and using a separate disk
subsystem.

Second, the standby HADR database server does not share disk
subsystems with the primary database server. Therefore, with HADR, you
can survive a disk subsystem failure whereas cluster failover, which relies
on a shared SAN, could incur a potentially prolonged outage until the
disk subsystem is repaired.

In addition, HADR provides many intangible benefits. For example, HADR
allows read-only queries to run from the standby database. With this
capability, you can offload your reporting and DSS workloads to the
HADR standby database.

HADR is provided as part of ESE. With HACMP or the other cluster
failover software, you have to purchase additional software licenses.

From a recovery perspective, the HADR provides a less risky failover
approach. With HADR, the standby database is already running. In
contrast, with cluster failover, resources have to be acquired, services
started, etc. There are potential startup risks during the recovery
process.

UDB 8.2’s HADR implementation has the following limitations:

HADR can only replicate to one standby database server – therefore,
from the primary database server, you can either HADR to a local

Database Server

High Availability Within A Single Site 23

standby for local site failover or to a remote site for disaster recover
(but not both).

HADR is only supported on UDB ESE

You cannot backup from the standby – you must backup from the
primary

Client reroute does not work with the Yantra 7x agents.

Please refer to the IBM UDB documentation for more detail.

Client Reroute
Client Reroute was introduced in UDB 8.2 along with HADR to enable
client applications to automatically reconnect to the standby HADR
database server when the primary server fails. Client reroute works by
informing the client of the alternate or standby database when it
connects to the primary.

The alternate database information is defined on the primary database
server with the following command:

db2 update alternate server for database <dbname> using
hostname <hhh> port <ppp>

For example, if your primary database DB2PROD is on node N1 port
50000 and the alternate is on node N2 port 50000, issue the following
command on node N1:

db2 update alternate server for database DB2PROD using
hostname N2 port 50000

Alternates are propagated from the server to the client dynamically when
the client issues a CONNECT or CONNECT RESET. This dynamically
propagated alternate server information is stored in global driver
memory, and is also updated in the JNDI store of DB2 active servers.

DB2 Universal JDBC Driver client reroute support is available only for
connections that use the javax.sql.DataSource interface.

Limitations with Client Reroute
Since Client Reroute registers the alternate database when a connection
is made to the primary, you can not start the application server cluster
when the primary server is down and the standby HADR has assumed

24 High Availability Guide

Database Server

the role of the primary database server. The reason is that the
application server only knows the hostname of the original primary
database server, which is already down. Since the application server
cannot connect to the primary, it also cannot get the information on the
alternate database.

Client Reroute does not work with the Yantra 7x agent or integration
servers because Client Reroute requires the servers to use
javax.sql.DataSource to request database connections. The Yantra 7x
agent and integration servers use java.sql.DriverManager to create
database connections.

If the agent and integration servers were to use javax.sql.DataSource,
they would be given a proxy to the actual database connection object on
the application server. All JDBC requests from the agent or integration
servers are processed by the connections on the application servers. In
addition, all parameters and database results must to be marshaled and
un-marshaled between the agent or integration servers and the
application servers. This adds a lot of overhead to the SQL processing.

Yantra 7x Servers Failover for IBM UDB
Given the limitations of Client Reroute, the Yantra 7x agent and
integration servers are not able to connect to the standby database if the
primary database server fails. UDB’s JDBC URL only allows you to
connect to a database service on a hostname or host IP address. In the
example below, the JDBC URL points to a database called DB2PROD on
HOSTXYZ at port 50000:

jdbc:db2://HOSTXYZ:50000/DB2PROD

The value HOSTXYZ is actually an alias that gets resolved to an IP
address. It does not have to be a hostname. With that flexibility, we
could use an alias to designate a server name – in this case a database
server name. In the example above, we could use the value DB2PRDAL
to designate the DB2 Production Alias. By using an alias, we decouple the
server name from a physical node.

jdbc:db2://DB2PRDAL:50000/DB2PROD

In the event of a failure (e.g., the node HOSTXYZ has crashed), all we
need to do is change the DB2PRDAL alias to point to the IP address of
the standby node that has the standby database server. When the agent

Database Server

High Availability Within A Single Site 25

and integration servers try to reconnect, the connect requests (with the
same DB2PRDAL) now go to the standby database node’s IP address.

4.3.3.1.3 Oracle Active/Passive Using Cluster Failover Oracle
active/passive failover configurations are very similar to the UDB
active/passive configuration described in Section 4.3.3.1.1, "IBM UDB
Active/Passive Using Cluster Failover Software" on page 20. It is our
belief that customers prefer to implement an active/active Oracle failover
configuration instead. This is described in Section 4.3.3.2, "Active/Active
Failover Configurations" on page 26.

4.3.3.1.4 Microsoft SQL Server Active/Passive Using MSCS
Microsoft SQL Server active/passive failover configurations are very
similar to theSection 4.3.3.1.2, "IBM UDB Active/Passive Using HADR" on
page 21.

The clustered nodes use the heartbeat to check whether each node is
alive, at both the operating system and SQL Server level. At the
operating system level, the nodes in the cluster compete for the
resources of the cluster. The primary node reserves the resource every 3
seconds, and the competing node every 5 seconds. The process lasts for
25 seconds and then starts over again. For example, if the node owning
the instance fails due to a problem (network, disk, and so on), at second
19. The competing node detects it at the 20-second mark, and if it is
determined that the primary node no longer has control, the competing
node takes over the resource.

From a SQL Server perspective, the node hosting the SQL Server
resource does a looks-alive check every 5 seconds. This is a lightweight
check to see whether the service is running and may succeed even if the
instance of SQL Server is not operational. The IsAlive check is more
thorough and involves running a SELECT @SERVERNAME Transact SQL
query against the server to determine whether the server itself is
available to respond to requests; it does not guarantee that the
databases are up. If this query fails, the IsAlive check retries five times
and then attempts to reconnect to the instance of SQL Server. If all five
retries fail, the SQL Server resource fails. Depending on the failover
threshold configuration of the SQL Server resource, Windows Clustering
attempts to either restart the resource on the same node or fail over to
another available node. The execution of the query tolerates a few

26 High Availability Guide

Database Server

errors, such as licensing issues or having a paused instance of SQL
Server, but ultimately fails if its threshold is exceeded.

During the fail over from one node to another, Windows clustering starts
the SQL Server service for that instance on the new node, and goes
through the recovery process to start the databases. The fail over of the
SQL Server virtual server takes a short time (probably seconds). After
the service is started and the master database is online, the SQL Server
resource is considered to be up. Now the user databases go through the
normal recovery process, which means that any completed transactions
in the transaction log are rolled forward, and any incomplete transactions
are rolled back. The length of the recovery process depends on how
much activity must be rolled forward or rolled back upon startup. Set the
recovery interval of the server to a low number to avoid long recovery
times and to speed up the failover process.

4.3.3.2 Active/Active Failover Configurations
In an active/active failover configuration, two or more database nodes
are clustered together to provide a common service to applications.
Unlike active/passive failover configurations, all nodes of an active/active
failover configuration are actively processing transactions. If a node fails,
the remaining nodes continue to provide the service. Figure 4–3
illustrates this concept:

Figure 4–3 Active/Active Failover Configuration

Database Server

High Availability Within A Single Site 27

4.3.3.2.1 Oracle RAC Active/Active The Oracle Real Application
Cluster (RAC) is a share-everything database cluster with a distributed
lock manager. As a share-everything database, all RAC nodes access and
update the same database data files. The distributed lock manager
controls which node updates the data. It does not matter which node the
transaction is performed on. Each node has equal rights to all data in the
shared database.

Each RAC node has a listener process that is responsible for processing
database connection requests from client programs. When the listener
receives a request, it could spawn off a new database process to which
the client program connects to. If server-side load balancing is enabled,
the listener could send the request to the listener on the least busy RAC
node.

Configuration
When configuring Yantra 7x with Oracle RAC, you want the RAC nodes to
be reasonably balanced so that all RAC nodes, over a period of time, are
about the same utilization. During a node failure, you also want the
connections from the failed node to automatically reconnect to the
surviving RAC node. You can do this using Oracle features on the
client-side and server-side.

Client-Side Load Balancing
On the client-side, set up the JDBCURL parameter, which the JDBC driver
uses to connect to Oracle, as follows:

"jdbc:oracle:thin:@
 (DESCRIPTION =
 (ADDRESS_LIST =
 (LOAD_BALANCE = yes)
 (ADDRESS = (PROTOCOL = TCP)(HOST = dbnode01)(PORT = 1521))
 (ADDRESS = (PROTOCOL = TCP)(HOST = dbnode02)(PORT = 1521))
)
 (CONNECT_DATA =
 (SERVICE_NAME = rac)
)
)

In this example, the JDBCURL shows two RAC nodes (dbnode01 and
dbnode02). The (load_balance=yes) instructs the JDBC Driver to

28 High Availability Guide

Database Server

progress through the list of addresses in a random sequence spreading
the load to all the listeners.

In a failure situation, if the connection request goes to the “downed”
node, the connection requests timeouts. The driver then transparently
sends the connection request to the remaining node. The connection
timeout can be tuned down.

With client-side load balancing, the connection request eventually
reaches an Oracle listener.

Server-Side Load Balancing
On the RAC nodes, enable server-side load balancing so that the listener
routes database connections to the RAC instance on the least busy
(loaded) nodes.

The listener on each RAC node is aware of all RAC instances. In addition,
the Oracle PMON (process monitor) periodically updates the listeners
with the node utilization. The update can occur as quickly as a minute on
heavily loaded nodes or as much as ten minutes on lightly loaded nodes.
Depending on the load information, the listener decides to which instance
to send the incoming client request. The listener typically selects an
instance on the least loaded (busy) node. If the least busy node has
multiple RAC instances, the listener then chooses the least loaded
instance on that node.

You can enable server-side load balancing by setting the following
parameters:

hostname service name sid name instance_name
======== ============ ======== =============
dbnode01 rac rac1 rac1
dbnode02 rac rac2 rac2

spfile
*.remote_listener=’LISTENERS_rac’
rac1.local_listener=’LISTENER_rac1’
rac2.local_listener=’LISTENER_rac2’

*.db_name='rac'

rac1.instance_name='rac1'
rac2.instance_name='rac2'

Database Server

High Availability Within A Single Site 29

dbnode01 listener.ora file

LISTENER =
 (DESCRIPTION_LIST =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = IPC)(KEY = EXTPROC))
)
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = dbnode01)(PORT = 1521))
)
)
)

SID_LIST_LISTENER =
 (SID_LIST =
 (SID_DESC =
 (SID_NAME = PLSExtProc)
 (ORACLE_HOME = /u01/app/oracle/product/9.2.0.5)
 (PROGRAM = extproc)
)
 (SID_DESC =
 (ORACLE_HOME = /u01/app/oracle/product/9.2.0.5)
 (SID_NAME = rac1)
)
)

30 High Availability Guide

Database Server

dbnode01 and dbnode02 tnsnames.ora file

LISTENERS_RAC =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = dbnode01)(PORT = 1521))
 (ADDRESS = (PROTOCOL = TCP)(HOST = dbnode02)(PORT = 1521))
)
)
RAC1 =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = dbnode01)(PORT = 1521))
)
 (CONNECT_DATA =
 (SERVICE_NAME = rac)
 (INSTANCE_NAME = rac1)
)
)
RAC2 =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = dbnode02)(PORT = 1521))
)
 (CONNECT_DATA =
 (SERVICE_NAME = rac)
 (INSTANCE_NAME = rac2)
)
)
RAC =
 (DESCRIPTION =
 (LOAD_BALANCE = yes)
 (ADDRESS = (PROTOCOL = TCP)(HOST = dbnode01)(PORT = 1521))
 (ADDRESS = (PROTOCOL = TCP)(HOST = dbnode02)(PORT = 1521))
 (CONNECT_DATA =
 (SERVICE_NAME = rac)
)
)

Database Server

High Availability Within A Single Site 31

LISTENERS_RAC, LISTENER_rac1, and LISTENER_rac2, are the net_
service_name (connect descriptor) for remote_listener and local_listener.
On the client side, you do not need these net_service_name parameters.

RAC is the net_service_name for client-side load balancing as illustrated
in Figure 4–4.

dbnode01 only tnsnames.ora

LISTENER_rac1 =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = dbnode01)(PORT = 1521))
)

dbnode02 only tnsnames.ora

LISTENER_rac2 =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = dbnode02)(PORT = 1521))
)

32 High Availability Guide

Database Server

Figure 4–4 Load Balancing

From a Yantra 7x application perspective, you can expect the following to
occur after a RAC server instance failure:

Database Server

High Availability Within A Single Site 33

Transactions in the application, agent and integration servers that
were actively processing throws a SQL error message. The remaining
RAC nodes roll the changes from those transactions back.

The Yantra 7x agent and integration servers continually attempt to
reconnect. When it has connected to one of the remaining RAC
instances, the failed transactions are reprocessed from the beginning.
You do not have to restart the Yantra 7x servers during the transition
to the standby node.

If the source of the work request (specifically for the agents and
integration servers) came from message queues, the messages
remain in the message queue. When the database service is restored,
these messages are processed.

Target Utilization
When deploying an active/active failover configuration like Oracle RAC,
take into consideration your target node utilization, especially during the
seasonal peak periods. Although RAC is an active/active configuration,
you have to be careful when you run the RAC nodes at close to max
utilization. First, RAC needs CPU to maintain the Cache Fusion. Secondly,
during failover, all the work from the failed node eventually spills over to
the remaining node. For example, at the peak hour, the combination of
high volume agent processing and application server processing is driving
a 2-node RAC configuration to 80% busy. If a node fails, the servers
reconnect to the remaining node. The combined workloads drive the
database to a point where performance degrade or at worst the system
becomes unstable.

Ideally, you should try to keep the average node utilization below 40%
utilization (for a 2-node RAC) to reduce the risk of overloading the
remaining nodes. In the event of a node failure, the remaining node will
likely grow to 80%.

Alternatively, if you typically run the nodes at higher utilization, you
should consider classifying workloads into priority groups. For example,
transactions that are initiated by customers may be put into the high
priority group because they add to the overall customer experience.
These could include application server workloads. Customers with short
“click to release” service levels may consider agents that schedule and
release orders as high priority workloads. Workloads such as order purge
or other maintenance work could be categorized into lower priority
groups.

34 High Availability Guide

Yantra 7x Application Components

4.3.3.2.2 IBM UDB Active/Active

UDB’s active/active database configuration (where all nodes are actively
processing work) is provided by their UDB ESE Data Partitioning Feature
(DPF). Yantra is currently not certified to run on UDB DPF.

4.4 SAN or Disk Subsystem
The disk subsystem is another critical system component. Disk failures
could cause outage to parts of or the entire Yantra 7x application.

Careful design and implementation must be placed on the disk
subsystem. Your investment in failover configurations could be wasted if
the disk subsystem fails.

The different areas where disks are used by Yantra 7x include:

Database datafiles/objects

Message queues

Internal disks

To prevent outages due to disk failures, consider configuring the
following:

Disks as RAID groups (except for RAID-0) for redundancy and
performance

Redundant disk systems to tolerate component failures

Multiple access paths to the disks

4.5 Yantra 7x Application Components
As we described in Chapter 4, "High Availability Within A Single Site", the
Yantra 7x Application runs in the application server, agent server, and the
integration server.

4.5.1 Application Server
The application server provides:

Users with the ability to use the Yantra 7x Application Consoles to
create and manage orders, shipments, and inventory manage orders,
shipments, and inventory

Yantra 7x Application Components

High Availability Within A Single Site 35

Programs to call Yantra 7x business APIs using HTTP, servlets,
EJB/RMI or WebServices

Currently, the Yantra 7x application is supported on the following
application servers:

BEA WebLogic

IBM WebSphere

All application server requests are transactional in that all the work
performed is within a transaction boundary and is either fully committed
or nothing is committed. This guarantees that there is no partially
completed work.

For resiliency, you can configure multiple application server instances in a
cluster. If an instance fails, the workloads are sent to the remaining
instances.

Generally, the following occurs when an application server instance fails.
If there were active transactions running on the failed application server,
those transactions can be reprocessed. The transactions are either fully
committed or not at all. Subsequent transactions are sent to the
remaining application server instances.

4.5.1.1 Stateful Sessions
The HTTP user interface (or Yantra 7x Application Consoles) sessions are
“stateful”. When transactions complete, they leave information (state) on
the J2EE application server for the subsequent transaction. By being

36 High Availability Guide

JNDI

stateful, all HTTP transactions return to the same application server
instance. This can be accomplished by telling the load-balancers or
proxies that the sessions are sticky.

By default, WebLogic and WebSphere application servers are configured
for memory session persistence where the HTTP session-state is only
stored in the application server instance that the transaction ran on. The
session information is lost if that application server instance fails. If that
happens, the user is redirected to the login page. After logging back into
the application, the user is able to continue where they left off.

4.5.1.2 Stateless Sessions
All the other application server transactions, EJB/RMI, servlet calls, and
WebServices, are stateless. In contrast, these transactions do not leave
behind session state information. As a result, these transactions can be
performed on any application server instance where the application is
deployed.

4.5.2 Yantra 7x Agent and Integration Server
The Yantra 7x agent and integration servers are completely location or
node independent. They can run from any node where the application
has been deployed.

4.6 JNDI
The Java Naming and Directory Interface (JNDI) is a standard service in
Java for applications to store information that other workloads can query.

The Yantra 7x application uses the JNDI to store information on how to
locate each of the server instancess (e.g., the application server, agent
and integration server instances).

When a server instances starts, it will store its server name and a remote
object pointing to itself in the JNDI. Any server instance can query the
JNDI to find all the other server instances. Workloads can then use the
remote object to query the services provided by the server instance.

For WebSphere, the JNDI is also used to store the name and location of
the WebSphere MQSeries queues. When a Yantra 7x server is shut down,
its JNDI entry is removed.

JNDI

High Availability Within A Single Site 37

The Yantra 7x application uses the JNDI information for the following
events:

Reference data cache refresh – the Yantra 7x application
implemented a mid-tier data cache to cache commonly used
reference data. If a server instance changes a cacheable record, that
instance needs to broadcast that change to instruct all the other
server instances to refresh their cache. For more information on the
Yantra 7x reference data cache implementation, refer to the Yantra
7x Performance Management Guide.

The system management console uses the JNDI to discover all the
application instances. The SMC uses that list to build a list of
instances to monitor.

Yantra 7x workloads in a configuration that is deployed with IBM
WebSphere Application Servers and WebSphere MQSeries uses the
JNDI to discover the available message queues.

The parameters that govern how the Yantra 7x servers communicate to
the JNDI are presented in Table 4–1. These parameters are specified in
the <YFS_HOME>/resources/management.properties file.

The JNDI is implemented in one of the BEA WLS or IBM WAS server
instances. There is only one copy of the Yantra 7x JNDI making that copy
a SPOF. If the JNDI server instance fails, the JNDI service will be
unavailable.

If the JNDI server is down, the following happens:

Table 4–1 JNDI Parameters

JNDI Description

yfs.remote.pingtime Frequency at which the server checks to see if the
JNDI is alive and that it is correctly registered in the
JNDI. The default is 600 seconds.

yfs.remote.reconnecttime Frequency at which a server tries to reconnect to
the JNDI to register itself after it discovers that the
JNDI is down. The default is 600 seconds.

jndi.nocleanup Controls whether servers on startup checks and
validates all the JNDI entries. Default is true – do
not perform this check.

38 High Availability Guide

JNDI

You can not start agents. Existing agents continue processing. This is
because the agents need the JNDI to register its service immediately
on startup.

Workloads are not able to change cacheable reference data because
they can’t contact the JNDI to get a list of servers.

4.6.1 How to Eliminate SPOF
This section covers methods to eliminate SPOF:

Deploy the JNDI on a Quiet Server Instance

When the JNDI Server Instance Crashes

When the JNDI Node Fails

4.6.1.1 Deploy the JNDI on a Quiet Server Instance
As a preventative measure, deploy the JNDI tree to a server instance
that is not active or busy. This reduces the risk that a server instance due
to out of memory exceptions will cause a JNDI outage.

In WebLogic, consider putting the JNDI on the administration server
instance. If the WLS cluster is used by many applications and you don’t
want to put application specific information on that administration server,
consider putting the JNDI on its own server instance in a different cluster.

In WAS, consider putting the JNDI on the deployment manager.

4.6.1.2 When the JNDI Server Instance Crashes
Immediately restart the server instance. After the restart, look at the
logs to find the cause. Make sure the verbosegc statistics is enabled so
you can see if the problem is due to out of memory conditions (this is
highly unlikely if you had deployed the JNDI to a quiet server instance).
Look for JVM core dumps – the problem may be a JVM bug.

4.6.1.3 When the JNDI Node Fails
If the JNDI node fails, restart the node. If that node needs to be
repaired, target the JNDI to another application server instance. You
have the following options:

Active/Passive JNDI Nodes

JNDI

High Availability Within A Single Site 39

Target JNDI to Another Application Server Instance

4.6.1.3.1 Active/Passive JNDI Nodes

You could configure the JNDI node into an active/passive failover group,
possibly shared by other servers. When the JNDI node fails, you want the
JNDI to failover to the standby node. After the failover, restart the
application server that is the new home for the JNDI. There are no
configuration changes since the new JNDI node assumes the same IP
address of the failed JNDI node.

After the JNDI server is up, the application, agent and integration servers
automatically reconnect to the JNDI (as dictated by the
yfs.remote.pingtime and the yfs.remote.reconnecttime
parameters).

4.6.1.3.2 Target JNDI to Another Application Server Instance

If you do not want to configure an active/passive failover group, you
could retarget the JNDI to one of the remaining application server
instances by taking advantage of service or server names.

In Figure 4–5, the Yantra 7x servers find the JNDI through the
yfsjndi.jmx.java.naming.provider.url parameter in the
<YFS/HOME>/resources/management.properties file. In that parameter,
point to the JNDI using a server or service name instead of a hostname
(node name) or host IP address. This approach makes the service (in this
case the JNDI) location independent.

In Figure 4–5, the JNDI service is initially on the node with the IP
address of 192.168.10.1. If that node fails and cannot be restarted, you
could change the service name in the DNS to point to another node
(192.168.10.2), and then restart the application server (if needed).

Eventually, as dictated by the yfs.remote.reconnecttime parameter,
the Yantra 7x servers will reconnect back to the JNDI.

40 High Availability Guide

JNDI

Figure 4–5 JNDI Targeting

4.6.2 Limitations/Issues in JNDI Failover
Transactions that do not need the JNDI can continue to run while the
JNDI is unavailable. When the JNDI becomes available, servers
eventually detect the presence of the JNDI and reregister. The
yfs.remote.pingtime parameter dictates the frequency at which
servers send a heartbeat to the JNDI. Between the time when the JNDI
becomes available and when the last active server reconnects, data
integrity issues may occur.

For example, the JNDI crashes at time t0 and is restarted at time t1. At
that time, there are twenty active Yantra 7x servers. At time t2, three
servers reconnect to the JNDI. One of those three servers changes
several reference data records in the database. As part of that change,
that agent gets a list of active (known) servers from the JNDI. It finds
the three servers that have reconnected but not the other 17 servers. It
then tells those three servers to refresh their cache. The remaining 17
servers are not aware of the data changes and could continue using the
stale data.

As a result, at this time, you have the following options:

Message Queues

High Availability Within A Single Site 41

Set the ping and reconnect time parameters low (e.g., 1 minute) to
reduce the window when the servers rediscover the JNDI

After a JNDI failure and restart, go to the Yantra 7x System
Management Console and issue the global cache clear command. You
can issue that command several times after the JNDI restart. You
should issue at least clear cache at reconnect time after the JNDI has
restarted. This reduces the window when servers are potentially
processing with stale reference data (assuming reference data was
changed immediately after the JNDI restart).

4.7 Message Queues
Yantra 7x uses message queues extensively. The message queue usage
in Yantra 7x can be grouped as:

Integration queues for external communications

Temporary work-in-progress queues for Yantra 7x’s and custom
time-triggered transactions

These queues can be implemented in either BEA WebLogic JMS or IBM
WebSphere MQ. Yantra 7x does not support IBM WebSphere’s embedded
JMS server.

4.7.1 Integration Queues for Yantra 7x Integration
Servers

Integration-based queues are typically used for communications from or
to external systems. For example, in Figure 4–6, the first queue could be
used by external systems like a web store frontend to pass order creation
requests into Yantra 7x. It could also be purchase orders from a
purchasing system, shipment status updates from a logistics
management system, and so forth.

42 High Availability Guide

Message Queues

Figure 4–6 Integration-based Queues

Similarly, Yantra 7x could use integration queues to send messages to
external systems. For example, Yantra 7x could send ship notices to
warehouses.

Since these messages are used for communicating between systems, the
messages in the integration queues must be protected so that they are
not lost in the event of a failure. These messages can be difficult to
recreate.

4.7.2 Agent Queues for Yantra 7x Agent Servers
The Yantra 7x agent servers use the messages in the queues as a source
of work. These messages are typically read from the database and can
be easily recreated. As a result, Yantra recommends creating these
queues as non-persistent queues where the messages are kept in
memory.

4.7.3 WebLogic JMS
To protect the WebLogic JMS queues, consider the following:

Persistence

Message Paging

Dedicated Integration JMS Server

Shared Disk Subsystem

JMS Server on a Different Application Server

Backup JMS Server

Message Queues

High Availability Within A Single Site 43

4.7.3.1 Persistence
By default, WebLogic JMS message queues are defined as non-persistent,
which means that the messages are only kept in memory (the JVM
heap). Non-persistent messages are lost when the JMS server shuts
down or crashes.

To protect integration messages, you must define the queues as
persistent. WebLogic allows messages to be persisted to files or the
database.

The agent queues should be implemented as non-persistent queues. The
Yantra 7x agents are designed to be able to recreate the
work-in-progress task messages.

4.7.3.2 Message Paging
By default, the messages in WebLogic JMS queues are kept in memory
(in the Java heap). You should consider protecting them against
situations where a large number of messages could cause the JMS server
to fail because it has run out of space in its Java heap. This could happen
if there are a significantly large number of messages in the queue or
exceptionally large message bodies. In those situations, the JVM could
run out of space in its heap.

The best way to find out how much JVM heap you need is to create a
large number of messages in your test queues and see how much
memory is used. The amount of heap required differs for each
implementation.

To protect against situations where the WebLogic JMS heap fills up, you
could enable byte or message paging. When the number of bytes or
messages exceeds specified thresholds, WebLogic JMS server pages out
the message body (but not the message header) to a paging file store.
This approach can reduce the likelihood of a JVM crash. You can still run
out of JMS Server heap if the queue has a lot of message headers.

As a draconian measure, you can set the maximum message parameter.
When set, this parameter puts a hard limit on the number of messages
that can be in the queue. When this threshold is reached, new messages
are rejected with an error message. As a result, you will have to ensure
that message producers are architected to correctly handle message
maximum exceptions – for example, the message producers may want to
queue the messages and retry later.

44 High Availability Guide

Message Queues

4.7.3.3 Dedicated Integration JMS Server
Since integration queues can grow unbounded, you should define the
integration queues to one or more dedicated JMS servers. These JMS
servers should be targeted to one or more dedicated WebLogic managed
servers. For example, assume you have ten integration queues. Some of
your options are:

Define all ten integration queues to a single JMS server which is
targeted to a dedicated application server. That application only has
the JMS server targeted to it.

For very large integration queues, target 5 integration queues to one
JMS server and the other five to another JMS server. The two JMS
servers are then targeted to two dedicated application servers.

4.7.3.4 Shared Disk Subsystem
The persistence and paging file stores should be implemented on a
shared disk subsystem (such as a SAN) and not on local disks. The
shared disk subsystem should be accessible from standby servers to
prevent disk failures or node outages from causing a prolonged JMS
Server outage. This configuration allows you to restart the JMS Server
from another node.

4.7.3.5 JMS Server on a Different Application Server
You can protect the task-based queues by ensuring the JMS server can
be restarted on a different node or a different application server. You
don’t have to worry about preserving the content of the queues because
they can be recreated from the database. You also don’t have to worry
about protecting them against large number of messages because the
agents only fetch a finite number of messages (default is 5,000).

4.7.3.6 Backup JMS Server
Alternatively, you can specify a backup JMS Server for the Yantra 7x
agent servers. In the event that the initial or primary JMS Server fails,
the Yantra 7x agent servers migrate to the alternate JMS server. You can
specify the backup JMS server using the following parameters in the
<YFS_HOME>/resources/yfs.properties file.

yfs.agent.backup.providerurl=t3://<ip Address>:<port>
yfs.agent.backup.icf=<InitialContextFactory Name>
yfs.agent.backup.qcf=<QueueConnectionFactory Name>

Message Queues

High Availability Within A Single Site 45

4.7.4 WebSphere MQ
For WebSphere customers, as depicted in Figure 4–7, the integration and
task-based queues are implemented in WebSphere MQ, which is an
external message queue from the WebSphere Application Server.

Figure 4–7 WebSphere MQ

The WebSphere Application Server is the host to the JNDI service and the
Yantra 7x application server.

4.7.4.1 Protecting WebSphere MQ HA Using Cluster Failover
One approach to protecting WebSphere MQ is through cluster failover
using cluster software such as HACMP, MC ServiceGuard, or Veritas
Cluster Service. In Figure 4–8, the MQ (the MQ queue manager and the
local queues) on the active node with IP address of 192.168.10.1 is
running and accepting and distributing MQ messages. In the event of a
node failure and the node cannot be restarted, the cluster software
activates the standby node. From the agent and integration servers’
perspective, the MQ service was unavailable during the time it took to

46 High Availability Guide

Message Queues

failover. Once the failover is completed, the agent and integration servers
can be restarted. At that time, the standby node looks the same as the
former primary node. Therefore, there are no changes required.

Figure 4–8 Cluster Failover

4.7.4.2 Implementing Message Persistence Files on SAN
To prevent disk failures or node outages from causing a prolonged
MQSeries outage, you should consider putting the MQ logs and files used
to store messages on a SAN that is accessible from multiple nodes. This
allows you to restart MQ from another node.

4.7.4.3 Risks
In the previous examples, the shared storage remains the single point of
failure. You could lose data if the shared storage was. One option is to
configure active/passive SAN devices with the primary SAN replicating

Networked File Systems (NFS)

High Availability Within A Single Site 47

data to the standby SAN. In the event of a SAN failure, the primary MQ
node would release the primary SAN and acquire the standby SAN.

4.7.5 Clustered MQ
Yantra 7x is not certified on clustered MQ.

4.8 Networked File Systems (NFS)
Some customers prefer to implement Yantra 7x on a networked file
system (NFS). With this approach, all mounted nodes can access all the
shared folders. Changes are made to the shared files. In contrast,
changes do not have to be pushed out to every node if files were stored
on local disks.

If you choose this approach, consider implementing a highly available
NFS to prevent an outage of the NFS server from creating an application
outage. Losing the NFS server crashes all the Yantra 7x servers.

48 High Availability Guide

Networked File Systems (NFS)

Architectural Patterns 49

5
Architectural Patterns

The Yantra Distributed Order Management (DOM) and Warehouse
Management System (WMS) applications are often deployed in an
integrated network of external systems to form a cohesive business
ecosystem. Prolonged application or system outages can have significant
business consequences.

Decoupling and component independence is an extremely powerful
architectural pattern to insulate critical portions of the overall ecosystem
solution from downtime or faults in other areas. The availability and
uptime of the Yantra 7x based solution can be greatly enhanced by
adopting one or more of the following patterns during solution design.
Each of these patterns makes it possible to decouple one or more parts
of the application from other portions thus providing increased
availability and uptime for critical areas like external users and
customers.

Each of these design patterns can be applied to provide increased
application resilience. While these examples talk about website
integration, these patterns can be applied to other areas of integration as
well.

A well-designed solution around the Yantra 7x system can actually
increase the availability and uptime of the solution as a whole to levels
above what Yantra 7x delivers out-of-the-box. In some critical areas for
example, the solution can continue to be available even when the
product is taking a planned or unplanned outage.

Finally, there are a few other process and deployment related solution
design considerations that can actually provide better gains in availability
and uptime at a much lower cost than technological and redundancy
based solutions.

50 High Availability Guide

Caching

5.1 Asynchronous Integration
The most common decoupling technique is asynchronous message
communication between business entities. Take, for example, the need to
send orders created at different external systems to Yantra 7x. These
systems could send the order creation requests to Yantra 7x:

Synchronously using protocols such as HTTP, WebServices, EJB/RMI
and so forth; or

Asynchronously using messages.

Both approaches have their strengths and weaknesses. From a
high-availability standpoint, the loosely-coupled asynchronous approach
allows Yantra 7x to be unavailable, as a result of a scheduled or
unscheduled outage, without affecting the external systems. The external
systems can queue up the order creation requests into an integration
message queue.

In contrast, if the communications is synchronous, Yantra 7x must be
available in order for the external system to create the request. In this
architecture, Yantra 7x’s availability requirements will have to be the
greater of all the availability requirements of all tightly connected
systems combined.

This scenario is, of course, simplistic since it may not take into account
other synchronous interfaces (like inventory lookups or pricing) that the
order creation process is dependent upon. These requirements are
addressed in Section 5.2, "Caching".

5.2 Caching
Another common decoupling technique is the use of local caching. In this
pattern, the consuming application (for example, store web store) gets
information such as item attributes, inventory balance, or item
availability from a local data cache. This approach reduces the need to
synchronously query Yantra 7x.

The local information cache can be updated by utilizing a variety of
algorithms that offer various degrees of sophistication, performance and
accuracy. Not only does this technique provide a way to decouple two
areas of the solution, but it also provides significant performance,
response time, and scalability advantages that are especially useful in
end-user or website scenarios.

Hot Deployment of Code, Configuration, and Fixes

Architectural Patterns 51

As an example, one area where Yantra 7x typically recommends utilizing
this algorithm is for caching ATP (Available to Promise) data on the
website. In some customer environments where shopping cart
abandonment rates are very high, for example 100 item lookups to 1
item ordered, it is better to have Yantra 7x push out item availability to
the web storefront using the Yantra 7x Real-time Inventory Monitor. With
this approach, most inventory lookups that are part of the customer’s
browsing and ordering experience can be served from the website
without any synchronous calls to Yantra 7x. Based on business
requirements, if the inventory levels are sufficiently high, the web
storefront can sell that item. The web storefront would revert to
synchronous inventory availability check when the inventory levels are
below a certain threshold. More importantly, Yantra 7x can be down
without affecting the web storefront.

While this cookie cutter approach to inventory caching may not work for
all scenarios, techniques such as these can be invariably applied to
almost all critical interfaces to provide simplistic but “safe” algorithms to
counter planned or unplanned downtime without affecting end users or
disabling critical functionality areas altogether.

5.3 Hot Deployment of Code, Configuration, and
Fixes

While the methodologies and design patterns presented will insulate
critical areas of the solution from downtime, there are deployment
techniques provided by Yantra or inherent within Yantra 7x’s architecture
that allow you to hot deploy incremental changes, configuration, and
fixes on critical synchronous application components. Some of these
capabilities include the ability to:

Deploy changes to incremental configuration or master data without
having to bring down any application areas.

Hot deploy incremental software or code changes on the synchronous
application components by utilizing capabilities offered by the
application server or by utilizing application server independent
techniques like clusters and rolling restarts.

Theoretically, there could be scenarios where even a small change to a
component may require multiple areas of the application to be updated
simultaneously due to interdependencies, thus causing an outage.

52 High Availability Guide

Deployment Processes and Regression Testing

However, in reality, a large number of incremental changes and product
fixes can utilize these techniques even without any explicit hot
deployment design considerations.

Explicitly factoring in requirements to be able to hot deploy changes
during incremental solution design phases leads to the ability to hot
deploy all changes with a few exceptions. This situation is further
mitigated by Yantra 7x’s dependence on asynchronous processing for
complex algorithms. This significantly reduces the solution footprint that
external synchronous interfaces like those from the website, rely on.
This, in turn, reduces the probability of many changes or fixes in these
areas.

5.4 Deployment Processes and Regression
Testing

One of the most important and most overlooked areas that can
significantly affect availability and uptime of an application is the
presence of a strictly enforced process to promote, characterize, verify,
and regression test incremental rollouts or hot-fixes and upgrades. In
industry studies and based on Yantra’s experience, the lack of sufficient
automated integration testing, human and operator error, and lack of
appropriate software change management processes to prevent those
errors, is the single biggest factor that causes application downtime
when there is no actual infrastructure failure. The cost of setting up and
investing in a robust and isolated testing environment that mirrors the
configuration and a small amount of representative transactional data
from production is usually much lower in comparison to implementing
redundant systems and complex processes to handle issues with new
solution rollouts and software fixes. Any investment in this area goes a
long way to prevent issues with failure and downtime.

Disaster Recovery 53

6
Disaster Recovery

With the approaches described in Chapter 4, "High Availability Within A
Single Site", you should be able to withstand most single and possible
multiple component failures without incurring an outage. With the
appropriate architectural patterns described in Chapter 5, "Architectural
Patterns", you may be able to schedule downtime with less impact to the
corporations overall availability.

There remains one major contingency you need to consider: what
happens if a catastrophic event causes your primary data center to be
partially or completely incapacitated? The reasons could range from the
commonplace disasters such as fires in the building or natural disasters
like floods or earthquakes. It may also be rare events like the Northeast
Blackout of 2003 when wide regions covering over eight US states and
one Canadian province lost power affecting over 50 million people.

This chapter presents the approaches you could take to ensure that
Yantra 7x can continue running after a data center outage.

6.1 Disaster Recovery from a Yantra 7x
Perspective

In the event of a data center disaster, you may have almost no option
other than to reestablish Yantra 7x in a disaster recovery site. This could
be an internal site or an office space at a disaster recovery vendor.

Generally, when dealing with a disaster recovery service site, you have to
decide on the level of recovery service - the higher the disaster recovery
service, the higher the price. Keeping in mind the Insurance Principle,
you need to weigh the likelihood of a disaster occurring, and the cost of
the disaster recovery service, against the potential impact to your
business due to a prolonged outage.

54 High Availability Guide

Cold Site Recovery

In the disaster recovery industry the terms cold, warm, and hot site
recovery are often used to describe the level of service. A cold site
recovery is a term that typically refers to a recovery site that may or
may not have equipment provisioned. Depending on your disaster
recovery contract, you may have to bring all of your equipment,
computing nodes, software, and so forth. In some cases, the disaster
recovery vendor may have a pool of equipment that you can draw from.
In either case, you have to entertain the possibility that you or your
vendors may face a shortage of equipment if multiple customers
simultaneously declare disasters.

Typically, the software and equipment are not pre-configured in cold site.
Therefore, a cold-site recovery involves a very lengthy and complicated
recovery from scratch that could take many days.

A warm recovery site is one where the application may be installed on
pre-configured standby equipment and nodes. The data in a warm site
are generally updated periodically. Recovery in a warm site typically
involves bringing the standby database to the latest consistent state.
This generally involves applying all the available transaction logs. A
warm-site recovery could take up to a day.

A hot recovery site is one where the application is configured and
available at a moments notice. The applications data, ranging from the
database to configuration information, are synchronized with the primary
data center. A hot-site recovery could take a few minutes to a few hours.

6.2 Cold Site Recovery
A cold site recovery can be daunting especially for a large complex
system like Yantra 7x. At a minimum, you will have to procure, install,
and configure all the hardware equipment needed by the application
ranging from network equipment, load balancers, mid-tier and database
nodes, SAN, cabling for the SAN, and so forth.

Next, you have to install and configure all the system software ranging
from the operating system, database management system, application
server, Yantra 7x, and so forth. It is critically important that the software
version and release, and even the same patches be installed the same as
the primary data center. Installing different software versions may result
in unexpected behavior.

Warm and Hot Site Recovery

Disaster Recovery 55

Next, you will have to configure the environment. At a minimum, this
includes:

Defining all the service, host, and server names to DNS

Defining the message queues

Setting all the configuration and performance parameters (for
example, the operating system kernel parameters, the database
parameters). Again, it is important that these parameters be set to
the same values as the corresponding parameters in the primary site.

Installing and preparing the SAN including defining the storage and
file systems

Loading the application database schema

After the infrastructure and environment is available:

Restore the database from the backup tapes

Roll forward all the transaction logs to bring the database up to the
latest consistent state

Configure the application servers (for example, connection pool)

Restore the messages from the integration queues – if you do not
have a backup of the messages, you will lose all the unprocessed
messages in the integration queues

Install Yantra 7x and reapply all the custom code, extensions, custom
XMLs, and the property files

Reconfigure the load balancer or proxy to the application server
cluster

Define the service names to the IP address at the recovery site

Establish connections to all the external systems (for example, credit
card companies for credit authorization)

A cold site recovery could easily take days.

6.3 Warm and Hot Site Recovery
Warm and hot site recoveries are much faster and potentially less risky
compared to the cold site recovery because the system is already

56 High Availability Guide

Key to Disaster Recovery

installed and configured, and the data loaded. Customers who need
faster recovery may have to go to with warm or hot recovery sites.

6.4 Key to Disaster Recovery
Consider the following key points for disaster recovery:

Recovery Procedures

Database Backups and Transaction Log Files

Integration Queue Replication

Service Names Instead of IP Addresses

6.4.1 Recovery Procedures
Given the extensive list of tasks to recover a system, especially for the
cold site recovery, the disaster recovery process must be very well
documented and tested. Equally important, these procedures and the
entire system must be placed under strict change control and
management. Changes to the system must be properly reflected in the
recovery procedures. The procedures must be tested as part of the
change.

6.4.2 Database Backups and Transaction Log Files
In a cold site recovery, the database has to be restored to the last
successful backup and the transaction logs replayed to update the
database with all the changes performed since the backup. Given the
importance of these files, many companies copy these files for off-site
storage. In some cases, transaction logs are immediately copied to a
remote site when the logs are closed.

Standard copy utilities can only copy files that are not opened for access.
If you rely on standard copy utilities, you will not be able to backup the
currently active (and open) transaction log.

For warm and hot sites recoveries, you could use log-shipping
technologies to not only replicate but also to apply the log transactions to
the standby database.

For Oracle, you could use products such as Oracle Data Guard or Quest
Shareplex.

Key to Disaster Recovery

Disaster Recovery 57

For UDB, you could use UDB HADR. However, with HADR, you can
replicate to only one standby database. If you want to have a standby
UDB database server at the local site and the disaster recovery site, you
may have to use a combination of cluster failover software and HADR
respectively.

6.4.3 Integration Queue Replication
Integration queues are used to exchange data messages between Yantra
7x and external systems. The messages could be orders placed between
supply chain partners, shipping notices to partner warehouses, and so
forth. These messages should be persisted to either files or a database.

If you use file-based persistence, you should consider replicating the files
to a remote site to prevent loss of messages from local site faults (for
example, JMS server crashing, node crashing). You may also want to
consider replicating these messages to a remote site to prevent loss of
messages from a data center disaster.

As with transaction logs, you cannot rely on standard copy utilities since
these files are continuously opened and updated. Instead, you may have
to resort to disk-to-disk replication, such as EMC SRDF, to protect the
messages in your integration queue.

6.4.4 Service Names Instead of IP Addresses
You must use service names or host names instead of IP addresses when
specifying the location of services such as the JNDI, databases, JMS
queues, and so forth. The IP address scheme at the recovery site will not
be the same as the primary site. If you use IP addresses, you will point
to non-existent nodes.

58 High Availability Guide

Key to Disaster Recovery

59

Index

A
agent servers, 8, 11, 13, 36

queues, 42
application servers, 13, 34

stateful sessions, 35
stateless sessions, 35

architectural patterns, 49
availability, 1, 2

design, 2
motivation, 4
principles, 2
requirements, 2

B
BEA WebLogic

application server, 11
implementation, 1
monitoring, 1
planning, 1
tuning, 1

C
caching, 50
client reroute, 23

limitations, 23
Clustered MQ, 47

D
database servers, 8, 18, 22

DBMS
failures, 19

deployment processes, 52
disaster recovery, 3, 5, 21, 53

cold site recovery, 54
procedures, 56
warm and hot site recovery, 55

disk subsystems, 34
downtimes, 1, 16

F
failover configurations, 17, 20, 25, 26, 33
failovers

IBM UDB, 24

H
hardware failures, 20
High Availability Disaster Recovery, 21
hot deployment, 51
human errors, 19

I
IBM WebSphere

application server, 11
implementation, 1
monitoring, 1
planning, 1
tuning, 1

implementation, 1
integration

60 High Availability Guide

asynchronous, 50
integration servers, 8, 11, 13, 36

queues, 41

J
Java Virtual Machine, 12
JNDI, 36

failovers
limitations, 40

parameters, 37
JNDI service, 14

L
load balacing

server-side, 28
load balancing

client-side, 27

M
mean-time-to-repair, 16
message queues, 20, 41
messages

asynchronous, 2
monitoring, 1

N
networked file systems, 47
nodes, 16, 25

O
operator errors, 19
outages, 2, 16

P
planning, 1

R
RAC server instance failures, 32
regression testing, 52

S
single-points-of-failure, 8, 15

eliminating, 38
single-site configuration, 7

T
target node utilization, 33
time-triggered transactions, 8
transactions

loss, 8
loss in integration queues, 9

tuning, 1

W
WebLogic JMS, 42
WebSphere MQ, 45
workloads, 2

Y
Yantra 7x application architecture, 11

	Contents
	Preface
	1 Availability
	1.1 The 9’s
	1.2 Problem with the 9’s
	1.3 Availability Design and Principles
	1.3.1 Business Drives High Availability Requirements
	1.3.2 Keep It Simple Strategy
	1.3.3 Configuring for Higher Availability or Resilience Is Like Buying Insurance

	1.4 High Availability Motivation

	2 Limited Redundancy Single-Site Configuration
	3 Yantra 7x Architecture
	3.1 Application Server
	3.2 Agent and Integration Servers
	3.3 JNDI Service

	4 High Availability Within A Single Site
	4.1 Single Points of Failure
	4.2 Node
	4.2.1 Active/Passive Cluster Failover Configurations

	4.3 Database Server
	4.3.1 DBMS Software Failures
	4.3.2 Human and Operator Errors
	4.3.3 Hardware Failures
	4.3.3.1 Active/Passive Failover Configurations
	4.3.3.1.1 IBM UDB Active/Passive Using Cluster Failover Software
	4.3.3.1.2 IBM UDB Active/Passive Using HADR
	4.3.3.1.3 Oracle Active/Passive Using Cluster Failover
	4.3.3.1.4 Microsoft SQL Server Active/Passive Using MSCS

	4.3.3.2 Active/Active Failover Configurations
	4.3.3.2.1 Oracle RAC Active/Active
	4.3.3.2.2 IBM UDB Active/Active

	4.4 SAN or Disk Subsystem
	4.5 Yantra 7x Application Components
	4.5.1 Application Server
	4.5.1.1 Stateful Sessions
	4.5.1.2 Stateless Sessions

	4.5.2 Yantra 7x Agent and Integration Server

	4.6 JNDI
	4.6.1 How to Eliminate SPOF
	4.6.1.1 Deploy the JNDI on a Quiet Server Instance
	4.6.1.2 When the JNDI Server Instance Crashes
	4.6.1.3 When the JNDI Node Fails
	4.6.1.3.1 Active/Passive JNDI Nodes
	4.6.1.3.2 Target JNDI to Another Application Server Instance

	4.6.2 Limitations/Issues in JNDI Failover

	4.7 Message Queues
	4.7.1 Integration Queues for Yantra 7x Integration Servers
	4.7.2 Agent Queues for Yantra 7x Agent Servers
	4.7.3 WebLogic JMS
	4.7.3.1 Persistence
	4.7.3.2 Message Paging
	4.7.3.3 Dedicated Integration JMS Server
	4.7.3.4 Shared Disk Subsystem
	4.7.3.5 JMS Server on a Different Application Server
	4.7.3.6 Backup JMS Server

	4.7.4 WebSphere MQ
	4.7.4.1 Protecting WebSphere MQ HA Using Cluster Failover
	4.7.4.2 Implementing Message Persistence Files on SAN
	4.7.4.3 Risks

	4.7.5 Clustered MQ

	4.8 Networked File Systems (NFS)

	5 Architectural Patterns
	5.1 Asynchronous Integration
	5.2 Caching
	5.3 Hot Deployment of Code, Configuration, and Fixes
	5.4 Deployment Processes and Regression Testing

	6 Disaster Recovery
	6.1 Disaster Recovery from a Yantra 7x Perspective
	6.2 Cold Site Recovery
	6.3 Warm and Hot Site Recovery
	6.4 Key to Disaster Recovery
	6.4.1 Recovery Procedures
	6.4.2 Database Backups and Transaction Log Files
	6.4.3 Integration Queue Replication
	6.4.4 Service Names Instead of IP Addresses

	Index

