
Visual Modeler

Application Guide

Release 9.0

Last updated in HF1

Copyright © 1998-2010.
Sterling Commerce, Inc.
ALL RIGHTS RESERVED

STERLING COMMERCE SOFTWARE
TRADE SECRET NOTICE

THE STERLING COMMERCE SOFTWARE DESCRIBED BY THIS DOCUMENTATION ("STERLING
COMMERCE SOFTWARE") IS THE CONFIDENTIAL AND TRADE SECRET PROPERTY OF STERLING
COMMERCE, INC., ITS AFFILIATED COMPANIES OR ITS OR THEIR LICENSORS, AND IS PROVIDED
UNDER THE TERMS OF A LICENSE AGREEMENT. NO DUPLICATION OR DISCLOSURE WITHOUT
PRIOR WRITTEN PERMISSION. RESTRICTED RIGHTS.

This documentation, the Sterling Commerce Software it describes, and the information and know-how they contain
constitute the proprietary, confidential and valuable trade secret information of Sterling Commerce, Inc., its affiliated
companies or its or their licensors, and may not be used for any unauthorized purpose, or disclosed to others without
the prior written permission of the applicable Sterling Commerce entity. This documentation and the Sterling
Commerce Software that it describes have been provided pursuant to a license agreement that contains prohibitions
against and/or restrictions on their copying, modification and use. Duplication, in whole or in part, if and when
permitted, shall bear this notice and the Sterling Commerce, Inc. copyright notice.

U.S. GOVERNMENT RESTRICTED RIGHTS. This documentation and the Sterling Commerce Software it
describes are "commercial items" as defined in 48 C.F.R. 2.101. As and when provided to any agency or
instrumentality of the U.S. Government or to a U.S. Government prime contractor or a subcontractor at any tier
("Government Licensee"), the terms and conditions of the customary Sterling Commerce commercial license
agreement are imposed on Government Licensees per 48 C.F.R. 12.212 or § 227.7202 through § 227.7202-4, as
applicable, or through 48 C.F.R. § 52.244-6.

These terms of use shall be governed by the laws of the State of Ohio, USA, without regard to its conflict of laws
provisions. If you are accessing the Sterling Commerce Software under an executed agreement, then nothing in these
terms and conditions supersedes or modifies the executed agreement.

Third Party Software and other Material
Portions of the Sterling Commerce Software may include or be distributed with or on the same storage media as
products ("Third Party Software") offered by third parties ("Third Party Licensors"). Sterling Commerce Software
may be distributed with or on the same storage media as Third Party Software covered by the following copyrights:
Copyright (c) 1999-2005 The Apache Software Foundation. Copyright 2003-2007 CyberSource Corporation.
Copyright (C) 2004-2006 Distributed Computing Laboratory, Emory University. Copyright (c) 1987-1997 Free
Software Foundation, Inc., Java Port Copyright (c) 1998 by Aaron M. Renn. Copyright (C) 2000-2004 Jason Hunter
& Brett McLaughlin. Copyright 1997-2004 JUnit.org. Copyright 2003-2007 Luck Consulting Pty Ltd. Copyright (c)
2005-2006 Mark James http://www.famfamfam.com/lab/icons/silk/. Copyright (c) 2002 Pat Niemeyer. Copyright (c)
1994-2006 Sun Microsystems, Inc. Copyright (c) 1996-2001 Ronald Tschalär. Copyright (c) Mark Wutka. All rights
reserved by all listed parties.

Third Party Software which is distributed with or on the same storage media as the Sterling Commerce Software
where use, duplication, or disclosure by the United States government or a government contractor or subcontractor, is
provided with RESTRICTED RIGHTS under Title 48 CFR 2.101, 12.212, 52.227-19, 227.7201 through 227.7202-4,
as applicable.

Additional information regarding certain Third Party Software is located at <installdir>\thirdpartylicenses

This product includes software developed by the Apache Software Foundation (http://www.apache.org). This
product includes software developed by the JDOM Project (http://www.jdom.org/). This product includes software
developed by Mark Wutka (http://www.wutka.com/). SUN, SOLARIS, JAVA, JINI, FORTE, and iPLANET
trademarks and all SUN, SOLARIS, JAVA, JINI, FORTE, and iPLANET related trademarks, service marks, logos
1-8.0-1-01

and other brand designations are trademarks or registered trademarks of Sun Microsystems, Inc. All trademarks and
logos are trademarks of their respective owners.

THE APACHE SOFTWARE FOUNDATION SOFTWARE
The Sterling Commerce Software is distributed with or on the same storage media as the following software products
(or components thereof): Apache Ant v1.6.5, avalon-framework-4.0.jar, batik-1.5-fop-0.20-5.jar, Apache Jakarta
Commons Collections v2.1, Apache Commons EL v1.0, Apache Commons Logging v1.0.4, Apache FOP v0.20.5,
Apache Jakarta Regexp v1.4, Apache log4j v1.2.8, Apache Lucene v2.0, Apache Xalan v2.7.0, Apache Xerces
v2.8.0, xml-apis-01.3.03.jar, commons-codec-1.2.jar, commons-httpclient-3.0.1.jar (collectively, "Apache 2.0
Software"). Apache 2.0 Software is free software which is distributed under the terms of the Apache License
Version 2.0. A copy of License Version 2.0 is found in the following locations and applies only to the individual
pieces of the Apache 2.0 Software found in the directory location(s) specified below for that copy of License Version
2.0:

<installdir>\thirdpartylicenses\Apache_Ant_1.6.5_license_OrderSelling.doc applies to the Apache 2.0 Software
located at <installdir>\WEB-INF\lib\ ant-1.6.5.jar;

<installdir>\thirdpartylicenses\Apache_Avalon_Framework_4.0_license_OrderSelling.doc applies to the Apache 2.0
Software located at <installdir>\WEB-INF\lib\avalon-framework-4.0.jar;

<installdir>\thirdpartylicenses\Apache_FOP_0.20.5_license_OrderSelling.doc applies to the Apache Software
located at <installdir>\WEB-INF\lib\batik-1.5-fop-0.20-5.jar;

<installdir>\WEB-INF\lib\Apache_Commons_Collections_2.1_license_OrderSelling.doc applies to the Apache 2.0
Software located at <installdir>\WEB-INF\lib\commons-collections-2.1.jar

<installdir>\thirdpartylicenses\Apache_Commons_EL_1.0_license_OrderSelling.doc applies to the Apache 2.0
Software located at <installdir>\WEB-INF\lib\commons-el-1.0.jar;

<installdir>\thirdpartylicenses\Apache_Common_ Logging_1.0.4_license_OrderSelling.doc applies to the Apache
2.0 Software located at <installdir>\WEB-INF\lib\commons-logging-1.0.4.jar;

<installdir>\thirdpartylicenses\Apache_FOP_0.20.5_license_OrderSelling.doc applies to the Apache 2.0 Software
located at <installdir>\WEB-INF\lib\fop-0.20.5.jar;

<installdir>\thirdpartylicenses\Apache_Jakarta_Regexp_1.4_license_OrderSelling.doc applies to the Apache 2.0
Software located at <installdir>\WEB-INF\lib\jakarta-regexp-1.4.jar;

<installdir>\thirdpartylicenses\Apache_log4j_1.2.8_license_OrderSelling.doc applies to the Apache 2.0 Software
located at <installdir>\WEB-INF\lib\log4j-1.2.8.jar;

<installdir>\thirdpartylicenses\Apache_Lucene_2.0_license_OrderSelling.doc applies to the Apache 2.0 Software
located at <installdir>\WEB-INF\lib\lucene-core-2.0.0.jar, <installdir>\WEB-INF\lib\lucene-demos-2.0.0.jar;

<installdir>\thirdpartylicenses\Apache_Xalan_2.7.0_license_OrderSelling.doc applies to the Apache 2.0 Software
located at <installdir>\WEB-INF\lib\xalan-2.7.0.jar

<installdir>\thirdpartylicenses\Apache_Xerces_2.8_license_OrderSelling.doc applies to the Apache 2.0 Software
located at <installdir>\WEB-INF\lib\xercesImpl-2.8.0.jar;

<installdir>\thirdpartylicenses\Apache_xml_apis_1.3.03_license_OrderSelling.doc applies to the Apache 2.0
Software located at <installdir>\WEB-INF\lib\xml-apis-1.3.03.jar

Unless otherwise stated in a specific directory, the Apache 2.0 Software was not modified. Neither the Sterling
Commerce Software, modifications, if any, to Apache 2.0 Software, nor other Third Party Code is a Derivative Work
or a Contribution as defined in License Version 2.0. License Version 2.0 applies only to the Apache 2.0 Software
located in the specified directory file(s) and does not apply to the Sterling Commerce Software or to any other Third
Party Software.

BEANSHELL SOFTWARE
The Sterling Commerce Software is distributed with or on the same storage media as the BeanShell v1.2b7 (bsh-
1.2b7.jar) software (Copyright (c) 2002 Pat Niemeyer) ("BeanShell Software"). The BeanShell Software is
independent from and not linked or compiled with the Sterling Commerce Software. Sterling Commerce has not
1-8.0-1-01

made any modifications to the BeanShell Software. The BeanShell Software is free software which can be
distributed and/or modified under the terms of the Sun Public License Version 1.0 as published by Sun Microsystems,
Inc.

A copy of the Sun Public License is provided at <installdir>\thirdpartylicenses\beanshell_license_OrderSelling.doc.
This license only applies to the BeanShell Software located at <installdir>\WEB-INF\lib\bsh-1.2b7.jar and does not
apply to the Sterling Commerce Software, or any other Third Party Software.

The BeanShell Software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express
or implied. See the license for the specific language governing rights and limitations under the license. The Original
Code is BeanShell. The Initial Developer of the Original Code is Pat Niemeyer. Portions created by Pat Niemeyer are
Copyright (C) 2002. All Rights Reserved. Contributor(s): None Known.

Sterling Commerce has not made any modifications to the BeanShell Software. Source code for the BeanShell
Software is located at http://www.beanshell.org

THE BEANSHELL SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION, WARRANTIES THAT THE
BEANSHELL SOFTWARE IS FREE OF DEFECTS, MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE
OR NON-INFRINGING.

CYBERSOURCE SOFTWARE
The Sterling Commerce Software is distributed with or on the same storage media as the CyberSource Simple Order
API v5.0.2 software (or components thereof) (Copyright 2003-2007 CyberSource Corporation) ("Cybersource
Software"). Cybersource Software is free software which is distributed under the terms of the Apache License
Version 2.0. A copy of the License Version 2.0 is found at
<installdir>\thirdpartylicenses\Cybersource_v5.02_license_OrderSelling.doc and only applies to the Cybersource
Software found at <installdir>\WEB-INF\lib\cybsclients-5.0.2.jar, <installdir>\WEB-INF\lib\cybssecurity-5.0.2.jar

Unless otherwise stated in a specific directory, the Cybersource Software was not modified. Neither the Sterling
Commerce Software, modifications, if any, to the Cybersource Software, nor other Third Party Code is a Derivative
Work or a Contribution as defined in License Version 2.0. License Version 2.0 applies only to the Cybersource
Software in the specified directory file(s) and does not apply to the Sterling Commerce Software or to any other Third
Party Software. License Version 2.0 includes the following provision:

"Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor
provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-
INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely
responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated
with Your exercise of permissions under this License."

EHCACHE SOFTWARE AND JINI SOFTWARE
The Sterling Commerce Software is distributed with or on the same storage media as the ehcache software (or
components thereof) (Copyright 2003-2007 Luck Consulting Pty Ltd) (the "Ehcache Software") and Jini Technology
Starter Kit v2.1 software (or components thereof, including including jini-core.jar and jini-ext.jar) (Copyright 2005,
Sun Microsystems, Inc.) ("Jini Software"). The Ehcache Software and Jini Software are free software which is
distributed under the terms of the Apache License Version 2.0. A copy of License Version 2.0 is found in the
following locations and applies only to the Ehcache Software and Jini Software, respectively, found in the specified
directory files:

Ehcache Software - <installdir>\thirdpartylicenses\ehcache_1.2.4_license_OrderSelling.doc applies to the Ehcache
Software located <installdir>\WEB-INF\lib\ehcache-1.2.4.jar.

Jini Software - <installdir>\thirdpartylicenses\Jini_2.1_license_OrderSelling.doc applies to the Jini Software located
at <installdir>\WEB-INF\lib\jini-core-2.1.jar, <installdir>\WEB-INF\lib\jini-ext-2.1.jar .

Unless otherwise stated in the specific directory, the Ehcache Software and Jini Software were not modified. Neither
the Sterling Commerce Software, modifications, if any, to Ehcache Software or the Jini Software, nor other Third
Party Code is a Derivative Work or a Contribution as defined in License Version 2.0. License Version 2.0 applies
only to the Ehcache Software and Jini Software which is the subject of the specific directory file and does not apply
1-8.0-1-01

to the Sterling Commerce Software or to any other Third Party Software. License Version 2.0 includes the following
provision:

"Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor
provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-
INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely
responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated
with Your exercise of permissions under this License."

GETOPT SOFTWARE AND HTTPCLIENT SOFTWARE
The Sterling Commerce Software is distributed with or on the same storage media as the Getopt v1.0.12 software (or
components thereof) (Copyright (c) 1987-1997 Free Software Foundation, Inc., Java Port Copyright (c) 1998 by
Aaron M. Renn (arenn@urbanophile.com)) ("Getopt Software") and the HttpClient version 0.3-2 software (or
components thereof) (Copyright (c) 1996-2001 Ronald Tschalär) ("HttpClient Software"). The Getopt Software and
HttpClient Software are independent from and not linked or compiled with the Sterling Commerce Software. The
Getopt Software and HttpClient Software are free software products which can be distributed and/or modified under
the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either, with
respect to the Getopt Software, version 2 of the License or any later version, or, with respect to the HttpClient
Software, version 2 of the License or any later version.

A copy of the GNU Lesser General Public License is provided at
<installdir>\thirdpartylicenses\Getopt_1.0.12_license_OrderSelling.doc,
<installdir>\thirdpartylicenses\HttpClient_0.3.2_license_OrderSelling.doc

This license only applies to the Getopt Software located at <installdir>\WEB-INF\lib\getopt-1.0.12.jar and
HttpClient Software located at <installdir>\WEB-INF\lib\HTTPClient-0.3.2.jar, and does not apply to the Sterling
Commerce Software, or any other Third Party Software.

Source code for the Getopt Software is located at http://www.urbanophile.com

Source code the HttpClient Software is located at http:// www.innovation.ch

The Getopt Software and HttpClient Software are distributed WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

JUNIT SOFTWARE
The Sterling Commerce Software is distributed on the same storage media as the JUnit Software (or components
thereof) (Copyright 1997-2004 JUnit.org.) ("JUnit Software"). Sterling Commerce has not made any additions or
changes to the JUnit Software. The Sterling Commerce Software is not a derivative work of the JUnit Software. The
Sterling Commerce Software is not a Contribution as defined in the Common Public License - v 1.0.

The source code for the JUnit Software is available at
http://sourceforge.net/project/downloading.php?groupname=junit&filename=junit3.8.1.zip&use_mirror=superb-east

The source code is available from Sterling Commerce under the Common Public License - v 1.0. Contact Sterling
Commerce Customer Support in the event that the source code for the JUnit Software is no longer available at the
respective, above-listed sites. A copy of the Common Public License - v 1.0 is provided at
<installdir>\thirdpartylicenses\Junit_3.8.1_license_OrderSelling.doc. This license applies only to the JUnit Software
located at <installdir>\WEB-INF\lib\junit-3.8.1.jar and does not apply to the Sterling Commerce Software or any
other Third Party Licensor Software.

SUN MICROSYSTEMS
The Sterling Commerce Software is distributed with or on the same storage media as certain redistributable portions
of the following software products: Sun JavaBeans™ Activation Framework ("JAF") (activation.jar) version 1.1, Sun
JavaHelp version 2.0 ("JavaHelp"), and Sun JavaMail version 1.4 (mail.jar) (collectively, "Sun Software"). Sun
Software is free software which is distributed under the terms of the specific Sun Microsystems, Inc. license
agreement for each individual Sun products. A copy of the specific Sun Microsystems, Inc. license agreement
relating to the Sun Software are found in the following locations and apply only to the individual pieces of the Sun
Software located in the specified directory file(s):
1-8.0-1-01

SUN JAF - The specific Sun Microsystems, Inc. license agreement located at
<installdir>\thirdpartylicenses\Sun_activation_jar_JAF_1.1_license_OrderSelling.doc applies to the Sun Software
located at <installdir>\WEB-INF\lib\activation-1.1.jar.

SUN JavaHelp - The specific Sun Microsystems, Inc. license agreement located
at<installdir>\thirdpartylicenses\JavaHelp_2.0_license_OrderSelling.doc applies to the Sun Software located at
<installdir>\WEB-INF\lib\javahelp-2_0_02.jar

SUN JavaMail - The specific Sun Microsystems, Inc. license agreement located at
<installdir>\thirdpartylicenses\Sun_JavaMail_1.4_license_OrderSelling.doc applies to the Sun Software located at
<installdir>\WEB-INF\lib\mail-1.4.jar

Such licenses only apply to the Sun Software located in the specified the specified directory file(s) and does not apply
to the Sterling Commerce Software or to any other Third Party Software.

WARRANTY DISCLAIMER
This documentation and the Sterling Commerce Software which it describes are licensed either "AS IS" or with a
limited warranty, as set forth in the Sterling Commerce license agreement. Other than any limited warranties
provided, NO OTHER WARRANTY IS EXPRESSED AND NONE SHALL BE IMPLIED, INCLUDING THE
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR USE OR FOR A PARTICULAR PURPOSE. The
applicable Sterling Commerce entity reserves the right to revise this publication from time to time and to make
changes in the content hereof without the obligation to notify any person or entity of such revisions or changes.

The Third Party Software is provided "AS IS" WITHOUT ANY WARRANTY AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. FURTHER, IF
YOU ARE LOCATED OR ACCESSING THIS SOFTWARE IN THE UNITED STATES, ANY EXPRESS OR
IMPLIED WARRANTY REGARDING TITLE OR NON-INFRINGEMENT ARE DISCLAIMED.

Without limiting the foregoing, the BeanShell Software, GetOpt Software, HttpClient Software, and JUnit Software,
are all distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.

Sterling Commerce, Inc.
4600 Lakehurst Court Dublin, OH 43016-2000 *
614/793-7000
1-8.0-1-01

Contents
CHAPTER 1 Checklist...31
Tasks Checklist .. 31

Part 1: Installation 35

CHAPTER 2 Architecture and Configuration Overview ...
37

Architecture ... 37

CHAPTER 3 Implementation Overview41
Implementation Tasks.. 41

Implementation Methodology ..41
Steps to Implementation...42

Implementing the Visual Modeler Integration 44
High Availability and Load Balancing .. 45
Integration Security Issues .. 45
Visual Modeler Application Guide 7

8

CHAPTER 4 Installation Worksheet.............................. 47

CHAPTER 5 Installation Requirements 49
Hardware Requirements.. 49

Windows 2000..49
UNIX ..50

Software Requirements ... 50
Operating Systems ...50

Hewlett-Packard UNIX 50
Linux 50
Microsoft Windows 50
Sun SPARC Solaris 50

Java Development Kit..51
SDK 51

Servlet Containers ...51
Servlet Container Clustering 52

Network Requirements ... 52
Browser Requirements .. 52

Security Settings...52
Firefox 52
Internet Explorer 53
Mozilla 53

Character Sets ...53
Database Server Requirements ... 54

Database Owner Requiements...54
Microsoft SQL Server Requirements..55

General Requirements 55
SQL Server 2005 Communication Requirements 56

Oracle Requirements ...56
UNIX 56
Oracle Communication Requirements 56

Sizing Requirements ... 57
Visual Modeler Application Guide

CHAPTER 6 Installing the Visual Modeler....................59
Installation Overview .. 60

Preparing to Install..61
Installing the Software Development Kit ...61
Installing the Visual Modeler Using the SDK..61
Deploying the Sterling Web Application..61
Database Server Steps ...61

Preparing to Install .. 61
Configuring the Transactional and Segmentation Databases 64

Database Configurations...65
Determining Configuration Type ...66

Determining the Oracle Configuration 66
Determining the SQL Server 2005 Configuration 66
Oracle and SQL Server Properties 66
SQL Server 2005 Replication Properties 67
SQL Server 2005 Migration Properties 68

Database Communication Setup..68
Oracle Setup 69
SQL Server 2005 Setup 71
SQL Server 2005 Setup - Migration with Two Servers 72

Installing the Software Development Kit 74
Installing the Visual Modeler Using the SDK............................... 75

Email Addresses...81
Configuration Files 82
Minimal Data 82

ObjectMap Settings..82
Deploying the Sterling Web Application....................................... 83

XML Parser Settings..84
Tomcat Releases...85

Notes on Using Apache Tomcat 86
WebLogic Releases...87

Pre-Compiling JSP Pages 89
XML Parsing 90

Solaris and Oracle OCI Driver ...90
Further Deployment Steps ...90

Matrix Reference Segments Setup .. 91
Installing the Reference Visual Modeler 91
Visual Modeler Application Guide 9

10
Default XML Identity Setup ... 102
Default XML Identity Configuration ...103
Trusted IP Address Configuration ...104
Default XML Identity Request Authentication105

AuthenticationAPI 107
Database Server Steps ... 107

Support for Oracle Server ...107
Support for SQL Server ...108

Managing Database Connections.. 109
Configuration Files..109
Connection Pooling ...109

Common Problems 110
What is the purpose of connection pooling? 110
How does Sterling’s connection pooling work? 110
Why are there separate query and update connection cools? 110
How do I validate connections prior to reuse? 111
How can I limit the number of connections used? 111
How can I free up connections when demand drops? 111
What happens when connection limits are reached? 111
Why are the connection limits on the data source? 112

Common Problems... 112
My database requests fail with a “connection reset by peer” message
112
My database connections are not being released when traffic drops
112
I share a database with other applications. I cannot allow the Visual
Modeler to use more than n connections 112

Pagination Settings...112
Setting the Session Timeout...113
Modifying the URL for the Web application DTD......................114
Managing Memory...114
Configuring Ehcache..115
High Availability and Clustering ...115
Sharing Directories ..115
Directory and File Organization...116
Cron Job Setup ...118
Visual Modeler Application Guide

Setting Up Apache as a Front-end to Tomcat.............................. 119
Prerequisites .. 119
Overview .. 119
Configuring Apache to Use mod_jk...120
Configure Tomcat to Use mod_jk...121
Starting Apache and Tomcat ..121
Setting up Apache to Support SSL ...122

Keep Alive Settings 123
Filtering Static Content.. 123

Setting up Apache to Serve Static Content...123
Creating a NSAPI Filter ..124

Compressing Output From the Visual Modeler........................... 125

CHAPTER 7 Creating and Populating the
Knowledgebase..............................127

Gathering the Database Information ... 127
Creating the Knowledgebase Schema ... 128

Creating the Schema..128
Locales and Loading Data Using the XML Loader 129

Populating the Knowledgebase ... 131
XML Data Format ...131
XMLLoader Script ...132
Encryption..132
Defining the Knowledgebase as the Data Source................................133

MsSqlDataSources Syntax 133
OracleDataSources Syntax 133

Internationalization and Support for Locales......................................134
Creating Locales 134
Updating Data using XMLLoader 134

Database Server-Specific Steps ...135
SQL Server Steps 135
Oracle Steps 135

Data Sets ..135
Removing Locales ..137

Logging into the Visual Modeler... 137
Visual Modeler Application Guide 11

12
CHAPTER 8 Troubleshooting and Backing Up the Visual
Modeler... 139

Troubleshooting .. 139
Testing with the Administration URL...139
Email Server ..139

General Troubleshooting Tips... 140
Tomcat Server ..140

Common Problems.. 140
Errors at Startup Time ...141
Errors at Runtime ..144

Backing Up the Visual Modeler.. 145

CHAPTER 9 Managing Visual Modeler Logging 147
Logging ... 147

Logging Preferences and Configuration..147
Logging to the Console 148
Changing Logging Level for a Package 148
Formatting Logging 149
Logging File Size 149

Making Transient Logging Configuration Changes149
Logging File Locations..150

CHAPTER 10 Localization Concepts........................... 151
Localization Concepts... 152

Built-in Localization Support ..152
Locale Specification...152
Using Locales ..153

User Locales 153
Default Locales for Languages 153

Sorting in Locales ..153
Localization Pack Installation Overview 154
Localization Pack Installation Steps: New Implementation 155
Localization Pack Installation Steps: Existing Implementation.. 161
Visual Modeler Application Guide

CHAPTER 11 General Security Considerations169
General Architectural Concerns .. 169

Administration Model ..170
Networks 170
Servers 170
Roles 171
Data Center Roles 172

Securing Users... 173
SSL support ... 173

Setting Up Secure Message Types..173
Example Usages...175

Protecting the Authenticated Environment 175
Protecting the Enterprise Environment 175
Protecting Credit Card Information 175
Protecting User Administration Pages 176

Installing Certificates for SSL ... 176
Overview ..176

Storing Data in Encrypted Form.. 177
General Setup ..178

Symmetric Encrypter 179
Digester 181
Default Symmetric Encrypter and Digester 182

Changing Encryption Algorithms ..182
Two-Way Encrypted Data 182
One-Way Encrypted Data 183

Key Stores and System Initialization..184
Wrapper Classes for Standard Algorithms ..185

SymmetricEncrypter Class 185
Digester Class 185

Key Rotation ..185
Key Rotation Procedure 185
Background 185
Why Rotate? 186
Basic Process 186
Detailed Process 186
Changing the Default Encrypter 187
Visual Modeler Application Guide 13

14
Updating Existing Database Ciphers. 188
Password Policies.. 189
Cross-Site Request Forgery Filter ... 189

CHAPTER 12 Testing the Visual Modeler Server 191
Starting the Visual Modeler Server ... 191
Troubleshooting .. 191

Error Messages on Startup ..192
Runtime Troubleshooting ...194
Communication Between Enterprise Servers195

CHAPTER 13 Installing a Clustered Implementation
197

General Steps .. 197
Terminology and Overview..197

Administration Servers 198
Shared Files 199

Load Balancer ...200
General Installation Instructions for Clustered Deployment200

Setting Up a WebLogic Cluster... 203
Web Server ...203
Administration and Managed Servers ...203

Preparation to Deploy the Visual Modeler Web Application 204
Deploying the Visual Modeler Web Application 204
SQL Server 205
Cron Jobs 206
Common Directories 206
SharedPublicServlet Class 207
Session Sharing 208

Reloading Files ..209
Running a Clustered WebLogic Installation ..209

Setting up a Database for Caching.. 210
Introduction..210

Setting up JavaSpaces for Caching ... 210
Visual Modeler Application Guide

Introduction ...210
Install the Required Servers...210

Part 2: Implementation 215

CHAPTER 14 Integrating the Visual Modeler with
Selling and Fulfillment Foundation ..
217

Integration Overview... 217
Configuring the Visual Modeler Properties................................. 218
Configuring the Sterling Configurator Rules 219

CHAPTER 15 Introduction to J2EE Web Applications
221

Architecture ... 221
Web Applications .. 221
web.xml File .. 222
JSP Pages... 223
Model 2 Architecture... 224
Controllers ... 225
Model... 226
View... 227
Further Reading ... 227

CHAPTER 16 System Architecture...............................229
Visual Modeler Web Application .. 230
Processing Requests .. 231

Overriding MessageType Definitions 233
Default Elements..234

Key Java Classes ... 234
Wrapper Classes ..234

ComergentContext 234
ComergentDispatcher 234
Visual Modeler Application Guide 15

16
ComergentRequest 234
ComergentResponse 234
ComerentSession 235

Servlets...235
Controller Classes ...236

Custom Controllers 236
SimpleController 237
MessagingController 237

DataBean Classes ..237
ObjectManager and OMWrapper Classes...238

Creating Objects 238
Mapping Object Names to Object Classes 238
Restrictions 239
Passing Parameters 240
Object Pooling 240

AppExecutionEnv Class...241
AppsLookupHelper Class ..241
ComergentAppEnv Class ...242
Global Class ..243
GlobalCache Interface...243
LegacyFileUtils Class..244
OutOfBandHelper Class ..244
Preferences Class...245
PriceCheckAPI Class...246

Transactions .. 247
Message Conversion Classes .. 247

Converter Classes ..247
Message Categories 247
Converter Interface 247

Support for Lookup Codes .. 248
What lookup support does the Visual Modeler provide? 249
Are string values localized? 249
How do I define a code to string mapping? 249
Are lookups performed for XML messages? 249
How is the lookup cache loaded? 249
Visual Modeler Application Guide

CHAPTER 17 Platform Modularity251
Overview ... 252
Platform Modules .. 253
Module Interfaces .. 253

Invoking Interfaces ..254
Platform Module Descriptions .. 254

Access Policy ...254
Authentication..254
Base64..254
Classpath Appender...254
Cryptography Service ..254
Data Services ...255
Dispatch Authorization..255
Dispatch Framework ...255
Email Service ...255
Event Service ...255
Exception Service...255
Global Cache Service ..255
Help..255
Initialization Service ..256
Internationalization ...258
Logging ..258

Configuration 258
Loggers 259
Appenders 259
Layouts 260

Memory Monitor ..261
Message Type Entitlement ...261
Object Manager ...261
Out Of Band Response...261
Preferences Service..261
Tag Libraries..262
Thread Management ..262

API and Usage 263
XML Message Converter ...263
XML Message Service..264
XML Services ...264
Visual Modeler Application Guide 17

18
CHAPTER 18 Introducing Data Beans and Business
Objects .. 265

What are Data Beans? ... 265
Lifecycle of a Data Bean..266
Defining a Data Bean ..267
Defining the Structure of a Data Object ..267

Extending Data Objects 267
Data Bean and Business Object Creation ...268
DataContext ...268

What is the DataContext class? 269
What behavior can be controlled? 269
What are the Cache Id methods for? 269
How do Max Results and Num Per Page work? 270
How do I instantiate a DataContext instance? 271
What are the Default Settings for a new DataContext? 272

List Data Beans..272
Application, Entity, and Presentation Beans 273
Using Stored Procedures ... 274
Data Bean Methods... 274

IData Methods ...275
IRd and IAcc Interface Methods ..276
Restoring and Persisting Data...276

restore() Method 277
persist() Method 278

Miscellaneous Methods ...278
getBizObj() Method 278
writeExternal() Method 279

Child Data Objects ..279
Extending Data Objects ...280

Data Bean Example... 281
DsElement Tree... 286

DsElements ..287
DsElement MetaData...289

BusinessObject Methods... 289
restore() Method 289
persist() Method 290
Visual Modeler Application Guide

CHAPTER 19 Using the Security Mechanisms............293
Managing Message Types ... 293

Checking for Entitlement ...294
Managing User Types.. 295

Adding a Role to a User Type ..295
Creating a User Type ...295

Managing Access to Data Objects Using Access Policies 296
Overview ..297

Inheritance 297
AccessPolicy.xml Configuration File...297

Principal Qualifiers 297
Access Policies 298
Access Checkers 298
Access Services 298
Boolean Expressions 299

Example ...299
Password Policies .. 302

Configuration...302
Creating a Custom Password Policy ...304

Passing Login Data Through a URL ... 304

CHAPTER 20 Logging ..307
Overview ... 307

log4j.debug System Property ...308
Auditing Changes to Data Objects .. 309

CHAPTER 21 Modularity and Generated Interfaces...311
Overview ... 311
Modules ... 312
Module Interfaces .. 313

Invoking Interfaces ..314
Using the Object Manager 314
Using Factory Classes 315

Generated Interfaces .. 315
Visual Modeler Application Guide 19

20
Example of a Generated Interface...316

CHAPTER 22 Implementing Logic Classes 319
Key Concepts .. 319

Application Logic Classes ...320
Business Objects ..321
XML Schema..321

Naming Service... 321
NamingService Example ..322

CHAPTER 23 Software Development Kit 323
Project Organization.. 323

Project File and Directory Locations ..324
Java Source Files...324
JSP Pages ..324
Schema Files ..325

CHAPTER 24 Visual Modeler Localization 327
Overview... 327
Supporting Locales ... 328

Presentation and Session Locales..328
JSP Pages and Properties Files...329

Notes 331
Debugging 332

Failover Behavior ..332
Resource Bundles 332
JSP Pages 333

Methods to Retrieve Locales..333
Using Properties Files in Code..334

Data for Internationalization ... 334
Email Templates.. 335
HTML Pages ... 336
Images ... 336
Javascript... 337
Visual Modeler Application Guide

JSP Pages... 337
Calendar Widget ..338

Style Sheets.. 339
System Properties .. 339
Resource Bundles and Formats ... 339

PropertyResourceBundles and Properties Files339
ResourceBundles..339
NumberFormats and DateFormats..340

CHAPTER 25 Exceptions..343
ComergentException Hierarchy .. 343

Exception Root...343
ComergentException 343
ICCException 343
ComergentRuntimeException 344

Subsystem Grouping ..344
Subsystem by Subsystem Exception Policy ..345

Exception Chaining ... 345
Throwing, Catching, and Logging Exceptions............................ 346

When to Throw Exceptions ..346
Throwing Runtime or Compile Time Exceptions346
Catch Clauses and Throws Declarations ..346
Logging Exceptions ...347

Displaying Exceptions... 347

CHAPTER 26 Implementing Cron Jobs.......................349
Overview ... 349

CronManager and CronScheduler...350
CronJob Interface ..350

CHAPTER 27 Filters ...353
Filters Overview .. 353
Available Filters... 354

DosFilter..354
Visual Modeler Application Guide 21

22
WSDLFilter..355

CHAPTER 28 Managing and Displaying Constrained
Fields .. 357

Options .. 357
Criteria .. 358

CHAPTER 29 Security Best Practices 361
Introduction... 361
Role Definition and Security Policies ... 363

Administration Model ..363
Networks 363
Servers 363
Roles 364

Data Center Roles..365
Information Assets .. 366

Encryption of Persistent Data ...366
Information Assets ...367

Account profile 367
Transaction and System Log 367
Key Store File 367
WAR local key store file 367
User passwords 368

Roles Schematic ...368
Protection Mechanism for Information Assets 369

Credit Card Information ..369
User Passwords ...370

Protection of Critical Functions .. 370
Setting Application’s Database User and Password370

Assertions 371
Storing Sensitive Data in the Database ...371

Assertions 371
Threat Scenarios.. 372

Transport..372
Restores from Backup ..372
Visual Modeler Application Guide

Log Files ..372
Bogus Account to Access Customer Records.......................................372
Credit Card Number Theft ...373
DBA Password Theft..373

HTTP Sessions .. 373

CHAPTER 30 Backup and Recovery Best Practices....377
Introduction ... 377
Deployment Architecture Overview.. 378
Infrastructure ... 378
Backup Strategies .. 380

Database Recovery ..380
Application Server and Web Server Recovery381

Part 3: Best Practices 383

CHAPTER 31 Database Management Best Practices..385
Introduction ... 385
Archiving Data .. 386
Monitoring Database Tables.. 386

Key Tables To Monitor...386
Purging Data ...387
Creating and Using History Tables ...387

Updating Statistics... 388
Updating Statistics For an Oracle Database389
Updating Statistics For a SQL Server Database389

CHAPTER 32 JVM Tuning and Log Analysis391
Introduction ... 391
JVM Memory and Tuning Guidelines... 391

Adjusting JVM Memory Settings ...392
Additional Performance Tuning ..393
Tracing Garbage Collection Activities ..393

Log Analyzer Tool... 394
Setting Up Log Analyzer Daily Reports...397
Visual Modeler Application Guide 23

24
Daily Reports Workflow 397
Setting Up the Daily Reports 398
Recommended directory layout 398
Configuration 400
Part 4: Administration 403

CHAPTER 33 Introduction .. 405
Terminology ...405

Using Storefronts .. 406
Storefront Administrator Tasks ..406
Storefront Hierarchy ..407
Skins ...407
Storefront Data...408
Storefront Partners...409

Users, Roles, and Functions .. 409
Organizational Functions ..410
Creating Users ...410
Assigning Functions... 411
Pre-defined Functions..412
Managers ...414
User Statuses..414

Inheriting Status 414
User Preferences..415

Configuring the Visual Modeler ... 415
Site System Administration ..416
Enterprise System Administration ...416
Business Rules ...416
Job Scheduling...416

CHAPTER 34 User Administration 419
Managing Users .. 419
Defining Functions and Roles... 422
Visual Modeler Application Guide

CHAPTER 35 Channel Administration........................423
Profile Detail Page... 424

Info Tab ..424
Addresses Tab ..426
Detail Tab ..426
Business Tab ..427
Hierarchy Tab ..428
Commerce Tab ...428

Pricing Options 429
Assigned To ..430
Pricelists Tab ...430
Product Entitlements Tab...430
Attributes Tab...430
Notes Tab ...430

Profile Administration Tasks ... 430
Storefront Administration.. 440
Managing the Enterprise Profile.. 441

Info Tab ..441
Commerce Tab ...441
Current Accounts ...441

CHAPTER 36 Using the Visual Modeler......................443
Visual Modeler Interface ... 443
Working with Model Groups... 448
Working with Models .. 453
Working with Option Classes and Option Items 461
Working with Option Class Groups and Option Item Groups..... 469
Including Sub-Models in Models .. 483

Special Characters Encoding 484
Testing a Model ... 485
Compiling a Model.. 486
Searching the Product Catalog for a Product ID 488
Working with a Tabbed User Interface.. 488
Visual Modeler Application Guide 25

26
CHAPTER 37 Advanced Visual Modeler Concepts..... 491
Properties .. 492

Working With Properties ..493
Using Worksheets...502
Properties as Variables ..504
Visual Modeler Properties ...505

Lists ... 506
Working With Lists ...507

Rules.. 510
Working With Rules..510
Rule Firing...520
Controlling Rule Firing ...522

Fragments.. 523
Working With Rule Fragments ...523

Foreach 526
Working with Rule Actions...537

Example Uses of Expand 544
Option Constraints .. 545

Working With Constraints ..545
Importing and Exporting Models .. 553

Importing Model Groups and Models..553
Exporting Model Groups and Models..554

Using Dynamic Instantiation .. 555
Searching... 556
Reporting... 558

CHAPTER 38 Visual Modeler UI Concepts 561
UI Properties ... 561

Working with Display Properties ...562
Visual Modeler UI Properties ..562

Display Properties ... 571
Tabular Display of Properties.. 576
Image Properties ... 579

Models and Option Classes ...579
Option Items...579

User-Entered Values.. 580
Visual Modeler Application Guide

UI Control Reset Behavior .. 581

CHAPTER 39 Enterprise System Administration583
System Administration Tasks .. 583
Configuration Properties ... 584

Locale Settings...584
Job Scheduler Settings... 585
Frequently Used System Administration Settings....................... 586

Commerce Manager...586
Are comergent applications rendered as part of a frameset? 586
Availability Data Access Method 587
SMTP Host Machine 587

Application Settings ...587
Allowed Decimal Places for displaying extended prices 587
Allowed Decimal Places for displaying list prices 588
Lines Per Page in List Displays 588

CHAPTER 40 Business Rules Administration589
Business Rules Administration Tasks.. 589

CHAPTER 41 Job Scheduling Administration591
Enterprise and Storefront Cron Jobs.. 591
Job Scheduling Tasks... 592
Cron Jobs ... 595

Cache Cleanup...595
Maintain Configuration ...596

CHAPTER 42 Site System Administration597
Overview ... 597
System User Administration.. 598
System Profile Administration .. 599
Visual Modeler Application Guide 27

28
System Property Administration... 599
System Cron Jobs.. 599
System Status .. 600

Part 5: Tutorial 601

CHAPTER 43 Storefront Administration 603
Creating a Storefront ... 603
Creating a Storefront Administrator.. 605
Creating Additional Storefront Administrators........................... 606
Setting Default Storefront Preferences.. 607
Setting Storefront Business Rules... 608
Exercise ... 609
Creating a Storefront Partner .. 610
Creating a Storefront Partner Administrator611
Creating a Storefront Partner User.. 612

CHAPTER 44 Creating Product Models...................... 613
Create the Model ... 614
Properties .. 617

Defining Properties for the MXWS-7700 Model618
Attaching Properties ..619

Rules.. 620
Creating a Rule ..623
Using Rules to Control Display of Option Items625
Creating a Constraint Table ..629

UI Controls.. 631
Display Properties ...631

Pre-Pick Guiding Text 631
Ignore in Quote 632

Tabular Displays..632
Calculated Property Values ...633
User-Entered Values ..636

Restricting User Entered Values 638
Images..639
Visual Modeler Application Guide

Layout Management ..640
Visual Modeler Application Guide 29

30
 Visual Modeler Application Guide

CHAPTER 1 Checklist
This chapter describes a checklist of tasks that you must perform to ensure that the
Visual Modeler application is functioning appropriately.

Tasks Checklist
• Install the Selling and Fulfillment Foundation and perform the necessary

configurations. For more information, refer to the Selling and Fulfillment
Foundation: Installation Guide.

• Create products and define their details using the Business Center
application. Alternatively, you can load the products using the data load
functionality. For more information about creating products using the
Business Center application, refer to the Business Center: Item
Administration Guide.

• Create storefronts using the Applications Manager and perform storefront
administration tasks. For more information about creating an orgnization,
refer to the Selling and Fulfillment Foundation: Application Platform
Configuration Guide. For more information about using storefronts, refer
to CHAPTER 33, "Introduction".

• Configure the models by performing the following tasks:
Visual Modeler Application Guide 31

Checklist

32
• Install the Visual Modeler application and integrate it with the Selling and
Fulfillment Foundation to enable them to exchange information. For more
information about integrating the Visual Modeler with the Selling and
Fulfillment Foundation, refer to CHAPTER 14, "Integrating the Visual
Modeler with Selling and Fulfillment Foundation".

• Configure the Selling and Fulfillment Foundation appropriately. For more
information, refer to CHAPTER 14, "Integrating the Visual Modeler with
Selling and Fulfillment Foundation".

Note that you must extract the sic_properties.zip file located in the
<INSTALL-DIR>/repository/external folder and copy the .properties
files to the same location defined in the where the properties file are
located. configured in Applications Manager.

• In the Visual Modeler application, create a strorefront with the same Skin
ID as the Organization Code of the catalog organization defined in the
Applications Manager. For more information, refer to CHAPTER 35,
"Channel Administration".

• In the Visual Modeler application, create configuration models. While
creating the models, associate the products to the option items
appropriately.

• Compile and test the models.

• Create configurable products using the Business Center application and
associate models with those products. For more information, refer to the
Business Center: Item Administration Guide.

• Generate the search index. For more information about generating the
search index, refer to the Business Center: Item Administration Guide.

• Install Sterling Web and configure it appropriately to enable a user to
create a cart and place an order. For more information, refer to the Sterling
Selling and Fulfillment Suite: Applications Installation Guide and the
Sterling Web: Implementation Guide.

• Access the Sterling Web application and verify that orders can be placed
and processed by performing the following tasks:

• Browse the catalog to find a configurable product.

• Configure the product and add the configuration to a cart.

• Place an order for the cart.
Visual Modeler Application Guide

Tasks Checklist
• Check the order and shipment status.
Visual Modeler Application Guide 33

Checklist

34
 Visual Modeler Application Guide

Part 1:
Installation
The chapters in this section of the guide provide information required for you to
install and implement the Visual Modeler at your enterprise.

Purpose
This guide provides step-by-step instructions to install and implement the Visual
Modeler. On completion, you should be able to verify that the system is up and
running, and that you can perform the basic administration tasks.

Audience
This guide presupposes an advanced level of information systems knowledge,
familiarity with basic network and database concepts, and Java for certain
implementation steps.
Visual Modeler Application Guide 35

36
Conventions
Throughout this guide, we will use the following conventions shown in Table 1,
"Conventions", on page 36:

TABLE 1. Conventions

Type Convention

File names Sample.txt

Paths and directory
names

/top_level/next_level/next_level/destination_directory/

Sample code extracts public void method(String s)

Values to be provided <value supplied by developer>
Visual Modeler Application Guide

CHAPTER 2 Architecture and Configuration
Overview
This chapter presents an overview of the Visual Modeler. It provides a brief
description of the underlying technology and architecture and discusses the parts of
the system that you need to customize to meet the needs of your installation. It also
presents a description of the configurations for the Visual Modeler.

Architecture
The Visual Modeler is designed to conform to the Java 2 Platform, Enterprise
Edition (J2EE) architecture as defined in Java 2 Platform Enterprise Edition
Specification, v 1.2 published by Sun Microsystems, Inc. The Visual Modeler
server architecture is illustrated schematically in "Logical Representation of the
Visual Modeler Server Architecture" on page 38.

The Visual Modeler is deployed as a Web application that comprises a set of Java
classes together with accompanying configuration files, HTML templates, and JSP
pages. It must be installed into a servlet container that conforms to the J2EE
standard. You can use an existing servlet container that conforms to the standard or
deploy the Visual Modeler using the servlet container that we provide as part of the
distribution software. See CHAPTER 5, "Installation Requirements" for further
information.

The Visual Modeler is designed to conform to the Model 2 architecture. In this
architecture, three functional components referred to as the Model, View, and
Visual Modeler Application Guide 37

Architecture and Configuration Overview

38
Controller (MVC) partition the functionality of the server into logically distinct
components.

• Model: this component manages the data and business objects that are
used by the system.

• View: this component is responsible for generating the content displayed
to the user.

• Controller: this component determines the logical flow of the application.
It determines what actions are performed on the model and manages the
communication between model and view components.

FIGURE 1. Logical Representation of the Visual Modeler Server Architecture
The Visual Modeler is designed to be flexible and extensible. You tailor the
following components of the Visual Modeler as part of the implementation of your
system.

TABLE 2. Implementation Components

Component Function

JSP pages Customize the JSP pages that determine
the look and feel of the Web pages for
end-users.

XML schema and data objects Define the data object schema as a set of
XML files. These specify the structure of
the data objects and the data sources that
provide their content.
Visual Modeler Application Guide

Architecture
Implementation details are covered in the following chapters.

Business logic and BizAPI classes These Java classes determine the business
logic that processes requests and
messages.

Controller classes These Java classes handle incoming
requests from customer browsers and
determine how the responses are
displayed.

Configuration files Use the configuration files to determine
the properties of the Visual Modeler and
control how incoming requests and
messages are processed.

TABLE 2. Implementation Components

Component Function
Visual Modeler Application Guide 39

Architecture and Configuration Overview

40
 Visual Modeler Application Guide

CHAPTER 3 Implementation Overview
This chapter presents an overview of implementing the Visual Modeler. Its
intended audience is system integrators and IT professionals charged with
successfully executing an implementation of the Visual Modeler. It covers both the
installation of the system and the steps required to integrate the system with
existing e-commerce and ERP systems.

Implementation Tasks
This section describes a suggested methodology for implementing the Visual
Modeler and an outline of the implementation steps.

Implementation Methodology
The Visual Modeler implementation methodology consists of phases that ensure
that implementation can be planned and tracked through to completion. Table 3,
"Visual Modeler Implementation Methodology", on page 42 provides a summary
of the phases and the activities to complete in each phase.
Visual Modeler Application Guide 41

Implementation Overview

42
A standard set of documents can be used to track each phase.

Steps to Implementation
The main tasks you perform in implementing Visual Modeler are:

• Project analysis: agree to a schedule for the implementation project that
sets a timeline. Identify milestones to measure the progress of the
implementation and identify dependencies and risks that might prevent the
implementation from completing on time.

• Configuration analysis: determine a suitable Visual Modeler configuration
(the number of machines to be used and their location on internal networks
in relation to firewalls and proxy servers). See "High Availability and
Load Balancing" on page 45 for further details about a clustered
implementation.

• Integration analysis: identify integration points with existing e-commerce
systems.

• Requirements analysis: check hardware and software requirements to
make sure that the machines are sufficiently powerful to support the
anticipated traffic and response times required. See CHAPTER 5,
"Installation Requirements" for more information.

TABLE 3. Visual Modeler Implementation Methodology

Implementation
phase

Description

Plan Plan the implementation: set a timeline, milestones, and
identify risks and dependencies

Analyze Organization and administration, define business rules, user
interface, messaging protocols, data sources, e-commerce flow
planning, training needs, rollout strategy, environment
preparation, operations planning

Design and configure Installation, configuration, integration, unit testing, and
training development

Test and deploy Testing server configuration, enterprise to partner
communication, partner to enterprise communication; cut over
to production systems, distributor training, documentation
delivery, support

Improve Ongoing enhancement activities, partner training, and support
Visual Modeler Application Guide

Implementation Tasks
• Installation of Visual Modeler: install the Visual Modeler on the
designated machine(s). See CHAPTER 6, "Installing the Visual Modeler"
for more information.

• Knowledgebase setup:

a. Installation of Knowledgebase: installing the Knowledgebase schema in
the designated database server.

b. Knowledgebase setup: checking connectivity to the Knowledgebase
database server and populating it with all your e-commerce-related
information. This must include the partner profiles for your partners, your
product catalog, and price list information.

See CHAPTER 7, "Creating and Populating the Knowledgebase" for more
information.

• Visual Modeler configuration: modify configuration files to define the
system configuration in your production environment.

• Role and security definition: define groups and roles and modify
configuration files and ACL scripts accordingly. These determine the
security privileges for your enterprise server users.

• Schema creation: create the business object schema to provide data source
information. The data layer manages access between the enterprise server
and the external systems.

• Customizing BLCs and controllers: modify business logic and controller
classes to support your business logic. In some cases, you need to modify
the Java classes in order to implement business processes specific to your
organization.

• Customizing JSP pages: modify templates to meet your “look-and-feel”,
search, and static page requirements. The JSP pages provided by the
Visual Modeler are used to display the browser pages and may be
customized to meet the needs of your organization.

• Product integration: import product information into the Knowledgebase
or provide punch-out integration. If your implementation is to support
product ordering from a non-Sterling product, then you need to provide a
means of integrating the product data with the Visual Modeler.

• Testing server configuration: before you deploy the Visual Modeler,
thoroughly test the system. We provide a number of scripts to test the chief
functional components.
Visual Modeler Application Guide 43

Implementation Overview

44
• Testing enterprise to partner communication: send test messages from the
enterprise server to other enterprise servers.

• Testing partner to enterprise communication: send test messages from
other enterprise servers to your enterprise server.

• Assess and enhance: once the Visual Modeler is deployed you must plan
for an ongoing process of analyzing its usage and performance.

Implementing the Visual Modeler Integration
The Visual Modeler is designed to integrate channel partners into an e-commerce
network. Organizations in the network act as enterprises and partners. Each
organization acting as an enterprise installs their copy of the enterprise server to
transfer information to their channel partners seamlessly.

Each reseller or distributor may work with more than one enterprise, and their
installation of the enterprise server must be able to receive and respond to messages
from different enterprise servers. The following table summarizes the main
activities for an implementation of the Visual Modeler.

TABLE 4. Implementation Tasks

Implementation phase Task

Plan Project analysis

Analyze Configuration analysis

Integration analysis

Requirements analysis

Design and configure Preparation of servlet container environment

Installation of Sterling Commerce Manager

Installation of Knowledgebase

Knowledgebase setup

Visual Modeler configuration

Role and security definition

System administrator authentication

XML schema creation

Customizing of BizAPIs, BLCs, and controllers

Customizing JSP pages
Visual Modeler Application Guide

High Availability and Load Balancing
High Availability and Load Balancing
The Visual Modeler supports the ability to distribute request-handling over a
number of machines. An enterprise server uses the load-balancing capabilities of
the servlet container used to implement the Visual Modeler. Consult your servlet
container documentation to see what options are available to you.

Integration Security Issues
Take special care to address security issues. Begin implementation only after you
have addressed how users of the Visual Modeler will access data provided by you
and your partners.

This discussion should cover:

• authentication questions including the use of LDAP

• the use of encryption in storing data in the Knowledgebase

• the use of encryption schemes across your networks and the Internet

• direct and indirect access to ERP systems

• your existing firewalls and proxy servers

See CHAPTER 29, "Security Best Practices" for more information.

Testing and deployment Product integration

Testing server configuration

Testing enterprise to partner communication

Testing partner to enterprise communication

Release to production systems

Improve Assess and enhance

TABLE 4. Implementation Tasks (Continued)

Implementation phase Task
Visual Modeler Application Guide 45

Implementation Overview

46
 Visual Modeler Application Guide

CHAPTER 4 Installation Worksheet
This chapter presents a worksheet to help you gather the information that you need
to install and configure the Visual Modeler.

• Which servlet container are you going to use for the Visual Modeler?
What release is this servlet container?

• What version of the Java Servlet Specification does the servlet container
support?

• What is the root directory of the servlet container installation? This is
referred to as container_home throughout the documentation.

• What Java Runtime Environment (JRE) are you using? Where is its
JAVA_HOME and JDK_HOME?

Attention: If you do not have this information, then you will not be able to install and
run the Visual Modeler.
Visual Modeler Application Guide 47

Installation Worksheet

48
• What is the database server to be used for the Visual Modeler
Knowledgebase?

• What JDBC URL will you use to connect to the Visual Modeler
Knowledgebase database server?

• You must connect to an Oracle Server using an Oracle JDBC driver.

• You must connect to a Microsoft SQL Server using a Microsoft SQL
Server JDBC driver.

• What is the username and password to be used to connect to the database
server?

• What name will you choose for the servlet context to be used for the
Visual Modeler?

Visual Modeler Application Guide

CHAPTER 5 Installation Requirements
This chapter presents a description of the hardware, software, and network
requirements to install the Visual Modeler. Make sure that your system meets these
requirements before you begin installing the Visual Modeler. See:

• "Hardware Requirements" on page 49

• "Software Requirements" on page 50

• "Network Requirements" on page 52

• "Browser Requirements" on page 52

• "Database Server Requirements" on page 54

Pay special attention to performance requirements and what requirements that will
drive in terms of hardware needs. See "Sizing Requirements" on page 57 for more
information.

Hardware Requirements
This section provides a description of the minimum hardware requirements of the
Visual Modeler.

Windows 2000
• 512 MB of RAM
Visual Modeler Application Guide 49

Installation Requirements

50
• Single or dual Intel processors rated at 400 MHz or faster

UNIX
• 512 MB of RAM

• Single or dual processors rated at 400 MHz or faster

Software Requirements
This section provides a description of the software requirements of the Visual
Modeler.

Operating Systems

Hewlett-Packard UNIX

• HP-UX 11.iv3.

Before deploying the Visual Modeler on HP-UX, you must apply the JavaOOB
bundle provided by Hewlett-Packard. See the following URL for further
information:

http://www.hp.com/products1/unix/java/java2/outofbox/infolibrary/
release_notes_java_oob.html

JavaOOB is a stand-alone bundle that upon installation, installs startup (RC)
scripts, modifies kernel parameters, rebuilds the kernel, and reboots the system.
During startup, the startup scripts modify system tunables.

For the user used to run the servlet container, you must increase the number of files
that the user may have open. Do this by running the ulimit command as follows:

>ulimit –Sn 1028

Linux

• Red Hat Enterprise Linux 5.4.

Microsoft Windows

• Windows 2008 Server with Service Pack 1 or Windows 2000 Server or
Professional with Service Pack 4.

Sun SPARC Solaris

• Sun SPARC Solaris 10 operating environment or subsequent compatible
version.
Visual Modeler Application Guide

Software Requirements
Java Development Kit
You must use either JDK 6 or the most recent version of JDK 1.4.2. If you use JDK
1.4.2, your version must be at least 1.4.2_06; however, you should use the most
current version. Problems have been reported using 1.4.2_03 because it uses
incompatible keystores.

SDK
You must use JDK 6 to use the SDK to install the Visual Modeler and to create
customizations using the SDK.

Servlet Containers
The Visual Modeler has been certified to run in the servlet containers listed in the
following table. Install your servlet container before installing the Visual Modeler.
Follow and complete the installation instructions for your selected servlet
container. We recommend using Tomcat to test your implementation of the Visual
Modeler before deploying it to your production system.

The Visual Modeler is designed to run in any J2EE-compliant servlet container.
Contact Sterling Commerce regarding installing your Visual Modeler in another
servlet container that meets this specification.

TABLE 5. Servlet Container Support

Servlet Container Vendor Release Servlet Specification
Support

Tomcat Open Source 6.0.14 with JDK 6

On Windows
installations, you must
set the JVM used to the
client jvm.dll

2.3

WebLogic BEA Systems 10.3 with JDK 6 2.3
Visual Modeler Application Guide 51

Installation Requirements

52
Servlet Container Clustering
The Visual Modeler is designed as a fully J2EE-compliant Web application capable
of being deployed in any servlet container that supports the J2EE standard. It can be
deployed to all servlet containers that are operating within a cluster or it can be
deployed to independent servlet containers that are operating behind a
load-balancing solution such as Cisco Local Director.

See "High Availability and Clustering" on page 115 for more information on
implementing a clustered solution. See CHAPTER 13, "Installing a Clustered
Implementation" for more information about setting up clustered implementations:

• See "Setting Up a WebLogic Cluster" on page 203 for information relating
to WebLogic clustering.

Network Requirements
The Visual Modeler machine(s) must also be able to establish a JDBC or an ODBC
connection to the database server that is used in conjunction with the Visual
Modeler. You must ensure that the appropriate database client software is installed
on the Visual Modeler machine. See CHAPTER 6, "Installing the Visual Modeler"
for more information.

Browser Requirements
To access and use the enterprise administration pages, users must run Internet
Explorer 7 or subsequent compatible versions, or Firefox 3.5.x and subsequent
compatible versions. This requirement includes partner users performing
administrative tasks on the Visual Modeler.

All of the external customer-facing pages support Internet Explorer 5.5 and
subsequent compatible versions.

Security Settings
You must enable your browser to support scripting.

Firefox

1. Select Options from the Tools menu.

2. Click the Content tab.

3. If the Enable Java and Enable Javascript check boxes are not already
checked, then check them.
Visual Modeler Application Guide

Browser Requirements
4. Click OK.

Internet Explorer

1. Select Internet Options... from the Tools menu.

2. Click the Security tab.

3. Click Custom Level....

4. Under Scripting, make sure that Active scripting is enabled.

5. Click OK.

6. Click OK.

Mozilla

1. Select Preferences... from the Edit menu.

2. Select Advanced, then select Scripts & Plug-ins.

3. If the Enable JavaScript for Navigator check box is not already checked,
then check it.

4. Click OK.

Character Sets
Bear in mind that browsers used by Visual Modeler users must support the
character sets required to display the data correctly. If your implementation of the
Visual Modeler manages data from non-ASCII character sets, then make sure that
the browser is set to support Unicode characters.

In particular, make sure that dialog boxes use fonts that support these characters.
On Windows systems, this is set using the Display Properties control panel applet.

1. Select Start -> Settings -> Control Panel, and start the Display applet.
Alternatively, right click the Desktop background and select Properties.

2. Click Appearance.

3. Select Message Box from the Item drop-down list.

4. Select a Unicode font, for example Arial Unicode MS.

5. Click Apply.
Visual Modeler Application Guide 53

Installation Requirements

54
Database Server Requirements
This section lists the general set-up requirements for Oracle and SQL Server
databases. See CHAPTER 6, "Installing the Visual Modeler", for details.

The Visual Modeler requires one of the following database servers to act as the
Knowledgebase database:

• Oracle 11g

• Microsoft SQL Server 2005

• Microsoft SQL Server 2008

You must ensure that there is a valid userid (username/password pair) set up on the
database that acts as the authenticated userid for all Visual Modeler connections to
the database. This userid must have the necessary privileges to create, modify, and
execute database objects. Make sure that the database default character set is set to
UTF-8 Unicode.

Make sure that you have the appropriate client tools installed on the Visual Modeler
machine(s). In particular, make sure that you have or can obtain the appropriate
JDBC library files from Microsoft or Oracle if you plan to deploy against SQL
Server or Oracle.

The Visual Modeler involves collecting data about your users on a transactional
database, and transferring that data to a segmentation database for processing and
re-use in marketing activities. You configure your Visual Modeler implementation
to provide efficient processing of user data and to enable communication between
the transactional and segmentation databases. You configure the transactional and
segmentation databases to suit your business requirements, and you can choose not
to use the segmentation feature.

Database Owner Requiements
The database owner must have the following privileges:

• CREATE TABLE

• CREATE VIEW

• CREATE SYNONYM

Attention: We recommend that you run the database server on a separate machine
from the Visual Modeler.
Visual Modeler Application Guide

Database Server Requirements
• CREATE DATABASE LINK (on the segmentation database)

• CREATE TRIGGER

• CREATE SESSION

• CREATE PROCEDURE

• CREATE SYNONYM

• UNLIMITED TABLESPACE

The database owner must have the following roles:

• CONNECT

• RESOURCE

Microsoft SQL Server Requirements
This section describes requirements for running the Visual Modeler with Microsoft
SQL Server.

You must have a Microsoft SQL Server Release 2005 or subsequent compatible
version running on Windows 2008 Server. You must connect to this SQL server
using the JDBC drivers provided by Microsoft. You can download the JDBC
drivers from: http://msdn.microsoft.com/data/ref/jdbc/ (note that this URL is
subject to change).

Configure the SQL Server to not return UPDATE counts. You can do this by
executing the following commands in the SQL Server Management Studio:

USE master;
GO
EXEC sp_configure 'disallow results from triggers', '1';
RECONFIGURE WITH OVERRIDE;

General Requirements
When you set up the SQL Server, you must specify that the database character set is
Unicode. You must also set up the SQL Server client software on the Visual
Modeler machine to use Unicode. On the servlet container machine:

1. Start the SQL Server Client Network Utility.

2. On the DB-Library Options tab, uncheck Automatic ANSI to OEM
conversion.

3. Click Apply, and then OK.
Visual Modeler Application Guide 55

Installation Requirements

56
If you use SQL Server, then a search that includes the following characters will
return zero results: é, ö, ü, ç.

SQL Server 2005 Communication Requirements

To enable communication between the transactional and segmentation databases on
two separate servers, follow the steps specified in CHAPTER 6, "Installing the
Visual Modeler", in the section "SQL Server 2005 Setup" on page 71.

Oracle Requirements
This section describes the requirements for running the Visual Modeler with Oracle
11g using the Oracle 11g JDBC driver.

If you do not have a local installation of Oracle products on the installation
machine, download the appropriate JAR file from the Oracle Technology Network
Web site. The URL is:

http://www.oracle.com/technology/index.html

Search for “JDBC driver”.

When setting up the database, select the Custom option in the Database
Configuration Assistant in order to set the character set to UTF-8. You can verify
that the correct settings are set by invoking a SQL*PLUS session to the database
server and entering:

SELECT * FROM NLS_DATABASE_PARAMETERS WHERE PARAMETER =
'NLS_CHARACTERSET';

You should see:

NLS_CHARACTERSET UTF8

UNIX
To use the Oracle OCI driver to connect from the Visual Modeler to the database
server, set the following environment variable:

NLS_LANG=AMERICAN_AMERICA.UTF8

Oracle Communication Requirements

To enable communication between the transactional and segmentation databases on
two separate servers, follow the steps specified in CHAPTER 6, "Installing the
Visual Modeler", in the section "Oracle Setup" on page 69.
Visual Modeler Application Guide

Sizing Requirements
You must also set up a TNSNAMES.ora entry on the transactional database server
for the segmentation database server, then set up a TNSNAMES.ora entry on the
segmentation database server for the transactional database server.

See CHAPTER 6, "Installing the Visual Modeler", in the section "Oracle Setup" on
page 69, for details.

Sizing Requirements
The Visual Modeler provides a sizing tool to help select hardware and software that
will best meet your implementation needs.
Visual Modeler Application Guide 57

Installation Requirements

58
 Visual Modeler Application Guide

CHAPTER 6 Installing the Visual Modeler
This chapter describes how to install the Visual Modeler and deploy either the
reference implementation or the minimal implementation. This chapter does not
cover the customization work necessary to meet the needs of your implementation.

Most implementations of the Visual Modeler use the SDK to perform installation,
and you must use the SDK to manage the customizations to your implementation.
You can also install the reference Web application without using the SDK: this is
useful for initial sanity testing and to verify the proposed deployment environment.
See "Installing the Reference Visual Modeler" on page 91.

You can install Release 9.0 as a full install.

This chapter covers the following topics:

• "Installation Overview" on page 60

• "Preparing to Install" on page 61

• "Configuring the Transactional and Segmentation Databases" on page 64

• "Configuring the Transactional and Segmentation Databases" on page 64

• "Installing the Software Development Kit" on page 74

Attention: The Visual Modeler is a complex product. Follow these instructions
carefully.
Visual Modeler Application Guide 59

Installing the Visual Modeler

60
• "Installing the Visual Modeler Using the SDK" on page 75

• "Deploying the Sterling Web Application" on page 83

• "Matrix Reference Segments Setup" on page 91

• "Installing the Reference Visual Modeler" on page 91

• "Default XML Identity Setup" on page 102

• "Database Server Steps" on page 107

• "Managing Database Connections" on page 109

• "Pagination Settings" on page 112

• "Setting the Session Timeout" on page 113

• "Modifying the URL for the Web application DTD" on page 114

• "Managing Memory" on page 114

• "Configuring Ehcache" on page 115

• "High Availability and Clustering" on page 115

• "Sharing Directories" on page 115

• "Directory and File Organization" on page 116

• "Cron Job Setup" on page 118

• "Setting Up Apache as a Front-end to Tomcat" on page 119

• "Filtering Static Content" on page 123

• "Compressing Output From the Visual Modeler" on page 125

Installation Overview
Installing the Visual Modeler involves these stages:

• Preparing to Install

• Installing the Software Development Kit

• Installing the Visual Modeler Using the SDK

• Deploying the Sterling Web Application

• Database Server Steps
Visual Modeler Application Guide

Preparing to Install
Once you complete these stages, continue to CHAPTER 7, "Creating and
Populating the Knowledgebase".

Preparing to Install
This stage covers how to prepare for an efficient installation: identifying known
issues, determining how you will configure your transactional and segmentation
databases, identifying the database information you will need, identifying the
servlet container root directory and the destination directory for the Sterling.war
file, and so on. See "Preparing to Install" on page 61.

Installing the Software Development Kit
This stage covers how to install the Visual Modeler Software Development Kit
(SDK). After you install the SDK, you can manage the installation of the Visual
Modeler using targets provided by the SDK. See "Installing the Software
Development Kit" on page 74.

Installing the Visual Modeler Using the SDK
This stage covers how to use the SDK to install the Visual Modeler Web
application. After you complete this stage, you deploy the Sterling.war to a servlet
container as a web application. See "Installing the Visual Modeler Using the SDK"
on page 75.

Deploying the Sterling Web Application
This stage covers how to deploy the Sterling.war file as a Web application. How
you deploy depends on which servlet container you are using. See "Deploying the
Sterling Web Application" on page 83.

Database Server Steps
This stage covers the preliminary configuration steps you perform to prepare for the
steps covered in CHAPTER 7, "Creating and Populating the Knowledgebase". The
preparation steps require some knowledge of the database server that you plan to
use for the Knowledgebase. See "Database Server Steps" on page 107.

Preparing to Install
1. Determine that your servlet container supports the Java Servlet Specification

2.3.
Visual Modeler Application Guide 61

Installing the Visual Modeler

62
2. Determine the transactional and segmentation schema configurations. The
system determines the configuration that you are using by examining
properties that you set in the project properties file.

The out-of-the-box Visual Modeler supports segmentation using Oracle and
SQL Server database servers.
See "Configuring the Transactional and Segmentation Databases" on
page 64 for detailed information before proceeding.

3. Ensure that your databases and database servers are tuned appropriately for
your implementation. Default settings may not always work, for example, you
may have to increase settings such as the DEFAULT CURSORS setting.
Consult your DBA to ensure proper database and database server tuning is
complete before setting up the Visual Modeler application.

4. Determine the database connection information used to connect the Visual
Modeler to the Knowledgebase database server:

a. For an Oracle database server:

• Determine the configuration of your transactional and segmentation
databases.

• Set up access to the transactional database and to the segmentation
database from the SDK machine: set up a TNS alias for the transactional
database and, if you are using a separate server for the segmentation
database, set up another TNS alias for the segmentation database.

• To run the transactional and segmentation databases on separate servers,
set up the link between the two database servers. You specify the name of
the link as part of specifying database connection information.

b. For a SQL Server 2005 database server using JDBC to access the
database:

• Ensure that your SQL Server JDBC driver is at least version 1.1 or higher.

• To run the transactional and segmentation databases as separate databases
on separate servers, set up the link between the two database servers. The
transactional database must have permission to access the segmentation
database, and you must specify the transactional database server’s login to
the segmentation database server. For this configuration, you must also set
up data replication between the two SQL Servers. See "Configuring the
Transactional and Segmentation Databases" on page 64 for details.
Visual Modeler Application Guide

Preparing to Install
• To run the transactional and segmentation databases as separate databases
on the same SQL Server, the transactional database must have permission
to access the segmentation database, including login permission.

5. You may add custom (or auxiliary) price types to your implementation.

6. Identify any known issues.

7. Identify the location of the servlet container root directory, container_home.

In a typical installation on Windows 2008, the location is as follows:

In a typical installation on UNIX, the location is as follows:

8. Identify the destination directory location, debs_home, of the Visual
Modeler. This is usually a sub-directory of container_home, but its precise
location can vary from one servlet container to another.

In a typical installation on Windows 2008, the location is as follows:

9. Remove any existing deployment of the Visual Modeler Web application from
the debs_home directory before starting the installation procedure. This
requires using the servlet container’s administrative console to remove the
Web application, and then physically deleting the directories and files.

10. If you plan to implement Sterling Configurator, create an environment variable
to specify the location of your JDK on the servlet container machine. For
Windows systems, at the command line, enter:

TABLE 6. Servlet Container Homes on Windows

Servlet Container Home Location

Tomcat C:\Program Files\Apache Software Foundation\Tomcat
6

WebLogic C:\bea\weblogic103

TABLE 7. Servlet Container Homes on UNIX

Servlet Container Home Location

Tomcat /usr/local/tomcat/

WebLogic /apps/bea/weblogic103/

Tomcat C:\Program Files\Apache Software Foundation\Tomcat 6\webapps\

WebLogic C:\bea\weblogic103\user_projects\domains\mydomain\applications\
Visual Modeler Application Guide 63

Installing the Visual Modeler

64
set JDK_HOME=<path_to_JDK>

For example:
set JDK_HOME=c:\jdk6

For UNIX systems, enter:
setenv JDK_HOME <path_to_jdk>

For example:
setenv JDK_HOME /usr/java/jdk6

You must also set a JAVA_HOME environment variable on the machine used
to run the SDK. If you use the same machine for both functions, then
JAVA_HOME and JDK_HOME must have the same value.

The PATH environment variable must include the JDK_HOME/bin/
directory.

Configuring the Transactional and Segmentation
Databases
The segmentation feature of the Visual Modeler involves collecting data about your
users on your transactional database, and transferring that data to a segmentation
database for processing and re-use in marketing activities. You configure your
Visual Modeler implementation to provide efficient processing of user data and to
enable communication between the transactional and segmentation databases. You
must choose a configuration whether you are installing for the first time or
upgrading from a previous release.

Segmentation is supported on Oracle and SQL Server 2005.

You may wish to re-use your database instances for particular purposes. The
following table lists the acceptable and unacceptable database re-use combinations
of transactional and segmentation databases. OK indicates an allowed combination.
Not OK indicates a disallowed combination. Disallowed combinations avoid
damage to your environment and allow supporting different deployments. Using a
disallowed combination results in errors.

TABLE 8. Acceptable and Unacceptable Database Combinations

Previous DB/Current DB Transactional Segment Both

Transactional OK Not OK OK

Segment Not OK OK Not OK

Both OK Not OK OK
Visual Modeler Application Guide

Configuring the Transactional and Segmentation Databases
In addition, in a SQL Server 2005 two-database or two-server deployment, the
transactional database server can be used only for one replication. Once this is
deployed, the same transactional database server should not be used again for
another two-database or two-server deployment. For best performance, we
recommend one replication per server..

Database Configurations
The possible database configurations are:

• Oracle:

• Transactional and segmentation databases within the same schema on the
same server. This configuration is useful for development and testing
purposes.

• Transactional and segmentation databases in two separate schemas on the
same server. This configuration is useful if you plan only limited use of
the segmentation capabilities of the Visual Modeler.

• Transactional and segmentation databases on two separate servers. This
configuration is recommended for implementations that plan heavy use of
the segmentation capabilities of the Visual Modeler. This configuration
has the least performance impact on the transactional database.

• SQL Server 2005:

• Transactional and segmentation tables in the same database. This
configuration is useful for development and testing purposes.

• Transactional and segmentation tables in two separate databases on the
same server. This configuration requires that you set up data replication
between the two databases. This configuration is useful if you plan only
limited use of the segmentation capabilities of the Visual Modeler

• Transactional and segmentation databases on two separate servers. This
configuration requires that you set up data replication between the two
databases. This configuration is recommended for implementations that
plan heavy use of the segmentation capabilities of the Visual Modeler.
This configuration has the least performance impact on the transactional
database.

Attention: The segmentation database must be a clean database which has not
previously been used as a transactional database.
Visual Modeler Application Guide 65

Installing the Visual Modeler

66
Determining Configuration Type
The system determines the configuration by examining the properties you define in
the project_dev.properties file during the installation process. The following
sections describe how the system determines your implementation’s configuration
type for each of the supported database servers.

Determining the Oracle Configuration

• If the URL’s and usernames for the transactional and segmentation
databases are the same, then the transactional and segmentation databases
share a schema on the same server.

• If the URL’s for the transactional and segmentation databases are the same
and the usernames are different, then the transactional and segmentation
databases reside in separate schema on the same database server.

• If the URL’s for the transactional and segmentation databases are different,
the transactional and segmentation databases reside on entirely separate
database servers.

Determining the SQL Server 2005 Configuration

• If the URL’s and database names of the transactional and segmentation
databases are the same, the transactional and segmentation databases share
a database on the same server.

• If the URL’s for the transactional and segmentation databases are the same
and the database names are different, then the transactional and
segmentation databases are separate databases that share a database server.

• If the URL’s for the transactional and segmentation databases are different,
then the transactional and segmentation databases reside on entirely
separate database servers.

The following sections describe the project_dev.properties file database properties
for Oracle and for SQL Server 2005.

Oracle and SQL Server Properties

The following are the Oracle and SQL Server 2005 database properties:

• DBTYPE_URL: the location of the transactional database.

• DBTYPE_USERNAME: the username for logging into the transactional
database. This user is the owner of the database.
Visual Modeler Application Guide

Configuring the Transactional and Segmentation Databases
• DBTYPE_PASSWORD: the password for logging into the transactional
database.

• DBTYPE_SEGMENT_URL: the location of the segmentation database.

• DBTYPE_SEGMENT_USERNAME: the username for logging into the
segmentation database. This user is the owner of the database.

• DBTYPE_SEGMENT PASSWORD: the password for logging into the
segmentation database.

SQL Server 2005 Replication Properties

Set the following replication properties in the project_dev.properties file. These
properties are in addition to the properties listed in "Oracle and SQL Server
Properties" on page 66.

The following properties must be set up on the transactional database server:

• MSSQLJDBC_SA_USERNAME: the SQL Server system administrator
user of the transactional database server for setting up replication. This is
needed for setup only: you can delete this property after setup is complete.

• MSSQLJDBC_SA_PASSWORD: the SQL Server system administrator
password of the transactional database server for setting up replication.
This is needed for setup only: you can delete this property after setup is
complete.

• MSSQLJDBC_SA_DISTRIBUTOR_DATABASE: a unique name for the
SQL Server distribution database. Ensure that this name is unique and that
this database does not already exist on the transactional database server.

• MSSQLJDBC_SA_DATA_FOLDER: the full pathname of the folder to
contain replication data. This folder must already exist and reside on the
transactional database server machine.

For Windows systems: The SDK considers the backslash character, "\", to
indicate an Escape character. To specify a pathname such as C:\Replication,
you must enter two backslashes. For example, C:\\Replication.

• MSSQLJDBC_START_DATE: the date on which to start data replication.
The format is YYYYMMDD.

You set up replication as the SQL Server system administrator user.

Note that the replication properties are required for all SQL Server 2005
transactional/segmentation database configurations. However, replication actually
Visual Modeler Application Guide 67

Installing the Visual Modeler

68
occurs only for the separate databases/same server configuration or the separate
databases/separate servers configuration.

SQL Server 2005 Migration Properties

The following properties must be set only when migrating data from an earlier
release. Otherwise they can be left blank.

• MSSQLJDBC_SEGMENT_LINK: Name of the linked transactional
server. This property needs to be set only when using a configuration of
two separate servers.

• MSSQLJDBC_SCHEMA_NAME: Name of the schema used by the
transactional database. This property needs to be set only when using a
configuration of two databases on a single server.

When migrating data from an earlier release and using a configuration of two
separate servers, the transactional server must be set up as a linked server on the
segmentation server, see "SQL Server 2005 Setup - Migration with Two Servers"
on page 72 for details.

Database Communication Setup
The following types of transactional and segmentation communication occurs:

• The transactional database pushes data to the segmentation database,
which processes the data and resolves segment criteria into segment
membership lists.

• The Visual Modeler Web application pulls data from the segmentation
database for marketing activity purposes.

• The Visual Modeler Web application uploads third-party data to the
segmentation database. The third-party data generally consists of files
containing list of users and related information for segmentation and
marketing purposes.

This section explains how to set up communication between the transactional and
segmentation databases for configurations in which the transactional and
segmentation databases reside on two separate servers (Oracle and SQL Server
2005).

If the transactional and segmentation databases reside in the same schema or two
schemas within the same server (Oracle) or the transactional and segmentation
tables reside in the same database or two databases within the same server (SQL
Server), no communication links are required, so no manual setup is necessary.
Visual Modeler Application Guide

Configuring the Transactional and Segmentation Databases
You enable two databases to communicate with each other by creating a link
between them. How you do that depends upon the database server you are using.

Oracle Setup
To enable communication between the transactional and segmentation databases on
two separate servers, perform the following tasks:

1. Log on to the segmentation database as DBA and grant the following
permissions to the owner of the segmentation database.

GRANT CREATE MATERIALIZED VIEW TO SEGMENTATION_DB_OWNER
GRANT CREATE PROCEDURE TO SEGMENTATION_DB_OWNER
GRANT CREATE SEQUENCE TO SEGMENTATION_DB_OWNER
GRANT CREATE SESSION TO SEGMENTATION_DB_OWNER
GRANT CREATE TABLE TO SEGMENTATION_DB_OWNER
GRANT CREATE TRIGGER TO SEGMENTATION_DB_OWNER
GRANT CREATE VIEW TO SEGMENTATION_DB_OWNER
GRANT CREATE DATABASE LINK TO SEGMENTATION_DB_OWNER
GRANT UNLIMITED TABLESPACE TO SEGMENTATION_DB_OWNER
GRANT "CONNECT" TO SEGMENTATION_DB_OWNER
GRANT "RESOURCE" TO SEGMENTATION_DB_OWNER
GRANT CREATE SYNONYM TO SEGMENTATION_DB_OWNER

2. Log on to the transactional database as DBA and grant the following
permissions to the owner of the transactional database.

GRANT CREATE MATERIALIZED VIEW TO TRANSACTIONAL_DB_OWNER
GRANT CREATE PROCEDURE TO TRANSACTIONAL_DB_OWNER
GRANT CREATE SEQUENCE TO TRANSACTIONAL_DB_OWNER
GRANT CREATE SESSION TO TRANSACTIONAL_DB_OWNER
GRANT CREATE TABLE TO TRANSACTIONAL_DB_OWNER
GRANT CREATE TRIGGER TO TRANSACTIONAL_DB_OWNER
GRANT CREATE VIEW TO TRANSACTIONAL_DB_OWNER
GRANT UNLIMITED TABLESPACE TO TRANSACTIONAL_DB_OWNER
GRANT "CONNECT" TO TRANSACTIONAL_DB_OWNER
GRANT "RESOURCE" TO TRANSACTIONAL_DB_OWNER

3. To allow communication between the transactional database server and the
segmentation database server:

a. Set up a TNSNAMES.ora entry on the transactional database server for
the segmentation database server, then
Visual Modeler Application Guide 69

Installing the Visual Modeler

70
b. Set up a TNSNAMES.ora entry on the segmentation database server for
the transactional database server.

For example, suppose that your transactional database server is
TXServer.matrix.corp and your segmentation database server is
SEGServer.matrix.corp. On TXServer, the TNSNAMES.ora entry for
SEGServer looks like this:

SEGServer =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = segserver.matrix.corp)(PORT
= 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SID = DEBS10G)
)
)

On SEGServer, the TNSNAMES.ora entry for TXSERVER looks like this:

TXServer =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = txserver.matrix.corp)(PORT
= 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SID = DEBS10G)
)
)

4. Create the link between the transactional and segmentation databases. You set
up the link on the segmentation database to allow access to the transactional
database.

Log in to the segmentation database as the segmentation database owner
and execute the following SQL commands:

CREATE DATABASE LINK SEGMENTLINK CONNECT TO transactional_db_owner
IDENTIFIED BY transactional_db_owner_password
USING ’tnsname of transactional database from segment database’

Note that database link names must be no more than 12 characters long.
The TNSNAME must be enclosed in single quotes.
For example, suppose that your transactional database owner name is
txowner with password #pa$sw4d:
Visual Modeler Application Guide

Configuring the Transactional and Segmentation Databases
CREATE DATABASE LINK SEGMENTLINK CONNECT TO txowner IDENTIFIED BY
#pa$sw4d
USING 'TXServer'

5. Set up the project_dev.properties file properties. Note that database link
names must be no more than 12 characters long.

Oracle Transactional DB Properties
ORACLE_URL=jdbc:oracle:thin:@<machine>:<port>:<sid>
ORACLE_USERNAME=<username>
ORACLE_PASSWORD=<password>
ORACLE_DATABASE=<tnsalias>
ORACLE_INDEX_TABLESPACE=<TABLESPACE_NAME>

Oracle Segmentation DB properties
ORACLE_SEGMENT_URL=jdbc:oracle:thin:@<machine>:<port>:<sid>
ORACLE_SEGMENT_USERNAME=<username>
ORACLE_SEGMENT_PASSWORD=<password>
ORACLE_SEGMENT_DATABASE=<tnsalias>
ORACLE_SEGMENT_INDEX_TABLESPACE=<TABLESPACE_NAME>
ORACLE_SEGMENT_LINK=<segmentlink>

SQL Server 2005 Setup
To enable communication between the transactional and segmentation databases on
two separate servers, perform the following tasks as the database owner.

1. Set up the project_dev.properties file properties:

SQL Server 2005 Transactional DB properties
MSSQLJDBC_URL=jdbc:sqlserver:<full network address to SQL Server
instance>;DatabaseName=<dbname>
MSSQLJDBC_USERNAME=<username>
MSSQLJDBC_PASSWORD=<password>
MSSQLJDBC_DATABASE=<dbname>
MSSQLJDBC_SERVERNAME=<machine name only: not the network address>

SQL Server 2005 Segmentation DB properties file
Tokenized files ODBCDataSources.xml/MSSQLSegCreateSchema.bat
MSSQLJDBC_SEGMENT_URL=jdbc:sqlserver:<full network address to SQL
Server instance>;DatabaseName=<dbname>
MSSQLJDBC_SEGMENT_USERNAME=<username>
MSSQLJDBC_SEGMENT_PASSWORD=<password>
MSSQLJDBC_SEGMENT_DATABASE=<dbname>

Note If you are migrating from an earlier release and using a two server
configuration, additional steps are required to establish
communication between the two servers. See "SQL Server 2005
Setup - Migration with Two Servers" on page 72 for details
Visual Modeler Application Guide 71

Installing the Visual Modeler

72
MSSQLJDBC_SEGMENT_SERVERNAME=<machine name only: not the network
address>

SQL Server 2005 Replication properties
MSSQLJDBC_SA_USERNAME=<system_admin_name>
MSSQLJDBC_SA_PASSWORD=<system_admin_password>
MSSQLJDBC_DISTRIBUTOR_DATABASE=<distributor_dbname>
MSSQLJDBC_DISTRIBUTOR_DATA_FOLDER=<replication_folder_path>
MSSQLJDBC_START_DATE=<YYYYMMDD>

SQL Server 2005 Migration properties
MSSQLJDBC_SEGMENT_LINK=<transactional_server_name>
MSSQLJDBC_SCHEMA_NAME=<schemaname>

The MSSQLJDBC_SEGMENT_LINK and MSSQLJDBC_SCHEMA_NAME
properties need to be set only when migrating data from an earlier release.
Otherwise MSSQLJDBC_SEGMENT_LINK can be left blank and the default
value for MSSQLJDBC_SCHEMA_NAME can be left in place. See "SQL Server
2005 Migration Properties" on page 68 for further information.

The MSSQLJDBC_SERVERNAME property is used to specify the machine on
which the SQL Server 2005 instance is running as well as to specify the name of the
database server. In most cases the machine running the SQL Server 2005 instance
and the database server are the same, but they can be different. In your SDK
environment, you must ensure that the machine name by itself is enough to enable
the SQL client application sqlcmd to access the SQL Server 2005 instance, and that
this is the name of the SQL server instance.

SQL Server 2005 Setup - Migration with Two Servers
If you are migrating from an earlier release and using a configuration of two
separate servers, the transactional server must be set up as a linked server on the
segmentation server. Perform the following tasks as the system administrator (sa) to
establish communication between the servers:

1. On the transactional database, perform the following as sa:

USE [master]
GO
GRANT ALTER ANY LINKED SERVER TO [TRANSACTIONAL_DATABASE_NAME]
GO

2. Create a link on the segment server to transactional server:

USE [master]
GO
EXEC sp_addlinkedserver 'TRANSACTIONAL_SERVER_NAME',N'SQL Server'
GO
Visual Modeler Application Guide

Configuring the Transactional and Segmentation Databases
3. On the segmentation server, establish the following login mapping:

USE [master]
GO
EXEC master.dbo.sp_addlinkedsrvlogin @rmtsrvname =
N'TRANSACTIONAL_SERVER_NAME', @locallogin = N'SEGMENT_USER', @use-
self = N'False', @rmtuser = N'TRANSACTIONAL_USER', @rmtpassword =
N'TRANSACTIONAL_PASSWORD'
GO

4. Set up the project_dev.properties file properties:

SQL Server 2005 Transactional DB properties
MSSQLJDBC_URL=jdbc:sqlserver:<full network address to SQL Server
instance>;DatabaseName=<dbname>
MSSQLJDBC_USERNAME=<username>
MSSQLJDBC_PASSWORD=<password>
MSSQLJDBC_DATABASE=<dbname>
MSSQLJDBC_SERVERNAME=<machine name only: not the network address>

SQL Server 2005 Segmentation DB properties file
Tokenized files ODBCDataSources.xml/MSSQLSegCreateSchema.bat
MSSQLJDBC_SEGMENT_URL=jdbc:sqlserver:<full network address to SQL
Server instance>;DatabaseName=<dbname>
MSSQLJDBC_SEGMENT_USERNAME=<username>
MSSQLJDBC_SEGMENT_PASSWORD=<password>
MSSQLJDBC_SEGMENT_DATABASE=<dbname>
MSSQLJDBC_SEGMENT_SERVERNAME=<machine name only: not the network
address>

SQL Server 2005 Replication properties
MSSQLJDBC_SA_USERNAME=<system_admin_name>
MSSQLJDBC_SA_PASSWORD=<system_admin_password>
MSSQLJDBC_DISTRIBUTOR_DATABASE=<distributor_dbname>
MSSQLJDBC_DISTRIBUTOR_DATA_FOLDER=<replication_folder_path>
MSSQLJDBC_START_DATE=<YYYYMMDD>

SQL Server 2005 Migration properties
MSSQLJDBC_SEGMENT_LINK=<transactional_server_name>
MSSQLJDBC_SCHEMA_NAME=<schemaname>

The value of the MSSQLJDBC_SEGMENT_LINK property will be the same as
the value for the TRANSACTIONAL_SERVER_NAME established in the previous
steps. MSSQLJDBC_SCHEMA_NAME is the name of the schema used by the
transactional database.

The MSSQLJDBC_SERVERNAME property is used to specify the machine on
which the SQL Server 2005 instance is running as well as to specify the name of the
database server. In most cases the machine running the SQL Server 2005 instance
Visual Modeler Application Guide 73

Installing the Visual Modeler

74
and the database server are the same, but they can be different. In your SDK
environment, you must ensure that the machine name by itself is enough to enable
the SQL client application sqlcmd to access the SQL Server 2005 instance, and that
this is the name of the SQL server instance.

Installing the Software Development Kit
You can use the Software Development Kit (SDK) to install the Visual Modeler and
to manage customizations to your implementation. You must use JDK 6 and
Version 3.5.4 of the SDK to install the Visual Modeler.

This chapter covers only those SDK functions used to install the Visual Modeler.
The Software Development Kit provides a comprehensive guide to the SDK.

To install the SDK, identify or create a directory on your machine to use as the
development directory, sdk_home.

1. If the JAVA_HOME environment variable is not already set, set it to the
location of your Java Development Kit. For example:

set JAVA_HOME=<path_to_JDK>

For example:
set JAVA_HOME=c:\jdk6

For UNIX systems, enter:
setenv JAVA_HOME <path_to_jdk>

For example:
setenv JAVA_HOME /usr/java/jdk6

For the Bourne shell, enter:
export JAVA_HOME=<path_to_jdk>

For example:
export JAVA_HOME=/usr/java/jdk6

2. Set the COMERGENT_SDK_HOME environment variable to point to the
sdk_home directory.

3. Version 3.5.4 of the SDK is delivered as a JAR file. Unjar the SDK framework
JAR file in the sdk_home directory.

4. At the command line, navigate to the sdk_home directory, and enter:

sdk setup

5. For Windows systems: if your system directory is not c:/winnt/system32, edit
the sdk_home/my_sdk.properties file and update the windows.system.dir
property.
Visual Modeler Application Guide

Installing the Visual Modeler Using the SDK
To continue with the installation, proceed to "Installing the Visual Modeler Using
the SDK" on page 75.

Installing the Visual Modeler Using the SDK
This section describes how to use the SDK to install the Visual Modeler on either a
Windows 2000/2008 or a UNIX operating system. Successful installation creates a
Sterling.war file on your SDK machine.

Follow the steps described in "To Install the Visual Modeler as a Full Release" on
page 75

To Install the Visual Modeler as a Full Release
You must perform this task as a user with local machine administration privileges.

1. Locate the release Sterling.jar file for this release (called something like
Sterling-9.0-amberOne-9_0-RCx.jar) and copy it to a temporary location on
your system.

2. At the command line, navigate to the sdk_home/ directory.

3. Edit the sdk_home/my_sdk.properties file to specify the value of the
container.home and app.name properties. The SDK uses these properties to
determine the values of other properties as follows:

• deploy.home is set to container.home/apps.dir. The deploy.home property
is used to specify the servlet container deployment directory.

• The app.name is the name of the Web application. The app.name is usually
the same as the Web application’s directory under the deployment
directory. In this guide, we assume that the value of this property is
“Sterling”. If you want to change the name of the Web application (for
example, to change the name of the generated WAR file), modify the
app.name entry in the my_sdk.properties file.

Attention: Please install your servlet container before attempting to install the Visual
Modeler.

Attention: If your release number is not Release 9.0 (for example, it is Release
Release 9.0.2), then substitute the string for the release (for example,
“8.0.2”) wherever these instructions refer to “Release 9.0”.
Visual Modeler Application Guide 75

Installing the Visual Modeler

76
• debs.home takes the value container.home/apps.dir/app.name.

The project.name property defined in the sdk-settings.properties file is
used to specify the name of the project directory in the SDK. In general, this
is not the same as the app.name.

4. Run the install target twice, specifying the location of the Sterling.jar file set
in Step 1. For example:

sdk install /tmp/Sterling-9.0-amberOne-9_0-RCx.jar

Note that you can use quotes if the paths to the files have spaces in them.
These targets can take a few minutes to run.

5. Run the newproject target, specifying a project name for this installation. For
example:

sdk newproject matrix

This target can take a few minutes to run.

6. The newproject target creates properties files for the new project in the
sdk_home/projects/project/ directory. The default name for the properties file
is project_dev.properties. Note that the values of properties (such as
container.home) set in the properties file override the values set in the
local-sdk.properties and my_sdk.properties files.

Edit the project properties file to set the database connection information for
both the transactional database and the segmentation database. Note that the
transactional and segmentation databases must be of the same type.
You can also set other properties such as the logging level. Values you set
here are automatically merged into the prefs.xml configuration files under
the sdk_home/builds/project/ directory. See "Email Addresses" on page 81
for information about the email addresses set in the properties files.

7. Database targets:

a. If you plan to run the Knowledgebase on Oracle, run the installOracle
target, specifying the location of the Oracle JDBC JAR file, to copy the

Note: If you are running the SDK on UNIX, you may have to add execute
permission to the sdk_home/sdk.sh file:

chmod +x sdk_home/sdk.sh

After you run the merge target, you may have to modify the permissions on
the sdk_home/workspaces/project/OracleCreateSchema.sh file.
Visual Modeler Application Guide

Installing the Visual Modeler Using the SDK
Oracle JDBC drivers JAR file to the project files. The name and location
of the JAR file will vary from installation to installation. For example:

C:\oracle\product\10.2.0\client_1\jdbc\lib\ojdbc14.jar
or
/opt/oracle/product/10.2.0/client_1/jdbc/lib/ojdbc14.zip
For example:
sdk installOracle /tmp/Oracle_jdbc.jar

This copies the JAR file to the WEB-INF/lib/ directory in the release
directory. It also renames the file to oraclejdbc.jar.

b. If you plan to run the Knowledgebase on SQL Server 2005, run the
installMSSQLJDBC target, specifying the location of the SQL Server
JDBC JAR file. For example:

sdk installMSSQLJDBC "C:\Program Files\Microsoft SQL Server
2005 JDBC Driver\sqljdbc_1.1\enu\sqljdbc.jar"

8. Run the env.setDBType target to set the appropriate database type:

sdk env.setDBType Oracle

or
sdk env.setDBType MSSQLJDBC

9. To set the database password to be encrypted:

a. Set the Encrypted flag to true:

sdk setVal DataServices.DataSource.ENTERPRISE.Encrypted true

b. Encrypt the database password string:

sdk encryptVal <password>

The result is an encrypted version of the password.

c. Edit the encrypted password string into the appropriate properties file as
the relevant password property. For example:

ORACLE_PASSWORD=<encrypted_password>

The encrypted form of the password is entered into the schema creation
scripts that are used by the createDB target, so you must run the createDB
target before you encrypt the password.

Note For SQL Server 2005, your JDBC driver must be version 1.1 or higher.
Visual Modeler Application Guide 77

Installing the Visual Modeler

78
10. If you plan to support locales other than the default U.S. English (en_US)
locale, perform the localization installation and customization steps. See
CHAPTER 24, "Visual Modeler Localization" for instructions.

11. Run the merge target to create your first build in the builds/ directory.

sdk merge

This target can take a few minutes to run. The sdk merge target copies the
Web application files from the releases directory and merges in the files and
properties currently in your project directory. If the target fails with a
message relating to the JDBC driver, check that you have run the database
install targets appropriately:

• If you are creating an Oracle-based project, then check that you have run
the installOracle target, and ensure that the oraclejdbc.jar file is now in
the sdk_home/releases/debs-Aries/overlay/WEB-INF/lib/ directory.

• If you are creating a SQL Server 2005-based project, then check that you
have run the installMSSQLJDBC target, and ensure that the
mssqljdbc.jar file is now in the sdk_home/releases/debs-Aries/overlay/
WEB-INF/lib/ directory.

12. Run the distWar target to create the WAR file that you will deploy. For
example:

sdk distWar

This target can take a few minutes to run. The generated WAR file is in
sdk_home/dist/. Its name is determined by the app.name and
deploy.environment properties and a timestamp. You can rename the WAR
file to Sterling.war.

13. Alternatively, you can run the dist target. This creates a JAR file that contains
the WAR file along with JAR files that provide the SQL scripts and XML data
files. You can install the Visual Modeler from this JAR file by following the
instructions provided in "Installing the Reference Visual Modeler" on page 91.
Note that you can skip the steps to set the database properties information
because your prefs.xml file already has this information.

14. In the sdk_home/dist/time_stamp/ directory, rename the generated
prefs_env.xml file to prefs.xml file. This is the basic configuration file that
must be copied under the home directory of the user running the servlet
container.
Visual Modeler Application Guide

Installing the Visual Modeler Using the SDK
15. Add any custom (auxiliary) price types to your implementation.

a. Retrieve the LightWeightLookupList file for customizing:

sdk customize WEB-INF/xmldata/Minimal/LightWeightLookupList

This places the LightWeightLookupList file in the directory
sdk_home/projects/project-name/WEB-INF/xmldata/Minimal.

b. Open the LightWeightLookupList file with a text editor and add your new
price types to the file. The format is as follows:

<LightWeightLookup state="INSERTED">
 <LookupType state="INSERTED">PriceType</LookupType>
 <LookupCode state="INSERTED">lookup_code</LookupCode>
 <Locale state="INSERTED">en_US</Locale>
 <Description state="INSERTED">price_type_name</Description>
</LightWeightLookup>

Where lookup_code is the unique numeric code associated with the price
type, such as 1000, 2000, or 3000, and price_type_name is the name of the
price type, such as Monthly, Cancellation, or Overage.
Note that if you plan to load the Matrix reference data, the auxiliary price
type lookup codes 1000, 2000, and 3000 are used as part of the reference
data; choose other lookup codes for your custom auxiliary price types.

c. Create a new file in the directory sdk_home/projects/project-name/
WEB-INF/xmldata called PriceTypeList (no file extension) to contain
your auxiliary price types. The contents must be plain text: do not use
special characters, or characters such as smart quotes.

The format is as follows:
<?xml version="1.0" encoding="UTF-8" ?>
<PriceTypeListData>
<PriceTypeList state="INSERTED" type="BusinessObject">

<PriceType state="INSERTED">
 <PriceTypeCode state="INSERTED">price_type_code</PriceTypeCode>
 <Locale state="INSERTED">en_US</Locale>
 <PriceTypeGroupCode state="INSERTED">
 group_code</PriceTypeGroupCode>
 <PriceTypePropertyName state="INSERTED">

PRICE: <property_name></PriceTypePropertyName>
<UpdatedBy state="INSERTED">1</UpdatedBy>
<CreatedBy state="INSERTED">1</CreatedBy>

 <ActiveFlag state="INSERTED">Y</ActiveFlag>

Note: All customizing is done in the sdk_home/projects/project_name directory
structure.
Visual Modeler Application Guide 79

Installing the Visual Modeler

80
</PriceType>

</PriceTypeList>
</PriceTypeListData>

Where price_type_code is the unique numeric code associated with the
price type and which matches the lookup code, such as 1000, 2000, or
3000; group_code is the price type group code with which this price
type is associated, such as 20 for one-time prices; property_name is the
name of the price type property, is uppercase, and always begins with
PRICE:, such as PRICE: ACTIVATION; and the UpdateDate and
CreateDate dates are timestamps.

d. Retrieve the MinimalData.lst file for customization:

sdk customize WEB-INF/scripts/MinimalData.lst

This places the MinimalData.lst file in the directory sdk_home/project-
name/WEB-INF/scripts.

e. Open the MinimalData.lst file with a text editor and add the following
line:

WEB-INF/xmldata/PriceTypeList

f. Merge the customized files into the project:

sdk merge

16. Run the createDB target to create the Knowledgebase schema.

a. If you are running the Knowledgebase on either Oracle or SQL Server,
run:

sdk createDB

If you are running the Knowledgebase on SQL Server 2005 and want to
use the JDBC connection to connect to it at runtime, then you must still
use the ODBC scripts to create the database schema. Consequently, you
must set the ODBC properties as well as the MSSQLJDBC properties
before running this target.

b. Check the results of the createDB target by looking at log files in the
sdk_home/logs/projects/project_name directory.

17. Run either the loadDB target (to load the minimal data set) or the
loadMatrixDB target (to load the full Matrix reference data set) into the
Knowledgebase.
Visual Modeler Application Guide

Installing the Visual Modeler Using the SDK
sdk loadDB

or
sdk loadMatrixDB

Check the results of the loadDB or loadMatrixDB targets by looking at the
sdk_home/workspaces/project_name/debs.log file.
Check for an error similar to the following:

File: WEB-INF/xmldata/Minimal/Partner:
[CMGT_LOOKUP_CACHE_ENTRY_DOESNT_EXIST] error: "No Lookup Cache
entry for locale en_ Lookup Category PartnerStatus Lookup Code
10."
com.comergent.api.dataservices.NoLookEntryExistForSourceExcep-
tion: [CMGT_LOOKUP_CACHE_ENTRY_DOESNT_EXIST] error: " No Lookup
Cache entry for locale en_ Lookup Category PartnerStatus Lookup
Code(or Lookup Description) 10."

This error is caused by an invalid locale specification in your system
environment. On UNIX, check whether the LANG environment variable has
a country setting. It should look like this:

LANG=en_US.UTF-8

18. Create the segmentation database:

sdk createSegDB

Check the results of the createSegDB target by looking at the sdk_home/
logs/projects/project_name directory.

19. Run either the loadSegDB target (to load the minimal data set) or the
loadSegMatrixDB target (to load the full Matrix reference data set) into the
segmentation database:

sdk loadSegDB

or
sdk loadSegMatrixDB

Check the results of the loadSegDB target by looking at the sdk_home/logs/
project_name/ directory.

Next, deploy the Web application into the servlet container. Follow the steps for
your servlet container provided in "Deploying the Sterling Web Application" on
page 83.

Email Addresses
As part of implementing the Visual Modeler, set up the email addresses used by the
system. They reside in one of the following locations:
Visual Modeler Application Guide 81

Installing the Visual Modeler

82
• Configuration Files

• Minimal Data

Configuration Files
Email addresses set in the configuration files are used by applications when sending
email from the system. You set the values for these addresses in the *.properties
files used by your SDK. When you run the SDK merge target, these values are
merged into the configuration files. The following email addresses must be set:

• SMTP_SENDER: used as the From address when email is sent from the
Visual Modeler.

• INVOICE_EMAIL_ADDRESS: the email address of an enterprise user to
whom emails are sent relating to invoices. The user must have the
AccountReceivable role.

• RFQ_EMAIL_ADDRESS: the email address of an enterprise user to
whom emails are sent relating to RFQs: the user must have the
CustomerServiceRepresentative role.

• ENTERPRISE_EMAIL_ADDRESS: set to the same value as
SMTP_SENDER.

• SMTP_RECIPIENT: no longer used.

Minimal Data
When you load the minimal data, you create some partners and some users. The
email addresses associated with these are currently set to
changeme@changeme.com. You should change these values to more suitable
values before loading the data.

The Partner Profile email addresses for the Enterprise, AnonymousUserPartner, and
RegisteredUserPartner should all be set to a system administrator email account.

The email addresses for the users (admin, ERPAdmin, and AnonymousUser)
should be set to the email address of a system administrator at your
implementation. They can be changed through the Visual Modeler user interface.

ObjectMap Settings
Sterling Configurator uses rules to determine some of the behavior of models used
to configure products. These rules are compiled into Java classes when the rule is
first fired. The rules may be compiled using either an external compiler (that is,
using javac) or an internal compiler (that is, the com.sun.tools.javac.Main class).
An element of the ObjectMap.xml configuration file is used to specify the one you
Visual Modeler Application Guide

Deploying the Sterling Web Application
want to use. Bear in mind that there are differences between using these two
compilers as described here:

• external compiler: this is spawned as a new process. On UNIX, this can
cause the creation of a copy of the current process running the Visual
Modeler and so may require a large memory allocation, and fail if this is
not available.

• internal compiler: this is generally faster, but may be prone to memory
leaks.

If you are running Sterling Configurator and must use the external form of the Java
compiler (for example if you are running Tomcat 6 on Windows), you must specify
that the Visual Modeler uses the external rule compiler. You do this by editing the
WEB-INF/properties/ObjectMap.xml configuration file to change:

<Object ID="com.comergent.apps.configurator.util.ConfigCompiler">
<ClassName>

com.comergent.apps.configurator.util.InMemoryRuleCompiler
</ClassName>
</Object>

to:

<Object ID="com.comergent.apps.configurator.util.ConfigCompiler">
<ClassName>

com.comergent.apps.configurator.util.RuleCompiler
</ClassName>
</Object>

We recommend using the external form of the compiler for production systems: a
memory leak can result if you use the internal compiler. To use the internal
compiler, copy the tools.jar file from your JDK to the appropriate lib/ directory in
your servlet container deployment. For example, in a typical Tomcat 6 deployment,
you can copy tools.jar to your tomcat_home/shared/lib/ directory.

Deploying the Sterling Web Application
Once you successfully install the Sterling.war file, you must deploy it as a Web
application. This process varies from one servlet container to another. Check your
servlet container documentation for further details. This section provides the
specific deployment steps for each of the supported servlet containers.

You must identify the operating system user that runs the servlet container. You
must copy the prefs.xml configuration file created in Step 12 on Page 78 to a sub-
Visual Modeler Application Guide 83

Installing the Visual Modeler

84
directory of the home directory of this user. The sub-directory is called user_home/
cmgt/debs/conf/.

The user_home home directory location can vary from one operating system to
another. The following table provides some typical locations.

Note that you can put this file in an alternate location which is specified as the
comergent.preferences.store system property. If you do so, then you must specify
its location so that it can be read when the servlet container starts the Visual
Modeler Web application. You can do this in the following ways:

• Set its location as a system variable. For example, add the following to the
command that starts the servlet container:

-Dcomergent.preferences.store=/home/scowner/tomcat6014/prefs.xml

• Set its location in the WEB-INF/web.xml using the following element:

<init-param>
<param-name>comergent.preferences.store</param-name>
<!--BEGIN:com.comergent.tools.ant.taskdefs.SetFileContents

(do not modify this tag) -->
<param-value>/home/scowner/tomcat6014/prefs.xml</param-value>
<!--END:com.comergent.tools.ant.taskdefs.SetFileContents

(do not modify this tag) -->
<description>Location of Comergent's preferences store
</description>

</init-param>

We provide deployment steps for the following servlet containers:

• "To Deploy the Sterling Web Application on Apache Tomcat" on page 85

• "To Deploy the Sterling Web Application on WebLogic 10.3" on page 88

XML Parser Settings
To ensure that the correct Java classes are used for the XML processing performed
by the Visual Modeler, you must ensure that the Java Virtual Machine settings
specify the correct classes. In general, you can either set the classes as additional

TABLE 9. Operating System Home Directories

Operating System Standard Home Directory

Windows 2008 C:\Documents and Settings\username

Solaris 10 /export/home/username

Linux 2.6 /home/username
Visual Modeler Application Guide

Deploying the Sterling Web Application
parameters in the command line that starts the servlet container or you can specify
them as parameters for the Web application.

The following sections describe the steps necessary to set the command line
parameters for each of the supported servlet containers. To set the parameters for
the Web application, add the following to the web.xml file located in the
debs_home/Sterling/WEB-INF/ directory:

<context-param>
<param-name>Comergent.xml.SAXParserFactory</param-name>
<param-value>

org.apache.xerces.jaxp.SAXParserFactoryImpl
</param-value>
<description>SAX Parser factory configuration</description>

</context-param>
<context-param>

<param-name>Comergent.xml.DocumentBuilderFactory</param-name>
<param-value>

org.apache.xerces.jaxp.DocumentBuilderFactoryImpl
</param-value>
<description>DOM Parser factory configuration</description>

</context-param>

Note that these settings are overridden by values set at the command line.

Tomcat Releases

To Deploy the Sterling Web Application on Apache Tomcat
If you have installed the Sterling.war file into the default Web applications
directory, container_home/webapps/, then Tomcat can automatically detect it, and
it is deployed automatically when you start Tomcat. Make sure that there is no pre-
existing Sterling/ directory already in container_home/webapps/.

1. Ensure that your JDK bin directory is defined in the system PATH
environment variable. For example:

C:\Program Files\Java\jdk1.6.0_08\bin

2. On Windows installations of Tomcat, you must use the client version of the
Java VM DLL. Open Start -> All programs -> Apache Tomcat 6.0 ->
Configure Tomcat, and on the Java tab, set the Java Virtual Machine to the
location of the client JVM DLL (for example:
C:\Program Files\Java\jdk1.6.0_07\jre\bin\client\jvm.dll).

3. Modify the Tomcat startup parameters to set the following Java parameters:

• -Xms128m
Visual Modeler Application Guide 85

Installing the Visual Modeler

86
• -Xmx<75% of physical memory>

• -XX:MaxPermSize=128M

Set the Java parameter -Xmx to 75% of physical memory. For example, on
a machine with 1 gigabyte of RAM, set -Xmx768m. On a machine with 2
gigabytes of RAM, set -Xmx1793m.
Do not use the -Xss option, which sets the Java thread stack size.

a. If you are running Tomcat on a UNIX or Linux system, then set the Java
parameters as follows:

set JAVA_OPTS=-Xms128m -Xmx<75% of physical memory>
-XX:MaxPermSize=128M

Note that, while you can also use the set command to set the Java
parameters on Windows, it is best to define them in the JAVA_OPTS or
CATALINA_OPTS environment variables.

b. If you are running Tomcat as a service, set the Java parameters as part of
the Tomcat service configuration. Open Start -> All programs -> Apache
Tomcat 6.0 -> Configure Tomcat, then click the Java tab. The fields map
as follows:

• Initial memory pool: -Xms

• Maximum memory pool: -Xmx

4. On Windows systems with Tomcat installed as a service, you must set the login
information through the service. To ensure that the Visual Modeler works
correctly and locates the correct prefs.xml file, set the login to the user that
owns prefs.xml.

For example, if the prefs.xml file is located in:
C:\Documents and Settings\adminuser.DOMAIN\cmgt\debs\conf

Then the Tomcat login information should be similar to the following:

• Login: DOMAIN\adminuser

• Password: adminuser’s password

Notes on Using Apache Tomcat
Note that Apache Tomcat does not automatically re-compile JSP pages that are
included in other JSP pages: if you make a change to an included JSP page, then
remove the corresponding compiled servlet classes from the container_home/
work/ directory to force the JSP page to be re-compiled.
Visual Modeler Application Guide

Deploying the Sterling Web Application
If you use the shutdown command to stop Tomcat gracefully, then persistent
session information is saved to a file:

• container_home/work/Standalone/localhost/Sterling/SESSIONS.ser on
Tomcat 6

When you restart the servlet container, the servlet container will attempt to reload
this session data and throw exceptions. You should remove this file before
re-starting the servlet container.

You can force Tomcat to not save session information by setting the saveOnRestart
attribute of the Context element to “false”. To do this within the SDK, modify the
tomcat-context.xml file to the following:

<Context path="/@app.name@" docBase="@project.base@" >
<Manager className="org.apache.catalina.session.PersistentManager"

debug="0"
saveOnRestart="false"
maxActiveSessions="-1"
minIdleSwap="-1"
maxIdleSwap="-1"
maxIdleBackup="-1">
<Store className="org.apache.catalina.session.FileStore"/>
</Manager>

</Context>

If you run the fastdeploy target, then this XML file is used to declare the Web
application in the container_home/webapps/ directory.

Certain class files in JAR files are not loaded from container_home/webapps/
Sterling/WEB-INF/lib/. If you place the JAR files in container_home/lib/ or
container_home/common/lib/, then they will be loaded, but note that this may
affect the running of other Web applications in the same servlet container.

Continue with the steps described in "Database Server Steps" on page 107.

WebLogic Releases

Deployment Considerations For WebLogic 10

WebLogic 10 requires additional JVM settings to allow credit card authorization to
CyberSource. To ensure that credit card authorization to CyberSource works
properly, start the Weblogic 10 instance with the following JVM setting:

-Dweblogic.security.SSL.allowSmallRSAExponent=true

If you run WebLogic 10 with proxy enabled, disable the SSL hostname verification
as follows:
Visual Modeler Application Guide 87

Installing the Visual Modeler

88
-Dweblogic.security.SSL.ignoreHostnameVerification=true

At the time of publishing, more information is available on the BEA site at the
following URL:

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/security/
DisableHostNameVerification.html

If you are running the Selling and Fulfillment Foundation in HTTPS mode, ensure
that you pass the following argument when you run the target to start the WebLogic
server:

-DlocalPost.ssl.noCheck=true

To Deploy the Sterling Web Application on WebLogic 10.3
Deployment of the Visual Modeler into WebLogic Release 10.3 has been simplified
from earlier releases of WebLogic. However, because the Visual Modeler must run
as an “expanded” Web application (as opposed to as a WAR file), these instructions
ensure that the Web application WAR file is expanded as part of the deployment
process.

1. In your WebLogic installation, identify the domain_home directory that you
plan to use for your deployment of the Visual Modeler. The default location is
container_home/user_projects/domains/mydomain/.

2. In the container_home/user_projects/domains/mydomain/ directory, create a
directory in which to deploy your applications called applications. In the
applications directory, create the directory in which to deploy your Visual
Modeler application, Sterling.

3. Expand the Sterling.war file into the container_home/user_projects/
domains/mydomain/applications/Sterling directory using a tool such as
WinZip. This process can take a few minutes. Verify that the Sterling directory
structure is in place as you expand the Sterling.war file.

4. Log in to the WebLogic server as the user used to install WebLogic and start
the BEA WebLogic Administration Console.

5. Install the Visual Modeler as a WebLogic application:

a. In the Domain Configurations section, click Deployments, then click the
Lock & Edit button in the left-hand panel.

b. In Deployments, click the Install button. Using the Install Applications
Assistant, locate the container_home/user_projects/domains/
mydomain/applications directory, select Sterling, and click Next.
Visual Modeler Application Guide

Deploying the Sterling Web Application
c. Use the Install Applications Assistant to configure your Sterling
application, or accept the defaults and click Finish.

d. In the left-hand panel, click the Activate Changes button. The Sterling
application appears in the Deployments list with a State of Prepared.

6. Click Start to start the Sterling application and choose Servicing All Requests.
The application’s State will update to Start/Running.

7. Your Sterling application is now installed. Click the Release Configuration
button.

8. Verify that you can log into the Visual Modeler by pointing your browser to the
standard URL:

http://<server>:<port>/Sterling/en/US/enterpriseMgr/matrix

For WebLogic servers, the default port number is 7001.

Pre-Compiling JSP Pages
As an optional step, we suggest that you pre-compile the JSP pages before going
live to improve performance. You can follow the instructions provided by the
WebLogic JSP Reference (consult the document currently at this URL:
http://edocs.bea.com/wls/docs81/jsp/reference.html) to pre-compile JSP pages.

WebLogic cleans up the directories of compiled JSP pages when the server is
stopped and restarted. It is possible to use the weblogic.xml file to ensure that
compiled JSP pages are preserved by specifying that the keepgenerated parameter
is set to true, and specifying a working directory as follows:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE weblogic-web-app
PUBLIC "-//BEA Systems, Inc.//DTD Web Application 7.0//EN"
"http://www.bea.com/servers/wls700/dtd/weblogic700-web-jar.dtd" >

<weblogic-web-app>
<jsp-descriptor>

<jsp-param>
<param-name>

keepgenerated
</param-name>
<param-value>

true
</param-value>

</jsp-param>
<jsp-param>

<param-name>
workingDir

</param-name>
Visual Modeler Application Guide 89

Installing the Visual Modeler

90
<param-value>
Comergent_jsp

</param-value>
</jsp-param>

</jsp-descriptor>
</weblogic-web-app>

XML Parsing
If an error message displays, review CHAPTER 8, "Troubleshooting and Backing
Up the Visual Modeler". If you suspect problems with the XML parser settings,
then you can set up an XML Registry for the WebLogic server as follows. Make the
following changes to the container_home/config/mydomain/config.xml
configuration file.

1. Add the following:

<XMLRegistry Name="Comergent XML Registry"
DocumentBuilderFactory=

"org.apache.xerces.jaxp.DocumentBuilderFactoryImpl"
SAXParserFactory=

"org.apache.xerces.jaxp.SAXParserFactoryImpl"
TransformerFactory=

"org.apache.xalan.processor.TransformerFactoryImpl" />

2. Add the following attribute to the Server element: XMLRegistry="Comergent
XML Registry". For example:

<Server ListenPort="7001" Name="server" NativeIOEnabled="true"
StdoutDebugEnabled="true" StdoutSeverityLevel="64"
TransactionLogFilePrefix="config/ICC/logs/"
XMLRegistry="Comergent XML Registry">

Continue with the steps described in "Database Server Steps" on page 107.

Solaris and Oracle OCI Driver
Note that if you are using an Oracle database server for the Knowledgebase, then
you can use the Oracle OCI JDBC driver to connect from the Visual Modeler to the
Oracle database server. See "Support for Oracle Server" on page 107 for further
information.

Further Deployment Steps
Once you have deployed the application, you should review the following topics:

• "Database Server Steps" on page 107

• "Setting the Session Timeout" on page 113
Visual Modeler Application Guide

Matrix Reference Segments Setup
• "Modifying the URL for the Web application DTD" on page 114

• "Managing Memory" on page 114

• "High Availability and Clustering" on page 115

Matrix Reference Segments Setup
The Visual Modeler provides out-of-the-box segments that use the Matrix reference
data. If you load the Matrix reference data, you can use these segments as examples
for creating custom segments for your implementation. These segments are
associated with activities such as promotions and pricing rules. You must run the
segment calculations and publish the results for these segments to associate them
with users (members).

To enable the Matrix reference segments, you can start a cron job to perform all
segment calculations and publish all results.

1. Log in to the Visual Modeler as an admin user with access to the job scheduler.

2. Click Job Scheduler in the System Administration panel on the Visual
Modeler home page.

3. Click the Nightly Segments Build cron job.

The details of the cron job display.

4. Start the Nightly Segments Build cron job.

The Nightly Segments Build cron job processes and transfers information such as
tracked events, performs the segmentation calculations, and publishes the results.

Installing the Reference Visual Modeler
This section describes the steps to install Visual Modeler Release 9.0 without using
the SDK. This provides you with a relatively quick verification of the basic
deployment of our reference Web application. Before you start the process of
customizing the Visual Modeler, install the Visual Modeler into the SDK and work
in that environment to create your customized deployment.

Note that to provide support for locales other than U.S. English, you must install a
language localization pack using the SDK.

These instructions use three logically distinct machines: the developer machine, the
servlet container machine, and the database server machine. Depending on your
Visual Modeler Application Guide 91

Installing the Visual Modeler

92
situation, these machines may actually all be the same physical machine or different
ones: we identify what steps are performed on which logical machine.

Make sure that you have the Java Development Kit (JDK) 6 installed on all three
machines. The servlet container machine and the database server machine should
have the database client tools installed to connect to the database server. You will
need to know the database connection information required to connect from the
servlet container machine to the database server. In addition, you will need to know
how to configure your database setup to take advantage of the segmentation
feature. See "Configuring the Transactional and Segmentation Databases" on
page 64 for more information before proceeding with the reference installation.

1. Identify the location on your development machine in which you will unpack
the installation files: we refer to this as cmgt_home.

2. Copy the release JAR file into cmgt_home.

3. Unjar the release JAR file by navigating to cmgt_home at the command line,
and executing:

jar -xvf Sterling-Aries.jar

Note that the name of the JAR file may be slightly different from the name
given here.
This unpacks the release JAR file and creates several sub-directories under
cmgt_home.

4. You must now set the values of system properties that the Web application will
need, such as the location of the database. At the command line, execute:

java -jar install/cmgt-preferences-tools.jar

If you are running on Linux and see an error message, then you may have to
install the xorg-x11-deprecated-libs.rpm RPM package appropriate for
your Linux version.

5. The initial settings dialog box displays.

FIGURE 2. Initial Settings Dialog Box
6. Click the Open dir or .war file button to navigate to the release WAR file, then

select the file named Sterling-Aries-def-RC-1.war (or something very similar
Visual Modeler Application Guide

Installing the Reference Visual Modeler
to this). The release WAR file name appears in the File Name field. Click
Open. The Preferences Store Open File dialog box should open up in the
correct directory and you should be able to leave the value of the Preferences
store with its current value.

7. Click Next. The main Preferences Viewer window displays.

FIGURE 3. Preferences Viewer Window
8. Using this window, set the values for the following properties as follows:

a. Navigate to the DataServices.DataSource.ENTERPRISE.ConnectString
property. You should see the lower property panel display the name of the
property, its current value, and where the value is stored:

FIGURE 4. Property Panel
b. In the Tree View, right-click the Connect String property and select

Modify Value.
Visual Modeler Application Guide 93

Installing the Visual Modeler

94
FIGURE 5. Modify Value Dialog Box
c. In the Modify Value dialog box, enter the correct value for the connection

string property: this is the URL used by the data services layer to connect
to the Knowledgebase database server. The form of this URL depends on
the database type as follows:

• For Oracle: “jdbc:oracle:thin:@<machine>:1521:<sid>”

• For SQL Server: “jdbc:sqlserver://<sqldb_name>;
DatabaseName=<dbname>”

d. Repeat these steps for the following properties:

• DataServices.DataSource.ENTERPRISE.DataService:

• For Oracle: “JdbcService”

• For SQL Server: “JdbcService”

• DataServices.DataSource.ENTERPRISE.SrvcSubType:

• For Oracle: “ORACLE”

• For SQL Server: “MS”

• DataServices.DataSource.ENTERPRISE.UserId

• DataServices.DataSource.ENTERPRISE.Password

• DataServices.DataSource.SEGMENT.ConnectString:

• For Oracle: “jdbc:oracle:thin:@<machine>:1521:<sid>”

• For SQL Server: “jdbc:sqlserver://<sqldb_name>;
DatabaseName=<dbname>”

• DataServices.DataSource.SEGMENT.Dataservice:

• For Oracle: “JdbcService”

• For SQL Server: “JdbcService”

• DataServices.DataSource.SEGMENT.SrvcSubType:
Visual Modeler Application Guide

Installing the Reference Visual Modeler
• For Oracle: “ORACLE”

• For SQL Server: “MS”

• DataServices.DataSource.SEGMENT.UserId

• DataServices.DataSource.SEGMENT.Password

• DataServices.General.JdbcDriver1:

• For Oracle: “oracle.jdbc.driver.OracleDriver”

• For SQL Server: “com.microsoft.sqlserver.jdbc.SQLServerDriver”

• DataServices.General.DsKeyGenerators: set to the database-specific
value:

• For Oracle: “OracleKeyGenerators.xml”

• For SQL Server: “MSSQLJDBCKeyGenerators.xml”

• You can set any other properties that you wish using the Preferences
Editor, but these should be enough to get your reference deployment up
and running.

9. When you have finished setting property values, click File -> Save.

10. Click File -> Exit.

The new property values will be saved to the file: cmgt/debs/conf/
prefs.xml in your home directory, referred to as user_home (for example:
C:\Documents and Settings\username\ or /export/home/username/).

11. If the database server is inaccessible from your current network location, then
transfer the appropriate sql-data file (depending on your DB_TYPE) to a
temporary location, cmgt_data_home, on a machine that can access the
database server machine:

• cmgt_home/sql/MSSQLJDBCsql-data-Aries-def-RC-1.jar

or

• cmgt_home/sql/Oraclesql-data-Aries-def-RC-1.jar

12. On this machine, at the command line navigate to cmgt_data_home.

13. Unpack the JAR file by executing:

jar -xvf DB_TYPEsql-data-Aries-def-RC-1.jar
Visual Modeler Application Guide 95

Installing the Visual Modeler

96
14. Set up your database users, privileges, and, if you are using an Oracle database
server, the Oracle database link. See "Configuring the Transactional and
Segmentation Databases" on page 64 for details.

15. If you are using an Oracle database server, edit the following files:

• cmgt_data_home/WEB-INF/sql/Oracle/setup/oracle_indexes.sql file:
change the value of @ORACLE_INDEX_TABLESPACE@ name, if
necessary, to TABLESPACE <tablespace_name>. The TABLESPACE
name specifies the location of your Oracle database server’s index files.

• cmgt_data_home/WEB-INF/sql/Oracle/setup/Oracle_privileges.sql file:
replace @ORACLE_USERNAME@ with the name of the transactional
database user name and @ORACLE_SEGMENT_USERNAME@ with
the segmentation database user name. If your configuration is
transactional and segmentation databases within the same schema on the
same server, you can leave @ORACLE_SEGMENT_USERNAME@
blank.

• cmgt_data_home/WEB-INF/sql/Oracle/segment/oracle_mviews1.sql
file: replace @ORACLE_USERNAME@ with the transactional database
user name and @ORACLE_SEGMENT_USERNAME@ with the
segmentation database user name. If your configuration is transactional
and segmentation databases within the same schema on the same server,
you can leave @ORACLE_SEGMENT_USERNAME@ blank.

• cmgt_data_home/WEB-INF/sql/Oracle/segment/oracle_mviews.sql file:
If your configuration is transactional and segmentation schema within the
same server (either in the same schema or separate schema), you can skip
this step. Otherwise, replace @ORACLE_SEGMENT_LINK@ with the
name of the Oracle database link that was created on the segmentation
database to access the transactional database.

16. If you are using a SQL Server 2005 database server, edit the following files:

• cmgt_data_home/WEB-INF\sql\MSSql\setup/
mssql_create_replication.sql file: replace the following variables with
appropriate values. See "SQL Server 2005 Setup" on page 71 for details.

• @MSSQLJDBC_SERVERNAME@: This is the actual name of the server
machine, not the network name

• @MSSQLJDBC_SA_PASSWORD@

• @MSSQLJDBC_DISTRIBUTOR_DATABASE@
Visual Modeler Application Guide

Installing the Reference Visual Modeler
• @MSSQLJDBC_DISTRIBUTOR_DATA_FOLDER@

• @MSSQLJDBC_DATABASE@

• @MSSQLJDBC_SEGMENT_SERVERNAME@: This is the actual name
of the server machine, not the network name.

• @MSSQLJDBC_SEGMENT_DATABASE@

• @MSSQLJDBC_SEGMENT_USERNAME@

• @MSSQLJDBC_SEGMENT_PASSWORD@

• @MSSQLJDBC_START_DATE@

• cmgt_data_home/WEB-INF\sql\MSSql\setup/
mssql_drop_replication.sql file: replace the following variables with
appropriate values. See "SQL Server 2005 Setup" on page 71 for details.

• @MSSQLJDBC_SA_PASSWORD@

• @MSSQLJDBC_DISTRIBUTOR_DATABASE@

• @MSSQLJDBC_DISTRIBUTOR_DATA_FOLDER@

• @MSSQLJDBC_DATABASE@

• @MSSQLJDBC_SEGMENT_SERVERNAME@: This is the actual name
of the server machine, not the network name.

• @MSSQLJDBC_SEGMENT_DATABASE@

• @MSSQLJDBC_SEGMENT_USERNAME@

• @MSSQLJDBC_SEGMENT_PASSWORD@

17. Edit the following batch scripts to add your connection information. The
scripts reside in cmgt_data_home.

• For Oracle database servers:

• OracleCreateSchema.bat or OracleCreateSchema.sh

• OracleCreateSegmentSchema.bat or OracleCreateSegmentSchema.sh

• If the transactional and segmentation databases are on separate Oracle
servers (the database URL’s have different values), edit
OracleCreateSegmentSchema1.bat or
OracleCreateSegmentSchema1.sh
Visual Modeler Application Guide 97

Installing the Visual Modeler

98
• If the transaction and segmentation databases are on the same Oracle
server (the database URL’s have the same values) and their user names are
different, edit OracleCreateSegmentSchema2.bat or
OracleCreateSegmentSchema2.sh

• OracleCreateSegmentSchema3.bat or
OracleCreateSegmentSchema3.sh

• For SQL Server 2005 database servers:

• MSSQLJDBCCreateSchema.bat,
MSSQLJDBCCreateSegmentSchema.bat

• If the transactional and segmentation databases are on separate SQL
Servers or different databases on the same server (the database URL’s
have different values), edit MSSQLJDBCCreateSegmentSchema1.bat.

• MSSQLJDBCCreateSegmentSchema3.bat

18. Run the following scripts in the order specified:

• Oracle:

a. OracleCreateSchema.bat or OracleCreateSchema.sh

b. OracleCreateSegmentSchema.bat or OracleCreateSegmentSchema.sh

You must use the TNS alias name of the Oracle database server as seen
from the current machine.

• SQL Server 2005:

a. MSSQLJDBCCreateSchema.bat

b. MSSQLJDBCCreateSegmentSchema.bat

You must use the ODBC source name of the SQL Server database as
seen from the current machine.

19. Run the appropriate scripts for your transactional/segmentation database
configuration:

• For Oracle:

• If the transactional and segmentation databases are on separate Oracle
servers (the database URL’s have different values), run
OracleCreateSegmentSchema1.bat or
OracleCreateSegmentSchema1.sh
Visual Modeler Application Guide

Installing the Reference Visual Modeler
• If the transaction and segmentation databases are on the same Oracle
server (the database URL’s have the same values) and their user
names are different, run OracleCreateSegmentSchema2.bat or
OracleCreateSegmentSchema2.sh

• Always run OracleCreateSegmentSchema3.bat or
OracleCreateSegmentSchema3.sh

• For SQL Server 2005:

• If the transactional and segmentation databases are on separate SQL
Servers (the database URL’s have different values), or the transac-
tional and segmentation databases are on the same SQL Server but in
two different databases, run
MSSQLJDBCCreateSegmentSchema1.bat.

• Always run MSSQLJDBCCreateSegmentSchema3.bat or
MSSQLJDBCCreateSegmentSchema3.sh.

20. Copy the following files to a temporary location, cmgt_app_home, on the
servlet container machine:

• cmgt_home/Sterling-Aries-def-RC-1.war

• user_home/cmgt/debs/conf/prefs.xml

• cmgt_home/data/Sterling-xmldata-Aries-def-RC-1.jar

• cmgt_home/data/cmgt-xmlloader-tool.jar

• cmgt_home/install/cmgt-cryptography-tool.jar

• cmgt_home/install/cmgt-jspResourcer.jar

• cmgt_home/install/xmlClient-tool.jar

21. On the servlet container machine, copy the cmgt_app_home/prefs.xml file to
the following directory (which you may have to create): user_home/cmgt/
debs/conf/prefs.xml. Note that this should be the user_home for the user that
is used to run the servlet container.

22. If you are running against Oracle or SQL Server 2005, then install the
appropriate JDBC JAR file into the servlet container so that it can be used by
the Visual Modeler web application when deployed. In the Tomcat Application
Server, install these JAR files by placing them in the container_home/
common/endorsed/ directory. In WebLogic application servers, this step is
probably unnecessary, since WebLogic servers are deployed with an extensive
collection of JDBC clients.
Visual Modeler Application Guide 99

Installing the Visual Modeler

100
23. Make sure that you are logged in as the user who is running the application
server, and at the command line, navigate to cmgt_app_home.

24. Unpack the Sterling-xmldata-Aries-def-RC-1.jar file by executing:

jar -xvf Sterling-xmldata-Aries-def-RC-1.jar

25. Add any custom (auxiliary) price types to your implementation. The following
lists the general steps.

a. Open the Web-INF/xmldata/Minimal/LightWeightLookupList file in a
text editor and add your new price types to the file. The format is as
follows:

Where lookup_code is the unique numeric code associated with the
price type, such as 1000, 2000, or 3000, and price_type_name is the
name of the price type, such as Monthly, Cancellation, or Overage.

b. Create a new file in the directory WEB-INF/xmldata called
PriceTypeList to contain your auxiliary price types. The format is as
follows:

<?xml version="1.0" encoding="UTF-8" ?>

<PriceTypeListData>
<PriceTypeList state="INSERTED" type="BusinessObject">

<PriceType state="INSERTED">
 <PriceTypeCode state="INSERTED">price_type_code</PriceTypeCode>
 <Locale state="INSERTED">en_US</Locale>
 <PriceTypeGroupCode state="INSERTED">
 group_code</PriceTypeGroupCode>
 <PriceTypePropertyName state="INSERTED">
 PRICE: property_name</PriceTypePropertyName>
 <UpdateDate state="INSERTED">YYYY-MM-DD HH:MM:SS.MS</UpdateDate>
 <UpdatedBy state="INSERTED">1</UpdatedBy>
 <CreateDate state="INSERTED">YYYY-MM-DD HH:MM:SS.MS</CreateDate>
 <CreatedBy state="INSERTED">1</CreatedBy>
 <ActiveFlag state="INSERTED">Y</ActiveFlag>
</PriceType>

</PriceTypeList>
</PriceTypeListData>

Where price_type_code is the unique numeric code associated with the
price type and which matches the lookup code, such as 1000, 2000, or
3000; group_code is the price type group code with which this price
type is associated, such as 20 for one-time prices; property_name is the
Visual Modeler Application Guide

Installing the Reference Visual Modeler
name of the price type property, is uppercase, and always begins with
PRICE:, such as PRICE: ACTIVATION; and the UpdateDate and
CreateDate dates are timestamps.

c. Edit the WEB-INF/scripts/MinimalData.lst file with a text editor and
add the following line:

WEB-INF/xmldata/PriceTypeList

26. Load the data.

a. On UNIX, run:

loadDBFromXML.sh full <jdbc_jar_file.jar>

where <jdbc_jar_file.jar> is the full path to your JDBC driver. If you
get a permissions error, then modify the permissions on the script to
give yourself execution privileges.

b. For Windows configurations using ODBC to connect to the
Knowledgebase database server, run:

loadDBFromXML full

c. For Windows configurations with JDBC, run:

loadDBFromXML full <jdbc_jar_file.jar>

where <jdbc_jar_file.jar> is the full path to your JDBC driver.
Note that you can load just the minimal data by specifying “minimal” rather
than “full” when you run this command.

27. Load the full segmentation data:

a. On UNIX, run:

Attention: On Linux, if you see errors reporting that a network connection cannot be
established to the database server, then check that you do not have Secure
Linux enabled. If need be, navigate to /etc/sysconfig/selinux and make
sure that the following is set:

SELINUX=disabled
Visual Modeler Application Guide 101

Installing the Visual Modeler

102
loadSegDBFromXML.sh full <jdbc_jar_file.jar>

where <jdbc_jar_file.jar> is the full path to your JDBC driver. If you
get a permissions error, then modify the permissions on the script to
give yourself execution privileges.

b. For Windows configurations using ODBC to connect to the
Knowledgebase database server, run:

loadSegDBFromXML full

c. For Windows configurations with JDBC, run:

loadSegDBFromXML full <jdbc_jar_file.jar>

where <jdbc_jar_file.jar> is the full path to your JDBC driver.

28. Check the results by examining the log files in the directory in which you ran
the data load command.

29. Rename the cmgt_app_home/Sterling-Aries-def-RC-1.war file to
Sterling.war and deploy it to the servlet container using the steps described in
"Deploying the Sterling Web Application" on page 61.

30. Restart the application server.

31. You should now be able to point your browser to the standard Visual Modeler
URL and log in as the enterprise administrator user admin/admin.

Default XML Identity Setup
This section describes how to set up a default XML user and configure request IP-
based filtering. To set up the filtering, you need to know the subnet masks of the
client hosts that will send XML requests.

Requests coming into a storefront do not necessarily contain user information,
especially if the requests' originating system and processing system are behind the
same firewall or if the service provided by the Visual Modeler (using XML
message relay) is a subset of services that belong in the DMZ.

Attention: On Linux, if you see errors reporting that a network connection cannot be
established to the database server, then check that you do not have Secure
Linux enabled. If need be, navigate to /etc/sysconfig/selinux and make
sure that the following is set:

SELINUX=disabled
Visual Modeler Application Guide

Default XML Identity Setup
Incoming XML messages posted to a storefront URL that contain the keyword
amsg do not necessarily contain user information and are processed differently
from URL's that contain the "standard" keyword msg. The amsg URL has the
following form:

http://<server>:<port>/Sterling/amsg/<Storefront name>

You can set up a default XML user for the storefront to allow the system to create
appropriate user credentials and process the incoming requests.

To prevent exposing sensitive data and to prevent modifications to existing data,
the default XML user has only limited access to the system based on the
entitlements configured in Entitlements.xml.The system creates appropriate
credentials based on storefront-specific system properties and configurations. The
default XML user requires only a user name and must be assigned to the Default
XML Identity user type: no password is required.

The general steps are:

1. Configure the default XML user

2. Configure the trusted hosts' IP addresses

You set up the default XML identity from the Visual Modeler UI as the storefront
administrator. You edit the web.xml configuration file to configure the trusted IP
addresses.

Default XML Identity Configuration
To configure the Default XML Identity, perform the following steps:

1. Log in to your storefront as a storefront administrator.

2. Create a new storefront user of type Default XML Identity.

3. From the System Services page, set the following XML Messages properties:

• Set Should the system enable a default xml user identity? to true. This sets
the system property XMLMessages.EnableDefaultXMLIdentity to true.
The default value is false.

• Enter a user name in the Username of default identity for XML messages
field. This sets the default XML identity user name in the system property
XMLMessages.DefaultXMLIdentity_UserName. The default value is
null.

4. Log out and restart the server. This allows the system to recognize the new
default XML identity and user name.
Visual Modeler Application Guide 103

Installing the Visual Modeler

104
When Default XML Identity is enabled, the system uses the configured default
XML user to build user credentials, even if the request specifies a user identity.

The user type of the default XML user must be EnterpriseDefaultXMLIdentity. If it
is not, the system throws an exception during creation of the associated user
credential.

The minimal data contains a default XML user: XMLGuest.

Trusted IP Address Configuration
You set up IP address filtering using the RequestIPFilter class, and use filter
mapping in the WEB-INF\web.xml configuration file so that the client IP address
is matched against entries from the list of trusted hosts. You edit the web.xml file to
specify allowable IP addresses.

The web.xml file contains an entry that invokes the filter
AnonXMLIdentityIPFilter when the request URL contains the keyword amsg. The
default entry is similar to the following:

<filter>
 <filter-name>AnonXMLIdentityIPFilter</filter-name>
 <filter-class>com.comergent.dcm.core.filters.RequestIPFilter</fil-
ter-class>
 <init-param>
 <!-- specify comma separated list of IP addresses. Wildcard

character '*' can be used. -->
 <param-name>AllowableHosts</param-name>
 <param-value></param-value>
 </init-param>
</filter>

Specify the trusted IP addresses separated by commas. You can use the wild card
character ('*'). For example:

<filter>
 <filter-name>AnonXMLIdentityIPFilter</filter-name>
 <filter-class>com.comergent.dcm.core.filters.RequestIPFilter</fil-
ter-class>
 <init-param>
 <!-- specify comma separated list of IP addresses. Wildcard

character '*' can be used. -->
 <param-name>AllowableHosts</param-name>
 <param-value>127.0.0.1, 10.62.*.*, 10.64.52.*, 10.68.55.5</param-
value>
 </init-param>
</filter>
Visual Modeler Application Guide

Default XML Identity Setup
The filter implementation gets the IP address of the sender and compares that IP
address with the allowable IP address list specified in web.xml. If the IP address of
the sender matches an IP address in the allowable IP address list, the request is
processed. If there is no match, the request is filtered and no further processing is
done.

Depending on your Visual Modeler implementation, there may be configuration
issues to consider for IP address filtering. For example, if your Visual Modeler is
deployed in a clustered mode, ensure that the load balancer is configured to
propagate the client system IP address so that the filter can use this data to
determine whether to serve the request or not. If the load balancer cannot be
configured this way, seriously consider using a secondary load balancer for your
deployment, to be used only by the internal network. For example, you would set
up a secondary load balancer so that the fulfillment system posts messages to the
secondary load balancer and the filter accepts only those messages coming from the
secondary load balancer, ignoring others.

Default XML Identity Request Authentication
The request URL keyword amsg cues the MessagingServlet to authenticate
requests differently from requests with the msg keyword. The MessagingServlet
uses a combination of the amsg keyword and the system property settings for
enabling and configuring the default XML user identity to determine how to
authenticate an incoming request.

The following diagram illustrates the authentication sequence.
Visual Modeler Application Guide 105

Installing the Visual Modeler

106
FIGURE 6. Authentication Sequence
The authentication sequence is as follows:

1. The MessagingServlet determines how to authenticate a request. If the URL
keyword is amsg and Default XML Identity is enabled, the MessagingServlet
authenticates using the Default XML User credential and ignores any user
information contained in the request.

2. The MessagingServlet gets the Default XML User-related system properties.

3. For first-time creation of the Default XML user credential, the
AuthenticationAPI.loginDefaultXMLUser API is invoked. The
implementation of this API checks whether the user for whom the credential is
to be created belongs to the user type EnterpriseDefaultXMLIdentity. Only
users belonging to this user type can be configured as a default XML user.

4. The Default XML user credential is cached for every storefront that has a valid
configuration for Default XML user.
Visual Modeler Application Guide

Database Server Steps
AuthenticationAPI
This section describes the authentication API. AuthenticationAPI helps log in a
Default XML Identity user.

Methods:

• Credential loginDefaultXMLUser(Object authority, Credential
authorityCredential, Object bearer, String namespace, String username)

• authority: authority class object

• authorityCredential: authority Credential object

• bearer: bearer class

• namespace: storefront id

• username: name of the user for which the login should be attempted

• return value: the Credential object that is created if the login succeeds.

Database Server Steps
Depending on which database server you use with the Visual Modeler, perform the
required steps in this section. See "Managing Database Connections" on page 109
for information about connection pooling.

Support for Oracle Server
If you plan to use Oracle Server for your database server, then you must run the
installOracle target as part of the installation of the Visual Modeler. This ensures
that the Oracle JDBC drivers are in the deployed Web application.

If you plan to use the OCI driver to connect from the Visual Modeler machine to the
Oracle Server, then you must make sure that the OCI driver is set up correctly. On a
UNIX system:

1. Make sure that the OCI liboci*jdbc.so file is installed on the Visual Modeler
machine. The “*” in the name of the file is the version number of the OCI
library.

2. Make sure that the servlet container scripts ensure that the
LD_LIBRARY_PATH includes the location of the OCI liboci*jdbc.so file and
that ORACLE_HOME is set to point to the location of the Oracle client tools.

Note: A new Credential class, NoPasswordCredential, helps login a user
based only on the username: a password is not required.
Visual Modeler Application Guide 107

Installing the Visual Modeler

108
3. Make sure that the Oracle JAR file matches the version of the OCI library file:

Support for SQL Server
If you are running the Visual Modeler on a Windows system and plan to use SQL
Server 2003 for your database server, then you must perform the following steps.

1. Copy the appropriate DLL file from debs_home/Sterling/WEB-INF/lib/
winnt/ to the C:\WINNT\system32\ directory. Note that the installMsSql
target will do this on a machine running the SDK, but if your deployment
machine is different from the SDK machine, then you must do this step
manually.

2. If you plan to support data in locales other than en_US, then you must consider
how basic searches are performed. If you do not want searches to differentiate
between upper and lower cases instances of the same character, then you must
provide values for the elements LowerCase and UpperCase of the Microsoft
element of the DataServices.xml file, contained in the WEB_INF\lib\cmgt-
dataservices.jar file.

Set LowerCase to "LOWER(" and UpperCase to "UPPER("; for example:
<UpperCase controlType="text" runtimeDisplayed="true"
ChangeOnlyAtBootTime="true" visible="true" boxsize="45"
displayQuestion="UpperCase SQL Function" defaultChoice=""
help="Enter the SQL function that converts strings to uppercase
for the selected database.">UPPER(</UpperCase>

Note that the use of the UPPER and LOWER functions in searches means
that indexes on the tables are not used and this can result in reduced
performance.

3. If more than one deployment of the Visual Modeler is accessing the same
Knowledgebase on SQL Server, then you must set a two-digit server ID for
each deployment.

a. If the machines are not clustered, then set the ServerId element in the
prefs.xml file so that each has a unique integer value: 01, 02, and so on.

b. If the machines are clustered, then you must modify the servlet container
command or script that starts the servlet container on each machine so that

TABLE 10. OCI library and JDBC Driver Files

OCI Library JDBC JAR File

oci804jdbc.so Oracle.jar

ocijdbc8.so Classes111.zip
Visual Modeler Application Guide

Managing Database Connections
a Java system property is set: Comergent.DataServices.General.ServerId.
This should be set on each machine so that each has a unique value: 01,
02, and so on.

For example, in a Tomcat installation, you can modify the batch file to
include:
set JAVA_OPTS=-DComergent.DataServices.General.ServerId=02

Managing Database Connections
This section describes how to manage the connections between the Visual Modeler
and the Knowledgebase.

Configuration Files
The following files manage the configuration of the data services layer:

• DataServices.xml: this file is contained in the WEB_INF\lib\cmgt-
dataservices.jar file that ships with the Visual Modeler. This file specifies
values for all the data services properties unless they are overridden by the
prefs.xml configuration file.

• prefs.xml: this file contains the properties and their values created during
the installation process. In addition, if you make changes to the system
properties through the Visual Modeler administration UI, then the changes
are persisted to this file.

Connection Pooling
This section answers some common questions about connection pooling.

• What is the purpose of connection pooling?

• How does Sterling’s connection pooling work?

• Why are there separate query and update connection cools?

• How do I validate connections prior to reuse?

• How can I limit the number of connections used?

• How can I free up connections when demand drops?

• What happens when connection limits are reached?

• Why are the connection limits on the data source?
Visual Modeler Application Guide 109

Installing the Visual Modeler

110
Common Problems

• My database requests fail with a “connection reset by peer” message

• My database connections are not being released when traffic drops

• I share a database with other applications. I cannot allow the Visual
Modeler to use more than n connections

What is the purpose of connection pooling?
Establishing a database connection is typically processor-intensive. The use of
connection pools allows us to maintain a set of open connections for use by
database requests. These connections can then be allocated to short duration SQL
requests and then immediately returned to the pool for re-use.

How does Sterling’s connection pooling work?
The Visual Modeler maintains these logical pools of connections:

• Pool of message-based connections. This pool is simply a HashMap that
mates a message version to an appropriate Message-based DataService.
One DataService instance is shared by all requests requiring that message
version.

• Pool of database connections. This pool is used for all database requests.
When a data bean persist() or restore() method is invoked, we retrieve a
connection from the pool; process the operation; then return the
connection to the pool for reuse.

In past releases the Visual Modeler supported sharing a database connection
across multiple concurrent requests. Not all databases are capable of
supporting this functionality. In addition, performance testing has shown
that an expensive SQL request can drastically impact the performance of all
requests sharing the same connection. Based on these issues, the Visual
Modeler has eliminated support for sharing of Query connections.

In Release 6.3 and later releases, there is one Query connection pool and one
Update connection pool for each SQL-based data source. This allows further tuning
and optimization of the connection pools.

Why are there separate query and update connection cools?
The use of separate pools for Query and Update Connections allows the Visual
Modeler to optimize connections for read-only access.
Visual Modeler Application Guide

Managing Database Connections
How do I validate connections prior to reuse?
The following properties control connection timeout and validation:

• The ConnectTimeout element provides a timeout setting for connections
in the pools. The value is the number of minutes for a connection to
timeout. For example, if you set this value to “1”, then if a connection has
been unused for more than one minute, it is validated before being used. A
setting of 0 means that connections do not timeout.

• The ReconnectOnTimeout element controls what is done when a
connection timeout.

• A setting of “true” indicates that when a connection times out it will
automatically reconnect the next time it is retrieved from the pool.

• A setting of “false” indicates that a connection timeout will result in the
connection being validated prior to reuse. If the validation fails, then a
reconnect will occur.

How can I limit the number of connections used?
Each DataSource specified in the DataServices.xml configuration file supports a
MaxConnections property. This specifies an absolute upper limit on the number of
connections that will be used. A setting of “-1” indicates there is no limit. The
DataServices.xml file is contained in the WEB_INF\lib\cmgt-dataservices.jar
file.

How can I free up connections when demand drops?
Each DataSource specified in the DataServices.xml configuration file also
supports a MaxPoolSize property. This provides a soft limit on the number of
connections that will be pooled. A setting of “-1” indicates there is no limit. The
pool size is not an absolute limit, but as connections are released the pool will
gradually move back down to its maximum size.

The Visual Modeler does allow the number of connections to grow beyond the
maximum pool size, but when the number of free connections exceeds a preset
limit we will begin releasing connections until the number of connections
eventually drops back to the maximum pool size. We do this gradually to avoid
excessive connection requests when pool is at the boundary.

What happens when connection limits are reached?
If a connection is requested from the pool, but no free connections are available,
then we would normally create a new connection. If the connection limit is reached,
then we will instead wait for a connection to be returned to the pool.
Visual Modeler Application Guide 111

Installing the Visual Modeler

112
Why are the connection limits on the data source?
Providing connection limits for each data source provides greater flexibility in
allocating connection resources. For example, this allows you to limit the number
of connections to a back-end ERP system, while providing higher limit when
accessing the primary database server.

Common Problems

My database requests fail with a “connection reset by peer” message
This error is normally a result of either the database server timing out the database
connection, or of the network connection being timed out by a firewall. This
problem can be resolved by setting the ConnectionTimeout element to ensure
validation of connections that exceed the timeout.

My database connections are not being released when traffic drops
 Setting the MaxPoolSize property on the data source will allow the number of
database connections to drop back to predefined limits as connections are freed.

I share a database with other applications. I cannot allow the Visual Modeler
to use more than n connections
Setting the MaxConnections property on the data source will allow you to limit the
maximum number of database connections used by the Visual Modeler.

Pagination Settings
The Visual Modeler supports the use of paginated data sets so that long lists can be
displayed one page at a time. This functionality is implemented by saving a set of
files to the Visual Modeler machine’s file system. These represent the pages of data
objects to be paged through. The location of the paginated file sets is determined by
the rsCachePath element in the DataServices.xml file, contained in the
WEB_INF\lib\cmgt-dataservices.jar file. The rsCachePathIsAbsolute element is
used to specify whether the value of the rsCachePath element should be treated as a
relative or absolute path. By default, its value is “false” and so the path is treated as
being relative to debs_home/Sterling/. The adjustFileName() method call is used
to resolve this location to an absolute location in the servlet container’s file system.

If your implementation of the Visual Modeler uses a cluster of servlet containers,
then the location of the pagination directory must be accessible to all members of
the cluster. See "High Availability and Clustering" on page 115.
Visual Modeler Application Guide

Setting the Session Timeout
Setting the Session Timeout
Servlet containers and Web applications attach a session to each user interaction
with the server. By this means, they can maintain information from one request to
another as a user interacts with the application. To help ensure that a user’s browser
is not used by an unauthorized user, the servlet container will mark a session as
being invalid once a certain time has elapsed from the time when the session was
last accessed. This is referred to as the session timeout period. Sessions
automatically become inactive if the time from the last access exceeds the session
timeout setting.

You can set the session timeout period in the Visual Modeler web.xml
configuration file using the session-timeout element. For example, to timeout
sessions after 30 minutes, set the element to:

<session-timeout>30</session-timeout>

When setting the session timeout period, bear in mind the following:

• The longer the time out, the greater the risk that the servlet container will
run out of memory. Each session takes up space in memory, and when
objects are added to the session, then the memory usage increases. Often,
users may not actively log out: their session will stay resident in memory
until the servlet container times it out. If your Web site is likely to see
heavy user traffic, then bear in mind this memory consumption when
determining JVM memory settings.

• The longer the timeout, the greater security risk presented: either by an
unauthorized person using an unattended Web browser or by an
unauthorized person spoofing a session simply by guessing its session ID.

• The session timeout period must be sufficiently long to enable users to
complete their tasks. If the tasks include activities such as using a third-
party Web application or obtaining information from a third-party source,
then allow for this amount of time so that a user is not inadvertently timed
out of the Visual Modeler.

For these reasons, we suggest setting a session timeout value of 30 (30 minutes).
However, you must assess the needs of your implementation and select a value
accordingly.
Visual Modeler Application Guide 113

Installing the Visual Modeler

114
Modifying the URL for the Web application DTD
When you start the servlet container, the Visual Modeler is loaded as a Web
application. The web.xml file configuration file is read to determine the basic
configuration of the application. The web.xml file is validated against a DTD
specified by its web-app element.

By default, the validating DTD is at the URL:

http://java.sun.com/dtd/web-app_2_3.dtd

However, access to this URL can be limited either by your network status or by Sun
Microsystems. As an implementation step, we recommend that you modify the
validating URL to point to a copy of the DTD whose location is assured by your
implementation.

Our suggested solution is to use a relative URL to reference the DTD within the
Visual Modeler context. For example:

/WEB-INF/lib/web-app_2_2.dtd

Note that the form of this relative URL is servlet container-specific.

Alternatively, you can add the DTD to a Web server and point to this location. For
example, if you are using a Web server to act as a front-end to the Visual Modeler,
then put the DTD on this Web server.

Managing Memory
In general, you should allocate as much memory as possible to the JVM running
your application server. Typically, this is done by modifying the configuration
parameters that are used to start the Java process, say:

-Xms256M -Xmx512M -XX:MaxPermSize=128M

However, if your system is likely to experience heavy load at times, then you can
use a Visual Modeler configuration parameter to ensure that the system can recover
from a burst of memory-intensive activity.

Set the memoryThreshold element of the C3_Commerce_Manager element of
Comergent.xml to an integer value between 0 and the maximum allocated memory
size (in Kilobytes). When memory usage exceeds this value, then new requests will
be refused with the HTTP status of 503. The default value, -1, disables the
parameter.
Visual Modeler Application Guide

Configuring Ehcache
For example, suppose that you have set the maximum memory to -Xmx512M
(524,288K). Suppose that you set memoryThreshold to 498074. Then when
memory usage exceeds 498,074K, new requests are refused until memory usage
has dropped back down to below this value.

Configuring Ehcache
The Visual Modeler uses Ehcache to manage data caching, both for clustering and
for the global application cache. Out of the box, Ehcache manages pre-configured
caches for applications such as pricing, product categories and features. You
configure new caches and modify cache properties such as the amount of time to
cache data and the maximum number of elements in memory by editing the WEB-
INF\properties\EhCache.xml file.

High Availability and Clustering
The Visual Modeler can be deployed in a distributed environment in which more
than one individual instances of the Visual Modeler run as a cluster. This provides
support for ensuring high availability of the Visual Modeler and to support fail-over
of individual machines. See CHAPTER 13, "Installing a Clustered
Implementation" for more information.

Sharing Directories
In some deployments of the Visual Modeler, for example a clustered deployment,
you must specify the location of directories to be used for uploaded and generated
files. The locations of these directories is specified using the web.xml file to set
context parameters.

You have these sets of attributes for the directories to specify:

• share-noshare: share directories can be accessed by two or more machines,
noshare directories should be accessed only by the machine whose
web.xml file specifies the location.

• public-private: public directories must be accessible by the Web server
serving the static content, private directories should not be.

• loadable-noloadable: loadable directories can be used to upload files,
noloadable directories should not be used for uploaded files.

The same directory can be used for more than one of these combinations of choices.
Visual Modeler Application Guide 115

Installing the Visual Modeler

116
At minimum, you must specify the location of the share.public.loadable and
share.public.noloadable directories. If you have two or more machines in a cluster,
then these directories must be accessible from all of the cluster machines.

The web.xml file lets you specify how a front-end Web server can access files in
the public directories. Use the WebPathToPublicLoadableWritableDirectory
element to map a Web server virtual path to the directory identified by the
share.public.loadable element. Use the
WebPathToPublicNoLoadableWritableDirectory element to map a Web server
virtual path to the directory identified by the share.public.noloadable element.
These elements should reflect the Web server settings used to specify virtual paths.

To set these directories up, you typically perform these steps:

1. Select one of the machine as the “primary machine”. Allocate a directory on
this machine to provide the shared location.

2. Share this location so that all member of the cluster have access to it:

• Windows: share this directory to the other machines

• UNIX: use NFS to share the directory

3. On all machines, mount the file system so that all cluster members have the
same mount point to this directory. For example:

/DEBS_shared

4. Under DEBS_shared/, create a sub-directory for each of the categories shown
in the configuration file (loadable, writable, and so on). For example:

/DEBS_shared/lw

and set that value in the configuration file. For example:
<loadable ...>/DEBS_shared/lw</loadable>

Directory and File Organization
When the Sterling.war Web application is deployed to the servlet container, it is
deployed into a directory, debs_home, that you specify during the deployment or
which the servlet container sets. This section describes the organization of the
sub-directories under debs_home.

Beneath this directory, a sub-directory is created for the Sterling Web application
when the Web application is deployed. This directory is the Web application
directory for the Visual Modeler. We refer to it as debs_home/Sterling/. It contains:
Visual Modeler Application Guide

Directory and File Organization
• A locale directory for each supported locale. Each locale may be
expressed as <la>_<CO>, where la is one of the standard language codes
and CO is one of the standard country codes, for example: en_US or
fr_CA. For a locale, the corresponding directory is debs_home/Sterling/
la/CO/. This directory contains:

• css/: holds the cascading style sheets used by the Visual Modeler.

• images/: holds common images used by the Visual Modeler.

• js/: holds Javascript libraries used by the Visual Modeler.

• htdocs/: holds the HTML templates, images, and online help for the
Visual Modeler.

• dXML/: holds the DTDs for the dXML message types.

• htdocs/: a directory for content that can be served up directly by the
servlet container or Web server. Content stored here should not be
locale-specific.

• j2ee/: a directory to hold local copies of the J2EE DTDs. See "Modifying
the URL for the Web application DTD" on page 114 for more information.

• WEB-INF/: holds all the configuration files used by the server. It contains
the following subdirectories:

• bizobjs/: holds the business object DTDs. These DTDs are used to
validate XML messages. The DTDs can be generated automatically by the
generateDTD target provided by the SDK.

• classes/: holds the Visual Modeler Java classes.

• commerceone/: used as part of Commerce One integration.

• converters/: holds the configuration files used in message conversion.

• data/: holds data provided as part of the reference implementation.

• extralib/: holds class libraries that are needed for implementation work,
but that should not be used at runtime.

• integrator/: holds the configuration files for Sterling Integrator.

• lib/: holds the Java class libraries used by the Visual Modeler Web
application.

• lib/winnt/: this holds any Windows-specific DLL files that are required.

• messages/: holds the DTDs for the Sterling message family.
Visual Modeler Application Guide 117

Installing the Visual Modeler

118
• properties/: holds the Comergent.xml file and the other configuration
files used to set the configuration of the server.

• reports/: holds the files required for Sterling Analyzer.

• rosettanet/: contains the DTD and XML files that define the RosettaNet
messages supported by the Visual Modeler.

• schema/: holds the XML files that specify the schema for your
implementation.

• stylesheets/: holds the XSL files used to translate messages from one
message family to another.

• templates/: holds the text templates used to generate messages such as
email notifications.

• web/: holds most of the JSP pages, HTML pages and support files for the
applications. It has the following structure:

/locale/ directories for each of the Visual Modeler applications. Each
locale supported by your implementation of the Visual Modeler must
have its own set of JSP pages in its corresponding locale directory.
Each locale may be expressed as <la>_<CO>, where la is one of the
standard language codes and CO is one of the standard country codes,
for example: en_US or fr_CA. For a locale, the corresponding directory
is debs_home/Sterling/WEB-INF/web/la/CO/.

• x509/: holds the certificates used to authenticate SSL sessions.

Cron Job Setup
The Visual Modeler provides a number of cron jobs out of the box. These cron jobs
require authentication with a username and password in order to run. The default
username/password combination is admin/admin. After installing the Visual
Modeler or upgrading or migrating from a previous release, you can change the
username and password of the user who administers cron jobs. If you change the
username and password, ensure that you also update the authentication information
for each cron job and that the user is assigned appropriate roles to allow running the
cron jobs.

The following cron jobs require that the user has the Enterprise.Administrator role:

• Maintain Indexsets

• Product Sync
Visual Modeler Application Guide

Setting Up Apache as a Front-end to Tomcat
• User Sync

The following cron jobs require that the user has the Enterprise.SegmentManager
role:

• Nightly Segments Build

• Reprocess Segments

Setting Up Apache as a Front-end to Tomcat
This section describes how to set up an instance of Apache Web Server
Release 2.0.59 so that it can act as a front-end to a deployment of the Visual
Modeler on Tomcat 6.x. It uses the JK 1.2 connector supplied by the Apache
Jakarta Project.

This section assumes that Apache and Tomcat are installed on two different
machines, referred to as the Web server machine and servlet container machine
respectively.

Prerequisites
1. Install Apache Web Server Release 2.0.59 on the Web server machine.

2. Deploy the Visual Modeler into the instance of Tomcat running on the servlet
container machine.

3. You should confirm that both Apache and Tomcat can be started individually
with no error. In particular, make sure that the deployment of the Visual
Modeler in Tomcat works correctly using the Tomcat port.

Overview
JK 1.2 is a connector that connects an Apache instance with a Tomcat instance.
This allows Apache to serve as a front-end Web server for Tomcat. There are
several advantages to this kind of setup:

• You can configure Apache to manage page expiration (reducing the
number of HTTP requests).

• You can configure Apache to compress responses (reducing the number
actual bytes transmitted).

Once the connector is set up and configured to work properly, a typical request flow
is as follows (using default ports):

1. The browser connects to Apache’s port 80 and submits its request.
Visual Modeler Application Guide 119

Installing the Visual Modeler

120
2. Apache determines if the incoming URL needs to be managed by the JK 1.2
connector, mod_jk.

3. If so, then Apache initiates an AJP 1.3 connection to Tomcat’s port 8009. The
request is now sent to Tomcat.

4. Tomcat processes the request and returns the response through the same AJP
1.3 connection.

5. Apache in turn relays the same response to the browser.

Configuring Apache to Use mod_jk
1. Download a copy of mod_jk-apache-2.0.58.so for Apache 2.0.58 and later. At

the time of release, the location is similar to http://tomcat.apache.org/
download-connectors.cgi. For the rest of these instructions, we assume that
you rename this file to mod_jk.so.

2. Put the mod_jk.so file in the Apache Web server apache_home/modules/
directory.

3. Edit the apache_home/conf/httpd.conf file as follows:

a. Add the following line in the LoadModule section:

LoadModule jk_module modules/mod_jk.so

Take care to provide the exact name of the mod_jk module file.

b. Add an IfModule element to force Apache to set up the Tomcat servlet
container connection and access to the Visual Modeler web application:

<IfModule mod_jk.c>
JkWorkersFile apache_home/conf/workers.properties
JkLogFile apache_home/logs/mod_jk.log
JkLogLevel info
JkMount /Sterling/* ajp13

</IfModule>

c. Add the following line to the very end of httpd.conf:

Include /tomcat-home/conf/auto/mod_jk.conf

4. Ensure that the sample Tomcat tomcat_home/conf/workers.properties file is
similar to the following:

Set properties for Tomcat
worker.list=worker1
worker.worker1.port=8009
worker.worker1.host=<servlet_container_machine_name>
Visual Modeler Application Guide

Setting Up Apache as a Front-end to Tomcat
worker.worker1.type=ajp13

Replace <servlet_container_machine_name> with the name of the servlet
container machine.

5. Ensure that the corresponding apache_home/conf/workers.properties file is
similar to the following:

Define 1 real worker using ajp13
worker.list=ajp13
Set properties for worker1 (ajp13)
worker.ajp13.type=ajp13
worker.ajp13.host=<servlet_container_machine_name>
worker.ajp13.port=8009
worker.ajp13.lbfactor=50
worker.ajp13.cachesize=10
worker.ajp13.cache_timeout=600
worker.ajp13.socket_keepalive=1
worker.ajp13.recycle_timeout=300

Replace <servlet_container_machine_name> with the name of the servlet
container machine.

Configure Tomcat to Use mod_jk
By default, Tomcat is pre-configured to listen on port 8009 for ajp13 connections.
Ensure that the following entry is in the Tomcat tomcat_home/conf/server.xml
file:

<!-- Define an AJP 1.3 Connector on port 8009 -->
<Connector port="8009"
enableLookups="false" redirectPort="8443" protocol="AJP/1.3" />

Edit Tomcat’s tomcat_home/conf/server.xml file:

1. Add the following line to the Listeners section:

<Listener className="org.apache.jk.config.ApacheConfig"
modJk="<apache-home>/modules/mod_jk.so" />

Starting Apache and Tomcat
1. Start up Apache, then start up Tomcat.

2. Try:

http://<web server>/Sterling/en/US/enterpriseMgr/matrix

to verify that you can access the Visual Modeler through Apache.
Visual Modeler Application Guide 121

Installing the Visual Modeler

122
Setting up Apache to Support SSL
If you set up Apache as a front-end to Tomcat, then you can use the SSL
capabilities of Apache to manage secure access to the Visual Modeler. The
following steps provide an outline as to how to do this. Note that we do not provide
a compiled binary of the Apache SSL module. You must either obtain this from a
third-party such as: http://hunter.campbus.com/, or build it yourself using the
OpenSSL source obtained from: http://www.openssl.org/source/. Once you have
created mod_ssl.so and copied it to apache_home/modules/, then follow these
steps:

1. Uncomment in the following line in apache_home/conf/httpd.conf:

LoadModule ssl_module modules/mod_ssl.so

and
<IfModule mod_ssl.c>

Include conf/ssl.conf
</IfModule>

2. Create the file apache_home/conf/ssl.conf. This file is where you specify your
SSL configuration using the SSL directives. It should look something like this:

Listen 443
<VirtualHost _default_:443>
ServerName http://www.example.com
SSLEngine on
SSLCertificateFile /usr/local/apache2/conf/server.cert
SSLCertificateKeyFile /usr/local/apache2/conf/server.key
</VirtualHost>

3. Obtain or generate the certificates and keys for your site. You can use the
openssl utility to generate a self-signed key and certificate using commands
like this. First create the key by using:

openssl req -new -nodes -out server.csr
-keyout server.key -config openssl.cnf

Then use the key to generate the certificate:
openssl x509 -in server.csr -out server.crt -req
-signkey server.key -days 365 -set_serial 1 -config openssl.cnf

The -config parameter points to your openssl.cnf configuration file that can
be used to maintain OpenSSL configuration information.

4. Copy the key and certificate to the location specified by the SSLCertificateFile
and SSLCertificateKeyFile properties of the ssl.conf file.

5. Restart Apache.
Visual Modeler Application Guide

Filtering Static Content
Keep Alive Settings

In some circumstances, problems have been reported with Apache and SSL such as
slow and dropped connections. If you encounter these, then consider these steps:

1. Make sure that the setting for KeepAlive is On in apache_home/conf/
httpd.conf:

KeepAlive On

It appears that this setting is set to Off as default in some distributions of
Apache.

2. Older versions of IE, in particular IE 5.x, have a bug in the SSL/TSL shutdown
and keepalive feature. A work-around for these bugs is to configure Apache’s
SSL to behave in a non-standard way for these connections. In apache_home/
conf/ssl.conf, add the following lines if they are not there already:

SetEnvIf User-Agent ".*MSIE.*" \
nokeepalive ssl-unclean-shutdown \
downgrade-1.0 force-response-1.0

Filtering Static Content
In general, you should use a servlet container in conjunction with a Web server. The
Web server can be used to serve other content for your Web site. In addition, the
Web server can be used to serve static content from the Visual Modeler. In this way,
you can enhance the performance of your Web site.

Setting up Apache to Serve Static Content
If you have Apache running as a Web server in front of your servlet container, then
you can make use of Apache’s capabilities to serve static content. In this section,
we show how to use the expires_module module to mark images so that a client’s
browser caches images rather than re-requesting them each time a page displays the
image. In particular, this approach can be used to prevent image-flicker if a user has
their browser settings such that images are re-loaded from the server on every visit
to the page.

These instructions assume that the Apache Web server and the Tomcat servlet
container are running on different machines.

Follow these steps:

1. Edit the Apache httpd.conf configuration file to add or uncomment:

LoadModule expires_module modules/mod_expires.so
Visual Modeler Application Guide 123

Installing the Visual Modeler

124
2. Add the following expires rules:

ExpiresActive On
ExpiresByType image/gif "access plus 1 day"
ExpiresByType image/jpg "access plus 1 day"
ExpiresByType text/css "access plus 1 day"
ExpiresByType text/js "access plus 1 day"

In these lines, you are specifying that the expires module is active, and that
by default all the static content served by the Apache Web server should be
cached by browsers for one day after accessing it. You can change these
settings to meet the needs of your deployment of the Visual Modeler.

3. Restart the Apache Web server.

Creating a NSAPI Filter
We provide a small file of C code that can be used to ensure that certain files are
served by the Web server rather than by the iPlanet Application Server. It uses the
NSAPI.

1. Locate the ctrans.c file under debs_home/.

2. Compile it to a dynamic library.

For Solaris, the compile command is:
gcc -DXP_Unix -DMCC_HTTPD -DNET_SSL -DSOLARIS -D_REENTRANT -Wall -
c module.c * ld -G module.o -o module.so

For Windows, the compile command is:
cl -LD -MD -DMCC_HTTPD -DXP_WIN32 -DNET_SSL module.c -
Insapi\include /link nsapi\examples\libhttpd.lib

3. Add the module to the NameTrans directive in the Web server’s obj.conf
configuration file as follows:

a. Find the block where all the Inits are declared. Add line:

Init fn="load-modules" shlib="/container_home/local/nsapi/comer-
gent.so" funcs="handle_comergent_static"

Replace the string /container_home/ with the appropriate path.

Note: Note that under certain circumstances, this may give rise to
unwanted behavior. For example, if partner administrators
frequently upload partner logos in the form of GIF files, then some
storefront users who have the older version of the GIF file already
cached will not see the new version of the GIF file until a day
passes.
Visual Modeler Application Guide

Compressing Output From the Visual Modeler
b. Find the block:

<Object name="default">

c. Add the line:

NameTrans fn="handle_comergent_static"

By default, use the following values for the parameters:
. prefix /NASApp/Comergent/
. newPrefix /container_home/ias6/ias/APPS/modules/Comergent/
. list *.css, *.gif, *.js, *.jpg

If you need to override any of the above values, then append them to
the “NameTrans” line. For example:
NameTrans fn="handle_comergent_static"
newPrefix="container_home/ias6/ias/TEST/modules/Comergent/"

Compressing Output From the Visual Modeler
If network performance is a high concern, then one step that you can take is to
configure the Visual Modeler so that it returns compressed output to the users’
browsers, and the browsers decompress the output to render the page. This section
describes how to use Apache to do this. Note that an alternate approach is to use
Servlet Specification 2.3 filter to perform the compression.

These steps assume that you have set up Apache as a front-end to the servlet
container in which the Visual Modeler is deployed. For example, see "Setting Up
Apache as a Front-end to Tomcat" on page 119.

1. Edit the Apache httpd.conf configuration file to add or uncomment:

LoadModule deflate_module modules/mod_deflate.so
LoadModule headers_module modules/mod_headers.so

2. Copy the following text into apache_home/conf/httpd.conf. Putting it at the
bottom of the file is fine.

<Location /Sterling>

Insert filter
SetOutputFilter DEFLATE

Netscape 4.x has some problems...
BrowserMatch ^Mozilla/4 gzip-only-text/html

Netscape 4.06-4.08 have some more problems
BrowserMatch ^Mozilla/4\.0[678] no-gzip
Visual Modeler Application Guide 125

Installing the Visual Modeler

126
MSIE masquerades as Netscape, but it is fine
BrowserMatch \bMSIE !no-gzip !gzip-only-text/html

NOTE: Due to a bug in mod_setenvif up to Apache 2.0.48
the above regex won't work. You can use the following
workaround to get the desired effect:
BrowserMatch \bMSI[E] !no-gzip !gzip-only-text/html

Don't compress images
SetEnvIfNoCase Request_URI \.(?:gif|jpe?g|png)$ no-gzip dont-vary

Make sure proxies don't deliver the wrong content
Header append Vary User-Agent env=!dont-vary

</Location>

If necesarry, change the context string “/Sterling” to the name of the context
used for the Visual Modeler.
Visual Modeler Application Guide

CHAPTER 7 Creating and Populating the
Knowledgebase
This chapter describes how you create the Knowledgebase using the standard
Visual Modeler schema. You must run the schema creation and data scripts to
create and populate the Knowledgebase in your designated database server.

These steps enable you to test that the installation of the Visual Modeler has been
successful. By the end of this chapter you will be able to log in to the Visual
Modeler and verify that the basic functionality works.

If you are upgrading your installation of the Visual Modeler from an earlier release,
then you can migrate the data to a Release 9.0 Knowledgebase.

Gathering the Database Information
Identify the connection information for the database you are using. This includes:

1. Identify the connection information required to connect from the Visual
Modeler machine to the database server.

• For an Oracle Server, this is the machine name or IP address of the
database server, the port at which the database server is listening, and the
SID (name of the database instance) of the database server. You must
create a TNS alias for the database server on the Visual Modeler machine.

• For a SQL Server, this is the machine name or IP address of the database
server.
Visual Modeler Application Guide 127

Creating and Populating the Knowledgebase

128
2. Establish a database userid on the database server which is used by the Visual
Modeler.

Use this userid to perform all the Visual Modeler-related calls to the
database. This userid must have sufficient privileges to create and modify
database tables.
You may use one of your existing database userids. However, we suggest
that you set up a database userid that is dedicated to Visual Modeler-related
tasks.

3. Check that you can connect to the database server using the userid and
connection information:

• For Oracle, you must be able to connect from the Visual Modeler machine
to the database server using SQL*Plus and the TNS alias.

• For SQL Server, you must be able to connect using OSQL and the JDBC
data source name and userid.

Creating the Knowledgebase Schema
You run the schema creation script to create the Knowledgebase in your designated
database server. You can run the schema creation script as a batch file as described
in this section or from the SDK. See "To Run the Schema Creation Script with the
SDK" on page 130.

Before using the schema creation scripts and XML Loader scripts, you must decide
what locales your implementation will support. You should remove any locales
from the scripts that you do not intend to support. To begin with, you can try just
creating the “en_US” locale and adding more as the implementation progresses.

Creating the Schema

The schema creation script is a batch file that connects to the database server and
then runs a sequence of SQL scripts to create the database objects.

Attention: Running the schema creation scripts directly is no longer supported. You
must run the createDB target as described in "Installing the Visual
Modeler Using the SDK" on page 75.

Attention: To run the database schema creation target, you must have the correct
database client software installed: SQLPLUS for an Oracle server
installation, or OSQL for Microsoft SQL Server,.
Visual Modeler Application Guide

Creating the Knowledgebase Schema
• If you are running against an Oracle Server database server, then run one
of the following scripts from the debs_home/Sterling/ directory:

• OracleCreateSchema.bat (for Windows)

• OracleCreateSchema.sh (for UNIX)

By default, the Oracle schema creation script creates indexes for tables in a
separate tablespace called INDX. You can choose to create the indexes in
the same tablespace as the main schema or in a tablespace of your choice.
To do either of these two choices, you must edit the oracle_indexes.sql
SQL script.

• If you are running against a Microsoft SQL Server database server, then
run MssqlCreateSchema.bat from the debs_home/Sterling/ directory.
Make sure the database is the default database for the userid you use.

Locales and Loading Data Using the XML Loader
The current schema creation script creates seven locales as part of the table creation
script. You should review this part of the table creation script and modify it to
remove locales if need be before running the script.

For each locale, you must take care to ensure that the correct value in the
DB_SORT_LOCALE_NAME column of the CMGT_LOCALE table is set. The
following table summarizes the most frequently used values for this column:

TABLE 11. Database Sorting Settings

Database Locale Value

Oracle en_US BINARY

de_DE XGERMAN

fr_FR XFRENCH

fr_CH BINARY

de_CH BINARY

ja_JP BINARY

zh_TW BINARY
Visual Modeler Application Guide 129

Creating and Populating the Knowledgebase

130
For other locales, please contact your Sterling Support representative for further
information.

To Run the Schema Creation Script with the SDK
As an alternative to running the schema creation scripts as batch files, you can also
run the schema creation script from within the SDK as follows:

1. Edit the appropriate SDK project *.properties file to enter the connection
information used by the createDB target. Typically, during an implementation
cycle, this is the project_dev.properties file to be found in the sdk_home/
projects/project/templates/ directory.

a. To create the Knowledgebase on an Oracle database server, enter:

DB_TYPE=Oracle
ORACLE_URL=jdbc:oracle:thin:@<Machine>:<Port>:<SID>
ORACLE_USERNAME=<Username>
ORACLE_PASSWORD=<Password>
ORACLE_DATABASE=<TNS alias>

b. To run the Knowledgebase on SQL Server, enter:

ODBC_URL=<ODBC DSN>
ODBC_USERNAME=<Username>
ODBC_PASSWORD=<Password>

2. Check that the appropriate database client software has been installed on your
machine and that it is in your path. For example, if you are using an Oracle
server for the Knowledgebase, then make sure that SQLPLUS is in your path.
Make sure also that the tnsnames.ora file includes an alias as specified as the
ORACLE_DATABASE parameter. You should be able to successfully run:

tnsping <TNS alias>

3. Run the createDB target from the SDK.

SQL Server en_US Latin1_General_BIN

de_DE FRENCH_CS_AS

fr_FR FRENCH_CS_AS

fr_CH SQL_Latin1_General_CP1_Cl_AS

de_CH SQL_Latin1_General_CP1_Cl_AS

ja_JP SQL_Latin1_General_CP1_Cl_AS

zh_TW Chinese_Taiwan_Stroke_CS_AS

TABLE 11. Database Sorting Settings (Continued)

Database Locale Value
Visual Modeler Application Guide

Populating the Knowledgebase
4. Check the generated log files to verify that the script ran without error.

Populating the Knowledgebase
Having created the Knowledgebase, you need to load data into it, in order to run the
Visual Modeler. Release 9.0 loads data into the Knowledgebase using a set of XML
definitions of each data object. Data loading is invoked from the SDK using the
loadDB and loadMatrixDB targets: these load the minimal and reference data sets
respectively. These targets invoke the XMLLoader scripts as described in
"XMLLoader Script" on page 132.

XML Data Format
The data to be loaded using the XMLLoader scripts must be created in the form of
XML elements: one for each data object. The form of the XML elements closely
matches the structure of the data object: The name of the top-level element is the
name of the data object and each child element corresponds to a data field or child
data object of the data object.

The top-level element has these attributes:

• A state attribute: set this value to “INSERTED” when you are creating
new data. You can use the value “MODIFIED” if you are modifying an
existing data object using the XML data loader.

• A type attribute: set this value to “BusinessObject”.

You can use a list data object to act as a container for a list of data objects to be
loaded. You must provide a value for each element that is declared as mandatory in
the data object definition.

The XMLLoader script essentially sets a classpath and then invokes an
XMLLoader class, passing it parameters for the location of the Comergent.xml
file, the operation (usually “persist”), the partner name (usually “matrix”), and a list
of one or more files of data to be loaded.

The files must be in one of two forms:

• Either a set of XML elements: the root element must be named
DataObjectData. For example:

<PromotionData>
<!--Record 1 --->
<Promotion state="INSERTED" type="BusinessObject">

<PromotionKey state="INSERTED">126</PromotionKey>
<PromoCode state="INSERTED">ID 360</PromoCode>
Visual Modeler Application Guide 131

Creating and Populating the Knowledgebase

132
<PromotionName state="INSERTED">Packages</PromotionName>
...

</Promotion>
<!--Record 2 --->
<Promotion state="INSERTED" type="BusinessObject">

<PromotionKey state="INSERTED">127</PromotionKey>
<PromoCode state="INSERTED">ID 3837</PromoCode>
...

</Promotion>
...

</PromotionData>

• Or each file can point to a list of files:

WEB-INF/xmldata/ProductCategoryList
WEB-INF/xmldata/ProductList
...

By convention, the files that provide lists of other files have the suffix “lst”.

XMLLoader Script
The XML data loading script invokes a Java class that uses the Visual Modeler
DataManager to load each object.

The script is called XMLLoader.bat (or XMLLoader.sh on UNIX systems) and it
is located in debs_home/Sterling/WEB-INF/scripts/. The Visual Modeler
provides two sets of data that can be loaded: see "Data Sets" on page 135 for further
information.

Encryption
You can encrypt sensitive data fields so that data stored in the Knowledgebase does
not store the data in plain text. Use this mechanism for fields such as user
passwords and credit card numbers, but any field can be encrypted provided that its
corresponding database column can store strings.

When data is encrypted, a special file called dcmsKey.ser is created. You must
ensure that this file is stored safely. If it is deleted or moved, then the encrypted data
cannot be recovered. Note that you cannot export and re-import data that has
encrypted fields. The encrypted fields will be garbled if you attempt to do this.

Attention: You must determine which fields are to be encrypted before loading any
data into the Knowledgebase.
Visual Modeler Application Guide

Populating the Knowledgebase
Defining the Knowledgebase as the Data Source
To run the data loading script, you must configure the Visual Modeler to access the
Knowledgebase. You do this using the configuration files prefs.xml, and
DataServices.xml. You must also ensure that the DsKeyGenerators element of the
DataServices.xml file points to the correct key generator file:
MsSqlKeyGenerators.xml, or OracleKeyGenerators.xml. Note that if you use
the SDK to install the Visual Modeler, then the correct values will be set up
automatically in these files.

The following sections provide a brief description of the syntax of the
DataSources.xml file for the supported database servers.

MsSqlDataSources Syntax
<Primary DataService="MsSqlService" SubType="MS"

ConnectionString="MSSQL_MACHINE"
UserId="MSSQL_USERNAME" Password="MSSQL_PASSWORD" />

• MSSQL_MACHINE is the machine name or IP address of the machine on
which SQL Server is running.

• MSSQL_USERNAME and MSSQL_PASSWORD are the username and
password used to create the Visual Modeler schema. Note that the default
database for this user must be the database in which the schema was
created.

OracleDataSources Syntax
You can use either the OCI JDBC driver or the Oracle thin client JDBC driver to
connect from the Visual Modeler machine to the Oracle Server. Use:

• For Oracle 8i:

<Primary DataService="JdbcService" SubType="ORACLE"
ConnectionString="jdbc:oracle:oci8:@ALIAS"
UserId="ORACLE_USERNAME" Password="ORACLE_PASSWORD"/>

• For Oracle 9i:

<Primary DataService="JdbcService" SubType="ORACLE"
ConnectionString="jdbc:oracle:oci:@ALIAS"
UserId="ORACLE_USERNAME" Password="ORACLE_PASSWORD"/>

or

Attention: Please read the database server-specific instructions below. Set the logging
level to INFO before running the data loading script.
Visual Modeler Application Guide 133

Creating and Populating the Knowledgebase

134
<Primary DataService="JdbcService" SubType="ORACLE"
ConnectionString="jdbc:oracle:thin:@ORACLE_MACHINE:ORACLE_PORT:SID"

UserId="ORACLE_USERNAME" Password="ORACLE_USERNAME" />

• ALIAS is the TNSNAMES alias set up on the Visual Modeler machine.

• ORACLE_USERNAME and ORACLE_PASSWORD are the userid used
to create the Visual Modeler schema.

• ORACLE_MACHINE is the machine name or IP address of the machine
on which the Oracle Server is running.

• ORACLE_PORT is the port number at which the Oracle Server listener is
listening for connections.

• SID is the Oracle SID of the database.

Internationalization and Support for Locales

Creating Locales
You must edit the file LocaleDataList (located in debs_home/Sterling/WEB-INF/
xmldata/)to specify the locales that you want the Knowledgebase to support. Each
installation of the Visual Modeler can support one or more locales.

Make sure that the server locale (defined by the defaultSystemLocale element of
the Internationalization.xml file) is included in the list of locales defined in
LocaleDataList.

Updating Data using XMLLoader
When you load locale-specific data into the Knowledgebase, you can make use of
the XMLLoader’s ability to modify data objects. In each data object element and
child elements, set the state attribute to “Modified”. This will update business
objects rather than inserting a new business object.

This feature is particularly useful when you are adding locale-specific information
to an existing implementation of the Visual Modeler. For example, the following
data object can be used to update a product category business object:

<ProductCategory state="MODIFIED">
<ProductCategoryKey state="MODIFIED">1002</ProductCategoryKey>
<ParentCategoryKey state="MODIFIED">-1</ParentCategoryKey>
<SequenceId state="MODIFIED">5</SequenceId>
<ResourceKey state="MODIFIED">3</ResourceKey>
<StartDate state="MODIFIED">2000-10-06 17:20:28.0</StartDate>
<EndDate state="MODIFIED">2100-10-06 17:20:28.0</EndDate>
<OwnedBy state="MODIFIED">1</OwnedBy>
<AccessKey state="MODIFIED">2006</AccessKey>
Visual Modeler Application Guide

Populating the Knowledgebase
<ProductCategoryLocale state="MODIFIED">
<Locale state="MODIFIED">de_DE</Locale>
<Name state="MODIFIED">Software</Name>
<Description state="MODIFIED">

Alle Anwendungspakete, die auf unserer Site vorhanden
sind, werden auf allen unsere Qualitätscomputersysteme geprüft und
bestätigt.

</Description>
</ProductCategoryLocale>

</ProductCategory>

Database Server-Specific Steps
When running the data loading scripts, the steps vary a little from one database
server to another. This section covers the supported database servers.

SQL Server Steps

1. If you are using MS SQL Server as your database server, then make sure that
you have copied the MsSqlJNI.dll file to the Winnt\system32\ directory on
the Visual Modeler machine.

2. Edit the DataServices.xml file so that all the JdbcDriver elements are
commented out. Use the <!-- and --> tags to comment out each element.

3. In MsSqlDataSources.xml, make sure that the connection information sets the
same UserId and Password as were used to create the schema.

Oracle Steps

1. Edit the DataServices.xml file to specify the OracleDataSources.xml file and
OracleKeyGenerators.xml file.

2. Make sure that the JdbcDriver1element takes the value of the name of the
Oracle JDBC driver.

Data Sets
The Visual Modeler provides two sets of XML data objects:

• Reference implementation: this set populates the Knowledgebase with the
complete reference implementation (Matrix Solutions) data set. You use
this set if you want to deploy our reference implementation in order to
familiarize yourself with the Visual Modeler.

• Minimal implementation: this set populates the Knowledgebase with the
minimal data required to get the Visual Modeler up and running. You use
this set when you want to deploy your production system using your data.
Visual Modeler Application Guide 135

Creating and Populating the Knowledgebase

136
See "Email Addresses" on page 81 for information about email addresses
set in the minimal data set.

To Edit and Run the XML Data Loading Script

1. Configure the Comergent.xml, DataServices.xml, and appropriate
DataSources.xml configuration files to point to the database server to be used
for the Knowledgebase.

a. Make sure that the DataServices element of the Comergent.xml file
points to the correct location of the DataServices.xml file.

b. Make sure that the DsDataSources element of the DataServices.xml file
points to the correct location of your DataSources.xml file.

c. Make sure that the appropriate connection information has been entered in
the DataSources.xml file.

2. If your environment does not have a JAVA_HOME environment variable set,
then edit the XMLLoader.bat to set the JAVA_HOME environment variable
to point to your installation of the JDK. For example:

>set JAVA_HOME=C:\JDK1.2.2

If you are using Oracle as the database server, then make sure that the
classpath is set to include the location of the appropriate JDBC driver class.
Typically, you must ensure that the XMLLoader script includes a line of the
following form:

CP=%CP%;%DH%/lib/oracle816_jdbc2.jar

3. Save the edited file to debs_home/Sterling/.

4. Run the XML data loading script from debs_home/Sterling/.

• The syntax to load the reference data is:

>XMLLoader persist

• The syntax to load the minimal data is:

>XMLLoader persist minimal

Attention: You must always install the minimal data set: you can optionally layer the
reference data on top. Use the SDK loadDB target to load the minimal data
only; use the loadMatrixDB target to load both.
Visual Modeler Application Guide

Logging into the Visual Modeler
Removing Locales
Out of the box, the schema creation scripts and the minimal and reference data sets
create data for several locales. Before going live with your implementation, you
should remove from the Knowledgebase any locales not supported by your
implementation.

To remove a locale, you must remove references to it from the following tables:

• CMGT_ANALYZER_TEXT: for example

DELETE FROM CMGT_ANALYZER_TEXT WHERE LOCALE = ’de_DE’;

• CMGT_CURRENCIES: for example

DELETE FROM CMGT_CURRENCIES WHERE LOCALE = ’de_DE’;

• CMGT_LOCALE: for example

DELETE FROM CMGT_LOCALE WHERE LOCALE_NAME = ’de_DE’;

• CMGT_LOCALE_CURRENCY: for example

DELETE FROM CMGT_LOCALE_CURRENCY WHERE LOCALE_NAME = ’de_DE’;

• CMGT_LOCALE_NAMES: for example

DELETE FROM CMGT_LOCALE_NAMES WHERE LOCALE_NAME = ’de_DE’;
DELETE FROM CMGT_LOCALE_NAMES WHERE EFFECTIVE_LOCALE = ’de_DE’;

• CMGT_LOOKUPS: for example

DELETE FROM CMGT_LOOKUPS WHERE LOCALE = ’de_DE’;

• CMGT_<OBJECT>_LOCALE: there are multiple tables that store locale-
specific strings for data objects such as products, features, and so on. You
must remove the references to the deleted locale from each such table. For
example

DELETE FROM CMGT__<OBJECT>_LOCALE WHERE LOCALE_NAME = ’de_DE’;

Logging into the Visual Modeler
Point your browser to the standard login page. The standard URL to access this
page is:

http://<server>:<port>/Sterling/enterpriseMgr/matrix

Irrespective of whether you have generated the reference data set or minimal data
set, you can log in as the enterprise administrator whose username and password
are “admin” and “admin”.
Visual Modeler Application Guide 137

Creating and Populating the Knowledgebase

138
You can now administer the Visual Modeler through the standard browser interface.

When you have successfully completed your installation, proceed to the next
chapter. Otherwise, use CHAPTER 8, "Troubleshooting and Backing Up the Visual
Modeler" to troubleshoot your installation.

Attention: Before going live with your implementation of the Visual Modeler, you
must change the passwords of the admin and ERPAdmin users. Failure to
so presents a security breach.

Do not use the ERPAdmin user for administration tasks. It is intended only
for integration with an ERP system. You should not use this user to log in
to the system through the Web.
Visual Modeler Application Guide

CHAPTER 8 Troubleshooting and Backing Up the
Visual Modeler
Troubleshooting
Testing with the Administration URL
You can make sure that the various parts of the installation are functioning by
pointing your browser to the URL used to access the administration pages:

http://<server>:<port>/Sterling/en/US/enterpriseMgr/matrix

Email Server
You must make sure that the SMTP Mail Server used to send email from the Visual
Modeler is up and running. Make sure that you can ping the SMTP Mail Server
from the Visual Modeler machine using the machine name specified in the
SMTPHost element of the Comergent.xml file. Storefront administrators can
configure the SMTP host by setting the SMTP Host Machine system property to the
appropriate value. To set the SMTP Host Machine system property, navigate from
the System Administration panel of the home page to System Services, then the
Commerce Manager category, then the SMTP category, and enter the appropriate
value in the SMTP Host Machine field.

Certain UTF-8 characters may not display well in the subject lines of email sent
from the Visual Modeler to users. This is due to email clients that are not
configured to display UTF-8 characters correctly. If the problem persists, review
Visual Modeler Application Guide 139

Troubleshooting and Backing Up the Visual Modeler

140
the characters being used in the subject lines of the email and provide information
to users about suitable email clients.

General Troubleshooting Tips
This section includes general diagnosis approaches that can help to quickly
pinpoint the source of your problem.

Tomcat Server
The following considerations apply to running Apache Tomcat:

• SESSIONS.ser: when Tomcat is shut down, the server saves the current
session information to a file called container_home/work/Standalone/
localhost/Sterling/SESSIONS.ser. You should delete copies of this file
before restarting Tomcat.

• By default, Tomcat does not recompile JSP pages if it determines that its
compiled version has a timestamp newer than the corresponding JSP page.
If you see errors relating to MethodNotFound exceptions, then the likely
cause is an old compiled page. You can solve this problem by deleting the
container_home/work/Standalone/localhost/Sterling/ directory to force
re-compilation of all the JSP pages.

Common Problems
This section covers problems that commonly occur during startup and runtime. You
can use the messageTypeValidate element to validate all the message types as the
system starts. The element is set to TRUE by default. You should set this element to
FALSE once the system has passed its acceptance tests.
Visual Modeler Application Guide

Common Problems

Error
InputStream: 24, 384:
expected.

java.io.FileNotFoundEx
tomcat\webapps\Sterlin
ties\Comergent.xml (Th
find the file specifie

Env/main:W1:DATASERVIC
Failed: Io exception:
refused(DESCRIPTION
=(TMP=)(VSN-
NUM=135290880)(ERR=125
=(CODE=12505)(EMFI=4))

Primary Connection Fai
driver

Cannot find file=web-i
Errors at Startup Time
When the Visual Modeler is started by the servlet container, it logs its progress
through initialization. Look for these errors in the console window or event log:

TABLE 12. Startup Errors

Cause and Solution
"</Comergent>" A syntax error in one of the configuration files has caused

the DataManager to fail to initialize. You must correct the
syntax error. The InputStream line provides the exact
location of the error.

ception: C:\jakarta-
g\WEB-INF\proper-
e system cannot
d)

The main Comergent.xml file is not in the correct location
as specified by the propertiesFile element of the web.xml
file.

ES Primary Connection
Connection

05)(ERROR_STACK=(ERROR
))

The server has failed to connect to the database server.
Perform the following checks:

Ping the database server machine; there may be a network
failure. Enter the IP address of the machine to see whether
the host name can be resolved.

If you can ping the database server machine, then check
that the database connection information that you have
entered in the DataSources.xml file is correct. If possible,
use an alternate database connection method (such as
SQLPLUS or SQL Server’s Enterprise Manager). If this
fails, then either the database is down or you have incorrect
connection information.

led: No suitable The server has failed to find a valid Driver class in its
classpath. Check that any JDBC driver specified in the
DataServices.xml file lies in one of the classpath
directories or archive files. In particular, check that an
appropriate JDBC driver has been specified to connect to
the database server: For Oracle Servers, you may use
oracle.jdbc.odbc.OracleDriver.

nf/HostedPartner.xml The initialization servlet has failed to find one of the
properties files referred to in the main Comergent.xml file.
Check the names and paths to the properties files. In a
UNIX installation, check for case-sensitive file names.
Visual Modeler Application Guide 141

Troubleshooting and Backing Up the Visual Modeler

142

Failed to create a Nam
gent.dcms.util.ICCExce
[CMGT_E_SCHEMA_KEY_GEN
Schema Error - DataObj
nalObject: PromotionCo
Generator: ControlKey

java.net.BindException

com.comergent.dcm.util
[CMGT_E_UNKNOWN_ELEMEN
Comment of DataObject:
DCMS schema"

Comergent Init Servlet
tialized com.comergent
tion: [CMGT_E_SCHEMA_K
error: "Schema Error -
dress ExternalObject:
fies KeyGenerator: Ord
does not exist."

2002.10.22 13:33:03:45
2:ER:DATASERVICES JDBC
ORA-00600: internal er
[ttcgcshnd-1], [0], []
java.sql.SQLException:
error code, arguments:
[], [], [], [], [], []
at oracle.jdbc.dbacces
ception(DBError.java:1
at oracle.jdbc.ttc7.TT
ror(TTIoer.java:208)
...

Error

eKeyTable. com.comer-
ption:
_NOT_FOUND] error: "
ect: Promotion Exter-
ntrol specifies Key-
which does not exist."

A problem lies in your definition of the XML schema. On
startup, the Visual Modeler reads the schema files and
attempts to load the schema as an internal data structure.
Exceptions are most commonly thrown when the definition
of an element is omitted from the schema.

In this example, the Visual Modeler has read the
DsRecipes.xml file, and attempted to load the Promotion
DataObject. This DataObject includes in its definition file,
Promotion.xml, a reference to a KeyGenerator element
called "ControlKey". Inspection of the DsKeyGenerators
file shows that no KeyGenerator element called
ControlKey is declared.

: Address in use A process is already bound to one of the ports that the
Visual Modeler is attempting to use. You must either stop
the existing process that is using the port or use a different
port.

.ICCException:
T] error: "Element:
 Comment is not in the

An error has occurred while the DataManager initializes
the schema. Check the definition of business and data
objects. Check that a header DsElement has been declared
for the data object and that DsElements are declared for
each data element.

: DataManager NOT ini-
.dcm.util.ICCExcep-
EY_GEN_NOT_FOUND]
 DataObject: OrderAd-
OrderAddress speci-
erAddressKey which

You have declared a KeyGenerator in the data object
definition, but it is not defined in the KeyGenerators.xml
file. Make sure that you have modified the correct
KeyGenerators.xml file: this is usually
OracleKeyGenerators.xml or
MsSqlKeyGenerators.xml. Also make sure that your
DataServices.xml file points to the correct
KeyGenerators.xml file.

9 Env/Thread-
Service.restore Error:
ror code, arguments:
, [], [], [], [], []
 ORA-00600: internal
 [ttcgcshnd-1], [0],

s.DBError.throwSqlEx-
68)
Ioer.processEr-

There is a mismatch between the Oracle database version
(usually 8i or 9i) and the JDBC driver that is being used to
connect from the Visual Modeler. Check the classpath that
the servlet container is using and remove any references to
JDBC driver JAR files that come before the oraclejdbc.jar
file in debs_home/Sterling/WEB-INF/.

TABLE 12. Startup Errors (Continued)

Cause and Solution
Visual Modeler Application Guide

Common Problems

Env/main:ER:MSGT Illeg
ence to a MessageType:

Env/main:ER:MSGT com.c
sageType.MessageTypeIn
Failed instantiating o
gent.apps.partnerMkt.b
sageType GenericLoginD

2003.08.05 15:35:28:35
java.lang.NoClassDefFo
java.lang.NoClassDefFo
 at com.comergent.dcm.
PasswordCredentials.ve
dentials.java:38)
 at com.comergent.dcm.
Controller.execute(Log

Error

al Unresolved Refer-
 contentFrame

A MessageTypeRef element references a message type
definition that does not exist.

omergent.api.dcm.mes-
stantiationException:
r locating com.comer-
lc.MissingBLC in Mes-
isplay

A message type failed validation: typically, this means that
one of its elements is missing such as a missing BLC,
controller class, or JSP page.

9 Env/Thread-6:ER:CORE
undError
undError
authentication.User-
rify(UserPasswordCre-

authentication.Login-
inController.java:59)

On startup, the Visual Modeler has tried to re-instantiate a
session stored when the servlet container was last stopped.
Before starting the servlet container, make sure that you
have deleted any stored sessions.

For example, in Tomcat 4.1, check the container_home/
work/Standalone/localhost/Sterling/ directory, and delete
any files called SESSIONS.ser.

TABLE 12. Startup Errors (Continued)

Cause and Solution
Visual Modeler Application Guide 143

Troubleshooting and Backing Up the Visual Modeler

144

Error

Assertion failed: 1 == pConn
file q:\SPHINX\NETLIBS\n
1039

On Solaris, the servlet contai
servlet or URL.
Errors at Runtime
Some errors are listed here that have occurred infrequently in running instances of
the Visual Modeler.

TABLE 13. Runtime Errors

Cause and Solution

ectionObject->fCallCheck,
t\ssock\src\ntssockc.c, line

This error has been observed when the Visual Modeler is
run with SQL Server. Make sure that you have applied the
latest Windows and SQL Server Service Packs to the
machine on which SQL Server is running, and make sure
that the client SQL Server software installed on the Visual
Modeler machine matches your version of SQL Server.

ner cannot find a certain First make sure that you did not make a typo. If you are
certain that there was no mistake, then do the following:

1. Run the following command on web.xml:

java com.comergent.dcm.util.CheckWebXML web.xml >
newWeb.xml

2. Edit the file newWeb.xml. Look for the following string

<!-- (8192) XXX BOUNDARY BREAK -->

The start of the comment <!-- is the start of a 8192
boundary break. If it falls within a value for an XML node,
then that node will get truncated.

A work around is to pad the web.xml file such that the
boundary break will fall inside a comment. For more
information, see the comments at the start of file
CheckWebXML.java.
Visual Modeler Application Guide

Backing Up the Visual Modeler

You see parser errors such as
java.lang.NoSuchMethod
org.apache.xpath.DOM2H
ode (DOM2Helper.java:3
org.apache.xml.utils.T
(TreeWalker.java:281)
org.apache.xml.utils.T
(TreeWalker.java:119)
org.apache.xalan.trans
dentityImpl.transform
Impl.java:320)

Running iPlanet, you see the
GX Error (GX2GX) socke
ing!!!

Error
Backing Up the Visual Modeler
It is good practice to plan for the possibility of a catastrophic failure that renders the
Visual Modeler machine unusable. In this eventuality, you need to be able to restore
the Visual Modeler as rapidly as possible.

We suggest taking the following steps:

1. Replicate the servlet container: keep the installable for the exact release of the
servlet container, together with any patches applied. Back up any changes to
archive files, or startup scripts that might affect the order of class-loading for
example. A copy of the JDK used to run the servlet container would also be
useful.

2. Back up the Visual Modeler itself: that is, create a WAR file of the running
Sterling Web application directory. This will capture any changes to system
properties, business rules, as well as the XML model files, resource files
(product images and so on) and other files (such as uploaded GIF files).

Note that the Visual Modeler enables a fair amount of customization that
can place files outside of the Visual Modeler Web application directory. If
you take advantage of this capability, then you have to backup these
directories too. In particular, a clustered installation of the Visual Modeler
requires the creation of a shared location that will be external to the Web
application directory on any particular machine.

:
Error at
elper.getNamespaceOfN-
48) at
reeWalker.startNode
at
reeWalker.traverse
at
former.TransformerI-
(TransformerIdentity-

Check that you have followed the instructions to copy the
XML parser-related JAR files to the servlet container’s lib/
directory, and that you have removed any default
parser.jar files.

 following in your browser:
t result code miss-

There is a mismatch between the web.xml and
ias-web.xml files. All servlets mentioned in web.xml must
have a corresponding entry in the ias-web.xml file. Use the
kguidgen utility to generate a GUID for the servlet.

TABLE 13. Runtime Errors (Continued)

Cause and Solution
Visual Modeler Application Guide 145

Troubleshooting and Backing Up the Visual Modeler

146
3. Take a snapshot of the database at regular intervals: verify that the Visual
Modeler Knowledgebase can be restored from this backup.

4. Make a copy of the dcmsKey.ser file and put this in a very safe place.
Encrypted data will be unrecoverable if this file is lost. For customers with
Release 6.3 or higher, this instruction needs to be modified depending on your
choice of encryption scheme and key management policy.
Visual Modeler Application Guide

CHAPTER 9 Managing Visual Modeler Logging
This chapter provides a description of the logging service used to manage logging
messages in the Visual Modeler.

Logging
Use the logging settings of the Visual Modeler to monitor activity of the Visual
Modeler and to help diagnose problems.

Logging Preferences and Configuration
The log4j API handles logging and uses the Preferences API to retrieve logging
configuration properties. The basic configuration file for the log4j API is
log4j.properties. A copy of this file with default logging properties is included in
the WEB-INF/lib/cmgt-logging.jar JAR file packaged with the Visual Modeler
and is also placed in the WEB-INF/classes/ directory. To override the default
properties permanently, you must modify the log4j.properties file. Any values that
you specify in this file will overwrite the corresponding values in the
log4j.properties file in the cmgt-logging.jar file. You can override the default
properties on a transient basis for testing purposes by logging in to the System
Administration site of the Visual Modeler as a site administrator and modifying the
System Logging properties. See "Making Transient Logging Configuration
Changes" on page 149 for more information.
Visual Modeler Application Guide 147

Managing Visual Modeler Logging

148
The following sections describe some typical changes you may want to make:

• "Logging to the Console" on page 148

• "Changing Logging Level for a Package" on page 148

• "Formatting Logging" on page 149

• "Logging File Size" on page 149

Logging to the Console

If you want logging output to the standard output stream, rather than to a logging
file, specify the use of the STDOUT appender:

log4j.rootCategory=info, STDOUT

Depending on the configuration of the servlet container, the logging output will be
directed to the standard destination of the System.out output stream. Note that when
you specify a different appender, then you must include the appender’s properties in
the custom log4j.properties file too. For example:

log4j.appender.STDOUT=org.apache.log4j.ConsoleAppender
log4j.appender.STDOUT.layout=org.apache.log4j.PatternLayout
log4j.appender.STDOUT.layout.ConversionPattern=[%t] (%c{2}) - %m%n

Note that you can also force logging to be output to the System.out output stream
by specifying -Dcomergent.console.logging=true as part of the command line that
starts the servlet container. This overrides any logging properties specified in the
log4j.properties configuration file.

Changing Logging Level for a Package

If you want to see more detailed logging information from just one Java package as
it is executed, then you can specify this by overriding the root logging level. By
default, all logging is done at the INFO level, because the rootCategory is defined
as follows:

log4j.rootCategory=info, CMGT

For example, to specify DEBUG level logging for the visualModeler API package,
enter:

log4j.logger.com.comergent.api.apps.visualModeler=DEBUG

The specification of logging is hierarchical following the package organization of
the Visual Modeler. Thus if you specify:

log4j.logger.com.comergent.api.apps=WARNING
Visual Modeler Application Guide

Logging
Then, all logging at the API level will be done at the WARNING level except for
the visualModeler package.

Formatting Logging

You can format the logging output to suit your needs. For example, the following
will provide a more compact logging format than the standard default layout:

log4j.appender.CMGT.layout.ConversionPattern=[%r] [%t] (%c{1}) - %m%n

Logging File Size
If log files get too large, then consider modifying the logging preferences to rotate
the log files. For example, you can specify that log files are rotated once they reach
10MBytes in size as follows:

After the line:

log4j.appender.CMGT=com.comergent.logging.ComergentRollingFileAp-
pender

add:

log4j.appender.CMGT.MaxFileSize=100KB

Alternatively, to specify that log files should be rotated daily, change:

log4j.appender.CMGT=com.comergent.logging.ComergentRollingFileAp-
pender

to:

log4j.appender.CMGT=com.comergent.logging.ComergentDailyRolling-
FileAppender

Making Transient Logging Configuration Changes
If you want to change the logging configuration settings for troubleshooting or
other testing purposes, then make the changes as a site administrator using the
System Logging (log4j dynamic) page of the site administration’s System
Properties page. Changes that you make remain in effect until you restart the Visual
Modeler. If you are working in a clustered environment, then the logging
configuration changes will be propagated to all the nodes in the cluster, and will
also remain in effect until you restart the Visual Modeler.

To make permanent logging level changes, you must modify the log4j.properties
file, as described in "Logging Preferences and Configuration" on page 147.

To make transient logging configuration changes:
Visual Modeler Application Guide 149

Managing Visual Modeler Logging

150
1. Navigate to the System Administration URL and log in as a site administrator.
The System Administration URL is similar to:

http://server:port/Sterling/en/US/enterpriseMgr/admin

The System Administration home page displays.

2. Click System Services, then click System Logging (log4j dynamic).

The Configure log4j page displays, similar to the following figure.

3. Copy the name of the logger you want to change and paste it into the Logger
name: field, then choose a logging level from the Threshold drop-down list.

Logging levels range from trace (logging all activity) to fatal (logging only
fatal errors). You can also use the drop-down list to turn logging off.

4. Click Update to update the logging level. The new logging level displays in
the Level column for the logger.

Logging File Locations
The location of logging files varies from one servlet container to another: here are
some standard locations:

TABLE 14. Servlet Container Log Files

Servlet Container Log File Location

Tomcat container_home/logs/

WebLogic container_home/user_projects/domains/mydomain/
Visual Modeler Application Guide

CHAPTER 10 Localization Concepts
You can provide your customers with an e-commerce experience in their preferred
language and location, or locale.This chapter describes how to add support for
locales other than United States English to an implementation of the Visual
Modeler.

Individual locales are provided as localization pack JAR files that you install into
your release using the SDK.

This chapter covers the following topics:

• "Localization Concepts" on page 152

• "Localization Pack Installation Overview" on page 154

• "Localization Pack Installation Steps: New Implementation" on page 155

• "Localization Pack Installation Steps: Existing Implementation" on
page 161

Attention: There are known issues with the Visual Modeler using SQL Server to
support locales other than en_US.
Visual Modeler Application Guide 151

Localization Concepts

152
Localization Concepts
This section introduces localization concepts and the Visual Modeler support for
localization.

Built-in Localization Support
The Visual Modeler has built-in support for:

• multiple currencies

• multiple languages

• number and date formats

• character sets

You can manage other aspects of localization for specific markets, such as:

• local laws and regulations

• currency processing

• shipping and export information

• tax

Locale Specification
You manage support for internationalization using locales. Each locale identifies a
language and country. By identifying the locale to use when displaying information
to a user, you ensure that the user sees information that is specific to their locale:
they see your site’s Web pages in their preferred language, with numbers and dates
in their expected format.

A locale comprises a language and a country: for example, “English and United
States” or “Italian and Switzerland”. The same language may be used in more than
one country: French in France, Switzerland, and Canada for example. In one
country there may be speakers of more than one language: French, German, Italian,
and Romansch in Switzerland for example.

The ISO standards 639 and 3166 specify a list of standard abbreviations for
languages and countries that you must use. Some common language abbreviations
are: Arabic (ar), Chinese (zh), English (en), French (fr), German (de), Hindi (hi),
Japanese (ja), and Spanish (es).
Visual Modeler Application Guide

Localization Concepts
Some common country abbreviations are: Canada (CA), China (CN), France (FR),
Germany (DE), India (IN), Indonesia (ID), Japan (JA), United Kingdom (GB), and
United States (US).

By combining a language and a country, you can uniquely specify a locale. For
example: en_US (English-United States), it_CH (Italian-Switzerland), and zh_TW
(Chinese-Taiwan). Locales are stored in the Visual Modeler using this
representation.

Using Locales
Each installation of the Visual Modeler defines a system default locale in its
Internationalization.xml file using the defaultSystemLocale element.

User Locales
When a user works in the Visual Modeler, their current locale determines the look-
and-feel of Web pages and the locale-specific data (such as product descriptions) to
use to display business object data to the user.

Each user has a preferred locale specified in their user profile. When a user first
enters the Visual Modeler, their current locale is set to their preferred locale. If they
change their current locale as they work, they see the Web pages in the new locale.

Users change locale by selecting a new locale from a drop-down list of available
locales in their user profile. The display names for each locale in the drop-down list
depend on the user’s current locale. For example, if the user’s current locale is
en_US, the display name for fr_FR can be “French-France”, and if the user’s
current locale is fr_FR, then the display name for en_US can be “Anglais-Etats
Unis”.

Default Locales for Languages
The Visual Modeler enables you to specify a default locale for each language so
that if JSP pages are not available for the specific locale, the language’s default
locale’s JSP pages are used instead. You specify the language’s default locale using
the defaultCountry elements of the Languages element of the
Internationalization.xml configuration file.

The defaultSystemLocale element determines which JSP pages to serve if they are
not provided in the language’s default locale directory.

Sorting in Locales
The Visual Modeler enables users to sort displayed data in a number of ways while
they perform their tasks. For example, they can sort the display of partners by name
or inquiry lists by inquiry list ID. When a column is sorted based on a String value,
Visual Modeler Application Guide 153

Localization Concepts

154
you can specify whether the sorting is performed using the binary value of the
String or whether a locale-specific sort is used. This switch is set at the system
level, so the same method is used for all such sorts.

The sorting behavior is controlled by the UseLocalizedSort element of the
DataServices.xml configuration file. The types of sorting behavior are:

• Binary: sorting is based on the binary value of the String value

• Locale specific

By default, the value of the UseLocalizedSort element is “false”: binary sorting is
used. To use locale-specific sorting, set UseLocalizedSort to “true”. Note that
binary sort is always fastest.

You can change the value of the UseLocalizedSort element by editing the
DataServices.xml configuration file.

 Site administrators can also change the UseLocalizedSort value as follows:

1. Navigate to the Visual Modeler administration site as a site administrator

2. Click System Services to display the System Properties page, then click
DataServices

3. Scroll to Use Localized Sorting, then select the false or true radio button as
required for your site

Note that you must stop and restart the Visual Modeler to enable the change.

The sorting behavior must be supported by the knowledgebase on which the
Visual Modeler runs. See your database administrator for information about the
type of sorting behavior supported for your implementation.

Localization Pack Installation Overview
The localization pack installation instructions describe how to install a Visual
Modeler Release 9.0 localization pack using SDK 3.5.4. You can install into a new
implementation or add support for a locale to an existing implementation. You
install the localization pack into your release, not into your project.

These instructions assume that you are adding support for one or more locales to
your new or existing implementation, but the default locale remains en_US.

Note: SQL Server support for user-locale sorting is limited. You can set only a
single collating sequence which is then used for all users.
Visual Modeler Application Guide

Localization Pack Installation Steps: New Implementation
What’s contained in a localization pack:

• The resource bundle properties files (*.properties) for the locale.

• The locale’s version of the look-up information from the xmlloader file,
such as Keytype property names and values (descriptions).

• All the Javascript (.js) files.

• All the properties files with the locale appended to the file names, for
example, AttribMgrAGGENResources_fr.properties.

• The .js files translated into the locale. The .js files retain their original
names but are placed in locale-specific directories, such as fr\FR\js.

Note that the Matrix reference data, online help and online help images are not
localized.

Localization Pack Installation Steps: New
Implementation
These steps apply to a new implementation of the Visual Modeler.

These steps assume that you completed the Release 9.0 Visual Modeler set-up
steps, including:

• Database configuration, privileges grants, and so on

• Installation of the Release 9.0 JAR file into your SDK

• Creation of a project using the sdk newproject target

• Installation of the appropriate database driver using the sdk installDB
target, where DB is Oracle or MSSQLJDBC

1. Install the localization pack JAR file. For example:

sdk install SterlingSellingSuite-Locale-DEBS-9.0-fr-FR.jar

This installs the localization pack in the releases\debs-9.0 directory.

2. Modify the web.xml file:

a. Enter the following in a command window:

sdk customize web.xml

b. Open sdk_home\projects\project-name\WEB-INF\web.xml in a text
editor.
Visual Modeler Application Guide 155

Localization Concepts

156
c. Copy the section that begins with the following:

 <!-- Start of English US mapping -->

And ends with the following:
<!-- End of English US mapping -->

d. Paste the entire section after the English US mapping section.

e. Modify the new section’s comments to refer to the locale name you are
adding. For example:

<!-- Start of French France mapping -->

f. Modify the new section’s file path references to refer to the locale name
file path, such as /fr/FR. For example:

<servlet-mapping>
 <servlet-name>DispatchServlet</servlet-name>
 <url-pattern>/fr/FR/catalog/*</url-pattern>
</servlet-mapping>

3. Configure the Internationalization.xml file.

a. Enter the following in a command window:

sdk customize Internationalization.xml

b. Open projects\project-name\templates\WEB-
INF\properties\Internationalization.xml in a text editor.

c. Add the locale designation to the Presentation element’s
supportedLocales field. For example, for the French France locale:

<supportedLocales controlType="text" runtimeDisplayed="true"
ChangeOnlyAtBootTime="true" visible="true" boxsize="60"
displayQuestion="Presentation Locales"
displayOptions="en_US,en_US (English-United States),
zh_TW,zh_TW (Chinese-Taiwan),fr_FR,fr_FR
(French-France),fr_BE,fr_BE (French-Belgium),
de_DE,de_DE (German-Germany)" defaultChoice="en_US"
help="Supported presentation locales.">en_US,fr_FR</supportedLo-
cales>

d. Add the following to the Languages element. Replace la with the language
code and CO with the country code for your locale:

<la visible="false">
<defaultCountry controlType="text" runtimeDisplayed="true"
ChangeOnlyAtBootTime="true" visible="false" boxsize="60"
displayQuestion="URL for the Help Files" defaultChoice="US"
help="This is the default country for a specific language">CO
Visual Modeler Application Guide

Localization Pack Installation Steps: New Implementation
</defaultCountry>
</la>

For example, for the French France locale:
<fr visible="false">
<defaultCountry controlType="text" runtimeDisplayed="true"
ChangeOnlyAtBootTime="true" visible="false" boxsize="60"
displayQuestion="URL for the Help Files" defaultChoice="FR"
help="This is the default country for a specific language">FR
</defaultCountry>
</fr>

4. Add the locale table entry.

The locale table entry includes the DB_SORT_LOCALE_NAME field,
which specifies how to sort data that your users are viewing. Possible values
are BINARY (sort by the binary value of the string data value) and
LATIN_GENERAL_BIN (perform locale-specific sorting). See "Sorting in
Locales" on page 153 for information about determining sorting behavior
for your implementation. Check with your Database Administrator to ensure
that the sorting behavior that you select is supported for your database
implementation.
For Oracle-based implementations:

a. Enter the following in a command window:

sdk customize oracle_tables.sql

b. Open
projects\project-name\WEB-INF\sql\Oracle\setup\oracle_tables.sql in
a text editor.

c. Search for the text "INSERT INTO CMGT_LOCALE"

d. Add an INSERT statement for the locale you are installing after the
INSERT INTO CMGT_LOCALE statement. The format is:

INSERT INTO CMGT_LOCALE
(LOCALE_KEY,LOCALE_NAME,LOCALE_DESCRIPTION,ACTIVE_FLAG,DB_SORT_LO
CALE_NAME)
VALUES (key,'la_CO','Country Language','Y','BINARY')
/

• Key is the locale key. The locale key must be a unique numeric value.
Visual Modeler Application Guide 157

Localization Concepts

158
• la_CO is the language code and country code. Use the appropriate
language_COUNTRY encoding for the locale you are installing, for
example, fr_FR for French France, jp_JP for Japanese Japan, and so on.

For example, the following INSERT statement is for supporting the
fr_FR (French France) locale:

INSERT INTO CMGT_LOCALE
(LOCALE_KEY,LOCALE_NAME,LOCALE_DESCRIPTION,ACTIVE_FLAG,DB_SORT_LO
CALE_NAME)
VALUES (2,'fr_FR','France French','Y','BINARY')
/

e. Save and close the file.

For SQL Server 2005-based implementations:

a. Enter the following in a command window:

sdk customize mssql_schema.sql

b. Open
projects\project-name\WEB-INF\sql\MSSql\setup\mssql_schema.sql
in a text editor.

c. Search for the text "INSERT INTO CMGT_LOCALE"

d. Add an INSERT statement for the locale you are installing after the
INSERT INTO CMGT_LOCALE statement. The format is:

INSERT INTO CMGT_LOCALE
(LOCALE_KEY,LOCALE_NAME,LOCALE_DESCRIPTION,ACTIVE_FLAG,
DB_SORT_LOCALE_NAME) VALUES (key,'la_CO','Country Lan-
guage','Y','LATIN_GENERAL_BIN')
GO

• Key is the locale key. The locale key must be a unique numeric value.

• la_CO is the language code and country code. Use the appropriate
language_COUNTRY encoding for the locale you are installing, for
example, fr_FR for French France, jp_JP for Japanese Japan, and so on.

For example, the following INSERT statement is for supporting the
fr_FR (French France) locale:

INSERT INTO CMGT_LOCALE
(LOCALE_KEY,LOCALE_NAME,LOCALE_DESCRIPTION,ACTIVE_FLAG,
DB_SORT_LOCALE_NAME)
Visual Modeler Application Guide

Localization Pack Installation Steps: New Implementation
VALUES (2,'fr_FR','France French','Y','LATIN_GENERAL_BIN')
GO

e. Save and close the file.

5. Add the country translations:

a. Enter the following in a command window:

sdk customize LocaleNameDataList

b. Open
projects\project-name\WEB-INF\xmldata\LocaleNameDataList in a
text editor.

c. The LocaleNameDataList file should contain only English and the
language mappings for the locale(s) that you support. Remove all other
Locale Mappings from the LocaleNameDataList file.

d. At the end of the LocaleNameDataList clause, add lines to supply
translations for the United States and the country for which you are
installing a locale. For example, to provide French translations for the
United States and France:

 <LocaleNameData state="INSERTED">
 <DisplayName state="INSERTED">France</DisplayName>
 <EffectiveLocale state="INSERTED">en_US</EffectiveLocale>
 <LocaleName state="INSERTED">fr_FR</LocaleName>
 </LocaleNameData>
 <LocaleNameData state="INSERTED">
 <DisplayName state="INSERTED">La France</DisplayName>
 <EffectiveLocale state="INSERTED">fr_FR</EffectiveLocale>
 <LocaleName state="INSERTED">fr_FR</LocaleName>
 </LocaleNameData>
 <LocaleNameData state="INSERTED">
 <DisplayName state="INSERTED">Les Etats-Unis</DisplayName>
 <EffectiveLocale state="INSERTED">fr_FR</EffectiveLocale>
 <LocaleName state="INSERTED">en_US</LocaleName>
 </LocaleNameData>

If your implementation supports other locales, follow the same pattern so
that each supported locale has translations for each country name.

6. Add loading of the LightWeightLookupList to the minimal data load.

a. Enter the following in a command window:

sdk customize LightWeightLookupList.lst

b. Open projects\project-name\WEB-
INF\scripts\LightWeightLookupList.lst in a text editor.
Visual Modeler Application Guide 159

Localization Concepts

160
c. Add a line specifying the language_COUNTRY code:

WEB-INF/xmldata/I18N/la_CO/LightWeightLookupList

For example, to add French France:

WEB-INF/xmldata/I18N/fr_FR/LightWeightLookupList

d. Save and close LightWeightLookupList.lst.

7. Configure the SearchConfigurationProperties.xml file.

a. Enter the following in a command window:

sdk customize SearchConfigurationProperties.xml

b. Open
projects\project-name\WEB-INF\properties\
SearchConfigurationProperties.xml in a text editor.

c. Add the following section to the the <Locales> element. Replace la_CO
with the appropriate language_COUNTRY code for the locale you are
installing, for example, fr_FR for French France.

<Locale id="la_CO" queryParserClass="com.comergent.api.appser-
vices.search.queryParser.standard.CmgtQueryParser">

<Analyzers>
<Analyzer analyzerClass="com.comergent.api.appser-
vices.search.analysis.CatalogSearchAnalyzer"
description="CatalogAnalyzer" id="search"/>
<Analyzer analyzerClass="com.comergent.api.appser-
vices.search.analysis.CatalogSearchAnalyzer"
description="CatalogAnalyzer" id="build"/>
</Analyzers>
<DictionaryFile file="CatalogDictionary.mappings"/>
</Locale>

d. Save and close the file.

8. Rebuild the project:

sdk merge -clean

9. Load the database with the new locale information:

sdk createDB
sdk loadDB or sdk loadMatrixDB
sdk createSegDB
sdk loadSegDB or sdk loadSegMatrixDB

10. Build the deployable (.war file) image:
Visual Modeler Application Guide

Localization Pack Installation Steps: Existing Implementation
sdk distWar

11. Deploy the .war file to your servlet container.

12. Navigate to the sdk_home\dist\timestamp-WAR directory, where timestamp
has the form YYYYMMDD and is the date on which you issued the sdk
distWar command. Rename the prefs_dev.xml file to prefs.xml, then copy it
to the home directory of the user who is running the servlet container:
user_home/cmgt/debs/conf/ directory.

13. Restart your servlet container.

14. Verify that the installation succeeded:

a. Navigate to your implementation home page. The URL is similar to:

http://<server>:<port>/Sterling/en/US/enterpriseMgr/matrix

b. Log in as an administrator user, then click My Account.

The User Detail page displays.

c. The Preferred Locale drop-down list in the User Locale panel should
include the locales that you just installed.

d. Choose a locale from the drop-down list, click Save, log out, and log back
in.

The administrator user’s home page should display with localized text.
You can now create users who use the new locales.

Localization Pack Installation Steps: Existing
Implementation
These steps apply to an existing implementation of the Visual Modeler.

Adding support for a locale to an existing implementation requires that you enter
SQL commands directly to modify and populate the Knowledgebase. To complete
these steps, you must have access to a SQL client such as Microsoft SQL Server
Management Studio Express or SQLPlus for Oracle.

These steps assume that your implementation was installed using the SDK and that
you have an existing release structure within which to work.

Before you begin, stop your servlet container instance.

1. Install the localization pack JAR file. For example:
Visual Modeler Application Guide 161

Localization Concepts

162
sdk install SterlingSellingSuite-Locale-DEBS-9.0-de-DE.jar

This installs the localization pack in the releases\debs-9.0 directory.

2. Modify the web.xml file:

a. If you have not already customized your project's web.xml file for other
locales, enter the following in a command window:

sdk customize web.xml

b. Open projects\project-name\WEB-INF\web.xml in a text editor.

c. Copy the section that begins with the following:

 <!-- Start of English US mapping -->

And ends with the following:
<!-- End of English US mapping -->

d. Paste the entire section after the English US mapping section.

e. Modify the new section's comments to refer to the locale name you are
adding. For example:

<!-- Start of German Germany mapping -->

f. Modify the new section’s file path references to refer to the locale name
file path, such as /de/DE. For example:

<servlet-mapping>
 <servlet-name>DispatchServlet</servlet-name>
 <url-pattern>/de/DE/catalog/*</url-pattern>
</servlet-mapping>

3. Configure the Internationalization.xml file.

a. If you have not already customized your project's
Internationalization.xml file for other locales, enter the following in a
command window:

sdk customize Internationalization.xml

b. Open projects\project-name\templates\WEB-
INF\properties\Internationalization.xml in a text editor.

c. Add the locale designation to the Presentation element’s supportedLocales
field. For example, for the German Germany locale:

<supportedLocales controlType="text" runtimeDisplayed="true"
ChangeOnlyAtBootTime="true" visible="true" boxsize="60"
displayQuestion="Presentation Locales"
displayOptions="en_US,en_US (English-United States),
Visual Modeler Application Guide

Localization Pack Installation Steps: Existing Implementation
zh_TW,zh_TW (Chinese-Taiwan),fr_FR,fr_FR
(French-France),fr_BE,fr_BE (French-Belgium),
de_DE,de_DE (German-Germany)" defaultChoice="en_US"
help="Supported presentation locales.">en_US,de_DE</supportedLo-
cales>

d. Add the following to the Languages element. Replace la with the language
code and CO with the country code for your locale:

<la visible="false">
<defaultCountry controlType="text" runtimeDisplayed="true"
ChangeOnlyAtBootTime="true" visible="false" boxsize="60"
displayQuestion="URL for the Help Files" defaultChoice="US"
help="This is the default country for a specific language">CO
</defaultCountry>
</la>

For example, for the German Germany locale:
<de visible="false">
<defaultCountry controlType="text" runtimeDisplayed="true"
ChangeOnlyAtBootTime="true" visible="false" boxsize="60"
displayQuestion="URL for the Help Files" defaultChoice="DE"
help="This is the default country for a specific language">DE
</defaultCountry>
</de>

4. Modify the I18NLookup.lst file:

a. Enter the following in a command window:

sdk customize I18NLookup.lst

b. Open projects\project-name\WEB-INF\xmldata\I18N\I18NLookup.lst
in a text editor.

c. Add a line specifying the LightWeightLookupList file to load for the
locale you are adding:

WEB-INF/xmldata/I18N/la_CO/LightWeightLookupList

For example, to load the LightWeightLookupList file for German
Germany:

WEB-INF/xmldata/I18N/de_DE/LightWeightLookupList

5. Configure the SearchConfigurationProperties.xml file:

a. If you have not already customized your
SearchConfigurationProperties.xml file for other locales, enter the
following in a command window:
Visual Modeler Application Guide 163

Localization Concepts

164
sdk customize SearchConfigurationProperties.xml

b. Open
projects\project-name\WEB-INF\properties\
SearchConfigurationProperties.xml in a text editor.

c. Add the following section to the the <Locales> element. Replace la_CO
with the appropriate language_COUNTRY code for the locale you are
installing, for example, de_DE for German Germany.

<Locale id="de_DE" queryParserClass="com.comergent.api.appser-
vices.search.queryParser.standard.CmgtQueryParser">

<Analyzers>
<Analyzer analyzerClass="com.comergent.api.appser-
vices.search.analysis.CatalogSearchAnalyzer"
description="CatalogAnalyzer" id="search"/>
<Analyzer analyzerClass="com.comergent.api.appser-
vices.search.analysis.CatalogSearchAnalyzer"
description="CatalogAnalyzer" id="build"/>
</Analyzers>
<DictionaryFile file="CatalogDictionary.mappings"/>
</Locale>

d. Save and close the file.

6. Set the location of the XML loader script and prefs.xml file:

a. Enter the following in a command window:

sdk customize loadI18NFromXML.bat (For Windows systems)

or:
sdk customize loadI18NFromXML.sh (For Unix systems)

b. Open \projects\project_name\WEB-
INF\scripts\loadI18NFromXML.bat or .sh in a text editor.

c. Search for the line containing:

set LOADER_JAR=%DEBS_RELEASE_DIR%/cmgt-xmlloader-tool.jar (For
Windows systems)

LOADER_JAR=$DEBS_RELEASE_DIR/cmgt-xmlloader-tool.jar (For Unix
systems)

d. Replace %DEBS_RELEASE_DIR% (Windows) or $DEBS_RELEASE
(Unix) with the full pathname of your project’s image/data directory
location. Ensure that the directories are separated by forward slashes. For
example: C:/SDK351/releases/debs-9.0/image/data (Windows)
or /debs/sdk351/releases/debs-9.0/image/data (Unix).
Visual Modeler Application Guide

Localization Pack Installation Steps: Existing Implementation
e. Specify the location of the prefs.xml preferences store file. Search for the
line containing:

-DDataServices.General.ServerId=1

f. Add the following parameter to the JAVA_OPTS parameter list:

-Dcomergent.preferences.store="prefs.xml_full_pathname"

Where prefs.xml_full_pathname is the location of the prefs.xml file in
your project. For example, if your project name is matrix and your
sdk_home is /debs/sdk351, the command is as follows:

$JAVA $JAVA_OPTS -DDataServices.General.ServerId=1
-Dcomergent.preferences.store="/debs/sdk351/matrix/prefs.xml"
-classpath $CP ${MAIN} dummy persist PARTNER_NAME=matrix
$PHASE1_LIST MODE=QUIET

g. Save and close the file.

7. Rebuild the project:

sdk merge -clean

8. Load the database with the new locale information:

a. Use your SQL client tool to connect to the existing knowlegebase. For
connection information, consult the values in the projects\project_name\
project_name-dev.properties file.

b. Update the CMGT_LOCALE table entry. In your SQL client tool, run the
following SQL command:

INSERT INTO CMGT_LOCALE
(LOCALE_KEY,LOCALE_NAME,LOCALE_DESCRIPTION,ACTIVE_FLAG,DB_SORT_LO
CALE_NAME)
VALUES (key,'la_CO','Country Language','Y','BINARY')

• Key is the locale key. The locale key must be a unique numeric value.

• la_CO is the language code and country code. Use the appropriate
language_COUNTRY encoding for the locale you are installing, for
example, de_DE for German Germany, fr_FR for French France, jp_JP for
Japanese Japan, and so on.

For example, the following INSERT statement is for supporting the
de_DE (German Germany) locale:

INSERT INTO CMGT_LOCALE
Visual Modeler Application Guide 165

Localization Concepts

166
(LOCALE_KEY,LOCALE_NAME,LOCALE_DESCRIPTION,ACTIVE_FLAG,DB_SORT_LO
CALE_NAME)
VALUES (3,'de_DE','Germany German','Y','BINARY')

To check that your INSERT into the CMGT_LOCALE table is correct, run
the following SQL statement:

select * from CMGT_LOCALE

9. Add the country name translations:

a. Update the CMGT_LOCALE_NAME Table. In your SQL client tool, run
the following SQL commands:

insert into CMGT_LOCALE_NAMES (EFFECTIVE_LOCALE, LOCALE_NAME,
DISPLAY_NAME, ACTIVE_FLAG) values ('la_CO', 'la_CO',
'Locale_Country_Name', 'Y')
insert into CMGT_LOCALE_NAMES (EFFECTIVE_LOCALE, LOCALE_NAME,
DISPLAY_NAME, ACTIVE_FLAG) values ('la_CO', 'defaultLA_defaultCO',
'default_Country_Name', 'Y')
insert into CMGT_LOCALE_NAMES (EFFECTIVE_LOCALE, LOCALE_NAME,
DISPLAY_NAME, ACTIVE_FLAG) values ('defaultLA_defaultCO', 'la_CO',
'Country', 'Y')

Where:

• la_CO is the language_COUNTRY combination for the locale you are
adding, such as de_DE

• Locale_Country_Name is the name of the country in the locale’s language,
such as Deutschland

• defaultLA_defaultCO is the language_COUNTRY combination for the
default locale, such as en_US

• default_Country_Name is the name of the default country in the language
of the locale that you are adding, such as Vereinigte Staaten

• Country is the name of the country in the default locale’s language, such
as Germany

For example, to add country name translations for German:

insert into CMGT_LOCALE_NAMES (EFFECTIVE_LOCALE, LOCALE_NAME,
DISPLAY_NAME, ACTIVE_FLAG) values ('de_DE', 'de_DE', 'Deut-
schland', 'Y')
insert into CMGT_LOCALE_NAMES (EFFECTIVE_LOCALE, LOCALE_NAME,
DISPLAY_NAME, ACTIVE_FLAG) values ('de_DE', 'en_US', 'Vereinigte
Visual Modeler Application Guide

Localization Pack Installation Steps: Existing Implementation
Staaten', 'Y')
insert into CMGT_LOCALE_NAMES (EFFECTIVE_LOCALE, LOCALE_NAME,
DISPLAY_NAME, ACTIVE_FLAG) values ('en_US', 'de_DE', 'Germany',
'Y')

b. If there are several locales installed on your system, add a country name
translation for the new locale to each of the existing locales, and add a
country name translation for each existing locale to the new locale. For
example, if you already support the fr_FR locale and are adding support
for the de_DE locale, run the following SQL:

insert into CMGT_LOCALE_NAMES (EFFECTIVE_LOCALE, LOCALE_NAME,
DISPLAY_NAME, ACTIVE_FLAG) values ('fr_FR', 'de_DE', 'L''Alle-
magne', 'Y')
insert into CMGT_LOCALE_NAMES (EFFECTIVE_LOCALE, LOCALE_NAME,
DISPLAY_NAME, ACTIVE_FLAG) values ('de_DE', 'fr_FR', 'Frankreich',
'Y')

To check the results of the INSERT commands, run the following SQL
command:

select * from CMGT_LOCALE_NAMES

10. In a command window, navigate to your sdk_home\workspaces\project-name
directory and run the following command:

WEB-INF\scripts\loadI18NFromXML.bat I18N jdbc_driver (for Windows
Systems)

or

WEB-INF\scripts\loadI18NFromXML.sh I18N jdbc_driver (for Unix Sys-
tems)

where jdbc_driver is the full pathname of your JDBC jar file.
For example:

WEB-INF\scripts\loadI18NFromXML.bat I18N oraclejdbc.jar

11. In a command window, navigate to your sdk_home directory and build the
deployable (.war file) image:

sdk distWar

12. Deploy the .war file to your servlet container.
Visual Modeler Application Guide 167

Localization Concepts

168
13. Navigate to the projects\project_name\dist\timestamp-WAR directory, where
timestamp has the form YYYYMMDD and is the date on which you issued the
sdk distWar command. Rename the prefs_dev.xml file to prefs.xml, then
copy it to the home directory of the user who is running the servlet container:
user_home/cmgt/debs/conf/ directory.

14. Restart your servlet container.

15. Verify that the installation succeeded:

a. Navigate to your implementation home page. The URL is similar to:

http://<server>:<port>/Sterling/en/US/enterpriseMgr/matrix

b. Log in as an administrator user, then click My Account.

The User Detail page displays.

c. The Preferred Locale drop-down list in the User Locale panel should
include the locales that you just installed.

d. Choose a locale from the drop-down list, click Save, log out, and log back
in.

The administrator user’s home page displays with localized text. You
can now create users who use the new locales.
Visual Modeler Application Guide

CHAPTER 11 General Security Considerations
This chapter covers:

• "General Architectural Concerns" on page 169

• "Securing Users" on page 173

• "SSL support" on page 173

• "Installing Certificates for SSL" on page 176

• "Storing Data in Encrypted Form" on page 177

• "Password Policies" on page 189

• "Cross-Site Request Forgery Filter" on page 189

General Architectural Concerns
When you design your implementation environment, you should bear in mind the
physical and network configuration of your data center, and your security policies
to determine what people can perform what activities. In particular, you must
distinguish carefully between what a person can do as an administrator in your data
center environment, and what a person can do as a Visual Modeler user.
Visual Modeler Application Guide 169

General Security Considerations

170
Administration Model
This section describes the entities assumed to be present in the administrative
domain (the data center) in which the Visual Modeler resides, including networks,
servers, and administrative roles. This is likely not an exhaustive list. It is likely
that various network devices will exist within this environment, and perhaps other
servers.

Networks
The following network zones are assumed to exist. These networks are connected
to themselves as outlined below through gateways.

• External network: Directly visible from the internet. It hosts the Web
servers and static content. The External network is accessible to the
internet through a firewall. It is assumed that the firewall and appropriate
standard security practices are sufficient to prevent shell level access from
the internet. The External network has a gateway to the De-Militarized
Zone (DMZ) that permits highly controlled access from the Web server to
the application server(s).

• DMZ: This network is not directly visible from the Internet. A constrained
gateway permits the Web server(s) residing on the External network to
access the Application server(s) residing on this network and another,
similar, gateway permits access from the DMZ network to the Internal
network. The Web server routes messages to application servers through a
dedicated port.

• Internal network: Not visible from the Internet, nor from the External
network. Database resources reside here. Application servers in the DMZ
connect to Database servers in this network through a constrained
gateway.

Servers
The following servers are assumed to exist. The term server here indicates a
software application that is more or less continuously listening on one or more
network ports responding to requests received on the ports. Software servers, of
course reside on computer hardware. Generally, though not necessarily, there will
be a one-to-one relationship between a server software system, and a server
hardware entity.

• Web server resides in the External network. It responds to HTTP (possibly
using SSL) requests from the Internet or internal corporate Intranets.
Visual Modeler Application Guide

General Architectural Concerns
• Application server resides in DMZ. Some http and https requests are
delegated to the Application server for dynamically generated response.
The Application server maintains connections with the Database server.

• Database server resides in the Internal network.

Roles
This section describes roles within the administrative context of the Visual
Modeler. These are roles assigned to data center personnel acting as employees or
agents of the Enterprise. They are distinguished from the roles of individuals who
interact directly with the Visual Modeler (“Online Users”). Online users have
capabilities managed directly by three Visual Modeler Entitlement services.
Dispatch (or “MessageType”) Entitlement Service manages page flow privileges.
The Access Policy Service and ACL Service together manage fine-grained
data-level access.

• Database Administrator

• Responsible for Database servers.

• Can log into database server.

• Can read, create, update, or delete databases, database tables, indexes, and
other database resources.

• Can create backups and restore from backups.

• Can create Database users and manage them.

• Does not have root level authority in server operating system.

• Does not have direct access to Application server machine (or DMZ).

• Does not have access as Visual Modeler user.

• System Administrator

• Responsible for server hardware, and server software.

• Has root access to server machines within his/her zone of responsibility.

• Has the authority to start and stop server processes.

• As root, can read, write, update, or delete files in file systems.

• Can back up and restore files.

• Can create operating system level users and manage them.

• Does not have access to log in to database server.
Visual Modeler Application Guide 171

General Security Considerations

172
• Does not have access as Visual Modeler user.

• Developer

• Responsible for preparation of deployment Web archives (WAR files).

• Has the authority to create Web archives representing the Visual Modeler
executable.

• Can set properties and business rules governing Visual Modeler operation,
including properties that configure access to the database, properties that
configure the JCE Key store, and so on.

• Has the authority to create or modify the initial Visual Modeler dataset.
This dataset is a part of the deployment archive.

• Does not have any kind of access to the Production Database server or
Application servers.

• Does not have access to the production Visual Modeler as a Visual
Modeler user.

• Does not move code from development and QA environments to
production.

• Network Administrator

• Configures and manages network.

• Has authority to create and assign network resources, including domain
names, IP addresses, firewall policies, and so on.

• Does not have Database server access.

• Does not have access as Visual Modeler user.

Data Center Roles
The following are assumed about data center administrative roles:

1. Roles are segregated. System Administrators cannot be Developers, Network
Administrators, nor Database Administrators. Similarly, Database
Administrators cannot be Developers, System Administrators, nor Network
Administrators, and so on.

2. System Administrator Roles should be partitioned on network boundaries. A
system administrator for the DMZ should not be a system administrator for the
Internal network.
Visual Modeler Application Guide

Securing Users
3. Data center administrators do not have Visual Modeler userids with
administration roles.

Securing Users
When you load either the minimal or reference data set into the Visual Modeler,
you create two enterprise users: admin and ERPAdmin. Before permitting the
Visual Modeler to go live in production, you must change the passwords of both
users. If you do not do this, then it represents a serious security hole in your
application.

You can change the passwords by logging in after the Visual Modeler is started
using the administration interface.

SSL support
The Visual Modeler supports communication using the SSL protocol between a
user’s browser and the Visual Modeler. In particular, as part of your
implementation of the Visual Modeler, you must consider which pages (if any)
should be SSL-protected.

This section discusses SSL support in the Visual Modeler.

If you are not using SSL in your implementation of the Visual Modeler, then you do
not need to change the out-of-the-box port settings for non-SSL and SSL ports. If
you are using SSL to protect some or all access to the system, set port-related
properties in the Comergent.xml template file, located in templates/WEB-INF/
Comergent.xml. Use the following guidelines to set the port-related properties:

• If you are using the standard ports (80 for non-SSL access and 443 for
SSL access, respectively) for both schemes, then set the port settings to "."
for both.

• If you are using non-standard ports for one or the other scheme, then you
must explicitly set the port number for each.

Setting Up Secure Message Types
You can choose whether a group of message types require SSL access or not. A
particular web site can have mixed secure and non-secure access requirements. The
access requirements follow the type of request received by the JSP page. If only a
section of a web site requires SSL, you must set the relevant message type to
Visual Modeler Application Guide 173

General Security Considerations

174
require SSL/HTTPS. You must also specify where users revert to non-SSL/HTTPS
access.

When a user clicks a link on a Sterling web application JSP page, the JSP page
looks up the link in a repository to see if the link requires SSL. If it does, the JSP
page generates the link as "https://" and SSL handles all the necessary encoding..
Otherwise, the JSP page generates the link as "http".

You can ensure that pages require SSL access by setting their associated message
types to a security level that requires “https”. When a link is generated using the
link() methods provided by the Visual Modeler, then the command parameter is
used to identify the message type, and the SecurityLevel child element is used to
ensure that the appropriate schema (http or https) is reflected in the URL.

The SecurityLevel element can be used at any level in the message type group and
type hierarchy. Specifying it at a message type group level means that all message
types that belong to the group inherit the security level unless it is overwritten at a
lower level in the hierarchy.

The Level attribute of the SecurityLevel element can take the following values:

• any: both http and https can be used to access the message type. This is the
default value if nothing is specified.

• useHttp: can be accessed by http and subsequent URLs will be generated
with http.

• useHttps: the page may be accessed without https, but any URL generated
by the Visual Modeler will specify https.

• requireHttps: any URL requesting this message type must use https,
otherwise the request is rejected and an error page is displayed. Ensure
that wherever this message type is used, it is used in the link() method to
form the link to the message type, especially in any forms which use this
message type.

For example, suppose that the following message type is declared in
MessageTypes.xml:

<MessageType Name="SysUserDetailDisplay">
<SecurityLevel Level="requireHttps" />
...

</MessageType>

Then link("partnerMkt", "SysUserDetailDisplay") will generate the URL:

https://<server>:<serverSSLPort>/Sterling/partnerMkt/
matrix?cmd=SysUserDetailDisplay
Visual Modeler Application Guide

SSL support
By default, that is if no SecurityLevel is specified for a message type or for any
group to which the message type belongs, the link() methods will generate URLs
using the same protocol used to access the referring page.

You can use the SecurityLevel element to specify that https is required to access a
given page by setting the security level to “requireHttps”: the Visual Modeler
verifies that each message type is being accessed using the appropriate protocol.

You must set the C3_Commerce_Manager.General.ServerSSLPort element in the
Comergent.xml file to the appropriate value for your servlet container. If the
servlet container is set up to use the standard SSL port (443), then you do not have
to specify it. Consult your servlet container documentation for any steps that are
required to set up a port to accept SSL connections.

Example Usages
In these examples, we suggest message groups and types that might be candidates
to protect using the SSL protocol. In general, you need to determine the possible
page flows that users can perform and identify the entry and exit message types that
surround the area to be SSL-protected.

Protecting the Authenticated Environment
You should consider protecting the entire Web experience of the Visual Modeler
presented to authenticated users. You can do this by adding:

<SecurityLevel Level="requireHttps" />

to the EnterpriseHomeGroup and PartnerHomeGroup message groups.

Protecting the Enterprise Environment
Suppose that you want to protect your enterprise administration pages behind the
https schema. You can add:

<SecurityLevel Level="requireHttps" />

to the following message types:

• LoginDisplay

• GenericLoginDisplay

• HomePageDisplay

Protecting Credit Card Information
Users are highly sensitive to passing credit card information over the Web, and you
may be required to ensure that any requests that include credit card information are
SSL-protected. For example, users may enter credit card information when they
Visual Modeler Application Guide 175

General Security Considerations

176
edit an order header. The URL used to submit the order header information uses the
OILAddrChangeProcess message type. By adding:

<SecurityLevel Level="useHttps" />

to the OILDisplayGroup message group, you ensure that when URLs are formed
with message types from this group that they specify the https schema.

Protecting User Administration Pages
You should consider using the SSL protocol to protect pages in which users enter
personal information. For example, add:

<SecurityLevel Level="requireHttps" />

to the UserAdminGroup message group.

Installing Certificates for SSL
To support SSL communication, you must ensure that you have determined the
level of security you want to support between users and your Visual Modeler and
between the Visual Modeler and any of your partners’ enterprise servers. You can
enable SSL communication between users’ browsers and the enterprise server and
between the enterprise server and one or more of your partners’ enterprise servers.

FIGURE 7. SSL Communication in the Visual Modeler

Overview
When two systems elect to use the SSL protocol to communicate, the entity that
initiates the communication is referred to as the client and the other entity is the
server. For example, if the enterprise server is set up to support SSL communication
with users’ browsers, then the browser acts as the SSL client and the enterprise
Visual Modeler Application Guide

Storing Data in Encrypted Form
server is the SSL server. If the enterprise server and a partner’s enterprise server use
SSL to transfer price and availability requests, then the enterprise server is acting as
the SSL client and the partner’s enterprise server is the SSL server.

The SSL protocol requires that the SSL client maintains certifying authority
certificates from certificate authorities from whom they accept certificates. When a
client attempts to open an SSL communication session with an SSL server, the
server must send to the client its certificate and key. The client may choose to verify
against the certifying authority certificate, and then uses the key to encrypt
messages sent back to the server.

A client makes a request to open an SSL communication by posting to the server
using the https schema: that is, by using a URL of the form

https://myserver.com:<SSL port>

Consequently:

• If you want your installation of the enterprise server to support SSL
communication from Web browsers, then you must obtain a server
certificate and server key and use the appropriate servlet container
mechanism to specify an SSL port.

• If you want to enable SSL communication between an enterprise server
and a partner’s enterprise server, then the partner’s enterprise server must
obtain a server certificate and server key. The partner’s enterprise server
must be configured to receive messages from your enterprise server on an
SSL port. Your enterprise server must be configured to accept the SSL
certificates offered by the partner server. In general, if the partner server’s
certificates match the domain of the partner server’s URL, then the
enterprise server accepts them automatically.

Storing Data in Encrypted Form
This section covers:

• "General Setup" on page 178

• "Changing Encryption Algorithms" on page 182

• "Key Stores and System Initialization" on page 184

• "Wrapper Classes for Standard Algorithms" on page 185

• "Key Rotation" on page 185

• "Password Policies" on page 189
Visual Modeler Application Guide 177

General Security Considerations

178
The Visual Modeler lets you store sensitive business data in the Knowledgebase in
an encrypted form. This is done by setting the Encryption attribute of the
corresponding DataElement to “1-way” or “2-way”.

Securing data in the persistent storage system should be considered when the data
travels over insecure internal or external networks or when access to the database
server cannot be restricted to authorized individuals. In general, it is preferable to
secure data using the facilities provided by the database server. These are likely to
provide a more comprehensive and higher performance solution.

You must decide which fields are to be encrypted before loading the data and
creating more data. In general, you cannot change to using encrypted data for a data
field after any data objects have been created of that type.

General Setup
This section describes the basic steps to implement data encryption.

You should use JDK 6 or a subsequent compatible version because this has the Java
Cryptography Extension (JCE) built in.

1. You should download the Unlimited Strength Jurisdiction Policy Files 1.5
available from the SUN Java Web site. Follow the instructions provided by the
Readme.txt file to install the JCE jurisdiction policy JAR files into your Java
environment.

Attention: If you deploy the reference implementation of the Visual Modeler without
making changes to the schema, then note the following:

Credit card numbers stored as part of a user’s profile are 2-way encrypted.
This means that a dcmsKey.ser file is created on your system.
If you upgrade the Java Virtual Machine (JVM) at any time after creating
encrypted data, then you should check that the data can be retrieved
correctly. For example, if upgrading the JVM means that the .jceKeystore
file is regenerated, then 2-way encrypted data will have to be recovered.

Attention: You cannot encrypt data that is used in Sterling Analyzer reports without
breaking the reports that use the data. You can identify which database
columns are used in reports by reviewing the view creation scripts. All
report data is accessed using views and so the view scripts provide a
complete list of the columns accessed by reports.

Note: Release 6.3 introduced more flexible encryption support than previous
releases. If you are working on an earlier release, see "Password Policies" on
page 189.
Visual Modeler Application Guide

Storing Data in Encrypted Form
2. To encrypt data that is to be stored in the Knowledgebase, you must specify the
encryption method that is to be used:

• For two-way encrypted fields this must be a symmetric encryption
algorithm so that the data can be retrieved in its unencrypted form.

• For one-way encrypted fields, you must use a digester. This must
effectively provide a highly probable guarantee that if two source strings
are digested and the digested strings are the same, then the source strings
must have been the same to start with.

At any one time, the data services layer determines that only one active symmetric
encryption algorithm and only one active digester can be in use.

• You can switch from one symmetric encryption algorithm to another as
your encryption needs change. Data encrypted using an earlier encryption
algorithm can be retrieved, and if it is re-saved, then it is persisted using
the appropriate active symmetric encryption algorithm. See "Changing
Encryption Algorithms" on page 182 for more information.

• Once you have selected your digester, then this cannot be changed. By its
nature, data encrypted using a digester cannot be retrieved in order to
re-encrypt it using a different digester.

You cannot change the status of data fields from encrypted to unencrypted or the
other way round. In summary:

1. Decide which data fields are to be encrypted. You cannot add or remove fields
from this list once it is set up and data objects have been persisted using the
encryption methods.

2. Decide which of these fields are to be one-way encrypted and which are to be
two-way encrypted.

3. Select a secure digester to be used for one-way encryption. You must keep this
digester.

4. Select a secure symmetric encryption algorithm: you can change this later if
your encryption needs change.

Symmetric Encrypter
You declare the active symmetric encryption algorithm using the
TwoWayEncrypter element in the DataServices.xml file. For example:

<TwoWayEncrypter>DefaultEncrypter</TwoWayEncrypter>
Visual Modeler Application Guide 179

General Security Considerations

180
The value of this element must match the Name attribute of an Alias element or a
SymmetricEncrypter element declared in the CryptographyService.xml
configuration file. For example:

<Alias Name="DefaultEncrypter" OriginalName="InlineDES">
<Description>Alias to the default encrypter.</Description>

</Alias>

The OriginalName attribute points to the SymmetricEncrypter element that defines
the encrypter:

<SymmetricEncrypter Name="InlineDES"
Class="com.comergent.cryptography.JCESymmetricEncrypter"
KeyManager="InlineKeyManager" KeyName="myDesKey" Tag="IDES">
<Description>

DES Encrypter using key from inline key store.
</Description>
<Algorithm Name="DES" />

</SymmetricEncrypter>

Alternatively, you can reference a symmetric encrypter directly by its name. For
example:

<SymmetricEncrypter Name="JCE DES" Tag="DES"
Class="com.comergent.dcm.cryptography.JCESymmetricEncrypter"
KeyManager="JCEKeyManager" KeyName="myKey">
<Algorithm Name="DES" Provider="SunJCE"/>

</SymmetricEncrypter>

Each SymmetricEncrypter element declared in the CryptographyService.xml file
can be used to encrypt and decrypt data.

• The Name attribute in the element is used to identify the symmetric
encrypter in the TwoWayEncrypter element. The Name attribute must be
unique among all the SymmetricEncrypter and Digester elements
declared.

• The Tag attribute of the SymmetricEncrypter element is used to prefix the
encrypted strings in the persistent data store. The Tag attribute must be
unique among all the SymmetricEncrypter elements declared, but the
same Tag value can be used for a Digester. For example, if the string
“ajones” is encrypted to “hg$y&7606(7gfj” by the symmetric encrypyter
whose tag is “DES”, then the value stored in the database is
“DES:hg$y&7606(7gfj”. In this way, each stored encrypted value
provides an indication of which symmetric encrypter can be used to
decrypt it.
Visual Modeler Application Guide

Storing Data in Encrypted Form
• The Class attribute of each SymmetricEncrypter element specifies the
class to be used to perform the encryption and decryption: this class and its
dependent classes must be in the Visual Modeler classpath. The specified
class must implement the
com.comergent.api.dcm.cryptography.SymmetricEncrypter interface.

• If the symmetric encryption algorithm requires a key manager, then the
SymmetricEncrypter element also specifies its key manager using the
KeyManager attribute. The value of this element must match the Name
attribute of one of the declared KeyManager elements.

<KeyManager Name="JCEKeyManager"
Class="com.comergent.dcm.cryptography.JCEKeyManager">
<Algorithm Name="DES"/>

</KeyManager>

Each KeyManager element in the CryptographyService.xml configuration file
declares the class to be used to manage keys for a symmetric encrypter. Typically,
these classes are used to access keys managed in a key store. The name of the key
to be retrieved from the key store is specified by the KeyName attribute of the
SymmetricEncrypter element. Thus, by having two SymmetricEncrypter elements
declaring the same Class attribute, but different KeyName attributes, you can use
different keys to encrypt data. See "Key Stores and System Initialization" on
page 184 for more information about key stores and how keys can be retrieved
when the Visual Modeler is starting up.

Digester
You declare the active digester using the OneWayEncrypter element in the
DataServices.xml file. For example:

<OneWayEncrypter>MD5</OneWayEncrypter>

The value of this element must match the Tag attribute of a Digester element
declared in the CryptographyService.xml configuration file.

Each Digester element declared in the CryptographyService.xml file can be used
to encrypt data.

• The Name attribute in the element is used to identify the digester in the
OneWayEncrypter element.

• The Tag attribute is used to prefix the encrypted strings in the persistent
data store. The Tag attribute must be unique among all the Digester
elements declared, but the same Tag value can be used for a
SymmetricEncrypter element. For example, if the string “ajones” is
encrypted to “Ta$y&%lN7gL5” by the digester whose tag is “MD5”, then
Visual Modeler Application Guide 181

General Security Considerations

182
the value stored in the database is “MD5:Ta$y&%lN7gL5”. In this way,
each stored encrypted value provides an indication of which digester was
used to encrypt it.

• The Class attribute of each Digester element specifies the class to be used
to perform the encryption: this class and its dependent classes must be in
the Visual Modeler classpath. The specified class must implement the
com.comergent.api.dcm.cryptography.Digester interface.

Default Symmetric Encrypter and Digester
By default, Release 7.0 and higher of the Visual Modeler uses the one-way and
two-way encryption schemes used in the Sun JCE implementation: these reference
MD5 and DES respectively. Earlier releases used the legacy encryption schemes
provided by the crysec packages. See "Password Policies" on page 189 for further
information. These schemes are identified by empty Tag attributes (that is, Tag=“”).

Changing Encryption Algorithms
You can change the symmetric encryption algorithm used if your encryption needs
change. If you do this, data that has previously been encrypted using the earlier
symmetric encryption algorithm is not lost.

Two-Way Encrypted Data
Suppose that a data field of a data object is marked for two-way encryption and the
active symmetric encryption scheme is set to “DES”. If a new data object is
persisted, then the data field value is set to something like “DES:hfd8kUH9*”.
Suppose that you decide to switch to using the symmetric encryption algorithm
identified by the Tag value “AES”, and so you modify the
CryptographyService.xml file to declare a new default encrypter. Specifically,
modify the Alias element whose Name attribute is DefaultEncrypter so that the
OriginalName attribute is set to “JCE_AES”. For example:

<Alias Name="DefaultEncrypter" OriginalName="JCE_AES">
<Description>Alias to the default encrypter.</Description>

Note: You should consider replacing the legacy digester with either SHA or MD5
digesters. Both offer a higher level of security against cryptographic attack.
However, you must make the decision to change to a different digester
before implementing the Visual Modeler. See "One-Way Encrypted Data" on
page 183.

Note: You must use JDK 6 or a subsequent compatible version to use AES
encryption.
Visual Modeler Application Guide

Storing Data in Encrypted Form
If new data objects are persisted, then their data is encrypted using the AES
symmetric encryption scheme. If the earlier data object is restored, then the
encryption service recognizes that the field was encrypted using the DES
encryption schema, and invokes the corresponding symmetric encrypter class to
decrypt it. If the restored data object is subsequently persisted, then the AES
scheme is used to perform the encryption and the value of the data field will be
something like “AES:8(HH$DygK” in the persistent data store.

You can also perform “key rotation” to update all your encrypted data to make use
of a new key. See "Key Rotation" on page 185 for more details.

One-Way Encrypted Data
Data that is encrypted using a digester is not intended to be used to retrieve the
original value. You cannot easily change digesters once data has been encrypted
using your choice of digester.

For example, suppose that you choose to one-way encrypt user passwords in the
Password field of the UserContact data object, and suppose that you have chosen to
use the legacy digester for this purpose. If subsequently you decide to change
digesters to the more secure SHA or MD5 digesters, then you would have to
proceed along these lines:

1. Notify users that their passwords will be changed at a certain date.

2. At that date, stop the Visual Modeler, and set the OneWayEncrypter element to
the new Digester name. Suppose that the Tag for the new digester is “SHA”.

3. Generate a new password value for each user: say, their username and a
randomly selected integer: for example, “ajones67854”.

4. Offline, use the new digester to encrypt the new password for each user:
suppose that “ajones67854” is encrypted to “hjkYF*&5NF0”.

5. Using a SQL script, update the CMGT_USER_CONTACT table to enter the
encrypted form of their password for each user:

UPDATE CMGT_USER_CONTACTS SET PASSWORD = ’SHA:hjkYF*&5NF0’ WHERE
USER_NAME = ’ajones’;

6. Restart the Visual Modeler.

7. Notify each user by email that their password has now changed, and give them
the new unencrypted value. Ask each user to log in using their new password,
and ask them to change their password immediately.
Visual Modeler Application Guide 183

General Security Considerations

184
Note that any other data in the Visual Modeler that was also one-way encrypted
(such as credit card numbers) would be rendered inaccessible and would have to be
re-created if required.

Key Stores and System Initialization
Almost all encryption schemes use a key store to hold the keys used to encrypt and
decrypt data. In symmetric schemes the same keys are used to both encrypt and
decrypt data. Consequently, it is important that you take great care to protect your
key stores and ensure that they are not corrupted or deleted.

Each encryption scheme make use of different types of keys and key stores, and
you must consult the documentation that comes with your choice of encryption
scheme carefully. Typically, the process is to create a key store, and then generate
keys that you add to the key store. Each key has a name that is used to retrieve the
key from the key store.

When the Visual Modeler is started or re-started, it must retrieve the appropriate
keys from a key store. If it fails to do so, then the Visual Modeler fails to initialize
and will not permit any logins.

Key stores and keys in the key store can be encrypted. If you choose to encrypt
either, then as part of the initialization process, the cryptography service must
decrypt them to retrieve the keys for the symmetric encrypters.

The cryptography service is initialized during the initialization of the InitServlet
class. It attempts to decrypt the key stores and keys for each symmetric encrypter
using the password “Comergent”. If it fails for one or more of the symmetric
encrypters, then the initialization of the Visual Modeler stops at this point. Requests
posted to the DispatchServlet (the main servlet class used to process requests), are
sent a 503 response: Service Unavailable.

You can complete initialization of the cryptography service and hence of the whole
Visual Modeler by posting a request to the InitServlet that includes the relevant
parameters: typically, for each symmetric encrypter the passwords used to encrypt
the key store and the key. For example if one symmetric encryption scheme
requires a keyStorePassword parameter and a keyPassword parameter, and a

Attention: Loss or corruption of your key store can lead to complete loss of your
encrypted data.

Attention: Take extreme care in encrypting key stores. A key store is effectively
impossible to decrypt without the appropriate passwords. Data will be
impossible to retrieve if the keys in the key store are inaccessible.
Visual Modeler Application Guide

Storing Data in Encrypted Form
second scheme used just a storePassword parameter, then the following post would
provide the initialization information:

http://<machine:port>/Sterling/init?keyStorePassword=password&key-
Password=password&storePassword=password

Wrapper Classes for Standard Algorithms

SymmetricEncrypter Class

The JDK 6 provides implementations of standard symmetric encryption algorithms
such as AES and DES. The Visual Modeler enables you to use these through the
JCESymmetricEncrypter class. This class implements the SymmetricEncrypter
interface and so may be specified in the SymmetricEncrypter element.

Digester Class

The JDK 6 provides implementations of standard digester algorithms such as MD5
and SHA. The Visual Modeler enables you to use these through the JCEDigester
class. This class implements the Digester interface and so may be specified in the
Digester element.

Key Rotation

Key Rotation Procedure
This procedure describes how to rotate encryption keys that protect data on the
Visual Modeler. The procedure is designed so that it can be executed as needed or
incorporated as an operating system level cron job. It must be executed from a shell
on one of operation systems because it references files located on these systems.

Background
The Visual Modeler can be configured to efficiently encrypt selected persistent data
using any of a variety of Symmetric Encryption algorithms. The purpose of this
feature is to protect confidential data from internal users who may need access to
the Visual Modeler Knowledgebase.

The encryption keys are stored in a password-protected keystore. A keystore is
usually a file in the filesystem of the application server. The identical keystore must
be present on all members of a clustered system. This can be arranged by placing
the keystore on a shared filesystem or by copying the keystore by hand whenever it
changes.

A Visual Modeler configuration file maintains a mapping between keystore keys
and internal logical “encrypters”. This file, named, CryptographyService.xml, is
Visual Modeler Application Guide 185

General Security Considerations

186
colocated with preferences files, usually in user_home/cmgt/debs/conf/. Again, it
must be identical among members of a cluster.

The Visual Modeler tags encrypted values. By this means it knows which encrypter
encrypted a particular value.

Why Rotate?
The Visual Modeler is designed to use a standard encrypter using an internal
keystore during development and deployment. This standard encrypter encrypts
using 56-bit DES encryption, which is adequate for those purposes. It is not,
however recommended for a production system for two reasons: the keystores on
the production systems should not be shared with development systems, because
this compromises the data protected by the keys, and production systems should
have stronger encryption.

Many customers may want to rotate keys at regular intervals, to limit the window of
vulnerability from any compromise. If keys are rotated on a monthly bases, for
example, then the payoff from acquiring a key is limited to that month.

Basic Process
The basic key rotation process has three steps:

1. Create a new encrypter by cloning an existing encrypter.

2. Change the default encrypter reference to point to the new encrypter.

3. Update values stored in the database to use the new encrypter. This step may
take some time, depending on the number of encrypted values in the database,
but can be accomplished over time, since any old values will continue to be
decryptable with the old encrypter and new values will employ the new
encrypter.

Detailed Process
Begin by creating a new key.

1. Log in as the user running the servlet container.

2. Open a shell window and change directory to the home directory. We refer to
this directory as user_home.

3. You must select a new unique name for the new encrypter and key, and a new
tag. These can all be the same. The tag should be short. We suggest these
incorporate temporal information or sequence number. For example,
“AESyymm”, where “yy” is the year and “mm” the month. You must also
Visual Modeler Application Guide

Storing Data in Encrypted Form
determine the encryption algorithm: AES or DESede (“triple DES”) are
standard for business applications.

4. Locate the tool cmgt-cryptography-tool.jar in the file system. If you have
installed Release 9.0 into the SDK, the JAR fileis in sdk_home/releases/debs-
9.0/image/install/.

5. Copy this JAR file to user_home.

6. The base configuration provides a standard selection of encrypters that are
likely to meet most needs. Therefore, creating a new encrypter means cloning
an existing encrypter in most cases. To see the configured encrypters for your
system, execute:

java -jar cmgt-cryptography-tool.jar list

7. To create a new encrypter, execute, for example:

java -jar cmgt-cryptography-tool.jar clone-encrypter JCE_AES
AES0805

The above command will clone the JCE_AES encrypter and name it
AES0805. The tag and key names will also be set to AES0805 in this
example, but if a different tag or key name is desired it can be set on the
command line.

8. You can verify the new encrypter by executing:

java -jar cmgt-cryptography-tool.jar info AES0805

You will see something like this:
AES0805: Name=AES0805 Tag=AES0805 initialized=true algorithm=AES
keymanager=JCEKeyManager keyname=AES0805 provider=SunJCE

Changing the Default Encrypter

9. To change the default encrypter, we need set the alias to the new encrypter:

java -jar cmgt-cryptography-tool.jar alias DefaultEncrypter
AES0805

If you are working with a clustered configuration with no shared filesystem,
then the keystore and configuration files must be manually synchronized.

10. To do this, you must first activate the key. Do this by encrypting something:

echo "hello" | java -jar cmgt-cryptography-tool.jar encrypt

11. You must copy the keystore and configuration file to each of the cluster
members. The cryptography service configuration file is colocated with
Sterling preferences and is named CryptographyService.xml. By default, this
Visual Modeler Application Guide 187

General Security Considerations

188
is in user_home/cmgt/debs/conf/, where user_home is the home directory of
the user that starts the Visual Modeler Web application. The location of the
keystore can be identified with the following command:

java -jar cmgt-cryptography-tool.jar info JCEKeyManager

Note that the location of the keystore may be specified by using the
KeyStorePath attribute of the appropriate KeyManager element in the
CryptographyService.xml configuration file. For example:
<KeyManager Class="com.comergent.cryptography.JCEKeyManager"

Name="JCEKeyManager" KeyStorePath="cmgt/debs/conf/.keyStore">
</KeyManager>

The path may be specified as a path relative to the user_home directory or
as an absolute path.

12. In order for this change to take effect it is currently necessary to cycle the
servlet container. Use techniques appropriate to your servlet container to restart
it.

Updating Existing Database Ciphers.
At this point, all new values for encrypted columns in the database will be
encrypted with the new encrypter, but values stored with the old encrypter are
unmodified. We need to update these values. In particular, passwords protected by
encryption (Encryption=“2-Way” in the schema file) will no longer work.

13. First identify all primary beans that have encrypted properties. This can be
accomplished by identifying Elements in DsDataElements with
Encryption=“2-Way”, then searching the data object schema files for
<DataElement> references to those elements. More than one bean may refer to
the same encrypted column. For example, the UserContactBean and the
UserBean both refer to the CMGT_USER_CONTACTS table and the
PASSWORD column within it. In this case, we obviously need only update
one of these bean types.

14. Locate the cipher-update script in your installation: cipher-update.sh or
cipher-update.bat, depending on your shell. If you have installed Release 9.0
into the SDK and built your project, then you will find the script in sdk_home/
workspaces/project/WEB-INF/scripts/.

15. Copy the script to the appropriate runtime location:

a. If you are working in the SDK, then copy the script to sdk_home/builds/
project/.
Visual Modeler Application Guide

Password Policies
b. If you are working in a running deployment environment, then copy the
script to debs_home/Sterling/.

16. For each primary bean that has encrypted properties, execute the cipher-update
script. You must provide the name of the bean and the name of the key field
used to retrieve each instance of the bean. For example:

cypher-update OrderBean ShoppingCartKey

or
cypher-update UserContactBean Userkey

This may take a long time if the database is very large, so this step is best
executed during a period of low Web activity.

Password Policies
The Visual Modeler supports the ability to specify password policies. These are
used to determine how passwords are created, criteria that passwords must satisfy
(such as minimum lengths), and how often passwords must be changed.

Cross-Site Request Forgery Filter
The Visual Modeler supports the ability to prevent Cross-Site Request Forgery
(CSRF) by configuring a servlet filter that invalidates the current session when it
detects a potential CSRF request. You can configure the filter using the following
init-parameters in the web.xml file located in the WEB-INF directory.

• noop: set the value of this parameter to true to disable the filter. The
default value of this parameter is false.

• checkOnly: set the value of this parameter to true to log a potential CSRF
request but not invalidate the current session. The default value of this
parameter is false.

• noCheckList: set the value of this parameter to a comma-separated list of
messageTypes you want to skip while checking.

Note: Ensure that the JSPs associated with the ''white-list" commands do not
contain any known holes, particularly those related to cross-site scripting.
Visual Modeler Application Guide 189

General Security Considerations

190
 Visual Modeler Application Guide

CHAPTER 12 Testing the Visual Modeler Server
This chapter provides a description of the tests that you can perform once
implementation is complete.

Starting the Visual Modeler Server
In general, you can start the Visual Modeler by starting the servlet container in
which the Visual Modeler is installed. The order in which the servlets load is
specified in the Visual Modeler Web application web.xml file and you can read this
file in any text editor.

As the Visual Modeler starts, the servlet console window displays preliminary
logging information. Once the Visual Modeler has initialized its logging
environment, then it uses the logging methods to record events.

Troubleshooting
This section covers some basic steps that you must perform to ensure that the
system starts correctly. This list is not comprehensive; rather it covers some check
points that are a common source of problems. In general, you should troubleshoot
your installation using the SDK to ensure that any modifications you make are
contained in your project directory.
Visual Modeler Application Guide 191

Testing the Visual Modeler Server

192
To Perform Pre-startup Checks

1. Review the prefs.xml configuration file. Check that it is in the correct location
as this is the most frequent cause of problems on startup. Remember:

a. By default, the location of this file is assumed to be user_home/cmgt/
debs/conf/ where user_home is the home directory for the operating
system user running the servlet container.

b. This location can be overridden by:

• Either: specifying the location of the file as a system property:

-Dcomergent.preferences.store=/path/prefs.xml

• Or: specifying its location using the comergent.preference.store
parameter in the Visual Modeler web.xml configuration file:

<init-param>
<param-name>comergent.preferences.store</param-name>
<param-value>/path/prefs.xml</param-value>

</init-param>

2. Review the Comergent.xml configuration file. Check that:

• It contains the value of system properties that you expect to see (or that are
overridden by the prefs.xml configuration file).

3. Using the SDK, run the generateDTD target.

• If you get a series of lines of the form: "Writing DTD for ACL...done!",
then the DTDs have been successfully generated. Look in the debs_home/
Sterling/WEB-INF/bizobjs/ directory to verify that a complete set of
DTDs are there.

• If you get an error message, then review the steps outlined above.

4. Using the SDK, run the generateBean target. This should generate all the beans
specified by the data objects. If you see any error messages, then you should
fix their cause before proceeding.

5. Using the SDK, run the merge target. If this runs successfully, then run the dist
target to generate the Web application WAR file.

Error Messages on Startup
When the Visual Modeler starts, you can see initialization information in either the
console window or the servlet container log file. See CHAPTER 8,
"Troubleshooting and Backing Up the Visual Modeler" for a summary of the most
likely error messages, together with their causes and how to resolve them.
Visual Modeler Application Guide

Troubleshooting
To troubleshhoot problems with message types, you can set the
messageTypeValidate element in the Comergent.xml file to “TRUE”.
Visual Modeler Application Guide 193

Testing the Visual Modeler Server

194
Runtime Troubleshooting
This section covers some problems identified during testing.

TABLE 15. Troubleshooting Problems and Solutions

Problem Solution

On Solaris, the servlet container cannot
find a certain servlet or URL.

First make sure that you did not make a typo.
If you are certain that there was no mistake,
then do the following:

1. Run the following command on web.xml:

java
com.comergent.dcm.util.CheckWebXML
web.xml > newWeb.xml

2. Edit the file newWeb.xml. Look for the
following string
<!-- (8192) XXX BOUNDARY BREAK -->
The start of the comment <!-- is the start of a
8192 boundary break. If it falls within a value
for an XML node, then that node will get
truncated.

A work around is to pad the web.xml file
such that the boundary break will fall inside a
comment. For more information, see the
comments at the start of file
CheckWebXML.java.
Visual Modeler Application Guide

Troubleshooting
Communication Between Enterprise Servers
In testing whether an enterprise server can send price and availability requests and
product inquiry list transfer requests to another enterprise server installed at a
partner, check for the following problems:

1. Determine if the Message URL defined in the partner profile is correct.

• On the enterprise server side, you can view the Message URL in the
partner profile detail page: check that both the host name and port of the
partner’s enterprise server are correct. If it is correct, then check that the
NamingManager entries of the Comergent.xml file connect to the same
database specified in the DataSources.xml file.

• If you see a message in the enterprise server log of the form:

XML message does not conform to the PriceAvailability.dtd

then check the debs_home/Sterling/WEB-INF/bizobjs/ directory to see
that the correct DTDs are present.

• If you see an error displayed in the enterprise server browser window of
the form:

You see parser errors such as:
java.lang.NoSuchMethodError at
org.apache.xpath.DOM2Helper.ge
tNamespaceOfNode
(DOM2Helper.java:348) at
org.apache.xml.utils.Tree-
Walker.startNode (Tree-
Walker.java:281) at
org.apache.xml.utils.Tree-
Walker.traverse (Tree-
Walker.java:119) at
org.apache.xalan.trans-
former.TransformerIdentity-
Impl.transform
(TransformerIdentity-
Impl.java:320)

Check that you have followed the instructions
to copy the XML parser-related JAR files to
the servlet container’s lib/ directory, and that
you have removed any default parser.jar
files.

Running iPlanet, you see the following
in your browser:
GX Error (GX2GX) socket result
code missing!!!

There is a mismatch between the web.xml
and ias-web.xml files. All servlets mentioned
in web.xml must have a corresponding entry
in the ias-web.xml file. Use the kguidgen
utility to generate a GUID for the servlet.

TABLE 15. Troubleshooting Problems and Solutions (Continued)

Problem Solution
Visual Modeler Application Guide 195

Testing the Visual Modeler Server

196
ProcessingFailure

then the partner’s enterprise server received the price and availability
request, but for some reason failed to process it correctly.

On the partner side, by looking at the log or console window, check that the
partner’s enterprise server receives price and availability requests from the
enterprise server.

2. If the partner’s enterprise server shows no sign of receiving a price and
availability request that you initiate from the enterprise server, then:

• Either the Message URL is incorrect or it is not retrieved correctly through
the NamingManager.

• Or a network problem is preventing the enterprise server from connecting
to the partner’s enterprise server. From your enterprise server, point a
browser to the partner’s Message URL: if you cannot obtain a response
from the partner’s enterprise server, then a network problem is preventing
the two enterprise servers from communicating.

3. If the partner’s enterprise server log or console window indicates that the price
and availability request has been received, but an error is generated in
processing the request, then you should check that the partner’s enterprise
server has correct DTDs in its debs_home/Sterling/WEB-INF/bizobjs/
directory.
Visual Modeler Application Guide

CHAPTER 13 Installing a Clustered
Implementation
This chapter describes how to set up the Visual Modeler in a clustered environment.
It covers:

• "General Steps" on page 197

• "Setting Up a WebLogic Cluster" on page 203

In addition to following the steps described in one of the servlet container sections,
you should also set up the global cache using JavaSpaces. See:

• "Setting up a Database for Caching" on page 210

• "Setting up JavaSpaces for Caching" on page 210

General Steps
Terminology and Overview
A cluster provides an environment that supports higher performance and reliability
than a single machine can. Typically, a cluster comprises two or more member
machines that from the outside world appear to work as one machine: when users
submit a request to the cluster URL, they are not aware of which machine in the
cluster processes the request and returns the response.
Visual Modeler Application Guide 197

Installing a Clustered Implementation

198
The cluster URL is usually directed to a Web server that sits “in front” of the
cluster: this Web server provides the entry point for users, and it is responsible for
distributing the requests to cluster members as requests come in. The Web server
acts as a load balancer and distributes requests using an algorithm to determine
which cluster member machine should receive each inbound request.

FIGURE 8. General Cluster Configuration

Administration Servers

In some cluster configurations, each cluster member is effectively independent of
the others: you install the Visual Modeler into each cluster member and configure it
independently of the other members of the cluster. Other cluster configurations
make use of an administration server: this is a machine that manages the cluster.
Visual Modeler Application Guide

General Steps
Cluster members are typically registered with the administration server and the
administration server maintains a single image of the Visual Modeler. When a
machine joins the cluster, the administration server pushes a copy of the Web
application to the new cluster member. In this case, each cluster member has the
same configuration information because it has been pushed to them from the
administration server.

The Visual Modeler uses Ehcache to provide the notification mechanism required
to synchronize cluster members.

Shared Files

To ensure that cluster members behave consistently with each other, they must
access configuration files, templates, and image files that are common to all
members of the cluster. You do this by establishing a shared file server and point to
a common location on this file server.

• On UNIX systems, use an NFS file system to share common files. For
example:

<context-param>
<param-name>WritableDirectory.share.public.loadable
</param-name>
<param-value>/usr/Comergent/shared</param-value>

</context-param>

• On Windows systems, use one of two methods to set up a shared file
server.

• Using one method, on each cluster member you map the same drive letter
to the shared file server, then use the drive letter to provide a common
reference to the location of the shared files. For example:

<context-param>
<param-name>WritableDirectory.share.public.loadable
</param-name>
<param-value>T:/Comergent/shared</param-value>

</context-param>

Here, the T: drive on each machine has been mapped to the C: drive on
the file server machine.

• Or, using the other method, use the UNC convention to refer to the shared
directory location. For example:

<context-param>
<param-name>WritableDirectory.share.public.loadable
</param-name>
<param-value>\\fileserver\Comergent\shared</param-value>
Visual Modeler Application Guide 199

Installing a Clustered Implementation

200
</context-param>

Load Balancer
If you run your cluster using a load-balancing solution (either a hardware- or
software-based solution), then make sure that the load-balancing is done in a
session-sticky fashion. That is, all requests relating to a session should be handled
by the same member machine in the cluster.

General Installation Instructions for Clustered Deployment
1. Depending on the cluster architecture, install the Visual Modeler on each

instance or into the Administrator server that deploys the Web application to
the managed servers.

2. If you are using SQL Server as the Knowledgebase database server, then make
sure that you set the ServerId system property and element of the
DataServices.xml file to a unique two-digit value on each machine that makes
up the cluster. This ensures that generated keys are managed correctly. See
"Support for SQL Server" on page 108 for more information.

3. If you are using 2-way encryption anywhere in the implementation, then
follow these steps:

a. Make sure that you start one of the machines before the others.

b. Perform a persist operation that requires the use of 2-way encryption.

c. Identify the location of the dcmsKey.ser file on this machine and copy
this file to the corresponding location on the other machines of the cluster.

4. Follow the steps described in "Sharing Directories" on page 115.

5. As a site administrator, set the value of the useSessionCaching system property
to “true”. This property is in the Profile Manager section of the system
properties.

6. Enable your Visual Modeler implementation as a distributed implementation
as follows:

a. As a site administrator, set the value of the GlobalCache: Implementation
Class system property to com.comergent.globalcache.DistributedCache.
This property is in the GlobalCache section of the system properties.

This tells the Visual Modeler to use the Ehcache configuration file
WEB-INF\properties\DistributedCache-Config.xml.
Visual Modeler Application Guide

General Steps
b. Enable the DistributedEventService by uncommenting the
RefreshServiceHelper listener code in the WEB-INF/web.xml
configuration file:

<!-- Start of Listeners -->
 <listener>
 <listener-class>
 com.comergent.reference.appservices.cache.CacheManagersHelper
 </listener-class>
 </listener>
<!-- comment this out to allow preferences refresh event to propagate
 to other nodes -->
<!--
 <listener>
 <listener-class>
 com.comergent.reference.appservices.cache.RefreshServiceHelper
 </listener-class>
 </listener>
-->
 <listener>
 <listener-class>
 com.comergent.dcm.core.SessionMonitor
 </listener-class>
 </listener>
<!-- End of Listeners -->

c. As a site administrator, set the value of the cronRefreshTime property. The
cronRefreshTime property specifies the polling interval, in seconds, at
which a node should check for modified or added cron jobs. Set the value
of this property in the Job Scheduler refresh time in seconds field of the
Job Scheduler section of the system properties. The default value, -1,
prevents the node from periodically checking for changes to cron jobs.

7. By default, distributed nodes are discovered automatically using the Ehcache
configuration for both the GlobalCache and EventService. However, you can
also modify the cacheManagerPeerProviderFactory property settings for
multicastGroupAddress and multicastGroupPort in the \WEB-
INF\properties\DistributedGlobalCache-Config.xml and WEB-
INF\classes\DistributedEventService-config.xml files to specify the unique
IP addresses and ports for a cluster to adjust the scoping of the discovery
mechanism.

<cacheManagerPeerProviderFactory
 class="net.sf.ehcache.distribution.RMICacheManagerPeerPro-
viderFactory"
 properties="peerDiscovery=automatic,
 multicastGroupAddress=230.0.0.1,
Visual Modeler Application Guide 201

Installing a Clustered Implementation

202
 multicastGroupPort=4567, timeToLive=1" />

You can also modify the timeToLive property setting to restrict how far
packets should go. The setting values are:

• 0 - the same host

• 1 - the same subnet

• 32 - the same site

• 64 - the same region

• 128 - the same continent

• 255 - unrestricted

The default timeToLive value is 1, the same subnet.
The GlobalCache and EventService configuration must be the same on each
cluster node, and must be unique for each cluster. For example, if you have
two separate clusters, each cluster’s configuration must be consistent across
that cluster’s nodes. The clusters themselves must each have unique
configurations so that they do not conflict.

8. Copy the prefs.xml configuration file to a shared location which is visible to
all member machines of the cluster. The location of the file must be specified
in the startup script for each cluster member as follows:

-Dcomergent.preferences.store=<Path to prefs.xml>

9. Configure the cluster to check for new and updated files as soon as possible.
This ensures that all servers are in sync and will serve the same information to
customers accessing your site. This is especially important in ensuring that the
latest generated product index file is available at all times.

Place your configuration property XML files in a shared location accessible
by all member machines of the cluster. Then, activate the AutoReload
element of the SearchConfigurationProperties.xml configuration file as
follows:
<AutoReload activated="true" reloadFilePeriod="30"/>

This activates the AutoReload function and instructs the cluster to check for
updates every 30 seconds.
Visual Modeler Application Guide

Setting Up a WebLogic Cluster
10. Follow any remaining steps required by your servlet container or load balancer
to implement their specific solution. See "Setting Up a WebLogic Cluster" on
page 203.

Contact your Sterling Commerce representative for information about
setting up other clustering architectures.

Setting Up a WebLogic Cluster
You can use the clustering capabilities to set up a cluster of WebLogic Release 10.3
servlet containers to run your implementation of the Visual Modeler. In general,
you should follow the instructions provided by BEA Systems to set up the cluster.
This section provides some additional information used to install the Visual
Modeler in the cluster.

Web Server
We suggest that you set up the cluster by placing a Web server or separate
WebLogic Server as a front-end to the servlet container cluster. You should choose
one of these options:

1. Set up a Web server with the appropriate WebLogic Web server plug-in.
Supported Web servers include Apache and Microsoft Internet Information
Server.

2. Set up a WebLogic Server with the HttpClusterServlet Web application. The
HttpClusterServlet maintains the list of all servers in the cluster, as well as the
load balancing logic to use when accessing the cluster.

When the user’s browser makes a request, the Web server or HttpClusterServlet
proxies the request to the WebLogic Server cluster. See the WebLogic
documentation for further details.

Administration and Managed Servers
Typically, a WebLogic cluster comprises an Administration Server and one or more
Managed Servers. The Web applications are deployed into the Administration
Server and then as Managed Servers start or join the cluster, the Administration
Server deploys the Web applications to each Managed Server. Consequently, you
must deploy the Visual Modeler Web application Sterling.war file into the
Administration Server first.

Note: If you use Apache, ensure that your Apache release matches the
mod_wl_20.so version. At this time of writing (October 2003), Apache
2.0.42 works with the current mod_wl_20.so provided by WebLogic.
Visual Modeler Application Guide 203

Installing a Clustered Implementation

204
Note that when a Managed Server restarts, the Administration Server redeploys the
Web applications to the Managed Server: this can take a considerable time, and so
you should restart servers at times that ensure that they can be offline for the time
they need to restart.

Preparation to Deploy the Visual Modeler Web Application
Because the same WAR file is used to deploy to all cluster members, you must
make sure that this WAR file is correctly configured before you deploy the WAR
file to the Administration Server. In particular:

1. Make sure that you have used the SDK to build the deployment WAR file.

2. While using the SDK, make sure that the following configuration properties
are correctly set:

a. web.xml: make sure that the WritableDirectory parameters are correctly
set to point to the shared directory location. See "Common Directories" on
page 206 for more information. Make sure that you have declared the
SharedPublicServlet class as described in "SharedPublicServlet Class" on
page 207.

b. weblogic.xml: make sure that you have added a weblogic.xml file to the
sdk_home/projects/project/WEB-INF/ directory. See the example file in
"WebLogic Releases" on page 87. To support session-sharing across the
cluster members, consider adding the element described in "Session
Sharing" on page 208.

c. Make sure that you have correctly specified the database connection
information in the appropriate properties file so that they are correctly set
in the prefs.xml configuration file.

3. Build the Sterling.war file using the SDK distWar target.

4. Copy the prefs.xml configuration file to a shared location which is visible to
all member machines of the cluster. The location of the file must be specified
in the startup script for each cluster member as follows:

-Dcomergent.preferences.store=<Path to prefs.xml>

Deploying the Visual Modeler Web Application
Follow these steps to deploy the Visual Modeler Web application into the cluster.
These instructions assume that you have set up the cluster using the WebLogic
administration console on the Administration Server: we refer to the name of the
cluster as cluster_name. We also assume that the managed servers are up and
Visual Modeler Application Guide

Setting Up a WebLogic Cluster
running. Make sure that you have used the SDK to create the Sterling.war file and
that you have moved a copy of the file to a location on the Administration Server.

1. Log into the administration console of the WebLogic Administration Server.

2. Click Servers and verify that the managed servers are listed.

3. Click Clusters and verify that the name of the target cluster is cluster_name.

4. Click Lock & Edit.

5. Click Deployments.

6. Click Install.

7. In the next window, navigate to the location of the Sterling.war file and select
the radio button next to the Sterling.war file name.

8. Click Next.

9. Select the Install this deployment as an application radio button.

10. Click Next.

11. Check the check box next to the cluster named cluster_name. By default, the
All servers in the cluster radio button is selected. You should usually leave
this setting unchanged.

12. Click Next.

13. In the Name field of the General panel on the Optional Settings page, enter the
name of your Sterling deployment, for example, Sterling. Accept the defaults
for the other values on the Optional Settings page.

14. Click Next to review your choices, then click Finish to complete the
deployment.

15. Click Activate Changes to activate the deployment.

Deployment can take ten to twenty minutes. At the end of the deployment
process, a page displays a Success message.

SQL Server
Because more than one deployment of the Visual Modeler is accessing the same
Knowledgebase on SQL Server, you must set a two-digit server ID for each
deployment. You must modify the servlet container command or script that starts
the servlet container on each machine so that a Java system property is set:
Comergent.DataServices.General.ServerId. This should be set on each machine so
that each has a unique value: 01, 02, and so on.
Visual Modeler Application Guide 205

Installing a Clustered Implementation

206
For example, in a Tomcat installation, you can modify the starting batch file to
include:

set JAVA_OPTS=-DComergent.DataServices.General.ServerId=12

Cron Jobs
The Visual Modeler distinguishes between system cron jobs and application cron
jobs. Typically, system cron jobs are run without an associated user and run on
every system in a clustered environment whereas application cron jobs must be run
associated to a user and usually should be run only by one machine in a cluster.

To set this up, you must do the following:

1. Make sure that in the deployment WAR file, the value of the cronApps system
configuration property is set to “system”.

2. For the one application server that should run application cron jobs, make sure
that a system property is set as follows:

-DComergent.Cron.cronApps=both

For example, in a Tomcat installation, you can modify the starting batch file
to include:
set JAVA_OPTS=-DComergent.Cron.cronApps=both

Note that how you do this will vary from one servlet container to another.
Note that the valid values for this property are: “application”, “both”,
“none”, and “system”.

3. Set the value of the Cron Job URL system property to the value of the URL
used to access the cluster: for example:

http://loadbalancer/Sterling/msg/matrix

Common Directories
All the Managed Servers in the cluster must be able to access the same directory
locations in the file system: this is where configuration files, shared data files, and
other related files such as pagination data is stored for the cluster. You must ensure
that all members of the cluster access this location using the same directory paths.

The location of the shared directories is specified in the Visual Modeler web.xml
file using context parameter elements of this form:

<context-param>
<param-name>WritableDirectory.share.public.loadable</param-name>
<param-value>/tmp</param-value>

</context-param>
<context-param>
Visual Modeler Application Guide

Setting Up a WebLogic Cluster
<param-name>WritableDirectory.share.public.noloadable
</param-name>
<param-value>/tmp</param-value>

</context-param>
<context-param>

<param-name>WritableDirectory.share.private.loadable</param-name>
<param-value>/tmp</param-value>

</context-param>
<context-param>

<param-name>WritableDirectory.share.private.noloadable
</param-name>
<param-value>/tmp</param-value>

</context-param>

See "Shared Files" on page 199 for the form that the values of these parameters can
take. Note that by default, these elements are commented out: in this case, each
instance of the Visual Modeler Web application acts independently of the other
instances in the cluster. All file accesses are performed locally on the machine
running the Web application.

The following table summarizes which files should go where:

SharedPublicServlet Class
You must uncomment in the element that declares the SharedPublicServlet class:
this class is used to serve up static content such as partner logos and promotion
images that are uploaded to the Visual Modeler.

<servlet>
<servlet-name>SharedPublicServlet</servlet-name>
<servlet-class>

TABLE 16. Shared File Locations

Location Purpose

share.public.loadable Do not use.

share.public.noloadable Image files and other files that should be accessible to
Web servers to serve up static content. Examples include
GIF files associated with promotions and storefront
partners.

share.private.loadable Class files to be shared across the cluster: this directory is
used primarily for Sterling Configurator and Visual
Modeler.

share.private.noloadable Configuration files, pagination files, and other files that
must be shared across the cluster, but which should not be
accessible from users’ browsers.
Visual Modeler Application Guide 207

Installing a Clustered Implementation

208
com.comergent.dcm.core.SharedPublicServlet
</servlet-class>

</servlet>

You must also uncomment in the following elements that map URLs to the
SharedPublicServlet:

<servlet-mapping>
<servlet-name>SharedPublicServlet</servlet-name>
<url-pattern>/htdocs/partnerlogos/*</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>SharedPublicServlet</servlet-name>
<url-pattern>/htdocs/promotions/images/*</url-pattern>

</servlet-mapping>

For each supported locale, uncomment in the corresponding element:

<servlet-mapping>
<servlet-name>SharedPublicServlet</servlet-name>
<url-pattern>/la/CO/htdocs/*</url-pattern>

</servlet-mapping>

For example, uncomment in the following element for the en_US locale:

<servlet-mapping>
<servlet-name>SharedPublicServlet</servlet-name>
<url-pattern>/en/US/htdocs/*</url-pattern>

</servlet-mapping>

Session Sharing
You must also provide information about how sessions are to be shared across the
cluster using the weblogic.xml deployment file. You may have already created this
file to pass in information about the WebLogic environment or you may have to
create it only for this purpose. It should be located in your Sterling.war Web
application file at the same level as the web.xml file.

You must add the following fragment to the weblogic.xml file:

<session-descriptor>
<session-param>

<param-name>PersistentStoreType</param-name>
<param-value>file</param-value>

</session-param>
<session-param>

<param-name>PersistentStoreDir</param-name>
<param-value>

<Directory location common to all members of cluster>
</param-value>
Visual Modeler Application Guide

Setting Up a WebLogic Cluster
</session-param>
</session-descriptor>

Note that a more common setting is:

<session-param>
<param-name>PersistentStoreType</param-name>
<param-value>memory</param-value>

</session-param>

This setting does not support session-failover.

Reloading Files
If shared configuration files can be updated, then each managed server may need to
reload the shared copy to pick up changes made by other servers in the cluster. For
example, the SearchConfigurationProperties.xml file has a setting:

<SearchSystemConfigurations>
<AutoReload activated="true" reloadFilePeriod="30"/>

</SearchSystemConfigurations>

Set the activated attribute to “true” and set the reloadFilePeriod attribute to an
interval (in seconds) to specify that if an interval of more than 30 seconds elapses
between accesses, then the file should be reloaded.

Running a Clustered WebLogic Installation
In a clustered deployment of WebLogic, you must also perform these steps to
ensure that the DTDs used by the Visual Modeler are correctly located. On each
machine in the cluster:

1. Create or identify a designated directory that may be used to store the DTDs.
For example, you can create a sub-directory called container_home/local/
working/ in each WebLogic installation.

2. Unjar the Visual Modeler WAR file, and copy the DTD files from their
locations under WEB-INF/ to the designated directory.

3. Modify startManagedWebLogic.cmd or startManagedWebLogic.sh to set a
new runtime flag: -DComergent.workingDir. You can use the
$WL_HOME variable if the designated directory lies under the
container_home/ location. For example:

-DComergent.workingDir=$WL_HOME/local/working
Visual Modeler Application Guide 209

Installing a Clustered Implementation

210
Setting up a Database for Caching
Introduction
This implementation of the distributed Global Cache uses the Knowledgebase
database server to store session information. Note that in Release 9.0, only
implementations that use the Oracle database server are supported.

1. Log in to the Visual Modeler system administration site as a site administrator.

Your system administration site URL is similar to:
http://server:port/Sterling/en/US/enterpriseMgr/admin

2. Click System Services.

3. Click Commerce Manager.

4. In the GlobalCache: Class Name property field, enter:

com.comergent.dcm.cache.impl.db.DBCache

5. Click Save All and return to List.

Setting up JavaSpaces for Caching
Introduction
This implementation of the distributed Global Cache uses the JavaSpaces
technology from Sun Microsystems. This requires a dedicated machine to run the
Jini Lookup server, the Javaspaces server, and optionally the transaction server. The
steps needed to install and run the JavaSpaces server are described below.

Install the Required Servers
All the Jini servers have an implementation that can be activated using the rmid
(RMI activation daemon). This means that the servers need to be registered with the
rmid once, after that they will be automatically restarted if they crash or the
machine has been rebooted. The system administrator needs to make sure that the
rmid daemon is running at all times. In the following section we describe the steps
needed to install the Jini Lookup server and JavaSpaces server, and to register the
servers with the rmid daemon for the first time.
Visual Modeler Application Guide

Setting up JavaSpaces for Caching
To Implement JavaSpaces

1. Download the Jini Starter Kit v1.2.1_001 from
http://wwws.sun.com/software/communitysource/jini/download.html

2. Install the Jini Starter Kit by unzipping the file. This creates a directory called
jini1_2_1_001/ (this is version-dependent, so you may see slightly different
numbers). In the following instructions we refer to this directory as jini_home.

3. Create a logs directory where you want the servers to store their logs: we will
refer to it logs_home. This directory can be anywhere on the machine.

4. Start the rmid with the following arguments:

rmid –d log jini_home/logs -J-Djava.security.policy=none

5. You need to make the jar files with ‘–dl’ postfix accessible via a Web server,
you can do this by one of the following steps:

a. Either, run the supplied Web server using the following command (all on
one line):

java -jar jini_home/lib/tools.jar -port <port>
-dir jini_home/jini1_2_1/lib

You should select a value for <port> that is private to your network.

b. Or, copy all the jini_home/lib/*-dl.jar files to one of your current Web
servers.

6. At the command line, navigate to the jini_home directory.

7. Run the Jini Lookup server by entering:

java -jar ./lib/reggie.jar http://<host>:<port>/reggie-dl.jar ./
policy/policy.reggie logs_home/reggie_log public

Replace <host> by the name of the machine and <port> by the value
specified in Step 5a or the port at which the Web server you selected in Step
5b is listening.

8. (Optional) Run the Transaction server by entering:

java -jar
-Djava.security.policy=./policy/policy.all
-Dcom.sun.jini.mahalo.managerName=TransactionManager ./lib/mah-
alo.jar http://%HOST%:%PORT%/mahalo-dl.jar ./policy/policy.all
logs_home/txn_log public

9. Run the JavaSpaces server by entering:

java -jar -Djava.security.policy=./policy/policy.all
Visual Modeler Application Guide 211

Installing a Clustered Implementation

212
-Dcom.sun.jini.outrigger.spaceName=JavaSpace ./lib/outrigger.jar
http://<host>:<port>/outrigger-dl.jar ./policy/policy.all
logs_home/frontendspace_log public

If you delete the logs_home/directory, or if the directory is not available, then
the rmid will not be able the restart the servers.

To Set Up the Visual Modeler

1. Change the globalCacheImplClass property in Comergent.xml from:

com.comergent.dcm.cache.impl.AppContextCache

to:
com.comergent.dcm.cache.impl.space.SpacesCache

2. Add the globalCacheParameters property to Comergent.xml in the General
group:

<globalCacheParameters controlType="text"
runtimeDisplayed="true" ChangeOnlyAtBootTime="true"
visible="true" boxsize="60" displayQuestion="GlobalCache: Parame-
ters to be passed to the Global Cache implementation" default-
Choice="" help="Enter a comma separated key value pairs to be
passed to the global cache implementation">
javaspacesname=JavaSpace,transactionservername=TransactionManager
</globalCacheParameters>

The javaspacesname and transactionservername are the properties used by
the Visual Modeler to find both the JavaSpaces server and the Transaction
server respectively. Those are the same names used when the servers are
started above. If the transactionservername is set to an empty String, or is
not defined, then the Visual Modeler will not use the Transaction server
when accessing the JavaSpaces server.

3. In Comergent.xml, set the cronRefreshTime property to the interval, in
seconds, at which a node will poll the Knowledgebase to check for modified or
added cron jobs. Set cronRefreshTime to a negative number to prevent the
node from periodically polling the Knowledgebase. The default value is -1.

4. Modify the security policy settings for the servlet container as follows:

a. Copy the policy.all file to the directory in which the servlet container
binaries are stored.

b. Modify the command that starts the servlet container JVM by adding:

-Djava.security.policy=./policy.all
Visual Modeler Application Guide

Setting up JavaSpaces for Caching
c. For WebLogic servers, add the following XML fragment to the
weblogic.xml file:

<security-permission-spec>
grant { permission java.security.AllPermission "", "";};

</security-permission-spec>

5. Optional: to test that the JavaSpaces server connection is working properly you
can set the log level to VERBOSE, and the log flag to GlobalCache in the
Comergent.xml properties file to get more information.

While the JavaSpaces services can be run on an application server with the Visual
Modeler, it is better to run it on an independent, but highly available system. This
prevents a single point of failure issue if the joint Visual Modeler/JavaSpaces server
fails.
Visual Modeler Application Guide 213

Installing a Clustered Implementation

214
 Visual Modeler Application Guide

Part 2:
Implementation
The chapters in this section of the guide provide information required for you to
implement the Visual Modeler at your enterprise.

Purpose
This guide provides an overview to extending current applications and developing
new applications for the Visual Modeler. It presents a description of the system
architecture, the main Java classes, and a description of the Visual Modeler
Software Development Kit (SDK).

Audience
This guide presupposes an advanced level of information systems knowledge,
familiarity with basic network and database concepts, Java (including the J2EE
specification) and XML. Readers must have a firm understanding of developing
Web applications in Java.
Visual Modeler Application Guide 215

216
Conventions
Throughout this guide, we will use the following conventions shown in Table 17,
"Conventions", on page 216:

TABLE 17. Conventions

Type Convention

File names Sample.txt

Paths and directory
names

/top_level/next_level/next_level/destination_directory/

Sample code extracts public void method(String s)

Values to be provided <value supplied by developer>
Visual Modeler Application Guide

CHAPTER 14 Integrating the Visual Modeler with
Selling and Fulfillment Foundation
Integration Overview
In some instances, complex products may have to be configured before they can be
bought by customers. In some other instances, such products may have optional
components that customers can configure based on their requirements. Visual
Modeler enables you to create models that define the configurable options of a
product, and to associate products to these models. The Sterling Configurator is a
tool that is used to display the configurable products along with the available
options to the end user.

The integration between the Visual Modeler and the Selling and Fulfillment
Foundation is necessary to enable them to exchange information. The integration is
required to ensure that the correct product information, as maintained in Selling and
Fulfillment Foundation, is used for defining the models in the Visual Modeler. The
prices applied on the products are based on the price list and the currency
associated with the guest user. For more information about associating the price list,
refer to the Business Center Pricing Administration Guide.

To integrate the Visual Modeler with the Selling and Fulfillment Foundation, you
must perform certain configurations in the Visual Modeler application and the
Applications Manager.
Visual Modeler Application Guide 217

Integrating the Visual Modeler with Selling and Fulfillment Foundation

218
Configuring the Visual Modeler Properties
You must configure the values of certain properties in the Visual Modeler in order
to enable it to obtain the correct product information from Selling and Fulfillment
Foundation.

To configure the properties in the Visual Modeler:

1. Point your browser to the following URL:

http://<hostname>:<port>/<context_root>/en/US/enterpriseMgr/admin

Here, hostname is the IP address, port is the listening port of the machine in
which the Visual Modeler is installed, and context_root is the context root of
the hosted Visual Modeler application.

The Login page is displayed.

2. Log in as an administrator by entering your login ID and password, and
clicking Log In.

3. Click the System Services hyperlink. The System properties page is displayed.

4. Click the Fulfillment hyperlink. The Properties for Fulfillment page is
displayed.

5. Set the Sterling Order Fulfillment System URL property to http://
<hostname>:<port>/smcfs/interop/InteropHttpServlet. This URL pertains to
the Interop servlet of the Selling and Fulfillment Foundation.

Note: If the URL starts with https, ensure that a valid certificate is configured
on the Selling and Fulfillment Foundation application server.

6. Set the Sterling Item Configurator URL property to:

http://<hostname>:<port>/sbc/configurator/configure.action

Here, hostname is the IP address of the machine in which the Selling and
Fulfillment Foundation is installed, and port is the listening port of the machine
in which Selling and Fulfillment Foundation is installed.

7. Set the following properties appropriately:

• User name for the Sterling Fulfillment system

• Password for the Sterling Fulfillment system

The values of these properties determine the user name and password that will
be used to communicate with the Selling and Fulfillment Foundation server.
Visual Modeler Application Guide

Configuring the Sterling Configurator Rules
Configuring the Sterling Configurator Rules
To enable the Sterling Configurator to obtain the model information of the products
from the Visual Modeler, you must specify the location of the models, properties,
and rules pertaining to models in the Applications Manager.

To configure the Sterling Configurator rules:

1. In the Sign In page, log in as an administrator by entering your login ID and
password, and clicking Sign In. The Application Console home page is
displayed.

2. From the menu bar, navigate to Configurations > Launch Applications
Manager. The Applications Manager is launched in a new browser window.

3. From the Applications Manager menu bar, navigate to Applications >
Application Platform. The Application Rules side panel is displayed.

4. In the Application Rules side panel, select System Administration > Item
Configurator.

5. Specify the paths to the location where the models, properties files, and rules
are stored.

Notes:

• You must copy the .properties files from the sic_properties.zip file to the
location specified for the properties files. The sic_properties.zip file is
located in the <INSTALL-DIR>/repository/external folder.

• All the paths specified in the Applications Manager for the model
repository are shared by the Selling and Fulfillment Foundation and the
Visual Modeler. If the Selling and Fulfillment Foundation and the Visual
Modeler reside on different machines, the paths should be mounted on a
drive that is accessible to both. For more information about model
repository, refer to the Selling and Fulfillment Foundation: Application
Platform Configuration Guide.

• In Business Center, a model can be assigned to the item definition of a
bundle item. The model-name is saved in the item definition. If you
change the model-name at any point of time after it has been saved to the
item definition, the item definition needs to be changed to point to the
modified model-name. This situation could arise when a user edits the
model definition in Visual Modeler.
Visual Modeler Application Guide 219

Integrating the Visual Modeler with Selling and Fulfillment Foundation

220
 Visual Modeler Application Guide

CHAPTER 15 Introduction to J2EE Web
Applications
This chapter presents an overview of the Java 2 Platform, Enterprise Edition (J2EE)
and how it is used to deploy Web applications. If you are already familiar with this
architecture, then you can skip this chapter.

Architecture
The Visual Modeler is designed to conform to the Java 2 Platform, Enterprise
Edition (J2EE) architecture as defined in Java 2 Platform Enterprise Edition
Specification, v 1.2 published by Sun Microsystems, Inc.

The Visual Modeler is deployed as a Web application that comprises a set of Java
classes together with accompanying configuration files, HTML templates, and JSP
(JavaServer Pages) pages. It must be installed into a servlet container that conforms
to the J2EE standard.

Web Applications
A J2EE Web application is built to conform to a J2EE specification. You add Web
components to a J2EE servlet container in a package called a Web application
archive (WAR) file. A WAR file is a JAR (Java archive) file compressed file.

A WAR file usually contains other resources besides Web components, including:
Visual Modeler Application Guide 221

Introduction to J2EE Web Applications

222
• Server-side utility classes

• Static web resources (configuration files, HTML pages, image and sound
files, and so on)

• Client-side classes (applets and utility classes)

The directory and file structure of a Web application deployed as a WAR file
conforms to a precise structure. A WAR file has a specific hierarchical directory
structure. The top-level directory of a WAR file is the document root of the
application. The document root is the directory under which JSP pages, client-side
classes and archives, and static Web resources are stored. The document root
contains a subdirectory called WEB-INF/, which contains the following files and
directories:

• web.xml: the Web application deployment descriptor. It describes the
structure of the Web application.

• Tag library descriptor files.

• classes/: a directory that contains server-side classes: servlet, utility
classes, and Java Beans components.

• lib/: a directory that contains JAR archives of libraries (tag libraries and
any utility libraries called by server-side classes).

web.xml File
Every Web application deployed in a servlet container must have a web.xml file
present in its WEB-INF/ directory. The structure of every web.xml conforms to a
DTD published as part of the J2EE specification.

The purpose of the web.xml is to specify the general configuration of the Web
application as required by the J2EE standard. Specifically:

• initialization parameter values are provided for the Web application

• servlet classes used by the Web application may be declared and given
names

• each servlet class is mapped to one or more URL patterns: when the
servlet container receives a request whose URL matches a pattern defined
in the web.xml file, then the corresponding servlet is used to process the
request

• initialization parameter values are provided for each servlet if required
Visual Modeler Application Guide

JSP Pages
• session information (such as time out)

• the location of custom tag libraries used by the JSP pages

JSP Pages
Early Java-based Web applications used only servlets to generate the HTML that
was sent back to users’ Web browsers. Over time, template mechanisms were
introduced that enabled Web developers to generate dynamic content by using
templates to generate the HTML. Several such template systems are available,
however the J2EE architecture has settled on the use of JSP (JavaServer pages)
pages to display content.

When a J2EE application receives a request from a user’s browser, it first processes
the request to extract parameters from the request and to perform business logic
initiated by the request. Once the processing is complete, the Web application must
dispatch the request to a JSP page: it does this by using a request dispatcher.
Typically, the servlet context invokes a request dispatcher by passing the target JSP
page to the dispatcher and then the request and response objects are forwarded by
the request dispatcher.

A JSP page comprises a combination of HTML, JSP tags, and scripting elements
such as scriptlets.

• HTML: a JSP page can include any amount of normal HTML. This
content is passed right through to the browser page without change.

• JSP tags: tags populate the dynamically-generated HTML with values
calculated as the page is being generated. There are standard JSP tags such
as <jsp:getProperty>, <jsp:include>, and <jsp:forward>. These are
available to anyone creating a JSP page. In addition, you can specify that
your Web application uses one or more custom tag libraries. Each custom
tag library must be declared in the web.xml file for the Web application
and the declaration must specify both the URI for the tag library and the
location of the tag library descriptor (TLD) file.

• Scripting elements: You can intersperse the HTML and JSP tags in a JSP
page with Java code that is contained between the scriptlet opening tag <%

Attention: In the Visual Modeler, the use of the tag libraries is now deprecated. For
performance reasons, we suggest that you use scriptlets. JSP tags can still
be used in some existing applications or specialized integration tasks.
Visual Modeler Application Guide 223

Introduction to J2EE Web Applications

224
(or <jsp:scriptlet>) and the closing tag %> (or </jsp:scriptlet>). Scriptlets
are most commonly used to manage complex flow control in a JSP page.

Note that most JSP scripting elements can be invoked using a shorter form as
described in the following table.

Data is passed to a JSP page using a variety of mechanisms, the most important of
which are implicit objects and beans.

• Implicit objects: Every JSP page provides the Web developer with objects
that can be used to display data on the generated HTML page. The most
important of these are the page, request, session, config, and application
objects.

• Beans: Most of the data generated by the business logic of the application
is passed to the JSP page by adding Java beans to one of the implicit
objects listed above.

Model 2 Architecture
The Visual Modeler is designed to conform to Sun’s “Model 2” architecture. In this
architecture, three functional components referred to as the Model, View, and
Controller (MVC) partition the functionality of the Web application into logically
distinct components.

TABLE 18. Short Forms of Standard JSP Tags

Short form XML form

<% <jsp:scriptlet>

<%= <jsp:expression>

<%! <jsp:declaration>

<%@ <jsp:directive>
Visual Modeler Application Guide

Controllers
FIGURE 9. Model 2 Architecture
• Model: this component manages the data and business objects that are

used by the system.

• View: this component is responsible for generating the content displayed
to the user.

• Controller: this component determines the logical flow of the application.
It determines what actions are performed on the model and manages the
communication between model and view components.

Controllers
In the Model 2 architecture, controllers are Java classes intended to manage the
processing of an inbound request and then to forward the request to an appropriate
JSP page. The basic structure of a Visual Modeler controller follows this form:

public class GenericController extends Controller
{

public void execute() throws Exception
Visual Modeler Application Guide 225

Introduction to J2EE Web Applications

226
{
//Dispatch some business logic
BizObjs resultBizObjects = calculate();
//Generate the beans
Vector beans = generateBeans(resultBizObjs);
//Attach the beans to the request
attachBeans(beans);
// Dispatch to JSP page
String pageName = choosePageLogic();
// Dispatch to JSP page
Dispatcher rd = request.getDispatcher(pageName);
rd.forward(request, response);

}

protected BizObjs calculate() throws Exception
{

//do some processing
return resultBizObjs;

}

protected Vector generateBeans(BizObjs bizObjs)
{

//create beans from business objects
return beans;

}

protected void attachBeans(Vector beans)
{

Iterator it = beans.iterator();
while (it.hasNext())
{

DataBean bean= (DataBean) it.next();
request.setAttribute (beanName, bean);

}
}

protected String choosePageLogic()
{

//logic to determine where to forward the request
return pageString;

}
}

Model
In the Model 2 architecture, the objects that represent data in the system are
maintained by the model component. It is common to distinguish the business
objects from the beans used in the JSP pages.
Visual Modeler Application Guide

View
Once the business logic finishes creating and transforming the business objects, the
controller class transforms the business objects into their corresponding beans. The
beans are then passed to the JSP page for presentation.

View
The user interface of the Web application is served to the browser using JSP pages.
Data is passed to each JSP page in the form of beans. These are classes with defined
accessor methods that enable the logic on the JSP page to retrieve values using tags
of the general form:

<%
DataBean dataBean = request.getAttribute("nameOfBean");
String stringProperty =

dataBean.getNamedProperty("nameOfProperty");
%>

Note that it is possible to use a combination of scriptlets, simple JSP tags, and more
sophisticated custom tags to manage page layout and the display of data.

Further Reading
The published literature on Web applications, J2EE, servlets, and JSP pages is vast.
The following are recommended books for further reading:

• Hall, Core Servlets and JavaServer Pages, Second Edition, Prentice Hall,
2003

• Hunter, Java Servlet Programming, Second Edition, O’Reilly, 2001

• Fields and Kolb, Web Development with JavaServer Pages, Second
Edition, Manning, 2001
Visual Modeler Application Guide 227

Introduction to J2EE Web Applications

228
 Visual Modeler Application Guide

CHAPTER 16 System Architecture
This chapter describes the Visual Modeler architecture and introduces some of the
important Java classes that the Visual Modeler and its applications use. It assumes a
thorough understanding of the J2EE architecture.

This chapter is intended to help you to modify or extend existing applications or
write new applications. Note that not all parts of the Visual Modeler conform to this
architectural description.
Visual Modeler Application Guide 229

System Architecture

230
FIGURE 10. Visual Modeler Architecture

Visual Modeler Web Application
When you install the Visual Modeler into your servlet container, it installs as a
WAR file, Sterling.war. When the WAR file deploys, it unjars into a directory
Visual Modeler Application Guide

Processing Requests
called Sterling/. The WEB-INF/ sub-directory contains the web.xml file for the
application.

The most important configuration settings in this file are:

• The definition of the InitServlet and DispatchServlet:

• InitServlet loads when the servlet container starts. InitServlet reads in all
of the configuration information for the Visual Modeler using the value of
the propertiesFile element: by default this is Comergent.xml.

• DispatchServlet is the main servlet used to process inbound requests. Most
of the URLs defined in the servlet mapping section resolve to the
DispatchServlet.

• The servlet mapping section maps most URL patterns to the
DispatchServlet. Note that “/msg/*” is used to map requests to the
MessagingServlet: this ensures that inbound XML messages are processed
by this servlet class.

• The session configuration element sets a session timeout value of 30
(minutes). Each implementation of the Visual Modeler must carefully
consider an appropriate value for this parameter. Bear in mind the
following:

• End users of the system may leave their browsers unattended while they
step away from their desks. If an unscrupulous user can access the browser
when a session is still valid, then they can access the system.

• End users may punch out to other external systems in the course of using
the Visual Modeler. The session timeout value must give enough time for
users to punch out and return.

• Each session uses system resources. The greater the session timeout value,
then the greater the memory usage of the system.

• The location of the Comergent tag library descriptor (TLD) file is
provided.

Processing Requests
When the Visual Modeler receives a request from a user’s browser, it must
determine how to process the request and how to display the result to the user. It
does this using the MessageTypes.xml configuration files. These files determine
the mapping between a request and the logic processing classes and JSP pages
used.
Visual Modeler Application Guide 231

System Architecture

232
1. When a request is received, the message type is identified and the appropriate
controller invoked.

2. Additional business logic may be invoked using a business logic or bizAPI
class.

3. The controller then forwards the request to the specified JSP page to render the
output back to the user’s browser.

The messageTypeFilename element of the GeneralObjectFactory element of the
Comergent.xml file specifies the comma-delimited list of MessageTypes.xml file
used to specify the message types. Each MessageTypes.xml file declares a list of
message types organized by message group.

Each request specifies the message type as the cmd parameter. For example, if the
URL is of the form:

../Sterling/catalog/matrix?cmd=search

then the name of the message type is “search”.

Each message type is identified by the Name attribute of its MessageType element.
The Name attribute identifies which message type is being requested when a user
clicks a URL.

MessageType elements have one or more of the following child elements:

• BizletMapping: used for message processing, it associates a Bizlet class
and a method of this class to process the message.

• ControllerMapping: associates a controller to be used to process the
request. For message processing, you can specify a BizRouter class to
invoke a Bizlet class to process the message.

• JSPMapping: associates a JSP page to be used to display the result of
processing the request.

A MessageType element may specify any combination of these three elements.

Attention: You must make sure that each message group and message type have a
unique name. You must check the collection of MessageTypes.xml files
to ensure that you have not defined message groups and message types
with the same name. See "Overriding MessageType Definitions" on
page 233 for an exception to this rule.

We suggest that you list message types alphabetically by name within
message groups as a means of quickly identifying the duplication of mes-
sage type names.
Visual Modeler Application Guide

Processing Requests
• If no ControllerMapping element is specified, then, by default, the
ForwardController class is used. This class simply forwards the request to
the JSP page specified by the JSPMapping element. If no JSPMapping
element is found or if the specified JSP page is missing, then an error page
is displayed.

• If a custom controller is specified, it may process the request itself (see
"Controller Classes" on page 236), or it can invoke a business logic class
using the runAppJob() method of the AppExecutionEnv class (see
"AppExecutionEnv Class" on page 241).

• If no JSPMapping element is specified, then the business logic class or
controller must specify which JSP page is to be used.

Each request or message is validated against the entitlements system to verify that
the user can execute the message type. Not all users can execute all message types.

Overriding MessageType Definitions
The MessageType element has an optional attribute: IsOverlay. If this attribute is
set to “true”, then the MessageType definition overrides any previous definition of
this message type given in any earlier MessageTypes.xml file listed in the
messageTypeFilename element.

If two or more definitions are given for the same message type without one
specifying the isOverlay attribute, then an initialization error is displayed and the
first definition of the message type is used.

Note that the IsOverlay attribute does not change the location of the MessageType:
this is still determined by the message group to which the first definition belongs or
by the MessageTypeRef element that references the message type.

 For example, to override the definition of the adirectLogin message type, you can
define an element as follows:

<MessageType Name="adirectLogin" IsOverlay="true">
<ControllerMapping>

com.comergent.apps.common.controller.MyLoginController
</ControllerMapping>
<JSPMapping>../common/adirectPageLoader.jsp</JSPMapping>

</MessageType>

The IsOverlay attribute can also be used for MessageGroup declarations so that you
can overwrite the definition of a message group, but its use is not recommended.
Visual Modeler Application Guide 233

System Architecture

234
Default Elements
For each message group, you can specify default BizletMapping,
ControllerMapping, and JSPMapping elements. These are used when no mapping
is specified for a message type that belongs to the message group.

In general, if no default mapping is specified in a message group, then the system
looks for a default mapping in the parent message group of the current message
group. If no mapping is found anywhere in the message group tree, then values
specified in the MessageGroupDefaults message group are used.

Key Java Classes
At a schematic level, the Visual Modeler applications all have the same structure:
they are composed of controllers, business objects and bizlets, and JSP pages.

Wrapper Classes
Several of the standard classes used in J2EE Web applications have been wrapped
in wrapper classes to manage any minor idiosyncrasies among the supported servlet
containers:

ComergentContext
This class is used to wrap the servlet container context. You can use it to retrieve
the Env object for environment information. Note that any context attribute that is
set must be serializable. An exception is thrown if you attempt to set a non-
serializable attribute.

It provides the getResourceAsStream() method: this method can be used to access a
file as a stream for read-only access. You must use the adjustFileName() method of
the LegacyFileUtils class for write access to a file.

ComergentDispatcher
This class is a lightweight wrapper of the standard RequestDispatcher class: it
provides forward() and include() methods.

ComergentRequest
This class wraps the standard HttpRequest class and provides helper methods to
parse the inbound requests and messages.

ComergentResponse
This class wraps the standard HttpResponse class. It provides a localRedirect()
method to pass a request with a new message type. For example, you may want a
Visual Modeler Application Guide

Key Java Classes
controller to process a request, and then to pass the result on to another controller:
you do this by calling:

response.localRedirect(request, "messageType");

This has the effect of submitting the request to the DispatchServlet as if it had been
received as an HTTP request.

ComerentSession
This class wraps the standard HttpSession class. When a user first logs in, a User
data bean is created and added to the ComergentSession object. You can access user
information through the ComergentSession getUser() method.

For example:

session.getUser().getUserKey()

will return the current user’s key; and

session.getUser().getPartnerKey()

returns the key of the partner to whom the user belongs.

The ComergentSession object is used to store information that must be persistent
for more than one request of a user’s session. Use the
setAttribute(String s, Object o) method to set an object in the session and
getSession(String s) to retrieve it. Objects stored in the session must implement the
Serializable interface: all generated data beans implement this interface and so
these may be stored in the session.

The ComergentSession class also provides a logout() method: invoking this method
immediately invalidates the servlet container session.

Servlets
The main servlets used are:

• InitServlet: this servlet loads when the servlet container starts. Its
init(ServletConfig config) method initializes the ComergentAppEnv class.

• DispatchServlet: this servlet is used to service almost all requests
processed by the Visual Modeler. Its principle method call is:

void dispatch(HttpServletRequest request, HttpServletResponse
response)

This method creates a controller to handle the request with:
Controller controller createController(ComergentRequest comergen-
Visual Modeler Application Guide 235

System Architecture

236
tRequest)

and then invokes:
controller.init(comergentContext, comergentSession,

comergentRequest, comergentResponse);
controller.execute();

Note that the instance of the Controller class created by the
createController() method is a function of the request. The request message
type determines the Controller class because the controller is created by the
GeneralObjectFactory class. The GeneralObjectFactory uses the
MessageTypes.xml file to map from the request message type to a
Controller class.

• DebsDispatchServlet: this servlet is used to process XML messages
posted from another system to the Visual Modeler. If the content type of
the request starts with “application/x-icc-xml” or “text/xml”, then it
invokes the MessagingController to process the request.

Controller Classes
The Visual Modeler offers two different ways of using controllers to process
requests:

Custom Controllers
You can write your own Controller class by extending the
com.comergent.dcm.caf.controller.Controller class. When you do this, you must
provide the application logic to determine the JSP page to which the request should
be forwarded. For example:

boolean processingSuccess = false;
/*
 *
 * Business logic processes request and sets processingSuccess to
 * true if successful.
*/

if (processingSuccess)
{

callJSP("SuccessMessageType");
}
else
{

callJSP("FailureMessageType");
}

protected void callJSP(String messageType) throws

ControllerException, ICCException, IOException
Visual Modeler Application Guide

Key Java Classes
{
String resource = getJSPName(messageType);
ComergentDispatcher rd =

request.getComergentDispatcher(resource);
rd.forward(request, response);

}

protected String getJSPName(String messageType) throws ICCException
{

JSPObjectID id = new JSPObjectID(messageType);
return GeneralObjectFactory.getGeneralObjectFactory().-

getMapping(id);
}

SimpleController
You can extend the SimpleController class to process the request if there is only
one exit point from the application logic. The SimpleController uses the message
type of the request to determine the JSP page to which the request is forwarded
once the application logic is finished. To extend the SimpleController class,
overwrite the calculate() method.

MessagingController
This class is used to process XML requests (such as price and availability or
shopping cart transfer requests from other systems).

DataBean Classes
Access to data in the Visual Modeler is managed through data objects: these are
XML documents that describe the business entities such as partners, users,
products, and so on. They describe the fields of the data object together with
information about how they map to database tables in the Knowledgebase. Each
data object XML file is used to generate a corresponding DataBean Java class.

The DataBean classes are the main classes used to represent each business entity in
the Visual Modeler. Each business entity such as a user, partner, product, and so on,
is represented in memory by an instance of the appropriate DataBean class. See
CHAPTER 18, "Introducing Data Beans and Business Objects" for more
information. Some legacy application may still use the BusinessObject class, but in
general the use of the BusinessObject class is deprecated.

DataBean classes are also used to pass data to JSP pages. Any data object definition
in the Visual Modeler XML schema may be used to generate a DataBean class by
running the generateBean target (see the CHAPTER 23, "Software Development
Kit" for more details).
Visual Modeler Application Guide 237

System Architecture

238
The DataBean class is a general abstract class and all generated data bean classes
extend this class. Each DataBean class provides restore() and persist() methods that
retrieve and save data in the database respectively.

Some applications make use of application beans: see "Application, Entity, and
Presentation Beans" on page 273 for a discussion of how these beans are used.

ObjectManager and OMWrapper Classes
You should not instantiate DataBean classes by using their constructors. Instead use
the ObjectManager and OMWrapper classes to create new instances of objects as
your applications require them. These classes follow the Factory pattern in that they
provide a class designed to generate object instances as they are required. They
enable you to switch from one object class to another without changing the
application code that creates and uses the objects.

Creating Objects
In general, you should use the OMWrapper class rather than the ObjectManager
class, but both can be used. You use these classes to create objects with the
following methods:

ObjectClass temp_ObjectClass =
(ObjectClass) OMWrapper.getObject("ObjectName");

or

ObjectManager temp_ObjectManager = ObjectManager.getInstance();
ObjectClass temp_ObjectClass =

(ObjectClass) temp_ObjectManager.getObject("ObjectName");

Mapping Object Names to Object Classes
The ObjectManager and OMWrapper classes use the ObjectMap.xml
configuration file (located in debs_home/Sterling/WEB-INF/properties/) to
determine which type of object is created from the object name provided in the
getObject() method.

Each Object element is of the form:

<Object ID="ObjectName">
<ClassName>ObjectClass</ClassName>

</Object>

Attention: Do not add comments to the ObjectMap.xml file: these can cause errors
on initialization.
Visual Modeler Application Guide

Key Java Classes
When the getObject("ObjectName") method is invoked, an instance of the
ObjectClass class is returned. The ObjectName must be the name of a Java class or
interface and the ObjectClass must be a subclass of the ObjectName class (possibly
itself) or a class that implements the ObjectName interface.

If the ObjectMap.xml file does not have an Object element whose ID attribute
matches the ObjectName parameter, then the ObjectManager or OMWrapper
creates an instance of the ObjectName class. That is, it behaves as if there is an
element of the form:

<Object ID="ObjectName">
<ClassName>ObjectName</ClassName>

</Object>

For example, suppose that the ObjectMap.xml file contains the element:

<Object ID="com.comergent.bean.productMgr.ProductBean">
<ClassName>

com.comergent.bean.productMgr.MatrixProductBean
</ClassName>

</Object>

Then the following method invocation will create an instance of the
MatrixProductBean class:

ProductBean temp_ProductBean = (ProductBean)
OMWrapper.getObject("com.comergent.bean.productMgr.ProductBean");

Note that the MatrixProductBean must extend the ProductBean class: otherwise a
ClassCastException would be thrown at runtime. However, if there is no element
whose ID attribute is com.comergent.bean.productMgr.ProductBean, then the same
call would return an instance of the com.comergent.bean.productMgr.ProductBean
class.

Restrictions
Note that you cannot create Object definitions so that the class specified in the
ClassName element in one Object element is the ID attribute in another Object
element. The only exception to this rule is when the class is used both as the ID and
ClassName values for a single Object element. In particular, if you extend a data
object (see "Extending Data Objects" on page 267), then:

1. Define an Object element that maps the extended class to the extending class:

<Object ID="<Extended class>">
<ClassName><Extending class></ClassName>

</Object>
Visual Modeler Application Guide 239

System Architecture

240
2. Make sure that you replace any reference to the extended data object in any
ClassName elements to the extending data object.

Passing Parameters
If you need to pass parameters to the object constructors, then the following
OMWrapper method is also available:

ObjectClass temp_ObjectClass = (ObjectClass)
OMWrapper.getObjectArg("ObjectName", Object arg1, ... ,

Object arg10);

In this form, you can pass up to ten parameters as Objects into the method
invocation. The following OMWrapper and ObjectManager method calls enable
you to pass in an unlimited number of parameters as an array of objects:

ObjectClass temp_ObjectClass = (ObjectClass)
OMWrapper.getObject("ObjectName", Object[] args);

or

ObjectClass temp_ObjectClass = (ObjectClass)
temp_ObjectManager.getObject("ObjectName", Object[] args);

For example, suppose that the ObjectMap.xml file contains the element:

<Object ID="com.comergent.bean.productMgr.OrderBean">
<ClassName>com.comergent.bean.matrix.MatrixOrderBean</ClassName>

</Object>

Here, the MatrixOrderBean class is a subclass of the OrderBean class. Suppose that
the MatrixOrderBean has a constructor of the form
MatrixOrderBean(CartBean cb).

Then the following method invocation will create an instance of the OrderBean
class using an instance of the CartBean class as a parameter:

Cart temp_CartBean = (CartBean)
OMWrapper.getObject("com.comergent.bean.partnerMkt.CartBean");

/*
Code that processes the cart bean object

*/
OrderBean temp_OrderBean = (OrderBean)

OMWrapper.getObjectArg("com.comergent.bean.productMgr.OrderBean",
temp_CartBean);

Object Pooling
If you expect some classes of object to be created and used frequently, then you can
use the ObjectManager and OMWrapper classes to create a pool of objects. The
parent object (identified by the ID attribute) must implement the poolable interface.
Visual Modeler Application Guide

Key Java Classes
This interface is a part of the com.comergent.dcm.objmgr package. It declares one
method reset() that you must implement.

When you are finished with a poolable object, you can return it to the object pool
by using the return() method as follows:

1. In the ObjectMap.xml entry for a pooled class, set the MaxPoolSize attribute
to the number of objects you want created in the pool:

<Object ID="ObjectName" MaxPoolSize="n">
<ClassName>ObjectClass</ClassName>

</Object>

2. Create instances of the object class using OMWrapper and ObjectManager as
described above.

3. When you are finished with the object, then return the instance to the pool
using:

OMWrapper.return(temp_ObjectClass);

4. or

temp_ObjectManager.return(temp_ObjectClass);

Note that if you create an object by passing in parameters as described in "Passing
Parameters" on page 240, then a new object is created rather than re-using an object
from the pool.

AppExecutionEnv Class
The AppExecutionEnv class can be used to run business logic classes. However,
the use of business logic classes is deprecated, so use this class only to support
legacy applications. You use the static methods runAppObj() to invoke the creation
of a business logic class and to execute its prolog and service methods.

In its most common form, you can use:

AppExecutionEnv.runAppObj(String messageType, BizObjTable bizObjects)

The AppExecutionEnv class invokes the business logic class determined by the
messageType string and which takes the BizObjTable vector of business objects as
the input business objects.

AppsLookupHelper Class
There are many situations in the Visual Modeler where the status of a data object is
managed using a lookup code. For example, the order status of an order can change
several times through the placing of an order. There are also several examples of
display fields such as the Title of a user which can take several well-defined values
Visual Modeler Application Guide 241

System Architecture

242
and which need to be managed for different locales. This data is stored in the
CMGT_LOOKUPS table of the Knowledgebase database schema.

For each lookup type, there can be one or more lookup codes and each code has an
associated description string. For example:

You can use the AppsLookupHelper class to map a lookup code to a description
string. By invoking the appropriate method of the AppsLookupHelper class, pass in
the lookup code as a parameter and the corresponding String is returned. Depending
on which lookup type you are interested in, you choose the appropriate method for
that lookup type. The method used determines which lookup type is used to retrieve
the lookup code from the CMGT_LOOKUPS table. For example, to retrieve an
order status code string, you can write:

String orderStatusString =
AppsLookupHelper.getOrderStatusForCode(orderStatusCode);

Conversely, you can retrieve the lookup code using:

int orderStatusCode =
AppsLookupHelper.getCodeForOrderStatus(orderStatusString);

Most, though not all, lookup types have helper methods defined. Check the Java
doc for the AppsLookupHelper class for details. For further information, see
"Support for Lookup Codes" on page 248.

ComergentAppEnv Class
Use the ComergentAppEnv class to provide your code with environment
information specific to the application. It provides the following useful methods:

• adjustFileName(): this method has been moved to the LegacyFileUtils
class. See "LegacyFileUtils Class" on page 244.

• constructExternalURL(): use this method to construct a URL that enables
a client to be re-directed back to the server. Primarily, you use this method
to generate a redirect URL to enable the server to restore session
information.

• getEnv(): this method returns the environment object.

TABLE 19. Lookup Example

Lookup Type Lookup Code Description

AddressType 10 Billing

AddressType 20 Shipping
Visual Modeler Application Guide

Key Java Classes
• getContext(): this method returns the application context.

Global Class
The use of this class is deprecated. Its logging function has been replaced by the
log4j API: see CHAPTER 20, "Logging" for more information. Its support for
retrieving the values of properties has been replaced by the Preferences mechanism.
If you need to continue to use code that uses the Global class, then replace each
usage by the LegacyPreferences class.

GlobalCache Interface
Use this interface to define a cache that provides access to cached objects used by
all Visual Modeler applications. It can be used to support a clustered environment
in which the Visual Modeler is running on more than one machine.

To use a cache class that implements the GlobalCache interface, you must
implement the methods of the interface. The cache class is loaded when the
InitServlet init() method is invoked. You must provide the name of the class as the
General.globalCacheImplClass element of the Comergent.xml file. A default
implementation is provided with Visual Modeler:
com.comergent.dcm.cache.impl.AppContextCache.

You access the implementation of the GlobalCache interface by:

GlobalCache globalCache = GlobalCacheManager.getGlobalCache();

The interface supports the following methods:

• public String store(Serializable entry): stores an object in the global cache,
which remains until the application cleans it up.

• public boolean store(String id, Serializable entry): stores an object in the
global cache, which remains until the application cleans it up.

• public String cache(Serializable entry): stores an object in the global
cache. The object is available as long as the application is using it, but the
cache system cleans it up automatically.

• public String cache(Serializable entry, long lease)

• public boolean cache(String id, Serializable entry)

• public boolean cache(String id, Serializable entry, long lease)

• public boolean contains(String id): checks if the cache contains the
specific object.

• public Object get(String id): retrieves the cacheable object.
Visual Modeler Application Guide 243

System Architecture

244
• public Object remove(String id): removes a cacheable object.

• public boolean gc(): This method should be called by a Cron job so the
cache can clean up unused entries.

LegacyFileUtils Class
The LegacyFileUtils class provides helper methods for working with files. Its use is
deprecated, but it provides support for methods previously provided by the
ComergentAppEnv class:

• adjustFileName(): It returns the real path name of a file. Use this method
to access files for either reading or writing: do not use the getRealPath()
method because this can return null.. In a clustered envrionment, the
adjustFileName() method ensures that all members of the cluster access
the same file. You must use this method with four parameters:

adjustFileName(String fileName, boolean share, boolean xPublic,
boolean xLoadable);

Use of the one-parameter form of this method is deprecated. The boolean
parameters are used to determine the location of the file using the
configuration parameters specified in the WritableDirectory element of the
web.xml file.

OutOfBandHelper Class
The OutOfBandHelper class provides a means to generate an output stream using a
JSP page as a template. An example of its use is given here:

ComergentRequest request = ComergentAppEnv.getRequest();
ComergentResponse response = ComergentAppEnv.getResponse();
ByteArrayOutputStream stream = new ByteArrayOutputStream();
OutOfBandHelper outOfBandHelper = new OutOfBandHelper(request,

response, stream);
outOfBandHelper.getRequest().setAttribute(

ComergentRequest.COMERGENT_SESSION_ATTR,
request.getComergentSession());

outOfBandHelper.callJSP(messageType);
/*
 * Initialize SendSMTP and use the stream to to set the body of the
 * message
*/
String mimeType = "text/html";
String smtpHost = Global.getString(

"C3_Commerce_Manager.SMTP.SMTPHost");
SendSMTP smtp = new SendSMTP(smtpHost);
StringBuffer sb = new StringBuffer(subject);
String message = null;
Visual Modeler Application Guide

Key Java Classes
String enc = ComergentI18N.getComergentEncoding();
message = stream.toString(enc);
//Send the mail
smtp.send(from, to, cc, subject, message, mimeType);

In this example, you can see how the OutOfBandHelper class is initialized using
the existing request and response objects and an output stream. Its callJSP()
method, generates the output stream by passing the request and response objects to
the JSP page determined by the message type parameter, and the output stream can
be used by the application to retrieve the content.

The OutOfBandHelper class makes use of session and context information when
mapping a message type to a JSP page. Consequently, you can use different JSP
pages for different locales in the same way as you do for processing browser
requests and the OutOfBandHelper class will resolve which locale’s JSP page to
use and apply the same failover logic.

Preferences Class
The Preferences module provides the mechanism for accessing Visual Modeler
properties. It is one of the modules provided in the platform modules: see
"Preferences Service" on page 261 for more information. The basic usage of the
Preferences API is as follows:

private static Preferences temp_Preferences =
Preferences.getPreferences();

String temp_MyPropertyString =
temp_Preferences.getString("MyProperty");

The main methods it supports to retrieve properties are:

• public String getString(String key, String def)

• public boolean getBoolean(String key, boolean def)

• public double getDouble(String key, double def)

• public float getFloat(String key, float def)

• public int getInt(String key, int def)

• public long getLong(String key, long def)

There are corresponding putType() methods for each getType() method: for
example:

• public void putString(String key, String value)

If you invoke the getPreferences() method without a parameter, then you retrieve
the singleton Preferences object that the Visual Modeler supports. If you pass in the
Visual Modeler Application Guide 245

System Architecture

246
name of a class (for example getPreferences(MyClass.class)), then the object you
retrieve is scoped: that is, the name of the properties whose values you retrieve
using the Preferences object have the package path of the class prepended to the
property name you provide.

For example, suppose that MyClass is in the com.comergent.myApplication
package. Then the following fragments of code are equivalent:

private static Preferences temp_Preferences =
Preferences.getPreferences();

String temp_MyPropertyString =
temp_Preferences.getString("com.comergent.myApplication.MyProperty");

and:

private static Preferences temp_Preferences =
Preferences.getPreferences(com.comergent.myApplica-

tion.MyClass.class);

String temp_MyPropertyString =
temp_Preferences.getString("MyProperty");

PriceCheckAPI Class
The PriceCheckAPI class provides the main means for applications to retrieve
pricing information for products. It provides a number of static methods: these take
as arguments a Vector of pricing line items and partner keys for the current user and
the partner serving up the prices: either the enterprise or one of the Partner.com
partners.

The main method is Check(): this method has several forms, but in general they all
specialize the following method:

public static Vector Check (Vector lineItems, Timestamp date,
Long partnerKey, Long storeFront, Long verticalKey,
Long currencyKey)

All products must be passed in the Vector of pricing line items: these are objects of
the PricingLineItem class. You can specify a quantity in each pricing line item. The
date parameter enables you to retrieve prices as they would appear on a specified
date: if the parameter is null, then the current date is used. The partnerKey
parameter is the partner key of the user whereas the storeFront parameter is the
partner key of the current storefront: that is, think of the partnerKey as representing
the buyer and the storefrontKey as the seller. The verticalKey parameter is the key
of the current customer type and currencyKey is the key of the current currency.

It also provides methods to retrieve a list of price lists:
Visual Modeler Application Guide

Transactions
• getAssignedPriceListKey() returns a List of all price list keys assigned to
the partner of the current user regardless of the current selection of
currency and customer type.

• getInContextPricePriceListKey() returns a List of all price list keys
assigned to the partner of the current user based on the session settings for
currency and customer type.

Transactions
The Visual Modeler for provides support for transactions: database actions that
span one or more atomic operations. In general, you use the Transaction class to
manage situations in which several data objects must be persisted together, and if
one fails, then they should all fail.

Message Conversion Classes
Converter Classes
The Visual Modeler must be able to transform XML documents from one form to
another. The system uses converters for this purpose: these are classes that
implement the Converter interface.

Message Categories
In order to convert from one document format to another, you must specify the
source and target formats precisely. Each message must belong to a message family
and a message version: together these define a message category. There can only be
one form of a given message type within a message category.

For example, the message family dXML and the message version 5.0 uniquely
determine a message category. Within this message category, there is only one form
of the message type ShoppingCartTransfer.

Converter Interface
The Converter interface is defined by:

public interface Converter
{

public void setConfig(MessageConversion mc);

Note: The converter makes use of stylesheets: these can be compiled into Java
classes. A system property setting, compileStyleSheets, controls whether the
stylesheets are compiled or not.
Visual Modeler Application Guide 247

System Architecture

248
public MessageConversion getConfig();
public Object getProperty(String name);
public void setNext(Converter next);
public Converter getNext();
public String getIncomingMessageType();
public String getConvertedMessageType();
public void setSource(Document doc);
public void setSource(InputStream is);
public void setSource(Reader reader);
public void setSource(DefaultHandler handler);
public void setTarget(Document doc);
public void setTarget(OutputStream os);
public void setTarget(Writer writer);
public void setTarget(DefaultHandler handler);
public void setParameter(String paramName, String paramValue);
public void convert() throws ConverterException;

}

To create a converter class, you must implement these methods. In your code, you
create a converter using the ConverterFactory:

ConverterFactory cf = ConverterFactory.getConverterFactory();
Converter converter = cf.getConverter(String sourceMsgType,

String sourceMsgCategory, String targetMsgCategory);

The static getConverter() method of the ConverterFactory class uses several
parameters to identify which Converter class should be instantiated. It reads from
the MessageMap.xml using the source and target message categories together with
the message types to determine which Converter class must be used. Once created,
the converter converts from a source document to a target document:

converter.setSource(srcDoc);
converter.setTarget(targetDoc);
converter.convert();

Note that the input and ouptut to the conversion process can either be documents or
streams.

Support for Lookup Codes
The Visual Modeler uses lookup codes to provide a mechanism for maintaining and
displying locale-specific strings to users. For each lookup type, you can define one
or more lookup codes, and for each lookup code, you can define a string for each
supported locale.
Visual Modeler Application Guide

Support for Lookup Codes
What lookup support does the Visual Modeler provide?
The Visual Modeler has the capability of automatically providing lookups between
code values and their corresponding strings and from lookup code strings to code
values.

If the “code” DsElement is set, then the “string” is automatically populated from
the lookup cache. If the “string” value is set, then the “code” is looked up using the
string value.

Are string values localized?
Yes. For a code-to-string lookup, the mechanism uses the user’s locale to determine
which string value to use. For a string-to-code lookup, the mechanism uses the
user’s locale when searching on a string value to find a corresponding code.

How do I define a code to string mapping?
Code-to-string relationships are defined in the DsDataElement.xml schema file. If
both of the “code” and “string” DsDataElements are then used in a data object, then
the code-to-string mapping is handled automatically.

The following is an example of a DataElement code-string pair.

<DataElement Name="OrderStatus" Description="Order Status"
DataType="LONG" MaxLength="20" LookupType="OrderStatus"
LookupString="OrderStatusString"/>

<DataElement Name="OrderStatusString" Description="Order Status"
DataType="STRING" MaxLength="260" LookupType="OrderStatus"
LookupCode="OrderStatus"/>

Are lookups performed for XML messages?
Yes. If a dataobject used for messaging contains a code-string pair, then the string
value will automatically be used to look up the code.

How is the lookup cache loaded?
The lookup cache is loaded at system startup.
Visual Modeler Application Guide 249

System Architecture

250
 Visual Modeler Application Guide

CHAPTER 17 Platform Modularity
The Visual Modeler modular architecture is designed to make implementations
easy to customize and upgrade. This chapter provides an overview of modular
architecture, platform modules, and the module interfaces, and descibes each
module. It covers the following topics:

• "Overview" on page 252

• "Platform Modules" on page 253

• "Access Policy" on page 254

• "Authentication" on page 254

• "Base64" on page 254

• "Classpath Appender" on page 254

• "Cryptography Service" on page 254

• "Data Services" on page 255

• "Dispatch Authorization" on page 255

• "Dispatch Framework" on page 255

• "Email Service" on page 255

• "Event Service" on page 255
Visual Modeler Application Guide 251

Platform Modularity

252
• "Exception Service" on page 255

• "Global Cache Service" on page 255

• "Help" on page 255

• "Initialization Service" on page 256

• "Internationalization" on page 258

• "Logging" on page 258

• "Memory Monitor" on page 261

• "Message Type Entitlement" on page 261

• "Object Manager" on page 261

• "Out Of Band Response" on page 261

• "Preferences Service" on page 261

• "Tag Libraries" on page 262

• "Thread Management" on page 262

• "XML Message Converter" on page 263

• "XML Message Service" on page 264

• "XML Services" on page 264

Overview
The Visual Modeler platform architecture enables building the platform in a more
modular way, so that changes and upgrades to the platform can be made more
quickly and simply, and so that the modules can be re-used to support different
products built using them.

The benefits of providing a means of delivering platform functionality in platform
modules and requiring that modules make calls to other modules only through their
external interfaces areas follows:

• It is easier to compartmentalize the functionality of applications.

• It is easier to understand and manage the dependencies between parts of
the Visual Modeler.

• It is easier to contain the customizations to single modules and understand
what effect changes made in a module have on the whole system.
Visual Modeler Application Guide

Platform Modules
• Modules can be more easily upgraded independently of each other,
minimizing the effect that an upgrade may have.

• Upgrades to modules that have not been customized will not affect
customizations made in other modules.

• New functionality can be delivered in the form of a module that may be
dropped into an existing deployment of the Visual Modeler.

Platform Modules
The Visual Modeler platform is developed as a set of interdependent modules that
conform to a common organizational structure. In general, each platform module
corresponds to a functional component of the Visual Modeler such as a service or a
component of the Visual Modeler platform. The platform modules provide a Java
API to other modules. Some modules provide a set of “helper” classes which are
used by a number of other modules.

In general, each platform module has the following structure:

• Java classes: organized into the following trees. At build time, the
directories for the module are assembled into a single JAR file.

• com.comergent.api.module: external API interfaces: used by other
modules to access functionality provided by the module. In general, when
one module makes a call to another module’s class, it must do so through
the other module’s external API. This is the com.comergent.api package
for the module.

• com.comergent.module: implementation classes: the implementation of
the external API interfaces. When another module makes a call to the
module’s external API, then the actual classes used are the implementing
classes of the module’s interface. The implementation packages may
include internal classes: used by the implementation classes, but not
exposed to the outside world and not part of the supported Javadoc.

• Configuration files specific to the module such as properties files. These
are intended to live in the class hierarchy so that they can be referenced
through getResource() calls.

Module Interfaces
Each platform module must provide an external interface so that all calls to Java
classes and interfaces within the module are invoked through the interface. This
Visual Modeler Application Guide 253

Platform Modularity

254
external interface provides a comprehensive set of Javadoc pages so that writers of
other modules can use the external interface reliably and easily.

The external interfaces are organized under the following main packages:

• com.comergent.api: this package has all the external APIs supported by
the modules. These are organized by module:
com.comergent.api.converter, com.comergent.api.logging, and so on.

Invoking Interfaces
You can invoke an interface from a Java class by casting any object or child
interface to the interface and then invoke any method that the interface declares.
Each module uses one or other of these techniques, but not both. As you work on an
existing module or create a new one, be consistent in how you invoke the
interfaces. It will make it easier for your colleagues to work on the same module.

In general, you should always try to work with interfaces provided by the
com.comergent.api packages: these are the interfaces that the platform modules
will support from one release to the next, even though the underlying
implementations of the interfaces may change.

Platform Module Descriptions
This section provides a brief description of the purpose of each platform module
and examples of its use.

Access Policy
This module provides the service used to check access policies.

Authentication
This module provides the APIs used to authenticate credentials and users.

Base64
This module provides the classes used to convert data to and from Base 64 notation.

Classpath Appender
This module provides classes used to add paths to the classpath.

Cryptography Service
This module provides the services used to encrypt and decrypt data.
Visual Modeler Application Guide

Platform Module Descriptions
Data Services
This module provides a re-packaging and clean-up of the existing data services
functionality. Its API has been moved out to a separate
com.comergent.api.dataservices package. Data services now uses the same
preferences mechanism as the rest of the Visual Modeler to manage its properties.
Connection pooling has been unified into one pool, and is tunable. Pagination has
been updated, and no longer relies on pagination files being written to the file
system.

Dispatch Authorization
This module manages access checking that enusres that each user sees only those
parts of the application to which they have been granted access.

Dispatch Framework
This module manages the dispatch framework of the Visual Modeler classes that
wrap the servlet request, response, context, and session classes together with the
base controller classes used by the dispatch mechanism.

Email Service
This module provides the basic APIs to initiate sending email from the Visual
Modeler.

Event Service
This module provides the classes used by the EventBus and Events.

Exception Service
This module provides the basic exception framework and classes used by the Visual
Modeler.

Global Cache Service
This module provides the APIs to be used to access the cache.

Help
This module provides the ComergentHelpBroker class: this is a simple wrapper
class to the ServletHelpBroker class of the JavaHelp 2.0 implementation.
Visual Modeler Application Guide 255

Platform Modularity

256
Initialization Service
The Initialization module provides the Initialization service. This is a package that
helps you initialize the Visual Modeler using a consistent framework of classes and
methods.

The Initialization Manager provides a focal point in which:

• Initialization tasks can be defined

• Policy on failed initialization can be enforced

• Configuration fragments can be aggregated

The Initialization Manager main responsibility is to act on a list of initialization
tasks in a well-defined and predictable manner. That implies an ordered list which:

• either, can be defined programatically

• or, can be specfied as an XML-format file

The following code extract provides a typical example of using the InitManager
class.

InitManager initManager = InitManager.getInitManager();
try
{

String resourceName = args[0];
initManager.init(resourceName);
// or programatically created
//List modules = initModules();
//ResourceLocator resourceLocator = createNewResourceLocator();
//initManager.init(modules, resourceLocator);

}
catch (InitManagerException ime)
{

log.error(ime, ime);
System.exit(1);

}
// Initialization completed. OK to go on //
...

You can specify the initialization process using an configuration file. Here is a
sample file:

<?xml version="1.0" encoding="UTF-8"?>
<initializationManager>
<resourceLocator>

<path>/a/b/c</path>
<path>.</path>
<path>CLASSPATH</path>
Visual Modeler Application Guide

Platform Module Descriptions
</resourceLocator>
<module name=”ObjectManager”

initClass=”com.comergent.objectManager.InitHelper>
<config name="Preferences">
/com/comergent/objectManager/preferences.xml
</config>
<init-param name=”param0”>param0Value</init-param>

</module>
<module name=”module1” initClass=”com.comergent.module1.InitHelper>

<config name="ObjectManager">
/com/comergent/module1/objectMap.xml

</config>
<config name="MessageTypes">

/com/comergent/module1/messageTypes.xml</config>
<config name="Preferences">

/com/comergent/modules1/preferences.xml
</config>
<init-param name=”param1”>param1Value</init-param>

</module>
<module name=”module2” initClass=”com.comergent.module2.InitHelper>

<config name="ObjectManager">
/com/comergent/module2/objectMap.xml

</config>
<config name="MessageTypes">

/com/comergent/module2/messageTypes.xml
</config>
<config name="Preferences">

/com/comergent/modules2/preferences.xml
</config>
<init-param name=”param2”>param2Value</init-param>

</module>
<!-- it is allowable to have no initClass -->
<module name=”custom1” >

<config name="ObjectManager">
/com/comergent/module1/overlay/objectMap.xml

</config>
</module>
</initializationManager>

In this example, when the following method is called by the Initialization Manager:

com.comergent.objmgr.ObjManagerInitHelper.init(initParams,
configFragments, resourceLocator)

the following information is available:

• initParams has a list of key-value pairs: param0-param0Value

• configFragments has a list of:

• /com/comergent/module1/objectMap.xml
Visual Modeler Application Guide 257

Platform Modularity

258
• /com/comergent/module12/objectMap.xml

• resourceLocator can find the resource along the path of: /a/b/c, current,
and the current classpath.

Internationalization
This module provides basic support for the internationalization capabilites provided
by the Visual Modeler.

Logging
This module provides access to the logging service used to record activity in the
Visual Modeler. Its property file, log4j.properties, is used to configure the
behaviour of the logging service. The module is based on the log4j open source
project and uses the same syntax for its configuration as follows:

Log4j has the following main components: loggers, appenders, and layouts. These
three types of components work together to enable developers to log messages
according to message type and level, and to control at runtime how these messages
are formatted and where they are reported.

Configuration
You configure the logging platform module using the log4j.properties configuration
file by specifying the properties of its loggers, appenders, and layout. For example,
the following snippet is used to configure the root logger and the CMGT appender:

Set root category priority
#log4j.rootCategory=info, CMGT
log4j.rootCategory=info, STDOUT
#log4j.rootCategory=info, CMGT, RTS

START - CMGT
CMGT appender
log4j.appender.CMGT=com.comergent.logging.ComergentRollingFileAp-
pender
#log4j.appender.CMGT=com.comergent.logging.ComergentDailyRolling-
FileAppender

#log4j.appender.CMGT.layout=org.apache.log4j.PatternLayout
log4j.appender.CMGT.layout=com.comergent.logging.ConversionPattern

The log format defaults to the "classic" format. This format is
recommended for actual deployment to allow a log analyzer to
work correctly.
log4j.appender.CMGT.layout.ConversionPattern=%d{yyyy.MM.dd
HH:mm:ss:SSS} Env/%t:%p:%c{1} %m%n
Visual Modeler Application Guide

Platform Module Descriptions
Loggers

Loggers are named entities. Logger names are case-sensitive and they follow the
hierarchical naming rule: a logger is said to be an ancestor of another logger if its
name followed by a dot is a prefix of the descendant logger name. A logger is said
to be a parent of a child logger if there are no ancestors between itself and the
descendant logger.

For example, the logger named “com.foo” is a parent of the logger named
“com.foo.Bar”. Similarly, “java” is a parent of “java.util” and an ancestor of
“java.util.Vector”. This naming scheme should be familiar to most developers.

The root logger resides at the top of the logger hierarchy. It is exceptional in two
ways:

• It always exists;

• It cannot be retrieved by name.

Invoking the class static Logger.getRootLogger() method retrieves it. All other
loggers are instantiated and retrieved with the class static
Logger.getLogger(String name) method. This method takes the name of the desired
logger as a parameter. For example:

private static final org.apache.log4j.Logger log =
org.apache.log4j.Logger.getLogger(PriceCheckAPI.class);

log.debug("got current date: " + date);

Loggers may be assigned levels. The set of possible levels, that is DEBUG, INFO,
WARN, ERROR and FATAL are defined in the org.apache.log4j.Level class. If a
given logger is not assigned a level, then it inherits one from its closest ancestor
with an assigned level. More formally:

Level Inheritance: the inherited level for a given logger, is equal to the first
non-null level in the logger hierarchy, starting at the logger and proceeding
upwards in the hierarchy towards the root logger.

To ensure that all loggers can eventually inherit a level, the root logger always has
an assigned level.

Appenders

The ability to selectively enable or disable logging requests based on their logger is
only part of the picture. More than one appender can be attached to a logger.

The addAppender method adds an appender to a given logger. Each enabled
logging request for a given logger will be forwarded to all the appenders in that
logger as well as the appenders higher in the hierarchy. In other words, appenders
Visual Modeler Application Guide 259

Platform Modularity

260
are inherited additively from the logger hierarchy. For example, if a console
appender is added to the root logger, then all enabled logging requests will at least
print on the console. If in addition a file appender is added to a logger, then enabled
logging requests for the logger and its children will print on a file and on the
console. It is possible to override this default behavior so that appender
accumulation is no longer additive by setting the additivity flag to false.

The rules governing appender additivity are summarized below:

• The output of a log statement of logger C will go to all the appenders in C
and its ancestors. This is the meaning of the term "appender additivity".

• However, if an ancestor of logger has the additivity flag set to false, then
logger’s output will be directed to all its appenders and its ancestors up to
and including the ancestor, but not the appenders in any of the ancestors
the ancestor.

• Loggers have their additivity flag set to true by default.

Layouts

Sometimes, you may wish to customize not only the output destination but also the
output format. This is accomplished by associating a layout with an appender. The
layout is responsible for formatting the logging request according to your wishes,
whereas an appender takes care of sending the formatted output to its destination.
The PatternLayout, part of the standard log4j distribution, lets you specify the
output format according to conversion patterns similar to the C language printf
function.

For example, the PatternLayout with the conversion pattern:

%r [%t] %-5p %c - %m%

will output something like this:

176 [main] INFO PriceCheckAPI - got current date: 10/22/2005.

The first field is the number of milliseconds elapsed since the start of the program.
The second field is the thread making the log request. The third field is the level of
the log statement. The fourth field is the name of the logger associated with the log
request. The text after the “-” is the message of the statement.

Memory Monitor
This module provides classes used to monitor and log memory consumption.
Visual Modeler Application Guide

Platform Module Descriptions
Message Type Entitlement
This module provides the service that checks the entitlement of users to invoke
message types.

The interfaces are defined in the com.comergent.api.dispatchAuthorization
package. This package contains factory classes, interfaces, and exceptions needed
for the service. The implementation classes are in the
com.comergent.dispatchAuthorization package.

The main entry point for this module is the class EntitlementRepository. An
instance of this class is obtained from the EntitlementFactory class. Applications
can create named instances of the the EntitlementRepository class. Named
instances will facilitate unit testing, and may be useful for alternative deployment
environments.

An application needing to specify dispatch rules or other message type entitlement
objects will execute logic similar to the following:

import com.comergent.api.dispatchAuthorization.EntitlementRepository;
import com.comergent.api.dispatchAuthorization.EntitlementFactory;
import javax.xml.dom.Document;
…
Document document = ...;
…
EntitlementRepository repository =

EntitlementFactory.getEntitlementRepository();
repository.setRules(document);

Object Manager
This module provides the classes used to instantiate objects: see "ObjectManager
and OMWrapper Classes" on page 238 for details.

Out Of Band Response
This module is used to send output to output streams other than the standard JSP
pages.

Preferences Service
The Preferences module is used to retrieve and set configuration properties used by
the Visual Modeler. You can retrieve properties along these lines:

private static final Preferences prefs =
Preferences.getPreferences(MyClass.class);

// implict scope of "com.comergent.apps.module.MyClass"
int max = prefs.getInt("PromotionManager.maxValue", 100);
int min = prefs.getInt("PromotionManager.minValue", 1);
Visual Modeler Application Guide 261

Platform Modularity

262
The second parameter in the getInt() calls specify the value to return if no property
with that name is found. The configuration file in which the property is defined is
assumed to be on the classpath: for example in the file
com.comergent.apps.module.Preferences.xml. If the XML properties file is read
in using the Preferences service, then make sure that the XML file uses the
Comergent root element. For example:

<Comergent>
<PromotionManager>

<maxValue>50</maxValue>
<minValue>20</minValue>

</PromotionManager>
</Comergent>

You can ensure that the Preferences service is used to initialize the properties by
customizing the WEB-INF/properties/init.xml configuration file by adding an
element along these lines:

<module name="PromotionMgr">
<config name="Preferences">

com/comergent/reference/apps/mktMgr/controller/Init.xml
</config>

</module>

The Preferences class provides methods to get and put property values. For
example:

prefs.putInt("PromotionManager.maxValue", 25);
prefs.putObject("currentShoppingCart", cartBean);

When using the putObject() method, the object must meet the requirements of the
XMLEncoder API: essentially, that the object’s fields must provide getter and setter
methods.

Tag Libraries
The tag libraries provided by the Visual Modeler are produced as a platform
module.

Thread Management
This module provides a centralized facility for handling threads: their creation,
obtaining their status, and re-use. It is provided by the
backport-util-concurrent.jar library. In general, an application developer will no
longer have to invoke:

Thread t = new Thread(new MyRunnable());
Instead, having a centralized facility will allow you to:
Visual Modeler Application Guide

Platform Module Descriptions
• Pool and re-use thread when appropriate

• Track all running threads to help provide better accounting for CPU and
resource usage.

• Provide simple status reporting (scoreboard strategy: central shared
location where running thread can report its status).

• Provide simple aborting and interrupt signal via Thread.interrupt()
invocations to allow long running (but looping) thread to quit early.

The module provides the following functionality:

1. Transparently provide pooling and re-use of thread.

2. For administrative functionality, provide means to query all running threads
tracked by the thread manager.

3. For user of thread service, provide means to report current thread status to a
common scoreboard.

4. Provide guidance to following simple loop or check interrupted status protocol
to allow a long running or looping thread to quit early.

5. Provide a timer facility to allow running thread to be notified when a timer
expired. This can be used to implement a simple time-out or timeshare policy.

API and Usage
The API will continue to follow the Runnable() pattern: the application obtains a
Thread-like object and use it to execute.

Excutor executor = ExecutorFactory.getPooledExecutor();
executor.execute(new MyComergentRunnable());

XML Message Converter
This module provides a facility for converting XML documents from one message
category (family and version) to another. The package name for the API is
com.comergent.api.converter and com.comergent.converter for the implementation
classes.

The API package includes:

• ConverterFactory: this is the Factory class to create converters.

• Converter: this is the class that converts a document from one message
category to another. It can take either documents or streams as the source
and targets for conversion.
Visual Modeler Application Guide 263

Platform Modularity

264
See "Converter Classes" on page 247 for more information.

XML Message Service
This module is used to create and post outbound messages as XML documents. The
API includes MsgContext interface, MsgService interface, MsgServiceFactory
class, and theMsgServiceException classes in the com.comergent.api.msgService
package and the implementation classes are in the com.comergent.msgService
package.

The MsgService interface contains a generic service() method to post a databean
and an XML document as specified in the message context.

The general usage pattern is as follows:

1. create a MsgContext instance using the MsgContextFactory;

2. set appropriate attributes on the context object;

3. create a MsgService instance for the target message family;

4. post a message by invoking the service method with a data bean and message
context.

For example:

MsgContext ctx = new MsgContext();
ctx.setMessageType("ERPOrderCreateRequest");
ctx.setURL("http://www.server.com");
ctx.setMessageCategory("ERPOrderCreateRequest");
ctx.setContentType("text/xml");
ctx.setRemoteUser(username);
ctx.setRemotePassword(password);
MsgService msgService =

MsgServiceFactory.getMsgService(ctx.getMessageCategory());
resultBean = msgService.service(requestBean, ctx);

XML Services
This module encapsulates functionality for XML parsing, XSL transformation,
DOM wrappers, and utility classes.
Visual Modeler Application Guide

CHAPTER 18 Introducing Data Beans and Business
Objects
This chapter presents a brief tutorial that demonstrates how you can use the Visual
Modeler to work easily with data beans and business objects.

What are Data Beans?
A data bean is a data source-independent representation of a real-world entity in the
Visual Modeler. The Visual Modeler uses an external schema (defined as a set of
XML files) to define the structure of each type of data bean. For example, data
beans are used as data structures for users, product inquiry lists, partners, products,
and workspaces.

• Use the OMWrapper and ObjectManager classes to create instances of the
DataBean classes. See "ObjectManager and OMWrapper Classes" on
page 238 for more information.

• You can create a DataBean using the DataManager. Invoke the
DataManager method getDataBean(String beanName) to create a

Attention: In Release 6.4 and later, the use of business objects is not supported. You
should use data beans wherever possible.
Visual Modeler Application Guide 265

Introducing Data Beans and Business Objects

266
DataBean of the named type. This method throws an
InvalidBizobjException if no such DataBean class exists.

Lifecycle of a Data Bean
In general, the basic flow of working with a data object is:

1. Instantiate a data bean object using the OMWrapper class.

2. Add data to the bean by using the set methods to directly insert values into the
data fields.

3. Persist the data bean to save the new data object to its data source for the first
time.

4. Subsequently, you can retrieve the same data object by setting the value for key
fields, and then performing a restore() on the data bean to retrieve the current
data field values from its data source.

5. Perform any business logic required on the data bean. This may change the
in-memory values of fields, but not the values stored in the data bean’s data
source.

6. Save the changes to the data bean by persisting the data bean to its data source.

7. Later, you may want to delete the data object if it is no longer in use.

8. Eventually, you may want to remove the data from the data source entirely by
erasing the data object.

In the case of data objects whose underlying data source is a database, the
following table summarizes the Java method calls and the corresponding SQL
methods called.

Note: The use of this method is deprecated because it does not support extensions
of the data object.

TABLE 20. Data Bean Lifecycle

Step Java Method SQL Method

Instantiate data object OMWrapper.getObject()

Populate data fields setDataField()

Persist for the first time persist() INSERT

Retrieve data object restore() SELECT
Visual Modeler Application Guide

What are Data Beans?
Defining a Data Bean
Data beans are defined using an XML schema. Data beans provide accessor
methods to get and set values of particular data fields. In general, you should use
data beans when customizing Visual Modeler applications.

Defining the Structure of a Data Object
Each data object must have a defined structure to enable the Visual Modeler to
create an instance of the data object. The structure of a data object is defined in its
schema XML file: it specifies what fields the data object has and whether it has
child objects.

Each data object corresponds to a Java class that extends the DataBean class. We
refer to these as data bean classes. The data bean classes are generated
automatically as part of the SDK merge process. When you generate the
corresponding data bean class, it provides methods that access the fields and child
data beans that are declared in the data object XML file.

You can change the definition of the XML schema and hence of data objects and
their corresponding data bean classes by editing the XML schema files.

The DsRecipes.xml configuration file is used to link each data object and its data
source. It also specifies whether the ordinality of the data object is “1” or “n”. The
data object file is used to specify the precise structure of the data object, and the
DsDataElements.xml configuration file is used to specify the data type (LIST,
LONG, STRING, and so on) of each element.

Extending Data Objects
When you define a data object with an XML schema file, you can declare that it
extends another data object by using the Extends attribute. This capability is used in
two ways:

Business logic that updates
field values

getDataField()

setDataField()

Save changes persist() UPDATE

Delete data object delete() UPDATEa

Erase data object erase() DELETE

a. The Delete operation updates the ACTIVE_FLAG column of the underlying database
table row: it does not remove the record from the table.

TABLE 20. Data Bean Lifecycle

Step Java Method SQL Method
Visual Modeler Application Guide 267

Introducing Data Beans and Business Objects

268
• You can use one data object as the parent of several different extending
data objects which all share a common set of data fields. For example,
many data objects in the Visual Modeler extend the C3PrimaryRW data
object: this data object provides the basic OwnedBy and AccessKey data
fields used to manage access control.

• You can customize a data object by creating a data object that extends it.
By adding data fields to the extending data object, you can add attributes
that you need to use as part of your customization. By using the
ObjectManager, you can ensure that the extending data object is created
when the system is called upon to create a data object of the extended
type. Provided that existing code uses the ObjectManager to instantiate
instances of the extended data object, then when this code is invoked,
instances of the extending data object are created, but these still support
the extended data object’s interfaces, and so the existing code will
continue to work.

The DataManager uses a recipe and a data object to determine the element
structure of the data bean or business object and the location of the data source that
provides the element values. When you change the definition of data objects or
create new definitions, you must re-run the generateDTD and generateBean SDK
targets to create and compile the DataBean classes. See CHAPTER 23, "Software
Development Kit" for more details. See "Extending Data Objects" on page 280 for
alternate ways to extend data objects.

Data Bean and Business Object Creation
The Visual Modeler’s ObjectManager and OMWrapper classes create data beans,
and business logic classes and controllers process them. See "ObjectManager and
OMWrapper Classes" on page 238 for more information.

Business logic classes are invoked by controllers: each controller is responsible for
determining which business logic class (if any) must be created in response to a
message and its message type.

The use of business objects and the BusinessObject class is deprecated. Where
possible, you should use data bean classes, and use business objects only to
maintain legacy code.

DataContext
The restore() method takes an instance of the DataContext class as a parameter. The
DataContext class is used to specify information about the context in which the
restore() operation is being performed. It can be used to specify the maximum
number of results to be returned and for determining the number of results on each
Visual Modeler Application Guide

What are Data Beans?
page (pagination). It can also be used to specify whether an access check should be
performed on the results of the restore() operation. By default, an access check is
performed.

For example, the following code snippet creates a DataContext, sets some context
values, and then uses the context and a query to restore a data bean:

DataContext temp_DataContext = new DataContext();
temp_DataContext.setMaxResults(DsConstants.NO_LIMIT);
temp_DataContext.setNumPerPage(-1);
skuMappingListBean.restore(temp_DataContext, query);

When a DataContext object is initialized, it retrieves from the configuration files
values of the DataServices.General.MaxResults and
DataServices.General.NumPerCachePage element to set these parameters for the
restore operation. By default, no limit is set on either. There are accessor methods
available if the behavior of the DataContext needs to be modified. See the
DataContext Javadoc for further information.

The DataContext class provides a setCacheId(String cacheId) method to support
pagination: it identifies the particular cache being used.

What is the DataContext class?
The DataContext class is used to control the behavior of restore and persist
operations.

What behavior can be controlled?

A DataContext instance can control the following:

• How many query results appear on a page.

• The maximum number of query results that will be processed.

• The use of multiple page sets per Data Bean type and Session.

What are the Cache Id methods for?
The Cache Id methods allow an application to specify a unique identifier for
pagination of result sets. This new capability allows an application to maintain
multiple distinct result sets for a given Data Bean and Session.

If an application does not specify a Cache Id then a combination of Bean name and
Session Id are used to identify the cache. In this case any subsequent attempt to
restore the same Data Bean within the same session will overwrite any results.

The DataContext class provides the following methods to control Cache Id on Data
Bean restore requests:
Visual Modeler Application Guide 269

Introducing Data Beans and Business Objects

270
• void setCacheId(String cacheId): Sets a new cache id. This string is used
in combination with the Bean name and session id to generate a unique
identifier.

• String getCacheId(): Returns the current cache id (or null if it is not set).

How do Max Results and Num Per Page work?
The setting of Max Results determines the maximum number of records that can be
retrieved during a restore. When that number is reached the request is freed.

The setting of Num Per Page determines how many records are saved in each result
cache page. If the number found is less than Num Per Page, then no result cache is
created.

Note that this combination of attributes allow the application to retrieve a set of
paginated results while still specifying a maximum number of records to retrieve.

The DataContext class provides the following methods to Max Results and Num
Per Page on Data Bean restore and persist requests:

• void setMaxResults(int maxResults) sets the maximum number of results
returned for non-paginated results

• int getMaxResults() gets the maximum number of results to return for
non-paginated results

• void setMaxPaginatedResults(int maxResults) sets the maximum number
of results returned for paginated results

• int getMaxPaginatedResults() gets the maximum number of results to
return for paginated results

• void setNumPerPage(int numPerPage)

• int getNumPerPage()

If an application wants to use the data services default limits, the appropriate
property in DataContext must be set to DsConstants.USE_DEFAULT. The
following are the default values:

• maxResults: 125

• maxPaginatedResults: 125

• numPerPage: 25
Visual Modeler Application Guide

What are Data Beans?
If the application does not specify a value for numPerPage, then the value specified
in prefs.xml will be used. If a value is not set by the application nor the prefs.xml
file, a value of -1 will be used, which means the request will not be paginated.

In addition, the following methods provide result set limits that are passed directly
to the database as part of the SQL query. Since the Visual Modeler may discard
results as part of its access policy checking (for example, does the user have the
right to see this data?), these methods allow you to set a higher result set limit.

• public void setDBResultLimit(int limit)

• public int getDBResultLimit()

You can also set the DataServices.General.LimitDBResults preference. If
LimitDBResults is set to true, results are automatically limited to the number
allowed by MaxResults (or by MaxPaginatedResults for paginated results). Access
policies must be expressed as SQL to use this mechanism. For Oracle databases, do
not set the LimitDBResults preference to true.

Our access policies are handled in one of two ways. Many are converted to SQL
WHERE clauses that are applied to the query. This allows the database to handle
the access policy. If the policy is too complex (for example, it relies on a hierarchy
of partners), then the access policy can be applied only when processing the results
from the database. Such policies cannot be converted to SQL.

With Oracle, there are some cases in which the SQL generation will require that
column aliases be defined in the XML schema. This is necessary only when the
query joins multiple tables that use the same column name. This is not an issue for
SQL Server.

How do I instantiate a DataContext instance?

A new DataContext instance is currently instantiated using the standard “new”
mechanism:

DataContext dc = new DataContext();
Visual Modeler Application Guide 271

Introducing Data Beans and Business Objects

272
What are the Default Settings for a new DataContext?

When “new DataContext()” is invoked, the attributes receive the following default
values:

List Data Beans
A special class of business objects are called list data beans and list business
objects. You use these classes to manage a list of data objects of the same type.
Whenever a data object element is declared with ordinality “n” in a Recipe element,
then a list data bean is created. Access entitlements are still managed at the level of
the singular business object.

In general, you do not need to create DataBeans for list data objects: they are
created automatically. See "DataBean Classes" on page 237 for more information.
They support automatically generated methods that return a list of the data objects.
For example, the following code fragment demonstrates how to restore a list of
users. A DataContext object identified by “context” and a DsQuery object
identified as “query” are used to restrict the users returned by the restore() call:

UserListBean userList = (UserListBean)
OMWrapper.getObject("com.comergent.bean.simple.UserListBean");

// Restore the list.
userList.restore(context, query);
// Return immediately if no results found.
if (userList.getUserCount() == 0)
{

return;
}
// At least one user in list, so walk through the list of users
ListIterator userIterator = userList.getUserIterator();
while (userIterator.hasNext())

TABLE 21. DataContext Default Values

Attribute Default Value

doAccessCheck true

maxResults DataServices.xml maxResults property

numPerPage DataServices.xml numPerPage property

CacheId null

Note: Earlier versions of data objects defined ordinality in the data object defini-
tion file. Now it is the recipe file that determines the ordinality of a data
object. In Version 6.0 data objects, the ordinality attribute is still used to
declare child, reference, and included data objects.
Visual Modeler Application Guide

Application, Entity, and Presentation Beans
{
UserBean user = (UserBean) userIterator.next();
// Perform any business logic on each user.

}

Note the use of the DataContext and DsQuery parameters in the restore() method:
these are used to manage how the query is executed against the Knowledgebase.

Application, Entity, and Presentation Beans
There are several main sorts of data beans used in the Visual Modeler: data beans,
application beans, entity beans, and presentation beans. This section describes the
main differences between them.

• Data beans are the Java classes created automatically from the XML
schema description of the business objects. Running the generateBean
SDK target generates the source code for each data bean. These beans
comprise the com.comergent.bean.simple package.

Where possible, you should you use the instanceof command to determine
the class of a data bean rather than querying for the business object type.

• Application beans are Java classes created to add functionality that simple
beans do not support. For example, an application bean may provide extra
methods that cannot be automatically generated, or it may combine two or
more simple beans to pass data to a JSP page. The application beans are
organized by application and each application has a package for its
application beans whose name is
com.comergent.apps.<application name>.bean

Application beans can be subclasses of simple beans, but more often they
are Java classes that contain one or more simple beans as member variables.
For example, the
com.comergent.appservices.productService.productMgr.BizProductBean
application bean class is a Java class that contains a member variable that
implements the com.comergent.bean.simple.IDataProduct interface. The
BizProductBean application bean class delegates methods such as
getProductID() to the com.comergent.bean.simple.IDataProduct member
variable, but in addition it provides methods to retrieve a product’s features,
its supersession chain, and prices. Note the use of the IDataProduct
Visual Modeler Application Guide 273

Introducing Data Beans and Business Objects

274
interface rather than the ProductDataBean itself: this is an example of using
a generated interface rather than the class. See "Generated Interfaces" on
page 315 for more information on the generation and use of these interfaces.
By convention, if you create an application bean to wrap a data bean, then
you must provide a method called getDataBean() that retrieves the data
bean.

• Presentation beans are also used to pass data to JSP pages: typically, they
differ from application beans in that they do not provide business logic.
They may aggregate several data beans into a single class for ease of use,
or provide formatting information. As with application beans, presentation
beans must provide a method to provide access to the underlying data
bean. For example, the IPresProduct interface provides the
getIRdProduct() method: this returns the IRdProduct interface and you can
downcast this to the underlying data bean or extended data bean if need
be.

• Entity beans were used in prior releases of the Visual Modeler. They
performed the same role as application beans. Their use is deprecated.

Using Stored Procedures
You can make use of stored procedures to restore data objects. The name of the
stored procedure is declared in the ExternalName element of the data object.

When you define data objects, take care to specify the SourceType attribute. It can
take the following values:

• “1”: the underlying data source uses a table. This is the default value.

• “2”: the underlying data source uses a stored procedure.

If no SourceType attribute is defined, then the default value means that a table is the
underlying source type for the data object.

Data Bean Methods
In general, you should make use of the generated interfaces that each data bean
provides: these organize the accessor and data methods to help you manage access
to the data objects during their lifecycle. See "Generated Interfaces" on page 315
for more information.
Visual Modeler Application Guide

Data Bean Methods
Use the access policy security mechanism to provide access control.

IData Methods
The IData interface has these important methods:

• copyBean(): this method can be used to copy the values of data fields from
one bean to another. It takes one argument: this must be a bean that is
either an instance of the same class or a sub-class of the bean invoking this
method.

• delete(): this method marks the corresponding data object as deleted: the
ACTIVE_FLAG column of the database table corresponding to this data
object is set to “N” when the object is persisted. Note that you must call
persist() after calling delete(): if you do not, then the deletion does not
take effect.

• erase(): this method removes the database record corresponding to the
business object. Note that removing records from database tables can lead
to data integrity problems if other tables refer to keys that have been
deleted. In general, you should use this method only if you can account for
all usages of the record and its keys and can delete the corresponding
records from other tables.

• generateKeys(): this method populates the key fields of the data bean. You
can call this method without invoking persist(). By invoking this method,
you can use the generated keys to create other objects that require the
keys.

• setDataContext(): this method sets the data context so that restore() and
persist() calls use the right values for parameters such as the number of
results per page in a paginated data set. See "DataContext" on page 268
for more information on the DataContext class.

• persist(): this method saves the data in the data bean to its data source.

• prune(): this method is used to mark the bean for deletion in memory.
Calling restore() after prune() has no effect on the bean’s underlying data
source.

• restore(): this method retrieves the data for the data bean from its data
source. See "DataContext" on page 268 for information on the use of the
DataContext class in the restore() method.

• update(): this method updates the database record corresponding to this
business object.
Visual Modeler Application Guide 275

Introducing Data Beans and Business Objects

276
Note that any method calls that change state must be followed by a persist() call to
actually make the change to the database record.

The IData interface also provides the methods, isRestorable() and isPersistable(),
that check whether a data object may be restored or persisted respectively.

IRd and IAcc Interface Methods
The IRd interface provides the read-only accessor methods to the data object fields.
The IAcc interface extends the IRd interface by adding the set accessor methods for
each data field. Distinguishing between these two interfaces provides you with the
ability to pass a read-only object to a client application or JSP page.

For example, suppose that in the Condition data object file, Condition.xml,a
DataField element is specified as follows:

<DataField Name="ControlType"
Writable="y" Mandatory="y"
ExternalFieldName="CONTROL_TYPE"/>

Then, in the automatically-generated IRdCondition interface, there is a method
called:

public Long getControlType()

In the automatically-generated IAccCondition interface, there is a method called:

public void setControlType(Long value) throws ICCException

The signatures of these accessor methods is determined by the corresponding
DataElement definition in the DsDataElements.xml file:

<DataElement Name="ControlType" DataType="LONG"
Description="Condition Control Type" MaxLength="20" />

Restoring and Persisting Data
These important operations may be performed on a data object: delete(), persist(),
and restore().

• By calling the delete() method on a data object, you mark this object as
deleted, and no other application will retrieve this data object. The
ACTIVE_FLAG column of the underlying database table has its value set
to ’N’. Note that the data object data is not deleted from the data source. If
the underlying database table for data object does not have an

Note: If you set the Writable attribute of a data field to “n”, then the corresponding
setDataField() method is not generated.
Visual Modeler Application Guide

Data Bean Methods
ACTIVE_FLAG column, then do not use the delete() method. You can
still use the erase() method to remove such data objects from the
Knowledgebase.

• When you persist a data bean, the Visual Modeler saves the data held in
the data object’s DsElement tree to its external data source(s). Note that
the Visual Modeler manages both the update of existing data objects and
the creation of new data objects with the persist() method.

• When you restore a data bean or business object the Visual Modeler
retrieves its data from its external data source(s). If no query object is
specified in the restore() method, then all of the data objects whose values
in the key fields match those in the data bean are restored.

• Note that if you call restore() on a non-list data bean, then you should
expect that its data is uniquely retrievable from the values set in its key
fields. When the restore() call is issued, no check is performed to verify
that only one record is retrieved, and so the first record retrieved will be
used to populate the data bean. If no record is retrieved, then the restore()
call throws an ICCException.

• When you call restore() on a list data bean, then you must usually specify
a DsQuery. If no DsQuery is specified, then the restored list data bean will
contain all the data beans of this type.

restore() Method
This section provides description of the main forms of the DataBean restore()
method.

public void restore(DataContext dataContext, DsQuery dsQuery)

The principal form of the restore() method. Use the dsQuery parameter to specify
query to be executed by the restore operation. The dataContext parameter
determines the maximum number of objects returned, and for pagination the
number of results per page. Use the dataContext parameter to specify whether to
check that the current user has the correct entitlements to perform this operation.
By default, an access check is performed, so you have to override the access check
if you do not want this to be done, using the disableAccessCheck() method.

public void restore(DataContext dataContext)

This is equivalent to calling restore(dataContext, null).

Here is an example of using the DataContext and DsQuery classes together to
manage the restore() call:
Visual Modeler Application Guide 277

Introducing Data Beans and Business Objects

278
try
{

DataContext dataContext = new DataContext();
if (doAccessCheck == true)
{

dataContext.enableAccessCheck();
}
else
{

dataContext.disableAccessCheck();
}
dataContext.setNumPerPage(pageSize);
DsQuery dsQuery = QueryHelper.newWhereClause("PartnerKey",

DsConstants.EQUALS, partnerKey);
LightWeightPartnerBean partnerBean =
(com.comergent.bean.simple.LightWeightPartnerBean)
com.comergent.dcm.util.OMWrapper.getObject(

"com.comergent.bean.simple.LightWeightPartnerBean");
partnerBean.restore(dataContext, dsQuery);
QueryHelper.freeQuery(dsQuery);
return partnerBean;

}
catch (ICCException e)
{

throw (new ProfileMgrException(e));
}

persist() Method
This section provides description of the main forms of the DataBean persist()
method.

public void persist(DataContext dataContext)

If the dataContext specifies that an access check should be performed, then this
form of the persist() method performs an access check before performing the
operation. If the user does not have the appropriate entitlement, then the operation
is not performed.

Miscellaneous Methods

getBizObj() Method
If you want to retrieve a business object representation of the data object and its
data, then you can invoke the getBizObj() method. This is useful if you want to
display the internal structure of the object. For example:

BusinessObject bo = bean.getBizobj();
ComergentDocument doc = bo.serializeToXml();
doc.prettyPrint();
Visual Modeler Application Guide

Data Bean Methods
Note that this is now a deprecated method.

writeExternal() Method
Use this method to write out an XML representation of the data bean and its data.

Child Data Objects
Many data objects declare child data objects using the ChildDataObject element.
For example, the ShoppingCart data object declares LineItem as a child data object
as follows:

<DataObject Name="ShoppingCart" Extends="C3PrimaryRW"
ExternalName="CMGT_CARTS" ObjectType="JDBC" Version="6.0">

...
<ChildDataObject Access="RWID" Name="LineItem">

<Relationship CascadeDelete="y" CascadeErase="n"
ChangeUpdatesParent="y">
<JoinKeys>

 <JoinKey DstJoinField="ShoppingCartKey"
SrcJoinField="ShoppingCartKey"/>

</JoinKeys>
</Relationship>

</ChildDataObject>
...
</DataObject>

Its Relationship element has attributes that describe how child objects should be
managed when the parent is updated and whether to update the parent when a child
is changed. The JoinKey elements describes how to restore the child data objects:
typically, by specifying how values in the parent data object are used to set values
in the child data object.

When the parent data bean is generated, it generates a method called
getChildDataObjectIterator() which returns an ListIterator object containing the
child data beans. By iterating through the objects, you can examine each child data
bean in turn and access its fields using the standard accessor methods.

For example, the ShoppingCartBean class supports the getLineItemIterator()
method. The following lines of code demonstrate how to retrieve a field of a line
item:

/*
shoppingCartBean is a ShoppingCartBean object that has already been
restored
*/
ListIterator lineItemIterator =

shoppingCartBean.getLineItemIterator();
LineItemBean lineItemBean =
Visual Modeler Application Guide 279

Introducing Data Beans and Business Objects

280
(LineItemBean) lineItemIterator.getLineItemBean(0);
Long quantity = lineItemBean.getQuantity();

When a parent data object is restored, the child data objects are not restored. They
are restored only when the application accesses the children as described above.

Extending Data Objects
It is common for any implementation of the Visual Modeler to need to add data
fields to data objects or to create data objects that extend existing data objects.

We recommend storing the additional data in a new database table. A new
DataObject should then be defined that accesses the new table. Another new
DataObject is then defined that extends the original DataObject by adding a new
IncludeDataObject.

For example, suppose that you need to add a new data field to the Order data object
to track “hosted” orders: orders that are placed at storefront partners. The extra data
field is the partner key of the storefront partner. The recommended approach is as
follows:

1. Create a new data object called HostedPartner that has exactly two fields: an
OrderKey and a PartnerKey. Set it up to point to a two-column table:
CMGT_ORDER_X_PARTNER with columns ORDER_KEY and
PARTNER_KEY.

<?xml version="1.0"?>
<DataObject Name="HostedPartner"

ExternalName="CMGT_ORDER_X_PARTNER" ObjectType="JDBC"
Version="6.0">
<KeyFields>

<KeyField Name="OrderKey" ExternalName="ORDER_KEY"/>
<KeyField Name="PartnerKey" ExternalName="PARTNER_KEY"/>

</KeyFields>
<DataFieldList>

<DataField Name="OrderKey" ExternalFieldName="ORDER_KEY"
Mandatory="n" Writable="y"/>

<DataField Name="PartnerKey"
ExternalFieldName="PARTNER_KEY"
Mandatory="n" Writable="y"/>

</DataFieldList>
</DataObject>

2. Create a new data object called HostedOrder that extends Order. The
HostedOrder.xml file looks like this:

<?xml version="1.0"?>
<DataObject Name="HostedOrder" Extends="Order" ObjectType="JDBC"

Version="6.0">
Visual Modeler Application Guide

Data Bean Example
<IncludedDataObject Access="RWID" Name="HostedPartner"
Ordinality="1">
<Relationship CascadeDelete="y" CascadeErase="n"

ChangeUpdatesParent="y">
<JoinKeys>

<JoinKey DstJoinField="OrderKey"
SrcJoinField="OrderKey"/>

</JoinKeys>
</Relationship>

</IncludedDataObject>
</DataObject>

There are three basic approaches that can be used:

1. You can use extension to simply add any additional DataFields and override
the table name. This allows you to include all of the data in a new table. This
approach is most useful when you need the same data, but need a distinct copy
of it. (Perhaps you maintain a snapshot of how an Order looked before it was
turned into a HostedOrder)

2. You can extend Order to add an IncludedDataObject for HostedOrder, where
HostedOrder only defines additional data for storage in another table. This
means that changes to the original Order DataFields will still be persisted to
the Order table, but the additional data for HostedOrder will be persisted to a
different table. This is the recommended approach described above.

3. You can define HostedOrder specifying that Order is a IncludedDataObject.
This accomplishes the same thing as the second alternative. The problem with
this approach is that a HostedOrder does not extend Order, and can no longer
be treated as an Order by application code.

Note: Using two tables has a slight disadvantage in performance, but query
execution has not been a problem area. Using two tables may reduce data
redundancy (depending on your requirements).

If you only occasionally reference the customer extension, then you may want to
use a ChildDataObject to take advantage of the lazy link mechanism.

Data Bean Example
This section presents the process of defining and using a data object. Suppose that
you want to use a data object to represent a simple enquiry from a customer. This
will comprise:

• an email address for the customer
Visual Modeler Application Guide 281

Introducing Data Beans and Business Objects

282
• the date the enquiry was made

• the date a response was returned (optional)

• the content of the enquiry

• the content of the response (optional)

• the product ID of the product about which the enquiry was made
(optional)

To Create a Data Object Definition

1. Create the business object element Enquiry and add it to the
DsBusinessObjects.xml file.

<BusinessObject Name="Enquiry" Version="6.0"
Description="Customer enquiry"/>

Use the Version attribute to manage different versions of business objects that
may be in use simultaneously. Note that the Version attribute is also used to
determine whether access checks are performed automatically (Version 5.0 or
higher) or not.

2. Create the recipe for this business object and add it to the DsRecipes.xml file.

<Recipe Name="Enquiry" Version="6.0" Ordinality="n"
Description="Customer enquiry">
<DataObjectList>

<DataObject Name="Enquiry"
DataSourceName="ENTERPRISE" />

</DataObjectList>
</Recipe>

The Name attribute of the recipe must match exactly (it is case-sensitive) to the
Name of the business object. In Release 9.0, each recipe may have more than
one data object defined in the data object list, but only one may be a writable
data object. The data objects define the data source names as an attribute of
each data object element. It is these entries that determine the sources from
which the business object retrieves its data and the source to which the
business object may be persisted.

3. Create a file called Enquiry.xml to define the data object. The Name of the
data object element must match exactly (it is case-sensitive) the Name attribute
defined in the DataObject entry of the recipe element.

In this example, the data for these data objects is held in a database table called
CMGT_ENQUIRY, and the ExternalFieldName attribute of each DataField
element specifies which column is to be used to retrieve the DataField value.
Visual Modeler Application Guide

Data Bean Example
For example, the EMAIL_ADDRESS column of the CMGT_ENQUIRY table
holds the email address value associated with an enquiry.

<?xml version="1.0"?>
<DataObject Name="Enquiry" Extends="C3PrimaryRW" Version="6.0"

ExternalName="CMGT_ENQUIRY"
Access="R" ObjectType="JDBC">
<KeyFields>

<KeyField Name="Key" ExternalName="ENQUIRY_KEY"/>
</KeyFields>
<DataFieldList>

<DataField Name="EnquiryKey"
Writable="n" Mandatory="y"
ExternalFieldName="ENQUIRY_KEY"/>

<DataField Name="EmailAddress"
Writable="n" Mandatory="y"
ExternalFieldName="EMAIL_ADDRESS"/>

<DataField Name="EnquiryDate"
Writable="n" Mandatory="y"
ExternalFieldName="ENQUIRY_DATE"/>

<DataField Name="ResponseDate"
Writable="n" Mandatory="n"
 ExternalFieldName="RESPONSE_DATE"/>

<DataField Name="TimeToRespond"
Writable="n" Mandatory="n"/>

<DataField Name="EnquiryContent"
Writable="n" Mandatory="y"
ExternalFieldName="ENQUIRY_CONTENT"/>

<DataField Name="ResponseContent"
Writable="y" Mandatory="n"
ExternalFieldName="RESPONSE_CONTENT"/>

<DataField Name="SKU"
Writable="n" Mandatory="n"
ExternalFieldName="SKU"/>

</DataFieldList>
</DataObject>

Note the definition of the TimeToRespond data field: it has no
ExternalFieldName attribute because it does not correspond to a database
column. Values for this field are calculated at runtime and are set in the
EnquiryBean so that its value can be displayed.

4. Define Enquiry and EnquiryList DataElements in DsDataElements.xml:

<DataElement Name="Enquiry" Description="Enquiry"
DataType="HEADER"/>

<DataElement Name="EnquiryList" Description="Enquiry list"
DataType="LIST"/>
Visual Modeler Application Guide 283

Introducing Data Beans and Business Objects

284
5. Define a DataElement for each DataField in DsDataElements.xml.
DataElements provide data type information used by the DataManager when it
is retrieving or saving data for this business object type. For example:

<DataElement Name="EnquiryKey" LongName="Enquiry Key"
DataType="LONG"MaxLength="20" />

<DataElement Name="EnquiryDate" LongName="Enquiry Date"
DataType="DATE" />

<DataElement Name="ResponseDate" LongName="Response Date"
DataType="DATE" />

<DataElement Name="EnquiryContent" LongName="Enquiry content"
DataType="STRING" MaxLength="256" />

<DataElement Name="ResponseContent" LongName="Response content"
DataType="STRING" MaxLength="256" />

Note that we have not included a DataElement for EmailAddress and SKU.
The DataElements for these DataFields are already defined and you can re-use
DataElements any number of times (as long as the data type is the same in each
occurrence).

6. Create entries in the ObjectMap.xml file for this data bean. For example:

<Object ID="com.comergent.bean.simple.EnquiryBean">
<ClassName>com.comergent.bean.simple.EnquiryBean</ClassName>

</Object>
<Object ID="com.comergent.bean.simple.IRdEnquiry">

<ClassName>com.comergent.bean.simple.EnquiryBean</ClassName>
</Object>
<Object ID="com.comergent.bean.simple.IAccEnquiry">

<ClassName>com.comergent.bean.simple.EnquiryBean</ClassName>
</Object>
<Object ID="com.comergent.bean.simple.IDataEnquiry">

<ClassName>com.comergent.bean.simple.EnquiryBean</ClassName>
</Object>

7. Finally, define a data source element to correspond to the DataSourceName
attribute defined in the DataObject element. This data source is defined in the
DsDataSources.xml file as part of the schema. In most cases, this data source
will already be defined: You only need define a new one if you are using a
different database or other data source than the rest of the Knowledgebase. For
example:

<DataSource Name="ENTERPRISE" Version="2.0">
<Primary Type="SQL" DataService="JdbcService"

SubType="ORACLE"
ConnectionString="jdbc:<driver>:<server>:<port>:<sid>"
UserId="userid" Password="password" />

<Alternate Type="SQL" DataService="JdbcService"
SubType="MSSQL"
Visual Modeler Application Guide

Data Bean Example
ConnectionString="jdbc:<driver>:<server>:<port>:<sid>"
UserId="userid" Password="password" />

</DataSource>

The DataService attribute of the Primary and Alternate elements determine which
class is used to process the EnquiryBean restore() and persist() methods. The
remaining attributes determine exactly how the external source is accessed.

8. Run the generateBean SDK target to generate the source code for the new
EnquiryBean and EnquiryListBean data beans and the corresponding
interfaces. See "Generated Interfaces" on page 315 for more information on
these interfaces.

You can now use Enquiry data beans and its interfaces in business logic classes. To
create an instance of an Enquiry data bean, you invoke a method of the form:

OMWrapper().getObject("com.comergent.bean.simple.EnquiryBean")

This returns an EnquiryBean data bean and its structure is as specified in the
Enquiry DataObject. Once you have an instance of the QueryBean class, then
populate its key fields and restore the bean to retrieve its data:

int queryIndex = 0;
try
{

String queryKey = request.getParameter("querykey");
queryIndex = Integer.parseInt(queryKey);

}
catch (Exception e)
{

//Throw exception if parameter not valid
}
QueryBean queryBean = (QueryBean)

OMWrapper().getObject("com.comergent.bean.simple.EnquiryBean");
queryBean.setKey(queryIndex);
queryBean.restore();

To retrieve a list of enquiries:

// Use default settings for DataContext parameters
DataContext context = new DataContext();
// Retrieve enquiries relating to a particular product ID, MXWS-7000
DsQuery query =

QueryHelper.newWhereClause("SKU", DsQueryOperators.EQUALS,
"MXWS-7000");

EnquiryListBean enquiryList = (EnquiryListBean)
OMWrapper.getObject("com.comergent.bean.simple.EnquiryListBean");

// Restore the list.
enquiryList.restore(context, query);
// Walk through the list...
Visual Modeler Application Guide 285

Introducing Data Beans and Business Objects

286
ListIterator enquiryIterator = enquiryList.getEnquiryIterator();
while (enquiryIterator.hasNext())
{

boolean isModified = false;
EnquiryBean enquiry = (EnquiryBean) enquiryIterator.next();
// Process each enquiry

}

In general, you should try to ensure that applications that use the EnquiryBean use
one of the generated interfaces rather than the data bean itself. This will enable the
application to separate out the implementation of the data object from its interface
and let you manage what access the application has to the object’s data. To retrieve
an instance of a class that implements the IAccEnquiry interface, you can use:

IAccEnquiry temp_IAccEnquiry = (IAccEnquiry)
OMWrapper.getObject("com.comergent.bean.simple.IAccEnquiry");

DsElement Tree
This section describes methods to retrieve metadata about databeans. It also
describes the DsElement tree used to store data in the data object and business
object classes. It is covered here only to support legacy applications: all new
applications that use the data bean classes should not need to be concerned with it.

Data objects are created as objects of data bean classes. Each data object holds its
content as a tree of components called DsElements (see "DsElements" on
Visual Modeler Application Guide

DsElement Tree
page 287). Their content is retrieved from external systems using the XML schema,
and the recipes and data sources defined in the XML schema.

FIGURE 11. Business Object
When the DataManager creates a data bean or business object, it uses the XML
schema to determine the structure of its DsElement tree. The DsElement tree is the
Java representation of the structure of the business object. The schema also
determines the data types that may be inserted at leaf nodes and whether constraints
are placed on the values of the node. You access the DsElement tree by invoking
the business object method getRootElement().

DsElements
Each DsElement contains data and a DataMap that defines how its data corresponds
to its data source. A DsElement may be the child of another DsElement (its parent).
A DsElement tree is a collection of DsElements, all but one of which have another
element in the tree as its parent. By definition, the DsElement with a null parent is
the root DsElement.
Visual Modeler Application Guide 287

Introducing Data Beans and Business Objects

288
FIGURE 12. DsElement Methods
The DsElement class provides various additional methods to support navigating
through a DsElement tree, notably children() that returns an Iterator of the child
DsElements of a given DsElement. As well as getRootElement(), the business
object class also provides the getElementByName() method to access directly a
named DsElement in its tree.

All DsElements that have the same name, for example child_name, and which are
children of a DsElement must have a parent whose name is <child_name>List. The
XML schema identifies such elements by defining their ordinality to be “n” as
opposed to “1”. A DsElement maintains its children in a Vector called m_children.

The DsElement has these important methods:

• addChild(): adds a new DsElement defined by the DataMap of this
DsElement.

• cloneDsElement(): returns a copy of this DsElement.

• delete(): sets the DsElemState to DsElemState.DELETED.
Visual Modeler Application Guide

BusinessObject Methods
• deleteChild(): removes a child from the vector m_children by specifying it
as a DsElement.

• getName(): returns the name of the element as defined by its MetaData.

• getParent(): returns the parent of this DsElement.

• getType(): returns the type of the element as defined by its DataMap.

DsElement MetaData
It is sometimes useful to retrieve information about a data field and its underlying
DsElement. You can use the IData interface method getMetaData(String
elementName) to this. It returns an object that implements the IMetaData interface.
This interace supports the following methods:

• public int getDataType(): returns values as defined in DsDataTypes

• public long getMaxLength(): returns maximum length in bytes

• public long getMaxCharLength(Locale locale): returns maximum length
in characters

• public Object getMinValue(): returns the minimum allowed value (or null
if there is no minimum)

• public Object getMaxValue(): returns the maximum allowed value (or null
if there is no maximum)

• public int getCountAllowedValues()

• public ListIterator getAllowedValueIterator()

• public Object getDefaultValue()

Note that each generated DataBean class implements the IData interface, and so
these methods are available to all the generated data beans.

BusinessObject Methods
Use of business objects is deprecated. This section provides information about
some business object methods for reference only.

restore() Method
This section provides description of the main forms of the BusinessObject restore()
method.
Visual Modeler Application Guide 289

Introducing Data Beans and Business Objects

290
public void restore(BusinessObject queryObj, int maxResults,
boolean accessCheck)

The principal form of the restore() method. Use the queryObj parameter to specify
query to be executed by the restore operation. The maxResults parameter
determines the maximum number of objects returned. Use the accessCheck
parameter to specify whether to check that the current user has the correct
entitlements to perform this operation. Once the access check has been performed,
then the restore(BusinessObject queryObj, int maxResults) is called.

public void restore(BusinessObject queryObj, int maxResults)

This method calls the restore() method restore(this, queryObj, maxResults, false)of
the underlying data object.

public void restore(BusinessObject queryObj)

This is equivalent to calling restore(queryObj, 0).

public void restore()

This form of the method calls the restore(null, 0) method.

persist() Method
This section provides descriptions of the main forms of the BusinessObject
persist() method.

public void persist(boolean synch, boolean commit,
boolean accessCheck)

The boolean parameters determine respectively whether the persist operation is
synchronized, should be committed to the underlying data source, and whether an
access check should be performed prior to persisting.

public void persist(boolean synch, boolean commit)

This form of the method is equivalent to persist(synch, commit, false) for business
objects whose Version attribute is 4.0 or less. It is equivalent to persist(synch,
commit, true) for business objects whose Version attribute is 5.0 or more.

public void persist()

This form of the method calls persist(false, true).

The BusinessObject class also has these methods:

• delete(): empties the business object by deleting its DsElement tree.

• getRootElement(): returns the root DsElement of the DsElement tree.
Visual Modeler Application Guide

BusinessObject Methods
• getType(): returns the name of the root element of the DsElement tree.
This is the type of the business object.

• setRootElement(): sets the root element of this business object.
Visual Modeler Application Guide 291

Introducing Data Beans and Business Objects

292
 Visual Modeler Application Guide

CHAPTER 19 Using the Security Mechanisms
The Visual Modeler offers developers several mechanisms to manage security in
their applications. This chapter describes how you can use the entitlements, access
control lists, and access policies to manage what users can do: what functions they
may perform and what access they to have data objects. It covers:

• "Managing Message Types" on page 293

• "Managing Access to Data Objects Using Access Policies" on page 296

• "Password Policies" on page 302

• "Passing Login Data Through a URL" on page 304

Managing Message Types
As you customize the Visual Modeler, you must take into account which types of
users can execute which message types and which Web pages should be accessible
to which users.

Each message type corresponds to a request that the user’s browser makes to the
server. Message types are organized into message groups. A role is defined as a
collection of message groups that are either granted or denied to the role.

<RoleDefinition Name="Partner.SalesRep">
<Description>
Visual Modeler Application Guide 293

Using the Security Mechanisms

294
This is the role associated with the Lead Users.
Lead Users can work leads that are assigned to them.

</Description>
<Grant>LeadMgmtDetailGroup</Grant>
<Grant>ProposalGroup</Grant>

</RoleDefinition>

In Release 9.0, roles are aggregated into functions: a function is intended to be the
collection of roles that correspond to a business function such as finance or sales.
Users are assigned functions, and the set of functions available to be assigned to a
user depends on their user type. A function is declared in the Entitlements.xml
configuration file using an element of this form:

<UserFunctionMapping Name="IndirectSalesExecutive">
<Description>Sales</Description>
<Role>Partner.IndirectBuyer</Role>
<Role>Partner.SalesRep</Role>
<Role>Partner.SalesManager</Role>
<Role>Partner.CustomerServiceRepresentative</Role>

</UserFunctionMapping>

The same role can be included in more than one function. Consequently, you can
define functions that overlap in some roles, or define a function that is only a subset
of another function.

Checking for Entitlement
The system will test whether a user can execute a message type when a request is
received. However, to prevent users from seeing error pages, in general, you should
perform an entitlement check for each link on a JSP page to test that the user can
execute the message type associated to the link.

You can use the canRequest(String messageType) method of the User class. You
can retrieve the current User object from the session as follows:

User sessionUser = comergentSession.getUser();

For example, the following lines in a JSP page are used to determine whether the
current user can access a promotion detail page.

User sessionUser = comergentSession.getUser();
...
<% if (sessionUser.canRequest("PromotionDetailDisplay")

{
%>

<A HREF="<%= link("partnerMkt", "PromotionDetailDisplay",
"PromotionKey=<%= promotion.getKey() %>")%>) %>">

<%= ph(promoName)%>
<%
Visual Modeler Application Guide

Managing User Types
} else {
%>

<%= ph(promoName)%>
<%

}
%>

Managing User Types
There may be situations in which you need to modify an existing user type or you
may need to create a new user type.

Adding a Role to a User Type
The definitions of user types are declared in the UserTypeDefinition elements in
Entitlements.xml. For example, in Release 9.0, this is the definition of the
RegisteredUser user type:

<UserTypeDefinition Name="RegisteredUser">
<Description>

Known direct commerce users with no partner affiliation.
</Description>
<Label>User</Label>
<MandatoryRoleSet>
<Role>Registered.User</Role>
<Role>Review.User</Role>
</MandatoryRoleSet>

</UserTypeDefinition>

You can add a function or role to a user type simply by editing the
Entitlements.xml file accordingly and by granting appropriate message groups to
the new role. Note that you must restart the Visual Modeler for the new function to
be available for assignment.

The MandatoryRoleSet element specifies the set of roles that cannot be removed
from a user’s entitlements. All users of this user type have these roles.

Creating a User Type
You can create the definition of a new user type simply by adding it to the
Entitlements.xml file. Each user type is associated with partner types. The
PartnerTypeDefinition elements of the Entitlements.xml configuration file
determine which user types are available to which partners, so that only users of
those types can be created for each partner. For example, consider the following
PartnerTypeDefinition element:
Visual Modeler Application Guide 295

Using the Security Mechanisms

296
<PartnerTypeDefinition Name="IndirectPartner">
<Description>

An IndirectCommercePartnerType partner has a
relationship with the enterprise for
the purpose of indirect commerce.

</Description>
<UserType>IndirectUser</UserType>

</PartnerTypeDefinition>

This says that when a user is created for a partner whose type is IndirectPartner,
then only the IndirectUser user type may be selected.

Managing Access to Data Objects Using Access
Policies
 Access policies are designed to conform with the Java Authentication and
Authorization Services (JAAS) model.

Access policies are particularly important for data objects that can be modified
using the DsUpdate functionality. If your implementation of the Visual Modeler
uses DsUpdate, then you must use access policies to manage the data objects
updated using DsUpdate.

Access policies are applied to a data object by use of a ResourceClass element. For
example:

<ResourceClass>com.comergent.bean.simple.PartnerBean</ResourceClass>

This element is declared within an AccessPolicy element. You can apply the same
access policy to several different data objects by listing each of them as a
ResourceClass element. Access policies are inherited by data objects that extend
other data objects. For example, if an access policy declares the ShoppingCart as a
ResourceClass, then the same access policy is also applied to the
ChannelShoppingCart data object because it extends the ShoppingCart data object.

Release 7.1 and higher support predictive access control: when a data object
controlled by an access policy is restored, the data services layer will attempt to
amend the restoring query to reflect the access privileges defined in the access
policy. If the data services layer does this, then it will not perform the access policy
check on the returned result set.
Visual Modeler Application Guide

Managing Access to Data Objects Using Access Policies
Overview
An access policy controls access to a data object by specifying the conditions under
which a user can perform an action on the data object, referred to as the resource.
The following actions can be performed on data objects:

• Create

• Delete

• Restore

• Update

The conditions are specified as evaluating principals and expressions, and
comparing them to the permitted values of the access policy. In general, principals
are attributes of the user attempting an action on the data object, but they may be
defined more generally. Expressions may be likened to SQL queries: they act as
filters on the lists of data object being tested for access.

For example, suppose that you want to use an access policy to specify that only
users that belong to a partner can update their partner profile. In this case, the action
is Update and the condition that you want to define is that if you evaluate the
partner key of the user object, then it must equal the partner key of the partner data
object. In this example, the principal being evaluated is the partner key of the user.

Inheritance
When you define an access policy on a data object, it is inherited by all the data
objects that extend it. Note that this means that if one data object extends another
and you want to define different access policies for each, then you must declare
distinct access policies for each of them.

AccessPolicy.xml Configuration File
You define access policies using an AccessPolicy.xml configuration file. Each
AccessPolicy element declared in this file can be applied to one data object type:
the data object is specified as the DataObject attribute of the AccessPolicy element.

Principal Qualifiers
Principal qualifiers are defined using the PrincipalQualifierDefinition element of
the AccessPolicy.xml configuration file. Principal qualifiers are essentially Java
classes that implement the PrincipalQualifier interface.

<PrincipalQualifierDefinition PrincipalType="UserType"
Class="com.comergent.dcm.entitlement.UserTypeQualifier"/>
Visual Modeler Application Guide 297

Using the Security Mechanisms

298
Access Policies
Each AccessPolicy element specifies which PrincipalQualifier is to be used to
evaluate the principal conditions by specifying the name of the PrincipalQualifier
as the PrincipalQualifier attribute of the AccessPolicy element.

<AccessPolicy Name="UserPolicy" DataObject="UserContact"
PrincipalQualifier="UserType">

Access Checkers
AccessChecker elements are used to define the individual checks that can be made
to determine whether a user can access a data object. Each AccessPolicy element
declares one or more AccessChecker elements. Each AccessChecker element
specifies the permitted values of the principal to be compared, the action type to be
checked, and any expressions to be evaluated to filter the data objects that can be
acted on.

<AccessChecker>
<Principal Select="Partner.DirectCommerceUser"/>
<Principal Select="Partner.User"/>
<ActionType Type="Restore"/>
<BooleanExpression>

<ComparativeExpression Operator="Equals">
<Term>user.PartnerKey</Term>
<Term>resource.PartnerKey</Term>

</ComparativeExpression>
</BooleanExpression>

</AccessChecker>

In this example of an AccessChecker element, the action type being checked for is
“Restore”. The access policy is checked by comparing the user role of the user to
see if one matches either “Partner.DirectCommerceUser” or “Partner.User”. The
Expression element is evaluated to see if the PartnerKey field of the data object is
equal to the partner key of the user, and this filter is applied to the data objects in
question.

If there is more than one BooleanExpression element in an AccessChecker element,
then use the Operator attribute to specify whether the boolean expressions should
be combined using AND or OR. If no Operator attribute is specified, then OR is
used by default.

Access Services
You can make use of access services to help retrieve information used to check
access policies. Each AccessServiceDefinition element provides a name and a
class. For example:

<AccessServiceDefinition Name="ownersPartnerKey" Type="resource" >
Visual Modeler Application Guide

Managing Access to Data Objects Using Access Policies
com.comergent.reference.dcm.entitlement.OwnersPartnerKeyService
<Description>

Returns the partner key as a Long value for the owner of the
resource if the resource extends C3PrimaryRWBean. Otherwise
returns null.

</Description>
</AccessServiceDefinition>

This access service retrieves the owner key of the resource on which access is being
checked.

Boolean Expressions
BooleanExpression elements are used to express the exact conditions under which
access is granted to objects. They may be nested and they take an Operator attribute
to specify how child elements should be combined.

As well as child BooleanExpression elements, you can also use
ComparativeExpression elements, SetExpression elements, and Not elements to
build up complex conditions:

• ComparativeExpression: use this element to compare the values of two
fields.

• SetExpression: use this element to test membership of lists.

• Not: use this to wrap another expression so that the opposite boolean value
is used.

Example
This fragment of the AccessPolicy.xml configuration file provides an example of
how access policies are used. It determines access to order inquiry lists as described
below.

<AccessPolicy Name="OrderInquiryListPolicy"
PrincipalQualifier="UserRole">
<Description>

Controls access to Order Inquiry Lists.
</Description>
<ResourceClass>

com.comergent.bean.simple.OrderInquiryListBean
</ResourceClass>
<ResourceClass>

com.comergent.bean.simple.LightWeightOILBean
</ResourceClass>
<AccessChecker>

<Description>
Direct partner users with the listed roles can read an
Visual Modeler Application Guide 299

Using the Security Mechanisms

300
inquiry list if they own it or routed it to another user.
</Description>
<Principal>Anonymous.User</Principal>
<Principal>Registered.User</Principal>
<Principal>Partner.DirectBuyer</Principal>
<Principal>Partner.ProcurementUser</Principal>
<Principal>StorefrontCustomer*.TransferUser</Principal>
<Principal>StorefrontCustomer*.User</Principal>
<Principal>StorefrontCustomer*.AnonymousUser</Principal>
<Principal>StorefrontCustomer*.RegisteredUser</Principal>
<ActionType>Restore</ActionType>
<BooleanExpression Operator="Or" >

<ComparativeExpression Operator="Equals">
<Term>user.UserKey</Term>
<Term>resource.OwnedBy</Term>

</ComparativeExpression>
<ComparativeExpression Operator="Equals">

<Term>user.UserKey</Term>
<Term>resource.RouteFromUserKey</Term>

</ComparativeExpression>
<BooleanExpression Operator="And">

<SetExpression Operator="Intersection" >
<Set>
<Term>"Partner.BasicAdministrator"</Term>
</Set>
<Set>user.roleNameSet</Set>

</SetExpression>
<ComparativeExpression Operator="Equals">

<Term>user.PartnerKey</Term>
<Term>service.ownersPartnerKey</Term>

</ComparativeExpression>
</BooleanExpression>

</BooleanExpression>
</AccessChecker>
<AccessChecker>

<Principal>Anonymous.User</Principal>
<Principal>Registered.User</Principal>
<Principal>Partner.DirectBuyer</Principal>
<Principal>Partner.ProcurementUser</Principal>
<Principal>StorefrontCustomer*.TransferUser</Principal>
<Principal>StorefrontCustomer*.User</Principal>
<Principal>StorefrontCustomer*.AnonymousUser</Principal>
<Principal>StorefrontCustomer*.RegisteredUser</Principal>
<ActionType>Update</ActionType>
<ActionType>Create</ActionType>
<ActionType>Delete</ActionType>
<BooleanExpression Operator="Or">

<ComparativeExpression Operator="Equals">
<Term>user.UserKey</Term>
Visual Modeler Application Guide

Managing Access to Data Objects Using Access Policies
<Term>resource.OwnedBy</Term>
</ComparativeExpression>
<BooleanExpression Operator="And">

<SetExpression Operator="Intersection" >
<Set>
<Term>"Partner.BasicAdministrator"</Term>
</Set>
<Set>user.roleNameSet</Set>

</SetExpression>
<ComparativeExpression Operator="Equals">

<Term>user.PartnerKey</Term>
<Term>service.ownersPartnerKey</Term>

</ComparativeExpression>
</BooleanExpression>

</BooleanExpression>
</AccessChecker>
<AccessChecker>

<Description>CustomerServiceRepresentatives can create,
modify or delete any enterprise cart, but not storefront
carts.
</Description>
<Principal>

Enterprise.CustomerServiceRepresentative
</Principal>
<ActionType>Restore</ActionType>
<ActionType>Update</ActionType>
<ActionType>Create</ActionType>
<ActionType>Delete</ActionType>
<BooleanExpression Operator="And">

<Not>
<SetExpression Operator="Intersection">

<Set><Term>service.ownersUserType</Term></Set>
<Set>
<Term>"StorefrontCustomerUser"</Term>
<Term>"StorefrontCustomerAnonymousUser"</Term>
<Term>"StorefrontCustomerRegisteredUser"</Term>
</Set>

</SetExpression>
</Not>
<SetExpression Operator="Intersection">

<Set>service.csrAssignedPartners</Set>
<Set><Term>service.ownersRootPartnerKey</Term></Set>

</SetExpression>
</BooleanExpression>

</AccessChecker>
<AccessChecker>

<Principal>*</Principal>
<ActionType>Restore</ActionType>
<ActionType>Create</ActionType>
Visual Modeler Application Guide 301

Using the Security Mechanisms

302
<ActionType>Update</ActionType>
<ActionType>Delete</ActionType>
<BooleanExpression>

<Never/>
</BooleanExpression>

</AccessChecker>
</AccessPolicy>

The way to read this fragment is as follows:

• This access policy determines access to OrderInquiryListBeans and
LightWeightOILBeans

• Users who have one of the listed roles (Anonymous.User,
Registered.User, and so on) may have Restore access (that is, have read
access to the resource) if they satisfy one of the declared
BooleanExpressions:

• Either:

• The user’s key is equal to the owner key of the resource.

• Or:

• The user’s key is equal to the routed from key of the resource.

• Or:

Password Policies
Users authenticate themselves when they log in to the Visual Modeler using a
username and a password. The Visual Modeler supports the ability to specify
explicit password policies: these control the length and format of passwords as well
as how passwords are created. Password policies are also used to determine what to
do if a number of unsuccessful attempts are made to log in to the Visual Modeler.
You can customize the password policies for your implementation. This section
describes the password policies configuration file and how you can customize your
password policies.

Configuration
The configuration of your password policies is managed in the
PasswordPolicies.xml configuration file. This file declares each policy, the class
used to implement the policy, and the parameters associated with the policy. For
example, the following PasswordPolicy element specifies the policy governing the
permitted lengths of passwords:
Visual Modeler Application Guide

Password Policies
<PasswordPolicy Name="PasswordLengthPolicy" Type="Password"
Enabled="true">
<Description>

This is the Policy to enforce password length
</Description>
<PolicyClass>
com.comergent.reference.authentication.password.PasswordLength
</PolicyClass>
<ParamList>

<Param Name="MinLength" Value = "5"/>
<Param Name="MaxLength" Value = "15"/>

</ParamList>
</PasswordPolicy>

The PolicyClass element declares the class used to test the policy. Each policy class
must implement the IPolicyClass interface. The ParamList element provides the
specific parameters used to test policies. In this example, the minimum length for
passwords is set to be five characters and the maximum length is set to twelve
characters.

Each policy has a type: this determines when the policy is exercised. The current
types are:

• Initialization: policies of this type are used to determine how passwords
are created.

• Password: policies of this type are exercised whenever a password is
created or modified.

• Creation: policies of this type are used when passwords are created.

• Login: policies of this type are used to manage what to do when users log
in.

You can customize the PasswordPolicies.xml configuration file using the SDK. By
changing the parameter values you can change the behavior of the current
out-of-the-box policies. You can also add your own policies: see "Creating a
Custom Password Policy" on page 304.

The current password policies include:

• UserCreatePolicy: This policy specifies whether passwords can be created
by users or whether they must be system generated.

• PasswordLengthPolicy: This policy specifies the permitted lengths of
passwords. The value of PasswordLengthPolicy’s “MaxLength”
parameter must be less than the value set in the UserAuthenticator field in
the DsDataElements.xml file.
Visual Modeler Application Guide 303

Using the Security Mechanisms

304
• DictionaryCheckPolicy: This policy checks for strings that cannot be used
for passwords.

• PasswordReusePolicy: This policy controls the re-use of passwords by
users.

• PasswordExpirationPolicy: This policy determines how frequently
passwords must be changed by users.

• IncorrectLoginPolicy: This policy determines how many unsuccessful
logins can be attempted before a user is locked out of the Visual Modeler.

Creating a Custom Password Policy
You can create your own password policy. Your policy class must implement the
IPolicyClass interface. This interface declares the following method:

public PolicyCheckResult checkPolicy(IPasswordPolicy pp, HashMap hm);

The IPasswordPolicy interface is documented in the Javadoc provided with the
Visual Modeler. The Hashmap object is used to pass in the parameters required for
the policy.

The PolicyCheckResult class has a hasError() method. If this returns true, then you
should handle the error condition appropriately.

Passing Login Data Through a URL
Most users of the Visual Modeler enter the system by pointing their browsers to the
appropriate login page. However, sometimes, you may want to enable users to
access a specific page such as the detail page of an order directly.

You can do this simply by constructing the URL as you would like it to be, for
example:

http://server/Sterling/en/US/direct/matrix?cmd=OrderDisplay&-
ShoppingCartKey=600501

When a user clicks on this link, their request is routed to the appropriate login page.
In the login form, the request data from the original URL is automatically encoded
as hidden form parameters, for example:

<input type="hidden" name="cmd" value="directLogin" >
<input type="hidden" name="validate" value="true" >
<input type="hidden" name="LoginData-messageType"

value="OrderDisplay"/>
<input type="hidden" name="LoginData-ShoppingCartKey"
Visual Modeler Application Guide

Passing Login Data Through a URL
value="600501"/>
<input type="hidden" name="LoginData-entryPoint" value="direct"/>

When the login form is submitted, if the login is successful, then the parameters
that begin with “LoginData-” are processed by the LoginController and added back
to the request object with “LoginData-” removed from the parameter names. When
the request is forwarded to the message type specified by the
LoginData-messageType parameter, the original parameters are now available to
the controller and JSP pages used to process the request.

Note that in general the message type in the original URL will be changed to the
fallback redirect message type for the message type or message group to which the
message type belongs. Consequently, take care that your intended message type is
the fallback redirect message type for its message group.

You specify the fallback redirect mesage type along these lines:

<MessageGroup Name="AdvisorGroup">
<FallbackRedirect>
<Redirect EntryPoint="partnerMkt">PartnerHomePageDataDisplay"
</Redirect>
<Redirect EntryPoint="catalog">MatrixHomePageDisplay"</Redirect>
<Redirect EntryPoint="advisor">MatrixHomePageDisplay"</Redirect>
<Redirect EntryPoint="configurator">MatrixHomePageDisplay"
</Redirect>
</FallbackRedirect>
...
Message type definitions
...

</MessageGroup>

The way to read this XML extract is as follows: if an unauthenticated request is
tries to execute any message type in the AdvisorGroup of message types, then
redirect them to the PartnerHomePageDisplay message type if the entrypoint of the
request is “partnerMkt” or redirect them to the MatrixHomePageDisplay message
type if the entrypoint is one of the other three declared.

The LoginData-entrypoint is used to specify which entry point is used to access the
system. It is retrieved from the original URL to ensure that the user is directed to
the correct login page. A message group may have more than one default message
type: they are differentiated by their Key attribute that specifies different entry
points. For example:

<GroupDefault Key="partnerMkt" Value="IndirectWorkspaceDisplay" />
<GroupDefault Key="marketPlace" Value="DirectWorkspaceDisplay" />
Visual Modeler Application Guide 305

Using the Security Mechanisms

306
 Visual Modeler Application Guide

CHAPTER 20 Logging
This chapter describes the logging mechanism provided by the Visual Modeler. It
enables application writers to log activity in the Visual Modeler. It uses the log4j
API and log4j.properties configuration files to configure the logging behavior.

The logging capability also provides support for auditing changes to data objects.
See "Auditing Changes to Data Objects" on page 309 for more information.

Overview
The log4j API provides a flexible and extensible logging framework to manage the
logging behavior of the Visual Modeler. This section describes the use of the
framework as you customize and extend the Visual Modeler.

Note that this framework replaces the previous framework used by the Visual
Modeler: this used the Global class and its logLevel() methods. These are now
deprecated.

To use the log4j API, you should create a Logger class in each class file along these
lines:

private static final org.apache.log4j.Logger log =
org.apache.log4j.Logger.getLogger(NameOfClass.class);

When you want to make a log entry call:

log.info("This is a log entry");
Visual Modeler Application Guide 307

Logging

308
The method you call depends on the logging level at which you want to record the
message. You can use the following methods:

• debug()

• error()

• fatal()

• info()

• warning()

You can also use log(priority, message), but in general the listed methods should be
sufficient.

log4j.debug System Property
By setting the log4j.debug system property to true, you can echo out the current log
settings. For example, include the following in the servlet container startup script:

-Dlog4j.debug=true

On startup, you should see logging output like this:

log4j: Trying to find [log4j.xml] using context classloader
sun.misc.Launcher$AppClassLoader@136228.
log4j: Trying to find [log4j.xml] using sun.misc.Launcher$AppClass-
Loader@136228 class loader.
log4j: Trying to find [log4j.xml] using ClassLoader.getSystemRe-
source().
log4j: Trying to find [log4j.properties] using context classloader
sun.misc.Launcher$AppClassLoader@136228.
log4j: Using URL [jar:file:/home/hle/ws/32-cmgt-modules/modules.cryp-
tography-tool/target/cmgt-cryptography-tool-2.0.0-SNAPSHOT-app.jar!/
log4j.properties] for automatic log4j configuration.
log4j: Reading configuration from URL jar:file:/home/hle/ws/32-cmgt-
modules/modules.cryptography-tool/target/cmgt-cryptography-tool-
2.0.0-SNAPSHOT-app.jar!/log4j.properties
log4j: Parsing for [root] with value=[WARN, A1].
log4j: Level token is [WARN].
log4j: Category root set to WARN
log4j: Parsing appender named "A1".
log4j: Parsing layout options for "A1".
log4j: Setting property [conversionPattern] to [%-4r [%t] %-5p %c %x -
%m%n].
log4j: End of parsing for "A1".
log4j: Parsed "A1" options.
log4j: Finished configuring.
Visual Modeler Application Guide

Auditing Changes to Data Objects
Auditing Changes to Data Objects
In many implementations, you may want to provide an audit trail that tracks
changes made to data in the Visual Modeler. In Release 7.0.1 and higher, you can
do this by logging any changes made to data objects. If you set the logging level to
INFO or higher in any DataBean class, then whenever persist() is invoked on an
instance of this class, a log message is written out to the Logger for the class. For
example: the following is a sample line that is written out when a change is made to
a partner:

2006.01.18 13:41:05:546 Env/http-8080-Processor23:INFO:PartnerBean
Updating: com.comergent.bean.simple.PartnerBean KeyFields - Partner-
Key: 301 Changes -PartnerKey -> old: 301 new: 301PartnerName -> old:
Scalar2 new: Scalar2 LegalName -> old: null new: null ParentCompany -
> old: null new: nullStatus -> old: A new: A DunBradID -> old: null
new: nullBusinessID -> old: Scalar2-001 new: Scalar2-
001PartnerTypeCode -> old: 10 new: 10PartnerLevelCode -> old: 20 new:
20XMLMessageVersion -> old: dXML 4.0 new: dXML 4.0BusinessTransaction
-> old: SELL new: SELL NetWorth -> old: null new: null NumEmployees -
> old: null new: null PotRevCurrFy -> old: null new: null PotRevNextFy
-> old: null new: null ReferenceUseFlag -> old: null new: null Coterm-
DayMonth -> old: null new: nullURL -> old: http:///www.scalar.com new:
http:///www.scalar2.com LogoURL -> old: null new: null DistiAccess ->
old: null new: null YearEstd -> old: null new: null AnalysisFy -> old:
null new: null FyEndMonthCode -> old: null new: null AccountManagerKey
-> old: null new: null MessageURL -> old: null new: null EmailAddress
-> old: null new: nullCommerceCategory -> old: 2 new: 2 PartnerRefNum
-> old: null new: null ParentKey -> old: null new: null RootPartnerKey
-> old: null new: null ParentCode -> old: null new: null CustomField1
-> old: null new: null CustomField2 -> old: null new: null
CustomField3 -> old: null new: null CustomField4 -> old: null new:
null CustomField5 -> old: null new: null PartnerCom -> old: null new:
null Storefront -> old: null new: null URLName -> old: null new: null
ContentType -> old: null new: nullPartnerStatusCode -> old: 10 new:
10OrganizationType -> old: DirectPartner new: DirectPartner Inherited-
PartnerStatusCode -> old: null new: nullCreditLimit -> old: 0.0000
new: 0.00AvailableCredit -> old: 0.0000 new: 0.0000CreditCurrencyCode
-> old: 23 new: 23 MaxAssignableReps -> old: null new: null Remote-
Prices -> old: null new: null RemotePriceExpiryInterval -> old: null
new: nullCoopPercentage -> old: 0.000000 new: 0.000CoopAccountMax ->
old: 0.000000 new: 0.00 PartnerID -> old: null new: nullOwnedBy ->
old: 0 new: 0AccessKey -> old: 5601 new: 5601UpdateDate -> old: 2006-
01-18 13:39:33.0 new: 2006-01-18 13:41:05.484UpdatedBy -> old: 0 new:
0CreateDate -> old: 2006-01-04 13:19:38.0 new: 2006-01-04
13:19:38.0CreatedBy -> old: 0 new: 0
Visual Modeler Application Guide 309

Logging

310
You can dynamically change the logging level for any class in the Visual Modeler
through the administration UI. However, if you do this, then the change to the
logging level is not persistent, and will be lost if the servlet container is restarted. In
addition, the logging is written out to the standard Appender which may not be
secure.

You should specify any audit logging by customizing the log4j.properties
configuration file: this ensures that the auditing will continue to be done even if the
servlet container is restarted, and you can specify a custom Appender to process the
audit information. For example, you can specify that the Appender posts the
logging message to a remote Web server which can be secured independently of the
Visual Modeler.

As an example, the following entries in the log4j.properties configuration file
ensure that all changes to the UserContact data object are audited:

log4j.logger.com.comergent.bean.simple.UserContactBean=info
log4j.appender.com.comergent.bean.simple.UserContactBean=com.comer-
gent.logging.ComergentRollingFileAppender
log4j.appender.com.comergent.bean.simple.UserContactBean.layout =
org.apache.log4j.PatternLayout

If you want to specify that a remote log server can connect asa client in order to
save audit information from the Visual Modeler, then you could specify:

log4j.appender.com.comergent.bean.simple.UserContact-
Bean=org.apache.log4j.net.SocketHubAppender
log4j.appender.com.comergent.bean.simple.UserContactBean.port=4321
Visual Modeler Application Guide

CHAPTER 21 Modularity and Generated Interfaces
Release 9.0 of the Visual Modeler has undergone the following architectural
changes designed to make implementations easier to customize and upgrade:

• "Modules" on page 312

• "Generated Interfaces" on page 315

These changes are related in that the interfaces are organized by modules and that
changes to interfaces may be contained to changes within individual modules.

Overview
The motivation to make these architectural changes are to ensure that
customizations are more contained and can be better preserved during upgrade
from one release of the Visual Modeler to another.

By providing a means of delivering functionality in modules and by requiring that
modules make calls to other modules only through their external interfaces, the
following benefits are achieved:

• It is easier to compartmentalize the functionality of applications.

• It is easier to understand and manage the dependencies between parts of
the Visual Modeler.
Visual Modeler Application Guide 311

Modularity and Generated Interfaces

312
• It is easier to contain the customizations to single modules and understand
what effect changes made in a module have on the whole system.

• Modules can be more easily upgraded independently of each other,
minimizing the effect that an upgrade may have.

• Upgrades to modules that have not been customized will not effect
customizations made in other modules.

• New functionality can be delivered in the form of a module that may be
dropped into an existing deployment of the Visual Modeler.

Modules
The Visual Modeler is developed as a set of interdependent modules that conform
to a common organizational structure. In general, each module corresponds to a
functional component of the Visual Modeler such as an application or a component
of the Visual Modeler platform. Some modules may support both a Java API and a
user interface whereas other may just support a Java API provided to other
modules. Some modules provide a set of “helper” classes, JSP pages, and other
files such as Javascript files and images which are used by a number of other
modules.

In general, each module has the following structure:

• Java classes: organized into three trees. At build time, the directories for
all of the modules are assembled in to a single tree under the
com.comergent package.

• external API interfaces: used by other modules to access functionality
provided by the module. In general, when one module makes a call to
another module’s class, it must do so through the other module’s external
API. This is the com.comergent.api package for the module.

• implementation classes: the implementation of the external API interfaces.
When another module makes a call to the module’s external API, then the
actual classes used are the implementing classes of the module’s interface.
The implementation packages may include internal classes: used by the
implementation classes, but not exposed to outside world and not part of
the supported Javadoc. This is the com.comergent.apps or
com.comergent.appservices package for the module.

• reference components: Controller classes and JSP pages always comprise
part of the reference implementation and their source is provided with the
Visual Modeler Application Guide

Module Interfaces
Visual Modeler. Resource bundles are also provided as part of the
reference. This is the com.comergent.reference package for the module.

• JSP pages: possibly organized into directories depending on the
organization of the module. They should always access other modules’
classes through the external APIs exposed by the other modules. This
ensures that JSP pages can be re-used from release to release provided that
the external APIs are supported.

• Resource bundles, Javascript, and static files (such as images and HTML
fragments).

• Configuration files specific to the module such as MessageTypes.xml
files and business rules.

Module Interfaces
Each module must provide an external interface so that all calls to Java classes and
interfaces within the module are invoked through the interface. This external
interface provides a comprehensive set of Javadoc pages so that writers of other
modules can use the external interface reliably and easily.

The external interface for each module will typically be a combination of
handcrafted interfaces and automatically-generated interfaces. Most modules
provide handcrafted interfaces for presentation beans that enable presentation beans
to manipulate data beyond the simple accessor methods of the generated data bean
interfaces. The presentation beans usually wrap a data bean and implement the
same interfaces, but in addition they implement helper methods and some business
logic.

The external interfaces are organized under the following main packages:

• com.comergent.api: this package has all the module external APIs. These
are organized into:

• apps: these are the application hand-crafted APIs. Typically, these are
presentation bean interfaces, utility interfaces, and factory classes.

• appservices: these are the packages provided by the service modules used
by other applications.

• dcm: these are the external APIs offered by the Visual Modeler platform.

• com.comergent.bean.simple: this package has all the
automatically-generated bean interfaces and the data bean classes
themselves.
Visual Modeler Application Guide 313

Modularity and Generated Interfaces

314
The generated interfaces are provided for each of the data objects declared in the
XML schema files. These are organized to provide appropriate levels of access to
the data fields of the underlying data beans. This helps to ensure that there is a
clearer separation between presentation and business logic in the Visual Modeler.
See "Generated Interfaces" on page 315 for more information about the generated
interfaces.

Invoking Interfaces
You can invoke an interface from a Java class by casting any object or child
interface to the interface and then invoke any method that the interface declares. In
the Visual Modeler, use one of the following techniques to do this:

• "Using the Object Manager" on page 314

• "Using Factory Classes" on page 315

Each module uses one or other of these techniques, but not both. As you work on an
existing module or create a new one, be consistent in how you invoke the
interfaces. It will make it easier for your colleagues to work on the same module.

In general, you should always try to work with interfaces provided by the
com.comergent.api packages: these are the interfaces that the modules will support
from one release to the next, even though the underlying implementations of the
interfaces may change.

Using the Object Manager
You can use the ObjectManager class to return an appropriate interface as follows.
Suppose that you want to retrieve the IAccProduct interface to set the data fields of
a product. Then make a call along these lines:

IAccProduct temp_IAccProduct =
(com.comergent.bean.simple.IAccProduct)

com.comergent.dcm.util.OMWrapper.getObject(
"com.comergent.bean.simple.IAccProduct");

Provided that there is an entry in the ObjectMap.xml file that specifies the object
to be returned and provided that the object implements the IAccProduct interface,
then this call will succeed and methods on the interface can be invoked. For
example, if the ObjectMap.xml file contains:

<Object ID="com.comergent.bean.simple.IAccProduct">
<ClassName>com.comergent.bean.simple.ProductBean</ClassName>

Then, the ObjectManager returns a com.comergent.bean.simple.ProductBean
object and this can be cast to the IAccProduct interface because the
Visual Modeler Application Guide

Generated Interfaces
com.comergent.bean.simple.ProductBean class implements the
com.comergent.bean.simple.IAccProduct interface.

Using Factory Classes
Calls to an interface can be provided by Factory classes that return an instance of
the interface. For example, the package com.comergent.api.apps.commerce
provides a public interface IInquiryListFactory. If another module needs an
instance of this Factory interface, then it calls the CommerceAPI class’s
getFactory(int i) method. The int parameter determines what sort of Factory class is
returned. In turn, the calling module can now invoke methods on the
IInquiryListFactory to return inquiry list interfaces of the appropriate type. For
example,
getInquiryList(Long listKey, boolean bFillPrices) returns an object that implements
the IInquiryList interface.

Generated Interfaces
When you need to access data on a particular data object, you must use the
generated interfaces that each data object provides. These generated interfaces are
created and compiled when the SDK generateBean target is run as part of the
deployment of your Visual Modeler.

For each data object declared as a DataObject within the DsRecipes.xml file, and
for any parent, reference, or child data objects, the following classes and interfaces
are generated and compiled in the com.comergent.bean.simple package:

• <Name>.java: this is the data bean class. It implements the interfaces
listed here. In addition, if the data object extends another data object, then
the bean extends the <Parent>.java bean.

• IAcc<Name>.java: this interface extends the IRd<Name>.java by
providing the write (set) accessor methods on all of the data fields of the
data object. In addition, if the data object extends another data object, then
the IAcc interface extends the IAcc<Parent>.java interface.

• IData<Name>.java: this interface extends the IAcc<Name>.java by
providing restore() and persist() methods on the data object. In addition, if
the data object extends another data object, then the IData interface
extends the IData<Parent>.java interface.

• IRd<Name>.java: this interface provides the read-only (get) accessor
methods to the data fields of the data object. In addition, if the data object
Visual Modeler Application Guide 315

Modularity and Generated Interfaces

316
extends another data object, then the IRd interface extends the
IRd<Parent>.java interface.

• In addition, list beans also implement the IData<Name>List.java
interface. Each list interface extends the IDataList.java interface as well as
the list interface of any parent object.

In general, you should use the IRd interface for any objects to be passed to JSP
pages so that the objects are effectively read-only. Only use objects that implement
the IData interface when you know that you need to either restore or persist the data
object.

Example of a Generated Interface
Consider the ACL data object: the ACL.xml file reads:

<?xml version="1.0"?>
<DataObject Name="ACL" Extends="C3PrimaryRW"

ExternalName="CMGT_ACLS"
Access="RWID" Ordinality="1"
ObjectType="JDBC" Version="5.0">
<KeyFields>
<KeyField Name="AccessKey" ExternalName="ACL_KEY"

KeyGenerator="ACLKey"/>
</KeyFields>
<DataFieldList>

<DataField Name="AccessKey"
Writable="n" Mandatory="n"
ExternalFieldName="ACL_KEY"/>

<DataField Name="ACLName"
Writable="y" Mandatory="n"
ExternalFieldName="NAME"/>

</DataFieldList>
<ChildDataObject Name="Access" />

</DataObject>

Consequently, the IRdACL.java class declares:

public interface IRdACL extends IRdC3PrimaryRW

and exposes the methods:

• public Long getAccessKey();

• public String getACLName();

The IAccACL.java class declares:

public interface IAccACL extends IAccC3PrimaryRW, IRdACL

and exposes the methods:
Visual Modeler Application Guide

Generated Interfaces
• public void setACLName(String value) throws ICCException;

• public void addAccess(AccessBean bean) throws ICCException;

The IDataACL.java class declares:

public interface IDataACL extends IAccACL,IDataC3PrimaryRW, IData

In general, this interface may declare no additional methods beyond those declared
in the IData interface because all the standard methods to read and write data from
external data sources are declared in this interface.
Visual Modeler Application Guide 317

Modularity and Generated Interfaces

318
 Visual Modeler Application Guide

CHAPTER 22 Implementing Logic Classes
This chapter and the next two chapters present a description of how to implement
business logic classes (BLCs) at an implementation of the Visual Modeler. Before
reading this chapter, you must have a working understanding of the basic
architecture of the Visual Modeler and of Java.

Key Concepts
To understand fully how the Visual Modeler works as an application, you must
understand its architecture.

An installation of Visual Modeler processes requests as they are received from
users’ browsers, and messages from other Visual Modelers and from external
systems. You must configure the Visual Modeler to process each type of request
and message.

The core of the Visual Modeler is the Sterling Sterling Commerce Manager. This
powerful and flexible server is designed to seamlessly integrate a network of
channel partners and the external systems that make up the e-commerce
environment of each partner.

Note: The use of BLCs is deprecated. In general, new applications should use
bizlets, controllers, and BizAPIs to implement their business logic.
Visual Modeler Application Guide 319

Implementing Logic Classes

320
Each Visual Modeler server in the network of sales partners works both as a server
in relation to inbound requests from browsers and as a client as it retrieves
information from other Visual Modeler servers and external systems.

To customize the Visual Modeler in your environment, you need to consider how
the system retrieves data from your external systems. In general, you can use the
schema and Service classes to retrieve data from a local database source or from
another Visual Modeler server by exchanging messages. However, you have to
produce custom BLCs to retrieve information from an external system other than
these.

Application Logic Classes
Application logic classes are implemented as bizAPI, business logic , or controller
classes.

• bizAPI classes are used to manage the business logic of business objects.
Conceptually, each bizAPI class corresponds to a business object and its
methods correspond to the actions that can be performed on the business
object. For example, the OrderInquiryList bizAPI class provides the
following methods: duplicate(), copyLineItem(), and changeOwner()
which correspond to actions that can be performed on a product inquiry
list. It implements the
com.comergent.api.apps.orderMgmt.oil.IOrderInquiryList interface.

The bizAPI classes are defined in the
com.comergent.apps.<application>.bizAPI packages. Typically, they
implement an interface declared in the corresponding
com.comergent.api.apps.<application> package.
For example, the Order bizAPI class is in the
com.comergent.apps.orderMgmt.orders.bizAPI package. It extends the
OrderInquiryList class and implements the
com.comergent.api.apps.orderMgmt.orders.IOrder interface.

• Each BLC is a subclass of the BLC abstract class. This class implements
the ApplicationObject interface. BLCs perform the business logic of your
implementation of the Visual Modeler. Each BLC contains a table of
business objects such as session, user, and shopping cart for example. In
executing the service() method of a BLC, it invokes the persist() and
restore() methods of these business objects.

Note: In general, the use of BLC classes is deprecated. You should use either
controllers or bizAPI classes to manage your business logic.
Visual Modeler Application Guide

Naming Service
• Some Visual Modeler use controller classes to perform business logic.
These classes are to be found in the
com.comergent.reference.apps.<application>.controller packages for each
application.

The Visual Modeler comes with a number of standard bizAPI classes, BLCs,
controllers, and JSP pages. However, you may need to create new logic classes or
modify the existing classes.

Business Objects
See CHAPTER 18, "Introducing Data Beans and Business Objects" for more
information.

XML Schema
You should manage data access using the the schema and Service classes.

Naming Service
To retrieve parameters at runtime, the Visual Modeler provides a naming service to
access either a flat file or a database to recover parameters.

Application logic classes can invoke a naming service by calling the static class
NamingManager methods getInstance() and getInstance(int i). Both these methods
return an object that implements the NamingService interface.

• If no integer argument is provided, then an object of default type is
created, either a NamingServiceProperties object or a
NamingServiceDatabase object.

• If the integer argument is the constant NamingManager.DATABASE, then
a NamingServiceDatabase object is created.

• If the integer argument is the constant NamingManager.PROPERTIES,
then a NamingServiceProperties object is created.

• If the integer argument is not one of these two, then an object of default
type is created.

In all cases, the Visual Modeler accesses the Comergent.xml file to determine
exactly how the NamingService object should be created:

• If a NamingServiceDatabase object is to be created, then the
NamingManager.database entries are used to specify the connection to the
database.
Visual Modeler Application Guide 321

Implementing Logic Classes

322
• If a NamingServiceProperties object is to be created, then the
NamingManager.properties entry is used to determine which properties
file holds the parameter values.

Once the NamingService object is created, you use the methods listed below to
retrieve the parameters as a NamingResult class:

• public NamingResult get(int key)

• public NamingResult get(Long key)

• public NamingResult get(String key)

The key parameter provides a means of retrieving only those parameters whose
name begins with the key string.

The NamingResult class provides the get(String parameter) method to return the
value of the parameter.

NamingService Example
For example the following code fragment recovers the value of the message URL
parameter for a distributor referred to by its partner key.

NamingService namingService = NamingManager.getInstance();
NamingResult namingResult = namingService.get(partnerKey);
String url = namingResult.get(NamingResult.MESSAGE_URL);

Note that by default, the type of NamingService created is a
NamingServiceDatabase object because in Comergent.xml the NamingManager
defaultType element is set to "database".
Visual Modeler Application Guide

CHAPTER 23 Software Development Kit
You can use the Visual Modeler Software Development Kit (SDK) to install and
customize your implementation of the Visual Modeler. The HTML documentation
provided with each version of the SDKprovides an overview of how the SDK
works and how to use it to manage projects. This chapter describes the basic
structure of a customization project. Follow the guidelines here to organize your
project so that it follows the customizations guidelines.

Project Organization
Each project built using the SDK is created on top of a release of the Visual
Modeler. When you create the project using the newproject target, the SDK creates
a set of project files that are suitable for that release. All of the customizations that
you make in the project are made by adding files to the project. Files can be added
to the project in these ways:

• Use the customize target to copy a file from the release into the project.
When you use the customize target, the file is automatically copied into
the appopriate sub-directory of the project.

• Create the file manually in the appopriate sub-directory of the project.

See "Project File and Directory Locations" on page 324 for information about
where files must be located.
Visual Modeler Application Guide 323

Software Development Kit

324
Project File and Directory Locations
In this section, we assume that you created a project called project, and that you
have a project directory called sdk_home/projects/project/. Ensure that each of the
project files is in the appropriate location under the project directory as follows:

• Java source files: these must be placed under the project/src/ directory,
and follow the package organization for the Visual Modeler.

• JSP pages: these are organized by module and locale under the project/
WEB-INF/web/ directory.

• Schema files: these comprise the data object files and the supporting data
services files. All your customizations should be maintained under the
project/WEB-INF/schema/custom/ directory. Make sure that the
schemaRepositoryExtn element is set to “WEB-INF/schema/custom”.

Java Source Files
In the project/src/ directory, follow these guidelines to organize your
customizations to the Visual Modeler:

• Use the com/comergent/api/ packages to add your extensions to the Visual
Modeler API. In general, you should create new classes that extend the
existing API: do not overwrite the release API because that can affect any
upgrade.

• Use the com/comergent/apps/ and com/comergent/appservices/ packages
to add implementation classes: these may be entirely new classes or new
classes that extend existing implementation classes.

• Use the com/comergent/reference/ packages for controller classes. You
can customize existing controller classes or create new controller classes.

JSP Pages
In the project/WEB-INF/web/ directory, follow these guidelines to organize your
customizations to the Visual Modeler:

• Where appropriate, use the existing organization of JSP pages to add new
JSP pages or to customize existing ones.

• If you are adding a new functionality module, then create a new directory
under the appropriate locale(s) for the module, and follow the same
naming conventionas you do for Java classes created for the module.
Visual Modeler Application Guide

Project Organization
Schema Files
In the project/WEB-INF/schema/custom/ directory, follow these guidelines to
organize your customizations to the Visual Modeler:

• To add new data objects:

• Put the XML definition of the data object in project/WEB-INF/schema/
custom/. For example, create the file project/WEB-INF/schema/custom/
CustComment.xml

• Modify project/WEB-INF/schema/custom/DsBusinessObjects.xml by
adding the new business object. For example:

<?xml version="1.0"?>
<Schema Name="project" Description="project Custom Schema"

Version="6.0">
<BusinessObject Name="CustComment" Version="6.0"

Description="CustComment BusinessObject"/>
</Schema>

• Modify project/WEB-INF/schema/custom/DsDataElements.xml by
adding the new data elements for the header and list data objects, together
with any new fields declared by the data object. For example:

<?xml version="1.0"?>
<Schema Name="project" Description="project Custom Schema"

Version="6.0">
<DataElement Name="CustComment" Description="Customer Comment

data object"
DataType="HEADER"/>

<DataElement Name="CustCommentList" Description="Customer Com-
ment list data

object" DataType="HEADER"/>
<DataElement Name="CustCommentKey" Description="Customer Com-

ment Key"
DataType="LONG" MaxLength="20"/>

</Schema>

• Modify project/WEB-INF/schema/custom/DsRecipes.xml by adding a
recipe element. For example:

<Schema Name="project" Description="project Custom Schema"
Version="6.0">
<Recipe Name="CustComment" BusinessObject="CustComment"

Description="Default Approvals List Recipe" Version="6.0">
<DataObjectList>

<DataObject Name="CustComment" Access="RWID"
DataSourceName="ENTERPRISE" Ordinality="n"
Version="6.0"/>
Visual Modeler Application Guide 325

Software Development Kit

326
</DataObjectList>
</Recipe>

</Schema>

• Modify the appropriate key generator file, for example project/WEB-INF/
schema/custom/OracleKeyGenerators.xml, by adding any new keys
required:

<?xml version="1.0"?>
<Schema Description="project Custom Schema" Name="project"

Version="6.0">
<KeyGenerator Name="CustCommentKey" KeyProcedureName="CUSTCOM-

MENTKEY"
GeneratorType="PROCEDURE" />

</Schema>
Visual Modeler Application Guide

CHAPTER 24 Visual Modeler Localization
This chapter describes localization issues to consider while you work on Visual
Modeler applications.

Overview
The Visual Modeler has built-in support for:

• multiple currencies

• multiple languages

• number and date formats

• character sets

You can also manage other aspects of localization for specific markets such as:

• local laws and regulations

• currency processing

• shipping and export information

• taxes

Support for internationalization is managed using locales. Each locale identifies a
language and country. By identifying which locale is to be used when displaying
Visual Modeler Application Guide 327

Visual Modeler Localization

328
information to a user, you ensure that the user sees information that is both specific
to their locale and presented as they would expect to see it.

When users log in to the Visual Modeler, a locale is assigned to the session: this is
the preferred locale specified in the user’s profile. Users can change their preferred
locale in their user profile and the change takes take effect the next time they log in.
User administrators can change a user’s preferred locale just as they can change
other aspects of a user’s profile.

The system default locale is specified in the Internationalization.xml
configuration file using the defaultSystemLocale element. You can specify a
default locale for each language: see "Failover Behavior" on page 332 for more
information.

The Visual Modeler offers full Unicode support for data entry and display.

A significant amount of localization can be performed using Java
ResourceBundles: see "Resource Bundles and Formats" on page 339 for more
details.

Supporting Locales
If you plan to implement the Visual Modeler to provide support for more than the
en_US locale, then you must produce pages to reflect local language and other
locale-specific information (such as office locations).

Presentation and Session Locales
When a user logs in to the Visual Modeler, the authentication process retrieves their
preferred locale: this is defined in their user profile. The system makes use of two
logically distinct locales:

• session locale: this determines what data is retrieved for data objects from
the Knowledgebase.

• presentation locale: this determines what JSP pages and resource bundles
are used to render HTML pages to the user.

In general, the set of locales that you support as presentation locales must be a
subset of the possible session locales. For example, you choose to maintain fr_CA,
fr_CH, and fr_FR as session locales, but only support fr_FR and fr_CA as
presentation locales.

When a user first logs in, the system calculates a presentation locale for the user
session as follows:
Visual Modeler Application Guide

Supporting Locales
1. If the user’s preferred locale is declared in the Visual Modeler web.xml file,
then set this to be the presentation locale.

2. If not, then consult the Internationalization.xml file: if the
useCountryDefaulting element is set to "true", then identify the default country
locale for the language of the user’s preferred locale. Check to see if the default
country locale is declared in the web.xml file. If it is, then set the presentation
locale to this.

3. If either the useCountryDefaulting element is set to "false" or the default
country locale is not present in the web.xml file, and if the
useGeneralDefaulting element is set to "true", then set the user’s presentation
locale to the default system locale specified by the defaultSystemLocale
element.

4. If the Defaulting elements are set to false or if no locale is identified that is
declared in the web.xml file, then the presentation locale is set to the session
locale.

This presentation locale is used to determine the user’s experience as they navigate
through the Visual Modeler by controlling which JSP pages and properties files are
used to render the Web pages that they see. At the same time, the preferred locale is
also set as their session locale: this session locale is used to determine what data is
retrieved from the database when localized data objects are displayed to the user.

JSP Pages and Properties Files
1. For each JSP page, there must be at least one JSP page located in the

appropriate module sub-directory under the system default locale directory.
When you first install the Visual Modeler, the default system locale is set to
en_US. Consequently a full set of JSP pages is provided under debs_home/
SterlingWEB-INF/web/en/US/. If you change the default system locale, then
take care to fully populate the corresonding directories for the new locale.

2. All visible text on each page is declared using the Comergent tag library text
tag or the corresponding cmgtText() method. For example:

<cmgt:text id='cmgt_channelMgmt/channelCartDisplay/
ChannelCartDisplayData_7' bundle='channelMgmt.channelCartDis-

Attention: You must make sure that every locale you create in the database either has
a corresponding set of entries in the web.xml file or that its default coun-
try locale has entries in the web.xml file and you enable country default-
ing. If you do not do this, then some users may not be able to access the
system.
Visual Modeler Application Guide 329

Visual Modeler Localization

330
play.ChannelCartDisplayDataResources'>Build Product List
</cmgt:text>

or
String title =

cmgtText("cmgt_commerce/search/AdvancedSearchBody_2",
"Inquiry Lists Search");

The bundle attribute must correspond to a file in the
com.comergent.reference.jsp package of the class tree. For the example
above, there must be a file called
ChannelCartDisplayDataResource.properties in the debs_home/Sterling/
WEB-INF/classes/com/comergent/reference/jsp/channelMgmt/
channelCartDisplay/ directory. The id attribute must be unique within the
properties file. For the example above, there should be a line of the form:
cmgt_channelMgmt/channelCartDisplay/
ChannelCartDisplayData_7=Build Product List

3. For each additional supported locale (say, la_CO), you must copy the
following directories from debs_home/Sterling/WEB-INF/web/en/US/ to
debs_home/Sterling/WEB-INF/web/la/CO/:

• cic/

• common/

• home/

4. For each additional supported locale (say, la_CO) and for each JSP page, you
must:

a. Either create a new JSP page for the locale and put it in the corresponding
directory location in the Web application: a directory under debs_home/
Sterling/WEB-INF/web/la/CO/. If the same page can be used for more
than one locale in the same language (for example, fr_FR and fr_CA),
then make sure that you put it in the default locale for the language. See
"Failover Behavior" on page 332 for more information about default
locales for languages.
Visual Modeler Application Guide

Supporting Locales
b. Or prepare a properties file that contains the appropriate text for each id.
These properties files are organized so that there is one for each JSP page
and JSP fragment.

The properties files must conform to the Java standard for properties
files used by resource bundles. Specifically, they should follow this
naming convention: <Name of JSP
page>Resources_la_CO.properties. They must be text files in which
each line should take this form:
cmgt_module/package/JSPname_n=Display text for this locale

For example:
cmgt_channelMgmt/channelCartDisplay/
ChannelCartDisplayData_7=Build Product List

The properties files are all located in the debs_home/Sterling/WEB-
INF/classes/com/comergent/reference/jsp/ directory and are organized
by module within this directory in the same way that the module JSP
pages are organized within a module. Note that if you want to change
the location of these resource bundles, then you must customize the text
tag to retrieve the resource bundles from their new location.

If you add text to a JSP page, then take care to update the corresponding
locale JSP pages or properties files, either with amended text for an existing
tag id or by adding a new id.

Notes
Note the following:

• The length of the translated text can be significantly different: this can
affect the layout of a Web page.

• Drop-down lists and Javascript functions can have text that if translated
will affect the logic of the Visual Modeler. See "Javascript" on page 337
and "JSP Pages" on page 337.

• Local regulations can effect the display of information (such as the display
of prices in both Euros and a local currency).

• Take particular care if the logical flow of pages must change to reflect
local practice (such as the display of an export notice or tax information).

Note: HTML and Javascript characters such as "<", ">", "’", and so on must not be
included in the property values. These characters must be escaped using the
HTML or Javascript mechanisms to escape characters. For example: use
"<" for "<" in HTML and "\’" for "’" in Javascript.
Visual Modeler Application Guide 331

Visual Modeler Localization

332
Debugging
You can use the debugJSPResouceBundle element of the Internationalization.xml
configuration file to help you identify missing strings. Set this element to "true" and
if a string is missing from the referenced resource bundle, then an error message is
displayed on the browser page. You should set this value to "false" in your
production systems.

Failover Behavior
This section describes what happens when resources (JSP pages or properties) are
not defined for the user’s current presentation locale. Note that the failover
behaviors are slightly different for JSP pages and resource bundles:

• JSP pages can fail over from a specific locale to the default country for the
language locale and then to the system default locale. For example: fr_CA
to fr_FR to en_US.

• Resource bundles fail over according to the Java specification:
*_fr_CA.properties to *_fr.properties to *.properties.

Two properties in the Internationalization.xml configuration file are used to
manage failover behavior for JSP pages:

• useCountryDefaulting: if this is set to true, then default to the country
specifed in the appropriate language element if no resource is present for
the presentation locale.

• useGeneralDefaulting: if this is set to true, then default to the system
locale if no resource is available for the presentation locale.

Resource Bundles
You do not need to translate all text strings into each locale. If a text string is not
present for a given id in a resource bundle properties file, then the standard Java
failover process is followed. For example, if the
ChannelCartDisplayDataResource_fr_CA.properties does not define the
cmgt_channelMgmt/channelCartDisplay/ChannelCartDisplayData_7 string, then,
if it exists the ChannelCartDisplayDataResource_fr.properties file is
consulted. If this file does not exist or does not have an entry for this id, then the
ChannelCartDisplayDataResource.properties file is consulted.

JSP Pages
Not all the JSP pages need be available for all supported locales. For example, you
may choose to use en_US pages for all but a small number of pages viewed by
Visual Modeler Application Guide

Supporting Locales
en_CA users. This section describes what happens when a message type is
processed:

The request is forwarded to the JSP page specified by the JSPMapping element of
the message type in the appropriate MessageTypes.xml.

1. If the JSP page does exist for the current locale, then this page is used to
generate the Web page.

2. If the JSP page does not exist for the current locale, then the failover
mechanism identifies the default locale for the language of the current locale.
This is declared as the defaultCountry element for the language in the
Internationalization.xml configuration file.

3. If a JSP page exists in the language-default locale, then this page is used to
generate the Web page. For example, the following element in
Internationalization.xml specifies that US is the default country for the en
language locales, and so if a JSP page is not present for the en_CA locale, then
the corresponding en_US JSP page is used.

<en visible="false">
<defaultCountry ...>US</defaultCountry>

</en>

4. If there does not exist a JSP page for the default country, then the failover
mechanism identifies the default system locale. This is declared as the value of
the defaultSystemLocale element of the Internationalization.xml file. If a
JSP page exists in the system default locale, then this page is used to generate
the Web page.

5. Finally, if no JSP page exists in the default system locale, then an exception is
thrown and an error page is displayed.

Methods to Retrieve Locales
Most of the time you should be able to make use of the Visual Modeler’s built-in
support to display appropriate content to users for their locales. If you do need to
manually access locales, then the ComergentI18N class can be used. It provides the
following methods:

• getDefaultLocale(): returns the system default locale.

• getComergentLocale(boolean b): if b is true, then returns the user’s
presentation locale; otherwise returns the user’s session locale.

• findPresentationLocale(Locale sessionLocale): used to calculate what
presentation locale should be used for a given session locale.
Visual Modeler Application Guide 333

Visual Modeler Localization

334
Using Properties Files in Code
You can make use of properties files in your Java code too. For example, to retrieve
the locale-specific String that corresponds to the String keyString defined in the
com.comergent.reference.jsp.AdvisorBodyResources.properties file, use:

String temp_NamedPopertiesFile =
"com.comergent.reference.jsp.AdvisorBodyResources.properties";

ResourceBundle temp_ResourceBundle =
com.comergent.dcm.util.ComergentI18N.-

getBundle(temp_NamedPopertiesFile);
String temp_LocalisedString =

temp_ResourceBundle.getString("keyString");

This uses the current locale of the user as stored in the user’s session. If you want to
force the use of a different locale, then use:

Locale specific_Locale = new Locale("fr", "CA");
String temp_NamedPopertiesFile =

"com.comergent.reference.jsp.AdvisorBodyResources.properties";
ResourceBundle temp_ResourceBundle =

com.comergent.dcm.util.ComergentI18N.-
getBundle(temp_NamedPopertiesFile, specific_Locale);

String temp_LocalisedString =
temp_ResourceBundle.getString("keyString");

Data for Internationalization
If you expect enterprise users and end-users to be entering data in multi-byte
characters, then you need to consider the length of data fields and their
corresponding database table columns. In our experience, data entered into the
Visual Modeler that uses multi-byte characters can be up to three times as long in
the database as the strings used for the en_US locale. Consequently, you should
review the length of fields in which you expect data to be entered that will take
multi-byte characters: notably name and description fields.

If you want to change the length of fields, then bear in mind that you have to both
change them in the DsDataElements.xml configuration file and make the
corresponding change to the SQL script that is used to generate the Knowledgebase
schema.

For example, to make the Description field of the Product data object suitably long
for multi-byte characters, you must do the following:

1. Identify the data field that is used to hold product descriptions. Because the
Product data object is a localizable data object (Localized=“y”), this is the
Visual Modeler Application Guide

Email Templates
Description field of the ProductLocale data object. Its corresponding database
table and column is CMGT_PRODUCT_LOCALE.DESCRIPTION.

<DataField Name="Description" ExternalFieldName="DESCRIPTION"
Mandatory="n" Writable="y"/>

2. Suppose that you want to allow for descriptions that are up to 240 characters
long:

<DataElement Name="Description" DataType="STRING"
Description="Description" MaxLength="240" />

3. Change the corresponding SQL statement that creates the
CMGT_PRODUCT_LOCALE table so that the DESCRIPTION column is set
to VARCHAR2(720):

DESCRIPTION VARCHAR2(720) DEFAULT 'Not available',

4. Run the appropriate SDK targets (merge and createDB) to make the changes to
your implementation of the Visual Modeler.

Note that in this example, the Description data field is widely used by many
different data objects and so changing its definition in the DsDataElements.xml
configuraton file can have unanticipated side-effects elsewhere. An alternative
approach is to create a new data field called ProductDescription and to use this in
the ProductLocale data object. Thus, you could put in the ProductLocale.xml file:

<DataField Name="ProductDescription"
ExternalFieldName="DESCRIPTION" Mandatory="n" Writable="y"/>

Then put in the DsDataElements.xml configuration file:

<DataElement Name="ProductDescription" DataType="STRING"
Description="This is the product description field"
MaxLength="240" />

Note also that if you provide a Javascript methods to validate that users have
entered valid data in fields, then when you check for length of fields, check for the
length specified in the corresponding DataElement.

Email Templates
If your system supports languages other than English and your installation of the
Visual Modeler uses email templates to generate messages that are sent to users,
then bear in mind that these need to translated.
Visual Modeler Application Guide 335

Visual Modeler Localization

336
Release 6.4 has introduced the ability to use JSP pages to generate email messages:
This provides support for internationalizing email messages by using the existing
framework for internationaizing JSP pages.

For legacy applications, you can use the default templates provided by the Visual
Modeler: these are located in debs_home/Sterling/WEB-INF/templates/.

HTML Pages
Static HTML pages must be translated where appropriate. If you want to provide
support for multiple languages simultaneously, then you should take care to
produce pages for each language. Provided that you maintain the location of these
pages consistently across your locale directory structure, then the relative
references to these pages will always resolve correctly to the correct HTML page.

For example, the following JSP fragment will dynamically generated URLs to
point to a locale-specific Example.html page:

<A HREF="<cmgt:link app="catalog">
/static/Example.html
</cmgt:link>">
resourceBundle.getString("ExamplePage")

In this example, a resource bundle is used to determine the displayed text for the
link.

Images
In general, use images that do not have embedded text. Doing so, ensures that you
can use the same images in more than one locale: thereby reducing the cost of
localization and maintenance.

However, where necessary you should provide localized versions of images. Just as
for static HTML pages, you can use relative URLs to ensure that locale-specific
images are retrieved from the correct location relative to the JSP page.

In particular, remember that all of the buttons in externally facing pages are image
buttons with text. Where necessary, you should create localized versions of each
button. The image source URLs can then be generated as follows:

<IMG ALT="Locale-specific alternate text goes here"
SRC="../images/button.gif">
Visual Modeler Application Guide

Javascript
Javascript
Take care to localize displayed text used in your Javascript. For example, alert
dialog boxes should reflect the user’s locale in the displayed text.

• Some Javascript files are included in the Web pages along these lines:

<script language='JavaScript' src='../js/genericUtil.js'>
</script>

You must maintain these Javascript files for each locale so that the browser
can correctly include these in the generated Web pages.

• When Javascript is defined within a JSP page or an included JSP
fragment, then display text must be wrapped in the text tag. For example:

alert("<cmgt:text id="*">Product ID is missing.</cmgt:text>");

When these tags are processed as part of the SDK tool, then the id attribute
is changed into a unique ID, and the ID and body of the tag are added to the
resource bundle for the JSP page or fragment.

JSP Pages
In general, all localization for labels, explanatory text, populated lists, and
locale-specific formatting for dates and currencies should be reflected in the JSP
pages created for a locale.

A useful organizing principle is to create a HashMap of all localized strings on
page, and then to refer to this throughout the rest of the page. For example:

HashMap localized = new HashMap();
localized.put("TaskListHeader",

cmgtText("cmgt_taskMgr/TaskWorkspaceData_3","Task List:"));
localized.put("QuickSearchTitle",

cmgtText("cmgt_taskMgr/TaskWorkspaceData_4","Search for Tasks"));
localized.put("TaskID",

cmgtText("cmgt_taskMgr/TaskWorkspaceData_5","ID"));
localized.put("TaskName",

cmgtText("cmgt_taskMgr/TaskWorkspaceData_6","Name"));
localized.put("Status",

cmgtText("cmgt_taskMgr/TaskWorkspaceData_7","Status"));
localized.put("Priority",

cmgtText("cmgt_taskMgr/TaskWorkspaceData_8","Priority"));
localized.put("CreateDate",

cmgtText("cmgt_taskMgr/TaskWorkspaceData_9","Create Date"));
request.setAttribute("localized", localized);
Visual Modeler Application Guide 337

Visual Modeler Localization

338
You can reference these strings using the scripting capabilities along these lines:

<cic:span css="banner" value="${localized['TaskListHeader']}"/>

This technique has the advantages that JSP pages are more readable, that you can
re-use localized strings easily, and it is closer to the JSF model.

See "Calendar Widget" on page 338 for information about localizing this UI
component. For example, populate a drop-down list of days of the week for a
French-language locale as follows:

<SELECT Name="DayOfWeek">
<OPTION VALUE=0>dimanche</OPTION>
<OPTION VALUE=1>lundi</OPTION>
<OPTION VALUE=2>mardi</OPTION>
<OPTION VALUE=3>mercredi</OPTION>
<OPTION VALUE=4>jeudi</OPTION>
<OPTION VALUE=5>juin</OPTION>
<OPTION VALUE=6>vendredi</OPTION>
<OPTION VALUE=7>samedi</OPTION>
</SELECT>

You can also use resource bundles to manage locale-specific display information.
For example, this would be an alternate method for populating a drop-down list of
days of the week in the Gregorian calendar:

<SELECT Name="DayOfWeek">
<OPTION VALUE=0><%= resourceBundle.getString("Sunday") %></OPTION>
<OPTION VALUE=1><%= resourceBundle.getString("Monday") %></OPTION>
<OPTION VALUE=2><%= resourceBundle.getString("Tuesday") %></OPTION>
<OPTION VALUE=3><%= resourceBundle.getString("Wednesday") %></OPTION>
<OPTION VALUE=4><%= resourceBundle.getString("Thursday") %></OPTION>
<OPTION VALUE=5><%= resourceBundle.getString("Friday") %></OPTION>
<OPTION VALUE=6><%= resourceBundle.getString("Saturday") %></OPTION>
</SELECT>

Calendar Widget
When you use the calendar widget in a JSP page, then it must be localized. You do
this by customizing the I18N.js Javascript file to be found in the locale directory
debs_home/Sterling//la/CO/js/. For example, to support the de_DE locale, create a
file called debs_home/Sterling/de/DE/js/I18N.js that reads:

// DEFAULT LOCALE (English)
var MONTH_NAMES = new Array('Januar', 'Februar', 'Maerz', 'April',
'Mai', 'Juni', 'Juli', 'August', 'September', 'Oktober', 'November',
'Dezember', 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug',
'Sep', 'Okt', 'Nov', 'Dez');
var DAYOFWEEK_HEADER_NAMES = new
Array("So","Mo","Di","Mi","Do","Fr","Sa");
Visual Modeler Application Guide

Style Sheets
var WEEK_START_DAY = 0;
// Create CalendarPopup object
var popupCal = new CalendarPopup();

Style Sheets
The Visual Modeler uses cascading style sheets to set the formatting of HTML
elements. If you use fonts for a specific locale, then make sure that you create a
style sheet that specifies these fonts. For each locale save this locale-specific style
sheet in the same relative location.

In JSP pages, you can include a locale-specific cascading style sheet, say
customer.css, with the following:

<LINK rel="stylesheet" href="../css/customer.css" type="text/css">

System Properties
In general, the configuration files only present data to administrators. To localize
these files, you should not need to change the names or values of elements, but you
should consider changing the Help text for elements. Note that there is only one set
of configuration files for each Visual Modeler, and so you should use the language
of the default system locale for these files.

Resource Bundles and Formats
PropertyResourceBundles and Properties Files
The Visual Modeler makes extensive use of properties files to manage
locale-specific data. These have replaced the use of ResourceBundle Java classes.
See "Supporting Locales" on page 328 for more details.

ResourceBundles
A useful mechanism to manage localization is the use of Java ResourceBundles.

These are classes that manage locale-specific information. ResourceBundle classes
used in the Visual Modeler all extend the ListResourceBundle. These define the
mapping between name Strings and the value Strings returned when the getString
(String nameString) method is invoked.

Note: The use of resource bundles classes in the Visual Modeler is deprecated. You
should use properties files as described in "Supporting Locales" on page 328.
Visual Modeler Application Guide 339

Visual Modeler Localization

340
By following the naming convention for ResourceBundles, you can create
locale-specific ResourceBundles for all of the locales you need to support. For
example, you can create the following ResourceBundles to be used in a new
application called Inventory:

• InventoryResourceBundle

• InventoryResourceBundle_fr

• InventoryResourceBundle_fr_FR

• InventoryResourceBundle_fr_CA

The following scriptlet can retrieve the appropriate resource bundle for use in a JSP
page:

<%
String baseName = "AdvisorResourceBundle";
ResourceBundle resourceBundle =

AdvisorResourceBundle.getBundle (baseName,
session.getLocale());

%>

NumberFormats and DateFormats
You can use the NumberFormat class to help you display numbers in locale-specific
ways. You create an instance of a NumberFormat by passing in the locale to the
constructor.

For example, the following scriptlet displays the total number of shopping carts in a
format appropriate to the locale:

<%
NumberFormat numberFormat =
NumberFormat.getInstance(session.getLocale());
int number = request.getParameter("ShoppingCartsTotal");

%>
<P>The number of active shopping carts in use is:
<%= numberFormat.format(number) %>
</P>

Similarly, use the DateFormat class to help you display date in locale-specific
ways. You create an instance of a DateFormat by passing in the locale to the
constructor.

For example, the following scriptlet displays the current date in a format
appropriate to the locale:

<%
DateFormat dateFormat =
Visual Modeler Application Guide

Resource Bundles and Formats
DateFormat.getInstance(session.getLocale());
Date todaysDate = new Date();

%>
<P>It is now:
<%= dateFormat.format(todaysDate) %>
</P>
Visual Modeler Application Guide 341

Visual Modeler Localization

342
 Visual Modeler Application Guide

CHAPTER 25 Exceptions
This chapter describes the framework for exception handling in the Visual Modeler.
You should follow this to ensure consistency across your implementation of the
system, and to help other people working on the implementation.

ComergentException Hierarchy
Exception Root

ComergentException
All compile time exception classes declared in the production software should
inherit ultimately from com.comergent.dcm.util.ComergentException class. This
class extends java.lang.Exception to provide chaining and an independent user
message.

ICCException
ICCException provides a convenience subclass of ComergentException. Rather
than create a set of exception classes for a subsystem, you can use the
ICCException class uniformly across a subsystem.
Visual Modeler Application Guide 343

Exceptions

344
ComergentRuntimeException
All runtime exception classes should inherit from
com.comergent.dcm.util.ComergentRuntimeException, which extends
java.lang.RuntimeException to provide identical functionality.

Subsystem Grouping
A subsystem of the Visual Modeler is defined to be either a distinct and separable
application, or an application level or a system level service. A subsystem is a
logical organization. It may span multiple packages in the Java package hierarchy
or comprise part of a package.

Each logical subsystem is expected to declare its own exception root class. This
root inherits from ComergentException and is the parent class of all compile time
exceptions within the subsystem. The subsystem is defined to be either a distinct
and separable application, or an application level or a system level service. A
subsystem is a logical organization. It may span multiple packages in the Java
package hierarchy or comprise part of a package, although you should organize
your package structure in conformance with the logical subsystem organization.

For example, suppose there is a subsystem named Foo. There should be a class
FooException:

public class FooException extends ComergentException
{

public FooException(String msg)
{

super(msg);
}

public FooException(String msg, Exception ex)
{

super(msg, ex);
}

}

Suppose Foo responds to a bad initialization state by throwing
BadInitializationException for all subsequent requests. This exception would
inherit from FooException:

public class BadInitializationException extends FooException
{

...
}

Visual Modeler Application Guide

Exception Chaining
Subsystem by Subsystem Exception Policy
Each subsystem should implement a consistent policy for differentiating
exceptions. Either it should subclass the subsystem exception class for each distinct
exception type (this is the standard Java style policy) or the subsystem's root
exception should inherit from ICCException, and should set the status parameter to
differentiate exceptions (this is the ICCException policy).

For example, if subsystem Foo chooses a Java style exception policy, then
FooException should extend ComergentException. If subsystem Bar chooses an
ICCException policy, then FooException should extend ICCException (which in
turn extends ComergentException).

public class BarException extends ICCException
{

...
}

Exception Chaining
Each subsystem is expected to throw only exceptions from its own subsystem to its
caller. If an underlying service throws an exception that a given subsystem cannot
handle, then it is expected to catch that exception and rethrow an exception that is
meaningful in its own context. The new exception should use a chaining
constructor to include the original exception, so that when the exception is finally
handled and logged, the original exception is not lost.

For example, suppose subsystem Foo attempts to open a property file and could
incur an IO exception. If it implements a Java style exception policy, then it may
declare a new exception class, FooPropertyFileException, which extends
FooException. The IO Exception catch statement would throw a new
FooPropertyFileException with a constructor that passes a message and the original
I/O exception.

try
{

...
Properties props = new Properties();
props.load(input);
...

}
catch (IOException ex)
{

// chain the io exception
throw new FooPropertyFileException("Loading file" + filename, ex);

}

Visual Modeler Application Guide 345

Exceptions

346
Throwing, Catching, and Logging Exceptions
When to Throw Exceptions
Exceptions should be thrown when the contract between a method and its caller
cannot be fulfilled. This is the usage identified in the Java Language Specification.
Unfortunately, this provides only a little guidance since the contract can be defined
so broadly that exceptions are unnecessary, or defined so narrowly that exceptions
occur frequently. As a general rule of thumb, exception usage should balance the
following two opposing goals:

Exceptions should not be the norm.

• They involve the creation of an additional object, so, if only from a
performance standpoint, it is problematic if exceptions can occur
frequently.

• Mixing data and control should be avoided. The alternative to throwing an
exception is often returning a null value from a method. This means that
the return value encapsulates two meanings (success or failure and
whatever the data means when present). It is good programming practice
to avoid this usage where possible.

If null is a reasonable value for the stated purpose of a method, or if a
method is expected to fail often in the normal course of operation, then it is
reasonable to return null to indicate failure; otherwise it is better to throw an
exception.

Throwing Runtime or Compile Time Exceptions
According to the Java Language Specification, runtime exceptions should be
thrown when the caller has provided erroneous input (in essence, breached the
method contract) and it would be burdensome to declare a compile time exception.
For example, if a caller invokes a method passing a negative value for a parameter
that is an array index, it is reasonable to throw a runtime exception. Otherwise
throw compile time exceptions.

Catch Clauses and Throws Declarations
Catch clauses and throws declarations should avoid being overly general. If the
called method throws, for example, FileNotFoundException, then the caller should
catch FileNotFoundException, not Exception or Throwable. The reason for this is
that if the underlying code changes to throw a new exception, or ceases throwing
Visual Modeler Application Guide

Displaying Exceptions
this exception, then it is desirable that the change produces a compilation error to
signal to the programmer to consider the new situation.

There are exceptions to this rule where practicality should prevail. If the variety of
exceptions that can be thrown is large and our response is the same in all cases, then
there is no reason to catch each individually.

Logging Exceptions
If a method catches an exception and handles it (that is, does not rethrow it) then it
should log it. Presumably this method knows the significance of the exception, and
knows whether to log it with an error severity or some other lower level severity.
Empty catch statements should be regarded with great suspicion.

Never do this:

catch (SomeException ex)
{

}

Do this:

catch (SomeException ex)
{

Global.logVerbose(ex);
}

Or this:

catch (SomeException ex)
{

ex.printStackTrace(Global.debugStream);
}

When exceptions from underlying subsystems or third party packages are caught
and chained to a new exception, there is no need to log the exception. Some process
further up the hierarchy will eventually catch and handle it, and the process will
know how to log it.

Displaying Exceptions
In general, users of the Visual Modeler should not see exceptions: the appropriate
subsystem must handle the exception gracefully by responding appropriately to the
error condition.
Visual Modeler Application Guide 347

Exceptions

348
The Visual Modeler error pages place the exception stack trace between HTML
comments. By viewing the source of the displayed Web page, you can read the
stack trace.

If an exception stack trace is passed to the JSP page, then bear in mind that the
buffer limits of the JSP page may prevent a full exception message from being
passed to the Web page. If a long exception stack trace is passed to a JSP page, then
you can display it by modifying the buffer of the JSP page. Use the buffer tag as
follows:

<%@ page buffer=1024kb %>

Once the error condition has been diagnosed and fixed, then you should remove
this tag because it impacts performance.
Visual Modeler Application Guide

CHAPTER 26 Implementing Cron Jobs
This chapter describes the creation of cron jobs that run as part of the Visual
Modeler.

Overview
Certain tasks within an implementation of the Visual Modeler are not initiated in
response to user input. For example, the hourly synchronization of order data with
an external system or the weekly import of catalog data from a third party is best
done without user intervention. These jobs can be scheduled to run at suitable
intervals using the Job Scheduler functionality provided by the Visual Modeler.

Cron jobs can be defined either as system cron jobs or as application cron jobs.

• A system cron job is run by the Visual Modeler and is not associated with
any user. A system cron job calls Visual Modeler classes directly. A
system cron job must be run by a class that extends the SystemCron
abstract class. Typically, system cron jobs perform tasks such as cleaning
the cache.

• Each application cron job is run as a user: the username and password of
the user are provided when the cron job is created using the Job Scheduler
user interface. Application cron jobs work by posting XML messages to
the Visual Modeler which are then processed by the system. An
application cron job must be run by a class that extends the
Visual Modeler Application Guide 349

Implementing Cron Jobs

350
ApplicationCron abstract class. Typically, you use application cron jobs to
perform necessary administrative tasks that touch user or product data
such as order synchronization.

CronManager and CronScheduler
The definition and creation of cron jobs is managed by the CronManager class.
Cron job configuration information is represented in memory by the
CronConfigBean data bean. The definition of cron jobs are maintained in the
Knowledgebase.

The scheduling and running of cron jobs is managed by the CronScheduler class.
This singleton class is instantiated at server startup time.

CronJob Interface
Each cron job is a Java class that implements the CronJob interface:

public interface CronJob extends java.lang.Runnable
{

/**
 * Specify the Cron Configuration bean object.
 *
 * @param config Cron configuration bean object.
 */
public void setCronConfiguration(CronConfigBean config);

/**
 * Return the Cron Configuration bean object.
 *
 * @return CronConfigBean object.
 */
public CronConfigBean getCronConfiguration();

 /**
 * Initialization function. This function is called
 * immediately after the object is created.
 *
 * @return true if initialization success, false otherwise.
 */
public boolean init();

/**

Attention: Note that a system cron job should not attempt restore() and persist()
operations itself. There is no user associated with the cron job class and so
the access checking built in to the data access methods will throw an
exception.
Visual Modeler Application Guide

Overview
 * Return the current scheduled time.
 *
 * @return Current schedule time in Calendar object.
 */
public Calendar getSchedule();

/**
 * Reschedule the cron to reflect the changes made to the
 * cronfiguration parameter. This function is called by the
 * Cron Manager whenever cron configuration changes.
 */
public void reschedule();

/**
 * Whether the job needs to be run again. This function is
 * useful if there is some problem in the current run and you
 * want to retry at specified time.
 *
 * @return true if the job is allowed to retry if the job
 * did not run successfully
 * on the last time of execution
 */
public boolean retry();

/**
 * Determines whether to stop this cron job from running.
 *
 * @return true if the job has been slated to not run again
 */
public boolean stopRun();

/**
 * Compute next cron run time: this is usually based on the cron
 * run interval.
 */
public void computeNextSchedule();

/**
 * Check to determine if the cron job is
 * in a good state to run before triggering the thread to run.
 *
 * @return true or false. True means ready to run.
 */
public boolean isOKtoRun();

/**
 * Is called when the thread starts.
 *
 * @return false if the job needs to be stopped. Return true to
Visual Modeler Application Guide 351

Implementing Cron Jobs

352
 * continue running.
*/
public boolean service();

/**
 * Checks whether the next run time is later than the end run date.
 *
 * @return true if next run time greater than end run time
 */
public boolean isExpired();

}

To create a new cron job, follow these steps:

1. Write a CronJob class: you must extend either the SystemCron or
ApplicationCron classes. Both these classes are abstract and they both extend
the abstract class AbstractCronJob.

The only method that you need to implement is service(). This is the
method that processes the inbound post initiated by the CronScheduler.

• If the job is passed parameters that are defined using the Job Scheduler
user interface, then you can retrieve the parameters using the
getParameter(String s) and getParameters() methods of the
AbstractCronJob class. These methods behave identically to the
corresponding methods of the HttpServletRequest class.

• If you want the result of the job to be saved to the database, then the
service() method must call the setExecutionOutcome(String s) method.

• You can specify that the cron job should be re-executed at a later time by
calling the setRetry(Calendar c) method of the AbstractCronJob class. Use
the Calendar parameter to specify when the job should be re-executed.

2. Using the Job Scheduler user interface provided as part of the system
administration application, define the cron job by specifying the cron job class,
the schedule to determine when it is run, and any parameters to be passed to the
cron job at runtime. If the cron job is to run as an application cron job, then you
must also provide the username and password of the user.

Parameters are passed in to the cron job using the same syntax as for HTTP
request parameters. For example: Name1=Value1&Name2=Value2.
Visual Modeler Application Guide

CHAPTER 27 Filters
This chapter describes how you can use filters. It covers:

• "Filters Overview" on page 353

• "Available Filters" on page 354

Filters Overview
A filter is an object that performs filtering tasks on either the request to a resource
(a servlet or static content), or on the response from a resource, or both. They are
defined as part of the J2EE 2.3 specification.

Filters perform filtering in the doFilter() method. Every Filter has access to a
FilterConfig object from which it can obtain its initialization parameters, a
reference to the ServletContext which it can use, for example, to load resources
needed for filtering tasks.

Filters are configured in the deployment descriptor of a Web application. Examples
of typical filters include:

• Authentication Filters

• Logging and Auditing Filters

• Image conversion Filters
Visual Modeler Application Guide 353

Filters

354
• Data compression Filters

• Encryption Filters

• Tokenizing Filters

• Filters that trigger resource access events

• XSLT filters

• Mime-type Chain Filters

Available Filters
This section describes some of the filters provided in the Visual Modeler. All the
filters are part of the com.comergent.dcm.core.filters package. It covers:

• "DosFilter" on page 354

• "WSDLFilter" on page 355

DosFilter
This filter can be used as the basis for filters to protect the Web application from
denial-of-service attacks.

To use this filter, write a class that extends the
com.comergent.dcm.core.filters.DosFilter class, and in it, override the
isRequestDenied() method to implement the logic you want to use to identify and
block denial-of-service attacks.

Then, modify the web.xml configuration file, to declare your implementing class as
a filter like this:

<filter>
<filter-name>DosFilter</filter-name>
<filter-class>

com.comergent.dcm.messaging.CustomDosFilter
</filter-class>

</filter>

and

<filter-mapping>
<filter-name>DosFilter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>
Visual Modeler Application Guide

Available Filters
WSDLFilter
The WSDLFilter class is used to transform the Web service WSDLs if they are
accessed using the standard URLs: http://server:port/s/dXML/5.0/
OrderInterface.wsdl, and so on.
Visual Modeler Application Guide 355

Filters

356
 Visual Modeler Application Guide

CHAPTER 28 Managing and Displaying
Constrained Fields
This chapter covers the topic of managing constrained data fields which can take
only one of a number of values: we called these data fields constrained. Examples
include partner levels (such as “Gold”, “Silver”, and so on), partner territories (such
as “North-west”, “Benelux”, and so on), and skill levels (such as “Expert”,
“Certified”, and so on). You can manage these data fields in different ways in the
Visual Modeler. Your choice depends on how they are to be maintained and used.

Options
You have the following options to specify a constrained data field and the permitted
data fields:

• Maintain the data field as a set of values in a database table. Assign values to
business objects either by a cross-reference table or by references to a key for
each value in the business object table.

• Maintain the values as a constraint element in the XML schema (declared in
the DsConstraints.xml file). Specify the constraint as an attribute of the
DataElement associated with the data field.

• Embed the permitted values as values of a <SELECT> form element in an
HTML template.
Visual Modeler Application Guide 357

Managing and Displaying Constrained Fields

358
We recommend that you maintain the permitted values for a field as a database
table unless:

• the values are not going to be modified at run-time

• the data field may take only one value in each business object

• the values can be displayed in a natural order that is determined by the
values themselves such as their alphabetical order.

We recommend against using the third option for the following reasons:

• It becomes a maintenance problem to update templates or application code
if you want to modify the list of permitted data values.

• It represents a security problem because users may modify the HTML to
pass back forbidden values. You have to either add Javascript (that a user
can remove) to validate the selection or validate the returned value as part
of the business logic.

Criteria
Your selection depends on the functionality of the data field. Ask yourself these
questions to determine how the data field is being used:

1. Can you assign a business object only one or multiple values of a constrained
data field?

If your answer is that multiple values may be assigned to the same business
object (example: a partner that may operate in multiple territories), then you
must use a database table for the field values and a cross-reference table to
assign values to the business object.

2. Can you enter new values of the data field when creating a new business object
or do you need to verify that a value entered for the data field is a valid
member of the constraint set?

If only single values are permitted, and your answer to Question 2 is that new
values are permitted, then you must use a database table to hold the field
values. However, you do not have to use a cross-reference table to assign data
field values to business objects. You cannot dynamically add values to the list
of permitted values of a constraint element through the current Visual Modeler
interface.

3. Are the possible values that the constrained data field may take maintained
dynamically or are they read once at start-up?
Visual Modeler Application Guide

Criteria
If your answer to Question 1 was single value, and your answer to Question 2
is that new values are not permitted, but you do require dynamic updating, then
you must use a database table. If the constrained values are unchanged once the
Visual Modeler has started, then you can use a constraint element.

4. Do you need to sort the constrained data values for display? If yes, then is it
sorted by value (say, alphabetically) or by some defined order that cannot be
inferred from the values themselves?

Finally, if the data field values need to be sorted by an order not inherent in the
values themselves, then this ordering information must be maintained in a
database table. However, if you only order the values using some self-evident
ordering (such as alphabetical), then you can use the constraint element choice.
Visual Modeler Application Guide 359

Managing and Displaying Constrained Fields

360
 Visual Modeler Application Guide

CHAPTER 29 Security Best Practices
Introduction
This chapter outlines a Best Practices security model behind the Visual Modeler. It
covers the following topics:

• “Role Definition and Security Policies” on page 363

• “Information Assets” on page 366

• “Protection Mechanism for Information Assets” on page 369

• “Protection of Critical Functions” on page 370

• “Threat Scenarios” on page 372

• “HTTP Sessions” on page 373

A Web-based application operating as an e-commerce site is likely to be regulated
by industry consortiums or must comply with widely-accepted good development
practices. In general, most of these situations will involve some guidelines that
attempt to not only help develop robust applications, but also provide a relatively
secure environment that can adequately safeguard the use of personal or financial
information at the site. The range of regulatory or best practice guidelines is fairly
extensive. Some provide regulations for which compliance is mandatory for doing
business in a particular market; some provide corporate-wide process and
Visual Modeler Application Guide 361

Security Best Practices

362
procedures that aid in specific goals, such as protecting personal information; some
are more focused on good software engineering practices. Some examples include:

• The Open Web Application Security Project (OWASP)

OWASP is a development community that recommends software best
practices.

• ISO 17799 - ISO/IEC Security Standard

ISO 17799 is a standard establishing guidelines and general principles for
initiating, implementing, maintaining, and improving information security
management in an organization.

• Payment Card Industry (PCI)

PCI is an industry consortium that regulates sites that accept and process
credit card transactions.

• Sarbanes-Oxley (SOX)

SOX is a US legal requirement for public corporations.

• American Institute of Certified Public Accountants SAS 70 (AICPA)

AICPA’s Statement on Auditing Standards no. 70 (SAS 70) is an auditing
standard by which organizations can assure that they have adequate
safeguards and controls in place for hosting or processing data belonging to
their customers.

Guidelines and practices included through these and other bodies range from good
software engineering practices to building secure networks to corporate accounting
practices. In keeping with this environment, this chapter presents the basic building
blocks that are likely to be needed to operate a robust and secure site. Not all
aspects of all organizations’ guidelines will apply to any one site, but it is likely that
some of these guidelines could be mandatory. Use this chapter as a starting point in
providing a compliant solution, but more in-depth practices may be needed.

This chapter covers:

• “Role Definition and Security Policies” on page 363

• “Information Assets” on page 366

• “Protection Mechanism for Information Assets” on page 369

• “Protection of Critical Functions” on page 370

• “Threat Scenarios” on page 372
Visual Modeler Application Guide

Role Definition and Security Policies
Role Definition and Security Policies
Administration Model
This section describes the entities assumed to be present in the administrative
domain in which the Visual Modeler resides, including networks, servers, and
administrative roles. This is likely not an exhaustive list. It is likely that various
network devices will exist within this environment, and perhaps other servers.

Networks
The following network zones are assumed to exist. These networks are connected
to themselves as outlined below through gateways.

• External Network: Directly visible from the Internet. Hosts the Web server
with static content. The External network is accessible to the Internet
through a firewall. It is assumed that the firewall and appropriate standard
security practices are sufficient to prevent shell level access from the
Internet. The external network has a gateway to the De-Militarized Zone
(DMZ) that permits highly controlled access from the Web server to the
application server.

• DMZ: This network is not directly visible from the Internet. A constrained
gateway permits the Web server residing on the External Network to
access the Application server residing on this network and another,
similar, gateway permits access from the DMZ network to the Internal
Network. Web server routes messages to the application server through
dedicated ports.

• Internal Network: Not visible from the Internet, nor from the External
Network. Database resources reside here. Application servers in the DMZ
connect to Database Servers in this network through a constrained
gateway.

Servers in the DMZ and Internal Network spaces have private addresses,
complying with RFC 1918. In general, only the minimal access needed to operate
the systems should be allowed.

Servers
The following servers are assumed to exist. The term “server” here represents a
software application that is more or less continuously listening on one or more
network ports, responding to requests received on the ports. Software servers reside
on computer hardware. Generally, though not necessarily, there will be a one-to-one
relationship between a server software system, and a server hardware entity.
Visual Modeler Application Guide 363

Security Best Practices

364
• Web server resides in the External Network. It responds to HTTP and
HTTPS requests from the Internet or internal corporate intranets.

• Application server resides in DMZ. Some HTTP and HTTPS requests are
delegated to the Application server for dynamically generated response.
The Application server maintains connections with the Database server.

• Database server resides in the Internal Network or DMZ.

Roles
This section describes roles within the administrative context of the Visual
Modeler. These are roles assigned to data center personnel acting as employees or
agents of the Enterprise. They are distinguished from the roles of individuals who
interact directly with the Visual Modeler Web application (online users). Online
users have capabilities managed directly by two Visual Modeler Entitlement
services. Dispatch (or “MessageType”) Entitlement service manages page flow
privileges. The Access Policy service manages fine-grained data-level access.

• Database Administrator

• Responsible for Database Servers.

• Can log into database server.

• Can read, create, update, or delete databases, database tables, indexes, and
other database resources.

• Can create backups and restore from backups.

• Can create Database users and manage them.

• Sets the application user access and authentication.

• Does not have root level authority in server OS.

• Does not have direct access to Application Server machine (or network).

• Does not have Visual Modeler application access

• System Administrator

• Responsible for Server Hardware, and Server Software.

• Has root access to server machines within their zone of responsibility.

• Has the authority to start and stop server processes.

• As root, can read, write, update, or delete files in file systems.
Visual Modeler Application Guide

Role Definition and Security Policies
• Can back up and restore files. Can create OS-level users and manage
them.

• Does not have access to log in to database server.

• Deploys the Visual Modeler application in the production infrastructure.

• Loads the minimal data set in the XML files to the database.

• Does not have Visual Modeler access.

• Developer

• Responsible for preparation of deployment Web archives (“WAR” files).

• Has the authority to create Web archives representing the Visual Modeler
executable.

• Can set properties and business rules governing Visual Modeler operation,
including properties that configure access to the database, properties that
configure the JCE Key store, and so on.

• Has the authority to create or modify the initial Visual Modeler dataset.
This dataset is a part of the deployment archive.

• Does not have any kind of access to the Production Database or
Application servers.

• Does not have username/password to access production Visual Modeler.

• Does not move code from development/QA environments to production.

• Network Administrator

• Configures and manages network.

• Has authority to create and assign network resources, including domain
names, IP addresses, firewall level, and so on.

• Does not have database access.

• Does not have Visual Modeler application access.

Data Center Roles
The following are assumed about Data Center administrative roles:

• Roles are segregated. System Administrators cannot be Developers,
Network Administrators, nor Database Administrators. Database
Administrators cannot be Developers, System Administrators, nor
Network Administrators, and so on.
Visual Modeler Application Guide 365

Security Best Practices

366
• System Administrator Roles are partitioned on network boundaries. A
system administrator for the DMZ should not be a system administrator
for the Internal Network.

• Data Center Administrators do not have Visual Modeler online
administration roles.

Information Assets
Encryption of Persistent Data
This section describes the encryption of persistent data in the Visual Modeler.

1. What data is encrypted?

This is configurable within the Visual Modeler configuration files. Please see other
sections for the details of which data fields and the contents of which data fields are
encrypted.

2. What encryption libraries are used?

By default, the Sun implementation of JCE is used for encryption, with policy files
enabling strong encryption. This is the recommended option.

3. What encryption algorithms are used?

This is configurable among secret key encryption algorithms supported by JCE.
The recommended algorithm is AES. The Visual Modeler also supports 168 bit
DES encryption.

4. Where are keys stored?

In a password protected JCE Key Store file. By default this file is located in the
home directory of the user that initiates the Visual Modeler application, but this can
be altered within a configuration file.

5. How is the Key Store password protected?

By default the key store password is encoded in Java. The Visual Modeler supports
two phase initialization, if desired, in order to employ a password provided at run
time. In this mode of operation, the Visual Modeler will come up partially and
await a special HTTPS message containing the key store and key passwords to
complete initialization and respond to requests. This technique means that the
application server system administrator will not have access to the Visual Modeler
password, but it requires more than one person to bring up the Visual Modeler.

6. How are passwords saved within the Visual Modeler?
Visual Modeler Application Guide

Information Assets
Either by a cryptographically secure digest (MD5 or SHA-1) or by secret key
encryption as described above.

Information Assets
This section introduces the critical information assets that are dealt with by the
Visual Modeler.

Account profile
The user’s account information is maintained in the Account profile. The user’s
account is identified by the (unique) account-id. The account profile contains
personal financial details such as credit card numbers and BillTo and ShipTo
addresses. Implementation can be customized, so this profile may contain
additional or fewer details, encrypted fields, and so on.

Transaction and System Log
According to the type of data and level of role separation required, Visual Modeler
logging can be configured to capture all transactional and non-transactional
requests to file locations outside of the Visual Modeler deployment infrastructure.
Certain aspects of order and account history can also be captured in the Visual
Modeler database for administrative and end user interaction purposes but do not
represent a secure audit trail.

Network considerations need to be included for remote and/or more secure logging.

Key Store File
The Key Store file stores the encryption keys that protect Visual Modeler data. This
file normally resides in the home directory of the user that initiates the Visual
Modeler Web application, but this can be altered within a configuration file.

WAR local key store file
The WAR local key store file stores the keys that protect the database username and
password used by the Visual Modeler. It is contained in the Visual Modeler WAR
file structure.

Attention: The Key Store file is a requisite to encrypt or decrypt data in the
knowledgebase. This Key Store file must be well protected. With this Key
Store file, the encrypted data can be read, so it must never be included on
the same media as a database backup. If the Key Store file is lost, then data
cannot be read from the database.
Visual Modeler Application Guide 367

Security Best Practices

368
User passwords
Visual Modeler user names, passwords, and user profile information are stored in
the user authentication and user contact tables. The passwords are protected as
described in “Protection Mechanism for Information Assets” on page 369.

Roles Schematic
The following indicates the spheres of access for the following classes of
administrators:

• NA: Network Administrators

• SA: Security Administrators

• WA: Web Administrators

• SA: System Administrators

• DBA: Database Administrators
Visual Modeler Application Guide

Protection Mechanism for Information Assets
Protection Mechanism for Information Assets
This section discusses the encryption mechanisms used to protect the integrity of
the critical data fields of the Visual Modeler.

Credit Card Information
The following data fields are encrypted using the DES 168 bit encryption by
default:

• Credit Card Number
Visual Modeler Application Guide 369

Security Best Practices

370
• Credit Card Holder Name

User Passwords
User passwords are protected by 1-way encryption (MD5 or SHA-1 Message
Digest).

Only the digests of the passwords are stored in the Visual Modeler database.
Alternatively, at the discretion of the customer, the password can be encrypted with
DES 168 bit encryption or other encryption as noted in the section “Credit Card
Information” on page 369.

Protection of Critical Functions
Performing functions such as creating and setting database users and passwords and
storing sensitive data in a database are critical from both a security and an
operational perspective. Equally critical is protecting the performance of these
functions from potential attacks or misuse. This section documents the process of
performing these functions and explains how that process prevents attacks or
misuse.

Setting Application’s Database User and Password
1. The DBA creates a user in the database, assigns a password, and sets

appropriate database privileges.

2. The DBA informs the developer.

3. The developer encrypts the password using the key in the WAR local Key
Store.

4. The developer initializes connection information in WEB-INF/schema/
DataSource.xml.

5. The developer prepares the WAR file and gives it to the application server SA.

6. The application server SA deploys the WAR file

7. The application decrypts the password and uses it to connect to the database.

Note: The InlineDES encryption is not considered a strong encryption for purposes
of a PCI compliance audit on a production server. For a system to meet that
level of compliance, a specific cryptography configuration must be
implemented for production.

See the PCI Compliance Guide, http://www.pcicomplianceguide.org, for
more general information about PCI compliance.
Visual Modeler Application Guide

Protection of Critical Functions
Assertions

• The developer knows the password but does not have access to the
database, so cannot use the password.

• The application server SA does not know the password, so cannot access
the database.

• The DBA has the password and can access data, but does not have access
to the Web application. Sensitive data is encrypted. The DBA does not
have access to the system without having access to encryption keys.

Storing Sensitive Data in the Database
1. The developer specifies encrypted fields for sensitive data in the database

schema.

2. Where necessary, schema fields are redefined to incorporate correlative data to
prevent relocation. For example, account balances may be converted strings
combined with an account id to provide the ability to detect field copies.

3. The developer specifies the encryption algorithm and location and type of key
store.

4. The developer specifies the key store password.

5. The developer prepares the WAR file and delivers it to the application server
SA.

6. The application server SA deploys the WAR file and starts the application
server.

7. When sensitive data fields are set, data services invoke the encryption service.
Data is encrypted. Eventually, data is persisted to the database.

Assertions

• The DBA has access to the database, but does not have the ability to
decrypt sensitive fields.

• The application server SA has access to the key store, but not to the key
store password.

• The developer has access to the key store password, but not to the key
store.
Visual Modeler Application Guide 371

Security Best Practices

372
Threat Scenarios
Transport
Scenario: The Network Administrator intercepts clear text values in
communication between the application server and database server, for example,
over a JDBC transport stream.

Preventative Measures: Sensitive data is encrypted before transport and would not
be usable. The encryption key is never transported.

Restores from Backup
Scenario: The DBA restores database tables from backup to some earlier state in
order to create a vulnerability.

Preventative Measures: The Visual Modeler provides no means to prevent this type
of attack. Rely upon Data Center practices and procedures.

Detection: It is theoretically possible to detect this attack by correlation to Visual
Modeler debug logs and Web server access logs.

Log Files
Scenario: The application server SA edits the Visual Modeler debug log files to
conceal some activity. We recommend that operational systems configure debug
logging at the “INFO” level. At this level, Web request start and end events, JSP
dispatch events, session events, login events, and CRON events are logged.
Scenarios such as an attack that could be concealed therefore involve an attack by a
logged in and authorized user.

Preventative Measures: The application server SA has root access to the file
system. One can not prevent this sort of activity.

Bogus Account to Access Customer Records
Scenario: The Visual Modeler administrator creates a super CSR who has access to
all accounts. The Visual Modeler administrator uses super-CSR to get credit card
info, change balances, charge customer credit cards, and so on.

Preventative Measures: CSRs should not be able to see the unmasked or
unencrypted credit card numbers. Any activity that involves charges against the
valid customer credit cards will be logged to the account transaction log.
Visual Modeler Application Guide

HTTP Sessions
Detection: All account activities are logged in the account transactions log table.
Unusual activity from a specific CSR can be detected by reviewing the logs in a
timely manner.

Credit Card Number Theft
Scenario: A CSR or CSR manager gets a customer’s credit card number(s) and
commits fraud.

Preventative Measures: When a customer’s credit card number is displayed to the
CSR, it is masked so that only the last four digits are displayed, and the Card
Verification Value (CVV) number is not stored in the database or log files.

CSR’s only see the entire credit card number and associated information when they
create the account or edit the credit card information on behalf of the customer.
There is no practical way to prevent the CSR from stealing this information.

DBA Password Theft
Scenario: A System Administrator obtains the DBA password and performs
unauthorized activities on the database.

Preventative Measures: Use best practices rules for password creation and
appropriate policies to expire and rotate the passwords periodically. As the Visual
Modeler money fields are encrypted using keys and combinational fields, the
DBAs will not be able to decrypt and modify the values.

Detection: Review of the database level audit files can detect such activities.

HTTP Sessions
Protecting HTTP sessions in Java servlet-based web applications is key to
providing system security. If you do not take appropriate measures to protect
sessions conducted on your e-commerce web site, you risk your site’s security,
expose confidential data, and permit unauthorized control of sessions.

The Visual Modeler is designed to be deployed in environments requiring varying
degrees of security. For some environments, all HTTP or mixed HTTP/HTTPS
page flow may be sufficient. However, if your system needs to protect confidential
Visual Modeler Application Guide 373

Security Best Practices

374
information that has significant value, configure the Visual Modeler to require
HTTPS from the login page forward.

Web server logs and the logs of any other server in the web application data path
should be inspected to ensure that they are not capturing application server session
IDs.

Many sites are set up to conduct sessions using mixed mode HTTP and HTTPS
with the assumption that the user name and password are the only confidential
pieces of information. However, in anything but a pure SSL environment, the
session ID is what protects identity: it is a time-limited token for the user name and
password that gives a user access to all the data in the session, including the
authority acquired as part of that session. Everywhere that you protect the username
and password, you should also protect the session ID. Robust session protection
requires SSL from login to logout. If you use mixed mode, you cannot know that
you are conducting a session with the same individual for the entire session.

In Release 7.2 and higher, the Visual Modeler hashes session IDs in logs to increase
the security of sessions.

Please note the following information about HTTP sessions:

• An HTTP session is tracked either by a session ID (JSESSIONID:...)
embedded in each URL or by a session cookie.

• Sessions expire after a configurable period of inactivity, usually 30
minutes.

• Sessions are not correlated to any particular IP address or hostname. If
someone accesses your system with a valid session ID they will be given
access regardless of the computer from which they make the request.

• If a session cookie is created from an HTTPS request, it is marked as a
secure cookie. Properly written client applications will not transmit that
cookie when issuing an HTTP request. However, the fact that a cookie was
created as a secure cookie is not subsequently known to the server and
client applications can transmit a supposedly-secure session cookie.

If it is important for your e-commerce site to guarantee the confidentiality of the
interaction between a user and your server, then that session must be HTTPS from

Note: If you are running the Visual Modeler in HTTPS mode, ensure that you
appropriately set the Sterling eBusiness SSL System Server Port system
property. To set this property, navigate to the Visual Modeler enterprise
home page, click System Services in the System Administration panel, and
then click Commerce Manager in the System Properties panel.
Visual Modeler Application Guide

HTTP Sessions
the moment the user logs in until they log out. Mixed HTTP/HTTPS sessions are
simply not secure.
Visual Modeler Application Guide 375

Security Best Practices

376
 Visual Modeler Application Guide

CHAPTER 30 Backup and Recovery Best Practices
Introduction
The best recovery plans focus on prevention. By setting up a robust environment,
putting redundant systems in place, establishing regular backup and restore
policies, and conducting regular tests that you can recover from backup, you can
limit the effects of disasters by providing safeguards for each layer of your
deployment infrastructure.

Some decisions about backup and restore policies must be made based upon
business criteria. What is the value of the site being available per day for your
business? How much data can you afford to lose? How long can your e-commerce
Web site be unavailable to customers? What are the time and cost trade-offs for
various backup and restore solutions? Answers to these questions will help to
determine your backup and recovery requirements.

The simplest backup system might be saving data and a copy of your application to
tape or other remote devices and storing that data at a remote data center. A better
strategy is to put redundant systems in place for each part of your deployment so
that if one system fails, another is already available. The most robust solution is to
maintain a mirror image of your site at a remote location and synchronize the image
with the live data regularly. The latter solution is the most costly, but is immediately
recoverable. The former solutions are less expensive, but require more time and
effort to perform recovery.
Visual Modeler Application Guide 377

Backup and Recovery Best Practices

378
This chapter covers:

• “Deployment Architecture Overview” on page 378

• “Infrastructure” on page 378

• “Backup Strategies” on page 380

Deployment Architecture Overview
Setting up a rich development environment not only allows for easier site updates
and maintenance, but also provides a quick path to rebuild a complete application
as a recovery step, if needed. The deployment architecture includes the following
elements:

• Build environment: a predictable, known build environment containing all
the elements needed to build the deployment, including:

• JDK’s

• SDK’s

• Code repository (such as CVS)

• Libraries

The steps required to go from code to production vary and may be iterative,
but the build environment should contain everything required to rebuild
your deployment in a predictable way if necessary.

• QA area: a separate environment for performing quality assurance tasks.
QA is the first environment in which work from (possibly) several
engineers is integrated to run as a unit.

• Staging area: a separate environment in which the work integrated in QA
now runs in a specific context that emulates production.

Infrastructure
A common strategy for establishing a robust infrastructure is “double everything”:
put redundant systems in place so that when a primary system fails, a secondary
system comes online as quickly as possible. The following figure shows a typical
infrastructure consisting of three tiers:

• Web tier: all components handling requests from and serving content to
Web browsers.
Visual Modeler Application Guide

Infrastructure
• Application tier: all components processing requests from and serving
dynamic content to the Web tier, usually with data from the database tier.

• Database tier: all components serving data to the application tier.

FIGURE 13. Typical Deployment Infrastructure
Two Web servers ensure that if one fails, the other can continue functioning.
Having a second firewall in place to provide additional protection to data also
satisfies certain regulatory requirements for securing data. See CHAPTER 29,
“Security Best Practices” for more information about securing data.

One strategy for providing physical protection for your data is to store production
data in a RAID device. If a single drive fails, then there is no loss of data. There is a
mechanical threshold with such a strategy: depending upon your configuration, if

Web Server

Firewall

Firewall

Web Server

Application Server(s)

Database Server(s)

Web

Web Tier

Application Tier

Database Tier

Data Store(s)RAID Array(s)
Visual Modeler Application Guide 379

Backup and Recovery Best Practices

380
more than the threshold’s number of drives fails, you will lose data. That is
something to consider as you determine your requirements.

Backup Strategies
There are different backup strategies for protecting data and for recovering your
application servers and Web servers. Most backup strategies come down to saving
copies of what is already running on the application and Web tiers. The following
sections describe backup strategies for databases, application servers, and Web
servers.

Database Recovery
Your backup strategy determines how quickly you can recover data after a disaster.
Determine your acceptable timeline for getting your database back up and running,
including time needed to rebuild the OS and reload the database if necessary, and
plan your backup policy accordingly.

The following are the types of database backups you should perform:

• Checkpoint backups: database servers log activity on the transaction level
as transactions are committed. Checkpoint backups write a log of
transactions since the last time a checkpoint backup was done. Write the
checkpoint log to a separate physical device. This creates a snapshot of the
database activity on a transaction level. If the database fails, there’s a
chain of records that enable reconstructing the activity.

The interval at which your deployment performs checkpoint backups is a
business decision. If your site does millions of dollars of business each
hour, doing checkpoint backups several times each hour would be advisable.
If your site has only a few transactions each hour, you can do checkpoint
backups less frequently. Determine an interval that allows data recovery at
your level of business activity.

• Daily incremental backups: incremental backups save only those files that
change each day. Performing daily incremental backups to a different
facility, rather than using physical media, is a good strategy. The backup is
effectively a disk-to-disk copy.

• Weekly full backups: full backups save the entire database, not just the
files that have changed since the last backup. Performing full backups to a
different facility is a good strategy.

A typical recovery scenario might be:
Visual Modeler Application Guide

Backup Strategies
1. Perform the initial restore from the last full backup.

2. Next, perform restores in date order from the daily incremental backups.

3. Finally, reconstruct the last few hours’ activity using the checkpoint backups.

Application Server and Web Server Recovery
When planning recovery policies for your application and Web servers, plan to be
able to build exact replacements if either application or Web servers fail: this is the
“build another one and go” principle.

Ensure that you have copies of everything that makes your application and Web
server deployments unique: configuration files, properties files, the JVM, original
source code from your CVS repository, and so on. Back up all static data kept on
the Web tier, such as any custom JSP pages. Make sure that your backup process
includes coverage for Web server and container configuration files or other files
needed to operate your site, but which may not be considered as source code and
are therefore not kept in a source code repository.

Use your QA and staging environments as starting points for rebuilding your
servers and getting back to an operational state.
Visual Modeler Application Guide 381

Backup and Recovery Best Practices

382
 Visual Modeler Application Guide

Part 3: Best
Practices
The chapters in this section of the guide provide information about the best
practices that may need to be followed while using the Visual Modeler.
Visual Modeler Application Guide 383

384
 Visual Modeler Application Guide

CHAPTER 31 Database Management Best
Practices
Introduction
This chapter describes database management best practices and the activities that
support those practices. Database management practices protect your data, ensure
data integrity, and address database performance issues. Database management
activities include:

• Archiving active data

• Monitoring database tables

• Sizing database tables and purging old data at intervals dictated by
business requirements or regulatory audit compliance, such as Sarbanes-
Oxley or HIPAA

• Updating indexes and managing database statistics

For recommended database archival practices, see CHAPTER 30, “Backup and
Recovery Best Practices”.

This chapter covers:

• “Archiving Data” on page 386 presents general guidelines for archiving
data.
Visual Modeler Application Guide 385

Database Management Best Practices

386
• “Monitoring Database Tables” on page 386 presents guidelines for
monitoring and sizing database tables, key tables to monitor, guidelines
for purging data, and creating and using history tables to retain old data
online in compliance with regulatory or business requirements.

• “Updating Statistics” on page 388 presents scripts for updating the
database statistics for an Oracle and a SQL Server database.

Archiving Data
Managing your data is key to protecting your business. Archive your production
data regularly and set up primary and secondary locations for storing your database
archives, preferably off-site. Establish a regular schedule of archival activities,
including daily incremental backups and weekly full backups (more often if your
business volume demands it). See CHAPTER 30, “Backup and Recovery Best
Practices” for more information about database backup strategies.

Monitoring Database Tables
Auditing compliance requirements such as Sarbanes-Oxley and HIPAA may dictate
how long you must store production data online. In general, performance starts to
degrade when the number of rows in a database table grows to between 50 million
and 100 million rows. To avoid performance problems, monitor the size of your
database tables and start transferring data to history tables when the number of rows
in a particular table reaches about one million rows. Data that is no longer needed
by your application, such as data that is over one year old, should be considered
historical data and transferred to history tables. History tables are tables that are
online but that are not accessed by the Visual Modeler application and therefore do
not affect performance.

Key Tables To Monitor
While you should monitor the size of all the Visual Modeler database tables
(including custom tables added during your implementation), the following tables
tend to grow quickly and should be monitored on a daily basis.

CMGT_CART_CONFIGURATION

CMGT_CART_CONFIGURATION_LINES

CMGT_CART_LINES

CMGT_CATALOG_TO_CART_LOG
Visual Modeler Application Guide

Monitoring Database Tables
CMGT_CATALOG_TO_CONFIGURE_LOG

CMGT_NOTE

CMGT_OIL

CMGT_OIL_HEADER

CMGT_OIL_LI

CMGT_ORDER_ADDRESSES

CMGT_ORDER_EXTN

CMGT_ORDER_LI_EXTN

CMGT_ORDER_LI_SHIP

CMGT_ORDER_SERIAL_ITEMS

CMGT_QUOTE_EXTN

CMGT_RFQ_EXTN

CMGT_RFQ_LI_EXTN

Purging Data
Business requirements and regulatory compliance requirements will dictate how
long you must retain data, whether online or in offline archives. Establish
notification protocols and procedures to handle purging data appropriately for your
requirements.

Creating and Using History Tables
The names of history tables are appended with _H. See “Key Tables To Monitor”
on page 386 for more information about the key database tables to monitor.

Some history tables are created during the Visual Modeler implementation, such as
CMGT_INVOICE_LI_H, CMGT_OIL_LI_H, and CMGT_ORDER_LI_EXTN_H.
If you need to trim the size of a database table that does not already have an
associated history table, then you can create one. To transfer historical data to a
history table:
Visual Modeler Application Guide 387

Database Management Best Practices

388
1. Create a new table with exactly the same structure as the table whose size you
need to trim. The name must be of the following format:

TABLE_NAME_H
TABLE_NAME is the name of the table to contain the historical data and _H
indicates that this is a history table, not to be used in indexing and not to be
accessed by the Visual Modeler application. The name should be similar to
the name of the original table. For example, the history table
CMGT_INVOICE_LI_H contains historical data for the
CMGT_INVOICE_LINES transactional table.

2. Transfer the historical data to the history table from the original (transactional)
table, using business criteria to determine which data is no longer needed. For
example, you might place data that is more than a year old into a history table.

The following sample SQL statement transfers historical data to a history table:

INSERT INTO CMGT_TABLE_NAME_H SELECT * FROM CMGT_TABLE_NAME WHERE
ACTIVE_FLAG = ‘N’;

You can also use the DBMS export command, import the data to the appropriate
history table, and then delete the transferred data from the original table.

The following sample SQL statement deletes transferred data from the original
table:

DELETE FROM CMGT_TABLE_NAME WHERE ACTIVE_FLAG = ‘N’

You can still see and access any history tables if necessary by doing SQL queries on
the database. When the data ages past its required retention time, you can use
standard tools to purge it. If you do not have auditing compliance requirements,
other business decisions may determine when you should purge your data.

Updating Statistics
Updating the database statistics allows the database query optimizer to re-examine
database indexes and re-compute the most efficient paths for retrieving data.This
section presents two scripts: one to update statistics for an Oracle database, and one
to update statistics for a SQL Server database.

Please consult your DBA to get the statistics updated on the tables properly or refer
to your database documentation for further help.
Visual Modeler Application Guide

Updating Statistics
Updating Statistics For an Oracle Database
The following example shows how to update statistics for an Oracle database at the
schema level. Replace schema name, owner name, and table name with the
appropriate schema, owner, and table names.

EXEC DBMS_STATS.GATHER_SCHEMA_STATS(
ownname=> ‘schema name’ ,
cascade=> TRUE,
estimate_percent=> DBMS_STATS.AUTO_SAMPLE_SIZE,
degree=> DBMS_STATUS.AUTO_DEGREE,
granularity=>’AUTO’,
method_opt=> ‘FOR ALL COLUMNS SIZE AUTO’);

The following example shows how to update statistics for an Oracle database at the
table level.

exec dbms_stats.gather_table_stats(
ownname=> ‘owner name’,
tabname=> 'table name’,
estimate_percent=> DBMS_STATS.AUTO_SAMPLE_SIZE,
cascade=> DBMS_STATS.AUTO_CASCADE,
degree=> null,
no_invalidate=> DBMS_STATS.AUTO_INVALIDATE,
granularity=> 'AUTO',
method_opt=> 'FOR ALL COLUMNS SIZE AUTO');

You can also update statistics at the database or indexes level depending on your
requirements.

Updating Statistics For a SQL Server Database
The following example shows how to update statistics for a SQL Server database at
the table level. Replace table name and index name with the appropriate table and
index names.

UPDATE STATISTICS ON <table name> [. <index name>]
 WITH FULLSCAN {, NORECOMPUTE }
Visual Modeler Application Guide 389

Database Management Best Practices

390
 Visual Modeler Application Guide

CHAPTER 32 JVM Tuning and Log Analysis
Introduction
This chapter describes the following performance optimization items:

• “JVM Memory and Tuning Guidelines” on page 391 describes general
guidelines for Java Virtual Machine (JVM) performance tuning. You
should be familiar with your JVM and servlet container environment to
apply these guidelines.

• “Log Analyzer Tool” on page 394 describes an open source log analysis
tool, Log Analyzer.

JVM Memory and Tuning Guidelines
When you encounter memory-related issues, adjusting the JVM memory settings
can get you back to a sane, working environment. This section presents guidelines
for JVM memory settings and performance tuning. You should be familiar with
your JVM and servlet container environment to apply these guidelines.
Visual Modeler Application Guide 391

JVM Tuning and Log Analysis

392
Adjusting JVM Memory Settings
In general, you should allocate as much memory as possible to the JVM running
your application server. You can do this by setting the JVM memory configuration
as follows:

• -Xmx should be between 80% and 100% of the machine’s physical
memory. If you set -Xmx too small, the application server may fail with an
OutOfMemory error. If you set -Xmx too large, the memory’s footprint is
larger and you run the risk of the Java’s heap being swapped out, causing
other performance problems.

• -Xms should be approximately half of the -Xmx setting. If you have
historical data about your application server’s stable memory-usage point,
then set -Xms to be around that value.

Another option is to set -Xms to the memory-usage value observed at the
end of InitServlet.This will ensure that, at a minimum, DEBS initialization
will complete with as little garbage collection as possible. To get the
memory usage value, perform the following steps:

a. Set -Xms to be the same as -Xmx

b. Start up your Visual Modeler deployment and wait until initialization is
complete

c. Access your e-commerce site’s home page

d. Open the debs.log file in a text editor and examine the log entry that is
similar to the following:

2003.03.18 ... END Request ... Mem=129380744/388726784/391291344 ...

e. The first number after Mem= is the current memory usage after
initialization. Set -Xms to that number: in the above example, use the
value -Xms128m.

• -XX:MaxPermSize controls the allocation size for system-like reflective
objects such as Class and Method. Its recommended initial value is 128m.

For Web applications, the allocated space fills up quickly because the *.jsp
files are converted into*.java files, then into *.class files which are loaded
into the memory space specified by -XX:MaxPermSize. Starting with Java
version 1.4.2, you can use -XX:+PrintGCDetails to monitor the details of
this space, named permanent generation.
Visual Modeler Application Guide

JVM Memory and Tuning Guidelines
Be careful not to make memory-related changes that might contradict what the
application server currently supports. DEBS needs to co-exist with the application
server in the same VM so when in doubt, double-check the application server
documentation or contact your application server’s Support organization. For
example, suppose that the current application server documentation states that the
JVM setting -server is not supported. In that case, don't set -server.

As a last troubleshooting resort, start the VM with no additional arguments and
incrementally add one argument, restart, observe the results, then add one more,
continuing until you get good results.

Additional Performance Tuning
Additional performance tuning can be done around Java garbage collection
activities and by adjusting memory settings for other areas, such as for threads,
JVM stacks, or native structures or code. Use the Log Analyzer tool or check the
debs.log file directly to make observations and determine performance problem
areas.

Tracing Garbage Collection Activities
If you observe unexplained pausing, then it is possible that the VM is being paused
for a full garbage collection. To confirm that this is what is happening, use the JVM
setting -verbose:gc to enable recording of garbage collection events in the debs.log.
Garbage collection events are of the following types:

[GC 325816K->83372K(776768K), 0.2454258 secs]
[Full GC 267628K->83769K(776768K), 1.8479984 secs]

A minor collection should be less than half a second. A major garbage collection
should be less than three seconds. Anything more than three seconds indicates an
out-of-range condition and should be looked into.

Other garbage collection trace settings you might want to look into are:

• The JVM -server setting: this setting adjusts some initial Java heap
settings so that they are more appropriate for a server environment. Set the
-server value unless your application server does not support it.

There is a known problem with the -server setting related to a bug in JIT
(just-in-time) compilation which causes the value used by the data service
to change unexpectedly. The result is that DEBS will fail to initialize
Visual Modeler Application Guide 393

JVM Tuning and Log Analysis

394
(InitServlet fails). Contact Sterling Commerce, Inc. or send email to
ordercaptureapps_support@stercomm.com to learn how to disable JIT
compilation for certain methods.
Some application servers recommend using the VM setting -server. In
particular, the value of -XX:NewRatio for -server is 2 (the default value for
the -client setting is 8). For more information about the -server and -client
settings, see the Sun documentation at the following URL’s:
http://java.sun.com/docs/books/performance/1st_edition/html/
JPAppHotspot.fm.html#998292
http://java.sun.com/docs/books/performance/1st_edition/html/
JPAppHotspot.fm.html#998359

• The -Xincgc setting: this setting enables incremental garbage
collection.Setting -Xincgc reduces large pauses due to full garbage
collection. When you use this setting, bear in mind that you are shifting
the time spent to perform one major collection to several minor
collections. There is an overhead cost associated with this shift, usually
around 10%.

• If you are getting OutOfMemoryError messages, the you should first
increase the value of -Xmx, ensuring that -Xmx is no more than the value
of the machine's physical memory. If it appears that you are getting
OutOfMemoryError messages when the current heap usage (where new
objects are allocated) is nowhere near the value of -Xmx, then there is a
possibility that other areas of memory allocation are exhausted. Examine
the Log Analyzer report and check the following possible areas:

• Due to Classes: try setting -XX:MaxPermSize=128m

• Due to Threads: try adjusting the stack using -Xss=512k

• Due to JVM Stacks: try adjusting the stack using -Xss=512k

• Due to Native data structures: try adjusting the OS swap size

• Due to Native codes: try adjusting the OS swap size

Log Analyzer Tool
The Log Analyzer is an open source tool that can help with your analysis of the
Visual Modeler debs.log entries. The tool provides a view of key performance
indicators: threads, memory, requests, and sessions, as well as response times
sorted by user and request type.
Visual Modeler Application Guide

Log Analyzer Tool
Using the Log Analyzer as part of a daily routine of monitoring your deployment
provides these advantages:

• Daily log analyzer reports add reliability and stability to your deployment.
The generated data can provide an early warning about potential problems,
making it possible to prevent outages. For example, using the daily log
analyzer reports, you can pro-actively plan to re-start an application server
when it reaches near-maximum memory usage.

• Daily log analyzer reports provide the basis for troubleshooting a current
problem. By examining the reports, you can determine when the problem
started and correlate it with events such as an OS upgrade.

• Daily log analyzer reports provide a focal point for making incremental
improvements. By reviewing the log analyzer report daily, you can
generate a to-do list to plan when to restart your application server, clean
up any exception lists, track down hanging threads, or to provide feedback
to developers about long-running requests or requests that are using
substantial resources, such as returning large rows from a database.

Contact Sterling Commerce, Inc. to obtain the Log Analyzer tool. The Log
Analyzer is a .jar file that can be saved and unjarred in any convenient location.
The Log Analyzer expects that the format of DEBS log entries is similar to the
following:

<YYYY.MM.DD HH:MM:SS:mss ThreadName:LogLevel:LogTag:messages>

For example:

2006.10.12 06:00:00:171 Env/http-8580-Processor48:INFO:WrappingFil-
ter ...

Since the process of analyzing a log file can be memory-intensive, specify as much
JVM memory as possible to avoid OutOfMemoryError messages. For example,
start the Log Analyzer as follows:

java -Xms256m -Xmx512m -jar logAnalyzer-1.1.1-SNAPSHOT-app.jar

The following screen displays:
Visual Modeler Application Guide 395

JVM Tuning and Log Analysis

396
FIGURE 14. Log Analyzer Initial Screen
Enter the following information:

• Source: enter the full pathname of the location of a DEBS log file, or
directory containing multiple DEBS log files.

• Input:

• DEBS 6.4 or later is automatically checked. If you are analyzing a log file
from a pre-Release 6.4 Visual Modeler, then uncheck this checkbox.

• From WebLogic: click this checkbox to indicate that the log files are
generated from a BEA WebLogic application server.

• Output: click the Output checkbox to generate a response-time chart
grouped by message type.

• Output dir: enter the full pathname of the directory to contain the report
output.

Click Start analyzing to start the log analysis process. The Log Analyzer displays
messages as it progresses, then places the log analysis output in the specified output
directory when it finishes.
Visual Modeler Application Guide

Log Analyzer Tool
Setting Up Log Analyzer Daily Reports
This section describes a procedure for automating daily log analyzer report
generation. The procedure described here uses Ant, since Ant is portable, well-
used, and has good documentation. Ant is available from http://ant.apache.org.

The goals of this procedure are to:

• Set up a cron job to run reports nightly, and organize output by date (year/
month/day) to ease navigation.

• Compress log files when possible to save space.

• Set up the automation in a way that is easy to duplicate so that log files
from multiple deployments can be hosted from a single log server.

To automate log analyzer report generation, you need:

• Java and Ant

• Read access to the DEBS log files

• Write access to the report output directory, <out.dir>. The contents of
<out.dir> are accessible via a Web server.

Daily Reports Workflow
The following describes the general workflow for automating log analyzer daily
reports.

1. DEBS generates log files to the application server or servlet container logs
directory.

For example, the logs directory in a Tomcat deployment is <tomcat-
home>\logs.
The log file is named debs.log.n, where n is a number. For example,
debs.log.1, debs.log.2, and so on.

2. Set up a cron job to run daily (perhaps very early in the morning) to
concatenate all the log files from the log directory into a temp file.

3. From the temp file, extract yesterday’s log entries into the log analyzer output
directory using the directory naming pattern year/month/day/log.suffix.

4. The year/month/day/log.suffix file is further compressed using gzip to save
space.

5. Start the log analyzer to parse the year/month/day/log.suffix.gz file and
generate the report to the year/month/day/html/ directory.
Visual Modeler Application Guide 397

JVM Tuning and Log Analysis

398
Setting Up the Daily Reports

1. If you have not already done so, contact Sterling Commerce, Inc. to obtain the
following files:

• The Log Analyzer .jar file

• logAnalyzer-daily.xml

• logAnalyzer-daily.properties

2. Save the Log Analyzer files to a temporary location.

3. See “Configuration” on page 400 for information about configuration values.

4. Use the following command to run the daily log analyzer report:

ant -Dproperties.file.name="logAnalyzer-daily.properties" -f
logAnalyzer-daily.xml

5. Examine the output. The location is similar to the following:

sites/default/app-server/logAnalyzer-out.d/dailySplit/YYYY/MM/DD/
html/index.html

Recommended directory layout

The following figure illustrates the recommended log analyzer directory layout.
This layout is especially recommended if you plan to host log files from multiple
sites.
Visual Modeler Application Guide

Log Analyzer Tool
FIGURE 15. Recommended Log Analyzer Directory Structure
Site information is kept under the sites directory, which contains a directory for
each site. The site directory name can be any unique string; the example above uses
siten, where n is a number: site1, site2, and so on.

Each site directory contains a logAnalyzer-daily.properties file that contains that
site’s specific settings.

Each site’s log files are kept in the siten/app-server/logs/ directory.

The sites directory is read-only. Output is written to the siten/app-server/
logAnalyzer-out.d directory.

Using the above layout, you can start a cron job with just the site name. For
example, for a site named bbfb-01:

Tell Ant to set the site.name and use a build script name:
logAnalyzer-daily.xml
ant -Dsite.name=bbfb-01 -f logAnalyzer-daily.xml

If you rename logAnalyzer-daily.xml to build.xml, then you can then skip the -f
logAnalyzer-daily.xml argument. For example, for a site named bbfb-01:

ant -Dsite.name=bbfb-01
Visual Modeler Application Guide 399

JVM Tuning and Log Analysis

400
Configuration

Deployment-specific settings are set in a property file. The default property file is
sites/${site.name}/logAnalyzer-daily.properties. You can also set the property
file name at the command line as follows:

ant -Dproperties.file.name="path_to_file.properties" ...

The following lists the configuration properties in the logAnalyzer-
daily.properties file.

• log.dir: the full path to the location of the directory containing the DEBS
log files. For example:

default is ./logs
log.dir=/home/hle/tomcat/logs

• out.dir: where to write the generated reports. For example:

default is logAnalyzer-out.d
out.dir=/home/hle/public_html/logAnalyzer-out.d

• logAnalyzer.jar: the location of the logAnalyzer .jar file. For example:

default is ./logAnalyzer-1.1.1-SNAPSHOT-app.jar
logAnalyzer.jar=target/logAnalyzer-1.1.1-SNAPSHOT-app.jar

• is.weblogic: true if the log files was generated by WebLogic. For example:

default is false
is.weblogic=true

• genChart.perMessageType: false to skip messageType charts generation.
For example:

default is true
genChart.perMessageType=false

• log.prefix: the DEBS log prefix. You rarely have to change this. For
example:

default is debs.log
log.prefix=Midwest.log

• target.date.offset: Auto-set the target.date. The default is 1, which means
yesterday. For example, set target.date.offset to 7 to extract log files for a
week ago:

default is yesterday: 1
target.date.offset=7
Visual Modeler Application Guide

Log Analyzer Tool
• target.date: Limit processing to log entries for this day. The most likely
usage for this setting is to manually re-generate an old set of log files. For
example:

default is yesterday (auto-evaluated)
target.date=2006/07/24
Visual Modeler Application Guide 401

JVM Tuning and Log Analysis

402
 Visual Modeler Application Guide

Part 4:
Administration
The chapters in this section of the guide provide information about administering
the Visual Modeler.
Visual Modeler Application Guide 403

404
 Visual Modeler Application Guide

CHAPTER 33 Introduction
This guide provides a comprehensive manual for administering the Visual Modeler.
This chapter covers the following topics:

• "Using Storefronts" on page 406

• "Users, Roles, and Functions" on page 409

• "Configuring the Visual Modeler" on page 415

Terminology
Two types of users access the Visual Modeler:

• enterprise users manage enterprise data such as products, price lists, and
partner profiles. Enterprise users belong either to the tenant enterprise or
to the storefront partner of a storefront.

• customer users buy products from the enterprise. Customer users belong
to customer partners of the tenant enterprise or to customer partners of a
storefront.

The Visual Modeler supports creating storefronts. A storefront is a fully functional
e-commerce site that is a child enterprise of the main (tenant) enterprise. The users
of a storefront partner are the enterprise users for that storefront. In general,
employees of the storefront organization log in as storefront enterprise users.
Visual Modeler Application Guide 405

Introduction

406
The tenant enterprise and its storefront partners are enterprises within the Visual
Modeler.

Using Storefronts
Some of your selling partners may not have the infrastructure to maintain their own
e-commerce Web site. You can create storefronts for your partners. The storefronts
provide a complete e-commerce environment within which your partner can do
almost all of the same things that you can do within the enterprise. Storefronts have
their own URLs, look-and-feel, administrator users, customers, and so on.
Storefront administrators manage their customers and partners, price lists,
promotions, orders, define and administer customer segments, access customer
service functions, and so on, just as tenant enterprise administrators can. Storefront
product data can be shared with the enterprise product catalog and orders placed at
the enterprise can be brokered from the enterprise to child storefronts.

Each storefront is created with a "storefront partner": this is the partner that
represents the enterprise running the storefront. For example, suppose you want to
create a storefront for an organization called Anderel. When you create the
storefront, you provide details for the Anderel partner profile within the storefront.
Anderel employees can log in as users of this storefront partner: when they do so,
they act as enterprise administrators within their storefront. We refer to these users
as storefront administrators.

Storefront Administrator Tasks
Administrators of each storefront perform administration tasks to manage their
sites. These tasks correspond to the equivalent enterprise administration tasks and
so the chapters in this guide that cover general enterprise administration are also
applicable to storefront administrators.

Storefront administrators can perform nearly all of the same tasks for their
storefront that tenant administrators can perform for the enterprise, including:

• Managing business rules for their storefront

• Performing user administration for their storefront

• Creating and managing storefront partners for their storefront

• Setting prices for their storefront

• Managing system properties for their storefront
Visual Modeler Application Guide

Using Storefronts
• Assigning and unassigning feature types to feature categories that they
manage for their storefront

• Assigning and unassigning features to the products that they manage for
their storefront

• Defining customer segments for marketing campaigns for their storefront

• Defining acceptable payment methods for their storefront such as credit
cards and gift cards

Storefront administrators cannot modify parts of the product catalog or perform
catalog administration tasks that affect the entire enterprise. This means that they
cannot perform the following tasks:

• Managing features with Sterling Product Manager

• Setting up guided selling with Sterling Advisor

• Performing product import/export

• Performing search administration

• Creating or modifying models using the Sterling Visual Modeler

Storefront Hierarchy
Storefront administrators at any level can create child storefronts beneath them.
Over time, a hierarchy of storefronts can develop: the tenant storefront, the
storefronts that tenant administrators create, the storefronts that storefront
administrators of these storefronts create, and so on. With the exception of the
tenant storefront, each storefront has one parent storefront, and may have zero or
more child storefronts.

• When we refer to the ancestors of a storefront, we mean the parent
storefront of the storefront, the parent of that parent, and so on up the
hierarchy up to and including the tenant storefront.

• When we refer to the descendants of a storefront, we mean the child
storefronts of the storefront, the child storefronts of these children, and so
on.

Skins
A skin is a way to determine the look-and-feel of a storefront. The skin comprises a
logo (a GIF file), and a cascading stylesheet. Together, these determine some
aspects of the user experience as users access the storefront. One skin is created
when an enterprise administrator creates the storefront: they specify the string for
Visual Modeler Application Guide 407

Introduction

408
the URL and this becomes part of the URL that is used when users access the
storefront.

Users access a storefront using a URL such as the following:

http://server:port/Sterling/en/US/enterpriseMgr/matrix

The last component of the path (“matrix” in this case) is used to determine which
skin of which storefront the user is accessing.

A storefront administrator can create more than one skin for their storefront: they
must specify the URL string, and optionally a GIF image and cascading stylesheet,
for each skin they want to create. For example, the enterprise administrator creates
a storefront for Anderel, and they specify the URL string as “anderel”. To begin
with, Anderel storefront administrators and end-users will access the Anderel
storefront using a URL that looks like this:

http://server:port/Sterling/en/US/enterpriseMgr/anderel

If an Anderel storefront administrator logs in, and creates a new skin with the URL
string “anderelStore” for their storefront, then both storefront administrators and
end-users can access the Anderel storefront using:

http://server:port/Sterling/en/US/enterpriseMgr/anderelStore

Depending on the differences between the cascading stylesheets used for the two
skins, users will experience a different look-and-feel depending on which of the
two skins they use to enter the Anderel storefront.

Storefront Data
In general, any data that is created within a storefront (either by storefront
administrators or by storefront end-users) is separate from data of the enterprise
storefront. In particular, data created within a storefront cannot be seen from any
other storefront. However, note that the following data is "shared" between the
enterprise and storefronts:

• Product data: Enterprise product data is visible as read-only data to
storefront administrators. Storefront administrators can view enterprise
product details and add enterprise products to storefront price lists.
Storefront end-users can buy enterprise products provided that they meet
Visual Modeler Application Guide

Users, Roles, and Functions
the standard access criteria (using product entitlements and price lists
defined at the storefront level).

Enterprise administrators can open a product category to one or more
storefront partners immediately below them. When they do so, storefront
administrators who have been granted access can create products and child
product categories within this product category.

• Products created will be visible as read-only to storefront administrators of
any ancestor storefronts, and will be visible as read-only to storefront
administrators of any descendant storefronts.

• Product categories created will be visible as read-only to the storefront
administrators of any ancestor storefronts. The storefront administrators at
this level can open the product category to child storefront partners
immediately below them in the storefront hierarchy.

This same principle is applied to product data that child storefronts of a
storefront create. At any level within a hierarchy of storefronts, storefront
administrators have full access to product data created at their level, and
they have read-only access to product data created at ancestor and
descendant storefronts.

• Enterprise administrators can see storefront price lists. This is so they can
assign storefront price lists to enterprise partners for the purposes of
supplier order-brokering.

Storefront Partners
Storefronts are created by an administrator of either the enterprise or an existing
storefront. When an enterprise administrator creates a storefront, they provide
profile information for the "storefront partner" and a URL that will be the access
point for all users entering the storefront.

Users, Roles, and Functions
Users perform functions within the Visual Modeler. To perform their functions,
users must be have appropriate access privileges. First, assign the functions within
your organization to administer the various parts of your e-commerce site. Next,
create the users that perform these functions and assign appropriate access
privileges to those users.

The tasks for this purpose are presented in CHAPTER 34, "User Administration".
Visual Modeler Application Guide 409

Introduction

410
Organizational Functions
Assign the following functions in your organization:

• Accounts Receivable Representative: Manages invoices for the e-
commerce site.

• Business Rules Manager: Controls the business rules for the e-commerce
site.

• Channel Administrator: Creates and maintains the profiles for each
partner and creates a partner administrator for each profile. The partner
administrator is an employee of a partner who is responsible for creating
and maintaining their own partner users.

• Commerce Administrator: Monitors all cart activity at the e-commerce site
or Sterling Partner.com partner site.

• Customer Service Representative (CSR): Creates and updates orders on
behalf of customers, monitors orders, and monitors any product return
requests. Typically, products returns have internal rules that guide whether
to approve or reject a return. When a decision must be made manually, the
CSR has the authority to make that decision.

• Enterprise Lead Administrator: Creates and assigns leads to one or more
partners. The enterprise lead administrator also closes the lead.

• Promotion Administrator: Manages promotions.

• Product Administrator: Manages all the products at the enterprise site: sets
the correct prices for the products and associates them with the appropriate
partners.

• Sales Manager: Manages the sales representatives and delegates leads to
them.

• Sales Representative: Handles leads that are delegated to them.

• System Administrator: Maintains the system configuration using the
System Administration module.

• User Administrator: Creates and maintains all the users at the e-commerce
site.

Creating Users
The user administrator is the person at the Visual Modeler installation responsible
for adding users to the system and giving them access to the areas appropriate for
Visual Modeler Application Guide

Users, Roles, and Functions
them to perform their function. In general, user administrators do not have any
privileges associated with partners. In particular, they cannot create partner users.
(The only enterprise employees who can create partner users is the channel
administrator.)

When you create users, you must assign them a username and password. The
username you assign must be unique. Each username is checked for uniqueness
when the user is created: if the username is already in use, then the user
administrator must choose a different username. When a user is deleted from the
Visual Modeler, their username is not: once a username is in use, it can never be
reused.

As you create users, you must also assign access privileges by assigning one or
more functions.

Assigning Functions
In the Visual Modeler, entitlement functions and roles explicitly define the access
that users have to business objects and the functions they can perform such as
updating users or creating price lists. These functions and roles are listed in the
Entitlements.xml configuration file which is read by the Visual Modeler server on
startup. The file comes with several entitlement functions and roles pre-defined
(see "Pre-defined Functions" on page 412), but you can customize access by editing
this configuration file to create more roles and edit the privileges of existing roles.

Roles are grouped into functions: functions are intended to correspond quite closely
to the business functions within an organization: finance, sales, and so on. Each
function has a label: the label displays in the browser when you perform user
administration.

It is important to distinguish these entitlement functions from the organizational
functions described earlier. Any person in your organization may have one or more
organizational functions that they perform to complete their job responsibilities:
system administrator, product manager, sales manager, and so on. These may or
may not correspond to the entitlement functions defined in the Visual Modeler.

Consequently, the entitlement functions defined in your implementation of the
Visual Modeler may serve as "umbrella" roles that cover more than one
organizational function. For example, to provide them with the proper access, you
may need to assign the same entitlement function to the channel administrator and
the user administrator. At implementation time, your system integrators determine
appropriate groupings of organizational functions into entitlements functions.
These entitlement functions are defined in the Entitlements.xml configuration file.
Visual Modeler Application Guide 411

Introduction

412
However, note that only those roles present in the access policies and access control
lists (ACLs) or in the Entitlements.xml file have any effect on the privileges users
have.

Pre-defined Functions
The Entitlements.xml configuration file that is implemented with the Visual
Modeler comes with the following pre-defined functions:

TABLE 22. Pre-defined Enterprise Functions

Function/Label Description of Access

EnterpriseProgramManagement/
Program Management

Includes Pricing, Product, Model, Coupons,
Advisor, and Promotion Management. Also
includes reporting, job scheduling, and editing of
system properties and business rules.

EnterpriseFinancials/Financials Includes the ability to remove Credit Holds from
Partners, Users and Orders. Also includes the
ability to view and edit invoices.

EnterpriseCommerce/Commerce Includes the ability to create carts, place orders,
create quotes on behalf of customers.

EnterpriseSales/Sales Includes the ability to work with opportunities
and proposals as well as being able to create carts,
quotes, and orders.

EnterpriseSalesExecutive/
Sales Executive

Adds the ability to act as sales manager to the
EnterpriseSales function. Sales managers assign
opportunities to other users and can also work
opportunities themselves.

EnterpriseLeadAdministratorSales/
Lead Administration

Can manage leads for the enterprise.

EnterpriseBasicAdministration/
Basic Profile Maintenance

Performs limited user and profile administration
at or below their node. Can only assign functions
to other users that they have.

EnterpriseAdministration/
Profile Administration

Performs full user and profile administration at or
below their node. You must ensure that at least
one enterprise user has the
EnterpriseAdministration function.
Visual Modeler Application Guide

Users, Roles, and Functions
For partners, the following table summarizes their functions:

TABLE 23. Pre-defined Partner Functions

Function/Label Description of Access

PartnerProgramManagement/
Program Management

Includes Pricing, Product, Promotion
Management. Also includes creation of
email templates, SKU and availability
management.

DirectFinancials/Financials The ability to view and edit invoices.

DirectCommerce/Commerce Includes the ability to create carts, place
orders and create quotes.

DirectCommerceExecutive/
Commerce Executive

Includes the ability to create carts, place
orders, perform order approvals, and create
quotes.

Commerce Includes the ability to create and transfer
carts.

DirectSales/Sales Includes the ability to work with leads and
opportunities apart from being able to create
carts, quotes, and orders.

DirectSalesExecutive/Sales Executive Includes the ability to work with
opportunities apart from being able to create
carts, quotes, and orders.

Sales Includes the ability to work with leads and
opportunities as well as being able to create
and transfer carts.

Sales Executive Includes the ability to work with leads and
opportunities apart from being able to create
and transfer carts.

PartnerBasicAdministration/
Basic Profile Maintenance

Performs limited user and profile
administration at or below the node.

PartnerAdministration/
Profile Administration

Performs full user and profile administration
at or below the node.

StorefrontCustomerBasicAdministration
/Basic Profile Maintenance

Performs limited user and profile
administration at the node. Can only assign
functions to other users that they have.

StorefrontCustomerAdministration/
Profile Administration

Performs full user and profile administration
at the node.
Visual Modeler Application Guide 413

Introduction

414
Managers
Users can be marked as managers. Managers are entitled to navigate to child nodes
of their node to perform the same tasks as they can at their own node. They can also
view and modify the activity of other users at their node. For example, an enterprise
user with the Commerce function and marked as a manager can navigate to a child
node in the enterprise hierarchy and view the orders created by
EnterpriseCommerce users at the child node.

An enterprise user who is a manager can access all the accounts assigned to their
enterprise node and nodes below this node. That is, managers do not have to
explicitly draw accounts from the pool of accounts assigned to their node: they can
work on any account assigned to their node.

User Statuses
Every user has a status. The status of the user and the profile status of their partner
determine what the partner user can do.

The following are the possible user statuses:

• Open: no restrictions on the activities of a user.

• On Credit Hold: users can log in, but they cannot place orders on account.
They can still place orders on credit cards.

• On Hold: users can log in, but they cannot place orders.

• Closed: users cannot log in.

When you set a user status to closed, or if their effective status becomes closed
because you close their partner, this does not affect the carts, orders, returns, and
other objects that the user has been working on. These remain in their current status
until another partner user or enterprise user changes them.

Note that only partner users can be assigned the On Credit Hold and On Hold
statuses. Only enterprise users with the Financials function can set partner users on
On Credit Hold status. An enterprise user can re-open an On Hold partner user, but
only enterprise users with the Financials function can re-open On Credit Hold
partner users.

Inheriting Status
Each user belongs to a partner, and the effective status of a user is inferred from
their user status and the effective status of their partner. For example, suppose that
User 1 is a partner user of Partner B and that the effective status of Partner B is
Open. If the status of User 1 is Open, there is no restriction on the activities of the
Visual Modeler Application Guide

Configuring the Visual Modeler
user. If you change the profile status of Partner B to On Hold, then even though you
have not changed the status of User 1, their effective status changes to On Hold,
and so they can log in, but they cannot place orders.

Suppose that Partner B is the child of Partner A, and that the status of Partner B is
Open. If you set the status of Partner A to On Credit Hold, then even though you
have not changed the status of Partner B, the effective status of Partner B is
inherited to be On Credit Hold. Consequently, the effective status of Partner B users
is On Hold, and so they cannot place orders.

The status of a partner overrides the status of a user if the partner status is more
restrictive: In the example above, if the status of Partner B is set to Closed, then the
effective status of User 1 is also Closed, irrespective of the status of User 1.

User Preferences
Partner users have user preferences: these are properties that influence the user
experience as they use the Visual Modeler. In general, users will manage their own
preferences through their user profile, but it is possible for their partner
administrators to manage preferences for a user.

User preferences include:

• Cart view: offers a choice between a simple and a complex view of each
shopping cart.

• Cart mode: offers a choice between a single cart or multiple carts. If a
multiple cart user switches his preference to single cart, all his existing
carts are hidden.

User preferences are set up as part of the implementation of the Visual Modeler,
and so your installation may have more user preferences.

Configuring the Visual Modeler
The properties of the Visual Modeler are defined in a set of configuration files and
in the Knowledgebase. When the servlet container is started, the Visual Modeler
loads and accesses the configuration files in order to determine Visual Modeler
settings.

System properties for each enterprise (tenant and storefronts) are managed in the
CMGT_SYS_PROPERTIES database table: for each storefront default values are
populated when the storefront is first created. When a system property is changed
through the Web UI, then the new value is stored in the table.
Visual Modeler Application Guide 415

Introduction

416
After implementation, you can modify the settings using the System
Administration page and the Business Rules Manager.

Site System Administration
Site system administration is performed by site system administrators. Site system
administrators access the Visual Modeler through the site administration URL,
which is of the form:

http://server:port/Sterling/en/US/enterpriseMgr/admin

The default login ID is admin, password admin. Site system administrators manage
properties that are common to all storefronts, such as logging. See CHAPTER 42,
"Site System Administration" for more information.

Enterprise System Administration
Enterprise system administration manages enterprise-level (either tenant or
storefront) settings in the Visual Modeler. For example, you can specify the email
settings in the System Properties page.

You can only modify system configuration settings if you have the appropriate
access role. In the reference implementation provided with the Visual Modeler,
only users with the Program Management function can access the System
Administration pages. These users access the Visual Modeler through an enterprise
administration URL which is of the form:

http://server:port/Sterling/en/US/enterpriseMgr/matrix

Enterprise system administrators manage properties that are specific to their
enterprise: changes that they make do not affect other enterprises. See CHAPTER
39, "Enterprise System Administration" for more information.

Business Rules
Business Rules define the behavior of the Visual Modeler. For example, this
includes punchin and punchout specifications, the behavior of imports and exports,
cluster configuration, and other product management specifications. These business
rules are specified in the properties files of the Visual Modeler, and are managed
through the business rule administration interface. See CHAPTER 40, "Business
Rules Administration" for the tasks involved in Business Rules management.

Job Scheduling
You can create cron jobs for different activities in the Visual Modeler. There are
storefront-level and enterprise-level cron jobs. Each storefront manages its own set
Visual Modeler Application Guide

Configuring the Visual Modeler
of cron jobs. Only enterprise administrators can manage the enterprise level cron
jobs. See CHAPTER 41, "Job Scheduling Administration" for more details.

You can schedule system-level or application-level cron jobs to run according to a
specific frequency between a certain date and time range.

Note: When a job is run using the Job Scheduler, its execution status is recorded.
On occasion a job may execute successfully but the status is recorded as
"Timed Out".
Visual Modeler Application Guide 417

Introduction

418
 Visual Modeler Application Guide

CHAPTER 34 User Administration
This chapter covers tasks performed to manage users in the Visual Modeler: See
"Managing Users" on page 419 for the tasks performed by Enterprise employees or
the employees of a Sterling Partner.com partner.

"Users, Roles, and Functions" on page 409 contains an overview of user
administration in the Visual Modeler.

This chapter covers the following topics:

• "Managing Users" on page 419

• "Defining Functions and Roles" on page 422

Managing Users
The user administrator (an enterprise employee with enterprise user management
responsibilities) performs the following tasks:

• "To Create a New Enterprise User" on page 420

• "To Modify an Enterprise User Profile" on page 421

• "To Delete an Enterprise User" on page 421

• "To Search for an Enterprise User" on page 421

• "To Search for Any User" on page 422
Visual Modeler Application Guide 419

User Administration

420
• "Defining Functions and Roles" on page 422

Note that enterprise profile administrators can also create partner profiles and
partner users for partners. See "To Create a New Partner User" on page 437 for
more information on creating partner users.

To Create a New Enterprise User

1. Click System Users in the System Administration panel on the Visual Modeler
enterprise home page. This displays the User List page.

2. On the User List page, click Create User. If this button is not visible, then you
do not have the access privileges to create a new user.

3. On the User Detail page, enter the details of this new user. Note the following:

• Username: This username must be unique throughout the Visual Modeler.

• Password: Use letters and numbers from the keyboard with no spaces or
other punctuation.

• User Functions: Select those functions that this user will perform by
checking the appropriate check boxes. The list of functions displayed here
is determined at implementation time.

• Preferred Locale: Select the preferred locale which will apply when the
user logs in. The drop-down list displays the names for the supported
locales.

4. Enter any other pertinent details.

5. Click Save.

Once you have saved the basic information for a new user, the User Detail page is
displayed with new tabs.

6. You can update information on the Info tab and click Save. In particular, you
can now set a maximum on the number of accounts that can be assigned to this
user.

7. You can manage the assignment of accounts to this user.

8. You can also make notes regarding this user by clicking the Notes tab.

Attention: Do not select the ERPAdministrator user type for standard users. Users of
this user type cannot log in through the Web user interface.
Visual Modeler Application Guide

Managing Users
To Modify an Enterprise User Profile
You can change user profile information for another enterprise user or partner user
if you have the right level of entitlement access to the user.

1. Click System Users in the System Administration panel on the Visual Modeler
enterprise home page. This displays the User List page.

2. On the User List page, click the link to the user whose profile you wish to
modify. This displays the User Detail page. If you cannot see the user whose
details you want to update, then you can search for the user.

3. On the User Detail page, modify user details as appropriate.

4. Click Save All and Return to List.

To Delete an Enterprise User

1. Click System Users in the System Administration panel on the Visual Modeler
enterprise home page.

2. On the User List page, click Delete (X) in the Actions column next to the user
you wish to delete.

The user is deleted from the Visual Modeler. However, note that the
username that belonged to this user is still present in the system. No new
user can re-use this username.

To Search for an Enterprise User

1. Click System Users in the System Administration panel on the Visual Modeler
enterprise home page.

2. Select one of Username, First Name, Last Name, from the drop-down list, and
enter the full or partial string for the search. You can use "*" as a wild card
character.

For example, if you select First Name and enter "An*", then you will find
all enterprise users whose first name begins with "An" such as Andrew and
Anne.

3. Click Go.

4. You can click Advanced Search to perform a more detailed search.

Attention: Do not change the username or password of the Anonymous User user.
Visual Modeler Application Guide 421

User Administration

422
To Search for Any User
You can view the user details for any user in the Visual Modeler. If you have the
appropriate function, then you can also modify user details or delete them from the
Visual Modeler. Note that in general, the administration of partner users should be
left to partner administrators for each partner.

You can use the Search for User by Name panel to perform a quick search for a
user, or you can use the advanced search capabilities as follows:

1. Click Advanced Search in the Search for User by Name panel.

2. Enter search criteria and click Submit.

The search results page displays the users that match your search criteria.

3. Click the link to the user that you were looking for.

Defining Functions and Roles
Functions and roles are defined using the Entitlements.xml file. Defining a
function or role requires that you specify the functionality that you wish the
function or role to perform.
Visual Modeler Application Guide

CHAPTER 35 Channel Administration
This chapter describes the tasks required to administer the channel in the Visual
Modeler. The enterprise employee who acts as the channel administrator can
create, modify, and delete partner profile information. See "Profile Administration
Tasks" on page 430. The partner employee who acts as partner administrator can
maintain the partner profile once it has been created by the channel administrator.

This chapter covers the following tasks:

• "To Search for a Profile" on page 430

• "To Export Profile List Information" on page 431

• "To Create a New Profile" on page 432

• "To Create a Profile as a Child of a Parent Profile" on page 434

• "To Move a Child Profile to Another Parent" on page 435

• "To Create Profile Addresses" on page 435

• "To Delete Profile Addresses" on page 436

• "To Create a New Partner User" on page 437

• "To Move Users Between Levels in a Profile Hierarchy" on page 438

• "To Modify an Existing Profile" on page 440
Visual Modeler Application Guide 423

Channel Administration

424 Sterlin
Profile Detail Page
You maintain partner profile information on the Profile Detail page. The Profile
Detail page provides a straightforward means to administer the information you
need to work effectively with your partners. The information is organized by tabs
that group related information:

The tabs are:

• Info Tab

• Addresses Tab

• Detail Tab

• Business Tab

• Hierarchy Tab

• Commerce Tab

• Assigned To

• Pricelists Tab

• Product Entitlements Tab

• Attributes Tab

• Notes Tab

Info Tab
This tab displays key partner information:

• Profile name: the display name for this profile. Profile names do not have
to be unique. However, in several places in the user interface, profiles are
listed by profile name. Distinguishing two profiles with the same name in
any list of profile names can be confusing. Use a naming convention that
ensures that profile names are effectively unique.

• Main telephone: the main telephone number of the partner.

• Main facsimile: the main facsimile number for the partner.

• Profile type: Each profile must be assigned a type. The choice of types is
determined at the time of the implementation of the Visual Modeler. To
make a profile available for selection as a distributor, you must select
"Distributor" in the Profile Type drop-down list.
g Multi-Channel Selling Solution Administration Guide

Profile Detail Page
• Profile level: profiles can be assigned to one of several levels, such as
Platinum, Gold, or Silver. If your implementation uses such a system, then
select the correct level for this partner.

• XML Message version: the XML version is required to send messages to
this partner's server.

• Login/Password required (for distributor partners only): if you check this
box, a username and password is required to allow the enterprise
employee to access the distributor's site.

• Company website address: the main home page for this profile. Although
this field is not required, you must provide a Web site address if you wish
the partner to be contacted through the Partner Selector function.

• Organization Email: the email address for the company. Although this
field is not required, you must provide an Email address if you wish the
partner to be contacted through the Partner Selector function.

• Distributors: each partner can have a business relationship with one or
more distributors to place orders and obtain price and availability
information. For the current profile, select those distributors with whom
the partner has a business relationship. The list of profiles whose names
are displayed in the drop-down list is determined by those profiles whose
whose type is "Distributor".

• Message URL: This field is required if the partner needs to send or receive
Visual Modeler XML messages (such as price and availability checks and
cart transfers). This field represents the URL to which messages for this
partner are sent to or received from.

If you are creating a profile for a storefront partner, then the entry follows
the format:
http://<servername:port>/Sterling/msg/<partner name URL>

• Custom field #1, Custom field #2, and so on: these fields can be
customized to suit individual information needs.

• Profile Status: this panel enables you to change the status of the profile.

Note: In previous releases, the list of distributors was used to determine which
distributors could be used for price-and-availability requests. In this release,
this information is for display only.
Sterling Multi-Channel Selling Solution Administration Guide 425

Channel Administration

426 Sterlin
FIGURE 16. Profile Status Panel
• Accounts: this panel provides access to the payment accounts used by the

partner to manage their program activities.

FIGURE 17. Accounts Panel
This panel gives you access to the payment accounts for the partner: MDF
and Co-op accounts. The Co-op % and Co-op Account Maximum fields are
used to calculate how uploaded updates to Co-op accounts are added to the
available balances in the accounts.

Addresses Tab
This tab displays the sold-to, ship-to, and bill-to addresses provided by the partner.

Detail Tab
This tab contains business information about the profile.

The Detail tab contains the following fields:
g Multi-Channel Selling Solution Administration Guide

Profile Detail Page
• Organization ID: This ID is used by the enterprise to identify each
organization uniquely with whom they do business.

• Year founded: used for information only.

• Revenue: Estimates for this year's and next year's revenues.

• Fiscal year end month: used for information only.

• Number of employees: used for information only.

• Dun and Bradstreet ID: this ID must uniquely identify the partner in the
commercial world.

• Services: this sub-tab provides information about the services that this
partner offers.

FIGURE 18. Services Sub-tab
• Skills: this sub-tab provides information about the skills and skill levels

that this partner is assessed to have.

FIGURE 19. Skills Sub-tab

Business Tab
This tab contains information relating to the business relationship between your
enterprise and the current profile. Only enterprise employees who are channel
administrators have the authority to modify information on this tab.

The information on this tab is for informational purposes only and has no effect on
any other part of the Visual Modeler. The information comprises:
Sterling Multi-Channel Selling Solution Administration Guide 427

Channel Administration

428 Sterlin
• Product categories: select one or more product categories to show
categories of products that the partner may sell.

• Territories: select one or more territories for this partner.

• Customer types: select one or more customer types (vertical markets) for
this partner.

• Contracts: there may be several business agreements between your
enterprise and this partner. This sub-tab provides basic information about
each agreement.

Hierarchy Tab
The Hierarchy tab enables you to manage a profile hierarchy. You can use this tab
to create a complex organizational structure. For example, you can create
management companies, divisions, locations, and departments. Then, by navigating
down through the hierarchy of "children", you can create and view "children"
within "children" to an infinite number of levels.

Commerce Tab
"Storefront Administration" on page 440The following are the supported type of
payment options:

• Credit card

• Gift card

• Account

Support for credit card and gift card payment requires that you set up payment
gateways. Before you set up a credit card or gift card payment gateway for a
partner, the partner must have a business relationship with a payment processor.
This generally involves establishing a merchant ID with the processor and
obtaining a merchant key which is used to authenticate the merchant at the payment
processor. The key must be stored on the file system accessible by the Visual
Modeler.
g Multi-Channel Selling Solution Administration Guide

Profile Detail Page
FIGURE 20. Payment Options Panel
You can set up a credit card payment gateway and a gift card payment gateway for
your partner profile. This involves selecting a payment processor and providing the
merchant details for your partner.

FIGURE 21. Shipping Options Panel

Pricing Options
Use this panel to specify if this partner maintains their pricing information
remotely. Prices are retrieved using the Message URL specified on the Info tab (see
"Info Tab" on page 424).

FIGURE 22. Pricing Options Panel
Sterling Multi-Channel Selling Solution Administration Guide 429

Channel Administration

430 Sterlin
If you check the Are prices stored remotely? check box, then you can also specify
how long prices may be cached on the Visual Modeler before needing to be
retrieved again.

Assigned To
You use this tab to see which enterprise users have been assigned to this partner.

Pricelists Tab
You use the Pricelists tab to assign price lists to this partner.

Product Entitlements Tab
You use the Product Entitlements tab to assign product entitlements to this partner.
You can also manage the order in which the product entitlements are evaluated.

Attributes Tab
You can use this tab to view and assign attributes that have been pre-defined as
available for assignment to the partner during the partner's creation and profile
maintenance.

Notes Tab
You can make notes as you work on partner profiles using the Notes tab.

Profile Administration Tasks
All of the tasks described here are initiated by an enterprise administrator.

To Search for a Profile
You can perform searches on your existing profile to access a given profile.

1. To perform a quick search, enter the profile name in the Profile Name text field
of the Search for Organization by Name panel, and click Go. You can use "*"
as a wild card. For example, searching for "Af*" will find "Affine Systems",
"AffinityNet", and so on.

Note: In the case of a profile hierarchy, you can only search for the profile at the
top-level of the hierarchy.
g Multi-Channel Selling Solution Administration Guide

Profile Administration Tasks
FIGURE 23. Search for Organization by Name Panel
You can perform a more advanced search by clicking Advanced Search.
The Profile Search page displays.

2. Click Search to view all the profiles, or enter search criteria and click Search.

You can use the asterisk (*) in your searches. For example, "Ander*" in the
Profile Name field will find any profile whose name begins with "Ander".
Likewise, "*erel" will find any profile whose name ends in "erel".
The list of profiles satisfying your search criteria is displayed.

3. In the displayed list, find and click the name of a profile to display the Profile
Detail page for that partner.

If the list is too long to efficiently locate the profile or if the profile is not in
the list, then you can return to the main search page and attempt a new
search.

On the Profile List page, you can also click the check box next to a profile and then
do one of the following:

• Export a list of selected profiles. See "To Export Profile List Information"
on page 431.

• Click View Account Activity to view cart activity for selected partners.

To Export Profile List Information
There may be times when you want to review profile information offline or using
an analysis tool such as a spreadsheet. You can export profile information as a text
file for this purpose.

1. Using the Search for Organization by Name panel, enter search criteria to help
you locate a profile or set of profiles. You can specify criteria to limit the scope
of the search as described in "To Search for a Profile" on page 430.

The Profile List page is displayed. It presents all of the profiles that meet
your search criteria.
Sterling Multi-Channel Selling Solution Administration Guide 431

Channel Administration

432 Sterlin
2. Select those profiles whose details you wish to export by checking the check
boxes next to each profile.

You can click Select All to select all the profiles on the current page.

3. Click Export List.

A new browser window is displayed showing the selected profile data in
text format.

You can save this file to your machine. When you open this saved file in a
spreadsheet application, you must specify that it has been created in a tab-delimited
format.

If the file has been generated by a UNIX installation of the Visual Modeler, then the
file has UNIX end-of-line characters. This means that some Windows text-editing
applications such as Notepad may display the file as one continuous line. You can
still open the file as a spreadsheet.

To Create a New Profile
Perform this task to create a profile either as a standalone profile (no child profile,
no parent profile) or as the top-level profile in a profile hierarchy. To create a child
profile of a parent in a profile hierarchy, use "To Create a Profile as a Child of a
Parent Profile" on page 434.

1. Click Go in the Search for Organization by Name panel on the Visual Modeler
home page.

2. Click Create Profile on the Profile List page.

The Profile Detail page displays.

3. At the Create tab, enter the pertinent profile information.

See "Info Tab" on page 424 for a description of these fields. At a minimum,
you must enter information in the fields marked (*).

You must enter at least one address and define the address as Sold-to, Bill-
to, or Ship-to by checking the appropriate boxes.
Enter an Organization ID: this should be a unique identifier for the profile.

4. Click Save.

Note: Although the Organization website address and the Organization
Email address are not required, you must provide these if you wish
the partner to be contacted through the Partner Selector function.
g Multi-Channel Selling Solution Administration Guide

Profile Administration Tasks
Once you have saved the required information for the new profile, then you can
continue through the other profile tabs to enter additional information.

5. (Optional) For enterprise nodes, on the Info tab, you can specify the maximum
number of users of this node who can be assigned to a particular account.

6. (Optional) At the Addresses tab, enter additional sold-to, bill-to, and ship-to
addresses for the profile.

a. Create a new address by clicking New, or duplicate an existing address by
clicking Duplicate.

b. Enter the pertinent address information.

c. Define the address as Sold-to, Bill-to, or Ship-to by checking the
appropriate box.

d. Define the address as the default Sold-to, Bill-to, or Ship-to address by
checking the appropriate box.

7. (Optional) At the Detail tab, enter pertinent information. You can specify what
services and skills the profile offers by using the Services and Skill sub-tabs.

At minimum, you must enter information in the fields marked (*).

8. (Optional) At the Business tab, enter the product categories, territories, and
approved customer types (vertical markets).

9. (Optional) At the Hierarchy tab, create any desired profile hierarchy.

See "To Create a Profile as a Child of a Parent Profile" on page 434.

10. (Optional) At the Logo tab, upload the logo that will appear on the partner's
storefront. Typically, the task of uploading a logo is done by a partner
administrator of each partner who is enabled for Sterling Partner.com.

11. Save the information you have entered.

12. If you want to assign price lists to this profile, then click the Pricelists tab.

13. You can add notes about this partner by clicking the Notes tab.

You can create partner users for the new partner by clicking View Partner Users.

14. You can assign attributes available for assignment to this partner by clicking
the Attributes tab.
Sterling Multi-Channel Selling Solution Administration Guide 433

Channel Administration

434 Sterlin
To Create a Profile as a Child of a Parent Profile

Perform this task if you want to create a profile as part of an existing profile
hierarchy. Typically, you do this if you are creating an organizational hierarchy for
a partner to match its organization into departments or divisions.

1. Click Organization Lookup in the Channel Management panel on the Visual
Modeler home page.

2. Search for the top-level profile within whose hierarchy you want to create the
child.

See "To Search for a Profile" on page 430. The list of profiles satisfying
your search criteria is displayed.

3. Find the profile in the search results list, then click their name to be taken to the
Profile Detail page.

4. Click the Hierarchy tab.

5. Find the profile that you want to be the parent.

a. Find and click the parent profile in the list of child nodes.

b. Click Go To Child.

This displays the Profile Detail page for the child.

c. Click the Hierarchy tab for the child.

d. Repeat these steps until you find the appropriate node in the hierarchy.

6. When you find the desired parent profile, click Create Child.

This displays the Profile Detail page for the new partner. Notice that certain
information (for example, Profile type) is copied from the parent profile.

7. Enter the information for the partner.

See "To Create a New Profile" on page 432.

8. Save the information you entered.

• Click Save All to save the information and remain at the Profile Detail
page.

Note: Skip this step if you want the child profile to be child to the top-level, parent
profile.
g Multi-Channel Selling Solution Administration Guide

Profile Administration Tasks
• Click Save All and View Partner Users to save the information and view
the partner users for this partner. See "To Create a New Partner User" on
page 437 for further information about creating partner users.

• Click Save All and Return to List to save the information and display the
Profile List.

To Move a Child Profile to Another Parent

You can move a child profile to another location in a profile hierarchy. For
example, you might want to re-arrange the divisional organization of a profile
hierarchy if the partner undergoes a re-organization.

1. Search for the profile that is the parent in the hierarchy.

See "To Search for a Profile" on page 430.

2. In the Profile Detail page, click the Hierarchy tab.

3. In the Hierarchy tab, navigate the hierarchy until you find the child that you
want to move.

4. Click on the child you want to move.

5. Click Move Child.

This displays a list of the other nodes to which you can move the child.

FIGURE 24. Move Child Popup Window
6. Click Move.

The child becomes a child of the selected parent.

To Create Profile Addresses

1. Click Organization Lookup in the Channel Management panel on the Visual
Modeler home page.
Sterling Multi-Channel Selling Solution Administration Guide 435

Channel Administration

436 Sterlin
2. Search for a profile.

Enter the profile name, or enter search criteria such as the profile type or the
first few letters of their name, then click Search, or click Show All to view
all the profiles.
The list of profiles satisfying your search criteria is displayed.

3. Find the profile in the list, then click their name to be taken to the Profile Detail
page.

4. Click the Addresses tab.

5. Create a new address by clicking New, or duplicate an existing address by
clicking Duplicate.

6. Enter the pertinent address information.

7. Define the address as Sold-to, Bill-to, or Ship-to by checking the appropriate
box.

When you check the appropriate box, a check box appears that enables you
to define the address as the default.

8. Save the information you entered.

• Click Save All to save the information and remain at the Addresses tab.

• Click Save All and View Partner Users to save the information and view
the partner users for this profile. See "To Create a New Partner User" on
page 437 for further information about creating partner users.

• Click Save All and Return to List to save the information and display the
Profile List.

To Delete Profile Addresses

1. Search for the profile who has the address you want to delete.

See "To Search for a Profile" on page 430.

2. Find the profile in the list, then you can click their name to be taken to the
Profile Detail page.

3. Click the Addresses tab.

4. Find the address you want to delete by clicking Next or Previous.

5. Click Delete to delete the address.

6. Click Save All.
g Multi-Channel Selling Solution Administration Guide

Profile Administration Tasks
To Create a New Partner User

In general, each partner is responsible for managing the partner employees who
may log in to the Visual Modeler. These people are known as partner users.

When a profile is created, the channel administrator should create at least one
partner user with partner administrator privileges so that this partner administrator
may manage their profile and users for that partner: you do this by assigning the
user the Profile Administration function.

1. Click Organization Lookup in the Channel Management panel on the Visual
Modeler home page.

2. Find the profile for whom you want to create the user.

See "To Search for a Profile" on page 430.

3. From the list of search results, click the profile.

4. On the Profile Detail page, click View Users.

5. On the User List page, click Create User.

6. Enter a username in the Username field.

All usernames must comprise standard keyboard characters. Do not use
punctuation marks or spaces in a username. Usernames in the Visual
Modeler must be unique within a storefront, so your first choice of
username may be already taken. If a username is taken, then a dialog box
prompts you to try again with a different username.

7. Enter a password for this new user. The system verifies that the same password
has been entered in both fields.

8. If this user is to be a partner user with the partner administrator function, then
check the Profile Administration check box.

9. Select the attributes you want to assign to this user from the drop-down lists in
the Attributes panel.

10. Enter any other required information (indicated with an asterisk (*)), as well as
any optional information you want to enter.

11. Click Save.

When the User Detail page is re-displayed, additional tabs are available.
Sterling Multi-Channel Selling Solution Administration Guide 437

Channel Administration

438 Sterlin
12. Optionally, enter a spending limit and designate one or more approvers if the
user exceeds the spending limit.

13. Click Save.

14. Click the Addresses tab to enter the addresses.

You can create as many addresses as you like for the user.

15. Click the Preferences tab to set user preferences for the user.

16. You can assign attributes that are available for assignment to this user by
clicking the Attributes tab.

17. You can make notes about this user by clicking the Notes tab.

18. Contact the partner to let them know that a partner user has been created.

To Move Users Between Levels in a Profile Hierarchy

Perform this task if you want to move one of your partner's users between the
partner nodes in their profile hierarchy. In general, you can only move users to
nodes to which you have access: typically, this means that you can move users to
your node or to nodes below your node.

1. Click Organization Lookup in the Channel Management panel on the Visual
Modeler home page.

2. Find the partner that contains the user you want to move.

See "To Search for a Profile" on page 430.

3. From the list of search results, click the partner that contains the user.

4. Find the user you want to move.

If the user belongs to the top level in the partner hierarchy, then click
View Partner Users on the Profile Detail page. This displays the User List
page.
If the user belongs to a level below the top level:

Note: The fields for spending limits and approvers appear only if this feature has
been enabled. This is done with a business rule. See CHAPTER 40,
"Business Rules Administration".

Note: Moving a user does not move any carts, orders, and so on, associated with
the user. When you move a user to another level in the partner hierarchy,
notify the administrator for the level. The administrator for the level can
recover these lists, orders, and so on.
g Multi-Channel Selling Solution Administration Guide

Profile Administration Tasks
a. Click the Hierarchy tab on the Profile Detail Page.

b. Find and select the level that contains the user you want to move.

c. Click Go To Child.

This displays the Partner Profile Detail Page for that partner. If the user
you want belongs to a level below this one, then repeat these steps until
you reach the desired level.

d. Click View Partner Users to display the User List Page for that level.

5. In the User List page, find the user you want to move.

6. Click the Move icon in the Actions column.

This displays a window with a selection of levels in the profile hierarchy.
The levels are displayed as fully-qualified paths. For example, in Figure 25
on page 439, the first selection is AffinityNet East, a division of
AffinityNet. The third selection is AffinityNet West - San Jose, a division of
AffinityNet West, which is itself a division of AffinityNet.

FIGURE 25. Level Selection Window
7. Click the radio button next to the level to which you want to move the user.

If you move a user between two node levels of a profile hierarchy, then the
functions assigned to the user before the move are retained.

8. Click Move.

The user is moved to the selected level.

After you move a user, you should inform the partner (or the node) administrator so
that they can examine and modify the information as necessary. This ensures that

Note: Moving a user does not move any carts, orders, and so on, associated with
the user. When you move a user to another level in the partner hierarchy,
notify the administrator for the level. The administrator for the level can
recover these lists, orders, and so on.
Sterling Multi-Channel Selling Solution Administration Guide 439

Channel Administration

440 Sterlin
the information is correct for the new location. For example, the addresses (ship-to,
bill-to, and so on) might need to be corrected for the new location.

To Modify an Existing Profile

Over time, your relationship with a partner may change and profile information will
need to be updated as contacts and addresses change. As channel administrator,
your responsibility is to keep profile information up-to-date by modifying the
profile.

As a channel administrator, you can create, modify, and delete partner users.
However, once a profile administrator has been created, primary responsibility for
partner user administration rests with the partner administrators.

1. Search for the profile as described in "To Search for a Profile" on page 430 and
click their name to display their Profile Detail page.

2. Enter the revised information in the appropriate fields.

3. As you enter the information, click Save to save the information that you have
entered so far.

Storefront Administration
When you create a storefront, you create a partner profile that serves as the
enterprise partner within the storefront. This partner is the storefront administrator
partner and users who belong to this partner are storefront administrators.

The storefront that you create using the Visual Modeler is meant only for
administration purposes. To ensure that the correct product information is used for
defining the models in the Visual Modeler, you must create a storefront with the
same Skin ID as the Organization Code of the catalog organization.

To Create a Storefront

1. Click Go in the Search for Organization by Name panel on the Visual Modeler
home page.

2. Click Create Storefront on the Profile List page.

This displays the Organization Detail: New Profile page.

3. Enter basic information for the storefront administrator partner as you would
do for any other partner. * denotes required fields.
g Multi-Channel Selling Solution Administration Guide

Managing the Enterprise Profile
4. In the Detail tab, in the External Partner ID field, enter the Organization
Code of the catalog organization as defined in the Applications Manager. This
is required to ensure that the correct Organization Code is passed while making
XAPI calls to the Selling and Fulfillment Foundation.

5. Enter a skin URL for the new storefront. This should be a simple string and
must be unique within the Visual Modeler. For example, you can use "anderel"
or "storefront". This string will be used in URLs used to access the storefront.
For example:

http://server:port/Sterling/en/US/enterpriseMgr/anderel

6. Click Save.

You must create at least one user to act as the first storefront administrator
for the new storefront. See "To Create a New Partner User" on page 437 for
details. Notify the organization for whom you have created the storefront
and provide them with their new storefront URL and their storefront
administrator userid.

Managing the Enterprise Profile
In addition to managing partner profiles, some enterprise users are responsible for
managing the enterprise profile (that is, the profile of the tenant or storefront
partner). Almost all of the profile fields are the same as for partner profiles, and so
are covered in their respective sections above. However, some fields are used only
by enterprise profiles and child nodes. This section documents these fields.

Info Tab
For enterprise profiles, an additional field is displayed:

• Max Reps Per Account: enter the maximum number of users belonging to
this profile that may be assigned to any particular partner profile account.

Commerce Tab
You can manage the skins for the tenant and storefront partners.

Current Accounts
Use this tab to assign partners to each node of the enterprise. This allows you to
manage which partner accounts are managed by which enterprise nodes.
Sterling Multi-Channel Selling Solution Administration Guide 441

Channel Administration

442 Sterlin
g Multi-Channel Selling Solution Administration Guide

CHAPTER 36 Using the Visual Modeler
This chapter covers the tasks involved in creating and modifying models.

Visual Modeler Interface
 The Visual Modeler page consists of three frames:

• Model Groups: When you first access the Visual Modeler page, this
frame displays the root model group, that is, the highest group in the
model group hierarchy.

You can expand a model group to display the model groups within it by
clicking the plus (+) sign.

• Models and Groups: This displays the models and groups that are
children of the model group selected in the Model Groups frame.

• Content: This displays information about the model group selected in the
Model Groups frame. The information is collected into the following tabs:

Attention: Models are compiled to XML files. Consequently, do not use the
following characters when naming models and model entities such as
groups, properties, and rules: "&", "/". "@", "!", and the quote characters "
and '.
Visual Modeler Application Guide 443

Using the Visual Modeler

444
• General Info: Displays the children of the model group (where you can
select, delete, and reorder children). You can also create new model
groups, new models, and new groups. You can also upload models or
model groups to the currently selected model group.

• Properties: You can define new properties in this tab which you can then
attach to any model, option class, or option item within the model group
for which the property was defined. In the same way, you can also use the
property in rules defined for any model or model group in the hierarchy
below the model group for which it is defined.

• Rules: You can define rules for the model group. These rules can be
attached to any models, option classes, or option items in the hierarchy
below the model group for which it is defined.

• Lists: The list you define here can be used in any properties in the
hierarchy below the model group for which it is defined.

In addition, the Visual Modeler page contains a toolbar across the top with access
to the following tasks:

• Edit: This enables you to edit a model, option class group, or option item
group highlighted in the Models and Groups frame.

• Compile: This enables you to compile a model, option class group, or
option item group into an XML file. See "Compiling a Model" on
page 486. Only compiled models can be associated with configurable
products.

• Test: This enables you to test a model that you are creating or modifying.
See "Testing a Model" on page 485.

• Copy: This enables you to copy a selected entity (model group, model,
option class group, and so on).

• Import: This enables you to import an entity into your library of entities.
See "Importing Model Groups and Models" on page 553

• Export: This enables you to export an entity. See "Exporting Model
Groups and Models" on page 554.

• Report: This enables you to produce a report on some entity in the model
library. See "Reporting" on page 558.

• Search: This enables you to search for entities based on selected search
parameters. See "Searching" on page 556.
Visual Modeler Application Guide

Visual Modeler Interface
When you build a model, you use the model detail page. The detail page contains
the following frames:

• Toolbar: as described above.

• Navigation: Click the plus (+) sign to expand the model or group and
display the elements of the model or group: the sub-models, option
classes, option items, or groups.

• Content: This displays information about the model selected in the
Navigation frame. By navigating to a particular node in the model, you
can create and update information on that node. This information is
collected into the following tabs:

• General Info: Displays general information about the model or group, as
well as the children. You can delete or re-order children in this frame. You
can translate the model, assign a product ID to the model, create option
classes and (for option item groups) option items, and attach groups. You
can also download models from here.

• Display: This tab enables you to define display properties at the model
level. These properties include things like constant guiding text, as well as
pre- and post-pick guiding text. Some display properties have default
values which can be overridden by display values set at the option class or
option item levels. Note that all the properties displayed on the Display
tab can also be set by setting UI properties on the Properties tab. See
"Working with Display Properties" on page 562 for more information
about display properties and UI properties.

• Properties: If the current node is a model, then this tab consists of two
tabs: Attach and Define; otherwise you can use this tab to attach
properties to the node. In the Attach tab, you can attach to the model
properties to which the model has access. (The model has access either to
properties defined specifically for the model itself or to properties defined
for any model group above the model in the model group hierarchy.) In the
Define tab, you can define new properties for use locally, in the model's
structure.

• Rules: If the current node is a model, then this tab consists of two tabs:
Attach and Define; otherwise you can use this tab to attach rules to the
node. In the Attach tab, you can attach to the model rules to which the
model has access. (The model has access either to rules defined

Note: Only the General Info tab appears for option class groups or option item
groups.
Visual Modeler Application Guide 445

Using the Visual Modeler

446
specifically for the model or rules defined for any model group above the
model in the model group hierarchy.) In the Define tab, you can define
new rules for use locally, in the model's structure.

• Lists: If the current node is a model, then the lists you define here can be
used locally, in any properties you define for the model.

• Tables: If the current node is a model, then you create constraint tables
here.

• Tabs: If the current node is a model, then you can create a tab-based
configuration for your customers here. See "Working with a Tabbed User
Interface" on page 488.

• Worksheets: If the current node is a model, then this tab enables you to
manage properties using worksheets. These provide you with a quick way
to view and manage related properties and option items. See "Using
Worksheets" on page 502.

To Access the Visual Modeler

1. Click Configuration Models in the Product and Catalog Administration panel
on the Visual Modeler home page.

This displays the Visual Modeler page.

2. In the Models and Groups frame, click on a model or a group.

This displays the current structure (option classes, option items, and groups)
for the selected model or group. Click the plus (+) sign to the left to expand
the structure of the model.
Visual Modeler Application Guide

Visual Modeler Interface
FIGURE 26. Model Structure Panel
3. Click Edit in the taskbar.

This displays the detail page for the model, option class group, or option
item group.

4. In the Navigation frame, click on the plus (+) sign to expand the model or
group (see Figure 27 on page 447).

FIGURE 27. Navigation Frame
5. Click an option class.

This displays the following tabs in the Content frame:

• General Info: This tab provides general information about the selected
option class. A list box displays the children belonging to this option class.
You can also assign a product ID here, define a ratio for the class (the
number by which the option item quantity will be multiplied to get the
necessary option item quantity). You can create nested option classes and
option items as well as attach groups.
Visual Modeler Application Guide 447

Using the Visual Modeler

448
• Display: This tab enables you to set display property values specific to the
selected option class.

• Properties: You can associate with the option class properties to which
the option class has access. (The option class has access either to
properties defined specifically for the model to which the option class
belongs or to properties defined for any model group above the option
class in the model group hierarchy.)

• Rules: You can attach rules defined for the model, as well as for the model
group to which it belongs (or to any ancestor model group).

6. In the Navigation frame, click the plus (+) to expand the option class.

This displays the children of the option class: these may be option items or
option classes.

7. Click an option item.

This displays the following tabs in the Content frame:

• General Info: This tab provides general information about the selected
option item: name and description, effectivity dates, and a field for
assigning a product ID.

• Display: You can set display property values specific to the selected
option item.

• Properties: You can associate with the option items properties to which
the option item has access. (The option item has access either to properties
defined specifically for the model to which the option item belongs or to
properties defined for any model group above the option item in the model
group hierarchy.)

• Rules: You can attach any accessible rules to the option item. (The option
item has access to any rules defined at any level above it in the model
group hierarchy.)

Working with Model Groups
Model groups provide you with a way of organizing related models into appropriate
sections.
Visual Modeler Application Guide

Working with Model Groups
To Create a Model Group

1. Navigate to and select the model group under which you wish to create the new
model group.

See "To Access the Visual Modeler" on page 446 for information on how to
display the model group.

2. Click New Model Group.

This displays the New Model Group tab.

FIGURE 28. New Model Group Tab
3. Enter a name and description for the new model group.

4. Click Save or Save and Edit to save the new model group.

The new model group appears in the Model Groups frame. If you clicked Save and
Edit, then the Visual Modeler page appears, ready for you to edit the new model
group. See "To Modify a Model Group" on page 449.

To Modify a Model Group

1. Navigate to and display the model group you want to modify.

See "To Access the Visual Modeler" on page 446 for information on how to
display the model group.
This displays the General Info tab where you can modify the name and
description of the group. You can also do one or more of the following:

Note: On Windows platforms, there is a 256 character limit for a fully-qualified
pathname (this includes the pathname and the filename). Therefore, in Visual
Modeler, take care not use long names for either model groups or models,
particularly if you are using non-ASCII characters. When you compile a
model, Visual Modeler recreates the model group structure as directories in
the file system and, in the process, expands any non-ASCII characters.
Visual Modeler Application Guide 449

Using the Visual Modeler

450
• Delete model groups, models, or groups that are children of the selected
model group (see "To Delete the Children of a Model Group" on
page 450).

• Create a model group as a child of this group. See "To Create a Model
Group" on page 449.

• Create a model as a child of this group. See "To Create a Model" on
page 453.

• Create either an option class group or an option item group. See "Working
with Option Class Groups and Option Item Groups" on page 469.

2. Click the Properties tab to create or modify properties for this model group.

See "Properties" on page 492.

3. Click the Rules tab to create or modify rules for this model group.

See "Rules" on page 510.

4. Click the Lists tab to create or modify lists for this model group.

See "Lists" on page 506.

To Delete the Children of a Model Group
To delete one or more children in a group (a model group, a model, an option class
group, or an option item group), use the following procedure:

1. Navigate to and select the parent model group that contains the child you want
to delete.

See "To Access the Visual Modeler" on page 446 for information on how to
display the model group.

2. In the list box, select one or more model groups (MG), models (M), option
class groups (OCG) or option item groups (OIG) to be deleted.

• You cannot delete a model group if the group has children. You must
delete the children first.

Attention: Click Save All Changes to save your changes before you leave the
General Info tab.

Attention: Click Save All Changes to save your changes before you leave the
Properties tab.
Visual Modeler Application Guide

Working with Model Groups
• You cannot delete a model if it is attached as a sub-model elsewhere in the
model group hierarchy.

• You cannot delete an option class group if it is attached to another model
or option class group.

• You cannot delete an option item group if it is attached to another model,
option class group, or option item group.

3. Click Delete.

4. Click Save All Changes.

The model group hierarchy will no longer display the deleted items.

To Copy a Model Group
You can copy a model group and its components into another model group.

1. Navigate to and select the model group you wish to copy.

See "To Access the Visual Modeler" on page 446 for information on how to
display the model group.

2. In the taskbar, click Copy.

This displays the Copy window.

3. Enter the Destination Model Group.

a. Click Browse....

This displays a Hierarchy Browser.
Visual Modeler Application Guide 451

Using the Visual Modeler

452
FIGURE 29. Hierarchical Entity Chooser
b. Browse the model group hierarchy until you find the destination model

group.

c. Select the destination model group.

d. Click Done.

The model group appears in the Destination Model Group field.

4. As desired, modify the Destination Name field.

The name defaults to the name of the model group being copied.

5. Click Copy in the Copy window.

The model group is copied to the destination model group.
Visual Modeler Application Guide

Working with Models
Working with Models
To Create a Model

1. Navigate to and display the model group under which you wish to create a
model.

See "To Access the Visual Modeler" on page 446 for information on how to
display the model group.

2. In the General Info tab, click New Model.

This displays the New Model tab.

FIGURE 30. Creating a New Model
3. Enter a name and description for the new model.

If you plan to associate the model with a product ID, consider skipping this
step. If the name and description match the name and description of the
product ID, you can auto-fill these fields when you assign the product ID in
Step 5.

4. Select the Start Date and End Date for the model.

These are the dates within which the model is available for configuration. If
the current date is outside these dates, the model is not available for
configuration for any product with which it is associated.

Note: On Windows platforms, there is a 256 character limit for a fully-qualified
pathname (this includes the pathname and the filename. Therefore, in Visual
Modeler, take care not use long names for either model groups or models,
particularly if you are using non-ASCII characters. When you translate a
model, Visual Modeler recreates the model group structure as directories in a
file system and, in the process, expands any non-ASCII characters.
Visual Modeler Application Guide 453

Using the Visual Modeler

454
5. If applicable, assign a product ID.

See "To Associate a Product with a Model, Option Class, or Option Item"
on page 456.

6. Click Save or Save and Edit to save the new model.

If you click Save, the New Model tab remains and the new model appears
in the Models and Groups frame. You can create another model in this
group.
If you click Save and Edit, the Model Detail page appears with the new
model in the Navigation frame. You can now add properties, rules, lists, and
constraint tables for this model. You can also associate the model with a
product. See "To Modify an Existing Model" on page 454.

To Modify an Existing Model

1. In the model group hierarchy, navigate and display the Model Detail page for
the model you want to modify.

See "To Access the Visual Modeler" on page 446 for information on how to
display the Model Detail page.

2. In the General Info tab, you can do one or more of the following:

• Modify the name, description, and/or the start and end dates.

• Delete one or more of the option classes or groups associated with the
model. See "To Delete the Children of a Model" on page 455.

• Arrange the order of the children in the list.

• Assign a product to the model, or change the current product assignment.

See "To Associate a Product with a Model, Option Class, or Option
Item" on page 456.

• Create one or more option classes. See "To Create an Option Class" on
page 461.

• Attach an option class group. See "Working with Option Class Groups and
Option Item Groups" on page 469.

Attention: Click Save All Changes to save your changes before you leave the
General Info tab.
Visual Modeler Application Guide

Working with Models
• Modify display properties. See "Working with Display Properties" on
page 562.

3. Click the Properties tab to define properties for or to attach properties to this
model.

See "Properties" on page 492.

4. Click the Rules tab to define rules for or attach rules to this model.

See "Rules" on page 510.

5. Click the Lists tab to create lists for this model.

See "Lists" on page 506.

6. Click the Tables tab to create or modify constraint tables.

See "Option Constraints" on page 545.

To Delete a Model
You delete a model by finding the model group that is its parent, then deleting the
model from that group. You cannot delete a model if it is attached as a sub-model
elsewhere in the model group hierarchy.

See "To Delete the Children of a Model Group" on page 450 for the procedure.

To Delete the Children of a Model
Use this procedure to delete one or more option classes or groups that are children
of a model:

1. Navigate to and display the Model Detail page for the model with the elements
you want to delete.

See "To Access the Visual Modeler" on page 446 for information on how to
display the model.
The General Info tab contains a list box showing the option classes (OC),
option class groups (OCG) or option item groups (OIG) that are children to
the model.

2. In the list box, select one or more objects to be deleted.

3. Click Delete.

Note: Attached sub-models and groups are not deleted by this action. Only the
attachment to those models and groups is removed. See "To Delete a Group"
on page 482.
Visual Modeler Application Guide 455

Using the Visual Modeler

456
4. Click Save All Changes.

The model hierarchy no longer displays the deleted children.

To Associate a Product with a Model, Option Class, or Option Item
You can reference a model, option class, or option item to a product ID in the
product catalog. If the product ID has been assigned to one or more price lists in
Sterling Pricing, then this enables you to associate a price with the entity. In
addition, if the item associated with a product is selected as part of a configuration,
then when the user adds the configured product to their cart, the item is displayed
with associated product ID and product information.

1. In the model group hierarchy, find the entity that you want to associate with a
product ID.

See "To Access the Visual Modeler" on page 446 for information on how to
navigate the model group hierarchy.

2. In the General Info tab for the model, option class, or option item, click
Browse... to search for the product ID in the product catalog.

• The product ID must exist in the product catalog. You create the product
using Sterling Product Manager.

• See "Searching the Product Catalog for a Product ID" on page 488 for help
in browsing for a product ID. When you select the product ID, the product
ID is displayed in the Assigned Product ID field and its product name and
description are auto-filled into those fields.

• You can manually enter the product ID in the Assigned Product ID field,
but the Product Name and Product Description fields are not auto-filled
until you save the information.

• You can use the product name as the name of the new model. If the Name
field is blank, then the field will be auto-filled with the product name. If
the field has an entry already, then you will be prompted to use the product
name.

• If you are modifying a model, then you can click Product Detail to view
the details of the assigned product.

3. Click Save All Changes.

To Copy a Model
You can copy a model and its components into a model group.
Visual Modeler Application Guide

Working with Models
1. In the Model Groups frame, navigate to and select the model group that
contains the model you want to copy. The model name is displayed in the
Models and Groups frame.

See "To Access the Visual Modeler" on page 446 for information on how to
navigate the model group hierarchy.

2. In the Models and Groups frame, click on the model you want to copy.

This displays the current structure of the model.

3. Click Copy in the taskbar.

This displays the Copy window.

FIGURE 31. Copy Window for Models
4. Enter the Destination Model Group.

a. Click Browse....

This displays a Hierarchy Browser.

b. Browse the hierarchy until you find the destination model group.

c. Select the destination model group.
Visual Modeler Application Guide 457

Using the Visual Modeler

458
d. Click Done.

The model group appears in the Destination Model Group field.

5. As desired, modify the Destination Name field.

The name defaults to the name of the model being copied.

6. Click Copy in the Copy window.

The model is copied to the destination model group.

To Copy a Model Reference
You can re-use a model as part of another entity without having to recreate the
model. You do this by attaching the model to the entity. The attachment then
becomes a model reference. You can copy this model reference; that is, instead of
copying the actual model, you can copy the reference to a model that is attached.

1. In the Model Groups frame, navigate to and select the model group that
contains the entity with the model reference you want to copy. The entity name
is displayed in the Models and Groups frame.

See "To Access the Visual Modeler" on page 446 for information on how to
navigate the model group hierarchy.

2. In the Models and Groups frame, click on the entity that contains the reference
you want to copy.

This displays the current structure of the entity.

3. Click Edit in the taskbar.

This displays the General Info tab.

4. In the Navigation frame, find and select the model reference you want to copy.

5. Click Copy in the taskbar.

This displays the Copy window.
Visual Modeler Application Guide

Working with Models
FIGURE 32. Copy Window for Copying Model References
6. Enter the Destination Option Class.

a. Click Browse....

This displays a Hierarchy Browser.

b. Browse the model group hierarchy until you find the destination option
class.

c. Select the destination option class.

d. Click Done.

The option class appears in the Destination Option Class field.

7. As desired, modify the Destination Name field.

The name defaults to the name of the model reference being copied.

8. Click Copy in the Copy window.

The model reference is copied to the destination option class.
Visual Modeler Application Guide 459

Using the Visual Modeler

460
To Embed a Model
You can embed a model within an option class.

1. In the Model Groups frame, navigate to and select the model group that
contains the model structure you want to embed. The model name is displayed
in the Models and Groups frame.

See "To Access the Visual Modeler" on page 446 for information on how to
navigate the model group hierarchy.

2. In the Models and Groups frame, click on the model whose structure you want
to embed.

This displays the current structure of the model.

3. Click Edit in the taskbar.

This displays the General Info tab.

4. Click Copy in the taskbar.

This displays the Copy window.

FIGURE 33. Copy Window for Embedding Models
Visual Modeler Application Guide

Working with Option Classes and Option Items
5. Enter the Destination Option Class by typing or by browsing.

To browse for the option class:

a. Click Browse....

This displays a Hierarchy Browser.

b. Browse the model group hierarchy until you find the destination option
class.

c. Select the destination option class.

d. Click Done.

The option class appears in the Destination Option Class field.

6. As desired, modify the Destination Name field.

The name defaults to the name of the model being embedded.

7. Click Copy in the Copy window.

Working with Option Classes and Option Items
Option classes and option items comprise configurable parts or services of a model.
You can think of option classes as representing questions or components that need
to be configured, while option items represent answers or choices of components.
Sometimes the answer to a question can give rise to further questions. In these
cases it is useful to nest option classes within other option classes to help guide a
user to the configuration that best meets their needs.

To Create an Option Class

1. In the model group hierarchy, navigate to and display the model, option class
group, or option class in which you want to create the option class.

See "To Access the Visual Modeler" on page 446 for information on how to
navigate the model group hierarchy.
You can create an option class within another option class, within a model,
or within an option class group.

2. To create option classes as children of the model or option class group:

a. Click New Option Class.

This displays the New Option Class tab.
Visual Modeler Application Guide 461

Using the Visual Modeler

462
b. Proceed to Step 4.

3. To create nested option classes:

a. In the Navigation frame, navigate to and select the option class where you
want to nest the new class.

b. Click New Option Class.

This displays the New Option Class tab.

c. Proceed to Step 4.

FIGURE 34. New Option Class Tab
4. Enter a name and description for the new option class.

If you plan to associate the option class with a product ID, then you might
consider skipping this step. If the name and description match the name and
description of the product ID, then you can auto-fill these fields when you
assign the product ID in Step 6.

5. Define the effectivity dates by modifying the start and end dates.

You can click the calendar icon to select the dates from a calendar.

6. If applicable, assign a product ID.

See "To Associate a Product with a Model, Option Class, or Option Item"
on page 456.

7. Click Save to save the new option class and remain at the New Option Class
tab (to create additional option classes); click Save and Edit to save the new
option class and display the option class tabs for editing.

The new option class appears in the Navigation frame. The new option class is
selected, ready to be modified.
Visual Modeler Application Guide

Working with Option Classes and Option Items
To Modify an Option Class

1. In the model group hierarchy, navigate to and display the model, option class
group, or option class that contains the option class.

See "To Access the Visual Modeler" on page 446 for information on how to
navigate the model group hierarchy.

2. In the Navigation frame, find and click on the option class that you want to
modify.

This displays the General Info tab for the option class.

3. Modify Name, Description, and Start and End Dates as applicable.

4. Enter a ratio in the Ratio field, if applicable.

The ratio field determines the quantity of option items that are added to a
customer's order. The quantity of any child item selected is multiplied by this
ratio to compute the “extended” quantity of the child item. For example, a
bicycle model may have a wheel option class defined with a ration of “2”.
When a user selects a particular wheel item from this option class, then two
wheels will be added to the configured product.

You can enter the Ratio as either a whole number or a decimal.

5. As applicable, modify the order of the children or delete the children.

See "To Delete the Children of an Option Class" on page 468.

6. If applicable, assign a product ID or modify the current assignment.

See "To Associate a Product with a Model, Option Class, or Option Item"
on page 456.

7. Before you click the other tabs, click Save All Changes.

8. Click the Display tab to modify the display properties for this option class.

See "Working with Display Properties" on page 562.

9. Click the Properties tab to attach properties to this option class.

See "To Attach a Property" on page 494.

10. Click the Rules tab to attach rules to this option class.

See "To Attach a Rule" on page 514.

When you have completed modifying the option class, click Save All Changes.
Visual Modeler Application Guide 463

Using the Visual Modeler

464
You can also create option items for this option class. See "To Add Option Items to
an Option Class" on page 464.

To Add Option Items to an Option Class

1. In the model group hierarchy, navigate to the option class to which you want to
add the option items.

See "To Access the Visual Modeler" on page 446 for information on how to
navigate the model group hierarchy.

2. In the General Info tab, click New Option Item to display the New Option
Item tab.

FIGURE 35. New Option Item Tab
3. Enter a name and description for the new option item.

If you plan to associate the option item with a product ID, then you might
consider skipping this step. If the name and description match the name and
description of the product ID, then you can auto-fill these fields when you
assign the product ID in Step 5.

4. Define the effectivity dates by modifying the start and end dates.

5. If applicable, assign a product Id.

See "To Associate a Product with a Model, Option Class, or Option Item"
on page 456.

6. Click Save or Save and Edit.

The new option item appears in the model hierarchy in the Navigation frame.

To Copy an Option Class
You can copy an option class and its components into a model, an option class
group, or another option class.
Visual Modeler Application Guide

Working with Option Classes and Option Items
1. Navigate to and select the parent model group for the model or option class
group that contains the option class.

See "To Access the Visual Modeler" on page 446 for information on how to
navigate the model group hierarchy.

2. In the Models and Groups frame, click on the model or option class group that
contains the option class.

This displays the current structure of the model or option class group.

3. Click Edit in the taskbar.

This displays the General Info tab for the model or option class group.

4. In the Navigation frame, find and click on the option class that you want to
copy.

This displays the General Info tab for the option class.

5. Click Copy in the taskbar.

This displays the Copy window.

FIGURE 36. Copy Window for Option Classes
Visual Modeler Application Guide 465

Using the Visual Modeler

466
6. Enter the destination model, option class group, or option class as follows:

a. Click Browse....

This displays a Hierarchy Browser.

b. Browse the model group hierarchy until you find the destination model,
option class group, or option class and select it.

c. Click Done.

The model, option class group, or option class appears in the Destination
Model/OCG/Option Class field.

7. Enter the Destination name.

The name defaults to the name of the option class being copied.

8. Click Copy in the Copy window.

The option class is copied to the destination model, option class group, or option
class.

To Modify an Option Item

1. Find the option item that you want to modify.

See "To Access the Visual Modeler" on page 446 for information on how to
navigate the model group hierarchy.
When you click the option item, the General Info tab is displayed.

2. If applicable, modify the name, description, start/end dates.

3. If applicable, assign a product Id.

See "To Associate a Product with a Model, Option Class, or Option Item"
on page 456.

4. Click the Display tab to modify the display properties for this option item.

See "Working with Display Properties" on page 562.

5. Click the Properties tab to attach properties to this option item.

See "To Attach a Property" on page 494.

Attention: Before you click the other tabs, click Save All Changes.
Visual Modeler Application Guide

Working with Option Classes and Option Items
6. Click the Rules tab to attach rules to this option item.

See "To Attach a Rule" on page 514.

To Copy an Option Item
You can copy an option item into an option item group or an option class.

1. Find the option item that you want to copy.

See "To Access the Visual Modeler" on page 446 for information on how to
navigate the model group hierarchy.
When you click the option item in the Navigation frame, the General Info
tab is displayed.

2. Click Copy in the taskbar.

This displays the Copy window.

FIGURE 37. Copy Window for Option Items
3. Enter the destination option item group or option class.

a. Click Browse....

This displays a Hierarchy Browser.
Visual Modeler Application Guide 467

Using the Visual Modeler

468
b. Browse the model group hierarchy until you find the option item group or
option class and select it.

c. Click Done.

The option item group or option class appears in the Destination: Option
Item Group/Option Class field.

4. Enter the Destination name.

The name defaults to the name of the option item being copied.

5. Click Copy in the Copy window.

The option item is copied to the destination option item group or option class.

To Delete an Option Class
You delete an option class by deleting the option class as a child of the parent to
which it belongs. This can be one of the following:

• A model. See "To Delete the Children of a Model" on page 455.

• An option class. See "To Delete the Children of an Option Class" on
page 468.

• An option class group. See "To Delete the Children of a Group" on
page 483.

Deleting the option class automatically deletes any option items, nested option
classes, or attachments to groups.

To Delete the Children of an Option Class
You can delete option items and nested option classes, as well as any attachments to
groups.

1. Navigate to and display the detail page for the model or option class group that
contains the option class.

See "To Access the Visual Modeler" on page 446 for information on how to
navigate the model group hierarchy.

2. In the Navigation frame, navigate to and select the option class.

This displays the General Info tab which contains a list box showing the
children of the option class.

Note: Nested groups are not deleted when you delete an option class, only the
attachment to those groups.
Visual Modeler Application Guide

Working with Option Class Groups and Option Item Groups
3. Click the item to be deleted: option item (OI), option class (OC), model, option
class group (OCG), or option item group (OIG).

4. Click the Delete button.

5. Click Save All Changes.

The items are no longer displayed in the Navigation frame.

Working with Option Class Groups and Option
Item Groups
To Create a Group

1. In the Model Groups frame, navigate to and select the model group for which
you are creating the option class group or option item group.

See "To Access the Visual Modeler" on page 446 for information on how to
navigate the model group hierarchy.
This displays the General Info tab for the group. Make sure you are
creating the group within the appropriate model group. The group will be
available for attachment to any items below this model group in the model
group hierarchy.

2. Click New Option Group.

This displays the New Option Class/Item Group tab (see Figure 38 on
page 469).

FIGURE 38. New Option Class/Item Group tab
3. Enter a name and description for the group.

4. Select the type of group (Option Class Group or Option Item Group).

Note: Nested groups are not deleted. However, the attachment to those groups is
removed.
Visual Modeler Application Guide 469

Using the Visual Modeler

470
5. Click Save or Save and Edit.

The group appears in the hierarchy. You can now begin to build the group. The first
step is to create one or more option classes. See "To Create an Option Class" on
page 461.

To Modify a Group
When you modify a group and then compile it, the modifications are reflected in
any model to which the group is attached, once the model is recompiled.

1. In the model group hierarchy, navigate to and select the option class group or
option item group that you want to modify.

See "To Access the Visual Modeler" on page 446 for information on how to
navigate the model group hierarchy.
This displays the General Info tab for the group.

2. Modify the name and description, reorder or delete the children.

See "To Delete the Children of a Group" on page 483 for information about
deleting the children of a group.

3. (Option item groups only) If applicable, define start/end dates.

4. Click Save All Changes.

You can also do the following:

• Add option classes to an option class group. See "To Create an Option
Class" on page 461.

• Attach groups to the group. See "To Attach a Group to a Model or Another
Group" on page 476.

To Copy an Option Class Group
You can copy an option class group to a model group.

1. In the Model Groups frame, navigate to and select the model group that
contains the group you want to copy. (See "To Access the Visual Modeler" on
page 446 for information on how to navigate the model group hierarchy.)

2. In the Models and Groups frame, click on the group you want to copy.

The current structure of the group, if any, appears in the content frame.

3. Click Copy in the taskbar.

This displays the Copy window.
Visual Modeler Application Guide

Working with Option Class Groups and Option Item Groups
FIGURE 39. Copy Window for Option Class Groups
4. Enter the Destination Model Group.

a. Click Browse....

This displays a Hierarchy Browser.

b. Browse the model group hierarchy until you find the destination model
group and select it.

c. Click Done.

The model group appears in the Destination Model Group field.

5. Enter the Destination name.

The name defaults to the name of the option class group being copied.

6. Click Copy in the Copy window.

The option class group is copied to the destination model group.

To Embed an Option Class Group
You can embed an option class group within a model, another option class group, or
an option class.
Visual Modeler Application Guide 471

Using the Visual Modeler

472
1. In the Model Groups frame, navigate to and select the model group that
contains the option class group you want to embed. The group name is
displayed in the Models and Groups frame.

See "To Access the Visual Modeler" on page 446 for information on how to
navigate the model group hierarchy.

2. In the Models and Groups frame, click on the group you want to embed.

This displays the current structure of the group.

3. Click Edit in the taskbar.

This displays the General Info tab.

4. Click Copy in the taskbar.

This displays the Copy window.

FIGURE 40. Copy Window for Embedding Option Class Groups
5. Enter the destination model, option class group, or option class as follows:

a. Click Browse....

This displays a Hierarchy Browser.
Visual Modeler Application Guide

Working with Option Class Groups and Option Item Groups
b. Browse the model group hierarchy until you find the destination model,
option class group, or option class and select it.

c. Click Done.

The model, option class group, or option class appears in the Destination
Model/Option Class Group/Option Class field.

6. Click Copy in the Copy window.

The option class group is embedded in the destination model, option class group, or
option class.

To Copy an Option Item Group
You can copy an option item group to a model group.

1. In the Model Groups frame, navigate to and select the model group that
contains the option item group you want to copy. (See "To Access the Visual
Modeler" on page 446 for information on how to navigate the model group
hierarchy.)

2. In the Models and Groups frame, click on the option item group you want to
copy.

The current structure of the group, if any, appears in the content frame.

3. Click Copy in the taskbar.

This displays the Copy window.
Visual Modeler Application Guide 473

Using the Visual Modeler

474
FIGURE 41. Copy Window for Option Item Groups
4. Enter the Destination Model Group.

a. Click Browse....

This displays a Hierarchy Browser.

b. Browse the model group hierarchy until you find the destination model
group.

c. Select the destination model group.

d. Click Done.

The model group appears in the Destination Model Group field.

5. Enter the Destination name.

The name defaults to the name of the option item group being copied.

6. Click Copy in the Copy window.

The option item group is copied to the destination model group.
Visual Modeler Application Guide

Working with Option Class Groups and Option Item Groups
To Embed an Option Item Group
You can embed an option item group within another option item group or option
class.

1. In the Model Groups frame, navigate to and select the model group that
contains the option item group you want to embed. The group name is
displayed in the Models and Groups frame.

See "To Access the Visual Modeler" on page 446 for information on how to
navigate the model group hierarchy.

2. In the Models and Groups frame, click on the group you want to copy.

This displays the current structure of the group.

3. Click Edit in the taskbar.

This displays the General Info tab.

4. Click Copy in the taskbar.

This displays the Copy window.

FIGURE 42. Copy Window for Embedding Option Item Groups
Visual Modeler Application Guide 475

Using the Visual Modeler

476
5. Enter the destination option item group or option class.

a. Click Browse....

This displays a Hierarchy Browser.

b. Browse the model group hierarchy until you find the destination option
item group or option class and select it.

c. Click Done.

The option item group or option class appears in the Destination OIG/Option
Class field.

6. Click Copy in the Copy window.

The option item group is embedded in the destination option item group or option
class.

To Attach a Group to a Model or Another Group
You can attach a model only to an option class (see "To Attach a Model, Option
Class Group, or Option Item Group to an Option Class" on page 477). You can
attach an option class group to a model, an option class, or another option class
group. You can attach an option item group to an option class or to another option
item group.

1. In the Model Groups frame, navigate to and select the model group that
contains the model or group to which you want to attach the group.

See "To Access the Visual Modeler" on page 446 for information about how
to navigate the model group hierarchy.

2. In the Models and Groups frame, click on the model or group to which you
want to attach the option class group or option item group.

3. Click Edit.

This displays the General Info tab for the model or group.

4. In the General Info tab, click Attach.

This displays the Attach tab.
Visual Modeler Application Guide

Working with Option Class Groups and Option Item Groups
FIGURE 43. Attach Tab
5. Enter a name and description for the attachment to the group or model.

6. Select the option class group or option item group to be attached.

a. Click Browse....

This displays a Hierarchy Browser.

b. Browse the model group hierarchy until you find the option class group or
option item group.

c. Select the group.

d. Click Done.

The group appears in the selection field.

7. Click Assign.

You can click Return to General to return to the General Info tab.

The name you entered for the attached group or model appears in the model
hierarchy in the Navigation frame.

To Attach a Model, Option Class Group, or Option Item Group to an
Option Class
You can attach a model, an option class group, or an option item group to an option
class.

1. In the Model Groups frame, navigate to and select the model group that
contains the model with the option class.

See "To Access the Visual Modeler" on page 446 for information on how to
navigate the model group hierarchy.
Visual Modeler Application Guide 477

Using the Visual Modeler

478
2. In the Models and Groups frame, click on the model or option class group that
contains the option class.

The current structure of the model or group, if any, appears in the content
frame.

3. Click Edit.

This displays the General Info tab for the model or group.

4. In the Navigation frame, navigate to and select the option class to which you
want to attach the group.

This displays the General Info tab for the option class.

5. In the General Info tab, click Attach.

This displays the Attach tab.

FIGURE 44. Attach Tab
6. Enter a name and description for the attached group or model.

7. Select the model, option class group, or option item group to be attached.

a. Click Browse....

This displays a Hierarchy Browser.

b. Browse the model group hierarchy until you find the model, option class
group, or option item group.

c. Select the model or group.

d. Click Done.

The model or group appears in the selection field.

8. Click Assign.

You can click Return to General to return to the General Info tab.
Visual Modeler Application Guide

Working with Option Class Groups and Option Item Groups
The name you entered for the attached model or group appears in the model
hierarchy in the Navigation frame.

To View the Structure of an Attached Group
Once a group is attached, you can view the group's structure by clicking Show
Detail.

1. Navigate to the level in the hierarchy (model, option class or option item)
where the group is attached.

See "To Access the Visual Modeler" on page 446 for information on how to
navigate the model group hierarchy.

2. Click Show Detail.

This displays a read-only view of the group's structure.

To Copy an Option Class Group Attachment
You can copy a reference to an option class group; that is, rather than copy the
group itself, you copy the reference to the group. You can copy the reference into
either a model, an option class group or into an option class.

1. In the Model Groups frame, navigate to and select the model group that
contains the entity with the option class group attachment you want to copy.
(See "To Access the Visual Modeler" on page 446 for information on how to
navigate the model group hierarchy.)

2. In the Models and Groups frame, click on the entity that contains the
attachment you want to copy.

The current structure of the model appears in the content frame.

3. Click Edit in the taskbar.

This displays the model in the Navigation frame and the General Info tab
for the group.

4. In the Navigation frame, navigate the model until you find the attached group
you want to copy.

5. Click the attached group.

6. Click Copy in the taskbar.

This displays the Copy window.
Visual Modeler Application Guide 479

Using the Visual Modeler

480
FIGURE 45. Copy Window for Option Class Group Attachments
7. Enter the destination model, option class group, or option class as follows:

a. Click Browse....

This displays a Hierarchy Browser.

b. Browse the model group hierarchy until you find the destination model,
option class group, or option class and select it.

c. Click Done.

The model, option class group, or option class appears in the Destination
Model/Option Class Group/Option Class field.

8. Enter the Destination name.

The name defaults to the name of the option class group being copied.

9. Click Copy in the Copy window.

The attachment is copied to the destination model, option class group, or option
class.
Visual Modeler Application Guide

Working with Option Class Groups and Option Item Groups
To Copy an Option Item Group Attachment
You can copy a reference to an option item group; that is, rather than copy the
group itself, you copy the reference to the group. You can copy the reference into
either an option item group or into an option class.

1. In the Model Groups frame, navigate to and select the model group that
contains the entity with the option item group attachment you want to copy.
(See "To Access the Visual Modeler" on page 446 for information on how to
navigate the model group hierarchy.)

2. In the Models and Groups frame, click on the entity that contains the
attachment you want to copy.

The current structure of the entity appears in the content frame.

3. Click Edit in the taskbar.

This displays the entity in the Navigation frame and the General Info tab
for the group.

4. In the Navigation frame, navigate the entity until you find the attached group
you want to copy.

5. Click the attached group.

6. Click Copy in the taskbar.

This displays the Copy window.
Visual Modeler Application Guide 481

Using the Visual Modeler

482
FIGURE 46. Copy Window for Option Item Group Attachments
7. Enter the destination option item group or option class.

a. Click Browse....

This displays a Hierarchy Browser.

b. Browse the model group hierarchy until you find the option item group or
option class and select it.

c. Click Done.

The option item group or option class appears in the Destination Option Item
Group/Option Class field.

8. Click Copy in the Copy window.

The attachment is copied to the destination option item group or option class.

To Delete a Group
You delete a group by finding the model group that is the parent of the group you
want to delete, then deleting the group from that model group. See "To Delete the
Children of a Model Group" on page 450 for the procedure.
Visual Modeler Application Guide

Including Sub-Models in Models
• You cannot delete an option class group if it is being referenced from
another model or option class group.

• You cannot delete an option item group if it is referenced from another
model, option class group, or option item group.

To Delete the Children of a Group
Use this procedure to delete one or more option classes or groups that are children
of a group:

1. Navigate to and select the parent model group that contains the group with the
children you want to delete.

See "To Access the Visual Modeler" on page 446 for information on how to
navigate the model group hierarchy.

2. In the Models and Groups frame, click on the group.

This displays the current structure of the group.

3. Click Edit.

This displays the General Info tab that contains a list box showing the
children belonging to the group. This can include option classes (OC) and
option class groups (OCG).

4. In the list box, select one or more elements to be deleted.

5. Click Delete.

6. Click Save All Changes.

The model hierarchy no longer displays the deleted elements.

Including Sub-Models in Models
You can include one model in another so that a sub-component of the parent model
can be modeled and configured separately.

To Include a Sub-Model in a Model
Suppose that you have a model A, and you want to use Model B as an option item
in Model A, so that end-users can configure the Model B component as part of a
session to configure model A.

Note: Groups are not deleted by this action. Only the attachment to those groups is
removed. See "To Delete a Group" on page 482.
Visual Modeler Application Guide 483

Using the Visual Modeler

484
1. Create Model B as a model in its own right, and compile it. Make a note of the
location of this model in the model group and model hierarchy. For example:
Matrix/Computers/Workstations/Configurable Monitors/Matrix Monitor.

2. Navigate to Model A and to the location in the Model hierarchy at which you
want to include Model B as an option item.

3. Create the option item and enter a name, description, and effectivity dates for
it. Click Save.

4. Click the Properties tab.

5. Select CONFIG: SUBMODEL NAME in the Unattached Properties
drop-down list.

6. In the Value field, enter the fully qualified name to Model B. For example,
Matrix/Computers/Workstations/Configurable_0020Monitors/
Matrix_0020Monitor. Note the use of escape characters to encode special
characters such as spaces. See "Special Characters Encoding" on page 484 for
more information.

7. Click Attach.

8. Click Save All Changes.

9. A separate property called CONFIG: SUBMODEL RETURN controls whether
end-users return to the main model after configuring the child model.

a. If you want to have end-users return to the main model when they have
finished configuring Model B, then set the value of CONFIG:
SUBMODEL RETURN to "true".

b. If you want to have end-users return to directly to the calling application
when they have finished configuring Model B, then set the value of
CONFIG: SUBMODEL RETURN to "false".

10. Click Attach.

11. Click Save All Changes.

12. Click Compile to re-compile Model A.

13. To test the model, click Test.

Special Characters Encoding

You must encode any special characters in model group and model names when
you provide model group path names and model names.
Visual Modeler Application Guide

Testing a Model
The following table lists some common special character encodings:

Testing a Model
You can test the model at any point while you are creating it. The test model feature
performs the following steps:

1. Compiles the model into an XML file.

2. Launches the browser.

3. Displays the model as a HTML page.

To Test a Model

1. Navigate to the model that you want to test.

See "To Access the Visual Modeler" on page 446 for information on how to
navigate the model group hierarchy.

2. Click Compile.

A dialog box reports that compilation is successful.

3. Click Test Model.

This displays a configuration window as the end-user will see it, based on
the current model.
Note that if you click Compile and Test, then both actions are taken.

4. To change some of the environmental variables that affect how a model
displays, click Set Defaults.

TABLE 24. Character Encodings

Character Encoding

" " (blank) _0020

"-" _002D

"/" _002F

"!" _0021

"@" _0040

"#" _0023

"$" _0024
Visual Modeler Application Guide 485

Using the Visual Modeler

486
FIGURE 47. Set Defaults Window
Model display environmental variables include:

• Current Effective Date: by changing the date in this field, you can view the
model as it would be viewed by a customer on the specified date. This
means that you would see only option classes and option items that are
effective on that date, and the prices that you see are based on price lists
effective on that date.

• Current Partner: By selecting a specified a partner, you view the model as
it would be seen by a user of that particular partner. Depending on the
assignment of price lists to the partner, this may affect which option
classes and option items are displayed.

• Vertical Market: When customers create carts and orders, they can specify
a customer type: this is used to filter which price lists are to be used in
calculating prices. By selecting a customer type, you can check how the
model will be seen by customers who select the same customer type.

• Currency: When customers create carts and orders, they can specify a
currency: this is used to filter which price lists are to be used in calculating
prices. By selecting a currency, you can check how the model will be seen
by customers who select the same currency.

Compiling a Model
Before a model can be associated with a configurable product and a customer can
use the model you have created to configure a product, you must compile the model
into XML format and store the model in a location accessible by Sterling
Configurator. Only compiled models can be associated with configurable products.
After you create the model, you click a button to compile the model into an XML
file. USD is not considered the default currency when you test a model. Currency
and Organization Code are the mandatory parameters required for pricing items.
Visual Modeler Application Guide

Compiling a Model
The value of the Currency is fetched based on the preferences set by the user in the
Applications manager. For more information about Organization Code and defining
currency definitions, refer to the Selling and Fulfillment Foundation: Application
Platform Configuration Guide. The Organization Code set in the Visual Modeler
for the current storefront is used.

Note: To compile all the models for the locales configured in Visual Modeler, select
the “Compile All Locales” check box.

To Compile a Model

1. Navigate to the model that you want to compile.

See "To Access the Visual Modeler" on page 446 for information on how to
navigate the model group hierarchy.

2. Click Compile.

The model is compiled into an XML file. This XML file is placed in the following
location in debs_home/Sterling/WEB-INF/data/config/. This directory contains
several directories, one for each locale. The model resides within the directory
representing your preferred locale in either the folder representing the root model
group folder or in one of the folders representing model groups within the root
model group. They are stored in the shared location of a clustered deployment of
the Visual Modeler.

If your model group and model hierarchy include special characters (that is, non-
alphanumeric characters), then these are encoded in the directory and files names
that correspond to them. See "Special Characters Encoding" on page 484 for more
information.

To Compile All Models
Rather than compile models one by one, you can also compile all the models in a
model group at once.

1. Navigate to the model group whose models you want to compile. This can be
the top-level model group.

Attention: If your implementation of the Visual Modeler makes use of a staging and a
production system, then bear in mind that the XML files may have to be
moved over to the production environment or the model directories must
be shared between the systems.

In addition, the product records in the Knowledgebase for configurable
products may have to be updated to point to the location of the XML files.
Visual Modeler Application Guide 487

Using the Visual Modeler

488
2. Click Compile All.

3. In the Compile All Models window, click Compile All Models.

4. The Compile All Models Status window is displayed.

5. When it reports that all the models have been compiled, then click Close.

Searching the Product Catalog for a Product ID
When you assign a product ID, you can click Browse... to display the Hierarchical
Entity Chooser.

You can use this window to navigate through the hierarchy until you find the
product ID that you want to assign to the model object. You can click the Search
tab to search through products unassigned to any product category.

Click Done when you find the product ID that you want to assign. The product ID
appears in the Assigned Product ID field.

Working with a Tabbed User Interface
You can design your end-user interface so that, rather than being displayed in a
single frame, the option classes appear within a series of tabs. You do this by first
selecting the Tabbed Configurator JSP template at the model level, which sets the
display property UI:JSP Filename (see "Working with Display Properties" on
page 562). You then design the end-user interface using Tabs tab.

To Create a Tabbed User Interface

1. Navigate to the model for which you want to create the tabbed interface.

See "To Access the Visual Modeler" on page 446 for information about how
to navigate the model group hierarchy.

2. Click the Display tab.

The Display tab displays.

3. Select Tabbed Configurator from the JSP Template drop-down list.

This automatically sets the UI: JSP FILENAME property to
Configurator_Tabbed.jsp.

4. Click the Tabs tab.

This displays the Tabs tab.
Visual Modeler Application Guide

Working with a Tabbed User Interface
5. Enter a name for the tab in the Tab Name field.

6. Click Add.

The content frame displays an area for editing the new tab.

7. Select the option classes or option class groups for the tab.

a. Select an option class or option class group from the drop-down list.

b. Click Add.

8. Repeat the last step for each option class or option class group you want in the
tab.

9. Click Move Up or Move Down to arrange the order of the entities. To remove
an entity, click the entity, then click Remove.

10. Click Save All Changes.

To Modify a Tab

1. Navigate to the model with the tabbed interface.

See "To Access the Visual Modeler" on page 446 for information on how to
navigate the model group hierarchy.

2. Click the Tabs tab.

This displays the Tabs tab.

3. Find the tab element you want to modify.

4. To rearrange the order of the entities within the tab:

a. Find and select the entity you want to move.

b. Click Move Up or Move Down.

5. To remove an entity:

a. Find and select the entity you want to remove.

b. Click Remove.

6. To rearrange the location of the tab within the list of tabs, click the up or down
arrows in the far right.

Note: If you are creating a tabbed UI, then not all option classes must be accounted
for in the tabs. Any option classes not included in a tab will not be displayed
to the end-user.
Visual Modeler Application Guide 489

Using the Visual Modeler

490
7. Click Save All Changes.

To Delete a Tab

1. Navigate to the model with the tabbed interface.

See "To Access the Visual Modeler" on page 446 for information on how to
navigate the model group hierarchy.

2. Click the Tabs tab.

This displays the Tabs tab.

3. Find the tab element you want to delete.

4. On the far right, click the Delete icon (X) for that tab.

5. Click Save All Changes.
Visual Modeler Application Guide

CHAPTER 37 Advanced Visual Modeler Concepts
The basic concepts and tasks of modeling are covered in CHAPTER 36, "Using the
Visual Modeler". This chapter and the next, CHAPTER 38, "Visual Modeler UI
Concepts", describes the more advanced concepts associated with building
complex models. This chapter covers:

• "Properties" on page 492

• "Working With Properties" on page 493

• "Using Worksheets" on page 502

• "Properties as Variables" on page 504

• "Visual Modeler Properties" on page 505

• "Lists" on page 506

• "Working With Lists" on page 507

• "Rules" on page 510

• "Working With Rules" on page 510

• "Working With Rule Fragments" on page 523

• "Working with Rule Actions" on page 537

• "Fragments" on page 523
Visual Modeler Application Guide 491

Advanced Visual Modeler Concepts

492
• "Working with Rule Actions" on page 537

• "Option Constraints" on page 545

• "Working With Constraints" on page 545

• "Importing and Exporting Models" on page 553

• "Importing Model Groups and Models" on page 553

• "Exporting Model Groups and Models" on page 554

• "Using Dynamic Instantiation" on page 555

• "Searching" on page 556

• "Reporting" on page 558

Properties
A property is an attribute of a model, option class, or option item. It is used as a
basic building block for rule creation.

The Visual Modeler provides a set of built-in properties which are understood by
the Sterling Configurator engine. These control the behavior of the engine and the
presentation of the model to the end-user. These properties are summarized in
"Visual Modeler Properties" on page 505.

You can also define properties and they are available for use in any part of the
model group and model hierarchy beneath the point at which they are defined.
These defined properties are used to describe the product so that the Sterling
Configurator engine can ensure that the user-configured model is valid.

You can also use properties as variables and write rules that reason on the
properties' values using functions such as value and expand.
Visual Modeler Application Guide

Properties
Working With Properties

To Define a Property

1. Navigate to and select the location in the model group hierarchy where you
want to create the property.

See "To Access the Visual Modeler" on page 446 for information about how
to navigate the model group hierarchy.
This is important since where you create the property determines what
objects in the hierarchy can use the property.

2. When you reach the appropriate level, click the Properties tab.

3. If you are working in a model, then within the Properties tab, click the Define
tab.

4. Enter a name for the property.

5. Select a property type from the drop-down list.

• Number: use this for any property whose value is determined by a
number. For example, the weight of an item could be expressed as a real
number of grams (including decimals).

• String: use this for any property that is expressed as a word or phrase. For
example, you can use a string-valued property to indicate the color of an
option item.

If you select this type, then the Localize field is enabled. If you check
this box, then you can enter values for this property in any of the
supported locales. In other words, if you enter the original value in
English, then you can change the system locale to German and then
modify the property's value in German. The German value will appear
for those users whose locale is German; the English value will appear
for those users whose locale is English.

• List: use this for any property where the value of the property must be
selected from a list. For example, the availability of an item might be
limited to specifying one or more days of the week. You can capture this in
the form of a property by defining a list called "Weekdays" whose values
are Sunday, Monday, and so on, concluding with Saturday.

Note: Do not begin a property name with "UI:" or "CONFIG". Do not include a
period (.) in a property name.
Visual Modeler Application Guide 493

Advanced Visual Modeler Concepts

494
6. If applicable, define a default value that this property takes. You can override
this value when you apply the property to an item or class.

If you selected "List" as the property type, then the Value field displays a
drop-down selection of the current lists available. Select a list. See "Lists"
on page 506 for information about creating lists.

7. Click Add.

The new property appears in the boxes below the fields.

8. Click Save All Changes to save the new property.

To Attach a Property
You define a property at the model group or model level (see "To Define a
Property" on page 493). You attach a property to a model, an option class, or an
option item.

1. Click Configuration Models in the Product and Catalog Administration panel
on the Visual Modeler home page.

2. In the Navigation frame, navigate to the object to which you want to attach the
property.

3. Click the Properties tab.

This displays two sets of fields: one called Unattached Properties for
selecting properties and defining values for them, and one called Attached
Properties that shows the properties that are currently attached.

Note: The Properties tab for a model contains two tabs: Attach and Define. You
use the Define tab to define properties. See "To Define a Property" on
page 493.
Visual Modeler Application Guide

Properties
FIGURE 48. Properties Tab
4. Select a property from the Unattached Properties drop-down list.

The property will display any default value defined for it.

5. Enter a value for the property. You can set the value of a property simply by
entering its value in the text field, or you can use a property editor window to
set a value. See "To Use the Property Editor Window" on page 496 for details.

6. Click Attach.

The newly-attached property appears among the Attached Properties.

7. Click Save All Changes.

Attention: You must perform this last step. Otherwise the property will not be
attached.
Visual Modeler Application Guide 495

Advanced Visual Modeler Concepts

496
FIGURE 49. Input/Output Properties Tab

FIGURE 50. Input/Output Properties Tab Remove Button

To Use the Property Editor Window
The Numeric Property Editor window and the String Property Editor window are
used to edit property values.

1. You can invoke the property window editor simply by clicking the Edit button
next to any property.

When you do so, a Property Editor window is displayed.
Visual Modeler Application Guide

Properties
FIGURE 51. Numeric Property Editor Window

FIGURE 52. String Property Editor Window
2. You can use this window to specify a fixed value of a property or to specify a

formula that is used to calculate a value at runtime. If the first character of the
text area is "=", then the editor window assumes that you want to create a
formula, and the expansion fields are activated to help you define the formula.

3. The syntax of a formula depends on whether you are editing a numeric or a
string property:

a. If you are working on a numeric property, then when you specify a
formula, use the drop-down lists as follows:

• Function: select one of the defined functions.

• Property: specify the property whose values should be used to calculate
the function.
Visual Modeler Application Guide 497

Advanced Visual Modeler Concepts

498
• Location: specify where the named property (or properties) should be
located. You can select an option item or select one of the following values
for the location:

• unspecified: select this to use the named property anywhere it is
defined in the model. First, the current position is checked to see if the
property is defined at that location, if not, then the standard algorithm
is followed to see if the property is defined anywhere else in the
model.

• relative: select this to use the named property at the current location.

a. If you are working on a string property, then when you specify a formula,
use the drop-down lists as follows:

• Choose among gather, match, and expand:

• gather: use this in assigning actions to a string property. It finds all
occurrences of the specified property in the property pool and creates
a string with the semicolon separating the values of these occurrences.

• match: use this in writing rule fragments. It provides a mechanism to
compare a string to the value of a property.

• expand: use the expand function as described in "Working with
Display Properties" on page 562.

To Modify or Remove an Attached Property
You can only modify the value of an attached property at the local level to which it
is attached. To modify the name or default value, see "To Modify or Delete a
Property Definition" on page 499.

1. Click Configuration Models in the Product and Catalog Administration panel
on the Visual Modeler home page.

2. In the Model Groups frame, navigate to the element to which the property is
attached.

If the property is attached to a model:

a. In the Model Groups frame, click the model group that contains the model.

b. In the Models and Groups frame, click the model to which the property is
attached.

c. Click Edit in the toolbar.

If the property is attached to an option class or option item:
Visual Modeler Application Guide

Properties
a. In the Model Groups frame, click the model group that contains either the
model or group with the option class or option item.

b. In the Models and Groups frame, click the model or group.

c. Click Edit in the toolbar.

d. In the Navigation frame, find and click the option class or option item.

3. Click the Properties tab.

This tab displays two sets of fields: one called Unattached Properties for
selecting properties and defining values for them, and one called Attached
Properties that shows the properties that are currently attached.

4. Find the property you want to modify or remove.

5. Modify or remove the attached property:

• If necessary, change the value of a property.

Note that this only changes the value locally, at the level it is attached.
To change the default value of the property, see "To Modify or Delete a
Property Definition" on page 499.

• To remove an attached property, click Remove.

6. Click Save All Changes.

To Modify or Delete a Property Definition

1. Click Configuration Models in the Product and Catalog Administration panel
on the Visual Modeler home page.

2. Navigate to and select the location in the model group hierarchy where the
property is defined.

• At the root model group level:

The Visual Modeler page automatically displays the root model group
when you access Visual Modeler. If the root model group is not
selected, then click on the root model group.

• At the model group level, navigate to and click the model group in the
Model Groups frame.

Note: If the property is attached to a model, you will see two tabs within the
Properties tab: Attach and Define. The Attach tab is automatically
displayed.
Visual Modeler Application Guide 499

Advanced Visual Modeler Concepts

500
• At the model level, navigate to and click the model group that contains the
model. Then, in the Models and Groups frame, click the model. Now click
Edit Model in the toolbar.

In all of these cases, this displays the General Info tab for the group or
model.

3. Click the Properties tab.

At the model group level, this displays the properties defined at that level.
At the model level, this displays two tabs: Attach and Define. If the
property is attached anywhere in the model group hierarchy, you will not be
able to modify the property type. If the property is attached anywhere in the
model group hierarchy, you will not be able to delete the property
definition.

4. If you want to modify an unattached property, click the Define tab. Within the
Define tab, find the property you want to modify or delete.

FIGURE 53. Model Properties Define Tab
5. If you want to modify an attached property, click the Attach tab. Within the

Attach tab, find the property you want to modify or remove.
Visual Modeler Application Guide

Properties
FIGURE 54. Model Properties Attach Tab
6. Modify or delete the property definition (property type or value).

FIGURE 55. Model Properties Input/Output Tab
7. Click Save All Changes.

Name changes and value changes will be propagated to anywhere the property is
attached. The value change is the default value for the property. It will not override
any values set for the attached property.
Visual Modeler Application Guide 501

Advanced Visual Modeler Concepts

502
Using Worksheets
 Worksheets provide quick access to a group of properties, enabling you to easily
maintain all of a model's properties in one place. A worksheet is a table that assigns
property values to option items:

• Rows represent option items

• Columns represent properties

Each worksheet belongs to a model and can be used to set the values of properties
of that model. You can still set the values for properties as described in "To Attach a
Property" on page 494.

For example, suppose that a model of a computer has an option class for hard
drives. Each hard drive option item has a number of properties such as capacity,
RPM, latency, and buffer cache. You can create a worksheet to maintain the hard
drive properties, similar to the following table:

To Create a Worksheet

1. Navigate to the model for which you want to create a worksheet.

2. Click the Worksheets tab.

3. Click New....

4. In the New Worksheet window, enter a name for the worksheet, and click
Create.

5. Add the option items whose properties you want to set using this worksheet.
You do this by clicking Add Row, and then navigating to each option item in
turn using the entity picker window.

6. Add the properties to the worksheet by clicking Add Column and in the Add
Column dialog box, select each property from the drop-down list of properties
defined for this model. You can create a new property by clicking

TABLE 25. Hard Drive Worksheet

Option Item Capacity RPM Latency Buffer Cache

WD Protege 160 5400 5.00 2

WD Caviar 250 7200 4.20 2

WD Caviar SE 250 7200 4.20 8

WD Essential 250 7200 4.20 2
Visual Modeler Application Guide

Properties
New Property in the Add Column window, and then entering the new property
details in the Define New Property window.

7. After you have added the rows and columns for your worksheet, you can enter
values for each option item and property.

8. Click Save All Changes.

To Modify a Worksheet
You can modify a worksheet at any time. Changes to property values are effective
immediately, and will be compiled with the other model details when you next
compile the model.

1. Navigate to the model to which the worksheet belongs.

2. Click the Worksheets tab.

3. Select the name of the worksheet form the drop-down list.

4. Click Select.

5. In the worksheet, you can do the following:

• Change the name of the worksheet: click the worksheet name and enter a
new name for the worksheet.

• Add a new row: click Add Row and select option items as required.

• Move a row: click the link to the row, and select its new position from the
drop-down list of rows.

• Remove a row: click the link to the row, and click Delete.

• Add a new column: click Add Column, and select the property from the
drop-down list.

• Move a column: click the column name, and select its new position form
the drop-down list of columns.

• Delete a column: click the column name and click Delete.

To Export a Worksheet
There are times when it is more convenient to manage the values of properties
when you have the worksheet in the form of a spreadsheet that you maintain on
your local machine. You can export a worksheet in the form of a comma-separated
values (CSV) file, and then open this file in your preferred spreadsheet program to
manage the values. You can then import the modified spreadsheet to update the
Visual Modeler Application Guide 503

Advanced Visual Modeler Concepts

504
values in the worksheet: see "To Import a Worksheet" on page 504 for details on
importing a worksheet.

1. Navigate to the model to which the worksheet belongs.

2. Click the Worksheets tab.

3. Select the name of the worksheet from the drop-down list.

4. Click Select.

5. Click Export....

6. In the File Download window, click Save.

7. In the Save As window, navigate to the directory on your local machine to
which you want to save the file, and then click Save.

The file is saved to your local machine.

To Import a Worksheet
When you have finished editing a spreadsheet for a worksheet, save it as a comma-
separated values (CSV) file. Follow these steps to import the worksheet into the
Visual Modeler.

1. Navigate to the model to which the worksheet belongs.

2. Click the Worksheets tab.

3. Click Import....

4. In the Worksheet Import window, click the Browse... button.

5. In the Choose File window, navigate to and select the spreadsheet that you
want to import.

6. Click Open.

7. In the Worksheet Import window, click Import Now.

The spreadsheet is imported into the Visual Modeler.

Properties as Variables
You can evaluate the value of a property in defining rules and properties using this
syntax: ${function(...)}. This enables you to define a property as a function of
another property. This can be useful in defining display properties and in defining
mathematical formulae for rules. For example, you can use
${expand(property[,default[,format]])} to display properties of models.
Visual Modeler Application Guide

Properties
For example, suppose that you have a numerical property called
"Monitor Size"defined on a series of monitors that expresses the screen size in
inches and suppose that you want to present this information in a table in the form
"17.00 inches". You can define a property called Display Monitor Size by
"${expand("Monitor Size","n/a",0.00)} inches". Now use this new property in the
display of the model and users will see the size expressed as "17.00 inches" if the
underlying Monitor Size property has the value "17". Note that if the Monitor Size
property is not defined, then "n/a inches" is displayed.

Visual Modeler Properties
The following table summarizes the properties that are built in to the Visual
Modeler. Note that UI properties are covered in CHAPTER 38, "Visual Modeler UI
Concepts".

TABLE 26. Visual Modeler Properties

Property Type Comments

""""

CONFIG: FIRST FIRE numeric 1 if this is the first time firing rules, 0 otherwise.

CONFIG: POOL SIZE numeric Number of copies of a model to keep in the
model pool.

Determines whether or not the price of a
particular line item in a bill of materials is
locked. Set CONFIG: PRICE LOCKED > 0 to
lock the price; 0 to unlock the price.

CONFIG: REPEAT
FIRING

string "yes" or "true" turns on looping in the rule
engine, causing rules to fire as long as the
current state keeps changing. Since rules are
removed from the rule list whenever they fire,
this is not an infinite loop.

CONFIG: SUBMODEL
NAME

string The encoded name of another model. Encoding
replaces potentially unsafe file system
characters with _XXXX where XXXX is the
hex representation of their Unicode character
code. For example, a space is represented by
"_0020". See "Special Characters Encoding" on
page 484 for more information.
Visual Modeler Application Guide 505

Advanced Visual Modeler Concepts

506
Lists
In many cases, the values a property may take can be expressed as a number or as a
string of characters. In some cases however, a property has to take one of a certain
number of pre-specified values such as the days of the week, or one of a set of
manufacturer-specified formats such as SM, M, L, or XL.

CONFIG: SUBMODEL
RETURN

string "yes" or "true" implies that when we punch into
a submodel specified by the previous property
we will be returning with that models BOM as a
child of this model.

_cacheKey string Used on a model node to contain the key used
to store the model in the model cache.

_description string The description of an item.

_errorCount numeric Number of errors encountered during rule
firing.

_fileSize string String representation of a Long value, size of
the XML file for a model.

_lastModified string Last modified date for a model as a string
(number of seconds since some important date).

_modelTabs list List of tab names for the model.

_name string The name of an option item, option class, or
model.

_parent.<item names> varies Properties inherited by a submodel from the
parent.

_pickItems list Internally used to keep track of picked items.

_pickmap.<itemKey> string Mapping of an item to an option class.

_picks list Internally used to keep track of picked items.

_quantity integer Quantity selected, if >0 the item is picked.

_sequence numeric Rule firing sequence, if 0 this is the first time
through the loop, 1 is the second, and so on.

_tabMembers<#> list Where <#> is a tab number (0...N), these
properties contains the names of the root level
option classes that are part of the tab whose
index is <#>.

TABLE 26. Visual Modeler Properties (Continued)

Property Type Comments
Visual Modeler Application Guide

Lists
In these situations, the best approach to take is to define a property, of List type.
Then you can write rules to test whether the value of the first property is in the list
that is the value of the List property.

Thus, if you have a property called ShirtSize and you want to restrict the choices
that a user can select to SM, M, L, or XL, then the steps are:

1. Create a list called ShirtSizeList. Enter values for the list: in this case SM, M,
L, and X.

2. Create a property called AvailableShirtSizes whose type is List and assign it
the value ShirtSizeList.

3. Create the ShirtSize property and assign it to option items as appropriate.

4. Create a rule that specifies that the value of the ShirtSize property must be in
the list of the AvailableShirtSizes property.

Working With Lists

To Define a List

1. Navigate to the model group or model for which you want to define the list.

See "To Access the Visual Modeler" on page 446 for information about how
to navigate the model group hierarchy.

2. Click the Lists tab.

This displays any lists already defined.

3. Click New....

This displays the New List tab.
Visual Modeler Application Guide 507

Advanced Visual Modeler Concepts

508
FIGURE 56. New List Tab
4. Enter a name and description for the list.

5. Define the values for the list.

a. Enter a value in the New Value field.

b. Click Add Item.

6. Repeat the last step for each value you want to add.

7. Click Save to save the values and remain at the New List tab.

When you click Save and Return, you save the values and return to the Lists tab.
The new list appears among the defined lists.

To Modify a List

1. Navigate to the model which contains the list you want to modify.

See "To Access the Visual Modeler" on page 446 for information about how
to navigate the model group hierarchy.

2. Click the Lists tab.

This displays any lists already defined.

3. Click the name of the list you want to modify.

This displays the Edit List tab.
Visual Modeler Application Guide

Lists
FIGURE 57. Edit List Tab
4. Modify the name or description.

5. Delete values from the list.

a. Select one or more values in the list.

b. Click Delete.

6. Add values to the list.

a. Type a value in the New Value field.

b. Click Add Item.

7. Modify values in the list.

There is no way to modify a value in a single step. You must delete the old
value and add the new one.

8. Click Save to save the values and remain at the Edit List tab.

When you click Save and Return, you save your changes and return to the Lists
tab.

To Delete a List

1. Navigate to the model which contains the list you want to delete.

See "To Access the Visual Modeler" on page 446 for information on how to
navigate the model group hierarchy.
Visual Modeler Application Guide 509

Advanced Visual Modeler Concepts

510
2. Click the Lists tab.

This displays any lists already defined.

3. Among the defined lists, find the list you want to delete.

4. Click Delete on the same line as the list you want to delete.

The list disappears from among the defined lists.

5. Click Save All Changes.

Rules
Working With Rules

To Define a Rule

1. Navigate to the detail page for the model group or model where you want to
create the rule.

See "To Access the Visual Modeler" on page 446 for information on how to
navigate the model group hierarchy.

2. Click the Rules tab.

a. If you are defining the rule at the model level, then the Rules tab displays
two tabs: Attach and Define. Click the Define tab.

b. The model group level contains a single tab for defining the rule.

Attention: This last step is important! If you click Delete, but do not click Save All
Changes, then the list will not be deleted.
Visual Modeler Application Guide

Rules
FIGURE 58. Define Tab for a Model Rule
3. Click New....

This displays the New Rule tab.

FIGURE 59. Model Page: New Rule Tab
Visual Modeler Application Guide 511

Advanced Visual Modeler Concepts

512
FIGURE 60. Model Group Page: New Rule Tab
4. Select a classification for the rule and specify a priority.

You can create your own rule classifications: see "To Create a Rule
Classification" on page 514. Rule priorities are used to determine the order
in which rules are fired: lowest numbers fire first. You should use values
between 0 and 100: 50 is the default value.

5. Enter a name and description for the rule. Also, select whether the rule is
triggered when the rule's conditions are met (success) or not met (failure).

6. Define the fragments of the rule.

See "Fragments" on page 523.

7. Define the rule actions.

You can define messages to be displayed, a rule expansion formula, or you
can assign properties and values. See "Working with Rule Actions" on
page 537.

8. Click Save.

Note: No syntax checking is performed on rules. The configurator engine will fail
to load a model if there is a syntax error in any of the assigned rules.
Visual Modeler Application Guide

Rules
To Modify a Rule

1. Navigate to the model group or model where the rule was created.

See "To Access the Visual Modeler" on page 446 for information on how to
navigate the model group hierarchy.

2. Click the Rules tab.

The Rules tab for the Model level displays two tabs: Attach and Define. To
modify the rule, click the Define tab. The model group level contains a
single tab for defining the rule.
The Rules tab displays a table with the currently defined rules.

3. Find the rule you want to modify, then click the Edit icon.

The Edit Rule tab displays.

4. Modify the Name and Description as necessary.

5. Add or modify Comments as necessary.

6. Modify whether the rule is triggered when the rule's conditions are met
(success) or not met (failure, as necessary).

7.

FIGURE 61. Edit Rule Tab
8. Modify the rule fragments in the Fragments table.

See "Fragments" on page 523.
Visual Modeler Application Guide 513

Advanced Visual Modeler Concepts

514
9. Add or modify actions in the Actions area.

You can define messages to be displayed, a rule expansion formula, or
assign properties and values. See "Working with Rule Actions" on
page 537.

Repeat these steps for each rule you want to modify. You can click Where Used at
the bottom of the tab to view the entities to which the rule is attached. See "To View
Rule Attachments" on page 517.

To Create a Rule Classification
You can create new rule classifications as follows.

1. Navigate to the rule creation page: see "To Define a Rule" on page 510.

2. Click ... next to the Classification drop-down list.

FIGURE 62. Rule Classification Window
3. In the Rule Classification Window, enter a name for the classification, and

click Add Item.

4. Click Save and Return.

To Attach a Rule

1. Navigate to the level in the model hierarchy (model, option class or option
item) where you want to attach the rule.

See "To Access the Visual Modeler" on page 446 for information on how to
navigate the model group hierarchy.
Visual Modeler Application Guide

Rules
2. Click the Rules tab.

At the model level, the Rules tab contains two tabs: Attach and Define. At
the option class and option item levels, the Rules tab looks like the Attach
tab.
The Attach tab displays a drop-down list of the unattached rules, as well as
a table showing the rules that are currently attached.

FIGURE 63. Rules Tab
3. Select a rule from the drop-down list in the Unattached Rules table.

4. Click Attach.

The rule is appended to the end of the current rules in the Attached Rules
table.

5. Define the start and end dates for the rule.

6. If you want this rule to be a checkpoint, check the box the Stop Firing column.

When checked, this rule acts as a checkpoint: if any errors have occurred up
to this point in the rule firing, then processing will stop at this point and the
errors will be displayed. If no errors have occurred, then rule firing will
continue until all the rules are fired or the next checkpoint is hit.

7. Determine the sequence.

The rules will fire within the element to which they are attached in the order
they appear in the list. You can modify the order using the up or down
arrows to the right of the rule.

8. Click Save All Changes.
Visual Modeler Application Guide 515

Advanced Visual Modeler Concepts

516
To View the Details of an Attached Rule
Once you have attached a rule, you can view the details of the attached rule by
clicking the rule's name in the Attach tab.

1. Navigate to the level in the hierarchy (model, option class, or option item)
where the rule is attached.

See "To Access the Visual Modeler" on page 446 for information on how to
navigate the model group hierarchy.

2. Click the Rules tab.

At the model level, the Rules tab contains two tabs: Attach and Define. At
the option class and option item levels, the Rules tab looks like the Attach
tab.
The Attach tab displays a drop-down list of the unattached rules, as well as
a table showing the rules that are currently attached.

FIGURE 64. Attach Tab
3. Find the rule among the list of attached rules in the lower part of the frame.

4. Click the name of the rule.

This displays the Rule Detail Viewer.
Visual Modeler Application Guide

Rules
FIGURE 65. Rules Detail Viewer

To View Rule Attachments
You can use this procedure to see where a rule is attached.

1. Navigate to the model group or model where the rule was created.

See "To Access the Visual Modeler" on page 446 for information on how to
navigate the model group hierarchy.

2. Click the Rules tab.

The Rules tab for the Model level displays two tabs: Attach and Define. To
modify the rule, click the Define tab. The model group level contains a
single tab for defining the rule.
The Rules tab displays a table with the currently defined rules.

3. Find the rule you want to modify, then click the Edit icon.

The Edit Rule tab displays.
Visual Modeler Application Guide 517

Advanced Visual Modeler Concepts

518
FIGURE 66. Edit Rule Tab
4. Click Where Used....

The Rule Usage window displays.

FIGURE 67. Rule Usage Window

To Unattach a Rule

1. Navigate to the level in the model hierarchy (model, option class or option
item) where the rule is attached.

See "To Access the Visual Modeler" on page 446 for information about how
to navigate the model group hierarchy.
Visual Modeler Application Guide

Rules
2. Click the Rules tab.

At the model level, the Rules tab contains two tabs: Attach and Define. At
the option class and option item levels, the Rules tab only contains
attachments.
The Rules tab displays a drop-down list of the unattached rules, as well as a
table showing the rules that are currently attached.

3. Find the rule in the Attached Rules table.

4. Click the Delete symbol (X) at the end of the rule's row in the table.

The rule returns to the Unattached Rules table.

5. Click Save All Changes.

To Delete a Rule
You can delete rules when they are no longer required.

1. Navigate to the model group or model where you created the rule.

See "To Access the Visual Modeler" on page 446 for information about how
to navigate the model group hierarchy.

2. Click the Rules tab.

At the model level, the Rules tab contains two tabs: Attach and Define. At
the model group level, you can only define. If the rule you want to delete
was created at the model level, then click the Define tab.

3. Find the rule you want to delete.

4. Click the Delete icon next to the rule you want to delete.

5. Click Save All Changes.

To Move or Copy a Rule
It is sometimes necessary to re-organize your model hierarchy and in doing so, you
may need to move the rule definitions too. You can move or copy a rule: moving
means that the rule definition is deleted from its previous location whereas copying
means that you create a copy of the rule without deleting its original definition.

1. Navigate to the rule definition that you wish to move or copy.

2. Click Copy Rule.

Note: You cannot delete a rule if the rule is currently attached to any node in the
model hierarchy.
Visual Modeler Application Guide 519

Advanced Visual Modeler Concepts

520
FIGURE 68. Rule Copy or Move Window
3. Click Browse... to open the entity picker window.

4. Navigate to the model group or group to which you want to move or copy the
rule definition, select it and click Done.

5. If you want to, you can then change the name of the rule definition.

6. Click Move or Copy as appropriate.

An error message is displayed if a rule with the same name already exists in
the target location. If a property referenced in the rule does not exist in the
new location, then it is created at the same time as the rule is.

7. Click Close.

Rule Firing
Each time a model is validated, the rules are fired to determine whether each rule
succeeds or fails. You can control the order in which rules fire by setting a priority
for each rule: see "To Specify the Rule Firing Sequence" on page 520. When you
are testing a model, you can review the model firing behavior: see "To Review Rule
Firing" on page 521. You can also specify whether rules are fired just once or
possibly multiple times: see "To Force Multiple-Pass Rule Testing" on page 523.

To Specify the Rule Firing Sequence

1. Navigate to the model.

2. Click the Rules tab.

3. Click the Firing Sequence sub-tab.
Visual Modeler Application Guide

Rules
FIGURE 69. Firing Sequence Tab
4. Enter a priority for each rule: this should be an integer between 0 and 100.

The higher the value the lower the priority: that is rules with lower priority
value will fire before rules with a higher priority value. The default value is
50.

To Review Rule Firing

1. Navigate to the model whose rule firing you want to review.

2. Click Test.

3. In the Product Configurator window, click Show Trace Log.
Visual Modeler Application Guide 521

Advanced Visual Modeler Concepts

522
FIGURE 70. Configurator Rule Firing Trace Window
4. The secondary window displays a trace of the results of the rule firing. You can

review this to determine if rules are firing as you expect.

Controlling Rule Firing
When Sterling Configurator validates a model and the current set of picks, it tests
each rule in turn to evaluate them for success or failure, and performs expansion
and assignment actions as appropriate. There are different ways in which rule firing
can behave:

• Each rule is tested only once when a model is validated. This is referred to
as single-pass rule firing.

• You can configure a model so that if any rules are fired, the fired rules are
removed from the rules list and the remaining rules are tested again. This
Visual Modeler Application Guide

Fragments
process continues until no more rules are fired. This is referred to as
multiple-pass rule firing.

The property CONFIG: REPEAT FIRING controls this behavior. By
default, only single-pass firing is performed.

To Force Multiple-Pass Rule Testing

1. Navigate to the model whose rule firing you want to control.

2. Click Properties.

3. Select CONFIG: REPEAT FIRING from the Unattached Properties
drop-down list.

4. Set its value to “true” and click Attach.

5. Click Save All Changes.

You can verify that the rules fire only once by following the steps described in "To
Review Rule Firing" on page 521. In the summary section of the trace log, you
should see that there was one firing phase.

FIGURE 71. Trace Log Summary Section

Fragments
As you create rules, you must create rule fragments that perform the rule logic. This
section describes in detail how to create and work with rule fragments.

Working With Rule Fragments
This section describes the procedures to define or modify the fragments of a rule
when you are creating ("To Define a Rule" on page 510) or modifying ("To Modify
a Rule" on page 513) a rule. The Fragment area appears as in Figure 72 on
page 524.
Visual Modeler Application Guide 523

Advanced Visual Modeler Concepts

524
FIGURE 72. New Rule and Defining Fragments

Click the arrow icon, , to toggle the visibility of sections of the Fragments area
and enable working with them. For example, click the arrow to display the foreach
section:

FIGURE 73. New Rule and Foreach Section Display
The following table describes the buttons that display in the Fragments area of the
New Rule tab.

TABLE 27. Rule Buttons

Button Name

New Operator button

New Fragment button
Visual Modeler Application Guide

Fragments
Click the New Operator icon to create a nested level for creating fragments, as
shown in Figure 74 on page 526. The new level displays a new set of New
Fragment and New Operator links. You use this New Fragment link to create the
fragments at this nested level. If you click New Operator at this level, then you
will create another nested level below this one with another set of New Fragment
and New Operator links for that level.

Click the New Fragment icon to create a fragment at the currently displayed level
(in this case, the top level) in the rule structure. Click New Fragment again to
create a second fragment at the currently displayed level. In other words, the rule
would be:

FragmentA AND FragmentB

Click the Delete button to delete the fragment.

Click the Edit button to modify the fragment.

Delete button

Edit button

TABLE 27. Rule Buttons (Continued)

Button Name
Visual Modeler Application Guide 525

Advanced Visual Modeler Concepts

526
FIGURE 74. New Rule Tab with Nested Levels

Foreach
A rule condition can have a property called the foreach property. Use the foreach
property to loop through the property pool, identify all instances of a specified
property, and act on a set of found values. You associate the foreach property with a
property defined in the model. Each occurrence of the foreach property is bound to
an "as" property.

For example, to increase the price of any node found selected in the model that has
the SKU MXDS-7500 and for which the rackMountable property is true, you could
use foreach in the following way:

foreach sku as tempSku
IF value(tempSku) == literal(MXDS-7500)
AND propval(itemType) == literal("rackMountable")
THEN UI: PRICE = value(UI: PRICE) * 1.1
Visual Modeler Application Guide

Fragments
Example: To Create a Simple Level of Fragments
In this example, you are attempting to create a rule consisting of two fragments,
joined by a single operator, with no nested levels: FragmentA AND
FragmentB. When you access the tab, the New Rule tab appears as in Figure 75
on page 527.

FIGURE 75. New Rule Tab for a Single-Level Rule
1. Select the boolean operator you want for these fragments.

2. Click the New Fragment icon

This displays the New Fragment tab.
Visual Modeler Application Guide 527

Advanced Visual Modeler Concepts

528
FIGURE 76. New Fragments Tab
3. Define the fragment.

a. Check the Not check box if you want to define the fragment as a negative:
"NOT (sum(PropertyA <= 250))".

b. Select the first function from the Function1 drop-down list.

c. Select a property from the Property1 drop-down list.

d. Select the operator.

e. Select the second function from the Function2 drop-down list.

f. In the Property2 field, select a property from the drop-down list or enter a
literal value in the field (if you selected "literal" as the function).

g. Select the value for the If Not Specified drop-down list.

4. Click Save and Return.

This re-displays the New Rule tab with the new fragment, as shown in
Figure 77 on page 529. Also, notice the infix representation.
Visual Modeler Application Guide

Fragments
FIGURE 77. New Rule Tab with New Fragment
5. Click the New Fragment icon to create the next fragment in the rule.

6. Repeat Step 3 to define the second fragment.

7. Click Save and Return.

This re-displays the New Rule tab with the fragment you created, as shown
in Figure 78 on page 530. Notice that the rule has two fragments now.

You can click Save to save the rule and continue defining the rule. Click Save and
Return to return to the list of rules in the Define tab.
Visual Modeler Application Guide 529

Advanced Visual Modeler Concepts

530
FIGURE 78. New Rule Tab with Two New Fragments

Example: To Create Nested Fragments
In this example, the modeler is creating the following rule with nested fragments:

(FragmentA AND FragmentB) OR (FragmentC AND FragmentD)
Visual Modeler Application Guide

Fragments
FIGURE 79. New Rule Tab
1. Click New Operator icon.

A nested level appears in the New Rule tab, as shown in Figure 80 on
page 532. This level has its own drop-down boolean operators, as well as its
own New Fragment, New Operator, and Delete Operator icons.
Visual Modeler Application Guide 531

Advanced Visual Modeler Concepts

532
FIGURE 80. New Rule Tab with Nested Fragments
2. Create two fragments as described in "Example: To Create a Simple Level of

Fragments" on page 527.

Use the nested drop-down list to select the boolean operator for these
fragments. The default is AND.
Use the nested New Fragment icon to create the fragments at this nested
level.
When the two fragments are completed, the New Rule tab appears as in
Figure 81 on page 533.

You can nest as many fragments as you want by clicking the nested New Operator
icon. Each time, a new nested operator will appear with a new set of nested icons.
You use these nested icons to create the fragments for the nested level.
Visual Modeler Application Guide

Fragments
FIGURE 81. New Rule Tab with Nested Fragments
3. Using the top-level list, select the boolean operator (in this example, OR) that

will join the two nested levels.
Visual Modeler Application Guide 533

Advanced Visual Modeler Concepts

534
FIGURE 82. Nested Fragments with OR Boolean
4. Click the New Operator icon at the top level.

A new nested level appears in the fragments tab, as shown in Figure 83 on
page 535. This level has its own drop-down boolean operators, as well as its
own New Fragment, New Operator, and Delete Operator icons.
Visual Modeler Application Guide

Fragments
FIGURE 83. Nested Fragments
5. Create two fragments as described in "Example: To Create a Simple Level of

Fragments" on page 527.

Use the nested drop-down list of boolean operators and the nested New
Fragment icon for these fragments.
When the two fragments are completed, the New Rule tab appears as in
Figure 84 on page 536.
Visual Modeler Application Guide 535

Advanced Visual Modeler Concepts

536
FIGURE 84. Two Nested Fragments Joined by OR

To Modify a Fragment

1. Find the fragment you want to modify, then click on the Edit Fragment icon
in the Actions column.

This displays the Edit Fragment tab.
Visual Modeler Application Guide

Fragments
FIGURE 85. Edit Fragment Tab
2. Modify one or more elements of the fragment.

a. Check the Not check box if you want to define the fragment as a negative:
“NOT (sum(PropertyA <= 250))”.

b. Select the first function from the Function1 drop-down list.

c. Select a property from the Property1 drop-down list.

d. Select the operator.

e. Select the second function from the Function2 drop-down list.

f. In the Property2 field, select a property from the drop-down list or enter a
literal value in the field (if you selected “literal” as the function).

g. Select the value for the If Not Specified drop-down list.

3. Click Save And Return.

To Delete a Fragment
Find the fragment you want to delete in the Fragments table, then click the Delete
icon in the Actions column on the same line as the fragment.

Working with Rule Actions
Perform these tasks when you want to include a rule action when you are creating
("To Define a Rule" on page 510) or modifying ("To Modify a Rule" on page 513) a
rule.
Visual Modeler Application Guide 537

Advanced Visual Modeler Concepts

538
You define rule actions in the lower part of the New Rule or Edit Rule tab. Rule
actions comprise three types of actions:

• Message Actions: A message that is displayed when the rule is triggered.

• Formula and Expansion Actions: Defines an expansion action based on
a rule expansion formula.

• Assignment Actions: Assigns the value calculated by the rule formula to
one or more properties when the rule is triggered.

FIGURE 86. New Rule Tab Showing Action Area

To Create a Message Action
When you are creating ("To Define a Rule" on page 510) or modifying ("To Modify
a Rule" on page 513) a rule, you perform this task in the Message Actions area of
the New Rule or Edit Rule tab.
Visual Modeler Application Guide

Fragments
1. Select the type of message action from the drop-down list: Error, Warning,
Suggestion.

2. Type the message.

3. Click Add Item.

4. Repeat these steps to enter additional messages.

5. Click Save to save the message action and continue editing. Click Save and
Return to save the message and return to the Define tab.

FIGURE 87. Edit Rule Tab with Message Action

To Create an Expansion Action
When you are creating ("To Define a Rule" on page 510) or modifying ("To Modify
a Rule" on page 513) a rule, you perform this task in the Expansion Actions area of
the New Rule or Edit Rule tab.
Visual Modeler Application Guide 539

Advanced Visual Modeler Concepts

540
1. Enter a formula.

The results of formula will be used to perform the expansion.

FIGURE 88. Expansion Action
2. Enter a minimum and a maximum amount of the formula result.

The minimum amount is the minimum value the rule formula result must be
greater than. This value can be negative or greater than or equal to zero. The
value must be less than the maximum value (Max). The maximum amount
is the maximum value the rule formula result must match. This value must
be greater than the minimum value (Min).

Note: Min and Max work slightly differently: for a fragment to evaluate to true, the
rule formula must evaluate to greater than the Min value, but less than or
equal to the Max value.
Visual Modeler Application Guide

Fragments
3. Enter the quantity of the expansion items (must be greater than zero). You can
use the supported functions to calculate the quantity and so you can specify the
quantity as a function of a property. For example:

2*value(Memory Cards)

4. Enter the item that will be expanded.

You must provide the full path to the expansion item within the current
model. In the figure above, for example, the rule adds an option item called
either 64MB, 128MB, or 256MB, located in option class AutoMemory in
the current model.

FIGURE 89. Expansion Action With Example of Using Quantity Function
When a rule is used in multiple models, this fully qualified path could be
difficult to specify since the current model name will very likely not be
"MXWS-7650" for all the models where the rule is attached. To facilitate
the use of expansion rules across multiple models, you can usual special
symbols as follows:

• You can begin the path with a period (.), which means “from the
attachment point of the rule”. In other words, if you attach a rule to a
model, then ".Memory.64MB" means "an option item called 64MB in an
option class called Memory in the current model".

• You can begin the path with an asterisk (*), which means from the root of
the model group hierarchy.

• If the name of a path component includes a quote character (' or "), then
you must escape the quote character or wrap the whole expression in
quotes. For example, to get the gauge property from the Tubing.3"
pipe.threading option item, you can use
Visual Modeler Application Guide 541

Advanced Visual Modeler Concepts

542
x = value(Tubing.3\"pipe.threading.gauge)

or
x = value('Tubing.3"pipe.threading.gauge')

To retrieve Board.8'plank.thickness, use
x = value(Board.8\'plank.thickness)

or
x = value("Board.8'plank.thickness")

5. Repeat these steps to enter additional items.

6. Click Save All Changes.

The result of an expansion action picks a quantity selected on an option item. If the
option item quantity is a drop-down list, ensure that the possible calculated values
are consistent with the pickable values: otherwise, the drop-down list will not be
able to display the calculated value.

To Create an Assignment Action
When you are creating ("To Define a Rule" on page 510) or modifying ("To Modify
a Rule" on page 513) a rule, you perform this task in the Assignment Actions area
at the bottom of the New Rule or Edit Rule tab.

FIGURE 90. Assignment Actions
Visual Modeler Application Guide

Fragments
1. Select a property from the drop-down list. The table below summarizes some
of the special properties that can be assigned.

2. Enter a value for the property. You can use the supported functions to calculate
the value and so you can specify the value as a function of a property. For
example:

2*value(Memory Cards)
When you are assigning a value to a property whose type is String, you
must use the following syntax to refer to properties:
${function(arg1, arg2, ..., arg N}
For example, ${expand("Color", "Black", 0)}. See "Example Uses of
Expand" on page 544 for other examples of the usage of the expand
function.

3. Type the entity to which you want to assign the property and its value.

If you leave this field blank, the assignment defaults to the entity to which
the rule is attached.

4. Click Add Item.

FIGURE 91. Assignment Action With Example of Using Quantity Function
5. Repeat these steps to add additional items.

6. Click Save All Changes.

The following table summarizes some of the available properties for assignment.
These properties may change in each release, so check with your Sterling
Commerce representative for further information if required.

TABLE 28. Assignment Action Properties

Property Action

_constraintMessage String: a message on an item because it is constrained

_constraintType Integer: type of constraint; 0 is suggest, 1 is warn, and 2 is error

_description String: an items description
Visual Modeler Application Guide 543

Advanced Visual Modeler Concepts

544
Example Uses of Expand
The syntax of the expand function is:
${expand(property[,defaultValue[,format[,lookup]]])}.

For example, suppose that you want to display the name of the model as the name
of the associated product together with the product description. At the model level,
set the value of the UI: DISPLAY NAME property to: ${expand("UI: PRODUCT
NAME")} or ${expand("UI: PRODUCT DESCRIPTION","Description not
available")}.

Doing this ensures that if the product name or description changes and you
recompile the model, the name or description displays with the new version when
users next configure the product.

Here are some further examples of the expand function:

• String-valued property:

• ${expand("color")}

• ${expand("color", "Black")}

• Numeric-valued property:

• ${expand("weight")}

• ${expand("weight", 0.0)}

_amEntitled Integer: 0 false, 1 true

_isConstrained Integer: 0 false, 1 true

_isSelected Integer: 0 false, 1 true

_isViewable Integer: 0 false, 1 true

_itemKey Integer: database key of the item

_pickOverride Integer: 0 false, 1 true; pick was overridden by a rule

_quantity Integer: quantity; 0 quantities are not in the rule pool

_ratio Numeric: ratio of this item to its children, computed if nested
within another parent

_rawRatio Numeric: raw ratio used in previous computation

_rulePick Integer: 0 false, 1 true

_tabLevel Integer: depth of this item

TABLE 28. Assignment Action Properties

Property Action
Visual Modeler Application Guide

Option Constraints
• ${expand("weight", 0.0, #.00)}

Option Constraints
Constraint tables enable you to limit a customer's choice of one or more option
items based on the customer's choice of another option item. For example, the
choice of an exterior color for a car might limit the choice of interior colors.

Working With Constraints

To Create a Constraint Table
You create an option constraint by creating a constraint table. You define constraint
tables at the model level.

1. Navigate to the model where you want to create the constraint table.

See "To Access the Visual Modeler" on page 446 for information about how
to navigate the model group hierarchy.

2. Click the Tables tab.

This displays two tabs: General Info and Records. The General Info tab
displays general information about the table displayed in the Table Name
field.

3. Click New....

This displays the Create New Constraint Table tab.
Visual Modeler Application Guide 545

Advanced Visual Modeler Concepts

546
FIGURE 92. Create New Table Tab
4. Enter a Table Name, a Description, and a date range (Start Date/End Date) for

the table. (You can click the Calendar icon to select dates from the calendar.)

5. Enter a message.

This message appears when the end-user chooses a selection which is
incompatible with a constraint defined in the table.

a. Select the message type: error, warning, or suggestion.

b. Enter the message in the Message field.

6. Click Save Changes.

This re-displays the Tables tab with the new table in the Table Name field. The next
step is to create the option constraints that are a part of the table. You do this in the
Records tab. See "To Define Option Constraints" on page 547.

To Modify a Constraint Table

1. Navigate to the model that contains the table you want to modify.

See "To Access the Visual Modeler" on page 446 for information on how to
navigate the model group hierarchy.

2. Click the Tables tab.

3. Select the table from the Table Names drop-down list.
Visual Modeler Application Guide

Option Constraints
4. Modify the table. You can:

• Define option constraints (see "To Define Option Constraints" on
page 547.

• Modify option constraints (see "To Modify an Option Constraint" on
page 551).

• Delete option constraints (see "To Delete Option Constraints" on
page 552).

• Modify the name, description, or effectivity dates in the General Info tab.

• Modify the error/warning/suggestion message in the General Info tab.

To Define Option Constraints
After you create a table and the option classes that will provide the constraints, you
define the constraints. Each row in the table represents a constraint.

1. Navigate to the model that contains the table for which you want to define the
constraint.

See "To Access the Visual Modeler" on page 446 for information on how to
navigate the model group hierarchy.

2. Click the Tables tab.

This displays two tabs: General Info and Records. The General Info tab
displays general information about the table displayed in the Table Name
field. The Records tab is where you will define the constraints.

3. Select the table from the Table Names drop-down list.

4. Click the Records tab.

This displays the currently defined option constraints.
Visual Modeler Application Guide 547

Advanced Visual Modeler Concepts

548
FIGURE 93. Records Tab
5. Add columns to the constraint table.

a. Select an option class from the Table Column name drop-down list.

The drop-down list includes all the option classes belonging to the
model including any option classes nested within option classes as well
as option classes that are part of option class groups attached to the
model. The drop-down list will display the path to the option class
relative to the model.
For example, the following figure shows two selections in the drop-
down list called Monitor and Software. Notice that the Navigation
frame shows two option classes by these names directly below the
model.
The drop-down list has another selection, Software.Application.
Notice that the model has an option class called Software directly
below the model, with a nested option class called Application. Notice
how the drop-down list indicates the path relative to the model,
Software.Application.
The drop-down list also includes a selection, MX-7500
Service.Warranty. This corresponds to the option class group, MX-
7500 Service, directly below the model. Warranty is an option class
within the group.
Visual Modeler Application Guide

Option Constraints
FIGURE 94. Records Tab with Drop-Down List
b. Click Add.

The column name is added to the table.

c. Repeat the last two steps for every column you want to add.

FIGURE 95. Records Tab with Columns
6. Define an option constraint.

a. Click New Constraint to add a new row to the table.
Visual Modeler Application Guide 549

Advanced Visual Modeler Concepts

550
FIGURE 96. Constraint Table with New Constraint Added
b. Click Edit.

This displays the option classes as table columns, along with their
option items.
The option items that display include any option items belonging to an
any option item group attached to the option class.

FIGURE 97. Defining Constraints
c. Define compatibility ("Selected Values are all"). That is, will the selections

you make in one column be valid or invalid with the selections in the other
column(s)?

d. Select one or more option items in each column.

e. Click Save.

A new row appears in the table.
Visual Modeler Application Guide

Option Constraints
7. Repeat the last step for each constraint you want to define.

To Modify an Option Constraint

1. Navigate to the model that contains the table with the constraint you want to
modify.

See "To Access the Visual Modeler" on page 446 for information on how to
navigate the model group hierarchy.

2. Select the table from the Table Names drop-down list.

3. Click the Records tab.

This displays the currently defined option constraints.

FIGURE 98. Records Tab
4. Find the constraint row you want to modify and click Edit.

This displays the constraint information.

5. Modify the constraint information.

a. Modify compatibility.

Will the selections you make in one column be valid/invalid with the
selections in the other column(s)?

b. Modify the option items in each column.

c. Click Save.

The row is changed based on your modifications.
Visual Modeler Application Guide 551

Advanced Visual Modeler Concepts

552
To Delete Option Constraints

1. Navigate to the model that contains the table with the constraint you want to
delete.

See "To Access the Visual Modeler" on page 446 for information on how to
navigate the model group hierarchy.

2. Click the Tables tab.

3. Select the table from the Table Names drop-down list.

4. Click the Records tab.

This displays the currently defined option constraints.

FIGURE 99. Records Tab
5. Find the constraint row you want to delete.

6. Click Delete (X).

The constraint row is deleted.

To Delete a Constraint Table

1. Navigate to the model that contains the table with the constraint you want to
delete.

See "To Access the Visual Modeler" on page 446 for information about how
to navigate the model group hierarchy.

2. Click the Tables tab.

3. Select the table from the Table Names drop-down list.
Visual Modeler Application Guide

Importing and Exporting Models
4. Click the Delete button.

The constraint table is deleted.

Importing and Exporting Models
Importing Model Groups and Models
You can import model groups and models in the form of XML files. You can either
import the entity relative to its original root model group, or you can designate a
location into which to import. The model will appear in the Navigation frames,
enabling you as modeler to add to or modify the imported model.

To Import Model Groups and Models

1. Access the Visual Model page.

See "To Access the Visual Modeler" on page 446 for information on how to
navigate the model group hierarchy.

2. If you want to import to a selected point, then navigate to the model group
within which you want to import the file.

3. Click Import in the toolbar.

This displays the Visual Modeler Import window (see Figure 100 on
page 554).
Visual Modeler Application Guide 553

Advanced Visual Modeler Concepts

554
FIGURE 100. Import Window
4. Click Browse... to find the XML file you want to import.

When you select the file, the file will be displayed in the field along with
the complete path to the file.

5. Select the import option.

• Import with its original structure relative to its root model group

When you make this selection, the Import process will ignore any
Destination Model Group indicated at the top of the window.

• Import into the selected destination model group

6. Click Import Now.

The imported model group or model and its structure will be imported based on the
import option you selected.

Exporting Model Groups and Models
You can export any model group or model as an XML file to a specified location on
your machine.
Visual Modeler Application Guide

Using Dynamic Instantiation
To Export a Model Group or Model

1. Navigate to the model group or the model that you want to export.

See "To Access the Visual Modeler" on page 446 for information on how to
navigate the model group hierarchy.

2. Click Export in the toolbar.

You can either open the XML file at its current location, choosing a desired text
processing tool, or you can save the file to a desired location.

Using Dynamic Instantiation
Dynamic instantiation provides a way to allow users to configure products on the
fly while avoiding the need to create option items for each possible product
configuration in your model. For example, consider a server rack. The user can
decide on the number of slots they need and create dynamic instantiation controls
for each type of component, such as servers and storage arrays that can fit into a
slot, AC or DC power, and so on. As the modeler, you create the rack model, then
create option classes for each of the rack's configurable features (such as servers
and storage arrays) and set them as dynamic instantiation control classes. An end-
user buying computer racks navigates to the rack product on your site and clicks the
Configure button next to the servers and storage array choices. This causes a new
option item to be added to the model for that configurable feature. The user can
then configure each option item by clicking the Configure button that appears next
to each added item. When the entire rack and all the configurable features have
been added and configured, the user clicks the Add button located in the button bar
at the top of the Configurator page to add the rack to their cart.

The following steps describe the process in more detail.

1. On the Model Group Navigation page, click New Model.

The New Model page displays.

2. Enter a name for the model, then click Save and Edit.

The Model Navigation page for the new model displays.

3. Click New Option Class.

The New Option Class page displays.

4. Enter a name for the new option class, then click Save and Edit.
Visual Modeler Application Guide 555

Advanced Visual Modeler Concepts

556
5. Click the Display tab, then choose Dynamic Instantiation from the UI Control
drop-down list, as shown in the following figure.

 Set other Display properties as appropriate, then click Save All Changes.

6. Click the Properties tab, then set the following properties from the Unattached
Properties drop-down list:

a. CONFIG: SUBMODEL NAME

Enter the name of an existing submodel for the property value, then
click Attach.

b. CONFIG: SUBMODEL RETURN

Enter the name of an existing submodel to which the end-user should
return after clicking the Add button, then click Attach.

7. Click Save All Changes.

8. Return to the new model's root node, then click the Compile and Test icon to
test your dynamic instantiation option class.

Searching
You can search for entities that contain properties and property values that you
specify as parameters. You can search across the entire hierarchy, or you can limit
your search to model groups, models, option classes, option items, and rules, or you
can limit your search even further to the currently selected model or group.

To Search for Entities

1. Access the Visual Modeler page.

See "To Access the Visual Modeler" on page 446 for information on how to
navigate the model group hierarchy.

2. If you want to search within a specific model or group, then navigate to and
select the model or group.

3. Click Search in the toolbar.

This displays the Search window (Figure 101 on page 557).
Visual Modeler Application Guide

Searching
FIGURE 101. Search Window
4. Select the scope for the search from the Search drop-down list.

You can search all entities, you can limit the search to model groups,
models, option classes, option items, or rules. If you are searching within a
specific model or group (see Step 2), then you can limit your search to
Current Model or Current Group.

5. Enter either a property name or a property value or both.

Click Browse... to display a browser window to select a property from a list
of all the properties in the Visual Modeler.
Use the drop-down list to select AND or OR. Select AND to produce search
results that include both the Property Name and Property Value parameters
you select. Select OR to produce search results that include either
parameter.
When you enter a property value, the search results will include property
values that contain the property value you enter. For example, if you enter
"75", then the search results will include any properties with the value "75"
as well as property values such as "7550-1" or "MX-75-1".

6. Click Search.

The search results will display below the parameters. By default, the result is sorted
in ascending order by property name. You can click on one of the following
columns to sort:

• Property Name

• Value

• Location
Visual Modeler Application Guide 557

Advanced Visual Modeler Concepts

558
When you click the column title the first time, the column is sorted in ascending
order.

FIGURE 102. Search Window with Results

Reporting
You can run a report on a model that you specify. You can select the types of
information you want in the report:

• Rule definitions

• List definitions

• Property definitions

• Display Settings

• Attached Properties

• Attached Rules

• Expand Groups

To Run A Report

1. Access the Visual Modeler page.

See "To Access the Visual Modeler" on page 446.

2. Click Report in the toolbar.

This displays the Report Entry window.
Visual Modeler Application Guide

Reporting
FIGURE 103. Report Entry Window
3. Enter the model you want to report on.

You can click Browse... to find and select the model in the model hierarchy.

4. Select the locale in which you want to run the report.

5. Select a date to report.

This produces a report for the models for whom the selected date falls
within the range of their effectivity dates. The report does not display any
models (or entities within the model) for whom the selected date falls
outside their effectivity dates.

6. Select the information you want to include in the report.

7. Click Run Report.

A report is displayed based on the parameters you entered (Figure 104 on
page 560).
Visual Modeler Application Guide 559

Advanced Visual Modeler Concepts

560
FIGURE 104. Report Results Window
Visual Modeler Application Guide

CHAPTER 38 Visual Modeler UI Concepts
This chapter describes the user interface (UI) controls and how they can be used to
help your customers configure your products. It covers:

• "UI Properties" on page 561

• "Visual Modeler UI Properties" on page 562

• "Working with Display Properties" on page 562

• "Display Properties" on page 571

• "Tabular Display of Properties" on page 576

• "Image Properties" on page 579

• "User-Entered Values" on page 580

The basic concepts and tasks of modeling are covered in CHAPTER 36, "Using the
Visual Modeler".

UI Properties
A property is an attribute of a model, option class, or option item. UI properties are
used to determine the look-and-feel of a product as it is configured. You can use UI
properties to control how option classes are displayed, how to display properties of
option items, as well as basic guiding text and pictures.
Visual Modeler Application Guide 561

Visual Modeler UI Concepts

562

Property

UI: ADDITIONAL DESCRI

UI: ALIGNMENT
The Visual Modeler provides a set of built-in UI properties which are understood
by the Sterling Configurator engine. These control the behavior of the engine and
the presentation of the model to the end-user. These properties are summarized in
"To Define Display Property Values" on page 571.

Working with Display Properties
The Visual Modeler provides certain display properties that come pre-defined with
the Visual Modeler. These display properties enhance the customer experience by
enabling you to provide values that define various aspects of the model or its
elements. They can all be specified using the Display tab of a model, option class,
or option item, or as UI properties in the Properties tab. For example, you can
define a "Pre-Pick Guiding Text" for an option class either by defining it on the
Display tab or by specifying the value of the UI: PRE-PICK GUIDING TEXT
property on the Properties tab.

Display properties also allow you to create fields and options that end-users may
use to enter their own values rather than values specified by you. See "User-Entered
Values" on page 580. Note that every property displayed on the Display tab
corresponds to a UI property. This means that display properties can also be set
using the Properties tab provided that you know which UI property matches the
display property. See "Display Properties" on page 571 for more details.

Visual Modeler UI Properties
The following table summarizes the UI properties that are built in to the Visual
Modeler.

TABLE 29. Visual Modeler UI Properties

Type Comments

PTION string You can use this property to add additional descriptive text to an
option class. use this property in conjunction with the
UI: DISPLAY RESULTS property.

string "Horizontal" or "Vertical" controls layout of radio buttons and
check box controls.
Visual Modeler Application Guide

UI Properties

UI: AUTOMATIC POST

UI: CLASS DISPLAY NAM

UI: COLUMN ALIGNMEN

UI: COLUMN HEADINGS

UI: COLUMN PROPERTIE

Property
string "yes" or "true" turns on automatic posting for an option class.

After a customer makes a pick of an option item, then you usually
want the server to re-display the page so that rules can be fired
and any changes to the available option classes displayed.
However, if you do not want picks in an option class to cause a
re-display, then set this property to "no" or "false". This is
equivalent to selecting On User Request from the Submit to
Server Display property drop-down list.

The option class is displayed with Update button: after making a
pick in this option class, a user can click the Update button to
request a re-display of the page from the server.

E string Use this property at the model level to determine what is
displayed as the displayed name of option classes. By default, this
property takes the value ${expand("_description")} which means
that the value of the option class's Description field is displayed.

For example, if you want to display option class names instead of
descriptions, then set this property to ${expand("_name")}. You
can overwrite this value at a single class by using the
UI: DISPLAY NAME property.

T string Used in the tabular display control to specify the alignment of the
values in the column. The tabular display control uses the ";"
character to separate entries from each other, so the format of this
column is something like:
"left;left;center;right".

string Used in the tabular display control to specify the titles of columns.
Each title is separated from each other with the ";" character. For
example: "Speed;Pins;Manufacturer".

See "Tabular Display of Properties" on page 576 for an example
of using this property.

S string A semi-colon-separated list of property names used in the tabular
display of properties. For example:
"SPEED;NOPINS;SUPPLIER", where SPEED, NOPINS, and
SUPPLIER are properties defined on option items in an option
class.

See "Tabular Display of Properties" on page 576 for an example
of using this property.

TABLE 29. Visual Modeler UI Properties (Continued)

Type Comments
Visual Modeler Application Guide 563

Visual Modeler UI Concepts

564

UI: COLUMN SPAN

UI: CONFIG CELL HTML

UI: CONSTANT GUIDING

UI: CONTROL

UI: DEFAULT SELECTION

UI: DISPLAY ADDITIONA
INFO

UI: DISPLAY NAME

Property
numeric Controls how many columns an option class requires for its
display in the customer-facing display of the model. This is the
same as entering a number for the Number of Columns field on
the Display tab.

See also UI: SKIP COLUMNS.

CLASS string Sets the CSS class attribute in the HTML. Use this property to
control the look-and-feel of cells. Note that the Visual Modeler
uses the internal.css CSS file when you test models.

 TEXT string Defines the guiding text that will always be shown for an option
class. This is the same as entering text for the Constant Guiding
Text field on the Display tab.

See also UI: POST PICK GUIDING TEXT and UI: PRE PICK
GUIDING TEXT.

string The name of the JSP fragment used to render an option class. Do
not use UI: JSP FILENAME at the option class level.

string "true" or "yes" on an item makes the item a default selection
within its parent option class.

L string Use this property to provide a description specific to a particular
instance of a sub-model. If you attach this property to the root
node of a submodel and pass it as an output property to the parent
model, the parent model displays the description next to the item
in the parent model. This allows you to give feedback to the end-
user about how the sub-model is configured. This is particularly
useful for dynamic instantiation, where there can be multiple
instances of a sub-model, each configured differently, and you
want to provide an appropriate description for each instance of
the submodel.

string Use this property to determine what is displayed as the displayed
name of the option class. By default, this property takes the value
${expand("_description")} which means that the value of the
option class's Description field is displayed.

TABLE 29. Visual Modeler UI Properties (Continued)

Type Comments
Visual Modeler Application Guide

UI Properties

UI: DISPLAY RESULTS

UI: HELP URL

UI: ICON GRAPHIC

UI: IGNORE IN QUOTE

UI: JSP FILENAME

UI: LEAD TIME

Property
string This property is deprecated. A property that is displayed along
with the description of items. This special property also allows the
usage of text expansion macros. Currently we support:
${expand(propname[,defaultValue[,picture-
String]])}
but the name of this "function", expand in this case, is accessed
via the object manager.a

An example usage is to set a description string in the
UI: ADDITIONAL DESCRIPTION property, and then set the
value of this property to
${expand("UI: ADDITIONAL DESCRIPTION")}.

string A URL that is used to turn an option class description into a
hyperlink, typically used to provide additional information about
what that option class is for, but could also be a datasheet or any
other hyperlink. Clicking on the hyperlink will bring up the page
in a new window. This is the same as entering text for the Help
URL field on the Display tab.

string Used with an option class to display a picture along with the
description of the option class. This is the same as entering text
for the Image field on the Display tab: see "Image Properties" on
page 579 for information on how values in this field are resolved
to URLs.

string When set to "yes" or "true" will cause whatever item this property
is attached to, to be filtered out of the summary page, and flagged
as not visible in the BOM transfer to the shopping cart. This is the
same as checking Ignore in Quote on the Display tab.

Typically, this field is used to ensure that only selected option
items are displayed in shopping carts and to suppress option
classes in the list of items in a shopping cart.

string The name of the JSP page that will render the model:
Configurator_Tabbed.jsp or configurator.jsp. This property is
added to support easier customization and eventually to allow
different presentations per model. Using built-in customization
elements of Sterling Configurator, it is possible to dynamically
change pages as well.

numeric Attached to items in the model. It is used to build a maximum
lead time for the entire model by finding the largest lead time of
all items currently selected.

TABLE 29. Visual Modeler UI Properties (Continued)

Type Comments
Visual Modeler Application Guide 565

Visual Modeler UI Concepts

566

UI: NUMBER OF COLUMN

UI: OPTION CLASS REQU

UI: OPTION CLASS SELEC

UI: OPTION CLASS TYPE

UI: OPTION CLASS VIEW

UI: POPUP-QTY ALLOWE
VALUES

Property
S numeric Number of columns to divide the end-user configurator
presentation. This property is defined at the model level to
manage how many columns are used to display the option classes
for a model.

This property in conjunction with UI: COLUMN SPAN,
UI: ROW SPAN, and UI: SKIP COLUMNS controls how option
classes are arranged on the page. This property is the same as
setting the Number of Columns property in the Display tab.

IRED string "yes" or "true" causes Sterling Configurator to require that a
selection be made for an option class. For radio buttons this
causes the None selection to be removed.

T string This property is used to specify what UI control should be used
when no specific UI: CONTROL value is specified. Its use is
primarily to support importing models from external
configuration systems or from earlier releases of the Visual
Modeler.

It takes "single" or "multiple" as values, and is only used in the
absence of a UI: CONTROL property to determine if a radio
button or checkbox control should be shown for an option class.

string Obsolete: do not use.

string "POPUP", "POPUP-QTY", or "INVISIBLE". This controls the
display behavior of an option class. If POPUP, a standard option
class is shown; if POPUP-QTY is selected, then a quantity box
will be shown for each selected item within that control. Finally,
INVISIBLE is used to prevent the display of the control entirely.

INVISIBLE is often used to hide option classes until other picks
made by the customer requires the class to be displayed.

D string This controls what values are available for a selection in a popup
drop-down list. Use this at the option class level, in conjunction
with setting UI: OPTION CLASS VIEW to POPUP-QTY.

A "," separated list of allowed values. Ranges can be specified
with “-”, so 1-4,7-9 is the same as 1,2,3,4,7,8,9. If you leave this
field blank, then a text field is displayed with the current value;
otherwise a drop-down list with the allowed values is displayed.

TABLE 29. Visual Modeler UI Properties (Continued)

Type Comments
Visual Modeler Application Guide

UI Properties

UI: POST PICK GUIDING T

UI: PRE PICK GUIDING TE

UI: PREVENT SELECTION

UI: PRICE

UI: PRICING SKU

UI: PRICING STYLE

Property
EXT string A guiding text message displayed with an option class description
if the user has made at least one pick from within the option class.
This is the same as entering text for the Pre-Pick Guiding Text
field on the Display tab.

This property is not displayed until a customer makes a pick. See
also UI: CONSTANT GUIDING TEXT and UI: PRE PICK
GUIDING TEXT.

XT string A guiding text message displayed with an option class description
if the user has not made a pick from within the option class. This
is the same as entering text for the Post-Pick Guiding Text field
on the Display tab.

Once a pick has been made, then this property is no longer
displayed. See also UI: CONSTANT GUIDING TEXT and
UI: POST PICK GUIDING TEXT.

string "yes" or "true" causes the Sterling Configurator to prevent the
user from selecting items that would violate a constraint table
rule. If the Constraint Selections display property is set to "Hide
constrained items", then this property is set to “yes”.

numeric The price for an item that will be used if STATIC_PRICING or
OVERRIDE_PRICINC is set in the business rules. In the case of
OVERRIDE_PRICING, this value will be used if a price cannot
be found for the item in the price list.

string The SKU to use when looking up the item in the price list. Note
that if you set a product ID value for this property, then it
overrides the value of the Assigned Product ID in determining
prices.

string Usually, you use this property at the option class level. It controls
how prices of option items are displayed to the end user as
follows:

NONE: Do not display prices as user configures product.

ABSOLUTE: Display prices next to option items as absolute
prices.

DELTA: Display prices next to option items as their effect on the
price of the whole configured product.

This property is the same as setting Pricing Style in the Display
tab.

TABLE 29. Visual Modeler UI Properties (Continued)

Type Comments
Visual Modeler Application Guide 567

Visual Modeler UI Concepts

568

UI: PRODUCT ID

UI: PRODUCT NAME

UI: PRODUCT DESCRIPTI

UI: QUANTITY AVAILABL

UI: REQUIRED

UI: ROW SPAN

UI: SHOW ITEM IMAGES

Property
string If a product has been associated with a node of a model, then this
property can be used to retrieve the product ID of the associated
product.

The value of this property is resolved at compile time, so if the
product ID is changed, then you must re-compile the model for
the change to take effect.

string If a product has been associated with a node of a model, then this
property can be used to retrieve the product name of the
associated product.

The value of this property is resolved at compile time, so if the
product name is changed, then you must re-compile the model for
the change to take effect.

ON string If a product has been associated with a node of a model, then this
property can be used to retrieve the description of the associated
product.

The value of this property is resolved at compile time, so if the
product description is changed, then you must re-compile the
model for the change to take effect.

E numeric Do not use in this release.

Used in the quantity matrix, this can optionally be attached to the
items for the matrix. If so it will set the quantity available of each
item. If the control is set to show quantity available this property
value will be displayed in a secondary row for each item.

string Obsolete: do not use.

numeric Controls how many rows an option class requires for its display in
the end-user presentation of the page. In conjunction with
UI: NUMBER OF COLUMNS and UI: COLUMN SPAN, this
property controls the layout of the page viewed by end-users. This
is the same as entering a number for the Number of Rows field on
the Display tab.

See also UI: SKIP COLUMNS.

string "yes" or "true" controls whether item images are shown.

TABLE 29. Visual Modeler UI Properties (Continued)

Type Comments
Visual Modeler Application Guide

UI Properties

UI: SKIP COLUMNS

UI: SUPPRESS NAME DIS

UI: SUPPRESS NONE
SELECTION

UI: SUPPRESS UEV NONE
VALUE

UI: UEV ALLOWED VALU

Property
numeric Number of columns to skip after this class. It is used to add to the
count variable that is tracking how many cells are being used to
lay out the option classes. This is the same as entering a number
for the Number of Columns to Skip field on the Display tab.

If you have used the UI: COLUMN SPAN property or UI: ROW
SPAN for another option class, then use this property to account
for table cells in the layout that the multiple span class uses.

PLAY string "yes" or "true" causes Sterling Configurator to not display the
names of option classes.

string "yes" or "true" suppresses the NONE selection value for radio
buttons.

 string "yes" or "true" suppresses the NONE selection for UEV combo
boxes. Use this in conjunction with UI: UEV ALLOWED
VALUES property.

For example, if you have specified that a user-entered value field
can only take the values Red, Green, Blue, then if the value of this
property is set to "yes", then None will not appear in the
drop-down list of selectable values. If you set the value of this
property to "no", or do not attach this property, then None will be
a selectable value.

ES string Comma-separated list of values for a combobox UEV control.

Suppose that you want to allow customers to enter only one color
from a small list of colors. Then enter the list like this:

Black,Blue,Green,Red,White

When this property is set, then the user-entered value option item
is displayed as a drop-down list of these values. None is also
displayed as a selectable option, unless you set the
UI: SUPPRESS UEV NONE VALUE property to "yes".

This property is the same as setting values in the Allowed Values
display property.

TABLE 29. Visual Modeler UI Properties (Continued)

Type Comments
Visual Modeler Application Guide 569

Visual Modeler UI Concepts

570

UI: UEV ASSIGNMENT
PROPERTY

UI: UEV INTEGER VALUE

UI: UEV LIST VALUE

UI: UEV NUMERIC VALU

UI: UEV POSTFIX

UI: UEV PREFIX

UI: UEV SELECTION

Property
string The name of a property where a UEV will store its value. This
property should be of the correct type to contain the UEV. Note:
numeric properties can be used to hold INTEGER UEVs as well
as NUMERIC UEVs.

• If the value of this property is just a property
name, then the property will be set on the current
item.

• If the value contains a path to a property as well as
the property name, then the property will be set on
the item referenced by the path if it exists.

Once a user makes their pick in the user-entered value field, then
the assigned property can be used by rules or in the display of the
model, just like any other property.

This property is the same as setting a value in the Assign Value to
Property display property.

integer Filled in by the engine when an integer UEV has a value in it.
This provides you with a way to reference the value of the field
without assigning it to another property: see UI: UEV
ASSIGNMENT PROPERTY to use another property.

list Filled in by the engine when a list UEV has a value in it (not
currently used). This provides you with a way to reference the
value of the field without assigning it to another property: see
UI: UEV ASSIGNMENT PROPERTY to use another property.

E numeric Filled in by the engine when a numeric UEV has a value in it.
This provides you with a way to reference the value of the field
without assigning it to another property: see UI: UEV
ASSIGNMENT PROPERTY to use another property.

string A string of text displayed after the UEV entry field.

This property is the same as setting a value in the Text After Entry
Field display property.

string A string of text displayed before a UEV entry field.

This property is the same as setting a value in the Text Before
Entry Field display property.

varies Obsolete: do not use.

TABLE 29. Visual Modeler UI Properties (Continued)

Type Comments
Visual Modeler Application Guide

Display Properties

UI: UEV SPECIAL

UI: UEV STRING VALUE

UI: UEV TYPE

a. To add additional macro
it into the object manag

Property
Display Properties
To Define Display Property Values

1. Navigate to and display the detail page for the model, option class, or option
item.

See "To Access the Visual Modeler" on page 446 for information about how
to navigate the model group hierarchy.

2. Click the Display tab.

This displays the display properties appropriate to the level.

3. Edit the desired fields.

See Table 30 on page 572 for an alphabetical list of the properties, where
they can be assigned, and what they mean. Because each display property
corresponds to a UI property, the table also provides the name of the
corresponding UI property, and further information about each UI property
is provided in "Visual Modeler UI Properties" on page 562.

string Used by the user entered value control to enable a file list or notes
control. This will be phased out and replaced by a new file
attachment control and notes control in future releases: do not use.

string Filled in by the engine when a string UEV has a value in it. This
provides you with a way to reference the value of the field
without assigning it to another property: see UI: UEV
ASSIGNMENT PROPERTY to use another property.

string "string", "integer", or "numeric"; the type of UEV control.

s, define a new class that implements the IExpansionHandler interface, and put a reference to
er.

TABLE 29. Visual Modeler UI Properties (Continued)

Type Comments
Visual Modeler Application Guide 571

Visual Modeler UI Concepts

572

Field Name/Property Name

Automatic Post/UI:
AUTOMATIC POST

Constant Guiding Text/UI:
CONSTANT GUIDING TEX

Control/UI: CONTROL
4. Click Save All Changes.

TABLE 30. Display Properties

Where Used Description

Model

Option Class

Depending on the value you choose, this property specifies
how posting is done:

none: No update is performed when the customer selects an
option item.

update: An incremental update occurs when the customer
selects an option item.

final (default): A final update occurs when the customer
selects an option item.

T
Model

Option Class

Used to add extra text to the displayed HTML page. This text
is "constant", that is, it appears all the time, even after a
selection is made. For example, guiding text for a configurable
camcorder may state "Only lithium batteries type XYZ are
compatible with this model."

Option Class Enables you to determine how the option items are displayed:

Radio button: Items appear as radio buttons. Customer can
only select one.

Checkbox: Option items will appear with check boxes;
multiple selection allowed.

Drop down list: Items appear in a drop-down list.

Combobox: Items appear in drop-down list, but end-users can
also type in a selection.

Multiple Selection listbox: Items appear in a scrollable list
from which the customer can make multiple selections.

Display All Children: When you have nested option classes,
nested classes appear with their option items visible (as
opposed to option items only appearing when nested option
classes are "picked").

User EnteredValue: Items appear as user-entered fields.

Tabular Display: Items appear as rows in a table.
Visual Modeler Application Guide

Display Properties

Default Selection/UI:
DEFAULT SELECTION

Display Template

Help URL/UI: HELP URL

Icon Graphic/UI: ICON
GRAPHIC

Ignore In Quote/UI: IGNOR
IN QUOTE

Lead Time/ UI: LEAD TIME

Option Class Required/UI:
OPTION CLASS REQUIRE

Field Name/Property Name
Model

Option Class

Option Item

This property specifies that, if the user does not choose an
entity in the option class, this entity (embedded model, nested
option class, or option item) is automatically selected.

You can use this property in conjunction with the Option
Class Required special property.

You can only assign it to one option item in an option class.

Model Select the type of user interface from the drop-down list:
Tabbed UI or Non-tabbed UI. See "Working with a Tabbed
User Interface" on page 488.

Model

Option Class

Enables you to display a link (URL) to a page that has
additional information about the model, option class, or option
item.

Model

Option Class

Provides the location (fully qualified path) of a GIF format file
to be displayed next to this model, option class, or option item.

E Model

Option Class

Option Item

This special property is attached to option classes and option
items that will not be transferred into the summary page when
these option items are selected by the customer or through an
expansion rule.

Model

Option Class

Option Item

Enables you to specify a lead time between when a customer
orders a product that includes this item and when that product
can be expected to ship.

D
Option Class Enables you to specify whether or not a customer must make a

selection in that option class to complete the configuration.
Customer must select one of the option items to complete the
configuration.

TABLE 30. Display Properties (Continued)

Where Used Description
Visual Modeler Application Guide 573

Visual Modeler UI Concepts

574

Option Class View/UI:
OPTION CLASS VIEW

Popup-Qty Values/ UI: POPU
QTY ALLOWED VALUES

Post-Pick Guiding Text/UI:
POST PICK GUIDING TEX

Pre-Pick Guiding Text/UI: P
PICK GUIDING TEXT

Prevent Selection of Items
Resulting in Constraint Error
UI: PREVENT SELECTION

Field Name/Property Name
Option Class Determines (1) if the items in this option class are displayed,
and (2) if the pop-up quantity is displayed next to the option
item.

Popup: When the customer clicks the drop-down arrow, the
line is expanded to display all items.

Popup-qty: Customer types in a number in the quantity field.
The entered value influences the quantity of option items that
are ordered for this option class.

Invisible: Option class and its items are not displayed to the
customer. This is typically used for an automatic expansion
when the customer does not need to know about the added
option items that are part of the configuration. For example, if
a customer orders a special wheel, then invisible option items
may include nuts and bolts that are included with the special
wheel.

P- Option Class Enables you to set quantity for that item. The quantities
specified appear as possible selections in a quantity box next to
the item.

T
Model

Option Class

Used to add extra text displayed on the HTML page after the
customer has made a selection. For example, a model of a
computer has an option class called "Operating System", and
that option class has an option item called "Windows 2000".
Post-pick guiding text for that option item might be "Windows
2000 requires a minimum of 256MB of RAM; make sure the
amount of RAM you select is at least 256MB".

RE Model

Option Class

This special property is assigned at the option class level, and
is used to add extra text that is displayed on the HTML page.
The text disappears once a selection is made. For example, pre-
pick guiding text for a CPU option class of a configurable
computer may state "Choose a Processor". Once a processor is
chosen, the text disappears.

s/
Option Class Enables you to prevent a customer from selecting items in this

class that are incompatible with items in another class (based
on an option constraint table).

If the Constraint Selections display property is set to "Hide
constrained items", then this property is set to "yes".

If Option Class Required is selected, then you cannot check
this box.

TABLE 30. Display Properties (Continued)

Where Used Description
Visual Modeler Application Guide

Display Properties

Pricing Style/UI: PRICING
STYLE

Price/UI: PRICE

Return From Submodel/
CONFIG: SUBMODEL
RETURN

User Entered Value Type/UI:
UEV TYPE

Field Name/Property Name
Model

Option Class

This special property enables you to specify how option class
items will display price information. There are three possible
values:

none: If you assign this property with the value none, then the
option class' items are displayed without any pricing
information.

delta: If you assign this property with the value delta, then the
option items display pricing information in relation to the total
base price of the configurable product.

When end-users first see the option class, they see the option
items with prices as "Add $xxx.xx", meaning "selecting this
item adds this amount to the current configuration price of the
model." Once the end-user selects an option item, the other
option items will show either "Add $xxx.xx" or "Subtract
$xxx.xx", depending on how choosing those option items will
affect the price.

absolute: If you assign this property with the value absolute,
then the option items display pricing information as the total
cost of that item. This kind of pricing information is not
relative to any base price. It is simply the cost of that item.

Note: Only the absolute property set at Option Class level is
considered while displaying the price information.

Model

Option Class

Option Item

This special property enables you to assign a specific price to
the item. This property is used to attach a price to a model if
your model, option class, or option item is not associated with
a product ID (see "To Associate a Product with a Model,
Option Class, or Option Item" on page 456).

Note that prices assigned to option items in this way are not
preserved when the configured product is returned to a cart.

Option Item Setting this property to "no" allows end users to transition from
one model to the next. If a user returns to a model, all
selections and derived properties are reset.

 Option Item This property is displayed only if you selected "User entered
value" for the Control display property of the option class to
which the item belongs. This property enables you to define
the type: string, integer, or numeric.

TABLE 30. Display Properties (Continued)

Where Used Description
Visual Modeler Application Guide 575

Visual Modeler UI Concepts

576

User Entered Value Prefix/U
UEV PREFIX

User Entered Value Postfix/U
UEV POSTFIX

User Entered Value Allowed
Values/UI: UEV ALLOWED
VALUES

Validate Submodel/CONFIG
VALIDATE SUBMODEL

Field Name/Property Name
Tabular Display of Properties
To help users choose between two or more option items in an option class, it is
often helpful to display one or more properties for each option item in the form of a
table. For example:

I: Option Item This property is displayed only if you selected "User entered
value" for the Control display property of the option class to
which the item belongs. This enables you to provide a text
string that precedes a user-entered value (For example, "$").

I: Option Item This property is displayed only if you selected "User entered
value" for the Control display property of the option class to
which the item belongs. This enables you to provide a text
string that follows any user-entered values (for example,
"inches", "feet", and so on).

Option Item This property is displayed only if you selected "User entered
value" for the Control display property of the option class to
which the item belongs. This property enables you to define a
comma-delimited list of values for numbers (1-3, 5, 9, 10-12,
and so on). For strings, you can enter the name of a list
property.

: Option Item This setting ensures that the submodel is correctly configured
in nested configuration scenarios. Use Validate Submodel in
conjunction with the Submodel Return property. The default
behavior is not to validate a submodel configuration after
returning to a parent model. When you set this property to
"yes" and the Return From Submodel property to "yes", the
submodel configuration will be validated after the user returns
to the parent model and is configuring the parent or sibling.
Consider using this setting carefully as there can be
performance issues.

TABLE 30. Display Properties (Continued)

Where Used Description
Visual Modeler Application Guide

Tabular Display of Properties
FIGURE 105. Example Tabular Display of an Option Class
You cannot use the tabular display for pickable option items. Use tabular displays
with another option class that allows users to make a selection.

To Display Properties in a Tabular Form

1. Navigate to the option class whose option items you want to display in a
tabular form.

2. Either:

a. Click the Display tab.

b. Select Tabular Display from the Control drop-down list.

c. Click Save All Changes.

Or:

a. Click the Properties tab.

b. Select UI: CONTROL from the Unattached Properties drop-down list and
enter "controls/displayProps.jsp" as its value.

c. Click Attach.

3. Select UI: COLUMN HEADINGS from the Unattached Properties drop-down
list and enter a semi-colon delimited list of headings as its value.

For example, "Size;Weight;Color".

4. Click Attach.
Visual Modeler Application Guide 577

Visual Modeler UI Concepts

578
5. Select UI: COLUMN PROPERTIES from the Unattached Properties
drop-down list and enter a semi-colon delimited list of the property names as
its value.

For example, "Monitor Size;Monitor Weight;Monitor Color".
You can use property values as described in "Properties as Variables" on
page 504 to help you display the values of properties exactly as you need.

To Display Properties in a Tabular Form

1. Navigate to the option class whose option items you want to display in a
tabular form.

2. Either:

a. Click the Display tab.

b. Select Tabular Display from the Control drop-down list.

c. Click Save All Changes.

Or:

a. Click the Properties tab.

b. Select UI: CONTROL from the Unattached Properties drop-down list and
enter "controls/displayProps.jsp" as its value.

c. Click Attach.

3. Select UI: COLUMN HEADINGS from the Unattached Properties drop-down
list and enter a semi-colon delimited list of headings as its value.

For example, "Size;Weight;Color".

4. Click Attach.

5. Select UI: COLUMN PROPERTIES from the Unattached Properties
drop-down list and enter a semi-colon delimited list of the property names as
its value.

For example, "Monitor Size;Monitor Weight;Monitor Color".
You can use property values as described in "Properties as Variables" on
page 504 to help you display the values of properties exactly as you need.

6. Click Attach.
Visual Modeler Application Guide

Image Properties
FIGURE 106. Defining Tabular Display Properties
Note that the number of columns in the table is inferred from the number of
properties you define in the UI: COLUMN PROPERTIES property.

7. Click Save All Changes.

8. If you now click Test, then you can verify that the option class is now
presented as a table with one row for each option item and one column for each
property specified.

Image Properties
You can associate images with models, option classes, and option items as
described in this section.

Models and Option Classes
Use the Icon Graphic field on the Display tab for models and option classes. This
corresponds to the UI: ICON GRAPHIC property.

Option Items
You can attach images to option items and display them to end-users using the
UI: ITEM IMAGE NAME property to specify an image for each option item. You
must set the UI: SHOW ITEM IMAGES property to be “true” at the option class
level.

The value of the UI: ITEM IMAGE NAME can be interpreted as a relative URL or
as an absolute URL:

• If you enter "2of4stars.gif" or "../images/2of4stars.gif", then the image will
be displayed by resolving the image location to:
Visual Modeler Application Guide 579

Visual Modeler UI Concepts

580
http://server:port/Sterling/en/US/images/2of4stars.gif

• You can use absolute URLs to point to different locations anywhere on the
Web. This is particularly useful if you use a different Web server to serve
up static content for your Web site. For example:

http://imageserver:port/configurator/images/2of4stars.gif

User-Entered Values
You can allow your customers to type in values for a configurable product's
options. For example, you may want to let customers enter a color that is not one of
the pre-defined colors in a model, or you may want to let them enter a product ID
for a product that is not in your product catalog, but which you can fulfil by special
order.

The User Entered Value properties, described in Table 30 on page 572, enable
customers to type in values. For example, suppose that you have a configurable
product and you want to let the user specify their own choice of color. Do the
following:

1. Navigate to the model and click Edit.

2. Click New Option Class.

3. In the Name field, enter "Custom Color Class".

4. In the Description field, enter "Enter your preferred color".

5. Click Save.

6. Click the Display tab.

7. Set the Control display property to "User Entered Values".

8. Check the Ignore in Quote check box.

9. Click Save All Changes.

10. Click the General Info tab.

11. Click New Option Item.

12. In the Name field, enter "Custom Color Item".

13. In the Description field, enter "We will provide a color match before
shipping.".

14. In the Navigation panel, navigate to the Custom Color Item option item.
Visual Modeler Application Guide

UI Control Reset Behavior

UI Control

Checkbox

Radio Button

List Box

Multiple Selection List Box

Display All Children
15. Click the Display tab.

16. Select String, Integer, or Numeric from the User Entered Value Type drop-
down list.

17. Click Save All Changes.

18. Click Compile.

You can use user-entered values in rules by referring to the appropriate UEV
property: UEV: NUMERIC VALUE (for Integer or Numeric values) or
UEV: STRING VALUE (for String values).

UI Control Reset Behavior
Some UI controls allow the user to reset (clear) a selection and start over. A Clear
button displays in the configuration UI by default to enable this reset behavior. The
following table summarizes the default behavior of the Clear button in UI controls.

TABLE 31. Behavior of Clear Button in UI Controls

Default View Default Selection Allowed User Action

Displays all values. The model's default
selections are checked.
If there is no default
value, nothing is
checked.

Check or uncheck values.
Clicking Clear checks the
default value. If there is no
default value, clicking Clear
clears all values.

Displays all values. The model's default
selection is selected. If
there is no default value,
nothing is selected.

Check or uncheck values.
Clicking Clear selects the
default value. If there is no
default value, clicking Clear
clears all values.

Displays all values. The model's default
selection is selected. If
there is no default value,
nothing is selected.

Select any value in the list box.
Clicking Clear selects the
default value. If there is no
default value, clicking Clear
clears all values.

Displays all values. The model's default
selections are selected. If
there is no default value,
nothing is selected.

Select or unselect any value.
Clicking Clear selects the
default value. If there is no
default value, clicking Clear
clears all values.

Displays all values. No default selection. User cannot take any action.
Visual Modeler Application Guide 581

Visual Modeler UI Concepts

582

Drop-down List

Dynamic Instantiation

Tabular Display

Single-Select Tabular Displa

Multi-Select Tabular Display

Tabular Display
with Quantity
Box Selection

User Entered
Values

UI Control

Displays all the values
in the drop-down.

The model's default
selection is selected. If
there is no default value,
nothing is selected.

Select any value in the drop-
down list. Clicking Clear
selects the default value. If
there is no default value,
clicking Clear clears all values.

Nothing displays. No default selection. User cannot take any action.

Nothing displays. No default selection. User cannot take any action.

y Displays all values and
a Reset button.

The model's default
selection is selected. If
there is no default value,
nothing is selected.

Select any value. Clicking
Clear selects the default value.
If there is no default value,
clicking Clear clears all values.
Clicking Reset clears all values.

Displays all values. The model's default
selection is selected. If
there is no default value,
nothing is selected.

Select or unselect value(s).
Clicking Clear selects the
default value. If there is no
default value, clicking Clear
clears all values.

Displays all values with
quantity boxes.

The model's default
selection is selected. If
there is no default value,
nothing is selected.

The user cannot take any action.

Displays all with text
boxes.

No default selection. Enter values. Clicking Clear
clears all values.

TABLE 31. (Continued) Behavior of Clear Button in UI Controls

Default View Default Selection Allowed User Action
Visual Modeler Application Guide

CHAPTER 39 Enterprise System Administration
This chapter covers the tasks associated with enterprise system administration for
the Visual Modeler. Enterprise employees are responsible for maintaining their
enterprise installation. See "Configuring the Visual Modeler" on page 415 for an
overview of enterprise system administration.

Note that some site administration tasks are performed by site system
administrators: see CHAPTER 42, "Site System Administration" for more
information.

System Administration Tasks
You perform the System Administration tasks through the System Administration
link on the Visual Modeler Administration page. This link is accessible only to
authorized personnel.

You can modify system configuration settings only if you have the appropriate
access function. In the reference implementation provided with the Visual Modeler,
only users with the Program Management function (defined in the
Entitlements.xml configuration file as EnterpriseProgramManagement) may
access the System Administration pages.
Visual Modeler Application Guide 583

Enterprise System Administration

584
To Modify System Settings

1. Click System Services in the System Administration panel on the Visual
Modeler home page.

The system configuration properties are organized into logically-related
groups.

2. Access each group by clicking the corresponding link on the System
Administration page.

Each link takes you to a new page that displays the current values for each
property.

3. Make the appropriate changes as necessary.

See "Configuration Properties" on page 584 for a description of each set of
properties.

4. Click Save All and return to List.

5. By default, changes to the value of a system property take effect immediately,
and are persisted to the file system. A server restart is not necessary, but if you
do restart the server, the new value of the property remains in effect.

Configuration Properties
Use the steps described in "To Modify System Settings" on page 584 to access the
property you want to modify. With the exception of the following, the properties
each contain a detailed description within the user interface.

Locale Settings
The locale names supported by your installation combine the ISO-639 language
codes and ISO-3166 country codes. You can define display names that will appear
for these locale names in the Visual Modeler. You can define a display name for
each supported locale, that is, how each locale name will appear for each supported
locale. For example, you can decide that, in the en_us locale, "en_us" will be
displayed as "United States", while in the de_de locale (Germany), "en_us" will be
displayed as "Vereinigte Staaten".

Note: If a display name is not defined for a locale name for the locale effective
during a session, then the fields in which that locale name should appear will
be blank.
Visual Modeler Application Guide

Job Scheduler Settings
Changes that you make to locale names become active when you restart the Visual
Modeler.

To Define the Display Names

1. Select an effective locale from the Effective Locale drop-down list.

The locale names for the supported locales appear in the Locale Name
column. The current display name, if any, for each locale appears in the
next field in the language of the effective locale.

2. In the text field next to each locale name, type the display name you want to
appear for each locale name.

3. Repeat the last two steps for each supported locale.

4. Click Save to save the changes and remain at the Locale Settings page; click
Save All and return to List to save the changes and redisplay the System
Administration page.

If you click Save, then the Effective Locale field re-displays the default
system locale, as defined in the Internationalization properties.

Repeat these steps for each locale in the Effective Locale drop-down list.

Job Scheduler Settings
The Visual Modeler supports the ability to schedule tasks that must be performed at
regular intervals as cron jobs. See CHAPTER 41, "Job Scheduling Administration"
for more information on this scheduling feature.

There are two types of cron jobs: system and application.

• System cron jobs run without session information and without an
associated Visual Modeler user. Typically, they are used for low-level
background tasks such as garbage collection. System cron jobs do not save
their last execution time or execution status to the Knowledgebase because
the same job may be run on several servers in a cluster.

• Application cron jobs are used when session information (such as a
username or locale) is required to run the job or if audit information might
be needed to determine how changes to data objects were made.

Attention: If you change the effective locale without clicking Save, then any unsaved
changes to Display Names will be lost.
Visual Modeler Application Guide 585

Enterprise System Administration

586
Application cron jobs are initiated by posting an XML message to the
Visual Modeler using the message URL for cron jobs: consequently, to
enable application cron jobs, you must take care to set this URL correctly.

For example, if the main URL used to access the Visual Modeler is:
http://server:port/Sterling/en/US/enterpriseMgr/matrix

then set the cron job message URL to:
http://server:port/Sterling/msg/matrix

Similarly, if the main URL used to access the Visual Modeler is:
http://server:port/store/en/US/enterpriseMgr/anderel

then set the cron job message URL to:
http://server:port/store/msg/anderel

You can choose whether or not to allow either type of cron job to run on your
implementation.

Application cron jobs are created specifying a username and password of a Visual
Modeler user. You must ensure that the Password data field of the CronConfig data
object is not set to store one-way encrypted values.

In a clustered installation of the Visual Modeler, if you want a job to run on all
servers in the cluster, then make it a system cron job. If you want the job to be run
on only one server in the cluster, then you must make it an application cron job.

Frequently Used System Administration Settings
This section describes some of the most commonly used system administration
settings: it does not cover all the possible settings.

Commerce Manager

Are comergent applications rendered as part of a frameset?
Set this property to TRUE if the Visual Modeler end-user pages are displayed
within a frame set. For example, suppose that you have a frame set defined as:

<html><frameset rows="120,*"><frame src="http://server:port/Naviga-
tion.html"><frame src="http://server:port/Sterling/en/US/adirect/

matrix?cmd=OnlineOrderingPageDisplay"></frameset></html>

Attention: Some cron jobs such as the search index builder must be run as an
application cron jobs. To support advanced search, you must enable
application cron jobs.
Visual Modeler Application Guide

Frequently Used System Administration Settings
When this page is displayed, you want the Visual Modeler pages to be displayed
without their built-in banner heading. By setting this system property to “True”,
you suppress the display of the built-in banner heading: end-users only see the
navigation links provided in your Navigation.html page.

Availability Data Access Method
This property controls how inventory availability is obtained and estimated
delivery date is calculated.

• If you select Static: inventory availability information is obtained from the
static database tables, and estimated delivery date is not calculated.

• If you select System Initiated Real-Time: inventory availability
information is obtained using a real-time availability check call to the
Visual Modeler (when the supplier is the current storefront) and/or static
database tables (when the supplier is not the current storefront), and
estimated delivery date is calculated automatically.

• If you select On Demand Real-Time: a Check Availability button is
displayed on the Catalog Detail or Commerce page. Upon clicking the
button, inventory availability information is obtained using a real-time
availability check call to the Visual Modeler (when the supplier is the
current storefront) and/or static database tables (when the supplier is not
the current storefront). While estimated delivery date is calculated on the
Checkout page if the user clicks the Check Availability button, it is
calculated automatically when the user places the order regardless of
whether the user clicks the Check Availability button or not.

SMTP Host Machine
Set this property to the appropriate name of the SMTP host machine which is used
to send email from the Visual Modeler.

Application Settings

Allowed Decimal Places for displaying extended prices
The value of this property determines how many decimal places are used in
displaying calculated extended prices to users.

Note: Before you choose System Initiated Real-Time or On-Demand Real-Time,
you must make sure that the Visual Modeler is integrated.
Visual Modeler Application Guide 587

Enterprise System Administration

588
Allowed Decimal Places for displaying list prices
The value of this property determines how many decimal places are used in
displaying list prices to users.

Lines Per Page in List Displays

This property controls the pagination behavior of the Visual Modeler. It specifies
how many items appear on each page of a paginated list.
Visual Modeler Application Guide

CHAPTER 40 Business Rules Administration
During implementation, you can configure business rules by editing the property
files provided with the Visual Modeler. After implementation, you can manage the
business rules from the Business Rules Manager page. See "Configuring the Visual
Modeler" on page 415 for an overview of business rules administration.

Business Rules Administration Tasks
To manage the business rules in your Visual Modeler, you must be an enterprise
user that has been assigned the appropriate function: typically, this is the Program
Management function.

To Manage Business Rules

1. Click Business Rules in the System Administration panel on the Visual
Modeler home page.

The Business Rules Manager page displays.
The Business Rules link appears on the Visual Modeler home page only if
you are assigned the appropriate function to perform this task.

2. Click a link to modify the desired set of business rules.

Each business rule contains help text describing the rule.
Visual Modeler Application Guide 589

Business Rules Administration

590
3. Click Save.

4. Unless otherwise directed, the changes to the value of a business rule take
effect immediately, and are persisted to the file system. This means that a
server restart is not necessary, but if the server is restarted, the new value of the
business rule continues to be used.
Visual Modeler Application Guide

CHAPTER 41 Job Scheduling Administration
This chapter covers the tasks associated with Job Scheduler. For an overview of job
scheduling, see "Job Scheduling" on page 416. The latter section also includes
important information about setting properties related to job scheduling.

Enterprise and Storefront Cron Jobs
Some cron jobs affect the entire e-commerce site and are managed only by
enterprise administrators. For example, the cron job that maintains the catalog
index, the cron job that controls when segment memberships are reprocessed, and
the cron job that controls when the nightly segment build process starts, are all
enterprise-level cron jobs. There can be only one instance of these cron jobs on a
given e-commerce site, and only the enterprise administrator can see and manage
them.

It is possible for storefront admins to create these "one instance" cron jobs as well:
they also have access to the cron facility. Enterprise administrators must enforce the
one-instance rule and ensure that storefront administrators first check with them
before creating cron jobs. The following is the list of out-of-the-box cron jobs for
which only one instance can exist on an e-commerce site.

Note: Two settings define how jobs are run on your Visual Modeler. See "Job
Scheduler Settings" on page 585.
Visual Modeler Application Guide 591

Job Scheduling Administration

592
• Product Sync

• User Sync

• Nightly Segments Build

• Reprocess Segments

• Maintain Indexsets

Storefront administrators can create and manage their own storefront-specific cron
jobs. As a storefront administrator, you can see only your own storefront cron jobs.

Note that in a cluster environment, application cron jobs must be initiated by only
one member of the cluster. In a cluster environment, you control which server starts
the cron job, although you do not control which member of the cluster runs the job.
System cron jobs should generally be run on all members of the cluster.

Job Scheduling Tasks
You can perform the following tasks:

• "To Display a Scheduled Job" on page 592

• "To Create a Job" on page 593

• "To Modify a Job" on page 594

• "To Run a Cron Job Immediately" on page 594

• "To Delete a Job" on page 595

• "To View the History of a Cron Job" on page 595

To Display a Scheduled Job

1. Click Job Scheduler in the System Administration panel on the Visual
Modeler home page.

2. Click the name of a cron job to display the details of the selected job.
Visual Modeler Application Guide

Job Scheduling Tasks
To Create a Job

1. Click Job Scheduler in the System Administration panel on the Visual
Modeler home page.

2. Click Create New Job.

The Cron Job Configuration page displays.

3. Enter the information about the job.

Attention: If you are running multiple instances of the Visual Modeler, then creating
or modifying a cron job will affect any of these instances running off the
same Knowledgebase instance.

TABLE 32. Cron Job Configuration Page

Field Description

Job Name The name of the cron job

Program The java implementation class that executes the job

Command Line
Arguments

The command line parameters that provide information about the
job.

For example, you can specify that a cron job should time out after
300 seconds (5 minutes) by setting the RequestTimeout
parameter as follows:

RequestTimeout=300

Cron Job Type The type of the cron job: a system level cron job (such as cache
cleaning) or an application level cron job (such as importing/
exporting)

If you select Application, then you must enter the username and
password required for access to the particular data. For example,
if the application-level cron job involves product manager, then
you must enter a username and password with privileges to
access Sterling Product Manager.
Visual Modeler Application Guide 593

Job Scheduling Administration

594
4. Check the box next to Active to make the job available to be run.

5. Click Save All Changes.

To Modify a Job

1. Click Job Scheduler in the System Administration panel on the Visual
Modeler home page.

2. Click the name of a cron job to display the details of the selected job.

The details are displayed on the Cron Job Configuration page.

3. Enter the information about the job.

See Table 32, "Cron Job Configuration Page", on page 593 for a description
of the fields.

4. Check the box next to Active to make the job available to be run.

5. Click Save All Changes.

To Run a Cron Job Immediately
You may need to sometimes run a cron job immediately.

1. Click Job Scheduler in the System Administration panel on the Visual
Modeler home page.

2. In the list of cron jobs, identify the job that you want to run immediately.

Frequency How often will the job be run? Every three days? Every week?
Every five minutes? and so on.

Start date and time/
End date and time

The effective start and end period between which dates and times
the cron job will run. This, along with Frequency, determines
when the job will run. For example, if you entered a frequency of
three days, then the job will run every three days from the task
start date and time until the task end date and time is reached.

You can enter the same dates and times for both start date and
time, in which case the job will be run only once, at a specific
time.

Attention: If you are running multiple instances of the Visual Modeler, creating or
modifying a cron job will affect any of these instances running off the
same Knowledgebase instance as the cron job.

TABLE 32. Cron Job Configuration Page (Continued)

Field Description
Visual Modeler Application Guide

Cron Jobs
3. Click Run Now.

The cron job will be immediately scheduled to run, but if jobs are ahead of
it in the cron job queue, then it will not run until those jobs have completed.

To Delete a Job

1. Click Job Scheduler in the System Administration panel on the Visual
Modeler home page.

2. Check the box next to the job(s) you want to delete.

3. Click the Delete icon (X) in the Actions column.

To View the History of a Cron Job
You may need to review how a cron job has run in the past. To do this:

1. Click Job Scheduler in the System Administration panel on the Visual
Modeler home page.

2. In the list of cron jobs, identify the job whose history you want to view.

3. Click Show History.

Cron Jobs
If you install the Visual Modeler with the reference data, the installation includes
the pre-defined cron jobs described in this section.

If you installed the Visual Modeler with minimal data, only the Cache Cleanup job
is included. If you want to implement the other jobs, you must create them by
following the steps in "To Create a Job" on page 593. The following sections
contain the information needed to create these jobs.

Note that all cron job timeout values are specified in seconds.

Specifying -1 as a timeout value means that the cron job never times out.

Cache Cleanup
This group of properties determine the frequency and class of the cron job used to
clean the cache.
Visual Modeler Application Guide 595

Job Scheduling Administration

596
Maintain Configuration
This cron job deletes saved configurations of the specified configuration type that
are older than the specified age. The default age for deletion is 10 days.

TABLE 33. Maintain Configuration Cron Job

Cron Job Field Entry

Program com.comergent.apps.configurator.main.ConfigMaintainanceCr
on

Command Line
Arguments

ConfigType=Config&AgeInDays=10

Cron Job Type Application
Visual Modeler Application Guide

CHAPTER 42 Site System Administration
This chapter describes the tasks associated with managing the Visual Modeler site.
Site system administrators are responsible for:

• managing system users: see "System User Administration" on page 598

• managing the system profile: see "System Profile Administration" on
page 599

• managing system properties: see "System Property Administration" on
page 599

• managing system cron jobs: see "System Cron Jobs" on page 599

• reviewing the system status: see "System Status" on page 600

Overview
There is a distinction between system administration and enterprise administration:

• System administration is the responsibility of system administrators: they
manage the basic system properties of the Visual Modeler and the system
cron jobs.

• Enterprise administration is the responsibility of enterprise users: these
users manage the building blocks of the enterprise e-commerce system:
partners, users, products, price lists, storefronts, and so on.
Visual Modeler Application Guide 597

Site System Administration

598
A system administrator can manage:

• System users: see "System User Administration" on page 598

• System profile: see "System Profile Administration" on page 599

• System properties: see "System Property Administration" on page 599

• System cron jobs: see "System Cron Jobs" on page 599

• System status: see "System Status" on page 600

All these tasks are performed from the system administration home page.

To Access the System Administration Home Page

1. Point your browser to the System Administration URL. By default, this is:

http://server:port/Sterling/en/US/enterpriseMgr/admin

Check your site documentation to identify this URL.

2. Log in as a system administrator. When the Visual Modeler is first installed,
the default username/password combination is admin/admin. If other system
administrator users have been created, then you can log in using one of these
userids.

3. From this page, you can perform the task described in the following sections.

System User Administration
To Create a System Administrator User

1. Log in as a system administrator.

2. Click System Users.

3. Click Create User.

4. Enter information for the new user as appropriate.

5. Click Save.

The new user information is saved.

Attention: You must change at least the password of the admin user to protect the
system from unauthorized access. We suggest that you create a different
system administrator user, and then delete the admin user.
Visual Modeler Application Guide

System Profile Administration
6. You can verify that the new user has been successfully created, by logging out
and logging back in as the newly-created user.

System Profile Administration
To Manage the System Administrator Profile

1. Log in as a system administrator.

2. Click View Your Organization Profile.

3. Modify the profile details as appropriate.

4. Click Save.

System Property Administration
System administrators can manage the system-level properties for the Visual
Modeler, including configuring logging settings, job scheduler categories,
Configurator settings (number of models to cache, default template directory and
page template), whether or not to use session-based caching, and so forth.

To Update a System Property

1. Log in as a system administrator.

2. Click System Services.

3. Click the link to the set of properties that you wish to update.

4. Modify the values of properties as required.

5. Click Save All and Return to List.

System Cron Jobs
System administrators can mange system cron jobs. Enterprise administrators
manage application cron jobs.

To Create a System Cron Job

1. Log in as a system administrator.

2. Click Job Scheduler.

3. Click Create New Cron Job.
Visual Modeler Application Guide 599

Site System Administration

600
4. Enter details for the new system cron job as appropriate.

5. Click Save All Changes.

System Status
To View the System Status

1. Log in as a system administrator.

2. Click System Status.

3. Review the system status details as appropriate.
Visual Modeler Application Guide

Part 5: Tutorial
The chapters in this section of the guide provide step-by-step lessons on
administering a storefront and creating product models.
Visual Modeler Application Guide 601

602
 Visual Modeler Application Guide

CHAPTER 43 Storefront Administration
In this lesson, you learn how to create a child storefront of the tenant storefront,
Matrix, and how to administer that child storefront.

Storefront administration involves the following tasks:

• Creating a Storefront

• Creating a Storefront Administrator

• Creating Additional Storefront Administrators

• Setting Default Storefront Preferences

• Setting Storefront Business Rules

• Creating a Storefront Partner

• Creating a Storefront Partner Administrator

• Creating a Storefront Partner User

Creating a Storefront
1. Click the Admins Login Here link on the Matrix home page, then log in to the

Visual Modeler as the ajones user (password: ajones).

The administration home page.
Visual Modeler Application Guide 603

Storefront Administration

604
2. Click Go in the Search for Organization by Name panel.

The Profile List page displays.

3. Click Create Storefront.

4. Enter information for the new profile as shown in the following table.

5. Click Save.

6. The Profile Detail page displays with new tabs.

7. Click the Commerce tab.

8. Under the Payment Options panel, check Account.

9. Under the Shipping Options panel, check Standard Shipping and Premium 2-
Day.

10. Click Edit next to the skin ID.

The Edit Skin page displays. Use this page to upload the logo and CSS file
for the AllNet skin. A skin is a combination of logo, CSS, and URL.

11. In the Upload Logo Image to Server field, specify the path to a folder that
contains the strorefront logo. For example, if you have loaded the Matrix
storefront data, you can find the logos in your servlet container’s Sterling/
htdocs/partnerlogos directory. Alternatively, you can browse to the location
where the image is kept by clicking Browse...

TABLE 34. New Storefront Information

Field Value

Profile name AllNet Corp

Organization ID M00212G

Address Line 1 4945, Central Ave.

Address Line 2 First Floor

City Mill Valley

State/Province and
Postal code

CA/94941

Country USA

Skin Url (the name
used in the URL to
access this skin)

allnet
Visual Modeler Application Guide

Creating a Storefront Administrator
12. Click Upload.

The logo pathname displays in the Logo URL or Uploaded File Path field.

13. Upload a stylesheet file by specifying the path to a folder that contains the CSS
file. If you do not specify a CSS file, the Matrix storefront’s CSS is used.

14. Click Save.

15. Click Return to List.

Creating a Storefront Administrator
Now that you have created a storefront, you will create an administrator for this
storefront. A storefront administrator is responsible for maintaining the profile of
the storefront as well as its users.

1. Click the AllNet Corp link.

The Profile Detail page displays.

2. Click View Users.

The User List page displays.

3. Click Create User.

4. Enter the following information about the user:

• Username: bbunson

• Password: bbunson

• Confirm Password: bbunson

• Title: Mr

• First Name: Brad

• Last Name: Bunson

• Email: bbunson@farcom.com

5. Under the User functions panel, select the Manager, Program Management,
Profile Administration, and Marketing Manager - Segmentation checkboxes.

6. Click Save.

The User Detail page displays with new tabs.

7. Click the Addresses tab.
Visual Modeler Application Guide 605

Storefront Administration

606
8. Enter the following address information:

• Address Line 1: 4945 Central Ave.

• Address Line 2: First Floor

• City: Mill Valley

• State/Province and Postal Code: CA/94941

• Country: USA

• Select the Use as Ship To Address checkbox. A new checkbox appears for
Set As Default Ship To Address. Select this checkbox as well.

9. Click Save.

10. Click Logout.

11. Notify the new storefront administrator of the storefront URL, the
administrator’s username and password.

Creating Additional Storefront Administrators
Now that you have created a storefront administrator (Brad Bunson), you can log in
as this storefront administrator and create more users for the storefront. These users
are also referred to as storefront administrators.

1. Log in to the storefront administration home page by pointing your browser to
the appropriate URL. The URL for the AllNet storefront looks similar to the
following:

http://<server>:<port>/Sterling/en/US/enterpriseMgr/<skin>
The AllNet home page displays.

2. Click the Admins Login Here link and log in as Brad Bunson (bbunson/
bbunson).

The AllNet administration home page displays.
Notice that except for the absence of the Configuration Models link and
the Advisor Flows and Questionnaires link, the AllNet administration
home page is similar to the Matrix administration home page.

3. Click System Users under the System Administration panel.

The User List page displays.
Visual Modeler Application Guide

Setting Default Storefront Preferences
4. Click Create User.

The Create New User page displays.

5. Enter the following information about the user:

• Username: mhailey

• Password: mhailey

• Confirm Password: mhailey

• Title: Ms

• First Name: May

• Last Name: Hailey

• Email: mhailey@farcom.com

6. Under the User functions panel, select the Commerce, Sales Executive, and
Profile Administration checkboxes.

7. Click Save.

8. Click My Home to return to the home page.

Setting Default Storefront Preferences
When you create the AllNet storefront, the storefront is automatically assigned the
following default preferences, which are specified in the
CMGT_USER_PROPERTY, CMGT_USER_PROPERTY_LOCALE, and
CMGT_USER_PROPERTY_UI_HINT tables.

• User Cart Mode: Multiple Carts

• Shopping Cart Display: Simple View

• Checkout Type: Single Step

• Home Page View: Portal View

• Sold-To Address: Yes

• Availability: Yes

• Delivery Date: Yes

• Taxable: Yes

• Availability Text Display: Display Number Available
Visual Modeler Application Guide 607

Storefront Administration

608
However, you can override these default preferences for the storefront.

For the purpose of this tutorial, you will modify the values of the following user
preferences:

• User Cart Mode: Single Cart

• Home Page View: Catalog View

To modify the preferences for the AllNet storefront, perform the following steps:

• For Oracle:

a. Find the CMGT_USER_PROPERTY table in the database.

b. Under the VALUE column of the userCartMode property, enter
Single_Cart. Similarly, enter Catalog_View under the VALUE column of
the homePageView property.

c. Restart your server.

• For SQL Server 2005:

a. To modify the value of the User Cart Mode user preference to Single Cart,
execute the following SQL statement against the database:

update CMGT_USER_PROPERTIES set value='Single_Cart'
where name='userCartMode'

b. To modify the value of the Home Page View user preference to Catalog
View, execute the following SQL statement against the database:

update CMGT_USER_PROPERTIES set value='Catalog_View'
where name='homePageView'

c. Click Logout on the AllNet administration home page.

Log in to the AllNet administration home page.

Setting Storefront Business Rules
In this section, you set business rules that are specific to the AllNet storefront.
When you create the AllNet storefront, you get by default the business rules
settings of the tenant (Matrix) storefront. You can override these business rules and
set them afresh.

For the purpose of this tutorial, you will set the values of the following business
rules for the Saved List property:
Visual Modeler Application Guide

Exercise
• Enable Alternative items link in: Templates, Wish Lists, Registries, Cart

• Enable Complementary items in: Templates, Wish Lists, Registries

1. Click the Business Rules link under the System Administration panel.

The Business Rules page displays.

2. Click the Saved List link.

The Business Rules page redisplays with the business rules and their default
values on the right panel.

3. Select the following checkboxes for the Enable Alternative items link in
business rule:

• Templates

• Wish Lists

• Registries

• Cart

4. Select the following checkboxes for the Enable Complementary items link
in business rule:

• Templates

• Wish Lists

• Registries

5. Click Save.

6. Click My Home to return to the home page.

Exercise
Create another product with the following information:

• Product ID: ANLP-7510

• Product Name: AllNet 7510 Notebook

• Description: A highly power-packed solution

• Component Type: Normal

• Status: Released

• Start Date: Enter the current date
Visual Modeler Application Guide 609

Storefront Administration

610
• End Date: Enter a date 100 years from the current date.

Creating a Storefront Partner
1. Click Go in the Search for Organization by Name panel.

The Profile List page displays.

2. Click Create Profile.

3. Enter information as shown in the following table.

4. Click Save.

The Profile Detail page for ITech Solutions displays with new tabs.

5. Click the Business tab.

6. From the Territories drop-down list, select North America.

7. From the Customer Types drop-down list, select the following:

• General

• Government

• Commercial

• Pharmaceutical

• Telecommunications

• High Technology

TABLE 35. New Profile Entries

Field Value

Profile name ITech Solutions

Profile type Retailer

Profile level Gold

Organization ID IT-23512

Address Line 1 123, Park Street

City Richmond

State/Province and
Postal code

VA/94941

Country USA
Visual Modeler Application Guide

Creating a Storefront Partner Administrator
• Education

8. Under the Contracts panel, enter the following information about business
agreements between AllNet Corp and ITech Solutions:

• Name: ABC-245ST

• Type code: XYZ-7890

9. Click Save.

10. Click the Pricelists tab.

11. Select the checkbox next to AllNet Price List for All, then click Save.

Creating a Storefront Partner Administrator
In this section, you create an administrator for the partner you just created. This
partner administrator is responsible for profile maintenance of the partner and its
users.

1. Click View Users.

The User List page displays.

2. Click Create User.

3. Enter information as shown in the following table:

4. Select the Manager checkbox.

5. Select the Profile Administration function.

6. Click Save.

TABLE 36. Entries for New User

Field Value

Username rjones

Password rjones

Confirm Password rjones

Title Ms

First Name Rosy

Last Name Jones

Email rjones@itech.com
Visual Modeler Application Guide 611

Storefront Administration

612
7. Click Logout.

Creating a Storefront Partner User
In this section, you learn how to create a user for Itech Solutions.

1. From the Login panel, log in as rjones.

The Partner User Home page displays.

2. Click Update User Accounts.

3. Click Create User.

The User Detail page displays.

4. Enter information as shown in the following table.

5. Check the Commerce function.

6. Click Save.

7. Click Logout.

TABLE 37. User Detail Header Information

Field Value

Username adesai

Password adesai

Confirm Password adesai

Title Ms

First Name Anita

Last Name Desai
Visual Modeler Application Guide

CHAPTER 44 Creating Product Models
The Visual Modeler application enables you to create configurable product models.
Customers can customize a product by selecting choices that the product offers to
ensure that the product precisely meets their needs.

Before creating a configurable product model, you must ensure that all the products
to be used in the model are already created using the Business Center application.
For more information about creating a configurable product, refer to the Business
Center: Item Administration Guide.

In this lesson, we create a configurable product model. This comprises the
following steps:

1. Create the product model

2. Test the product configuration experience

After a configurable product model is created, it needs to be associated to a product.
For more information about associating a model to a bundle product, refer to the
Business Center: Item Administration Guide.

Once we have created and tested the basic model, the lesson continues by
demonstrating the use of more advanced configuration options and UI controls that
help you manage the customer’s experience as they configure the product. These
topics are:

• "Properties" on page 617
Visual Modeler Application Guide 613

Creating Product Models

614
• "Rules" on page 620

• "Creating a Rule" on page 623

• "Using Rules to Control Display of Option Items" on page 625

• "UI Controls" on page 631

• "Display Properties" on page 631

• "Tabular Displays" on page 632

• "Calculated Property Values" on page 633

• "User-Entered Values" on page 636

• "Images" on page 639

Create the Model
1. In the Product Configuration Administration panel, click Configuration

Models.

The Visual Modeler administration page displays.

2. Click New Model Group.

3. Enter Computers in the Name and Description fields and click Save.

4. In the model group hierarchy tree, select the Computers node.

5. Click New Model Group.

6. Enter Workstations in the Name and Description fields and click Save.

Note that we are creating a hierarchy of model groups that mirror the
hierarchy of product categories. This is not necessary, but can often help to
maintain the organization of models and the products to which they
correspond.

7. In the model group hierarchy tree, select the Workstations node.

8. Click New Model.

9. Click Browse....

10. In the product picker window that opens up, navigate to the Computers ->
Workstations product category and select the MXWS-7700 product.
Visual Modeler Application Guide

Create the Model
11. Click Done.

Notice that the Assigned Product ID field now reads MXWS-7700 and the
Name and Description fields are populated with the name and description of
the MXWS-7700 product.

12. Click Save.

The new model, MXWS-7700, is displayed in the Models and Groups
panel.

13. Select the MXWS-7700 model and click the Edit icon on the Visual Modeler
toolbar.

14. The Model Detail page is now displayed.

To begin our modeling, we will create an option class and two option items in the
option class: this will enable customers to choose between two different monitors to
go with their workstation.

15. Click New Option Class.

FIGURE 107. Visual Modeler Model Detail Page: New Option Class Tab
16. Enter Monitors in the Name field and enter “Please select a monitor” in the

Description field.

17. Click Save.

The option class is created and added to the model tree in the Model
navigation panel. Now we will create two option items in this option class:
these will represent the selectable items that user may select.

18. Select the Monitors option class in the model tree.

19. Click New Option Item.
Visual Modeler Application Guide 615

Creating Product Models

616
FIGURE 108. Visual Modeler Model Detail Page: New Option Item Tab
20. Enter Optiquest Q95 in the Name and Description fields.

21. Click Save.

22. The New Option Item tab is re-displayed. This time, enter Optiquest Q115 in
the Name and Description field.

23. Click Save.

24. If you examine the Model navigation tree, you see that the model is now
displayed with one option class and two option items.

FIGURE 109. Model Navigation Tree
Now we are ready to compile and test this simple model.

25. Click the Compile and Test icon on the Visual Modeler toolbar.

Behind the scenes, an XML file is generated that holds the structure of this
model. Each time we make changes to the model, we must re-compile the
model so that our changes will become part of the customer’s configuration
experience.
A second browser window is displayed: this is the configuration experience
that customers will have when they configure the MXWS-7700 product.
Visual Modeler Application Guide

Properties
FIGURE 110. Visual Modeler Test Model Page
As you can see, this page provides a UI in which customers can select either
of the two monitors (or neither), and the text displayed on the page is the
descriptions that we provided for the option class and option items.

26. Close this window.

This completes the creation of the basic model. Next we must hook it up to the
product.

27. Click My Home to return to the Enterprise Home page.

28. In the Product manager, navigate to the Product Detail page for the
MXWS-7700 product.

29. In the Component Type drop-down list, select Configurable.

30. Notice that in the Model drop-down list, “Computers/Workstations/MXWS-
7700” is selected automatically.

31. Click Save Changes.

You have completed the basic setup of this configurable product. If a customer
selects the MXWS-7700 product and adds it to their shopping cart, then they will
be able to configure it by choosing between the two monitor models provided.

The following sections will provide an in-depth tutorial of the various advanced
features of the Visual Modeler. They cover:

• "Properties" on page 617

• "UI Controls" on page 631

Properties
Most of the customer’s experience of configuring a product is determined by
properties: these are attributes of the model, its option classes, and option items,
Visual Modeler Application Guide 617

Creating Product Models

618
and they are used to determine how rules fire, the behavior of the UI, and
information that can be displayed to the user. The Visual Modeler provides a set of
built-in properties that control the behavior of the Sterling Configurator and how
the model is presented to the end-user. You can also define properties that the
Configurator will use to ensure that the user’s product configuration choices make
sense.

This section describes how to define and attach properties to a model. You define a
property at the model group or model level, and you attach a property to a model,
option class, or option item. The basic steps are:

1. Determine at what level to define and attach a property. Where you attach the
property determines where you can use it: properties are available for use in
the model group and model hierarchy beneath the point at which they are
defined. For example, you may want to define a property, MonitorSize, at the
Monitors option class level so that it is available for use with each of the option
items (types of monitors) in that option class.

2. Once you define the property, then you attach it at the appropriate level of the
model hierarchy and, if appropriate, assign a value to it. For example, once you
have defined the MonitorSize property, then you attach it to the option item
defining a specific monitor and set the value representing the size of the
monitor.

We will define properties at the model level for the monitors available with the
MXWS-7700 Workstation product. Once the properties are defined, we will assign
property values and attach them at the option item level.

Defining Properties for the MXWS-7700 Model
1. In the Visual Modeler, navigate to the Workstations level of the Model Group

hierarchy.

MXWS-7700 displays in the Models and Groups panel.

2. Select MXWS-7700, then click the Edit Model icon in the Visual Modeler
toolbar.

MXWS-7700 displays at the top of the Model Navigation panel, and the
General Info tab for the model displays.

3. Click the Properties tab. The Properties page displays as shown in the
following figure.

4. Click the Define tab.

The Define Properties page displays, as shown in the following figure.
Visual Modeler Application Guide

Properties
5. Define the MXWS-7700 properties:

a. Enter the property name: MonitorSize.

b. Choose Number from the Type drop-down list.

c. Click Add.

The MonitorSize property displays in the Defined Properties list.

6. Add the rest of the MXWS-7700 model properties using the property names
and types shown in the following table.

When you have finished defining and adding the properties, the Define
Properties page displays as shown in the following figure.

7. Click Save All Changes.

The properties are now part of the MXWS-7700 model.

Attaching Properties
This section assumes that you are still editing the MXWS-7700 model in the Visual
Modeler.

First, we will attach a property that applies to the entire model.

1. In the Model Navigation panel, click the MXWS-7700 link.

The General Info page displays.

2. Click the Properties tab.

The Properties page displays as shown in the following figure.
Notice the two lists: Unattached Properties and Attached Properties.

3. Choose MaximumWeight from the Unattached Properties drop-down list.

4. Enter 0 for the property value.

TABLE 38. MXWS-7700 Properties

Name Type

MaximumResolution String

MonitorWeight Number

MaximumWeight Number

RequiresXVGA Number
Visual Modeler Application Guide 619

Creating Product Models

620
5. Click Attach.

The MaximumWeight property displays in the Attached Properties list.

6. Click Save All Changes.

Next, we will attach the properties that apply to the option items for the Monitors
option class.

1. In the Model Navigation panel, click the Optiquest Q95 link.

The Properties tab displays as shown in the following figure:
Notice the two lists: Unattached Properties and Attached Properties.

2. Choose MonitorSize from the Unattached Properties drop-down list.

3. Enter 19 in the Value field, then click Attach.

The MonitorSize property displays in the Attached Properties list.

Continue attaching properties to the option items as follows:

When you have finished attaching properties to each option item, click Save All
Changes.

Rules
The Visual Modeler provides you with the ability to precisely control the
customer’s selections so that the selections that they make are compatible with each
other and that as users make selections, they see selections that are related.

For example, suppose that you want to ensure that customers pick a good graphics
card to go with their monitor. You can create a rule based on their monitor selection
that displays a graphics card option class that displays only compatible graphics

TABLE 39. Option Item Property Values

Option Item Property Value

Optiquest Q95 MonitorSize 19

MaximumResolution 1024x768

MonitorWeight 7.2

Optiquest Q115 MonitorSize 21

MaximumResolution 1280x1024

MonitorWeight 8.3
Visual Modeler Application Guide

Rules
cards. Alternatively, you can create a constraint table that specifies which monitor
can be selected with which graphics card.

Before continuing this section, create a new option class and three option items as
follows:

Define the Resolution property at the Graphics Cards level of the model hierarchy
as follows:

1. In the Model navigation panel, click the MXWS-7700 link.

The General Info tab displays.

2. Click New Option Class.

The New Option Class page displays.

3. Enter Graphics Cards in the Name field and in the Description field.

4. Click Save and Edit.

The General Info tab for the new Graphics Cards option class displays.

5. Click the Properties tab.

The Properties tab displays.

6. Click New Property.

The Define New Property pop-up window appears, as shown in the
following figure.

TABLE 40. Graphics Card Option Class

Option Class Property
Definition

Option Item Property Value

Graphics Cards Resolution GC-1000 Resolution: VGA

GC-2000 Resolution: XVGA

GC-3000 Resolution: XVGA
Visual Modeler Application Guide 621

Creating Product Models

622
FIGURE 111. Visual Modeler Define New Property Pop-Up Window
7. Choose Model Groups from the Definition Location drop-down list.

8. Enter Resolution for the Property Name.

9. Choose String from the Type drop-down list.

10. Click Define.

Define the three new option items and attach the Resolution property to them using
the values in the table "Graphics Card Option Class" on page 621. Define the
option items as described in "Create the Model" on page 614 and attach the
Resolution property as described in "Attaching Properties" on page 619. Be sure to
click Save All Changes as you complete each step. When you are finished, the
Model navigation panel displays as shown in the following figure.
Visual Modeler Application Guide

Rules
In the Model navigation panel, click the Graphics Cards link, then click the Display
tab. Choose Invisible from the Option Class Display drop-down list, then click
Save All Changes.

On the Monitors option class, create a new property as follows:

Creating a Rule
The first rule we make is to show the Graphics Card option class if a user selects
one of the monitor option items.

1. Navigate to the model MXWS-7700.

2. Click the Rules tab.

3. Click the Define sub-tab.

4. Click New....

TABLE 41. IsPicked Property Definition

Option Class Property
Definition

Option Item Property Value

Monitors IsPicked Optiquest Q95 1

Optiquest Q115 1
Visual Modeler Application Guide 623

Creating Product Models

624
FIGURE 112. Model Detail Page: New Rule Tab
5. Enter the following information:

a. Name: Display Graphics Card

b. Description: Display the Graphics Card option class if a monitor is
selected.

6. Select Rule Triggered on: Success.

7. Click Save and Edit.

8. Click the New Fragment icon.

The New Fragment page displays.

9. Define the fragment:

a. Choose value from the Function1 drop-down list.

b. Choose IsPicked from the Property1 drop-down list.

c. Choose = from the Operator drop-down list.

d. Choose literal from the Function2 drop-down list.

e. Enter 1 in the Property2 drop-down list.

f. Choose Rule is false from the If not specified drop-down list.

10. Click Save and Return.

We want the rule to assign the _isViewable property to the Graphics Cards option
class if the rule is true, so define the assignment action like this:
Visual Modeler Application Guide

Rules
11. In the Assignment Actions panel, select _isViewable property from the
drop-down list.

12. Enter 1 for the Value.

13. Click the ... button next to the Assign To field, and in the pop-up window,
navigate to the Graphics Card option class. Select it and click Done.

The Assign To field is populated with the value “*.Graphics Cards”.

14. Click Add Item.

15. Click Save.

Having defined the rule, now we must attach it to the model.

16. Select the Model MXWS-7700 from the navigation panel, and click the Rules
tab.

17. On the Attach sub-tab, select the Display Graphics Card rule from the
drop-down list, and click Attach.

18. Click Save All Changes.

Now compile and test the model. You see that the Graphics Card option class is
hidden until you select a monitor, and then it is displayed so that a graphics card can
be selected.

Using Rules to Control Display of Option Items
You can use assignment actions to control the display of option items: this gives
you the ability to ensure that customers only make valid selections. In "Creating a
Constraint Table" on page 629 we demonstrate an alternate approach using
constraint tables. In this section, we use a rule with an assignment action to ensure
that a customer will only pick valid combinations of graphics cards and monitors.

For the purposes of this example, our rule will say that if you select a monitor
whose maximum resolution is 1280 x 1024, then you must select a graphics card
that supports XVGA.

1. Navigate to the model MXWS-7700.

2. Click the Rules tab.

3. Click the Define sub-tab.

4. Click New....

5. Enter the following information:
Visual Modeler Application Guide 625

Creating Product Models

626
a. Name: Display Compatible Graphics Cards

b. Description: This rule ensures that only graphics cards that support each
monitor are displayed.

6. Select Rule Triggered on: Success.

7. Click Save and Edit.

8. Click the New Fragment icon.

9. Specify the fragment as follows:

a. Choose value from the Function1 drop-down list.

b. Choose MaximumResolution from the Property1 drop-down list.

c. Choose = from the Operator drop-down list.

d. Choose literal from the Function2 drop-down list.

e. Enter 1280x1024 in the Property2 field.

Specifying the fragment in this way is equivalent to the following formula:
value(Maximum Resolution) = literal(1280 x 1024)

f. Choose Rule is false from the If not specified drop-down list.

10. Click Save and Return.

If the rule is true, then we want the rule to assign the RequiresXVGA property to
the model, and then have a rule that ensures that only compatible graphics cards
option items are displayed, so define the assignment action like this:

11. In the Assignment Actions panel, select the RequiresXVGA property from the
drop-down list.

12. Enter 1 for the Value.

13. Click the ... button next to the Assign To field, and in the pop-up window,
navigate to the MXWS-7700 model. Select it and click Done.

The Assign To field is populated with the value “MXWS-7700”.

14. Click Add Item.

15. Click Save.

16. Now attach this rule to the model.

So far, we have created a rule that tells the model that if certain monitors are
selected, then the graphics card that is selected must support XVGA. Now we
Visual Modeler Application Guide

Rules
create a rule that can be attached to each graphics card option item that determines
whether it can be displayed.

1. Navigate to the model MXWS-7700.

2. Click the Rules tab.

3. Click the Define sub-tab.

4. Click New....

5. Enter the following information:

a. Name: Display if Support XVGA

b. Description: Display this card if XVGA support is required and the card
supports XVGA.

6. Select Rule Triggered on: Failure.

7. Click Save and Edit.

8. Click the New Fragment icon.

9. Specify the fragment as follows:

a. Choose value from the Function1 drop-down list.

b. Choose RequiresXVGA from the Property1 drop-down list.

c. Choose = from the Operator drop-down list.

d. Choose literal from the Function2 drop-down list.

e. Enter 1 in the Property2 field.

Specifying the fragment in this way is equivalent to the following formula:
value(RequiresXVGA) = literal(1) in any location

10. Set If not specified to Rule is true.

In effect, this says that if the RequiresXVGA property is not set, then
assume that all graphics cards are valid selections.

11. Click Save and Return.

12. Click the New Fragment icon.

13. Specify the fragment as follows:

a. Choose propval from the Function1 drop-down list.

b. Choose Resolution from the Property1 drop-down list.
Visual Modeler Application Guide 627

Creating Product Models

628
c. Choose = from the Operator drop-down list.

d. Choose literal from the Function2 drop-down list.

e. Enter XVGA in the Property2 field.

Specifying the fragment in this way is equivalent to the following formula:
propval(Resolution) = literal(XVGA) in any location

Note that we have to use the propval function here rather than value: this is
because the option item will not have been picked at the time the rule fires.

14. Set If not specified to Rule is true.

15. Click Save and Return.

16. In the Assignment Actions panel, select _isViewable property from the
drop-down list.

17. Enter 0 for the Value.

18. Leave the Assign To field value blank. This is to indicate that the property is
at the node at which the rule is attached.

19. Click Add Item.

20. Click Save.

21. Now attach this rule to the each graphics card.

Before compiling our model, the last thing we have to do is to manage the order in
which the rules fire. We want to ensure that the rule that tests to see if XVGA is
required fires before the rules that determine if each graphics card option item is
compatible.

22. Navigate to the Model node.

23. Click the Rules tab.

24. Click the Firing Sequence sub-tab.

25. Change the Priority value of the Display Compatible Graphics Cards rule to
10.

This ensures that this rule will fire first.

26. Click Save All Changes.

Now compile and test the model. You see that the Graphics Card option class is
hidden until you select a monitor, and then it is displayed so that a graphics card can
Visual Modeler Application Guide

Rules
be selected. If you select the Optiquest Q115 monitor, then the GC-1000 graphics
card is not displayed.

In the next section, "Creating a Constraint Table" on page 629, you will create a
table which constrains which option items are compatible with each other. Before
proceeding to the next section, remove the rule Display if Support XVGA from
each of the graphics cards.

Creating a Constraint Table
Not all of the graphics cards may be compatible with all of the monitors, and so you
want to specify what combinations of monitors and graphics cards are acceptable.
In this section, we create a constraint table to express this.

Assume that the following combinations of Graphics Card and Monitor are
compatible:

You can express constraint tables either by specifying what option items can be
selected together or which cannot. In this example, it is easier to specify that GC-
1000 and Optiquest Q115 cannot be selected together: the other selections are assumed to be
compatible.

1. Navigate to the model MXWS-7700.

2. Click the Tables tab.

3. Click New....

4. Enter the following information:

a. Name: Graphics

b. Description: Constrains the selection of graphics cards and monitors.

c. Message: You cannot select this combination of graphics card and
monitor.

5. Click Save Changes.

6. Click the Records tab.

TABLE 42. Compatible Selections From Graphics Cards and Monitors

Compatible? Optiquest Q95 Optiquest Q115

GC-1000 Yes No

GC-2000 Yes Yes

GC-3000 Yes Yes
Visual Modeler Application Guide 629

Creating Product Models

630
7. Select Monitors from the Table Column Name drop-down list and click Add.

8. Select Graphics Cards from the Table Column Name drop-down list and click
Add.

FIGURE 113. Model Detail Page: Tables Tab and Records Sub-Tab
9. Click New Constraint.

10. Click Edit.

FIGURE 114. Model Detail Page: Tables Tab and Records Sub-Tab
11. Select the invalid with each other radio button, and check the Optiquest Q115

and GC-1000 check boxes.

12. Click Save and Return.

Now compile and test the model. You see that the Graphics Card option class is
hidden until you select the Optiquest Q115 monitor, and then it is displayed so that
a graphics card can be selected. You see that the GC-1000 option item is displayed
Visual Modeler Application Guide

UI Controls
with a clickable icon that indicates that it should not be selected. If you do select it,
then an error message is displayed. You can click the icon to ask the Visual Modeler
to help resolve the conflict: in this case, it will suggest an alternate selection of
monitor.

UI Controls
The Visual Modeler provides a rich set of controls that can provide a flexible and
attractive UI to help customers make their selections. This section describes how to
use them. It covers:

• "Display Properties" on page 631

• "Tabular Displays" on page 632

• "User-Entered Values" on page 636

• "Images" on page 639

Display Properties
Each model, option class, and option item has a set of properties that determine
how the configurable product will be displayed to the customer: these are known as
display properties. Every display property corresponds to a UI property as indicated
below.

Pre-Pick Guiding Text

Suppose that you want to provide some text to help customers make a selection, but
want to remove the text once the customer has done so.

1. Navigate to the Monitors option class.

2. Click the Display tab.

3. Enter the following in the Pre-Pick Guiding Text field: “The larger the monitor,
the easier it is to manage multiple displays on it.”

4. Click Save All Changes.

If you now compile and test the model, then you will see that this text is displayed
when you first display the model. However, if you select one of the monitors, then
when the page is re-displayed, you can see that the text is now removed.

This display property corresponds to the UI: PRE_PICK GUIDING TEXT
property.
Visual Modeler Application Guide 631

Creating Product Models

632
Ignore in Quote

By default, option classes and option items are displayed in the customer’s cart
when they completed their product configuration and put their configured product
in their cart. If you do not want an option class to be displayed in the customer’s
cart, then do this:

1. Navigate to the Monitors option class.

2. Check the Ignore In Quote check box.

3. Click Save.

If you now compile and test the model, then you will see that the monitor class is
displayed. However, if you click the Summary button, then the Monitors option
class is not displayed on the Summary page (though any option items picked are).

This display property corresponds to the UI: IGNORE IN QUOTE property.

Tabular Displays
Suppose that you would like to display the monitor option items with some of their
properties to help users choose among them. You can do this in the form of a table
as follows.

1. Navigate to the Monitors option class.

2. Click the Display tab.

3. Select Tabular Display from the UI control drop-down list.

4. Click Save All Changes.

5. In the Tabular Display Control Settings section of this page, enter:

a. Column Headings: Size;Resolution

b. Column Properties: MonitorSize;MaximumResolution

c. Column Alignment: Left;Left

6. Click Save All Changes.

7. Click Compile and Test.
Visual Modeler Application Guide

UI Controls
FIGURE 115. Tabular Display of Properties
Note that the option items are not selectable in this display. You probably
want to add a second option class that makes them selectable.

Calculated Property Values
The Visual Modeler provides a simple, yet powerful, means to use property values
to calculate other property values. In this section, we show how use this mechanism
to display extra information to customers. Suppose that you know that for each
monitor, you know the diagonal linear dimension (d) of the monitor, but you want
to present to the customer the total area (A) of the monitor screen. This can be
approximately calculated as A = d*d/2. You can do this along these lines:

1. Navigate to the Monitors option class.

2. Define a numeric property called Monitor Area.

3. Attach this property to the two monitors.

4. Navigate to the Monitors option class.

5. Click the Display tab.

6. Change the table column properties as follows:

a. Column Headings: Size;Area;Resolution

b. Column Properties: MonitorSize;MonitorArea;MaximumResolution

c. Column Alignment: Left;Left;Left

7. Click Save All Changes.

8. Navigate to the model node.

9. Click the Worksheets tab, and then create a worksheet as follows:
Visual Modeler Application Guide 633

Creating Product Models

634
10. Click New....

11. Enter the following information:

a. Name: Calculate Area

b. Click Create.

12. Click Add Column and add first Monitor Size and then Monitor Area.

13. Click Add Row and, using the entity picker, add the monitor option items.

14. In the first row and Monitor Area column, click the Edit Property Value button.

FIGURE 116. Numeric Property Editor Window
15. Enter “=” as the first character in the text area.

16. In the Numeric Property Editor window, select the Function value,
MonitorSize Property, and the unspecified Location and click Add.

17. Click * from the mathematical symbols along the side.

18. In the Numeric Property Editor window, select the Function value,
MonitorSize Property, and the unspecified Location and click Add.

19. Click / from the mathematical symbols along the side.

20. Enter 2.

You should see the following in the text area:
value("Monitor Size")*value("Monitor Size")/2

21. Click OK.

22. In the second row and Monitor Area column, click the Edit Property Value
button and repeat the steps above for this monitor.
Visual Modeler Application Guide

UI Controls
23. Click Save All Changes.

If you now compile and test the model, then you will see that the Monitors option
class is displayed as a three-column table, and the Area column is calculated from
the Size column.

You can also use Java classes in the Numeric and String Editor windows. For
example, suppose that the monitors are circular, and the Monitor Size (d) property
is the radius of the monitor. Then the area (A) should be calculated as pi*d*d.

You can modify the Monitor Area property formula to read:

=java.lang.Math.PI*value("Monitor Size")*value("Monitor Size")

To make this more readable, you can use a string-formatting expression to define a
more readable property as follows.

1. Navigate to the Monitors option class.

2. Define a new String property called MonitorAreaString.

3. Navigate to the MXWS-7700 model and click the Worksheet tab.

4. Add a new column to the worksheet by adding the MonitorAreaString
property.

5. In the first row and MonitorAreaString column, click the Edit Property Value
button.

FIGURE 117. String Property Editor Window
6. Enter “${expand(Monitor Area,225.00,0.00 inches)}” in the text area.

7. Click OK.
Visual Modeler Application Guide 635

Creating Product Models

636
8. Now navigate to the Column Properties field on the Monitors class Display
tab, and change it to:
MonitorSize;MonitorAreaString;MaximumResolution

If you now compile and test the model, then you will see that the Monitors option
class is displayed as a three-column table, and the Area column is calculated from
the Size column and displayed in the form 1134.11 inches.

User-Entered Values
You may want to permit customers to enter values for properties: these can be used
to check user requirements against rules that determine whether option items match
the requirements. To do so, you must specify that the relevant option class UI
Control is a User Entered Value, and then at the option item level, specify how the
user-entered value is bound to a property. Typically, you want to bind the value to a
property that can be used in a model rule.

For example, suppose that you want to enable users to specify a maximum weight
for their computer monitor. You can do this as follows:

1. Create an option class called MonitorWeight.

2. On its Display tab, select User Entered Values from the UI Control drop-down
list.

3. Set the Number of Columns display property to 2.

4. Click Save All Changes.

5. Create a single option item below this option class: call it Weight.

6. On the Display tab for Weight, in the User Entered Value Settings section,
enter:

a. For the User Entered Value Type, select Numeric

b. Assign Value to Property: *.MaximumWeight

This references the MaximumWeight property which is attached at the
model level.

c. Text before Entry Field: Enter the maximum weight for the monitor in kg.

7. Click Save All Changes.

If you compile and test this model, you will see the following option class section:
Visual Modeler Application Guide

UI Controls
FIGURE 118. User Entered Value Option Class
To show how the user-entered value can be used:

8. Navigate to the Model level, and then create the following rule:

• Name: Maximum Weight at Model

• Triggered on: Failure

• Fragment: In Function1, select value, MonitorWeight, any from the
drop-down lists, select ">" from the Operator drop-down list, and in
Function2, select value, MaximumWeight, relative, and select Rule is true
from the If not specified drop-down list, so that the rule reads:

value(MonitorWeight) > value(.MaximumWeight)

• Error message: The selected monitor exceeds your specified maximum
weight.

9. Save this rule.

10. Attach this rule at the MXWS-7700 node.

When you compile and test this model, you will see that depending on your choice
of monitor and the value you enter for the maximum weight of the monitor, an error
message is displayed when the monitor weight exceeds the maximum weight.

What happens here is that when a customer specifies a value in the Weight text field
and updates the model, the value they enter is assigned to the
MXWS-7700.MaximumWeight property, and then the rule compares this value to
the value of the MonitorWeight property defined anywhere in the model. In this
case, the only place where MonitorWeight has been attached to the nodes is at the
two monitor option items, and so the value of the MonitorWeight property at the
selected monitor node is used.

An alternative approach to writing this rule is to specify that the MonitorWeight
property should be retrieved from the point where the rule is attached and then
attach this version of the rule to each of the monitor option items. Try this as
follows:

1. Detach the rule Maximum Weight at Model rule from the model, so that it does
not participate in the rule firing process.

2. Create the following rule:
Visual Modeler Application Guide 637

Creating Product Models

638
• Name: Maximum Weight at Monitor

• Triggered on: Failure

• Fragment: In Function1, select value, MonitorWeight, relative from the
Location1 drop-down list, select ">" from the Operator drop-down list,
and in Function2, select value, MaximumWeight, relative, and select Rule
is true from the If not specified drop-down list, so that the rule reads:

value(.MonitorWeight) > value(.MaximumWeight)

• Error message: The selected monitor exceeds your specified maximum
weight.

3. Save this rule.

4. Attach this rule at the monitor option item nodes.

When you compile and test this model, you will see that depending on your choice
of monitor and the value you enter for the maximum weight of the monitor, an error
message is displayed when the monitor weight exceeds the maximum weight.

What happens in this case is that when a customer specifies a value in the Weight
text field and updates the model, is that the value they enter is assigned to the
MXWS-7700.Maximum Weight property, and then the rule compares this value to
the value of the Monitor Weight property defined at the node where this rule is
attached. In this case, the only place where Monitor Weight has been attached to the
nodes is at the two monitor option items, and so the value of the Monitor Weight
property at the selected monitor node is used.

Before proceeding with this lesson, detach the Maximum Weight at Monitor rule
from the Monitor option items.

Restricting User Entered Values

Some of the time you may want to restrict the possible values that a customer can
enter in a user-entered value field. You can do this using the Allowed Values
display property.

1. Navigate to the Weight option item of the Monitor Weight option class and
click the Display tab.

2. In the Allowed Values display property field, enter: 0-20.

When you compile and test this model, you see that the Weight text field is now a
drop-down list which is populated by integer values from 0.0. to 20.0. A customer
can only select one of these values, and when they do, their selection is
automatically submitted to the server.
Visual Modeler Application Guide

UI Controls
As another example, suppose that you want another user-entered value field for a
customer’s color preference, and again you want to indicate that the customer must
select only from a choice of colors. Do the following:

1. Create an option class called Color.

2. On its Display tab, select User Entered Values from the UI Control drop-down
list.

3. Click Save All Changes.

4. Create a single option item below this option class: call it Color Choice.

5. On the Display tab, in the User Entered Value Settings section, enter:

a. For the User Entered Value Type, select String

b. Enter Black,Blue,Green,Red,White in the Allowed Values field.

c. Assign Value to Property: *.Color

This references the Color property which you can define and attach at
the model level.

d. Text before Entry Field: Select your preferred color.

6. On the Properties tab, select the UI: SUPPRESS UEV NONE VALUE
property and enter yes for its value, and click Attach.

7. Click Save All Changes.

When you compile and test this model, you see the new Color option class, and a
drop-down list of values from which the customer can make their selection. Note
that None is not a selectable item.

Images
You can associate images with a model, option class, or option item simply by
specifying the Image display property: this takes as values relative URLs or
absolute URLs:

• If you begin the URL with “http://”, then the URL is assumed to be
absolute;

• If you begin the URL with “/”, then the URL is interpreted relative to the
servlet container;
Visual Modeler Application Guide 639

Creating Product Models

640
• If you begin the URL without either, then the URL is interpreted relative
to the current URL.

At the model or option class level, the Image display property corresponds to the
UI: ICON GRAPHIC property. At the option item level, the Image display property
corresponds to the UI: ITEM IMAGE NAME property. Note that if you define an
Image display property at the option item level, then you must also set the
UI: SHOW ITEM IMAGES property to be true at the option class level.

Layout Management
You can use UI properties to manage the basic layout of a configurable product. By
specifying the numbers of rows and columns each option class occupies, and by
specifying the number of columns on the page, you can fine-tune the look-and-feel
of your page without touching the underlying JSP page.

In this section, we will add another option class, and then manage the page layout
so that the Monitors option class occupies all of the first row and the other two
option classes occupy the second row.

First, create new option classes as follows:

TABLE 43.

Image Value URL

http://webserver:port/images/4Stars.gif http://webserver:port/images/4Stars.gif

/images/4Stars.gif http://server:port/images/4Stars.gif

4Stars.gif http://server:port/en/US/images/4Stars.gif

TABLE 44. Processors Option Class

Option Item Name Description

Pentium 4 2 GHz Pentium 4 2.8 GHz

Pentium 4 2A GHz Pentium 4 2.8A GHz

Pentium 4 2C GHz Pentium 4 2.8C GHz

TABLE 45. RAM Option Class

Option Item Name Description

SDRAM 256MB SDRAM 256MB

DDR 256MB DDR 256MB

RDRAM 256MB RDRAM 256MB
Visual Modeler Application Guide

UI Controls
Now manage the layout of the configurable product as follows:

1. Navigate to the MXWS-7700 model.

2. On the Display tab, set the Number of Columns property to 3. This is
equivalent to setting the UI: NUMBER OF COLUMNS property to 3.

3. Navigate to the Monitors option class.

4. On the Display tab, set the Number of Columns property to 3. This is
equivalent to setting the UI: NUMBER OF COLUMNS property to 3.

5. Navigate to the Graphics Cards option class.

6. On the Display tab, set the Number of Columns property to 1.

7. Navigate to the MonitorWeight option class.

8. On the Display tab, set the Option Class Display to Invisible.

9. Navigate to the Processors option class.

10. On the Display tab, set the Number of Columns property to 1.

11. On the Properties tab, enter Processors in the value field of the _description
property.

12. Navigate to the RAM option class.

13. On the Display tab, set the Number of Columns property to 1.

14. On the Properties tab, enter RAM in the value field of the _description
property.

15. Navigate to the Keyboards option class.

16. On the Display tab, set the Number of Columns property to 1.

17. On the Properties tab, enter Keyboards in the value field of the _description
property.

When you compile and test this model, and then select a monitor, then the page is
laid out as illustrated below.

TABLE 46. Keyboards Option Class

Option Item Name Description

Logitech 967300 Logitech 967300

Gyration GP170 Gyration GP170

Adesso 595 Adesso 595
Visual Modeler Application Guide 641

Creating Product Models

642
FIGURE 119. Three-Column Layout
Suppose instead that you want the Graphics Cards option class to be displayed in
two rows and one column, and then have the Processors class take up two columns.
Then do this:

18. Navigate to the Graphics Cards option class.

19. On the Display tab, set the Number of Rows property to 2. This is equivalent to
setting the UI: ROW SPAN property to 2.

20. Navigate to the Processors option class.

21. On the Display tab, set the Number of Columns property to 2.

When you compile and test this model, and then select a monitor, then the page is
laid out as illustrated below.
Visual Modeler Application Guide

UI Controls
FIGURE 120. Revised Three-Column Layout
Finally, add one more option class. This is a user-entered value class called Case
with one option item called Color. Set up the option item as a String-valued
property that can take a value from this list: Black,Blue,Green,Red,White.

When you compile and test this model you see that the layout is skewed by the
Case option class sticking out on the third row. To correct this, you need to specify
that the RAM option class must skip a column: this accounts for the fact that the
Graphics Cards option class takes up two rows.

22. Navigate to the RAM option class.

23. On the Display tab, set the Number of Columns to Skip property to 1. This is
equivalent to setting the UI: SKIP COLUMNS property to 1.

When you compile and test the model, you now see that the rows and columns are
again what you expect.
Visual Modeler Application Guide 643

Creating Product Models

644
FIGURE 121. Revised Three-Column Layout with Skipped Column
Visual Modeler Application Guide

Index
Symbols
$

notation in models 504

Numerics
503 response 184

A
AbstractCronJob class 352
access

defined 411
access control lists 293, 412
access entitlements 272
access policies 293, 296

conditions 297
resource 297

access policy
inheritance 296

access services 298
AccessChecker element 298
accessor methods

effect of Writable attribute 276
AccessPolicy element 296, 297
AccessPolicy.xml configuration file 297
AccessServiceDefinition element 298
actions types Assignment Action

defined 538

actions types Expansion Action
defined 538

actions types Message Action defined 538
activated attribute 209
ACTIVE_FLAG column 276

use to mark objects as deleted 275
addChild method 288
adding a role to a user type 295
adjustFileName method 234, 242, 244
admin user

change password 138
Administrative domain

application server 364
database server 364
DMZ 363
entities 363
external network 363
internal network 363
network zones 363
networks 363
roles 364
servers 363
Web server 364

Alias element 180
Allowed Decimal Places for displaying

extended prices property 587
Visual Modeler Application Guide 645

646
Allowed Decimal Places for displaying list
prices property 588

Allowed Values display property 638
Alternate element 285
Analyzing debs.log 394
ancestors

of storefronts 407
any value of Level attribute 174
Apache 119

keepalive 123
serving static content 123
using to compress output 125

Apache web server
expires module 123

app.name property 78
AppContextCache class 243
AppExecutionEnv class 233, 241
application beans 238, 273
application cron jobs 585
ApplicationCron class 350, 352
apps.dir property 75
apps.name property 75
AppsLookupHelper class 242
Assignment Action

creating 542
Assignment Action defined 538
assignment action properties 543
attached properties

reporting on 558
attached rules

reporting on 558
attaching properties 494
attributes

DataService 285
DataSourceName 284
Encryption 178
ExternalFieldName 282
ID 239
IsOverlay 233
MaxPoolSize 241
Name 232, 282
state 134
Version 282, 290

audit trail 309
AuthenticationAPI 107
Automatic Post display property 572
Automating Log Analyzer reports 397
Availability Data Access Method

property 587

B
backing up the Sterling System 145
Backup and recovery strategies 380
Backups

checkpoint backup 380
daily backup 380
full 380
incremental backup 380
weekly backups 380

binding to a port 142
BizAPI classes 39
bizAPI classes 320
Bizlet class 232
BizletMapping

default value for message group 234
BizletMapping element 232
BizRouter class 232
BLC abstract class 320
BooleanExpression element 298, 299
browser support 52
Build All Segments cron job 595
bundle attribute 330
business logic classes 39, 268, 319

implementation 265, 319
business objects

lists 272
User 235

business rules
managing tasks 589
overview 416

BusinessObject class 290

C
C3_Commerce_Manager element 114
C3PrimaryRW data object 268
Cache Cleanup (cron job) 595
calendar 338
calendar widget

localizing 338
callJSP method 245
canRequest method 294
carts

moving a user 439
cascading style sheets 339
certificate authorities 177
certificates

use in the SSL protocol 177
character set 54
character sets 152, 327
Visual Modeler Application Guide

characters
invalid in models 443

Check method 246
checkPolicy method 304
child data objects 279
child partners

moving 435
ChildDataObject element 279
children method 288
cipher-update script 188
Class attribute 181
classes 236

AbstractCronJob 352
AppExecutionEnv 233, 241
ApplicationCron 350, 352
Bizlet 232
BizobjBean 272
BizRouter 232
BusinessObject 290
ComerentSession 235
ComergentAppEnv 235, 242
ComergentContext 234
ComergentDispatcher 234
ComergentException 343
ComergentRequest 234
ComergentResponse 234
ComergentRuntimeException 344
Controller 39
ConverterFactory 248
CronConfigBean 350
DataBean 237, 238
DataContext 268
DataManager 284, 287
DataMap 288
DataService 285
DebsDispatchServlet 236
DispatchServlet 231, 235
Driver 141
DsElement 288
Env 234
Exception 343
GeneralObjectFactory 236
HttpRequest 234
HttpResponse 234
HttpServletRequest 352
HttpSession 235
ICCException 343
InitServlet 231, 235, 243
MessagingController 236, 237

MetaData 289
NamingManager 321
NamingResult 322
NamingServiceDatabase 321
NamingServiceProperties 321
ObjectManager 238, 265, 268
OMWrapper 238, 265
OracleDriver 141
RequestDispatcher 234
ResourceBundle 339
RuntimeException 344
SimpleController 237
SystemCron 349, 352
User 294

classifications
rules 514

ClassName element 238, 239
classpath 141
Clear button in UI controls 581
cloneDsElement method 288
Closed

user status 414
cluster node polling interval 212
cluster setup

servlet for serving static content 207
clustered deployment 115
clustered environment 243
clustered implementation 42
clustering 115
clustering setup 197
clustering support 52
clusters

running cron jobs 586
CMGT_ANALYZER_TEXT table 137
CMGT_CURRENCIES table 137
CMGT_LOCALE table 137
CMGT_LOCALE_CURRENCY table 137
CMGT_LOCALE_NAMES table 137
CMGT_LOOKUPS table 137, 242
CMGT_SYS_PROPERTIES table 415
cmgt-logging.jar JAR file 147
cmgtText method 329
code examples

using locale properties files 334
com.comergent.api.dataservices

package 255
com.comergent.api.dcm.cryptography.Dige

ster interface 182
Visual Modeler Application Guide 647

648
com.comergent.api.dcm.cryptography.Sym
metricEncrypter interface 181

com.comergent.api.dispatchAuthorization
package 261

com.comergent.api.msgservice
package 264

com.comergent.dcm.caf.controller.Controll
er class 236

com.comergent.dcm.core.filters
package 354

com.comergent.dcm.objmgr package 241
com.comergent.dispatchAuthorization

package 261
com.comergent.msgservice package 264
com.comergent.reference.jsp package 330
comergent.preferences.store system

property 84, 202, 204
Comergent.xml configuration file 232

setting SSL port 175
ComergentAppEnv class 235, 242
ComergentContext class 234
ComergentDispatcher class 234
ComergentHelpBroker class 255
ComergentI18N class 333
ComergentRequest class 234
ComergentResponse class 234
ComergentSession class 235
command

instanceof 273
Commerce tab 428
Company Web site address required for

Partner Selector 425
ComparativeExpression element 299
compile all models 487
compiled stylesheets 247
compileStyleSheets system property 247
compiling models 486
compressed output 125
conditions

access policies 297
CONFIG

REPEAT FIRING property 523
SUBMODEL NAME property 484
SUBMODEL RETURN property 484

ConfigCompiler
entry in ObjectMap.xml 83

configuration files 43, 118, 222
Comergent.xml 192, 195, 231, 232
DataServices.xml 108, 135, 141, 200

DataSources.xml 133, 141, 195
defined 415
DsBusinessObjects.xml 282
DsConstraints.xml 357
DsRecipes.xml 282
Entitlements.xml 583
Internationalization.xml 134, 153,

328
KeyGenerators.xml 142
MessageMap.xml 248
MessageTypes.xml 231, 236
MsSqlDataSources.xml 135
MsSqlKeyGenerators.xml 133, 142
ObjectMap.xml 238
OracleDataSources.xml 135
OracleKeyGenerators.xml 133, 135,

142
web.xml 113, 191, 222, 223, 231

configuring global application cache 115
connection pooling 109
ConnectionTimeout element 112
ConnectTimeout element 111
Constant Guiding Text display

property 572
constrained data field 357
Constraint Selections display property 574
constraints table

creating 545
deleting 552
modifying 546

container.home property 75, 76
content type 236
context

setting attributes 234
Control 572
Control display property 572
Controller classes 236

as part of reference
implementation 312

ControllerMapping
default value for message group 234

ControllerMapping element 232
ConverterFactory class 264
copyBean method 275
copying a rule 519
copying model groups 451
countries

standard abbreviations 153
country codes 117, 118
Visual Modeler Application Guide

createController method 236
createDB target 80, 130
creating a message action 538
creating a model 453
creating a worksheet 502
creating an Assignment Action 542
creating an Expansion Action 539
creating cron jobs 593
creating profile addresses 435
creating profiles 432
cron job

Nightly Segments Build 91
cron jobs 349, 591

application 585
creating 593
deleting 595
displaying 592
message URL 586
modifying 594
predefined jobs 595
running immediately 594
running in a cluster 586
running in cluster environments 592
system 585
system settings 585
viewing 592
viewing history 595

CronConfig data object 586
CronConfigBean class 350
CronJob interface 350
CronManager class 350
cronRefreshTime Comergent.xml

entry 212
CronScheduler class 350
Cross-Site Request Forgery Filter 189
Cryptographically secure digests 367
CryptographyService.xml configuration

file 180, 181
currencies 327, 337

used in testing models 486
currency

used in pricing 246
current locale 153
custom tag libraries 223
customer types

used in pricing 246
used in testing models 486

customer users 405
customize target 323

D
Data

protecting 379
timeline for recovery 380

data fields metadata 289
data objects 38, 268

accessing child data objects 279
customizing 268
extending 239, 267
ordinality 267
stored procedures 274

database
indexes 129
password 48
username 48

Database management 385
performance 386
practices 385

database password
encypted 77

database searches 108
database server 141
database servers 133
Database tables

monitoring size 386
database userid 54
databases

client software 52
DataBean class 237, 238
DataContext class 268, 275

use in restore 273
DataField element 282
DataManager

initialization error 141
DataManager class 132
DataObject attribute 297
DataObject element 284
DataObjects 142
DataService attribute 285
DataService class 285
DataServices element 136
DataServices.General.LimitDBResults

preference 271
DataServices.General.ServerId system

property
use in clustering 205

DataServices.xml configuration file 108,
112, 135, 154, 200

DataSourceName attribute 284
Visual Modeler Application Guide 649

650
DataSources.xml configuration file 133
dates 337
DBCache class

used for session caching 210
dcmsKey.ser file 132, 200
DebsDispatchServlet class 236
debug method 308
debugging JSP resource bundles 332
debugJSPResouceBundle element 332
default locale

failover mechanism 333
Default Selection 573
Default Selection display property 572
default values for properties 494
default XML user 103
defaultCountry element 153, 333
defaultSystemLocale element 134, 153,

328, 329, 333
defaultType element 322
define and attach properties 618
defining display properties 571
defining lists 507
defining option constraints 547, 548
delete method 275, 288, 290
deleteChild method 289
deleting a cron job 595
deleting children of models 455
deleting fragments 537
deleting lists 509
deleting model groups 450
deleting models 455
deleting option constraints 552
deleting option constraints table 552
deleting users 421
deploy.environment property 78
Deployment architecture 378

build environment 378
QA area 378
staging area 378

deployment files
Sterling.war 230

descendants
of storefronts 407

Digester element 181
disableAccessCheck method 277
disallow results from triggers 55
DispatchServlet class 235

initialization 184
display properties 562, 631

Automatic Post 572
Constant Guiding Text 572
Control 572
Default Selection 572
defining values 571
Display Template 572
Help URL 572
Icon Graphics 572
Ignore In Quote 573
Lead Time 573
Option Class Required 573
Option Class View 574
Popup-Qty Values 574
Post-Pick Guiding Text 574
Pre-Pick Guiding Text 574
Price 575
Pricing Style 575
Return From Submodel 575
User Entered Value Allowed

Values 576
User Entered Value Postfix 576
User Entered Value Prefix 576
User Entered Value Type 575
Validate Submodel 576

display settings
reporting on 558

Display Template 573
Display Template display property 572
dist target 78, 192
distributed installation

see clustering 115
distributor 424
distWar target 78, 204
doFilter method 353
DosFilter class 354
DsDataElements.xml configuration file

setting the lengths of data fields 334
DsDataSources element 136
DsElement

child 287
parent 287
root 287

DsElement tree 287
legacy applications only 286

DsElements 286
DsKeyGenerators element 133
DsQuery class 277

use in restore 273
dXML message family 247
Visual Modeler Application Guide

dynamic instantiation 555

E
effective locales 585
effective status

user 414
effectivity dates

used in testing models 486
Ehcache 115, 199
Ehcache.xml file 115
elements

Alternate 285
BizletMapping 232
C3_Commerce_Manager 114
ControllerMapping 232
DataElements 284

re-use 284
DataField 282, 284
DataObject 284
DataServices 136
defaultCountry 153
defaultSystemLocale 134, 153, 328
DsDataSources 136
DsKeyGenerators 133
ExternalName 274
GeneralObjectFactory 232
globalCacheImplClass 243
JdbcDriver 135
JdbcDriver1 135
JSPMapping 232
KeyGenerator 142
Languages 153
LowerCase 108
memoryThreshold 114
MessageType 232
messageTypeFilename 232
MessageTypeRef 143
messageTypeValidate 140, 193
Microsoft 108
Primary 285
propertiesFile 141, 231
ServerId 200
session-timeout 113
SMTPHost 139
UpperCase 108
UseLocalizedSort 154
web-app 114
WebPathToPublicLoadableWritableDi

rectory 116

WebPathToPublicNoLoadableWritabl
eDirectory 116

email 139
email addresses in properties files 76
email clients

problems displaying UTF-8
characters 139

email templates 335
location 336

encrypting data in the Knowledgebase 132
encrypting fields used in reports 178
encrypting the database password 77
Encryption

algorithms 366
DES 168 369, 370
encryption keys 367
Key Store 367

JCE Key Store 366
password protection 366
two phase initialization
support 366

libraries 366
MD5 message digest 367, 370
mechanisms 369
persistent data 366
secret key 367
SHA-1 message digest 367, 370
WAR local key store file 367

enterprise system administration 416
enterprise users 405
entitlement roles

defined 411
Entitlements.xml 411

Entitlement services 364
access policy service 364
data-level access 364
dispatch service 364
page flow privileges 364

EntitlementFactory class 261
entitlements 293
Entitlements.xml 412, 422

assigning access roles 411
Entitlements.xml configuration file 294
entity beans 273
entries

NamingManager 195
SSLListener 177

entry point 305
EntryPoint attribute 305
Visual Modeler Application Guide 651

652
Env class 234
environment variables

JAVA_HOME 74
JDK_HOME 63

erase method 275
ERPAdmin user

change passwords 138
ERPAdministrator user type 420
error method 308
evaluating property values 504
exception handling 343
Exceptions 343

displaying 347
expand

use in string property window 498
expand function 635

syntax 544
expand groups

reporting on 558
Expansion Action

creating 539
Expansion Action defined 538
expires_module module 123
exporting a worksheet 503
exporting model groups 554
exporting models 554
Expression element 298
extended prices

displaying 587
Extends attribute 267
external compiler 82
ExternalFieldName attribute 282
ExternalName element 274

F
Factory pattern 238
failover behavior 332
failover mechanism for JSP pages 333
failover mechanism for resource

bundles 332
fallback redirect message type 305
FallbackRedirect element 305
fastdeploy target 87
fatal method 308
filters

J2EE filters 353
findPresentationLocale method 334
fonts 339
foreach 526

fragments
deleting 537
modifying 536
nested fragments, creating 530
simple fragments, creating 527

frameset
using OnlineOrderingPageDisplay

message type 586
frameset system property 586
frequency (cron jobs) 594
Function drop-down list

used in Numeric Property Editor
window 497

function labels 411
functions 294, 411, 497

defining 422
LOWER 108
UPPER 108

G
gather

use in string property window 498
GeneralObjectFactory class 236
GeneralObjectFactory element 232
generateBean target 192, 237, 268, 273,

285, 315
generated interfaces

use in application beans 274
generateDTD target 117, 192, 268
generateKeys method 275
get method 322
getAllowedValueIterator method 289
getAssignedPriceListKey method 247
getBizObj method 278
getBoolean method 245
getCacheId method 270
getComergentLocale method 333
getCountAllowedValues method 289
getDataBean method 274
getDataType method 289
getDefaultLocale method 333
getDefaultValue method 289
getDouble method 245
getElementByName method 288
getFloat method 245
getInContextPricePriceListKey

method 247
getInstance method 321
getInt method 245, 262
Visual Modeler Application Guide

getIRdProduct method 274
getLong method 245
getMaxCharLength method 289
getMaxLength method 289
getMaxPaginatedResult 270
getMaxResults method 270
getMaxValue method 289
getMetaData method 289
getMinValue method 289
getName method 289
getNumPerPage method 270
getObject method 238
getParameter method 352
getParameters method 352
getParent method 289
getPreferences method 245
getRealPath method 244
getResourceAsStream method 234
getRootElement method 287, 288, 290
getSession method

ComergentSession class 235
getString method 245
getType method 289, 291
global caching and JavaSpaces 210
Global class

deprecated use for logging 307
replaced by Preferences 243

GlobalCache interface 243
groups

attached groups, viewing 479
modifying 470
product IDs, assigning 470
start and end dates for option

items 470

H
hasError method 304
Help URL 573
Help URL display property 572
History tables 386

_H naming convention 387
creating 388
transferring data to 388

HTML templates 117
HttpRequest class 234
HttpResponse class 234
HttpServletRequest class 352
HttpSession class 235

I
IAcc interface 276
Icon Graphic 573
Icon Graphic field 579
Icon Graphics display property 572
ID attribute 239
id attribute

used in text tag 330
IData interface 275, 276

accessing metadata 289
Ignore In Quote display property 573
images 117

flickering 123
used in models 579

IMetaData interface 289
importing a worksheet 504
importing model groups 553
importing models 553
including sub-models in models 483
Incremental garbage collection

-Xincgc 394
info method 308
Infrastructure

application tier 379
database tier 379
typical 378
Web tier 378

initialization 141
InitManager class 256
InitServlet class 235

initialization of cryptography
service 184

InMemoryRuleCompiler
entry in ObjectMap.xml 83

install target 76
installation directory

container_home 47
installMsSql target 108
installMSSQLJDBC target 77
installOracle target 76
instanceof command 273
interfaces

Converter 247
GlobalCache 243
IAcc 276
IData 275
Ird 276
NamingService 321
poolable 240
Visual Modeler Application Guide 653

654
internal compiler 82
internationalization 134

cascading style sheets 339
failover mechanism for JSP pages 333
failover mechanism for resource

bundles 332
Internationalization.xml configuration

file 134, 153, 328, 332, 333
IPasswordPolicy interface 304
iPlanet

troubleshooting 145, 195
IPolicyClass interface 303, 304
IRd interface 276
ISO standards 152
ISO-3166 country codes 584
ISO-639 language codes 584
IsOverlay attribute 233
isPersistable method 276
isRequestDenied method 354
IsRestorable method 276

J
J2EE 37, 221
Java 2 Platform, Enterprise Edition 37, 221
Java Cryptography Extension 178
Java Servlet Specification 47

support for 2.2 or 2.3 61
JAVA_HOME environment variable 64, 74
JavaSpaces

used for global caching 210
JCE 178
JCEDigester class 185
JCESymmetricEncrypter class 185
JDBC 52
JDBC drivers 141
JdbcDriver element 135
JdbcDriver1 element 135
JDK 1.3.1 51
JDK versions 51
JDK_HOME environment variable 63, 64
Jini Lookup server

use in global caching 210
JK connector 119
job scheduling

predefined jobs 595
job scheduling tasks 592
JoinKey element 279
JSP pages 38, 221

as part of reference
implementation 312

debugging localization 332
forcing their recompilation 140
localization 337
page buffer 348
used in email templates 244

JSPMapping
default value for message group 234

JSPMapping element 232, 333
JVM

-server 393
-verbose

gc 393
-Xincgc 393

K
keepalive settings 123
keepgenerated parameter 89
Key attribute 305
Key performance indicators 394
key rotation 185
key store 181
Key Store file 367
key stores 184

initialization 184
KeyGenerators.xml configuration file 142
KeyManager attribute 181
KeyManager element 181, 188
KeyName attribute 181
KeyStorePath attribute 188
keystores

JDK versions 51
Knowledgebase 48, 54, 127, 128, 350

schema creation 128

L
labels

of functions 411
language codes 117, 118
languages 152, 327

standard abbreviations 152
Languages element 153
LDAP 45
Lead Time display property 573
LegacyFileUtils class 234, 244
LegacyPreferences class 243
length of data fields 334
Level attribute 174
Visual Modeler Application Guide

Lines Per Page in List Displays
property 588

link method 174
Linux, Red Hat 50
List as property type 493
list business objects 272
list definitions

reporting on 558
list prices

displaying 588
lists 506

defining 507
deleting 509
modifying 508

load-balancing
session-sticky 200

loadDB target 80, 81, 131, 136
loadMatrixDB target 80, 81, 131, 136
locales

case-sensitive searching 108
database support 128
directories 117, 118
display names 153
loading locale-specific data 134
preferred locale 328
presentation 329
removing from implementation 137
session 329
setting display names 584
sorting 153
standard abbreviations 153
support for different 134
system default 153

localization 327
images 336
Javascript 337

localRedirect method 234
Location drop-down list

used in Numeric Property Editor
window 498

Log Analyzer tool 394
directory structure 398
properties file 400

Log configuration in clustered
environments 149

log files
standard locations 150

log files get too large 149
log method 308

log4j API 307
log4j.debug system property 308
log4j.properties configuration file 307
logging 147
logging levels 148
logging methods

debug 308
error 308
info 308
log 308
warning 308

Logging settings, configuring 599
login form

passing request parameters 305
logLevel methods 307
logout method 235
lookup codes 241, 248, 249

mapping to strings 242
lookup types 242, 248
LowerCase element 108

M
Maintain Configuration 596
managers 414
managing business rules 589
MandatoryRoleSet element 295
match

use in string property window 498
Max Reps Per Account field 441
MaxConnections property 111, 112
maximum number of users

assigned to an account 433
MaxPermSize setting 114
MaxPoolSize attribute 112, 241
MaxPoolSize property 111
MaxResults element 269
Memory allocation

areas to check 394
memory allocation 114
memoryThreshold element 114
merge target 78, 192
message action

creating 538
Message Action defined 538
message category 247
message family 247
message group

fallback redirect message type 305
message groups 232
Visual Modeler Application Guide 655

656
assigning to new role 295
entry points 305
used to specify default mappings 234

message types 232, 247, 293
accessing through SSL 175
validating on startup 140, 193

Message URL 195
message URL for cron jobs 586
message version 247
messages 319
MessageType element 232

child elements 232
messageTypeFilename element 232, 233
MessageTypeRef element 143, 233
MessageTypes.xml configuration file 231
messageTypeValidate element 140, 193
MessagingController 236
MessagingController class 236, 237
MessagingServlet class 231
metadata

for data fields 289
MethodNotFound exceptions 140
methods

addChild 288
adjustFileName 242
calculate 237
canRequest 294
children 288
cloneDsElement 288
constructExternalURL 242
copyBean 275
createController 235, 236
delete 275, 288, 290
deleteChild 289
dispatch 235
erase 275
forward 234
generateKeys 275
get 322
getContext 243
getConverter 248
getDataBean 274
getElementByName 288
getEnv 242
getInstance 321
getName 289
getObject 238
getParameter 352
getParameters 352

getParent 289
getPartnerKey 235
getRootElement 287, 288, 290
getType 289, 291
getUser 235
getUserKey 235
include 234
init 236, 243
isPersistable 276
IsRestorable 276
link 174
persist 238, 275, 276, 278, 285, 290,

320
prune 275
reset 241
restore 238, 275, 276, 277, 285, 289,

320
return 241
runAppJob 233
runAppObj 241
service 320, 352
setCacheId 269
setDataContext 275
setRetry 352
setRootElement 291
update 275

methods setExecutionOutcome 352
Microsoft element 108
Microsoft SQL Server 129
mod_expires

use to prevent image flicker 123
mod_jk 120
model groups 448

copying 451
copying models into 456
creating 449
deleting children 450
modifying 449

model images 579
models

assigning a product 456
attaching to an option class 477
compiling 486
compiling all 487
copying 456
copying a model reference 458
copying option classes into 464
creating 453
deleting 455
Visual Modeler Application Guide

deleting children 455
effectivity dates 453
embedding 460
end date 453
invalid characters 443
modifying 454
setting prices 575
start date 453
tabbed user interface 488
testing 485

modifying a cron job 594
modifying cron jobs 594
modifying models 454
modifying option constraints 551
modifying properties 498
modifying property definitions 499
modifying rule fragments 536
moving a rule 519
moving child partners 435
MsgContext interface 264
MsgService interface, 264
MsgServiceException class 264
MsgServiceFactory class 264
MsSqlDataSources.xml configuration

file 135
MsSqlJNI.dll file 135
MsSqlKeyGenerators.xml configuration

file 133, 142
multi-byte characters 334
multiple-pass rule firing 523
my_sdk.properties file 75

N
Name attribute 180, 181, 232, 282
names

of profiles 424
naming service 321
NamingManager class 321
NamingResult class 322
NamingServiceDatabase 321
NamingServiceDatabase class 321
NamingServiceProperties class 321
nested fragments in rules 530
newproject target 76, 323
Not element 299
number and date formats 152, 327
Number as property type 493
Numeric Property Editor window 496
NumPerCachePage element 269

O
Object element 238, 239
object pools 240
ObjectManager class 238, 265, 268
ObjectMap.xml configuration file 83, 238
OCI driver 56
ODBC connection 52
OMWrapper class 238, 265
On Credit Hold

user status 414
On Hold

user status 414
OneWayEncrypter element 181
online help 117
Online users 364
OnlineOrderingPageDisplay message type

used in frameset 586
Open

user status 414
Open Web Application Security Project

(OWASP) 362
Operator attribute 298, 299
option class groups

attached, viewing 479
attaching to a model or group 476
attaching to an option class 477
copying option classes into 464
creating 469
deleting 482
removing an attachment to a

group 483
removing an attachment to a

model 455
removing an attachment to an option

class 468
Option Class Required display

property 573
Option Class Viewdisplay property 574
option classes

adding option items to 464
assigning a product 456
copying 464
copying option items into 467
creating 461
defining option constraints 548
deleting 468
display properties, setting 463
embedding models into 460
product IDs, assigning 463
Visual Modeler Application Guide 657

658
properties, attaching 463
ratio, setting 463
rules, attaching 463
setting prices 575

option constraints
defining 547
deleting 552
modifying 551

option constraints table
creating 545
deleting 552
modifying 546

option item groups
attached, viewing 479
attaching to a groups 476
attaching to an option class 477
copying option items into 467
creating 469
deleting 482
removing an attachment to a

group 483
removing an attachment to an option

class 468
option items

adding to option classes 464
assigning a product 456
copying 467
display properties, setting 466
in option constraints 550
product IDs, assigning 466
rules, attaching 466
setting prices 575

Oracle
OCI driver 107

Oracle Server 129
OracleDataSources.xml configuration

file 135
OracleKeyGenerators.xml configuration

file 133, 135, 142
orders

moving users 439
org.apache.log4j.Level class 259
organizational functions 410
OriginalName attribute 180
OutOfBandHelper class 244

P
packages

com.comergent.dcm.objmgr 241

pagination
specifying number of items on each

page 588
pagination settings 112
ParamList element 303
partner addresses

deleting 436
partner key

used in pricing 246
partner profiles 195, 440
Partner Selector

Company Web site address required
field 425

partner user
assigning attributes 437

partner users
channel administrator 411
creating by enterprise

administrator 437
Partner.com Partners

Commerce tab 428
partners

contract 428
deleting addresses 436
modifying 440
territory 428
used in testing models 486

PartnerTypeDefinition element 295
password 54
Password data field 586
password policies 189, 302
password policy types 303
PasswordPolicies.xml configuration

file 302, 303
PasswordPolicy element 302
passwords 411, 420, 437

changing password of admin and
ERPAdmin users 138

policies 302
PATH environment variable 64
payment accounts 426
payment processors 428
Performance

memory issues 391
out of memory error 394

Performance tuning
garbage collection 393

persist method 238, 275, 276, 278, 285,
290, 320
Visual Modeler Application Guide

call after delete method 275
PolicyCheckResult class 304
PolicyClass element 303
poolable interface 240
pooling objects 240
Popup-Qty Values display property 574
Post-Pick Guiding Text display

property 574
precision

displaying extended prices 587
displaying list prices 588

pre-compiling JSP pages 89
predictive access control 296
Preferences API 245
preferences for users 415
preferred locale 153, 420
prefs.xml configuration file 83
Pre-Pick Guiding Text display

property 574
presentation beans 273
presentation locale 329
Prevent Selection of Items Resulting in

Constraint Errors 574
price and availability requests 195
Price display property 575
PriceCheckAPI class 246
prices

setting for a model, option class, or
option item 575

pricing
Check method 246
getting prices for products 246

Pricing Style display property 575
PricingLineItem class 246
Primary element 285
PrincipalQualifier attribute 298
PrincipalQualifier interface 297
PrincipalQualifierDefinition element 297
principals

access policies 297
priorities

for rule firing 520
production

moving compiled models 487
products

assigning to a model, option class,
option item 456

profile addresses
creating 435

profile levels 425
profile names 424

uniqueness 424
profile types 424

selection for distributors 425
profiles

creating 432
creating addresses 435
level 425
type 424

Program Management function 589
properties 492, 561

attaching 494
default values 494
defining 493
modifying a definition 499
modifying an attached value 498
removing an attachment 498

properties, attaching 466
propertiesFile element 141
property definitions

reporting on 558
Property drop-down list

used in Numeric Property Editor
window 497

property editor window 496
property types

List 493
Number 493
String 493

property values 497
evaluating 504

propval function 628
protocols

https 177
prune method 275
putInt method 262
putString method 245

Q
quote characters in names 541
quotes

moving a user 439

R
ratio, setting a 463
Recipe element

declaring ordinality 272
recipes 268
Visual Modeler Application Guide 659

660
ReconnectOnTimeout element 111
Recovery policies 381
Recovery scenario 380
Redirect element 305
redirecting a request 235
Redundancy 378
Regulatory guidelines

AICPA 362
ISO 1799 362
OWASP 362
PCI 362
Sarbanes-Oxley 362
SAS 70 362

Relationship element 279
relative

property locations 498
reloadFilePeriod attribute 209
removing locales 137
reports

Visual Modeler 558
request dispatcher 223
RequestDispatcher class 234
requests 319
requireHttps value of Level attribute 174
requirements 42

database server 54
hardware 49
network 52
software 50

reset method 241
resource bundles 331
ResourceClass element 296
resources

controlling access 297
restore method 238, 275, 277, 285, 289,

320
example using DataContext and

DsQuery 277
stored procedures 274
use in list beans 273

restoring the Sterling System 145
Return From Submodel display

property 575
return method 241
Return to General 477, 478
RFC 1918 compliance 363
Roles

Data Center administrative roles 365
Responsibilities

Database administrator 364
Developer 365
Network administrator 365
System administrator 364

roles 43, 294
defining 422
entitlement 411
partner administrator 437

RosettaNet 118
rsCachePath element 112
rsCachePathIsAbsolute element 112
rule classifications 514
rule definitions

reporting on 558
rule firing 515

controlling 522
testing 521, 523

rule firing sequence 520
RuleCompiler

entry in ObjectMap.xml 83
rules 82

copying 519
moving 519

rules (Visual Modeler)
firing sequence 515
rule actions 537

rules in Visual Modeler
attached rules, viewing 516
attaching 514
defining 510
deleting a rule 519
modifying 513
unattaching 518

runAppJob method 233
running a cron job immediately 594

S
saveOnRestart attribute

Tomcat setting 87
schema

http and https 174
schemaRepositoryExtn element 324
scripting elements 223
scriptlets 223
scripts

oracle_indexes.sql 129
XMLLoader.bat 132

SDK 323
See Software Development Kit
Visual Modeler Application Guide

search index builder
run as application cron job 586

SearchConfigurationProperties.xml file
in clustered environment 209

searches
case-sensitive 108

searching for properties 556
searching for users 421
Secure logging 367
Secure storage

account information 367
passwords 370
user information 368

Security
regulatory guidelines

ISO 17799 362
OWASP 362
PCI 362
Sarbanes-Oxley 362
SAS 70 362

security 43, 45
changing passwords for admin and

ERPAdmin 173
Security model 361
SecurityLevel element 174
segments

Matrix reference segments 91
serializable context attributes 234
Serializable interface 235
ServerId element 108, 200
ServerId property 206
ServerSSLPort element 175
service method 264, 320, 352
servlet container

root directory 63
support for clusters 52

servlet containers
requirements 51

servlet context 48
setting attributes 234

session locale 329
session timeout 113
sessions 113
SESSIONS.ser

Tomcat session file 87
troubleshooting 140

session-sticky load-balancing 200
session-timeout element 113
setAttribute method

ComergentSession class 235
setCacheId method 269, 270
setDataContext method 275
setExecutionOutcome method 352
SetExpression element 299
setMaxPaginatedResult 270
setMaxResults method 270
setNumPerPage method 270
setRetry method 352
setRootElement method 291
SharedPublicServlet class 207
SimpleController class 237
single-pass rule firing 522
site system administration 416
SMTP Host Machine property 587
SMTP mail server 139
SMTPHost element 139
Software Development Kit 323

installing 74
Solaris 50
sorting data 153
SourceType attribute 274
special characters

encoding in Visual Modeler 484
spreadsheet format

partner lists 432
SQL Server

clustering step 205
in a clustered environment 200
requirements 55

SQL Server use of Unicode 55
SSL 173, 176

client 176
protocol 176
server 177
setting up Apache 122

SSL port in Comergent.xml file 175
staging

moving compiled models 487
standard locations of log files 150
state attribute 131, 134
static content

serving up using Web server 123
status

user 414
STDOUT appender 148
Sterling Analyzer reports

encrypting fields 178
Sterling Configurator
Visual Modeler Application Guide 661

662
use of in-memory compiler 83
Stop Firing (column) 515
stored procedures 274
storefront

pricing for storefronts 246
Storefront administrator limitations 407
storefront administrator partner 440
Storefront administrator tasks 406
storefront administrator tasks 406
storefront administrators 440
storefront enterprise users 405
Storefront Partners

Commerce tab 428
storefronts 405

creating 440
Strategies

backup and recovery 380
String as property type 493
string property editor 635
String Property Editor window 496
stylesheets

compiled 247
sub-models 483
subsystem 344
SymmetricEncrypter element 180
system administration 415
system administration URL 598
system administrators 597
system cron jobs 585
system default locale 153
System Logging (log4j dynamic) Page 149
system properties

frameset 586
SystemCron class 349, 352

T
tabbed user interface 488, 573
table

used to display properties 576
TABLESPACE name 96
tablespaces 129
tabular display of properties 576
Tag attribute 180, 181
tag libraries 223
tag library descriptor 223, 231
targets

createDB 130
distWar 78
generateBean 237, 268, 273, 285, 315

generateDTD 117, 268
install 76
installMSSQLJDBC 77
installOracle 76
newproject 76

testing models 485
text tag 329
Threat scenarios 370
TLD. See tag library descriptor
TNS alias 62
Tomcat

disable session persistence 87
problem with graceful shutdown 87

toolbar 444
tracing rule firing 521, 523
Transaction class 247
Transient logging configuration

changes 149
TwoWayEncrypter element 179, 180
type attribute 131
types

password policies 303

U
UI

ICON GRAPHIC property 579
ITEM IMAGE NAME property 579
PRICE property 567
PRICING SKU property 567
PRICING STYLE property 567
ROW SPAN property 568
SHOW ITEM IMAGES

property 568, 579
UI: ICON GRAPHIC property 640
UI: IGNORE IN QUOTE property 632
UI: ITEM IMAGE NAME property 640
UI: NUMBER OF COLUMNS 566
UI: NUMBER OF COLUMNS

property 641
UI: OPTION CLASS VIEW 566
UI: POPUP-QTY ALLOWED

VALUES 566
UI: PRE_PICK GUIDING TEXT

property 631
UI: PRODUCT DESCRIPTION

property 568
UI: PRODUCT ID property 568
UI: PRODUCT NAME property 568
Visual Modeler Application Guide

UI: ROW SPAN property 642
UI: SHOW ITEM IMAGES property 640
UI: SKIP COLUMNS property 643
UI: SUPPRESS NAME DISPLAY 569
UI: SUPPRESS NONE SELECTION 569
UI: SUPPRESS UEV NONE VALUE 569
UI: SUPPRESS UEV NONE VALUE

property 639
UI: UEV ALLOWED VALUES 569
UI: UEV ASSIGNMENT

PROPERTY 570
UI: UEV POSTFIX 570
UI: UEV PREFIX 570
Unicode 54

use with SQL Server 55
Unicode characters

browser support 53
Unicode support 328
UNIX 50
unspecified

property locations 498
UPDATE counts 55
update method 275
Update statistics

Oracle 389
SQL Server 389

updating profiles 440
upgrading

data migration 127
UpperCase element 108
URL patterns

mapping to servlets 222
URLs

system administration 598
useCountryDefaulting element 329, 332
useGeneralDefaulting element 329, 332
useHttp value of Level attribute 174
useHttps value of Level attribute 174
UseLocalizedSort element 154
user administration 419
user administrators 419
User class 294
User Detail Page 420
user effective status 414
User Entered Value Allowed Values display

property 576
User Entered Value Postfix display

property 576

User Entered Value Prefix display
property 576

User Entered Value Type display
property 575

user functions 420
user preferences 415

cart mode 415
cart view 415

user status 414
user types 295
UserContact data object 183
user-entered values 636
username 54, 420
usernames 437

requirements for 411
restrictions 437

users 235
accessing pages directly 304
creating 420
deleting 421
deleting (effect on username) 411
modifying 421
moving by enterprise

administrator 438
overview 410
relation to entitlement roles 411
retrieving from session 235
searching for 421
setting preferred locale 420

UserType element 296
UserTypeDefinition element 295
useSessionCaching system property 200
using JSP pages as templates 244
using restore in list beans 273
UTF-8 54

database setting 56

V
Validate Submodel display property 576
values

of properties 497
Version attribute 290
viewing a cron job 592
viewing the history of a cron job 595
Visual Modeler

accessing 446
reports 558
tabbed user interface 488, 573

visual modeler
Visual Modeler Application Guide 663

664
toolbar 444

W
warning method 308
web.xml configuration file 113, 354
web-app element 114
WebLogic

clustered implementation 203
WebPathToPublicLoadableWritableDirecto

ry element 116
WebPathToPublicNoLoadableWritableDire

ctory element 116
Windows 2000 50
workingDir parameter

in weblogic.xml 89
worksheets 502

creating 502
exporting 503
importing 504

Writable attribute 276
WritableDirectory element 244
writeExternal method 279
WSDLFilter class 355

X
XML message versions 425
XML messages 236
XML representations of data beans 279
XML schema 287
XML transformation 247
XMLLoader.bat script 132
-Xmx setting 394
Visual Modeler Application Guide

	Contents
	CHAPTER 1 Checklist
	Tasks Checklist

	Part 1: Installation
	CHAPTER 2 Architecture and Configuration Overview
	Architecture

	CHAPTER 3 Implementation Overview
	Implementation Tasks
	Implementing the Visual Modeler Integration
	High Availability and Load Balancing
	Integration Security Issues

	CHAPTER 4 Installation Worksheet
	CHAPTER 5 Installation Requirements
	Hardware Requirements
	Software Requirements
	Network Requirements
	Browser Requirements
	Database Server Requirements
	Sizing Requirements

	CHAPTER 6 Installing the Visual Modeler
	Installation Overview
	Preparing to Install
	Configuring the Transactional and Segmentation Databases
	Installing the Software Development Kit
	Installing the Visual Modeler Using the SDK
	Deploying the Sterling Web Application
	Matrix Reference Segments Setup
	Installing the Reference Visual Modeler
	Default XML Identity Setup
	Database Server Steps
	Managing Database Connections
	Pagination Settings
	Setting the Session Timeout
	Modifying the URL for the Web application DTD
	Managing Memory
	Configuring Ehcache
	High Availability and Clustering
	Sharing Directories
	Directory and File Organization
	Cron Job Setup
	Setting Up Apache as a Front-end to Tomcat
	Filtering Static Content
	Compressing Output From the Visual Modeler

	CHAPTER 7 Creating and Populating the Knowledgebase
	Gathering the Database Information
	Creating the Knowledgebase Schema
	Populating the Knowledgebase
	Logging into the Visual Modeler

	CHAPTER 8 Troubleshooting and Backing Up the Visual Modeler
	Troubleshooting
	General Troubleshooting Tips
	Common Problems
	Backing Up the Visual Modeler

	CHAPTER 9 Managing Visual Modeler Logging
	Logging

	CHAPTER 10 Localization Concepts
	Localization Concepts
	Localization Pack Installation Overview
	Localization Pack Installation Steps: New Implementation
	Localization Pack Installation Steps: Existing Implementation

	CHAPTER 11 General Security Considerations
	General Architectural Concerns
	Securing Users
	SSL support
	Installing Certificates for SSL
	Storing Data in Encrypted Form
	Password Policies
	Cross-Site Request Forgery Filter

	CHAPTER 12 Testing the Visual Modeler Server
	Starting the Visual Modeler Server
	Troubleshooting

	CHAPTER 13 Installing a Clustered Implementation
	General Steps
	Setting Up a WebLogic Cluster
	Setting up a Database for Caching
	Setting up JavaSpaces for Caching

	Part 2: Implementation
	CHAPTER 14 Integrating the Visual Modeler with Selling and Fulfillment Foundation
	Integration Overview
	Configuring the Visual Modeler Properties
	Configuring the Sterling Configurator Rules

	CHAPTER 15 Introduction to J2EE Web Applications
	Architecture
	Web Applications
	web.xml File
	JSP Pages
	Model 2 Architecture
	Controllers
	Model
	View
	Further Reading

	CHAPTER 16 System Architecture
	Visual Modeler Web Application
	Processing Requests
	Key Java Classes
	Transactions
	Message Conversion Classes
	Support for Lookup Codes

	CHAPTER 17 Platform Modularity
	Overview
	Platform Modules
	Module Interfaces
	Platform Module Descriptions

	CHAPTER 18 Introducing Data Beans and Business Objects
	What are Data Beans?
	Application, Entity, and Presentation Beans
	Using Stored Procedures
	Data Bean Methods
	Data Bean Example
	DsElement Tree
	BusinessObject Methods

	CHAPTER 19 Using the Security Mechanisms
	Managing Message Types
	Managing User Types
	Managing Access to Data Objects Using Access Policies
	Password Policies
	Passing Login Data Through a URL

	CHAPTER 20 Logging
	Overview
	Auditing Changes to Data Objects

	CHAPTER 21 Modularity and Generated Interfaces
	Overview
	Modules
	Module Interfaces
	Generated Interfaces

	CHAPTER 22 Implementing Logic Classes
	Key Concepts
	Naming Service

	CHAPTER 23 Software Development Kit
	Project Organization

	CHAPTER 24 Visual Modeler Localization
	Overview
	Supporting Locales
	Data for Internationalization
	Email Templates
	HTML Pages
	Images
	Javascript
	JSP Pages
	Style Sheets
	System Properties
	Resource Bundles and Formats

	CHAPTER 25 Exceptions
	ComergentException Hierarchy
	Exception Chaining
	Throwing, Catching, and Logging Exceptions
	Displaying Exceptions

	CHAPTER 26 Implementing Cron Jobs
	Overview

	CHAPTER 27 Filters
	Filters Overview
	Available Filters

	CHAPTER 28 Managing and Displaying Constrained Fields
	Options
	Criteria

	CHAPTER 29 Security Best Practices
	Introduction
	Role Definition and Security Policies
	Information Assets
	Protection Mechanism for Information Assets
	Protection of Critical Functions
	Threat Scenarios
	HTTP Sessions

	CHAPTER 30 Backup and Recovery Best Practices
	Introduction
	Deployment Architecture Overview
	Infrastructure
	Backup Strategies

	Part 3: Best Practices
	CHAPTER 31 Database Management Best Practices
	Introduction
	Archiving Data
	Monitoring Database Tables
	Updating Statistics

	CHAPTER 32 JVM Tuning and Log Analysis
	Introduction
	JVM Memory and Tuning Guidelines
	Log Analyzer Tool

	Part 4: Administration
	CHAPTER 33 Introduction
	Using Storefronts
	Users, Roles, and Functions
	Configuring the Visual Modeler

	CHAPTER 34 User Administration
	Managing Users
	Defining Functions and Roles

	CHAPTER 35 Channel Administration
	Profile Detail Page
	Profile Administration Tasks
	Storefront Administration
	Managing the Enterprise Profile

	CHAPTER 36 Using the Visual Modeler
	Visual Modeler Interface
	Working with Model Groups
	Working with Models
	Working with Option Classes and Option Items
	Working with Option Class Groups and Option Item Groups
	Including Sub-Models in Models
	Testing a Model
	Compiling a Model
	Searching the Product Catalog for a Product ID
	Working with a Tabbed User Interface

	CHAPTER 37 Advanced Visual Modeler Concepts
	Properties
	Lists
	Rules
	Fragments
	Option Constraints
	Importing and Exporting Models
	Using Dynamic Instantiation
	Searching
	Reporting

	CHAPTER 38 Visual Modeler UI Concepts
	UI Properties
	Display Properties
	Tabular Display of Properties
	Image Properties
	User-Entered Values
	UI Control Reset Behavior

	CHAPTER 39 Enterprise System Administration
	System Administration Tasks
	Configuration Properties
	Job Scheduler Settings
	Frequently Used System Administration Settings

	CHAPTER 40 Business Rules Administration
	Business Rules Administration Tasks

	CHAPTER 41 Job Scheduling Administration
	Enterprise and Storefront Cron Jobs
	Job Scheduling Tasks
	Cron Jobs

	CHAPTER 42 Site System Administration
	Overview
	System User Administration
	System Profile Administration
	System Property Administration
	System Cron Jobs
	System Status

	Part 5: Tutorial
	CHAPTER 43 Storefront Administration
	Creating a Storefront
	Creating a Storefront Administrator
	Creating Additional Storefront Administrators
	Setting Default Storefront Preferences
	Setting Storefront Business Rules
	Exercise
	Creating a Storefront Partner
	Creating a Storefront Partner Administrator
	Creating a Storefront Partner User

	CHAPTER 44 Creating Product Models
	Create the Model
	Properties
	Rules
	UI Controls

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

