
Sterling Web™

Customization Guide
Release 9.0

Last updated in HF1

May 2010

© Copyright 2010 Sterling Commerce, Inc. All rights reserved.

Additional copyright information is located on the Sterling Web Documentation Library:
http://www.sterlingcommerce.com/Documentation/MCSF90/SWCopyrightPage.htm

Contents

Customizing Sterling Web: An Overview. 3
Customization Examples . 7
Postcustomization Deployment . 19
Customizing Validations . 21
Sterling Commerce, Inc. Draft 3

Sterling Commerce, Inc. Draft 4

Customizing Sterling Web: An Overview
The Sterling Web™ application can be customized based on the business requirements of an enterprise.
Organizations may want to make changes in the way information is displayed in the Sterling Web user
interface (UI), or add a new field. This topic provides an overview of the types of customizations possible
in the Sterling Web application.

The Sterling Web application uses the Apache Struts 2 framework for page construction and request
management between pages. Sterling Web customizations can be performed by selectively overriding the
action definitions. Struts 2 action definitions bind together a collection of resources required to fulfill any
type of request from the Web. Custom action definitions can selectively overlay a portion of the action
namespace for users affiliated with a specific enterprise or accessing a specific storefront. Within this
context, the users affiliated with other enterprises or interacting with different storefronts will, however, not
be able to view the overlaid action definitions. The overlaid action definitions can bind the existing Sterling
Web resources with new resources to add new functionalities to the application.

The following components can be customized in Sterling Web:

Struts extensions — Defining new Struts and overriding the existing Struts.
Mashup extensions — Customizing the input XML and the output template of an API call.
Additionally, a user can perform the following functions with mashups:

Define new mashups
Override the existing mashup using override extensibility
Extend the mashups using differential extensibility

For more information about how to override extensibility and extending mashups using differential
extensibility, refer to the Selling and Fulfillment Foundation: Customizing the Web UI Framework
Guide.
Note: A user can extend the mashups specific to a storefront by defining the mashup in the customized
struts action and including the corresponding mashup file to the customization folder created by the
user. However, a user can extend mashups across multiple storefront by following the approach
specified in the Selling and Fulfillment Foundation: Customizing the Web UI Framework Guide. For
more information about extending mashups, refer to the Selling and Fulfillment Foundation:
Customizing the Web UI Framework Guide.
JSP — Creating new JSPs and overriding the existing JSPs.
Themes — CSS and image files pertaining to the application’s look and feel are organized in a
directory hierarchy, with the theme name as the root. By default, each storefront is assigned a theme.
The CSS files pertaining to a theme are used in construction of pages for users accessing a storefront.
For more information about associating a theme with a storefront and controlling the look and feel by
using CSS, refer to the Sterling Web Implementation Guide. For information about theme, CSS files
and understanding the Sterling Web user interface, refer to the Sterling Web User Interface
Architecture Guide.

For information about customization basics, refer to the Selling and Fulfillment Foundation: Customization
Basics Guide.

If a user adds a new field in the JSP, the user may have to extend the database table to add a corresponding
database column. In such a scenario, the database is extended to include a corresponding column. The new
Sterling Commerce, Inc. Draft 5

column that is added in the database must be exposed to the corresponding APIs. For more information
about extending the database, refer to the Selling and Fulfillment Foundation: Extending the Database
Guide.

Action Definition Customization Checklist
When customizing the action definitions that are a part of Sterling Web, follow the sequence in which the
tasks are listed in the following checklist.

1. Create the root folder for the customization project. For more information about how a user can
structure the folders for customizations, see the "Customization Examples" topic.

2. Under the Customization project create a customization folder, say Cust1.
3. Determine the Struts file you want to customize. To identify the files that require customization, it is

important to know the relevant resources such as the action name, mashup XML, resource id, binding
file and JSP file that are defined as part of the corresponding Struts file.

4. As part of customization, you can either introduce a new Struts file in the customization project or
modify the existing Struts file by copying it to the customization project with a different name.

5. To introduce a new Struts file perform the following steps:
a. Add a new action name.
b. Add a new JSP page.
c. Add a new mashup XML file.
d. Add a new XML binding file. The binding files bind the XAPI variables with the JSP components

and JAVA attributes with the API attributes.
To modify the existing Struts file perform the following steps:
a. Copy the existing action name to the customization project and modify it.
b. Copy the existing JSP page to the customization project and modify it.
c. Copy the existing mashup XML file to the customization project and modify it.
d. Copy the existing XML binding file to the customization project and modify it.
Based on the requirement, you must either add or update the appropriate files defined in the
customized Struts file.

6. Include the newly added or modified Struts file into custom_struts.xml file placed under the
customization project.

7. Include the custom_struts.xml file in to the swc_struts.xml.sample file located in the
<INSTALL_DIR>/repository/eardata/swc/extn folder.

8. Rename the swc_struts.xml.sample file to swc_struts.xml file.
9. Build the JAR file of the customization project.
10. Install the JAR file using the installService.
11. Create the EAR and deploy the EAR.
Sterling Commerce, Inc. 6

Theme and Logo Customization Checklist
1. Create the root folder for the customization project. For more information about how a user can

structure the folders for customizations, see the “Customization Examples” topic.
2. Under the customization project, create a customization folder, say Cust1.
3. Create a new theme, say, theme1 or assign an existing theme to the enterprise that must be customized.
4. Add the customized CSS, js, image and logo files to the customization folder. Ensure that the files are

placed in the appropriate folder. For example, the CSS file must be placed in the
customization/src/main/webapp/swc/css/theme folder. For more information about how a
user must structure the folders for customizations, see the “Customization Examples”.

5. Build the JAR file of the customization project.
6. Install the JAR file using the installService.
7. Create the EAR and deploy the EAR.

Storefront Specific Customizations
You can perform customization for a storefront. To perform storefront specific customizations, the
storefront name must be prefixed to the namespace in the Struts action definition, as follows:

<package name="S1.profile.user" namespace="/S1/profile/user" extends="user">

Here, S1 is name of the storefront.

Customizations Across Multiple Storefronts
You can perform customizations across storefronts and themes by changing the out-of-the-box settings. If
multiple storefronts have the same default theme, you can perform only one set of customization for that
theme. The customizations will then be applied to all the storefronts that have the same theme as their
default theme.

To perform customizations across multiple storefronts, the storefront's theme name must be prefixed to the
namespace in the Struts action definition is as follows:

<package name="T1.profile.user" namespace="/T1/profile/user" extends="user">

Here, T1 is the name of the theme and the Struts action definition of the namespace is applicable to all the
storefronts associated with the theme, T1.

In this case, the storefronts associated with a common theme will have the same look and feel. If the user
wants a different look and feel for each storefront, customization has to be done at the storefront level.

Note: Do not modify the action definitions, JSPs, mashup definitions, and files that are provided
out-of-the-box by Sterling Web directly. Ensure that you copy them to the customization folder and
then modify them.

The Struts 2 framework processes the request based on the fall back mechanism by first prefixing the
storefront name to the namespace. If this action exists, the Struts framework dispatches the process to the
Strut action definition. If this action does not exist, the Struts 2 framework prefixes the storefront theme
name to namespace. If this action exists, the Struts framework dispatches the process to the Struts action
Sterling Commerce, Inc. 7

definition. If this action also does not exist, the Struts 2 framework prefixes the default name, swc to the
namespace and dispatches it to the Struts action definition.
Sterling Commerce, Inc. 8

Customization Examples
This topic provides few example of customization to provide a better understanding of the customization
process. Apart from the examples provided here, a user can perform customizations based on the
individual’s requirements.

A user may structure the folders for customizations as shown in the following figure:

The following table lists the files and the corresponding location required for customization:

Note: All the Sterling Web Struts action definitions are included in the swc_struts.xml file.

All the customization examples in this topic are performed for a storefront named, ABC.

Files Location

Mashup customization/src/main/webapp/custommashups/cust1

Struts customization/src/main/resources/com/cust1

JSP customization/src/main/webapp/cust1

Class customization/src/main/java/com/cust1

Root folder for customization
project

Folder for customized logo

Folder for customized theme

Folder comprising custom mashups

Customization folder
Sterling Commerce, Inc. Draft 9

Theme and Logo Customization for a Storefront
By default, Sterling Web provides themes. A user can, however, create a new theme, or assign an existing
theme to an enterprise through the Applications Manager. For more information about defining a theme for
an enterprise, refer to the Selling and Fulfillment Foundation: Application Platform Configuration Guide.
For information about theme CSS, exploring a theme, and changing theme-related styles, refer to the
Sterling Web User Interface Architecture Guide.

When a default theme is specified for a storefront, the corresponding theme .css file should be stored in
the \swc\css\theme\<default theme name of storefront>\theme-1.css folder that may
include other .css files. If a theme is not specified for a particular storefront, the default theme provided
as factory setup is used as the theme for that storefront. This default theme corresponds to the
theme-1.css file that is located in the \swc\css\theme\ folder.

Note: Theme files corresponding to the themes provided by Sterling Selling and Fulfillment are not
provided by Sterling Web.

A user can follow the approach mentioned below to associate a theme and logo with a storefront:

Specify the theme for a storefront by saving the corresponding theme .css file in the
<INSTALL_DIR>repository\eardata\swc\war\swc\css\theme\<default theme name
of storefront>\ folder.
Specify the logo that is associated with a storefront theme by saving the logo-<default theme
name of storefront>.gif file in the
<INSTALL_DIR>repository\eardata\swc\war\swc\images\logo\<Organization Code
of the storefront>\ folder. The image associated with the logo must be 253 X 37 pixels.
Specify the default logo that will be used in the absence of a theme-based logo for a storefront, by
saving the logo.gif file in the
<INSTALL_DIR>repository\eardata\swc\war\swc\images\logo\<Organization Code
of the storefront>\ folder. The image associated with the logo must be 253 X 37 pixels.

Ensure that you create and deploy the SWC EAR. For more information about deploying EAR and WAR
files, refer the Selling and Fulfillment Foundation: Installation Guide.

Note: The theme name assigned to a storefront and the storefront ID are case sensitive.

Alternatively, a user can customize the theme and logo for a storefront by adding the appropriate files in the
customization project by performing the steps mentioned below:

1. Create the root folder for customization say, ABC_customization.
2. The name of the customized theme for a storefront ABC can be abc_cust.
3. In the following folders, replace the {custom_theme} attribute with the storefront theme name:

customization/src/main/webapp/swc/css/theme/{custom_theme}

customization/src/main/webapp/swc/js/theme/{custom_theme}

customization/src/main/webapp/swc/images/theme/{custom_theme}
Sterling Commerce, Inc. Draft 10

customization/src/main/webapp/swc/images/logo/{storefront_id}/logo-{custom
_theme}.gif

The following table lists the files and the corresponding location required for implementing the
abc_cust theme and logo customization:

\

All the images pertaining to the theme are stored in the
customization/src/main/webapp/swc/images/theme/abc_cust folder.

4. Ensure that you deploy the customized JAR by performing the steps mentioned in the
"Postcustomization Deployment" topic.

The following figure displays the customized logo for ABC storefront:

File Name Location

theme-1.css customization/src/main/webapp/swc/css/theme/abc_cust

theme.js customization/src/main/webapp/swc/js/theme/ abc_cust

logo-abc_cust.gif runtime/src/main/swc/images/logo/ABC

Customized
logo ABC
storefront
Sterling Commerce, Inc. Draft 11

The following figure displays the customized theme for ABC storefront:

Adding a New Flow and Functionality
A user can add a new flow or functionality to the Sterling Web application. For example, a user can add a
new hyperlink on the Account Activity page to view a list of all the currencies supported by Sterling Web.

For this, the PortalHomeAddress JSP page must be customized to display the View/Update Customer
Currency hyperlink. A user must override the action definition of the PortalHomeAddress JSP page to
redirect the control to the customized page. Whenever a user clicks the View/Update Customer Currency
hyperlink, the CustomerCurrenciesAction.java action is invoked which in turn, calls the getCurrencyList
API. This API fetches the results and the CustomerCurrencies.jsp displays the customized page with the list
of currencies supported by Sterling Web.

The steps to customize the Account Activity page are as follows:

1. Create the root folder for customization say, ABC_customization.
2. The URL of the Account Activity page is as follows:

http://<hostname>:<port>/swc/home/portalHome.action?sfId=<StorefrontID>
Sterling Commerce, Inc. Draft 12

Here, the portalHome.action renders the Account Activity page and /swc/home/ is the namespace. The
swc_struts.xml file contains the Struts file names used by Sterling Web. Based on the namespace and
the action name the corresponding Struts file can be determined by referring the swc_struts.xml file. The
home-struts.xml file comprising the portalHome.action is located in the
/main/resources/com/sterlingcommerce/webchannel/home folder.

3. The home-struts.xml file must be overridden to redirect the control to the customized Account
Activity page.
The customized cust1_struts file is as follows:
<package name="cust11" extends="home" namespace="/ABC/home">

 <action name="portalHomeUserAddress"
class="com.sterlingcommerce.webchannel.home.PortalHomeUserAddressAction">

 <param name="mashups">getAddressBook</param>

 <param
name="xmlBindingFile">PortalHomeUserAddress_binding.xml</param>

 <param name="resourceId">/swc/portalHome</param>

 <result
name="success">/cust1/jsp/home/portalHomeUserAddress.jsp</result>

 </action>

</package>

4. Include the Struts action definition for the customized CustomerCurrenciesAction action in the
cust1_struts XML file as follows:
<package name="cust1" namespace="/ABC/profile/user" extends="wcDefault">

<action name="getCustomerCurrencies"

 class="com.cust1.profile.customer.CustomerCurrenciesAction">

 <param name="mashups">customer_currencies</param>

 <param name="resourceId">/swc/profile/ManageUserList</param>

 <!--<param name="xmlBindingFile">UserList_binding.xml</param>-->

 <result
name="success">/cust1/jsp/profile/user/CustomerCurrencies.jsp</result>

 </action>

</package>

Here, cust1 is the name of the customization. The cust1_struts.xml file comprises the namespace
and action names that have been added as part of the new functionality.
Sterling Commerce, Inc. Draft 13

5. Include the files defined in the Struts action definition. The following table lists the files and their
locations for overriding the existing functionality:

6. The customized struts file, cust1_struts.xml pertaining to the new flow must be included in the
custom_struts.xml as follows:
<struts>

<include file="com/cust1/profile/customer/cust1_struts.xml"/>

</struts>

7. Deploy the customized JAR by performing the steps mentioned in the "Postcustomization
Deployment" topic.

File Name Location

CustomerCurrencies.jsp /customization/src/main/webapp/cust1/jsp/profile

portalHomeUserAddress
.jsp

/customization/src/main/webapp/cust1/jsp/home

cust1_mashup.xml /customization/src/main/webapp/custommashups/cust1/profile

CustomerCurrenciesActi
on.java

/customization/src/main/java/com/cust1/profile/customer

cust1_struts.xml /customization/src/main/resources/ com/cust1/profile/customer

DCL.xml /customization/src/main/resources

custom_struts.xml /customization/src/main/resources
Sterling Commerce, Inc. Draft 14

The following figure displays the new hyperlink that can be used to view a list of all the currencies supported
by Sterling Web added as part of customization on the View Account Activity page of ABC storefront:

Overriding an Existing Functionality
Sterling Web enables a user to override an existing functionality. A user must identify the files for
customization, copy them to the respective customization folders, and modify them appropriately. A user
can add a new field in the user interface, extend the mashup to include a new attribute, modify the
validations in the user interface, and so on. For example, a user can add the Effective Start Date and
Effective End Date of the product on the Item Details page for a storefront, ABC. To perform this task, the
user must override the action definition of the Item Details page to redirect the control to the customized
page. The new mashup definition must have the Effective Start Date and Effective End Date fields. These
fields are passed in the output of the getCompleteItemList API and displayed in the customized JSP.

The steps to customize the Item Details page are as follows:

1. Create the root folder for customization say, ABC_customization.

New hyperlink
Sterling Commerce, Inc. Draft 15

2. The URL of the Item Details page is as follows:
http://<hostname>:<port>/swc/catalog/itemDetails.action?sfId=<StorefrontID>

Here, itemDetails.action renders the Item Details page and /swc/catalog/is the namespace.
The swc_struts.xml file contains the Struts file names used by Sterling Web. Based on the namespace
and the action name, the corresponding Struts file can be determined by referring the swc_struts.xml
file. The catalog-struts.xml file comprising the itemDetails.action is located in the
/main/resources/com/sterlingcommerce/webchannel/catalog folder.

3. The itemDetails.action is defined in the action definition specified in the
catalog-struts.xml file The action definition must be overridden to redirect the control to the
customized JSP page.

4. The new action definition in the cust1_struts.xml file is as follows:
<struts>

<package name="abc.catalog" namespace='/ABC/catalog' extends="catalog">

<!-- action for item Details -->

<action name="itemDetails"
class="com.cust1.catalog.Custom_ItemDetailsAction">

<param name="mashups">custom_itemDetails</param>

<param name="resourceId">/swc/catalog/catalogBrowsing</param>

<param
name="xmlBindingFile">com/cust1/catalog/Custom_ItemDetails_binding.xml</par
am>

<param name="numOfItemsPerPromotion">2</param>

<param
name="validationClass">com.cust1.catalog.Custom_ItemDetailsValidation</para
m>

<result
name="success">/cust1/jsp/catalog/Custom_itemDetails.jsp</result>

</action>

<!-- End -->

 </package>

</struts>

Here, cust1 is the name of the customization.
5. Include the files defined in the struts action definition, in the appropriate folder structure.

The following table lists the files and their locations required for overriding the existing functionality:

File Name Location

Custom_itemDetails.jsp /customization/src/main/webapp/cust1/jsp/catalog

cust_catalog.xml /customization/src/main/webapp/custommashups/cust1

Custom_ItemDetailsActi
on.java

/customization/src/main/java/com/cust1/catalog
Sterling Commerce, Inc. Draft 16

6. The customized struts file, cust1_struts.xml pertaining to the new flow must be included in the
custom_struts.xml as follows:
<struts>

<include file="com/cust1/catalog/cust1_struts.xml"/>

</struts>

Custom_ItemDetailsValid
ation.java

/customization/src/main/java/com/cust1/catalog

cust1_struts.xml /customization/src/main/resources

Custom_ItemDetails_bin
ding.xml

/customization/src/main/resources/com/cust1

DCL.xml /customization/src/main/resources

custom_struts.xml /customization/src/main/resources

File Name Location
Sterling Commerce, Inc. Draft 17

7. Deploy the customized JAR by performing the steps mentioned in the "Postcustomization
Deployment" topic.
The following figure displays the customized Item Details page added as part of the new functionality
for ABC storefront:

Customizing the Alternative View of the Product List page
By default, Sterling Web enables a user to compare the products on the Product List page by dragging and
dropping them to the Drag to Compare basket. However, an end-user can customize the Product List Page.

By performing the following steps a user will be able to select the products on the Product List page and
compare them by clicking the Compare button:

1. Determine the name of the storefront for which you want to associate the alternative view.
2. Copy the alternate_catalog_flow_struts.xml.sample file located in the

<INSTALL_DIR>/repository/eardata/swc/war/WEB-INF/classes folder and paste it in the
customization/src/main/resources folder created by the user.

Fields added on
the customized
page
Sterling Commerce, Inc. Draft 18

3. Rename alternate_catalog_flow_struts.xml.sample to
alternate_catalog_flow_struts.xml.

Note: If this file is not present in the folder, run the buildear script to generate this file.
4. Edit custom_struts.xml to include the alternate_catalog_flow_struts.xml file as

follows:
<include file="alternate_catalog_flow_struts.xml"/>

5. In the alternate_catalog_flow_struts.xml, replace the
_replace_with_storefront_name_ attribute with the name of the storefront for which you want
to configure the alternative view.

6. Perform the configurations required to set up the storefront. For more information about setting up a
storefront, refer to the Selling and Fulfillment Foundation: Application Platform Configuration Guide.

7. Deploy the customized JAR by performing the steps mentioned in the "Postcustomization
Deployment" topic.
Note: If multiple storefront have to be associated with the alternative page, the storefront theme name
must be used in the Struts definition.

Other Customizations
In addition to the customizations described in the previous sections, users can perform other customizations
of their choice. To perform any type of customization, a user must replace the {custname} attribute in the
following folders with the appropriate folders for customization:

/customization/src/main/webapp/{custname}/css/..
/customization/src/main/webapp/{custname}/jsp/..
/customization/src/main/webapp/custommashups/{custname}/..
/customization/src/main/webapp/{custname}/images/..
/customization/src/main/webapp/{custname}/js/..

The following table lists the file types and their corresponding locations, as provided by Sterling Web by
default:

The Sterling Web Java classes and class loader resources required to perform customization reside in the
com.sterlingcommerce.webchannel package. Ensure that the nomenclature of the folder structure

File Location

Java class files /customization/src/main/java/com/{vendor-name}/{customization name}..

Binding files /customization/src/main/resources/com/{vendor-name}/{customization name}..

Resource bundle /customization/src/main/resources /com/{vendor-name}/{customization name}..

Struts configuration file /customization/src/main/resources /com/{vendor-name}/{customization name}..

Struts validation file /customization/src/main/resources /com/{vendor-name}/{customization name}..

Custom Struts file /customization/src/main/resources
Sterling Commerce, Inc. Draft 19

avoids naming conflicts. It is recommended that the customization classes have a common root package
similar to com.{vendor-name}.{customization name} as specified in Sterling Web.
Sterling Commerce, Inc. Draft 20

Postcustomization Deployment
After the customizations are performed, the user must deploy the changes in the application by performing
the following steps:

1. Generate the customization JAR file.
2. Install the customization JAR file using the installService utility. In the customization JAR file, ensure

that the customized files have been placed in the appropriate locations, as described in the tables
below.

3. Deploy the customizations by creating and deploying the SWC EAR file.

For example, if you are adding or overriding a functionality, the customized files must be placed in the
appropriate locations as described in the following table:

If you are customizing the theme and logo, the customized files must be placed in the appropriate locations
as described in the following table:

The DCL.xml file is the common file required for all customizations. This file is included in the
\swc\jars\ path in the customization JAR. The DCL.xml file must have an entry of the JAR file
comprising the customized Java classes and resources. The name of the JAR files is case-sensitive. For
example, the customization JAR file generated for the storefront ABC will be ABC_CUST.jar and the jar
file comprising the customized Java classes and resources will be abc_cust.jar. The user must generate
abc_cust.jar file and add it to the \swc\jars\abc_cust\<user_defined_version>\ path in the
ABC_CUST.jar.

Files Location

3rd party jar files The path generated by install3rdparty utility. For more information about the install3rdparty
utility, refer to the Selling and Fulfillment Foundation: Installation Guide.

Java Server Page \swc\files\repository\eardata\swc\war\<user defined folder>

Javascript \swc\files\repository\eardata\swc\war\<user defined folder>

Mashup definitions \swc\\files\repository\eardata\swc\war\mashupxmls\webchannel\<user defined
folder>

Static image files \swc\files\repository\eardata\swc\war\<user defined folder>

Files Location

Image for logo \swc\files\repository\eardata\swc\war\swc\images\logo

CSS files \swc\files\repository\eardata\swc\war\swc\css\theme

JS files \swc\files\repository\eardata\swc\war\swc\js\theme
Sterling Commerce, Inc. Draft 21

In the above example, the DCL.xml file has the entry for the abc_cust.jar as follows:

<dcl>

<vendor>

<name>abc_cust/<user_defined_version>/abc_cust.jar</name>

<target>DCL|APP</target>

</vendor>

</dcl>

To deploy the customizations to the application, the user must perform the following steps:

1. Run the following command to generate the customization jar file. Ensure that the customization jar
comprises the DCL.xml file:
ant -f <customization script file> <target>

2. Run the following command to install the customized jar file:
For Windows:
InstallService.cmd <location of customized jar>.
For Linux or Unix:
InstallService.sh <location of customized jar>.

3. Navigate to the <INSTALL_DIR>/repository/eardata/{custname}/extn folder and rename
struts.xml.sample as struts.xml.

4. Add the entry of custom_struts.xml in the struts.xmlfile. This must be done for all the new
customized action definitions.
<struts>

<include file="sic_struts.xml"/>

<include file="scuiimpl_struts.xml"/>

…

<include file="custom_struts.xml"/>

…

</struts>

5. Build and deploy the SWC EAR file. For more information about deploying EAR and WAR files, refer
the Selling and Fulfillment Foundation: Installation Guide.
Sterling Commerce, Inc. 22

Customizing Validations
The Sterling Web™ application enables a user to customize user interface-level validations and data
validations. Organizations may want to either create new validations or modify existing validations. This
topic provides an overview of customizing the validations in the Sterling Web application. For example, a
user can mandate a field, create a combination of fields, and so on. For information about data validations
and user interface validations, refer to the Sterling Web Implementation Guide.

Customizing UI Validations
UI validations can be customized based on a user’s requirement, as follows:

Adding Struts Validators
Customizing Action-Specific Validation and Page-Specific Validation
Customizing E-Mail Validation
Customizing Phone Number Validation

Adding Struts Validators
By default, the Struts client-side validation framework provides certain validators. For more information
about using the Struts validation framework for user interface validations, refer to the Sterling Web
Implementation Guide. New validators can be added in Sterling Web to perform specific validations by
providing the appropriate entry for the new validators in the
<swc_war_file>/WEB-INF/classes/validators.xml file and the corresponding implementation
class. The new validators can be used for validating any field in any page in the Sterling Web application.

Customizing Action-Specific Validation and Page-Specific Validation
By default, Sterling Web provides UI validations. A user can customize UI validations for a specific page.

A user can perform the following tasks as part of customizing UI validations for a page:

Customizing action-specific validation for an existing page: Action-specific validations can be
customized by creating custom action- specific validation class. The classname must be named
appropriately and added in the Struts definition for the corresponding action. For more information
about action-specific validation definition of class, refer to the Sterling Web Implementation Guide.
Adding new fields in a form: JSP customization must be done for add new form fields in a page. In
such a scenario, a user may have to customize the validation. This can be done by adding
action-specific validation class, as explained previously.
Adding new fields by extending the database table: A user can extend an existing database table to add
new columns. If a new column is used as a form field in a Sterling Web JSP, the user must customize
the validation for that field. However, to be able to use the Ajax validation framework for the new
fields, appropriate data type must created for the new database column. For more information about
extending data type files, refer to the Selling and Fulfillment Foundation: Extending the Database
Guide.
Sterling Commerce, Inc. Draft 23

Customizing UI validation error messages: The error messages displayed in the UI are displayed after
localization. These messages can also be customized. For more information, about customizing the
Sterling Web application, refer to the Sterling Web Localization Guide.

Customizing E-Mail Validation
By default, Sterling Web provides the swc.email.validator.regex system property. The value of this property
is a regular expression that is used to validate the e-mail addresses of the users. To customize e-mail
validation, the swc.email.validator.regex system property must be overridden with the regular
expression against which the e-mail validation must be performed.

Customizing Phone Number Validation
By default, Sterling Web validates all the phone number fields based on US format, that is, +xxx (yyy)
zzz-zzzz, where xxx is the Country code, yyy is the Area or City code, and zzz-zzzz is the Local number.
The validation logic for this can be customized based on a user’s requirement. Sterling Web provides the
swc.validator.phone system property that defines the implementation class to be used for phone
number validation. The default implementation class for this property is
com.sterlingcommerce.webchannel.core.validators.WCDefaultPhoneNumberFormatter. For
customization, users can create a custom implementation class and override the swc.validator.phone
system property to point to the new class. To perform phone number validation, a class must implement the
com.sterlingcommerce.webchannel.core.validators.IWCPhoneNumberFormatter interface.

Customizing Data Validation
A user can customize data validation rules by creating new validation rules and deleting existing validation
rules. Ensure that data validation is enabled for Sterling Web in the web.xml file located in the
EARFILE/WARFILE/WEB-INF folder.

To customize data validation rules:

1. Include the following property files in the class path of the application server. These files are an
extension to the property files provided by Sterling Web:

swc_InputType_ValidationRules_extn.properties
swc_ParamValue_ValidationRules_extn.properties

For more information about the property files with default validation rules provided by Sterling Web,
refer to the Sterling Web Implementation Guide.

2. Define customized validation rules by providing entries in the property files mentioned previously. or
information about implementing data validations, refer to the Sterling Web Implementation Guide.

3. Restart the application server.
Note: By default, Sterling Web provides validation rules specific to the en_US locale. If a user wants to

support a different locale, the user must add characters pertaining to that locale. Validation rules are
not specific to a locale and are generic and common across all the locales.
Sterling Commerce, Inc. 24

Index
C
customization

examples 7
logo 8
multiple storefronts 5
specific storefront 5
theme 8

customization checklist
action definition 4
theme and logo 5

customizing validation
e-mail 22
phone number 22

D
data validation

customizing 22

F
functionality

adding, new 10
overriding, existing 13

O
other customizations 17

P
post customization

deployment 19

Product List page
customizing 16

S
struts valdiators

adding 21

U
UI validation rules

customizing 21

V
validation

action specific
page specific 21

validation rules
customizing 22

validations
customizing 21
Sterling Commerce, Inc. Draft 25

	Contents
	Customizing Sterling Web: An Overview
	Action Definition Customization Checklist
	Theme and Logo Customization Checklist
	Storefront Specific Customizations
	Customizations Across Multiple Storefronts

	Customization Examples
	Theme and Logo Customization for a Storefront
	Adding a New Flow and Functionality
	Overriding an Existing Functionality
	Customizing the Alternative View of the Product List page
	Other Customizations

	Postcustomization Deployment
	Customizing Validations
	Customizing UI Validations
	Adding Struts Validators
	Customizing Action-Specific Validation and Page-Specific Validation
	Customizing E-Mail Validation
	Customizing Phone Number Validation

	Customizing Data Validation

	Index

