
Sterling Sensitive Data Capture
Server, Release 1.0

Configuration Guide

Selling and Fulfillment Foundation, Release 9.0

March 2010

Notice and Disclaimer:

In this document, the terms “you,” “your,” or “yours” refer to the end user or the customer. The terms
“we,” “our,” or “ours” refer to Sterling Commerce (America), Inc. (“Sterling Commerce,” “Sterling
Commerce, Inc.,” or “Sterling”).

Nothing herein shall be construed as limiting or reducing your obligations to comply with any applicable
laws, regulations or industry standards relating to security or otherwise including, but not limited to,
PA-DSS and DSS.

The customer may undertake activities that may affect compliance. For this reason, Sterling Commerce,
Inc. is required to be specific to only the standard software provided by Sterling.

THE INFORMATION IN THIS DOCUMENT IS FOR INFORMATIONAL PURPOSES ONLY.
STERLING COMMERCE MAKES NO REPRESENTATION OR WARRANTY AS TO THE
ACCURACY OR THE COMPLETENESS OF THE INFORMATION CONTAINED HEREIN. YOU
ACKNOWLEDGE AND AGREE THAT THIS INFORMATION IS PROVIDED TO YOU ON THE
CONDITION THAT NEITHER STERLING NOR ANY OF ITS REPRESENTATIVES WILL HAVE
ANY LIABILITY IN RESPECT OF, OR AS A RESULT OF, THE USE OF THIS INFORMATION. IN
ADDITION, YOU ACKNOWLEDGE AND AGREE THAT YOU ARE SOLELY RESPONSIBLE FOR
MAKING YOUR OWN DECISIONS BASED ON THE INFORMATION HEREIN.

STERLING COMMERCE DOES NOT AND CANNOT WARRANT OR REPRESENT THAT
IMPLEMENTATION OF THE RECOMMENDATIONS, GUIDELINES, AND/OR DIRECTIONS
HEREIN WILL RESULT IN A SECURE SYSTEM. THE INFORMATION HEREIN IS PROVIDED FOR
INFORMATIONAL PURPOSES ONLY, AND ARE ONLY SUGGESTIONS: NOTHING HEREIN
SHOULD BE CONSTRUED AS PART OF ANY USER OR CUSTOMER GUIDE OR OTHER
DOCUMENTATION AGAINST WHICH ANY CONTRACTUAL WARRANTY IS MADE, OR CAN
BE CONSTRUED.

THE APPLICABLE STERLING COMMERCE ENTITY RESERVES THE RIGHT TO REVISE THIS
PUBLICATION FROM TIME TO TIME AND TO MAKE CHANGES IN THE CONTENT HEREOF
WITHOUT THE OBLIGATION TO NOTIFY ANY PERSON OR ENTITY OF SUCH REVISIONS OR
CHANGES.

You are responsible for identifying the security options most appropriate to the risks identified in your
environment.

This document assumes that you are familiar with security deployment concepts, including knowledge of
how to deploy these applications securely. Specifically, you must ensure that the recommendations can be
used in your corporate operational environment.

Sterling Commerce strongly recommends that you work with your internal or external security teams from
the initial planning stages to production deployment. Most importantly, ensure that engineers
knowledgeable in security are involved in designing the system, which includes the Sterling Commerce
applications.
© Copyright 2010 Sterling Commerce, Inc. All rights reserved.
Additional copyright information is located on the documentation library:
http://www.sterlingcommerce.com/Documentation/MCSF90/CopyrightPage.htm

Sterling Commerce, Inc., 2010 Confidential and Proprietary

Contents

Roadmap: Using the PA-DSS, Secure Deployment, and SSDCS Documentation Guides. 5
About the Sterling Sensitive Data Capture Server, Release 1.0: PA-DSS Implementation Guide . . . 6

Sterling Sensitive Data Capture Server, Release 1.0:
PA-DSS Implementation Guide Revision Information. 6
Sterling Sensitive Data Capture Server, Release 1.0:
PA-DSS Implementation Guide Update History . 7

Overview of the Sterling Sensitive Data Capture Server. 8
Installing the Sterling Sensitive Data Capture Server . 9

Prerequisites . 9
Installation Steps. 9

Configuring the Sterling Sensitive Data Capture Server . 11
Configuring Properties . 11

Selling and Fulfillment Foundation Properties . 11
SSDCS Properties . 12
ESAPI Properties . 13

Configuring Logging . 13
JSPs . 14

Form Fields. 15
Validation . 18
Tokenization . 19

Implementing Custom Code . 20
Deploying the Sterling Sensitive Data Capture Server . 21

Index 22
Sterling Commerce, Inc., 2010 Confidential and Proprietary 3

Sterling Commerce, Inc., 2010 Confidential and Proprietary 4

Roadmap: Using the PA-DSS, Secure Deployment, and SSDCS
Documentation Guides
Sterling Selling and Fulfillment Foundation provides a strategy for secure credit card capture and protection,
in accordance with the Payment Application Data Security Standard (PA-DSS) and the Payment Card
Industry Data Security Standard (PCI DSS).

If your deployment captures credit cards, you can implement the Sterling Sensitive Data Capture Server
(SSDCS) to capture credit card numbers on behalf of the Sterling applications. Doing so ensures that credit
card numbers are kept outside of Sterling applications, with the added benefit that these applications are kept
outside of PCI DSS auditing scope.

The following guides in the Selling and Fulfillment Foundation documentation set discuss how to
implement these security strategies:

✦ Sterling Sensitive Data Capture Server, Release 1.0: PA-DSS Implementation Guide - Describes the
steps that you should follow for your SSDCS installation to remain in compliance with the PA-DSS. It
also describes order capture and payment processing data flows, as well as showing a typical network
implementation of the SSDCS. This guide explains how to keep the Sterling applications outside of the
PCI DSS auditing scope.

✦ Selling and Fulfillment Foundation: Secure Deployment Guide - Explains how to deploy the Sterling
Selling and Fulfillment Foundation securely. It covers security recommendations for applications,
networks, operating systems, databases, application servers, and message queues.

✦ Sterling Sensitive Data Capture Server, Release 1.0: Configuration Guide (this guide) - Details how to
install, configure, and deploy SSDCS as a proxy service that Sterling Commerce applications call to
tokenize Primary Account Numbers (PANs) for credit cards and gift value cards.

To implement these strategies, Sterling suggests that you follow this sequence of steps:

1. Review all three guides in this order:
a. Sterling Sensitive Data Capture Server, Release 1.0: PA-DSS Implementation Guide
b. Selling and Fulfillment Foundation: Secure Deployment Guide
c. Sterling Sensitive Data Capture Server, Release 1.0: Configuration Guide

2. Implement the steps suggested in the Sterling Sensitive Data Capture Server, Release 1.0: PA-DSS
Implementation Guide to remain in compliance with PA-DSS and keep your Sterling applications
outside of the PCI DSS auditing scope.

3. Implement the security strategies outlined in the Selling and Fulfillment Foundation: Secure
Deployment Guide.

4. Install Selling and Fulfillment Foundation and associated applications (refer to the Selling and
Fulfillment Foundation: Installation Guide and respective application installation guides).

5. Follow the steps in the Sterling Sensitive Data Capture Server, Release 1.0: Configuration Guide to
configure your SSDCS implementation.
Sterling Commerce, Inc., 2010 Confidential and Proprietary 5

About the Sterling Sensitive Data Capture Server, Release 1.0:
PA-DSS Implementation Guide
The Sterling Sensitive Data Capture Server, Release 1.0: PA-DSS Implementation Guide describes the steps
that you must follow for your Sterling Sensitive Data Capture Server (SSDCS) installation to remain in
compliance with the Payment Application Data Security Standard (PA-DSS). It also describes how to keep
the Sterling Commerce applications outside of the PCI Data Security Standard (PCI DSS) auditing scope.

The information in this document is based on the PCI Security Standards Council (PCI SSC) PA-DSS
program (version 1.2, dated October, 2008). Sterling Commerce recommends that its customers deploy the
SSDCS application in a manner that adheres to the PCI DSS and the PCI PA-DSS (version 1.2).

Subsequent to this, best practices and hardening methods such as those referenced by the Center for Internet
Security (CIS), including their various benchmarks, should be followed to enhance system logging, reduce
the chance of intrusion, and increase the ability to detect intrusion. Other general recommendations to secure
networking environments should be followed, as well. Such methods include, but are not limited to,
enabling operating system auditing subsystems, system logging of individual servers to a centralized
logging server, disabling of infrequently used or frequently vulnerable networking protocols, and the
implementation of certificate-based protocols for access to servers by users and vendors.

Note: If you do not follow the steps outlined here, your Sensitive Data Capture Server installations will not
be PA-DSS compliant and the Sterling applications could be considered to be within PCI DSS
auditing scope.

Sterling Sensitive Data Capture Server, Release 1.0:
PA-DSS Implementation Guide Revision Information

Revision Information

Author Bernie Wong, Performance Engineering Director

Approving
Authority

Steven Aulds, Senior Vice President, Engineering

Revision Date March 31, 2010

Next Review Date March 31, 2011 or whenever the underlying application changes or whenever the PA-DSS
requirements change

Exclusions Applies to all Engineering employees who develop or maintain the SSDCS

Standard Number ESP201
Sterling Commerce, Inc., 2010 Confidential and Proprietary 6

Sterling Sensitive Data Capture Server, Release 1.0:
PA-DSS Implementation Guide Update History

Note: The Sterling Sensitive Data Capture Server, Release 1.0: PA-DSS Implementation Guide will be
reviewed on a yearly basis, whenever the underlying application changes or whenever the PA-DSS
requirements change. Updates will be tracked and reasonable accommodations will be made to
distribute the updated guide to users.

Name Title Date Summary of Changes

Bernie Wong Performance Engineering
Director

Dec 14, 2009 Initial version
Sterling Commerce, Inc., 2010 Confidential and Proprietary 7

Sterling Commerce, Inc., 2010 Confidential and Proprietary 8

Overview of the Sterling Sensitive Data Capture Server
The Sterling Sensitive Data Capture Server (SSDCS) is an application that integrates with the Sterling
Selling and Fulfillment SuiteTM to ensure that credit card numbers and stored value card numbers are secure
by tokenizing them. SSDCS enables the Sterling Selling and Fulfillment Suite to achieve Payment
Application Data Security Standard (PA-DSS) compliance.

Payment Application Data Security Standard and Payment Card Industry Data Security Standard
(PCI-DSS) are standards established by the payment card industry to promote secure payment processing.
PA-DSS is a standard for payment applications, which are systems that capture information pertaining to
cards, such as credit cards. It mandates that sensitive information, such as a credit card number, should not
be stored along with application data. PCI-DSS is a standard for the secure implementation of payment
applications by customers. PA-DSS certification is awarded to third-party payment application vendors who
comply with the standard. The Sterling Selling and Fulfillment Suite qualifies as a third-party payment
application.

The Sterling Selling and Fulfillment Suite does not directly process credit cards, but rather provides user
exits in which customers can write code to contact a payment gateway. The focus for PA-DSS compliance
in the Sterling Selling and Fulfillment Suite is the tokenization of credit card information before it enters
the system. This is achieved with the support of SSDCS, which interprets, validates, and tokenizes credit
card numbers and stored value card numbers. Tokenization is the process of storing credit card numbers or
stored value card numbers in a vault system that associates a token to a securely stored credit card number
or stored value card number. The only way in which a token can be returned to its original value is by
contacting the vault system.

Note: You must use your organization’s vault solution.

SSDCS ensures that credit card numbers and stored value card numbers are stored only in a vault system
and not in the Sterling Selling and Fulfillment Suite. As a result, SSDCS is the only application in the
Sterling Selling and Fulfillment Suite that is within scope for PA-DSS compliance.

The SSDCS is invoked by the credit card capture process through the Selling and Fulfillment Foundation
User Interface. No APIs were enhanced for tokenization. A token should be passed to the API instead of
passing a payment application number (PAN).

For information about how to configure SSDCS securely, refer to the Sterling Sensitive Data Capture
Server, Release 1.0: PA-DSS Implementation Guide.

Note: SSDCS is a system-critical application. If SSDCS is unavailable, payment information cannot be
captured.

Installing the Sterling Sensitive Data Capture Server
The Sterling Sensitive Data Capture Server (SSDCS) application is packaged as a zip file with Selling and
Fulfillment Foundation. The zip file is located in
<INSTALL_DIR>/repository/external/ssdcs.zip.

Note: <INSTALL_DIR> refers to the directory in which you have installed Selling and Fulfillment
Foundation.

Prerequisites
This guide assumes that you have already installed Selling and Fulfillment Foundation.

You must use the same technical stack for the Sterling Sensitive Data Capture Server (SSDCS) application
as for Selling and Fulfillment Foundation. For information about the minimum requirements for installing
SSDCS, refer to the table titled “Supported Application Server Tier” in the “System Requirements” chapter
of the Selling and Fulfillment Foundation: Installation Guide.

Note: Before installing the Sterling Sensitive Data Capture Server (SSDCS) application, you must read the
Sterling Sensitive Data Capture Server, Release 1.0: PA-DSS Implementation Guide for information
about how to configure SSDCS securely.

Installation Steps
After you have installed Selling and Fulfillment Foundation, perform the following steps to install the
SSDCS application:

1. Determine the location in which the SSDCS files will reside, and give the directory a name. Define a
variable, <SSDCS_DIR>, for this location.
Note: Throughout this guide, <SSDCS_DIR> refers to the directory in which you have installed
SSDCS.

2. In Selling and Fulfillment Foundation, use the customer_overrides.properties file to specify
a value for the yfs.ssdcs.url property. For additional information about this property and how to
override it using the customer_overrides.properties file, refer to the Selling and Fulfillment
Foundation: Properties Guide.

3. Navigate to the <INSTALL_DIR>/repository/external directory and locate the ssdcs.zip file.
This zip file contains all the files that are required for SSDCS.

4. Copy ssdcs.zip from the <INSTALL_DIR>/repository/external directory to the
<SSDCS_DIR> directory.

5. In the <SSDCS_DIR> directory, unzip the ssdcs.zip file.
The ssdcs.zip file contains the following directories:

bin - Contains the scripts to build the WAR file. As part of this, JAR files in jar/extn will be
picked up and put in the appserver classpath each time the WAR file is built. No other scripts are
necessary.
Sterling Commerce, Inc., 2010 Confidential and Proprietary 9

documentation - Contains the Javadocs compiled from the source (the implementable interfaces
and user exits).

jar - Contains the compiled product JAR and third-party JARs.

jar/extn - A placeholder directory for customer extension JAR files.

log - A placeholder directory for log files. It is recommended that the SSDCS_LOG_DIR
environment variable is set to point to this location. For more information about log files, refer to
Configuring Logging.

properties - Contains the property files that configure the application and logging. A JAR file
of the properties in this directory will be built and placed in this directory as part of the WAR build
process. For more information about the properties that you can configure for SSDCS, refer to
Configuring Properties.

resources/eardata/descriptors/** - Contains miscellaneous WAR files that are
categorized by appserver; for example, web.xml.

WebContent/jsp - Contains status.jsp, which is a public JSP that is displayed if SSDCS is
available. If status.jsp is not displayed, processing of payment information cannot continue.

WebContent/WEB-INF/jsp - Contains ssdcs_tokenize_pan.jsp, which is a private JSP
that sets the initial parameters (the authorization token and the payment type), and automatically
submits to the payment server. The response from the payment server is the Payment Capture JSP.
This directory also contains custom JSPs, if any.

external_deployments - The location of the compiled WAR file.

build - A temporary directory created as part of the build WAR process.

6. Configure the SSDCS application.
You must configure a minimum of two properties to successfully run SSDCS. For information about
how to configure SSDCS, refer to Configuring the Sterling Sensitive Data Capture Server.

7. Deploy the SSDCS application.
For information about how to deploy SSDCS, refer to Deploying the Sterling Sensitive Data Capture
Server.
Sterling Commerce, Inc., 2010 Confidential and Proprietary 10

Configuring the Sterling Sensitive Data Capture Server
This section describes how to configure the Sterling Sensitive Data Capture Server (SSDCS). It contains the
following information:

✦ Configuring Properties
✦ Configuring Logging
✦ JSPs
✦ Implementing Custom Code
For information about configuring SSDCS securely, refer to the Sterling Sensitive Data Capture Server,
Release 1.0: PA-DSS Implementation Guide.

Configuring Properties
Property files in Selling and Fulfillment Foundation and SSDCS contain properties that control the
operation of the SSDCS application.

Selling and Fulfillment Foundation Properties
Use the customer_overrides.properties file to configure the following Selling and Fulfillment
Foundation properties for SSDCS:

✦ yfs.ssdcs.url
✦ yfs.ssdcs.servlet
✦ yfs.ssdcs.jsp
✦ yfs.ssdcs.tokenize.svc
✦ yfs.ssdcs.tokenize.cc
✦ sc.access.token.expire.in.seconds
✦ sc.access.token.max.allowed.expire.in.seconds
For additional information about these properties and how to override them using the
customer_overrides.properties file, refer to the Selling and Fulfillment Foundation: Properties
Guide.
Sterling Commerce, Inc., 2010 Confidential and Proprietary 11

SSDCS Properties
The ssdcs.properties file contains the SSDCS properties and is located in the <SSDCS_DIR>/properties
directory. You can configure these properties, which are described in the following table, by editing the
ssdcs.properties file:

Property Value Description

ssdcs.smcfs.url Valid value =
https://<host>:<port>/<applic
ation context
root>/accessTokenServlet

Default =
https://<host>:<port>/smcfs/a
ccessTokenServlet

This property points to the URL that is
used to access Selling and Fulfillment
Foundation. The variables <host> and
<port> are placeholders that you must
replace with the name of the machine
(not the IP address) and with the port.
You can change the default application
context root (smcfs) to connect to one
of the following applications: sbc, sfs,
swc.
Example:
ssdcs.smcfs.url=https://s
terlingcommerce.com:8080/
smcfs/accessTokenServlet

User Exit Note: The SSDCS user exits are implemented through the ssdcs.properties file
only. SSDCS user exits do not use the same user exit framework as the
Selling and Fulfillment Foundation user exits and are implemented by
providing a fully qualified classname for the related property, defined below.
For more information about SSDCS user exits, refer to the SSDCS
Javadocs.

ssdcs.ue.PanValidator Valid value = the fully qualified classname to
an implementation of ISSDCSPanValidator

Default = N/A

This property identifies the Primary
Account Number (PAN) validation
implementation. This is an optional
user exit.
Example:
ssdcs.ue.PanValidator =
com.stercomm.ssdcs.ue.ISS
DCSPanValidatorImpl

ssdcs.ue.Tokenize Valid value = the fully qualified classname to
an implementation of ISSDCSTokenize

Default = N/A

This property identifies the
tokenization implementation. This is a
required user exit for tokenization.
Example:
ssdcs.ue.Tokenize=com.ste
rcomm.ssdcs.ue.ISSDCSToke
nizeImpl
Sterling Commerce, Inc., 2010 Confidential and Proprietary 12

ESAPI Properties
You can use the ESAPI.properites file to configure properties for the OWASP Enterprise Security API. This
file contains validation patterns that have Validator.ssdcs. as a prefix. Do not modify any other
properties in this file. For more information about modifying the ESAPI.properties file, refer to Validation.

Configuring Logging
SSDCS includes basic logging functionality. However, you can change logging parameters in the log4j
configuration XML file to control the location and level of the log files.

Note: Before setting up the logging parameters, ensure that you understand the log4j utility. For detailed
information about this utility, refer to the following Web site:
http://jakarta.apache.org/log4j

A placeholder directory, <SSDCS_DIR>/log, is provided for storing the SSDCS log files. It is
recommended that you set up an environment variable, such as SSDCS_LOG_DIR, to point to this location.

SSDCS provides the following log files, which can have different configurations:

✦ ssdcs.log - Used for logging business logic issues, such as debugging and timing information. For
example, the system records anything that happens in the servlet as part of the tokenization process.
Notes:

Sensitive information, such as credit card numbers or stored value card numbers, is not logged.

This is the only log file that has a TIMER logging level.

✦ ssdcs_security.log - Used exclusively for logging security issues. The SSDCS security logger
records the activity of any malicious requests that are detected, such as unauthorized users attempting
to log in.

✦ ssdcs_esapi.log - Used for debugging the ESAPI setup. Both ESAPI internal classes and SSDCS
extensions and implementations are logged here.

The following table describes the logging parameters that you can configure.

Property Description

In the log4j Configuration XML File

<priority> subelement of
the <root> element

Specify the level of logging required. It is recommended that the value of this attribute is
set to ERROR.
Following are the valid values for logging levels:

FATAL

ERROR

WARN

INFO

TIMER

DEBUG
Sterling Commerce, Inc., 2010 Confidential and Proprietary 13

JSPs
The JSPs for SSDCS are embedded within an application screen (for example, within an IFRAME) that
captures credit card numbers and stored value card numbers. The body of a JSP consists of a single form.
The form displays a single text field for the entry of a credit card number or a stored value card number, and
also contains hidden form fields that represent all possible inputs and outputs.

The following process occurs when a credit card number or stored value card number is entered in the text
field of the JSP:

1. SSDCS validates whether the data entered in the form fields is valid data. For example, the
ssdcsAuthenticationToken field must consist of only alphanumeric characters. For details about the
form fields, refer to Form Fields and Validation.

2. SSDCS validates whether the session token passed to it from Selling and Fulfillment Foundation is a
valid session. If the session is not valid, Selling and Fulfillment Foundation returns an error.

3. SSDCS validates the credit card number or stored value card number that is entered. For credit card
numbers, this involves running the Luhn algorithm. An interface is also provided to implement an
alternative validation algorithm. If the number is not valid, SSDCS returns an error. For additional
information about the validation of credit card numbers and stored value card numbers, refer to
Validation.

4. After the credit card number or stored value card number is validated, SSDCS makes an API call to the
vault to tokenize the number.

5. The vault returns a token as well as a display value. The display value is what is displayed in the JSP
text field instead of the credit card number or stored value card number that was entered.

Before SSDCS is invoked, the IFRAME is populated with an initial, blank JSP that is local to the user’s
application. This JSP is responsible for setting the initial parameters (that is, the authorization token and the

<appender> subelement At the root level, this attribute specifies the associated name and class attribute. Select
a valid log4j appender class.
Each subelement can also specify the layout of the message through the <layout>
subelement, and can filter for levels through the <filter> subelement.
Instead of hardcoding the absolute path for the log file under the appender to be used,
it is recommended that customers use a ${SSDCS_LOG_DIR} parameter in the
log4j.properties.xml file and invoke the JVM with
-DSSDCS_LOG_DIR=<application_log_directory>.

<param> subelement of
the <appender> element

This attribute specifies the associated name and value attributes. You can set the
following variables using the <param> attribute:

maxLogSize - Specify the maximum number of write operations to be made to a log
file. This is not the memory size limit of the log file. The size of the log file will
depend on the size of each write operation. By default, the value of this variable is
set to 100000.

rotateLogs - Determines whether the log files should be split or not. If the value of
this variable is set to False, the log files will not be split, and the logger will keep
writing in the same file. By default, the value of this variable is set to True.

Property Description
Sterling Commerce, Inc., 2010 Confidential and Proprietary 14

payment type) and auto submitting immediately to SSDCS. When SSDCS is invoked to tokenize a credit
card number or stored value card number, the response from SSDCS is the Payment Capture JSP, which,
upon submission, will return itself. The Payment Capture JSP is the same as the initial JSP, with the
exception of the following: in the Payment Capture JSP, the hidden form fields are populated with computed
data, and the text entry field is populated with the returned display number instead of the credit card number
or stored value card number. If a submission error occurs, the same form is used to correct the credit card
number based on the error. Similarly, if a user decides to use a different credit card, and therefore has to
enter a new credit card number, the same form is used.

The following figure depicts how the Payment Capture JSP submits back to itself every time SSDCS is
invoked.

The path to the JSP is /jsp/ssdcs_tokenize_pan.jsp. The form is ssdcs. The text field has two
possible values for the class attribute for CSS styling: ssdcsPan and ssdcsPanError, which allow you to set
an alternative styling for situations when tokenization fails. For information about how to customize the
style of JSP pages, refer to the applicable customization guide for your application.

Note: You must customize the style of JSP pages for SSDCS from your application. You cannot customize
the style of JSPs from SSDCS.

Direct access to all the JSPs is prevented, except for status.jsp, which is located in the /jsp directory
and can be used to determine whether or not the server is available.

Form Fields
The following table describes the form fields in the HTML, in the order in which they are passed into and
out of the JSP. If a value is not returned in the output, the field is returned empty. The form field name and
ID are identical. Some columns always passthrough; others will passthrough until a successful tokenization.
For example, the servlet never modifies the ssdcsAuthenticationToken, but will recalculate a display value

Initial
Foundation

JSP

Payment
Capture

JSP

User Interface SSDCS

IFRAME
Sterling Commerce, Inc., 2010 Confidential and Proprietary 15

if a token is generated. Fields marked as In Title will appear in the Title of the page in the order listed in the
following table, separated by a |. The only mandatory field is ssdcsAuthenticationToken.

Field Name Description In Title Passthrough

ssdcsAuthenticationToken The token that is validated against Selling and Fulfillment
Foundation to ensure that the request is authorized.

No Always

ssdcsCssUrl The URL used to include the style sheet for the JSP. It is the
only attribute that will not appear in the title of the page,
because it is used by only SSDCS, and there is no value in
its return.

No Always

ssdcsRedirectUrl The URL used as the output of the servlet call. If it is not
passed, the servlet will attempt to redirect to
/jsp/ssdcs_tokenize_pan.jsp. This should be
passed as a relative path to the context root, for example,
/jsp/ssdcs_tokenize_pan.jsp.

No Always

ssdcsDataType The type of data being submitted to the form. Two
supported values can be passed:

ssdcsCreditCardNumber

ssdcsStoredValueCardNumber

If the passed value is not one of these two values, the Luhn
algorithm will not be run.

Yes Always

ssdcsDataTypeDetail Additional information about the DataType. For
ssdcsCreditCardNumber or ssdcsStoredValueCardNumber,
this is expected to be the Selling and Fulfillment Foundation
Payment TypeId.
Note: ssdcsDataTypeDetail is ignored when determining if
a hidden field’s value has changed. ssdcsDataTypeDetail
modification is allowed.

No Always

ssdcsDataToTokenize The data value to tokenize, for example, a credit card
number. This is never returned. It is the data display value
that is returned on SUCCESS; the field is empty on FAIL.
This is the only field that is not a hidden field. It is the text
box on the JSP that will contain the credit card number or
stored value card number that requires tokenization.

No No

ssdcsToken The tokenized value. This will return its input unless there is
a successful tokenization call. For example, if the data
validation fails in an edit scenario, the previous token value
is returned.

Yes Until success

ssdcsDisplayValue The value to display to the user instead of the token or
sensitive data (credit card number or stored value card
number). If ssdcsDataToTokenize is not passed, this is a
passthrough. By default, it is computed as the last four
digits of ssdcsDataToTokenize, but it can be manually set in
the Tokenize user exit.

Yes Until success
Sterling Commerce, Inc., 2010 Confidential and Proprietary 16

ssdcsResultCode The result of the servlet invocation: Yes No

<BLANK> Not a returnable status. It is used
during initial form loading to
understand that the only processing
performed is authentication.

INITIAL The result code returned when the
form is initially loaded (that is, the
output code of <BLANK>), before the
credit card number or stored value
card number is entered.

FAIL The result code returned on failure.
This can bypass the INITIAL state if
failure occurs in the data validation,
or if authentication fails.

SUCCESS The result code returned on success.

ssdcsFailReason Explains why the tokenization fails: Yes No

INVALID_SESSION Authentication with Selling and
Fulfillment Foundation failed.

INVALID_DATA ssdcsDataToTokenize was incorrect.
It did not pass data validation, or, in
the case of a credit card number or
stored value card number, it did not
pass the primary account number
validation (that is, the Luhn
algorithm).

TOKENIZATION_FA
ILED

Tokenization implementation did not
return a token.

ssdcsResultDescription A free-form field that can be used to provide a readable
description of the result of a call. It is reset for each call. It
may be returned when some internal errors occur.

Yes No

ssdcsTabIndex Set as the HTML tab index attribute. It is used to control the
tab stops on the JSP.

No Always

ssdcsAdditionalResultData Additional result data to be understood by the calling UI. In
the provided JSP, it is a list in the form Name:Value;
containing the following data:
CardType:<VISA,MASTERCARD,etc>;
This is reset for each call.

Yes No

ssdcsAutoSubmit A flag. When set to yes, this instructs the JSP that the UI
Framework will not submit the form, and to provide
automatic submission, such as an onBlur method.

No Always

ssdcsDbg A honeypot parameter. There is no business logic on this
parameter. Instead, the value is hardcoded to N on the
initial load. If it is ever modified, a security log is generated.

No Always

Field Name Description In Title Passthrough
Sterling Commerce, Inc., 2010 Confidential and Proprietary 17

The title will contain the fields described in the previous table (in the order shown in the table), separated
by the character |. An example output for the title:
ssdcsCreditCardNumber|||FAIL|INVALID_DATA|This is not a valid credit card number|
ssdcsCreditCardNumber|400000013246|3246|SUCCESS|||CardType:VISA;

Note: There is a trailing | at the end of the first line.

Validation
SSDCS provides input validation, session validation, and primary account number (that is, credit card
number or stored value card number) validation.

Input Validation:

Input validation occurs on the fields that are passed in, as described in the following table. All alphabetical
characters accept uppercase and lowercase letters. If a field is listed as N/A, its input is discarded
immediately after invoking the servlet because its result is always computed and its previous result is not
desired. Unless otherwise specified, numeric validation does not validate negative numbers.

Field Name Extensible Validation

ssdcsAuthenticationToken Yes Alphanumeric

ssdcsCssUrl Yes This must be the same domain name as the request, with an optional
port. The remainder of the URL must consist of alphanumeric
characters, a period, a slash, an underscore, or a hyphen, and it must
end with .css.

ssdcsRedirectUrl Yes This must begin with /jsp/, end with .jsp, and contain only
alphabetical characters or underscores in between.

ssdcsDataType Yes Alphanumeric plus underscore.

ssdcsDataTypeDetail By data type Known DataType: Alphanumeric plus underscore, space, and hyphen
Unknown DataType: No match allowed.

ssdcsDataToTokenize By data type Known DataType: Numeric. Prior to validation, all special characters
are stripped.
Unknown DataType: No match allowed.

ssdcsToken Yes Alphanumeric

ssdcsDisplayValue By data type Known DataType: Numeric
Unknown DataType: No match allowed.

ssdcsResultCode No INITIAL, FAIL, or SUCCESS

ssdcsFailReason No N/A

ssdcsResultDescription No N/A

ssdcsTabIndex Yes Numeric, including negative numbers

ssdcsAdditionalResultData No N/A

ssdcsAutoSubmit No Y or N

ssdcsDbg Yes Y or N
Sterling Commerce, Inc., 2010 Confidential and Proprietary 18

Validation patterns are stored in the ESAPI.properties file, and have Validator.ssdcs. as a prefix.
The ESAPI reference implementation will internally use the patterns that have Validator. as a prefix. If
the property is not configured, the defaults listed in the previous table are used. The Extensible column in
the previous table indicates the fields that support extensibility by data type by additionally prefixing the
value of ssdcsDataType in the Validation property. The ssdcsDataType will be checked first to see if the
validation is extended. For example, to set a different validator for credit card numbers:
Validator.ssdcs.ssdcsCreditCardNumber.ssdcsDataToTokenize
Validator.ssdcs.ssdcsDataToTokenize

Session Validation:

Before SSDCS processes any credit card number or stored value card number, it validates with Selling and
Fulfillment Foundation that the session token passed to it in the ssdcsAuthenticationToken field is a valid
session. This token is created using the createAccessToken API call. For information about the
createAccessToken API, refer to the Selling and Fulfillment Foundation Javadocs. If the session is not
valid, the Selling and Fulfillment Foundation servlet returns an INVALID_SESSION error.

Credit Card and Stored Value Card Validation:

SSDCS validates if the credit card number has been entered correctly by running the Luhn algorithm. An
interface is also exposed to enable the implementation of an alternative validation algorithm (for example,
to validate a stored value card). The ssdcs.ue.PanValidator user exit property is used to configure the
implementation of this interface. When this is implemented, the built-in algorithm will be skipped and the
implementation will return the result. This user exit may defer validation to the internal Luhn algorithm by
not returning a validation value for credit cards. Stored value cards may use the user exit to validate them.
However, only credit cards will run the internal Luhn algorithm, both after or instead of the user exit call.
By default, all the stored value card numbers are valid.

Both the interface and the default logic will also compute the Credit Card Type as part of the validation, if
possible. For example, all Visa credit cards begin with a 4, so if the credit card number passes validation,
then the card type will be returned as Visa.

Note: The ssdcs.ue.PanValidator user exit contains the Sterling payment type in its input, which is
populated from the ssdcsDataTypeDetail field. This field is provided to customize branching logic,
based on the payment type being tokenized. Sterling Commerce recommends that if the payment
type is an unknown type, you revert to a default logic that will still provide validation.

Tokenization
The tokenization process occurs after the validation of the credit card or stored value card is completed.
Tokenization is implemented through the SSDCS user exits, which are configured in the ssdcs.properties
file. The ssdcs.ue.Tokenize user exit property must be configured in order to implement tokenization. For
more information about the SSDCS user exits, refer to Configuring Properties.

The return of the tokenization call will include the token as well as the display number. If it is not provided
or is longer than four characters, the last four digits of the credit card number or stored value card number
will be returned as the display number.

Note: The ssdcs.ue.Tokenize user exit contains the Sterling payment type in its input, which is populated
from the ssdcsDataTypeDetail field. This field is provided to customize branching logic, based on
the payment type being tokenized. Sterling Commerce recommends that if the payment type is an
unknown type, you revert to a default logic that will still provide tokenization.
Sterling Commerce, Inc., 2010 Confidential and Proprietary 19

Implementing Custom Code
To implement your own custom code, create a JAR file in the <SSDCS_DIR>/jar/extn directory. The
SSDCS deployment script automatically includes this JAR file when it is located in this directory, and your
custom code will be picked up by the ant command.

For more information about adding your own custom code, see the Sterling Sensitive Data Capture Server,
Release 1.0: PA-DSS Implementation Guide.
Sterling Commerce, Inc., 2010 Confidential and Proprietary 20

Sterling Commerce, Inc., 2010 Confidential and Proprietary 21

Deploying the Sterling Sensitive Data Capture Server
You must deploy the Sterling Sensitive Data Capture Server (SSDCS) application in secure mode, otherwise
an INVALID_SESSION error occurs when Sterling Sensitive Data Capture Server tries to validate the
session token.

Note: If you are deploying Sterling Sensitive Data Capture Server for demonstration purposes only, you
can suppress the INVALID_SESSION error. To suppress this error and allow HTTP connections to
validate access tokens, you must modify the web.xml file in Selling and Fulfillment Foundation by
changing the value from TRUE to FALSE, as follows:
<context-param>
<param-name>scui-access-token-validation-secure</param-name>
<param-value>FALSE</param-value>
</context-param>

To deploy the Sterling Sensitive Data Capture Server application:

1. Open a command window and navigate to <SSDCS_DIR>, the directory in which you unzipped the
ssdcs.zip file.

2. Navigate to the /bin subdirectory.
3. Run the following command after ensuring that ant is in your path:

ant -f build_deployment.xml -Dappserver_type=<weblogic|websphere|jboss>

This command creates an external deployments directory that contains a file named ssdcs.war.
4. Deploy the ssdcs.war file with the application server.

Notes:

When deploying the ssdcs.war file, ensure that the environment variable SSDCS_LOG_DIR is
set to the absolute path you want the log files to go into.

When deploying on IBM® WebSphere®, you must provide the context root /ssdcs when
prompted.

The log4j JAR file provided in <SSDCS_DIR>/jar must appear first in the appserver classpath;
otherwise, errors may occur if your appserver uses a different log4j version.

Index
C
Center for Internet Security (CIS) 6

configuring
logging 13
properties 11

credit card validation 19

custom code, implementing 19

E
ESAPI properties 13

F
form fields 15

I
input validation 18

INVALID_SESSION error 19

J
JSPs, overview 14

L
log files

ssdcs.log 13
ssdcs_esapi.log 13
ssdcs_security.log 13

log4j configuration file 13

logging, configuring 13

P
PA-DSS, definition 8

Payment Card Industry Data Security Standard (PCI
DSS)

auditing scope 6

Payment Card Industry Payment Application - Data
Security Standard (PCI PA-DSS)

compliance 6

PCI-DSS, definition 8

properties
configuring 11
ESAPI 13
Selling and Fulfillment Foundation 11
SSDCS 12

R
revision information 6

S
sc.access.token.expire.in.seconds 11

sc.access.token.max.allowed.expire.in.seconds 11

security
general recommendations 6

Selling and Fulfillment Foundation properties 11

session validation 19

SSDCS
configuration 11
deploying 21
installation 9
overview 8
properties 12

ssdcs.log 13

ssdcs.smcfs.url property 12

ssdcs.ue.PanValidator user exit 12

ssdcs.ue.Tokenize user exit 12

ssdcs.zip
contents 9
location 9

ssdcs_esapi.log 13
Sterling Commerce, Inc., 2010 Confidential and Proprietary 22

SSDCS_LOG_DIR variable 10

ssdcs_security.log 13

stored value card validation 19

T
tokenization 8, 19

U
update history 7

user exits
ssdcs.ue.PanValidator 12
ssdcs.ue.Tokenize 12

V
validation

credit card validation 19
input validation 18
stored value card validation 19

Y
yfs.ssdcs.jsp property 11

yfs.ssdcs.servlet property 11

yfs.ssdcs.tokenize.cc property 11

yfs.ssdcs.tokenize.svc property 11

yfs.ssdcs.url property 11
Sterling Commerce, Inc., 2010 Confidential and Proprietary 23

	Contents
	Roadmap: Using the PA-DSS, Secure Deployment, and SSDCS Documentation Guides
	About the Sterling Sensitive Data Capture Server, Release 1.0: PA-DSS Implementation Guide
	Sterling Sensitive Data Capture Server, Release 1.0: PA-DSS Implementation Guide Revision Information
	Sterling Sensitive Data Capture Server, Release 1.0: PA-DSS Implementation Guide Update History

	Overview of the Sterling Sensitive Data Capture Server
	Installing the Sterling Sensitive Data Capture Server
	Prerequisites
	Installation Steps

	Configuring the Sterling Sensitive Data Capture Server
	Configuring Properties
	Selling and Fulfillment Foundation Properties
	SSDCS Properties
	ESAPI Properties

	Configuring Logging
	JSPs
	Form Fields
	Validation
	Tokenization

	Implementing Custom Code

	Deploying the Sterling Sensitive Data Capture Server
	Index

