
Selling and Fulfillment
Foundation: High
Availability Guide

Release 9.0

March 2010

Copyright Notice
Copyright © 1999 - 2010

Sterling Commerce, Inc.

ALL RIGHTS RESERVED

STERLING COMMERCE SOFTWARE

TRADE SECRET NOTICE

THE STERLING COMMERCE SOFTWARE DESCRIBED BY THIS DOCUMENTATION ("STERLING COMMERCE
SOFTWARE") IS THE CONFIDENTIAL AND TRADE SECRET PROPERTY OF STERLING COMMERCE, INC., ITS
AFFILIATED COMPANIES OR ITS OR THEIR LICENSORS, AND IS PROVIDED UNDER THE TERMS OF A
LICENSE AGREEMENT. NO DUPLICATION OR DISCLOSURE WITHOUT PRIOR WRITTEN PERMISSION.
RESTRICTED RIGHTS.

This documentation, the Sterling Commerce Software it describes, and the information and know-how
they contain constitute the proprietary, confidential and valuable trade secret information of Sterling
Commerce, Inc., its affiliated companies or its or their licensors, and may not be used for any
unauthorized purpose, or disclosed to others without the prior written permission of the applicable
Sterling Commerce entity. This documentation and the Sterling Commerce Software that it describes
have been provided pursuant to a license agreement that contains prohibitions against and/or
restrictions on their copying, modification and use. Duplication, in whole or in part, if and when
permitted, shall bear this notice and the Sterling Commerce, Inc. copyright notice.

U.S. GOVERNMENT RESTRICTED RIGHTS. This documentation and the Sterling Commerce Software it
describes are "commercial items" as defined in 48 C.F.R. 2.101. As and when provided to any agency or
instrumentality of the U.S. Government or to a U.S. Government prime contractor or a subcontractor at
any tier ("Government Licensee"), the terms and conditions of the customary Sterling Commerce
commercial license agreement are imposed on Government Licensees per 48 C.F.R. 12.212 or 227.7202
through 227.7202-4, as applicable, or through 48 C.F.R. § 52.244-6.

This Trade Secret Notice, including the terms of use herein is governed by the laws of the State of Ohio,
USA, without regard to its conflict of laws provisions. If you are accessing the Sterling Commerce
Software under an executed agreement, then nothing in these terms and conditions supersedes or
modifies the executed agreement.

Sterling Commerce, Inc.
4600 Lakehurst Court
Dublin, Ohio 43016-2000

Copyright © 1999 - 2010

Third-Party Software

Portions of the Sterling Commerce Software may include products, or may be distributed on the same
storage media with products, ("Third Party Software") offered by third parties ("Third Party Licensors").
Sterling Commerce Software may include Third Party Software covered by the following copyrights:
Copyright © 2006-2008 Andres Almiray. Copyright © 1999-2005 The Apache Software Foundation. Erik
Arvidsson. Copyright © 2008 Azer Koçulu http://azer.kodfabrik.com. Copyright © Einar Lielmanis,
einars@gmail.com. Copyright © 2006 John Reilly (www.inconspicuous.org) and Copyright © 2002
Douglas Crockford (www.crockford.com). Copyright © 2009 John Resig, http://jquery.com/. Copyright ©
2006-2008 Json-lib. Copyright © 2001 LOOX Software, Inc. Copyright © 2003-2008 Luck Consulting Pty.
Ltd. Copyright 2002-2004 © MetaStuff, Ltd. Copyright © 2009 Michael Mathews micmath@gmail.com.
Copyright © 1999-2005 Northwoods Software Corporation. Copyright © Microsoft Corp. 1981-1998.
Purple Technology, Inc. Copyright © 2004-2008 QOS.ch. Copyright © 2005 Sabre Airline Solutions.
Copyright © 2004 SoftComplex, Inc. Copyright © 2000-2007 Sun Microsystems, Inc. Copyright © 2001
VisualSoft Technologies Limited. Copyright © 2001 Zero G Software, Inc. All rights reserved by all listed
parties.

The Sterling Commerce Software is distributed on the same storage media as certain Third Party
Software covered by the following copyrights: Copyright © 1999-2006 The Apache Software Foundation.
Copyright © 2001-2003 Ant-Contrib project. Copyright © 1998-2007 Bela Ban. Copyright © 2005
Eclipse Foundation. Copyright © 2002-2006 Julian Hyde and others. Copyright © 1997 ICE Engineering,
Inc./Timothy Gerard Endres. Copyright 2000, 2006 IBM Corporation and others. Copyright © 1987-2006
ILOG, Inc. Copyright © 2000-2006 Infragistics. Copyright © 2002-2005 JBoss, Inc. Copyright LuMriX.net
GmbH, Switzerland. Copyright © 1998-2009 Mozilla.org. Copyright © 2003-2009 Mozdev Group, Inc.
Copyright © 1999-2002 JBoss.org. Copyright © 2007, the OWASP Foundation. Copyright Raghu K, 2003.
Copyright © 2004 David Schweinsberg. Copyright © 2005-2006 Darren L. Spurgeon. Copyright ©
2005-2008 Sam Stephenson. Copyright © S.E. Morris (FISH) 2003-04. Copyright © 1998 Regents of the
University of California. Copyright © 2006 VisualSoft Technologies. Copyright © 2002-2009 Zipwise
Software. All rights reserved by all listed parties.

Third Party Software which is included, or are distributed on the same storage media with, the Sterling
Commerce Software where use, duplication, or disclosure by the United States government or a
government contractor or subcontractor, are provided with RESTRICTED RIGHTS under Title 48 CFR
2.101, 12.212, 52.227-19, 227.7201 through 227.7202-4, DFAR 252.227-7013(c) (1) (ii) and (2), DFAR
252.227-7015(b)(6/95), DFAR 227.7202-3(a), FAR 52.227-14(g)(2)(6/87), and FAR 52.227-19(c)(2)
and (6/87) as applicable.

Additional information regarding certain Third Party Software is located at installdir/SCI_License.txt.

Some Third Party Licensors also provide license information and/or source code for their software via
their respective links set forth below:

http://danadler.com/jacob/

http://www.dom4j.org

This product includes software developed by the Apache Software Foundation (http://www.apache.org).
This product includes software developed by the Ant-Contrib project
(http://sourceforge.net/projects/ant-contrib). This product includes software developed by the JDOM
Project (http://www.jdom.org/). This product includes code licensed from RSA Data Security (via Sun
Microsystems, Inc.). Sun, Sun Microsystems, the Sun Logo, Java, JDK, the Java Coffee Cup logo,
JavaBeans, JDBC, JMX and all JMX based trademarks and logos are trademarks or registered trademarks
of Sun Microsystems, Inc. All other trademarks and logos are trademarks of their respective owners.

THE APACHE SOFTWARE FOUNDATION SOFTWARE

The Sterling Commerce Software is distributed with or on the same storage media as the following
software products (or components thereof) and java source code files: Xalan version 2.5.2, Cookie.java,
Header.java, HeaderElement.java, HttpException.java, HttpState.java, NameValuePair.java,
CronTimeTrigger.java, DefaultTimeScheduler.java, PeriodicTimeTrigger.java, Target.java,
TimeScheduledEntry.java, TimeScheduler.java, TimeTrigger.java, Trigger.java, BinaryHeap.java,

http://danadler.com/jacob/
http://www.dom4j.org
http://www.apache.org
http://www.apache.org
http://sourceforge.net/projects/ant-contrib
http://azer.kodfabrik.com
http://jquery.com/
http://www.jdom.org/
www.inconspicuous.org
www.crockford.com

PriorityQueue.java, SynchronizedPriorityQueue.java, GetOpt.java, GetOptsException.java,
IllegalArgumentException.java, MissingOptArgException.java (collectively, "Apache 1.1 Software").
Apache 1.1 Software is free software which is distributed under the terms of the following license:

License Version 1.1

Copyright 1999-2003 The Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistribution in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3.The end-user documentation included with the redistribution, if any, must include the following
acknowledgement: "This product includes software developed by the Apache Software Foundation
(http://www.apache.org)." Alternatively, this acknowledgement may appear in the software itself, if and
whenever such third-party acknowledgements normally appear.

4.The names "Commons", "Jakarta", "The Jakarta Project", "HttpClient", "log4j", "Xerces "Xalan",
"Avalon", "Apache Avalon", "Avalon Cornerstone", "Avalon Framework", "Apache" and "Apache Software
Foundation" must not be used to endorse or promote products derived from this software without
specific prior written permission. For written permission, please contact apache@apache.org.

5.Products derived from this software may not be called "Apache", nor may "Apache" appear in their
name, without the prior written permission of the Apache Software Foundation.

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMIPLIED WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTIBILITY, AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTIAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on behalf of the Apache
Software Foundation. The GetOpt.java, GetOptsException.java, IlligalArgumentException.java and
MissingOptArgException.java software was originally based on software copyright © 2001, Sun
Microsystems, http://www.sun.com. For more information on the Apache Software Foundation, please s

The preceding license only applies to the Apache 1.1 Software and does not apply to the Sterling
Commerce Software or to any other Third Party Software.

The Sterling Commerce Software is also distributed with or on the same storage media as the following
software products (or components thereof): Ant, Antinstaller, Apache File Upload Package, Apache
Commons Beans, Apache Commons BetWixt, Apache Commons Collection, Apache Commons Digester,
Apache Commons IO, Apache Commons Lang., Apache Commons Logging, Apache Commons Net,
Apache Jakarta Commons Pool, Apache Jakarta ORO, Lucene, Xerces version 2.7, Apache Log4J, Apache
SOAP, Apache Struts and Apache Xalan 2.7.0, (collectively, "Apache 2.0 Software"). Apache 2.0
Software is free software which is distributed under the terms of the Apache License Version 2.0. A copy
of License Version 2.0 is found in the following directory files for the individual pieces of the Apache 2.0
Software: installdir/jar/commons_upload/1_0/ CommonsFileUpload_License.txt,
installdir/jar/jetspeed/1_4/RegExp_License.txt,
 installdir/ant/Ant_License.txt
<install>/jar/antInstaller/0_8/antinstaller_License.txt
<install>/jar/commons_beanutils/1_7_0/commons-beanutils.jar (/META-INF/LICENSE.txt)
<install>/jar/commons_betwixt/0_8/commons-betwixt-0.8.jar (/META-INF/LICENSE.txt)
<install>/jar/commons_collections/3_2/LICENSE.txt
<install>/jar/commons_digester/1_8/commons-digester-1.8.jar (/META-INF/LICENSE.txt)

http://www.sun.com
http://www.apache.org

<install>/jar/commons_io/1_4/LICENSE.txt
<install>/jar/commons_lang/2_1/Commons_Lang_License.txt
<install>/jar/commons_logging/1_0_4/commons-logging-1.0.4.jar (/META-INF/LICENSE.txt)
<install>/jar/commons_net/1_4_1/commons-net-1.4.1.jar (/META-INF/LICENSE.txt)
<install>/jar/smcfs/9.0/lucene-core-2.4.0.jar (/META-INF/LICENSE.txt)
<install>/jar/struts/2_0_11/struts2-core-2.0.11.jar (./LICENSE.txt)
<install>/jar/mesa/gisdav/WEB-INF/lib/Slide_License.txt
<install>/mesa/studio/plugins/xerces_2.7_license.txt
<install>/jar/commons_pool/1_2/Commons_License.txt
<install>/jar/jakarta_oro/2_0_8/JakartaOro_License.txt
<install>/jar/log4j/1_2_15/LOG4J_License.txt
<install>/jar/xalan/2_7/Xalan_License.txt
<install>/jar/soap/2_3_1/Apache_SOAP_License.txt

Unless otherwise stated in a specific directory, the Apache 2.0 Software was not modified. Neither the
Sterling Commerce Software, modifications, if any, to Apache 2.0 Software, nor other Third Party Code is
a Derivative Work or a Contribution as defined in License Version 2.0. License Version 2.0 applies only to
the Apache 2.0 Software which is the subject of the specific directory file and does not apply to the
Sterling Commerce Software or to any other Third Party Software. License Version 2.0 includes the
following provision:

"Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are
solely responsible for determining the appropriateness of using or redistributing the Work and assume
any risks associated with Your exercise of permissions under this License."

NOTICE file corresponding to the section 4 d of the Apache License, Version 2.0, in this case for the
Apache Ant distribution. Apache Ant Copyright 1999-2008 The Apache Software Foundation. This
product includes software developed by The Apache Software Foundation (http://www.apache.org/). This
product includes also software developed by:

 - the W3C consortium (http://www.w3c.org)
 - the SAX project (http://www.saxproject.org)

The <sync> task is based on code Copyright © 2002, Landmark Graphics Corp that has been kindly
donated to the Apache Software Foundation.

Portions of this software were originally based on the following:

 - software copyright © 1999, IBM Corporation., http://www.ibm.com.
 - software copyright © 1999, Sun Microsystems., http://www.sun.com.
 - voluntary contributions made by Paul Eng on behalf of the Apache Software Foundation that were
originally developed at iClick, Inc., software copyright © 1999.

NOTICE file corresponding to the section 4 d of the Apache License, Version 2.0, in this case for the
Apache Lucene distribution. Apache Lucene Copyright 2006 The Apache Software Foundation. This
product includes software developed by The Apache Software Foundation (http://www.apache.org/).
The snowball stemmers in contrib/snowball/src/java/net/sf/snowball were developed by Martin Porter
and Richard Boulton. The full snowball package is available from http://snowball.tartarus.org/

Ant-Contrib Software
The Sterling Commerce Software is distributed with or on the same storage media as the Anti-Contrib
software (Copyright © 2001-2003 Ant-Contrib project. All rights reserved.) (the "Ant-Contrib Software").
The Ant-Contrib Software is free software which is distributed under the terms of the following license:

The Apache Software License, Version 1.1

Copyright © 2001-2003 Ant-Contrib project. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided

http://www.apache.org/
http://www.w3c.org
http://www.saxproject.org
http://www.ibm.com
http://www.sun.com
http://www.apache.org/
http://snowball.tartarus.org/

that the following conditions are met:

1.Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2.Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the following
acknowledgement:

 "This product includes software developed by the Ant-Contrib project
(http://sourceforge.net/projects/ant-contrib)."

Alternately, this acknowledgement may appear in the software itself, if and wherever such third-party
acknowledgements normally appear.

 4. The name Ant-Contrib must not be used to endorse or promote products derived from this software
without prior written permission. For written permission, please contact
ant-contrib-developers@lists.sourceforge.net.

 5. Products derived from this software may not be called "Ant-Contrib" nor may "Ant-Contrib" appear in
their names without prior written permission of the Ant-Contrib project.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE ANT-CONTRIB PROJECT OR ITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The preceding license only applies to the Ant-Contrib Software and does not apply to the Sterling
Commerce Software or to any other Third Party Software.

ANTISAMY SOFTWARE

The Sterling Commerce Software is distributed with or on the same storage media as the AntiSamy
software (Copyright © 1998 Regents of the University of California. All rights reserved.) (the "AntiSamy
Software"). The AntiSamy Software is free software which is distributed under the terms of the following
license:

Copyright © 1998, Regents of the University of California

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

Neither the name of the <ORGANIZATION> nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL

http://sourceforge.net/projects/ant-contrib

THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

COOLBUTTONS SOFTWARE

The Sterling Commerce Software is also distributed with or on the same storage media as Coolbuttons.js
("Coolbuttons Software"), which is subject to the following license:

This Button Script was designed by Erik Arvidsson for WebFX. For more info and examples see:
http://webfx.eae.net or send email to erik@eae.net. Feel free to use this code as long as this disclaimer
is intact.

The preceding license only applies to the Coolbuttons Software and does not apply to the Sterling
Commerce Software, or any other Third Party Software.

DOM4J Software

The Sterling Commerce Software is distributed with or on the same storage media as the Dom4h
Software which is free software distributed under the terms of the following license:

Redistribution and use of this software and associated documentation ("Software"), with or without
modification, are permitted provided that the following conditions are met:

1.Redistributions of source code must retain copyright statements and notices. Redistributions must also
contain a copy of this document.

2.Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3.The name "DOM4J" must not be used to endorse or promote products derived from this Software
without prior written permission of MetaStuff, Ltd. For written permission, please contact
dom4j-info@metastuff.com.

4.Products derived from this Software may not be called "DOM4J" nor may "DOM4J" appear in their
names without prior written permission of MetaStuff, Ltd. DOM4J is a registered trademark of MetaStuff,
Ltd.

5.Due credit should be given to the DOM4J Project - http://www.dom4j.org

THIS SOFTWARE IS PROVIDED BY METASTUFF, LTD. AND CONTRIBUTORS ``AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL METASTUFF, LTD. OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright 2001-2004 © MetaStuff, Ltd. All Rights Reserved.

The preceding license only applies to the Dom4j Software and does not apply to the Sterling Commerce
Software, or any other Third Party Software.

http://webfx.eae.net
http://www.dom4j.org

THE ECLIPSE SOFTWARE FOUNDATION

The Sterling Commerce Software is also distributed with or on the same storage media as the following
software:

com.ibm.icu.nl1_3.4.4.v200606220026.jar, org.eclipse.ant.core.nl1_3.1.100.v200606220026.jar,
org.eclipse.ant.ui.nl1_3.2.0.v200606220026.jar, org.eclipse.compare.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.boot.nl1_3.1.100.v200606220026.jar,
org.eclipse.core.commands.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.contenttype.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.expressions.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.filebuffers.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.filesystem.nl1_1.0.0.v200606220026.jar,
org.eclipse.core.jobs.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.resources.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.runtime.compatibility.auth.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.runtime.compatibility.nl1_3.1.100.v200606220026.jar,
org.eclipse.core.runtime.nl1_3.2.0.v200606220026.jar,
org.eclipse.core.variables.nl1_3.1.100.v200606220026.jar,
org.eclipse.debug.core.nl1_3.2.0.v200606220026.jar,
org.eclipse.debug.ui.nl1_3.2.0.v200606220026.jar,
org.eclipse.equinox.common.nl1_3.2.0.v200606220026.jar,
org.eclipse.equinox.preferences.nl1_3.2.0.v200606220026.jar,
org.eclipse.equinox.registry.nl1_3.2.0.v200606220026.jar,
org.eclipse.help.appserver.nl1_3.1.100.v200606220026.jar,
org.eclipse.help.base.nl1_3.2.0.v200606220026.jar, org.eclipse.help.nl1_3.2.0.v200606220026.jar,
org.eclipse.help.ui.nl1_3.2.0.v200606220026.jar, org.eclipse.jdt.apt.core.nl1_3.2.0.v200606220026.jar,
org.eclipse.jdt.apt.ui.nl1_3.2.0.v200606220026.jar,
org.eclipse.jdt.core.manipulation.nl1_1.0.0.v200606220026.jar,
org.eclipse.jdt.core.nl1_3.2.0.v200606220026.jar,
org.eclipse.jdt.debug.ui.nl1_3.2.0.v200606220026.jar,
org.eclipse.jdt.doc.isv.nl1_3.2.0.v200606220026.jar,
org.eclipse.jdt.doc.user.nl1_3.2.0.v200606220026.jar,
org.eclipse.jdt.junit4.runtime.nl1_1.0.0.v200606220026.jar,
org.eclipse.jdt.launching.nl1_3.2.0.v200606220026.jar, org.eclipse.jdt.nl1_3.2.0.v200606220026.jar,
org.eclipse.jdt.ui.nl1_3.2.0.v200606220026.jar,
org.eclipse.jface.databinding.nl1_1.0.0.v200606220026.jar,
org.eclipse.jface.nl1_3.2.0.v200606220026.jar, org.eclipse.jface.text.nl1_3.2.0.v200606220026.jar,
org.eclipse.ltk.core.refactoring.nl1_3.2.0.v200606220026.jar,
org.eclipse.ltk.ui.refactoring.nl1_3.2.0.v200606220026.jar,
org.eclipse.osgi.nl1_3.2.0.v200606220026.jar, org.eclipse.osgi.services.nl1_3.1.100.v200606220026.jar,
org.eclipse.osgi.util.nl1_3.1.100.v200606220026.jar, org.eclipse.pde.core.nl1_3.2.0.v200606220026.jar,
org.eclipse.pde.doc.user.nl1_3.2.0.v200606220026.jar,
org.eclipse.pde.junit.runtime.nl1_3.2.0.v200606220026.jar,
org.eclipse.pde.nl1_3.2.0.v200606220026.jar, org.eclipse.pde.runtime.nl1_3.2.0.v200606220026.jar,
org.eclipse.pde.ui.nl1_3.2.0.v200606220026.jar,
org.eclipse.platform.doc.isv.nl1_3.2.0.v200606220026.jar,
org.eclipse.platform.doc.user.nl1_3.2.0.v200606220026.jar,
org.eclipse.rcp.nl1_3.2.0.v200606220026.jar, org.eclipse.search.nl1_3.2.0.v200606220026.jar,
org.eclipse.swt.nl1_3.2.0.v200606220026.jar, org.eclipse.team.core.nl1_3.2.0.v200606220026.jar,
org.eclipse.team.cvs.core.nl1_3.2.0.v200606220026.jar,
org.eclipse.team.cvs.ssh.nl1_3.2.0.v200606220026.jar,
org.eclipse.team.cvs.ssh2.nl1_3.2.0.v200606220026.jar,
org.eclipse.team.cvs.ui.nl1_3.2.0.v200606220026.jar, org.eclipse.team.ui.nl1_3.2.0.v200606220026.jar,
org.eclipse.text.nl1_3.2.0.v200606220026.jar, org.eclipse.ui.browser.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.cheatsheets.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.console.nl1_3.1.100.v200606220026.jar,
org.eclipse.ui.editors.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.externaltools.nl1_3.1.100.v200606220026.jar,
org.eclipse.ui.forms.nl1_3.2.0.v200606220026.jar, org.eclipse.ui.ide.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.intro.nl1_3.2.0.v200606220026.jar, org.eclipse.ui.navigator.nl1_3.2.0.v200606220026.jar,

org.eclipse.ui.navigator.resources.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.presentations.r21.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.views.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.views.properties.tabbed.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.workbench.nl1_3.2.0.v200606220026.jar,
org.eclipse.ui.workbench.texteditor.nl1_3.2.0.v200606220026.jar,
org.eclipse.update.configurator.nl1_3.2.0.v200606220026.jar,
org.eclipse.update.core.nl1_3.2.0.v200606220026.jar,
org.eclipse.update.scheduler.nl1_3.2.0.v200606220026.jar,
org.eclipse.update.ui.nl1_3.2.0.v200606220026.jar,
com.ibm.icu_3.4.4.1.jar,
org.eclipse.core.commands_3.2.0.I20060605-1400.jar,
org.eclipse.core.contenttype_3.2.0.v20060603.jar,
org.eclipse.core.expressions_3.2.0.v20060605-1400.jar,
org.eclipse.core.filesystem.linux.x86_1.0.0.v20060603.jar,
org.eclipse.core.filesystem_1.0.0.v20060603.jar, org.eclipse.core.jobs_3.2.0.v20060603.jar,
org.eclipse.core.runtime.compatibility.auth_3.2.0.v20060601.jar,
org.eclipse.core.runtime_3.2.0.v20060603.jar, org.eclipse.equinox.common_3.2.0.v20060603.jar,
org.eclipse.equinox.preferences_3.2.0.v20060601.jar, org.eclipse.equinox.registry_3.2.0.v20060601.jar,
org.eclipse.help_3.2.0.v20060602.jar, org.eclipse.jface.text_3.2.0.v20060605-1400.jar,
org.eclipse.jface_3.2.0.I20060605-1400.jar, org.eclipse.osgi_3.2.0.v20060601.jar,
org.eclipse.swt.gtk.linux.x86_3.2.0.v3232m.jar, org.eclipse.swt_3.2.0.v3232o.jar,
org.eclipse.text_3.2.0.v20060605-1400.jar,
org.eclipse.ui.workbench.texteditor_3.2.0.v20060605-1400.jar,
org.eclipse.ui.workbench_3.2.0.I20060605-1400.jar, org.eclipse.ui_3.2.0.I20060605-1400.jar,
runtime_registry_compatibility.jar, eclipse.exe, eclipse.ini, and startup.jar
 (collectively, "Eclipse Software").

All Eclipse Software is distributed under the terms and conditions of the Eclipse Foundation Software
User Agreement (EFSUA) and/or terms and conditions of the Eclipse Public License Version 1.0 (EPL) or
other license agreements, notices or terms and conditions referenced for the individual pieces of the
Eclipse Software, including without limitation "Abouts", "Feature Licenses", and "Feature Update
Licenses" as defined in the EFSUA.

A copy of the Eclipse Foundation Software User Agreement is found at
<install_dir>/SI/repository/rcp/rcpdependencies/windows/eclipse/notice.html,
<install_dir>/SI/repository/rcp/rcpdependencies/windows/eclipse/plugins/notice.html,
<install_dir>/SI/repository/rcp/rcpdependencies/gtk.linux_x86/eclipse/notice.html, and
<install_dir>/SI/repository/rcp/rcpdependencies/gtk.linux_x86/eclipse/plugins/notice.html.

A copy of the EPL is found at
<install_dir>/SI/repository/rcp/rcpdependencies/windows/eclipse/plugins/epl-v10.htm,
<install_dir>/SI/repository/rcp/rcpdependencies/windows/eclipse/epl-v10.htm,
<install_dir>/SI/repository/rcp/rcpdependencies/gtk.linux.x86/eclipse/plugins/epl-v10.html, and
<install_dir>/SI/repository/rcp/rcpdependencies/gtk.linux.x86/eclipse/epl-v10.html.

The reference to the license agreements, notices or terms and conditions governing each individual piece
of the Eclipse Software is found in the directory files for the individual pieces of the Eclipse Software as
described in the file identified as installdir/SCI_License.txt.

These licenses only apply to the Eclipse Software and do not apply to the Sterling Commerce Software,
or any other Third Party Software.

The Language Pack (NL Pack) piece of the Eclipse Software, is distributed in object code form. Source
code is available at
http://archive.eclipse.org/eclipse/downloads/drops/L-3.2_Language_Packs-200607121700/index.php. In
the event the source code is no longer available from the website referenced above, contact Sterling
Commerce at 978-513-6000 and ask for the Release Manager. A copy of this license is located at
<install_dir>/SI/repository/rcp/rcpdependencies/windows/eclipse/plugins/epl-v10.htm and
<install_dir>/SI/repository/rcp/rcpdependencies/gtk.linux.x86/eclipse/plugins/epl-v10.html.

http://archive.eclipse.org/eclipse/downloads/drops/L-3.2_Language_Packs-200607121700/index.php

The org.eclipse.core.runtime_3.2.0.v20060603.jar piece of the Eclipse Software was modified slightly in
order to remove classes containing encryption items. The org.eclipse.core.runtime_3.2.0.v20060603.jar
was modified to remove the Cipher, CipherInputStream and CipherOutputStream classes and rebuild the
org.eclipse.core.runtime_3.2.0.v20060603.jar.

Ehcache Software

The Sterling Commerce Software is also distributed with or on the same storage media as the ehache
v.1.5 software (Copyright © 2003-2008 Luck Consulting Pty. Ltd.) ("Ehache Software"). Ehcache
Software is free software which is distributed under the terms of the Apache License Version 2.0. A copy
of License Version 2.0 is found in <install>/jar/smcfs/9.0/ehcache-1.5.0.jar (./LICENSE.txt).

The Ehcache Software was not modified. Neither the Sterling Commerce Software, modifications, if any,
to the Ehcache Software, nor other Third Party Code is a Derivative Work or a Contribution as defined in
License Version 2.0. License Version 2.0 applies only to the Ehcache Software which is the subject of the
specific directory file and does not apply to the Sterling Commerce Software or to any other Third Party
Software. License Version 2.0 includes the following provision:

"Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are
solely responsible for determining the appropriateness of using or redistributing the Work and assume
any risks associated with Your exercise of permissions under this License."

ESAPI SOFTWARE

The Sterling Commerce Software is also distributed with or on the same storage media

as the ESAPI software (Copyright © 2007, the OWASP Foundation) ("ESAPI Software"). ESAPI Software
Software is free software which is distributed under the terms of the following license:

Copyright © 2007, The OWASP Foundation

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

Neither the name of the OWASP Foundation nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

EZMorph Software

The Sterling Commerce Software is also distributed with or on the same storage media as the EZMorph
v. 1.0.4 software (Copyright © 2006-2008 Andres Almiray) ("EZMorph Software"). EZMorph Software is
free software which is distributed under the terms of the Apache License Version 2.0. A copy of License
Version 2.0 is found in <install>/jar/ezmorph/1_0_4/ezmorph-1.0.4.jar (./LICENSE.txt).

The EZMorph Software was not modified. Neither the Sterling Commerce Software, modifications, if any,
to the EZMorph Software, nor other Third Party Code is a Derivative Work or a Contribution as defined in
License Version 2.0. License Version 2.0 applies only to the EZMorph Software which is the subject of the
specific directory file and does not apply to the Sterling Commerce Software or to any other Third Party
Software. License Version 2.0 includes the following provision:

"Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are
solely responsible for determining the appropriateness of using or redistributing the Work and assume
any risks associated with Your exercise of permissions under this License."

Firebug Lite Software

The Sterling Commerce Software is distributed with or on the same storage media as the Firebug Lite
Software which is free software distributed under the terms of the following license:

Copyright © 2008 Azer Koçulu http://azer.kodfabrik.com. All rights reserved.

Redistribution and use of this software in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

* Neither the name of Azer Koçulu. nor the names of any other contributors may be used to endorse or
promote products derived from this software without specific prior written permission of Parakey Inc.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

JAVASCRIPT MINIFIER

The Sterling Commerce Software is distributed with or on the same storage media as the JSMin Software
which is free software distributed under the terms of the following license:

JSMin.java 2006-02-13; Updated 2007-08-20 with updates from jsmin.c (2007-05-22)

 Copyright © 2006 John Reilly (www.inconspicuous.org)

This work is a translation from C to Java of jsmin.c published by Douglas Crockford. Permission is hereby
granted to use the Java version under the same conditions as the jsmin.c on which it is based.

http://azer.kodfabrik.com

jsmin.c 2003-04-21

Copyright © 2002 Douglas Crockford (www.crockford.com)

 Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

The Software shall be used for Good, not Evil.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

ICE SOFTWARE

The Sterling Commerce Software is distributed on the same storage media as the ICE Software
(Copyright © 1997 ICE Engineering, Inc./Timothy Gerard Endres.) ("ICE Software"). The ICE Software is
independent from and not linked or compiled with the Sterling Commerce Software. The ICE Software is
a free software product which can be distributed and/or modified under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License or any later
version.

A copy of the GNU General Public License is provided at installdir/jar/jniregistry/1_2/ICE_License.txt.
This license only applies to the ICE Software and does not apply to the Sterling Commerce Software, or
any other Third Party Software.

The ICE Software was modified slightly in order to fix a problem discovered by Sterling Commerce
involving the RegistryKey class in the RegistryKey.java in the JNIRegistry.jar. The class was modified to
comment out the finalize () method and rebuild of the JNIRegistry.jar file.

Source code for the bug fix completed by Sterling Commerce on January 8, 2003 is located at:
installdir/jar/jniregistry/1_2/RegistryKey.java. Source code for all other components of the ICE Software
is located at http://www.trustice.com/java/jnireg/index.shtml.

The ICE Software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

JBOSS SOFTWARE

The Sterling Commerce Software is distributed on the same storage media as the JBoss Software
(Copyright © 1999-2002 JBoss.org) ("JBoss Software"). The JBoss Software is independent from and not
linked or compiled with the Sterling Commerce Software. The JBoss Software is a free software product
which can be distributed and/or modified under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the License or any later version.

A copy of the GNU Lesser General Public License is provided at:
<install_dir>\jar\jboss\4_2_0\LICENSE.html

This license only applies to the JBoss Software and does not apply to the Sterling Commerce Software,
or any other Third Party Software.

The JBoss Software is not distributed by Sterling Commerce in its entirety. Rather, the distribution is

http://www.trustice.com/java/jnireg/index.shtml

limited to the following jar files: el-api.jar, jasper-compiler-5.5.15.jar, jasper-el.jar, jasper.jar,
jboss-common-client.jar, jboss-j2ee.jar, jboss-jmx.jar, jboss-jsr77-client.jar, jbossmq-client.jar,
jnpserver.jar, jsp-api.jar, servlet-api.jar, tomcat-juli.jar.

The JBoss Software was modified slightly in order to allow the ClientSocketFactory to return a socket
connected to a particular host in order to control the host interfaces, regardless of whether the
ClientSocket Factory specified was custom or note. Changes were made to org.jnp.server.Main. Details
concerning this change can be found at
http://sourceforge.net/tracker/?func=detail&aid=1008902&group_id=22866&atid=376687.

Source code for the modifications completed by Sterling Commerce on August 13, 2004 is located at:
http://sourceforge.net/tracker/?func=detail&aid=1008902&group_id=22866&atid=376687. Source code
for all other components of the JBoss Software is located at http://www.jboss.org.

JGO SOFTWARE

The Sterling Commerce Software is distributed with, or on the same storage media, as certain
redistributable portions of the JGo Software provided by Northwoods Software Corporation under a
commercial license agreement (the "JGo Software"). The JGo Software is provided subject to the
disclaimers set forth above and the following notice:

U.S. Government Restricted Rights

The JGo Software and documentation are provided with RESTRICTED RIGHTS. Use, duplication, or
disclosure by the Government is subject to restrictions as set forth in subparagraph (C)(1)(ii) of the
Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 or subparagraphs (C)(1)
and (2) of the Commercial Computer Software - Restricted Rights at 48 CFR 52.227-19, as applicable.
Contractor / manufacturer of the JGo Software is Northwoods Software Corporation, 142 Main St.,
Nashua, NH 03060.

JSDoc Tookit Software

The Sterling Commerce Software is distributed with or on the same storage media as the JSDoc Toolkit
software (Copyright © 2008 Michael Mathews) ("JSDoc Toolkit Software"), which is subject to the
following license:

All code specific to JsDoc Toolkit are free, open source and licensed for use under the X11/MIT License.

JsDoc Toolkit is Copyright © 2008 Michael Mathews <micmath@gmail.com>

This program is free software; you can redistribute it and/or modify it under the terms below.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the
following conditions: The above copyright notice and this permission notice must be included in all copies
or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

JSLib Software

The Sterling Commerce Software is distributed with or on the same storage media as the JSLib software

http://sourceforge.net/tracker/?func=detail&aid=1008902&group_id=22866&atid=376687
http://sourceforge.net/tracker/?func=detail&aid=1008902&group_id=22866&atid=376687
http://www.jboss.org

product (Copyright © 2003-2009 Mozdev Group, Inc.) ("JSLib Software"). The JSLib Software is
distributed under the terms of the MOZILLA PUBLIC LICENSE Version 1.1. A copy of this license is
located at <install>/repository/eardata/platform_uifwk_ide/war/designer/MPL-1.1.txt. The JSLib
Software code is distributed in source form and is located at http://jslib.mozdev.org/installation.html.
Neither the Sterling Commerce Software nor any other Third Party Code is a Modification or Contribution
subject to the Mozilla Public License. Pursuant to the terms of the Mozilla Public License, the following
notice applies only to the JSLib Software (and not to the Sterling Commerce Software or any other Third
Party Software):

"The contents of the file located at http://www.mozdev.org/source/browse/jslib/ are subject to the
Mozilla Public License Version 1.1 (the "License"); you may not use this file except in compliance with the
License. You may obtain a copy of the License at http://www.mozilla.org/MPL/

Software distributed under the License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
KIND, either express or implied. See the License for the specific language governing rights and
limitations under the License.

The Original Code is Mozdev Group, Inc. code. The Initial Developer of the Original Code is Mozdev
Group, Inc. Portions created by_Mozdev Group, Inc. are Copyright © 2003 Mozdev Group, Inc. All Rights
Reserved. Original Author: Pete Collins <pete@mozdev.org>one Contributor(s):_____none
listed________.

Alternatively, the contents of this file may be used under the terms of the ____ license (the "[___]
License"), in which case the provisions of [___] License are applicable instead of those above. If you
wish to allow use of your version of this file only under the terms of the [___] License and not allow
others to use your version of this file under the MPL, indicate your decision by deleting the provisions
above and replace them with the notice and other provisions required by the [___] License. If you do not
delete the provisions above, a recipient may use your version of this file under either the MPL or the
[___] License."

The preceding license only applies to the JSLib Software and does not apply to the Sterling Commerce
Software, or any other Third Party Software.

Json Software

The Sterling Commerce Software is also distributed with or on the same storage media as the Json 2.2.2
software (Copyright © 2006-2008 Json-lib) ("Json Software"). Json Software is free software which is
distributed under the terms of the Apache License Version 2.0. A copy of License Version 2.0 is found in
<install>/jar/jsonlib/2_2_2/json-lib-2.2.2-jdk13.jar.

This product includes software developed by Douglas Crockford (http://www.crockford.com).

The Json Software was not modified. Neither the Sterling Commerce Software, modifications, if any, to
the Json Software, nor other Third Party Code is a Derivative Work or a Contribution as defined in
License Version 2.0. License Version 2.0 applies only to the Json Software which is the subject of the
specific directory file and does not apply to the Sterling Commerce Software or to any other Third Party
Software. License Version 2.0 includes the following provision:

"Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are
solely responsible for determining the appropriateness of using or redistributing the Work and assume
any risks associated with Your exercise of permissions under this License."

Prototype Software

The Sterling Commerce Software is distributed with or on the same storage media as the Prototype
software (Copyright © 2005-2008 Sam Stephenson) ("Prototype Software"), which is subject to the
following license:

http://jslib.mozdev.org/installation.html
http://www.mozdev.org/source/browse/jslib/
http://www.mozilla.org/MPL/
http://www.crockford.com

Copyright © 2005-2008 Sam Stephenson

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Purple Technology

The Sterling Commerce Software is distributed with or on the same storage media as the Purple
Technology Software (Copyright © 1995-1999 Purple Technology, Inc.) ("Purple Technology Software"),
which is subject to the following license:

Copyright © 1995-1999 Purple Technology, Inc. All rights reserved.

PLAIN LANGUAGE LICENSE: Do whatever you like with this code, free of charge, just give credit where
credit is due. If you improve it, please send your improvements to alex@purpletech.com. Check
http://www.purpletech.com/code/ for the latest version and news.

LEGAL LANGUAGE LICENSE: Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

3. The names of the authors and the names "Purple Technology," "Purple Server" and "Purple Chat" must
not be used to endorse or promote products derived from this software without prior written permission.
For written permission, please contact server@purpletech.com.

THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND PURPLE TECHNOLOGY "AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE AUTHORS OR PURPLE TECHNOLOGY BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The preceding license only applies to the Purple Technology Software and does not apply to the Sterling
Commerce Software, or any other Third Party Software.

Rico Software

The Sterling Commerce Software is also distributed with or on the same storage media as the Rico.js
software (Copyright © 2005 Sabre Airline Solutions) ("Rico Software"). Rico Software is free software
which is distributed under the terms of the Apache License Version 2.0. A copy of License Version 2.0 is
found in <install>/repository/eardata/platform/war/ajax/scripts/Rico_License.txt.

The Rico Software was not modified. Neither the Sterling Commerce Software, modifications, if any, to

http://www.purpletech.com/code/

the Rico Software, nor other Third Party Code is a Derivative Work or a Contribution as defined in License
Version 2.0. License Version 2.0 applies only to the Rico Software which is the subject of the specific
directory file and does not apply to the Sterling Commerce Software or to any other Third Party
Software. License Version 2.0 includes the following provision:

"Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are
solely responsible for determining the appropriateness of using or redistributing the Work and assume
any risks associated with Your exercise of permissions under this License."

Rhino Software

The Sterling Commerce Software is distributed with or on the same storage media as the Rhino js.jar
(Copyright © 1998-2009 Mozilla.org.) ("Rhino Software"). A majority of the source code for the Rhino
Software is dual licensed under the terms of the MOZILLA PUBLIC LICENSE Version 1.1. or the GPL v.
2.0. Additionally, some files (at a minimum the contents of
toolsrc/org/Mozilla/javascript/toolsdebugger/treetable) are available under another license as set forth in
the directory file for the Rhino Software.

Sterling Commerce's use and distribution of the Rhino Software is under the Mozilla Public License. A
copy of this license is located at <install>/jar/rhino/1_7R1/License.txt. The Rhino Software code is
distributed in source form and is located at http://mxr.mozilla.org/mozilla/source/js/rhino/src/. Neither
the Sterling Commerce Software nor any other Third Party Code is a Modification or Contribution subject
to the Mozilla Public License. Pursuant to the terms of the Mozilla Public License, the following notice
applies only to the Rhino Software (and not to the Sterling Commerce Software or any other Third Party
Software):

"The contents of the file located at <install>/jar/rhino/1_7R1/js.jar are subject to the Mozilla Public
License Version 1.1 (the "License"); you may not use this file except in compliance with the License. You
may obtain a copy of the License at http://www.mozilla.org/MPL/

Software distributed under the License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
KIND, either express or implied. See the License for the specific language governing rights and
limitations under the License.

The Original Code is Rhino code, released May 6, 1999. The Initial Developer is Netscape
Communications Corporation. Portions created by the Initial Developer are Copyright © 1997-1999. All
Rights Reserved. Contributor(s):_____none listed.

The preceding license only applies to the Rico Software and does not apply to the Sterling Commerce
Software, or any other Third Party Software

SLF4J Software

The Sterling Commerce Software is also distributed with or on the same storage media as the SLF4J
software (Copyright © 2004-2008) ("SLF4J Software"), which is subject to the following license:

Copyright © 2004-2008 QOS.ch All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,

http://mxr.mozilla.org/mozilla/source/js/rhino/src/
http://www.mozilla.org/MPL/

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Sun Microsystems

The Sterling Commerce Software is distributed with or on the same storage media

as the following software products (or components thereof): Sun JMX, and Sun JavaMail (collectively,
"Sun Software"). Sun Software is free software which is distributed under the terms of the licenses
issued by Sun which are included in the directory files located at:

SUN COMM JAR -installdir/jar/comm/2_0
SUN ACTIVATION JAR -installdir/jar/jaf/1_0_2
SUN JavaMail -installdir/jar/javamail/1_4

The Sterling Commerce Software is also distributed with or on the same storage media as the
Web-app_2_3.dtd software (Copyright © 2007 Sun Microsystems, Inc.) ("Web-App Software").
Web-App Software is free software which is distributed under the terms of the Common Development
and Distribution License ("CDDL"). A copy of
<install>/repository/eardata/platform/war/WEB-INF/web_app_License.txt.

The source code for the Web-App Software may be found at:http://java.sun.com/dtd/.

Such licenses only apply to the Sun product which is the subject of such directory and does not apply to
the Sterling Commerce Software or to any other Third Party Software.

The Sterling Commerce Software is also distributed with or on the same storage media as the Sun
Microsystems, Inc. Java (TM) look and feel Graphics Repository ("Sun Graphics Artwork"), subject to the
following terms and conditions:

Copyright 2000 by Sun Microsystems, Inc. All Rights Reserved.

Sun grants you ("Licensee") a non-exclusive, royalty free, license to use, and redistribute this software
graphics artwork, as individual graphics or as a collection, as part of software code or programs that you
develop, provided that i) this copyright notice and license accompany the software graphics artwork; and
ii) you do not utilize the software graphics artwork in a manner which is disparaging to Sun. Unless
enforcement is prohibited by applicable law, you may not modify the graphics, and must use them true
to color and unmodified in every way.

This software graphics artwork is provided "AS IS," without a warranty of any kind. ALL EXPRESS OR
IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY
EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY
LICENSEE AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE GRAPHICS
ARTWORK.

IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR
FOR DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR INABILITY
TO USE SOFTWARE GRAPHICS ARTWORK, EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

If any of the above provisions are held to be in violation of applicable law, void, or unenforceable in any
jurisdiction, then such provisions are waived to the extent necessary for this Disclaimer to be otherwise
enforceable in such jurisdiction.

The preceding license only applies to the Sun Graphics Artwork and does not apply to the Sterling
Commerce Software, or any other Third Party Software.

http://java.sun.com/dtd/

WARRANTY DISCLAIMER

This documentation and the Sterling Commerce Software which it describes are licensed either "AS IS"
or with a limited warranty, as set forth in the Sterling Commerce license agreement. Other than any
limited warranties provided, NO OTHER WARRANTY IS EXPRESSED AND NONE SHALL BE IMPLIED,
INCLUDING THE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR USE OR FOR A PARTICULAR
PURPOSE. The applicable Sterling Commerce entity reserves the right to revise this publication from time
to time and to make changes in the content hereof without the obligation to notify any person or entity
of such revisions or changes.

The Third Party Software is provided "AS IS" WITHOUT ANY WARRANTY AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. FURTHER, IF YOU
ARE LOCATED OR ACCESSING THIS SOFTWARE IN THE UNITED STATES, ANY EXPRESS OR IMPLIED
WARRANTY REGARDING TITLE OR NON-INFRINGEMENT ARE DISCLAIMED.

Without limiting the foregoing, the ICE Software and JBoss Software are distributed WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.

xix

Contents

Preface

Structure ..xxiii
Prerequisites ... xxv
References.. xxv
Scope.. xxvi
Selling and Fulfillment Foundation Documentation ... xxvi
Conventions ... xxix

1 Changes

2 Availability

2.1 Availability Design and Principles.. 3
2.1.1 Business Drives High-Availability Requirements 3
2.1.2 Keep-It-Simple Strategy .. 4
2.1.3 Configuring for Higher Availability or Resilience

Is Like Buying Insurance ... 4
2.1.4 The 9’s .. 5
2.1.4.1 Problem with the 9’s ... 6
2.2 High Availability Motivation.. 6

3 Selling and Fulfillment Foundation Architecture

3.1 Application Components.. 9
3.2 Application Server ...11
3.3 Agent or Integration Servers ..11

xx High Availability Guide

3.4 JNDI Service.. 12

4 Limited Redundancy Single-Site Configuration

4.1 Single Point of Failure ... 14
4.2 Loss of Data .. 14
4.2.1 Loss of Database... 15
4.2.2 Loss of Database Transaction Logs... 15
4.3 Applicability... 15

5 High Availability Within a Single Site

5.1 Single Points of Failure.. 17
5.2 Node .. 18
5.2.1 Active/Passive Cluster Failover Configurations 19
5.3 Database Server .. 21
5.3.1 DBMS Software Failures ... 21
5.3.2 Human and Operator Errors .. 22
5.3.3 Hardware Failures ... 22
5.3.3.1 Active/Passive Failover Configurations....................................... 22
5.3.3.2 Active/Active Failover Configurations... 27
5.4 SAN or Disk Subsystem... 36
5.5 Selling and Fulfillment Foundation Components 37
5.5.1 Application Server ... 37
5.5.1.1 Stateful Sessions.. 38
5.5.1.2 Stateless Sessions .. 38
5.5.2 Selling and Fulfillment Foundation Agent and Integration Server........ 38
5.6 Server Registry .. 39
5.7 Message Queues .. 40
5.7.1 Integration Queues for the Selling and Fulfillment

 Foundation Integration Servers ... 40
5.7.2 Agent Queues for the Selling and Fulfillment

Foundation Agent Servers ... 41
5.7.3 WebLogic JMS... 41
5.7.3.1 Persistence.. 42
5.7.3.2 Message Paging ... 42
5.7.3.3 Dedicated Integration JMS Server... 43

 xxi

5.7.3.4 Shared Disk Subsystem ...43
5.7.3.5 JMS Server on a Different Application Server...............................43
5.7.4 WebSphere Messaging ..43
5.7.4.1 WebSphere MQ ...43
5.8 Networked File Systems ...46

6 Architectural Patterns

6.1 Asynchronous Integration...48
6.2 Caching ...48
6.3 Hot Deployment of Code, Configuration, and Fixes.................................49
6.4 Deployment Processes and Regression Testing50

7 Disaster Recovery

7.1 Disaster Recovery from a Selling and Fulfillment Foundation Perspective ..51
7.2 For Testing Purpose...52
7.3 Cold Site Recovery ..53
7.4 Warm and Hot Site Recovery ..54
7.5 Key to Disaster Recovery ...54
7.5.1 Recovery Procedures ..54
7.5.2 Database Backups and Transaction Log Files....................................54
7.5.3 Integration Queue Replication ..55
7.5.4 Service Names Instead of IP Addresses ...56

Index

xxii High Availability Guide

 xxiii

Preface

The Sterling Distributed Order Management (DOM) and the Sterling
Warehouse Management System (WMS) applications are often deployed
in an integrated network of external systems and business partners to
form a cohesive business ecosystem. Prolonged application or system
outages can have significant business consequences.

This document describes approaches that can increase the resiliency of
Selling and Fulfillment Foundation to environmental, hardware, or
software faults or failure. The discussions and material are framed from
the perspective of Selling and Fulfillment Foundation. We have
deliberately steered away from discussing non-Selling and Fulfillment
Foundation components such as how to protect hardware devices. There
are many excellent books on how to design systems for availability.

This document also presents techniques or architectural patterns that can
minimize the impact on the overall ecosystem in the event of a planned
or unplanned Selling and Fulfillment Foundation system outage.

This document emphasizes a fairly pragmatic approach to availability
recognizing that one cannot implement highly available techniques at the
detriment of other architectural considerations such as capital cost,
ongoing total cost of ownership, or manageability.

Structure
This manual contains the following sections:

Chapter 1, "Changes"
This chapter presents the list of changes to high availability introduced in
the release.

xxiv High Availability Guide

Chapter 2, "Availability"
This chapter introduces availability engineering, the often-quoted “nines”
and the “five nines” and the problems with relying on the nines as an
availability requirement. It also introduces the design principles that
Sterling Commerce adheres to when presenting the availability
techniques. Sterling Commerce strongly encourages you to read through
this section.

Chapter 3, "Selling and Fulfillment Foundation Architecture"
This chapter provides a very high level overview of the Selling and
Fulfillment Foundation architecture with a focus on describing the
component that needs protection. It assumes that you are familiar with
the architecture of Selling and Fulfillment Foundation. It also helps if you
have also installed and used Selling and Fulfillment Foundation.

Chapter 4, "Limited Redundancy Single-Site Configuration"
This chapter presents a simple, possibly entry-level, Selling and
Fulfillment Foundation system that was configured with little attention to
availability. In some cases, this simple configuration may meet the
customer’s business or availability requirements. For others, this chapter
serves as the baseline for comparison as we examine the configurations
with increasingly higher levels of resiliency.

Chapter 5, "High Availability Within a Single Site"
This chapter examines common techniques deployed to ensure
application availability against faults incurred within the four walls of the
data center. It identifies all the hardware and software components used
by Selling and Fulfillment Foundation, all the potential single points of
failures (SPOF), and the approaches to protecting these components.

Chapter 6, "Architectural Patterns"
Adding resiliency to the system is not limited to technology. It is
important to note that developing a highly available Selling and
Fulfillment Foundation-based solution has as much, if not more, to do
with the design of the overall solution and integration points as it does
with the Selling and Fulfillment Foundation architecture itself. This
chapter presents techniques and patterns that can be used to insulate
some of these integration points from the planned and unplanned Selling
and Fulfillment Foundation downtime. In this way, even though portions

 xxv

of the solution may be unavailable, there is no downtime for the service
as a whole especially as perceived by the end users or customers. More
importantly, these architectural patterns can significantly simplify or
reduce the availability of the Selling and Fulfillment Foundation,
requirements, and implementation.

Chapter 7, "Disaster Recovery"
With the advent of 9/11 or the Northeast Blackout, events that disaster
planners once dismissed as implausible or far-fetched are now required
considerations as part of disaster recovery and business continuity
planning. This chapter examines the commonly used techniques that can
be employed so that Selling and Fulfillment Foundation can continue
running at remote sites in the event of disasters.

Prerequisites
This document assumes that you are familiar with the architecture of
Selling and Fulfillment Foundation. It also assumes that you have
installed and used Selling and Fulfillment Foundation.

For more detailed information, see the following Selling and Fulfillment
Foundation documents:

Selling and Fulfillment Foundation: Installation Guide - Provides
detailed information on how to install Selling and Fulfillment
Foundation.

Selling and Fulfillment Foundation: Performance Management Guide -
Provides detailed information on how to configure Selling and
Fulfillment Foundation.

References
[1] IBM eServer p5 590 and 595 System Handbook, SG24-9119-00, IBM
Corp, March 17, 2005

[2] NSM: Often the Weakest LInk in Business Availability, AV-13-9473,
July 3, 2001

xxvi High Availability Guide

Scope
There are many good reference books and material that cover high
availability engineering for the data center and the network. This
document assumes that you are familiar with high availability
engineering for general systems. This document highlights areas in the
Selling and Fulfillment Foundation system that are single points of
failures, and the approaches that one can take to making them more
resilient.

This document assumes that the network is resilient. If your Selling and
Fulfillment Foundation configuration supports a large number of users
from the Web, Sterling Commerce assumes that your wide-area network
deployment is configured in such a way that single (or multiple) faults do
not cause an outage.

This document does not address security issues. Sterling Commerce
recognizes that in today’s connected world, security attacks and security
fraud is on the rise. Preventing security hacks from taking down systems
is a large and complex area and warrants a separate detailed study.

This document does not address environmental or infrastructure
availability. Sterling Commerce assumes that the data center is built with
redundant power circuits, redundant cooling, and so forth, so that the
infrastructure remains available with single or multiple environmental
faults. Sterling Commerce also assumes that the data center is
sufficiently equipped with an uninterrupted power supply (UPS) so that
all the hardware components can operate under brief power fluctuations
and is equipped with power generators to continue working during
prolonged power outages.

Selling and Fulfillment Foundation
Documentation

For more information about Selling and Fulfillment Foundation

components, see the following manuals:

Selling and Fulfillment Foundation: Release Notes

Selling and Fulfillment Foundation: Installation Guide

Selling and Fulfillment Foundation: Upgrade Guide

 xxvii

Selling and Fulfillment Foundation: Configuration Deployment Tool
Guide

Selling and Fulfillment Foundation: Performance Management Guide

Selling and Fulfillment Foundation: High Availability Guide

Selling and Fulfillment Foundation: System Management Guide

Selling and Fulfillment Foundation: Localization Guide

Selling and Fulfillment Foundation: Customization Basics Guide

Selling and Fulfillment Foundation: Customizing APIs Guide

Selling and Fulfillment Foundation: Customizing Console JSP Interface
for End User Guide

Selling and Fulfillment Foundation: Customizing the RCP Interface
Guide

Selling and Fulfillment Foundation: Customizing User Interfaces for
Mobile Devices Guide

Selling and Fulfillment Foundation: Customizing Web UI Framework
Guide

Selling and Fulfillment Foundation: Customizing Swing Interface
Guide

Selling and Fulfillment Foundation: Extending the Condition Builder
Guide

Selling and Fulfillment Foundation: Extending the Database Guide

Selling and Fulfillment Foundation: Extending Transactions Guide

Selling and Fulfillment Foundation: Using Sterling RCP Extensibility
Tool Guide

Selling and Fulfillment Foundation: Integration Guide

Selling and Fulfillment Foundation: Product Concepts Guide

Sterling Warehouse ManagementTM System: Concepts Guide

Selling and Fulfillment Foundation: Application Platform Configuration
Guide

Sterling Distributed Order ManagementTM: Configuration Guide

Sterling Supply Collaboration: Configuration Guide

xxviii High Availability Guide

Sterling Global Inventory VisibilityTM: Configuration Guide

Catalog ManagementTM: Configuration Guide

Sterling Logistics Management: Configuration Guide

Sterling Reverse LogisticsTM: Configuration Guide

Sterling Warehouse Management System: Configuration Guide

Selling and Fulfillment Foundation: Application Platform User Guide

Sterling Distributed Order Management: User Guide

Sterling Supply Collaboration: User Guide

Sterling Global Inventory Visibility: User Guide

Sterling Logistics Management: User Guide

Sterling Reverse Logistics: User Guide

Sterling Warehouse Management System: User Guide

Selling and Fulfillment Foundation: Mobile Application User Guide

Selling and Fulfillment Foundation: Business Intelligence Guide

Selling and Fulfillment Foundation: Javadocs

Sterling Selling and Fulfillment SuiteTM: Glossary

Parcel Carrier: Adapter Guide

Visual ModelerTM: Application Guide

Selling and Fulfillment Foundation: Multitenant Enterprise Guide

Selling and Fulfillment Foundation: Password Policy Management
Guide

Selling and Fulfillment Foundation: Properties Guide

Catalog Management: Concepts Guide

Selling and Fulfillment Foundation: Pricing Concepts Guide

Selling and Fulfillment Foundation: Setting Up Quotes

Sterling Sensitive Data Capture Server, Release 1.0: Configuration
Guide

 xxix

Sterling Sensitive Data Capture Server, Release 1.0: PA-DSS
Implementation Guide

Selling and Fulfillment Foundation: Secure Deployment Guide

Business Center: Item Administration Guide

Business Center: Pricing Administration Guide

Business Center: Customization Guide

Business Center: Localization Guide

Conventions
The following conventions may be used in this manual:

Convention Meaning

. . . Ellipsis represents information that has been
omitted.

< > Angle brackets indicate user-supplied input.

mono-spaced text Mono-spaced text indicates a file name, directory
path, attribute name, or an inline code example or
command.

/ or \ Slashes and backslashes are file separators for
Windows, UNIX, and Linux operating systems. The
file separator for the Windows operating system is
"\" and the file separator for UNIX and Linux
systems is "/". The UNIX convention is used unless
otherwise mentioned.

<INSTALL_DIR> User-supplied location of the Selling and Fulfillment
Foundation installation directory. This is only
applicable for Release 8.0 and later.

<INSTALL_DIR_OLD> User-supplied location of the Selling and Fulfillment
Foundation installation directory (for Release 8.0
and later).

Note: This is applicable only for users upgrading
from Release 8.0 and later.

<SSDCS_DIR> User-supplied location of the Sterling Sensitive Data
Capture Server installation directory.

This is applicable for Selling and Fulfillment
Foundation, Release 9.0 and later.

xxx High Availability Guide

<YANTRA_HOME> User-supplied location of the Sterling Supply Chain
Applications installation directory. This is only
applicable for Releases 7.7, 7.9, and 7.11.

<YANTRA_HOME_OLD> User-supplied location of the Sterling Supply Chain
Applications installation directory (for Releases 7.7,
7.9, or 7.11).

Note: This is applicable only for users upgrading
from Releases 7.7, 7.9, or 7.11.

<YFS_HOME> For Releases 7.3, 7.5, and 7.5 SP1, this is the
user-supplied location of the Sterling Supply Chain
Applications installation directory.

For Releases 7.7, 7.9, and 7.11, this is the
user-supplied location of the <YANTRA_
HOME>/Runtime directory.

For Release 8.0 and later, the <YANTRA_
HOME>/Runtime directory is no longer used and has
been substituted with the location <INSTALL_DIR>.

<YFS_HOME_OLD> This is the <YANTRA_HOME>/Runtime directory for
Releases 7.7, 7.9, or 7.11.

Note: This is only applicable for users upgrading
from Releases 7.7, 7.9, or 7.11.

<ANALYTICS_HOME> User-supplied location of the Sterling Analytics
installation directory.

Note: This convention is used only in the
Selling and Fulfillment Foundation: Business
Intelligence Guide.

<COGNOS_HOME> User-supplied location of the IBM Cognos 8
Business Intelligence installation directory.

Note: This convention is used only in the
Selling and Fulfillment Foundation: Business
Intelligence Guide.

<MQ_JAVA_INSTALL_
PATH>

User-supplied location of the IBM WebSphere®
MQ Java components installation directory.

Note: This convention is used only in the
Selling and Fulfillment Foundation: System
Management and Administration Guide.

Convention Meaning

 xxxi

Note: The Selling and Fulfillment Foundation documentation set uses the
following conventions in the context of the product name:

Yantra is used for Release 7.7 and earlier.

Sterling Supply Chain Applications is used for Releases 7.9 and 7.11.

Sterling Multi-Channel Fulfillment Solution is used for Releases 8.0
and 8.2.

Selling and Fulfillment Foundation is used for Releases 8.5 and 9.0.

<DB> Refers to Oracle®, IBM DB2®, or Microsoft SQL
Server® depending on the database server.

<DB_TYPE> Depending on the database used, considers the
value oracle, db2, or sqlserver.

Convention Meaning

xxxii High Availability Guide

Changes 1

1
Changes

This chapter presents the list of high availability changes that were
introduced in the Selling and Fulfillment Foundation Release 9.0. See the
Selling and Fulfillment Foundation: Release Notes for the complete list of
changes.

The following limitations have been removed in this release:

In previous releases, we noted that IBM DB2 HADR’s Automatic Client
Reroute (ACR) feature did not work with the Sterling Supply Chain
Applications integration and agent servers. This was due to the fact
that our integration and agent servers obtain their database
connections through the java.sql.DriverManager interface and
ACR-only supported database connections obtained from the
javax.sql.DataSource interface.

This restriction/limitation has been lifted in this release because DB2
9.1 FP3 has extended ACR support to connections obtained from the
java.sql.DriverManager interface. (see Section 5.3.3.1.2, "IBM
UDB Active/Passive Using HADR").

In the previous release, we noted that the Sterling Supply Chain
Applications integration and agent servers used the Java Naming and
Directory Interface (JNDI) to find its peers. We also noted that the
JNDI, as a non-clustered application server resource, was a single
point of failure. Servers use the JNDI to locate peers for system
management purposes such as to notify peers to flush their table
cache.

In this release, the list of servers is now maintained in the database
in the YFS_HEARTBEAT table. As a result, the mechanism to locate
active servers has the same availability posture as the database
server.

2 High Availability Guide

The following correction has been made in this release:

In the previous release, we incorrectly stated that the IBM DB2 HADR
standby database can be opened for reporting purposes. That
reference has been removed.

Availability 3

2
Availability

This chapter provides a brief introduction to availability engineering, with
focus on Selling and Fulfillment Foundation.

2.1 Availability Design and Principles
Availability design is a complex subject that covers a large optimization
exercise balancing many requirements.

To help with the availability design, we propose the following principles:

Business Drives High-Availability Requirements

Keep-It-Simple Strategy

Configuring for Higher Availability or Resilience Is Like Buying
Insurance

2.1.1 Business Drives High-Availability Requirements
High availability (HA) requirements should be driven by business and not
implemented for the sake of technology. Seeking to use a new high
availability technology, supporting a clustered file system, etc. may be
interesting and intellectually satisfying. The most important consideration
is that these technologies advances the business goals without making
the system overly complicated or expensive.

In some cases, the business may be able to tolerate a certain amount of
outage and a simple backup and restore may suffice. Of course, there
are others where an hour of downtime is very expensive and as a result
require that every component from power to the database be made as
resilient as possible through redundancy and automated failover. In

4 High Availability Guide

Availability Design and Principles

addition, they may mandate geographically dispersed disaster recovery
capabilities.

High availability designs cannot be performed in isolation. As in most
worthy engineering endeavors, high availability requirements must be
balanced against other architectural choices including acquisition cost,
maintenance costs, scalability, maintainability, ease of use, impact to
business, and so forth.

2.1.2 Keep-It-Simple Strategy
If possible, you need to manage the complexity of the system, the
approaches to high availability and the recovery procedures. Complex
systems:

make it harder for people to understand and manage

increase the risk of failures

could make the fault recovery more difficult and in some cases more
risky

2.1.3 Configuring for Higher Availability or Resilience
Is Like Buying Insurance

In selecting insurance policies, you typically weigh the cost of the
insurance against the likelihood that the insurance is needed, whether
the insurance is required by law, and the significance of the potential loss
if you don’t have insurance.

For example, you would likely not take a flood insurance policy
regardless of the premium cost if you live on a hilltop in a desert but you
would buy a high premium flood insurance if you live in a hurricane zone
along the coast. Similarly, when procuring system hardware, you buy
servers with high reliability, availability and serviceability (RAS) built in to
ensure that hardware faults do not result in an outage. For example,
your servers may come equipped with as many as six redundant cooling
fans and power supplies.

In some cases, the law may require you to purchase insurance. Similarly,
in some business sectors, regulations require business continuity and
disaster recovery plans.

Availability Design and Principles

Availability 5

At the extremes, if a business is willing and able to tolerate prolonged
outage periods, the HA requirements are few. In some cases, having
good backups may suffice.

On the other hand, if a business can only tolerate a down time of less
than 30 minutes for each outage, you may have to consider having
duplicated or redundant components for any component that can fail
especially if they are the SPOF.

At the other end of the spectrum, a company may have very high
availability requirements and can only tolerate less than five minute
downtime for each outage. In that environment, the data center may
have to be staffed around the clock, the failure detection must be quick,
failover procedures must the automated, and so forth.

2.1.4 The 9’s
Specifying availability requirements is not as simple as the often quoted
"99.999% availability". In its simplest form, the 9’s is an indication of
how much downtime an application is allowed to incur. Table 2–1 below
shows that each additional 9 drops the amount of time the application
could be down for by an order of magnitude.

Therefore, specifying that a system have 99.999% availability means
that the system can only be down for less than 5.3 minutes in a year.

Table 2–1 The 9’s

Percentage
Uptime

Percentage
Downtime

Amount of
Downtime Each Year

Amount of
Downtime Each
Month

98.0% 2% 7.3 days 14.6 hours

99.0% 1% 3.7 days 7.3 hours

99.8% 0.2% 17.5 hours 1.5 hours

99.9% 0.1% 8.8 hours 43.8 minutes

99.99% 0.01% 52.6 minutes 4.4 minutes

99.999% 0.001% 5.3 minutes 26.3 seconds

99.9999% 0.0001% 31.5 seconds 2.6 seconds

6 High Availability Guide

High Availability Motivation

2.1.4.1 Problem with the 9’s
The problem with using the 9’s as a requirements is that not all outages
are the same. In fact, some customers could architect their solution to
tolerate a certain level or type of outage. For example, Section 6.1,
"Asynchronous Integration" on page 48 states that a customer can
integrate the customer-facing Web site to Selling and Fulfillment
Foundation, using asynchronous messages. With this architectural
pattern, Selling and Fulfillment Foundation can be taken offline for
maintenance (such as upgrades) without impacting the services provided
by the Web site.

The use of the 9’s also do not account for the different strategies or level
of availability of certain workloads. For example, during failures,
customers may want to consider shutting down lower-priority workloads
(see example in Section , "Target Utilization" on page 35).

In general, if architected correctly, the Selling and Fulfillment Foundation,
which is typically used as a backroom order processing engine, does not
have high availability requirements. In contrast, some applications, for
example, Internet facing applications, have very high availability
requirements because they are customer facing. We will discuss some of
the architectural choices later in the document.

2.2 High Availability Motivation
Architecting highly availability systems is not new. They are, in fact,
commonplace in industries such as financial. However, many recent
events have heightened interests and requirements in availability:

Catastrophic events such as September 11, 2001 or the Northeast
Power Blackout of 2003 have pushed availability to the foreground.
Situations that were unimaginable five years ago are now a serious
part of business continuity planning. In fact, many corporate
managers reject business continuity plans that do not incorporate
wide scale disasters.

Emerging regulations are forcing availability. In the health care
industry, the Health Insurance Portability and Accountability Act
(HIPAA) mandates business continuity and availability planning.
Section 404 of Sarbanes-Oxley specifies that corporations must
protect the systems used to report financial information. At a

High Availability Motivation

Availability 7

minimum, corporations are forced to think about the ability to recover
those systems.

Your corporation may be part of a supply chain where inventory
needs to be available just-in-time. You may demand or are demanded
by your partners to have your systems available to ensure that
business partners can communicate. In some situations, trading
partners may demand business continuity plans or disaster recovery
plans ensuring that services can be restored within a set period of
time after catastrophes.

8 High Availability Guide

High Availability Motivation

Selling and Fulfillment Foundation Architecture 9

3
Selling and Fulfillment Foundation

Architecture

This chapter presents the architecture of Selling and Fulfillment
Foundation at a high level with a focus on describing the component that
you have to protect.

3.1 Application Components
Selling and Fulfillment Foundation runs on one of the following server
components (as depicted in Figure 3–1).

Application server

Selling and Fulfillment Foundation agent or integration server

10 High Availability Guide

Application Components

Figure 3–1 The Selling and Fulfillment Foundation Architecture

These components run inside a Java Virtual Machine (JVM). As a result,
each component exists as a process in the system. You can have multiple
instances of each component. For example, you can run Selling and
Fulfillment Foundation in multiple instances of the application server.
Each instance is a separate JVM.

The components use the following services:

Message queue

JNDI

Database server

LDAP (optional)

Agent or Integration Servers

Selling and Fulfillment Foundation Architecture 11

3.2 Application Server
The application servers are the processes that handle synchronous
requests to provide real-time access to the features and application logic
within Selling and Fulfillment Foundation.

The most common type of requests that an application server handles
are the requests originating from clients using the Application Console.
The application servers are always deployed using an industrial-strength
server application such as Oracle WebLogic, IBM WebSphere or JBoss
Application Server.

The application servers handle real-time requests from users or
programs. Requests can be sent in different protocols such as HTTP,
servlet calls, EJB/RMI calls, and so forth.

Typical usage scenarios include:

The call center representative uses the Application Console to interact
with Selling and Fulfillment Foundation. For example, to create, query
or modify orders, shipments or inventory. Requests come in as HTTP
requests.

Program runs transactions – calls through Remote Method Invocation
(RMI), EJB, servlet calls, and so forth.

3.3 Agent or Integration Servers
Integration Servers are Java-based processes that run in the background
to process various tasks. Integration servers allow Selling and Fulfillment
Foundation to collaborate with different systems, organizations, and
businesses—all through a standard, uniform interface to all systems.
Integration Servers and the tasks that they perform are configured
through the means of the Service Definition Framework. For more
information, see the Selling and Fulfillment Foundation: System
Management and Administration Guide.

The integration servers that process information from external systems
can get work from message queues, database tables, and files.
Integration servers that send work to external systems do so through a
variety of transport mechanisms such as message queues, email,
database tables, files, etc.

An agent server is a specialized sub-class of the integration server that
runs the Selling and Fulfillment Foundation-defined “time-triggered”

12 High Availability Guide

JNDI Service

transactions. These include transactions to schedule orders. In the
transaction configuration screen, you can designate transactions to an
agent server. Multiple transactions could be assigned to an agent server.
You can also specify that a transaction should run in multiple threads.

For example, if you associate both the Schedule and Release Order
transactions to an agent server (sched_rel_ord_agent) with 3 threads
each, when you start an instance of the sched_rel_ord_agent agent
server, that server will have six processing threads – three for the
Schedule Order transaction and three for the Release Order transaction.

You can also start multiple agent server instances. For example, if you
start four sched_rel_ord_agent servers, you will see four Java processes
running in the system. Each Java process has 3 threads of the Schedule
Order and Release Order transactions. In total, you get 12 threads of the
Schedule Order and 12 threads of the Release Order transaction.

The agent server relies on the JNDI service. At startup, it registers itself
to the JNDI. This allows other servers to locate it.

3.4 JNDI Service
All the servers register themselves in the JNDI on startup. This allows
servers to locate other servers. One reason is to refresh the reference
data cache. The Selling and Fulfillment Foundation servers cache
reference data records for speed and scalability. When a server modifies
a reference data record, it notifies all the servers in the JNDI list to
refresh their cache.

The agent server also uses the JNDI to look for the WebSphere MQ
message queue service.

Limited Redundancy Single-Site Configuration 13

4
Limited Redundancy Single-Site

Configuration

We will start the discussion on availability by discussing the attributes of
a simple entry-level configuration based on standard off-the-shelf
products without additional resources or configuration for availability. It
is unlikely that this configuration will be used in production. Its value is
as a baseline from where we can build availability into in the subsequent
chapters.

Figure 4–1 Limited Redundancy Single-Site Configuration

14 High Availability Guide

Loss of Data

In Figure 4–1, there is

a single database instance where application and configuration data
are persisted to. The database files are implemented on
non-redundant internal drives.

a single (non-clustered) application server where the JMS message
queues are also implemented in. This application server runs on a
single JVM.

a single agent server where all the Selling and Fulfillment Foundation
time-triggered transactions are configured to run in

a single integration server where all integration services run in

As an entry-level configuration, all three servers – the application server,
integration server and agent server – run on a single node (node-a)
along with the database server.

4.1 Single Point of Failure
As expected, this system has many single-points-of-failure (SPOF) where
a single fault can cause a partial or complete Selling and Fulfillment
Foundation system or application outage. For example,

failure of the node (node-a) will cause a complete system outage.

failure of the Selling and Fulfillment Foundation agent server will
affect all services provided by the application server. In addition, it
would halt all services running the integration and application servers
that depend on the message queues.

failure of the database instance due to software errors or disk errors
will cause a complete system outage since the application is strongly
reliant on the data in the database.

The list goes on.

4.2 Loss of Data
These SPOFs will, at a minimum, cause a system outage. Assuming the
system is backed up on a regular basis, one should be able to restore
services. However, some of these SPOFs in this entry-level system can
result in loss of application or business data. We will discuss these error
conditions so that you can protect against them in your system.

Applicability

Limited Redundancy Single-Site Configuration 15

4.2.1 Loss of Database
First, it should be obvious that losing the disks that the database files are
implemented on will result in the loss of the database data. One can
easily protect the data by ensuring that the database files are stored on
external redundant storage. These devices could range from entry-level
storage devices (like Dell’s PowerVault MD1000) to high end SAN storage
devices (like EMC Symmetrix).

4.2.2 Loss of Database Transaction Logs
First, failure of the non-redundant internal disk can result in the loss of
transaction data in the database which can result in loss of transaction
data. A database management system (like Oracle, DB2 and Microsoft
SQL Server) guarantees the integrity of its data. When a transaction
commits its work, the DBMS guarantees that all the changes are either in
the database disks or can be recovered from transaction logs.

When a database instance crashes, the DBMS is designed to
automatically perform "rollforward or instance recovery". In a nutshell,
when you restart the instance, the DBMS will ensure that "committed"
changes in its retransaction log are applied to the database files.
Similarly, if you had to recover the database from backup, you could also
initiate a rollforward recovery from the transaction logs to reapply all the
transactions since the backup was taken.

The loss of the transaction logs typically means that at best, the DBMS
cannot perform rollforward recovery and at worse, you have to recover
the database from the last backup. In either case, this system could lose
transaction data.

Never place transaction logs or database files on non-redundant internal
disks. These critical files should be placed on redundant storage devices.

4.3 Applicability
In some cases, this simple configuration may be suitable especially if the
system meets the customer’s availability requirements and represents an
appropriate balance of risk and benefits. As we mentioned earlier,
availability design must be driven from a business perspective.

16 High Availability Guide

Applicability

In practice, we rarely see such systems used in production. Instead, the
system above is generally used for development, proof-of-concepts, or
demonstrations.

If you want to use a similar system in production, consider the following:

The ability to recover the database. At a minimum, backup the
system and database regularly. Also backup your database
transaction logs to allow rollforward recovery from the database
backups.

The backup tapes and archived database transaction logs should be
stored off-site. This prevents a data center disaster, such as fire, from
destroying not only the database server node but also all the backup
tapes.

Even with these considerations, this configuration has the following
issues:

Loss of transactions – if you lose the database server and you have to
restore the database to a different server, you will lose recent
transactions. After a database restore, you have to rollforward or
replay all the transactions found in the transaction logs created after
that database backup. Typically, the most current active transaction
log, in simple configurations, are only saved when the log closes. If
you lose the log, you have lost all the recent transactions captured in
that log after the database restore.

Loss of transactions in the integration queues – if you lose the disk on
which integration queues are kept, you will lose all the unprocessed
transactions in those queues.

High Availability Within a Single Site 17

5
High Availability Within a Single Site

From a Selling and Fulfillment Foundation system perspective, this
chapter identifies:

All the hardware and software components used by Selling and
Fulfillment Foundation

All the potential single points of failure (SPOF)

The approaches to eliminate or reduce the impact of these SPOF

5.1 Single Points of Failure
In the previous chapter, we presented a simple system that was
configured with little or no protection against faults. The number of SPOF
increases as the system grows in size and complexity. This chapter
addresses the following SPOF (within the four walls of the data center)
and the means to protect them from faults:

Node

Database Server

SAN or Disk Subsystem

Selling and Fulfillment Foundation Components

Server Registry

Message Queues

Networked File Systems

18 High Availability Guide

Node

5.2 Node
The term computer ‘node’ or computer systems refers to the physical
computing hardware on which Selling and Fulfillment Foundation runs.

Fortunately, due to advancements in hardware design, component
redundancy, and automatic fault detection and correction, node failures
due to hardware fault are rare events. Take for example memory on an
industrial-strength computer. Error Checking and Correcting (ECC) codes
are built into the memory to correct single bit errors and to detect double
bit errors. If needed, parts of the memory can be selectively disabled.
Through techniques such as bit-scattering, memory chips are organized
such that failure of an entire memory module only affects a single bit
within the ECC word. In addition, with techniques such as bit-steering,
bits can be dynamically routed to spare memory chips. [1]

Similarly, nodes typically are configured with multiple critical components
such as power and fans so that they can continue to run after one or
more components fail. Most of these components are also hot swappable
allowing one to replace failed components without the need to shut down
the node.

Unfortunately, if the node fails, the mean-time-to-repair (MTTR) could be
very high. In the best case, you may only have to restart the node,
restart the services, initiate recovery and make the service available.
Depending on the size of the configuration, this could take up to 20
minutes or more. In the worst case, for example if the fault was due to a
hardware failure, you may have to wait for replacement parts. In those
situations, the MTTR could be days.

The impact of a node outage depends on the service that runs on that
node. If the node was running a few agent servers, the impact could be
isolated to just the services provided by those agents. In contrast, if the
outage was in the database server node (and the database is not
clustered), the outage will be to the entire application.

If your tolerance for downtime is low, you have the following options

you could first ensure that your nodes are composed of high
redundant servers (as described above) to reduce the likelihood of a
node outage caused by hardware faults

you could use active/passive or primary/standby failover
configuration where one or more passive or standby nodes are
available to take over for failed nodes. See Section 5.2.1,

Node

High Availability Within a Single Site 19

"Active/Passive Cluster Failover Configurations" on page 19 for more
information. You can use this approach in subsequent sections to
protect critical components such as message queues and the
application and agent servers. In Section 5.3.3.1, "Active/Passive
Failover Configurations", we present active/passive configurations for
database servers.

you could use the clustering capabilities built into application servers
and in Oracle Real Application Cluster to protect against outage from
a single node failure. Section 5.3.3.2, "Active/Active Failover
Configurations" on page 27 describes in the use of an active/active
clustered database failover configuration.

5.2.1 Active/Passive Cluster Failover Configurations
Generally, in an active/passive cluster failover configuration, one or more
passive or standby nodes are available to take over for failed nodes. Only
the primary node is used for processing. When a node fails, the standby
node takes over the resources and the identity of the failed node. The
services provided by the failed node are started on the standby node.
After the “take over”, clients are able to access the services unaware that
the services are being provided by a different node.

Figure 5–1 illustrates an active/passive database failover configuration.
Both the active/passive nodes share the same disk subsystem although
only the primary database server has access to the disk subsystem. The
path from the standby node to the shared disk subsystem is not
activated.

During normal operations, the application connects to the database
server with a hostname of dbprod that gets resolved to an IP address of
192.168.10.1.

20 High Availability Guide

Node

Figure 5–1 Active/Passive Database Failover Configuration

During a node failure, the following typically occurs:

On the original primary node:

1. If the primary node is still up, the services on the primary node
are brought down.

2. All resources (specifically the disk subsystem) from the primary
node are released.

3. The service IP address (192.168.10.1) is released.

On the standby node:

1. The disk subsystem is brought online.

2. File systems are checked and repairs are made if needed.

3. The service IP address (192.168.10.1) is configured.

4. The services are started – database rollforward recovery is
initiated as necessary.

5. The database services are opened.

These failover or takeover steps can be automated. Some of the software
that can be used include:

IBM HACMP (only available on AIX)

Veritas Cluster Service (VCS)

Database Server

High Availability Within a Single Site 21

HP MC/ServiceGuard

Microsoft Cluster Server (MCS)

Fully automated, the failover could take 5 to 10 minutes.

In subsequent sections, we present the use of active/passive failover
configurations to protect many of the Selling and Fulfillment Foundation
components in more detail.

5.3 Database Server
The database server is a critical system component. The entire system is
unavailable if the database server crashes. There are many reasons why
the database server can come down, including:

DBMS Software Failures

Human and Operator Errors

Hardware Failures

5.3.1 DBMS Software Failures
As with any large complex software, there are bugs in the Oracle and
UDB database servers. Some of these bugs can cause instance crash or
performance degradation. In rare extreme cases, these bugs can corrupt
the database.

The best means to protect against software failures is testing. Your
testing must exercise transactions from a broad range of application
functionality and not a small subset of transactions. The tests must also
run at transaction volumes at or higher than anticipated peak production
periods. These tests are the only reliable means for identifying load,
concurrency, or integrity issues in the database management system and
the application.

You should be aware of any support or service alerts associated with or
new issues introduced with your database server release. The list of
issues is not static – new bugs are discovered as customers use the
release, existing bugs are be fixed, and so forth. Therefore, you should
check this list periodically to see if there are any new issues that could
potentially affect your system.

22 High Availability Guide

Database Server

Additionally, you should be careful that you don’t apply all the patches
available for that database release. From our experience, you may
destabilize a database release when you apply too many individual
patches. In some cases, individual patches may conflict with each other.

For software bugs that crash the instance, the fastest recourse is to
restart the instance. For a corrupted database, your recourse may range
from trying to repair the damage using SQL to restore the database from
the last backup and performing rollforward recovery until the point
before the corruption. Either way, the MTTR is likely to be very high.

5.3.2 Human and Operator Errors
A Gartner report “shows that an average of 80 percent of mission-critical
application service downtime is directly caused by people or process
failures. The other 20 percent is caused by technology failure,
environmental failure or a disaster.” [2]

The best prevention is strict change control, documented procedures,
training, and supervision.

Recovery from human-induced outages could range from restarting
services to recovering a corrupted database.

5.3.3 Hardware Failures
Node failures are extremely rare. Unfortunately, when they do occur, the
MTTR can be unacceptably high for your business.

To protect the database server from node failures, you can use either
active/passive or an active/active cluster failover configurations.

5.3.3.1 Active/Passive Failover Configurations
This section contains information about active/passive failover
configurations. These configurations provide a fully redundant instance of
each node, which is brought online only if its associated primary node
fails.

Database Server

High Availability Within a Single Site 23

5.3.3.1.1 IBM UDB Active/Passive Using Cluster Failover
Software

Conceptually, UDB active/passive failover configurations using cluster
failover software operates as described in Section 5.2.1, "Active/Passive
Cluster Failover Configurations" on page 19. The standby node takes over
the primary node’s resources (the database files, logs) and identity (IP
address, SAN WWNN). The database service is then started on the
standby node. During the startup, UDB goes through its normal crash
recovery and ensures committed changes are made to the database and
incomplete transactions are rolled back. When UDB is finished with crash
recovery, the database service is made available.

From the Selling and Fulfillment Foundation perspective, you can expect
the following to occur after the primary node fails (and the database
server is unavailable).

Transactions in the application, agent and integration servers that
were actively processing throw a SQL error message. The changes
from those transactions are correctly rolled back later when the
database server comes up on the standby node.

The Selling and Fulfillment Foundation servers continually reissue the
transactions until the database service is restored. You do not have to
restart the Selling and Fulfillment Foundation servers during the
transition to the standby node.

If the source of the work request (specifically for the agents and
integration servers) came from message queues, the messages
remain in the message queue. When the database service is restored,
these messages are processed.

Setting up and testing an active/passive failover configuration can be
tricky with many interdependencies and related parts. We strongly
encourage you to contact the cluster failover vendors for assistance in
planning and implementing your cluster failover.

5.3.3.1.2 IBM UDB Active/Passive Using HADR

High Availability Disaster Recovery (HADR) is a transaction log replication
approach that keeps a standby database server in or near synch with
changes in the primary database server. In the event of a failover, HADR
on the standby database server takes over and becomes the primary as
described in Figure 5–2.

24 High Availability Guide

Database Server

Figure 5–2 UDB Active/Passive Using HADR

At a high level, the log writer on the primary database server records
changes to its local transaction logs. These logs are critical for crash and
instance recovery. The primary HADR sends the log records to the
standby HADR where the logs are written out to the standby server’s
transaction logs. The changes are then applied to the standby server’s
database. At some point in time, the changes on the primary server are
asynchronously written to the database.

The standby database server is kept in “perpetual rollforward” mode
applying transaction log entries as they are replicated from the primary.

HADR provides many benefits over the traditional active/passive cluster
failover provided by software such as HACMP, VCS or MC/ServiceGuard.
First HADR recovery is faster because you do not have to start the
standby database server – the standby database server is always running

Database Server

High Availability Within a Single Site 25

and is either in or near synch with the primary database server. Similarly,
you do not have to spend a lot of time in database crash recovery
because by design, the standby HADR database server is in or near peer
state. Also, you do not have to spend time releasing resources on the
failed node and acquiring resources on the standby node. With HADR, the
standby database is already connected to and using a separate disk
subsystem.

Second, the standby HADR database server does not share disk
subsystems with the primary database server. Therefore, with HADR, you
can survive a disk subsystem failure whereas cluster failover, which relies
on a shared SAN, could incur a potentially prolonged outage until the
disk subsystem is repaired.

HADR is provided as part of ESE. With HACMP or the other cluster
failover software, you have to purchase additional software licenses.

From a recovery perspective, the HADR provides a less risky failover
approach. With HADR, the standby database is already running. In
contrast, with cluster failover, resources have to be acquired, services
started, etc. There are potential startup risks during the recovery
process.

UDB 9.1’s HADR implementation has the following limitations:

HADR can only replicate to one standby database server – therefore,
from the primary database server, you can either HADR to a local
standby for local site failover or to a remote site for disaster recover
(but not both).

HADR is only supported on UDB ESE

You cannot backup from the standby – you must backup from the
primary

Please refer to the IBM UDB documentation for more detail.

Client Reroute
Client Reroute was introduced in UDB 8.2 along with HADR to enable
client applications to automatically reconnect to the standby HADR
database server when the primary server fails. Client reroute works by
informing the client of the alternate or standby database when it
connects to the primary.

26 High Availability Guide

Database Server

The alternate database information is defined on the primary database
server with the following command:

db2 update alternate server for database <dbname> using
hostname <hhh> port <ppp>

For example, if your primary database DB2PROD is on node N1 port
50000 and the alternate is on node N2 port 50000, issue the following
command on node N1:

db2 update alternate server for database DB2PROD using
hostname N2 port 50000

Alternates are propagated from the server to the client dynamically when
the client issues a CONNECT or CONNECT RESET. This dynamically
propagated alternate server information is stored in global driver
memory, and is also updated in the JNDI store of DB2 active servers.

Initially, DB2 Universal JDBC Driver client reroute support was available
only for connections that use the javax.sql.DataSource interface. In
DB2 9.1 FP3, IBM added client reroute support to
java.sql.DriverManager.

5.3.3.1.3 Oracle Active/Passive Using Cluster Failover

Oracle active/passive failover configurations are very similar to the UDB
active/passive configuration described in Section 5.3.3.1.1, "IBM UDB
Active/Passive Using Cluster Failover Software" on page 23. Given the
popularity of Oracle Real Application Cluster (RAC), it is our belief that
customers are trending towards implementing active/active Oracle
failover configuration instead. This is described in Section 5.3.3.2,
"Active/Active Failover Configurations" on page 27.

5.3.3.1.4 Microsoft SQL Server Active/Passive Using MSCS

Microsoft SQL Server active/passive failover configurations are very
similar to theSection 5.3.3.1.2, "IBM UDB Active/Passive Using HADR" on
page 23.

The clustered nodes use the heartbeat to check whether each node is
alive, at both the operating system and Microsoft SQL Server level. At
the operating system level, the nodes in the cluster compete for the
resources of the cluster. The primary node reserves the resource every 3
seconds, and the competing node every 5 seconds. The process lasts for
25 seconds and then starts over again. For example, if the node owning

Database Server

High Availability Within a Single Site 27

the instance fails due to a problem (network, disk, and so on), at second
19. The competing node detects it at the 20-second mark, and if it is
determined that the primary node no longer has control, the competing
node takes over the resource.

From a Microsoft SQL Server perspective, the node hosting the Microsoft
SQL Server resource does a looks-alive check every 5 seconds. This is a
lightweight check to see whether the service is running and may succeed
even if the instance of Microsoft SQL Server is not operational. The
IsAlive check is more thorough and involves running a SELECT
@SERVERNAME Transact SQL query against the server to determine
whether the server itself is available to respond to requests; it does not
guarantee that the databases are up. If this query fails, the IsAlive check
retries five times and then attempts to reconnect to the instance of
Microsoft SQL Server. If all five retries fail, the Microsoft SQL Server
resource fails. Depending on the failover threshold configuration of the
Microsoft SQL Server resource, Windows Clustering attempts to either
restart the resource on the same node or fail over to another available
node. The execution of the query tolerates a few errors, such as licensing
issues or having a paused instance of Microsoft SQL Server, but
ultimately fails if its threshold is exceeded.

During the fail over from one node to another, Windows clustering starts
the Microsoft SQL Server service for that instance on the new node, and
goes through the recovery process to start the databases. The fail over of
the Microsoft SQL Server virtual server takes a short time (probably
seconds). After the service is started and the master database is online,
the Microsoft SQL Server resource is considered to be up. Now the user
databases go through the normal recovery process, which means that
any completed transactions in the transaction log are rolled forward, and
any incomplete transactions are rolled back. The length of the recovery
process depends on how much activity must be rolled forward or rolled
back upon startup. Set the recovery interval of the server to a low
number to avoid long recovery times and to speed up the failover
process.

5.3.3.2 Active/Active Failover Configurations
In an active/active failover configuration, two or more database nodes
are clustered together to provide a common service to applications.
Unlike active/passive failover configurations, all nodes of an active/active
failover configuration are actively processing transactions. If a node fails,

28 High Availability Guide

Database Server

the remaining nodes continue to provide the service. Figure 5–3
illustrates this concept:

Figure 5–3 Active/Active Failover Configuration

5.3.3.2.1 Oracle RAC Active/Active

The Oracle Real Application Cluster (RAC) is a share-everything database
cluster with a distributed lock manager. As a share-everything database,
all RAC nodes access and update the same database data files. The
distributed lock manager controls which node updates the data. It does
not matter which node the transaction is performed on. Each node has
equal rights to all data in the shared database.

Each RAC node has a listener process that is responsible for processing
database connection requests from client programs. When the listener
receives a request, it could spawn off a new database process to which
the client program connects to. If server-side load balancing is enabled,
the listener could send the request to the listener on the least busy RAC
node.

Configuration
When configuring Selling and Fulfillment Foundation with Oracle RAC, you
want the RAC nodes to be reasonably balanced so that all RAC nodes,
over a period of time, are about the same utilization. During a node
failure, you also want the connections from the failed node to
automatically reconnect to the surviving RAC node. You can do this using
Oracle features on the client-side and server-side.

Database Server

High Availability Within a Single Site 29

Client-Side Load Balancing
On the client-side, set up the JDBCURL parameter, which the JDBC driver
uses to connect to Oracle, as follows:

"jdbc:oracle:thin:@
 (DESCRIPTION =
 (ADDRESS_LIST =
 (LOAD_BALANCE = yes)
 (ADDRESS = (PROTOCOL = TCP)(HOST = dbnode01)(PORT = 1521))
 (ADDRESS = (PROTOCOL = TCP)(HOST = dbnode02)(PORT = 1521))
)
 (CONNECT_DATA =
 (SERVICE_NAME = rac)
)
)

In this example, the JDBCURL shows two RAC nodes (dbnode01 and
dbnode02). The (load_balance=yes) instructs the JDBC Driver to
progress through the list of addresses in a random sequence spreading
the load to all the listeners.

In a failure situation, if the connection request goes to the “downed”
node, the connection requests timeouts. The driver then transparently
sends the connection request to the remaining node. The connection
timeout can be tuned down.

With client-side load balancing, the connection request eventually
reaches an Oracle listener.

Server-Side Load Balancing
On the RAC nodes, enable server-side load balancing so that the listener
routes database connections to the RAC instance on the least busy
(loaded) nodes.

The listener on each RAC node is aware of all RAC instances. In addition,
the Oracle PMON (process monitor) periodically updates the listeners
with the node utilization. The update can occur as quickly as a minute on
heavily loaded nodes or as much as ten minutes on lightly loaded nodes.
Depending on the load information, the listener decides to which instance
to send the incoming client request. The listener typically selects an
instance on the least loaded (busy) node. If the least busy node has
multiple RAC instances, the listener then chooses the least loaded
instance on that node.

30 High Availability Guide

Database Server

You can enable server-side load balancing by setting the following
parameters:

hostname service name sid name instance_name
======== ============ ======== =============
dbnode01 rac rac1 rac1
dbnode02 rac rac2 rac2

spfile
*.remote_listener=’LISTENERS_rac’
rac1.local_listener=’LISTENER_rac1’
rac2.local_listener=’LISTENER_rac2’

*.db_name='rac'

rac1.instance_name='rac1'
rac2.instance_name='rac2'

Database Server

High Availability Within a Single Site 31

dbnode01 listener.ora file

LISTENER =
 (DESCRIPTION_LIST =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = IPC)(KEY = EXTPROC))
)
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = dbnode01)(PORT = 1521))
)
)
)

SID_LIST_LISTENER =
 (SID_LIST =
 (SID_DESC =
 (SID_NAME = PLSExtProc)
 (ORACLE_HOME = /u01/app/oracle/product/9.2.0.5)
 (PROGRAM = extproc)
)
 (SID_DESC =
 (ORACLE_HOME = /u01/app/oracle/product/9.2.0.5)
 (SID_NAME = rac1)
)
)

32 High Availability Guide

Database Server

dbnode01 and dbnode02 tnsnames.ora file

LISTENERS_RAC =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = dbnode01)(PORT = 1521))
 (ADDRESS = (PROTOCOL = TCP)(HOST = dbnode02)(PORT = 1521))
)
)
RAC1 =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = dbnode01)(PORT = 1521))
)
 (CONNECT_DATA =
 (SERVICE_NAME = rac)
 (INSTANCE_NAME = rac1)
)
)
RAC2 =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = dbnode02)(PORT = 1521))
)
 (CONNECT_DATA =
 (SERVICE_NAME = rac)
 (INSTANCE_NAME = rac2)
)
)
RAC =
 (DESCRIPTION =
 (LOAD_BALANCE = yes)
 (ADDRESS = (PROTOCOL = TCP)(HOST = dbnode01)(PORT = 1521))
 (ADDRESS = (PROTOCOL = TCP)(HOST = dbnode02)(PORT = 1521))
 (CONNECT_DATA =
 (SERVICE_NAME = rac)
)
)

Database Server

High Availability Within a Single Site 33

LISTENERS_RAC, LISTENER_rac1, and LISTENER_rac2, are the net_
service_name (connect descriptor) for remote_listener and local_listener.
On the client side, you do not need these net_service_name parameters.

RAC is the net_service_name for client-side load balancing as illustrated
in Figure 5–4.

dbnode01 only tnsnames.ora

LISTENER_rac1 =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = dbnode01)(PORT = 1521))
)

dbnode02 only tnsnames.ora

LISTENER_rac2 =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = dbnode02)(PORT = 1521))
)

34 High Availability Guide

Database Server

Figure 5–4 Load Balancing

From a Selling and Fulfillment Foundation perspective, you can expect
the following to occur after a RAC server instance failure:

Transactions in the application, agent and integration servers that
were actively processing throws a SQL error message. The remaining
RAC nodes roll the changes from those transactions back.

Database Server

High Availability Within a Single Site 35

The Selling and Fulfillment Foundation agent and integration servers
continually attempt to reconnect. When it has connected to one of the
remaining RAC instances, the failed transactions are reprocessed
from the beginning. You do not have to restart the Selling and
Fulfillment Foundation servers during the transition to the standby
node.

If the source of the work request (specifically for the agents and
integration servers) came from message queues, the messages
remain in the message queue. When the database service is restored,
these messages are processed.

Target Utilization
When deploying an active/active failover configuration like Oracle RAC,
take into consideration your target node utilization, especially during the
seasonal peak periods. Although RAC is an active/active configuration,
you have to be careful when you run the RAC nodes at close to max
utilization. First, RAC needs CPU to maintain the Cache Fusion. Secondly,
during failover, all the work from the failed node eventually spills over to
the remaining node. For example, at the peak hour, the combination of
high volume agent processing and application server processing is driving
a 2-node RAC configuration to 80% busy. If a node fails, the servers
reconnect to the remaining node. The combined workloads drive the
database to a point where performance degrade or at worst the system
becomes unstable.

Ideally, you should try to keep the average node utilization below 40%
utilization (for a 2-node RAC) to reduce the risk of overloading the
remaining nodes. In the event of a node failure, the remaining node will
likely grow to 80%.

Alternatively, if you typically run the nodes at higher utilization, you
should consider classifying workloads into priority groups. For example,
transactions that are initiated by customers may be put into the high
priority group because they add to the overall customer experience.
These could include application server workloads. Customers with short
“click to release” service levels may consider agents that schedule and
release orders as high priority workloads. Workloads such as order purge
or other maintenance work could be categorized into lower priority
groups.

36 High Availability Guide

SAN or Disk Subsystem

5.3.3.2.2 IBM DB2 Active/Active Using UDB ESE DPF

Selling and Fulfillment Foundation is not certified to run on UDB DPF.

5.3.3.2.3 IBM DB2 Active/Active Using xkoto GRIDSCALE

Selling and Fulfillment Foundation is not certified to run on xkoto
GRIDSCALE.

5.4 SAN or Disk Subsystem
The disk subsystem is another critical system component. Disk failures
could cause outage to parts of or the entire system.

Careful design and implementation must be placed on the disk
subsystem. Your investment in failover configurations could be wasted if
the disk subsystem fails.

The different areas where disks are used by Selling and Fulfillment
Foundation include:

Database datafiles/objects

Message queues

Internal disks

To prevent outages due to disk failures, consider configuring the
following:

Disks as RAID groups (except for RAID-0) for redundancy and
performance. We prefer RAID 10 or RAID 5 for performance and
redundancy.

Redundant disk systems to tolerate component failures

Multiple access paths to the disks

Selling and Fulfillment Foundation Components

High Availability Within a Single Site 37

5.5 Selling and Fulfillment Foundation
Components

As we described in Chapter 5, "High Availability Within a Single Site",
Selling and Fulfillment Foundation runs in the application server, agent
server, and the integration server.

5.5.1 Application Server
The application server provides:

Users with the ability to use the Application Console to create and
manage orders, shipments, and inventory manage orders, shipments,
and inventory

Programs to call the Selling and Fulfillment Foundation business APIs
using HTTP, servlets, EJB/RMI, or WebServices

Currently, Selling and Fulfillment Foundation is supported on the
following application servers:

Oracle WebLogic

IBM WebSphere

JBoss Application Server

All application server requests are transactional in that all the work
performed is within a transaction boundary and is either fully committed

38 High Availability Guide

Selling and Fulfillment Foundation Components

or nothing is committed. This guarantees that there is no partially
completed work.

For resiliency, you can configure multiple application server instances in a
cluster. If an instance fails, the workloads are sent to the remaining
instances.

Generally, the following occurs when an application server instance fails.
If there were active transactions running on the failed application server,
those transactions can be reprocessed. The transactions are either fully
committed or not at all. Subsequent transactions are sent to the
remaining application server instances.

5.5.1.1 Stateful Sessions
The HTTP user interface (or the Application Console) sessions are
“stateful”. When transactions complete, they leave information (state) on
the J2EE application server for the subsequent transaction. By being
stateful, all HTTP transactions return to the same application server
instance. This can be accomplished by telling the load-balancers or
proxies that the sessions are sticky.

By default, WebLogic and WebSphere application servers are configured
for memory session persistence where the HTTP session-state is only
stored in the application server instance that the transaction ran on. The
session information is lost if that application server instance fails. If that
happens, the user is redirected to the login page. After logging back into
the application, the user is able to continue where they left off.

5.5.1.2 Stateless Sessions
All the other application server transactions, EJB/RMI, servlet calls, and
WebServices, are stateless. In contrast, these transactions do not leave
behind session state information. As a result, these transactions can be
performed on any application server instance where the application is
deployed.

5.5.2 Selling and Fulfillment Foundation Agent and
Integration Server

The Selling and Fulfillment Foundation agent and integration servers are
completely location or node independent. They can run from any node
where the application has been deployed.

Server Registry

High Availability Within a Single Site 39

5.6 Server Registry
Selling and Fulfillment Foundation maintains information on how to locate
each of the server instances (e.g., the application server, agent and
integration server instances) for system management purposes. For
example, a server that changes cached reference data must notify its
peers to update their cache. See the Selling and Fulfillment Foundation:
Performance Management Guide for more details.

When a server instances starts, it stores its server name and the URL to
itself in a registry. In previous releases, the registry was implemented in
a non-clustered Java Naming and Directory Interface (JNDI) service in
one application server instance. As a result, in previous releases, this
registry was a single point of failure. In the Selling and Fulfillment
Foundation, Release 9.0, the registry was moved to the YFS_HEARTBEAT
database table.

Any server instance can query the YFS_HEARTBEAT to find all the other
server instances.

Selling and Fulfillment Foundation uses the JNDI information for the
following events:

Reference data cache refresh – Selling and Fulfillment Foundation
implements a mid-tier data cache to cache commonly used reference
data. If a server instance changes a cacheable record, that instance
needs to broadcast that change to instruct all the other server
instances to refresh their cache. For more information on Selling and
Fulfillment Foundation reference data cache implementation, refer to
the Selling and Fulfillment Foundation: Performance Management
Guide.

The System Management Console uses the registry to discover all the
application instances. The SMC uses that list to build a list of
instances to monitor.

In addition to the initial registration on start up, all servers have to
periodically update its registry record to indicate that it is still alive.

In past releases, if the JNDI service was unavailable, you would not be
able to start servers or notify peers of system management changes. In
this release, the registry’s availability posture is the same as the
database service. If the database service is down, the application would
be down therefore, there would be no need for the registry.

40 High Availability Guide

Message Queues

5.7 Message Queues
Selling and Fulfillment Foundation uses message queues extensively. The
message queue usage in Selling and Fulfillment Foundation can be
grouped as:

Integration queues for external communications

Temporary work-in-progress queues for Selling and Fulfillment
Foundation and custom time-triggered transactions

These queues can be implemented in:

Oracle WebLogic JMS

IBM WebSphere MQ

IBM WebSphere default messaging providers

JBoss MQ

The Selling and Fulfillment Foundation agent and integration servers use
messaging primarily for two reasons:

Integration queues

Agent work queues

5.7.1 Integration Queues for the Selling and Fulfillment
 Foundation Integration Servers

The integration servers use integration-based queues to communicate
from or to external systems. For example, in Figure 5–5, the first queue
could be used by external systems like a Web store frontend to pass
order creation requests to Selling and Fulfillment Foundation. It could
also be purchase orders from a purchasing system, shipment status
updates from a logistics management system, and so forth.

Message Queues

High Availability Within a Single Site 41

Figure 5–5 Integration-based Queues

Similarly, the Selling and Fulfillment Foundation integration servers can
use integration queues to send messages to external systems. For
example, Selling and Fulfillment Foundation can send ship notices to
warehouses.

Since these messages are used for communicating between systems, the
messages in the integration queues should be protected so that they are
not lost in the event of a failure. In some cases, these messages can be
difficult to recreate. For example, as described above, if messages from a
web-store is lost, the web-store will have to resend the missing orders.
The recovery will involve having to determine what orders have already
been processed to find what is missing. Care will have to be taken to
ensure that orders that have already been processed are not resent.

In general, integration queues should be implemented on reliable
redundant persistent stores.

5.7.2 Agent Queues for the Selling and Fulfillment
Foundation Agent Servers

The Selling and Fulfillment Foundation agent servers use the messages in
the queues as a source of work. In contrast to integration queue
messages, agent messages are typically read from the database and can
be easily recreated. As a result, we recommend creating agent queues as
non-persistent queues where the messages are kept in memory.

5.7.3 WebLogic JMS
To protect the WebLogic JMS queues, consider the following:

Persistence

Message Paging

Dedicated Integration JMS Server

Shared Disk Subsystem

42 High Availability Guide

Message Queues

JMS Server on a Different Application Server

5.7.3.1 Persistence
By default, WebLogic JMS message queues are defined as non-persistent,
which means that the messages are only kept in memory (the JVM
heap). Non-persistent messages are lost when the JMS server shuts
down or crashes.

To protect integration messages, you must define the integration queues
as persistent. WebLogic allows messages to be persisted to files or the
database.

The agent queues should be implemented as non-persistent queues. The
Selling and Fulfillment Foundation agents are designed to be able to
re-create the work-in-progress task messages.

5.7.3.2 Message Paging
By default, the messages in WebLogic JMS queues are kept in memory
(in the Java heap). You should consider protecting them against
situations where a large number of messages could cause the JMS server
to fail because it has run out of space in its Java heap. This could happen
if there are a significantly large number of messages in the queue or
exceptionally large message bodies. In those situations, the JVM could
run out of space in its heap.

The best way to find out how much JVM heap you need is to create a
large number of messages in your test queues and see how much
memory is used. The amount of heap required differs for each
implementation.

To protect against situations where the WebLogic JMS heap fills up, you
could enable byte or message paging. When the number of bytes or
messages exceeds specified thresholds, WebLogic JMS server pages out
the message body (but not the message header) to a paging file store.
This approach can reduce the likelihood of a JVM crash. You can still run
out of JMS Server heap if the queue has a lot of message headers.

As a draconian measure, you can set the maximum message parameter.
When set, this parameter puts a hard limit on the number of messages
that can be in the queue. When this threshold is reached, new messages
are rejected with an error message. As a result, you have to ensure that
message producers are architected to correctly handle message

Message Queues

High Availability Within a Single Site 43

maximum exceptions – for example, the message producers may want to
queue the messages and retry later.

5.7.3.3 Dedicated Integration JMS Server
Since integration queues can grow unbounded, you should define the
integration queues to one or more dedicated JMS servers. These JMS
servers should be targeted to one or more dedicated WebLogic managed
servers. For example, assume you have ten integration queues. Some of
your options are:

Define all ten integration queues to a single JMS server which is
targeted to a dedicated application server. That application only has
the JMS server targeted to it.

For very large integration queues, target 5 integration queues to one
JMS server and the other five to another JMS server. The two JMS
servers are then targeted to two dedicated application servers.

5.7.3.4 Shared Disk Subsystem
The persistence and paging file stores should be implemented on a
shared disk subsystem (such as a SAN) and not on local disks. The
shared disk subsystem should be accessible from standby servers to
prevent disk failures or node outages from causing a prolonged JMS
Server outage. This configuration allows you to restart the JMS Server
from another node.

5.7.3.5 JMS Server on a Different Application Server
You can protect the task-based queues by ensuring the JMS server can
be restarted on a different node or a different application server. You
don’t have to worry about preserving the content of the queues because
they can be recreated from the database. You also don’t have to worry
about protecting them against large number of messages because the
agents only fetch a finite number of messages (default is 5,000).

5.7.4 WebSphere Messaging

5.7.4.1 WebSphere MQ
For WebSphere customers, as depicted in Figure 5–6, the integration and
agent queues can be implemented in

44 High Availability Guide

Message Queues

WebSphere MQ, which is an external message queue, or

WebSphere default messaging which is the messaging component
inside the WebSphere Application Server.

Figure 5–6 WebSphere MQ

5.7.4.1.1 Protecting WebSphere MQ HA Using Cluster Failover

One approach to protecting WebSphere MQ is through cluster failover
using cluster software such as HACMP, MC ServiceGuard, or Veritas
Cluster Service. In Figure 5–7, the MQ (the MQ queue manager and the
local queues) on the active node with IP address of 192.168.10.1 is
running and accepting and distributing MQ messages. In the event of a
node failure and the node cannot be restarted, the cluster software
activates the standby node. From the agent and integration servers’
perspective, the MQ service was unavailable during the time it took to
failover. Once the failover is completed, the agent and integration servers
can be restarted. At that time, the standby node looks the same as the
former primary node. Therefore, there are no changes required.

Message Queues

High Availability Within a Single Site 45

Figure 5–7 Cluster Failover

5.7.4.1.2 Implementing Message Persistence Files on SAN

To prevent disk failures or node outages from causing a prolonged
MQSeries outage, you should consider putting the MQ logs and files used
to store messages on a SAN that is accessible from multiple nodes. This
allows you to restart MQ from another node.

5.7.4.1.3 Risks

In the previous examples, the shared storage remains the single point of
failure. You could lose data if the shared storage was. One option is to
configure active/passive SAN devices with the primary SAN replicating
data to the standby SAN. In the event of a SAN failure, the primary MQ
node would release the primary SAN and acquire the standby SAN.

5.7.4.1.4 Important Notes

Configuring MQ in an active/standby configuration with HACMP
requires specialized knowledge. Please consult your IBM
representative for assistance.

46 High Availability Guide

Networked File Systems

Sterling Commerce has not tested or certified Selling and Fulfillment
Foundation on clustered MQ.

5.8 Networked File Systems
Some customers prefer to implement Selling and Fulfillment Foundation
on a networked file system (NFS). With this approach, all mounted nodes
can access all the shared folders. Changes are made to the shared files.
In contrast, changes do not have to be pushed out to every node if files
were stored on local disks.

If you choose this approach, consider implementing a highly available
NFS to prevent an outage of the NFS server from creating an application
outage. Losing the NFS server crashes all the servers of Selling and
Fulfillment Foundation.

Architectural Patterns 47

6
Architectural Patterns

The Sterling Distributed Order Management (DOM) and Sterling
Warehouse Management System (WMS) applications are often deployed
in an integrated network of external systems to form a cohesive business
ecosystem. Prolonged application or system outages can have significant
business consequences.

Decoupling and component independence is an extremely powerful
architectural pattern to insulate critical portions of the overall ecosystem
solution from downtime or faults in other areas. The availability and
uptime of the Selling and Fulfillment Foundation-based solution can be
greatly enhanced by adopting one or more of the following patterns
during solution design. Each of these patterns makes it possible to
decouple one or more parts of the application from other portions thus
providing increased availability and uptime for critical areas like external
users and customers.

Each of these design patterns can be applied to provide increased
application resilience. While these examples talk about website
integration, these patterns can be applied to other areas of integration as
well.

A well-designed solution around the Selling and Fulfillment Foundation
system can actually increase the availability and uptime of the solution
as a whole to levels above what Selling and Fulfillment Foundation
delivers out-of-the-box. In some critical areas for example, the solution
can continue to be available even when the product is taking a planned
or unplanned outage.

Finally, there are a few other process and deployment related solution
design considerations that can actually provide better gains in availability
and uptime at a much lower cost than technological and redundancy
based solutions.

48 High Availability Guide

Caching

6.1 Asynchronous Integration
The most common decoupling technique is asynchronous message
communication between business entities. Take, for example, the need to
send orders created at different external systems to Selling and
Fulfillment Foundation. These systems could send the order creation
requests to Selling and Fulfillment Foundation:

Synchronously using protocols such as HTTP, WebServices, EJB/RMI
and so forth; or

Asynchronously using messages.

Both approaches have their strengths and weaknesses. From a
high-availability standpoint, the loosely-coupled asynchronous approach
allows Selling and Fulfillment Foundation to be unavailable as a result of
a scheduled or unscheduled outage, without affecting the external
systems. The external systems can queue up the order creation requests
into an integration message queue.

In contrast, if the communication is synchronous, Selling and Fulfillment
Foundation must be available for the external system to create the
request. In this architecture, the availability requirements of Selling and
Fulfillment Foundation have to be the greatest of all the availability
requirements of all tightly connected systems combined.

This scenario is, of course, simplistic since it may not take into account
other synchronous interfaces (like inventory lookups or pricing) that the
order creation process is dependent upon. These requirements are
addressed in Section 6.2, "Caching".

6.2 Caching
Another common decoupling technique is the use of local caching. In this
pattern, the consuming application (for example, store web store) gets
information such as item attributes, inventory balance, or item
availability from a local data cache. This approach reduces the need to
synchronously query Selling and Fulfillment Foundation.

The local information cache can be updated by utilizing a variety of
algorithms that offer various degrees of sophistication, performance and
accuracy. Not only does this technique provide a way to decouple two
areas of the solution, but it also provides significant performance,

Hot Deployment of Code, Configuration, and Fixes

Architectural Patterns 49

response time, and scalability advantages that are especially useful in
end-user or website scenarios.

As an example, one area where Selling and Fulfillment Foundation
typically recommends utilizing this algorithm is for caching ATP (Available
to Promise) data on the Web site. In some customer environments where
shopping cart abandonment rates are very high, for example 100 item
lookups to 1 item ordered, it is better to have Selling and Fulfillment
Foundation push out item availability to the Web storefront using the
Selling and Fulfillment Foundation Real-time Inventory Monitor. With this
approach, most inventory lookups that are part of the customer’s
browsing and ordering experience can be served from the Web site
without any synchronous calls to Selling and Fulfillment Foundation.
Based on business requirements, if the inventory levels are sufficiently
high, the web storefront can sell that item. The Web storefront would
revert to synchronous inventory availability check when the inventory
levels are below a certain threshold. More importantly, Selling and
Fulfillment Foundation can be down without affecting the Web storefront.

While this cookie cutter approach to inventory caching may not work for
all scenarios, techniques such as these can be invariably applied to
almost all critical interfaces to provide simplistic but “safe” algorithms to
counter planned or unplanned downtime without affecting end users or
disabling critical functionality areas altogether.

6.3 Hot Deployment of Code, Configuration, and
Fixes

While the methodologies and design patterns presented insulate critical
areas of the solution from downtime, there are deployment techniques
that are provided by Sterling Commerce or are inherent within the
architecture of Selling and Fulfillment Foundation that allow you to hot
deploy incremental changes, configuration, and fixes on critical
synchronous application components. Some of these capabilities include
the ability to:

Deploy changes to incremental configuration or master data without
having to bring down any application areas.

Hot deploy incremental software or code changes on the synchronous
application components by utilizing capabilities offered by the

50 High Availability Guide

Deployment Processes and Regression Testing

application server or by utilizing application server independent
techniques like clusters and rolling restarts.

Theoretically, there could be scenarios where even a small change to a
component may require multiple areas of the application to be updated
simultaneously due to interdependencies, thus causing an outage.
However, in reality, a large number of incremental changes and product
fixes can utilize these techniques even without any explicit hot
deployment design considerations.

Explicitly factoring in requirements to be able to hot deploy changes
during incremental solution design phases leads to the ability to hot
deploy all changes with a few exceptions. This situation is further
mitigated by the dependence of Selling and Fulfillment Foundation on
asynchronous processing for complex algorithms. This significantly
reduces the solution footprint that external synchronous interfaces like
those from the website, rely on. This, in turn, reduces the probability of
many changes or fixes in these areas.

6.4 Deployment Processes and Regression
Testing

One of the most important and most overlooked areas that can
significantly affect availability and uptime of an application is the
presence of a strictly enforced process to promote, characterize, verify,
and regression test incremental rollouts or hot-fixes and upgrades. In
industry studies and based on Sterling Commerce’s experience, the lack
of sufficient automated integration testing, human and operator error,
and lack of appropriate software change management processes to
prevent those errors, is the single biggest factor that causes application
downtime when there is no actual infrastructure failure. The cost of
setting up and investing in a robust and isolated testing environment that
mirrors the configuration and a small amount of representative
transactional data from production is usually much lower in comparison
to implementing redundant systems and complex processes to handle
issues with new solution rollouts and software fixes. Any investment in
this area goes a long way to prevent issues with failure and downtime.

Disaster Recovery 51

7
Disaster Recovery

With the approaches described in Chapter 5, "High Availability Within a
Single Site", you should be able to withstand most single and possible
multiple component failures without incurring an outage. With the
appropriate architectural patterns described in Chapter 6, "Architectural
Patterns", you may be able to schedule downtime with less impact to the
corporations overall availability.

There remains one major contingency you need to consider: what
happens if a catastrophic event causes your primary data center to be
partially or completely incapacitated? The reasons could range from the
commonplace disasters such as fires in the building or natural disasters
like floods or earthquakes. It may also be rare events like the Northeast
Blackout of 2003 when wide regions covering over eight US states and
one Canadian province lost power affecting over 50 million people.

This chapter presents the approaches you could take to ensure that
Selling and Fulfillment Foundation can continue running after a data
center outage.

7.1 Disaster Recovery from a Selling and
Fulfillment Foundation Perspective

In the event of a data center disaster, you may have almost no option
other than to re-establish Selling and Fulfillment Foundation in a disaster
recovery site. This could be an internal site or an office space at a
disaster recovery vendor.

Generally, when dealing with a disaster recovery service site, you have to
decide on the level of recovery service - the higher the disaster recovery
service, the higher the price. Keeping in mind the Insurance Principle,
you need to weigh the likelihood of a disaster occurring, and the cost of

52 High Availability Guide

For Testing Purpose

the disaster recovery service, against the potential impact to your
business due to a prolonged outage.

In the disaster recovery industry the terms cold, warm, and hot site
recovery are often used to describe the level of service. A cold site
recovery is a term that typically refers to a recovery site that may or
may not have equipment provisioned. Depending on your disaster
recovery contract, you may have to bring all of your equipment,
computing nodes, software, and so forth. In some cases, the disaster
recovery vendor may have a pool of equipment that you can draw from.
In either case, you have to entertain the possibility that you or your
vendors may face a shortage of equipment if multiple customers
simultaneously declare disasters.

Typically, the software and equipment are not pre-configured in cold site.
Therefore, a cold-site recovery involves a very lengthy and complicated
recovery from scratch that could take many days.

A warm recovery site is one where the application may be installed on
pre-configured standby equipment and nodes. The data in a warm site
are generally updated periodically. Recovery in a warm site typically
involves bringing the standby database to the latest consistent state.
This generally involves applying all the available transaction logs. A
warm-site recovery could take up to a day.

A hot recovery site is one where the application is configured and
available at a moments notice. The applications data, ranging from the
database to configuration information, are synchronized with the primary
data center. A hot-site recovery could take a few minutes to a few hours.

7.2 For Testing Purpose
A warm recovery site is one where the application may be installed on
pre-configured standby equipment and nodes. The data in a warm site
are generally updated periodically. Recovery in a warm site typically
involves bringing the standby database to the latest consistent state.
This generally involves applying all the available transaction logs. A
warm-site recovery could take up to a day. For more information see,
Section 7.5, "Key to Disaster Recovery".

Cold Site Recovery

Disaster Recovery 53

7.3 Cold Site Recovery
A cold site recovery can be daunting, especially for a large complex
system like Selling and Fulfillment Foundation. At a minimum, you have
to procure, install, and configure all the hardware equipment needed by
the application ranging from network equipment, load balancers, mid-tier
and database nodes, SAN, cabling for the SAN, and so forth.

Next, you have to install and configure all the system software ranging
from the operating system, database management system, application
server, Selling and Fulfillment Foundation, and so forth. It is critically
important that the software version and release, and even the same
patches be installed the same as the primary data center. Installing
different software versions may result in unexpected behavior.

Next, you have to configure the environment. At a minimum, this
includes:

Defining all the service, host, and server names to DNS

Defining the message queues

Setting all the configuration and performance parameters (for
example, the operating system kernel parameters, the database
parameters). Again, it is important that these parameters be set to
the same values as the corresponding parameters in the primary site.

Installing and preparing the SAN including defining the storage and
file systems

Loading the application database schema

After the infrastructure and environment is available:

Restore the database from the backup tapes

Roll forward all the transaction logs to bring the database up to the
latest consistent state

Configure the application servers (for example, connection pool)

Restore the messages from the integration queues – if you do not
have a backup of the messages, all the of the unprocessed messages
in the integration queues are lost

Install Selling and Fulfillment Foundation and reapply all the custom
code, extensions, custom XMLs, and the property files

54 High Availability Guide

Key to Disaster Recovery

Reconfigure the load balancer or proxy to the application server
cluster

Define the service names to the IP address at the recovery site

Establish connections to all the external systems (for example, credit
card companies for credit authorization)

A cold site recovery could easily take days.

7.4 Warm and Hot Site Recovery
Warm and hot site recoveries are much faster and potentially less risky
compared to the cold site recovery because the system is already
installed and configured, and the data loaded. Customers who need
faster recovery may have to go to with warm or hot recovery sites.

7.5 Key to Disaster Recovery
Consider the following key points for disaster recovery:

Recovery Procedures

Database Backups and Transaction Log Files

Integration Queue Replication

Service Names Instead of IP Addresses

7.5.1 Recovery Procedures
Given the extensive list of tasks to recover a system, especially for the
cold site recovery, the disaster recovery process must be very well
documented and tested. Equally important, these procedures and the
entire system must be placed under strict change control and
management. Changes to the system must be properly reflected in the
recovery procedures. The procedures must be tested as part of the
change.

7.5.2 Database Backups and Transaction Log Files
In a cold site recovery, the database has to be restored to the last
successful backup and the transaction logs replayed to update the
database with all the changes performed since the backup. Given the

Key to Disaster Recovery

Disaster Recovery 55

importance of these files, many companies copy these files for off-site
storage. In some cases, transaction logs are immediately copied to a
remote site when the logs are closed.

Standard copy utilities can only copy files that are not opened for access.
If you rely on standard copy utilities, you can not backup the currently
active (and open) transaction log.

For warm and hot sites recoveries, you could use log-shipping
technologies to not only replicate but also to apply the log transactions to
the standby database.

For Oracle, you could use products such as Oracle Data Guard or Quest
Shareplex.

For UDB, you could use UDB HADR. However, with HADR, you can
replicate to only one standby database. If you want to have a standby
UDB database server at the local site and the disaster recovery site, you
may have to use a combination of cluster failover software and HADR
respectively.

7.5.3 Integration Queue Replication
Integration queues are used to exchange data messages between Selling
and Fulfillment Foundation and external systems. The messages could be
orders placed between supply chain partners, shipping notices to partner
warehouses, and so forth. These messages should be persisted to either
files or a database.

If you use file-based persistence, you should consider replicating the files
to a remote site to prevent loss of messages from local site faults (for
example, JMS server crashing, node crashing). You may also want to
consider replicating these messages to a remote site to prevent loss of
messages from a data center disaster.

As with transaction logs, you cannot rely on standard copy utilities since
these files are continuously opened and updated. Instead, you may have
to resort to disk-to-disk replication, such as EMC SRDF, to protect the
messages in your integration queue.

56 High Availability Guide

Key to Disaster Recovery

7.5.4 Service Names Instead of IP Addresses
You must use service names or host names instead of IP addresses when
specifying the location of services such as the JNDI, databases, and JMS
queues. The IP address scheme at the recovery site is not the same as
the primary site. If you use IP addresses are, you will point to
non-existent nodes.

57

Index

A
agent servers, 9, 11, 38
application servers, 11, 37

stateful sessions, 38
stateless sessions, 38

architectural patterns, 47
availability, 3, 6

design, 3
motivation, 6
principles, 3
requirements, 3

C
caching, 48
client reroute, 25

D
database servers, 14, 21, 24
DBMS

failures, 21
deployment processes, 50
disaster recovery, 4, 7, 51

cold site recovery, 53
procedures, 54
warm and hot site recovery, 54

disk subsystems, 36
downtimes, 18

E
environment variable

INSTALL_DIR, xxix
INSTALL_DIR_OLD, xxix

F
failover configurations, 19, 22, 26, 27, 35

H
hardware failures, 22
hot deployment, 49
human errors, 22

I
INSTALL_DIR, xxix
INSTALL_DIR_OLD, xxix
integration

asynchronous, 48
integration servers, 11, 38

queues, 40

J
Java Virtual Machine, 10
JNDI, 39
JNDI service, 12

58 High Availability Guide

L
load balancing

client-side, 29
server-side, 29

M
mean-time-to-repair, 18
message queues, 23, 40
messages

asynchronous, 6

N
networked file systems, 46
nodes, 18, 26

O
operator errors, 22
outages, 6, 18

R
RAC server instance failures, 34
regression testing, 50

S
Selling and Fulfillment Foundation, 9
single-points-of-failure, 14, 17
single-site configuration, 13

T
target node utilization, 35
time-triggered transactions, 14
transactions

loss, 16
loss in integration queues, 16

W
WebLogic JMS, 41
WebSphere MQ, 43
workloads, 6

	Contents
	Preface
	1 Changes
	2 Availability
	2.1 Availability Design and Principles
	2.1.1 Business Drives High-Availability Requirements
	2.1.2 Keep-It-Simple Strategy
	2.1.3 Configuring for Higher Availability or Resilience Is Like Buying Insurance
	2.1.4 The 9’s
	2.1.4.1 Problem with the 9’s

	2.2 High Availability Motivation

	3 Selling and Fulfillment Foundation Architecture
	3.1 Application Components
	3.2 Application Server
	3.3 Agent or Integration Servers
	3.4 JNDI Service

	4 Limited Redundancy Single-Site Configuration
	4.1 Single Point of Failure
	4.2 Loss of Data
	4.2.1 Loss of Database
	4.2.2 Loss of Database Transaction Logs

	4.3 Applicability

	5 High Availability Within a Single Site
	5.1 Single Points of Failure
	5.2 Node
	5.2.1 Active/Passive Cluster Failover Configurations

	5.3 Database Server
	5.3.1 DBMS Software Failures
	5.3.2 Human and Operator Errors
	5.3.3 Hardware Failures
	5.3.3.1 Active/Passive Failover Configurations
	5.3.3.1.1 IBM UDB Active/Passive Using Cluster Failover Software
	5.3.3.1.2 IBM UDB Active/Passive Using HADR
	5.3.3.1.3 Oracle Active/Passive Using Cluster Failover
	5.3.3.1.4 Microsoft SQL Server Active/Passive Using MSCS

	5.3.3.2 Active/Active Failover Configurations
	5.3.3.2.1 Oracle RAC Active/Active
	5.3.3.2.2 IBM DB2 Active/Active Using UDB ESE DPF
	5.3.3.2.3 IBM DB2 Active/Active Using xkoto GRIDSCALE

	5.4 SAN or Disk Subsystem
	5.5 Selling and Fulfillment Foundation Components
	5.5.1 Application Server
	5.5.1.1 Stateful Sessions
	5.5.1.2 Stateless Sessions

	5.5.2 Selling and Fulfillment Foundation Agent and Integration Server

	5.6 Server Registry
	5.7 Message Queues
	5.7.1 Integration Queues for the Selling and Fulfillment Foundation Integration Servers
	5.7.2 Agent Queues for the Selling and Fulfillment Foundation Agent Servers
	5.7.3 WebLogic JMS
	5.7.3.1 Persistence
	5.7.3.2 Message Paging
	5.7.3.3 Dedicated Integration JMS Server
	5.7.3.4 Shared Disk Subsystem
	5.7.3.5 JMS Server on a Different Application Server

	5.7.4 WebSphere Messaging
	5.7.4.1 WebSphere MQ
	5.7.4.1.1 Protecting WebSphere MQ HA Using Cluster Failover
	5.7.4.1.2 Implementing Message Persistence Files on SAN
	5.7.4.1.3 Risks
	5.7.4.1.4 Important Notes

	5.8 Networked File Systems

	6 Architectural Patterns
	6.1 Asynchronous Integration
	6.2 Caching
	6.3 Hot Deployment of Code, Configuration, and Fixes
	6.4 Deployment Processes and Regression Testing

	7 Disaster Recovery
	7.1 Disaster Recovery from a Selling and Fulfillment Foundation Perspective
	7.2 For Testing Purpose
	7.3 Cold Site Recovery
	7.4 Warm and Hot Site Recovery
	7.5 Key to Disaster Recovery
	7.5.1 Recovery Procedures
	7.5.2 Database Backups and Transaction Log Files
	7.5.3 Integration Queue Replication
	7.5.4 Service Names Instead of IP Addresses

	Index

