
Selling and Fulfillment
Foundation

Customizing the Web UI Framework

Release 9.0

March 2010

© Copyright 2010 Sterling Commerce, Inc. All rights reserved.
Additional copyright information is located on the documentation library:
http://www.sterlingcommerce.com/Documentation/MCSF90/CopyrightPage.htm

Sterling Commerce, Inc.

Contents

Extensibility in the Web UI Framework..5
Extensibility in the Web UI Framework for Custom Developers..5

Differential Extensibility in the Web UI Framework..6
Override Extensibility in the Web UI Framework...7
Differential Extensibility Versus Override Extensibility in the Web UI Framework ...7
What Can Be Customized and Extended with the Web UI Framework..8
Customizing with the Web UI Framework..9
Extending Versus Customizing an Ext JS Widget/Component with the Web UI Framework...9
Extensibility Workbench Versus Designer Workbench in the Web UI Framework...9

Extensibility Workbench of the Web UI Framework for Custom Developers..10
Configuring the Web UI Framework Extensibility Workbench..12
Using the Web UI Framework Extensibility Workbench to Modify a Widget..13
Extensibility Workbench Tools of the Web UI Framework...15

Designer Workbench of the Web UI Framework for Custom Developers..16
Creating New UI Screens Using the Designer Workbench in the Web UI Framework..17
Designer Workbench Tools of the Web UI Framework...18
Using the Web UI Framework Designer Workbench from the Extensibility Workbench to Create New Screens for Custom Developers.20
Generating Copyright Comments with the Web UI Framework...21

Mashup Layer of the Web UI Framework...22
Interface Contracts of the Web UI Framework - Mashup Layer...23
Mashup Layer Classes of the Web UI Framework..23
Mashup XML Metadata of the Web UI Framework..24
Configuring Mashups in Web UI Framework...26
Specifying Multiple XAPI Calls with the Web UI Framework...26
How the Mashup Layer Handles Authorization and Transaction Management in the Web UI Framework.......................27

Extending Mashups in the Web UI Framework...28
Extending Mashups Using Override Extensibility in the Web UI Framework...29
Extending Mashups Using Differential Extensibility in the Web UI Framework...29

Creating and Extending a Struts XML File in the Web UI Framework..30
Creating a Menu Entry for a New Web UI Framework Screen Using the Application Manager..30
Deploying Web UI Framework Extensions...32

Deploying Extensions Created by the Web UI Framework Extensibility Workbench and Designer Workbench Using a Java Server Page.33
Deploying Extensions Created by the Web UI Framework Extensibility Workbench Using a JavaScript Builder File.....35
Compiling and Minifying JavaScript Files in the Web UI Framework...37

Customizing web.xml in the Web UI Framework...38
Changing Bundle Files in the Web UI Framework..38
Designer Workbench of the Web UI Framework for Custom Developers..39
Control Details View of the Web UI Framework...40
Property Restrictions in Extensibility in the Web UI Framework...42
Adding Namespaces to Screens Using Extensibility in the Web UI Framework..43

Building and Customizing Pages/Controls with the Web UI Framework..44
Widgets of the Web UI Framework...44
Working with Widgets in the Web UI Framework..47
Adding a Widget to a Screen with the Web UI Framework..48

Customizing the Web UI Frameworkii

Customizing Widgets in an Existing Installation with the Web UI Framework..49
Hiding Fields with the Web UI Framework...50
Accessing the Working Files of the Web UI Framework..50
Viewing Screen Objects in the Outline or Tree View of the Web UI Framework...50
Configuring Properties for Screens, Widgets, and Other Items with the Web UI Framework..52
Providing Description Attributes for Binding Namespaces in the Web UI Framework..54
Wizards of the Web UI Framework...55

Creating a Wizard with the Web UI Framework...56
Wizard Page Attributes in the Web UI Framework...56
Wizard Rule Attributes in the Web UI Framework..57
Wizard Transition Attributes in the Web UI Framework...57
Wizard Flow Controller Attributes in the Web UI Framework..58
Wizard Breadcrumb Attributes in the Web UI Framework...58
Sample XML Flow Definition for Wizards in the Web UI Framework..59

Preset Properties in the Web UI Framework...59
Creating Preset Properties with the Web UI Framework...60
Applying Preset Properties with the Web UI Framework...62

Enabling a Child Screen to Access a Parent Screen with the Web UI Framework...63
Menu Customizations with the Web UI Framework...63
Creating Smart Tags with the Web UI Framework..64
Generating Code from Templates with the Web UI Framework...65

Code Template Generator of the Web UI Framework...66
Default Code Templates of the Web UI Framework..68
Creating a Custom Code Template with the Web UI Framework...71
Creating a Custom Code Template Using a Blank Template with the Web UI Framework..73
Editing a Custom Code Template with the Web UI Framework...74
Updating a Screen in a Running Application with the Web UI Framework..76

Debugging Tools of the Web UI Framework...77
Setting Up Backend Logging in the web.xml File in the Web UI Framework..79
Enabling Backend Logging in the User Interface with the Web UI Framework...81
State Management in the Web UI Framework...82

Implementing State Management with the Web UI Framework...83
Interface Contracts of the Web UI Framework - State Management on the Client Side and Server Side..........................83

Transaction Management in the Web UI Framework..84
Implementing Transaction Management with the Web UI Framework..85
Interface Contracts of the Web UI Framework - Transaction Management..85

Look and Feel in the Web UI Framework...88
UI Branding in the Web UI Framework..88
Specifying a Home Page when Building Screens with the Web UI Framework...92
Adding Keyboard Shortcuts with the Web UI Framework..92
Supporting Multiple Browsers with the Web UI Framework..94
Indicating Mandatory UI Fields with the Web UI Framework..94
Adding Support for Custom Themes with the Web UI Framework..94
About Dashboards, Dashlets, and Registries...96

Creating and Registering Dashboard Metadata...97
Creating and Registering Dashlet Metadata..98

About the Dashboard and Dashlet User Interface...100
Creating the Dashboard User Interface...101
Creating the Dashlet User Interface..101

iii

Contents

About Customizing and Resetting the Dashboard...102
Customizing the Dashboard User Interface with the Web UI Framework ...102
Resetting the Dashboard to the Default Dashboard Definition...103
Extending an Existing Dashboard By Adding New Dashlets in the Web UI Framework...104

About Chart Dashlets..107
Creating Chart Dashlets...108

Security with the Web UI Framework...110
Web UI Framework Security - Authentication..110

Web UI Framework Security - Implementing Authentication...111
Interface Contracts of the Web UI Framework - Authentication...112
Interface Contracts of the Web UI Framework - Post Authentication...113
Web UI Framework Security - Bypassing Authentication for a URI..114

Web UI Framework Security - Authorization..114
Web UI Framework Security - Implementing Authorization..115
Interface Contracts of the Web UI Framework - Authorization..116

Web UI Framework Security - Adding Login Pages...117
Web UI Framework Security - Supporting Multiple Guest Users...118
Web UI Framework Security - Adding Request Validators...119
Web UI Framework Security - Cross-Site Request Forgery..120
Web UI Framework Security - Protecting Against CSRF Attacks..121

Data Handling with the Web UI Framework..124
Data Type Handling in the Web UI Framework..124

Interface Contracts of the Web UI Framework - Data Type Handling..126
Assigning Data Types to a Grid Column with the Web UI Framework..126
Creating Extra Fields in Grid Stores with the Web UI Framework...127
Customizing Sorting from Multiple Record Fields with the Web UI Framework..129

Supporting Item Quantity Decimal Handling in the Web UI Framework...129
Validating Fields with the Web UI Framework...130
Disabling All UI Fields at One Time with the Web UI Framework..130
Checking for Screen Changes in the Web UI Framework...131
Configuring a Data Source with the Web UI Framework...131
Adding a Data Source with the Web UI Framework...132

Customizing the Web UI Frameworkiv

Extensibility in the Web UI Framework

Extensibility in the Web UI Framework for Custom Developers

Extensibility allows you to customize the user interface of an existing out-of-the-box installation of the
application using the Extensibility Workbench. It allows you to customize the existing installation at runtime
without recompiling or changing the original source code.

Web UI Framework extensibility also allows you to modify the Struts, non-XAPI mashup, and XAPI mashup
layers. If you do not use the Web UI Framework, the XAPI mashup layer is not available.

Note: When customizing the interface, copy the standard resources of the application and then modify your
copy. Do not modify the standard resources of the application.

With extensibility, you can open an existing screen and bring up the same user interface tools that were used
by application developers to build the screen. You can add controls (like buttons, labels, and grid columns),
panels, data sources, and other items. The Extensibility Workbench allows you to personalize and localize the
application. It helps you display more relevant and organized data.

Controls and panels are also known as widgets. The Extensibility Workbench allows you to add new widgets
to a UI screen, override default field labels, and customize themes. For more information about widget properties,
refer to the Ext JS framework documentation at (2.2.1) http://www.extjs.com/deploy/ext-2.2.1/docs/ or (3.0)
http://www.extjs.com/deploy/dev/docs/.

The Extensibility Workbench allows you to remove widgets that were added through extensibility. However,
you cannot remove any widgets that were present in the base/original screen. Also, you can hide (not remove)
an existing widget.

The Extensibility Workbench also allows you to change the properties of widgets. However, property changes
are limited to a particular set of properties. This ensures that arbitrary properties are not allowed to change,
resulting in upgrade issues.

Use the Extensibility Workbench to make changes to parts of a screen. If you want to customize an existing
installation with new screens, use the Designer Workbench, which you access from a link in the Extensibility
Workbench. These workbenches let you work with the two kinds of extensibility:

5Sterling Commerce, Inc.

• Differential extensibility, where you use extensions to add overlays onto a base screen. The addition is the
difference between the final screen (after adding the extensions) and the out-of-the-box screen (without the
extensions). Also, you can use differential extensibility to re-arrange the components of a screen.

You can use the Extensibility Workbench for differential extensibility.

• Override extensibility, where you replace the out-of-the-box screens with new screens.

You can use the Designer Workbench for override extensibility.

Differential Extensibility in the Web UI Framework

With differential extensibility, you can customize parts of a screen. Changes are overlaid on top of the base
screen. Differential extensibility contrasts with override extensibility, where the entire screen is replaced.

In differential extensibility, the extensions are stored in a file that is separate from the file of the screen being
viewed or edited. During runtime of the application, the extensions are applied to the functionality of the
application. This kind of extensibility gives you flexibility with upgrades.

In differential extensibility, in general, you can do the following:

• Add new UI components to an out-of-the-box screen.
• Change an existing component such as styles, labels, and layout parameters.
• Hide a component present in an out-of-the-box screen.
• Remove a component that was added via extensibility.

Note: None of the out-of-the-box components or component properties can be deleted.

• Respond to events.

The following images show an example of an out-of-the-box screen and an extended screen. Differential
extensibility was used to add a search button and a Before Date field.

Out-of-the-box screen (without extensions):

Extended screen:

Sterling Commerce, Inc.6

Override Extensibility in the Web UI Framework

With override extensibility, you can customize a screen by completely replacing it. Override extensibility
contrasts with differential extensibility, in which only parts of the screen are replaced. Use the Designer
Workbench to apply override extensibility.

Note: Although you can apply override extensibility using the Designer Workbench, you are limited in the
changes that you can make. Please contact Sterling Commerce Customer Support for assistance when applying
override extensibility using the Designer Workbench.

Differential Extensibility Versus Override Extensibility in the Web UI Framework

Override ExtensibilityDifferential ExtensibilityArea

Entire screen.Individual screen components.Scope of Changes

Replace entire screen.Screen Actions • Add component

• Change component

• Hide a component present in an out-of-the-box
screen

• Remove a component or a component property
added using the Extensibility Workbench

• Override default field labels

• Customize theme

When screen requires complex enhancements,
such as removing controls or changed business
use cases.

When screen requires minor enhancements with
little behavioral change.

Recommended Usage

After an upgrade, if you are not interested in the
enhancements in an out-of-the-box screen, this
method is recommended.

Designer WorkbenchExtensibility WorkbenchTool

Functionality that is extended is completely
replaced. Both the functionality and the UI layout
and/or appearance are replaced (if required).

Extensions are applied to the functionality of the
application.

Runtime Application

7Sterling Commerce, Inc.

Override ExtensibilityDifferential ExtensibilityArea

Might increase upgrade time, especially if there
are upgrade-related source code changes in the
application that relate to overridden screen.

Increases upgrade flexibility, because original
screen does not change, making individual
extensions to the screen easier to apply. An
extensible screen adheres to the extensibility

Upgrade Issues

The added code for XAPI mashups that are
used for a new screen (if any) would be affected

guidelines, such as unique IDs. These IDs
should not be absent from the upgraded
screens. with the changes in the database tables or

source code.

Extensible Layers • Presentation layer (UI)• Presentation layer (UI)

• •XAPI mashup layer XAPI mashup layer

• Non-XAPI mashup layer

• Struts layer

Screen files are completely replaced.Extensions are stored in a different file from the
files of the screen being extended.This different

Screen File
Management

New Java Server Page (JSP) files override base
JSP files. These JSP files can be designed in

file must be a new JavaScript file that must be
created by the user. This new JavaScript file

the Designer Workbench or from another
source.

must be included in the application using JSB
definitions.

• Base screens extend the
sc.plat.ui.ExtensibleScreen class.

These screen definitions have an identifier that
is unique across the application.

• Screen extensions extend the
sc.plat.ui.Extension class.

These extensions are registered with the Web
UI Framework extension registry for the base
screen’s identifier.

What Can Be Customized and Extended with the Web UI Framework

You can use the Web UI Framework to customize and extend any screen of the application that also follows
these guidelines:

• Any extensible UI content is served to the client using a JSP (Java Server page).
• A unique identifier must be created for every screen class (the className property) and screen component

(the sciId property).

If this guideline is not followed, a console warning will alert you that more than one screen or screen component
has the same ID. You can still launch and deploy the application out-of-the-box with duplicate IDs for screen
or screen components, but duplicate IDs are likely to cause problems when you try to extend.

• In differential extensibility (where only parts of the screen change), the extensions are defined in an extension
file which must be included with the out-of-the-box screen.

• It uses the Ext JS JavaScript framework.
• The screen class must extend from the class sc.plat.ui.ExtensibleScreen.

Sterling Commerce, Inc.8

• It does not add controls dynamically. These controls cannot be changed by screen extensions. Also, all layouts
do not support the addition of dynamic controls.

You can extend screens that were not originally created using the Web UI Framework tools (for example,
hand-coded screens). However, if a screen was designed using the Web UI Framework tools, it can be easily
extended because it conforms to the Web UI Framework standards.

Customizing with the Web UI Framework

The Web UI Framework allows you to plug in customizations of tasks like authentication and authorization.
When you customize the application, you need to write special program code that works with the interface
contracts of the default installation of the application.

You can use interface contracts to customize the following tasks:

• Authentication
• Post authentication
• Authorization
• Mashup layer
• Transaction management
• State management
• Localization
• Data type handling

Customizations also use the web.xml file and the install3rdParty tool.

Extending Versus Customizing an Ext JS Widget/Component with the Web UI
Framework

Extending and customizing are very similar. Both involve changes to the default, out-of-the-box version of
the application.

Extending is a type of customization that involves creating changes in a separate file that are applied to the
application, making these changes easy to identify and easy to remove.

Customization can also involve more direct changes to the application that change (and do not preserve) the
original configuration of the application.

Extensibility Workbench Versus Designer Workbench in the Web UI Framework

The Extensibility Workbench is used to modify the UI while the application is live and running online. The
changes can be saved and later applied to the application EAR, if required. Use the Extensibility Workbench
to make changes to part of the UI. To create new screens while working in the Extensibility Workbench, access
the Designer Workbench through the Design new screens link at the bottom of the Extensibility Workbench.

9Sterling Commerce, Inc.

The Designer Workbench is also used by application developers to first create offline the screens that you can
modify using the Extensibility Workbench.

Extensibility Workbench of the Web UI Framework for Custom Developers

The Extensibility Workbench allows you to use WYSIWYG tools in an existing application to put overlays
on a screen’s user interface configuration.

The Extensibility Workbench allows the editing of out-of-the-box components on an existing screen.

Sterling Commerce, Inc.10

The Extensibility Workbench includes the following components:

• Extensibility Workbench

Used to extend an out-of-the-box screen. Access this tool from within the application by clicking Shift +
space bar. You can also turn off the Extensibility Workbench by clicking Shift + space bar.

• Designer Workbench

Used to design new screens. Access this tool from within the Extensibility Workbench by clicking the Design
new screens link.

After you access the Designer Workbench from the Extensibility Workbench, you can use the Back button
to return to the application. However, you will need to re-activate the Extensibility Workbench.

Screens designed in Designer Workbench have to be deployed and run in an existing installation of the
application to see the functional behavior. In the Extensibility Workbench, extensions are added to a screen
in a live application. If a change is made to a screen, the changes can be viewed instantly. To extend a screen
using the Extensibility Workbench, you have to navigate to the corresponding screen and then start extending
it.

Application without Extensibility Workbench:

Application with Extensibility Workbench after clicking Shift + space bar (tabs and link at bottom of screen):

11Sterling Commerce, Inc.

Application after maximizing Extensibility Workbench views by clicking plus (+) sign at bottom of screen:

Configuring the Web UI Framework Extensibility Workbench

If you are using Mozilla Firefox and the Mapping Preferences dialog box appears when you open the
Extensibility Workbench, you need to configure the application to access the supporting files for the Extensibility
Workbench. In your browser, access the add-ons menu (usually under the Tools menu) and enable the Sterling
Designer extension. A popup dialog box opens, asking you to install two add-ons (jsLib and the Sterling
Designer extension). Make sure that you install both of the add-ons, and then enable them.

Sterling Commerce, Inc.12

This option to install the add-ons is only available in Mozilla Firefox. Internet Explorer, the other browser
supported by the Extensibility Workbench, uses ActiveX for reading and writing files. In IE, make sure that
the ActiveX settings are correctly enabled.

When logging in to the application console from IE, if you get the Could not use ActiveX for file IO warning,
then the IE settings for ActiveX must be checked to ensure that all relevant settings are enabled. If these settings
are not enabled, you will not be able to view any folder displayed in the Mapping Preferences dialog box while
setting the workspace directory for the Extensibility Workbench.

Make sure that the server/site which is hosting the application is added under the secured/trusted sites list in
IE.

Using the Web UI Framework Extensibility Workbench to Modify a Widget

1. In the application, open the screen that you want to change.

2. Click Shift + space bar.

3. Review and accept the following terms and conditions:

The Extensibility Workbench launches if you accept the terms and conditions (provided you have also
completed the Directory to URL Mapping and you have associated a file for the screen). Any subsequent
use of the Shift + space bar hot key hides and then re-launches the workbench until the browser is refreshed
or a new screen is opened, in which case the Terms and Conditions window re-appears.

If you decline the terms and conditions, the workbench does not launch.

The tools of the Extensibility Workbench appear in different views.You might have to click the plus sign
button on the Extensibility Workbench toolbar to display all of the views.

4. Click the plus sign button to show all views or the minus button to minimize all views. When all of the
views are minimized, you can click the tab of a view to display just that view. When a view is displayed,
you can minimize the view by clicking the minus sign in the upper right hand corner of the view.

5. Before you can work with a widget on a screen, you need to select or associate the extension file for the
screen. The extension file stores the extensions (changes) to the screen. The Add extension file for screen
dialog box appears when you first try to work on a widget.

13Sterling Commerce, Inc.

The extension file contains metadata about your changes. Extension files are saved in your current working
directory. They can be viewed in the Files tab of the Palette & Files view.

When the Extensibility Workbench is launched for the first time, the current working directory is defaulted
to the directory entered during mapping. You can later change this in the Files tab.

a) In the Add extension file for screen dialog box, specify the extension file by either using the browse
button to select an existing file, or by typing the name of the file in the Extension file field.

Type the name of the file if you want to associate/create a new file. If you have already extended the
screen and have an extension file for the screen, you can browse for the file.

b) Click the OK button.

If a dialog box appears that includes the message Selected file contains source that does not match with
the current screen., click OK to overwrite the file or Cancel to choose another file. This message usually
means that you have chosen the wrong metadata file.

After you have saved the extensions to a screen and deployed those changes in the application, you do not
have to add the extension file to make further changes to the screen. The extension file will be automatically
loaded with the screen.

After you select this extension file, the following view actions occur:

• The Outline view populates with information about the widgets on the screen.
• The Screen Details View populates with information about the extension file.

The Extension Class Name field displays the name of the generated extension class. You can change this
name.

• The Properties view displays the original properties of the widget.

6. To add a widget to the screen, select the widget on the Palette tab. Right-click or left-click at the place on
the screen where you want the widget to appear.

When you add a new widget, the sciId property of the widget must include the default extn_ prefix. This
differentiates an extended component from an out-of-the-box component.

7. To change a widget, select it on the screen or in the Outline view.

Sterling Commerce, Inc.14

8. To change or create a widget property, do the following. For more information about widget properties,
refer to the Ext JS framework documentation at (2.2.1) http://www.extjs.com/deploy/ext-2.2.1/docs/ or
(3.0) http://www.extjs.com/deploy/dev/docs/.

• If you want to change the properties of an item, click the Refresh instances button in the Screen Details
view to make those property changes active.

If you want to change the properties of an existing item, a separate grid titled “Original Properties” appears
that displays the original property values of that item.

The “Original Properties” grid is not shown for any new component added through extensibility. Any
new properties added through extensibility are listed in a separate grid above the "Original Properties"
grid (if the component is present in the base screen).

You cannot change a property listed under “Original Properties”. However, you can override an existing
property or add new properties to an out-of-the-box component.

• To create a new property for an item, click the Add button in the Properties view. Before clicking the
Add button, the desired property should be selected from the dropdown list of available properties.

9. To save your changes in your project directory (but not deploy them), click the Save button in the Screen
Details view.

10. To work on another screen, go to the other screen and then re-activate the Extensibility Workbench by
clicking Shift + space bar.

11. After you have saved all of your screen extensions, you must deploy the changes for them to take effect in
the application.

Extensibility Workbench Tools of the Web UI Framework

The following table shows the tools to use for the different tasks that you can perform using the Extensibility
Workbench:

For more information about widget properties, refer to the Ext JS framework documentation at (2.2.1)
http://www.extjs.com/deploy/ext-2.2.1/docs/ or (3.0) http://www.extjs.com/deploy/dev/docs/.

Use this tool...If you want to...

Palette & Files view (Palette
tab)

Add widgets to a screen.

Palette & Files view (Data
tab)

Create input and output data sources for mashup layer files.

Palette & Files view (Files
tab)

Access the local file system.

Outline View (Components
tab)

View a directory-type listing of all the widgets on the screen.

The view populates after you specify an extension file and select or add an item.

Outline View (Components
tab)

Re-arrange UI components in a directory-type listing.

Outline View (Overlays tab)
Show overlays applicable for the screen.

15Sterling Commerce, Inc.

Use this tool...If you want to...

This shows all of the changes made with the workbench. It helps you view changes and
(if necessary) remove them.

The Click to View Overlays button displays overlays.

Collapse the Outline view to show just the top screen item (screen).

Expand the Outline view to show all of the screen items.

Properties viewView a list of the properties of the screen and any widget that is selected.

Properties view (Add tab)Add a property to a widget.

Screen Details viewShow the name of the screen that is being modified.

Screen Details view (Save
button)

Save an updated screen.

Screen Details view (Refresh
instances button)

Activate changes to the properties of a widget.

Screen Details view (Localize
button)

Access bundle files for localization.

Start or stop extensibility.

You can change screens (by selecting the appropriate menu option) without having to use
this button.

Display all views.

Minimize all views.

Design new screens linkLink to the Designer Workbench.

Designer Workbench of the Web UI Framework for Custom Developers

The Designer Workbench allows you to use WYSIWYG tools to build new screens for the application. It has
tools similar to the Extensibility Workbench, which is used to change the screens of an out-of-the-box installation
of the application.

Custom developers access the Designer Workbench by clicking the Design new screens link in the Extensibility
Workbench.

Note: Although you can access the Designer Workbench from an out-of-the-box installation of the application,
you are limited in the changes that you can make. Please contact Sterling Commerce Customer Support when
changing an out-of-the-box installation using the Designer Workbench.

Sterling Commerce, Inc.16

Creating New UI Screens Using the Designer Workbench in the Web UI Framework

Use the canvas in the Designer Workbench to create the actual user interface that will be used by an application.
Work with the canvas by dropping (adding) widgets from the Palette view of the workbench. You cannot use
the Extensibility Workbench to create new screens.

Use the buttons in the upper left hand corner of the Designer Workbench to do the following:

• New

Create a new screen.

• Save

Save the changes on a screen.

• Undo

Undo screen changes that you have not saved yet.

• Redo

Redo changes that you have undone using the Undo button.

Follow these guidelines when dropping widgets:

• Make sure that the widget is selected in the Palette view before you drop it.
• Make sure your cursor is over the canvas before you drop the widget on the canvas.
• Use the canvas tooltips to decide when to drop and how to drop the widget. You cannot drag and drop a

widget from the Palette view to the canvas.

For example, if your screen includes a panel, and you want to add a button to screen (but not to the panel),
make sure:

• Your cursor is not over the panel.

17Sterling Commerce, Inc.

• The tooltip reads Click to add button in screen and not Click to add button in panel or Click to add
button before panel.

• Use the Tree View to delete or re-arrange the widgets. To delete a widget, you must first right-click the widget
and select the delete option.

• Use the widget names in the Palette view to create preset properties, but right-click the widget in the canvas
to apply a preset property.

Designer Workbench Tools of the Web UI Framework

The following table shows the tools to use for the different tasks that you can perform using the Designer
Workbench:

For more information about widget properties, refer to the Ext JS framework documentation at (2.2.1)
http://www.extjs.com/deploy/ext-2.2.1/docs/ or (3.0) http://www.extjs.com/deploy/dev/docs/.

Use this tool...If you want to...

New buttonCreate a new screen.

Save buttonSave a new screen.

Undo buttonUndo changes that you made to the screen.

Redo buttonRedo changes to the canvas that you just undid.

Palette tabAdd widgets to a screen.

Data tabCreate data sources for sending data to input and output XML files. Mashup layer files use these
data sources.

Files tabAdd file access to a control.

Files tab (Options
button)

Configure the directory path to the project that will use the changes from the Designer Workbench.

Sterling Commerce, Inc.18

Use this tool...If you want to...

Files tab (Notify project
checkbox)

Immediately update your main project with changes that you make using the Designer Workbench.

CanvasView the workspace for the screen that you are creating by adding widgets.

Tree ViewView a directory-type listing of all the widgets on the canvas (screen).

Collapse the Tree View to show just the top screen item (screen).

Expand the Tree View to show all of the screen items.

Properties viewView a list the properties of the screen and any widget that is selected.

Properties view (Add
tab)

Add a property to a widget.

Diagnostics button
Check if a screen has any errors or warnings and see if a fix is available, using the Check results
dialog box.

For example, if you have not localized all of the controls in the current screen, the Check results
dialog box displays a list of controls that have not been localized. To resolve this, click the icon
under the Fix? column, which directs you to the Localization Panel, where you can localize the
controls.

Mashups button
Create mashup layer files.

This button displays the Configure Mashups dialog box.

More button (View
Source menu option)

Display JavaScript source code for the screen.

More button (Export
Preferences menu
option)

View an encoded string of user preferences that are stored as cookies (like the project directory
and data source directory). This string can be copied and added to your JavaScript bookmarks.

If you clear all of your browser cookies, you can use this user preference information to restore
your original preferences.

More button (Localize
Screen menu option)

Localize widgets.

This button displays the Localization panel dialog box.

You must first save the screen before you can localize any widgets.

More button (Manage
Libraries menu option)

Load libraries into the Designer Workbench. To do this, you must add an include file.

Generate Code buttonGenerate code from the Code Template Generator window that you can use to update mashup,
Struts, JSB, resource, resource permission, and menu files.

19Sterling Commerce, Inc.

Using the Web UI Framework Designer Workbench from the Extensibility Workbench
to Create New Screens for Custom Developers

1. Access the Designer Workbench from the Extensibility Workbench by clicking the Design new screens
link in the lower right hand corner of the Extensibility Workbench.

2. In the Designer Workbench, click the New button to create a new screen.

3. Perform one or more of the following tasks:

• To add a widget, click on the Palette tab. Select a widget. On the canvas, right-click or left-click where
you want the widget to appear. You can later use the Tree View to rearrange the order of the widgets.

• Use the Tree View to see a directory-style overview of how widgets are arranged on the canvas. Also use
the Tree View to delete items or rearrange items (for example, move a column from one grid to another
grid, or move a button from one panel to another panel).

• Use the Properties view to add or change any widget properties. For more information about widget
properties, refer to the Ext JS framework documentation at (2.2.1)
http://www.extjs.com/deploy/ext-2.2.1/docs/ or (3.0) http://www.extjs.com/deploy/dev/docs/.

• (Optional) To create a mashup, click the Data tab. Configure an output data source. Then, click the
Mashups button to create the mashup xml file, which will include a reference to the output data source.

• (Optional) Use the Code Template Generator window to generate code that can be either pasted on the
Code Update page and updated in the application or (if the changes are permanent) saved in a relevant
file like mashup.xml or a Struts file for the application. Access the Code Template Generator window
using the Generate Code button near the More button.

4. To specify the project that will use the screens that you are creating and modifying, click the Files tab.

a) Check the Notify project checkbox.
b) Click the Options button.

Sterling Commerce, Inc.20

The Configure Project Directory dialog box appears.

c) Configure your project directory and click OK.

5. To save the new screen, click the Save button. The changes immediately appear in the project file.

6. To return to the Extensibility Workbench, use the Back button of your browser. You will have to re-activate
the Extensibility Workbench by clicking Shift + space bar.

7. After you create all of your new screens, you must deploy them as an extension to the application. For more
information, refer to the documentation on deployment.

Generating Copyright Comments with the Web UI Framework

Copyright comments can be added to all of the js and config.js files which get generated through the Designer
Workbench.

1. Click the More button at the top right of the Designer Workbench toolbar.

2. Click Copyright Comments.

This brings up a window to provide the copyright comments.

21Sterling Commerce, Inc.

3. Enter comments. For example, Copyright Sterling Commerce 2010.

4. Click the Save button to save the comments.

The comments are stored in the designer.preferences file at: C:\Documents and
Settings\<user-name>\.designer. If you delete the designer.preferences file, you need to provide comments
again, because this file holds all of your Designer Workbench-related preferences.

Sample comments generated:

/*
* Copyright Sterling Commerce 2010
* * * * * * * * * * * */

where

Copyright Sterling Commerce 2010

are the comments provided by the user.

Once this setup is done, all files (both old and new) that are saved through the Designer Workbench are
generated with these comments.

These copyright comments are also used and generated in the overlay files generated through the Extensibility
Workbench and the bundle files during localization.

Note: It is recommended that you delete browser cache files and cookies before entering copyright
comments.

Note: If you remove the provided comments in the Provide Copyright Comments dialog box and click
Save, or if you don’t do this setup, your screens will be generated the way they were being generated before,
that is, without any copyright comments.

Mashup Layer of the Web UI Framework

The mashup layer of the Web UI Framework connects end user actions at the front end of an application with
business logic at the back end of an application. The mashup layer handles authorization (permission control)
and transaction management tasks. You can configure the mashup layer in the Designer Workbench. The
mashup layer allows business calls for data handling to be used in more than one place (like a backend server
and a database) without being repeated.

The mashup layer is a core logic service layer that acts as an intermediate service layer to which both action
classes and JSON (JavaScript Object Notation) endpoints delegate. Examples include the Struts action classes
in the UI backend and the Ext JS JSON in the presentation layer. The action classes and the JSON endpoints
act as types of adapters, with the core logic contained in the service layer.

The mashup layer of the Web UI Framework is used to invoke business calls (XAPI calls) for data handling
to the backend server. Each XAPI call and multiple XAPI call are always called under one transaction. Each
multiple XAPI is under one transaction. The mashup layer is a mixture of XAPIs and other mashups.

Sterling Commerce recommends that you use the mashup layer of the Web UI Framework. If you do not use
the Web UI Framework, a mashup layer exists, but it does not support XAPI calls to the backend server.

Sterling Commerce, Inc.22

The mashup layer does not contain business logic. Its main purpose is to call different APIs and create data
that is user interface-specific. You can access the mashup layer from the user interface back end with different
development tools (Struts, DWR, custom servlet, etc.).

The mashup layer can do the following:

• Handle calls to the business logic layer to get or modify data.
• Take responsibility for bean creation and then invoke the business logic layer.
• Take responsibility for managing data transformation so that the output data is ready for use in the presentation

layer.

If errors occur in the following situations, check your mashup setup:

• If the mashup metadata is not found for a given mashup ID.
• If mashup metadata is not extensible, but an attempt is made to extend it.

Interface Contracts of the Web UI Framework - Mashup Layer

For more information, refer to the Java API documentation in your installation directory
(<INSTALL_DIR>/xapidocs/core_javadocs).

MethodsDescriptionInterface Contract

Includes the business logic of an application. If
transactional is set, then all of the business logic
in one mashup will be under one transaction.

ISCUIMashup • execute

Takes in SCUIContext, input object, and XML
in the form of metadata as an SCUIMetaData
object.A custom mashup implementation is plugged in

using an <app>_mashup.xml file. Any XAPI
service calls that an application might need for
its business logic will be included in the <API>
element of the <app>_mashup.xml file.

Mashup Layer Classes of the Web UI Framework

MethodsDescriptionClass

Helps load mashup during initial setup.
SCUIMashupRegistry • loadMashup

Loads all the XML files under the
/mashupxmls/<applicationId> directory in the
context root.

Reads all of the mashup XML files and creates
SCUIMashupMetaData objects per mashup ID.
It maintains this registry for all of the mashup
IDs according to whether a mashup is
extensible.

• loadExtnMashup

Loads all the XML files under the
/mashupxmls/<applicationId>/extn directory in
the context root.

Called by a Struts action to load / fetch
mashups.

SCUIMashupHelper • invokeMashup(String mashupId, SCUIContext
uiContext Object input)

If resourceId is given, calls the authorization
layer.

23Sterling Commerce, Inc.

MethodsDescriptionClass

If transactional is set to true, sets the
transaction context.

Instantiates the mashup implementation given
by the class name in the mashup.xml file.

• loadMashupXML

Called by the startup servlet.

Mashup XML Metadata of the Web UI Framework

A mashup configuration is an XML file that you create in the Designer Workbench. This XML file includes
the following items:

DescriptionType of ItemXML Item

Encloses all of the details of a mashup.
Elementmashups

Contains the definition of one or more individual mashups in an element
mashup.

Unique identifier of the mashup.Attribute (mashup tag)id

Indicates if the mashup is transactional in nature (true if transactional).
Used for the transaction management task. For all out XAPI calls, this
must be set to true.

Attribute (mashup tag)transactional

Describes the mashup.Attribute (mashup tag)description

Unique identifier of the resource which needs to be authorized. Used for
the authorization task.

Attribute (mashup tag)resourceId

If resourceId is not specified, authorization does not take place and the
mashup gets the permission by default.

Create resources in the Application Manager. If a mashup is given access
to all resources, the resourceId is not needed.

If a resourceId does not have permissions for a mashup, it cannot view
the results of that mashup. This will result in the message Mashup
invocation failed.

If two mashups have the same ID and namespace names, the mashup
is invoked only once. If two mashups have the same ID, but different
namespace names, the mashup is invoked two times.

If the permission for one tag of a mashup is revoked, the mashup cannot
be invoked.

Indicates if the mashup can be extended.Attribute (mashup tag)extensible

Has the following values:
Attribute (mashup tag)mashuptype

• XAPI (for XAPI calls)

• AggregateXAPI (for multiple mashups)

Sterling Commerce, Inc.24

DescriptionType of ItemXML Item

Includes a name attribute, which is the fully qualified class name of the
mashup implementation.

Tag (within mashup
tag)

classInformation

Indicates each XAPI within a multiple XAPI call in a mashup. Includes
an id attribute and a namespace tag (APINamespace).

Tag (within mashup
tag)

mashupRef

Defines namespace for each XAPI in a multiple XAPI call. Includes the
following attributes:

Tag (within mashupRef
tag)

APINamespace

• inputNS - input namespace

• outputNS - output namespace

The following are examples of mashup XML files:

<mashups>
 <mashup id ='m0001'
 transactional='true'
 resourceId='SC02187'
 extensible='true'
 mashuptype='XAPI'>
 <classInformation
name="com.sterlingcommerce.ui.web.framework.mashup.impl.SCUIMashupImplementer"
/>
 </mashup>
 <mashup ...
 />
 <mashup ...
 />
</mashups>

<mashups>
 <mashup id='STK-getAllFlightInfo' transactional='true'
 description="Flight, Flight Trips, Flight servicesmashup"
 mashuptype='AggregateXAPI'>
 <classInformation
name="com.sterlingcommerce.ui.web.platform.mashup.SCUIXAPIAggregatorMashup" />
 <mashupRef id="demoapp-stk-getFlightList">
 <APINamespace inputNS='flight'
 outputNS='flightOutput' />
 </mashupRef>
 <mashupRef id="demoapp-stk-getFlightServiceList">
 <APINamespace inputNS='flightService'
 outputNS='flightServiceOutput' />
 </mashupRef>
 <mashupRef id="STK-aggFlightTrip">
 <APINamespace inputNS='flightTrip'
 outputNS='flightTripOutput' />
 </mashupRef>
 </mashup>
</mashups>

25Sterling Commerce, Inc.

Configuring Mashups in Web UI Framework

1. Open the Designer Workbench.

2. Click the Data tab.

3. Configure an output data source.

4. Click the Mashup button to create the mashup XML file, which will include a reference to the output data
source.

Specifying Multiple XAPI Calls with the Web UI Framework

With the Web UI Framework, you can specify more than one XAPI call under one transaction, using the
mashup layer. When you do this, you create mashups within other mashups. Sterling Commerce recommends
that you use multiple XAPI mashup configurations only for fetch operations, and not for save operations.

1. Open the Designer Workbench.

2. Click the Mashups button to create or open a mashup.xml file.

3. For each XAPI, create mashups within the main mashup. Each of these mashups has an id as an attribute
to uniquely identify the mashup definition in the XML file. Each mashup also has a resourceId as an optional
attribute which is used for authorization and takes precedence over individual resource permission defined
under the main mashup element.

Also, these mashups contain one or more mashupRef elements, which are used to reference other mashups.
The mashup id referenced in the mashupRef element must be defined in the mashup.xml file before the
reference.

The mashupRef element can also have an endpoint as an attribute that will take precedence over endpoint
attribute in the mashup element. The endpoint attribute in the mashup element will in turn take precedence
over the one defined in the XAPI layer.

4. In each mashupRef tag within each XAPI mashup, use the APINamespace element to define the input
namespace and the output namespace for each API in the mashup. If this element is not given, the input
namespace defaults to the element name that serves as the input XML and the output namespace defaults
to the element name in the output XML.

If there are two mashups with the same id values and same namespaces, the calls are merged to only one
XAPI under the multiple XAPI call. If the namespaces are different, they are treated as separate XAPIs
under the multiple XAPI call.

Example of mashup.xml File with Multiple XAPI Calls in the Web UI Framework

<mashups>
 <mashup id ='m0001'
 resourceId='SC02187' extensible='true'
 endpoint='myHttpEndpoint'
 mashupType='XAPI'>
 <classInformation
 name="com.sterlingcommerce.ui.web.framework.mashup.impl.SCUIXAPIMashup"/>
 <API Name="getFlightList">
 <input>

Sterling Commerce, Inc.26

 ...
 </input>
 <template>
 ...
 </template>
 </API>
 <APINamespace inputNS='inputServiceKeys'
 outPutNS='outputServiceList' />
 </mashup>
 <mashup id= 'm0002'...
 />
 <mashup id= 'm0003'...
 />
 <mashup id='mm001' resourceId='SC05457' mashupType='AggregateXAPI'>
 <mashupRef id = 'mm001'>
 <APINamespace inputNS='inputServiceKeys'
 outPutNS='outputServiceList' />
 </mashupRef>
 <mashupRef id = 'm0002'/>
 </mashup>
 <mashup id='mm002' mashupType='AggregateXAPI'>
 <mashupRef id = 'mm001'>
 <APINamespace inputNS='inputServiceId'
 outPutNS='outputServiceListForId' />
 </mashupRef>
 <mashupRef id = 'mm001' />
 </mashup>
</mashups>

How the Mashup Layer Handles Authorization and Transaction Management in the
Web UI Framework

The mashup layer acts as a single point where authorization and transaction management are handled in a
consistent way, no matter what development tool you use to access it (Struts, DWR, custom servlet, etc.).

If a resource ID is not passed for authorization or if the request is not transactional, the request is not stopped.
Instead, it continues through to the mashup and business logic layers.

Each invocation of a mashup is considered to be part of a transaction.

The following graphic shows how the mashup layer handles authorization and transaction management, using
the Struts development tool as an example:

27Sterling Commerce, Inc.

Extending Mashups in the Web UI Framework

You can extend mashups using both differential and override extensibility. A mashup is extended on the basis
of the <mashup id> tag specified in the XML file. A XAPI mashup can be extended irrespective of the screen
being extended.

Sterling Commerce, Inc.28

Extending Mashups Using Override Extensibility in the Web UI Framework

You can extend a mashup using override extensibility both automatically and manually.

In both of the following procedures, you create a new mashup XML file to replace the mashup file that you
are extending. You can create that file in one of the following ways:

• Hand-coding.
• Generation of code using the mashup template in the Code Template Generator. The mashup id would be

the same as the id of the mashup file that you are extending. After you paste the generated code on the Code
Update page, you can test the behavior of the new mashup file in the application.

1. To automatically override a mashup, do the following:

a) Identify a mashup to be extended.
b) Go to the <INSTALL_DIR>/extensions/<app_dir>/webpages directory. This directory path is not part

of the out-of-the-box installation, and must be created by the user within the <INSTALL_DIR>/extensions
directory.

c) Replicate the relative folder structure (relative with regard to deployment) of the mashup XML file
containing the mashups to be created. The original mashup XML file is located in the
<INSTALL_DIR>/repository/eardata/<app_dir>/war/mashupxmls/<app_dir> directory.

d) Create a new XML file with the same name as the base file. Any mashup in this XML file that has the
same ID as the base file would override the base file mashup.

2. To manually override a mashup, do the following:

a) Create a new mashup XML file with entries for the mashup file to be overridden. This file can have any
name and does not need to replicate the relative directory structure of the XML file containing the
mashup to be extended.

b) Add this XML file to the <INSTALL_DIR>/extensions/<app_dir>/webpages directory.

If you have created a servlet class to register a JSB (JavaScript Builder), the code to include this mashup
XML file also can be written in the same servlet class. Else, you should create a servlet class to register
this mashup XML file. Use the method loadOverrideMashupXml in the SCUIMashupHelper class. For
more information, refer to the documentation on deploying extensions using JavaScript Builder files.

Extending Mashups Using Differential Extensibility in the Web UI Framework

To extend a mashup using differential extensibility, do the following:

1. Create a new mashup XML file with entries for the mashup file to be overridden. This file can have any
name and does not need to replicate the relative directory structure of the XML file containing the mashup
to be extended.

2. Add this XML file to the <INSTALL_DIR>/extensions/<app_dir>/webpages directory. This directory path
is not part of the out-of-the-box installation, and must be created by the user within the
<INSTALL_DIR>/extensions directory. The original mashup XML file is located in the
<INSTALL_DIR>/repository/eardata/<app_dir>/war/mashupxmls/<app_dir> directory.

If you have created a servlet class to register a JSB (JavaScript Builder), the code to include this mashup
XML file also can be written in the same servlet class. Else, you should create a servlet class to register

29Sterling Commerce, Inc.

this mashup XML file. Use the method loadIncrementalMashupXml in the SCUIMashupHelper class. For
more information, refer to the documentation on deploying extensions using JavaScript Builder files.

The new file’s contents are added to the respective mashups in the base screen based on the <mashup id>.

Creating and Extending a Struts XML File in the Web UI Framework

1. Create your app_extn_struts.xml file to extend the app_struts.xml file which contains all of your actions.

2. Navigate to the <Install Dir>/repository/eardata/<application name>/extn directory and re-name the
struts.properties.sample and struts.xml.sample files to struts.properties and struts.xml respectively.

The following shows struts.properties sample contents:

struts.action.extension=do

struts.devMode=true

The following shows struts.xml sample contents:

 <struts>

 <include file="struts-default.xml"/>

 <include file="scuiimpl_struts.xml"/>

 <include file="app_struts.xml"/>

 <include file="app_extn_struts.xml"/> <!--your extn struts must be
included after the app_struts.xml -->

</struts>

3. Include the app_extn_struts.xml file in the classpath. This can be done by one of the following ways:

• Create a WEB-INF/lib directory in the extn directory and copy your jar file containing the
app_extn_struts.xml file there. This step can be followed in case of single and multiwar deployments.

• Create a WEB-INF/classes directory in the extn directory and copy your app_extn_struts.xml file there.
This step can be followed in case of single and multiwar deployments.

• Create a jar file containing the app_extn_struts.xml file and run the Install3rdParty.sh script. This step
can only be followed in case of a single war deployment.

4. Run the buildear or buildwar utility to create the EAR/WAR file.

Creating a Menu Entry for a New Web UI Framework Screen Using the
Application Manager

You can use the Application Manager to create a new menu entry for a new Web UI Framework screen using
the following items:

• Resource

Sterling Commerce, Inc.30

• Menu
• User permissions
• Struts xml file

You can also create a new menu using the Code Template Generator of the Designer Workbench. Use the
Code Template Generator to access the Code Update page, where you create the menu using code that you
generated in the Code Template Generator. For more information, refer to the documentation on the Code
Template Generator.

1. Launch the application.

2. Launch the Application Manager.

3. In the Application Manager, click Applications > Platform.

4. Create a new resource by doing the following:

a) Double-click the Presentation item.
b) Double-click the Resources item.

The Resource Hierarchy appears.

c) Select the Sterling_Supply_Chain_Applications_Console item.
d) Click the Create New button (the green plus sign).

The Resource Details screen appears.

e) Type information for all the tags.

The Resource ID tag associates menus and resources. For the URL tag, type <package namespace in
your struts.xml file>/<action name>. For the Resource Type tag, select StrutsAction from the dropdown
list.

Note: The URL package name and the action name in the struts.xml file should be the same.

f) Click the Save button in the upper right corner of the Resource Details screen.

5. Create the new screen using the Designer Workbench.

6. Copy all of the generated files of the new screen to a new folder in the <app_dir>/webpages directory.
These files include the <newscreen>.json, <newscreen>.js, <newscreen>_config.js, and
<newscreen>.js.sample files.

7. Create a new menu by doing the following:

a) Double-click the Presentation item.
b) Double-click the Menu item.

The Menu Hierarchy appears.

c) Double-click the option for the menu where the new screen will be accessed.

For example, you would double-click the <application>_Admin_Menu option to create a menu under
the top menu or under an existing submenu like AdminPage.

d) Click the parent menu for the new menu entry.
e) Click the Create New Menu Item button (it includes a green plus sign).

The Menu Item Details screen appears.

f) Type information for all the tags.

For the Resource ID tag, select the resource with which this menu should be associated.

31Sterling Commerce, Inc.

8. Give user permissions by doing the following:

a) Double-click the Security item.
b) Double-click the Users item.

The User Search screen appears.

c) Select a user and subscribe to a group. For example, you could select <application>admin and subscribe
to the SYSTEM group.

d) Under the Security item, double-click the Groups item.

The Groups screen appears.

e) Edit the details for the user’s default group. For <application>admin, the default group is
<application>admingroup.

f) Double-click the default group name to display the Group Details screen.
g) Click the Permissions button for the Cross Application option.
h) Allow the user access to the new Struts action.
i) Save the changes and revert the group subscriptions to the default values.

9. Define the Struts action in a Struts config file which serves the page that is linked to where you click on
the menu. You can use the Struts file in the Code Template Generator to define the Struts action, which
you would then paste into the above mentioned config file. The resourceId should be the same as the
resourceId defined in the Application Manager.

For more information on how to include this file entry in the struts.xml file, refer to the information on
creating and extending Struts XML files.

The jar file for the install3rdParty.sh command should also contain the java class file for this Struts action.

<struts>
 <package name="<package-name>" namespace=/<namepsace>""
extends="struts-default">
 <action name="home" class="<struts-action-class>">
 <param name="RessourceId"><resourceId></param>
 <result name="success"><result-1></result>
 </action>
 </package>
</struts>

Deploying Web UI Framework Extensions

After you customize an existing screen using the Extensibility Workbench or create a new screen using the
Designer Workbench, you must deploy your changes in the application. You can use either Java Server pages
(JSP) or JavaScript Builder (JSB) files to deploy Extensibility Workbench changes. To deploy Designer
Workbench changes, you must use a Java Server page.

A JavaScript Builder file contains JavaScript library/package definitions. The Web UI Framework provides
programmatic control over this library with differential extensibility.

If minification is required, the directory structure in the <Install dir>/extensions/<app name>/webpages directory
changes slightly. For more information, refer to the documentation on compiling and minifying JavaScript
files.

Sterling Commerce, Inc.32

Deploying Extensions Created by the Web UI Framework Extensibility Workbench
and Designer Workbench Using a Java Server Page

Do the following to use a Java Server page (JSP) to deploy differential extensions (modified with the
Extensibility Workbench) or override extensions (created using the Designer Workbench):

Note: UNIX/Linux file paths are used in the following procedure.

1. Install the application and build a WAR file for it.

a) Deploy the WAR file on the server in the exploded format.
b) After the deployment finishes, start the application server.

2. Make sure that the changes made using the Extensibility Workbench or the new screen created using the
Designer Workbench have all the relevant JSON and JavaScript files generated and saved.

3. In the <INSTALL_DIR>/extensions folder, create the following subdirectory:

<application package name>/webpages

4. In the webpages subdirectory, replicate the directory structure of the screen that you want to extend (relative
to your deployment) and copy in all of the script files generated by the workbench.

For example, if you extend the Manage Flight Route screen (which uses the file path <application package
name>/flightRoute), you would copy all of the extension script files into the
<INSTALL_DIR>/extensions/<application package name>/webpages/<application package
name>/flightRoute directory.

5. Create a new JSP file with the same name as the base JSP file to launch these newly generated files in the
same folder.

Sample code for the original JSP:

<%@ taglib uri="/WEB-INF/scui.tld" prefix="scuitag" %>
<jsp:include page="/stk/include.jsp">
 <jsp:param name="title" value="manage flight route" />
</jsp:include>
<script>
 Ext.ns("sc.stk");
 sc.stk.fn = function() {
 var fr = new sc.stk.flightRoute();
 sc.plat.ScreenTitle.setText(fr.Header, null, "sc-panel-belowmenu-text");

 sc.plat.ScreenTitle.setText(fr.Header, null, "sc-panel-belowmenu-desc");

 fr.render("mainBodyPanel");
 }
<scuitag:includeJS
name="['/stk/flightRoute/flightRouteList_config.js','/stk/flightRoute/flightRouteList.js',
'/stk/flightRoute/flightRouteList_bundle.js']"
callBack="sc.stk.fn"/>
</script>
<jsp:include page="/stk/footer.jsp">

33Sterling Commerce, Inc.

Sample code for the new JSP (differential extensibility):

<%@ taglib uri="/WEB-INF/scui.tld" prefix="scuitag" %>
<jsp:include page="/stk/include.jsp">
 <jsp:param name="title" value="manage flight route" />
</jsp:include>
<script>
 Ext.ns("sc.stk");
 sc.stk.fn = function() {
 var fr = new sc.stk.flightRoute();
 sc.plat.ScreenTitle.setText(fr.Header, null, "sc-panel-belowmenu-text");

 sc.plat.ScreenTitle.setDescription(fr.Header, null,
"sc-panel-belowmenu-desc");
 fr.render("mainBodyPanel");
 }
<scuitag:includeJS
name="['/stk/flightRoute/flightRouteList_config.js','/stk/flightRoute/flightRouteList.js',
'/stk/flightRoute/flightRouteList_bundle.js','/stk/flightRoute/test_overlays.js'
,'/stk/flightRoute/test.js']"
callBack="sc.stk.fn"/>
//The new JSP also includes the newly generated files: test_overlays.js and
test.js
</script>
<jsp:include page="/stk/footer.jsp">

Sample code for the new JSP (override extensibility):

<%@ taglib uri="/WEB-INF/scui.tld" prefix="scuitag" %>
<jsp:include page="/stk/include.jsp">
 <jsp:param name="title" value="Custom Screen" />
</jsp:include>
<script>
 Ext.ns("sc.stk");
 sc.stk.fn = function() {
 var fr = new sc.stk.flightRoute();
/*
sc.extn.CustomScreen is the className for the new screen. It is available
as a property for a screen in the designer and defaulted to
sc.module.ClassName. The user can change it.
*/
 sc.plat.ScreenTitle.setText(fr.Header, null, "sc-panel-belowmenu-text");
/*
Here, the setText(arg1, arg2, arg3) method has been used to set arg1 as
title for a page as arg3="sc-panel-belowmenu-text". Here, a bundle entry in
the file: newScreen_bundle.js corresponding to Header would be picked up.
*/
 sc.plat.ScreenTitle.setDescription(" ", null, "sc-panel-belowmenu-desc");

 fr.render("mainBodyPanel");
 };
<scuitag:includeJS
name="['/extn/stk/flightRoute/newScreen_config.js',
'/extn/stk/flightRoute/newScreen.js', '/stk/flightRoute/newScreen_bundle.js']"
callBack="sc.stk.fn"/>

Sterling Commerce, Inc.34

//This JSP includes the files generated through the designer:
newScreen_config.js, newScreen.js and the localization file:
newScreen_bundle.js
</script>
<jsp:include page="/stk/footer.jsp">

6. Rebuild the WAR file.

The contents of the <INSTALL_DIR>/extensions/<application package name>/webpages directory are
copied to the following directory:

<INSTALL_DIR>/external_deployments/<application package name>/extn

This directory structure exists only if a WAR file is created and then exploded in the same
<INSTALL_DIR>/external_deployments directory.

Any JSP file within this directory that has the same name and at the same relative directory structure as the
base JSP would override the out-of-the-box JSP file.

7. Relaunch the application to display the extended changes.

Deploying Extensions Created by the Web UI Framework Extensibility Workbench
Using a JavaScript Builder File

Do the following to use a JavaScript Builder file to deploy differential extensions created using the Extensibility
Workbench. You cannot use this procedure to deploy override extensions created using the Designer Workbench.

Also, a JSB can be used if the base screen is launched through a JSB or through a JSB that uses a JavaScript
library to render screens.

Note: UNIX/Linux file paths are used in the following procedure.

1. Install the application and build a WAR file for it.

a) Deploy the WAR file on the server in the exploded format.
b) Start the application server by passing the following argument:

-Dwufdevmode=true

2. Make sure that the changes made using the Extensibility Workbench have all the Java files generated and
saved.

3. In the <INSTALL_DIR>/extensions folder of your installation directory, create the following subdirectory:

<application package name>/webpages

4. In the webpages subdirectory, replicate the directory structure of the screen that you want to extend (relative
to your deployment) and copy in all of the script files generated by the Extensibility Workbench.

For example, if you extend the Manage Flight Route screen (which uses the file path <application package
name>/flightRoute), you would copy all of the extension Java files into the
<INSTALL_DIR>/extensions/<application package name>/webpages/<application package
name>/flightRoute directory.

5. Create a new JSB file in the same folder to launch these newly generated files. The
<ExtensionJSFile>_overlays.js files should be included before the corresponding <ExtensionJSFile>.js

35Sterling Commerce, Inc.

files. You can use the JSB template of the Code Template Generator to create the code for this file. You
would have to paste the code into the new file.

Sample code for JSB:

<?xml version="1.0" encoding="utf-8"?>
<project name="scuiIDE"
 author="Sterling Commerce Pvt.Ltd">
 <target name="flight_route"
<!-- The name attribute in <target> is used to uniquely identify
this JSB in the application. It serves as its identifier.-->
 file="/extn/stk/flightRoute/test-all.js"
 loadAfter="flightService"
<!-- The loadAfter attribute in <target> is used to specify the
javascript library after which the current JSB should be rendered.-->
 allowDynamicLoad="true"
 debug="True"
 shorthand="False"
 shorthand-list="">
 <include name="/extn/stk/flightRoute/test_overlays.js"/>
 <include name="/extn/stk/flightRoute/test.js"/>
 </target>
</project>

6. Create a new servlet to register the new JSB file. The extn folder should be prefixed for LoadJSLibraryXml
and loadIncrementalMashupExtnXml calls.

Sample code for creating the servlet:

package jsbCreator;
import javax.servlet.ServletConfig;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import
com.sterlingcommerce.ui.web.framework.helpers.SCUIJSLibraryHelper;
import
com.sterlingcommerce.ui.web.framework.helpers.SCUIMashupHelper;
public class CreateServlet extends HttpServlet {
 private static final long serialVersionUID =
4693417985837892469L;
 public synchronized void init(final ServletConfig config)
throws ServletException {
 //loads the JSB specified at the path
 SCUIJSLibraryHelper.loadJSLibraryXml
("extn/stk/flightRoute/test.jsb", config.getServletContext());
 //loads the mashup XML specified at the path
 SCUIMashupHelper.loadIncrementalMashupExtnXml
("/extn/stk/flightRoute/test_mashup.xml", config.getServletContext());
 }
}

7. Package the servlet into a jar file.

8. Update the web.xml file with your customizations.

9. Relaunch the application to display the extended changes.

Sterling Commerce, Inc.36

The changes will appear overlaid on the base screen.

Compiling and Minifying JavaScript Files in the Web UI Framework

1. Run the jscompile command to get possible JavaScript compilation warnings using the sci_ant.sh command
from the <Install>/bin directory. This command works with the jsUtil.xml file in the same directory. This
command can include the following properties:

Note: This is an optional step and not a requirement for minification.

• gis.install: Installation directory path.

• srcDir: Source directory.

• errorOnly: Indicates whether to check for all warnings and errors (false) or for errors only (true). Defaults
to false.

• format: Output format - (h) for html/(t) for text. Defaults to t. If errorOnly is set to true, only html (h) is
the valid option.

• outputFile: Output file path. If file path is not provided or file doesn't exist. all warnings will be directed
to standard output.

• warningOptions: Warning options (comma separated). Default options: [onevar, undef, forin, debug,
browser, eqeqeq, newcap, evil]. For all warning options, see http://www.jslint.com/

For example:

./sci_ant.sh –f jsUtil.xml jscompile –Dgis.install=<Install Dir>
–DsrcDir=<Install Dir>/repository/eardata/platform_uifwk/<version>/war/platform

Note: If you are using sci_ant.sh, then gis.install becomes optional.

2. Combine your files into one file by minifying the files using the sci_ant.sh command from the <Install>/bin
directory. This command works with the jsUtil.xml file in the same directory. This command can include
the following properties:

• gis.install: Installation directory path.
• jsbDir: JSB directory path (mandatory).

• minify: Indicates whether files should be minified (true/false). Defaults to true (minify files). Optional.

• srcDir: Source directory. Will be used if input attribute is not specified in JSB. Optional.

• destDir: Destination directory. Will be used if input attribute is not specified in JSB. Optional.

• createIndividualFile: Indicates whether to create individual files (true/false). Defaults to false (do not
create individual files). Optional.

• jscompile: Indicates whether to get JavaScript warning/errors (true/false). Defaults to true (get errors).

For example:

./sci_ant.sh –f jsUtil.xml minify-js –Dgis.install=<Install Dir>
–DsrcDir=<Install Dir>/repository/eardata/platform_uifwk/<version>/war
–DjsbDir=<Install Dir>/repository/eardata/platform_uifwk/<version>/war/builder
 –DdestDir=<Install Dir>/repository/eardata/platform_uifwk/<version>/war

37Sterling Commerce, Inc.

where <version> is either 20 or 30 depending on if you are using Ext JS 2 or Ext JS 3 JavaScript-related
files/content.

Note: If you are using sci_ant.sh, then gis.install becomes optional.

If minification is required for extended JavaScript files, you should create an extn folder within the directory
where overlays/extensions are added (<install-dir>/extensions/<application name>/webpages). Copy all of
the files to be minified to that directory. You must follow the process of creating the same relative directory
structure for extensibility. You can then run the minification script successfully because the minified file
path in the JSB file does exist.

When you run the buildear/buildwar script, the following happens:

1. First, all contents of the overlays/extensions directory except the extn directory are copied to the
<application war>/extn directory.

2. Then, the contents of the extn directory in the overlays/extensions directory get copied to the <application
war>/extn directory. As the contents of this directory are copied last, it would override the contents
contributed by overlays/extensions directory in case of a conflict (same directory structure).

Customizing web.xml in the Web UI Framework

1. Run the buildear or buildwar utility to create the EAR/WAR file.

2. Copy the web.xml.sample file from the <INSTALL_DIR>/repository/eardata/<package-name>/extn directory
to the same directory with the file name "web.xml".

3. Modify the newly created web.xml files as needed.

4. If you need to add a new servlet or filter, package it in a jar file and run the
<INSTALL_DIR>/bin/install3rdParty.sh script to include this jar file in a classpath.

5. Run the buildear or buildwar utility to create the EAR/WAR file.

Changing Bundle Files in the Web UI Framework

You can change bundle files in one of two ways:

• Through localization.
• Through extensibility.

1. If you are changing a bundle file through localization, you must replicate the folder structure of your current
bundle file in the localization folder of the application.

For example, if your bundle file is at /folder1/folder2/x-bundle.js and you are localizing or replacing a
bundle entry for the fr-FR locale, then you should create a bundle file with the new values for the bundles
that you want to change and retain all existing values at /localization/fr/FR/folder1/folder2/x-bundle.js.

2. If you are changing a bundle file through extensibility, do the following:

a) Create your bundle files which only have the bundle entries that you want to replace.
b) Identify the target name of the JSB that is being used to render the screen whose bundles should be

replaced. The name should be entered in the loadAfter attribute of your JSB.

Sterling Commerce, Inc.38

c) Specify only the path and name of your bundle-js file in the extn directory in the tag <include name>.
For example:

<?xml version="1.0" encoding="utf-8"?>
<project name="scuiIDE"
 author="Sterling Commerce Pvt.Ltd">
 <target name="flight_route"
<!-- The name attribute in <target> is used to uniquely identify this JSB in
 the
application. It serves as its identifier.-->
 file="/extn/stk/flightRoute/test-all.js"
 loadAfter="flightService"
<!-- The loadAfter attribute in <target> is used to specify the javascript
library
after which the current JSB should be rendered.-->
 allowDynamicLoad="true"
 debug="True"
 shorthand="False"
 shorthand-list="">
 <include name="/extn/stk/flightRoute/flightRouteList_bundle.js"/>
 </target>
</project>

Designer Workbench of the Web UI Framework for Custom Developers

The Designer Workbench allows you to use WYSIWYG tools to build new screens for the application. It has
tools similar to the Extensibility Workbench, which is used to change the screens of an out-of-the-box installation
of the application.

Custom developers access the Designer Workbench by clicking the Design new screens link in the Extensibility
Workbench.

Note: Although you can access the Designer Workbench from an out-of-the-box installation of the application,
you are limited in the changes that you can make. Please contact Sterling Commerce Customer Support when
changing an out-of-the-box installation using the Designer Workbench.

39Sterling Commerce, Inc.

Control Details View of the Web UI Framework

The Control Details View of the Extensiblity Workbench displays basic control/parent screen details and
information like bindingData and datatype information. It shows some additional information that is not present
in the Original Properties grid.

The contents of the Control Details View are updated according to the selected control. The view does not
expand and collapse with all of the other Extensibility Workbench views, because of the large amount of space
that it uses.

The Control Details View includes two tabs:

• Control Details (default active tab)
• Parent Screen Details

Sterling Commerce, Inc.40

The Control Details tab shows detail about the selected control under the following categories:

• Control Properties

Shows the basic information about the selected control like sciId and xtype. The remaining config properties
are viewable under the Properties View. sciId is shown to uniquely identify the selected control. In case of
a column, the dataIndex is also displayed. If the column has an editor, then the editor xtype is also shown.

• Parent Screen Properties

Shows information that can be used to uniquely identify the control's parent screen.

• Control Datatype Properties

Displays information about the datatype which is computed from the binding or scuiDataType
attribute(provided during screen development).

• Control Binding Properties

Displays all the control bindingData properties. For example, if the selected control is a textfield, then source
and targetBinding would be displayed. In case of a combo, in addition to source and targetBinding the
optionsBinding would also be displayed(provided, these properties have been defined on the control during
development).

41Sterling Commerce, Inc.

The Parent Screen Details tab includes information about the className, superclass, sciId, namespaces, and
namespace description.

• Screen Config Properties

Displays screen information like sciId, screen class and superclass name.

• Target Namespaces and Description

Displays target namespaces (target bindings if namespaces not available) and their corresponding description
from the namespacesDesc attribute. If no description is provided, the value is left blank.

• Source Namespaces and Description

Displays source namespaces (source bindings if namespaces not available) and their corresponding description
from the namespacesDesc attribute. If no description is provided, the value is left blank.

Note: If there are no values available for Control Datatype properties, Control Binding properties and
Source/Target Namespaces and Description, then an empty panel with the same name would be populated.

Property Restrictions in Extensibility in the Web UI Framework

Certain properties should not be added during extensibility. If you add any of these properties from the Properties
View, then you would get a relevant message in the console (Mozilla Firefox only) and the property would
not be added in the Properties View. The property list is as follows:

• All controls: defid, id, _original_sciId, sciId, xtype.

Sterling Commerce, Inc.42

• text, number, bignumber, textarea, triggerfield, combo, time, date and spinner (ext 3 only): (restricted properties
listed in all controls) + vtype.

• containers and their sublcasses: (restricted properties in all controls) + items
• panel and its subclasses: (restricted properties in all containers) + tbar, bbar, buttons
• gridpanel and subclasses: (restricted properties in panels) + columns
• screen: (restricted properties in panels) + className, classId, superclassName, regXtype

Note: bindingData should not be added/modified for any base screen control. You can add/edit it if the control
is added during extensibility.

Note: Grid supports the extn_bindingData property, which can be used during extensibility (if the grid is a
base screen component) to add new fields to the Grid's store.

Adding Namespaces to Screens Using Extensibility in the Web UI
Framework

1. Select the screen in the Tree View.

2. Type namespaces in the Properties View.

3. For every source and target namespace added, you need to provide a name and description. It is recommended
that the names of all namespaces added during extensibility begin with extn_ to easily identify them.

Note: The methods getTargetModel(), getModel(), and setModel() can be called from the extension and
would return results from the combined model of the screen and extension.

43Sterling Commerce, Inc.

Building and Customizing Pages/Controls
with the Web UI Framework

Widgets of the Web UI Framework

The following tables describe the widgets that are available in the Palette view of the Designer Workbench
and the Extensibility Workbench. For more information about widget properties, refer to the Ext JS framework
documentation at (2.2.1) http://www.extjs.com/deploy/ext-2.2.1/docs/ or (3.0)
http://www.extjs.com/deploy/dev/docs/.

Most of the widgets can be used with both Ext JS 2.2.1 and Ext JS 3.0. Widgets that can be used with only
one version are identified. The graphic of the Palette shows the widgets available in Ext JS 3.0.

The following items cannot be created with widgets:

• Menus. Work with the Ext.menu.Menu class of Ext JS.
• Wizards. Wizards must be defined using an XML file.
• Repeating panels with radio buttons. Work with the Ext.form.Radio class of Ext JS.

Sterling Commerce, Inc.44

Controls

Note: For information about the Column widget, refer to the Grids section. This widget appears in the Controls
section in Ext JS 2.2.1 and in the Grids section in Ext JS 3.0.

DescriptionControl

Text that can identify other controls.Label

Text for input and display.Text

Date and time values.Date Time

Number values, up to 16 digits.Number

45Sterling Commerce, Inc.

DescriptionControl

Number values, more than 16 digits.
Big Number

The Big Number control works in the same way as the Number control, except that the
getValue() function returns a string.

The Big Number control is a customized control that is not documented in the online Ext
JS documentation. It extends the features of the Text control.

Multiple lines of text.TextArea

Provides default event handling, sizing, value handling, and other functionality.Field

Hides values in forms that need to be passed when you submit a form.Hidden

Connects outside of current screen (for example, a URL).Link

When clicked, causes an action.
Button

Note: Ext JS 3.0 does not support the Toolbar.Button, Toolbar.Splitbutton, or the menu
button.

Button that cycles through menus as you click it. Down arrow displays items for each menu.Cycle Button

Single box that flags a value as true or false.Checkbox

A type of checkbox that can be grouped with other radio controls and allows only one
control in a group to be checked.

Radio

A type of text field that includes a clickable trigger button.TriggerField

A type of text field that includes a list of values from which you can select.ComboBox

Time input field with a time dropdown tool and automatic time validation.Time

Date input field with a date picker tool and automatic time validation.Date

Shows progress of an operation.ProgressBar

Supports vertical or horizontal orientation, keyboard adjustments, configurable snapping,
axis clicking, and animation.

Slider

Display-only text field that is not validated or submitted.Display Field (3.0 only)

Provides a gap or a space in a layout.Spacer (3.0 only)

A number field with up and down arrows to increase or decrease the value in particular
increments.

Spinner (3.0 only)

Grids (3.0 only)

DescriptionGrid/Column

Panel that includes table-like columns and rows.Grid

A type of grid that allows cell editing on selected columns.EditableGrid

Normal/default column for a grid.Column

Renders boolean data fields.Boolean Column (3.0 only)

Sterling Commerce, Inc.46

DescriptionGrid/Column

Renders numeric fields according to a format string.Number Column (3.0 only)

Renders date fields according to a specified format.Date Column (3.0 only)

Renders values by processing a record's data using the XTemplate.Template Column (3.0 only)

Panels

Note: For information about the Grid and EditableGrid widgets, refer to the Grids section. These two widgets
appear in the Panels section in Ext JS 2.2.1 and in the Grids section in Ext JS 3.0.

DescriptionPanel

Container that can include:
Panel

• Bottom and top toolbars

• Separate header, footer and body sections

• Built-in expandable and collapsible behavior

• Prebuilt tool buttons that can be customized

Tree-structured representation of hierarchically organized data.Tree Panel

Groups form fields.Field Set

Groups tabs which can respond in unique ways to being activated and de-activated.TabPanel

Container that can include virtually any type of component.Toolbar (3.0 only)

Others

Use the Custom Component option in the Others section to add, to the screen, a component that you have
created (like another screen developed using the Designer Workbench). The Custom Component option gives
one screen access to a second screen whose components include that first screen (child-to-parent screen access).
Use the preset properties to specify this access.

Working with Widgets in the Web UI Framework

Use the Outline View (Extensibility Workbench) or the Tree View (Designer Workbench) to do the following
when you are working with widgets:

• Re-arrange widgets

Different rules apply to how you can re-arrange widgets. For example, you cannot move a button from a
standard panel to a standard grid. The Designer Workbench has built-in safeguards against the improper
re-arrangement of widgets. An error message appears if you try to move a button from a standard panel to a
standard grid. These safeguards help you organize your screen in the most functional way.

You can re-arrange widgets in the following ways:

• Change the order of widgets. For example, you can place a text field between two buttons.

47Sterling Commerce, Inc.

• Move a widget from the main screen to a panel, or from one panel to another panel. For example, you can
move a button from a standard panel to a field set. Or you can move a column from a standard grid to an
editable grid.

• Move one standard panel onto another standard panel.

If a screen uses a special tab sequence, re-arranging widgets might affect your intended sequence of actions
when you tab from one widget to another.

• Delete widgets

You cannot delete a widget from the base/out-of-the-box screen. You can only delete widgets that were added
using the Extensibility Workbench. If you delete a widget that was used to work with data (like a text box
or combo box), you will have to find another way to work with that data.

• Select a widget so that you can view or change its properties in the Properties view. If you are unsure of what
widget is being shown in the Outline or Tree View, click the widget on the screen, and a horizontal blue line
will show the location of the widget in the view.

You can always use the canvas to select a widget, but it is not as precise as using the Outline View or Tree
View. On the canvas, it might take you several clicks to select the right widget.

For more information about widget properties, refer to the Ext JS framework documentation at (2.2.1)
http://www.extjs.com/deploy/ext-2.2.1/docs/ or (3.0) http://www.extjs.com/deploy/dev/docs/.

Adding a Widget to a Screen with the Web UI Framework

1. Make sure the Palette tab is showing on the Extensibility Workbench or the Designer Workbench, and not
the Data or Files tab.

2. Click on a widget.

3. (Required only if a preset is required) Click the checkbox for the preset.

4. (Required only if a preset is required) Make any changes to the default properties of the widget by creating
a preset property.

5. Move your cursor to the screen and right-click or left-click to add the widget to the screen. A tooltip will
help confirm when you can add the widget.

In the Designer Workbench, the widget appears in two places:

• On the canvas, in the most upper left hand location.

For example, if you add a button to a blank canvas, it appears in the upper left hand corner of the canvas.
If you add a second button, it appears directly beneath the first button.

• In the Tree View, in a hierarchical pattern under the screen object.

In the Extensibility Workbench, the widget appears in two places:

• On the screen, in the location where you clicked.
• In the Outline view, in a hierarchical pattern under the screen object.

Sterling Commerce, Inc.48

Customizing Widgets in an Existing Installation with the Web UI Framework

1. Open an existing installation of the application.

2. Navigate to the screen where you want to work.

3. Click Shift + space bar to bring up the Extensibility Workbench.

4. Select the widget that you want to modify. In the following example, the tooltip shows that you can select
the Delete button.

Note: The button/links present in a base screen will continue to function unless you provide your action/click
handler in the Properties View and click on Refresh Instances to apply those changes (If you directly click
on a button/link on the screen, you might lose your changes if the action redirects you to another page).
Hence, it would be best to select and edit these controls through the Tree View instead of the screen.

5. Make any changes to the widget, using the tools of the Extensibility Workbench. In the following example,
you can add a property to the Delete button using the Properties view.

49Sterling Commerce, Inc.

6. Save your changes.

Hiding Fields with the Web UI Framework

1. In the Designer Workbench or the Extensibility Workbench, add a panel to the screen.

2. Set the hidden property of the panel to true.

3. Add to the panel the field that you want to hide.

4. Save the screen.

Accessing the Working Files of the Web UI Framework

Access the working files in your project (*.json screen files) using the Files tab.

The Files tab includes the following tools:

• The Options button enables you to specify the project directory where you store the project files.
• The button with three dots near the top of the tab enables you to display the contents of a different directory.
• The Notify project checkbox near the bottom of the tab enables you to immediately update your main project

with changes that you make using the Designer Workbench.

Viewing Screen Objects in the Outline or Tree View of the Web UI
Framework

Use the Outline view (Extensibility Workbench) or the Tree View (Designer Workbench) to collapse and
expand all or part of your list of screen objects. Collapsing and expanding the list does not affect the screen.

Sterling Commerce, Inc.50

You can do the following:

• Collapse the list so that only the screen object appears.

If you collapse the list, and then click on the plus sign for the screen object, only the first level of widgets
appear. This gives you a more general view of the screen.

• Expand the list to show all of the widgets.

If you are unsure of what widget is being shown in the Outline or Tree View, click the widget on the screen,
and a horizontal blue line will show the location of the widget in the view.

Outline view (example for a Search button):

Tree View (draft screen with panel, buttons, and field):

51Sterling Commerce, Inc.

Configuring Properties for Screens, Widgets, and Other Items with the
Web UI Framework

Use the Properties view in the Designer Workbench to work with the properties of the canvas widgets. The
Properties view settings work in conjunction with the settings in the Configure Properties dialog box.

For more information about widget properties, refer to the Ext JS framework documentation at (2.2.1)
http://www.extjs.com/deploy/ext-2.2.1/docs/ or (3.0) http://www.extjs.com/deploy/dev/docs/.

1. Select that widget in the Tree View.

Note: The button/links present in a base screen will still continue to function unless you provide your
action/click handler in the Properties View and click on Refresh Instances to apply those changes (If you
directly click on a button/link on the canvas, you might lose your changes if the action redirects you to
another page). Hence, it would be best to select and edit these controls through the Tree View instead of
the canvas.

2. Make sure that the tab for that widget is showing in the foreground of the Properties view, and not the tab
for the screen (which always shows in either the foreground or the background).

For example, if you select a trigger widget in the Tree View, tabs will show for both the screen and the
widget.

Sterling Commerce, Inc.52

3. To change the type or value of an existing property, click in the Type or Value field for that property, and
make your change.

For example, for a text field, you could change the Type from string to an expression (expr), and then
enter an expression in the Value field.

4. Add a property.

a) Use the down arrow by the Add button to select a new property. The dropdown list shows all of the
available properties for that widget that are not default properties.

b) Click the Add button.

The property appears with the other properties. The default type for that property appears in the Type
field.

c) If necessary, change the default type to an expression (expr).
d) Enter a value for the property.
e) Change the property name to a unique name.

53Sterling Commerce, Inc.

For example, for a button, you could add an enableToggle property, leave its type as boolean, and set its
value to true.

5. Continue working with the screen.

Providing Description Attributes for Binding Namespaces in the Web UI
Framework

The namespaces attribute on a screen provides information about the namespaces that have been used for
binding controls. Customizers can view the namespaces and their descriptions (if provided by the developers)
in the Control Details View of the Extensibility Workbench or the Properties window in the Designer
Workbench. They do not have to open the JavaScript source files to view the namespaces.

The namespaces attribute is an object with two attributes (source and target) which individually are arrays of
an object. In older screens, this attribute is an object with two attributes (source and target) which individually
are arrays of a string. You can use the Designer Workbench to update the namespaces structures of older
screens to use object arrays instead of string arrays.

The following shows the namespaces structure:

namespaces: {
 source: ['a', 'b']
 , target: ['c', 'd']
}
, namespacesDesc: {
 sourceDesc: ['description for a', 'description for b']
 , targetDesc: ['description for c', 'description for d']
}

The namespaces are saved under the namespaces object while the descriptions are saved under the
namespacesDesc object. There is a one-to-one mapping between the contents in namespaces and
namespacesDesc. This maintains backward compatibility with older applications that used a different namespaces
structure.

An older screen that uses the different namespaces structure is upgraded in the Designer Workbench and the
new structure is written to the JavaScript and JavaScript Object Notation files. The user receives a prompt,
and on confirmation the update finishes. Once updated, the file can no longer be opened in an older version
of the Designer Workbench. The new contents are written into the js and json files once the user saves them
using the Save button.

After updating, the description field for both the source and the target will default to, respectively, Description
for <source name> and Description for <target name>.

With older screens where namespaces were not provided in the Designer Workbench and not present in the js
and json files, this upgrade generates the following js file:

namespaces: {
 target: []
 , source: []
}
, namespacesDesc: {
 targetDesc: []

Sterling Commerce, Inc.54

 , sourceDesc: []
}

With these kinds of screens, you should provide a one-to-one mapping between the bindingData source and
target arrays with namespacesDesc. In extensibility, if namespacesDesc has non-empty values while namespaces
is empty, values would be displayed corresponding to bindingData.

Wizards of the Web UI Framework

Wizards guide users through the steps of a task in a specific sequence. Wizards are required for complex or
infrequently performed tasks where the user is unfamiliar with the steps involved.

You must use an XML file to create the flow definition of your wizard. You cannot use widgets on the Palette
tab of the Designer Workbench to create wizards. Also, you cannot use the Extensibility Designer to customize
wizards. After you create a flow definition, you must register it.

Once a wizard is created, all client/server communication must be Ajax-based.

The wizard flow definition includes the following items:

• Page

The visible part of the wizard. Each page must have a unique ID within the wizard.

• Rule

Determines the flow of the wizard. A rule can lead to:

• The next page in the wizard flow.
• Another rule.

• Transition

A connector which connects the wizard flow together. A transition can happen from page-to-page, page-to-rule,
rule-to-page, or rule-to-rule.

• Flow controller

The flow controller drives the wizard flow, and does the following:

• Determines the next wizard entity that is shown or evaluated, based on the current activity entity.
• Provides basic navigation capabilities like showNextPage and showPreviousPage.
• Tracks data to be remembered in a session when a page transition occurs.

Any wizard controller has to extend ISCUIWizardFlowController. The default wizard controller class is
com.sterlingcommerce.ui.web.platform.wizard.SCUIDefaultWizardController.

The wizard flow controller utility class orchestrates the flow based on the definition. You can plug in your
own flow controller or use the default flow controller.

• Breadcrumbs

Multiple pages can be grouped into the same category, which allows for the logical grouping of pages and
the reduction of steps shown in the breadcrumb.

You can add your own breadcrumbs to the application using utilities provided on the front end. The
sc.plat.ui.Wizard class contains all the utilities.

55Sterling Commerce, Inc.

Creating a Wizard with the Web UI Framework

Do the following in the flow definition XML file:

1. Specify the following attributes in the wizardEntities tag:

• Page
• Rule
• Transition

2. Specify the flow controller attributes in the wizard tag.

If you leave it blank or undefined,
com.sterlingcommerce.ui.web.platform.wizard.SCUIDefaultWizardController will be used as a controller.

3. Specify the breadcrumbs attributes in the categories tag.

4. Specify the Web UI Framework front end of the wizard.

On the UI, a wizard should be extended from the sc.plat.ui.Wizard class. A Wizard is a container with
specific functionalities related to wizards. A Wizard can contain wizard pages (instances of
sc.plat.ui.WizardPage or sc.plat.ui.ExtensibleWizardPage). With its card layout. a Wizard can switch
between multiple wizard pages.

The sc.plat.ui.Wizard class extends the sc.plat.ui.Screen class, which adds data binding capabilities to it.

The doAction method, doBreadcrumbAction method, and other methods have been provided in the class
for navigation.

This class also fires various events which can be used to redraw a breadcrumb panel or a navigation panel.

For more information refer to the JavaScript documentation for these classes.

Wizard Page Attributes in the Web UI Framework

The following table shows the page attributes to specify in the wizardEntities tag of your XML file when you
create a wizard:

ConstraintsDescriptionAttribute

Should be unique within the
wizard.

The ID of the wizard page.id

MandatoryThe JSP/Struts action which renders the page.impl

MandatoryIndicates the type of entity (PAGE or RULE).type

Only one PAGE or RULE
should be marked as true.

Indicates if this page is the starting entity of the wizard.start

Only one PAGE or RULE
should be marked as true.

Indicates if this page is the last entity of the wizard.last

Indicates the category of this page. Used for breadcrumbs.category

The namespace for which data would be sent out of this
page. If a rule originates from this page, the namespaces

namespace/name

Sterling Commerce, Inc.56

ConstraintsDescriptionAttribute

should be a superset of the defined namespaces for that
rule. There can be many such namespaces.

Wizard Rule Attributes in the Web UI Framework

The following table shows the rule attributes to specify in the wizardEntities tag of your XML file when you
create a wizard:

ConstraintsDescriptionAttribute

Should be unique within the wizard.The ID of the wizard rule.id

The rule implementation:
impl

• Java class

Implements a predefined interface.

• greex

Returns a string output.

MandatoryIndicates the type of entity (PAGE or RULE).type

Only one PAGE or RULE should be marked as
true.

Indicates if this page is the starting entity of the
wizard.

start

Only one PAGE or RULE should be marked as
true.

Indicates if this page is the last entity of the
wizard.

last

The allowed output from the rule. There can be
many such outputs.

output/value

The namespace for which data would be sent
to the rule. If this rule originates from a page,

namespace/name

the namespaces should be a superset of the
defined namespaces for that page. There can
be many such namespaces.

Wizard Transition Attributes in the Web UI Framework

The following table shows the transition attributes to specify in the wizardTransition tag of your XML file
when you create a wizard:

ConstraintsDescriptionAttribute

Should be unique within the
wizard.

The ID of the transition.id

Value should be same as ID
of one of the defined PAGE
or RULE types.

The ID of the source entity from which this transition
originates.

source

57Sterling Commerce, Inc.

ConstraintsDescriptionAttribute

Value should be the same as
the ID of one of the defined
PAGE or RULE types.

The ID of the destination entity at which this transition ends.target

Required when the originator of this transition is a rule. The
target is chosen based on the output which the rule
calculates.

output

The output of the rule.output/value

Value should be same as ID
of one of the defined PAGE
or RULE types.

The ID of the destination entity.output/target

Wizard Flow Controller Attributes in the Web UI Framework

The following table shows the flow controller attributes to specify in the wizard tag of your XML file when
you create a wizard:

ConstraintsDescriptionAttribute

Should be unique within the webapp.The ID of the transition.id

If the attribute is empty or does not exist, the
controller provided by the framework will be
defaulted.

The fully qualified class name of the flow
controller.

flowController

Defaults to false.
Indicates if the wizard pages are independent
of each other (true or false).

independentPages

If this is set to false, when a previous page is
shown, all pages until the requested page are
discarded. Data for the discarded pages is lost.
However, you can set up an event that saves
the discarded pages.

A URL which handles the wizard’s save action.finishImpl

Wizard Breadcrumb Attributes in the Web UI Framework

The following table shows the breadcrumb attributes to specify in the categories tag of your XML file when
you create a wizard:

ConstraintsDescriptionAttribute

Should be unique within the flow.The ID of the category.category.id

MandatoryThe resource bundle key.category.description

OptionalThe css class that needs to be applied to the
breadcrumb.

category.style

Sterling Commerce, Inc.58

Sample XML Flow Definition for Wizards in the Web UI Framework

Each page of a wizard needs to specify namespaces it can allow as output from that page. If a rule is invoked
after a page, these namespaces should be a superset of the namespaces defined for that rule.

<wizard id="<application>.sampleWizrd"
flowController="com.sterlingcommerce.ui.web.platform.wizard.SCUIDefaultWizardController"
independentPages="false">
<wizardEntities>
 <wizardEntity id="Page0"
 impl="/<app_dir>/wizard/wizardpage1.jsp" last="false" start="true"
 type="PAGE" category="SampleWizard.category0">
 <namespace name="ns1">
 <namespace name="ns2">
 <namespace name="ns3">
 </wizardEntity>
</wizardEntities>
 <wizardTransitions>
 <wizardTransition id="NewTransitionId6" source="Page0" target="Rule"/>
 <wizardTransition id="NewTransitionId9" source="Page1" target="Page3"/>
 <wizardTransition id="NewTransitionId10" source="Page2" target="Page3"/>
 <wizardTransition id="NewTransitionId7" source="Rule">
 <output target="Page1" value="1"/>
 <output target="Page2" value="2"/>
 </wizardTransition>
 </wizardTransitions>
 <categories>
 <category id="SampleWizard.category0"
description="category0" style="simple"/>
 <category id="SampleWizard.category1"
description="category1" style="simple"/>
 <category id="SampleWizard.category2"
description="category2" style="simple"/>
 </categories>
</wizard>

Preset Properties in the Web UI Framework

You can configure the properties of a Web UI Framework widget so that it has preset properties whenever you
create a new instance of it. This feature overrides the default properties of the widget.

For more information about widget properties, refer to the Ext JS framework documentation at (2.2.1)
http://www.extjs.com/deploy/ext-2.2.1/docs/ or (3.0) http://www.extjs.com/deploy/dev/docs/.

The Designer Workbench includes two types of presets:

• Out-of-the-box presets

These presets are shipped along with the Designer Workbench and are provided for a few widgets. They are
not editable.

59Sterling Commerce, Inc.

Although out-of-the-box presets are read-only, their contents can be copied, and used to create new editable
presets.

• Custom (user-defined) presets

You can define any number of custom presets for every widget, provided each one has a unique name. These
presets are stored in your project directory in the designer-metadata folder.

You can also work with presets in the Extensibility Workbench, but you have fewer options than you have
with the Designer Workbench.

With the Designer Workbench, you can work with presets in the canvas and in the following views:

• Palette
• Data
• Tree

In the Palette and Data views, the presets selected for a widget serve as the default preset until the browser is
refreshed or any other preset is selected from the list. Any widget dropped on the canvas is initialized with the
properties of the selected preset.

In the Tree View and on the canvas, selecting a preset for a widget results in the addition of the properties of
the preset to that widget. When applying a preset to a widget, no existing properties are deleted. Any new
properties from the preset are added to the widget. Preset properties that already exist in the widget are updated.

With the Extensibility Workbench, you can do the following with preset properties:

• Right-click on a widget in the Palette & Files View and select a preset to apply.
• Create new presets.

With the Extensibility Workbench, you cannot do the following with preset properties:

• Apply a preset to a control using the Outline View.
• Apply a preset to a control by right-clicking on the screen.

Creating Preset Properties with the Web UI Framework

1. Open the Designer Workbench.

2. In the Palette or Data Sources view, right-click any item and select the Configure Presets option.

The Configure Presets dialog box appears, with any preset properties for all of the widgets.

You can work with the presets of any customizable widget, and not just the widget that you right-clicked
in the Designer Workbench to display the Configure Presets dialog box.

Sterling Commerce, Inc.60

The Controls Tree view on the left side contains the widgets that have:

• Out-of-the-box properties that you cannot change, but which you can copy to make a new widget.
• Properties that can be customized with new presets.

When you work with new preset properties, you can save individual presets by clicking the Save button.
You can save all of the presets at once by clicking the OK button, which also closes the Configure Presets
dialog box.

3. To create brand new presets for a widget, do the following:

a) Right-click a widget in the Controls Tree view.
b) Choose the create new preset option.

A default name for the preset appears.

c) Select the new preset.
d) In the Preset Properties view, use the default name or type a new name for the preset in the Preset Name

field. Click the Save button to save a new name in the Controls Tree view.
e) To create a brand new property for a preset, type the name of the new property in the combo box adjacent

to the Add button, and click the Add button. A line for this property appears in the Preset Properties
view. In the Type field, you can make this new property a string value or an expression. In the Value
field, enter the string value or expression. Click the Save button to immediately save this new property,
or click the OK button to save all custom properties at the same time and also close the dialog box.

f) To create a property that is based on an existing property (like maxlength or labelStyle), select that
property from the combo box adjacent to the Add button, and click the Add button. A line for this
property appears in the Preset Properties view. In the Type field, you can make this new property a value

61Sterling Commerce, Inc.

of its default data type (number, boolean, etc.) or an expression. In the Value field, enter a value or
expression. Click the Save button to immediately save this new property, or click the OK button to save
unsaved presets and their properties at the same time and also close the dialog box.

4. To create a preset for a widget that is based on another preset of that widget, do the following:

a) Right-click a preset in the Controls Tree view.
b) Choose the create from selected option.

A copy of that preset is created.

c) In the Preset Properties view, type a new name for the new preset property in the Preset Name field.
Click the Save button to save the name in the Controls Tree view.

d) To create a preset property for a brand new property, type the name of the new property in the text box
with the down arrow, and click the Add button. A line for this property appears in the Preset Properties
view. In the Type field, you can make this new property a string value or an expression. In the Value
field, enter the string value or expression. Click the Save button to immediately save this new property,
or click the OK button to save all custom properties at the same time and also close the dialog box.

e) To create a property that is based on an existing property (like maxlength or labelStyle), select that
property from the combo box adjacent to the Add button, and click the Add button. A line for this
property appears in the Preset Properties view. In the Type field, you can make this new property a
value of its default data type (number, boolean, etc.) or an expression. In the Value field, enter a value
or expression. Click the Save button to immediately save this new property, or click the OK button to
save all custom properties at the same time and also close the dialog box.

5. When you are finished, and you have not closed the Configure Presets dialog box, do one of the following
to save preset changes.

A preset can contain a number of preset properties. A preset is a holder for all the properties that a user
enters. When you click the Save button, a preset is saved.

• Click the Close button. Only presets that you have saved using the Save button will be kept.
• Click the OK button. Any preset changes will be kept.

Applying Preset Properties with the Web UI Framework

1. Right-click on an existing or newly created widget on the canvas or in the Tree View.

The Apply Preset menu appears.

2. Move your mouse over the Apply Preset menu to display your preset options (you do not have to click). If
preset properties are configured for that widget, you will see the Default Properties option, an out-of-the-box
preset (if provided), and at least one preset option. If no preset option appears, you will need to create one.

3. To apply a preset option, select that option. To display the properties for that option in the Properties view,
re-click on that widget to refresh the Properties View with the new set of properties.

4. If you want to go back to the default properties for that widget, right-click the widget and select the Default
Properties option.

Sterling Commerce, Inc.62

Enabling a Child Screen to Access a Parent Screen with the Web UI
Framework

A screen can contain another screen within it. If the child screen requires access to the parent screen, you can
use a property in the child screen to access any component or property in the parent screen.

1. Click on the Palette tab in the Designer Workbench.

2. Right-click on the Custom Components option in the Others category.

3. Check the box by Parent Handle, which is an out-of-the-box preset provided with the Designer Workbench.

4. Move your cursor over the canvas until you see the tool tip Click to add customct in screen.

5. Right-click or left-click where you want to add this access handle.

6. Make any property adjustments to the handle. You cannot change the default property values of either
scOwnerScr (this) or xtype (panel) in the Configure Presets View. These default properties indicate a
handle from a child screen to a parent screen.

You can create other presets for this control.

Once you select this preset for a Custom Component and add the widget to the screen, you can view these
two properties in the Properties View below the Tree View. You can modify the property values or add
new properties, since you are now working on an instance of a Custom Component that was added to the
screen (and not on the preset) and that was initialized with your values.

Menu Customizations with the Web UI Framework

You can make menu customizations using the Ext.menu.Menu class of the Ext JS JavaScript framework.

The Designer Workbench does not have a widget for creating menus. However, you can create menus using
the menu template of the Code Template Generator, which you access from the Designer Workbench using
the Generate Code button. Code generated by the Code Template Generator is pasted or typed on the Code
Update page, where you finish the creation of the code for the new menu. For more information, refer to the
documentation for the Code Template Generator.

In Web UI Framework, to show a menu in a screen, you have to get menu data from the server and render it
on the browser.

In the default implementation, the tag includeMenu is provided, which can be called from JSP as:

<scuiimpltag:includeMenu></scuiimpltag:includeMenu>

This returns all of the menus configured for the logged-in user for which the user has permissions.

This tag returns menu data as JSON data (which can have text), a URL, JavaScript, or an image.

{
 text: 'First Menu',
 subMenu: [{
 text: 'First SubMenu',
 url: '/<app_dir>/<app_dir>/editRule.do'
 js: 'openpopup()',

63Sterling Commerce, Inc.

 img: 'my-cls-img'
}

To render this data, the default implementation is provided as a JavaScript file. To use this file, include the
following code in the JSP:

<script type="text/javascript"
src="<%=request.getContextPath()%>/platform/scripts/menuPaint.js"></script>

Use the following guidelines for menu customization:

• To change the UI look and feel of the menu, it has to use its own implementation instead of the application
menuPaint.js.

• To get menu data with more information, it has to use its own implementation instead of the application using
includeMenu tag.

Creating Smart Tags with the Web UI Framework

Smart tags are used to recognize certain types of data. For example, when you hover your cursor over a
component which has a smart tag, a list of actions that can be performed are displayed. The following graphic
shows an example of a smart tag:

To use a smart tag with a component, do the following:

Sterling Commerce, Inc.64

1. Register the smart tag actions for a component. Use the class sc.plat.SmartTagActionRegistry to add action
providers to the registry, using the following methods:

• registerActionProvider(obj, boolOverride)

A valid action provider object must contain a getActions method that accepts a reference of the type
Ext.Component. It must also contain an “id” property that is the unique ID of this action provider object.
The getActions method must return an array of objects that can have the following properties:

• categoryid: The unique ID of the category object.
• sequenceid: Sequence number which helps in sorting.
• item: Config of Ext.menu.Item

The following is an example of an object that can be returned by the getActions method. This example
uses the default ID category (DEFAULT).

{
 categoryid: 'DEFAULT',
 sequenceid: 1
 item: {
 text: 'Show a Ext.Window',
 handler: function(){
 new Ext.Window({
 width: 600,
 height: 500
 }).show();
 }
 }
}

• registerActionType(name, id)

Registers the type with the action provider object corresponding to the ID passed. Before doing this, you
must first register an action provider object with that ID using the registerActionProvider method.

The default UI displays the actions returned. You can use the default UI or override it by registering your
own UI provider.

2. Set the scSmartTag property for that component to one of the following values:

• true

The default implementation of the application gets the attribute in the source binding data. Objects that
are registered with a key equal to the attribute in the source binding data are fetched.

• A value such as the attribute in sourceBinding or targetBinding.

Objects that are registered with a key equal to the scSmartTag property are fetched.

Generating Code from Templates with the Web UI Framework

You can use templates (instead of hand-coding) to generate code for the following components:

• Mashup APIs

65Sterling Commerce, Inc.

• Struts actions
• JSB (JavaScript Builder)
• Resources
• Resource permissions
• Resource and permissions (combines resource and resource permission templates)
• Menus

The Code Template Generator helps save you development time. For example, you can use a code template
to update and test a mashup or JSB file, instead of hard-coding the file and re-starting the application server.

Access the Code Template Generator from the Generate Code button of the Designer Workbench to create
code from either default or custom templates. Templates include static (fixed) values, as well as variable values
that you can change. Code is generated in a manner similar to the manner in which code is generated for js
and config.js files.

After you create the code, you can update the code in a running application without stopping the server. To
update the code, you must copy it from the Code Template Generator and paste it in the file of the component
that you are updating. The Code Template Generator does not create a new file or add the generated code to
a file.

The Code Template Generator is optional, but Sterling Commerce recommends that you use it to reduce your
development time. You can copy and paste generated code into mashup, Struts, JSB, resource, resource
permission, and menu files, instead of hand-coding those files.

The Code Template Generator is not used for extending the application. However, you can use it to test override
extensibility changes made using the Designer Workbench.

A new template appears in the Create New Template window, which you access from the Code Template
Generator window. If you are creating a new template from an existing template, the Create New Template
window includes variables that can be used in the code template and reduce the number of required fields in
the Code Template Generator. If you are creating a new blank template, the new template is empty.

Code Template Generator of the Web UI Framework

Access the Code Template Generator from the Generate Code option in the top toolbar of the Designer
Workbench. The generator includes the following sections:

• Available Templates

Displays all of the available templates in a tree view. Includes default and custom templates. Default templates
are available for JSB (JavaScript Builder), mashups, Struts actions, resources, resource permissions, and
menus.

The applications that only consume the uifwk clump would only have the default JSB template available in
the existing Designer Workbench.

Create custom templates from copies of the default templates.

• Template Details

Includes variable text that you can change (the Template Input Variables section) and the code that is generated
from the template (the Generated Code section). The fields in the Template Input Variables section depend
on the type of template.

Sterling Commerce, Inc.66

For example, you could create a new JSB template from the default template by right clicking on default JSB
Template and then clicking on Create from selected. This brings up the Create New Template window. Then,
you would use the User Defined Variables section of the Create New Template window to add a new target_name
variable that uses the type expr and the value className. If you use the same code template, then you can
remove the Target Name input as this variable would now get the value of the className variable. Once saved,
this custom JSB template would have five input fields on the Code Template Generator window instead of the
six input fields that appear on the default JSB template. You could also modify the template and use the
className variable instead of the target_name variable, with the same result.

You cannot change a default template, but you can copy its contents to make a custom template. You can edit
a custom template or copy its contents to make another custom template.

The fields that appear in the Template Input Variables section depend on the component that you are changing.
The values that you enter in this section are assigned to the XML code that will be generated. These values
are also stored in the json file of the screen.

For example, in the above graphic showing a JSB template, stk is the value of the Project Name variable,
which is the label for the proj_name variable (JSB project) used in the code template. The stk value would be
assigned to its corresponding variable (proj_name) and replaced in the generated code.

The values in the Template Input Variables section appear in the Generated Code section after you click the
Generate Code button. You can directly change the generated code, but these changes will be lost if you click
the Generate Code button again during this session. The text in the Generated Code field is not saved to a file
on disk. You can copy the generated code to another file.

Clicking the OK button saves all of the screen’s changes to the screen’s json file and closes the Code Template
Generator. That is, all of the variable values for all of the templates are saved. Clicking the Cancel button
closes the Code Template Generator without saving changes to the screen’s json file.

67Sterling Commerce, Inc.

Default Code Templates of the Web UI Framework

The Web UI Framework includes the following templates that can be used to update different WUF screen
components during runtime:

• Mashup APIs
• Struts actions
• JSB (JavaScript Builder)
• Resources
• Resource permissions
• Resource and permissions (combines resource and resource permission templates)
• Menus

WUF uses template metadata to create (by default) XML code templates, which in turn are used to generate
XML code that is used by the application. However, you can define a custom template that is not an XML
template.

Template updates occur in the following ways:

• In the current login session (all templates). The changes last only as long as you are logged in. You can test
the changes while you are logged in.

• In the database (all templates except mashup and JSB). The changes are permanent unless you delete them.
Updates of components in the database are an alternative to updates of those same components in the
Application Manager.

The following sections describe how each template works and the XML elements for each kind of component.

Mashups

This updates only the mashup registry that is in the session (but not permanently in the database).

The generated template code can be used to update mashup.xml files, through copying and pasting. If you are
using Aggregator mashups or adding more attributes to the mashup code, you must define your own template.

The following variables are used in the default code template for mashups:

SourceDescriptionItem

User-entered.Uniquely identifies a mashup in the application.id

User-entered.Information about mashup.description

User-entered.API that is being used in mashup.apiName

User-entered.Input to mashup.input

User-entered.Output from server.outputTpl

Struts

Struts can be updated by adding the generated code to the application’s struts.xml file if:

• The struts.xml file is removed from the jar file in which it is packaged and placed under the WEB-INF/classes
directory.

Sterling Commerce, Inc.68

For example, in the case of stk, you would remove the stk_struts.xml file from the platform_ui_demo_app.jar
file and place it under the WEB-INF/classes directory.

Any changes that you make to the struts.xml file would be reflected in the application. If two actions have
the same ID, then the action that appears last in the file would be picked up in the application.

• The Struts dev mode is enabled (turned on automatically if the war file is built with -Ddevmode=true).
• The application is deployed as an exploded war file by using the following command:

buildwar.sh -Dwarfiles=<war file name> -Dappserver=<appserver> -Dnowebservice=true
 -Ddevmode=true

When using WebLogic 10, use the following command:

buildwar.sh -Dwarfiles=<war file name> -Dappserver=weblogic -Dnowebservice=true
 -Ddevmode=true Dwls-10=true

The following variables are used in the default code template for Struts actions:

SourceDescriptionItem

User-entered.Uniquely identifies an action in the application.actionName

User-entered.ID of mashup used/called.id

User-entered.Namespace used for input.input_ns

User-entered.Namespace used for output.output_ns

User-entered.JSP to load if the action is successfully completed.success_jsp_path

JSB (JavaScript Builder)

This updates only the JSB registry that is in the session (but not permanently in the database).

The following variables are used in the default code template for JSB (JavaScript Builder):

SourceDescriptionItem

User-entered.Name of the project.proj_name

User-entered.Identifies a JavaScript library. Should be unique in the
application.

target_name

User-entered.Directory/file path for JavaScript library.target_file

User-entered.Specifies the library after which the current JSB library
should be loaded.

loadAfter

User-entered.Path of the config.js file for the screen.config_js

User-entered.Path of the JavaScript file for the screen.js

User-entered.Path of the bundle JavaScript file for the screen.bundle_js

Resources

This updates or adds the resource in the current session and permanently in the database.

The following variables are used in the default code template for resources

69Sterling Commerce, Inc.

SourceDescriptionItem

User-entered.Application code.app_code

User-entered.Application name.app_name

User-entered.Resource ID of the parent resource.parent_resource_id

User-entered.Resource create type (for example, USER).resource_create_type

User-entered.Information about the resource.resource_desc

User-entered.Unique key of the resource.resource_key

User-entered.The action URL for the Struts action.url

Resource Permissions

This updates or adds the resource permissions both in the current session and permanently in the database.

The following variables are used in the default code template for resource permissions:

SourceDescriptionItem

User-entered.Resource permission key.resource_perm_key

User-entered.The ID of the group to which the user belongs.user_group_id

User-entered.The key of the group to which the user belongs.user_group_key

Resource and Permission

This combines the resource and resource permission templates. It updates or adds resources and resource
permissions both in the current session and permanently in the database.

The following variables are used in the default code template for resources and permissions:

SourceDescriptionItem

User-entered.Application code.app_code

User-entered.Application name.app_name

User-entered.Resource ID of the parent resource.parent_resource_id

User-entered.Resource create type (for example, USER).resource_create_type

User-entered.Information about the resource.resource_desc

User-entered.Unique key of the resource.resource_key

User-entered.The action URL for the Struts action.url

User-entered.Resource permission key.resource_perm_key

User-entered.The ID of the group to which the user belongs.user_group_id

User-entered.The key of the group to which the user belongs.user_group_key

Sterling Commerce, Inc.70

Menus

This updates or adds a menu both in the current session and permanently in the database. It provides an
alternative to the Application Manager method of creating a menu.

The following variables are used in the default code template for menus:

SourceDescriptionItem

User-entered.Information about this menu entry.menu_desc

User-entered.Key/ID used to uniquely identify this menu.menu_key

User-entered.The menu type.menu_type

User-entered.The menu key of the parent.parent_menu_key

User-entered.Key used to identify the source.resource_key

Creating a Custom Code Template with the Web UI Framework

Do the following to create a custom code template from either a default template or a custom template.

1. Open the Code Template Generator.

2. In the Available Templates section, right-click on a template in one of the following lists:

• Custom Templates
• Default Templates

3. Choose the create from selected option.

A new template appears in the Create New Template window. This window includes variables that can be
used in the code template and reduce the number of required fields in the Code Template Generator.

The Existing Screen Variables section show the default variables, which you cannot change (names and
values). The User Defined Variables section shows the variables that you created and which you can change
(names, types, and values).

71Sterling Commerce, Inc.

In the User Defined Variables section, you can add any properties to the name/value pairs that are part of
the default template. Click the Add button to add a user-defined variable, which defaults to the string type.
You can change the type to an expression (expr).

The above example screen shows a user-defined variable (projname) of the type expr and the value
className (className is a screen variable). The application uses the expression projName=className,
instead of the projName=”className” (if the type is string).

You can remove variables by right-clicking on a variable row and selecting the delete option.

4. In the Template Details section, define the following information:

• Template Name: Unique identifier of a template that also serves as the json file name.
• Variable Name: Name by which this parameter is referenced in the template.
• Variable Label: Text that would be displayed before the input field of this variable on the Code Template

Generator window.
• Variable Type: String or expression (expr).
• Value: String, variable, or expression that could be evaluated to return a value. This value would then

serve as the default value and be used to populate the value in the input field for this variable on the Code
Template Generator window. By default, this field is left empty.

You can add variables by clicking the Add New button. A new variable row appears.

You can remove variables by right-clicking on a variable row and selecting the delete option.

The bottom part of the Template Details section shows the Ext JS XTemplate that is used to generate the
code.

Sterling Commerce, Inc.72

5. Save the new template by clicking the Save button. The new template is saved as a json file (using the
template name) in the following directory:

<user’s project directory>/designer-metadata/templates

If you do not want to save the template, click the Cancel button.

After you click the Save button, the Create New Template window closes and the Code Template Generator
window appears. You can now use the new template to update the code for a screen component.

Creating a Custom Code Template Using a Blank Template with the Web UI
Framework

1. Open the Code Template Generator.

2. In the Available Templates section, right-click on the heading of the Custom Templates list.

3. Choose the create new template option.

A blank template appears, with the default template name. All of the variable values are blank except for
the variables in the Existing Variables section.

4. Add variables and enter values for them.

5. Click the Save button to create the Ext XTemplate for the new template. Click the Cancel button to exit
the Create New Template window without saving any of your work.

The Code Template Generator window re-appears.

6. Click the Generate Code button to create the custom template from the Ext XTemplate that you just created.

73Sterling Commerce, Inc.

New code appears in the Generated Code section of the Code Template Generator window.

7. Save the custom template by clicking the OK button. You can exit the Code Template Generator without
saving the custom template by clicking the Cancel button.

After saving a custom template, it appears in the Custom Templates list in the Available Templates section
of the Code Template Generator.

Editing a Custom Code Template with the Web UI Framework

1. Open the Code Template Generator.

2. In the Available Templates section, right-click on a template in the Custom Templates list.

3. Choose the edit template option.

The template appears, with variables in the Template Input Variables section and the code in the “Provide
the Ext XTemplate to use” section..

Sterling Commerce, Inc.74

In the User Defined Variables section, update the values for any of the variables or add new variables.

4. Click the Save button to update the Ext XTemplate for the template. Click the Cancel button to exit the
Create New Template window without saving any of your work.

The Code Template Generator window re-appears.

5. Click the Generate Code button to update the template.

New code appears in the Generated Code section.

75Sterling Commerce, Inc.

6. Save the updated template by clicking the OK button.

You can exit the Code Template Generator without saving the template by clicking the Cancel button.

Updating a Screen in a Running Application with the Web UI Framework

After updating the code of a screen component using a code template, you can update that component in a
running application without stopping the server (hot code replace).

In the update window, you can paste in code or type in your own code.

You can use this procedure when you are adding new code or updating existing code. To override existing
code, the new code must have the same resource ID as the existing code.

Hot code replace and code generation are completely independent of each other. Hot code replace enables you
to view your changes in the application without having to update any files or restart the server. This reduces
the total development time and also enables you to debug or test your changes to the application.

1. Make sure that you are running the application in Struts dev mode in exploded war mode (provide
-Ddevmode=true while building the war file). Also, when launching the application, wufdevmode should
be set to true.

2. Access the hot code replace screen using the following JSP:

/platform/dev/afc_updatePage.jsp (In case of platform AFC)

The Hot Code Update page for applications that consume the uifwk clump only would be at the following
relative path:

/platform/dev/uifwk_updatePage.jsp

Sterling Commerce, Inc.76

To enable hot code replace for any other component, applications need to provide their own dev JSP and
its implementation.

3. Click on the tab for the component that you want to update (Mashup, JSB, Resource, Resource Permission,
Menu).

4. Paste in the code that you generated for that component in the Code Template Generator. You can also
paste in code that you have hand-coded or directly type in code.

5. Update the application by doing one of the following:

• To update one component, click the tab for that component and click the Update button.
• To update more than one changed component (but not all changed components), click the tab for each

component and click the Update button.

Updating a resource, resource permission, or menu updates these components both temporarily in the current
login session and permanently in the database. Updates to a mashup or JSB are made only in the current
login session.

When you press the Update button, the changes are written to the URL of the application, where you can
test the changes.

Debugging Tools of the Web UI Framework

• Console

This appears at the bottom of the screen after you log in to the application. It includes the following features:

• Debug Console tab

This shows the actions that you ran while tracing actions using the Start Trace button (for more information,
see next bullet).

It also includes a panel for your test scripts. You can trap errors using these scripts.

77Sterling Commerce, Inc.

• DOM Inspector

This shows the paths for files used on the screen (JavaScript, css, and other files).

• Start Trace button

When you click this button, all of the actions that you take are recorded until you click the Stop Trace button.
The button toggles between the Start Trace and Stop Trace labels. Your actions are recorded on the Debug
Console tab of the Console.

To display this button, click Ctrl + F2.

• View Screen Model button

Clicking this button displays the Screen Model dialog box, which shows the following information:

• Ext JS-based screen information.
• The namespaces that are bound to this screen.
• The data for these namespaces.

You can view this information in one of the following ways:

• Text View

Shows the data in the JSON format.

• Tree View

Shows property information about the object in a directory view.

To display this button, click Ctrl + F2.

For an example of this button, do the following:

1. Click Admin Page > Manage Airport
2. Click the Search button.

Search results appear.

3. Click Ctrl + F2.
4. Click the View Screen Model button.

The Screen Model dialog box appears.

Sterling Commerce, Inc.78

5. In the Screens panel, click down the tree through sc.[application].airport and Source Namespace and select
the getAirportList namespace.

6. In the Model panel, click on the Text View and the Tree View to see different views of the data for the
getAirportList namespace.

Setting Up Backend Logging in the web.xml File in the Web UI Framework

The Web UI Framework allows you to enable logging for backend framework usages (Struts, mashups, and
API), based on the URI for each client. Once you have specified the logging, you can activate it using the
Start Request Log button in the debugging toolbar in the application.

For each logging request, the WUF backend logging will be done for the following:

• When a Struts action is called, the Struts action name is logged.
• When a mashup is invoked, the XAPIMashup class name and the API name/Flowname are logged.
• When a redirect happens or requestDispatcher is created.

1. Use the scui-request-log-enabled context parameter of the web.xml file to set up backend logging. By
default, this parameter is set to true. If it is not set to true, then the Start Request Log button does not
appear.

Sample web.xml entry:

<context-param>
 <param-name>scui-request-log-enabled</param-name>
 <param-value>true</param-value>
</context-param>

79Sterling Commerce, Inc.

2. Use the com.sterlingcommerce.ui.web.framework.utils.SCUIUtils class to provide static methods to check
if logging is enabled.

public static boolean isRequestLogEnabledInCtx(SCUIContext uiContext){
 return isRequestLogEnabledInCtx(uiContext.getWebContext().getRequest());
}
public static boolean isRequestLogEnabledInCtx(HttpServletRequest request){
 // read from context param if enabled
 // read from the boolean from isRequestLogEnabled
 return isRequestLogEnabledInCtx;
}
...
public static boolean isRequestLogEnabled(SCUIContext uiContext){
 return isRequestLogEnabled(uiContext.getWebContext().getRequest());
}
...
public
static boolean isRequestLogEnabled(HttpServletRequest request){
 // read from context param if enabled
 // read from the boolean from isRequestLogEnabled
 return isRequestLogEnabled;
}

3. Use the com.sterlingcommerce.ui.web.framework.context.SCUIContext class to actually log the message.
The utility method in this class can be used by the application to log its request-based messages. It will be
logged only if the scui-request-log-enabled context parameter is true and the user has started the request
log via the debugging toolbar.

Note: A runtime exception is thrown if the method is called when logging is not enabled by, for example,
another internal method.

...
public void setRequestLogMessage(String message){
 ...
 // check if log enabled and attribute already exists.
 this.setAttribute(SCUIConstants.REQUEST_LOG_MSG_PARAM_NAME, message);
}
...

4. A separate appender is used to put all request-based logging in a separate file. The requestinfo.log file is
available at <install>/logs or your default log location.

The log has to be enabled by one of the following actions:

• The -Dyfs.logall=Y command
• Enabling logging via the System Management Console.

If the log is not enabled, no logging will take place.

Sample log message:

2010-02-18 06:38:47,257:DEBUG :[ACTIVE] ExecuteThread: '0' for queue:
'weblogic.kernel.Default (self-tuning)':
Inside SCUIAction flightTrip
Getting Request dispatcher /stk/flightTrip/flightTrip.jsp [system]: requestlogger

Sterling Commerce, Inc.80

2010-02-18 06:39:08,806:DEBUG :[ACTIVE] ExecuteThread: '4' for queue:
'weblogic.kernel.Default (self-tuning)':
Inside SCUIAction getFlightTrip
Inside SCUIXAPIMashup com.sterlingcommerce.ui.web.platform.mashup.SCUIXAPIMashup

Api name is getFlightTripList
Getting Request dispatcher /stk/flightTrip/gft.jsp [stkadmin]: requestlogger

2010-02-18 06:39:09,013:DEBUG :[ACTIVE] ExecuteThread: '4' for queue:
'weblogic.kernel.Default (self-tuning)':
Inside SCUIAction getOrganizationList
Inside SCUIXAPIMashup com.sterlingcommerce.ui.web.platform.mashup.SCUIXAPIMashup
Api name is getOrganizationList
Getting Request dispatcher /stk/flightTrip/gol.jsp [stkadmin]: requestlogger

2010-02-18 06:39:11,833:DEBUG :[ACTIVE] ExecuteThread: '4' for queue:
'weblogic.kernel.Default (self-tuning)':
Inside SCUIAction airport
Getting Request dispatcher /stk/airport/airportScreen.jsp [stkadmin]:
requestlogger
2010-02-18 06:39:15,836:DEBUG :[ACTIVE] ExecuteThread: '4' for queue:
'weblogic.kernel.Default (self-tuning)':
Inside SCUIAction getAirportList
Inside SCUIXAPIMashup com.sterlingcommerce.ui.web.platform.mashup.SCUIXAPIMashup
Api name is getAirportList
Getting Request dispatcher /stk/airport/airportList.jsp [stkadmin]: requestlogger

2010-02-18 06:39:52,948:DEBUG :[ACTIVE] ExecuteThread: '4' for queue:
'weblogic.kernel.Default (self-tuning)':
Inside SCUIAction activateRequestLog [stkadmin]:
requestlogger

5. The Stop Request Log button comes up on the debugging toolbar when the Start Request Log button is
activated. Clicking the Stop Request Log button will stop the logging in the requestinfo.log file after a
final Struts action is called.

Enabling Backend Logging in the User Interface with the Web UI Framework

1. In the user interface, display the Start Request Log button by clicking Ctrl + F2.

The button appears in the debugging toolbar which appears in the upper lefthand corner of the screen.

81Sterling Commerce, Inc.

2. To enable logging, click the Start Request Log button.

The Console will not display any details about request logging. It will be available in the requestinfo.log
file either in the default log directory or in the log directory specified by the user during installation.

The button name changes to Stop Request Log.

Log messages will be created when a Struts action is called, when a mashup is invoked, and when a redirect
happens or a requestDispatcher is created.

3. To disable logging, click the Stop Request Log button. The request-based logging will stop.

The button name changes to Start Request Log.

State Management in the Web UI Framework

The Web UI Framework provides a mechanism for state management, which enables the application to
remember a user interface state and apply it across user sessions. You can implement state management with
either the default implementation of the Web UI Framework or with a pluggable custom implementation. You
can also customize the default implementation of the Web UI Framework.

The default Web UI Framework implementation of state management has the following features:

• The state is saved and restored from the database, where the PLT_USER_UI_STATE table contains the state
information.

• The UI state is stored on a periodic basis. The time period is configurable.

Note: Saving the UI state on every change is performance-intensive.

• You can control the list of components whose state is stored/restored.
• State changes are remembered/cached. If there are no state changes, then the state is not saved.

Sterling Commerce, Inc.82

• Utility methods are provided on both the client side and the server side to synchronously fetch the state. The
UI state is cached on the client side once it has been accessed, to avoid multiple round trips to the server.

• If a particular user is deleted, the state for that user is automatically deleted from the PLT_USER_UI_STATE
table.

Implementing State Management with the Web UI Framework

When you install the application that uses the Web UI Framework, a default implementation of state management
is provided.

In the Ext JS JavaScript framework, Ext.state.Provider is the abstract base class for state provider
implementations. This class provides methods for encoding and decoding typed variables, including dates and
definitions of the Provider interface.

If you want to provide your own implementation of state management, the Ext.state.CookieProvider class has
an example of this implementation.

The state is saved periodically by posting the data to a servlet, which in turn delegates the task to a class that
is specified in the web.xml file. The UI framework defines an interface which the class in the web.xml file
needs to implement.

<context-param>
 <param-name>scui-uistate-provider</param-name>
 <param-value>
 com.sterlingcommerce.ui.web.platform.state.SCUIStateProvider
 </param-value>
</context-param>

The default state provider works along with the Ext library in the following manner:

• Local caching of component states, for faster retrieval on subsequent actions.

Note: This might not be useful for multiple page applications.

• Saves the available/changed state into the database on page unload. This assumes that the session timeout
has not occurred.

• The Ext library automatically calls the get state method for all components which are state-aware.
• The Ext library automatically calls the set state method whenever the state changes for a component.

By default, the state management implementation is not registered with the Ext JS library. The implementation
needs to be registered by the application. This provides flexibility if the application does not require the UI
state to be persisted.

Interface Contracts of the Web UI Framework - State Management on the Client Side
and Server Side

The state management task has interface contracts on both the client side (JavaScript) and the server side (Java).

For more information, refer to:

• The Ext JS framework documentation at (2.2.1) http://www.extjs.com/deploy/ext-2.2.1/docs/ or (3.0)
http://www.extjs.com/deploy/dev/docs/.

• The Java API documentation in your installation directory (<INSTALL_DIR>/xapidocs/core_javadocs).

83Sterling Commerce, Inc.

MethodsDescriptionInterface Contract

Includes the following utility methods:Implements the Ext.state.Provider base
class for state provider
implementations.

SC.platform.state.StateProvider (client
side)

• Retrieves the state from the database,
given the ScreenName and the
ComponentName.Ext.state.Provider has the following

methods: • Retrieves a list of all component states
from a database, given a
ScreenName.

• get

Returns the current value for a key. • Persists a state to a database, given
a ScreenName and a
ComponentName.

• clear

Clears a value from the state.
• Clears a state, given a ScreenName

and a ComponentName.• set

Sets the value for a key.

An example of a custom implementation
of state management is in the
Ext.state.CookieProvider class.

Manages the saving and retrieving of
the UI state.

ISCUIStateProvider (server side) • getUIState(userId, componentId,
screenId, applicationId, uiContext)

Retrieves the state of the given
component.

Use one of the following methods to
implement this contract:

• getListOfUIStatesForScreen(userId,
screenId, applicationId, uiContext)

Retrieves the full list of state
information for all components
belonging to the specified screen.

• Make the following web.xml context
parameter entry:

<param-name>

scui-uistate-provider

</param-name>
• init(servletContext)

Performs initialization. Called only
once in the life cycle.

<param-value>

(Fully qualified class name of the
implementation)

</param-value> • saveUIState(uiState, uiContext)

Saves/persists the provided state
object.

• Call the setUIStateProvider utility
method of the SCUIStateHelper class.

• saveUIStatesList(uiStateList,
uiContext)

Saves/persists the provided list of
state objects.

Transaction Management in the Web UI Framework

The Web UI Framework provides tools for transaction management. This helps you decide how to start, end,
commit, and roll back transactions, which ensures data integrity.

Sterling Commerce, Inc.84

You can implement transaction management with either the default implementation of the Web UI Framework
or with a pluggable custom implementation. You can customize the Web UI Framework implementation of
transaction management. All customizations involve changes to the web.xml file and to the transaction
management interface contract of the Base UI Framework.

Transaction management is handled in the mashup layer of the Web UI Framework. The mashup layer also
handles authorization and connects the user interface of the application with the business logic (data layer).
More than one mashup can be defined within the mashup layer, and one mashup is one transaction. If one
mashup is nested within another mashup, the beginning and end of the parent mashup is one transaction.

Implementing Transaction Management with the Web UI Framework

You can implement transaction management in one of the following two ways:

• A custom implementation of transaction management that uses the interface classes of the Web UI Framework.

Applications need to register their implementation for the ISCUITransactionContextFactory class either as
a context parameter or by making a Java call to the method
SCUITransactionContextHelper.setTransactionContextFactory.

Registering can be done by either of the following methods:

• Calling the static setter method SCUITransactionContextHelper.setTransactionContextFactory
• Adding a context parameter scui-transaction-context-factory with the value as the implementation class

name. In this case, the helper class will instantiate the context factory.

<context-param>
 <param-name>scui-transaction-context-factory</param-name>
 <param-value>
 com.sterlingcommerce.app.TransactionContextFactory
 </param-value>
</context-param>

In both methods, the Web UI Framework will call the init method of the ISCUITransactionContextFactory
class just after registering it. Applications can use this method do some initializations for the factory.

Errors might occur if a factory class is not provided or if a class registered using the context parameter does
not implement the interface ISCUITransactionContextFactory. In either of these situations, if a transaction
context is requested, Web UI Framework will throw a SCUIException with the proper error message.

• The default implementation of the Web UI Framework. You can customize this implementation. Use the
following interface classes:

• YFSContext
• YCPUIAPIManager

The Web UI Framework provides the same transaction management functionalities as the previous version
of the application.

Interface Contracts of the Web UI Framework - Transaction Management

For more information, refer to the Java API documentation in your installation directory
(<INSTALL_DIR>/xapidocs/core_javadocs).

85Sterling Commerce, Inc.

MethodsDescriptionInterface Contract

ISCUITransactionContext defines the
behavior expected in any implementation of
transaction context in an application.

ISCUITransactionContext • begin

Called on the beginning of the current
transaction. Can be used to prepare
connections to data sources.

• commit

Commits all of the changes for the current
transaction. Called after the successful
execution of all of the tasks for the current
transaction.

• rollback

Called if any of the tasks for the current
transaction fails.You can roll back all of the
changes made during that transaction.

• end

Called when the current transaction ends.
You can use this method to close all of the
connections made to the data sources for
that transaction.

• addTransactionObject

Adds multiple connections to a transaction
context.

• removeTransactionObject

Removes connections to a transaction
context.

• getTransactionObject

Fetches an already-added transaction
object from the transaction context.

Defines the behavior expected in any
implementation of a Transaction Context
Factory in an application.

ISCUITransactionContextFactory • createTransactionContext

Creates a Transaction Context for a
transaction.You can either create a new
Transaction Context for fetch it from a
Transaction Context pool and return it.

• releaseTransactionContext

Called when a transaction finishes. This
method can either destroy a Transaction
Context or return it to the pool.

• init

Instantiates a class when the first call for a
Transaction Context is made. This method
is called once for a Transaction Factory
during instantiation.

• sessionDestroyed

Sterling Commerce, Inc.86

MethodsDescriptionInterface Contract

Called when a session is destroyed.You
can choose to perform an action based on
the session destroyed.

The ISCUITransactionContextFactory class
extends the ISCUISessionAware class,
which is a marker class that helps the
ISCUITransactionContextFactory class
register itself to the HttpSessionListener
implementation class.

Transaction management also includes the following helper class which an application needs for transaction
management-related tasks.

MethodsDescriptionClass Name

Acts as a controller for transaction
management.

SCUITransactionContextHelper • setTransactionContextFactory

Registers the transaction context factory of an
application.You can use this method to
initialize and register a factory during the start
of a web application.

For any transaction context request, the
SCUITransactionContextHelper class first looks
to see if a factory is set. If not, the class tries
to instantiate a factory using a context
parameter. If a parameter is not found, an error
is thrown. Once instantiated, the same instance
is used for further references unless another
context is set using the
setTransactionContextFactory method.

• getTransactionContextFactory

Returns the Current Transaction Context
Factory for an application. Returns null if no
Factory is set or loaded.

87Sterling Commerce, Inc.

Look and Feel in the Web UI Framework

UI Branding in the Web UI Framework

The Web UI Framework allows you to change the UI branding to your own brand name, including company
logos. You can also change the theme and other items. A sample application can be divided into the following
two parts:

• Themes
• Layout

Themes

All of the themes used in the Web UI Framework use CSS files that can be overridden by:

• Putting the overridden entries in a directory. A custom CSS file can be placed anywhere.

Use the IncludeCSS tag to override the CSS file. The IncludeCSS tag supports a locale. Use the localized
file of the CSS for the corresponding locale. The localized file can then be used to override the CSS.

Example:

<scuitag:includeCSS path="/sfs/resources/default/css/sfs-core.css" />

• Using the post authentication implementation (ISCUIPostAuthenticationProvider).

Layout

This is a sample layout that can be used as a starting point by an application. You can choose to design your
own custom layout but Sterling Commerce recommends that you follow this type of layout structure.

The screen layout can be divided into five different parts as shown below:

Sterling Commerce, Inc.88

A—Header
B—Menu
C—Page Header
D—Page or Screen
E—Footer

• Header—Consists of application name, company logo, static links, logged-in user's information, and a
background image.

Sample Header Layout with Spacing and Text Information:

• Menu—The Web UI Framework provides the capability to include menu in a screen. Users can call a JavaScript
function by passing the ID of the HTML element where the menu should be rendered. The menu entries are
fetched from getUserHeirarchy API for the logged-in user.

Sample Menu Layout with Spacing and Text Information:

89Sterling Commerce, Inc.

• Page Header—Consists of page title and one or more panels.

Sample Page Header Layout with Spacing and Text Information:

• Page or Screen—Consists of one or more panels.

Sample Page or Screen Layout with Spacing and Text Information:

Sterling Commerce, Inc.90

• Footer—Consists of static links and copyright information.

Sample Footer Layout with Spacing and Text Information:

91Sterling Commerce, Inc.

Specifying a Home Page when Building Screens with the Web UI
Framework

During login, the authentication provider fetches the home page to be displayed in the following manner:

1. It first looks for the home page entry in the forward URL which is fetched from the request parameter’s
scui-login-page-referrer attribute.

If the user is logging in for the first time, this attribute is set to null and the authentication provider looks
for the custom Home Page Provider class entry. Only if the user is logging again after browsing through
some pages, the authentication provider will first look for the home page to be displayed in the referral
URL. For example, after logging in, the user has browsed through some pages and then for checkout he is
again asked to re-enter the login information. Now, when the same user again tries to log in, the authentication
provider will first look for the page to be displayed in the referral URL.

2. If the forwarded URL is not defined, it looks for the custom Home Page Provider class context param
(scui-loginhomepage-provider) in the web.xml file.

If you have some custom logic on how to display the home page based on some validations, then you will
need to add this custom logic and validation in your Home Page Provider class. This class should implement
the ISCUIHomePageProvider interface. You will return the URI for home page in the
getHomePagePath(SCUIContext ctx) method.

Using this custom home page provider, you can specify multiple home pages.

You should add the context param entry for your custom Home Page Provider class in the web.xml file as
shown below:

<context-param>
 <param-name>scui-loginhomepage-provider</param-name>
 <param-value>com.sc.cp.MyHomePageProvider</param-value>
</context-param>

3. If the Home Page Provider class entry is not defined, it looks for the Default Home Page context param
(scui-loginhomepage-default) in the web.xml file.

If you do not have any custom logic or validations for displaying the home page, you can provide a default
home page to go to when the user is logged in. You should add a context param entry for the default home
page in the web.xml file as shown below:

<context-param>
 <param-name>scui-loginhomepage-default</param-name>
 <param-value>/<Web_Context_Root>/home.do</param-value>
</context-param>

4. If the Default Home Page entry is not defined, it will go to the home.detail page.

Adding Keyboard Shortcuts with the Web UI Framework

The Web UI Framework allows to you add keyboard shortcuts on the UI components. For example, you can
add a keyboard shortcut like CTRL+ALT+s for the Search button in the Search panel.

Sterling Commerce, Inc.92

Trigger keys are case insensitive. Pressing CTRl+ALT+S is the same as pressing CTRL+ALT+s.

To add a keyboard shortcut, you need to add the triggers config option when you are defining the config for
that particular Ext component. The triggers config parameter contains the following properties:

• triggerKey

Sequence of keys that forms the shortcut key.

• triggerFn

Actions that need to be performed when shortcut key is pressed on that component. For example, use doSearch
when you want the shortcut key to trigger a search.

• triggerFnScope (Optional)

Defines the scope in which the trigger function should be called. By default, the scope is the current component
(this).

• triggerKeySeparator (Optional)

separator key to be used for separating the sequence if keys defined for the shortcut key. By default, “+” is
used as the separator key.

For example, if you want to enable the CTRL + ALT + S shortcut key for the Search button in the Search
panel. The config for the Search panel will look like this:

items: [{
 xtype: "panel",
 . . .
 . . .
 . . .
 },
 buttons: [{
 . . .
 . . .
 . . .
 handler: this.doSearch,
 scope: this
 }]
 triggers: [{
 triggerkey: "Ctrl + Alt + s",
 triggerFn: this.doSearch,
 triggerFnScope: this,
 triggerKeySeparator: "+"
 }]
 }]

The triggers config parameter can contain an array of objects. For example, in the above example, if you want
to define keyboard shortcut for the Reset button in the Search panel, the triggers config parameter will look
like this:

triggers: [{
 triggerkey: "Ctrl + Alt + s",
 triggerFn: this.doSearch,
 triggerFnScope: this,
 triggerKeySeparator: "+"
 },

93Sterling Commerce, Inc.

 {
 triggerkey: "Ctrl + Alt + r",
 triggerFn: this.doReset,
 triggerFnScope: this,
 triggerKeySeparator: "+"
 }]

Supporting Multiple Browsers with the Web UI Framework

All of the browsers that Ext JS JavaScript framework supports by default are supported in an application. You
can add or delete certain browsers from this list.

Ext JS supports the following web browsers:

• Internet Explorer 6+
• FireFox 1.5+
• Opera 9+
• Safari 3+

Indicating Mandatory UI Fields with the Web UI Framework

The Web UI Framework provides a CSS class which allows an application to indicate a field as mandatory in
the Web UI Framework screens. The mandatory fields in the UI will be indicated or marked using an asterisk
symbol (*).

To indicate a field as mandatory, use the sc-mandatory class (defined in the
<Web_Context_Root>\platform\css\platform.css file) on the label config to indicate that a field is mandatory.

Sample Ext JS config for a label:

{
 xtype: "label",
 sciId: "lblClosedOn",
 text: "Closed On",
 cls: "sc-mandatory"
}

Adding Support for Custom Themes with the Web UI Framework

The Web UI Framework allows you to define your own custom themes. For example, you can have different
themes based on organization. If the organization key (OrganizationKey) for user x is xyz, then you can define
a new CSS file for this user as xyz.css. If that theme file exists, and the user is authenticated, the theme file
will be loaded. If it does not exist, the application will look for xyz's primary organization (PrimaryOrganization)
and load that organization's CSS file.

You can also add or modify these custom themes based on custom logic in the post authentication
implementation.

Sterling Commerce, Inc.94

For more information, refer to the Java API documentation for the ISCUIPostAuthenticationProvider interface
in your installation directory.

The following chart shows how the theme file is determined:

To add support for custom theme files:

95Sterling Commerce, Inc.

1. Set up your list of themes in an arrayList which will be added to the SCUITheme class. You can modify
this arrayList if you have access to the SCUIContext class. The arrayList is created from the custom CSS
file. For example:

private ArrayList customThemesList = new ArrayList();
public ArrayList getCustomThemesList() {
 return customThemesList;
}
public void addCustomThemes(String customTheme) {
 customThemesList.add(customTheme);
}

Include a reference to your arrayList in an implementation of the ISCUIPostAuthenticationProvider interface.
All of the custom themes can be added using the addCustomThemes method. For example:

public class SCUIPostAuthenticationProviderImpl implements
 ISCUIPostAuthenticationProvider {
 public SCUISecurityResponse postAuthenticate(SCUIContext uiContext) {
 ArrayList
list = uiContext.getUserPreferences().getTheme().addCustomThemes(<CUSTOM_THEME>);

 return new SCUISecurityResponse();
 }
}

The custom CSS file name, along with the full path of the file, should be passed as the argument to the
addCustomThemes method.

2. Implement the interface and the array list as a third party jar file to the application, using the install3rdparty.sh
script.

3. Define the CSS by either creating a new CSS or by overriding the existing CSS.

About Dashboards, Dashlets, and Registries

A dashboard is a page that consists of multiple components, mostly independent of each other. Dashboards
are reusable, customizable, can display different types of information at one place.

For example, dashboards can be used to present summarized views for a quick overview of various features.
Or dashboards can be used as a directory of navigation and action links. Or dashboards can be used as a parallel
processing engine where different components coexist and function independently.

Dashboard Components

A dashboard is composed of following two components:

A dashlet is an individual component that can be added to or removed from a
dashboard. They are a reusable unit of functionality.

Dashlet

A dashboard is a container consisting of multiple dashlets. It controls the way a
dashlet is organized in a dashboard.

Dashboard

Dashboards are controlled by metadata and are associated with two metadata registries:

Sterling Commerce, Inc.96

The dashboard registry contains the list of all available dashboards in an application.
You must register the dashboard metadata definition with the dashboard registry
before using it.

Dashboard Registry

The dashlet registry contains the list of all dashlet definitions in an application.
You must register the dashlet metadata definition with the dashlet registry before
adding the dashlet to the dashboard.

Dashlet Registry

Creating and Registering Dashboard Metadata

The dashboard metadata definition is XML-based.

• To create dashboard metadata, you need to define the dashboard metadata definition XML.
• To register dashboard metadata, call the registerDashboard() method of the SCUIDashboardManager class

(which is described in the Platform Javadocs resource).

Sample XML: Dashboard Metadata Definition

<Dashboards>
 <Dashboard id="myhomepage" title="My Homepage" tag="tag_1,tag_n"
 version="0.0.1">
 <Config>
 <Layouts currentLayoutId="twoEqualColumn">
 <Layout id="twoEqualColumn" type="column"
 previewIconUrl="/stk/img/dashboard/2col_preview.png">
 <Column id="d_one" width=".49"/>
 <Column id="d_two" width=".49"/>
 </Layout>
 </Layouts>
 </Config>
 <Dashlets>
 <Dashlet id="dashlet_one" parent="d_one" >
 </Dashlet>
 <Dashlet id="dashlet_two" parent="d_two">
 <Config numberOfColumns="1" >
 </Config>
 </Dashlet>
 </Dashlets>
 </Dashboard>
</Dashboards>

Attribute and element descriptions for the above sample are given below.

A unique identifier of the dashboard. This id used for checking resource permissions and
authorization. If a dashboard contains a dashlet for which the user does not have the permission,
that dashlet will not be shown to the user.

id

The title of the dashboard. It can be a bundle key which can be localized.title

A comma separated value of tag names of the dashboard. These tags are used to find dashlets
having matching tags. These related dashlets are available when you customize the dashboard.

tag

Note: You will be able to see other tags also, but by default, only dashlets with matching tags
will be displayed.

97Sterling Commerce, Inc.

The dashboard metadata version. It can be used in case of multi-tenancy to support different
versions of dashboard metadata.

version

The Config element is used to define configuration options used to render the dashboard. One
such configuration option is the layout of dashlets in a dashboard.

Config

Layouts are used to define layout strategies supported by a dashboard. It contains child elements
defining individual layout strategies. Currently, only a column layout is supported as a standard
layout of dashboard.

A list of all the dashlets to be displayed in the dashboard. Each dashlet can have following set
of attribute and elements:

• id. Reference id of the dashlet to be added to the dashboard.
• Parent. The layout container id in which the dashlet will be added.

Dashlets

Creating and Registering Dashlet Metadata

The dashlet registry contains the list of all dashlet definitions in an application. You must register the dashlet
metadata definition with the dashlet registry before adding the dashlet to the dashboard. Using the dashlet
registry, you can first register your custom dashlets and then add those dashlets to a dashboard.

The dashlet metadata definition is XML-based.

• To create dashlet metadata, you define the dashlet metadata definition XML.
• To register dashlet metadata, call the registerDashlet() method of the SCUIDashboardManager class (which

is described in the Platform Javadocs resource).

Sample XML: Dashlet Metadata Definition

<Dashlets>
 <Dashlet id="dashlet_one" title="Dashlet One" type="html" tag="tag_1">
 <Url>/stk/dashboard/dashlet_one.jsp</Url>
 <Imgurl>/stk/img/dashboard/dashlet_one_preview.png</Imgurl>
 <Description>
 Dashlet one description bundle key
 </Description>
 <Config numberOfColumns="3">
 </Config>
 </Dashlet>
 <Dashlet id="dashlet_two" title="Dashlet Two" type="extscreen" tag="tag_2"
 refreshable="Y">
 <Url>/stk/dashboard/dashlet_two.jsp</Url>
 <Imgurl>/stk/img/dashboard/dashlet_two_preview.png</Imgurl>
 <Description>
 Dashlet two description bundle key
 </Description>
 <Config numberOfColumns="2">
 </Config>
 <!-- Other metadata relevant to the dashlet can be added based on type
 and url ofthe dashlet -->
 <Group>
 <Section id="Airports" title="Airports" Icon="/stk/img/cog.png">
 <Link linkId="manage_airport" name="Manage Airports"

Sterling Commerce, Inc.98

 url="/stk/airport.do" />
 </Section>
 <Section id="Flights" title="Flight" icon="/stk/img/phone-icon.jpg">
 <Link linkid="manage_airport" name="Flights" url="/stk/flight.do" />

 <Link linkid="manage_airport" name="Flight Services"
 url="/stk/flightService.do"/>
 </Section>
 </Group>
 </Dashlet>
 <Dashlet id="dashlet_three" title="Dashlet Three" type="html" tag="tag_3">
 <Url>/stk/dashboard/dashlet_three.jsp</Url>
 <Imgurl>/stk/img/dashboard/dashlet_three_preview.png</Imgurl>
 <Description>
 Dashlet three description bundle key
 </Description>
 <Config>
 </Config>
 </Dashlet>
</Dashlets>

Attribute and element descriptions for the above sample are given below.

A unique identifier of the dashlet. This id is used to query a dashlet and its properties. It is
used by a dashboard definition to add a dashlet to it.

id

The title of the dashlet. It can be a bundle key which can be localized.title

The type of the dashlet is a metadata about the type of content returned by a dashlet URL.
By default, the Web UI Framework supports following types of dashlet:

• HTML. Response of type HTML must be a valid HTML document fragment. Following
examples illustrate various ways in which it can be used to render the dashlet UI: (1) A
fully rendered HTML fragment that can be viewed in a browser without any further
processing. (2) An iframe that can be used to safely embed widget from external websites.
(3) A scriptlet that can dynamically render the content in the container.

• extscreen. An extscreen is an ExtJS-based JavaScript UI rendering script. It can be used to
render dynamic and interactive UI components.

type

A comma separated value of tag names of the dashlet.tag

Setting this value to Y makes the dashboard refreshable and a refresh icon is shown in the
dashlet toolbox. When the refresh icon is clicked, the individual dashlet is refreshed.

refreshable

The URL used to get contents to render a dashlet. To render a dashlet into the dashboard, a
request needs to be made to the server. The request is made to this URL and the response is
rendered on the UI.

URL

The URL to the image to be displayed showing a preview of the content displayed by the
dashlet.

Imgurl

The description of the dashlet. It can be a bundle key which can be localized.description

99Sterling Commerce, Inc.

The Config element is used to define configuration options used to render the dashlet on the
UI. Some dashlets that do not require a configuration option may choose not to specify the
Config element. Note: In addition to the Config element, a dashlet can have other metadata
elements. In general, the Config is used to define UI properties but it can be used to hold any
kind of metadata.

Config

About the Dashboard and Dashlet User Interface

The Web UI Framework provides a default implementation for the dashboard user interface. The UI screen is
an ExtJS-based screen. It supports organizing dashlets in a column layout. The figure below shows the
organization of a column layout based dashboard.

The dashboard UI consists of following components:

• Header or title
• Action bar for dashboard-related actions
• Content body where dashlets are organized in a column layout

The Web UI Framework provide a default dashlet container UI that can be used along with the dashboard UI.
The figure below shows the sample dashlet container UI.

The dashlet container UI consists of following components:

• Header or title
• Toolbox in the header that contains three tools: close, refresh, and collapse

Sterling Commerce, Inc.100

• Content body that is rendered using the dashlet metadata definition. The dashlet URL is used to generate the
content body.

Creating the Dashboard User Interface

1. Create the JSON object for the dashboard and get the dashboard config.

For example,

String dashboardId = "MyDashboard";
JSONObject dashboardJSON;
String ctx = request.getContextPath();
SCUIContext uiContext = SCUIContextHelper.getUIContext(request, response);
Element dashboardEl =
SCUIDashboardManager.getInstance().getUserDashboard(dashboardId, uiContext);
if (dashboardEl == null) {
 throw new SCUIException("invalid dashbardID :" + dashboardId);
}
Element dasboardConfigEl =
SCUIDashboardManager.getInstance().getDashboardConfig(dashboardEl, uiContext);
dashboardJSON = SCUIJSONUtils.getJSONObjectFromXML(dasboardConfigEl, uiContext);
dashboardJSON = dashboardJSON.getJSONObject(dasboardConfigEl.getNodeName());

2. Render the dashboard config on to the UI.

For example,

<script type="text/javascript">
sc.plat.JSLibManager.loadLibrary("scuiPlatDashboard", function() {
Ext.onReady(function() {
var config = <%=dashboardJSON.toString()%>;
console.log('config is:', config);
var dashboard = new sc.plat.ui.Dashboard(config);
dashboard.render(Ext.getBody());
 });
});
</script>

Creating the Dashlet User Interface

Based on the dashlet type, you can create the dashlet user interface in two ways. For more information about
these methods, refer to the Platform Javadocs.

Choose one method:

• If the dashlet is of type html, the output of the dashlet URL must be a standard HTML code fragment.
For example,

<iframe height="260" frameborder="0" width=100% scrolling="no"
 src="../stk/modules/elements/news/iframe.html?format=300x250"

 marginwidth="0"marginheight="0"/>

101Sterling Commerce, Inc.

• If the dashlet is of type extscreen, the output of the dashlet URL must be a JavaScript code fragment,
which should declare createBody() function. This function should create and return a valid Ext widget
that will be rendered into dashlet body. For example,

function createBody() {
 return new Ext.Panel(...);
}

About Customizing and Resetting the Dashboard

Each dashboard user can customize the dashboard by adding a new dashlet or removing an existing dashlet.
A dashboard user can also customize the layout or reposition the dashlets in the dashboard.

Whenever a dashboard user customizes the dashboard, a new metadata gets generated.The newly generated
metadata is saved in each dashboard user's user preferences. Whenever a query is made by a client to the
dashboard metadata for a dashboard user, the user-defined metadata is provided instead of the default definition.
If a dashboard user did not customize the dashboard, then the default metadata definition is returned.

After customizing a dashboard, if a dashboard user wants to revert back to the default dashboard, a dashboard
user can do that by using the resetting the dashboard option. When a dashboard user resets the dashboard, all
the customizations that a dashboard user made to the default dashboard are removed and the dashboard user
gets back the default dashboard.

Customizing the Dashboard User Interface with the Web UI Framework

In the Web UI framework, you can customize the following attributes of the dashboard user interface:

• You can change the layout of the dashboard, including reorganizing and repositioning dashlets.
• You can add new dashlets and remove existing dashlets.

Each dashboard user has a personalized dashboard because all the customized dashboard metadata is saved
for each user in his or her user preferences. Once the user has customized a dashboard, the default dashboard
definition is not used.

1. In the Dashboard, click Customize.

The Customize Dashboard window is displayed.

Sterling Commerce, Inc.102

2. Make one of the following choices:

• To change the layout, use the Layout panel and select one of the options. To view your changes, click
Show Dashboard. To save your changes, click Save Layout.

• To reposition dashlets, drag-and-drop the dashlet to the new location within the dashboard.
• To remove a dashlet, select the one you want and click <X Insert Graphic>.
• To add a dashlet, use the Dashlets panel and select the tag from which to add the dashlet. A list is

displayed. Select the one you want to add and click Save Layout. To view your changes, click Show
Dashboard.

Resetting the Dashboard to the Default Dashboard Definition

Users with customized dashboards can restore the default dashboard definition. This procedure must be
completed if a new version of the application is installed that includes new dashboard definitions that users
want to access.

1. For each dashboard user, display user preferences and remove all customized dashboard definitions.

The default dashboard is displayed.

2. In the Dashboard, click Reset Dashboard.

3. In the Reset window, click Yes.

The dashboard is reset to the default definition. After an application upgrade, the default dashboard includes
any new definitions provided by the upgrade.

103Sterling Commerce, Inc.

Extending an Existing Dashboard By Adding New Dashlets in the Web UI Framework

You can customize/extend an existing dashboard by adding dashlets. Below is sample XML, with dashlet
metadata definitions:

<Dashlets>
 <Dashlet id="dashlet_one" title="Dashlet One" type="html" tag="tag_1">
 <Url>/stk/dashboard/dashlet_one.jsp</Url>
 <Imgurl>/stk/img/dashboard/dashlet_one_preview.png</Imgurl>
 <Description>
 Dashlet one description bundle key
 </Description>
 <Config numberOfColumns="3">
 </Config>
 </Dashlet>
 <Dashlet id="dashlet_two" title="Dashlet Two" type="extscreen" tag="tag_2"
 multiInstance="true" refreshable="Y">
 <Url>/stk/dashboard/dashlet_two.jsp</Url>
 <Imgurl>/stk/img/dashboard/dashlet_two_preview.png</Imgurl>
 <Description>
 Dashlet two description bundle key
 </Description>
 <Config numberOfColumns="2">
 </Config>
 <!-- Other metadata relevant to the dashlet can be added based on type
 and url of the dashlet -->
 </Dashlet>
 <Dashlet id="dashlet_three" title="Dashlet Three" type="html" tag="tag_3">
 <Url>/stk/dashboard/dashlet_three.jsp</Url>
 <Imgurl>/stk/img/dashboard/dashlet_three_preview.png</Imgurl>
 <Description>
 Dashlet three description bundle key
 </Description>
 <Config>
 </Config>
 </Dashlet>
</Dashlets>

Attribute and element descriptions for the above sample are given below.

A unique identifier of the dashlet. This id is used to query a dashlet and its properties. It is
used by a dashboard definition to add a dashlet to it.

id

The title of the dashlet. It can be a bundle key which can be localized.title

Sterling Commerce, Inc.104

The type of the dashlet is a metadata about the type of content returned by a dashlet URL.
By default, the Web UI Framework supports following types of dashlet:

• HTML. Response of type HTML must be a valid HTML document fragment. Following
examples illustrate various ways in which it can be used to render the dashlet UI: (1) A
fully rendered HTML fragment that can be viewed in a browser without any further
processing. (2) An iframe that can be used to safely embed widget from external websites.
(3) A scriptlet that can dynamically render the content in the container.

• extscreen. An extscreen is an ExtJS-based JavaScript UI rendering script. It can be used
to render dynamic and interactive UI components.

type

A comma separated value of tag names of the dashlet.tag

Setting this value to Y makes the dashboard refreshable and a refresh icon is shown in the
dashlet toolbox. When the refresh icon is clicked, the individual dashlet is refreshed.

refreshable

Setting this to true would allow the dashlet to be added to the dashboard multiple times.
This is an optional parameter and defaults to false.

multiInstance

The URL used to get contents to render a dashlet. To render a dashlet into the dashboard,
a request needs to be made to the server. The request is made to this URL and the response
is rendered on the UI.

URL

The URL to the image to be displayed showing a preview of the content displayed by the
dashlet.

Imgurl

The description of the dashlet. It can be a bundle key which can be localized.description

The Config element is used to define configuration options used to render the dashlet on
the UI. Some dashlets that do not require a configuration option may choose not to specify
the Config element.

Note: In addition to the Config element, a dashlet can have other metadata elements. In
general, the Config is used to define UI properties but it can be used to hold any kind of
metadata.

Config

To customize/extend an existing dashboard by adding dashlets, do the following:

1. Create the new XML file for the dashlets, using the above sample code as a guideline.

2. Do one of the following:

• Navigate to the <Install Dir>/extensions/<app-name>/webpages folder. Create the desired directory
structure and put your dashlet XML files here.

The XML files defined here are copied to the <application-war>/extn/<your directory structure> folder.

• Navigate to the <Install Dir>/repository/eardata/<app-name>/extn folder. Create the desired directory
structure and put your dashlet XML files here.

The XML files defined here are copied to the <application-war>/<your directory structure> folder.

3. Create a new servlet to load your XML files and add them to the user dashboard.

105Sterling Commerce, Inc.

Sample code:

//<dirPath> = <your directory structure> or extn/<your directory
structure> depending on procedure used.
String appId = SCUIUtils.getApplicationId(config.getServletContext());
String dashletsFilePath = “<dirPath>/dashlets.xml";
InputStream isDlts = servletContext.getResourceAsStream(dashletsFilePath);
SCUIDashboardManager.getInstance(appId).registerDashlet(isDlts);

4. Package this servlet into a jar file and use the second method in case of a multi-war deployment. In other
cases, you can use either method.

• Run the Install3rdParty.sh script from <Install Dir>/bin to include this jar file in the application.
• Navigate to <Install Dir>/repository/eardata/<app-name>/extn folder. Create the WEB-INF/lib folder.

Copy the jar file here.

5. Navigate to the <Install Dir>/repository/eardata/<app-name>/extn folder. Make an entry in the web.xml
file to load your servlet and ensure that it loads after your application initializer servlet by giving
load-on-startup a value of around 1000 or greater.

6. Run the buildwar/buildear command.

On launching the application, your new dashlets would be loaded and you would be able to view them
when you select the customize link on the dashboard.

Note: Existing dashboard config and layouts cannot be changed during dashboard extensibility. Only new
dashlets can be associated for a dashboard.

Note: To add a dashboard to an application, similar steps need to be followed. Below is sample XML,
with dashboard metadata definitions:

<Dashboards>
 <Dashboard id="myhomepage" title="My Homepage" tag="tag_1,tag_n"
 version="0.0.1">
 <Config>
 <Layouts currentLayoutId="twoEqualColumn">
 <Layout id="twoEqualColumn" type="column"
 previewIconUrl="/stk/img/dashboard/2col_preview.png">
 <Column id="d_one" width=".49"/>
 <Column id="d_two" width=".49"/>
 </Layout>
 </Layouts>
 </Config>
 <Dashlets>
 <Dashlet id="dashlet_one" parent="d_one" >
 </Dashlet>
 <Dashlet id="dashlet_two" parent="d_two">
 <Config numberOfColumns="1" >
 </Config>
 </Dashlet>
 </Dashlets>
 </Dashboard>
</Dashboards>

Sterling Commerce, Inc.106

A unique identifier of the dashboard. This id is used for checking resource permissions and
authorization. If a dashboard contains a dashlet for which the user does not have the
permission,that dashlet will not be shown to the user.

id

The title of the dashboard. It can be a bundle key which can be localized.title

A comma separated value of tag names of the dashboard. These tags are used to find dashlets
having matching tags. These related dashlets are available when you customize the
dashboard.

Note: You will be able to see other tags also, but by default, only dashlets with matching
tags will be displayed.

tag

The dashboard metadata version. It can be used in case of multi-tenancy to support different
versions of dashboard metadata.

version

The Config element is used to define configuration options used to render the dashboard.
One such configuration option is the layout of dashlets in a dashboard.

Layouts are used to define layout strategies supported by a dashboard. It contains child
elements defining individual layout strategies. Currently, only a column layout is supported
as a standard layout of dashboard.

Config

A list of all the dashlets to be displayed in the dashboard. Each dashlet can have following
set of attribute and elements:

• id. Reference id of the dashlet to be added to the dashboard.
• Parent. The layout container id in which the dashlet will be added.

Dashlets

About Chart Dashlets

Charts are a quick and easy way of presenting the summarized information. The Web UI Framework provides
FusionCharts as an all purpose charting library. Chart dashlets can be used for presenting the summarized data
(usually a list) to the user.

The purpose of a Chart dashlet is to provide a way to create a dashlet quickly from a given set of configuration
options. Given the appropriate input, a Chart dashlet can be used to plot line charts, bar charts, and pie charts.
This list is not inclusive and more types of charts can be created based on the input data source and configuration
options.

The following input is required to create and render chart dashlet:

Input data source is used to provide data to chart. Input data source must be a mashup
XML.

Input Data Source

107Sterling Commerce, Inc.

The chart configuration is used to render the chart from the input data source. It
contains attributes for extracting the relevant data from the input data source and
plot it on the chart. Different types of charts will have different configuration options.
Since Chart dashlets are based on fusion charts, the chart configuration options are
mostly Fusion chart configuration options.

Chart Configuration

Creating Chart Dashlets

To create a chart dashlet, you need to define the chart dashlet metadata XML.

Sample XML: Chart Dashlet Metadata Definition

<Dashlet id="graphdashlet" title="My Graph " type="extscreen">
 <Url>/platform/dashboard/graphdashlet.jsp</Url>
 <Imgurl>/stk/img/dashboard/graphdashlet.jpg</Imgurl>
 <Description>View data in Graph</Description>
 <Config>
 <Chart chartType="MSCombi2D" showAboutMenuItem="1"
 rotateValues="1" caption="Monthly Flight expenses" xAxisName="Month"

 yAxisName="Expense" yAxisMinValue="10" yAxisValuesStep="2"
 yAxisMaxValue="2000" numberPrefix="Rs." enableSmartLabels="1"
 enableRotation="1" showValues="0" useRoundEdges="1"
 formatNumberScale="1" showBorder="1" chartOrder="line,area,column"
 endAngX="35" endAngY="-20">
 </Chart>
 <Datasources>
 <Datasource mashupId="flightBookingGraphMashup" seriesName="expence"
 renderAs='Column'>
 </Datasource>
 </Datasources>
 <categories>
 <category label='JAN' />
 <category label='FEB' />
 <category label='MAR' />
 <category label='APR' />
 <category label='MAY' />
 <category label='JUN' />
 <category label='JUL' />
 <category label='AUG' />
 <category label='SEP' />
 <category label='OCT' />
 <category label='NOV' />
 <category label='DEC' />
 </categories>
 </Config>
</Dashlet>

Attribute and element descriptions for the above sample are given below.

Sterling Commerce, Inc.108

Specifies the type of screen being used for displaying the chart dashlet UI. By default, the
chart dashlet provided by platform will be of type extscreen.

type

The URL used to get contents to render the chart dashlet. Note: The Url for chart dashlet
should be /platform/dashboard/graphdashlet.jsp

URL

The attributes of this element are valid FusionCharts chart attributes. For various chart
specific attributes, refer to the FusionChart documentation.

Chart

A datasource is used to provide the dashlet with the relevant data to display as chart.
One datasource corresponds to one series to be drawn in the chart. Using multiple
datasources multiple series can be displayed in a chart. Moreover, a datasource
definition has metadata to call a mashup. The input to the mashup is the datasource
XML element and the output is expected to be an XML element. A datasource
element has following attributes:

• mashupId. The id of the mashup to be called.
• seriesName. Used to define the series name.
• renderAs. Used to define the series type.

Datasources/Datasource

Note: The Datasource output should be a valid dataset in the format expected by
FusionCharts. For example:

<dataset>
<set label="label_1" value="001" />
<set label="label_2" value="002" />
</dataset>

Specify the categories as required by FusionChart to plot data on the axes.categories

109Sterling Commerce, Inc.

Security with the Web UI Framework

Web UI Framework Security - Authentication

Authentication identifies users who have access to the application. It is the first step in the login process. It
occurs before you are authorized for resources in the application. Use the Application Manager to specify user
IDs and passwords.

All requests are authenticated unless the URI (universal resource indicator) is in the bypass list. This is sometimes
done for graphic files, cascading style sheets (css), and other items that support information that is already
protected by authentication.

With the Web UI Framework, you have the following options for implementing authentication:

• The default implementation, which includes support for single sign on (SSO).

If you are currently using the default implementation of authentication, and want to continue using that
implementation, you must use this option. The default implementation supports all existing authentication
features.

• A custom implementation where you plug in your own authentication implementation and do not use the
default implementation. A customized implementation can have additional authentication processes, such as
single sign on (SSO). You also can customize the post authentication mechanism.

You must use either the default authentication implementation or a customized authentication implementation,
but if you do not use the default post authentication implementation, you are not required to provide a
customized post authentication implementation.

• A custom implementation where you customize the default implementation.

With all options, the implementation is plugged into interface contracts, which have definitions of the behavior
expected with any authentication mechanism that can plug in to it. This ensures a consistent mechanism for
authentication, no matter how you are implementing it (custom or default). The interface contracts also have
definitions of the behavior expected with any post-authentication mechanism, which is called if the authentication
mechanism succeeds.

Authentication can be invoked in different ways:

• LDAP
• Database table

Sterling Commerce, Inc.110

The following picture shows the flow of authentication:

Web UI Framework Security - Implementing Authentication

When you implement authentication, you must first decide if you want to customize or use the default
implementation of authentication provided by the application. You have the following options:

111Sterling Commerce, Inc.

• The default implementation.

To use this implementation, just install the application.

• A customized implementation where you plug in your own authentication implementation and do not use
the default implementation.

• A customized implementation where you customize the default implementation.

Customizing Authentication

The custom authentication mechanism for the application consists of the AuthenticationProvider class that
implements the ISCUIAuthenticationProvider interface. AuthenticationProvider is plugged in using the context
parameter in web.xml as shown in the following example:

<context-param>
 <param-name>scui-authentication-provider</param-name>
 <param-value>com.app.MyAppAuthenticationProvider</param-value>
 </context-param>

The following shows an example of a custom AuthenticationProvider that uses the provider specified in the
web.xml example:

public class MyAppAuthenticationProvider
implements ISCUIAuthenticationProvider
 {
 public SCUISecurityResponse authenticate(SCUIContext uiContext)
 {
 //authenticate the user
 //set the SCUISecurityContext in uiContext
 //set the SCUIUserPreferences in uiContext

 }

 public void init()
 {
 //initialize the authentication mechanism.
 ...
 }

 public void sessionDestroyed(HttpSessionEvent sessionEvent)
 {
 //close the connection and release it back into the pool
 ...
 }
 }

Interface Contracts of the Web UI Framework - Authentication

For more information, refer to the Java API documentation in your installation directory
(<INSTALL_DIR>/xapidocs/core_javadocs).

Sterling Commerce, Inc.112

MethodsDescriptionInterface Contract

Defines the behavior expected in any
implementation of authentication in an
application.

ISCUIAuthenticationProvider • authenticate

Takes in the SCUIContext. The expected
response is in the form of the

AuthenticationProvider is plugged in to an
application using the context parameter in
web.xml:

SCUISecurityResponse object that
encapsulates the return status, the URL of
the page, exception, and error message.

The AuthenticationProvider class needs to
set SCUISecurityContext and

• <param-name>

scui-authentication-provider
SCUIUserPreferences in SCUIContext if
the user is authenticated.• <param-value>

com.app.MyAppAuthenticationProvider • init

Handles initialization, like loading the
security information or caching it. This

The ISCUIAuthenticationProvider class
extends the ISCUISessionAware class, which

method is called once, when
AuthenticationProvider is first set.

is a marker class that helps the
ISCUIAuthenticationProvider class register
itself to the HttpSessionListener
implementation class.

• sessionDestroyed

Closes all opened session-specific handles.

Interface Contracts of the Web UI Framework - Post Authentication

For more information, refer to the Java API documentation in your installation directory
(<INSTALL_DIR>/xapidocs/core_javadocs).

MethodsDescriptionInterface Contract

Defines the behavior expected in any
implementation of authentication in an
application.

ISCUIPostAuthenticationProvider • postAuthenticate

Takes in the SCUIContext. The expected
response (after post authentication) is an

AuthenticationProvider is plugged in to an
application using the context parameter in
the web.xml file:

SCUISecurityResponse object that
encapsulates the return status, the URL of
the page, exception, and error message.

• <param-name>

scui-post-authentication-provider

• init

Handles initialization, like loading the
security information or caching it. This• <param-value>

com.app.MyAppPostAuthenticationProvider
method is called once, when
PostAuthenticationProvider is first set.

Multiple PostAuthenticationProviders can be
set using the web.xml file. No order is

• sessionDestroyed

Closes all opened session-specific handles.maintained but if one PostAuthentication

The ISCUIAuthenticationProvider class
extends the ISCUISessionAware class,

fails, the request is redirected to the URL in
the forwarded page with the error.

which is a marker class that helps theMultiple PostAuthenticationProviders are set
using the web.xml param-name
scui-post-authentication-provider.

ISCUIAuthenticationProvider class register
itself to the HttpSessionListener
implementation class.

113Sterling Commerce, Inc.

MethodsDescriptionInterface Contract

When a session is invalidated or destroyed,
the sessionDestroyedmethod is called by
the listener to close the handles opened
during initialization.

Web UI Framework Security - Bypassing Authentication for a URI

You can set up the application to bypass authentication for URIs (universal resource indicators) that point to
graphic files, cascading style sheets (css), and other items that support information that is already protected
by authentication.

1. Open the web.xml file.

2. Add one or more parameters to the <context-param> tag:

• bypass.uri.endswith

Allows any URI ending with the specified text to be bypassed. You can use this parameter with js, css,
and gif files.

In the following example, any URI that ends with “.gif” would be bypassed:

<context-param>
 <param-name>bypass.uri.endswith.<application>.3</param-name>
 <param-value>.gif</param-value>
</context-param>

• bypass.uri.regex

Allows any URI that includes the specified wild card characters to be bypassed.

In the following example, any URI that includes “<app_dir>”, “/”, and at least one uppercase letter would
be bypassed:

<context-param>
 <param-name>bypass.uri.regex.<application>.1</param-name>
 <param-value>.*<app_dir>/[A-Z]+.*</param-value>
</context-param>

Web UI Framework Security - Authorization

Authorization enables you to grant permissions to a user for different resources. It occurs after you are
authenticated in an application.

With the Web UI Framework, you have the following options for implementing authorization:

• The default implementation.

If you are currently using the default implementation of authorization, and want to continue using that
implementation, you must use this option. The default implementation supports all existing authorization
features.

Sterling Commerce, Inc.114

• A customized implementation without the default implementation.
• A customized implementation of the default implementation.

With all options, the implementation is plugged into interface contracts, which have definitions of the behavior
expected with any authorization mechanism that can plug into it. This ensures a consistent mechanism for
authorization, no matter how you are implementing it (custom or default).

If you do not use the Web UI Framework default implementation of authorization, and no custom implementation
is provided, by default the user will have access to all resources.

Authorization uses a resource ID to see if a user has permission to use a resource. Resource IDs control access
to the Extensibility Workbench and Designer Workbench.

Authorization can be invoked in different ways:

• LDAP
• Database table
• A resource ID in the metadata of a mashup

To use a mashup, you must define a resource ID for the mashup to control the access of the mashup and give
it to the mashup.xml.

Web UI Framework Security - Implementing Authorization

When you implement authorization, you must first decide if you want to customize or use the default
implementation of authorization provided by the application. You have the following options:

• The default implementation.

To use this implementation, just install the application.

• A customized implementation without the default implementation.
• A customized implementation of the default implementation.

Sterling Commerce recommends that permissions for users be cached.

Customizing Authorization

The custom authorization mechanism for the application consists of the AuthorizationProvider class that
implements the ISCUIAuthorizationProvider interface and ResourcePermission that implements the
ISCUIResourcePermission interface. ResourcePermission is returned by the AuthorizationProvider class after
the authorization. AuthorizationProvider is plugged in using the context parameter in web.xml as shown in
the following example:

<context-param>
 <param-name>scui-authorization-provider</param-name>
 <param-value>com.app.MyAppAuthorizationProvider</param-value>
</context-param>

You can generate resource permission code using the resource permission template of the Code Template
Generator.

The following shows an example of a custom AuthorizationProvider that uses the provider specified in the
web.xml example:

public class MyAppAuthorizationProvider implements
ISCUIAuthorizationProvider

115Sterling Commerce, Inc.

{

 public boolean hasPermission(SCUIContext uiContext, String resourceId)
 {
 ISCUIResourcePermission getPermission(uiContext, resourceId);

 }
 public ISCUIResourcePermission getPermission(SCUIContext uiContext,
String resourceId)
 {
 //authorize the user from the SCUISecurityContext
 ...
 }
 public void init()
 {
 // initialize the authorization mechanism.
 ...
 }
 public void sessionDestroyed(HttpSessionEvent sessionEvent)
 {
 //close the connection and release it back into the pool ...
 }
}

Interface Contracts of the Web UI Framework - Authorization

For more information, refer to the Java API documentation in your installation directory
(<INSTALL_DIR>/xapidocs/core_javadocs).

MethodsDescriptionInterface Contract

Defines the behavior expected in any
implementation of authorization in an
application.

ISCUIAuthorizationProvider • hasPermission

Takes in SCUIContext and resourceId.
Returns true if the user in the

ISCUIAuthorizationProvider is plugged in to
an application using the context parameter
in web.xml:

SecurityContext has any permission to the
resource given by the resourceId.
Otherwise, it returns false.

• getPermission

Takes in SCUIContext and resourceId.
Returns an implementation of

• <param-name>

scui-authorization-provider

• <param-value>

com.app.MyAppAuthorizationProvider
ISCUIResourcePermission that contains
the permission for the given resourceId.

• init

Handles initialization, like loading the
security information or caching it. This
method is called once, when
ISCUIAuthorizationProvider is first set.

• sessionDestroyed

Closes all opened session-specific handles.

Sterling Commerce, Inc.116

MethodsDescriptionInterface Contract

The ISCUIAuthorizationProvider class
extends the ISCUISessionAware class,
which is a marker class that helps the
ISCUIAuthorizationProvider class register
itself to the HttpSessionListener
implementation class.

When a session is invalidated or destroyed,
the sessionDestroyedmethod is called by
the listener to close the handles opened
during initialization.

Defines the behavior expected in any
implementation of authorization for a given
resource ID in an application.

ISCUIResourcePermission • canRead

Returns true if the user has permission to
read for a given ResourceId. Otherwise, it
returns false.ISCUIResourcePermission is returned by

ISCUIAuthorizationProvider after the
authorization.

• canEdit

Returns true if the user has permission to
edit for a given ResourceId. Otherwise, it
returns false.

• canExecute

Returns true if the user has permission to
execute for a given ResourceId. Otherwise,
it returns false.

This could be the permission control that is
used for executing the mashup class.

Web UI Framework Security - Adding Login Pages

The Web UI Framework enables you to set up more than one login page. Login pages can be used for different
organizations or other groupings of users. You also can set up a customized implementation of multiple login
pages.

1. Install the application with the Web UI Framework.

2. Decide how you want to implement multiple login pages, using one of the following ways:

• The default implementation provided in the Web UI Framework.

If no customized login page provider is given, the default implementation reads the following web.xml
file <context-param> parameters:

<param-name>scui-login-page</param-name>
<param-value>/myapp/console/login.jsp</param-value>

• A customized implementation that is plugged into the Web UI Framework.

117Sterling Commerce, Inc.

3. For a customized implementation, specify your custom login page provider in web.xml using the
scui-login-page-provider parameter.

Example:

<context-param>
 <param-name>scui-login-page-provider</param-name>
 <param-value>com.app.MyLoginPageProvider</param-value>
</context-param>

This provider will be accessed by the getLoginPage() method of ISCUILoginPageProvider. The custom
implementation must use the interface contract defined in the ISCUILoginPageProvider class.

To implement the customized Java code, build a jar file that contains the Java class, and then install the jar
file using the install3rdparty.sh script. To implement this customization, rebuild the EAR or WAR file as
you did during the installation, and then deploy the application on the application server.

Web UI Framework Security - Supporting Multiple Guest Users

With the Web UI Framework, your authentication process can include the authentication of one or more guest
users for a particular URL of the application. If the application is not configured for multiple guest users, the
default implementation allows only one guest user (if it is set up). If the application is not configured for
multiple guest users or for the default implementation of only one guest user, the guest can be specified using
web.xml parameters:

<context-param>
 <param-name>scui-guest-user</param-name>
 <param-value>myAppGuest</param-value>
</context-param>

To support multiple guest users, you must use the default implementation of the Web UI Framework. You can
customize this default implementation.

1. Install the application with the default implementation of the Web UI Framework.

2. Specify your custom guest user provider in web.xml using the scui-guest-user-provider parameter.

Example:

<context-param>
 <param-name>scui-guest-user-provider</param-name>
 <param-value>com.app.MyGuestUserProvider</param-value>
</context-param>

This provider will be accessed by the getGuestUser() method of ISCUIGuestUserProvider. For all guest
users, the password is the same as the user name. The custom implementation must use the interface contract
defined in ISCUIGuestUserProvider.

To implement the customized Java code, build a jar file that contains the Java class, and then install the jar
file using the install3rdparty.sh script. To implement this customization, rebuild the EAR or WAR file as
you did during the installation, and then deploy the application on the application server.

Sterling Commerce, Inc.118

Web UI Framework Security - Adding Request Validators

The Web UI Framework allows you to set up more than one validation for a request. This validation process
requires additional authentication of a user after that user has initially logged in. It allows that user to continue
a login session.

For more information, refer to the Java API documentation in your installation directory
(<INSTALL_DIR>/xapidocs/core_javadocs).

1. Install the application with the default implementation of the Web UI Framework.

2. Create your implementation of multiple validations, which you will plug into the Web UI Framework. The
Web UI Framework does not have a default implementation of multiple validations. If no implementation
is provided, the request is not further validated after the initial authentication.

The request validations are done for every request, so you need to optimize this feature based on your needs.
The implementation of request validators must use the contract defined in ISCUIRequestValidator.

3. The SCUISecurityResponse class is returned by the request validator’s validate method. If the validation
fails, the request is redirected to the URL specified in the SCUISecurityResponse class. Also, include
settings for the return status, exception, and error message. This information is used by the validate method
of the ISCUIRequestValidator in the Web UI Framework.

The ISCUIRequestValidator interface defines what the Web UI Framework expects in any request validation
implementation. This interface uses the following methods:

• validate

Takes in SCUIContext. The response is an SCUISecurityResponse object that encapsulates the return
status, the URL of the page, exception, and error message. This method executes the business logic needed
by the application.

• init

Handles initialization.

• sessionDestroyed

Closes all opened session-specific handles. The ISCUIValidator extends the ISCUISessionAware interface,
a marker interface that will facilitate ISCUIValidator to register itself to the HttpSessionListener
implementation class. When the session is invalidated or destroyed, the sessionDestroyed method is called
by the listener to close the session-specific handles opened during initialization.

The following shows an example of an ISCUIRequestValidator interface:

public interface ISCUIRequestValidator extends ISCUISessionAware
{
 public SCUISecurityResponse validate(SCUIContext uiContext);
 public void init();
 public void sessionDestroyed();
}

The request validation consists of one or more instances of RequestValidator that implements the
ISCUIRequestValidator interface class. Multiple request validators can be set, but their order is not

119Sterling Commerce, Inc.

guaranteed. RequestValidator is plugged in using the context parameter in web.xml as shown in the following
example:

<context-param>
 <param-name>scui-request-validator1</param-name>
 <param-value>com.app.MyURLValidator</param-value>
</context-param>
<context-param>
 <param-name>scui-request-validator2</param-name>
 <param-value>com.app.MyAdminValidator</param-value>
</context-param>

All of the validation implementation or validators given in the context parameter in web.xml are called (in
no particular order) for supporting additional validation.

4. To implement the customized Java code, build a jar file that contains the Java class, and then install the jar
file using the install3rdparty.sh script. To implement this customization, rebuild the EAR or WAR file as
you did during the installation, and then deploy the application on the application server.

Web UI Framework Security - Cross-Site Request Forgery

The Web UI Framework provides protection for the application against cross-site request forgery (CSRF),
which maliciously exploits a web site where unauthorized commands are transmitted from a user that the web
site trusts. CSRF (also called XSRF) is different from cross-site scripting (CSS or XSS), which exploits the
trust a user has for a particular site. CSRF is also known as one-click attack, sidejacking, or session riding.

CSRF works by including a link or script in a page that accesses a site to which the user is known (or is
supposed) to have authenticated. For example, User A might be browsing a forum where User B has posted a
message. With CSRF, User B might create the following HTML image element that, instead of being an image
file, references a script on the web site of User A’s bank and requests a withdrawal of $1,000,000:

If User A’s bank keeps their authentication information in a cookie, and if the cookie hasn’t expired, then the
attempt by User A’s browser to load the image will submit the withdrawal form with the authentication cookie,
and authorize a transaction without User A’s approval.

In this scenario, the problem can be summed up in the following three points:

• Because of the browser’s policy, the authentication cookies are sent to the bank server even though the request
originated from a different web site.

• User A’s bank stores authentication information in a cookie and completely relies on the cookies for
authentication purposes.

• User A’s bank does not differentiate between GET and POST requests.

The CSRF protection in the Web UI Framework does not apply to the first point, since it is a browser policy.
But it does apply to the second and third points by using both a cookie and an additional token for authentication.
CSRF attacks are usually prevented by always checking for a unique token in each request that hits the server.
In the Web UI Framework, the token is used in the following manner:

1. When login finishes, a newly created token is set for the session (for validation purposes). This token is
available on the client side of the application.

2. The token is used in the following ways:

Sterling Commerce, Inc.120

This token is used for all AJAX requests and within the Web UI Framework utilities.•
• When a POST or GET request is made to the server, the application automatically validates that the CSRF

token is available in the request.

Web UI Framework Security - Protecting Against CSRF Attacks

1. Open the web.xml file.

2. To validate the token that is used to protect against CSRF attacks, create a request validator that will be
registered in the application (if the validator is not already present in the web.xml file).

Example:

<context-param>
 <param-name>scui-request-validator-10</param-name>
 <param-value>
com.sterlingcommerce.ui.web.platform.security.SCUICSRFTokenValidator
 </param-value>
</context-param>

3. Set up the modes in which the validator can operate:

• ALL (default) - Both POST and GET requests will be validated for the CSRF token.
• POST - Only POST requests will be validated for the CSRF token.
• NONE - The validator will not validate any request for the CSRF token.

You can specify the validator mode in the context parameter of either the config.xml file or the web.xml
file (if the validator mode is not already present in the web.xml file).

The mode defaults to ALL if the mode is not specified or if a context parameter is not specified for the
validate mode.

Example:

<context-param>
 <param-name>scui-csrf-validator-request-method</param-name>
 <param-value>ALL</param-value>
</context-param>

4. If necessary, set up URI inclusion and exclusion lists for the validator, using the following guidelines:

• If a URI is on the exclusion list, it will not be validated for the CSRF token.
• If a URI (universal resource indicator) is on the inclusion list, and not on the exclusion list, it will be

validated for the CSRF token.
• If a URI is not on the exclusion list and is in the inclusion list, it will be validated for the CSRF token.

Use the following context parameters in the web.xml file to create inclusion and exclusion lists. Any number
of parameters can be provided.

• csrf-include-uri

Any request with a URI that is the same as the value is validated for the CSRF token.

121Sterling Commerce, Inc.

Example (for web.xml):

<context-param>
 <param-name>csrf.include.uri.endswith.stk.1</param-name>
 <param-value>.do</param-value>
</context-param>

• csrf-include-uri-endswith

Any request with a URI that ends with the value is validated for the CSRF token.

Example (for web.xml):

<context-param>
 <param-name>csrf.include.uri.endswith.stk.2</param-name>
 <param-value>.xml</param-value>
</context-param>

• csrf-include-uri-regex

Any request with a URI that matches the regex (provided as a value for the parameter) is validated for
the CSRF token.

Example (for web.xml):

<context-param>
 <param-name>csrf.include.uri.stk.1</param-name>
 <param-value>/stk/home.jsp</param-value>
</context-param>

• csrf-bypass-uri

Any request with a URI that matches the value is bypassed and not checked for the CSRF token.

Example (for web.xml):

<context-param>
 <param-name>csrf.bypass.uri.stk.1</param-name>
 <param-value>/console/login.jsp</param-value>
</context-param>

• csrf-bypass-uri-endswith

Any request with a URI that ends with the value is bypassed

Example (for web.xml):

<context-param>
 <param-name>csrf.bypass.uri.endswith.stk.1</param-name>
 <param-value>.js</param-value>
</context-param>

• csrf-bypass-uri-regex

Any request with a URI that matches the regex (provided as a value for the parameter) is not checked for
the CSRF token.

Example (for web.xml):

<context-param>
 <param-name>csrf.bypass.uri.regex.stk.1</param-name>

Sterling Commerce, Inc.122

 <param-value>[a-zA-Z0-0]*servlet/param-value>
</context-param>

By default, all URIs are in the inclusion list, even if a csrf-include parameter is not provided. You must
explicitly specify that a URI is in the exclusion list. If no inclusion list is provided, by default all URIs are
considered to be in the inclusion list. Specific URIs can be added to an inclusion list by the application to
avoid all URIs being validated for the CSRF token.

By default, the framework provides an exclusion list to bypass CSRF validation for requests for gif, png,
css, or js-type files.

5. Most CSRF attacks work just by replicating POST requests into its GET equivalent. Because most
applications do not differentiate between POST and GET requests, the attacks usually work. To differentiate
between GET and POST requests, in your Struts action definitions, set up the modes in which the validator
can operate, using the requestMethodSupported parameter of the action:

• POST - (default) Only POST requests are allowed.

If requestMethodSupported is not set or is an unknown value, then it defaults to POST.

• ALL - Both GET and POST requests are allowed.

Example:

<action name="accountTransfer" class="com.AccountTransfer">
 <param name="requestMethodSupported">POST</param>
 <param name="resourceId">AccountTransfer_Action002</param>
</action>

123Sterling Commerce, Inc.

Data Handling with the Web UI Framework

Data Type Handling in the Web UI Framework

A consistent method of data type handling is required to validate input boxes on the UI, for defining their entity
XML files, and for other tasks. A data type is a data attribute that helps you set constraints on the data, such
as acceptable values and what operations may be performed on that data.

The data type is required on the client side of the application for:

• UI field validation (length, size, etc.)

When you add fields to the screen using the Extensibility Designer, the data types of the new fields help
determine the display of the screen.

• UI component display (size, etc.)

Validation can be set up for user events like clicking a button or changing the cursor focus.

With the Web UI Framework, you have the following options for data type handling:

• The default implementation, which lets you continue using the data type handling implementation of the
Console JSP, Swing, or RCP UI implementations. Those implementations use the following data type definition
files:

• datatypes.xml (located at <INSTALL_DIR>/repository/datatypes)
• yfsdatatypemap.xml (located at <INSTALL_DIR>/repository/xapi/template/merged/resource)

You can customize this default implementation.

• Register the customized implementation of data handling. You can use the web.xml file for this registration.

The following shows the out-of-the box configuration of the data type-related parameters in the web.xml
file. To customize data type handling, you must replace the <param-value> entry with the classpath to the
custom Java class, based on its location and package name.

<context-param>
 <param-name>scui-datatype-provider</param-name>
 <param-value>
 com.sterlingcommerce.ui.web.platform.dataType.SCUIDataTypeProvider
 </param-value>
</context-param>

Sterling Commerce, Inc.124

You can also register the customized implementation by making a Java call to the method
SCUIDataTypeHelper.setDataTypeProvider.

The following shows an example of a package for a customized implementation:

package com.sterlingcommerce.ui.dataType;
import java.util.Map;
public interface ISCUIDataTypeProvider{
 public Map getDataTypes();
 public SCUIDataType getDataType(StringdataTypeName);
 public SCUIValidationResponse validate(StringdataTypeName, Stringvalue);

 publicbooleanisValid(StringdataTypeName,Stringvalue);
 publicvoidinit();

For more information about these packages, refer to the documentation on the interface contracts for data
type handling.

The following shows the guidelines for creating a data type using the SCUIDataType class that is used in the
above package:

package com.sterlingcommerce.ui.dataType;
public class SCUIDataType {

 /** Holds value of property name. */
 private String name;
 /** Holds value of property type. */
 private String type;
 /** Holds value of property size. */
 private Integer size;
 /** Holds value of property decimalDigits. */
 private Integer decimalDigits;
 /** Holds value of property negativeAllowed. */
 private Boolean negativeAllowed;

 public void setName(String name) {
 this.name = name;
 }
 public void setType(String type){
 this.type = type;
 }
 public void setSize(int size){
 this.size = new Integer(size);
 }
 public void setDecimalDigits(int decimalDigits) {
 this.decimalDigits = new Integer(decimalDigits);
 }
 public void setNegativeAllowed(boolean negativeAllowed){
 this.negativeAllowed = new Boolean(negativeAllowed);
 }

 public String getType(){
 return this.type;

125Sterling Commerce, Inc.

 }

 public boolean isNumeric() {
 return ("NUMBER".equalsIgnoreCase(getType()));
 }

}

To implement the customized Java code, build a jar file that contains the Java class, and then install the jar
file using the install3rdparty.sh script.

To implement this customization, rebuild the EAR or WAR file as you did during the installation, and then
deploy the application on the application server.

Interface Contracts of the Web UI Framework - Data Type Handling

For more information, refer to the Java API documentation in your installation directory
(<INSTALL_DIR>/xapidocs/core_javadocs).

MethodsDescriptionInterface Contract

Implements the ISCUIDataProvider interface,
which defines the behavior expected in any

DataTypeProvider • getDataTypes

Returns a map of data types through the
merged map of DataType.xml and
DataTypeMap.xml.

implementation of data type handling in an
application.

DataTypeProvider is plugged in to an
application using the context parameter in
web.xml:

• getDataType(String dataType)

Takes the name of the data type and
returns the data type object.

• <param-name>

scui-datatype-provider
• validate(String dataTypeName, String

value)

Validates the value passed against the data
type and returns the
SCUIvalidationReponse.

• <param-value>

com.application.ApplicationDataTypeProvider

• isValid(String dataTypeName, String value)

Validates the value passed and returns true
or false based on the success of the
validation.

• init

Handles initialization.

Assigning Data Types to a Grid Column with the Web UI Framework

You can use the Ext JS JavaScript framework to control the data type of a grid column, instead of using the
Properties view of the Designer Workbench. You can program a column data type to depend on the data type
of data in corresponding columns of the grid. The data type can be used to determine the column’s alignment
and sorting behavior.

Sterling Commerce, Inc.126

To define a data type for a grid column, use one of the following config options for the column definition.
Work through the order of the list when deciding which config option to use.

1. scuiDataType

The data type name. If this option is present, the other two config options (bindingData.sFieldConfig.mapping
and bindingData.tAttrBinding) are not used.

2. bindingData.sFieldConfig.mapping

The source binding for the column. An attempt will be made by the application to determine the value of
the config. If no data type is found for that value, bindingData.tAttrBinding is used to determine the data
type.

3. bindingData.tAttrBinding

The target binding for the grid column. An attempt will be made by the application to determine the data
type for the value of the config.

Once the data type is determined, the following column properties will be defaulted, based on the data type:

• Alignment

Numbers are right-justified, and dates are middle-justified.

• The type for the store field. The sorting of grid columns is based on the type attribute of the store field config.

The following list shows the default data types for different data types. For example, if you encounter a
number with no decimal digits, it will be stored in the store field as an integer (int).

• NUMBER (with no decimal digits) - int
• NUMBER (with decimal digits) - float
• DATE - date
• TIME - date
• DATETIME - date

• renderer

A renderer is a JavaScript function that can be used to change the text and the look and feel of the application.

• DATE - sc.plat.DateFormatter.getDefaultRenderer('DATE')

This JavaScript API returns the renderer which would display the date in the format specified for that user.

• TIME - sc.plat.DateFormatter.getDefaultRenderer('TIME')

This JavaScript API returns the renderer which would display the time in the format specified for that user.

• DATETIME - sc.plat.DateFormatter.getDefaultRenderer('DATETIME')

This JavaScript API returns the renderer which would display the timestamp in the format specified for that
user.

Creating Extra Fields in Grid Stores with the Web UI Framework

The WUF binding framework is used to populate data into a grid. This framework uses the bindingData
provided for the grid to create the store. The column configuration is used by the framework to create fields
in the store.

Sometimes, more fields (more than the number of columns) may be required in the store for a grid. To add
these fields, the bindingData of a grid accepts the fields property.

127Sterling Commerce, Inc.

The following shows an example of a table bindingData object:

bindingData: {
 sourceBinding : ["getFlightServiceList:FlightServiceList.FlightService"],
 targetBinding : ["getFlightServiceList:FlightServiceList.FlightService"],
 storeConfig: {
 // ... extra parameters used to create the store
 }
}

The following shows an example of a column configuration:

{
 dataIndex: '',
 bindingData: {
 sFieldConfig : {
 mapping : "FlightServiceKey"
 },
 tAttrBinding : "FlightServiceKey"
 }
}

The configuration of the fields property that is required when adding fields in the store for a grid is shown
below:

fields: [{
 name: 'fieldName',
 mapping: 'fieldMapping'
}]

The following shows an example of the table bindingData object in which the fields property is used:

bindingData: {
 sourceBinding : ["getFlightServiceList:FlightServiceList.FlightService"],
 targetBinding : ["getFlightServiceList:FlightServiceList.FlightService"],
 storeConfig: {},
 fields: [{
 name: 'fieldName',
 mapping: 'fieldMapping'
 }]
}

Note: If a column with the same name exists in the grid, the definition provided in table binding data under
the fields name would be ignored.

Using extensibility, you can add the extn_bindingData property for an existing table (a table which was
originally present on the screen, i.e., it was not added to the screen by a user during extensibility).

The following shows an example of an extn_bindingData object that implements the fields property:

extn_bindingData: {
 fields: [{
 name: 'fieldName',
 mapping: 'fieldMapping'
 }]
}

Sterling Commerce, Inc.128

Customizing Sorting from Multiple Record Fields with the Web UI Framework

You can customize the sorting of table columns that use data that combines multiple fields of a record (for
example, by using a renderer). You can do this with both Ext JS 2.2.1 and Ext JS 3.0.

Perform this sort by using the sortType function in the Ext.data.field class. Instead of one item being passed
to sortType (value of a field), three items will be passed (value of a field, the record, and the field being sorted).
This functionality is provided by overriding the sortData method in the Ext.data.Store class to pass the record
and field in addition to the value of the field.

When users are not creating the store for a grid, they can pass sortType as a config option in the
bindingData.sFieldConfig property in the columnModel or columns of a grid.

For example, a grid can have the following configuration:

columns: [{

 dataIndex: 'airlines',

 bindingData: {

 sFieldConfig : {

 mapping : "airlines",

 sortType: this.sortTypeFn

 }

 }

}]

where this.sortTypeFn is defined in the screen JavaScript file as:

sortTypeFn: function(val, rec, fld){

 return val + rec.get('airlinenumber');
 // computing the value based on value of field (airlines) and
 // value of 'airlinenumber' field

 }”

Supporting Item Quantity Decimal Handling in the Web UI Framework

You can use the Web UI Framework to specify decimal numbers for item quantities. The
yfs.install.displaydoublequantity property of yfs.properties indicates whether to support fractional quantities
for attributes which belong to the QUANTITY data type. If yfs.install.displaydoublequantity is set to Y (the
default value), then you can specify decimal numbers for item quantities.

129Sterling Commerce, Inc.

Validating Fields with the Web UI Framework

You can validate fields against certain standards, using the default validation system or your own validation
system.

The Web UI Framework provides validation for the following three types of information in the en_US locale:

• E-mail address (using the international accepted standard)
• Telephone number format (locale-specific)
• Credit card number (using the Luhn algorithm)

To validate items, do the following:

1. Register the field attributes that you will be using for validation by implementing the
registerFieldAttributes(validationType, attribute) function, using the following arguments:

• validationType (required)

Validation type. By default, the application includes validation types for e-mail address, telephone number
format, and credit card number.

• attribute

XML attributes for validations. An attribute can be registered for multiple validation types.

Use this function to implement customized validators that you want to plug in to the application.

2. Implement the registerValidators(validationType, validator) function, using the following arguments:

• validationType (required)

Validation type.

• validator (required)

Validator function for validation type.

The following is an example of how to add validation for a last name:

sc.plat.ValidateUtils.registerValidator('LastName', function (value){
 if (value == null || value.length<2) {
 return {status: 2,message: "Last name needs at least two characters" };
 }
 return {status: 1};
});

Disabling All UI Fields at One Time with the Web UI Framework

You can use the Web UI Framework to disable all of the screen fields at once, without having to individually
disable any field. When you disable a field, you cannot change the data that is in that field. The field becomes
read-only. After disabling all of the fields, you can still cut and paste information from those fields, but you
cannot submit information from form fields that have been disabled. You cannot disable all of the fields only
for look-and-feel purposes.

Sterling Commerce, Inc.130

To disable all of the screen fields at once, use the Ext JS JavaScript method disableFields. A function created
from this method has the following properties:

• disable

Boolean property that determines if all fields on the screen are disabled.

• deep

Boolean property that determines whether the disable property applies to the immediate children fields of
the screen. If this is set to true, the disable property applies to all children fields. If this is set to false, the
disable property applies only to immediate children fields.

• allowCopy

Boolean property that determines whether a disable method is called for all fields. If this is set to true, fields
will be marked read-only with an opacity of 0.6. If this is set to false, a disable method will be called for all
fields.

• disableCSS

String property that shows the custom css that will be applied if allowCopy is set to true.

If the scIgnoreDisable property in a field is set to true, that field will ignore the disableFields method.

Checking for Screen Changes in the Web UI Framework

In screens created using the Web UI Framework, the application can take actions that are based on whether a
screen field changed. For example, if you open a screen to modify a field, and you end up not modifying that
field, you could program the application not to submit information from that screen to a server when you close
the screen.

The isDirty method checks all of the fields of a screen to see if they have changed. Each editable field also
has an isDirty method, so you can program the application to take actions based on whether a particular field
changed.

Screen changes are also monitored using a dirtystatechange event. Whenever a field is modified on a screen,
the dirtystatechange event is fired on the screen. In the following example, the Save button is enabled whenever
a field on a screen is modified:

Screen.addListener('dirtystatechange',function(scr, isDirty)
 {
 savBtn.disable(!isDirty);
 },
this);

Configuring a Data Source with the Web UI Framework

To work with a data source, you must first configure it using the Configure Data Sources dialog box.

The Web UI Framework does not use XML binding. The Configure Data Sources dialog box works with only
JSON data sources.

1. Make sure the Data tab is showing, and not the Palette or Files tab.

131Sterling Commerce, Inc.

2. Click the button that is just to the right of the dropdown arrow.

The Configure Data Sources dialog box appears.

3. Configure the following items:

• Type of data source (input or output)
• Data source

The data source directory is the directory containing JSON data source files, which can be provided to
application developers. With the Web UI Framework, a tool is provided for generating JSON data sources
from XAPI XML and XSD definitions.

• Path to data source directory
• Namespace, elements, and attributes

4. Click the Finish button.

The data source is configured. This initializes the bindingData property of the widget that is using the data
source. You can also specify binding by creating or editing this property in the Properties view.

Adding a Data Source with the Web UI Framework

To work with a data source, you must first configure it using the Configure Data Sources dialog box.

1. Make sure the Data tab is showing, and not the Palette or Files tab.

2. Make sure that you are on the screen where you want to add a data source.

3. Click on the down arrow to select a data source.

4. Add the data source to the screen.

Sterling Commerce, Inc.132

	Contents
	Extensibility in the Web UI Framework
	Extensibility in the Web UI Framework for Custom Developers
	Differential Extensibility in the Web UI Framework
	Override Extensibility in the Web UI Framework
	Differential Extensibility Versus Override Extensibility in the Web UI Framework
	What Can Be Customized and Extended with the Web UI Framework
	Customizing with the Web UI Framework
	Extending Versus Customizing an Ext JS Widget/Component with the Web UI Framework
	Extensibility Workbench Versus Designer Workbench in the Web UI Framework

	Extensibility Workbench of the Web UI Framework for Custom Developers
	Configuring the Web UI Framework Extensibility Workbench
	Using the Web UI Framework Extensibility Workbench to Modify a Widget
	Extensibility Workbench Tools of the Web UI Framework

	Designer Workbench of the Web UI Framework for Custom Developers
	Creating New UI Screens Using the Designer Workbench in the Web UI Framework
	Designer Workbench Tools of the Web UI Framework
	Using the Web UI Framework Designer Workbench from the Extensibility Workbench to Create New Screens for Custom Developers
	Generating Copyright Comments with the Web UI Framework

	Mashup Layer of the Web UI Framework
	Interface Contracts of the Web UI Framework - Mashup Layer
	Mashup Layer Classes of the Web UI Framework
	Mashup XML Metadata of the Web UI Framework
	Configuring Mashups in Web UI Framework
	Specifying Multiple XAPI Calls with the Web UI Framework
	Example of mashup.xml File with Multiple XAPI Calls in the Web UI Framework

	How the Mashup Layer Handles Authorization and Transaction Management in the Web UI Framework

	Extending Mashups in the Web UI Framework
	Extending Mashups Using Override Extensibility in the Web UI Framework
	Extending Mashups Using Differential Extensibility in the Web UI Framework

	Creating and Extending a Struts XML File in the Web UI Framework
	Creating a Menu Entry for a New Web UI Framework Screen Using the Application Manager
	Deploying Web UI Framework Extensions
	Deploying Extensions Created by the Web UI Framework Extensibility Workbench and Designer Workbench Using a Java Server Page
	Deploying Extensions Created by the Web UI Framework Extensibility Workbench Using a JavaScript Builder File
	Compiling and Minifying JavaScript Files in the Web UI Framework

	Customizing web.xml in the Web UI Framework
	Changing Bundle Files in the Web UI Framework
	Designer Workbench of the Web UI Framework for Custom Developers
	Control Details View of the Web UI Framework
	Property Restrictions in Extensibility in the Web UI Framework
	Adding Namespaces to Screens Using Extensibility in the Web UI Framework

	Building and Customizing Pages/Controls with the Web UI Framework
	Widgets of the Web UI Framework
	Working with Widgets in the Web UI Framework
	Adding a Widget to a Screen with the Web UI Framework
	Customizing Widgets in an Existing Installation with the Web UI Framework
	Hiding Fields with the Web UI Framework
	Accessing the Working Files of the Web UI Framework
	Viewing Screen Objects in the Outline or Tree View of the Web UI Framework
	Configuring Properties for Screens, Widgets, and Other Items with the Web UI Framework
	Providing Description Attributes for Binding Namespaces in the Web UI Framework
	Wizards of the Web UI Framework
	Creating a Wizard with the Web UI Framework
	Wizard Page Attributes in the Web UI Framework
	Wizard Rule Attributes in the Web UI Framework
	Wizard Transition Attributes in the Web UI Framework
	Wizard Flow Controller Attributes in the Web UI Framework
	Wizard Breadcrumb Attributes in the Web UI Framework
	Sample XML Flow Definition for Wizards in the Web UI Framework

	Preset Properties in the Web UI Framework
	Creating Preset Properties with the Web UI Framework
	Applying Preset Properties with the Web UI Framework

	Enabling a Child Screen to Access a Parent Screen with the Web UI Framework
	Menu Customizations with the Web UI Framework
	Creating Smart Tags with the Web UI Framework
	Generating Code from Templates with the Web UI Framework
	Code Template Generator of the Web UI Framework
	Default Code Templates of the Web UI Framework
	Creating a Custom Code Template with the Web UI Framework
	Creating a Custom Code Template Using a Blank Template with the Web UI Framework
	Editing a Custom Code Template with the Web UI Framework
	Updating a Screen in a Running Application with the Web UI Framework

	Debugging Tools of the Web UI Framework
	Setting Up Backend Logging in the web.xml File in the Web UI Framework
	Enabling Backend Logging in the User Interface with the Web UI Framework
	State Management in the Web UI Framework
	Implementing State Management with the Web UI Framework
	Interface Contracts of the Web UI Framework - State Management on the Client Side and Server Side

	Transaction Management in the Web UI Framework
	Implementing Transaction Management with the Web UI Framework
	Interface Contracts of the Web UI Framework - Transaction Management

	Look and Feel in the Web UI Framework
	UI Branding in the Web UI Framework
	Specifying a Home Page when Building Screens with the Web UI Framework
	Adding Keyboard Shortcuts with the Web UI Framework
	Supporting Multiple Browsers with the Web UI Framework
	Indicating Mandatory UI Fields with the Web UI Framework
	Adding Support for Custom Themes with the Web UI Framework
	About Dashboards, Dashlets, and Registries
	Creating and Registering Dashboard Metadata
	Creating and Registering Dashlet Metadata

	About the Dashboard and Dashlet User Interface
	Creating the Dashboard User Interface
	Creating the Dashlet User Interface

	About Customizing and Resetting the Dashboard
	Customizing the Dashboard User Interface with the Web UI Framework
	Resetting the Dashboard to the Default Dashboard Definition
	Extending an Existing Dashboard By Adding New Dashlets in the Web UI Framework

	About Chart Dashlets
	Creating Chart Dashlets

	Security with the Web UI Framework
	Web UI Framework Security - Authentication
	Web UI Framework Security - Implementing Authentication
	Interface Contracts of the Web UI Framework - Authentication
	Interface Contracts of the Web UI Framework - Post Authentication
	Web UI Framework Security - Bypassing Authentication for a URI

	Web UI Framework Security - Authorization
	Web UI Framework Security - Implementing Authorization
	Interface Contracts of the Web UI Framework - Authorization

	Web UI Framework Security - Adding Login Pages
	Web UI Framework Security - Supporting Multiple Guest Users
	Web UI Framework Security - Adding Request Validators
	Web UI Framework Security - Cross-Site Request Forgery
	Web UI Framework Security - Protecting Against CSRF Attacks

	Data Handling with the Web UI Framework
	Data Type Handling in the Web UI Framework
	Interface Contracts of the Web UI Framework - Data Type Handling
	Assigning Data Types to a Grid Column with the Web UI Framework
	Creating Extra Fields in Grid Stores with the Web UI Framework
	Customizing Sorting from Multiple Record Fields with the Web UI Framework

	Supporting Item Quantity Decimal Handling in the Web UI Framework
	Validating Fields with the Web UI Framework
	Disabling All UI Fields at One Time with the Web UI Framework
	Checking for Screen Changes in the Web UI Framework
	Configuring a Data Source with the Web UI Framework
	Adding a Data Source with the Web UI Framework

