
IBM Sterling Gentran:Server for Windows

Application Integration User Guide
Version 5.3.1

���





IBM Sterling Gentran:Server for Windows

Application Integration User Guide
Version 5.3.1

���



Note
Before using this information and the product it supports, read the information in “Notices” on page 201.

This edition applies to the 5.3.1 version of IBM Sterling Gentran:Server for Microsoft Windows and to all 
subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1996, 2024.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract 
with IBM Corp.



Contents

Chapter 1. Application Integration
Basics . . . . . . . . . . . . . . . 1
About the Application Integration Subsystem . . . 1
Inbound Translation Process . . . . . . . . . 1
Outbound Translation Process . . . . . . . . 3
Application File Format. . . . . . . . . . . 5
EDI File Format . . . . . . . . . . . . . 6
About the Application Integration User Interface . . 7
Global Display Settings . . . . . . . . . . . 7

Customizing Global Display Options . . . . . 8
Customizing Global Colors . . . . . . . . 8
Customizing Global Fonts . . . . . . . . . 9
Customizing Global Display of Links . . . . . 10
Customizing the Auto-increment Map Version . . 10
Making the Two Sides of the Map Equal. . . . 11
Setting the Default Date/Time Format . . . . 11
Customizing Global Confirmation Options . . . 14

Map Building Process . . . . . . . . . . . 14
Map Types . . . . . . . . . . . . . . 16

Chapter 2. Map Design . . . . . . . . 17
Preparation and Analysis . . . . . . . . . . 17

Analysis of Your Application File Format . . . 17
Analysis of the Customer EDI File . . . . . . 17
Reconcile Your Application File and the
Customer EDI File . . . . . . . . . . . 18

Creating a Map . . . . . . . . . . . . . 18
Translation Object Details Dialog Box. . . . . 20
Defining Translation Object Details . . . . . 24
Loading a File Definition . . . . . . . . . 24
Saving a File Definition . . . . . . . . . 25
Activating EDI Map Components . . . . . . 25
Using Auto Trim . . . . . . . . . . . 26
Promoting Groups and Repeating Segments . . 26
Splitting Groups and Repeating Segments . . . 27
Using Copy, Cut, and Paste . . . . . . . . 27

About Fixed-format Files . . . . . . . . . . 28
Changing Record Delimiters . . . . . . . . 29
Changing Decimal Points . . . . . . . . . 29
Creating the First Record . . . . . . . . . 29
Creating Subsequent Records . . . . . . . 30
Temporary Records . . . . . . . . . . . 31
Creating Temporary Records--Example . . . . 32
Creating a Group . . . . . . . . . . . 33
Creating Fields . . . . . . . . . . . . 34

About EDI Files . . . . . . . . . . . . . 36
Verifying EDI Delimiters . . . . . . . . . 36
Modifying Group Properties . . . . . . . . 37
Modifying Segment Properties . . . . . . . 37
About Loop Start and Loop End Segments . . . 39
Defining an LS Segment Inbound . . . . . . 39
Defining an LE Segment Inbound . . . . . . 40
Defining an LS Segment Outbound . . . . . 40
Defining an LE Segment Outbound . . . . . 41
Modifying Composite Properties . . . . . . 41

Modifying Element Properties . . . . . . . 41
Defining and Modifying Relational Conditions . 43

About CII Files . . . . . . . . . . . . . 44
Modifying CII File Properties . . . . . . . 44
Creating a Group . . . . . . . . . . . 45
Creating a TFD . . . . . . . . . . . . 45

About Data Formatting . . . . . . . . . . 47
String Type Fields and Syntax Tokens . . . . 47
Creating and Editing Syntax Tokens for Western
European Languages . . . . . . . . . . 49
Creating and Editing Syntax Tokens for East
Asian Languages . . . . . . . . . . . 50
Deleting Syntax Tokens . . . . . . . . . 51
Deleting a Character Range . . . . . . . . 51
Using Syntax Tokens . . . . . . . . . . 52
Using the Number Type . . . . . . . . . 52
Using the Date/Time Type . . . . . . . . 54

Completing a Map . . . . . . . . . . . . 54
Creating Simple Links . . . . . . . . . . 54
Binary Segments. . . . . . . . . . . . 55
Setting up the Input Side . . . . . . . . . 56
Setting up the Output Side . . . . . . . . 56
Setting the Auto-register Option . . . . . . 57
Compiling a Map . . . . . . . . . . . 57
Printing a Mapping Report . . . . . . . . 58

Chapter 3. Standard Rules . . . . . . 61
About Standard Rules . . . . . . . . . . . 61
Standard Rule Tab - select Function . . . . . . 61

Table access examples . . . . . . . . . . 63
Using Information from the Partner Definition. . 64
Using Information from a Cross-reference Table 65
Using Information from Location Tables . . . . 67
Using Information from Lookup Tables . . . . 67

Standard Rule Tab - update Function . . . . . . 68
Document Name and Reference Data . . . . . 69
Setting up the Document Name . . . . . . 69
Setting up the Reference Data . . . . . . . 70

Standard Rule Tab - Use System Variable Function 70
Using the System Date and Time . . . . . . 70

Standard Rule Tab - Use Constant Function. . . . 71
Using a Constant in a Map . . . . . . . . 72
Defining a Qualifying Relationship . . . . . 72
Defining and Editing Literal Constants . . . . 73
Deleting Literal Constants . . . . . . . . 73
Mapping Literal Constants . . . . . . . . 74
Generating Qualifiers . . . . . . . . . . 74

Standard Rule Tab - Loop Count Function . . . . 75
Using the Loop Count Function . . . . . . 75

Standard Rule Tab - Use Accumulator Function . . 75
Counting Line Items . . . . . . . . . . 78
Calculating Hash Totals . . . . . . . . . 80
Multiplying Quantity Invoiced by Unit Price . . 81
Generating a Running Total of Extended Price . . 82
Loading a Running Total of Extended Price. . . 83

© Copyright IBM Corp. 1996, 2024 iii



Standard Rule Tab - Use Code Function . . . . . 84
Defining and Modifying a Code List . . . . . 86
Deleting a Code List . . . . . . . . . . 86
Deleting a Code List Entry . . . . . . . . 86
Importing a Code List . . . . . . . . . . 87
Exporting a Code List . . . . . . . . . . 87
Loading a Code List Table from the Standard . . 88
Copying and Pasting Code Lists . . . . . . 88
Validating Data Against Code List Tables . . . 89
Mapping Code Item Descriptions . . . . . . 90

Chapter 4. The Import Process . . . . 91
About the Import Process. . . . . . . . . . 91
Creating a System Import Map . . . . . . . . 93
How to Define the Six-Field Key . . . . . . . 94

Defining the Partner Key . . . . . . . . . 94
Defining the Standard Field . . . . . . . . 95
Defining the Version Field . . . . . . . . 95
Defining the Transaction Field . . . . . . . 95
Defining the Release Field . . . . . . . . 96
Defining the Test/Production Field . . . . . 96

How to Define the Alternate Key . . . . . . . 97
Defining the Partner Key . . . . . . . . . 97
Defining the Application ID Field . . . . . . 98
Defining the Application Alias Value Field . . . 98

Compiling the System Import Translation Object . . 99

Chapter 5. The Export Process . . . . 101
About the Export Process . . . . . . . . . 101
Inbound Process Before Exporting Data . . . . 101
Setting up the Export Process . . . . . . . . 102
Using Supplementary Envelope Information . . . 102

Chapter 6. Extended Rules . . . . . 105
About Extended Rules . . . . . . . . . . 105
Declarations and Initialization . . . . . . . . 105
Statements . . . . . . . . . . . . . . 106
When Extended Rules are Processed. . . . . . 107
How to Define Extended Rules . . . . . . . 109
Defining a Session Rule . . . . . . . . . . 109
Defining a Map Component Rule. . . . . . . 110
Extended Rule Syntax . . . . . . . . . . 111

Keywords and Commands . . . . . . . . 111
Operators. . . . . . . . . . . . . . 112
Symbols . . . . . . . . . . . . . . 113

Extended Rule Functions . . . . . . . . . 115
About the Extended Rule Functions . . . . . 115
atoi. . . . . . . . . . . . . . . . 120
aton . . . . . . . . . . . . . . . 120
auditlog . . . . . . . . . . . . . . 121
begin ... end . . . . . . . . . . . . . 122
break . . . . . . . . . . . . . . . 122
cerror . . . . . . . . . . . . . . . 123
concat . . . . . . . . . . . . . . . 126
continue . . . . . . . . . . . . . . 127
count . . . . . . . . . . . . . . . 127
createobject . . . . . . . . . . . . . 128
date . . . . . . . . . . . . . . . 128
delete . . . . . . . . . . . . . . . 130
deleteobject . . . . . . . . . . . . . 130

empty . . . . . . . . . . . . . . . 130
exec . . . . . . . . . . . . . . . 131
exist . . . . . . . . . . . . . . . 132
fseek . . . . . . . . . . . . . . . 133
ftell. . . . . . . . . . . . . . . . 133
get . . . . . . . . . . . . . . . . 134
getiid . . . . . . . . . . . . . . . 134
if ... then ... else . . . . . . . . . . . 135
index . . . . . . . . . . . . . . . 136
insert . . . . . . . . . . . . . . . 137
left . . . . . . . . . . . . . . . . 138
len . . . . . . . . . . . . . . . . 138
messagebox . . . . . . . . . . . . . 139
mid . . . . . . . . . . . . . . . 140
ntoa . . . . . . . . . . . . . . . 141
param . . . . . . . . . . . . . . . 142
queryobject . . . . . . . . . . . . . 143
readblock. . . . . . . . . . . . . . 143
readbytes . . . . . . . . . . . . . . 144
right . . . . . . . . . . . . . . . 145
select . . . . . . . . . . . . . . . 146
set . . . . . . . . . . . . . . . . 146
strdate. . . . . . . . . . . . . . . 147
strstr . . . . . . . . . . . . . . . 148
unreadblock . . . . . . . . . . . . . 149
update . . . . . . . . . . . . . . 150
while ... do . . . . . . . . . . . . . 152
winexec . . . . . . . . . . . . . . 152
writeblock . . . . . . . . . . . . . 154
writebytes . . . . . . . . . . . . . 155
select and update Options . . . . . . . . 156

Chapter 7. User Exits . . . . . . . . 163
ActiveX and User Exit Functions . . . . . . . 163
About ActiveX Technology . . . . . . . . . 163
About User Exits . . . . . . . . . . . . 165
Examples of User Exits . . . . . . . . . . 167
Examples of Automation Servers . . . . . . . 170
Creating a User Exit . . . . . . . . . . . 172

Chapter 8. GentranEx.DLL . . . . . . 175
About GentranEx.DLL . . . . . . . . . . 175
About Database Access . . . . . . . . . . 175
About Debugging . . . . . . . . . . . . 176
About Rules Extensions . . . . . . . . . . 178

Chapter 9. Translator Command Line
Interface . . . . . . . . . . . . . 181
Command Line Syntax . . . . . . . . . . 181

Chapter 10. Error Messages . . . . . 183
About Error Messages . . . . . . . . . . 183
Compile Error Messages. . . . . . . . . . 183
Sterling Gentran:Server Error Messages. . . . . 188
About Translator Report Error Messages . . . . 191

Translator Error Messages . . . . . . . . 192
User Level Error Messages . . . . . . . . 195
Core Translator Error Messages . . . . . . 198
Core Translator Error Messages: Sending Batch
Data Using the NCPDP Data Record Field. . . 199

iv IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Notices . . . . . . . . . . . . . . 201 Index . . . . . . . . . . . . . . . 205

Contents v



vi IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Chapter 1. Application Integration Basics

About the Application Integration Subsystem
The IBM® Sterling Gentran:Server® for Microsoft Windows Application Integration
subsystem enables you to generate import, export, and document turnaround
translation objects. It enables you to translate your application files to EDI standard
formats for documents you send to your trading partners (outbound mapping) and
to translate EDI standard formats to your application format for documents that
you receive from your trading partners (inbound mapping).

Once you generate a translation object using the Sterling Gentran:Server
Application Integration subsystem (or the Sterling Gentran:Server Forms
Integration subsystem), you must register the translation object with Sterling
Gentran:Server.

In addition, you must establish correct trading relationships for all trading partners
from which you receive or to which you send data. During the process of
establishing a trading relationship, you need to specify the name of the appropriate
translation object that the translator uses to translate the data.

Inbound Translation Process
The following diagram illustrates the inbound translation process:

© Copyright IBM Corp. 1996, 2024 1



Table 1. Inbound Translation Process

Stage Description

1 The Communicator receives interchanges from your trading partners through
a network.

2 The Communicator passes the interchanges to the translator.

3 The translator uses a system interchange break translation object to unwrap
the interchange envelopes and separate each group into temporary storage.

4 The translator uses a system group break translation object to unwrap the
group envelopes and separate each transaction set into temporary storage.

5 The translator uses a system transaction break translation object to do the
following:

v Unwrap the transaction envelopes.

v Separate each document into a separate file on the system data store.

v Write a record to the database with reference information about the
document.

2 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Table 1. Inbound Translation Process (continued)

Stage Description

6 Does the translator locate a trading relationship for each document?

v If yes (a trading relationship is located), the translator attempts to identify
the export, document turnaround, or print translation object associated
with that relationship. If the translator locates a trading relationship and
translation object, it uses that translation object to compliance check the
document.

v If no (the translator does not locate the trading relationship or translation
object), the document is marked as not compliant and is moved to ?In
Documents.

7 Is the document compliant with the EDI standard?

v If yes, the translator changes the document status to compliant and moves
the document to In Documents.

v If no, the document remains in ?In Documents. The translator writes a
detailed error report to help you determine the problem that was
encountered.

8 In the trading relationship, if you specify that the system needs to generate a
functional acknowledgement for a document, the translator uses the system
acknowledgement translation object to generate the acknowledgement.

v Compliant acknowledgements are moved to Out Documents to be sent.

v Non-compliant acknowledgements are moved to ?Out Documents. If an
error occurred with the acknowledgement translation object, the
acknowledgement is also moved to ?Out Documents.

The translator also reconciles acknowledgements if you receive an
acknowledgement-type transaction (such as 997 or CONTRL).

9 If you specified either automatic export or automatic turnaround in the
trading relationship, the translator uses the specified export or document
turnaround translation object to either export or generate the appropriate
response document.

Outbound Translation Process
The following diagram illustrates the outbound translation process:

Chapter 1. Application Integration Basics 3



Table 2. Outbound Translation Process

Stage Description

1 Use one of the following three processes to initiate an outbound translation:

v Import a file through the process control system using a timed or polled
session. This writes all valid documents to the database with a compliant
status and moves the documents to Out Documents. Invalid documents are
marked with a non-compliant status and are moved to ?Out Documents.

v Import an application file. Documents that you import manually are located
in the Workspace.

v Use the Document Editor to enter documents (if there is an appropriate
data entry translation object registered with Sterling Gentran:Server). These
documents are located in the Workspace.

2 If you import a file, the translator checks the import definitions from the
system configuration to match the file name with a system import translation
object.

4 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Table 2. Outbound Translation Process (continued)

Stage Description

3 The translator uses the system import translation object to determine which
trading relationship (established in Partner Editor) corresponds to each
document in the application file, so the system knows which import map to
use to process the document.

4 The translator ascertains which import translation object is specified in the
trading relationship.

5 The translator uses the import translation object to compliance check the
document. If the document is compliant (valid), it is marked OK. If the
document is not compliant (invalid), it is marked NotOK.

6 If there is another document remaining in the import file, the translator
repeats steps 3 - 5 until all documents are processed.

7 If you manually import a file through the EDI Manager or use the Document
Editor, you need to post the compliant document to Out Documents.Once
documents are located in Out Documents, they can be sent using the process
control system or by using the EDI Manager transmit option.

Application File Format
If you are creating an import or export map, you must define your application to
the Application Integration subsystem. In Sterling Gentran:Server terminology,
your application file is also referred to as a fixed-format file or a positional file.
Your application file must contain all the information that you need to either
extract from your partner’s document (if the map is inbound) or send to your
partner (if the map is outbound).

This table describes the map components that you use to define your application
file.

Component Icon Description

Group This is a looping structure that contains related records and/or groups that repeat in
sequence until either the group data ends or the maximum number of times that the
loop is allowed to repeat is exhausted. If you create a group that is subordinate to
another group (a subgroup), this corresponds to a nested looping structure (a loop
within a loop). The application (positional) file is a group and therefore, it is visually
represented the same way as other groups and subgroups in the Application
Integration subsystem.

Record Contains a group of related fields. A record can occur once or can repeat multiple
times.

Field This is the smallest piece of information defined in the application file. A field is the
application map component that is mapped (linked) to a corresponding EDI element.
When an element contains a standard rule a black asterisk appears to the right of the
element icon.

Notes:

v When a field has a mapping operation performed against it, a red checkmark is
displayed over the field icon.

v When a field contains a standard or extended rule a black asterisk appears to the
right of the element icon.

v When a group contains an extended rule, a yellow asterisk appears to the right
of the group icon.

Chapter 1. Application Integration Basics 5



Before you define your application file format, you should obtain a layout of the
necessary records, fields, and groups. Each map component is arranged
sequentially in the order that it is most logical for the system to process. Therefore,
each level of your application file must be created sequentially. For example, your
application file contains records and groups. The records contain fields and the
groups contain records and/or subgroups. This means that you must create records
and groups before you create the subordinate fields.

EDI File Format
The EDI file must contain all the information that you expect to receive from your
partner (if the map is inbound) or need to send to your partner (if the map is
outbound).

The Application Integration subsystem generates an EDI file for you, based on the
standard (agency), version, transaction set, and release (for TRADACOMS only)
that you selected. The system includes all the groups, segments, composites, and
elements that are defined by the standards agency for the version of the document
you selected. If you are creating an import or export map, you typically need to
customize the system-generated EDI file by modifying the properties of the map
components and using specialized Sterling Gentran:Server functions to manipulate
the EDI file structure.

The specific EDI map components that you use depends on the type of map you
are creating. This includes the standard, version, and transaction set (document)
selected, and which groups, segments, composites, and elements your company
requires. We recommend that you determine which map components you are using
before generating or defining an EDI file.

The system activates all of the groups, segments, composites, and elements that are
defined as mandatory by the standard. The system does not enable you to
deactivate the mandatory groups, segments, composites, and elements. By default,
Sterling Gentran:Server displays active map components with a black font, and
inactive map components with a grey (dimmed) font.

When translating data, the system does not process groups, segments, composites,
and elements (or records and fields) that are not activated. Therefore, you must
activate the groups, segments, composites, and elements that are not defined as
mandatory by the standard, but that you have determined that you need to use in
mapping.

If you want to use a specialized version of an EDI standard that is not available in
the Sterling Gentran:Server standards database, it may be appropriate for you to
define the EDI file yourself.

This table describes the map components Sterling Gentran:Server uses to define the
EDI file.

Component Icon Description

Group This is a looping structure that contains related segments and/or groups that repeat
in sequence until either the group data ends or the maximum number of times that
the loop is allowed to repeat is exhausted. Groups are defined by the EDI standards.
A group that is subordinate to another group is a subgroup (this corresponds to a
nested looping structure – a loop within a loop). The EDI file is a group and is
visually represented the same way as other groups and subgroups in the
Application Integration subsystemt.

6 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Component Icon Description

Segment Contains a group of related elements or composite data elements that combine to
communicate useful data. Segments are defined by the EDI standards. A segment
can occur once or can repeat multiple times.

Composite This is a data element that contains two or more component data elements or
subelements. Composites are defined by the EDI standards that use them (EDIFACT,
TRADACOMS, and certain ANSI X12 standards).

Element This is the smallest piece of information defined by the EDI standards. An element
is the EDI map component that is mapped (linked) to a corresponding application
field to move data to and from the EDI file.

Notes:

v When an element has a mapping operation performed against it, a red
checkmark is displayed over the element icon.

v When a field contains a standard or extended rule a black asterisk appears to the
right of the element icon.

v When a group contains an extended rule, a yellow asterisk appears to the right
of the group icon.

About the Application Integration User Interface
The Sterling Gentran:Server Application Integration Window allows you to access
its functionality in four different ways:
v Select the menu option from the Main Menu Bar.
v Click the button on the Main Toolbar.
v Click the appropriate part of the map.
v Right-click a map component to access a menu of functions available for that

map component. The content of these menus varies, depending on the type and
level of the selected map component.

When you start Sterling Gentran:Server Application Integration, the Main Menu
Bar contains a subset of menu items. The full set of menu items is displayed after
you create a new map or open (load) an existing map.

This table lists the parts of the Application Integration Window.

Table 3. Application Integration window parts and functions

Part Function

Main menu bar Contains drop-down menus. Unavailable items are dimmed.

Main Toolbar Enables you to access some of the most common functions in the
Application Integration subsystem. Unavailable items are dimmed.
Note: The Main Toolbar is dockable, so you can affix it to any edge of
the client window.

Status bar Displays status information about a selection, command, or process,
defines menu items as you highlight each item in the menu, and
indicates any current keyboard-initiated modes for typing.

Global Display Settings
The Preferences dialog box enables you to set global defaults for Sterling
Gentran:Server. The map display options can be set or changed at any time.

Chapter 1. Application Integration Basics 7



The Sterling Gentran:Server Application Integration subsystem allows you to
customize the display of maps in several different ways:
v Customizing global display options
v Customizing colors (global option)
v Customizing fonts (global option)
v Displaying links (global option)
v Customizing the auto-increment map version
v Making the two sides of a map equal
v Setting the default date/time format
v Customizing confirmation options

Customizing Global Display Options
You can display descriptions for map components, such as groups,
records/segments, and fields/elements.

About this task

Use this procedure to customize the global display options.

Procedure
1. Select Options > Preferences.

The system displays the Preferences dialog box. The Preferences dialog box
enables you to set global defaults for Sterling Gentran:Server.

2. To turn on the default display of group, record (segment), and field (element)
descriptions, select the appropriate options.

Note: Typically, you want to have all the descriptions displayed for reference.
However, depending on the size of your monitor, it may be easier to view the
entire map if the descriptions are not displayed. You may also want to
experiment with shrinking the size of the font for the map.

3. Click OK to save changes and exit the Preferences dialog box.

Customizing Global Colors
The Colors feature enables you to select foreground and background colors to
visually define the various map or form components. The use of color is optional.

About this task

Use this procedure to customize colors for all maps or forms.

Procedure
1. Select Options > Preferences.
2. Click Colours.

The system displays the Colours dialog box, as shown below.

8 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



3. From the Item list, select the type of component (Group, Record/Segment,
Composite, Field/Element).

4. From the Attributes list, further define the type of component by selecting
whether it is active or inactive and conditional or mandatory.

5. Select the foreground and background colors.
6. Click OK to globally define the selected colors for all maps or forms.

Customizing Global Fonts
The Font feature enables you to globally change the font type, style, and point size
that are used in the display of all maps or forms. This gives you the flexibility to
shrink the font if you need to view more of the map on your monitor, enlarge the
font, or change the type and style to be more easily readable.

About this task

Use this procedure to customize the display font for all maps.

Procedure
1. Select Options > Preferences.
2. Click Font.

The system displays the Font dialog box, as shown below.

Chapter 1. Application Integration Basics 9



3. From the Font box, select the type of font. The default is MS Sans Serif.
4. From the Font Style box, select the style. The default is Regular.
5. From the Size box, select the point size. The default is 9.
6. Click OK to make the global font change to all maps and forms and exit the

Font dialog box.

Customizing Global Display of Links
Mapping Links are the visual lines that connect each field/element/TFD on the
Input side of the map to a field/element/TFD on the Output side of the map.

About this task

Use this procedure to customize the global display of mapping links.

Procedure
1. Select Options > Preferences.
2. Select the Links tab.
3. Select the linking option that you want to set as the default for all maps.

Valid options are:
v Show no links: Do not visually display mapping links.
v Show links to or from the currently selected element: Display only the

mapping links for the currently selected field. This option enables you to
concentrate on the selected field and removes the confusion of viewing many
links at once.

v Show links to or from all visible elements: Display all the mapping links.
4. Click OK to save changes and exit the Preferences dialog box.

Customizing the Auto-increment Map Version
Sterling Gentran:Server supports automatically incrementing the version number of
a map based on a global option you can set.

10 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



About this task

You can set a global option on the Application Integration Preferences dialog box
to specify when map version numbers are incremented. The following are the
options for automatically incrementing the map version number:
v Never auto-increment.
v Ask whether to increment when saving a map.
v Ask whether to auto-increment when compiling a map.
v Always auto-increment when saving a map.
v Always auto-increment when compiling a map.

Note: The auto-increment function updates the minor version number of the map
on the Translation Object Details dialog box, up to 255. If the minor version
number exceeds 255, the system updates the minor version number to zero and
increases the major version number. For example, version number 1.255 will be
auto-incremented to 2.0.

Use this procedure to set the auto-increment map version function.

Procedure
1. Select Options > Preferences.
2. Select the Version tab.
3. Select the appropriate option and click OK.

The system sets the global auto-increment option you selected.

Making the Two Sides of the Map Equal
The Equalize function enables you to reinstate the two sides of the map with focus
in equal dimensions. The use of the Equalize function is optional.

About this task

When you open a map, the Input and Output sides of a map are displayed in
equal dimensions. After manipulating a map and moving the center bar that
divides the display of the Input and Output sides, you may wish to again make
the two sides equal.

Use this procedure to make the two sides of a map equal.

Procedure

Select View > Equalize.
This moves the center dividing bar between the two sides of the map with focus,
so that the two sides of the map are equally proportioned.

Setting the Default Date/Time Format
The Date Formats global option changes the default date format for all maps or
forms. However, the format of the existing date fields do not change; the default is
only used for new maps or forms.

Chapter 1. Application Integration Basics 11



About this task

You typically establish the default date format for all date fields one time only.
This default is used when EDI documents are initially loaded from the standard.
This default can be overridden on the Field Properties dialog box.

Use this procedure to establish the default date format.

Procedure
1. Select Options > Preferences.
2. Select the Standard Formats tab.
3. From the Six-character dates and Eight character dates lists, select the

appropriate six-character and eight-character default date formats.
4. Click OK to accept the default date formats and exit the Preferences dialog box.

Tip: To change the order in which the date formats appear in the Six-character
dates and Eight character dates lists or to add a new date format to the lists,
select Options > Date Formats.

Date/Time Formats
The Date Formats global option changes the default date format for all maps or
forms. However, the format of the existing date fields do not change; the default is
only used for new maps or forms.

This table lists the valid date and time formats.

Format Description

YYMMDD Two-digit year, two-digit month, two-digit day

MMDDYY Two-digit month, two-digit day, last two digits of year (example:
121599)

YYYYMMDD Four-digit year, two-digit month, two-digit day (example:
19991215)

DDMMYYYY Two-digit day, two-digit month, four-digit year (example:
15121999)

MMDDYYYY Two-digit month, two-digit day, four-digit year (example:
12151999)

DDMMYY Two-digit day, two-digit month, last two digits of year (example:
151299)

YYMMMDD Last two digits of year, three-letter abbreviation of the month,
two-digit day (example: 99JAN02)

DDMMMYY Two-digit day, three-letter abbreviation of the month, last two
digits of year (example: 02JAN99)

MMMDDYY Three-letter abbreviation of the month, two-digit day, last two
digits of year (example: JAN0299)

YYYYMMMDD Four-digit year, three-letter abbreviation of the month, two-digit
day (example: 2003JUL04)

DDMMMYYYY Two-digit day, three-letter abbreviation of the month, four-digit
year (example: 04JUL2003)

MMMDDYYYY Three-letter abbreviation of the month, two-digit day, four-digit
year (example: JUL042003)

YYDDD Last two digits of year, three-digit Julian day (example: 99349 for
the 349th day of 1999)

12 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Format Description

DDDYY Three-digit Julian day, last two digits of year (example: 34999)

YYYYDDD Four-digit year, three-digit Julian day (example: 1999349)

DDDYYYY Three-digit Julian day, four-digit year (example: 3491999)

YY/MM/DD Last two digits of year, separator, two-digit month, separator,
twodigit day (example: 99/12/05)

DD/MM/YY Two-digit day, separator, two-digit month, separator, last two
digits of year (example: 05/12/99)

MM/DD/YY Two-digit month, separator, two-digit day, separator, last two
digits of year (example: 12/15/99)

YYYY/MM/DD Four-digit year, separator, two-digit month, separator, two-digit
day (example: 1999/12/15)

DD/MM/YYYY Two-digit day, separator, two-digit month, separator, four-digit
year (example: 15/12/1999)

MM/DD/YYYY Two-digit month, separator, two-digit day, separator, four-digit
year (example: 12/15/1999)

YY/MMM/DD YY/MMM/DD Two-digit year, separator, three-letter abbreviation
of the month, separator, two-digit day (example: 99/JUL/20)

DD/MMM/YY Two-digit day, separator, three-letter abbreviation of the month,
separator, two-digit year (example: 20/JUL/99)

MMM/DD/YY Three-letter abbreviation of the month, separator, two-digit day,
separator, two-digit year (example: JUL/20/99)

YYYY/MMM/DD Four-digit year, separator, three-letter abbreviation of the month,
separator, two-digit day (example: 2003/JUL/25)

DD/MMM/YYYY Two-digit day, separator, three-letter abbreviation of the month,
separator, four-digit year (example: 25/JUL/2003)

MMM/DD/YYYY Three-letter abbreviation of the month, separator, two-digit day,
separator, four-digit year (example: JUL/25/2003)

YY/DDD Last two digits of year, separator, three-digit Julian day (example:
99/349)

DDD/YY Three-digit Julian day, separator, last two digits of year (example:
349/99)

YYYY/DDD Four-digit year, separator, three-digit Julian day (example: 1999/
349)

DDD/YYYY Three-digit Julian day, separator, four-digit year (example: 349/
1999)

MONTH Month (example: December)

DAY Day of the week (example: Friday)

HHMM Two-digit hour, two-digit minutes (example: 0330 for 30 minutes
past 3 o'clock)

HHMMSS Two-digit hour, two-digit minutes, two-digit seconds (example:
033045 for 30 minutes and 45 seconds past 3 o’clock)

HH:MM Two-digit hour, separator, two-digit minutes (example: 03:30)

HH:MM:SS Two-digit hour, separator, two-digit minutes, separator, two-digit
seconds (example: 03:30:45)

Chapter 1. Application Integration Basics 13



Format Description

YYYYMMDDTHH
MMSS.mmmZ

ISO-8601 format: Four-digit year, two-digit month, two-digit day,
T (time) indicator, two-digit hour, two-digit minutes, two-digit
seconds in Universal Time (also called Zulu Time or Greenwich
Mean Time), Z (Zulu time) indicator (example:
20031209T123000.000Z)

YYYYMMDDZ ISO-8601 date format: Four-digit year, two-digit month, two-digit
day, Z (Zulu time) indicator (example: 20031209Z)

MM/DD/YY
HH:MM:SS

Two-digit month, separator, two-digit day, separator, last two
digits of year, two-digit hour, separator, two-digit minutes,
separator, two-digit seconds (example: 12/15/99 03:30:45)

YYMMDD HHMMSS Last two digits of year, two-digit month, two-digit day, two-digit
hour, two-digit minutes, two-digit seconds (example: 991025
033045)

YYYY-MMDDTHH:
MM:SS

Four-digit year, separator, two-digit month, separator, two-digit
day, T represents a blank separator, two-digit hour, separator,
twodigit minutes, separator, two-digit seconds (example:
2002-02-02 03:30:45)

YYYY-MM-DD Four-digit year, separator, two-digit month, separator, two-digit
day (example: 2002-02-02)

YYYY-MM Four-digit year, separator, two-digit month (example: 2002-02)

YYYY Four-digit year (example: 2002)

--MM-DD Two dashes, two-digit month, separator, two-digit day (example:
- -12-02)

---DD Three dashes, two-digit day (example: ---02)

Customizing Global Confirmation Options
The Confirmations tab on the Preferences dialog allows you specify when you
want confirmation messages displayed.

About this task

Use this procedure to set the confirmation options.

Procedure
1. Select Options > Preferences.
2. Select the Confirmation tab.
3. Set the global confirmation options by either selecting Confirm everything

(displays all confirmation messages) or by selecting individual confirmation
messages by action performed.

4. Click OK to save the confirmation options.
The system sets the confirmation options you selected.

Map Building Process
This topic provides an overview of the map creation process.

14 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



This table defines how to proceed with building a map using the Sterling
Gentran:Server Application Integration subsystem.

Stage Description

1 Prepare and analyze.

v Obtain a layout of your application file and determine how it corresponds
with the EDI standard you are using.

v Determine how you move data to or from each application field.

2 Set global defaults (one time only).

The first time you use the Sterling Gentran:Server Application Integration
subsystem, you should establish the default date format that the system
uses. See Setting the Default Date Format for more information.

3 Create a new map.

See Creating a Map for more information.

4 Activate the appropriate EDI groups, segments, and elements or auto trim
based on a sample EDI file.�

Alternatively, define your CII EDI file.

For more information, see the following topics:

v Activating EDI Map Components

v Using Auto Trim

v About CII Files

5 Define your application.

See About Fixed-format Files for more information.

6 Map the appropriate data for each application field.

For more information, see the following topics:

v Creating Simple Links

v the Standard Rules topics

v the Extended Rules topics

7 Compile the translation object.

See Compiling a Map for more information about compiling the translation
object and the translation object naming conventions.

8 Print the mapping report. Validate and review the map. Make modifications
as needed.

See Printing a Mapping Report for more information.

9 Register the translation object with Sterling Gentran:Server.

See the IBM Sterling Gentran:Server for Microsoft Windows User Guide for more
information.

10 Establish relationships in Sterling Gentran:Server with your trading partners.

See the IBM Sterling Gentran:Server for Microsoft Windows User Guide for more
information about creating trading relationships.

11 Test the translation object. Obtain test data from your partners and process
the data. Verify acknowledgement processing (if applicable). Verify
communications with your network.

Chapter 1. Application Integration Basics 15



Map Types
There are several types of maps available in Sterling Gentran:Server.

This table provides brief descriptions of the map types.

Map Type Description

Import Used for outbound maps.

Export Used for inbound maps.

Interchange break Used in advanced mapping to separate interchanges.

Functional Acknowledgement
Inbound

Used in advanced mapping to reconcile functional
acknowledgements.

Functional Acknowledgement
Outbound

Used in advanced mapping to generate functional
acknowledgements.

System Import Header Used to determine which trading relationship
(established in Partner Editor) corresponds to each
document in the application file, so the system knows
which import translation object to use to process the
document.

Turnaround Used for EDI to EDI maps.

Transaction build Used in advanced mapping to build transaction
envelopes.

Transaction break Used in advanced mapping to separate documents.

Functional group build Used in advanced mapping to build functional group
envelopes.

Functional group break Used in advanced mapping to separate functional
groups.

Interchange build Used in advanced mapping to build interchange
envelopes.

Direct Map Do not use this map type. Any existing maps that are
configured with the Direct Map type should be changed
to another type.

16 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Chapter 2. Map Design

Preparation and Analysis
The first step in creating a map is the analysis of the mapping requirements. This
is the most important step in creating a successful map. If the analysis you
perform is complete, you have all the information you need to create the map in
an efficient and logical manner. If you skip this step and start directly creating
your map, it may take you longer and result in an invalid map due to oversights
and omissions.

This table lists the stages of mapping analysis. These apply whether you are
translating data inbound or outbound.

Stage Description

1 Analyzing your application file format

2 Analyzing your partners EDI file format

3 Correlating your application and the EDI file formats

After you complete these steps, you can begin creating the map.

Analysis of Your Application File Format
The first step of mapping analysis is analyzing your application file format,
because this is probably the component that is the most familiar to you.

Your application file format contains all the information that you need to extract
from the purchase order your partner sends you, so that your system can correctly
process the purchase order, and your company can fill the order correctly.

You must define your application file format to Sterling Gentran:Server. If your
company has an existing application file format, you should obtain the record
layout from the appropriate person. If you did not have an existing application file
format, you need to create one by determining which fields are necessary to
process the data correctly, and then grouping the fields logically under records.

Analysis of the Customer EDI File
To analyze the EDI file, you must first determine what your trading partners are
sending you. You and your partners need to agree on which standard, version, and
transaction set you are using. It is important to know the information that your
partners are sending you and what data is contained in each element used.

It is very helpful to review the EDI standards that you are using before analyzing
the EDI file. Obtain an EDI standards manual for each standard and version that
you are using. Standards manuals are available from EDI standard agencies.

After discussing with your partners what they are sending, determining which
segments and elements your company requires, and reviewing the EDI standard,
you can list the map components that you need to make available for use
(activate).

© Copyright IBM Corp. 1996, 2024 17



Reconcile Your Application File and the Customer EDI File
To reconcile your application file format with the EDI file, you must identify each
application file with its corresponding element in the EDI file and select a method
for mapping it. To map information to a field, you use linking, standard rules,
extended rules, or a combination of all three.

Linking (simple mapping) enables you to map a field or element from the input
side of the map to a field or element on the output side of the map. The link
between two map components (fields) is visually represented with a line
connecting the two fields.

Standard rules give you access to mapping operation functions that are more
complex than simple linking, but less involved than extended rules.

Extended rules enable you to use a Sterling Gentran:Server proprietary
programming language to perform virtually any mapping operation you require.

Additionally, you may determine that you need to establish temporary storage
(work) areas for the map to handle items such as Ship To and Bill To name and
address information, which is extracted using extended rules from a group in the
EDI data.

Note: Determine which mapping operations are required on a field-by-field basis
for your application file.

Creating a Map
You can create four different types of maps: System Import (containing the header
information for an Import map), Import (for Outbound Maps), Export (for Inbound
Maps), or Turnaround (for EDI to EDI maps). The initial procedures for creating a
new map of each of the four types is the same.

About this task

Use this procedure to create a map.

Procedure
1. Select File > New.

The system displays the New Map Wizard.
2. Enter the following information and click Next:

v Select the type of map
v Type the unique name of the map. The system adds the .MAP extension.
v Type your name if it differs from the user name prompted by the system.
The system displays the New Map Wizard - Input Format dialog box.

Note: You need to complete the format for the Input side of the map (Steps 3
- 7). This is the format of the data that is translated by the Sterling
Gentran:Server system.

3. For the input side of the map, do one of the following:
v Create a data format using a syntax that you define - go to step 4.
v Load the data format from a saved definition - go to step 7.

4. Select one of the following input format options:

18 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



v Delimited EDI (Electronic Data Interchange file)
v Positional (VDA, GENCOD, application files)
v CII (Japanese standard)
v CII Positional (for CII Build/Break maps)

Notes:

v For Inbound maps (Export), the Input Format Type is CII or EDI.
v For Outbound maps (System Import or Import), the Input Format Type is

Positional.
v For Turnaround maps, the Input Format Type is EDI or CII.

5. If you selected Delimited EDI or CII and want to customize the format, click
Customize and continue with the next step. Otherwise, click Next and
continue with step 9.
The system displays the New Delimited EDI Wizard or New CII Wizard
dialog box. The Delimited EDI and CII wizards enable you to create your
format from the standards database.

6. Follow the steps for the appropriate dialog box:
v If the dialog is New Delimited EDI Wizard, do the following:

a. Click Next.
b. Select the ODBC data source that contains the standards database.
c. Select the standards agency, version, transaction set, and (for

TRADACOMS) release number and click Next.
d. Click Finish.

v If the dialog is New CII Wizard, do the following:
a. Click Next.
b. Select the ODBC data source that contains the standards database.
c. Specify if you want to use Japanese descriptions and click Next.
d. Select the standards agency, version, transaction set, and (for

TRADACOMS) release number and click Next.
e. Select the appropriate Multi-detail header and click Next.
f. Click Finish.

The system displays the New Map Wizard - Output Format dialog box.
Continue with step 8.

7. To load the data format from a saved definition, select Load the data format
from a saved definition and either enter the path and filename of the saved
definition or browse to navigate and select the file.

Note: You can select either a .DDF or .IFD file. If the DDF is invalid, the
system displays a message box explaining the problem and terminates the
import.

8. For the output side of the map, do one of the following:
v Load the data format from a saved definition - go to step 12.
v Create a data format using a syntax that you define - go to step 9.

9. Select one of the following input format options:
v Delimited EDI (Electronic Data Interchange file)
v Positional (VDA, GENCOD, application files)
v CII (Japanese standard)
v CII Positional (for CII Build/Break maps)

Chapter 2. Map Design 19



Notes:

v For Inbound maps (Export), the Output Format Type is CII or EDI.
v For Outbound maps (System Import or Import), the Output Format Type is

Positional.
v For Turnaround maps, the Output Format Type is EDI or CII.

10. If you selected Delimited EDI or CII and want to customize the format, click
Customize and continue with the next step. Otherwise, go to step 13.
The system displays the New Delimited EDI Wizard or New CII Wizard
dialog box. The Delimited EDI and CII wizards enable you to create your
format from the standards database.

11. Follow the steps for the appropriate dialog box:
v If the dialog is New Delimited EDI Wizard, do the following:

a. Click Next.
b. Select the ODBC data source that contains the standards database.
c. Select the standards agency, version, transaction set, and (for

TRADACOMS) release number. Click Next.
d. Click Finish.

v If the dialog is New CII Wizard, do the following:
a. Click Next.
b. Select the ODBC data source that contains the standards database.
c. Specify if you want to use Japanese descriptions and click Next.
d. Select the standards agency, version, transaction set, and (for

TRADACOMS) release number. Click Next.
e. Select the appropriate Multi-detail header and click Next.
f. Click Finish.

The system displays the New Map Wizard dialog box. Continue with step 13.
12. To load the data format from a saved definition, select the Load the data

format from a saved definition option and either enter the path and filename
of the saved definition or browse to navigate and select the file.

Note: You can select either a .DDF or .IFD file. If the DDF is invalid, the
system displays a message box explaining the problem and terminates the
import.

13. Click Finish to load the standards information you selected and create the
new map (this may take a few seconds).
The system displays the new map in the Application Integration Window.

What to do next

After you finish creating and saving a new map, you need to define the Input and
Output sides of the map. The steps you take are different, depending on whether
the map is an Import, System Import, Export, or Turnaround map.

Translation Object Details Dialog Box
The Translation Object Details dialog box enables you to edit the details of the
translation object, including the description and version information.

This dialog box enables you to instruct the translator to use the pad character and
alignment settings of each string field when reading a positional or CII positional
file, to determine how to trim pad characters from the string data.

20 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Table 4. Translation Object Details dialog box parts and functions

Part Function

Author Identifies the person or department that created the map.
Mandatory.

Description Contains a unique description of the map. Mandatory.

This description is used by the system to identify the map. We
strongly recommend that you use the following identifying
characteristics of the map: the partner that this map is used for,
the standard, the version, the type of transaction this map uses,
and the direction of the map (for example, Import, Export).

For example, MWT X 3030 850 Export is the description of a
map used with partner MWT, for an ANSI X.12 version 003030
Purchase Order (850), that is sent Inbound (Export).

Translation Object
Function

Verify the type of map from the list. Mandatory.

System Designates this map as a system translation object (one that will
be used internally by the system).

You should only select this check box if you are certain that you
want to define this translation object as a system translation
object. Once a system translation object is registered with
Sterling Gentran:Server, it cannot be deleted.

Chapter 2. Map Design 21



Table 4. Translation Object Details dialog box parts and functions (continued)

Part Function

Use Configurable
Trimming

Instructs the translator to use the pad character and alignment
settings of each string field when reading a positional or CII
positional file, to determine how to trim pad characters from
the string data.

For example, if the alignment setting indicates that the data is
aligned in the left of the field, then pad characters are trimmed
from the right of the field. If the alignment setting indicates that
the data is aligned at the right of the field, then pad characters
are trimmed from the left of the field. Finally, if the alignment
setting indicates that the field data is aligned in the center of
the field, then pad characters are trimmed from both the left
and right of the field.

If this option is cleared (which is the default) pad characters are
always trimmed from both the left and right of each positional
string field, which is the current system behavior.

Use configurable trimming to preserve either trailing or leading
spaces in your application data.

Gentran:Server for
Windows 2.x Compatible
Rule Execution

Enables you to specify how the translator executes standard and
extended rules on the output side of a map.

Major version/Minor
version

Enables you to designate different versions of a translation
object.

The valid values for each box is 0 - 255. These two boxes are
available for your use only. They are not used by the system.

For example, if you enter 5 in the Major box and 45 in the
Minor box, the Translation Object Version Number is 5.45.

Compiled on Displays the date when the translation object was compiled.
This will be blank if the translation object has not been
compiled yet.

EDI Associations section If you selected Delimited EDI for the input and/or output sides
of the map, this section contains the EDI information.

You should change these boxes only if you want to change the
EDI agency, version, transaction, release, or functional group of
an existing map. This enables you to copy and alter an existing
map.

Rule execution prior to version 3.0

The Translation Object Details dialog box also enables you to specify whether you
want the translator to execute standard and extended rules as it did for Sterling
Gentran:Server prior to version 3.0. The standard behavior for Sterling
Gentran:Server prior to version 3.0 is as follows: if an output record/segment is
linked to an input field in a record/segment that does not contain data but is at
the same hierarchical level as an input record/segment that does contain data, the
standard and extended rules on the output field will be executed even though
there is no data present.

In the example diagram below, the extended rule on the DEMO5 field on the
output side of the map is executed even though there is no data for the field to

22 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



which it is linked (DEMO1:2 on the input side of the map). The rule is executed
because there is data present for a field in the DEMO1 record on the input side of
the map, and that record is at the same level as DEMO2.

For any map that was compiled with Sterling Gentran:Server prior to version 3.0,
the system emulates the previous behavior by automatically selecting
Gentran:Server for Windows 2.x Compatible Rule Execution on the Translation
Object Details dialog box. You can modify this default if you wish, but you would
then need to re-map any instances where you want standard or extended rules to
run on an output record/segment that does not contain fields that will be
populated with data.

Rule execution in version 3.0 and later

In version 3.0, the standard rule execution behavior is as follows: standard and
extended rules for a record/segment on the output side of the map are only
executed if any of its links populate the output map component with data.

For any map created with Sterling Gentran:Server version 3.x or later, the system
default is to clear the Gentran:Server for Windows 2.x Compatible Rule
Execution option on the Translation Object Details dialog box. We recommend that
you do not select this check box for version 3.x and later, as this differs from the
prescribed behavior.

In the example diagram below, the extended rule on the DEMO5 field on the
output side of the map is not executed because there is no data for the field to
which it is linked (DEMO1:2 on the input side of the map). The rule is not
executed even though there is data present for a field in the DEMO1 record on the
input side of the map, and that record is at the same level as DEMO2.

Chapter 2. Map Design 23



Defining Translation Object Details
Details about the translation object are created when you create the map. However,
you may want to change some of those details, such as the description or the
version number.

About this task

Use this procedure to specify translation object details.

Procedure
1. Select Edit > Details.

The system displays the Translation Object Details dialog box.
2. To change the map description, type the new description in the Description

box.
3. To change the compatible rule execution specification, do one of the following:

v For versions prior to 3.0, select Gentran:Server for Windows 2.x Compatible
Rule Execution.

v For versions 3.0 and later, make sure the Gentran:Server for Windows 2.x
Compatible Rule Execution option is clear.

4. To change the map version, type the appropriate version numbers in the Major
and Minor boxes and click OK.
The system saves your changes and exits the Translation Object Details dialog
box.

Loading a File Definition
Sterling Gentran:Server enables you to load an individual file format definition
that you previously saved. This feature provides you with a quick way to build
either side of your map.

Before you begin

Important: Loading a file definition replaces the selected side of the map. Please
be certain that is your intent before performing this task.

About this task

Use this procedure to load a file format definition.

Procedure
1. Right-click the File Format icon (either the input or output side of the map)

and select Open File Definition.
If you already used Sterling Gentran:Server to create that side of the map, you
are prompted with a message that warns you that the existing file format will
be replaced.

2. Click Yes to continue.
The system displays the Open File Definition dialog box.

3. Navigate to the location where Sterling Gentran:Server is installed and either
select the file definition or enter the filename.

4. Click Open.
The system loads the selected file format definition.

24 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Saving a File Definition
Sterling Gentran:Server enables you to save an individual file format definition so
that you can use it as a guide in future maps. This provides you with a quick way
to build either side of your map.

About this task

Use this procedure to save an individual file format definition.

Procedure
1. Right-click the File Format icon (either the input or output side of the map)

and select Save File Definition.
The system displays the Save File Definition dialog box.

2. Navigate to the location where Sterling Gentran:Server is installed and either
select the file definition or enter the filename.

3. Click Save.
The system saves the file format definition.

Activating EDI Map Components
When Sterling Gentran:Server generates the EDI sides of the map, the system
includes all the groups, segments, composites, and elements that are defined by the
standard agency for the version of the document you selected. The system
activates all the groups, segments, composites, and elements that are defined as
mandatory by the standard. The system does not enable you to deactivate the
mandatory groups, segments, composites, and elements.

About this task

When translating data, the system does not process groups, segments, composites,
and elements (or records and fields) that are not activated. Therefore, you must
activate the groups, segments, composites, and elements that are not defined as
mandatory by the standard, but that you have determined that you need to use in
mapping.

Tip: As an alternative to activation, you can use the Auto Trim feature if you have
a sample EDI file defined. See Using Auto Trim for more information.

Use this procedure to activate groups, segments, composites, and elements.

Procedure
1. Select Functions > Activate.
2. Double-click each group that contains segments or groups that need to be

activated.

Note: As an alternative to opening each map component, you can select View
> Expand All to open every map component. You can also select a map
component and select View > Expand Branch to open that map component.

3. Select each inactive group that you need to use. This activates the groups.

Note: If you accidentally click a group, segment, composite, or element that
you did not mean to activate, right-click the map component and select
Deactivate.

4. Select each inactive segment that you need to use.

Chapter 2. Map Design 25



5. Open each segment that contains composites or elements that need to be
activated.

6. Select each inactive composite that you need to use.
7. Open each composite that contains elements that need to be activated.
8. Select each inactive element that you need to use.
9. Once you have activated all the necessary groups, segments, and elements,

select Functions > Activate to turn activation mode off.

Using Auto Trim
Instead of activating map components manually, you can use the Auto Trim feature
to modify the EDI side of the map according to a sample EDI file that you select
(you must have previously created this EDI file).

About this task

The Auto Trim feature examines the EDI file that you specify and then activates
and deactivates map components on the EDI side of the map, so that the two files
match. The sample EDI file must be the same standard, version, and transaction set
(message) as the map for Auto Trim to match map components.

To use Auto Trim, you must define the Segment and Element Delimiters. If you do
not supply the Tag Delimiter, the system substitutes the Segment Delimiter. If you
want to use composite elements, you must specify the Sub Element Delimiter. If
you want to use release characters, you must specify the Release Character. See
Verifying EDI Delimiters for more information.

The sample EDI file must be compliant and must not contain envelope segments.

Use the following procedure to use Auto Trim:

Procedure
1. Right-click the EDI File icon on the EDI side of the map and select Auto Trim.

The system displays the Auto-trim Sample EDI File dialog box.
2. Navigate to the location where the EDI file is stored (default is GENSRVNT\BIN)

and select the sample EDI file that you want to load into the system.
3. Click Open to begin the auto trim process.

When auto trim is complete, the system displays a message stating whether or
not auto trim was successful.

4. Click OK to acknowledge the message.

Promoting Groups and Repeating Segments
The Promote function extracts one iteration (instance) of a group or repeating
segment. For maps, this enables you to map unique data from your application
file, and/or enter a specialized definition. For forms, it also sets the promote flag
and places the active elements in the parent frame.

About this task

For maps, Sterling Gentran:Server specifies that only one-to-one (no loops) or
many-to-many (loop) mapping relationships are valid. For more information on
this action, see the Application Integration tutorials.

26 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Note: The Promote function is only available if a group or repeating segment is
selected.

Tip: You can use the Copy and Paste functions (and change the number in the
maximum usage box) to accomplish the same task. However, Promote is a
specialized function that guarantees the integrity of your EDI structure. Depending
on the circumstances, you may want to use the Split function or Copy/Cut and
Paste functions instead.

Use this procedure to promote a group or repeating segment.

Procedure
1. Select the group or repeating segment from which you want to extract one

iteration.
2. Click Promote on the Main Toolbar.

This extracts one iteration (instance) of the looping structure.

Splitting Groups and Repeating Segments
The Split function enables you to split (break) a group or repeating segment into
two loops. You typically use this function when you need more than one instance
of the same component that occurs multiple times. For more information on this
action, see the tutorial.

About this task

Note: The Split function is only available if a group or repeating segment is
selected.

Tip: You can use the Copy and Paste functions (and change the number in the
maximum usage box) to accomplish the same task. However, Split is a specialized
function that guarantees the integrity of your EDI structure.

Use this procedure to split a group or repeating segment.

Procedure
1. Highlight the group or repeating segment from which you want to extract one

iteration.
2. Click Split on the Main Toolbar.

The system displays the Split dialog box.
3. In the First Loop Entries box, type the number that indicates the sequential

number of iterations where you want the group or repeating segment split.
For example, if the X loop repeats a maximum number of 5 times, and you
type 2 in the First Loop Entries box, the resulting split generates one X loop
that repeats a maximum of 2 times and a second X loop that repeats a
maximum of 3 times.

4. Click OK.

Using Copy, Cut, and Paste
The Copy, Cut, and Paste functions are typically used to move EDI information in
the map or form. You may need to use these functions if you are using an EDI
standard differently, or if you need to create nested looping structures.

Chapter 2. Map Design 27



About this task

You can cut or copy a single component (loop, segment, composite, element,
record, or field) and paste it in another location in the map. Copied components
retain all the information of the original component. If the copied component
contains subordinate components (like a segment contains subordinate elements),
the subordinate components are also copied.

You can also cut, copy, and paste a component from one map or form to another.

Use this procedure to cut, copy, and paste a component.

Procedure
1. Select the component that you want to cut or copy.
2. Select Edit > Copy.

Note: If you are pasting the component in another map or form, open that
map or form, if it is not already open.

3. Select the component that you want the cut or copied selection pasted after.

Note: For maps, if you cut or copied an EDI component, you can only paste
that component into the EDI side of a map. Conversely, if you cut or copied a
positional component, you can only paste that component into the positional
side of a map.

4. Click Paste on the Main Toolbar to paste the contents of the Clipboard.
If the component that you selected is a group, Sterling Gentran:Server prompts
you to specify whether you want the contents of the Clipboard pasted as a
child (subordinate) of the group or pasted at the same level as the group. Select
the appropriate option and click OK.

About Fixed-format Files
If a side of your map is positional (fixed-format), you must either define your
application to Sterling Gentran:Server or load a previously-saved file definition.
Your application file must contain all the information that you need to extract from
your partner’s document (if the map is inbound) or send to your partner (if the
map is outbound).

Before you define your application, you should obtain a layout of the necessary
records, fields, and groups. The records contain related fields and the groups
contain related records. For example, your application contains records and groups.
The records contain fields and the groups contain records, subgroups, or both. This
means that you must create records and groups before you create the subordinate
fields.

Each map component is arranged sequentially in the order that it is most logical
for the system to process. Therefore, each level of your application must be created
sequentially.

You will use two different Sterling Gentran:Server functions to create the necessary
group and records—Create Sub and Insert.

28 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Table 5. When to use the Create Sub and Insert functions

To create a group or record Right-click the map component above and select

at the same level (equal) v Insert > Group

v Insert > Record

that is subordinate to the selected
map component

v Create Sub > Group

v Create Sub > Record

Changing Record Delimiters
About this task

Use this procedure to set the record delimiters.

Procedure
1. In Application Integration, open the positional file.
2. Right-click the file format icon and select Properties.
3. In the Record tab, change the Record Delimiters 1 and Record Delimiters 2 as

needed.
4. Click OK. You must click OK, even if the delimiter fields are empty (to reset

the delimiters).
5. Save and compile the map.

Changing Decimal Points
To specify that each decimal point in your data is defined and generated as a
something other than the default period, change the options on the Decimal Point
tab.

About this task

Use this procedure to change the default decimal point setting:

Procedure
1. In Application Integration, open the positional file.
2. Right-click the file format icon and select Properties.
3. Click the Decimal Point tab.
4. Select Define Decimal Point.
5. Type the value you want to use as a decimal point (for example, a comma).

This resets the decimal point default to use what you specified instead of a
period.

6. Click OK.
7. Save and compile the map.

Creating the First Record
The first record in your application is generally the header record. The first record
is subordinate to the icon in the application side of the map. This shows how the
records (and groups) are contained within it.

Chapter 2. Map Design 29



About this task

Tip: You should include a header record in each application file. The header
record is mandatory and does not repeat.

Use this procedure to create the first application record.

Procedure
1. Select the Positional File icon (output for an inbound map and input for an

outbound map).
2. Select Edit > Create Sub > Record.

The system displays the Positional Record Properties dialog box.
3. On the Name tab, type the record name and a description of the record.

Note: The description allows you to differentiate similar records.
4. Select the Tag tab.
5. Type the record identification code <TAG>. The record tag for each record

enables the system to recognize that record and then determine the mapping
requirements.
For example, a record is recognized by the system as:
<TAG>[Field_1][Field_2]

Define the record tag on the Positional Record Properties dialog box, instead
of defining fields with the purpose of explicitly containing the record tag.

6. In the Position box, type the starting column position of the tag in the data
record.

7. Select the Special tab only if you want to specify floating or wildcard options.
Otherwise, accept the defaults.
v Floating - The record does not have a fixed position in the file.
v Wildcard - Generally only used with build or break maps.

8. Select the Looping tab only if the record is a looping structure. Otherwise,
accept the defaults and continue with step 10.

9. If this record is a looping structure, on the Looping tab, enter the minimum
and maximum number of times the record can repeat. Type 1 to make the
header record mandatory.

Note: If the Min Usage box contains 0, the record is conditional. If the Min
Usage box contains 1 or greater, the record is mandatory.

10. Click OK to create the record.

Creating Subsequent Records
After you create the first record, you can define subsequent records at the same
level. You can also define groups, if your application includes looping structures.

About this task

You may need to define a loop if your application requires a group of related
records (and/or subgroups) that repeat in sequence. See Creating a Group for more
information.

Use this procedure to create additional application records.

30 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Procedure
1. Select the map component that precedes the record you are creating and select

Edit > Insert > Record or Edit > Create Sub > Record, depending on the level.
The system displays the Positional Record Properties dialog box.

2. On the Name tab, type the record name and a description of the record.
3. Select the Tag tab.
4. In the Tag box, type the record identification code <TAG>. The record tag for

each record enables the system to recognize that record and then determine the
mapping requirements.
For example, a record is recognized by the system as:
<TAG>[Field_1][Field_2]

Define the record tag on the Positional Record Properties dialog box, instead of
defining fields with the purpose of explicitly containing the record tag.

5. In the Position box, type the starting column position of the tag in the data
record.

6. Select the Special tab only if you want to specify floating or wildcard options.
Otherwise, accept the defaults.
v Floating - The record does not have a fixed position in the file.
v Wildcard - Generally only used with build or break maps.

7. Select the Looping tab only if the record is a looping structure. Otherwise,
accept the defaults and continue with step 9.

8. If this record is a looping structure, on the Looping tab, enter the minimum
and maximum number of times the record can repeat. Type 1 to make the
header record mandatory.

Note: If the Min Usage box contains 0, the record is conditional. If the Min
Usage box contains 1 or greater, the record is mandatory.

9. Click OK to create the record.

Temporary Records
You may need to use temporary records and fields when you cannot use a simple
link or if you need to extract only specific occurrences of a record from your data
file. A simple link allows you to join data from the Input and Output sides of the
map in either a one-to-one relationship (map components that both do not repeat)
or a many-to-many relationship (map components that repeat the same number of
times).

When to use temporary records and fields

If link a single iteration of a map component on the Input side of a map to a map
component on the Output side that repeats multiple times, it causes an infinite
loop when the map is translated. And, if you link a map component on the Input
side that repeats multiple times to a map component on the Output side that does
not repeat, the data from the Input side never populates the Output side of the
map. In either of these instances, you should use temporary records and fields.

These are other common reasons why you would want to incorporate temporary
records and field into your map:
v The Input hierarchical level in a map does not match the Output hierarchical

level.
v You only want to populate an Output field with data if a specified qualifier is

used or if specific criteria is met.

Chapter 2. Map Design 31



You may need to use extended rules in addition to creating temporary records and
fields. See the Extended Rules topics for more information.

Where to use temporary records and fields

You can add temporary records and fields at any hierarchical level in a map.
However, when you use temporary records and fields, you must locate them
immediately after the map component that contains the necessary data.

The following caveats apply to temporary records:
v You must use a record tag that you would never receive in your Input file, and

the recommended default is $$$.
v If you are creating a temporary record for an XML file, use the tag XXX, because

$$$ is not permitted as a tag in XML.
v The system does not run standard or extended rules on temporary records.

Creating Temporary Records--Example
To map the shipping information from the Input side of your map (from the N1
Group that repeats a maximum of 200 times) to the ShipTo record in your
application file format (that does not repeat), you need to create a temporary
storage record and fields on the EDI side of the map that do not repeat. Then, you
use an extended rule to extract the shipping and billing information from the N1
group and move it to the appropriate temporary storage elements. Finally, you
map the shipping and billing information directly from the temporary storage
elements to your application fields.

About this task

First, you need to create a temporary storage record and fields on the EDI side of
the map that do not repeat. The temporary record is located outside the N1 Group
at the same hierarchical level as it, and has a maximum repeat number of 1 (it does
not repeat). Then you will create the appropriate temporary fields. After that,
create an ON_END extended rule for the N1 Group that assigns the necessary
information to the temporary fields.

Use this procedure to create the ShipToDet temporary storage record.

Procedure
1. Highlight the N1 group. The two temporary storage segments are located after

the N1 group, at the same level.
2. Select Edit > Insert > Segment. (You select Segment instead of Record because

you are creating the temporary record on the EDI side of the map).
The EDI Segment Properties dialog box is displayed.

3. In the Name box, type ShipToDet.
4. In the Description box, type Ship To Details.
5. Select the Tag tab.
6. In the Tag box, type $$$.

Note: The system does not read a segment with a value of $$$ in the Tag box.
Therefore, it does not flag this temporary storage segment as an error during
compliance checking.

7. Click OK to create the ShipToDet temporary storage segment.

32 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



8. Create the appropriate temporary fields, for example:
v SHIPTONAME
v SHIPTOADDR1
v SHIPTOADDR2
v SHIPTOCITY
v SHIPTOSTATE
v SHIPTOPCODE

9. Right-click the N1 group and select Extended Rules to display the Group
Properties dialog box.

10. Select On End. This specifies that the rule is executed when the loop
terminates. The system loads an occurrence of the N1 group (containing the
billing or shipping information), and then executes this rule.

11. In the Editor list, type the following:
IF #0098 = "BT" THEN
BEGIN

$850.#BILLTONAME = #0093;
$850.#BILLTOADDR1 = #0166;
$850.#BILLTOADDR2 = #0166:2;
$850.#BILLTOCITY = #0019;
$850.#BILLTOSTATE = #0156;
$850.#BILLTOPCODE = #0116;

END
IF #0098 = "ST" THEN
BEGIN

$850.#SHIPTONAME = #0093;
$850.#SHIPTOADDR1 = #0166;
$850.#SHIPTOADDR2 = #0166:2;
$850.#SHIPTOCITY = #0019;
$850.#SHIPTOSTATE = #0156;
$850.#SHIPTOPCODE = #0116;

END

Note: If a segment/record or element/field occurs more than once in a map,
it is identified by its name <ID>. The second and subsequent occurrences are
identified by <ID>:n, where n is the number of occurrences in the map.

12. Click Compile to validate the syntax of the extended rule.
Every rule in the map is compiled when you compile the translation object,
after you complete the map. However, the system allows you to compile each
rule individually, so that you can verify the accuracy of the rule after you
create it.
This compiles the rule interactively, and allows you to correct any errors that
are generated. Any errors or warnings generated in the compilation process
are displayed in the Errors list.

13. Click OK to add the extended rule to the N1 group.
14. Link the temporary fields on the Input side of the map with the

corresponding Output fields.

Creating a Group
A group contains related records, groups, or both that repeat in sequence until
either the data ends or the maximum number of times that the loop is allowed to
repeat is exhausted. If you create a group that is subordinate to another group, this
corresponds to a nested looping structure (a loop within a loop).

Chapter 2. Map Design 33



About this task

Use this procedure to create a group.

Procedure
1. Select the map component that precedes the record you are creating and select

Edit > Insert > Group or Edit > Create Sub > Group, depending on the level.
The system displays the Group Properties dialog box.

2. On the Name tab, type the group name and a description of the loop.
Do not use spaces or dashes (-) in the group name. You can use the underscore
(_) to separate words.

3. On the Looping tab, enter the minimum and maximum number of times the
record can repeat. Type 1 to make the header record mandatory.

Note: If the Min Usage box contains 0, the record is conditional. If the Min
Usage box contains 1 or greater, the record is mandatory.

4. If this is a single iteration group, select Promote records to parent if you want
to specify that the subordinate records and groups should be extracted and
located in the parent group when the group is compiled.

5. To specify an extended rule for this group, select the Loop Extended Rules tab.
See How to Define Extended Rules for more information.

6. Click OK to create the group.

Creating Fields
Each record you create contains a group of logically-related application fields.
These fields define the structure and content of the data to the system.

About this task

The easiest way to add application fields to a record is to use the Positional Field
Editor. Generally, you create the fields for the first record in the application file,
and then proceed with each sequential record.

Note: Do not define fields with the purpose of using the field to explicitly contain
the record tag. This is because the system takes the tag that you define in the
record into account when the automatic sequencing (Auto Position) feature is used.
We recommend that you define the record tag on the Positional Record Properties
dialog box.

See Creating Subsequent Records for more information about the Positional Record
Properties dialog box.

Use this procedure to create the application fields for a record.

Procedure
1. Right-click the application record and select Edit Fields.

The system displays the Positional Field Editor dialog box.
2. If this is the first field in the record, click New. Otherwise, highlight the field

that precedes the field you are creating and click New.
The system displays a highlight bar in the Fields section where the new field
is positioned.

3. In the Name box, type the field name.

34 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Notes:

v Each application field must have a unique name. It is useful to tag the end
of the fields that occur in multiple records with a suffix that identifies the
record that contains it.

v Do not use spaces or dashes (-) in the field name. You can use the
underscore (_) to separate words.

4. If you want to designate the field as mandatory, select Mandatory.
5. In the Description box, type a description of the field.
6. From the Data Type list, select the type of the field:

v String - alpha element
v Number - numeric or real element
v Date/Time - date or time element

7. From the Format list, select how the field is formatted.

Notes:

v The choices for this field depend on the type of field you selected from the
Data Type list. If you choose Number or Date/Time in the Data Type box,
you can select the data format from the Format list. If you selected String
from the Data Type box, you should type a syntax token to denote that this
field must be formatted as the specified syntax token dictates (the default
syntax token is X).

v When you installed Sterling Gentran:Server, you assigned a default format
to the string fields. This format serves as the basis for character validation.
Most U.S. users use a default format that corresponds to ASCII characters
(the X syntax token). Most users of Asian or European languages and
encoded character sets should use the Free Format (0x01-0xFF).

See Using Syntax Tokens for more information.
8. If you want to indicate the exact position of the field in the record, type the

starting position of the field in the Start Pos box.

Note: You want to specify field start positions if, for example, you are only
using a few fields but you want them positioned exactly in the record. The
alternative to specifying the start position of each field, is to add the fields
sequentially in the record and then use the Auto Position function.

9. Enter the minimum and maximum number of characters for this field.
10. Click New.

The system adds the field and creates a new field with blank values ready for
you to identify, which is positioned below the field.

11. Create the rest of the fields according to your record layout.
12. Click Delete to stop adding fields.
13. After adding the last field, if you want the system to automatically position

the fields in the record, click Auto Position.
14. Repeat steps 2 through 13 to create as many fields as you need. When you are

done, click Close.
For inbound maps, you may want to use a literal constant to move a value
into an application field that has no corresponding EDI data (you cannot link
the field directly to an EDI element).
See Mapping Literal Constants for more information about mapping a
constant to a field.

Chapter 2. Map Design 35



About EDI Files
Sterling Gentran:Server generates an EDI file for you, based on the standard
(agency), version, transaction set, and release you select. The system includes all
the groups, segments, composites, and elements that are defined by the standards
agency for the version of the document you select.

See Creating a Map for more information about generating an EDI file when you
create a new map.

You can modify the system-generated EDI file by modifying the properties of the
map components and using the promote, split, copy, cut, and paste functions.

However, if you want to use a specialized version of an EDI standard that is not
available in the Sterling Gentran:Server standards database, it may be appropriate
for you to either load an EDI file definition or define the EDI file yourself. See
About CII Files for more information about defining a CII file.

Regardless of whether the system generates the EDI file or you load or define it,
the specific EDI map components that you use depends on the type of map you
are creating. This includes the standard, version, and transaction set (document)
selected, and which groups, segments, composites, and elements your company
requires. We recommend that you determine which map components you are using
before generating or defining an EDI file.

Verifying EDI Delimiters
If you are using an EDI standard that contains composite elements or
sub-elements, you must verify that Sterling Gentran:Server is specifying the correct
delimiters. Delimiters are flags that you define to the system as separating specific
EDI components.

About this task

Delimiters are necessary for all variable field-length standards, because the data is
compressed (and the leading zeroes and trailing blanks are removed). Since the
fields vary in length, the system needs a flag to determine where one element ends
and another begins. For example, an element delimiter marks the beginning of a
new element.

Note: Although verifying EDI delimiters in Sterling Gentran:Server is mandatory
only if you are using a standard with composite elements or sub-elements, we
recommend that you perform this task regardless of which standard you use.

Use this procedure to verify EDI delimiters.

Procedure
1. Right-click the EDI file icon and select Properties.

The system displays the File Properties dialog box.
2. Select the Delimiters tab to access delimiter options.
3. Verify that Specify defaults is selected.
4. Verify the required delimiters for the EDI standard you are using.

Note: If the delimiters differ from the defaults specified, type either the
character or the hexadecimal value in the correct box.

36 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



5. If you are using an X12, EDIFACT, or TRADACOMS standard on the output
side of the map:
v To suppress leading zeros for the EDI elements that use an R-format numeric

(including decimal values less than one), select Suppress leading zero on
Numeric R* format values (for example, 0.25 becomes .25).

v To pad numeric values (regardless of format) for the EDI elements with
leading zeros, select the Pad with leading zero on Numeric values (for
example, 25 becomes 000025) option.

Note: When you select this option, Numeric values (regardless of format) are
padded with leading zeros out to the maximum length of the field.

6. Click OK to exit the File Properties dialog box.

Modifying Group Properties
A group contains related segments and/or groups that repeat in sequence until
either the group data ends or the maximum number of times that the loop is
allowed to repeat is exhausted. If you create a group that is subordinate to another
group, this corresponds to a nested looping structure (a loop within a loop).

About this task

Use this procedure to modify the properties of a group.

Procedure
1. Right-click the group you want to modify and select Properties.

The system displays the Group Properties dialog box (Name tab displayed by
default).

2. If you want to modify the group name, in the first box on the Name tab, type
the new name.

3. If you want to modify the group description, in the second box on the Name
tab, type the new description.

4. On the Looping tab, enter the minimum and maximum number of times the
record can repeat. Type 1 to make the header record mandatory.

Note: If the Min Usage box contains 0, the record is conditional. If the Min
Usage box contains 1 or greater, the record is mandatory.

5. If this is a single iteration group, select Promote records to parent if you want
to specify that the subordinate records and groups should be extracted and
located in the parent group when the group is compiled.

6. If you want to specify an extended rule for this group, select the Loop
Extended Rules tab.
See How to Define Extended Rules for more information.

7. Click OK to save changes to the group.

Modifying Segment Properties
You can modify the properties of any segment, including the minimum and
maximum number of times the segment can repeat, whether the segment is
mandatory or conditional, and whether it is a loop start or loop end segment.

Chapter 2. Map Design 37



About this task

See About Loop Start and Loop End Segments for more information.

Use this procedure to modify the properties of a segment.

Procedure
1. Right-click the segment you want to modify and select Properties.

The system displays the EDI Segment Properties dialog box.
2. If you need to modify the name of the segment, type the segment name in the

first box on the Name tab.

Note: If a segment occurs more than once in a map it is identified by its name
<ID>. The second and subsequent occurrences are identified by <ID>:n, where
n is the number of the occurrence in the map.

3. If you want to modify the description of the segment, type a new description
in the second box on the Name tab.
This box is used to provide a brief explanation of the segment that allows you
to differentiate it from similar segments.

4. Select the Tag tab only if you want to access tag information.
5. If you want to modify the segment tag, type the segment identification code

<TAG> in the Tag box.
The segment tag for each segment enables the system to recognize that
segment. For example, a record is recognized by the system as:
<TAG>[Delimeter]<DATA>[Delimeter]
<DATA>.......<DATA>[Segment Terminator]

6. Select the Key Field tab only if you want to use a key field.
The key field function enables you to specify a second qualification in
selecting a segment (the segment name is the first qualification). Data must be
provided in the order designated through the use of key fields.

7. Select the Special tab only if you want to specify floating (the segment does
not have a fixed position in the file) or wildcard (generally only used with
build or break maps) options, or if you want to flag this segment as
containing binary data. Otherwise, accept the defaults.
v Floating - The record does not have a fixed position in the file.
v Wildcard - Generally only used with build or break maps.

Notes:

If you select Binary, you must define an element of data type Bin Length and
another element of data type Bin Data. The Bin Length element must precede
the Bin Data element.

See Modifying Element Properties for more information about defining an
element data type.

8. If this is segment is a looping structure, on the Looping tab, enter the
minimum and maximum number of times the record can repeat. Type 1 to
make the header record mandatory.

9. To indicate where this segment is in the loop, select one of the following
options:
v Loop Start - beginning of the loop
v Loop End - end of the loop

38 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



v Normal - in the loop but not the beginning or ending segment
10. Click OK to save changes to the segment.

About Loop Start and Loop End Segments
Certain EDI standards use Loop Start (LS) and Loop End (LE) segments. LS and
LE segments differentiate between two or more loops of the same type. If the
transaction contains LS and LE segments and depending on whether your map is
inbound or outbound, you need to define the LS and LE segments for the loops
you are using in the map in one of two different ways.

You need to communicate with your trading partner to determine which loop
identification code your partner will send to you (for an inbound map and/or
expects to receive from you (for an outbound map).

For an inbound map, you need to do the following:
v Define an LS segment inbound.
v Define an LE segment inbound.

For an outbound map, you need to do the following:
v Define an LS segment outbound.
v Define an LE segment outbound.

Defining an LS Segment Inbound
About this task

Use this procedure to define an LS segment for an inbound map.

Procedure
1. Right-click the LS segment and select Properties.

The system displays the EDI Segment Properties dialog box.
2. On the Looping tab, verify that Loop Start is selected.
3. On the Key Field tab from the Field list, select Loop Identifier Code.

This list contains all the elements that are contained in the segment and gives
you the ability to define the Loop Start segment definition by specifying that
the loop identifier code must have the value you specify in the Matching rules
section.

4. Select Use constant.
The Matching rules section enables you to access all the literal constants and
code lists currently defined for this map.

5. Click Edit.
The system displays the Map Constants dialog box.

6. Click New.
The system displays the Edit Constant dialog box.

7. In the ID box, type the literal constant identifier.
8. From the Type list, select String. This is the category of this literal constant.
9. In the Value box, type the value of the literal constant.

For an inbound map, this is the loop identifier code that you expect to receive
from your trading partner.

10. Click OK to add the constant to the system.

Chapter 2. Map Design 39



11. Select the constant you created from the list. The system matches the selected
constant against the loop identifier code.

12. Click OK to exit the EDI Segment Properties dialog box.

Defining an LE Segment Inbound
About this task

Use this procedure to define an LE segment for an inbound map.

Procedure
1. Right-click the LE segment and select Properties.

The system displays the EDI Segment Properties dialog box.
2. On the Looping tab, verify that Loop End is selected.
3. On the Key Field tab from the Field list, select Loop Identifier Code.

This list contains all the elements that are contained in the segment and gives
you the ability to define the Loop End segment definition, by specifying that
the loop identifier code must have the value you specify in the Matching rules
section.

4. Select the constant you created for the LS segment from the list.
The system matches the selected constant against the loop identifier code. The
Matching rules section enables you to access all the literal constants and code
lists currently defined for this map.

5. Click OK to exit the EDI Segment Properties dialog box.

Defining an LS Segment Outbound
About this task

Use this procedure to define an LS segment for an outbound map.

Procedure
1. Double-click the Loop Identifier Code element in the LS segment.

The system displays the Element Properties dialog box.
2. Select the Standard Rule tab.
3. From the standard rule list, select Use Constant.

The system displays the constant options.
4. Click Edit.

The system displays the Map Constants dialog box.
5. Click New.

The system displays the Edit Constant dialog box.
6. In the ID box, type the literal constant identifier.
7. From the Type list, select String. This the category of this literal constant.
8. In the Value box, type the value of the literal constant. For an outbound map,

this is the loop identifier code that your partner is expecting to receive from
you.

9. Click OK to add the constant to the system.
10. Click Close to exit the Map Constants dialog box.
11. From the constant list, select the constant that you created.

The system matches the selected constant against the loop identifier code.

40 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



12. Click OK to exit the Element Properties dialog box.

Defining an LE Segment Outbound
About this task

Use this procedure to define an LE segment for an outbound map.

Procedure
1. Double-click the Loop Identifier Code element in the LE segment.

The system displays the Element Properties dialog box.
2. Select the Standard Rule tab to access the standard rule options.
3. From the standard rule list, select Use Constant.

The system displays the constant options.
4. From the constant list, select the constant that you created.

The system matches the selected constant against the loop identifier code.
5. Click OK to exit the Element Properties dialog box.

Modifying Composite Properties
A composite is a data element that contains two or more component data elements
or subelements. You can modify the composite name and description, and whether
or not it is mandatory.

About this task

Note: Composite elements are only used for EDI maps.

Use this procedure to modify the properties of a composite.

Procedure
1. Right-click the composite you want to modify and select Properties.

The system displays the Composite Properties dialog box.
2. If you want to change the composite name, type the data element identification

number in the first box on the Name tab.

Note: If a composite occurs more than once in a map or form, it is identified
by its name <ID>. The second and subsequent occurrences are identified by
<ID>:n, where n is the number of the occurrence in the map or form.

3. If you want to change the composite description, type the new description in
the second box on the Name tab.

4. If you want to specify that the composite is mandatory, select the check box on
the Validation tab.

5. Click OK to save the changes to the composite.

Modifying Element Properties
Each segment or composite contains a group of logically-related elements. These
elements define the structure of the EDI data that your system needs to process the
document.

About this task

Use this procedure to modify the properties of an element.

Chapter 2. Map Design 41



Procedure
1. Double-click the element you want to modify.

The system displays the Element Properties dialog box.
2. To change the name of the element, type the new name in the first box on the

Name tab. The name is typically the element sequence number.

Note: If an element occurs more than once in a map it is identified by its name
<ID>. The second and subsequent occurrences are identified by <ID>:n, where n
is the number of the occurrence in the map.

3. To change the description of the element, type the new description in the
second box on the Name tab.
The description is used to provide a brief explanation of the element that
allows you to differentiate it from similar elements.

4. If you want to specify that the composite is mandatory, select the check box on
the Validation tab.

5. To change the minimum length of the element, type the minimum length in the
Minimum box.
If the data is less than the minimum length, a compliance error is generated
when translation occurs.

6. To change the maximum length of the element, type the maximum length in
the Maximum box.

7. From the Data Type list, select the type of the element:
v String - alpha element
v Number - numeric or real element
v Date/Time - date or time element
v Bin Data - binary data (only available if you select "Binary" on the Special

tab of the EDI Segment Properties dialog box)
v Bin Length - length of binary data (only available if you select "Binary" on

the Special tab of the EDI Segment Properties dialog box)
See Modifying Segment Properties for more information about selecting
"Binary" on the Special tab.

8. From the Format list, select how the data element is formatted.

Notes:

v The choices for this field depend on the type of field you selected from the
Data Type list. If you choose Number or Date/Time in the Data Type box,
you can select the data format from the Format list. If you selected String
from the Data Type box, you should type a syntax token to denote that this
field must be formatted as the specified syntax token dictates.

v When you installed Sterling Gentran:Server, you assigned a default format to
the string fields. This format serves as the basis for character validation. Most
U.S. users use a default format that corresponds to ASCII characters (the X
syntax token). Most users of Asian or European languages and encoded
character sets should use the Free Format (0x01-0xFF).

See Using Syntax Tokens for more information.
9. Click OK to save the changes to the element.

42 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Defining and Modifying Relational Conditions
You can use relational conditions to connect fields together for syntax or
compliance reasons. For example, Field A is invalid unless Field B is present.
Therefore, if you set up a condition that pairs Fields A and B, the system generates
a compliance error if one of those fields is not present. You can also view the
conditional relationships between elements, as provided by the standard.

About this task

Important: The system enables you to edit EDI conditional relationships, but if
you do, you generates a compliance error. We recommend that you view EDI
conditions only.

Use this procedure to define, modify, and view field and element relational
conditions.

Procedure
1. Double-click the field or element you want to modify.

The system displays the Field (or Element) Properties dialog box.
2. Select the Conditions tab.

The system displays the relational condition options.

3. Select the field connection condition from the type of relationship list:
v Paired/Multiple - if any of the specified fields/elements are present then all

fields/elements must be present
v Required - at least one of the specified fields/elements must be present
v Exclusion - no more than one of the specified fields/elements may be

present
v Conditional - if the first Condition field/element is present, the rest of the

fields/elements must also be present
v List Conditional - if the first Condition field/element is present, at least one

of the specified fields/elements must also be present
4. Select the first field from the condition field list.

Notes:

Chapter 2. Map Design 43



v This is the field/element on which the conditional relationship hinges if you
chose Conditional or List Conditional from the type of relationship list.

v The condition field list is only active if you chose either Conditional or List
Conditional from the type of relationship list.

5. From the Available fields list, select the field(s)/element(s) and click Add.
The system moves the fields to the Fields used in relationship list, to include
the fields as a part of the conditional relationship.

Notes:

v The Available fields list contains all the fields in the translation object that
are valid to be used in a condition at this point.

v The Fields used in relationship list contains the fields that you selected to be
a part of the conditional relationship.

v To remove the fields from the conditional relationship, select a field or fields
from the Fields used in relationship list and click Remove to move the fields
back to the Available fields list.

6. Click OK to add the conditional relationship to the field.

About CII Files
If a side of your map is CII, you must either define it to Sterling Gentran:Server or
load a previously-saved file definition.

A CII message consists of one message header, one TFD area, and one message
trailer.

Before you define the CII file, you should determine which groups and TFDs you
will need to use. The groups contain related groups and TFDs. This means that
you must create groups before you create the subordinate subgroups and TFDs.

Each map component is arranged sequentially in the order that it is most logical
for the system to process. Therefore, each level of your application must be created
sequentially.

Note: Also see the IBM Sterling Gentran:Server for Microsoft Windows CII User Guide.

Modifying CII File Properties
The CII File Properties dialog box enables you to modify setting for the CII or
CII-Positional sides of a map. This dialog box enables you toggle the use of
dividing mode (a method of formatting CII data into fixed-length 251-byte
records), non-transparent mode (encodes characters in the CII data so that they do
not cause problems with some communications file-transfer protocols). This dialog
box also enables you to specify single- or double-byte character sets to use in data
translation.

About this task

Use this procedure to modify CII File Properties.

Procedure
1. Right-click the CII file icon and select Properties.

The system displays the CII File Properties dialog box.
2. Select the Mode tab.

44 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



3. If you will be communicating with a transmission system that is unable to
process variable-length records, select the dividing mode On option.

Note: A dividing mode is a method of formatting CII data into the plural
number of 251-byte fixed records.

4. If you want to use non-transparent mode, select Non-Transparent Mode.
Otherwise, the default is cleared, which means you are using transparent mode.

Note: Use non-transparent mode to encode characters in the CII data so they
do not cause problems with some communications file-transfer protocol
communications control characters.

5. Select the Character Sets tab.
6. If you want to use single- or double-byte character translation, select the

appropriate option from the 8-bit character set and 16-bit character set lists.
7. If want to specify an extended rule for this group, click the Loop Extended

Rules tab.
See How to Define Extended Rules for more information.

8. Click OK.
The system saves your modifications and exits the CII File Properties dialog
box.

Creating a Group
A group contains related TFDs, groups, or both that repeat in sequence until either
the data ends or the maximum number of times that the loop is allowed to repeat
is exhausted. If you create a group that is subordinate to another group, this
corresponds to a nested looping structure (a loop within a loop).

About this task

Use this procedure to create a group.

Procedure
1. Select the map component that precedes the group you are creating and select

Edit > Insert > Group or Edit > Create Sub > Group, depending on the level.
The system displays the Group Properties dialog box.

2. On the Name tab, type the group name and the loop description.
3. On the Looping tab, enter the minimum and maximum number of times the

record can repeat. Type 1 to make the header record mandatory.

Note: If the Min Usage box contains 0, the record is conditional. If the Min
Usage box contains 1 or greater, the record is mandatory.

4. If this is a single iteration group, select Promote records to parent if you want
to specify that the subordinate records and groups should be extracted and
located in the parent group when the group is compiled.

5. If you want to specify an extended rule for this group, select the Loop
Extended Rules tab. See How to Define Extended Rules for more information.

6. Click OK to create the group.

Creating a TFD
The first TFD in your CII file is subordinate to the icon on the CII of the map. This
graphic representation shows how the TFDs (and groups) are contained within the
CII file.

Chapter 2. Map Design 45



About this task

After you create the first TFD, you can define subsequent TFDs at the same level.
You can also define groups, if your application includes looping structures. You
may need to define a group if your application requires a group of related TFDs
(and/or subgroups) that repeat in sequence. Please see Creating a Group for more
information.

When you create a TFD, the default data type is String, so the system displays the
Character Set tab. If you change the TFD data type to Number or Date/Type, the
system removes the Character Set tab.

Procedure

Use this procedure to create a TFD.

Procedure
1. If this is the first TFD in your file, select the CII File icon (INPUT for an

inbound map and OUTPUT for an outbound map) and select Edit Create Sub
> TFD.

2. If you are creating a subsequent TFD, select the TFD that precedes the TFD
you are creating and select Edit > Insert > TFD. The system displays the CII
TFD Properties dialog box.

3. On the Name tab, type the TFD name and a description.
4. Select the Tag tab.
5. Select either the Hex or Decimal option, depending on how you want to enter

the data tag. (The default is Hex.)
6. If you want to use an extended range of values for the tag, select Extended

Mode.

Notes:

v If you select Extended Mode, you can enter up to hex 7FFF (decimal
524287) in the Tag box. In compressed mode, you can only use up to hex EF
(decimal 239).

v The default is cleared, which means that the data tag will be expressed in
compressed mode.

v In Extended Mode, the range that you can use for the TFD tag is restricted
to decimal 61440 - 65535 and hex F000 - FFFF.

7. Type the identification tag. You must enter a tag in this box.
8. Select the Looping tab.
9. Accept the default of Normal, unless you want to indicate that the segment is

the beginning of a loop (Loop Start), the end of a loop (Loop End), or that the
loop repeats (Loop Repeat).

Note: If you select Loop Start, the system displays the Key Field tab.
10. Select the Validation tab.
11. If you want to designate the TFD as mandatory, select the first check box.
12. To change the minimum length of the TFD, type the minimum length in the

Minimum box.

Note: If the data is less than the minimum length, a compliance error is
generated when translation occurs.

46 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



13. To change the maximum length of the TFD, type the maximum length in the
Maximum box.

14. From the Data Type list, select the type of the TFD:
v String - alphabetic
v Number - numeric or real
v Date/Time - date or time

15. From the Format list, select how the TFD is formatted.

Notes:

v The choices for this field depend on the type of field you selected from the
Data Type list. If you choose Number or Date/Time in the Data Type box,
you can select the data format from the Format list. If you selected String
from the Data Type box, you should type a syntax token to denote that this
field must be formatted as the specified syntax token dictates (the default
syntax token is "X").

v When you installed Sterling Gentran:Server, you assigned a default format
to the string fields. This format serves as the basis for character validation.
Most users in the U.S. use a default format that corresponds to ASCII
characters (the X syntax token). Most users of Asian or European languages
and encoded character sets should use the Free Format (0x01-0xFF).

See Using Syntax Tokens for more information.
16. If the TFD data-type is Number or String and you want the data read/written

in binary format:
a. Select the raw bytes check box.
b. From the Width list (Number format only), select how many bytes should

be used to represent the number.
c. Select either the little-endian or big-endian option to specify in which

order the bytes should be read.
17. If the Character Set tab is available, it enables you to set the single-

double-byte character translation for this string. The default character set is
8-bit. Select the appropriate option from the 8-bit Character Set and 16-bit
Character Set lists.

18. Click OK to create the TFD.

About Data Formatting
When you define or modify a field, element, or TFD, you must specify the type
and format. The options that are available for the format of the field, element, or
TFD depend on which type you select (string, number, or Date/Time).

Data formatting includes the following:
v Creating and editing syntax tokens
v Defining number formats (for number type fields)
v Defining date/time formats

String Type Fields and Syntax Tokens
A string-type field or element contains one or more printable characters. If you
specify that a field or element is a string type, you must designate the format by
specifying a syntax token.

Chapter 2. Map Design 47



Syntax tokens enable you to designate a token that defines ranges of characters
and numbers that are allowed to be used for a string-type element or field. You
can then use the syntax tokens in the Format field of the Field Properties dialog
box. This enables you to define the type of characters to be used while compliance
checking each element/field (for example, alphanumeric within a certain range or
numeric within a certain range).

The following shows the Syntax Tokens dialog box.

Note: When you set up a token, it applies only to that map or form. You may
need to set one up for each map or form that you create.

Sterling Gentran:Server uses the ANSI Character Set when determining the
start-end range.

Western European Languages

For Western European languages, consult the ANSI character chart (1252 Windows
Latin 1). This chart also displays ranges so you can enter appropriate ranges for
the characters in your language. If no chart is available, use the following
guidelines:
v To include all the accented characters in the major languages of Western Europe,

add the following ranges:

Start End

0xC0 0xD6

0xD8 0xF6

0xF8 0xFC

v Scandinavian users should also add the following in order to include Œ and œ.

Start End

0x8C 0x8C

0x9C 0x9C

v To include the euro symbol, use the following.

Start End

0x80 0x80

48 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



East Asian Languages

The DBCS syntax token function enables you to create a map that accepts
double-byte characters. If you are running Sterling Gentran:Server on a Chinese,
Japanese, or Korean version of Microsoft Windows, the DBCS button on the Syntax
Tokens dialog box is available.

When you click the DBCS button, the system displays the Edit DCBS Syntax Token
dialog box.

Creating and Editing Syntax Tokens for Western European
Languages

About this task

Use this procedure to create a syntax token for Western European Languages.

Procedure
1. Select Edit > Syntax Tokens.

The system displays the Syntax Tokens dialog box.

Notes:

Chapter 2. Map Design 49



v The Token column contains the value designated as the syntax token for each
existing syntax token. The Token contains a range of characters that, when
applied to an element, dictate the way that element must be formatted. If the
element is not formatted as specified, the system generates a compliance
error.

v The Allowed character ranges column contains the ranges of characters that
are permitted for each existing syntax token. Each range consists of a pair of
characters that define the start and end characters.

v The DBCS button is only available if you are executing a double-byte version
of Microsoft Windows.

2. If you are creating a new syntax token, click New. Otherwise, select the token
you want to edit and click Edit.
The system displays the Edit Syntax Token dialog box.

3. Type the unique one-character alphanumeric value that the system recognizes
as containing the allowed range of characters you designate.

Notes:

v The Token can only be one unique character, upper- or lowercase alphabetic
or numeric.

v The Character Ranges list contains the character range or ranges that you
define for this token. You can define more than one character range for each
token. For example, you can define the token "A" as allowing both uppercase
and lowercase alphabetic characters.

4. If you want to create a new character range, click New.
The system displays the Edit Character Range dialog box.

5. Type the characters that begin and end the allowed token range.
For example, if the character range you want to define is "B" through "D," type
"B" in the Start character box and "D" in the End character box.
v If you type a character, such as é, that is not accepted, you need to enter it in

hex code. To enter hex characters, "0(zero)x" or "0X," followed by the hex
code. For example, the hex equivalent of é is 0xE9.

v The Start character and End character can only be one (1) character, upper-
or lowercase alphabetic or numeric "1" - "9."

6. Click OK to return to the Edit Syntax Tokens dialog box.
7. To add additional character ranges to the syntax token, repeat steps 4 - 6 as

many times as necessary.
8. Click OK to save the syntax token and return to the Syntax Tokens dialog box.
9. Click Close to exit the Syntax Tokens dialog box.

Creating and Editing Syntax Tokens for East Asian Languages
The DBCS syntax token function enables you to create a map or form that accepts
double-byte characters. If you are running Sterling Gentran:Server on a Chinese,
Japanese, or Korean version of Microsoft Windows, the DBCS button on the Syntax
Tokens dialog box is available.

About this task

DBCS tokens are displayed only in the DBCS Syntax Tokens dialog box, not in the
list in the Syntax Tokens dialog box.

50 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Note: When you set up a DBCS token, it applies only to that map or form. You
may need to set one up for each map or form that you create.

Use this procedure to create a DBCS syntax token.

Procedure
1. Select Edit > Syntax Tokens.

The system displays the Syntax Tokens dialog box.
2. Click DCBS.

The system displays the DCBS Syntax Token dialog box.
3. Click New.

The system displays the Edit DCBS Syntax Token dialog box.

Note: Double-byte characters are composed of a lead byte and a trail byte. In
the above example, the character A is code point 0041.

4. Type the unique one-character alphanumeric value that the system recognizes
as containing the allowed range of characters you designate.

5. If you do not want to include all characters in the Trail-Bytes section, do the
following:
v Use the Lead-Byte list to view other characters in the code page on your

system.
v To exclude individual characters or groups of characters from the token,

select them (grey them out).
6. Click Close to save the syntax token and return to the Syntax Tokens dialog

box.
7. Click Close to exit the Syntax Tokens dialog box.

Deleting Syntax Tokens
You can delete a syntax token from the system. You can also delete a specific
character range from a syntax token.

About this task

Use this procedure to delete a syntax token.

Procedure
1. Select Edit > Syntax Tokens.

The system displays the Syntax Tokens dialog box.
2. Select the token that you want to delete and click Delete.

The selected entry is deleted without a warning message.

Deleting a Character Range
You can delete a syntax token from the system. You can also delete a specific
character range from a syntax token.

About this task

Use this procedure to delete a character range from a syntax token.

Chapter 2. Map Design 51



Procedure
1. Select Edit > Syntax Tokens.

The system displays the Syntax Tokens dialog box.
2. Select a syntax token and click Change.

The system displays the Edit Syntax Tokens dialog box.
3. Select the character range that you want to delete and click Delete.

Using Syntax Tokens
The use of a syntax token enables you to define what characters should be used
while compliance checking the field, element, or TFD (alphanumeric within a
certain range, numeric within a certain range).

About this task

You can use syntax tokens in the Format box of the Field (or Element or CII
Record) Properties dialog box. This enables you to designate a token that defines
ranges of characters and/or numbers that are allowed to be used for a string-type
field, element, or TFD.

Use this procedure to use syntax tokens.

Procedure
1. Double-click an existing field, element, or TFD, or create a new one.

The system displays the Field (or Element or CII Record) Properties dialog box.
2. Select the Validation tab.
3. From the data-type list, select String. This indicates that the field, element, or

TFD contains characters.
4. From the data format list, select free format or a predefined syntax token to

denote that this field, element, or TFD must be formatted as the specified
syntax token dictates.

Notes:

v When you installed Sterling Gentran:Server, you assigned a default format to
the string fields. This format serves as the basis for character validation. Most
U.S. users use a default format that corresponds to ASCII characters (the X
syntax token). Most users of Asian or European languages and encoded
character sets should use the Free Format (0x01-0xFF).

v Free Format indicates that any characters are acceptable in the field. The
translator does not check the characters for compliance.

5. Click OK to exit the dialog box.

Using the Number Type
A number type field, element, or TFD contains either an implied decimal or real
number that can be mathematically manipulated. If you specify that a field,
element, or TFD is a number type, you must designate the format by specifying a
format of either "N" (implied decimal) or "R" (real) and the number of decimal
places.

About this task

Use this procedure to use the number type.

52 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Procedure
1. Double-click an existing field, element, or TFD, or create a new one.

The system displays the Element (or Field or CII Record) Properties dialog box.
2. Select the Validation tab.
3. From the data-type list, select Number. This indicates that the field, element, or

TFD is a numeric or real number that can be mathematically manipulated.
4. From the data format list, select the appropriate real or numeric option.
5. Click OK to exit the dialog box.

Number Formats
An N-formatted number has an implied decimal point (for example, 2.01 formatted
as N2 is 201). An R-formatted number has an explicit decimal point and truncates
trailing zeros (for example, 2.123 formatted as R2 is 2.12 and 3.10 formatted as R2
is 3.1). Whether you use the N or R format depends on the requirements of the
document. Regardless of whether you use the N or R format, you must also
indicate the number of decimal places in the field.

Table 6. Real Number Format Options

Field Description

R0 Number formatted with an explicit decimal point and no decimal places.

R1 Number formatted with an explicit decimal point and up to one decimal
place.

R2 Number formatted with an explicit decimal point and up to two decimal
places.

R3 Number formatted with an explicit decimal point and up to three decimal
places.

R4 Number formatted with an explicit decimal point and up to four decimal
places.

R5 Number formatted with an explicit decimal point and up to five decimal
places.

R6 Number formatted with an explicit decimal point and up to six decimal
places.

R7 Number formatted with an explicit decimal point and up to seven decimal
places.

R8 Number formatted with an explicit decimal point and up to eight decimal
places.

R9 Number formatted with an explicit decimal point and up to nine decimal
places.

Table 7. Numeric Number Format Options

Field Description

N0 Number formatted with an implied decimal point and no decimal places.

N1 Number formatted with an implied decimal point and up to one decimal
place.

N2 Number formatted with an implied decimal point and up to two decimal
places.

N3 Number formatted with an implied decimal point and up to three decimal
places.

N4 Number formatted with an implied decimal point and up to four decimal
places.

Chapter 2. Map Design 53



Table 7. Numeric Number Format Options (continued)

Field Description

N5 Number formatted with an implied decimal point and up to five decimal
places.

N6 Number formatted with an implied decimal point and up to six decimal
places.

N7 Number formatted with an implied decimal point and up to seven decimal
places.

N8 Number formatted with an implied decimal point and up to eight decimal
places.

N9 Number formatted with an implied decimal point and up to nine decimal
places.

Note: For maps, if you select an implicit decimal (N format) for a field and the
data in that field has less than the specified number of decimal places, the
translator pads the data with zeroes to the left so that it still interprets the data
within the specified format. For example, if you specify a format of N3 for a field,
and the data in that field is 1, the translator interprets the data as .001.

Using the Date/Time Type
A Date/Time type field, element, or TFD contains a date or time. If you specify
that a field, element, or TFD is a Date/Time type, you must specify exactly how
the date or time must be formatted. Additional date and time formats can be
created and added to the Map Editor.

About this task

Note: See “Date/Time Formats” on page 12 for details.

Use this procedure to use the Date/Time type.

Procedure
1. Double-click an existing field, element, or TFD, or create a new one.

The system displays the Element (or Field or CII Record) Properties dialog box.
2. Select the Validation tab.
3. From the data-type list, select Date/Time. This indicates that the field, element,

or TFD is a date or time.
4. From the data format list, select the appropriate date or time option.
5. Click OK to exit the dialog box.

Completing a Map

Creating Simple Links
The Link function enables you to map a field, element, or TFD from the Input side
of the map to a field, element, or TFD on the Output side of the map. The link
between two map components (hereafter referred to as fields) is visually
represented with a line connecting the two fields.

54 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



About this task

If you need to link two input fields to the same output field because of conditions
established in your map, you must use an extended rule.

Note: You must have at least one direct link (using the Link function) to every
record or segment on the Output side of the map, so the translator can create the
record/segment.

Use this procedure to link two fields.

Procedure
1. Select Functions > Link.
2. Select a field on the Input side of the map (or TFD if the Input side is CII).
3. Select the field on the Output side of the map (or TFD if the Output side is CII)

that the data from the field selected on the Input side of the map is mapped to.
A line connects the two fields to visually represent the link. If a line does not
appear when the two fields are linked, check the Preferences dialog box.

Binary Segments
Certain EDI standards use binary segments. Sterling Gentran:Server enables you to
create and configure map components to process binary data.

When you load an EDI standard that contains binary segments from the Standards
DVD supplied with Sterling Gentran:Server, your system automatically creates the
required elements. However, you sometimes may need to manually create binary
segments.

For example, when you load the ANSI X12 275 transaction set into the Output side
of a map, you will notice that it contains a binary data segment with two
elements—one for the length of the binary data and one for binary data. The
default data type for the length element is "Number" and the maximum length is
set to "15." The default data type for the binary data element is "String" and the
default length is "760."

To handle binary data received for an inbound EDI segment, you must create or
configure regular segments and elements on the Input side of your map.

To generate an EDI segment containing binary data, you must create a binary data
segment on the Output side of your map. Then, you must create two elements in
the binary segment for these data types:
v Bin_Len, which is for the length (in characters) of the binary segment
v Bin_Data, which is for the binary data

Table 8. Input and output elements of your map for binary data

Input Data Type Link Status Output Data Type

Number Not Linked Bin_Len

String Linked Bin_Data

Chapter 2. Map Design 55



Setting up the Input Side
About this task

Use this procedure to create the components on the Input side of the map.

Procedure
1. On the Input side of the map, create or select a segment for the data.
2. Right-click the component and select Properties.
3. Set the component properties.

Note: You must complete the Name tab and Looping tab.
4. Add a new element or field to the component you just created.
5. Right-click the element or field and select Properties.
6. Set the component properties.

Note: On the Validation tab, you must specify Number as the data type.
7. Add a second new element or field to the segment or record.
8. Right-click the component and select Properties.
9. Set the component properties.

Note: On the Validation tab, you must specify String as the data type.

Setting up the Output Side
About this task

Use this procedure to create the components on the Output side of the map.

Procedure
1. On the Output side of the map, create or select a segment or record for the

binary data.
2. Right-click the component and select Properties.
3. Set the component properties.

Note: On the Special tab, select Binary.
4. Add a new element or field to the binary component or select the existing

element or field.
5. Right-click the component and select Properties.
6. Set the component properties.

Note: On the Validation tab, you must specify Bin_Len as the data type.
7. Add a second new element or field to the segment or select the existing

element or field.
8. Right-click the component and select Properties.
9. Set the component properties.

Note: On the Validation tab, you must specify Bin_data as the data type.
10. Link the components on the input side of the map to the components on the

output side of the map.

56 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Important: You must link the string field on the input side of the map (the
field created to contain the file name of the binary data file) to the bin_data
field on the output side of the map.

What to do next

Complete the map and compile it to create the translation object.

Setting the Auto-register Option
The auto-register option allows you to automatically register a translation object
when you compile it.

About this task

Use this procedure to set the auto-register option.

Procedure
1. Select Options > Preferences.
2. On the Files tab, select Automatically register template after compilation.
3. Enter (or navigate) the path name for the location of the maps.

Important: If you are on a client in a distributed environment, the path name
for the map location must be a network path on the primary server. If not, you
will receive an error when you compile.

4. Click OK to exit the dialog box.

Compiling a Map
The Compile function compiles the map and creates a translation object. The map
that you create using Sterling Gentran:Server is a source map. When that source
map is compiled, the result is a compiled translation object.

About this task

This translation object needs to be registered with the Sterling Gentran:Server
system before you can use it. You use the Compile function after the map is
completed and saved.

Use this procedure to compile a map and generate a translation object.

Procedure
1. Select File > Compile.
2. If necessary, navigate to where the compiled translation objects are stored.

Enter the name of the translation object and click Save.

Note: The name of the translation object is 1-8 characters. Use the default .TPL
file extension. You should name the translation object the same as you named
the map. Using the same file name (with different file extensions) means that
the relationship between the source map and the compiled translation object
remains evident. For example, if the source map name is MWT_850.MAP, the
compiled translation object name is MWT_850.TPL.

Important:

Chapter 2. Map Design 57



Be careful not to overlay the source map with the compiled translation object.
Use the .TPL file extension to distinguish the translation object. Do not store the
compiled translation object in the GENSRVNT\RegTransObj folder. This folder is
reserved for storing a copy of each translation object you register with Sterling
Gentran:Server.
The system compiles the map and generate a translation object. Any errors are
displayed in the Compile Error dialog box.

3. Verify that no errors occurred and click OK to exit the dialog box.

Note: The date the translation object was compiled is automatically populated
in the "Compiled on" box on the Translation Object Details dialog box.

4. Select File > Save to save the source map with the Compiled on date.
If you are using the auto-register option, the map will automatically be
registered after it compiles and a confirmation dialog box will display.

What to do next

Register the translation object with the Sterling Gentran:Server system.

How to Compile Maps Using the Command Line
The Sterling Gentran:Server Application Integration subsystem (MAPPER.EXE)
enables you to automatically compile a single map (or maps located in a specified
directory) from the command line.

The compiled translation objects are written to same directory as the map source
files.

The command line syntax (from the GENSRVNT\Bin subdirectory) is as follows:
mapper.exe -c [mapSourceFile]

The [mapSourceFile] is either a single map or a map filename that contains a
wildcard character (*). Using the wildcard character causes MAPPER.EXE to
compile all maps in the designated directory with that filename pattern.
MAPPER.EXE does not recurse through subdirectories.

In the following example, all maps in the tutorial directory are compiled:
mapper.exe -c c:\GENSRVNT tutorial\*.map

In the following example, all maps with names beginning with "pet" in the tutorial
directory are compiled:
mapper.exe -c c:\GENSRVNT tutorial\pet*.map

Printing a Mapping Report
The Print function enables you to print a mapping report for the current map.

About this task

Note: You can print a mapping report to a file by selecting Print to File from the
File menu. Change the defaults on the Print Options dialog box and click OK to
display the Print to File dialog box. Type the name of the file to which you want
the report printed and click OK.

Use this procedure to print a mapping report.

58 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Procedure
1. Select File > Print.

The system displays the Print Options dialog box.
2. Select the reports that you want by clicking the appropriate check boxes in the

Report section, and click OK.
3. Set the appropriate options and click OK if you do not need to change Setup

options.
The system prints the mapping report.

Chapter 2. Map Design 59



60 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Chapter 3. Standard Rules

About Standard Rules
Sterling Gentran:Server provides standard rules that you can apply to fields and
elements.

Standard rules give you access to functions that are necessary for mapping
operations that are less involved than extended rules. Each of the standard rules
are mutually exclusive (you can use only one on a particular field, element, or
TFD).

Note: When an element contains a standard rule, a black asterisk appears to the
right of the element icon.

Extended rules enable you to use a Sterling Gentran:Server proprietary
programming language to perform virtually any mapping operation you require.

Standard Rule Tab - select Function
The Select function enables you to select entries from a location table,
cross-reference table, partner table, or lookup table (all tables created in the Sterling
Gentran:Server Partner Editor). You can then map the fields/elements in those
tables to one or more fields/elements in the data.

The Select function uses the value of the current field, element, or TFD to perform
the selection.

The Select function allows you to use information from the Sterling Gentran:Server
Partner Editor in your maps or forms. You can map information from your
partner’s profile or Internal System Partner in the Partner Editor to a selected
element or field in the map or form. The definition information and location tables
that you define for the internal system partner can be used for all partners. The
information that you can use includes:
v Partner or Internal System Partner Definition (Name, EDI Code, Application

Code)
v Partner or Internal System Partner Location Table Fields
v Lookup Table Fields
v Cross-Reference Table Fields
v Interchange, Group, or Document Record

Table 9. Select standard rule parts and functions

Part Function

table and key (or
group)

Specifies the table and key the system uses to select data. This table
lists the valid values.

name of sub-table Contains the sub-table name, if appropriate. (See the table below.)

The sub table box is only active if you select Partner Lookup,
Partner cross-reference by my item, Partner xref by partner item,
Division lookup, Division cross-reference by my item, or Division
cross-reference by partner item from the table and key list.

© Copyright IBM Corp. 1996, 2024 61



Table 9. Select standard rule parts and functions (continued)

Part Function

Raise compliance
error

Specifies whether you want the system to generate an error if the
Select does not find a valid table entry.
Note: The default is cleared (do not generate an error if the Select
is not successful).

Map from Specifies the element/field/TFD from the specified table entry from
which you want to map the contents.
Note: Entries are displayed in the map from list only after you
select a table and key.

Map to Specifies the element/field/TFD to which you want to map the
contents of the map from box.
Notes:

v A total of eight fields can be mapped using one Select rule.

v Entries are displayed in the map to list only after you select a
table and key, and these entries are activated only after you
highlight an entry in the map from box.

Table 10. Types of sub-tables

Name Description

Partner by EDI code Indicates that the key is the partner's EDI Code and enables you to
map from one of three fields for this partner (Name, EDI Code,
Alternate Code) from the partner table.

Partner by alternate
code

Indicates that the key is the partner's Application Code and enables
you to map from one of three fields for this partner (Name, EDI
Code, Alternate Code) from the partner table.

Partner by partner
key

Indicates that the key is the partner's Profile ID enables you to map
from one of three fields for this partner (Name, EDI Code, Alternate
Code) from the partner table.

Partner location by
name

Indicates that the name on the Locations dialog box (for the current
partner) of the Partner Editor is the key and enables you to map
from any field in that table.

Partner lookup Indicates that the key is the partner lookup table name for this
partner and enables you to map from any field in that table.

Partner
cross-reference by my
item

Indicates that the key is the your item (value) on the partner
cross-reference table for this partner and enables you to map from
any field in that table.

Partner
cross-reference by
partner item

Indicates that the key is the your partner's item (value) on the
partner cross-reference table for this partner and enables you to
map from any field in that table.

Division Enables you to map from one of three fields (Name, EDI Code,
Alternate Code) for the <Internal System User> (system partner) in
that table.

Division location by
name

Indicates that the key is the name on the Locations dialog box of
the Partner Editor for the <Internal System User> and enables you
to map from any field in that table.

Division lookup Indicates that the key is the partner lookup table name for the
<Internal System User> partner and enables you to map from any
field in that table.

Division
cross-reference by my
item

Indicates that the key is the your item (value) on the partner
cross-reference table for the <Internal System User> partner and
enables you to map from any field in that table.

62 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Table 10. Types of sub-tables (continued)

Name Description

Division
cross-reference by
partner item

Indicates that the key is the your partner's item (value) on the
partner cross-reference table for the <Internal System User> partner
and enables you to map from any field in that table.

Document record Enables you to map from any of the fields within the current
document record.
Notes:

v This sub-table can only be accessed from the following map
types: Transaction Break/Build, Import, Export, Print, Screen,
Group Build, and Interchange Build.

v The information that is accessed will be the information of the
last document that was processed at the table level accessed by
the rules. This must be taken into consideration when using rules
that access these tables.

Generic envelope
segment

Enables you to map from any of the fields within the current
envelope information, regardless of the EDI standard used.
Note: This function is normally not used unless you are familiar
with the generic envelope table structure for a given standard.

Interchange Enables you to map from any of the fields within the current
interchange record.
Notes:

v This sub-table can only be accessed from the following map
types: Interchange Break or Build, Group Break, Transaction
Break, and Export.

v The information that is accessed will be the information of the
last interchange that was processed at the table level accessed by
the rules. This must be taken into consideration when using rules
that access these tables.

Group Enables you to map from any of the fields within the current group
record.
Notes:

v Can only be accessed from the following map types: Group Break
or Build, Transaction Break, Export, and Interchange Build.

v The information that is accessed will be the information of the
last group that was processed at the table level accessed by the
rules. This must be taken into consideration when using rules
that access these tables.

Table access examples
This topic describes examples of accessing the Document table and the Group
table.

Example 1

When accessing the Document table from the Interchange build map, the
information retrieved will be from the last document processed through the
Transaction Build map. If an import map updates a unique value to appfield6 for
each document and the interchange build map tries to retrieve this information,
and if all documents are sent in the same interchange, the only information
retrieved in the Interchange Build map will be the information from appfield6 for
the last document sent.

Chapter 3. Standard Rules 63



To retrieve the value in appfield6 for each document, the documents must be sent
in their own interchange. This is set in the outbound partner relationship in the
Interchange Definition under advanced settings (Set Max number of documents
per interchange must be set to 1).

Example 2

When accessing the Group table from an Export map, the information retrieved
will be from the last group processed through the Group Break map. If an inbound
interchange file contained two groups: the first group contains 850 information and
the second group contains 810 information, the rule in the 850 Export map will
retrieve 810 information because the last group processed through the Group Break
map was the 810 group.

Using Information from the Partner Definition
The Sterling Gentran:Server Application Integration subsystem allows you to use
selected information from the Sterling Gentran:Server Partner Editor in your maps
using a select standard rule. You can map information from your trading partner's
profile in the Partner Editor to a selected element, field, or TFD in the map. The
information that you can use in the map includes any field in a table (location,
lookup, or cross-reference) or data from the partner table.

About this task

For this example, you need to pull information from the partner definition in order
to populate the Customer Number field (CUSTNUMHDR) on the application side
of the map. Your partner’s customer number identifies which trading partner sent
the purchase order. This customer number is already part of the partner definition
for this partner, so you can map it from the partner definition to the customer
number field.

Use this procedure to use the Select function to map the customer number from
the partner definition.

Procedure
1. Double-click an existing element or field, or create a new element or field.

The system displays the Field (or Element or CII TFD) Properties dialog box.
2. Select the Standard Rule tab to access standard rule options.
3. From the standard rule list, choose Select.
4. From the table and key list, select Document record. This indicates that the

system updates this field with selected information from the document record.
5. Select the compliance error check box to indicate that a compliance error

should be generated if the select does not find a valid entry.
6. From the map from list, choose Partner Key. This is the field that contains the

customer number for this partner.
7. From the map to list, choose CUSTNUMHDR. This is the field to which the

information from the partner key of the document record is mapped.
The following screen illustrates how the Standard Rules tab should look.

64 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



8. Click OK to add the standard rule.

Using Information from a Cross-reference Table
For this example, you need to map information from a cross-reference table to
translate your partner’s code for a purchased item into your code for the item.
Your partner uses a customer product code (CUSTPROCODE) for each item that is
meaningful to him. However, your company uses a UPC code (UPCCODE) for
each item. After you and your partner determine what the equivalent customer
product code is for each UPC code, you can create a cross-reference table in
Partner Editor and use that information in your map.

About this task

A cross-reference table is used when you and your partner each reference an item
by a different name (or number). For example, if your unique name for a "widget"
is "wid" and your partner’s unique name for the same "widget" is "1234." The
system uses the cross-reference table to translate the two names for the "widget"
item.

In this example, you have one code (UPC code) for each item ordered. Your
partner refers to the same item by a different code (customer product code). You
need to map the customer product code from the Product/Service ID element to
the customer product code field (CUSTPROCODE) on the application side of the
map. Also, you must create a cross-reference table to translate the customer
product code to your UPC code.

Tip: Before you create the cross-reference table, you and your partner must
determine what the equivalent customer product code is for each UPC code. Then
you can create the cross-reference table in Partner Editor and use that information
in your map.

Finally, you need to use a standard rule to map the translated value from the
CUSTPROCODE field to the UPCCODE field.

Use this procedure to translate your partner’s customer product code to your UPC
Code for each item your partner ordered.

Chapter 3. Standard Rules 65



Procedure
1. Map the customer product code from the Product/Service ID element to your

CUSTPROCODE field.
2. In the Partner Editor, create a cross-reference table named PRODCODE.

Notes:

v The cross-reference table you create only contains six entries. This is an
example – an actual table would contain all of the items manufactured by
your company that your partner purchases.

v In the cross-reference table, the "My Value" box contains your UPC code for
the item. The "Partner Value" box contains your partner’s customer product
code for the item. The "Description" box contains a description (and size, if
applicable) of the item, and the Reference Data box contains additional
quantity or color information.

3. Double-click the CUSTPROCODE field.
The system displays the Field Properties dialog box.

4. Select the Standard Rule tab.
5. From the standard rule list, choose Select.
6. From the table and key, select Partner cross-reference by partner item. This

indicates that you are using a cross-reference table and translating by your
partner’s item.

7. In the sub table box, type PRODCODE. This is the name of the
cross-reference table you created.

8. Select the compliance error check box to signal the system that if this
translation fails, you want the system to generate an error.

9. From the map from list, choose My Item. This is the field from which the
contents is mapped.

10. From the map to list, choose UPCCODE. This is the field to which the
information from the lookup table is mapped.
This diagram illustrates how the Standard Rule tab should look.

66 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Using Information from Location Tables
Each Partner Profile and the Internal System Partner Profile can have many
associated location tables. The location table can be used to contain address-related
information about the partner. You can store your partner’s store addresses,
warehouse addresses, or "invoice to" addresses.

About this task

To use information from a location table, you must have created that table already
in the Partner Editor.

Note: For a screen entry translation object, the system displays a list that allows
you to select the entry from the table. For a print translation object, the system
prints the information on the report.

Use this procedure to map information from a location table.

Procedure
1. Double-click an existing element or field, or create a new element or field.

The system displays the Field (or Element or CII TFD) Properties dialog box.
2. Select the Standard Rule tab.
3. From the standard rule list, choose Select.
4. From the table list, select the key that is used to look up the Partner Location

entry. You are allowed to map from any field on the Locations dialog box.
5. If you want the system to generate an error if the lookup fails, select the

compliance error check box.
6. From the map from list, select the field from which the contents are mapped.
7. From the map to list, select the element, field, or TFD to which the information

from the Partner Editor is mapped.
8. Click OK to add the standard rule.

Using Information from Lookup Tables
A lookup table is used to select information related to a value in inbound or
outbound data. Each partner profile and the internal system partner profile can
have many lookup tables associated with it.

About this task

To use information from a lookup table, you must have created that table already
in the Partner Editor. See How to Create a Table in the IBM Sterling Gentran:Server
for Microsoft Windows User Guide for more information on creating Partner lookup
tables.

Note: For a screen entry translation object, the system displays a list which allows
you to select the entry from the table. For a print translation object, the system
prints the information on the report.

Use this procedure to map information from a Lookup Table.

Procedure
1. Double-click an existing element or field, or create a new element or field.

The system displays the Field (or Element or CII TFD) Properties dialog box.

Chapter 3. Standard Rules 67



2. Select the Standard Rule tabs.
3. From the standard rule list, choose Select.
4. From the table list, select the key from which the system looks up the trading

partner.
5. In the sub table box, type the name of the lookup table.
6. If you want the system to generate an error if the lookup fails, select the

compliance error check box.
7. From the map from list, select the field from which the contents are mapped.
8. From the map to list, select the element, field, or TFD to which the information

from the Partner Editor is mapped.
9. Click OK to add the standard rule.

Standard Rule Tab - update Function
The update function enables you to update a specific field in a document record,
envelope segment, interchange, group, current partner, or document (for maps, if
the format type is EDI), with the contents of the element, field, or TFD.

Important: This function updates the internal Sterling Gentran:Server database
tables. We recommend that you use this function only if you want to update the
internal database tables. Typically, you use this function only if you want to update
the document name and reference in the document table.

You can select the table (group) to update and then select the column (field). The
fields that are available depend on the table selected.

The following are the tables you can select to update with the contents of the
current field/element/TFD:

Table Description

Document record (use to
update the document name
and reference)

This table can only be accessed from the following map
types; Transaction Break/Build, Import, Export, Print,
Screen, Group Build, and Interchange Build.

The information that is accessed will be the information of
the last document that was processed at the table level
accessed by the rules. This must be taken into
consideration when using rules that access these tables.

Generic envelope segment
(advanced use only)

This sub-table can only be accessed from the following
map types: Interchange Break or Build, Group Break,
Transaction Break, and Export.

The information that is accessed will be the information of
the last interchange that was processed at the table level
accessed by the rules. This must be taken into
consideration when using rules that access these tables.

Interchange

Group Can only be accessed from the following map types:
Group Break or Build, Transaction Break, Export, and
Interchange Build.

The information that is accessed will be the information of
the last group that was processed at the table level
accessed by the rules. This must be taken into
consideration when using rules that access these tables.

68 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Table Description

Partner (advanced use only)

Document (advanced use only
- if the format type of this side
of the map is EDI)

Document Name and Reference Data
The Document Name and Reference Data are two recommended fields that you
can specify in the Application Integration subsystem. For an invoice, this field is
typically the invoice number. For a purchase order, this field is typically the
purchase order number.

If you specify either the Document Name or Reference Data, the corresponding
field in Sterling Gentran:Server document browsers (In Documents, ?In Documents,
Out Documents, ?Out Documents, Workspace, In Drawer, Out Drawer, Send
Queue, Interchanges) is populated. The Document Name and Reference Data
makes the identification of a document created by the map easier in Sterling
Gentran:Server.

Setting up the Document Name is strongly recommended if you want to be able to
differentiate between documents in the document browsers in Sterling
Gentran:Server. If you set up the Document Name in the Application Integration
subsystem, the Name box of the document browsers that contain this document in
Sterling Gentran:Server contains the data from that mapped field. If you set up the
Reference Data in the Application Integration subsystem, the RefData box of the
document browsers that contain this document in Sterling Gentran:Server contains
the data from that mapped field.

You can select any element as the Document Name, but we strongly recommend
that you choose an element that only occurs once in the map. The element that you
select should have a data type of "string" (data type is specified on the Element
Properties dialog box). The document name can be up to 255 characters in length.

If you need to use an element with a data type of Date/Time or Number for the
Document Name or Reference Data, you can either:
v Change the data type to String on the Element Properties dialog box.
v Set up an extended rule to update the document record.

Note: If you change a Date/Time or Number element’s data type to String, you
lose the data type compliance checking for the original type.

Setting up the Document Name
About this task

Use this procedure to set up the Document Name.

Procedure
1. Select a non-recurring element from the header or trailer segment of the EDI

side of the document.
The element that you select varies for each type of document. The selected
element should be something that identifies this document meaningfully in
Sterling Gentran:Server. For example:

Chapter 3. Standard Rules 69



v For an Invoice, this is typically the Invoice Number.
v For a Purchase Order, this is typically the Purchase Order Number.

2. Right-click the appropriate element and select Properties.
3. Select the Standard Rule tabs.
4. From the standard rule list, select Update.
5. From the table to update list, select Document record.
6. From the column to update list, select Document Name.
7. Click OK to set up the Document Name.

Setting up the Reference Data
About this task

Use this procedure to set up the Reference Data.

Procedure
1. Select an element from the first segment of the EDI side of the document.

The element that you select varies for each type of document. The selected
element should be something that identifies this document meaningfully in
Sterling Gentran:Server. For example:
v For an Invoice this is typically the Purchase Order Number.
v For a Purchase Order this is typically the Purchase Order Date. However, to

use Purchase Order Date, you must use an extended rule on that element,
instead of following the steps below.

2. Right-click the appropriate element and select Properties.
3. Select the Standard Rule tabs.
4. From the standard rule list, select Update.
5. From the table to update list, select Document record.
6. From the column to update list, select Reference Data.
7. Click OK to set up the Reference Data.

Standard Rule Tab - Use System Variable Function

Using the System Date and Time
The Use System Variable function enables you to set a variable that maps the
current date and time to the selected element, field, or TFD. The selected
component must have a data type of Date/Time.

About this task

Use this procedure to use the system date and time.

Procedure
1. Double-click an existing element, field, or TFD, or create a new one.

The system displays the Field (or Element or CII TFD) Properties dialog box.
2. Select the Standard Rule tab.
3. From the standard rule list, select Use System Variable.
4. Select Current date and time from the system variable list to map those

variables to the element, field, or TFD.
5. Click OK to set up the system variable.

70 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Standard Rule Tab - Use Constant Function
The Use Constant function enables you to move a literal constant value to the
specified element, field, or TFD and indicate a qualifying relationship with another
element, field, or TFD.

Constants are used in maps and forms to hold information that is needed later in
the map/form, either to be moved to an output field or used in a conditional
statement. Typically, constants are used to move a literal constant value to the
specified element, field, or TFD on an inbound map. Outbound EDI qualifiers are
typically generated from constants (to indicate a qualifying relationship with
another element or field).

For an inbound map, constants are typically used to define the record types. For
an outbound map, constants are typically used to define qualifying relationships.

A qualifying relationship establishes a relationship between an element and its
qualifier. A qualifier contains a code that further defines the element. Qualifying
relationships are typically defined in outbound maps.

Table 11. Use Constant standard rule parts and functions

Part Function

constant Lists the available constants. The selected constant is mapped to
the current element, field, or TFD.
Note: If the necessary constant is not present in the constant list,
you need to create it by using the Map Constants dialog box,
which you can access by clicking Edit.

Edit Access the Map Constants dialog box, which allows you to create,
edit, and delete literal constants.

qualifier Lists the elements, fields, or TFDs that you can use to qualify the
selected component to establish a qualifying relationship between
the two components.
Note: If the qualified element is not generated because of a lack of
data, the constant is not moved to the current element, field, or
TFD.

Table 12. Map Constants dialog box parts and functions

Part Function

Constants list Contains a list of all literal constants currently defined in the
system.

Close Exits the Map Constants dialog box.

New Access the Edit Constant dialog box, which allow you to create a
new constant.

Edit Access the Edit Constant dialog box, which allows you to edit the
selected constant.

Delete Removes the selected constant from the system.

Chapter 3. Standard Rules 71



Table 13. Edit Constant dialog box parts and functions

Part Function

ID Contains the literal constant identifier.

This is typically a description of the field or element in which the
constant is used. If you need to refer to the constant in an
extended rule, you should use the data from this field.

Type Specifies the category of this literal constant. Valid selections are:

v Integer - Select for numeric constants that are a positive or
negative natural (non-fraction) number or 0.

v Real - Select for numeric constants that are a positive or negative
integer with an explicit decimal point.

v String - Select for alphanumeric constants.

Value Specifies the actual constant expression. This is the value of the
literal constant.

Using a Constant in a Map
About this task

Use this procedure to use a constant in your map.

Procedure
1. Double-click an existing element, field, or TFD, or create a new one.

The system displays the Field (or Element or CII TFD) Properties dialog box
(Name tab).

2. Select the Standard Rule tab.
3. From the standard rule list, select Use Constant.

The system displays the constant options.
4. To create or edit a constant to use for the current element, field, or TFD, click

Edit to access the Map Constants dialog box.
5. From the constants list, select the constant that you want to map to the current

element, field, or TFD.
6. To establish a qualifying relationship between the current map component and

another component, from the qualifies list, select the element, field, or TFD that
the system uses to determine whether to execute this standard rule (if the
qualifying component contains data).

7. Click OK to save the standard rule and exit the Properties dialog box.

Defining a Qualifying Relationship
Literal constants are used by the system as a repository to store information that is
used at a later point in the map. Typically, constants are used in an outbound map
to generate a qualifier. A qualifier is an element that has a value expressed as a
code that gives a specific meaning to the function of another element. A qualifying
relationship is the interaction between an element and its qualifier. The function of
the element changes depending on which code the qualifier contains.

About this task

In this example, you use a constant to define a qualifier for a Product/Service ID.

Use this procedure to define a qualifying relationship.

72 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Procedure
1. Double-click the Product/Service ID Qualifier that you want to use to further

define (qualify) the Product/Service ID.
The system displays the Element Properties dialog box (Name tab).

2. Select the Standard Rule tab.
3. From the standard rule list, select Use Constant.
4. Click Edit.

The system displays the Map Constants dialog box.
5. Click New.

The system displays the Edit Constant dialog box.
6. In the ID box, type the literal constant identifier. This is typically a description

of the field or element in which the constant is used. If you need to refer to
the constant in an extended rule, you should use the data from this box.

7. From the Type list, select String. The Product/Service ID Qualifier is
formatted as a string data type. This indicates the category of the literal
constant.

8. In the Value box, type UI. This indicates that the Product/Service ID field
must contain the UPC Code. This is the value of the literal constant.

9. Click OK to add the constant to the system.
10. Click Close to exit the Map Constants dialog box.
11. From the qualifies list, select Product/Service ID. This is the element that the

Product/Service ID Qualifier qualifies. This list contains only the other active
fields or elements in the same record or segment as the qualifying field.

12. Click OK on the Element Properties dialog box and the qualifying relationship
between the two elements is established.

Defining and Editing Literal Constants
About this task

Use this procedure to create or edit a literal constant so you can use it to store
information.

Procedure
1. Select Edit > Constants.

The system displays the Map Constants dialog box.
2. To create a new constant, click New. To edit an existing constant, select the

constant and click Edit.
The system displays the Edit Constant dialog box.

3. In the ID field, type the literal constant identifier.
4. From the Type list, select the category of this literal constant.
5. In the Value field, type the actual constant expression.
6. Click OK to add the constant to the system.
7. Click Close to exit the Map Constants dialog box.

Deleting Literal Constants
About this task

Use this procedure to delete a literal constant.

Chapter 3. Standard Rules 73



Procedure
1. Select Edit > Constants.

The system displays the Map Constants dialog box.
2. Select the constant you want to delete.
3. Click Delete.

Important: The system removes the constant without a warning message.
4. Click Close to exit the Map Constants dialog box.

Mapping Literal Constants
About this task

Use this procedure to map a constant in which you previously stored information
using an extended rule.

Procedure
1. Double-click the element, field, or TFD in which you want to use the constant.

The system displays the Field, Element, or CII TFD) Properties dialog box.
2. Select the Standard Rule tab to access standard rule options.
3. From the standard rule list, select Use Constant.
4. From the constant list, select the constant that you want to use.
5. Click OK.

The data that was stored in the selected constant is loaded in the element, field,
or TFD.

Generating Qualifiers
A qualifier is an typically an element that has a value expressed as a code that
gives a specific meaning to the function of another element. A qualifying
relationship is the interaction between an element and its qualifier. The function of
the element changes depending on which code the qualifier contains.

About this task

Use this procedure to define qualifying relationships.

Procedure
1. Double-click the element you want to use to further define (qualify) another

element.
The system displays the Element Properties dialog box.

2. Select the Standard Rule tab.
3. From the standard rule list, select Use Constant.
4. From the qualifies list, select the element that this element qualifies. This list

contains only the other active elements in the same record or segment as the
qualifying element.

5. Click OK.

Note: For a form, when you set a constant value for a qualifier field, you know
that you never need to override the value in the field. In this instance, you
would probably hide the field as well.
The system establishes the qualifying relationship between the two elements.

74 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Standard Rule Tab - Loop Count Function
The Loop Count function enables you to count the number of times a loop is
repeated, if the element, field, or TFD is part of a loop.

If the loop is a nested loop, you can track the current loop or the outer loop. For
example, if the Y loop is nested within the X loop, and the Y loop has cycled
through 15 iterations and the X loop has cycled through 3 iterations, you can
choose to count either the 15 (Y loop) or the 3 (X loop).

Table 14. Loop Count standard rule parts and functions

Part Function

group Contains the loop that you want to count.
Note: If the loop is a nested loop, you can track the current loop
or the outer loop.

Using the Loop Count Function
About this task

Use this procedure to use the Loop Count function.

Procedure
1. Double-click an existing element, field, or TFD, or create a new one.

The system displays the Field (or Element or CII TFD) Properties dialog box.
2. Select the Standard Rule tab.
3. From the standard rule list, select Loop Count.
4. Select the loop that you want to count.
5. Click OK to add the standard rule.

Standard Rule Tab - Use Accumulator Function
The Use Accumulator function gives you access to a set of numeric variables that
you can manipulate via numeric operations, and then transfer to and from
elements or fields. This function enables you to add, change, or delete calculations
for the element, field, or TFD, including hash totals (used to accumulate numeric
field values, for example, quantity and price).

This function also enables you to map or load the accumulated total into a control
total field or element. Accumulators are used generally for counting the
occurrences of a specific element or generating increasing or sequential record or
line item numbers.

Notes:

v Accumulators are global variables.
v Accumulators are set to zero before being used in calculations.
v The order in which accumulator operations are performed depends on the

hierarchical order of the components.

Chapter 3. Standard Rules 75



Table 15. Use Accumulator standard rule parts and functions

Part Function

Primary accumulator Lists existing accumulators and their associated operations that
were created for this element, field, or TFD.

New Accesses the Edit Accumulator Entry dialog box to define an
accumulator for this element, field, or TFD.

Change Highlight a calculation in the Primary Accumulator list and click
this to access the Edit Accumulator Entry dialog box to edit the
selected accumulator.

Delete Highlight a calculation in the Primary Accumulator list and click
this to delete the selected accumulator.
Note: The selected calculation is deleted without warning.

Table 16. Edit Accumulator Entry dialog box parts and functions

Part Function

Primary accumulator Specifies the primary accumulator.
Notes:

v Before any calculations are performed on an accumulator, its
content is 0. When you use an accumulator, the system adds a
new accumulator to the bottom of this list.

v There is only one set of accumulators for each map or form. This
means that accumulator 0, whether it is used in the Primary
Accumulator or Alternate Accum box is the same accumulator
with the same contents. If you assign calculations to accumulator
0 at the beginning of the map/form and then use accumulator 0
again later, the content of that accumulator is the result of the
earlier calculation. Any additional calculations you assign to that
accumulator are performed on the contents resulting from an
earlier calculation.

Name Contains a descriptive alias that enables you to differentiate what
the accumulators you create are used for.

76 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Table 16. Edit Accumulator Entry dialog box parts and functions (continued)

Part Function

First Specifies the first operation that the system performs.
Notes:

v The First box is active only after you select a Primary
Accumulator.

v Before any calculations are performed on an accumulator, its
content is 0. When you use an accumulator, the system adds a
new accumulator to the bottom of this list.

Second Specifies the second operation that the system performs, after the
First operation is completed. The Second box is active only after
you select a First operation that does not involve the Alternate
Accum.

Third Specifies the third operation that the system performs, after the
Second operation is complete. The Third box is active only after
you select a Second operation.

Fourth Specifies the fourth operation that the system performs, after the
Third operation is complete The Fourth box is active only after you
select a Third operation.

Alternate Accum Specifies an alternate accumulator that participates in the
accumulator operation. The Alternate Accum box is only active if
you select an operation from the First field that involves an
alternate operand.

Table 17. Accumulator operations and functions

Part Function

Increment primary Adds 1 to the contents of the Primary Accumulator (Primary =
Primary + 1).

Decrement primary Subtracts 1 from the contents of the Primary Accumulator (Primary
= Primary - 1).

Sum in primary Adds the numeric value (takes the positive or negative sign of the
numbers into account) of the field to the contents of the Primary
Accumulator (Primary = (+/-)Primary + (+/-)Field).

Hash sum in primary Adds the absolute value (does not take the positive or negative
sign of the numbers into account) of the field to the contents of the
Primary Accumulator (Primary = Primary + Field).

Load primary Loads the contents of the field into the Primary Accumulator
(Primary = Field).

Use primary Loads the contents of the Primary Accumulator into the field (Field
= Primary).

Zero primary Sets the value of the Primary Accumulator to zero (Primary = 0).

Multiply with
primary

Multiplies the field with the contents of the Primary Accumulator,
and stores the result in the Primary Accumulator (Primary =
Primary * Field).

Divide by primary Divides the field with the contents of the Primary Accumulator,
and stores the result in the Primary Accumulator (Primary = Field
/ Primary).

Divide primary by
field

Divides the contents of the Primary Accumulator with the field,
and stores the result in the Primary Accumulator (Primary =
Primary / Field).

Chapter 3. Standard Rules 77



Table 17. Accumulator operations and functions (continued)

Part Function

Modulo with primary Divides the contents of the Primary Accumulator with the contents
of the field, and stores the remainder of that operation in the
Primary Accumulator (Primary = Field % Primary).

Modulo with field Divides the contents of the field with the contents of the Primary
Accumulator, and stores the remainder of that operation in the
Primary Accumulator (Primary = Primary % Field).

Negate primary Makes the contents of the Primary Accumulator negative (Primary
= Primary * -1).
Note: The only way to subtract the Primary Accumulator from the
field is to "Negate" the Primary Accumulator and then use the
"Sum in primary" operation to add the negative Primary
Accumulator to the field.

Move primary to
alternate

Copies the contents of the Primary Accumulator to the Alternate
Accum. This overwrites the current contents of the Alternate
Accum field (Alternate = Primary).

Add primary to
alternate

Adds the contents of the Primary Accumulator to the contents of
the Alternate Accum and stores the result in the Primary
Accumulator (Primary = Primary + Alternate).

Multiply primary by
alternate

Multiplies the contents of the Primary Accumulator with the
contents of the Alternate Accum and stores the result in the
Primary Accumulator (Primary = Primary * Alternate).

Divide primary by
alternate

Divides the contents of the Primary Accumulator with the contents
of the Alternate Accum and stores the result in the Primary
Accumulator (Primary = Primary / Alternate).

Modulo primary with
alternate

Divides the contents of the Primary Accumulator with the contents
of the Alternate Accum and stores the remainder of that operation
in the Primary Accumulator (Primary = Primary % Alternate).

Counting Line Items
In this example, you want an incremental count of the number of line items, and
you want to use that total value in the Number of Line Items Total field.

About this task

Use this procedure to count line items and generate a control total for an outbound
ANSI X12 purchase order.

Procedure
1. Double-click the P0101 element (in the P01 segment in the P01 group). This is

the element that you typically use to count the line items.
The system displays the Element Properties dialog box.

2. Select the Standard Rule tab.
3. From the standard rule list, select Use Accumulator.
4. Click New.

The system displays the Edit Accumulator Entry dialog box to create a new
calculation for this element.

5. From the Primary Accumulator list, select 0.

78 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Note: There is only one set of accumulators for each map. This means that
accumulator 0, whether it is used in the Primary Accumulator or Alternate
Accum box is the same accumulator with the same contents. If you assign
calculations to accumulator 0 at the beginning of the map and then use
accumulator 0 again later in the map, the content of that accumulator is the
result of the earlier calculation. Any additional calculations you assign to that
accumulator are performed on the contents resulting from an earlier
calculation.

6. In the Name box, type Line Item Number. This is a descriptive alias that
enables you to differentiate what the accumulators you create are used for.

7. From the First list, select Increment Primary. This is the first operation that
the system performs. This specifies that the system will increment the PO101
element by one.

8. From the Second list, select Use primary. This is the second operation that the
system performs, after the First operation is completed. This specifies that the
system loads the current value of the accumulator into the P0101 (Assigned
Identification) element.

9. Click OK to add the accumulator.
10. Click OK on the Element Properties dialog box to add the standard rule to the

P0101 element.
11. Double-click the CTT01 element (in the CTT segment). This is the element that

typically contains the total number of line items.
The system displays the Element Properties dialog box.

12. Select the Standard Rule tab.
13. From the standard rule list, select Use Accumulator.
14. Click New. The system displays the Edit Accumulator Entry dialog box to

create a new calculation for this element.
15. From the Primary Accumulator list, select primary accumulator 0. This

accumulator currently contains the total number of line items.
16. From the First list, select Use primary. This specifies that the system loads the

current value of the accumulator into the CTT01 (Number of Line Items Total)
element.
This diagram illustrates how the Edit Accumulator dialog box should look.

17. Click OK to add the accumulator.
This diagram illustrates how the Standard Rule tab should look.

Chapter 3. Standard Rules 79



18. Click OK on the Element Properties dialog box to add the standard rule to the
CTT01 element.

Note: The CTT01 element now contains the total number of line items in the
purchase order.

Calculating Hash Totals
In this example, you want to count the quantity ordered for each line item and
load the total quantity in the CTT02 (Hash Total) element.

About this task

Use this procedure to count the quantity ordered and generate a hash total for an
outbound ANSI X12 purchase order.

Procedure
1. Double-click the P0102 element (in the P01 segment in the P01 group). This is

the element that you typically use to count the line items.
The system displays the Element Properties dialog box.

2. Select the Standard Rule tab.
3. From the standard rule list, select Use Accumulator.
4. Click New.

The system displays the Edit Accumulator Entry dialog box to create a new
calculation for this element.

5. From the Primary Accumulator list, select 1.
6. In the Name box, type Total Quantity.
7. From the First list, select Hash Sum in Primary. This is the first operation that

the system performs. This specifies that the system will add the numeric value
of the PO102 element to the contents of the Primary Accumulator.

8. Click OK to add the accumulator.
9. Click OK on the Element Properties dialog box to add the standard rule to the

P0102 element.
10. Double-click the CTT02 element (in the CTT segment). This is the element that

typically contains the total quantity of the purchase order.

80 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



The system displays the Element Properties dialog box.
11. Select the Standard Rule tab.
12. From the standard rule list, select Use Accumulator.
13. Click New. The system displays the Edit Accumulator Entry dialog box to

create a new calculation for this element.
14. From the Primary Accumulator list, select primary accumulator 1. This

accumulator currently contains the total quantity.
15. From the First list, select Use primary. This operation specifies that the system

loads the current value of the accumulator into the CTT02 (Hash Total)
element.

16. Click OK to add the accumulator.
17. Click OK on the Element Properties dialog box to add the standard rule to the

CTT02 element. The CTT02 element now contains the total quantity of the
purchase order.

Multiplying Quantity Invoiced by Unit Price
About this task

Use this procedure to multiply the quantity invoiced for each line item by the unit
price to obtain the extended price for an outbound ANSI X12 invoice.

Procedure
1. Double-click the IT102 element (in the IT1 segment in the IT1 group). This is

the element that you typically use to count the quantity invoiced.
The system displays the Element Properties dialog box.

2. Select the Standard Rule tab.
3. From the standard rule list, select Use Accumulator.
4. Click New.

The system displays the Edit Accumulator Entry dialog box to create a new
calculation for this element.

5. From the Primary Accumulator list, select 2.
6. In the Name box, type Extended Price.
7. From the First list, select Load primary. This operation specifies that the

system loads the contents of the element into the Primary Accumulator for
each iteration of the IT1 group.

8. Click OK to add the accumulator.
9. Click OK on the Element Properties dialog box to add the standard rule to the

IT102 element.
10. Double-click the IT104 element (in the IT1 segment in the IT1 group). This is

the element that contains the unit price for each line item.
The system displays the Element Properties dialog box.

11. Select the Standard Rule tab.
12. From the standard rule list, select Use Accumulator.
13. Click New.

The system displays the Edit Accumulator Entry dialog box to create a new
calculation for this element.

14. From the Primary Accumulator list, select primary accumulator 2.
15. From the First list, select Multiply with primary. This operation specifies that

the system multiplies the value of the IT104 (Unit Price) element with the

Chapter 3. Standard Rules 81



contents of the primary accumulator, and store the result in the primary
accumulator for each iteration of the IT1 group.

16. Click OK to add the accumulator.
17. Click OK on the Element Properties dialog box to add the standard rule to the

IT104 element.

Tip: If there is an extended price element in your EDI file, you could load the
total from the extended price calculation into that element. To do this, you
need to use an accumulator on that extended price element that specifies Use
primary for accumulator 2.

Generating a Running Total of Extended Price
About this task

Use this procedure to generate a running total of the extended price.

Procedure
1. Double-click the IT104 element (in the IT1 segment in the IT1 group). This is

the element that contains the unit price for each line item.
You already established one accumulator that the system displays in the list on
the Standard Rule tab.

2. Click New.
The system displays the Edit Accumulator Entry dialog box to create a new
calculation for this element.

3. From the Primary Accumulator list, select 3.
4. In the Name box, type Running Total.
5. From the First list, select Add primary to alternate. This operation specifies

that the system adds the contents of the primary accumulator to the contents of
the alternate accumulator, and stores the result in the primary accumulator for
each iteration of the IT1 group.

6. From the Alternate Accum list, select 2. This operation specifies that the system
add the value of accumulator 2 (which contains the extended price for a line
item) to the value of accumulator 3. The system stores the sum in accumulator
3, which therefore contains a running total of the extended price with each
iteration of the IT1 group.

82 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



7. Click OK to add the accumulator.
This diagram illustrates how the Standard Rule tab should look.

8. Click OK on the Element Properties dialog box to add the standard rule to the
IT104 element.

Loading a Running Total of Extended Price
About this task

Use this procedure to load the running total of the extended price into the TDS01
(Total Invoice Amount) element.

Procedure
1. Double-click the TDS01 element. This is the element that contains the total

invoice amount for each line item.
The system displays the Element Properties dialog box.

2. Select the Standard Rule tab.
3. From the standard rule list, select Use Accumulator.
4. Click New.

The system displays the Edit Accumulator Entry dialog box to create a new
calculation for this element.

5. From the Primary Accumulator list, select 3.
6. From the First list, select Use primary. This operation specifies that the system

loads the contents of the primary accumulator into the TDS01 (Total Invoice
Amount) element.

7. Click OK to add the accumulator.
8. Click OK on the Element Properties dialog box to add the standard rule to the

TDS01 element.

Chapter 3. Standard Rules 83



Standard Rule Tab - Use Code Function
The Use Code function enables you to match an element, field, or TFD against a
predefined code table and specify whether or not a compliance error is generated if
the map component does not contain one of the values in the code table. This
function also allows you to store a code’s description in another element, field, or
TFD.

You can also create a unique code table, use code values from a code table, and
flag whether or not the system generates an error if a validation against the code
table fails. You can import and export code lists and copy and paste code lists
between maps.

Sterling Gentran:Server enables you to create code tables to be used with the
current map or form. You can set up code tables to function like the partner
cross-reference and lookup tables in Sterling Gentran:Server. However, code tables
that are set up in the Application or Forms subsystem can be used only for the
current map or form. Code tables that you create in Sterling Gentran:Server can be
used globally for all maps/forms.

Code List Tables are used by EDI standards as repositories for lists of codes. Each
EDI standard provides a code list for each element that can be further defined with
a code. Sterling Gentran:Server allows you to load code lists from the standard.
You can either load all the codes in the table, or you can select only one or more
codes from the table. Once you load a code table, you can use a "Use Code"
standard rule to either look up a value from a code table or validate the contents
of an element, field, or TFD against the values in the code table.

A element, field, or TFD with a Use Code rule enables values to either be checked
against or selected from the codes in a specified code table. Codes are typically
used to further qualify another element. For example, if the XX element contains
address information, you can further qualify that element by choosing the code
"SU" from the 0222 table. In the 0222 table, the code "SU" is described as a
"supplier's address." Therefore, by using this code with the XX element, you are
indicating that the XX element is not just address information, but address
information for the supplier.

Table 18. Standard rule tab (Use Code) parts and functions

Part Function

Code list Contains all the code tables. If the necessary code table is not listed,
click Edit to load or create a code table.

Edit Accesses the Edit Code List dialog box, which enables you to add,
edit, delete, and load code list tables.

Raise compliance
error

Indicates that, for compliance reasons, the element, field, or TFD
must contain one of the codes from the specified table (nothing else
is valid for that field).

For example, if a field is defined as containing only YES or NO,
you can set up an exclusive code table that contains only YES and
NO. Then if you receive a MAYBE in that field, the system flags it
as an error.

84 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Table 18. Standard rule tab (Use Code) parts and functions (continued)

Part Function

Code description Contains the element, field, or TFD where you want the description
of the code that is used to appear when the selection is made.

For example, if the code is SU, it is much more useful to view the
description of the code (Supplier's Address). If you selected element
XX from the store description list, the description for the code used
is mapped to element XX.

Table 19. Edit Code List dialog box parts and functions

Part Function

Table list Specifies the table identifier.

New Accesses the Edit Code List dialog box, which allows you to create
a new code list.

Change Accesses the Edit Code List dialog box, which allows you to edit
the selected code list.

Delete Deletes the selected code list

Import Accesses the Open dialog box, which allows you to import a code
list.

Export Accesses the Save As dialog box, which allows you to export the
selected code list.

Copy Copies the selected code list.

Paste Pastes a previously-copied code list in a map.

Table 20. Edit Code List dialog box parts and functions

Part Function

Table ID Contains the name of the field or element for which this code list
table is used.

Desc Contains the description of the field or element for which this code
list table is used.

Allowed Codes Specifies the codes that are allowed for this table.

New Accesses the Edit Code List Entry dialog box, which allows you to
create a new code.

Change Accesses the Edit Code List Entry dialog box, which allows you to
edit the selected code.

Delete Accesses the Edit Code List Entry dialog box, which allows you to
delete the selected code.

Load Accesses the Load Code List dialog box, which allows you to
select, from a standard code table, specific codes that you want to
load or select the entire list of codes.

Table 21. Edit Code List Entry dialog box parts and functions

Part Function

Value Specifies the actual value of the code.

Description Contains the code value description.
Note: The description is used if you specify an element or field (in
the Store Fields list on the Field Properties dialog box) to which
you want the code description mapped.

Chapter 3. Standard Rules 85



Defining and Modifying a Code List
About this task

Use this procedure steps to define or modify a code list table.

Procedure
1. Select Edit > Code Lists.
2. To create a new code list, click New. To edit a code list, select a code list and

click Change.
The system displays the Edit Code List dialog box.

3. In the Table ID box, type the name of the field or element for which this code
list table is used.

4. In the Description box, type the description of the field or element for which
this code list table is used.

5. To create a new code, click New. To edit a code, select a code and click
Change.
The system displays the Edit Code List Entry dialog box.

6. In the Value box, type the value of the code.
7. In the Description box, type a description of the code value.
8. Click OK to save the code list entry.
9. Repeat steps 5 through 8 to add more code list entries to the code list table.

10. Click Close to save and exit the Edit Code List dialog box.
11. Click Close to exit the Code Lists dialog box.

Deleting a Code List
About this task

Use this procedure steps to delete a code list table.

Procedure
1. Select Edit > Code Lists.

The system displays the Code Lists dialog box.
2. Select the code list you want to delete.
3. Click Delete to delete the code list table.

Important: The selected table is deleted without a warning message.

Deleting a Code List Entry
About this task

Use this procedure steps to delete an entry from a code list table.

Procedure
1. Select Edit > Code Lists.

The system displays the Code Lists dialog box.
2. Select the code list from which you want to delete an entry and click Change.

The system displays the Edit Code List Entry dialog box.

86 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



3. Select the entry and click Delete.

Important: The selected entry is deleted without warning.
4. Click OK to save the code list table.

Importing a Code List
The Code List Import function enables you to import code lists created for another
map or form and share code lists with other users of Sterling Gentran:Server.

About this task

Use this procedure steps to import a code list table.

Procedure
1. Select Edit > Code Lists.

The system displays the Code Lists dialog box.
2. Click Import.

The system displays the Open dialog box.
3. Select the location of the code list file.

Note: The default location is Application Integration install folder (the default
is GENSRVNT). The default file extension for code lists is .CDE.

4. Select the code list file from the list and click Open.
The system imports the code list and returns to the Code Lists dialog box. The
imported code list is available for your use.

5. Click OK to exit the Code Lists dialog box.

Exporting a Code List
The Code List Export function enables you to export code lists to file. This enables
you to define a code list for one map or form and use that code list in another
map or form. This function also allows you to share code lists with other users of
Sterling Gentran:Server.

About this task

Use this procedure steps to export a code list table.

Procedure
1. Select Edit > Code Lists.

The system displays the Code Lists dialog box.
2. Select a code list and click Export.

The system displays the Save As dialog box.
3. If you want, change the name of the export file.

Note: The filename defaults to the table ID with a .CDE file extension. The
default location is Application Integration install folder (the default is
GENSRVNT).

4. Click Save.
The system exports the code list and returns to the Code Lists dialog box.

5. Click Close to exit the Code Lists dialog box.

Chapter 3. Standard Rules 87



Loading a Code List Table from the Standard
About this task

Use this procedure steps to load a code list table from the standard.

Procedure
1. Double-click the element for which you need to use a code table.

The system displays the Element Properties dialog box.

Note: The standards provide code list tables only for elements that use them.
For example, in the TD4 segment, the TD401 (Special Handling Code) and
TD403 (Hazardous Material Class Code) have code tables provided by the
standard.

2. On the Standard Rule tab, select Use Code.
3. Click Edit.

The system displays the Edit Code List dialog box.
4. Click Load.

The system prompts you to select a data source name (DSN) from which to
access the EDI standard.

5. Select the appropriate DSN and click OK.
The system displays the Load Code List dialog box.

6. Select either specific codes that you want to load or select the entire list of
codes.
v To select specific codes only, from the Codes in Standard list, highlight each

code that you want to be loaded. Click Add to move it to the Codes Selected
list.

v To load the entire code list, click Add All to select all the codes and move
them to the Codes Selected list.

Note: Only add the codes that you and your trading partners are able to create
or accept. Adding all codes in the code table (using the Add All) creates a
much larger translation object than if you only use selected codes.

7. Click OK to load the code list.
8. Click Close to exit the Code Lists dialog box.

Copying and Pasting Code Lists
The Code List Copy and Paste function enables you to copy code lists to from one
map or form to another.

About this task

Use this procedure steps to copy and paste a code list table.

Procedure
1. Select Edit > Code Lists.

The system displays the Code Lists dialog box.
2. Select a code list and click Copy.

The system copies the code list to the clipboard.
3. Click Close to exit the Code Lists dialog box.

88 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



4. Open the map or form in which you want to use the code list, if the map is not
already open.

5. Select Edit > Code Lists.
The system displays the Code Lists dialog box.

6. Click Paste.
The system adds the copied code list to this map.

7. Click Close to exit the Code Lists dialog box.

Validating Data Against Code List Tables
About this task

Use this procedure steps to validate data against a code list table.

Procedure
1. Double-click the element for which you need to validate data against a code

table.
The system displays the Element Properties dialog box.

Note: The standards provide code list tables only for elements that use them.
For example, in the TD4 segment, the TD401 (Special Handling Code) and
TD403 (Hazardous Material Class Code) have code tables provided by the
standard.

2. Select the Standard Rule tab.
3. From the standard rule list, select Use Code.
4. From the code list, select the code list table that the data in this element is

validated against.

Note: If this list is empty, you need to load a code table.
5. If you need to specify (for compliance reasons) that the element must contain

one of the codes from the specified table (nothing else is valid for that field),
select the compliance error check box.

6. Click OK to add this standard rule to the element.

Validating Data Example
For this example you need to map the customer product code from the
Product/Service ID to the customer product code field (CUSTPROCODE) on the
application side of the map. To ensure that the data that is mapped from the
Product/Service ID element really is your partner’s customer product code, you
need to establish and use a code table with the Product Service ID Qualifier.

About this task

Use this procedure to validate the data in the Product/Service ID field against a
code list table.

Procedure
1. Load the code list table from the standard for the Product/Service ID Qualifier

element.

Chapter 3. Standard Rules 89



Note: The standards provide code list tables only for elements that use them.
For example, in the TD4 segment, the TD401 (Special Handling Code) and
TD403 (Hazardous Material Class Code) have code tables provided by the
standard.

2. Define a code list table for the Product/Service ID Qualifier element that only
contains the code value "BP" (Buyer’s Part Number).

3. Double-click the element for which you need to validate data against a code
table (Product/Service ID Qualifier).
The system displays the Element Properties dialog box.

4. Select the Standard Rule tab.
5. From the standard rule list, select Use Code.
6. From the code list, select the code list table that the data in this field is

validated against (0235).
7. If you need to specify that, for compliance reasons, the element must contain

one of the codes from the specified table (nothing else is valid for that field),
select the compliance error check box.

8. Click OK to add this standard rule to the field.

Mapping Code Item Descriptions
About this task

Use this procedure steps to map a code item description.

Procedure
1. Double-click the element for which you need to map a code description.

The system displays the Element Properties dialog box.
2. Select the Standard Rule tab.
3. From the standard rule list, select Use Code.
4. From the code list, select the code list table that the data in this element is

validated against.

Note: If this list is empty, you need to load a code table.
5. If you need to specify (for compliance reasons) that the element must contain

one of the codes from the specified table (nothing else is valid for that field),
select the compliance error check box.

6. From the store description list, the element to which you want the description
of the code item (that is used) to be mapped to when the selection is made.

7. Click OK to add this standard rule to the element.

90 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Chapter 4. The Import Process

About the Import Process
The import process is part of the outbound translation process. In the outbound
translation process, the system translates your application file format to EDI
standard formats, so you can send documents to your partners.

To translate outbound data, you need to create an import translation object and a
system import translation object in the Sterling Gentran:Server Application
Integration subsystem. The import translation object defines how to move data
from your application file (flat file definition), which may contain multiple
documents, to the EDI standard-formatted documents that your partners expect to
receive from you.

You need to create a system import translation object to determine which trading
relationship (established in Partner Editor) corresponds to each document in the
application file, so the system knows which import translation object to use to
process the document.

Importing Data

During the import process, Sterling Gentran:Server imports a specified application
file into the Workspace. An import file can contain multiple flat file definitions
(documents) that need to be sent to multiple trading partners.

You can import any type of flat file, including TDF (Transaction Data File). TDF is
a flat file representation of the EDI standard document. The flat file characteristics
can include multiple record types (more than one record definition) and records
delimited by carriage returns/line feeds.

You cannot import EDI or field-delimited files. The field and record lengths for
import files are defined in the Application Integration subsystem application file
definition. For example, the maximum length of a field in an import file must not
exceed the maximum length (Max) specified on the Field Properties dialog box for
that field. And, the maximum length of a record in an import file must not exceed
the record length (if specified) on the Positional File Format Properties dialog box
for that record. The system default is variable length records. If you specify record
delimiters on the Positional File Format Properties dialog box, the records in the
import file must begin and end with those delimiters. If you do not specify record
delimiters, the default delimiters are carriage return and line feed.

The system must determine which trading relationship (established in Partner
Editor) corresponds to each document in the application file, so the system knows
which import translation object to use to process the document. Each application
file must have a corresponding system import map. For each document in the
application file, the system import translation object identifies the partner and
locates the trading relationship. The trading relationship for that partner must have
an import translation object associated with it.

After the system import translation object determines which trading relationship
corresponds with a document, it ascertains which import translation object is
specified in that relationship. The translator uses the import translation object to

© Copyright IBM Corp. 1996, 2024 91



translate the document. If the document is compliant (valid), it is moved to the
Workspace. If the document is not compliant (invalid), it is moved to the ?Out
Documents. Then, if there is another document remaining in the application file,
the translator repeats this process until all the documents are processed.

Import process diagram

This diagram illustrates the import process (translator not pictured).

How to Modify the System Configuration

When you import a file, the system checks the Imports tab of the System
Configuration program (shipped with Sterling Gentran:Server) to verify that the
file is matched with a registered system import translation object. Your system
administrator may need to add the match to the System Configuration program.

92 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Creating a System Import Map
A system import map is used by the system to find the partner relationship for a
document (flat file definition), to determine which import map is used to translate
the data. The system import map builds the key that the translator uses to find the
partner relationship. The sole function of the system import map is to identify the
appropriate partner relationship; the system import map does not map any data.

About this task

There are two ways to build the key in a system import map. The method that we
recommend requires six EDI-specific fields in the header record: partner key,
standard, version, transaction set, release (for TRADACOMS only), and
test/production status. The combination of these six fields defines a unique key
that identifies the appropriate partner relationship. We recommend using this
method because it is very flexible. You typically use this method when you are
defining your application from scratch and can easily add the EDI-specific fields
that are not already present in the header record.

The second method is easier to build because it only requires three fields in the
header record (partner key, application ID or application alias value, and
test/production status). The combination of these three fields defines a unique key
that identifies the appropriate partner relationship. However, because only three
fields are combining to build the key, this method is not as flexible as the preferred
method. You typically use this method when you are using a legacy (existing)
application definition, and you do not want to add EDI-specific information.

Use this procedure to create a system import map.

Procedure
1. Select File > New.

The system displays the New Map Wizard.
2. From the type of map list, select System Import.
3. In the name box, type the name of the map.
4. Verify that your name is already entered in the name box and click Next.

The system displays the New Map Wizard - Input Format dialog box.
5. From the Create a new data format list, select Positional and click Next.

The system displays the New Map Wizard - Output Format dialog box.
6. From the Create a new data format list, select Positional and click Next.

The system actually ignores the Output side of the map and only processes the
Input side.

7. Click Finish to create the new system import map (this may take a few
seconds).
The system displays the new map in the Sterling Gentran:Server - Application
Integration Window.

8. After creating the system import map, you need to define the header record for
the system import map. You can use either a six-field key (this is the preferred
method) or the alternate key method.

Chapter 4. The Import Process 93



How to Define the Six-Field Key
To use the preferred method of building the system import key, you need to define
at least five fields for the header record (partner key, standard, version, transaction,
and test/production status). If it is a TRADACOMS map, you must also define a
release field. These fields do not have to be in any order or sequence, but they
must be part of the header record.

If you want to also define the other fields that the corresponding import map
header record contains, you can do so at this time.

Once you define the header record and fields, you can set up the mapping
operations that defines the key that the translator uses to find the partner
relationship.

Defining the Partner Key
About this task

Use this procedure to define the partner key.

Procedure
1. Double-click the partner key field.

The system displays the Field Properties dialog box.
2. Select the Standard Rule tab.
3. From the standard rule list, choose Select.
4. From the table and key list, select one of the following:

v Partner by EDI Code
v Partner by Alternate code
v Partner by Partner Key

Note: This indicates that the system updates this field with the indicated
partner key.
The following is an example how the Standard Rule tab of the Field Properties
dialog box should look.

5. Click OK to add the standard rule to the partner key field.

94 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Defining the Standard Field
About this task

Use this procedure to define the EDI standard field.

Procedure
1. Double-click the standard field.

The system displays the Field Properties dialog box.
2. Select the Standard Rule tab.
3. From the standard rule list, choose Update.
4. From the table list, choose Document record.

This indicates that you are updating the document record in the Sterling
Gentran:Server internal system buffer (because the translator is not mapping
data at this point in the process).

5. From the column list, choose Agency.
This indicates that you are updating the agency (standard) field in the system
buffer.

6. Click OK to add the standard rule to the standard field.

Defining the Version Field
About this task

Use this procedure to define the version.

Procedure
1. Double-click the version field.

The system displays the Field Properties dialog box.
2. Select the Standard Rule tab.
3. From the standard rule list, choose Update.
4. From the table list, choose Document record.

This indicates that you are updating the document record in the Sterling
Gentran:Server internal system buffer (because the translator is not mapping
data at this point in the process).

5. From the column list, choose Version.
This indicates that you are updating the version field in the system buffer.

6. Click OK to add the standard rule to the version field.

Defining the Transaction Field
About this task

Use this procedure to define the transaction set (document).

Procedure
1. Double-click the transaction set field.

The system displays the Field Properties dialog box.
2. Select the Standard Rule tab.
3. From the standard rule list, choose Update.
4. From the table list, choose Document record.

Chapter 4. The Import Process 95



This indicates that you are updating the document record in the Sterling
Gentran:Server internal system buffer (because the translator is not mapping
data at this point in the process).

5. From the column list, choose Transaction Set ID.
This indicates that you are updating the transaction set field in the system
buffer.

6. Click OK to add the standard rule to the transaction set field.

Defining the Release Field
This procedure applies only to TRADACOMS.

About this task

Use this procedure to define the release of the selected standard version
(TRADACOMS only).

Procedure
1. Double-click the release field.

The system displays the Field Properties dialog box.
2. Select the Standard Rule tab.
3. From the standard rule list, choose Update.
4. From the table list, choose Document record.

This indicates that you are updating the document record in the Sterling
Gentran:Server internal system buffer (because the translator is not mapping
data at this point in the process).

5. From the column list, choose Release.
This indicates that you are updating the release field in the system buffer.

6. Click OK to add the standard rule to the release field.

Defining the Test/Production Field
If you do not define the test/production status field, the document record is set to
production by default. In this situation, the system translation object can only
locate the correct relationship if the test mode of the partner relationship is actually
set to production.

About this task

Use this procedure to define the test or production status field.

Procedure
1. Double-click the test or production field.

The system displays the Field Properties dialog box.
2. Select the Standard Rule tab.
3. From the standard rule list, choose Update.
4. From the table list, choose Document record.

This indicates that you are updating the document record in the Sterling
Gentran:Server internal system buffer (because the translator is not mapping
data at this point in the process).

5. From the column list, choose Test Mode.
This indicates that you are updating the test field in the system buffer.

96 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



6. Click OK to add the standard rule to the test field.

How to Define the Alternate Key
To use the alternate key method of building the system import key (formerly
referred to as the three-key method), you need to define (create new or update
existing) three or four fields for the header record.

You must define a field for partner key, a field for either one or both application
ID and application alias value (you only need to use one of these two fields), and a
field for test/production status. If you define all four fields, you are using the
alternate key method; if you use only one of the application ID or application alias
value fields, you are actually using a three-field key. These fields do not have to be
in any order or sequence, but they must be part of the header record.

Tip: You do not have to define new fields to use this key. You can add the
necessary standard rules to three fields that already exist in your application file.

If you want to also define the other fields that the corresponding import map
header record contains, you can do so at this time. Once you define the header
record and fields, you can set up the mapping operations that defines the key that
the translator uses to find the partner relationship.

Defining the Partner Key
About this task

Use this procedure to define the partner key.

Procedure
1. Double-click the partner key field.

The system displays the Field Properties dialog box.
2. Select the Standard Rule tab.
3. From the standard rule list, choose Select.
4. From the table and key list, select one of the following:

v Partner by EDI Code
v Partner by Alternate code
v Partner by Partner Key

Note: This indicates that the system updates this field with the indicated
partner key.
This is an example how the Standard Rule tab of the Field Properties dialog
box should look.

Chapter 4. The Import Process 97



5. Click OK to add the standard rule to the partner key field.

Defining the Application ID Field
You must define either the application ID field or the Application Alias Value field
(three-field key). You may define both of these fields if you wish to use the
alternate key method.

About this task

Use this procedure to define the application ID field.

Procedure
1. Double-click the application ID field.

The system displays the Field Properties dialog box.
2. Select the Standard Rule tab.
3. From the standard rule list, choose Update.
4. From the table list, choose Document record.

This indicates that you are updating the document record in the Sterling
Gentran:Server internal system buffer (because the translator is not mapping
data at this point in the process).

5. From the column list, choose Application Field 1.
This indicates that you are updating an optional key field in the system buffer.

6. Click OK to add the standard rule to the application ID field.

Defining the Application Alias Value Field
You must define either the application ID field or the Application Alias Value field
(three-field key). You may define both of these fields if you wish to use the
alternate key method.

About this task

Use this procedure to define the application alias value field.

Procedure
1. Double-click the application alias value field.

The system displays the Field Properties dialog box.
2. Select the Standard Rule tab.

98 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



3. From the standard rule list, choose Update.
4. From the table list, choose Document record.

This indicates that you are updating the document record in the Sterling
Gentran:Server internal system buffer (because the translator is not mapping
data at this point in the process).

5. From the column list, choose Application Field 2.
This indicates that you are updating an optional key field in the system buffer.

6. Click OK to add the standard rule to the application alias value field.
7. Define the test/production field. See Defining the Test/Production Field.

Compiling the System Import Translation Object
After you create, define, and save the system import map, you need to compile the
map and create a system import translation object.

About this task

Use this procedure to generate the system import translation object.

Procedure
1. Select File > Compile.

The system displays the Run-time Translation Object Name dialog box.
2. If necessary, navigate to the folder where compiled translation object is stored.

Enter the name of the translation object and click Save.

Important: Be careful not to overlay the source map with the compiled
translation object. Use the .TPL file extension to distinguish the translation
object.
The system compiles the map and creates the system import translation object.

3. Registered the translation object with the Sterling Gentran:Server system before
you use it.

4. If your system administrator has not already added this system import
translation object to the System Configuration program, do so now.

Chapter 4. The Import Process 99



100 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Chapter 5. The Export Process

About the Export Process
To translate inbound data, you need to create an export map in Sterling
Gentran:Server (because the system is exporting to your application file).

The export map defines how to move data from the EDI standard-formatted
documents that your partners send you to your application file (flat file definition).
This map also enables you to populate your application file fields with
supplementary information from the interchange, group, and transaction set
envelopes.

Inbound Process Before Exporting Data
During the export process, the Communicator receives interchanges from your
trading partners via a network and passes the interchanges to the translator. The
translator uses a system interchange break translation object (shipped with Sterling
Gentran:Server) to unwrap the interchange envelopes and separate each group into
temporary storage.

The translator uses a system group break translation object (shipped with Sterling
Gentran:Server) to unwrap the group envelopes and separate each transaction set
into temporary storage. The translator uses a system transaction break translation
object (shipped with Sterling Gentran:Server) to unwrap the transaction envelopes
and separate each document into the ?In Documents in Sterling Gentran:Server.

The translator attempts to locate the trading relationship for each document. If a
trading relationship is located, the translator then attempts to identify the export,
document turnaround, or print translation object associated with that relationship.
If the translator does not locate the trading relationship or translation object, the
document stays in the ?In Documents. If the translator does locate a trading
relationship and translation object, it uses that translation object to compliance
check the document. If the document is not compliant with the EDI standard, it
stays in the ?In Documents. If the document is compliant with the EDI standard,
the translator moves it to the In Documents. From the In Documents, you can print
(if there is an associated print translation object), or export valid documents.

If you specify (in the trading relationship) that the system needs to generate a
functional acknowledgement (ack) for a document, the translator uses the system
acknowledgement translation object (shipped with Sterling Gentran:Server) to
generate the acknowledgement. If the generated acknowledgement was compliant,
the translator moves the acknowledgement to the Out Documents to be sent to the
trading partner. If the generated acknowledgement was not compliant or if an
error occurred with the acknowledgement translation object, the translator moves
the acknowledgement to the ?Out Documents.

If you specified either automatic export or automatic turnaround in the trading
relationship, the translator uses the specified export or document turnaround
translation object to either export or generate the appropriate response document.

© Copyright IBM Corp. 1996, 2024 101



Setting up the Export Process
About this task

Use this procedure to set up the export process.

Procedure
1. Create an export map.
2. Register the export map with Sterling Gentran:Server.
3. Create the appropriate inbound trading relationship.

Using Supplementary Envelope Information
The Sterling Gentran:Server Application Integration subsystem enables you to use
a Select standard rule to populate your application file fields (in an export map)
with information from the EDI envelopes associated with the documents your
trading partner sends you.

About this task

This table lists the correspondence between the selections available for the Select
standard rule and the envelope information that you want to map to your
application field.

If you select this value in
the Map from list Then the system maps this information

Field 1 Transaction Set ID

Field 2 Document Name

Field 3 Group ID

Field 5 Partner Name

Field 6 Interchange Control Number

Field 7 Group Control Number

Field 8 Document Control Number

Field 9 Received Version

Field 15 Received Agency

Field 16 Used Agency

Field 17 Used Version

Field 22 ISA Test Mode

Field 23 Document Test Mode

Use this procedure to use supplementary envelope information in your application
file.

Procedure
1. Double-click an existing application field or create a new field.

The system displays the Field Properties dialog box.
2. Select the Standard Rule tab.
3. From the standard rule list, choose Select.

102 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



4. From the table and key list, select Generic envelope segment. This enables you
to map from any of the fields within the current envelope information,
regardless of the EDI standard used.

5. Select the compliance error check box. This indicates that a compliance error
should be generated if the select does not find a valid entry.

6. From the map from list, choose the envelope information that you want to map
to your application field.

Important: Verify that you select the correct map. Any selection that is not
listed in the table is reserved and should not be selected under any
circumstances.

7. From the map to list, choose the field to which you want to map the contents
of the Map From field. The system displays each field from the output side of
the map in this list.

8. If you want to map additional envelope information, repeated steps 6 and 7 as
many times as necessary. A total of eight fields can be mapped using one Select
rule.

9. Click OK to add the standard rule to the application field.

Chapter 5. The Export Process 103



104 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Chapter 6. Extended Rules

About Extended Rules
Extended rules enable you to use a Sterling Gentran:Server proprietary
programming language to perform virtually any mapping operation you require.

You can use these rules to define more complex translations than are available
through the standard rules. You can use extended rules to define operations that
are not possible using standard rules.

You define extended rules with the Sterling Gentran:Server proprietary
programming language. This is a full programming language that gives you access
to the entire Sterling Gentran:Server internal storage area.

Any variables that are not already defined as part of the map (input or output) or
form specification that you use in a rule must be declared before you use those
variables.

An extended rule consists of two sections, a declarations section followed by a
statements section.

The declarations section is only required if you use additional variables. This is
where you declare the names and types of any variables you use either in this rule
or in any other rule that is within the scope of this rule.

The statements section is where you define the actions that you want the rule to
execute.

Declarations and Initialization
The variables that you define in the declarations section are used to store values.
Variables consist of a name and a data type. Variable names can include
alphanumeric characters and the colon (:) and underscore (_). The first character in
a variables name may not be a numeric. All variable names are case-sensitive.

Notes:

v A declaration must be terminated with a semicolon (;). To improve readability,
you typically include a blank link in between the declaration and statement
sections.

v In maps, the Translator does not initialize extended rule variables. You must
initialize all variables after declaring them. Variables that are not initialized can
cause incorrect results or translation failures. For forms, initialization is not
necessary.

Table 22. Data types that supported by extended rules

Data Type Description Example

Integer a whole number with
no decimal
component

Declare i as an integer and initialize.

integer i; //Declaration
i = 0; //Initialization of 'i'

© Copyright IBM Corp. 1996, 2024 105



Table 22. Data types that supported by extended rules (continued)

Data Type Description Example

Real a whole number that
may have a decimal
component

Declare r as a real number and initialize.

real r; //Declaration
r = 0; //Initialization of 'r'

String contains one or more
printable characters

Declare s as a 20-character string and initialize.

string[20] s; //Declaration
s = ""; //Initialization of 's'

Datetime contains a date or
time

Declare d as a date or time and initialize.

datetime d; //Declaration
d = date(0,0,0); //Initialization of 'd'

Array defines a table of
multiple occurrences
of a single data type

Declare a as an array of 10 integers and initialize.

integer a[10]; //Declaration
integer i; //Declaration of 'i', which is

//used to initialize array 'a'
i = 1; //Initialization of 'i'
//Initialization of the variable array 'a'
while i < 11 do
begin

a[i] = 0;
i = i + 1;

end

Declare p as an array of 50 10-character strings and
initialize.

string[10] p[50]; //Declaration
integer i; //Declaration of 'i', which is

//used to initialize array 'p'
i = 1; //Initialization of 'i'
//Initialization of the variable array 'p'
while i < 51 do
begin

p[i] = "";
i = i + 1;

end

Object

(for maps
only)

used for user exits;
exposes the internal
functions of an
ActiveX Automation
Server to Sterling
Gentran:Server

Declare ob as an object and initialize.

object ob; //Declaration
ob = CreateObject("ADODB.Connections");

//Initialization of 'ob'

Statements
The actual work performed by an extended rule is defined in the statements
section. A rule consists of a statement or a combination of statements (to perform
more complex operations). A statement is a single operation that consists of a
combination of expressions, keywords, commands, operators, and symbols.

An expression is a logical unit (for example, A = B or A + B) that the system
evaluates. The statements section consists of a sensible combination of keywords,
operators, and symbols.

106 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



When Extended Rules are Processed
You can specify pre- and post-session rules on the Session Rules dialog box.
Pre-session extended rules are processed before the translation object, and are in
scope for every extended rule defined in the translation object. Post-session rules
are executed after the translation object is processed.

You can attach extended rules to three different levels of map components:
v EDI file and application file groups, using the Loop Level Extended Rules dialog

box.
v Groups, sub-groups, repeating records, and repeating segments, using the Loop

Level Extended Rule dialog box.
v Fields and elements, using the Field Level Extended Rule dialog box.

The scope of an extended rule determines which variables are accessible from
within a given extended rule. The scope varies depending on the current state of
the map. This list defines the scope of an extended rule.
v Pre-session extended rules (defined on the Session Rules dialog box) are in scope

for every rule in the translation object.
v On Begin extended rules (defined on the Loop Level Extended Rules dialog box)

are in scope until the conclusion of its companion On End rule (also defined on
the Loop Level Extended Rules dialog box).

v Field level extended rules are only in scope for the duration of the field or
element.

An extended rule attached to the current map component depends on the type and
state of the map component.

For example, if a current group to which the rule is attached is subordinate to
another group, the parent group is automatically in scope for the duration of the
entire child group, and the current hierarchical structure is also in scope for the
duration of the child by using an addressing method that is explained in Symbols.

An extended rule that is attached to a field or element is only in scope for the
duration of the field or element. Field level extended rules are always processed
after standard rules.

A variable is considered to be "in scope" if it was declared in the current rule, in
the On Begin rule of a group that contains the current map component, or in the
Pre-Session rule.

The translator builds the data storage area for a map based on the structure of the
Input side of the map (the source side of the map). Therefore, extended rules
address the map based on the hierarchy of the Input side. When you use extended
rules, you must be careful to always address the Input side of the map so the
translator can locate the map component that the rule accesses. On the Output side
of a map, extended rules only have access to the current record and the entire
Input side of the map. However, from the Input side of a map, you have access to
the entire file structure. As long as you address the source end of a link, you can
write to any field on the Output side, even fields that have already been written.

Chapter 6. Extended Rules 107



Input rule processing

The translator processes the Input side of the map first and then the Output side.

Table 23. Sequence of how the translator processes rules on the Input side of a map

Stage Description

1 Load the Input definition.

2 Read the Input file.

3 Determine if data is present for the first/next group and then run the
group On_Begin rule, if present.

4 Load each field within the first/next record within the current group and
then execute field level rules (for each field) in the following sequence:

v standard rules

v extended rules

5 At the end of the group, execute the On_End rule, if present.

6 Repeat steps 2 - 5 for each group in the Input file.

Output rule processing

Table 24. Sequence of how the translator processes rules on the Output side of a map

Stage Description

1 Verify whether or not data exists for the first/next record.

2 If the record is the first record of a group, run On_Begin rule, if present.

3 For each field in the record, execute field level rules (for each field) in the
following sequence:

v Run standard rules

v Run extended rules

4 Format data according to specified field properties (on Field Properties
dialog box).

5 Write the record to the Output file.

6 At the end of the group, execute On_End rule, if present.

7 Repeat steps 1 - 6 for each record in the Output file.

8 Create or update the document entry in the database.

Rule processing diagram

This diagram illustrates when loop level (On Begin and On End) extended rules
and field level extended rules are processed in relation to the system process flow.

108 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



How to Define Extended Rules
The component that an extended rule accesses depends on what you want the
scope of the rule to be. You also need to determine when you want the rule to be
executed (for example, before or after the component is processed).

The process you need to follow to define an extended rule varies slightly,
depending on whether you are defining a session rule or a rule for a map
component. You can define extended rules to access three levels of components.

For maps, these components are:
v the entire session (input and output sides of the map)
v looping map components (groups, segments)
v fields

Defining a Session Rule
Pre-session rules are used to define variables that must have global scope (can be
accessed from any other extended rule in the map or form). Pre-session extended
rules are processed before the translation object, and are in scope for every
extended rule defined in the translation object. Post-session rules are executed after
the translation object is processed and thus have no permanent scope. You can
define both a Pre-session and a Post-session rule for a given session.

About this task

Use this procedure to define a session rule.

Procedure
1. Select Edit > Session Rules.

The system displays the Session Level Extended Rules dialog box.

Chapter 6. Extended Rules 109



2. To define a pre-session rule, click Pre-session. To define a Post-session rule,
click Post-session.

3. In the Editor list, type the extended rule.

Note: The Session Level Extended Rules dialog box contains line and character
number (within a line) indicators. These indicators, which are displayed to the
lower right of the Editor box (the first indicator references the line number and
the second references the character number), enable you to easily debug
compile errors.

4. To check the rule for errors, click Compile to compile the extended rule.
The Compile function gives you immediate feedback about the accuracy of
your rule. The rule is compiled when you compile the entire translation object.
Any warnings or errors are displayed in the Errors list. Double-click an error to
instantly navigate to the line containing the error.

5. Correct any errors that the system flagged and click Compile again.

Note: Repeat this process until no errors are generated.
6. Click OK to add the extended rule.

Defining a Map Component Rule
Use this procedure to define an extended rule for a map component.

About this task

Procedure
1. Right-click the map component and select Rules or select Extended Rule if the

map component is a field, element, or TFD.
v If the map component is an EDI file, application file, group, sub-group,

repeating record, or repeating segment, the system displays the Loop Level
Extended Rules dialog box.

v If the map component is a field or element, the system displays the Field
Level Extended Rule dialog box.

2. If you want the extended rule to be executed before the system processes the
map component, select On Begin. If you want the rule to be executed when the
system concludes its processing of that map component, select On End.

Note: You can define both an On Begin and an On End rule for the a single
map component.

3. In the Editor list, type the extended rule.

Note: The Extended Rules dialog boxes contain line and character number
(within a line) indicators. These indicators, which are displayed to the lower
right of the Editor box (the first indicator references the line number and the
second references the character number), enable you to easily debug compile
errors.

4. To check the rule for errors, click Compile to compile the extended rule.
The Compile function gives you immediate feedback about the accuracy of
your rule. The rule is compiled when you compile the entire translation object.
Any warnings or errors are displayed in the Errors list. Double-click an error to
instantly navigate to the line containing the error.

5. Correct any errors that the system flagged and click Compile again.

110 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Note: Repeat this process until there are no errors generated.
6. Click OK to add the extended rule.

Note: When an element contains an extended rule, a black asterisk appears to
the right of the element icon.

Extended Rule Syntax
The statements section of an extended rule consists of a sensible combination of
keywords, operators, and symbols.

The correct syntax for each of these component is explained in the following
topics.

Note: You use spaces and operators to separate keywords and symbols. You
cannot string two keywords sequentially together without an operator.

Keywords and Commands
A keyword is a fixed defined use of a word that indicates how the programming
language should be interpreted. There are two types of keywords.

The first type of keyword controls the flow of execution of the defined rule. These
keywords are used to evaluate conditions and perform looping operations. The
second type of keyword is a command. Commands perform actions on variables
and are responsible for the movement of data.

The following is a list of Sterling Gentran:Server execution control keywords.
v IF
v THEN
v ELSE
v BEGIN
v END
v WHILE
v DO
v CONTINUE
v BREAK

The following is a list of Sterling Gentran:Server commands.
v AUDITLOG
v GET
v SET
v STRDATE
v CONCAT
v LEN
v ATOI
v ATON
v CERROR
v EMPTY
v EXIST
v INDEX

Chapter 6. Extended Rules 111



v NTOA
v COUNT
v DELETE
v FSEEK
v FTELL
v READBLOCK
v UNREADBLOCK
v READBYTES
v LEFT
v MID
v RIGHT
v SELECT
v UPDATE
v INSERT
v WRITEBLOCK
v WRITEBYTES
v CREATEOBJECT
v DELETEOBJECT
v QUERYOBJECT
v GETIID
v WINEXEC
v DATE
v EXEC
v PARAM

Note: A statement must be terminated with a semicolon (;).

Operators
Operators define the simplest operation in an expression.

Table 25. Operators that can be used in extended rules

Part Function

+ addition, concatenation

- subtraction

* multiplication

/ division

= assignment, equality

> greater-than

< less-than

>= greater-than or equal to

<= less-than or equal to

!= not equal to

! logical not

& logical and

| logical or

112 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Table 25. Operators that can be used in extended rules (continued)

Part Function

<< date modification

Symbols
Operations are performed on symbols. The symbols that you can use in Sterling
Gentran:Server extended rules are variables, constants, map or form
components/internal storage, arrays, and accumulators.

You can address existing components and you have the ability to create additional
instances of components, as long as the component is originally defined in internal
storage.

For example, you can use a function to create extra line items when one line item
field is already defined in internal storage.

You must address each type of symbol in the proper syntax.

String constant

To address a string constant, you must enclose the constant value in quotes:
#fieldname = "HDR";

where HDR is the constant value.

Addressing or creating a field in internal storage

To address a field or create a field in internal storage, within the scope of the
current mapping action, the syntax is #FIELD_NAME.
#field_1 = 2;

where 2 is a numeric constant value.

Addressing or creating a field in a group

To address a field within a group or create a field within a group in internal
storage within the scope of the current hierarchy, the syntax is $GROUP.#FIELD_NAME

$N1.#0234

Addressing or creating a group in internal storage

To fully address a group in the entire internal storage area or create a group in
internal storage, the syntax is $LOOP[index1][index2][index3] where the index
entries indicate the hierarchical structure of the loop and enable you to address
specific instances of a group:
$Group_C[3][2].#Field_2

where you are specifying the second instance of Group_C within the third instance
of Group_B:

Chapter 6. Extended Rules 113



Addressing an array

To address an array (of any type), you address each element of the array
individually. For example, if array_1 is an array (of integers) and is declared:
integer array_1[5]

With variables 0 through 4, each element of the array is addressed individually as
follows:
array_1[0]
array_1[1]
array_1[2]
array_1[3]
array_1[4]

Accessing an accumulator

An accumulator can be accessed in the same manner as variables or internal
storage. To address an accumulator, use the syntax accum(n), where "n" is the
number (not the name) of the accumulator:
accum(2) = 5;

Accessing repeating elements

You can access a specific occurrence of a repeating element (for EDI data) and
access a specific occurrence of a field within a repeating composite (for EDI data).

This is the syntax for accessing a specific occurrence of a repeating field and a field
within a repeating composite.
field_name[index_variable] = string;

where integer_variable indicates the specific occurrence of a repeating field or
field within a repeating composite.

The following screen, from the Application subsystem, is an example of accessing a
specific occurrence of a repeating field and a field within a repeating composite.

114 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



string [32]strMsg;

strMsg = "Test";
#f2[1] = strMsg;
//access single repeating field

#f3[1] = strMsg;
//access a field within a repeating composite
//The rule assigns a string value to 2 different fields, which are
//displayed in the diagram above, #f2 and #f3 -- #f2 is a single
//repeating field that can loop up to 10 times and #f3 is a field
//within a repeating composite where the composite can loop up to 10 times.

Example of a simple statement

This diagram illustrates an example of a simple statement.

Extended Rule Functions

About the Extended Rule Functions

Assignment
The assignment statement is the most powerful and most often used extended rule
statement.

In the most simple form, the assignment statement is written as follows:
variable=expression

However, you can use this statement in more flexible and complex ways, defined
as follows:

Chapter 6. Extended Rules 115



numeric_variable=numeric_expression
numeric_field=numeric_expression
string_variable=string_expression
string_field=string_expression
datetime_variable=datetime_expression
datetime_field=datetime_expression

The following are some examples of assignment expressions:
a = 5;
a = b + c;
s = "hello";
s = s + "world";

Definitions

A numeric expression can consist of numbers, numeric fields, numeric variables,
and numeric functions combined with the standard arithmetic operators.

A string expression can consist of string constants, string fields, string variables,
and string functions concatenated with the "+" operator.

A datetime expression can consist of a datetime constant, datetime field or
datetime variable.

Datetime Expressions
Datetime expressions consist of a datetime variable and (optionally) datetime
modifiers.

Datetime expressions can be written using datetime constants if you are using the
standard syntax, as follows:
year/month/day
hour:minute:second
year/month/day/hour:minute:second

Datetime expressions can also be written with datetime fields, variables, or using
date and time functions.

Syntax

Date functions are written as follows (month specified as 1-12):
datetime d;
d = date(1995,4,6);
d = date(1995,4,6,12,0);
d = date("%y/%m/%d", "95/4/6");

The d = date("%y/%m/%d", "95/4/6"); format enables you to convert any string
format type into a datetime format type by indicating a format mask
("%y/%m/%d") along with the string ("01/4/6") you want to convert. You use this
function if you are using non-standard syntax and need to specify the syntax you
are using.

<< operator

You can use the << operator to modify your datetime variable by adding time
increments (for example, days, weeks, years). For example:
datetime d;
d=d <<weeks(2);
//This adds 2 weeks to d.

116 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Time syntax

Time functions are written as follows:
d = time(12,0);
d = time(12,0,59);

You can use the << operator to modify your datetime variable by adding time
increments (for example, seconds, minutes, years). For example:
datetime d;
d=d <<seconds(1);
//This adds 1 second to d.

Get and set syntax

The get and set functions enable you to access (get) or modify (set) individual
components of a datetime type. These functions are used as follows:
integer a;
datetime d;
a = get days (d);
a = get hours (d);
set hours(d,a);
set days (d,a);

Conditional Logic
Sterling Gentran:Server uses conditional logic to test conditions and then,
depending on the results of the test, perform different operations. Conditions can
be nested to any level. Do not end conditions with a semicolon (;) – this
terminating syntax is necessary for statements only.

if...then...else

You can use the if/then keywords to execute one or more statements conditionally.
The condition is typically a comparison, but it can be any expression that
concludes with a numeric value. Sterling Gentran:Server interprets the value as
either true or false. The system interprets a zero value as false and a nonzero value
as true.

If you include more than one statement in the body of an if/then loop, you must
surround the statements with the begin/end keywords. If you only use a single
statement, you can omit the begin and end.

Sterling Gentran:Server evaluates the if/then condition, and if it is true, the system
executes all the statements that follow the then keyword. If the condition is false,
none of the statements following then are executed.

You can use the else keyword in conjunction with if/then to define several blocks
of statements, one of which is executed. Sterling Gentran:Server tests the first
if/then condition. If the condition is false, the system proceeds to test each
sequential condition until it finds one that is true. The system executes the
corresponding block of statements for the true condition. If none of the if/then
conditions are true, the system executes the statements following the else keyword.

Syntax
IF condition THEN
BEGIN

statement1;
statement2;

Chapter 6. Extended Rules 117



END
ELSE
BEGIN

statement3;
statement4;

END

Example

An example of when you may use conditional logic is if you need to evaluate
whether an N1 or NAD group contains billing or shipping information (this
depends on the qualifier that a field in the group contains), and then map that
information to the appropriate application fields.

For this example, you need to add an On End extended rule to the N1/NAD. The
rule is executed when the group terminates. An example of the syntax of the rule
follows:
IF #0098 = "BT" THEN
BEGIN

$Group_Name.#BILLTONAME = #0093;
$Group_Name. #BILLTOADDR1 = #0166;
$Group_Name.#BILLTOADDR2 = #0166:2;
$Group_Name.#BILLTOCITY = #0019;
$Group_Name.#BILLTOSTATE = #0156;
$Group_Name. #BILLTOPCODE = #0116;

END
IF #0098 = "ST" THEN
BEGIN

$Group_Name.#SHIPTONAME = #0093;
$Group_Name.#SHIPTOADDR1 = #0166;
$Group_Name.#SHIPTOADDR2 = #0166:2;
$Group_Name.#SHIPTOCITY = #0019;
$Group_Name.#SHIPTOSTATE = #0156;
$Group_Name.#SHIPTOPCODE = #0116;

END

String Conditions and Functions
You can use string conditions in IF/THEN and IF/THEN/ELSE statements to
perform comparisons between strings.

Examples of the syntax are as follows:
IF s1 = s2 THEN
IF s1 < s2 THEN
IF s1 > s2 THEN

The following string functions are also available for you to use:
v left
v right
v mid
v strdate
v concat
v strstr

left, right, mid syntax

The left, right, and mid functions enable you to extract substrings from a string.
The left function extracts a specified number of characters from the left of the
string variable or field and returns the result as a string. The right function extracts

118 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



a specified number of character from the right of the string variable and returns
the result as a string. The mid function extracts from a specified position in the
string to the right, for a specified number of characters. This is an example of how
the statements are used.
string[10] s;
string[3] s1;
string[3] s2;
string[4] s3;
string[7] s4;

s = "abcdefghij";
s1 = left(s,3);
s2 = right(s,3);
s3 = mid(s,3,4);

strdate syntax

The strdate function converts a datetime type into a string using a format that you
specify. This function allows you to include static characters such as a slash (/),
which gives you access to full date support.
datetime d;
string[8] s;

strdate(d,"%y/%m/%d",s);

concat syntax

The concat function concatenates a specified number of characters from one string
onto the end of another string. The following example demonstrates the syntax to
concatenate five characters from string "s2" onto the end of string "s1":
string[10] s1,s2;
concat(s1,s2,5);

strstr syntax

The strstr function finds a substring inside a string. This function returns the
position of the first instance of the designated substring. If this function does not
find the specified substring inside the string, it returns a value of -1.
integer d;

d = strstr("hello", "el");

Numerical Functions
The numerical functions enable you to convert one data type to another.

The following are the available numerical functions:
v len
v atoi
v aton
v ntoa

len syntax

The len function counts and returns the number of characters in a string.
integer a;
a = len("hello");

Chapter 6. Extended Rules 119



atoi, aton, ntoa syntax

The atoi function converts strings into integers.

The aton function converts string into real numbers.

The ntoa function converts integers and real numbers into strings.
integer a;
real b;
string[8] s;
a = atoi("5");
b = aton("5.5");
ntoa(5.5, s);

atoi
The atoi function is a numerical function that converts strings into integers. The
numerical functions enable you to convert one data type to another.

Common use

The atoi function is often used with SQL maps where data in the database is stored
as string types. It is also used after manipulating a string value that contains both
alpha and numeric characters, to attain the numeric value.

Syntax
int = atoi(string);

where:

v int = integer variable
v string = string variable

Example
integer a;
string[20] s;
s = "5";
a = atoi(s);
// "a" contains the value 5

aton
The aton function is a numerical function that converts strings into real numbers.
The numerical functions enable you to convert one data type to another.

Common use

The aton function is often used with SQL maps where data in the database is
stored as string types. It is also used after manipulating a string value that contains
both alpha and numeric characters, to attain the numeric value.

Syntax
real = aton(string);

where:

v real = real number variable
v string = string variable

120 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Example
real a;
string[20] s;
s = "5.5";
a = aton(s);
// "a" contains the value 5.5

auditlog
The auditlog function enables you to write user-defined audit messages to the
Sterling Gentran:Server Audit Log. When an extended rule that calls an auditlog
operation is executed, it writes the specified user-defined message to the Audit
Log.

Syntax
auditlog(MessageID, Type, Key, [, string1] [, string2] [, string3] [, string4]
[, string5] [, string6] [, string7];

Note: This function does not return a value.

Parameters

The first parameter, MessageID, is the user-defined audit message identifier, which
much be an integer value.

The second parameter, Type, is a keyword that identifies the type of audit message.
These pre-defined keywords are valid for Sterling Gentran:Server:
v AL_PROC (processing)
v AL_MSG (message)

Note: You may also supply an integer value to account for a type for which a
keyword is not currently defined.

The third parameter, Key, is a keyword that is either zero (if the type of parameter
two is AL_PROC) or the identification of a piece of data of the specified type. These
pre-defined keywords are valid for Sterling Gentran:Server:
v AL_KEY_INPUT
v AL_KEY_OUTPUT

Note: You may also supply an integer value to account for a key for which a
keyword is not currently defined.

Parameters four through ten are optional string values that the user-defined
message may require to fill in variables defined in the audit message.

Examples

Example 1
auditlog(MessageID, AL_PROC, 0, ...);
//Issues a processing message in any map.

Example 2
auditlog(MessageID, AL_MSG, 0atoi(param(1)), ...);
//Issues a data audit for the message which is currently processing.

Chapter 6. Extended Rules 121



begin ... end
The begin/end keywords enclose a group of statements that form the body of an
if/then/else statement or a while loop.

You can use the if/then keywords to execute one or more statements conditionally.
If you include more than one statement in the body of an if/then loop, you must
surround the statements with the begin/end keywords. If you only use a single
statement, you can omit the begin and end.

Sterling Gentran:Server uses conditional logic to test conditions and then,
depending on the results of the test, perform different operations. Conditions can
be nested to any level.

Note: Do not end conditions with a semicolon (;) – this terminating syntax is
necessary for statements only.

Syntax
if condition then
begin

statement1;
statement2;

end

Example
while MbxGetNextAtm(AtmId) != 0 do

begin
MbxGetAtmFileName(MsgId, AtmId, FileName);
FtpSndAtm(MsgId, AtmId, FileName);

end

break
The break keyword terminates the execution of the nearest enclosing while loop,
and passes control to the statement that follows the end keyword. The break
keyword is generally used in complex loops to terminate a loop before several
statements have been executed.

Example
integer i

i = 0;

while i<10 do
begin

#Total = Total + 50;
i = i + 1;
if #Total > 100000

Break;
else

continue;
end
//While the value contained in the variable "i" is less than ten,
//50 will be added to the field Total.
//If the value in the field Total becomes greater than 100000
//before "i" equals 10, break out of the while loop else continue
//processing until "i" equals 10.

122 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



cerror
The cerror function raises a compliance error and reports the target statement (the
statement you specify) on the translation report. You typically specify this function
as a action to be performed if a condition is false.

This function is valid on the input side of a map only. There is also an optional
third parameter you can supply: a string that is written to the translator report as
part of the entry for the compliance error.

The cerror function can also be used with SWIFTNet to allow it to be called with
only a code and description string (instead of code, field reference, option
description string).

Table 26. When the cerror function is supported

If the map/form is of type ... Then the cerror function is ...

Screen entry Not valid.

Print Not valid.

Export Only valid on the input side of the map.

Import Valid on the input or output side of the map.

Break (Interchange, Group, or
Transaction Set)

Only valid on the input side of the map.

Build (Interchange, Group, or
Transaction Set)

Not valid.

Common use

In addition to creating errors for user controlled validation, the cerror function is
also used during debugging. The ability to pass a string to the cerror function
allows you to use the cerror function the same way you would use a messagebox,
with the results being written to the translator report instead.

Syntax

The cerror function can be specified in two ways.

Syntax 1
cerror(error_number,$GROUP_NAME[index][index][index].#FIELD_NAME,
"Optional string with error information can be supplied here");

Syntax 2
cerror(code, "String with error information supplied here");

Examples

Syntax 1
cerror(100,$GROUPNAME[0][1][1].#FIELDNAME);
//This raises compliance error 100 on the FIELDNAME field of the
//specified instance of the GROUPNAME group. There is no optional error text
//given.

Syntax 2

Chapter 6. Extended Rules 123



cerror(100, "Number not valid");
//This raises compliance error 100 with error text "Number not valid" in the
//translator report.

Compliance codes

Table 27. General Messages

Message
Number

Message
Type Messages Generated

12 Information Start time

13 Information End time

14 Information Blocks read

15 Information Blocks written

19 Information Execution time in milliseconds

20 Information Translation object name

21 Information Translation is lightweight

25 Warning Block data unknown

100 Error Mandatory data missing

101 Error Insufficient repeats

102 Error Too many repeats

110 Error Incorrect data format

111 Error Data not minimum length

112 Error Data exceeds maximum length

113 Error Invalid date

120 Error Too many components

121 Error Too many composite elements

122 Error Unsupported data type

123 Error Data conversion error

140 Error Standard rule failure

142 Error Standard rule: use code data missing

143 Error Standard rule: data conversion error

170 Error Extended rule failure

171 Error Extended rule data conversion error

300 Error Mandatory block missing

301 Error Mandatory group missing

316 Error Maximum usage exceeded

400 Error Block processor initialization failure

401 Error Field processor initialization failure

10001 Information Block signature

10002 Information Block count
Note: This message will only be written if you create the cerror
extended rule at the field level. If you call the cerror extended
rule at any other level in your map, it will not be written
because it is only applicable at the field level.

124 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Table 27. General Messages (continued)

Message
Number

Message
Type Messages Generated

10003 Information Block name
Note: This message will only be written if you create the cerror
extended rule at the field level. If you call the cerror extended
rule at any other level in your map, it will not be written
because it is only applicable at the field level.

10004 Information Field name
Note: This message will only be written if you create the cerror
extended rule at the field level. If you call the cerror extended
rule at any other level in your map, it will not be written
because it is only applicable at the field level.

10005 Information Field data

10006 Information Exception

10007 Information Group name

10008 Information Field ID

10009 Information Field number

10010 Information Instance

10011 Information Rule type

10012 Information On begin rule

10013 Information On end rule

10014 Information Repeat count

10015 Information Block data

10016 Information Block signature ID tag
Note: This message will only be written if you create the cerror
extended rule at the field level. If you call the cerror extended
rule at any other level in your map, it will not be written
because it is only applicable at the field level.

10017 Information Map iteration count
Note: This message will only be written if you create the cerror
extended rule at the field level. If you call the cerror extended
rule at any other level in your map, it will not be written
because it is only applicable at the field level.

10018 Information Additional information

Table 28. SQL Messages

Message
Number

Message
Type Messages Generated

700 Error SQL data source open error

701 Error SQL data source rollback

702 Error SQL data source commit error

703 Error SQL data source rollback error

710 Error SQL query open error

711 Error SQL command error

712 Error SQL cursor error

713 Error SQL get field error

721 Error SQL output operation error

Chapter 6. Extended Rules 125



Table 28. SQL Messages (continued)

Message
Number

Message
Type Messages Generated

722 Error SQL prepared statement error

724 Information SQL update effected 0 rows

725 Information SQL retrying as insert

726 Information SQL retrying as update

10700 Information Data source name

10701 Information Data source pool

10702 Information Query name

10703 Information SQL statement

10704 Information Cursor operation

10705 Information Column ID

Table 29. EDI Messages

Message
Number

Message
Type Message Generated

103 Information Illegal repeating delimiter

104 Information Illegal subelement delimiter

105 Information Element position

106 Information Subelement position

Table 30. XML Messages

Message
Number

Message
Type Message Generated

610 Error XML particle or group error

690 Error XML parser error

691 Error XML element unknown

692 Error XML pcdata unknown

693 Error XML attribute unknown

10060 Information Public ID

10061 Information System ID

10062 Information Line number

10063 Information Column number

10064 Information Message

10065 Information XML tag name

10066 Information XML namespace URI

concat
The concat function concatenates a specified number of characters from one string
onto the end of another string.

126 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Common use

The concat function is used when values from two strings need to be concatenated
together to form one string. It can also be used during debugging to create more
detailed messages. For example:
String[50] msg;
msg = “Field A: “;
concat(msg,#fielda,15);
messagebox(msg,0);
// Instead of outputting the contents of #fielda in a messagebox,
// it will output a label of “Field A:” along with the contents.

Syntax
concat(string,string,num_char);

where:

v string = string variable
v num_char = number of characters from the second string onto the end of the first

string

Note: You may not use an ActiveX property as the first parameter of the concat
function because the length of the property is unknown prior to compilation.

Example
string[20] s1,s2;
s1 = "IBM";
s2 = "Corporation";

concat(s1,s2,8);

//Concatenate eight characters from string "s2" onto the end of string "s1".
//s1 will now contain the value "IBM Corporat".

continue
The continue keyword continues the execution of the innermost loop without
processing the statements in the loop that follow the continue statement.

Example
integer i;

i = 0;
while i<10 do
begin

i = i + 1;
if (i = 8) then

continue;
if (i = 9) then

break;
end
//As long as "i" has a value less than "10" the loop repeats.
//If "i" has a value of "8", the loop continues. If "i" has a
//value of "9" the loop terminates.

count
The count function counts and returns the number of iterations of a group.

Chapter 6. Extended Rules 127



Common use

The count function is often used in conjunction with while/do loops, so you do
not need to keep track of counters for all sub-groups. See the While Do white
paper for some examples that use the count function.

The count function is sometimes used with indexes, instead of using variables, but
often it is less efficient than using variables.

Note: When a count extended rule is performed on an empty group, the value of
-1 is returned from count($GROUPNAME[*]).

Syntax
integer i;
i = count($N1[*]);
//The [*] is a wildcard that counts the number of iterations of the N1 group.

Example
integer i;
i = count($GROUPNAME[*]);
//The [*] is a wildcard that counts the number of iterations of the
//GROUPNAME group.

createobject
The createobject function enables you to create an instance of an ActiveX
Automation Server.

Syntax
object = createobject("ProgID");

where:

v ProgID = programmatic identifier

Example
object ob;
ob = createobject("InternetExplorer.Application");
//Creates an instance of the default interface of an ActiveX
//Automation Server.
//Note:
//The createobject command is more efficient if you use the IID
//instead of the interface name.

date
The date function converts a string type into a datetime type using a format that
you specify. This function allows you to include static characters such as a slash
(/), which gives you access to full date support.

Common use

The date function is commonly used in SQL maps to convert a date that is stored
in the database as a string type into a datetime variable or field. It is also used in
print forms. Because the document name or ref data can only be updated with a
standard rule against a string field, a date field has to be defined as string then
converted if necessary.

128 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Syntax
Datetime = date("format",string);

where:

v datetime = datetime variable (month specified as 1-12)
v format = desired date format
v string = string variable

Example
datetime d;
d = date(2012,4,6);
d = date(2012,4,6,12,0);
d = date("%y/%m/%d","12/4/6");
d = date("%y/%m/%d",#strdate);

Format specifiers

Table 31. Format specifiers

Format
Specifier Description

%8 ISO-8601 date format

YYYYMMDDTHHMMSS.mmmZ

Four-digit year, two-digit month, two-digit day, T (time) indicator,
two-digit hour, two-digit minutes, two-digit seconds in Universal Time
(also called Zulu Time or Greenwich Mean Time), Z (Zulu time) indicator
(example: 20031209T123000.000Z)
Note: This date format cannot be combined with any other format
specifier.

%a Abbreviated weekday name

%A Full weekday name

%b Abbreviated month name

%B Full month name

%d Day of the month as a decimal number (01 – 31)

%D ISO-8601 date format (date component only)

YYYYMMDDZ

This date format cannot be combined with any other format specifier.

%H Hour in 24-hour format (00 – 23)

%I Hour in 12-hour format (01– 12)

%j Day of the year as a decimal number (001 – 366)

%m Month as a decimal number (01 – 12)

%M Minute as a decimal number (00 – 59)

%S Second as a decimal number (00 – 59)

%U Week of the year as a decimal number, with Sunday as the first day of the
week (00 – 51)

%w Weekday as a decimal number (0 – 6, with Sunday as "0")

%W Week of the year as a decimal number, with Monday as the first day of the
week (00 – 51)

%y Year without the century as a decimal number (00 – 99)

Chapter 6. Extended Rules 129



Table 31. Format specifiers (continued)

Format
Specifier Description

%Y Year with the century as a decimal number

%% Percent sign

delete
The delete function deletes a specified iteration of a repeating record or group.

Common use

The delete function is often incorrectly used at field level or On End of the group
to try to delete the current iteration. The translator cannot delete the current
iteration. Because of this, many people choose to copy the iterations they do want
to a temp group instead.

Syntax
delete(GROUPNAME[iteration]);

where:

v iteration = the occurrence of the group that you want to delete

Example
delete($ILD[2]);
//Deletes the second occurrence of the ILD group.

deleteobject
The deleteobject function enables you to delete an instance of an ActiveX
Automation Server. An object must be deleted before the end of the map that uses
it. It is more efficient to delete the object immediately on completion, although the
Sterling Gentran:Server translator will delete the object automatically at the end of
the map. Also, if you assign one object to another one, both copies of the object
must be deleted for that object to be properly unloaded.

Syntax
deleteobject(object);

Example
object ob;
ob = createobject("InternetExplorer.Application");
deleteobject(ob);
//Deletes the instance of the object.

empty
The empty function sets the value of a field in internal storage to null. This
function is not the same as setting the value of a field to a zero length string (" ")
or to zero.

Common use

The empty function is often misused to try to empty all of the fields of a record
that is not wanted. This will cause an empty iteration for the record and all

130 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



occurrences after the empty iteration will not be processed.

Syntax
empty($GROUP_NAME[index][index][index].#FIELD_NAME);
//Set the value of the specified instance of the FIELDNAME field to null.

Example

The following example sets the value of the specified instance of the VATC element
to null. You typically use this function to prevent output to the specified field.
empty($ILD.#VATC);

exec
A user exit is an extended rule that enables the map to temporarily exit translation
to enhance your functionality or fulfill specific requirements that Sterling
Gentran:Server does not perform during normal translation. The User Exit (exec)
function invokes the execution of a batch file or program.

The translator waits until the script finishes before continuing with translation.
After the script runs and returns a numeric return code, the exec function:
v Retrieves the return code
v Returns to translation
v Uses the return code in translation.

Note: You must set an integer value equal to the return value of the exec (...) call
for the rule to compile.

Common use

You can use the exec function in an extended rule for a map component at any
hierarchical level, including field level extended rules, if appropriate.

When you apply a user exit to a map component, subordinate map components
may also be able to execute the same user exit.

The following are the extended rule data types that you can use with exec:
v INTEGER
v REAL
v STRING

You cannot use date and time data unless you process it as a string data type.

Syntax
nReturn = exec(string)

where:

v nReturn = return value
v string = string variable or literal value that represents the shell script

Example
integer nReturn;
nReturn = 0;
nReturn = exec ("c:\addrunm.sh");

Chapter 6. Extended Rules 131



exist
The exist function tests to determine if a field is empty (null). It returns a non-zero
(true) value if there is data in a specified field in internal storage. If data is not
present in the specified field, this function returns a zero (false) value. This
function is typically used as a part of a condition.

There are some situations when the if exist returns a non-zero (true) value
whether or not the condition is true (for example, if the field or element has a "Use
Code" standard rule applied to it). You can work around this by only using if
exist for date- and number-type fields. Be certain that all references to the field
which is interrogated are nested within the if exist begin block.

Note: For string-type fields, use the format if field1 = "".

All modes of operation are exercised by SWIFT MX and FIN maps in the exist
extended rule. FIN maps reference the traditional usage ($group.#field) of the
exist function while the MX maps reference only the group name ($group).

Note: The group name only usage is reserved for the XML syntax only, because of
how the blocks are inserted into the map structure during the compilation process
to handle the XML start and end tags in an XML document.

The exist function accepts a block reference denoted with a % prefix, as well as a
group reference denoted with the $ prefix. The group reference supports a scenario
in which an element was supplied in the input file but none of its conditional
children existed. Instead of using variables to test for the condition of a parent
element (parentNode) you can just use the group reference (only for XML). If you
wanted to check for the existence of the parentNode in this scenario, you can add
a flag to the extended rule of the parentNode to determine this condition if the
child fields are missing. For example:
integer p;
p = exist($parentNode);

Common use

The exist function is more often used as !exist (not exist) to store a default value
into a field if the field does not exist. The exist function is often used with
segments such as SDQ where there can be multiple pairs of information for stores
and quantities. You can check to make sure a pair exists before attempting to
manipulate the value, for example summing the quantities. The exist function is
also used to only output a qualifier if the field it’s qualifying exists.

Syntax
if exist($GROUP_NAME[index][index][index].#FIELD_NAME) then

Example
if exist(#FIELDA) then
#FIELDB = “EA”;
//Return a non-zero value if the condition is true (data is present in
//the specified instance of the FIELDA field). A zero value is
//returned if the condition is false (no data is present in the
//specified instance of the FIELDNAME field).

if !exist(#FIELDC) then
#FIELDC = “100”;
//Populate FIELDC with the value of 100 if it does not exist already.

132 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



fseek
The fseek function moves the file pointer to a new location, which is a specified
number of bytes (offset) from the designated point of origin in the file (the point of
origin may be the beginning of the file or relative to either the end of the file or
the current position).

To invoke the fseek function against the input file, the value for current_file is 0.
To invoke the fseek function against the output file, the value for current_file is
1. The fseek function is typically only used in conjunction with the ftell, readblock,
and writeblock functions.

Syntax
fseek(current_file,offset,origin);

where:

v current_file = 0 indicates the input file, 1 indicates the output file
v offset = position to which the file pointer is moved relative to the origin
v origin = keyword depends on the starting location:

– begin = start at beginning of the file
– end = start at the end of the file
– current = start at the current position in the file

Example
string[1024]temp_buffer;
Integer Position;
Position = ftell(0);
while readblock(temp_buffer) do
begin

if left(temp_buffer,3) = "IEA" then
begin

fseek(0,Position,begin);
break;

end
writeblock(temp_buffer);
Position = ftell(0);

end
//Read a segment from input file and place in temp_buffer. Look for
//"IEA" segment tag. If found, reset file pointer to where it was
//before the "IEA" segment was read. Write contents of temp_buffer
//to output file. Set "Position" = the current file pointer position.

ftell
The ftell function obtains the current position of the file pointer and returns it as
an integer. To invoke the ftell function against the input file, the value for
current_file is 0. To invoke the ftell function against the output file, the value for
current_file is 1. The fseek function is typically only used in conjunction with the
fseek, readblock, and writeblock functions.

Syntax
numeric_variable = ftell(current_file);

Example
string[1024]temp_buffer;
Integer Position;
Position = ftell(0);
while readblock(temp_buffer) do

Chapter 6. Extended Rules 133



begin
if left(tem_buffer,3) = "IEA" then

begin
fseek(0,Position,begin);
break;

end
writeblock(temp_buffer);
Position = ftell(0);

end
//Read a segment from input file and place in temp_buffer. Look for
//"IEA" segment tag. If found, reset file pointer to where it was
//before the "IEA" segment was read. Write contents of temp_buffer
//to output file. Set "Position" = the current file pointer position.

get
The get function enables you to access individual components of a datetime
variable. Valid datetime components are year, month, day, hour, minute, second.

Common use

The strdate function was added to extended rules after the get function. The
strdate function is used more often than the get function because it is more
versatile.

Syntax
integer_variable = get datetime_component (datetime_variable);

where:

v integer_variable = integer variable
v datetime_component = individual component of the datetime variable
v datetime_variable = datetime variable of which you want to access a

component part

Example
integer temp_days;
integer temp_hours;
datetime d;
temp_days = 0;
temp_hours = 0;
d = ’12/25/2001 12:15:30’;
//A fields value in the map can be assigned to the datetime variable
//"d" or a hard coded value can be assigned.

temp_days = get days (d);
temp_hours = get hours (d);
//Accesses the days from the datetime variable "d" and loads into
//variable " temp_days ". Accesses the hours from the datetime
//variable "d" and loads into variable "temp_hours".

getiid
The getiid function enables you to obtain the unique identifier for an interface, by
using the string-character name of the interface to return the globally unique
identifier that is used by software to run the interface.

Syntax

The following command creates an instance of the default interface of an ActiveX
Automation Server.

134 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



string_variable = getiid("ProgID");

The following command looks up the InterfaceID (IID) of an interface.
string_variable = getiid("ProgID", "Interface_Name or {Interface ID}");

Example
object ob;
string[50] iid;
iid = getiid("InternetExplorer.Application", "IWebBrowser2");
ob = createobject("InternetExplorer.Application", iid);
ob.Visible = 1;
//Displays the Internet Explorer on the desktop by setting a
//property value in an ActiveX Automation Server.

if ... then ... else
The if, then, and else keywords allow the use of conditional logic. Sterling
Gentran:Server uses conditional logic to test conditions and then, depending on the
results of the test, perform different operations.

Conditions can be nested to any level. You can use the if/then keywords to run
one or more statements conditionally. The condition is typically a comparison, but
it can be any expression that concludes with a numeric value. Sterling
Gentran:Server interprets the value as either true or false. The system interprets a
zero value as false and a nonzero value as true.

Sterling Gentran:Server evaluates the if/then condition, and if it is true, the system
runs all the statements that follow the then keyword. If the condition is false, none
of the statements following then are run.

You can use the else keyword in conjunction with if/then to define several blocks
of statements, one of which is run. Sterling Gentran:Server tests the first if/then
condition. If the condition is false, the system proceeds to test each sequential
condition until it finds one that is true. The system runs the corresponding block of
statements for the true condition. If none of the if/then conditions are true, the
system runs the statements following the else keyword.

The begin/end keywords enclose a group of statements that form the body of an
if/then/else statement. You can use the if/then/else keywords to run one or more
statements conditionally. If you include more than one statement in the body of an
if/then statement, you must surround the statements with the begin/end
keywords. If you use only a single statement, you can omit the begin/end.

Note: Do not end conditions with a semicolon (;) – this terminating syntax is
necessary for statements only.

Example
if condition then
begin

statement1;
statement2;

end
else condition then
begin

statement3;
statement4;

end

Chapter 6. Extended Rules 135



index
The index function enables you to determine which instance of a particular loop
the translator is currently accessing.

Common use

More often than not, variables are used to keep track of the current loop count
instead of the function. The syntax states that you specify an integer variable for
the parameter, but a constant is normally used instead of a variable. The index
function can be used to determine if you are at a specific iteration of a group such
as:
If index(2) = 1 then
...

Or
If index(1) = 10 then
...

The first example will check to see if the translator is at the first child group for
the current parent. The second example will check to see if the translator is at the
10th iteration of the Parent group.

The Index function can also be used when using indexes to reference a field such
as:
$SUB_GROUP[index(1)][index(2)][x].#FIELD = “TEXT”;

This use would normally be used when you need to reference a repeating
subgroup that is at the same level or a different branch of the group where the rule
is written.

Syntax
index(integer_variable);

where:

v integer_variable = integer variable that indicates the hierarchical level for
which you want to determine the loop count

Example
integer x;
x = index(1);

//This will populate x with the current loop count / iteration for the
//outer most parent group, from where the rule is written.
//The group will be located off of the root level of the map.

x = index(2);

//This will populate x with the current loop count / iteration for the
//first child group, from where the rule is written.
//The group will be a child to the parent group off the root level.

x = index(3);

//This will populate x with the current loop count / iteration for the
//first grandchild group, from where the rule is written.
//The group will be a grand child to the parent group off the root
//level, and a child to the first child group.

136 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



insert
The insert function allows information in the database tables to be updated.

Syntax
insert into tablename [ (fieldlist) ] [ (valuelist) ];

where:

v tablename = one of the following:
– DivisionLookup

– PartnerLookup

– DivisionLocation

– PartnerLocation

– DivisionXref

– PartnerXref

v fieldlist = ( fieldname [ , fieldname ] )

v fieldname = name of one of the fields in the table
v valuelist = ( String [ , String ] )

Notes:

v The fieldlist lists one or more fieldnames to which data is to be added.
v The fieldnames can be listed in any order.
v The valuelist must be in the same order as the field list.

Example
updateStatus = update PartnerLookup
set Description = "Lookup Update Test",Text1="Text1Updated",Text2="Text2Updated",
Text3="Text3Updated",Text4="Text4Updated"
where TableName = "PartLkp" and Item = "1";

if updateStatus = 1 then
begin

messagebox("Update PartnerLookup: Record Not Found,Attempting Insert...",1);
insertStatus = insert into PartnerLookup( PartnerKEY, TableName,Item,Description,

Text1,Text2,Text3,Text4)
values ("PETZONE","PartLkp","1","Lookup Insert Test","Text1","Text2","Text3","Text4");
if insertStatus = 0 then
begin

messagebox("Insert PartnerLookup: Failed",1);
end

end

if updateStatus = 2 then
begin

messagebox("Update PartnerLookup Failed with OtherError",1);
end//
Example assumes that a lookup table named "PartLkp" has been created.

Chapter 6. Extended Rules 137



left
The left function extracts a specified number of character from the left side of a
string variable or field and returns the result as a string.

Common use

The left function is used when you only need the first part of a string. If you only
want the first five digits of a zipcode, use the following example:
#TEMP_ZIP = left(#ZIP_CODE,5);

The left function is also commonly used in conjunction with the len function, to
"drop" characters from the end of a string. If you want to drop the last three
characters of a string, use the following example:
#TEMP = left(#FIELD,len(#FIELD) – 3);

The right, left, and len functions can all be used together. If you want to remove 0s
from the beginning of an ID, but there is not a set number of 0s, use the following
example:
while left(#ID,1) = “0” do
#ID = right(#ID,len(#ID)-1);

Syntax
string_variable = left(string_variable,num_char);

where:

v string_variable = A variable defined as type string.
v num_char = integer variable

Note: You may not use an ActiveX property as the first parameter of the left
function because the length of the property is unknown prior to compilation.

Example
string [25]name;
string [5]temp_variable;
name = "Acme Shipping Company"
temp_variable = left(name,4);
// "temp_variable" would contain "Acme"

len
The len function is a numerical function that counts and returns the number of
characters in a string. The numerical functions enable you to convert one data type
to another.

Common use

The len function is most often used inline with other functions, such as left and
right. It is also used within a while/do loop to pad a string to a specific length. If
you need to add 0s to the front of a string to make the string 10 characters, use the
following example:
while len(#field) < 10 Do

#field = “0” + #field;

138 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Syntax
number_char = len(string);

where:

v num_char = integer variable
v string = The string you wish to evaluate.

Example
integer a;
a = 0;
a = len("hello");
// "a" contains the value 5

messagebox
The messagebox function enables you to display a message box for which you
have designated the format and content. You can specify the number and type of
buttons on the message box, the message icon (for example, hand, question mark,
exclamation point, or asterisk), and the message displayed. You can also issue a
return value based on the chosen action.

Common use

The messagebox function is used to help debug a map. Messages placed
throughout a map can help determine where a hung map is hanging. Multiple
messages can be combined into one string to avoid confusion about the results.
Instead of receiving three messageboxes with the values of three fields, you can
combine them all into one messagebox, with labels. For example:
String[100] msg;

msg = “field1: “ + #field1 + “ field2: “ + #field2 + “ field3: “ + #field3;
messagebox(msg,0);

This will output one string with the values for the three fields in line:
field1: value field2: value field3: value

Note: Only String values can be displayed in a message box.

Syntax
messagebox("message",defined_number);

where:

v message = message string
v defined_number = defined number of the desired buttons plus the defined

number of the desired icon (if used)

The defined numbers for the button and icon types are as follows:
v 0 = OK button only
v 1 = OK and Cancel buttons
v 4 = Yes and No buttons
v 16 = Icon Hand
v 32 = Icon Question Mark
v 48 = Icon Exclamation Point
v 64 = Icon Asterisk

Chapter 6. Extended Rules 139



The message box return values are as follows:
v 1 = OK selected
v 2 = Cancel selected
v 6 = Yes selected
v 7 No selected

Example
if messagebox("Do you really want to delete this object?",36) = 6
begin
.
.
.
end
//Displays a message box with the given string as the message, Yes
//and No buttons (4) and a question mark icon (32). The number and
//type of buttons (4) plus the icon (32) equals the defined_number(36).
//If the user clicks the Yes button (return value "6"), the
//statements in the begin/end loop are executed.

Defined_�numbers

Table 32. defined_numbers for the button and icon types

Defined_Number Button or Icon Types

0 OK button only

1 OK and Cancel buttons

4 Yes and No buttons

16 Icon Hand

32 Icon Question Mark

48 Icon Exclamation Point

64 Icon Asterisk

Message box return values

Table 33. Message box return values

Return Value Action Selected

1 OK selected

2 Cancel selected

6 Yes selected

7 No selected

mid
The mid function extracts from a specified position in a string, either to the end of
the string or for a specified number of characters and returns the resultant string.
This function is zero-based.

Common use

The mid function is often used with the strstr function. The strstr function will
return the position of a specific character, then the mid can be used to return a
substring from that character.

140 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Because the mid function is zero-based, it is often used incorrectly, with the
resultant string off by one character. An easy way to determine the correct starting
position is to envision a cursor and count how many times you need to move it to
get to the starting position you want. See the example below.

Syntax
string_variable = mid(string_variable,start_pos,num_char)

where:

v string_variable = The variable containing the string you want to extract.
v start_pos = The starting position in the string of characters (integer).
v num_char = The number of characters from the starting position (integer).

Note: You may not use an ActiveX property as the first parameter of the mid
function because the length of the property is unknown prior to compilation.

Example
string [25]name;
string [10]temp_variable;
name = "Acme Shipping Company"
temp_variable = mid(name,5,8);
//The map will read 8 characters in the string starting with
//the sixth character. It is essentially ignoring the first
//five characters, so "temp_variable" will contain "Shipping".

ntoa
The ntoa function is a numerical function that converts real numbers into strings.
The numerical functions enable you to convert one data type to another.

Common use

The ntoa function is often used when you cannot change the data type for a field,
such as when you are writing to a database. The ntoa function is also used to
assist in debugging. For example, because you cannot use numeric fields in a
messagebox, you must convert the value to a string first.
real b;
string[20] s, msg;
b = 5.5;
ntoa(b, s);
msg = “b: “ + s;
messagebox(msg,0);
//The messagebox output will contain “b: 5.5”

Syntax
string = ntoa(real,string);

where:

v real = The real number variable you wish to convert.
v string = The name of the string in which you want to store the converted

number.

Chapter 6. Extended Rules 141



Example
real b;
string[20] s;
b = 5.5;
ntoa(b,s);
//The variable "s" contains the string "5.5".

param
The param function is used to read the value of the PARAM(n) variable. The
extended rule allows you to reference values that have been passed into the
translator via the command line.

Introduction

The -u switch can be used during the invocation of the translator to pass values in
so they can be referenced by an extended rule. Typically, the param extended rule
is not used by maps that are running within the Sterling Gentran:Server
environment because Sterling Gentran:Server does not use the -u switch when
invoking the translator. However, if you are invoking the translator to perform
translation outside of Sterling Gentran:Server (tx32 -f <inputfile>
<templatefile> <outputfile> <reportfile>), you have the option to pass values
into the translator using the -u switch and reference those values using the param
extended rule.

Syntax
param(integer_PARAM_number);

where:

v interger_PARAM_number = the number of the pre-defined variable

Example

For example, if you invoke TX32.EXE in the following manner:
tx32.exe -f input.txt 850.tpl output.txt out.rpt -u "PurchaseOrderNumber" -u 12345

-u 500.25

Then you could write an extended rule in the \GENSRVNT\Tutorial\Pet_850.map
that looks like the following:
string [32] strDescription;
string [32] strPONbr;
string [32] strTotalCost;
real nTotalCost;

strDescription = param(0);
strPONbr = param(1);
strTotalCost = param(2);
nTotalCost = aton(strTotalCost);

if nTotalCost > 200 then
begin

messagebox("Get approval from boss",0);
end

You can run this rule from any scope in your map (for example, pre-session,
post-session, group onbegin, field).

142 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



queryobject
The queryobject function is used to request a different interface on an existing
object.

Syntax
object2 = queryobject(object1, "{IID}");

where:

v object2 = is the result that contains the requested interface to the object
v IID = is the interface identifier of the requested interface
v object1 = an existing object

Example
object ob, ob2;
ob = createobject("InternetExplorer.Application");
ob2 = queryobject(ob, "{EAB22AC1-30C1-11CF-A7EB-0000C05BAE0B}");
//Uses the Interface ID of the desired interface to obtain another
//(different) interface of the existing object (object1).

readblock
The readblock function reads a block of data (segment or record) from the input
file and places it into the argument of a string variable.

The readblock and writeblock functions are used in conjunction with each other to
pass a block of data from the input file to the output file without compliance
checking or testing for proper EDI syntax. Together these functions provide a more
efficient alternative of using "wildcard" segments, which are typically implemented
in build and break maps.

The readblock and writeblock functions are also used in conjunction with the
Document Extraction service to specify the beginning and end of each document in
a batch of documents, so that each document can be extracted individually. See the
Example 2, below.

The readblock function returns a zero value if it does not read any data. However,
if readblock returns a zero value, you should not assume the translator has reached
the end of the file. If the data file has a number of new lines embedded in it, the
readblock function returns a zero for each new line. If you want to know for
certain when the end of the file is reached, use the eof function.

Notes:

v Readblock, writeblock, and unreadblock are supported only for positional and
EDI files.

v You may not use an ActiveX property as the first parameter of the readblock
function because the length of the property is unknown prior to compilation.

v See the IBM Sterling Gentran:Server for Microsoft Windows XML User Guide for
special considerations when using this function with XML data.

Syntax
readblock(string_variable);

Examples

Example 1

Chapter 6. Extended Rules 143



String[1024] buffer;

readblock(buffer);
writeblock(buffer);

while readblock(buffer) do
begin

if left(buffer,3) = "HDR" then
begin

unreadblock();
break;

end
writeblock(buffer);

end
//Read a block from the input file and place it in buffer. Look for
//a "HDR" record tag. If found, reset the file pointer to where it was
//before the "HDR" record was found. Write contents of the buffer to
//the output file.

Example 2
string[250] buffer;
string[3] match;
integer match_len;
integer eofInput;
// set these next two variables
match = "SUM"; // the tag of the last record in the document
match_len = 3; // the length of the tag
// read the block we’re on and write it
readblock(buffer);
writeblock(buffer);
eofInput = eof(0); // check if we are at the end of the input document
// keep reading and writing records until the end of the document
while !eofInput do
begin

if readblock(buffer) then
begin

writeblock(buffer);
if left(buffer, match_len) = match then

//write the document, not new lines and continues to process documents
begin

break;
end

end
eofInput = eof(0);

// check if we are at the end of the input document
end

readbytes
The readbytes function reads a number of bytes from the input file. This function
is used in conjunction with the writebytes function. Used together, the readbytes
and writebytes function provide an efficient method of passing data through a
map if the data does not need to be compliance checked or altered in any way.

Readbytes is similar to the readblock function, but readblock only works with
entire blocks (for example, an entire segment or record), and readbytes works with
any quantity of data, whether it is smaller or larger than a block.

The readbytes function uses two parameters, first the string variable into which the
data being read will be stored, and second the number of bytes to read.

144 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Syntax
readbytes(read_from_buffer, num_bytes);

where:

v read_from_buffer = string variable into which the data being read will be stored
v num_bytes = integer value representing the number of bytes to read from the

input file.

Note: The readbytes function returns the number of bytes it was actually able to
read.

Example
string [1024] tempBuffer;
while readbytes(tempBuffer,1024) do
begin writebytes(tempBuffer,1024);
End
//Read 1024 bytes from input file and place in string variable
//named tempBuffer.

writebytes("^0D^0A",2);
//Appends a CRLF to the end of the output file.

right
The right function extracts a specified number of characters from the right side of a
string variable or field.

Common use

The right function is used when you only need the last part of a string. If you only
want the last four digits of a social security number, use the following example:
#TEMP_SS = right(#SOCIAL,4);

The right function is also commonly used in conjunction with the len function, to
"drop" characters from the beginning of a string. If you want to drop the first three
characters of a string, use the following example:
#TEMP = right(#FIELD,len(#FIELD) – 3);

The right, left, and len functions can all be used together. For example, if you want
to remove 0s from the end of an ID, but there is not a set number of 0s, use the
following example:
while right(#ID,1) = “0” do
#ID = left(#ID,len(#ID)-1);

Syntax
string_variable = right(string_variable,num_char)

where:

v string_variable = The name of the string of characters you wish to manipulate.
v num_char = The number of characters to count from the right side of a string.

Note: You may not use an ActiveX property as the first parameter of the right
function because the length of the property is unknown prior to compilation.

Chapter 6. Extended Rules 145



Example
string [25]name;
string [10]temp_variable;
name = "Acme Shipping Company"
temp_variable = right(name,7);
// "temp_variable" would contain "Company"

select
The select function allows information to be retrieved from the database tables.
Only the tables and fields available in the select standard rule are available for the
select extended rule.

Common use

The select function is often used as an extended rule instead of a standard rule
when you only want to run it based on other criteria. For example, if you want to
pull a value from Process Data if a field was not included in the data, use the
following example:
If !exist(#Sender) then

Select xpathresult into #Sender from processdata where xpath = “\sender\text()”;

It is also commonly written as an extended rule when there are multiple select
statements to be performed because the standard rule only allows one per field.

Syntax

In the command syntax, expression and receiverlist can be string fields, string
variables, or string literals. It is important to note that the table and field names for
the select extended rule are slightly different than those depicted in the standard
rule.
select fieldname into receiverlist from tablename where key = expression
[and key = expression];

Example
string[50] var;
select xpathresult into var from processdata where xpath="example";

set
The set function enables you to define individual components of a datetime
variable. Valid datetime components are year, month, day, hour, minute, second.

Common use

The date function was added to extended rules after the set function. The date
function is used more often than set because it is more versatile.

Note: Setting an integer value higher than the logical limit for the component will
increase the corresponding related component. For example, if you set a value of
14 for months, it will increase the year by 1 and use the value 2 for the months. If
you use the value 80 for minutes, it will increase the hours by 1 and use 20 for the
minutes.

146 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Syntax
set datetime_component (datetime_variable,integer_variable);

where:

v datetime_component = The individual component of the datetime variable.
v datetime_variable = The datetime variable of which you want to access a

component part.
v integer_variable = An integer variable

Example
integer a, b, c;
datetime d;
a = 5;
b = 3;
c = 11;
set months (d,a);
set days (d,b);
set hours (d,c);
//Defines the months of the datetime variable “d” from variable “a”
//Defines the days of the datetime variable "d" from variable "b".
//Defines the hours of the datetime variable "d" from variable "c".

strdate
The strdate function converts a datetime type into a string using a format that you
specify. This function allows you to include static characters such as a slash (/),
which gives you access to full date support.

Common use

The strdate function is often used when you cannot change the data type for a
field, such as when you are writing to a database. The strdate function is also used
to assist in debugging. Because you cannot use a date field in a messagebox, you
must convert the value to a string first.
string[20] s, msg;

strdate(#datefield,”%m/%d/%Y”,s);
msg = “Date: “ + s;
messagebox(msg,0);
//The messagebox output will contain “Date: value”

The strdate function is also used to determine shipping days of the week, and
adjust accordingly. For example, if you do not ship on Sundays, you can check if
%w returns a 0 and if so, add a day to make it Monday.
String[10] shipday;

strdate(#ship_date,”%w”,shipday);
if shipday = “0” then

#ship_date = #ship_date << days(1);

Syntax
strdate(datetime,"format",string);

where:

v datetime = datetime variable (month specified as 1 - 12)
v format = desired date format (see Format specifiers, below)
v string = string variable

Chapter 6. Extended Rules 147



Example
datetime d;
string[8] s;
d = date(2012,4,6);
s=””;

strdate(d,"%y/%m/%d",s);

//Converts a datetime variable into an eight character string in the
//format "year/month/day", in this case 2012/4/6.

Format specifiers

Table 34. Format specifiers

Format Specifier Description

%8 ISO-8601 date format

YYYYMMDDTHHMMSS.mmmZ

Four-digit year, two-digit month, two-digit day, T (time)
indicator, two-digit hour, two-digit minutes, two-digit
seconds in Universal Time (also called Zulu Time or
Greenwich Mean Time), Z (Zulu time) indicator (example:
20031209T123000.000Z)
Note: This date format cannot be combined with any other
format specifier.

%a Abbreviated weekday name

%A Full weekday name

%b Abbreviated month name

%B Full month name

%d Day of the month as a decimal number (01 – 31)

%H Hour in 24-hour format (00 – 23)

%I Hour in 12-hour format (01– 12)

%j Day of the year as a decimal number (001 – 366)

%m Month as a decimal number (01 – 12)

%M Minute as a decimal number (00 – 59)

%S Second as a decimal number (00 – 59)

%U Week of the year as a decimal number, with Sunday as the
first day of the week (00 – 51)

%w Weekday as a decimal number (0 – 6, with Sunday as "0")

%W Week of the year as a decimal number, with Monday as the
first day of the week (00 – 51)

%y Year without the century as a decimal number (00 – 99)

%Y Year with the century as a decimal number

%% Percent sign

strstr
The strstr function finds a substring inside a string. This function returns the
position of the first instance of the designated substring within the specified string.
If this function does not find the specified substring in the string, it returns a value
of -1. This function is zero-based.

148 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Common use

The strstr function is often used with the mid function to return a substring. For
example, if you wanted to extract a 10-digit PO number that is listed after a slash,
use the following example:
String[10] po_number;
po_number = mid(#PONUM,strstr(#PONUM,“/”),10);

If you do not know the length of the substring, the strstr function can also be used
to determine how many characters are to the right of the character, by subtracting
the position returned by strstr from the length using len.
String[20] po_number;
po_number = mid(#PONUM,strstr(#PONUM,“/”),(len(#PONUM)–strstr(#PONUM,“/”)));

Syntax
integer = strstr("string","substring");

where:

v integer = integer variable
v string = the string to evaluate
v substring = the part of the string you are interested in

Examples
integer d;
d = 0;
d = strstr("mississippi","is");
//Finds the first instance of the substring "is" inside the string
//"mississippi" and returns the position of that first substring.

To use this function to enable a purchase order number to be processed differently
depending on its format (for example, if the third position of the purchase order
number is numeric do "X," otherwise do "Y"), use the following example:
integer position;
string [1] PONumChar2;
PONumChar2=mid(#PONumber, 1, 1);
position=strstr("0123456789", PONumChar2);

//This function finds a substring within the string. So if the second
//position of purchase order number is not equal to -1 then it is
//numeric and "X" should be executed. Otherwise, the second position is
//not numeric and "Y" should be executed.

unreadblock
The unreadblock function provides a method of moving the input file-pointer back
one block (a block of data is equivalent to one EDI segment or one positional
record). This function unreads the block of data that was just processed by the
readblock function.

Note: The unreadblock function works only once and only for the most recent
readblock. It can only be used in conjunction with the readblock function. The
unreadblock function will only unread the most recent block of data processed. If
you use unreadblock more than once, you will not be able to point to any earlier
readblocks.

The unreadblock function is provided as an alternative to the fseek and ftell
functions, and is the preferred method of moving the file pointer back one block of

Chapter 6. Extended Rules 149



data. The unreadblock function allows the translator to correctly track the number
of bytes read and number of segments read during the translation process by
moving the file-pointer back and decrementing the segment and byte counts
accordingly.

The unreadblock function is commonly used with the readblock and writeblock
functions to pass blocks of data in bulk from the input file to the output file. This
is useful for maps that are designed to envelope data.

Readblock, writeblock, and unreadblock are supported only for positional and EDI
files.

Common use

The unreadblock function is often used in the extended rule for document
extraction maps.

If the tag that is being used within the if statement is the header tag, then an
unreadblock is performed so that the header record will remain with the remainder
of the unprocessed document. A break is issued after the unreadblock to exit the
while loop, and the writeblock comes after the IF statement so that the header
record is not written out.

If the tag that is being used within the if statement is a trailer tag, then an
unreadblock is not used for the extended rule. Otherwise, the trailer record would
be included as the first record in the next document to be processed.

Syntax
unreadblock();

Example
String[1024] buffer;

readblock(buffer);
writeblock(buffer);

while readblock(buffer) do
begin

if left(buffer,3) = "HDR" then
begin

unreadblock();
break;

end
writeblock(buffer);

end
//Read a block from the input file and place it in buffer. Look for
//a "HDR" record tag. If found, reset the file pointer to where it was
//before the "HDR" record was found. Write contents of the buffer to
//the output file.

update
The update function allows information in the database tables to be updated. This
function is similar to the Update standard rule, except that it provides more
flexibility.

Only the tables and fields available in the Update standard rule are available for
the update extended rule. In the command syntax expression can be a string field,

150 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



string variable, or string literal. It is important to note that the table and field
names for the update extended rule are slightly different than those depicted in the
standard rule.

Table 35. Support for the update function

If the map/form is of type
... Then the update function is ...

Export Only valid on the input side of the map.

Import Valid on the input or output side of the map.

Break (Interchange, Group,
or Transaction Set)

Only valid on the input side of the map.

Build (Interchange, Group,
or Transaction Set)

Only valid on the input side of the map.

Print Not supported.

Screen entry Not supported.

The update function also enables you to update process data with a string, instead
of using the messagebox function.

Note: For the Transaction Register, the updates do not go directly to the database;
they are kept in memory until the eventual select, and then they are checked
against the database and inserted if necessary.

Common use

The update function is often used as an extended rule instead of a standard rule
when you only want to run it based on other criteria. For example, if you want to
update a value to Process Data if a quantity is over 100:
If #QTY > 100 then

Update ProcessData set XPathResult = “LARGE ORDER” where XPath = “MSG”;

It is also commonly written as an extended rule, when there are multiple update
statements to be performed, since the standard rule only allows one per field.

Syntax

Syntax 1
update tablename set fieldname = expression [fieldname = expression] where

key = expression [and key = expression];

Note: If you are updating multiple fields, each field = expression term should be
separated by a comma.

Syntax 2

Updating process data with a string
update ProcessData set XPathResult = <some string>

where Xpath = <location in process data>;

Examples

Syntax 1
update processdata set xpathresult="hello world" where xpath="example";

Chapter 6. Extended Rules 151



Example 2

Updating process data with a string
update ProcessData set XPathResult = #Sender
where XPath = "SenderID";

Additional Information

Also see “select and update Options” on page 156 for information about database
tables and the associated field names that are available when using the select and
update extended rules.

while ... do
The while ... do keywords run a statement repeatedly until the specified
termination condition evaluates to zero. The system tests the terminating condition
before each iteration of the loop, so a while loop executes zero or more times
depending on the value of the termination expression.

The begin/end keywords enclose a group of statements that form the body of a
while/do loop. You can use the begin/end keywords to run one or more
statements conditionally. If you include more than one statement in the body of a
while/do loop, you must surround the statements with the begin/end keywords.
If you use only a single statement, you can omit the begin/end.

Note: Do not end conditions with a semicolon (;) – this terminating syntax is
necessary for statements only.

Common use

The while/do function is often used to initialize arrays, add or remove characters
from a string, and to loop through iterations of a repeating structure. For more
in-depth examples, see the "Using While Do Loops In Extended Rules" white
paper.

Syntax
while condition do

Example
integer i;

while i < 10 do
begin

i = i + 1;
if (i = 8) then

continue;
if (i = 9) then

break;
end
//While "i" is less than ten, run the loop. If "i" is equal to or
//greater than ten, terminate the loop.

winexec
The winexec function enables you to execute another program while running the
translator.

152 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



This program is executed asynchronously. You specify the program and determine
how you want the program window displayed. You can also return an error code,
if desired. If the error code is greater than 32, the program ran without errors. If
the error code is less than 32, the program did not run because of an error. If the
error code is "0," the system is out of memory. If the error code is "2," you didn’t
specify a file name. The error code is not the return value from the program you
executed.

Notes:

v If you specify a program on another machine or in another domain, you must
have the appropriate permission to access the specified folder.

v If translation is executing from an unattended process control command, the
user ID under which that service is running must have the appropriate
permission to access the specified file.

Syntax
winexec("program",window_display)

where:

v program = executable program name string (if necessary, including UNC or
direct file path)

v window_display = number that indicates how you want the program window
displayed (see Window display numbers, below)

Example
winexec("program.exe", 3)

//Exits Gentran:Server and executes the "program.exe" program asynchronously.
//The system displays the program window maximized (3).

Window display numbers

The window_display numbers that control the appearance of the program window
are as follows (you must use the number to indicate how you want the program
window displayed, not the window_display value):

Table 36. Window display numbers

Number Window_Display Definition

0 SW_HIDE Hides the window and activates another
window.

1 SW_SHOWNORMAL Activates and displays a window. If the
window is minimized or maximized, it is
restored to the original size and position.
This flag should be specified when
displaying a window for the first time.

1 SW_NORMAL Activates and displays a window in the
original size and position.

2 SW_SHOWMINIMIZED Activates the window and displays it as a
minimized windows.

3 SW_SHOWMAXIMIZED Activates the window and displays it as a
maximized window.

3 SW_MAXIMIZE Maximizes the window.

Chapter 6. Extended Rules 153



Table 36. Window display numbers (continued)

Number Window_Display Definition

4 SW_SHOWNOACTIVATE Displays the window in its most recent
size and position, but does not activate it
(the current active window remains
active).

5 SW_SHOW Activates the window and displays it in
its current size and position.

6 SW_MINIMIZE Minimizes the window.

7 SW_SHOWMINNOACTIVE Displays the window as a minimized
window without activating it (the current
active window remains active).

8 SW_SHOWNA Displays the window in its most recent
size and position without activating it (the
current active window remains active).

9 SW_RESTORE Activates and displays the window. If the
window was minimized or maximized, it
is restored to its original size and position.

10 SW_SHOWDEFAULT Activates the window and allows
Microsoft Windows to determine the size
and position.

writeblock
The writeblock function writes the data contains in the argument of a string
variable to the output file.

The readblock and writeblock functions are used in conjunction with each other to
pass a block of data from the input file to the output file without compliance
checking or testing for proper EDI syntax. Together these functions provide a more
efficient alternative of using "wildcard" segments, which are typically implemented
in build and break maps.

The readblock and writeblock functions are also used in conjunction with the
Document Extraction service, to specify the beginning and end of each document
in a batch of documents, so that each document can be extracted individually.

The readblock, writeblock, and unreadblock functions are supported only for
positional and EDI files.

See the "XML Build and Break Maps" appendix in the IBM Sterling Gentran:Server
for Microsoft Windows XML User Guide for special considerations when using this
function with XML data.

Common use

The writeblock function is primarily used for document extraction maps as well as
build and break maps.

Syntax
writeblock(string_variable);

154 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Examples

Example 1
String[1024] buffer;

readblock(buffer);
writeblock(buffer);

while readblock(buffer) do
begin

if left(buffer,3) = "HDR" then
begin

unreadblock();
break;

end
writeblock(buffer);

end
//Read a block from the input file and place it in buffer. Look for
//a "HDR" record tag. If found, reset the file pointer to where it was
//before the "HDR" record was found. Write contents of the buffer to
//the output file.

Example 1
string[250] buffer;
string[3] match;
integer match_len;
// set these next two variables
match = "SUM"; // the tag of the last record in the document
match_len = 3; // the length of the tag
// read the block we’re on and write it
readblock(buffer);
writeblock(buffer);
// keep reading and writing records until the end of the document
while readblock(buffer) do
begin

writeblock(buffer);
if left(buffer, match_len) = match then

begin
break;

end
end

writebytes
The writebytes function writes a specified number of bytes to the output file. This
function is used in conjunction with the readbytes function. Used together, the
readbytes and writebytes function provide an efficient method of passing data
through a map if the data does not need to be compliance checked or altered in
any way.

Note: The system does not append a segment terminator to the end of the string
value written to the output file.

Writebytes is similar to the writeblock function, but writeblock only works with
entire blocks (for example, an entire segment or record), and writebytes works with
any quantity of data, whether it is smaller or larger than a block.

The writebytes function uses two parameters, first the string variable containing
the data to be written to the output file, and second the number of bytes to write.

Chapter 6. Extended Rules 155



Syntax
writebytes(write_to_buffer, num_bytes);

where:

v write_to_buffer = string variable containing the data to be written to the output
file

v num_bytes = integer value representing the number of bytes to read from the
write_to_buffer variable and write to the output file

Note: If hex values are used in constants, use \0x instead of ^.

Example
string [1024] temp_buffer;
while readbytes(temp_buffer,1024) do
begin
writebytes(temp_buffer,1024);
End
writebytes("^0D^0A",2);

//Read 1024 bytes from input file and place in string variable Snamed temp_buffer.
//Appends a CRLF after the while loop finishes executing.

select and update Options
This topic contains the database table names and the associated field names that
are available when using the select and update extended rules. Additional keys are
also available for certain tables. Where applicable, a description of the key follows
the field name.

Notes

When you use extended rules to reference a Sterling Gentran:Server database table,
the syntax used is different from the actual table name. The appropriate
referencing syntax is outlined for each table in this section.

For example, to refer to the Document_tb in an extended rule, you would reference
Document.

See “select” on page 146 and “update” on page 150 for more information about the
functions.

Division

These are the field names that are available when using the select or update
extended rules to reference the division partner on the Partner Table (Partner_tb).

Refer to this table as Division.
v PARTNERNAME
v EDICODE
v APPLICATIONPARTNERKEY

DivisionLocation

These are the field names that are available when using the select or update
extended rules to reference a division location on the Location Table (Location_tb).

156 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Refer to this table as DivisionLocation.
v CONTACTNAME
v NAME
v ADDRESS1
v ADDRESS2
v ADDRESS3
v CITY
v STATE
v ZIP
v COUNTRY
v TELEPHONE
v PRIMARYREFCODE
v SECONDARYREFCODE
v FAX

DivisionLookup

These are the field names that are available when using the select or update
extended rules to reference a division lookup on the Lookup Table (Lookup_tb).

Refer to this table as DivisionLookup.
v ITEM
v DESCRIPTION
v TEXT1
v TEXT2
v TEXT3
v TEXT4

This is an additional key that is available for the DivisionLookup table.
v TABLENAME

DivisionXref

These are the field names that are available when using the select or update
extended rules to reference a division cross-reference on the Cross-reference Table
(CrossReference_tb).

Refer to this table as DivisionXref.
v MYITEM
v PARTNERITEM
v DESCRIPTION
v TEXT1
v TEXT2
v TEXT3
v TEXT4

This is an additional key that is available for the DivisionXref table.
v TABLENAME

Chapter 6. Extended Rules 157



Document

These are the field names that are available when using the select or update
extended rules on the Document Table (Document_tb).

This sub-table can only be accessed from the following map types; Transaction
Break/Build, Import, Export, Print, Screen, Group Build, and Interchange Build.

The information that is accessed will be the information of the last document that
was processed at the table level accessed by the rules. This must be taken into
consideration when using rules that access these tables.

Refer to this table as Document.
v TESTMODE
v AGENCY
v VERSION
v TRANSACTIONSETID
v RELEASE
v DOCUMENTTYPE
v REFERENCEDATA
v DOCUMENTNAME
v APPFIELD1
v APPFIELD2
v APPFIELD3
v APPFIELD4
v APPFIELD5
v APPFIELD6
v DOCUMENTPARTNERKEY
v CONTROLNUMBER
v PARTNERKEY
v TABLEKEY (Select only)

GenericEnvelopeSegment

These are the field names that are available when using the select extended rule on
the Generic Envelope Segment Table (GenericEnvelopeSegment_tb).

Refer to this table as GenericEnvelopeSegment.
v CONTROLNUMBER
v SUBCOUNT
v FIELD1
v FIELD2
v FIELD3
v FIELD4
v FIELD5
v FIELD6
v FIELD7
v FIELD8
v FIELD9

158 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



v FIELD10
v FIELD11
v FIELD12
v FIELD13
v FIELD14
v FIELD15
v FIELD16
v FIELD17
v FIELD18
v FIELD19
v FIELD20
v FIELD21
v FIELD22
v FIELD23
v FIELD24
v FIELD25
v FIELD26
v FIELD27
v FIELD28
v FIELD29
v FIELD30
v FIELD31
v FIELD32
v FIELD33
v FIELD34
v FIELD35
v FIELD36
v FIELD37
v FIELD38
v FIELD39
v FIELD40

Group

These are the field names that are available when using the select or update
extended rules on the Group Table (Group_tb).

Can only be accessed from the following map types: Group Break or Build,
Transaction Break, Export, and Interchange Build.

The information that is accessed will be the information of the last group that was
processed at the table level accessed by the rules. This must be taken into
consideration when using rules that access these tables.

Refer to this table as Group.
v TESTMODE
v CONTROLNUMBER
v FUNCTIONALGROUPID

Chapter 6. Extended Rules 159



v VERSION
v APPFIELD1
v APPFIELD2
v APPFIELD3
v APPFIELD4
v APPFIELD5
v APPFIELD6
v AGENCY
v TABLEKEY (Select only)

Interchange

These are the field names that are available when using the select or update
extended rules on the Interchange Table (Interchange_tb).

This sub-table can only be accessed from the following map types: Interchange
Break or Build, Group Break, Transaction Break, and Export.

The information that is accessed will be the information of the last interchange that
was processed at the table level accessed by the rules. This must be taken into
consideration when using rules that access these tables.

Refer to this table as Interchange.
v TESTMODE
v CONTROLNUMBER
v VERSION
v APPFIELD1
v APPFIELD2
v APPFIELD3
v APPFIELD4
v APPFIELD5
v APPFIELD6
v AGENCY
v PARTNERKEY
v TABLEKEY (Select only)

Partner

These are the field names that are available when using the select or update
extended rules for a non-division partner on the Partner Table (Partner_tb).

Refer to this table as Partner.
v PARTNERNAME
v EDICODE
v APPLICATIONPARTNERKEY

These are the additional keys that are available for the Partner table.
v PARTNERKEY
v ALTERNATEKEY (refers to Application Key)

160 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



v APPLICATIONPARTNERKEY (refers to Application Key)

PartnerLocation

These are the field names that are available when using the select or update
extended rules for a non-division location on the Location Table (Location_tb).

Refer to this table as PartnerLocation.
v CONTACTNAME
v NAME
v ADDRESS1
v ADDRESS2
v ADDRESS3
v CITY
v STATE
v ZIP
v COUNTRY
v TELEPHONE
v PRIMARYREFCODE
v SECONDARYREFCODE
v FAX

PartnerLookup

These are the field names that are available when using the select or update
extended rules for a non-division lookup on the Lookup Table (Lookup_tb).

Refer to this table as PartnerLookup.
v ITEM
v DESCRIPTION
v TEXT1
v TEXT2
v TEXT3
v TEXT4

This is an additional key that is available for the PartnerLookup table.
v TABLENAME

PartnerXref

These are the field names that are available when using the select or update
extended rules for a non-division cross-reference on the Cross-reference Table
(CrossReference_tb).

Refer to this table as PartnerXref.
v MYITEM
v PARTNERITEM
v DESCRIPTION
v TEXT1
v TEXT2

Chapter 6. Extended Rules 161



v TEXT3
v TEXT4

This is an additional key that is available for the PartnerXref table.
v TABLENAME

162 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Chapter 7. User Exits

ActiveX and User Exit Functions
createobject function

The createobject function enables you to create an instance of an ActiveX
Automation Server.
object = createobject("ProgID");

ProgID is the programmatic identifier. An example of a ProgID is:
"InternetExplorer.Application"

deleteobject function

The deleteobject function enables you to delete an instance of an ActiveX
Automation Server. An object must be deleted before the end of the map that uses
it. It is more efficient to delete the object immediately on completion (using the
DELETEOBJECT command), although the Sterling Gentran:Server translator will
delete the object automatically at the end of the map. Also, if you assign one object
to another one, both copies of the object must be deleted for that object to be
properly unloaded.
deleteobject(object);

getiid function

The getiid function enables you to obtain the unique identifier for an interface, by
using the string-character name of the interface to return the globally unique
identifier that is used by software to run the interface.
string_variable = getiid("ProgID", "InterfaceID");

InterfaceID (IID) is the interface identifier. An example of an IID is:
"IWebBrowser2"

queryobject function

The queryobject function is used to request a different interface on an existing
object.
object2 = queryobject(object1, "{IID}");

Note: You may not use extended rules that compare two ActiveX properties or
method results, or any combination of properties or method results. This type of
comparison is invalid because property and method types are unknown prior to
compilation and thus it is not possible to generate the correct comparison code.

About ActiveX Technology
Sterling Gentran:Server supports additional extended rule functionality to allow
you to use Microsoft’s ActiveX Data Objects (ADO) from within extended rules, as
well as providing enhancements to user exit support.

The information in the following topics assumes that you:

© Copyright IBM Corp. 1996, 2024 163



v Are familiar with the use of ActiveX Automation Servers and languages such as
Visual Basic.

v Know the Translator Programming Language (TPL) constructs for creating,
manipulating, and deleting ActiveX objects.

v Know the ProgID of the ActiveX object and all its exposed interfaces.
v Understand how and when extended rules are invoked and their scope.

User exits are an advanced feature of Sterling Gentran:Server that should only be
used with the above prerequisites.

Restrictions

Sterling Gentran:Server extended rules selectively support ActiveX technology.

Sterling Gentran:Server extended rules support:
v ActiveX Automation Servers
v Some ActiveX Controls, but only those that work as Automation Servers

Sterling Gentran:Server does not support:
v ActiveX controls that are not ActiveX Automation Servers. Such ActiveX controls

must be hosted in a graphical user interface (GUI) display, and therefore cannot
be used from extended rules

v ActiveX Arrays (for example, the VT_ARRAY data type modifier)
v References (for example, the VT_BYREF data type modifier) except for output

parameters in method calls. In this instance, references are only valid for the
duration of the method call.

v Sterling Gentran:Server does not read registry entries or type libraries when
compiling extended rules to verify the accuracy of programmatic identifiers
(ProgIDs) or interfaces.

v Extended rules that compare two ActiveX properties or method results, or any
combination of properties or method results. This type of comparison is invalid
because property and method types are unknown prior to compilation and thus
it is not possible to generate the correct comparison code.

Definition of ActiveX Terminology

ActiveX is a term that encompasses a set of rules that define how applications
should share information. ActiveX grew out of technologies developed by
Microsoft, specifically Object Linking and Embedding (OLE) and Component
Object Model (COM).

An ActiveX automation server is an ActiveX component (a .DLL or .EXE program)
that can expose part of its functionality, specifically properties and methods, via
the IDispatch interface to another program on the system.

Some ActiveX controls function as automation servers.

The IDispatch interface is a standard COM interface. Automation Servers typically
expose their methods and properties through this interface.

A method is an action or function that is performed by an object (for example, a
calculation or a search).

164 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



A property is a characteristic or parameter of an object (for example, type, size, or
creation date).

ActiveX controls are a specifically defined method of implementing ActiveX
technologies. Basically an ActiveX control is a software component that executes
common tasks and can integrate into the user interface of an application that
provides the necessary ActiveX control host functionality.

The ActiveX control specification enables you to build component software that
interacts with your application and Sterling Gentran:Server. ActiveX controls
require a user interface, so they are not appropriate for translation user exits. These
controls can be developed in a variety of programming languages, including Visual
Basic.

About User Exits
User exits allow you to enhance your functionality or fulfill specific requirements
that Sterling Gentran:Server does not perform during normal translation.

Sterling Gentran:Server supports user exits in all types of translation objects
through extended rules that enable the use of Microsoft’s ActiveX technology. This
feature allows you to use extended rules to invoke custom functionality that was
created as an ActiveX Automation Server.

Specifically, you can:
v create objects
v delete objects
v query objects
v access properties
v invoke methods

Note: You can create your own custom functionality as an ActiveX Automation
Server, or you can use third party Automation Servers.

Sterling Gentran:Server supports ActiveX indexed properties, specifically these
types of index:
v variant
v numeric
v string

The index support allows you to use these syntaxes (if they are supported by your
Automation server):
n = ob.property[1];
n = ob.property["Count"];
n = ob.property[ob.method()];

Sterling Gentran:Server also supports chaining of ActiveX method calls and
properties, which simplifies extended rules for Automation servers with
moderately complex object models (for example, ADO).

The following is an example of chaining statements:
recordset.fields.item["MessageId"].value

User exits may be used in the following manner:

Chapter 7. User Exits 165



v To access your database table to perform cross-reference or lookups instead of
using the Sterling Gentran:Server tables.

v To perform complex pricing calculations (for example, involving multiple
customers, where they are located, and where the product is sold).

Data types supported

Table 37. Extended rule data types and the corresponding ActiveX data types

Extended Rule Data Type ActiveX Data Type

INTEGER VT_14

REAL VT_R8

DATETIME VT_DATE

STRING VT_BSTR

OBJECT VT_DISPATCH

Data type conversion

The Sterling Gentran:Server translator automatically converts the extended rule
data type to the ActiveX data type, whenever possible. If the conversion cannot be
performed, a type mismatch error is written to the Audit Log and the extended
rule is immediately terminated. An error is also written to the translator report, if
one is used by the operation. Since an export operation does not generate a
translator report, any conversion errors during export translation are only written
to the Audit Log.

Objects

ActiveX automation servers use the datatype OBJECT, which consists of two
elements: properties (a defined set of data) and methods. A method is a function
that is defined by the interface of the object.

All objects that are automation servers provide the default interface IDispatch,
which exposes the internal functions of an application to Sterling Gentran:Server.
You can also expose other interfaces. For example, Internet Explorer exposes the
interface IWebBrowser2.

Syntax

The object must be declared and then created via the CREATEOBJECT command,
by pointing to the object’s IDispatch interface. Then, the object’s methods may be
invoked using the syntax object.method(parameters).

The user may specify the ProgID and an optional InterfaceID (IID). If you just
specify the ProgID, Sterling Gentran:Server uses the default IDispatch interface.
The IID is a machine-readable identifier that uniquely identifies the interface of an
object (for example, {00020300-00B000-C00004005300}). Interfaces can also be
identified by their human-readable name (for example, IDispatch).

Note: Each IID must be enclosed in braces {}.

166 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Location

The location of the user exit in the map depends on what the user exit needs to do
and what you want the scope of the rule to be. Typically, you might:
v declare an object in the On Begin rule of the Input side of the map (Loop Level

Extended Rules dialog box of Input positional file),
v create and use the object in the On Begin rule of the Input side of the map

(Loop Level Extended Rules dialog box of Input positional file), and
v delete the object in the On End rule of the Output side (Loop Level Extended

Rules dialog box of Output EDI file).

Note: The sample above is intended as an example only. You can declare, create,
use, and delete an object in an extended rule for a map component at any
hierarchical level, including field level extended rules, if appropriate.

See How to Define Extended Rules for more information on creating extended
rules for various map components.

Examples of User Exits
Defining object variable

This example defines a variable that represents an ActiveX Automation Server:
object ob;

Creating a default interface

This example creates an instance of the default interface of the Internet Explorer
ActiveX Automation Server:
object ob;
ob = createobject("InternetExplorer.Application");
//Creates an instance of the default interface of an ActiveX Automation Server.

Creating a specific interface

This example creates an instance of the Internet Explorer ActiveX Automation
Server and requests a specific interface:
object ob;
ob = createobject("InternetExplorer.Application",

"{EAB22AC1-30C1-11CR-A7EB-000C05BAE0B}");
//Creates an instance of a specific interface of an ActiveX Automation Server.
//In this case, the IID is known (specified in braces).
//Note: The createobject command is more efficient if you use the IID
//instead of the interface name.

This example creates an instance of the Internet Explorer ActiveX Automation
Server, where the interface identifier of the desired interface is unknown, but the
name of the interface is IWebBrowser:
object ob;
string[50] iid;
iid = getiid("InternetExplorer.Application", "IWebBrowser2");
ob = createobject("InternetExplorer.Application", iid);
//Creates an instance of a specific interface of an ActiveX Automation Server.
//In this case, the IID is not known, so the ProgID and name of the interface
//(IWebBrowser) are specified and Gentran:Server looks up the IID. The IID is
//loaded into the string variable "iid" and then that value is used to create
//the object.

Chapter 7. User Exits 167



Deleting an object

An object must be deleted before the end of the map that uses it. It is more
efficient to delete the object immediately when you no longer need it, although the
Sterling Gentran:Server translator deletes the object automatically at the end of the
map. Also, if you assign one object to another one, both copies of the object must
be deleted for that object to be properly unloaded.

This example deletes the object "ob" that was used in the previous examples:
deleteobject(ob);

Getting a property value

This example obtains a property value from an ActiveX Automation Server:
object ob;
string[50] iid;
iid = getiid("InternetExplorer.Application", "IWebBrowser2");
ob = createobject("InternetExplorer.Application", iid);
IF ob.Visible = 1 THEN
BEGIN
//The property value is accessed.
END
//Test to see if the system displays the Internet Explorer.

Setting a property value

This example sets a property value in an ActiveX Automation Server:
object ob;
string[50] iid;
iid = getiid("InternetExplorer.Application", "IWebBrowser2");
ob = createobject("InternetExplorer.Application", iid);
ob.Visible = 1;
//The property value is set. Display Internet Explorer on the desktop.

Passing parameters to a method

To pass parameters to a method, use the syntax
objectname.methodname(parameters). The Sterling Gentran:Server translator
automatically converts the extended rule data type of the property to the ActiveX
data type, whenever possible. If there is no directly corresponding type in the
extended rules, the conversion is performed as well as possible by the operating
system.

Sterling Gentran:Server relies on default data types. For example, Sterling
Gentran:Server converts VT_CURRENCY (which is an unknown data type to the
translator programming language) to a real or numeric data type. If the conversion
cannot be performed, a type mismatch error is written to the Translator Report and
the extended rule is immediately terminated.

This example navigates to a web page by passing the URL to the Navigate method
of Internet Explorer:
object ob;
string[50] iid;
iid = getiid("InternetExplorer.Application", "IWebBrowser2");
ob = createobject("InternetExplorer.Application", iid);
ob.Navigate("www.sterlingcommerce.com");
//Navigates to the IBM web page by passing the URL to the Navigate
//method of Internet Explorer. Note: URL must be enclosed in quotation marks.

168 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Returning values in output parameters

To return values in output parameters, use the syntax
objectname.methodname(InputParameter, OUT OutputParameter).

Note:

v Input and output parameters may occur anywhere in the parameter list.
v Output parameters must be preceded by the OUT keyword.
v When an extended rule variable is used as an output parameter, the ActiveX

datatype must match exactly.

See Data types supported for a list of ActiveX data types and the analogous
extended rule data type for each.

This example decrypts data in a field:
object ob;
ob = createobject("YourCompany.DecryptionUserExit");
ob.Decrypt("EncryptionKey", OUT #Field_Name);

Testing successful object creation

This example tests the value of an object against zero to determine if it was
correctly created:
object ob;
ob = createobject("YourCompany.DecryptionUserExit");
IF ob = 0 THEN
BEGIN
//Object not created properly; perform task X.
END
//Test to see if the object was created successful. If it was not
//created, perform the specified task.

Obtaining another interface of an existing object

This example uses the IID of an object to obtain a different interface of an existing
object (object1):
object ob, ob2;
ob = createobject("InternetExplorer.Application");
ob2 = queryobject(ob, "{EAB22AC1-30C1-11CF-A7EB-0000C05BAE0B}");

If the IID of the desired interface is unknown, use the getiid function to determine
the correct IID and then use the queryobject function, as this example
demonstrates:
object ob, ob2;
string[50] iid;
ob = createobject("InternetExplorer.Application");
iid = getiid("InternetExplorer.Application", "IWebBrowser2");
ob2 = queryobject(ob, iid);

Accessing a database

This example uses a user exit to cross-reference a UPC code with a value in a
database to return an SKU number. This example adds the user exit to an invoice
(import) map (refer to the Sterling Gentran:Server tutorial folder, PET_810.MAP for
an example). The user exit code is implemented by increments in the map, with
each section added to the logical map component.

Chapter 7. User Exits 169



On Begin Extended Rule

Type the following code into the On Begin extended rule of the INPUT positional
file:
//Declare the object
object ob;
//Create an instance of the Visual Basic Active X Automation Server
ob = CreateObject("SCUPCSKU.SKUResolve");
//To create an instance of the C++ ActiveX Automation Server
//use the following command instead:
//ob = CreateObject("UpcSku.Application");

if ob = 0 then
begin
MessageBox("Create Object failed",0);
end

INVDETAIL.UPCCODE Field Extended Rule

Type the following code into the UPCCODE field extended rule on the Input side
of the map (INVDETAIL record):
string [100] msg;
msg = "UPC Code = ";
concat(msg,#UPCCODE,12);
//Call the automation server
#UPCCODE = ob.ResolveSKU(#UPCCODE);
concat(msg, ", SKU Code = ",13);
concat(msg,#UPCCODE,len(#UPCCODE));
//Display message box to user listing UPC code and SKU matches
MessageBox(msg,0);

On End Extended Rule

Type the following code into the On End extended rule of the INPUT positional
file:
//Delete the object
deleteobject(ob);

Note: See Examples of Automation Servers for sample automation servers (written
in Visual Basic and C++) that access a Microsoft Access Database to cross-reference
a UPC code with an SKU code.

Examples of Automation Servers
This topic contains sample automation servers that access a Microsoft Access
Database to cross-reference a UPC code with an SKU code. The first example is
written in the Visual Basic programming language and the second one in C++.

Notes

Both of the following automation servers could be used with the "Accessing a
database" user exit extended rules on Accessing a database.

Visual Basic Automation Server

This sample automation server was written in the Visual Basic programming
language. It accesses a Microsoft Access Database to cross-reference a UPC code
with an SKU code. The syntax is: ResolveSKU(UPCCode as String). Note that after

170 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



compiling the Automation Server (SCUPCSKU.EXE), it was registered using
REGSRV32.EXE because it was not self-registering.
//This is a Visual Basic Active X EXE project. All code shown here resides in
//the SKUResolve class. (Class 1 was renamed to SKUResolve). To access the
//database, the following reference was included in the project: Microsoft
//DAO 2.5/3.5Compatibility Library.
//The following line forces the compiler to make sure all variables are declared
//prior to use within the program.
Option Explicit
//This function receives a UPC code as it's only parameter and cross-references it
//with a value in the database to get the corresponding SKU code.
Public Function ResolveSKU(UPCCode As String) As String

Dim DB As Database, RS As Recordset
Set DB = DBEngine.Workspaces(0).OpenDatabase("c:\GENSRVNT utorial\upcsku.mdb")
Set RS = DB.OpenRecordset("UPCSKU", dbOpenDynaset)

//Make sure there are no trailing spaces on the parameter passed to this function.
UPCCode = Trim(UPCCode)

//Since the database is case-sensitive make sure that the parameter is all
//capital letters.

UPCCode = UCase(UPCCode)
RS.MoveFirst

//Loop until we find the UPC code or until the end of the recordset is found.
While Not RS.EOF

//If we find the UPC code, return the ’SKU code associated with it.
If RS("UPCCode") = UPCCode Then

ResolveSKU = RS("SKUCode")
Exit Function

End If
RS.MoveNext

Wend
//No matching UPC code was found for the parameter passed to the function.
//Return a value stating that there was no SKU found.

ResolveSKU = "No Record Found"
End Function

C++ Automation Server

This sample automation server was written in the C++ programming language. It
performs exactly the same function as the previous Visual Basic sample user
exit—accessing a Microsoft Access Database to cross-reference a UPC code with an
SKU code. Note that after compiling the Automation Server (UPCSKU.DLL), it was
registered using REGSRV32.EXE because it was not self-registering.
// This is a MFC AppWizard (dll) project with the Automation option selected.
//All code shown here resides in the CUpcSkuMain class, which is derived from
//CCmdTarget. When the class was created in ClassWizard, the ProgID
//"UpcSku.Application" was specified in the "Createable by type ID:" field.
// This ProgID is different than the one used for the VB example so that both
// Automation servers can co-exist in the registry.

//To access the database, a class (CUpcSkuDaoRecordset) derived from CDaoRecordset
//is needed. DAO and Snapshot options were selected and the location of the database
// (Upcsku.mdb) was specified during the creation of the class in ClassWizard.
//Include the header file for the derived recordset class.
#include "UpcSkuDaoRecordset.h"
// This function is called when the last reference for this automation object
//is released.

void CUpcSkuMain::OnFinalRelease()
{
CCmdTarget::OnFinalRelease();

// Since we used DAO to access the database,
// terminate DAO now so the DLL can unload.

Chapter 7. User Exits 171



if (AfxOleCanExitApp())
AfxDaoTerm();

}
// This function receives a UPC code as it's only parameter and cross-references it
//with a value in the database to get the corresponding SKU code.

BSTR CUpcSkuMain::ResolveSKU(LPCTSTR UPCCode)
{

CString strResult;
CString sUPCCode = UPCCode;

CDaoDatabase DB;
DB.Open("C:\GENSRVNT\Tutorial\Upcsku.mdb", FALSE, TRUE);

CUpcSkuDaoRecordset RS(&DB); RS.Open();

// Make sure there are no trailing spaces on the parameter passed to this function.
sUPCCode.TrimRight();

// Since the database is case-sensitive make sure that the
//parameter has all capitalized letters in it.

sUPCCode.MakeUpper();
RS.MoveFirst();

// Loop until we find the UPC code or until the end of the recordset is found.
while ( !RS.IsEOF() )
{

// If we find the UPC code, return the SKU code associated with it.

if ( RS.m_UPCCode == sUPCCode )
{
strResult = RS.m_SKUCode;
RS.Close();
DB.Close();
return strResult.AllocSysString();
}
RS.MoveNext();
}

// No matching UPC code was found for the parameter passed to the function.
//Return a value stating that there was no SKU found.

strResult = "No Record Found";

RS.Close();
DB.Close();

return strResult.AllocSysString();
}

Creating a User Exit
Before you begin

The ActiveX Automation Server must be installed on the same machine as the
Sterling Gentran:Server translator (where you are using the translation object that
contains the user exit).

About this task

Use this procedure to create a user exit.

172 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Procedure
1. Start the Sterling Gentran:Server Application Integration subsystem.
2. Open the map in which you want to apply a user exit.
3. Determine where the user exit will be located in the map (for example, session

rule or extended rule).

Note: When you apply a user exit to a map component, subordinate map
components may also be able to execute the same user exit.

4. Construct the user exit.
v See How to Define Extended Rules for more information on creating

extended rules for various map components.
v See the topics in the Alphabetic Language Reference section for more

information about the createobject, deleteobject, and getiid commands.

Chapter 7. User Exits 173



174 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Chapter 8. GentranEx.DLL

About GentranEx.DLL
GentranEx.DLL is an in-process automation server that extends the flexibility of the
Sterling Gentran:Server MAPPER.EXE (Application Integration) and TX32.EXE
(translator) programs by using COM technology and the IDispatch interface.

GentranEx.DLL enables you to perform several functions that exceed the scope of
normal Sterling Gentran:Server operation, including:
v accessing any GentranDatabase table
v gathering information from a translation session and writing that information to

a log file
v extending the functionality of Application Integration extended rules

GentranEx.DLL is automatically installed during the Sterling Gentran:Server
installation process.

The information in the following topics assumes that you are familiar with the
following:
v Sterling Gentran:Server
v the Application Integration subsystem
v your operating system
v automation servers
v how and when extended rules are invoked and their scope
v how to create extended rules

About Database Access
GentranEx.DLL allow access to any GentranDatabase table through the TSql
statements UPDATES and INSERTS. The GentranEx.DLL uses ODBC and the
Sterling Gentran:Server ODBC DSN (typically GentranDatabase) to connect to the
database.

Note: The TSql statement must be generated by the user and passed to the
Execute method. To support a connection to an Oracle database the TSql
statements must enclose Tablenames and Columnames in square brackets. These
square brackets are automatically converted to double quotes before the statement
is executed.

Implementing Database Access

Prog ID
"GentranEx.DispatchDBAccess"

Interface ID
{860AAE85-7DA8-11D2-ABDB-00C04FF3971C}

© Copyright IBM Corp. 1996, 2024 175



Table 38. Access Methods

Method Description

short ExecuteSQL(BSTR
IpszSQLString)

Returns "1" for success and "-1" for failure. Errors are
written to the Application Event Viewer.

BSTR GetLastError() Returns a string containing the error of the most
recent attempt to invoke the ExecuteSQL method. If
the last attempt was successful this call returns a null
string.

BSTR GetLastSQL() Returns a string containing the most recently
executed SQL statement using the �ExecuteSQL ( ... )
function.

Properties: None.

Extended rule example

This is an example of an extended rule using GentranEx.DLL to access the
GentranDatabase.
Object obDBAccess;
Integer result;
String [64] szPartnerKEY;
String [1024] szMsg;

obDBAccess = CreateObject ("GentranEx.DispatchDBAccess");
szTSQL = "Update [interchange_tb] Set [AppField6]=""+
#STATUS+
"" where [PartnerKEY]=""+
szPartnerKEY+
"" and [Direction]=1 and [ControlNumber]=""+#REF+"";
result = obDBAccess.ExecuteSQL(szTSQL);
if result = -1 then

Begin
szMsg = obDBAccess.GetLastError();
messagebox(szMsg,0);
szMsg = obDBAccess.GetLastSQL();
messagebox(szMsg,0);

End

deleteobject(obDBAcess);

About Debugging
GentranEx.DLL enables you to gather information from any translation session
executed on the machine on which GentranEx.DLL is installed, and write that
information to a log file. This function does not require any interaction from the
user and thus is an efficient alternative to using the Messagebox function when
debugging map.

Each entry made to the log file contains the following information, which provides
clarity and readability to the log:
v date and time stamp
v name of the log owner
v source of the message
v the message

176 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



The name of the log owner, the source of the message, and the message are all
supplied by the user via the OpenLog() and WriteLog() functions.

Implementing Debugging

Prog ID
"GentranEx.TraceLog"

Interface ID
{7DA17F77-8090-11D2-ABE4-00C04FF3971C}

Table 39. Debugging Methods

Method Description

short OpenLog(BSTR
PathFilename, BSTR Owner,
short WriteMode)

v Returns "1" for success, "-1" for failure, and "-2" if the
file is already open.

v Argument 1 is the path and filename of the log file to
be created.

v Argument 2 is the owner of the log. This value is
written to the log file and is included to make the log
easier to read.

v Argument 3 is the writemode (for example, 1 = append
(this is the default) and 2 = truncate).

v The "Owner" column in the generated log file is 20
characters wide — therefore Argument 2 is truncated at
that value (20) when written to the log file.

short Open() Opens a trace log file (named "GentranTrace.log") in the
GENSRVNT home directory. The file is opened in Append
mode and is assigned an Owner name of "GentranEx".

short WriteLog(BSTR Source,
BSTR Message)

v Returns "1" for success and "-1" for failure.

v Argument 1 is the source of the message that is written.

v Argument 2 is the message text. Both Arguments 1 and
2 are written in separate columns in the log file for
clarity.

v The "Source" column in the log file is 20 characters
wide and thus Argument 1 is truncated at that value
(20).

v The "Message" column in the log file is 256 characters
wide and thus Argument 2 of this function is truncated
at that value when written to the log file.

BSTR GetLastError() Returns a string containing the error of the most recent
attempt to open the log file.

short CloseLog() Closes the log file and returns "1" for success or "-1" for
failure.
Note: The file should always be closed before your trace
object goes out of scope.

Properties: None.

Extended rule example

This is an example of an extended rule using GentranEx.DLL for debugging.

Chapter 8. GentranEx.DLL 177



Object obTrace;
Integer result;
String [32] szPartnerKEY;

obTrace = CreateObject ("GentranEx.TraceLog");
result = obTrace.OpenLog("D:\GENSRVNT\TraceTest.txt","ICLANA",2);
if result = -1 then

Begin
obTrace.WriteLog("Start of Log", "Trace Test");
obTrace.WriteLog("Converted TUN#",szPartnerKEY);

End
obTrace.CloseLog();
deleteobject(obTrace);

About Rules Extensions
GentranEx.DLL provides methods and properties that extend the functionality of
the Application Integration extended rules logic. For example, there are methods
that allow the conversion of strings from uppercase to lowercase, which allows
greater control over string comparison logic. Also, there are functions available that
return the current date and/or time. GentranEx.DLL also provides a property that
can be referenced to determine whether the automation server is running in a
non-interactive environment.

Implementing Rules Extensions

Prog ID
"GentranEx.Rules"

Interface ID
{387C0F34-82F5-11D2-ABEA-00C04FF3971C}

Table 40. Rules Extension Methods

Method Description

DATE GetDate() Returns the current date. The assignment
operator (=) can be used to set any date/time
variable or date/time type field equal to the
value returned by this method.

DATE GetTime() Returns the current time. The assignment
operator (=) can be used to set any date/time
variable or date/time type field equal to the
value returned by this method.

BSTR ToUpper(BSTR szMixedCase) v Uses the string to be converted as its
argument.

v Returns the original string converted to
uppercase. Any string variable, string field,
or string literal can be supplied as the first
argument.

BSTR ToLower(BSTR szMixedCase) v Uses the string to be converted as its
argument.

v Returns the original string converted to
lowercase. Any string variable, string field,
or string literal can be supplied as the first
argument.

Properties

178 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



short InteractiveState

Extended rule example

This is an example of an extended rule using GentranEx.DLL to exceed normal
extended rule logic.
Object obRules;
String [32] szLowerCaseStr;
String [32] szUpperCaseStr;
String [32] szResultString;
date d;

//Initialize values of string variables
szLowerCaseStr = "abcdefg";
szUpperCaseStr = "WXYZ";

//Create the Rules object
obRules = CreateObject("GentranEx.Rules");

//Test string conversion methods and display results
szResultString = obRules.ToUpper(szLowerCaseStr);
messagebox(szResultString,0);
szResultString = obRules.ToLower(szUpperCaseStr);
messagebox(szResultString,0);

//Test date methods
d = obRules.GetDate();
#TimeField = obRules.GetTime();

//Test whether running interactively
if obRules.InteractiveState = 1 then

messagebox("We're running on the desktop",0);
else

Begin
//use the TraceLog object to write to a log file since we're
//running non-interactively

End

deleteobject(obRules);

Chapter 8. GentranEx.DLL 179



180 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Chapter 9. Translator Command Line Interface

Command Line Syntax

Note:

v If you do not specify the XML format parameter, the report in generated in
binary form by default.

v This interface is currently used by all applications that invoke the services of the
TX32.EXE translator.

The syntax of the command line is:
tx32 [-n] [-q]
[-a server]
[-e eventid]
[-i ipckey [hwnd] ]
[-f infile templatefile outfile report file]
[-u param -u param ...]
[-t tracefile]
[-x XMLformattedreport]

Syntax parameters

This table describes the command line syntax parameters: .

Table 41. Syntax parameters

Parameter Description

-n Do not move document to InDrawer after print or export

-q Quiet mode (does not display message boxes or status dialog box)

-a Server (name of audit server to which TX32.EXE connects)

-e EventID (identifier of an audit event to which this translator belongs)

-i Inter-process communication (IPC) mode

Subparameter Description

ipckey Key to ipcfile (translator will use the IpcMsg
folder and add .IPC)

hwnd Number representation of the parent
applications’s main window handle

-f Simple-translator mode

Subparameter Description

infile Path to file to be translated

templatefile Path to translation object to be used

outfile Path to file to write translated output

reportfile Path to create translator report

-u User-defined parameters accessible from extended rules

Subparameter Description

param Parameter value

© Copyright IBM Corp. 1996, 2024 181



Table 41. Syntax parameters (continued)

Parameter Description

-t Trace mode

Subparameter Description

tracefile Path to trace the file to be used

-x XMLformattedreport Generates the translator report in XML format
Notes:

v If you do not specify this parameter, the
report is generated in binary form by
default.

v Translator reports in XML format are not
supported with maps that have CII or CII
Positional specified as either the input or
output format. This parameter will be
ignored if specified with CII or CII
Positional maps, and the translator report
will be generated in binary form.

182 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Chapter 10. Error Messages

About Error Messages
The informational messages are dependent on the context of the program and are
intended to be self-explanatory.

The Sterling Gentran:Server error messages and other informational messages are
displayed in one of the following dialog boxes.
v Compile Errors dialog box when you compile a translation object
v Error section of the Extended Rules dialog boxes when you compile an extended

rule containing errors before compiling the translation object and when you
commit an erroneous action in Sterling Gentran:Server

The error messages are described in the following topics, along with the actions
you can take to correct the problems.

Compile Error Messages
The Compile Error Messages are displayed in the Compile Errors dialog box if you
compile a translation object with errors. Error messages are also displayed in the
Error section of an Extended Rule dialog box if you compile the extended rule
containing errors before compiling the translation object. After you correct the
cause of the errors, click Compile again to ensure that the rule is error-free.

Messages

The compile error messages are listed by the four- or five-digit message number
and the error message text. The error definitions contain the actions that you can
take to correct the problem (if appropriate) and a description that includes possible
causes of the error.

Table 42. Compile Error Messages

Msg ID Message Text Explanation Your Action

1000 expected '.' The rule does not have the required
"." between a group name and a field
name.

Insert a "." between the group name
and field name.

1001 no statement to compile The rule is does not contain any
statements.

Add a statement or statements to the
rule.

1002 unexpected end of
program

The rule was not complete. Finish the rule.

1003 expected ',' The rule does not have the required
"," between parameters.

Insert a "," between parameters.

1004 expected ‘;’ A statement was not terminated
properly.

Terminate the statement in an
appropriate manner.

1006 no statements to compile The body of an IF/ELSE or WHILE
condition was empty.

Complete the body of the unfinished
condition.

1007 syntax error ... The map component contains a syntax
error.

Correct the syntax error.

© Copyright IBM Corp. 1996, 2024 183



Table 42. Compile Error Messages (continued)

Msg ID Message Text Explanation Your Action

1008 expected '#' The rule does not have the required
"#" before a field name.

Insert a "#" before the field name.

2000 group ... undefined The rule references a group that does
not exist.

Change the reference to an existing
group or delete the reference.

2001 ... is not a member of ... The rule references a field that does
not belong to the specified group.

Change the reference to an existing
field in the specified group.

2002 insufficient indices to
access group ...

The rule does not give the full
addressing for a group.

Complete the addressing for the
group.

2003 too many indices to access
group...

The rule uses too many addresses for
the group.

Address the group correctly.

2004 ... has not been defined The rule references an undefined
variable.

Define the variable in the declarations
section.

2005 out of temporary variables The rule could not be compiled
because some expressions are too
complex.

Simplify the expressions and compile
the rule again.

2008 field type unknown The compiler was unable to determine
the type of a field.

Verify that a Data Type is selected for
this field.

2009 cannot reference a local
field with no current
group

The rule (probably pre- or
post-session) references a local field,
but is not associated with any group.

Reference the field using the proper
addressing.

2010 instances of '%1' are
transient and cannot be
accessed

The rule references an output group
using full addressing. This form of
addressing is only appropriate for
input groups.

Reference the output group with the
proper address.

2011 no field specified The rule omits a field reference. Add the field reference to the rule.

2012 group ... is promoted and
cannot be accessed in this
manner

You attempted to access a promoted
group in a COUNT or DELETE rule.

Do not COUNT or DELETE a
promoted group.

2100 ... is not an array variable The rule uses array indexing for a
variable that is not an array.

Use the proper indexing for the
variable.

2101 ...: array index required The rule uses an array variable
without using the necessary array
indexing.

Add the necessary indexing to the
array variable.

2102 ...: array overflow The rule uses an invalid array index. Use the proper array index for the
array variable.

2103 only one wildcard index is
permitted

The rule uses more than one wildcard
index.

Only one wildcard index is permitted
per rule.

2104 a wildcard index must be
specified

The rule does not specify a wildcard
index when required.

Add a wildcard index where
necessary.

2200 expected a string A required string or string variable is
not supplied.

Add the required string or string
variable.

2201 string overflow A string overflow occurred. Verify that the size of a target string is
equal to or greater than the source
string.

3000 array size expected in
declaration of ...

Invalid array declaration.

3001 declaration of ... missing ']' Invalid array declaration.

3002 string size expected Invalid string declaration.

184 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Table 42. Compile Error Messages (continued)

Msg ID Message Text Explanation Your Action

3003 string size missing ']' Invalid string declaration.

3004 variable name expected Invalid variable declaration.

3005 ... already defined Two variables with the same name are
defined at the same scope.

Rename one of the two variables.

3006 expected an accumulator
number, found ...

Invalid accumulator reference.

3007 ... is not a valid
accumulator number

Invalid accumulator reference.

4000 expected a numeric
expression, found ...

You specified something other than
the expected numeric expression.

Specify the correct numeric
expression.

4001 expected a term, found ... You specified something other than
the expected term.

Specify the correct term.

4002 expected '+' or '-' You specified something other than
the expected "+" or �"-".

Specify "+" or "-".

4003 expected '*' or '/' You specified something other than
the expected "*" or �"/".

Specify '"*"or"/".

4004 expected ')' You specified something other than
the expected ")".

Specify ")".

4005 expected a factor, found ... Invalid numeric expression.

4006 expected '(' You specified something other than
the expected "(".

Specify "(".

4007 ... is of incorrect type The specified expression is of an
incorrect type.

Specify the correct type for the
expression.

4008 expected a relational
operator

You specified something other than
the expected relational operator.

Specify the correct relational operator.

4009 missing argument A required parameter was omitted. Add the required parameter.

4010 assignment expected The assignment operator was omitted
from an assignment statement.

Add the correct assignment operator
to the statement.

4011 operator ... requires two
arguments

Only one parameter was supplied for
a binary operator.

Supply a second parameter for the
binary operator.

4012 converting real to integer
may lose significant digits

You are converting a real number to
an integer.

Verify that losing decimal places is
acceptable in this instance.

4013 expression too complex,
use sub-expressions

A mathematical expression contains
too many terms.

Group some of the terms of the
mathematical expression in
parentheses.

4014 expected an integer, found
...

The compiler expected to find an
integer instead of [...].

Supply the correct value for [...].

4015 no valid condition
specified

You did not specify a valid IF or
WHILE condition.

Supply a valid condition in the IF or
WHILE statement.

4100 expected a date, found ... A date is required but not supplied. Specify a date.

4101 expected a date modifier,
found ...

A date modifier was required but not
supplied.

Specify a date modifier.

4102 ... is not a date Invalid date expression.

5000 THEN expected The compiler expected a THEN
condition.

Chapter 10. Error Messages 185



Table 42. Compile Error Messages (continued)

Msg ID Message Text Explanation Your Action

5001 DO expected The compiler expected a DO
condition.

5002 END expected The compiler expected a END
condition.

5004 FROM expected The compiler expected a FROM
condition.

5005 INTO expected The compiler expected a INTO
condition.

5006 END without BEGIN An END statement was found without
a corresponding BEGIN statement.

Insert a BEGIN statement in the
correct location.

5016 misplaced ‘BREAK’ The compiler found BREAK outside of
a loop.

Remove the BREAK or place it inside
a loop.

5017 misplaced ‘CONTINUE’ The compiler found CONTINUE
outside of a loop.

Remove the CONTINUE or place it
inside a loop.

5018 too many parameters Too many parameters were supplied
for a function.

Remove the unnecessary parameters.

5019 too few parameters Too few parameters were supplied for
a function.

Add the necessary parameters.

6000 expected a database table
name

The compiler expected a database
table name.

Insert a database table name in the
necessary location.

6001 expected a database
column name

The compiler expected a database
column name.

Insert a database column name in the
necessary location.

6002 too many column
receivers specified

The number of columns specified did
not match the number of receivers in
a SELECT statement.

Correlate the number of columns
specified in the SELECT statement to
the number of receivers.

6003 too few column receivers
specified

The number of columns specified did
not match the number of receivers in
a SELECT statement.

Correlate the number of columns
specified in the SELECT statement to
the number of receivers.

6004 WHERE expected The compiler expected a WHERE
statement.

6005 expected a database key An invalid database key was specified
in a WHERE statement.

Specify the correct database key in the
WHERE statement.

6006 WHERE not allowed with
this database table

A WHERE statement is not necessary
to access the specified database table.

Remove the WHERE statement.

6007 invalid key combination The combination of keys specified in
the WHERE statement is not a valid
unique compound key to the table.

Specify a valid combination of keys in
the WHERE statement.

7000 ... is not a valid seek type You used an invalid seek type in
FSEEK.

Use BEGIN, END, or CURRENT.

20001 Record ..., Field ... : date
field missing date format

The specified field does not have a
date format.

Edit the field and choose a date
format.

20003 Field ... : constant used in
standard rule does not
exist

The standard rule for the specified
field uses an invalid constant.

Correct the standard rule or create the
constant.

20004 Field ... : code list used in
standard rule does not
exist

The standard rule for the specified
field uses an invalid code list.

Correct the standard rule or create the
code list.

186 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Table 42. Compile Error Messages (continued)

Msg ID Message Text Explanation Your Action

20005 Field ... : the qualifier field
specified in a use constant
standard rule is invalid

The standard rule for the specified
field uses an invalid qualifier.

Correct the standard rule.

20006 Field ... : the field
specified to store the code
description in a use code
standard rule is invalid

The standard rule for the specified
field designates an invalid field for
the description.

Correct the standard rule.

20007 Record ... : the specified
key field ... : uses an
undefined constant

The key field for the specified record
uses an invalid constant.

Correct the key field.

20008 Record ... : the specified
key field ... : uses an
undefined code list

The key field for the specified record
uses an invalid code list.

Correct the key field.

20010 Record ... : the specified
key field ... : is inactive

The key field for the specified record
is inactive.

Activate the key field.

20700 only one binary data and
one binary length field are
permitted

You have more than one binary data
and/or more than one binary length
element in one segment.

Remove the additional binary data
and/or binary length elements from
the segment.

20701 binary length must
precede binary data

The binary length element must be
sequenced before the binary data
element in the segment so the
translator knows how much data to
expect.

Move the binary length element to
before the binary data element.

20702 incomplete binary data You marked a segment as binary, but
did not include either a binary length
element or a binary data element (or
both).

Add a binary length element and/or a
binary data element to the segment.

20703 group ... has no active
child objects

You tried to compile the translation
object, but the specified group is
empty.

Activate at least one child object in
the group.

20704 Element ..., Attribute ...:
enumerated attribute
declared without
accompanying standard
rule

The specified XML attribute is
configured to use an enumeration but
there is no code list standard rule that
defines the allowed values.

Define a use code list standard rule
for the specified attribute.

20705 Element ..., Attribute ...:
code list used in
enumerated attribute does
not exist.

The code list for the specified
enumerated XML attribute does not
exist.

Define the code list.

20706 Element ..., Attribute ...:
default value is not valid
...

The specified default value is not in
the code list for this XML attribute.

Ensure that the specified default value
is in the code list.

20707 Codelist ..., Attribute ...:
value used in enumerated
attribute code list does not
match XML NMTOKEN
production

A value in the enumeration code list
is not valid for XML.

Verify that all the value specified in
the code list are valid (legal) for an
XML attribute.

20708 Entity ... : Entity value is
invalid

The value of the specified entity is not
valid (legal) in XML.

Correct the entity value.

20709 ... : Illegal use of reference
character

An entity reference was not
terminated properly.

Correct the entity reference.

Chapter 10. Error Messages 187



Table 42. Compile Error Messages (continued)

Msg ID Message Text Explanation Your Action

20710 ... : Malformed character
reference encountered

An XML character reference was not
terminated properly.

Correct the character reference.

20711 ... : Invalid character
referenced

An XML character reference is invalid. Correct the character reference.

20712 ... : Reference to undefined
entity encountered

The referenced entity is not defined. Define the correct entity.

20713 ... : Circular entity
references encountered

An entity references an entity that in
turn references the original entity.

Do not reference the original entity in
a circular manner.

20714 ...: default does not match
the attribute type

The default value is the wrong type
for the attribute.

Either correct the type of the attribute
or the default value.

20715 ...: Contains illegal
character (‘<‘)

The default value contains the illegal
character ‘<‘.

Correct the default value.

Sterling Gentran:Server Error Messages
The Sterling Gentran:Server error messages are displayed when you commit an
erroneous action. When the system displays an error message, you must
acknowledge the message by clicking OK and then taking the appropriate action.

Messages

The error messages are listed alphabetically below by the first letter of the error
message text. The error definitions contain the actions that you can take to correct
the problem (if appropriate) and a description that includes possible causes of the
error.

Table 43. Sterling Gentran:Server Error Messages

Message Text Explanation

A code list entry must have a code value You attempted to add a code without an
associated code value.

A code list must have an element id You attempted to create a code list without
an element ID.

A code list for this element already exists.
You must use another element id or delete
the original code list first

You attempted to create a code list with the
same element ID as an already existing code
list.

A condition field is required You established a conditional relationship
that requires a condition field, but did not
specify a condition field.

A data type is required. You did not specify the Data Type of a field.

A field must have a name that is unique
within its parent group

You tried to give a field a name that is
already in use by another field within the
same group (not necessarily the same
record).

A group must have a unique name You tried to give a group a name that is
already used by another group or record.

A group or record with a maximum usage of
1 cannot be split or promoted

You attempted to split or promote a
single-occurrence group or record. This is
not a valid action.

188 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Table 43. Sterling Gentran:Server Error Messages (continued)

Message Text Explanation

A key field has been selected but no key
value has been specified.

You established a key field without
specifying a key value.

A Memory Exception has occurred. A system error occurred.

A name must be entered You did not specify a name for an object.

A problem occurred while attempting to
close loop .... This is probably due to
incorrect standards.

An error occurred when reading from the
standards.

A record must have a unique name You tried to give a record a name that is
already used by another group or record.

A Resource Exception has occurred. A system error occurred.

A serious error was encountered whilst
accessing the clipboard and the action was
abandoned

The system aborted a cut, copy, or paste
operation because a serious error occurred.

A system error was encountered while
compiling the translation object

While compiling a translation object, a
system-related problem, such as lack of
memory, prevented the compile from
completing.

A TDF could not be generated due to a lack
of available memory. Either restart Microsoft
Windows or close down other applications,
then try again

While generating a TDF, the system ran out
of memory.

An accumulator must be chosen for this
entry

You did not specify the accumulator to be
used in a Use Accum standard rule.

An invalid usage count has been entered You entered an invalid usage count for a
record or group.

No actions have been chosen for this
accumulator entry

You selected an accumulator but did not
specify any actions for it in a Use Accum
standard rule.

No alternate accumulator has been selected In a Use Accum standard rule, you
attempted to create an accumulator entry
that used an alternate accumulator, but did
not specify which alternate accumulator
should be used.

No character ranges have been specified for
this token.

You did not specify the characters allowed
for a syntax token.

No fields have been used in this relationship You established a conditional relationship
but did not specify the fields involved.

No more accumulator entries can be created You attempted to create more than six
accumulator entries in a Use Accum
standard rule.

No more field mappings can be created You attempted to create more than eight
field mappings for a Select standard rule.

The constant ID must be unique. You entered a literal constant identifier in
the ID field that is already used in an
existing constant.

Chapter 10. Error Messages 189



Table 43. Sterling Gentran:Server Error Messages (continued)

Message Text Explanation

The contents of the clipboard cannot be
pasted into the translation object at this
point

Either the Clipboard does not contain copied
or cut data, or you are trying to paste XML
information into a positional file format or
paste position information into an XML file
format.

The file format cannot be deleted You tried to delete a file format object.

The Maximum Usage must be greater then
zero and not less than the Minimum Usage.

You entered an invalid maximum usage
count.

The number of entries to be split must be
greater than zero and less than the
maximum number of entries in the original

You entered an invalid number in the Split
dialog box. The number to be split must be
greater than zero and less than the
maximum number of entries in the original.

The translation object could not be compiled The translation object is not ready to be
compiled.

The token code must be unique. You attempted to create a syntax token with
the same token identifier as an existing
syntax token.

These fields cannot be linked because the
input field is deeper than the output field.
The translator would be unable to address
the input field.

You are attempting to create an invalid link.
A valid link involves an Input field and an
Output field that are at the same level.

This code already exists. You must use
another code or delete the original code first

You attempted to add a code to a code list
that already contained that code.

This field cannot be linked to another field Due to an unknown error, Sterling
Gentran:Server was unable to begin creating
the link.

This file is not a valid Gentran translation
object

You attempted to open (load) a file that is
not a translation object.

You have entered an invalid character or
character code in Record Delimiter 1

You entered an invalid Record Delimiter 1
on the Positional File Format Properties
dialog box.

You have entered an invalid character or
character code in Record Delimiter 2

You entered an invalid Record Delimiter 2
on the Positional File Format Properties
dialog box.

You have entered an invalid decimal
separator or character code.

You entered an invalid decimal separator.

You have entered an invalid element
delimiter character or character code

You entered an invalid element delimiter.

You have entered an invalid Pad character
or character code

You entered an invalid pad character for a
positional field.

You have entered an invalid release
character or character code

You entered an invalid release character.

You have entered an invalid sub-element
delimiter character or character code

You entered an invalid sub-element
delimiter.

You have entered an invalid tag delimiter
character or character code

You entered an invalid tag delimiter.

190 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Table 43. Sterling Gentran:Server Error Messages (continued)

Message Text Explanation

You must enter a description of the
translation object.

You attempted to save the translation object
without entering the translation object
description on the Translation Object Details
dialog box.

You must enter a subtable name. For a Select or Update standard rule, the
selected table requires you to specify a table
name in the Sub Table field.

You must enter a valid character range. You entered an invalid character range for a
syntax token.

You must enter a valid syntax token. You did not enter a valid token identifier in
the Token field when creating or editing a
syntax token.

You must enter a value for this constant. You did not specify a value for the constant
in the Value field when creating or editing a
syntax token.

You must enter an ID. You did not specify a literal constant
identifier for the constant in the ID field
when creating or editing a syntax token.

You must enter the name of the author of
this translation object

You attempted to save the translation object
without entering the name of the translation
object author on the Translation Object
Details dialog box.

You must select a constant type. You did not select a constant type from the
Type list when creating or editing a
constant.

You need to specify Input and Output File
Types for the new translation object

You clicked OK on the Create New
Translation Object dialog box without
selecting both the Input Format Type and
Output Format Type.

About Translator Report Error Messages
The Document and Interchange Translator Report error messages are displayed on
the Document Translator Report and the Interchange Translator Report under the
Message Number and Message columns.

The Message Number column on the translator report contains a prefix (INF, EDI,
or POS), a dash ("-"), and a four digit number that identifies the error. The prefixes
are described in the following table

Prefix Description

INF Used only with information messages, which are not defined in this chapter
because they are intended to be self-explanatory.

EDI Used with all the messages listed below that are not informational. It is used
if the error is related to an EDI file.

POS Used with all the messages listed below that are not informational. It is used
if the error is related to a positional flat file.

The Message column on the translator report contains the actual error message
text.

Chapter 10. Error Messages 191



Translator Error Messages
The translator report error messages are listed below by the last three digits of the
message number and the error message text.

Table 44. Translator Error Messages

Msg ID Message Text Explanation Your Action

100 Mandatory Element
Missing

An element that the translation
object designated as "Mandatory"
was not created in an Outbound
document or was not received in an
Inbound document.

Use the Segment/Record ID, Sequence, and
Element fields on the Translator Report to
determine which mandatory element in the
document is missing.

Outbound

If the document was entered using the
Document Editor, open the document and
complete the missing field. If you imported
the document into your system, delete the
document and then import that document
after the import file has been corrected. See
the IBM Sterling Gentran:Server for Microsoft
Windows User Guide for more information.

Inbound

Contact your trading partner and determine
what action you should take.

110 Incorrect Element
Format

An element was entered or received
with an incorrect format. Some
examples of incorrect format are: a
numeric field that contains
non-numeric characters, and a field
that exceeds the maximum length or
is less than the minimum length (as
defined in the standard) and invalid
dates.

Use the Segment/Record ID, Sequence, and
Element fields on the Translator Report to
determine which element in the document is
invalid.

Outbound

Correct the data source.

Inbound

Contact your trading partner and determine
what action you should take.

120 Too Many
Components in
Composite

A composite element in a document
you received has more component
elements (sub-elements) than
allowed by the standard.

Use the Segment/Record ID, Sequence, and
Element fields on the Translator Report to
determine which element in the document is
invalid.

Outbound

If the document was entered using the
Document Editor, open the document and
correct the invalid field. If you imported the
document into your system, delete the
document, correct the data, and then import
that document again. See the IBM Sterling
Gentran:Server for Microsoft Windows User
Guide for more information.

Inbound

Contact your trading partner and determine
what action you should take.

192 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Table 44. Translator Error Messages (continued)

Msg ID Message Text Explanation Your Action

130 Invalid Conditional
Relationship

A conditional relationship in the
document is not valid.

Use the translator report to determine where
in the document the error occurred.

Outbound

If the document was entered using the
Document Editor, open the document and
correct the conditional relationship. If you
imported the document into your system,
delete the document and then import that
document again.

Inbound

Contact your trading partner and determine
what action you should take.

140 Implicit Rule Failure A validation rule set up against this
field failed in the translator.
Typically, this occurs when the
Exclusive flag is set for a standard
rule, and the field value does not
match the data table.

Check the data value that you received
against the valid data that is allowed for the
field.

200 Mandatory
Component Missing

A component (sub-element) of a
composite element that the
translation object designated as
"Mandatory" was not created in an
Outbound document or not received
in an Inbound document.

Use the Segment/Record ID, Sequence,
Element, and Composite fields on the
Translator Report to determine which
mandatory component in the document is
missing.

Outbound

If the document was entered using the
Document Editor, open the document and
complete the missing field. If you imported
the document into your system, delete the
document and then import that document
again.

Inbound

Contact your trading partner and determine
what action you should take.

Chapter 10. Error Messages 193



Table 44. Translator Error Messages (continued)

Msg ID Message Text Explanation Your Action

210 Incorrect Component
Format

A component (sub-element) of a
composite element that the
translation object designated as
"Mandatory" was entered
(Outbound) or received (Inbound)
with an incorrect format. Some
examples of incorrect format are: a
numeric field that contains
non-numeric characters, and a field
that exceeds the maximum length or
is less than the minimum length (as
defined in the standard).

Use the Segment/Record ID, Sequence,
Element, and Composite fields on the
Translator Report to determine which
element in the document is invalid.

Outbound

If the document was entered using the
Document Editor, open the document and
correct the invalid field. If you imported the
document into your system, delete the
document, correct the data, and then import
that document again.

Inbound

Contact your trading partner and determine
what action you should take.

220 Component
Delimiter

A component delimiter was
encountered instead of the expected
element.

Contact either/or your trading partner or the
translation object creator and determine what
action you should take.

300 Mandatory Segment A segment that the translation object
designated as "Mandatory" was not
created in an Outbound document
or was not received in an Inbound
document.

This error can be generated in a
variety of circumstances. The most
common is that the input data
sequence does not correspond to the
data sequence defined in the
translation object used to translate
the data. If this is the case, the
information provided with the
message may indicate a segment in
the data.

Use the Segment/Record ID field on the
Translator Report to determine which
mandatory segment in the document is
missing.

Outbound

If the document was entered using the
Document Editor, open the document and
key data into the fields that are necessary to
generate the segment. If you imported the
document into your system, delete the
document, add the data that is necessary to
generate the segment, and then import that
document again.

Inbound

Contact your trading partner and determine
what action you should take.

310 Invalid Loop
Start/End Structure

An invalid Loop Start/Loop End
was found in an Inbound document.

Use the information in the translator report
to determine which LS/LE pairing is invalid.
Contact your trading partner and determine
what action you should take.

315 Invalid Segment or
Record Structure

A segment (in an EDI file) or a
record (in a positional flat file) in an
inbound file did not match what the
translation object was expecting.

From viewing the information in the
translator report and viewing the "Raw EDI"
interchange, determine which segment or
record is invalid. Contact your trading
partner to determine what action you should
take. See the IBM Sterling Gentran:Server for
Microsoft Windows User Guide for more
information.

194 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Table 44. Translator Error Messages (continued)

Msg ID Message Text Explanation Your Action

405 Unknown Partner An Interchange was received but the
system cannot determine which
partner sent it.

From viewing the information in the
translator report and viewing the "Raw EDI"
interchange, determine which partner sent
you the interchange. If the partner is not
listed on your system, create the partner and
a relationship, and attach the interchange to
that partner. If the partner already exists on
your system, attach the interchange to that
partner and then determine why the system
did not automatically identify the partner.

410 Header/Trailer
Control Numbers do
not match

The control numbers on the header
and trailer do not match, as
specified by the standard.

Check the "Raw EDI" view to determine
which control numbers are in the EDI file,
and then contact your trading partner to
determine what action you should take. See
the IBM Sterling Gentran:Server for Microsoft
Windows User Guide for more information.

415 Control Total
Incorrect

The EDI control total in the Segment
Identified field of the translator
report does not equal the value that
was calculated by the Compliance
Checker.

Check the "Raw EDI" view to determine
what the control total should be, and then
contact your trading partner to determine
what action you should take. See the IBM
Sterling Gentran:Server for Microsoft Windows
User Guide for more information.

420 Unknown
Relationship

A document was received but the
Partner Profile for that partner does
not include a corresponding
Inbound Relationship.

From the viewing the information in the
translator report and viewing the "Raw EDI"
interchange, determine which relationship
the document requires and create that
inbound relationship for the partner. See the
IBM Sterling Gentran:Server for Microsoft
Windows User Guide for more information.

460 Invalid Test Mode
Flag

The partner relationship was found
but the test mode flag in the data
did not match the test mode defined
in the inbound partner relationship.

Change the test mode of the inbound partner
relationship to match the test mode of the
data. See the IBM Sterling Gentran:Server for
Microsoft Windows User Guide for more
information. Then, ask your trading partner
to change the test mode of the data they are
sending to match that defined by the
inbound relationship.

User Level Error Messages
User-level type errors can occur when extended rules are used in the map.

The user-level error messages are listed below in numerical order based on their
Message ID. The table also includes an explanation of the error and an action you
can take to correct the error.

Table 45. User-level Error Messages

Msg ID Message Text Explanation Your Action

800 Batch File Header Section
Missing

The system cannot find a header
section record within the batch file.

Contact your Trading Partner.

801 Unexpected Header
Segment ID

A value other than "00" is in the
header section record segment
Identifier field (701).

Contact your Trading Partner.

Chapter 10. Error Messages 195



Table 45. User-level Error Messages (continued)

Msg ID Message Text Explanation Your Action

802 Unexpected Transmission
Type

A transmission value other than T
(Transaction), R (Response), or E
(Error) is in the transmission type
(880-K6) field of the header section
record.

Contact your Trading Partner.

803 Sender ID Missing The system cannot find a value in the
sender ID (880-K1) field in the Header
Section Record.

Contact your Trading Partner.

804 Invalid Batch Number The batch number field (806-5C)
contains a format other than the
YYDDD format, where:

v YY=Year

v DDD=Julian date

Contact your Trading Partner.

805 Unexpected File Type A value other than P (Production) or
T (Test) is in the File Type field (702).

Contact your Trading Partner.

806 Receiver ID Missing The system cannot find a value in the
receiver ID field (880-K7) of the
header section.

Contact your Trading Partner.

807 Batch File Detail Data
Record Missing

The system cannot find a Detail Data
Record within the batch file.

Contact your Trading Partner.

808 Unexpected Data Segment
ID

A value other than "G1" is in the
segment identifier field of the Detail
Data Record (701).

Contact your Trading Partner.

809 Transaction Reference
Number Missing

The system cannot find a value in the
transaction reference number field of
the Detail Data Record (880-K5).

Contact your Trading Partner.

810 Batch File Trailer Record
Missing

The system cannot find the trailer
record within the batch file.

Contact your Trading Partner.

811 Invalid Trailer Segment ID A value other than "99" is in the
segment identifier field (701) of the
trailer record.

Contact your Trading Partner.

812 Unexpected Batch
Number

The batch number field (806-5C) of
the trailer record does not match the
batch number field (806-5C) of the
header record.

Contact your Trading Partner.

813 Invalid Record Count The record count field (751) of the
trailer record contains an invalid
number.

Contact your Trading Partner.

814 Processed DDRs Mismatch
Record Count

The actual count of Detail Data
Records is different from the value in
the record count field (751) of the
trailer record.

Contact your Trading Partner.

815 Duplicate Segment Within
Transaction

A segment occurs more than one time
within the transaction.

Contact your Trading Partner.

196 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Table 45. User-level Error Messages (continued)

Msg ID Message Text Explanation Your Action

816 Unexpected Transaction
Code

A value other than a value listed
below is in the transaction code field
(103-A3) of the request transaction
header segment or response header
segment.

v E1 = Eligibility Verification

v B1 = Billing

v B2 = Reversal

v P1 = Re-bill

v P2 = P.A. Request & Billing

v P3 = P.A. Inquiry

v P4 = P.A. Request Only

v N1 = Information Reporting

v N2 = Information Reporting
Reversal

v N3 = Information Reporting Re-bill

v C1 = Controlled Substance
Reporting

v C2 = Controlled Substance
Reporting Reversal

v C3 = Controlled Substance
Reporting Re-bill

Contact your Trading Partner.

817 Invalid Transaction Count A value other than a value listed
below is in the transaction count field
(109-A9) of the request transaction
header segment or the response
transaction header segment.

v Blank = not specified

v 1 = One Occurrence (Default)

v 2 = Two Occurrence (Except
Transaction Code E and P)

v 3 = Three Occurrence (Except
Transaction Code E and P)

v 4 = Four Occurrence (Except
Transaction Code E and P)

Contact your Trading Partner.

818 Processed Transactions
Mismatch Transaction
Count

The actual count of the transactions is
different from the value in the
transaction count field (109-A9) of the
response header segment.

Contact your Trading Partner.

819 Unexpected Header
Response Status Code

A value other than A (Accepted) or R
(Rejected) is in the header response
status field (501-F1) of the response
header segment.

Contact your Trading Partner.

Chapter 10. Error Messages 197



Table 45. User-level Error Messages (continued)

Msg ID Message Text Explanation Your Action

820 Unexpected Transaction
Response Status Code

A value other than a value listed
below is in the transaction response
status field (112-AN).

v A = Approved

v C = Captured

v D = Duplicate of Paid

v F= PA Deferred

v P = Paid

v Q = Duplicate of Capture

v R = Rejected

v S = Duplicate of Approved

Contact your Trading Partner.

Core Translator Error Messages
Core translator type errors can occur when you are receiving or sending data.

The core translator error messages are listed below in numerical order based on
their Message ID. The table also includes an explanation of the error and an action
you can take to correct the error.

Table 46. Core Translator Error Messages

Msg ID Message Text Explanation Your Action

830 Null Character The data file contains binary data. Contact your Trading Partner.

833 Unexpected End of File A field of a specified length is
incomplete.

Contact your Trading Partner.

835 Unexpected Start of Text The record does not contain End of
Text character.

Contact your Trading Partner.

836 Unexpected End of Text The record does not contain Start of
Text character.

Contact your Trading Partner.

837 Missing Stream Separator1 The system is reading non-streamed
data with a template from a map
where "stream segments" box is
unchecked.

Contact your Trading Partner.

838 Missing Stream Separator2 The system reading non-streamed
data with a template from a map
where "stream segments" box is
unchecked.

Contact your Trading Partner.

839 Unexpected Separator A group separator, segment separator,
field separator, STX, or ETX is present
in the data.

Contact your Trading Partner.

840 Unexpected Field
Separator

Based on the map, two field
separators occur consecutively or a
different separator is expected.

Contact your Trading Partner.

841 Unexpected Group
Separator

Based on the map, a group separator
occurs when none was specified.

Contact your Trading Partner.

842 Missing Group Separator Based on the map, a group separator
is missing.

Contact your Trading Partner.

198 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Table 46. Core Translator Error Messages (continued)

Msg ID Message Text Explanation Your Action

843 Unexpected Stream
Separator1

Based on the map, a stream
separator1 is occurs when none was
specified.

Contact your Trading Partner.

845 Positional Tag Defined
Beyond EOS

The position of the transaction code
(Positional Record Tag) is specified to
start beyond the end of the segment.

Change the value of the positional
segment under the NCPDP Properties
tag to start before the end of the
segment.

855 Delimited Segment Has
No Fields

The delimited segment must have at
least the mandatory fields.

Contact your Trading Partner.

856 Missing Delimited FS
After SS

The delimited field separator is not
present after the segment separator.

Contact your Trading Partner.

857 Field ID Data Does Not
Match Map Field ID

The field ID data is different from the
defined delimited field ID tag.

Contact your Trading Partner.

858 Unexpected Char(s) in
Delimited Field ID

A separator was found in the
delimited field ID data.

Contact your Trading Partner.

859 Null Character in
Delimited Field ID

The delimited field ID contains binary
data.

Contact your Trading Partner.

860 Incomplete Delimited
Field ID

The field ID data is shorter than
expected.

Contact your Trading Partner.

861 Missing Delimited Field
Data

No data is found after a delimited
field ID.

Contact your Trading Partner.

862 Null Character in
Delimited Field Data

The delimited field data contains
binary data.

Contact your Trading Partner.

865 Segment ID Data Does
Not Match Map Segment
ID

The segment ID data is different from
the defined delimited segment ID
field.

Contact your Trading Partner.

866 Unexpected Char(s) in
Delimited Segment ID

A separator was found in the
delimited segment ID.

Contact your Trading Partner.

867 Null Character in
Delimited Segment ID

The delimited segment ID contains
binary data.

Contact your Trading Partner.

868 Incomplete Delimited
Segment ID

The delimited segment ID is shorter
than expected.

Contact your Trading Partner.

869 Field ID Size Differs From
Global Field ID Size

The computed size of the
segment/field ID is different from the
value of the global field ID length.

Contact your Trading Partner.

885 No Data after STX in
Batch Segment

The batch record does not contain any
data.

Contact your Trading Partner.

886 Unexpected STX in Batch
Segment

The batch record does not contain an
ETX character.

Contact your Trading Partner.

887 Missing ETX in Batch
Segment

The batch record does not contain an
ETX character.

Contact your Trading Partner.

Core Translator Error Messages: Sending Batch Data Using
the NCPDP Data Record Field

Core translator errors can also occur when you are sending batch data using the
NCPDP Data Record field to your Trading Partner. Many times the error occurs
because the Batch File string is missing a portion of the Batch File or because a
value in the string is incorrect.

Chapter 10. Error Messages 199



To prevent errors from occurring verify that the Batch File string follows the detail
data record (DDR) format:
<separator>filename<separator>StartOffset<separator>EndOffset<separator>

The core translator error messages are listed below in numerical order based on
their Message ID. The table also includes an explanation of the error and an action
you can take to correct the error.

Table 47. Core Translator Error Messages: Sending Batch Data Using the NCPDP Data Record Field

Msg ID Message Text Explanation Your Action

888 Could Not Open NCPDP
Data File

The NCPDP data file either does not
exist or it is not readable.

Verify that the file you are selecting is
the correct filename or supply the
information that is missing from the
string field.

890 Missing Separator in DDR
Info String

A separator is missing from the DDR
string field.

Insert a ";" in the DDR string field.

891 Missing Filename in DDR
Info String

The filename is not in the DDR string
field.

Add the filename to the DDR.

892 Invalid Start byte Offset in
DDR Info String

The system found non-numeric data
at start of set.

Add a valid start of set (numeric)
value.

893 Invalid End Byte Offset in
DDR Info String

The system found non-numeric data
at end of set.

Add a valid end of set (numeric)
value or remove the data if data up to
end of file should be processed.

894 Missing Start/End Byte
Offset in DDR Info String

The Start/End Byte Offset is not in
the DDR string field.

Add the Start/End Byte Offset to the
DDR string field or remove extra
separators.

895 Extra Data in DDR Info
String

The DDR string contains extra data. Remove the extra data from the DDR
string.

896 Total Bytes Read
Mismatch Total Bytes to
Read

The actual number of bytes read is
less than the number of bytes
specified in the set.

Verify the Start/End Byte Offsets or
remove the end byte offset if data up
to end of file should be processed.

897 Start Byte Offset is Beyond
End of File

The position of the Start Byte Offset is
specified to start after the end of the
file.

Change the start position of the Start
Byte Offset.

898 Start Byte Offset is Beyond
End Byte Offset

The position of the Start Byte Offset
starts after the position of the End
Byte Offset.

Change the position of the Start Byte
Offset to start before the End Byte
Offset, or change the position of the
End Byte Offset to start after the Start
Byte Offset.

200 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law

IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku

Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be

© Copyright IBM Corp. 1996, 2024 201



incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation

J46A/G4

555 Bailey Avenue

San Jose, CA 95141-1003

U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

202 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



This information is for planning purposes only. The information herein is subject to 
change before the products described become available.

This information contains examples of data and reports used in daily business 
operations. To illustrate them as completely as possible, the examples include the 
names of individuals, companies, brands, and products. All of these names are 
fictitious and any similarity to the names and addresses used by an actual business 
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which 
illustrate programming techniques on various operating platforms. You may copy, 
modify, and distribute these sample programs in any form without payment to 
IBM, for the purposes of developing, using, marketing or distributing application 
programs conforming to the application programming interface for the operating 
platform for which the sample programs are written. These examples have not 
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or 
imply reliability, serviceability, or function of these programs. The sample 
programs are provided "AS IS", without warranty of any kind. IBM shall not be 
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must 
include a copyright notice as follows:

© IBM 2024. Portions of this code are derived from IBM Corp. Sample Programs. © 
Copyright IBM Corp. 2024.

If you are viewing this information softcopy, the photographs and color 
illustrations may not appear.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of 
International Business Machines Corp., registered in many jurisdictions worldwide. 
Other product and service names might be trademarks of IBM or other companies. 
A current list of IBM trademarks is available on the Web at “Copyright and 
trademark information” at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered 
trademarks or trademarks of Adobe Systems Incorporated in the United States, 
and/or other countries.

IT Infrastructure Library is a registered trademark of the Central Computer and 
Telecommunications Agency which is now part of the Office of Government 
Commerce.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, 
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or 
registered trademarks of Intel Corporation or its subsidiaries in the United States 
and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other 
countries, or both.

Notices 203

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml


Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of the Office
of Government Commerce, and is registered in the U.S. Patent and Trademark
Office.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java™ and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the
United States, other countries, or both and is used under license therefrom.

Linear Tape-Open, LTO, the LTO Logo, Ultrium and the Ultrium Logo are
trademarks of HP, IBM Corp. and Quantum in the U.S. and other countries.

Connect Control Center®, Connect:Direct®, Connect:Enterprise®, Gentran®,
Gentran®:Basic®, Gentran:Control®, Gentran:Director®, Gentran:Plus®,
Gentran:Realtime®, Gentran:Server®, Gentran:Viewpoint®, Sterling Commerce™,
Sterling Information Broker®, and Sterling Integrator® are trademarks or registered
trademarks of Sterling Commerce®, Inc., an IBM Company.

Other company, product, and service names may be trademarks or service marks
of others.

204 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



Index

Special characters
<< operator 116

A
accumulators 75, 78, 80, 81, 82, 83, 113
activation 25, 26
ActiveX

automation server 163
controls 163
functions 163
restrictions 163

alphabetic language reference
atoi 120
aton 120
auditlog 121
begin, end 122
break 122
cerror 123
concat 127
continue 127
count 128
createobject 128
date 128
delete 130
deleteobject 130
empty 130
exec 131
exist 132
fseek 133
ftell 133
functions 132
get 134
getiid 134
if, then, else 135
index 136
insert 137
left 138
len 138
messagebox 139
mid 140
ntoa 141
param 142
queryobject 143
readblock 143
readbytes 144
right 145
select 146
set 146
strdate 147
strstr 149
unreadblock 149
update 150
while, do 152
winexec 153
writeblock 154
writebytes 155

analysis
application file format 17
EDI file 17

analysis (continued)
overview 17
reconciling files 18

application file analysis 17
application file format 5
Application Integration overview 1
arrays 113
assignment statement 115
atoi function 120
atoi syntax 119
aton function 120
aton syntax 119
auditlog function 121
auto-increment map version

customizing 11
automation servers

C++ 170
examples 170
Visual Basic 170

B
batch data

core translator errors 200
begin, end keywords 122
binary segments 55
break keyword 122

C
C++ automation server 170
cerror function 123
CII files

modifying 44
overview 44

code item descriptions 90
code list table 84, 86, 87, 88, 89, 90
code table 84
colors

customizing 8
commands

extended rules 111
compiling

errors 183
composite

EDI file format 6
composites

properties 41
concat function 127
concat syntax 118
conditional logic

if, then, else keywords 135
while, do 152

conditions
defining 43
modifying 43

confirmation messages
customizing 14

constants
defining 73

constants (continued)
deleting 73
mapping 74
overview 71
using 72

continue keyword 127
copy function 28
count function 128
create sub function 28
createobject function 128, 163
creating groups or records 28
cross-reference table

select function 65
customizing the display 8
cut function 28

D
data

export 101, 102
formatting 47
importing 91
sending or receiving errors 198, 200

data formats
numbers 53

data types
string 48
user exits 165

database access 175
date and time

Use System Variable function 70
date format

options 12
setting default 12

date function 128
date/time type

using 54
datetime

expression 116
syntax 116

deactivation 26
debugging 176
decimal point

changing the default 29
use of comma 29

declarations
extended rules 105

delete function 130
deleteobject function 130, 163
delimiters

EDI delimiters 36
display options 8
Division table 156
DivisionLocation table 156
DivisionLookup table 156
DivisionXref table 156
document name 69
Document table 156
document translator

errors 191

© Copyright IBM Corp. 1996, 2024 205



E
EDI associations 20
EDI delimiters 36
EDI file analysis 17
EDI file format 6
EDI files

activating 25, 26
composite properties 41
copy, cut, and paste 28
deactivating 26
element properties 41
loop segments 39, 40, 41
modifying group properties 37
modifying segment properties 38
overview 36
promoting 26
splitting 27

element
EDI file format 6

elements
composites 41
properties 41

empty function 130
equalize the map sides 11
error messages

application errors 188
compile errors 183
core translator errors 198, 200
extended rules 195
overview 183
receiving data 198, 200
sending batch data 200
sending data 198, 200
Sterling Gentran:Server 188
translation objects 183
translator errors 192
translator report 191
user errors 188
user-level errors 195

exec function 131
exist function 132
export map

overview 101
export process

inbound process before export 101
overview 101
setting up 102
supplementary envelope 102

expressions
datetime 116

extended price 82, 83
extended rules

ActiveX 163
creating a user exit 172
declarations and initialization 105
defining 109
errors 195
GentranEx.DLL 175, 176, 178
map component rule 110
overview 105
processing 107
session rules 109
statements 106
syntax 111, 112, 113
user exit 165

F
field

application file format 5
fields

creating 34
in a group 113
in internal storage 113

file definitions 24, 25
file properties

CII files 44
fixed-format file

creating a group 45
fixed-format files

creating a group 34
creating fields 34
creating subsequent records 30
using 28

fonts
customizing 9

formatting data
date/time type 54
number type 52
overview 47
string type 48

fseek function 133
ftell function 133
functions

atoi 120
aton 120
auditlog 121
cerror 123
concat 127
count 128
createobject 128, 163
date 128
delete 130
deleteobject 130, 163
empty 130
exec 131
fseek 133
ftell 133
functions

queryobject 163
get 134
getiid 134, 163
index 136
insert 137
left 138
len 138
messagebox 139
mid 140
ntoa 141
param 142
queryobject 143
readblock 143
readbytes 144
right 145
select 146
select and update options 156
set 146
strdate 147
strstr 149
unreadblock 149
update 150
winexec 153
writeblock 154
writebytes 155

G
GenericEnvelopeSegment table 156
GentranEx.DLL

examples 175, 176, 178
get function 116, 134
getiid function 134, 163
global display options

customizing 8
group

application file format 5
creating 45
EDI file format 6

Group table 156
groups

creating 34
in internal storage 113
modifying 37
promoting 26
splitting 27

H
hash totals 80
header records 30

I
if, then, else keywords 117, 118, 135
import

process 91
system configuration 91
system import map 93
system import translation object 93

import process
overview 91

in-process automation servers 175
inbound translation process 1
index function 136
initialization

extended rules 105
insert function 28, 137
Interchange table 156
interchange translator

errors 191

K
keywords

begin, end 122
break 122
continue 127
extended rules 111
if, then, else 117, 118, 135
while, do 152

L
left function 138
left syntax 118
len function 138
len syntax 119
line items 78
link display

customizing 10
linking 55

206 IBM Sterling Gentran:Server for Windows: Application Integration User Guide



links
creating 55

literal constants
defining 73
deleting 73
mapping 74
overview 71

location tables
select function 67

lookup tables
select function 67

Loop Count function 75
loop end

defining inbound 40
defining outbound 41

loop segments 39, 40, 41
loop start

defining inbound 39
defining outbound 40

M
map component rules

extended rules 110
mapping

auto-register 57
compile 57
compile using command line 58
description 1
input side 56
output side 56
overview 15
report 58

maps
building 24
components 25, 26
creating 18
details 20, 24
equalizing sides 11
incrementing 11
version number 11

messagebox function 139
mid function 140
mid syntax 118

N
navigation 7
ntoa function 141
ntoa syntax 119
number formats 53
number types

using 52

O
operators

extended rules 112
outbound translation process 3

P
param function 142
partner definition

select function 64

Partner table 156
PartnerLocation table 156
PartnerLookup table 156
PartnerXref table 156
paste function 28
post-session rules

extended rules 107, 109
pre-session rules

extended rules 107, 109

Q
qualifiers

generating 74
qualifying relationship 72
quantity invoiced 81
queryobject function 143, 163

R
readblock function 143
readbytes function 144
record

application file format 5
record delimiters

resetting 29
records

creating subsequent 30
creating the first 30
header 30
temporary records 31, 32

reference data 69, 70
relational conditions

defining 43
modifying 43

repeating elements 113
repeating segments

promoting 26
splitting 27

right function 145
right syntax 118
rules extensions 178
running total 82, 83

S
segment

EDI file format 6
segments

binary 55
loop segments 39, 40, 41
modifying 38
promoting 26
splitting 27

select function 61, 146
cross-reference table 65
examples 63
location tables 67
lookup tables 67
options 156
partner definition 64
table access examples 63

Select function
supplementary envelope 102

session rules
extended rules 109

set function 116, 146
simple mapping 55
standard rules 61

Loop Count function 75
select function 61, 64, 65, 67
update function 68, 69, 70
Use Accumulator function 75, 78, 80,

81, 82, 83
Use Code function 84, 86, 87, 88, 89,

90
Use Constant function 71, 72
Use System Variable function 70

statements
assignment 115
extended rules 106

Sterling Gentran:Server errors 188
strdate function 147
strdate syntax 118
string constants 113
string types 48
strstr function 149
strstr syntax 118
symbols

extended rules 113
syntax

command line interface 181
extended rules 111, 112, 113

syntax tokens
character range 51
creating for Eastern European

languages 50
creating for Western European

languages 49
deleting 51
deleting a character range 51
using 52

system configuration
modifying 91

system import map
alternate key 97
application alias value field 98
application ID field 98
compiling 99
creating 93
document 95
partner key 94, 97
release field 96
six-field key 94
standard field 95
test/production field 96
transaction set 95
version field 95

system import translation object
compiling 99
creating 93

T
temporary records 31, 32
TFDs

CII files 44
creating the first 46

time syntax 116
translation objects

details 20, 24
errors 183

Index 207



translation process
inbound 1
outbound 3

translator
errors 192

U
unreadblock function 149
update function 68, 150

document name 69
document name and reference

data 69
options 156
reference data 70

Use Accumulator function 75, 78, 80, 81,
82, 83

Use Code function 84, 86, 87, 88, 89, 90
Use Constant function 71, 72

generating qualifiers 74
qualifying relationship 72

Use System Variable function
system date and time 70

user exits
access a database 167
create an interface 167
creating 172
define object variable 167
delete an object 167
description 165
examples 167
exec function 131
get a property value 167
pass parameters 167
return parameters 167
set a property value 167

user interface overview 7

V
validating data 89
value total 81
variables

extended rules 105
Visual Basic automation server 170

W
while, do keywords 152
winexec function 153
writeblock function 154
writebytes function 155

208 IBM Sterling Gentran:Server for Windows: Application Integration User Guide





����

Product Number: 5725-D09

Printed in USA


	Contents
	Chapter 1. Application Integration Basics
	About the Application Integration Subsystem
	Inbound Translation Process
	Outbound Translation Process
	Application File Format
	EDI File Format
	About the Application Integration User Interface
	Global Display Settings
	Customizing Global Display Options
	Customizing Global Colors
	Customizing Global Fonts
	Customizing Global Display of Links
	Customizing the Auto-increment Map Version
	Making the Two Sides of the Map Equal
	Setting the Default Date/Time Format
	Date/Time Formats

	Customizing Global Confirmation Options

	Map Building Process
	Map Types

	Chapter 2. Map Design
	Preparation and Analysis
	Analysis of Your Application File Format
	Analysis of the Customer EDI File
	Reconcile Your Application File and the Customer EDI File

	Creating a Map
	Translation Object Details Dialog Box
	Defining Translation Object Details
	Loading a File Definition
	Saving a File Definition
	Activating EDI Map Components
	Using Auto Trim
	Promoting Groups and Repeating Segments
	Splitting Groups and Repeating Segments
	Using Copy, Cut, and Paste

	About Fixed-format Files
	Changing Record Delimiters
	Changing Decimal Points
	Creating the First Record
	Creating Subsequent Records
	Temporary Records
	Creating Temporary Records--Example
	Creating a Group
	Creating Fields

	About EDI Files
	Verifying EDI Delimiters
	Modifying Group Properties
	Modifying Segment Properties
	About Loop Start and Loop End Segments
	Defining an LS Segment Inbound
	Defining an LE Segment Inbound
	Defining an LS Segment Outbound
	Defining an LE Segment Outbound
	Modifying Composite Properties
	Modifying Element Properties
	Defining and Modifying Relational Conditions

	About CII Files
	Modifying CII File Properties
	Creating a Group
	Creating a TFD

	About Data Formatting
	String Type Fields and Syntax Tokens
	Creating and Editing Syntax Tokens for Western European Languages
	Creating and Editing Syntax Tokens for East Asian Languages
	Deleting Syntax Tokens
	Deleting a Character Range
	Using Syntax Tokens
	Using the Number Type
	Number Formats

	Using the Date/Time Type

	Completing a Map
	Creating Simple Links
	Binary Segments
	Setting up the Input Side
	Setting up the Output Side
	Setting the Auto-register Option
	Compiling a Map
	How to Compile Maps Using the Command Line

	Printing a Mapping Report


	Chapter 3. Standard Rules
	About Standard Rules
	Standard Rule Tab - select Function
	Table access examples
	Using Information from the Partner Definition
	Using Information from a Cross-reference Table
	Using Information from Location Tables
	Using Information from Lookup Tables

	Standard Rule Tab - update Function
	Document Name and Reference Data
	Setting up the Document Name
	Setting up the Reference Data

	Standard Rule Tab - Use System Variable Function
	Using the System Date and Time

	Standard Rule Tab - Use Constant Function
	Using a Constant in a Map
	Defining a Qualifying Relationship
	Defining and Editing Literal Constants
	Deleting Literal Constants
	Mapping Literal Constants
	Generating Qualifiers

	Standard Rule Tab - Loop Count Function
	Using the Loop Count Function

	Standard Rule Tab - Use Accumulator Function
	Counting Line Items
	Calculating Hash Totals
	Multiplying Quantity Invoiced by Unit Price
	Generating a Running Total of Extended Price
	Loading a Running Total of Extended Price

	Standard Rule Tab - Use Code Function
	Defining and Modifying a Code List
	Deleting a Code List
	Deleting a Code List Entry
	Importing a Code List
	Exporting a Code List
	Loading a Code List Table from the Standard
	Copying and Pasting Code Lists
	Validating Data Against Code List Tables
	Validating Data Example

	Mapping Code Item Descriptions


	Chapter 4. The Import Process
	About the Import Process
	Creating a System Import Map
	How to Define the Six-Field Key
	Defining the Partner Key
	Defining the Standard Field
	Defining the Version Field
	Defining the Transaction Field
	Defining the Release Field
	Defining the Test/Production Field

	How to Define the Alternate Key
	Defining the Partner Key
	Defining the Application ID Field
	Defining the Application Alias Value Field

	Compiling the System Import Translation Object

	Chapter 5. The Export Process
	About the Export Process
	Inbound Process Before Exporting Data
	Setting up the Export Process
	Using Supplementary Envelope Information

	Chapter 6. Extended Rules
	About Extended Rules
	Declarations and Initialization
	Statements
	When Extended Rules are Processed
	How to Define Extended Rules
	Defining a Session Rule
	Defining a Map Component Rule
	Extended Rule Syntax
	Keywords and Commands
	Operators
	Symbols

	Extended Rule Functions
	About the Extended Rule Functions
	Assignment
	Datetime Expressions
	Conditional Logic
	String Conditions and Functions
	Numerical Functions

	atoi
	aton
	auditlog
	begin ... end
	break
	cerror
	concat
	continue
	count
	createobject
	date
	delete
	deleteobject
	empty
	exec
	exist
	fseek
	ftell
	get
	getiid
	if ... then ... else
	index
	insert
	left
	len
	messagebox
	mid
	ntoa
	param
	queryobject
	readblock
	readbytes
	right
	select
	set
	strdate
	strstr
	unreadblock
	update
	while ... do
	winexec
	writeblock
	writebytes
	select and update Options


	Chapter 7. User Exits
	ActiveX and User Exit Functions
	About ActiveX Technology
	About User Exits
	Examples of User Exits
	Examples of Automation Servers
	Creating a User Exit

	Chapter 8. GentranEx.DLL
	About GentranEx.DLL
	About Database Access
	About Debugging
	About Rules Extensions

	Chapter 9. Translator Command Line Interface
	Command Line Syntax

	Chapter 10. Error Messages
	About Error Messages
	Compile Error Messages
	Sterling Gentran:Server Error Messages
	About Translator Report Error Messages
	Translator Error Messages
	User Level Error Messages
	Core Translator Error Messages
	Core Translator Error Messages: Sending Batch Data Using the NCPDP Data Record Field


	Notices
	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W




