
CICS® Transaction Server for OS/390®

CICS IMS Database Control Guide
Release 3

SC33-1700-31

���

CICS® Transaction Server for OS/390®

CICS IMS Database Control Guide
Release 3

SC33-1700-31

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Notices” on
page vii.

Fourth edition (November 2000)

This edition applies to Release 3 of CICS Transaction Server for OS/390, program number 5655-147, and to all
subsequent versions, releases, and modifications until otherwise indicated in new editions. Make sure you are using
the correct edition for the level of the product.

This edition replaces and makes obsolete the previous edition, SC33-1700-01. Changes since that edition are
indicated by a # sign to the left of a change. Any vertical lines in the left margin indicate a change made between
Version 1 Release 2 and Version 1 Release 3 of CICS Transaction Server for OS/390.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address given below.

At the back of this publication is a page entitled “Sending your comments to IBM”. If you want to make comments,
but the methods described are not available to you, please address them to:

IBM United Kingdom Laboratories, Information Development,
Mail Point 95, Hursley Park, Winchester, Hampshire, England, SO21 2JN.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1989, 1999. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Notices vii
Programming interface information viii
Trademarks viii

Preface ix
Who this book is for ix

What this book is about ix
What you need to know before reading this book ix
How to use this book ix
Determining if a publication is current ix
Terms used x

Bibliography xi
CICS Transaction Server for OS/390 xi

CICS books for CICS Transaction Server for
OS/390 xi
CICSPlex SM books for CICS Transaction Server
for OS/390 xii
Other CICS books xii

Summary of changes xiii
Changes for CICS Transaction Server for OS/390
Release 3 xiii
Changes for CICS Transaction Server for OS/390
Release 2 xiii
Changes for CICS TS for OS/390 release 1 xiii
Changes for the CICS/ESA 4.1 edition xiii
Changes for the CICS/ESA 3.3 edition xiii

Chapter 1. Overview of Database Control
(DBCTL). 1
Summary of the benefits of DBCTL 1
Overview of DL/I request handling in CICS. . . . 2
Connecting to DBCTL 3
CICS-IMS DBCTL environment 3

CICS-IMS DBCTL environment—description of
components. 4
CICS-DBCTL interface control components in
CICS address space 4
Components of DBCTL in IMS address spaces . . 5

Coordinator control subsystem (CCTL) 7
Resources you can access from a CICS environment
that includes DBCTL 8

Chapter 2. Benefits of using DBCTL . . 9
Function 9

Data availability 9
Batch message processing programs (BMPs) . . . 9
System service requests 10
Access to data entry databases (DEDBs) 10

System availability 13
Release independent interface 13
Improved sharing of databases between multiple
CICS systems 13

Failure isolation 13
Operational flexibility 13
Ability to use XRF 14

Performance 14
Virtual storage constraint relief 14
Improved throughput on multiprocessors . . . 14

Chapter 3. Migration considerations for
DBCTL. 15
Other methods for accessing DL/I. 15

Withdrawn support of local DL/I and shared
database 15

CICS-IMS release compatibility 15
Possible migration paths 16

CICS with local DL/I 16
CICS with local DL/I and data sharing 16
CICS with shared database 16
CICS with IMS data sharing and batch 16
CICS with function shipping 16
CICS with IMS/ESA DM/TM 17

Suggested migration procedure 17
Planning your new DBCTL setup 18
Setting up test and production systems 19

Number of DBCTL subsystems to use 19

Chapter 4. Installing DBCTL, and
defining CICS and IMS system
resources 21
Checklist for installing and generating DBCTL . . 21
Defining CICS system resources 22

System initialization parameters 22
PSB directories (PDIRs) 25
DD statements 25
CICS-supplied groups within CICS system
definition 27
Log management 27
Monitoring control table (MCT). 27
Program list table (PLT) 27
Transient data queues 28

Generating DBCTL 28
Defining the DBCTL subsystem. 28
IMS logging 33
IMS dynamic allocation macro (DFSMDA) . . . 36
Database buffer specifications and option
parameters 36
Overriding DBCTL generation parameters at
execution time 36

Starting DBCTL, DLISAS, and DBRC 37
Defining the IMS DRA startup parameter table . . 38

Example JCL to generate a DRA startup table . . 40
Customizing DBCTL 42

DFHDBUEX 42
Global user exits XDLIPRE and XDLIPOST . . . 42
Global user exits XRMIIN and XRMIOUT . . . 43
Global user exits for XRF 43

© Copyright IBM Corp. 1989, 1999 iii

Chapter 5. Operations with DBCTL. . . 45
Connection to DBCTL 45

Connecting DBCTL to CICS automatically . . . 46
Connection, disconnection, and inquiry
transactions 47

Operator communication with DBCTL 53
DBCTL operator commands 53
CDBM operator transaction 55
Issuing DBRC commands. 62
Authorizing access to databases and PSBs . . . 62
Changing IMS passwords. 62
Deleting password security authorization . . . 63
Controlling tracing of DBCTL events 63
Finding out current status of DBCTL activities. . 63
Specifying messages to be logged on IMS log . . 65
Changing DBCTL resources online. 65
Preventing programs and transactions from
updating databases 65
Switching to a new OLDS 66
Entering external subsystem commands from
DBCTL 66
Making DBCTL resources available 67
Preventing scheduling of PSBs and use of
databases 67
Purging a transaction that is using DBCTL . . . 68
Stopping DBCTL normally 69
Stopping DBCTL abnormally 70

Dealing with messages from DBCTL and CICS . . 70

Chapter 6. Recovery and restart
operations for DBCTL 73
Overview of CICS and IMS recovery and restart . . 73

CICS initialization and termination 73
Restarting DBCTL 74
CICS keypoints and IMS checkpoints 76
Log records 77
Database recovery control (DBRC) 78
Recovery control (RECON) data sets 78

Commit protocols and units of recovery 78
Two-phase commit 78

Database utilities 83
Log utilities 86
Component failures. 86

CICS failure 87
Database resource adapter (DRA) failure . . . 87
DBCTL failure 88
IRLM failure 89
Transaction and thread failures 89
BMP failures 90
MVS, processor, or power failures 91

Chapter 7. Application programming
for DBCTL 93
Overview of application programming for DBCTL 93
Programming languages and environments 94

Issue IMS AIB call format 94
Additional facilities available with DBCTL 95

Application program access to DEDBs 95
Additional EXEC DLI keywords 96
Keywords and corresponding command codes . 97

POS command and call 98
Addressing and residency mode 99
Enhanced scheduling 99
Obtaining information about database
availability 100
Accepting database availability status codes . . 101
Status codes and backout 102
Batch message processing programs (BMPs) . . 102
System service requests 103
Comparing EXEC DLI commands and DL/I
calls 108
DL/I requests supported 109

Migrating programs to DBCTL 110
Migrating a DL/I program to a DBCTL program 110
Migrating CICS shared database batch jobs to
BMPs 111
Migrating native IMS batch jobs to BMPs . . . 111

Summary of abends and return codes 112

Chapter 8. Security checking with
DBCTL 115
PSB authorization checking by CICS. 115
Resource access security checking by DBCTL . . . 115

Relationships between AGNs, PSBs, and DBCTL
ID in security checking 117

DBCTL password security checking 118
Security considerations for using BMPs with
DBCTL 118

Migration considerations for security with DBCTL 118
Security migration scenarios 118

Chapter 9. Problem determination for
DBCTL 123
Interactions between CICS and DBCTL 123

Interactions between CICS and DBCTL at the
interface level 123
Interactions between CICS and DBCTL caused
by requests 123

DBCTL error scenarios 124
Connection to DBCTL has failed to complete 124
Disconnection from DBCTL has failed to
complete 125
Failures during PSB scheduling 126
Failures during DL/I request processing . . . 126

Trace 127
Trace entries produced by CICS 127
Connection to DBCTL 128
Disconnection from DBCTL 131
PSB schedule 133
PSB scheduling failure 134
CICS task issuing DL/I requests to be processed
by DBCTL 135
Thread termination 136
Trace entries produced by DBCTL 136
Printing and formatting IMS X’67FA’ log records 138

Dumps 138
CICS transaction dump 138
CICS system dump 139
Determining whether a problem is occurring in
CICS or DBCTL 139

iv CICS TS for OS/390: CICS IMS Database Control Guide

DRA snap data set 139
What is provided in a CICS dump 139
Dumps produced by the DRA 139
Dumps produced by DBCTL 140

Messages 141
Return codes in DBCTL 141
PAPL request and return codes 142

Using CICS EDF to debug application programs in
DBCTL 143

Chapter 10. Statistics, monitoring, and
performance for DBCTL 145
Data available for a CICS-DBCTL system 145

DBCTL statistics 146
Monitoring DBCTL—transaction level data . . . 148

DBCTL monitoring data returned to CICS . . . 148
IMS monitor reports with DBCTL 150
Data contained in relevant IMS monitor reports 151
Regions and jobname report 151
Region summary report 151
DBCTL data returned to IMS log 154
DL/I trace 154
Trace facilities 155
Additional performance tools 155

Tuning a CICS-DBCTL system 156
Performance parameters in CICS 156
Performance parameters in IMS 156
Using DEDBs 159
IMS asynchronous database buffer purge facility 160
Virtual storage usage 160
Improved throughput on multiprocessors . . . 161

Appendix A. Migration task summary
for DBCTL. 163
Education task list 163
Installation, system and resource definition task list 163
Operations task list 164

Recovery and restart task list 165
Application programming task list 165
Security task list 165
Problem determination task list 166
Monitoring, statistics, and performance task list 166

Appendix B. Illustration of DBCTL
startup parameter creation and
selection 167

Appendix C. Messages issued during
DBCTL startup and termination . . . 169
Messages issued by DBCTL during startup . . . 171

Messages issued by DLISAS during startup . . 171
Messages issued by DBRC during startup . . . 172
Messages issued by DBCTL during normal
termination 172
Messages issued by DLISAS during normal
termination 172
Messages issued by DBRC during normal
termination 172

Appendix D. Summary of DBCTL
operator commands 173

Appendix E. Using global user exit
XDLIPRE to change PSB to be
scheduled 177

Glossary 183

Index 191

Sending your comments to IBM . . . 199

Contents v

vi CICS TS for OS/390: CICS IMS Database Control Guide

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply in the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This publication could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM United Kingdom
Laboratories, MP151, Hursley Park, Winchester, Hampshire, England, SO21 2JN.
Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

© Copyright IBM Corp. 1989, 1999 vii

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Programming interface information
This book is intended to help you evaluate, install, and use the CICS-IMS Database
Control (DBCTL) interface.

This book also documents Product-sensitive Programming Interface and Associated
Guidance Information and Diagnosis, Modification or Tuning Information provided
by CICS.

Product-sensitive programming interfaces allow the customer installation to
perform tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or
tuning of CICS. Use of such interfaces creates dependencies on the detailed design
or implementation of the IBM software product. Product-sensitive programming
interfaces should be used only for these specialized purposes. Because of their
dependencies on detailed design and implementation, it is to be expected that
programs written to such interfaces may need to be changed in order to run with
new product releases or versions, or as a result of service.

Product-sensitive Programming Interface and Associated Guidance Information is
identified where it occurs, by an introductory statement to a chapter or section.

Diagnosis, Modification or Tuning Information is provided to help you diagnose
problems with your CICS system.

Attention: Do not use this Diagnosis, Modification or Tuning Information as a
programming interface.

Diagnosis, Modification or Tuning Information is identified where it occurs, by an
introductory statement to a chapter or section.

This book contains sample programs. Permission is hereby granted to copy and
store the sample programs into a data processing machine and to use the stored
copies for study and instruction only. No permission is granted to use the sample
programs for any other purpose.

Trademarks
The following terms are trademarks of International Business Machines
Corporation in the United States, or other countries, or both:

AT MVS/DFP
CICS/ESA MVS/ESA
DATABASE 2 OS/390
DB2 RACF
IBM RMF
IMS VTAM
IMS/ESA 3090

Other company, product, and service names may be trademarks or service marks
of others.

viii CICS TS for OS/390: CICS IMS Database Control Guide

Preface

Who this book is for
This book is for anyone who uses the CICS-IMS Database Control interface,
referred to as DBCTL in the rest of this book.

This book is intended to help you understand DBCTL. It contains guidance on
evaluating, installing, and using DBCTL. This book also discusses migration from
local DL/I.

For programming information on programming interfaces provided by IMS, see
the IMS Application Programming: EXEC DLI Commands manual and the IMS
Application Programming: DL/I Calls manual manuals.

What this book is about
The aim of this book is to give introductory and guidance information on
evaluating, installing, and using DBCTL.

This book is intended to be used in conjunction with existing manuals in the CICS
and IMS libraries, to which it refers where appropriate.

What you need to know before reading this book
Before you read this book, you need a general understanding of CICS and IMS.
You can find general introductory information in the CICS Family: General
Information and the General Information manual manual. You should also have some
knowledge of the concepts of data management and databases. For guidance on
these topics, see the IMS Database Administration Guide or the IMS/ESA
Administration Guide: Database Manager.

How to use this book
Probably, at first, you will read this book sequentially. Aspects of DBCTL, from
installation through performance considerations, are presented in the order in
which you are likely to need them. However, new users of DL/I should skip
“Chapter 3. Migration considerations for DBCTL” on page 15.

Determining if a publication is current
IBM regularly updates its publications with new and changed information. When
first published, both hardcopy and BookManager softcopy versions of a publication
are usually in step. However, due to the time required to print and distribute
hardcopy books, the BookManager version is more likely to have had last-minute
changes made to it before publication.

Subsequent updates will probably be available in softcopy before they are available
in hardcopy. This means that at any time from the availability of a release, softcopy
versions should be regarded as the most up-to-date.

For CICS Transaction Server books, these softcopy updates appear regularly on the
Transaction Processing and Data Collection Kit CD-ROM, SK2T-0730-xx. Each reissue
of the collection kit is indicated by an updated order number suffix (the -xx part).

© Copyright IBM Corp. 1989, 1999 ix

For example, collection kit SK2T-0730-06 is more up-to-date than SK2T-0730-05. The
collection kit is also clearly dated on the cover.

Updates to the softcopy are clearly marked by revision codes (usually a “#”
character) to the left of the changes.

Terms used
In general, this book refers to Customer Information Control System and
Information Management System as “CICS” and “IMS”, respectively. CICS used
without qualification normally refers to the CICS element of CICS Transaction
Server for OS/390. However, when it is necessary to distinguish between particular
CICS or IMS products, there are the following abbreviations, with a version and
release number where appropriate:

CICS for MVS/ESA refers to IBM CICS for Multiple Virtual Storage/Enterprise
Systems Architecture.
CICS/MVS refers to IBM Customer Information Control System/Multiple
Virtual Storage.
CICS/ESA refers to IBM Customer Information Control System/Enterprise
Systems Architecture.
IMS/VS refers to IBM Information Management System/Virtual Storage.
IMS/ESA refers to IBM Information Management System/Enterprise Systems
Architecture.
IMS/VS DB/DC refers to IBM Information Management System/Virtual
Storage Database/Data Communication.
IMS/ESA DM/TM refers to IBM Information Management System/Enterprise
Systems Architecture Database Manager/Transaction Manager.
MVS refers to the IBM MVS operating system.

For definitions of DBCTL-related terminology used in this book, see “Glossary” on
page 183.

x CICS TS for OS/390: CICS IMS Database Control Guide

Bibliography

CICS Transaction Server for OS/390

CICS Transaction Server for OS/390: Planning for Installation GC33-1789
CICS Transaction Server for OS/390 Release Guide GC34-5352
CICS Transaction Server for OS/390 Migration Guide GC34-5353
CICS Transaction Server for OS/390 Installation Guide GC33-1681
CICS Transaction Server for OS/390 Program Directory GI10-2506
CICS Transaction Server for OS/390 Licensed Program Specification GC33-1707

CICS books for CICS Transaction Server for OS/390

General
CICS Master Index SC33-1704
CICS User’s Handbook SX33-6104
CICS Transaction Server for OS/390 Glossary (softcopy only) GC33-1705

Administration
CICS System Definition Guide SC33-1682
CICS Customization Guide SC33-1683
CICS Resource Definition Guide SC33-1684
CICS Operations and Utilities Guide SC33-1685
CICS Supplied Transactions SC33-1686

Programming
CICS Application Programming Guide SC33-1687
CICS Application Programming Reference SC33-1688
CICS System Programming Reference SC33-1689
CICS Front End Programming Interface User’s Guide SC33-1692
CICS C++ OO Class Libraries SC34-5455
CICS Distributed Transaction Programming Guide SC33-1691
CICS Business Transaction Services SC34-5268

Diagnosis
CICS Problem Determination Guide GC33-1693
CICS Messages and Codes GC33-1694
CICS Diagnosis Reference LY33-6088
CICS Data Areas LY33-6089
CICS Trace Entries SC34-5446
CICS Supplementary Data Areas LY33-6090

Communication
CICS Intercommunication Guide SC33-1695
CICS Family: Interproduct Communication SC33-0824
CICS Family: Communicating from CICS on System/390 SC33-1697
CICS External Interfaces Guide SC33-1944
CICS Internet Guide SC34-5445

Special topics
CICS Recovery and Restart Guide SC33-1698
CICS Performance Guide SC33-1699
CICS IMS Database Control Guide SC33-1700
CICS RACF Security Guide SC33-1701
CICS Shared Data Tables Guide SC33-1702
CICS Transaction Affinities Utility Guide SC33-1777

© Copyright IBM Corp. 1989, 1999 xi

CICS DB2 Guide SC33-1939

CICSPlex SM books for CICS Transaction Server for OS/390

General
CICSPlex SM Master Index SC33-1812
CICSPlex SM Concepts and Planning GC33-0786
CICSPlex SM User Interface Guide SC33-0788
CICSPlex SM Web User Interface Guide SC34-5403
CICSPlex SM View Commands Reference Summary SX33-6099

Administration and Management
CICSPlex SM Administration SC34-5401
CICSPlex SM Operations Views Reference SC33-0789
CICSPlex SM Monitor Views Reference SC34-5402
CICSPlex SM Managing Workloads SC33-1807
CICSPlex SM Managing Resource Usage SC33-1808
CICSPlex SM Managing Business Applications SC33-1809

Programming
CICSPlex SM Application Programming Guide SC34-5457
CICSPlex SM Application Programming Reference SC34-5458

Diagnosis
CICSPlex SM Resource Tables Reference SC33-1220
CICSPlex SM Messages and Codes GC33-0790
CICSPlex SM Problem Determination GC33-0791

Other CICS books

CICS Application Programming Primer (VS COBOL II) SC33-0674
CICS Application Migration Aid Guide SC33-0768
CICS Family: API Structure SC33-1007
CICS Family: Client/Server Programming SC33-1435
CICS Family: General Information GC33-0155
CICS 4.1 Sample Applications Guide SC33-1173
CICS/ESA 3.3 XRF Guide SC33-0661

If you have any questions about the CICS Transaction Server for OS/390 library,
see CICS Transaction Server for OS/390: Planning for Installation which discusses both
hardcopy and softcopy books and the ways that the books can be ordered.

xii CICS TS for OS/390: CICS IMS Database Control Guide

Summary of changes

Changes for CICS Transaction Server for OS/390 Release 3
DFHDBFK, the DCBM group command file, added.

Significant changes for this edition are indicated by vertical lines to the left of the
changes.

Changes for CICS Transaction Server for OS/390 Release 2
This edition of the book contains few changes since the previous edition. It does
describe the new DBCTLCON system initialization parameter, in “Defining CICS
system resources” on page 22.

Changes for CICS TS for OS/390 release 1
The following topics have been added or changed since the CICS/ESA 4.1 edition:
v Withdrawal of support for local DL/I and batch shared database.
v DBCTL support for Indoubt Wait.
v Support for the IMS AIB format has been extended.
v Chapter 8 of the previous edition, about DBCTL in an XRF environment, has

been deleted because the XRF function has not changed. If you require that
chapter, refer to the CICS/ESA 4.1 edition of this book.

Changes for the CICS/ESA 4.1 edition
The following topics have been added or changed since the CICS/ESA 3.3 edition:
v A CICS-supplied transaction, CDBM, used to issue DBCTL operator commands
v A CICS-DBCTL installation verification procedure, DFHIVPDB
v Specifying a DBCTL identifier during CICS initialization or via the CDBC

transaction
v Release of DBCTL threads at syncpoint instead of task termination
v IMS AIB call format
v Withdrawal of support for IMS/VS 2.2 with local DL/I
v New system initialization parameters DSALIM and EDSALIM, which replace

CDSASZE, ECDSASZE, ERDSASZE, EUDSASZE, and UDSASZE parameters
v Migration scenarios
v Example trace entries
v Example of DFHSTUP output.

Changes for the CICS/ESA 3.3 edition
The book has been updated to reflect the replacement of the following system
initialization parameters:

Obsolete
Replaced by

© Copyright IBM Corp. 1989, 1999 xiii

DSASZE
CDSASZE and UDSASZE.

EDSASZE
ECDSASZE, ERDSASZE, and EUDSASZE.

xiv CICS TS for OS/390: CICS IMS Database Control Guide

Chapter 1. Overview of Database Control (DBCTL)

This overview of DBCTL introduces the concepts of the CICS-IMS interface that
uses Database Control (DBCTL) under these headings:
v “Summary of the benefits of DBCTL”
v “Overview of DL/I request handling in CICS” on page 2
v “Connecting to DBCTL” on page 3
v “CICS-IMS DBCTL environment” on page 3
v “Coordinator control subsystem (CCTL)” on page 7
v “Resources you can access from a CICS environment that includes DBCTL” on

page 8

Summary of the benefits of DBCTL
DBCTL is an IMS facility that provides an IMS/ESA® Database Manager
(IMS/ESA DM) subsystem that can be attached to CICS, but runs in its own
address spaces. The benefits of DBCTL are summarized below and are discussed in
more detail in “Chapter 2. Benefits of using DBCTL” on page 9.
v Release independence—you do not need to regenerate the DL/I support in CICS

if you change to a new release of CICS or IMS.
v Access to more IMS functions for CICS users—DBCTL gives one or more CICS

systems online access to data entry databases (DEDBs) as well as full function
DL/I databases.

v Virtual storage constraint relief for CICS systems that currently contain DL/I
because DL/I code is outside the CICS address space.

v Improved throughput on multiprocessors, because DL/I requests run under task
control blocks (TCBs) separate from those used by CICS and because CICS and
DBCTL reside in separate address spaces.

v Improved logging—DBCTL uses a separate log (the IMS log), so DL/I activity
does not appear on the CICS system log. This means that all DL/I information is
on a single log and can be processed using IMS logging facilities. IMS logging
facilities include dual logging and are well integrated with database recovery
control (DBRC). For more information, see “IMS logging” on page 33.

v Ability to use CICS support for the extended recovery facility (XRF). In addition,
if your CICS system is connected to an IMS/ESA Database Manager/Transaction
Manager (IMS/ESA DM/TM) system to obtain DBCTL support, you can use
IMS XRF facilities.

v Improved failure isolation between CICS and IMS—a DBCTL failure should not
cause your CICS system to fail.

v Batch jobs can be run as batch message processing programs (BMPs), which are
application programs that perform batch type processing online using the same
DBCTL as CICS and sharing its databases. You can usually run the same
program as a BMP or as a batch program. Using DBCTL gives you concurrent
access to IMS databases from BMPs and from CICS.

© Copyright IBM Corp. 1989, 1999 1

Overview of DL/I request handling in CICS
CICS can access DL/I databases in the following ways:
v Using DBCTL

This is when DBCTL satisfies the DL/I request issued from the CICS system by
means of the CICS-DBCTL interface.
Installing and using DBCTL are introduced in this manual (but note that you
will also need to refer to other CICS/ESA® and IMS/ESA manuals for further
information).

v Using remote DL/I
Remote DL/I is done by means of CICS function shipping a DL/I request to
another CICS system, in which the DL/I support can be local DL/I (CICS 4.1 or
below), remote DL/I, or DBCTL. See the CICS Intercommunication Guide for more
information on function shipping, and the CICS Transaction Server for OS/390
Installation Guide for information on adding remote DL/I support.

Notes:

1. Although these methods of accessing DL/I databases can coexist, a program
specification block (PSB) can only contain databases that are controlled by one
of the methods.

2. CICS Transaction Server for OS/390 Release 1 onward does not support local
DL/I.

CICS can also access DL/I databases in an IMS/ESA Database
Manager/Transaction Manager (IMS/ESA DM/TM) system using the CICS-DBCTL
interface. This means that you can have access to DL/I databases controlled by
IMS/ESA DM/TM without needing to use IMS data sharing, provided that CICS
and IMS/ESA DM/TM are in the same MVS image. Both the IMS/ESA DM/TM
system and the CICS system can include the extended recovery facility (XRF).

Figure 1 illustrates the three kinds of DL/I request.

DBCTLA
database

DBCTLACICSA

CICSB DBCTLB DBCTLB
database

CICSB
database

Request #1

Request #2bRequest #2a

Request #2a Request #2b

Figure 1. DL/I request handling within CICS

2 CICS TS for OS/390: CICS IMS Database Control Guide

Notes:

1. Request #1 is a DBCTL request from CICSA to DBCTLA for a database
controlled by DBCTLA. See “CICS-DL/I router (DFHDLI)” on page 4 for a
description of request processing.

2. Requests #2a and #2b are two separate remote (function shipped) DL/I requests
to databases controlled by, or connected to, other CICS systems (which may be
in the same MVS image or a different one). There are two ways of issuing such
requests:
v Request #2a from CICSA to CICSB for a database controlled by CICSB, where

CICSB is CICS/ESA 4.1 or below
v Request #2b from CICSA to CICSB for a database controlled by DBCTLB. The

most likely reason for using request #2b is if CICSA and CICSB are in
different MVS images.

Connecting to DBCTL
You can connect to, and disconnect from, DBCTL using the CICS-supplied
transaction CDBC. When you have connected to DBCTL by means of CDBC, you
can issue DL/I requests from your application programs. There is another
CICS-supplied transaction, CDBI, which you can use to inquire on the status of the
connection to DBCTL from CICS. See “Connection, disconnection, and inquiry
transactions” on page 47 for information on using CDBC and CDBI.

CICS-IMS DBCTL environment
Figure 2 on page 4 gives an overview of a CICS-DBCTL interface. Each box
represents an address space running within a single MVS system. The marked area
between the second CICS and the first BMP is the point at which CICS
components end and IMS components begin.

Chapter 1. Overview of Database Control (DBCTL) 3

CICS-IMS DBCTL environment—description of components
The following sections give detailed information about each of the major
components of the CICS-IMS DBCTL interface. See Figure 3 on page 7 for an
illustration of these components. At this point, you may prefer to go directly to
“Chapter 2. Benefits of using DBCTL” on page 9 and use the following information
for reference later.

CICS-DBCTL interface control components in CICS address
space

The components of the CICS-DBCTL interface in the CICS address space are:
v The CICS-DL/I router (DFHDLI)
v The CICS database adapter transformer (DFHDBAT)
v The database resource adapter (DRA)

CICS-DL/I router (DFHDLI)
The CICS-DL/I router, DFHDLI, forms the interface between your application
programs and the DL/I call processor. It accepts requests for remote, local, or
DBCTL database processing. If DFHDLI decides that the request is for DBCTL, it

DL/I full
function
databases

DEDB
databases

Log RECON

BMP BMP IMS (DBCTL)
control
region

DLISAS DBRC IRLM

MVS/ESA

CICS

Figure 2. CICS-DBCTL interface

4 CICS TS for OS/390: CICS IMS Database Control Guide

passes the request to the CICS-DL/I DBCTL processor, DFHDLIDP. The request
then goes to the task-related user exit interface and then to the CICS database
adapter transformer, DFHDBAT. (The task-related user exit interface is also referred
to as the resource manager interface (RMI). These terms are defined and compared
in the “Glossary” on page 183, and you can find programming information about
the task-related user exit interface in the CICS Customization Guide.)

CICS database adapter transformer (DFHDBAT)
The main responsibility of the CICS database adapter transformer, DFHDBAT (also
referred to in IMS publications as the adapter, or adapter/transformer) is to
communicate with the database resource adapter (DRA), which is described below.
DFHDBAT constructs parameter lists for the DRA. These parameter lists enable
CICS to connect to and disconnect from DBCTL, and enable DL/I requests to be
processed. To summarize, DFHDBAT:
v Tells the DRA that it must initialize the interface to DBCTL in response to a

request from the connection program (DFHDBCON).
v Tells the DRA when it must issue PSB schedule requests, DL/I requests, and

syncpoint requests in response to a request from the CICS-DBCTL processor
(DFHDLIDP).

v Tells the DRA that it must terminate the interface to DBCTL in response to a
request from the disconnection program (DFHDBDSC). If an orderly
disconnection has been requested, DFHDBAT ensures that all current CICS tasks
using DBCTL complete before telling the DRA to terminate the interface. If an
immediate disconnection has been requested, DFHDBAT ensures that only the
current CICS-DL/I request(s) using DBCTL can complete before telling the DRA
to terminate the interface.

CICS master terminal operators can use the CICS-supplied transaction CDBC to
connect to and disconnect from DBCTL. They can also automate connection to
DBCTL, as described in “Connection to DBCTL” on page 45.

Database resource adapter (DRA)
The functions of the database resource adapter (DRA) are to:
v Request connection to, and disconnection from, DBCTL.
v Tell CICS when a shutdown of DBCTL has been requested, or if DBCTL has

failed.
v Manage threads. A CICS application thread provides a two-way link between an

application and DBCTL. When a CICS transaction issues a DL/I request to
DBCTL, the thread represents that CICS transaction in DBCTL. It identifies the
transaction’s existence, traces its progress, sets aside the resources it needs to be
processed, and delimits its accessibility to other resources.

v Establish contact with the DBCTL address space and load the DRA startup
parameter table. The DRA startup parameter table provides the parameters
needed to define the interface to a DBCTL subsystem. (See “Defining the IMS
DRA startup parameter table” on page 38, for a list of DRA startup table
parameters.)

Components of DBCTL in IMS address spaces
The components of DBCTL that reside in IMS address spaces are:
v DBCTL
v DL/I separate address space (DLISAS)
v Database Recovery Control (DBRC)
v Internal resource lock manager (IRLM).

Chapter 1. Overview of Database Control (DBCTL) 5

DBCTL
The DBCTL subsystem contains support and features required to process full
function DL/I databases and DEDBs. Full function supports HSAM, SHSAM,
HISAM, SHISAM, HDAM, and HIDAM databases. Each DBCTL subsystem is
made up of three address spaces: DBCTL, DLISAS, and DBRC. A single DBCTL
can service multiple CICS systems, but a CICS system can connect to only one
DBCTL at a time. A CICS system can connect to one DBCTL, disconnect from it,
and then connect to a different DBCTL.

DL/I separate address space (DLISAS)
DL/I separate address space (DLISAS), which is required with DBCTL, is a
separate address space that contains DL/I code, control blocks, buffers for DL/I
databases and program isolation (PI), which is DL/I’s lock manager. (Lock
management is the process of controlling concurrent requests.) You use PI for lock
management unless you need the extra facilities provided by the IRLM, which is
described below. For example, you need the IRLM if you are data sharing with
another DBCTL subsystem, with local DL/I, or with an IMS/VS DB/DC or
IMS/ESA DM/TM system. See the IMS System Administration Guide or the
IMS/ESA Administration Guide: System for guidance information on PI.

Database Recovery Control (DBRC)
Database Recovery Control (DBRC) is an IMS facility that supports log
management, recovery control, and database sharing by providing the necessary
information to subsystems, batch programs, and utilities. DBRC is required with
DBCTL for log control and can optionally be used for database recovery control
and data sharing. See “Database recovery control (DBRC)” on page 78 for
information on DBRC and logging, and the IMS Operations Guide for more general
information on using DBRC.

Internal resource lock manager (IRLM)
The internal resource lock manager (IRLM) is a global lock manager that is a
feature of IMS and resides in its own address space. In simple configurations, you
do not need to use the IRLM; program isolation (PI) locking is sufficient. However,
you must use the IRLM to maintain data integrity if you are sharing databases at
block level. (For VSAM databases, a block is a control interval (CI); for any other
kind of database, it is a physical block.) You also need the IRLM if you need to
process a set of common databases from multiple IMS/ESA (or CICS Transaction
Server for OS/390) subsystems. The IRLM is also the lock manager used by
DATABASE 2™ (DB2®), and so you may prefer to use it with DBCTL if you
already use, or intend to use, DB2. See the IMS System Administration Guide or the
IMS/ESA Administration Guide: System and the IMS Operations Guide for more
information on the IRLM.

Summary of DBCTL components in CICS and IMS
Figure 3 on page 7 summarizes the major components in a simple CICS-IMS
DBCTL environment. Each separate box represents an address space. All the
components shown in Figure 3 on page 7 except the IRLM are mandatory.

6 CICS TS for OS/390: CICS IMS Database Control Guide

Coordinator control subsystem (CCTL)
The coordinator control subsystem (CCTL) is the transaction management
subsystem that communicates with the DRA, which in turn communicates with
DBCTL. In a CICS-DBCTL environment, the CCTL is CICS. The term CCTL is used
in a number of DBCTL operator commands and in the IMS manuals. CICS users of
DBCTL should take the term CCTL to mean a CICS system that is attached to IMS
by means of DBCTL.

Shipped with CICS/ESA Shipped with IMS/ESA

CICS address space IMS address spaces

D D R D D D D D I
F F M F R B L B R
H H I H A C I R L
D D D T S C M

CICS L L B L A
I I A S

D T
P

P
I

CICS IMS
LOG LOG

Figure 3. Major components of a simple CICS-IMS DBCTL environment

Chapter 1. Overview of Database Control (DBCTL) 7

Resources you can access from a CICS environment that includes
DBCTL

Figure 4 summarizes the resources you can access from a CICS environment that
includes DBCTL.

A single CICS task can use DB2 tables, IMS databases (using DBCTL or remote
DL/I), and CICS-managed local or remote resources (for example, VSAM files).

The CICS-DB2 and the CICS-DBCTL interfaces are similar in that they both use the
task-related user exit interface, and have a two-phase commit process. However,
they differ in a number of respects. For example, CICS supports DBCTL and
remote DL/I, and has to determine at PSB schedule time which of them is being
used. For more information, see “Other methods for accessing DL/I” on page 15.

DEDB DL/I full
function
database

DBCTL

DB2

VSAM
files

GSAM
files

CICSA CICSB CICSC BMPX BMPY

DB2
database

DB2
database

Figure 4. Resources you can access from a CICS environment that includes DBCTL

8 CICS TS for OS/390: CICS IMS Database Control Guide

Chapter 2. Benefits of using DBCTL

Support for local DL/I and batch shared database is withdrawn in CICS
Transaction Server for OS/390®. The benefits of DBCTL over local DL/I fall into
the following main categories:
v “Function”
v “System availability” on page 13
v “Performance” on page 14

DBCTL provides CICS users with additional function, a release-independent
interface, no DL/I code in the CICS address space, improved throughput on
multiprocessors, and more flexible operations.

Function
The functional benefits that DBCTL offers are in the areas of:
v “Data availability”
v “Batch message processing programs (BMPs)”
v “System service requests” on page 10
v “Access to data entry databases (DEDBs)” on page 10

Data availability
Previously, if you did not use DBCTL, and a database was unavailable when CICS
tried to schedule a program specification block (PSB), the transaction received a
return code to say that the schedule has failed. DBCTL enables CICS to take
advantage of the data availability that IMS provides; you can successfully schedule
a PSB, even though some of the databases used in that PSB are unavailable.

Scheduling for database recovery is more flexible because database blocks (or CIs)
that have had read or write errors are still available after a DBCTL restart.

See “Enhanced scheduling” on page 99 for more information on data availability
and the system service requests you can use in connection with it.

Batch message processing programs (BMPs)
Running batch jobs (both CICS shared database and “native” IMS batch jobs) as
BMPs enables you to use system service requests, such as symbolic checkpoint
(CHKP) and extended restart (XRST), and to access GSAM databases, which you
could not do with CICS shared database. With BMPs, all logging goes to a single
log (the IMS log), which eliminates the need for separate batch logs. BMPs also
support automatic backout, and automatic restart from the last checkpoint (without
requiring JCL changes). BMPs communicate directly with the DBCTL address space
instead of accessing databases through CICS, and enable concurrent access to
databases without the need to use IMS data sharing. Using BMPs gives a
performance advantage compared with the same programs that ran as CICS shared
database jobs, both in terms of the elapsed time of the batch jobs themselves, and
in terms of transaction response and throughput, because they do not delay the
CICS online workload as much. See “Batch message processing programs (BMPs)”
on page 102 for more information.

© Copyright IBM Corp. 1989, 1999 9

System service requests
Your CICS application programs can use the following IMS system service requests
in addition to those related to data availability:
v DEQ (in its command or call format) releases segments that were retrieved using

the LOCKCLASS keyword or the Q command code. LOCKCLASS and Q enable
an application program to reserve segments for its use.

v LOG (in its command or call format) can be used to write a record from an
application program to the IMS log. You may prefer to use this instead of EXEC
CICS journal commands so that all your DBCTL information is on the IMS log
instead of the CICS log.

See “Chapter 7. Application programming for DBCTL” on page 93 for more
information on using these requests.

Access to data entry databases (DEDBs)
Data entry databases (DEDBs) provide the same features as HDAM databases
(with the exceptions of secondary indexing and logical relationships). They also
have a number of advantages. Using DEDBs enables you to have very large
databases with high availability. DEDBs are designed to provide efficient storage
and fast online gathering, retrieval, and update of data, using VSAM entry
sequenced data sets (ESDSs).

DEDBs are hierarchic databases that can contain up to 127 segment types. One of
these segments is always a root segment. The remaining 126 segments can either
be direct dependent (DDEP) segments, or 125 DDEP segments and one sequential
dependent (SDEP) segment. A DEDB structure can have as many as 15 hierarchical
levels.

DEDBs are made up of database records stored in a set of up to 240 areas. Each
area contains a range of database records (which you can specify using the DEDB
randomizing routine) that contain the entire logical structure for a set of root
segments and their dependent segments. Areas are independent of each other, are
individually recognized, can be accessed by multiple programs and DEDB utilities,
are the basis for recovery procedures, and are largely transparent to application
programs.

DEDBs provide the following advantages:
v Large databases

– Areas can be as large as 4 gigabytes, and because you can have up to 240
areas in a single database, you can use very large databases, which you
would have to partition if you were not using DEDBs.

v Flexible design
– Each area can be designed to meet your storage, availability, performance,

and application needs. Areas can be separately reorganized and reacquired.
– You use the DEDB direct reorganization utility to physically reorganize

DEDBs to reduce ESDS fragmentation without taking them offline.

10 CICS TS for OS/390: CICS IMS Database Control Guide

v Increased data availability
– If a DEDB area is not available, a PSB requiring that database can still be

scheduled provided the area it requires is not the one that is unavailable and,
of course, the database itself is available. A PSB that requires an unavailable
area is still scheduled, and receives a status code indicating the condition. You
can therefore delay recovery until it is convenient to take the area offline.

– You can have up to seven copies of the same area. Each copy is called an area
data set (ADS) and all are automatically maintained in synchronization. This
is called multiple area data set (MADS) support. Write operations are done to
each ADS, but read operations are done from only one ADS. With MADS,
read and write errors are much less common because, if data cannot be read
from, or written to, the first copy, the next copy will automatically be used.
Read errors are transparent to application programs (except in the rare
instance where a read operation is unsuccessful with all ADSs).

– You can use DEDB utilities, which are run on an area basis and can be run
online concurrently with online update. This helps to reduce the time for
which areas have to be taken offline. For example, you can avoid using offline
database recovery by using the DEDB area data set create utility. This online
utility makes a new corrected copy of an area from existing copies of that
area. It creates one or more copies from multiple DEDB ADSs during online
transaction processing, enabling application programs to continue while the
utility is running.

– You use the DEDB initialization utility to initialize one or more data sets or
one or more areas of a DEDB offline.

– You can use the DEDB area data set compare utility if you suspect you may
have problems with compatibility of data. It compares control intervals (CIs)
of different copies of an area, and lists all the CIs that do not have equal
content. In the case of unequal comparison, full dumps of up to ten
unmatched CIs are printed out on the device you have specified.

v Efficient data retrieval and entry
– DEDB attempts to physically write DDEP segments hierarchically in the same

CI as the parent segment, which can make retrieval faster.
– The SDEP segment (located at the end of the ADS) is designed especially for

fast, online, mass insert in applications such as data collection, auditing, and
journaling. This is because SDEP segments for an area are stored rapidly,
regardless of the root on which they are dependent. For example, in a
banking application, transaction data can be collected during the day and
inserted as SDEPs in an account database. At the end of the day, these
transactions can be reprocessed by first retrieving them using the sequential
dependent scan utility. This online utility retrieves SDEP segments in mass
and copies them to a sequential data set. You can then process this data set
offline using your own programs; for example, for a statistical analysis. The
area involved remains available while the utility is running.

– You can delete SDEPs using the DEDB sequential dependent delete utility,
which deletes SDEP segments within a specified limit of a DEDB area.

– The ability to use high speed sequential processing (HSSP), which is available
from IMS/ESA Version 3 onwards. HSSP is useful with applications that do
large scale sequential updates to DEDBs. HSSP can reduce DEDB processing
time, enables an image copy to be taken during a sequential update job, and
minimizes the amount of log data written to the IMS log. For further
guidance, see “High speed sequential processing (HSSP)” on page 160.

v Improved performance

Chapter 2. Benefits of using DBCTL 11

– Pathlength is reduced because DEDBs use the MVS Data Facility Product
(MVS/DFP™) Media Manager offering.

– You can improve speed of access, or concurrent access, to DEDBs by tuning
DEDB buffer pool specifications. (See “DEDB performance and tuning
considerations” on page 158.)

– Logging overhead is reduced because only after-images are logged and
because logging is done during syncpoint processing only.

– The amount of I/O needed for each SDEP segment inserted can be very low,
because SDEPs are gathered from various transactions, stored in last-in
first-out order in one buffer, and are written out only when that buffer is full.
This means that many transactions “share the cost” of SDEP writes.

– Most DEDB processing is done in parallel to allow multithreading. Writes to
the database are done by a number you specify (up to 255) of parallel
processes called output threads. Furthermore, the DEDBs are not updated
during application program processing, but the updates are kept in buffers
until a syncpoint occurs. (See “When updates are written to databases” on
page 79.) This means that waiting applications can be processed sooner and
improves throughput on multiprocessors.

– DEDBs have their own resource manager and normally need to interact very
infrequently with program isolation or the IRLM (unless you are using block
level sharing). DEDBs maintain their own buffer pool.

– You can use subset pointers in your application programs to speed up
processing. A major problem in some applications is the need to process long
twin chains of segments. Occasionally database design must be modified
because some database records have excessively long twin chains. Subset
pointers give direct access to subsets of long twin chains of segments, which
can speed up application processing because segments located in front of the
subset do not have to be searched. Each pointer points to the first occurrence
of a subset in a range of direct dependent segments. See “Command codes to
manage subset pointers in DEDBs” on page 96 and “Keywords and
corresponding command codes” on page 97 for information about using
subset pointers in application programs. (See the IMS Database Administration
Guide or the IMS/ESA Administration Guide: Database Manager for guidance on
database structure.)

12 CICS TS for OS/390: CICS IMS Database Control Guide

System availability
The benefits that DBCTL offers in the area of system availability are:
v “Release independent interface”
v “Improved sharing of databases between multiple CICS systems”
v “Failure isolation”
v “Operational flexibility”
v “Ability to use XRF” on page 14

Release independent interface
You do not need to regenerate the DBCTL interface every time you upgrade your
CICS or IMS system.

Improved sharing of databases between multiple CICS
systems

With DBCTL, sharing of databases between multiple CICS systems is improved.
CICS systems in the same MVS image can share databases with other CICS
systems, with batch (as BMPs), and with IMS/ESA TM without the need for IMS
data sharing. Performance with DBCTL is better than using CICS database-owning
regions (DORs) with multiregion operation.

Failure isolation
The interface is designed so that a failure in CICS should not cause DBCTL to fail,
and a failure in DBCTL should not cause CICS to fail.

Operational flexibility
CICS and DBCTL are independent of each other; that is, CICS can be running
while DBCTL is not, and vice versa. A CICS transaction, CDBC, is provided for
you to connect to, and disconnect from, DBCTL dynamically. Another CICS
transaction, CDBI, enables you to inquire on the status of the connection.

DBCTL enables you to do a number of operations online, including:
v Online image copy
v Online change
v Online reorganization for DEDBs.

These utilities are summarized below, see “Database utilities” on page 83 for more
information.

Online image copy utility
The online image copy utility is used to create an as-is copy of your database
while it is being updated. The copy can then be used for recovery purposes. This
utility is used for HISAM, HDAM, and HIDAM databases only.

Online change utility
In many installations, it is important for the online system to be is available to
users for most of the day. The online change utility enables you to update
ACBLIBs, which contain PSBs and data management blocks (DMBs), and security
information belonging to full function databases, without bringing down the
system. For guidance information on this utility, see the IMS System Administration
Guide or the IMS/ESA Administration Guide: System and the IMS Utilities Reference:
Database manual manual.

Chapter 2. Benefits of using DBCTL 13

Online reorganization for DEDBs
As mentioned in “Access to data entry databases (DEDBs)” on page 10, the DEDB
direct reorganization utility enables you to reorganize DEDBs without taking them
offline.

Ability to use XRF
DBCTL users can use CICS or IMS support for the extended recovery facility (XRF)
in either of the following ways:
v Standard DBCTL, in which the active is a standard DBCTL subsystem. The

“alternate” is simply another standard DBCTL subsystem that is preinitialized
and waiting for a restart command. You use this method with or without full
CICS XRF support and you can have more than one preinitialized DBCTL in the
same MVS image. (This method is for users who do not have an IMS/ESA
DM/TM system.)

v If your CICS system is connected to an IMS/ESA DM/TM system to obtain
DBCTL support, you can use IMS XRF facilities. In this case, your active and
alternate DBCTL subsystems are the standard IMS active and alternate. (This
method is for users who already have an IMS/ESA DM/TM system.)

See “Chapter 6. Recovery and restart operations for DBCTL” on page 73 for more
information.

Performance
The benefits that DBCTL offers in the area of performance are:
v “Virtual storage constraint relief”
v “Improved throughput on multiprocessors”

Virtual storage constraint relief
Previously, if you did not use DBCTL, DL/I code and its associated control blocks
(including DBRC) resided in the CICS address space. With DBCTL, all this is
moved out of the CICS address spaces, freeing virtual storage within CICS systems
that previously contained local DL/I.

Improved throughput on multiprocessors
Because the components of the CICS-DBCTL interface reside in separate address
spaces and, because DBCTL uses a separate task control block (TCB) for each
application thread, throughput on multiprocessors is improved and there can be
more concurrent activity. See “Tuning a CICS-DBCTL system” on page 156 for more
information on thread and TCB performance considerations.

14 CICS TS for OS/390: CICS IMS Database Control Guide

Chapter 3. Migration considerations for DBCTL

Migrating from local DL/I to DBCTL is described as follows:
v “Other methods for accessing DL/I”
v “CICS-IMS release compatibility”
v “Possible migration paths” on page 16
v “Suggested migration procedure” on page 17
v “Planning your new DBCTL setup” on page 18
v “Setting up test and production systems” on page 19

See “Appendix A. Migration task summary for DBCTL” on page 163 for checklist
of tasks to be done to migrate to DBCTL, and a list of fallback considerations.

See the CICS Transaction Server for OS/390 Migration Guide and the IMS Release
Planning Guide for information on migrating to CICS Transaction Server for OS/390
Release 3 and to IMS/ESA respectively.

Other methods for accessing DL/I
Remote database support remains in CICS/ESA for function-shipped DL/I
requests. Your remote databases can be managed either by local DL/I (if the
remote CICS is CICS/ESA 4.1 or below) or by DBCTL.

Function shipping supports the additional system service requests, DEDB requests,
and enhanced scheduling (usually known as “data availability”) supported by a
DBCTL environment, all of which are described in “Chapter 7. Application
programming for DBCTL” on page 93.

Withdrawn support of local DL/I and shared database
CICS Transaction Server for OS/390 does not support local DL/I or batch shared
database.

Batch jobs that use the CICS shared database facility cannot access databases
owned by DBCTL. If you want to use CICS shared database jobs with DBCTL, you
must migrate them to run as BMPs, which communicate directly with the DBCTL
address space.

CICS-IMS release compatibility
The starting point for migration is a CICS system running with local DL/I. The
aim is to install CICS Transaction Server for OS/390 Release 3 and then IMS/ESA
Version 4 or later. Table 1 shows which CICS and IMS releases can be used
together, and whether they can be used with DBCTL, local DL/I, or both.

Table 1. CICS-IMS release compatibility

CICS Local DL/I DBCTL

CICS Transaction Server for
OS/390 1.1

---- IMS/ESA 3.1 IMS/ESA 4.1
IMS/ESA 5.1 IMS/ESA 6.1

CICS Transaction Server for
OS/390 1.2

---- IMS/ESA 3.1 IMS/ESA 4.1
IMS/ESA 5.1 IMS/ESA 6.1

© Copyright IBM Corp. 1989, 1999 15

Table 1. CICS-IMS release compatibility (continued)

CICS Local DL/I DBCTL

CICS Transaction Server for
OS/390 1.3

---- IMS/ESA 5.1 IMS/ESA 6.1

Any attempt to connect CICS, with storage protection active, to a DBCTL
subsystem running IMS/ESA 3.1 results in CICS terminating the connection
attempt abnormally. Message DFHDB8118 with return code 4 is sent to transient
data destination CDBC, indicating that CICS detected that the release of IMS/ESA
does not support the MVS subsystem storage-protection facility. CICS only allows
connection to this DBCTL subsystem if storage protection is turned off.

Possible migration paths
This section outlines some possible migration scenarios to CICS Transaction Server
for OS/390 Release 3 with DBCTL, based on your current setup.

CICS with local DL/I
CICS with local DL/I:
1. CICS/ESA 4.1 with local DL/I with IMS/ESA Version 4 or below
2. CICS/ESA 4.1 with local DL/I with IMS/ESA Version 3 or later and DBCTL

(optional)
3. CICS Transaction Server for OS/390 Release 3 with DBCTL.

CICS with local DL/I and data sharing
1. CICS/ESA 4.1 with local DL/I with IMS/ESA Version 4 or below data sharing

in a single-MVS environment
2. CICS/ESA 4.1 with local DL/I with IMS/ESA Version 3 or later and DBCTL

with data sharing (optional)
3. CICS Transaction Server for OS/390 Release 3 with DBCTL without data

sharing.

CICS with shared database
1. CICS/ESA 4.1 with local DL/I with IMS/ESA Version 4 or below CICS shared

database
2. CICS Transaction Server for OS/390 Release 3 with DBCTL and BMPs—CICS

shared database programs converted to BMPs.

CICS with IMS data sharing and batch
1. CICS/ESA 4.1 with local DL/I with IMS/ESA Version 4 or below and data

sharing with batch in a single-MVS environment
2. CICS Transaction Server for OS/390 Release 3 with DBCTL and BMPs without

data sharing—batch programs converted to BMPs in a single-MVS
environment.

CICS with function shipping
1. CICS/ESA 4.1 with IMS/ESA Version 4 or below, local DL/I—multiple MRO

regions — TORs, AORs, and DORs

16 CICS TS for OS/390: CICS IMS Database Control Guide

2. Multiple CICS Transaction Server for OS/390 Release 3 systems using
DBCTL—DBCTL replaces DORs.

CICS with IMS/ESA DM/TM

Scenario 1
1. CICS/ESA 4.1 with local DL/I and IMS/ESA DM/TM version 4 or later data

sharing (possibly in a multi-MVS environment)
2. CICS Transaction Server for OS/390 Release 3 with IMS/ESA TM Version 3 or

later with DBCTL in a single-MVS environment.

Scenario 2
1. CICS/ESA 4.1 with IMS/ESA DM/TM Version 3 or later with LU 6.1 in a

single-MVS environment or multi-MVS
2. CICS Transaction Server for OS/390 Release 3 with IMS/ESA DM/TM Version

4 or later with DBCTL (application program rewritten) in a single-MVS
environment.

Suggested migration procedure
If you already use CICS with DL/I, a suggested migration path is as follows:
v Install MVS (without changing your CICS or IMS systems).
v Install IMS/ESA Version 4 (Version 5 does not support local DL/I).
v Install CICS/ESA 4.1 with IMS/ESA Version 4 running locally and put these

systems into production together. (At this stage, there are no great changes in
the CICS-DL/I environment.)

v Convert to DBCTL.
v Install CICS Transaction Server for OS/390 Release 3.

You will probably want to migrate to DBCTL in stages, perhaps as follows:
1. Set up a test system. If you already have a test system that is used for testing

new applications, consider using it for testing migration to DBCTL.
2. If you do not want to begin with a test system, begin by setting up a trial

production system, perhaps one you already use for testing existing production
applications problems.

3. Set up a production DBCTL.

You then:
v Generate DBCTL, DLISAS, and DBRC.

You must use DBRC with DBCTL. If you are not familiar with using DBRC, you
should use it initially just to control log facilities. To do this, specify SHARECTL
when you install DBRC, but do not register databases.

v Decide which applications to migrate.
v Take full image copies of databases before migrating them to use DBCTL. This is

because information for CICS-DL/I databases is on both the CICS and the IMS
logs. Taking an image copy will ensure that the RECON is updated, and
information for that database will be from the IMS log only. See the IMS
Operations Guide for information on taking image copies, and the IMS Utilities
Reference: Database manual manual for information on the utilities you can use to
do so.

v Convert CICS shared database programs to BMPs.

Chapter 3. Migration considerations for DBCTL 17

v Convert any programs that use DFHFC TYPE=DLI macros to issue DL/I
commands or calls instead.

v Convert production CICS Transaction Server for OS/390 Release 3 systems.
v Tune CICS-DBCTL.
v Convert batch jobs to BMPs (they must issue checkpoints).
v When migrating your CICS shared database programs or “native” IMS batch

programs to BMPs, define PSBs in DBCTL security generation.

Note: If you run the application with CICS Local DL/I (which IMS treats as a
batch job), IMS allows path inserts without the PROCOPT=P parameter.

IMS issues status code AM if a CICS online program or a CICS shared
database program issues an ISRT call with the D command code when the
program does not have the PROCOPT=P parameter specified in the DB
PCB that was referenced in the call. IMS batch programs, however, do not
need the PROCOPT=P parameter to issue an ISRT call with the D
command code unless the program uses field level sensitivity.

If you then convert to DBCTL, and run the application in a BMP region
(which IMS treats as online processing rather than batch), you are no
longer permitted to use path inserts without the PROCOPT=P parameter.

For information on doing this, see “Chapter 8. Security checking with DBCTL”
on page 115.

v Consider DEDBs for new applications.

Planning your new DBCTL setup
v If you are running multiple CICS regions, each with its own copy of local DL/I,

you are recommended to migrate all your local DL/I systems to use a single
DBCTL. If you are running the same applications that schedule the same PSBs
on each of your CICS systems, but access different instances of the same
databases, migrating to a single DBCTL means that you will need a separate
DBD and separate PSBs for each instance of a database. However, your
applications could continue to schedule the same PSBs because there is a CICS
global user exit available to DL/I users which may help with migration to a
single DBCTL in this case. It is called XDLIPRE, and it enables you to change
the PSB name and/or the SYSID that the application program has scheduled at
execution time. “Appendix E. Using global user exit XDLIPRE to change PSB to
be scheduled” on page 177 contains an example of XDLIPRE that you can copy
and modify. Note that this example is provided for guidance only. See the CICS
Customization Guide for programming information on using these exits.

v You have a remote DL/I environment, in which you are running multiple CICS
AORs that function ship DL/I requests to a DL/I resource owning CICS region
in the same MVS image. In this case, replace the DL/I resource-owning region
with DBCTL. However, if you are function shipping DL/I requests to a DL/I
resource owning CICS region in a different MVS image you cannot replace the
DL/I resource owning region with a DBCTL subsystem. This is because CICS
and DBCTL can only communicate with each other when they are in the same
MVS image. However, the DL/I resource owning CICS region must use DBCTL
instead of local DL/I, as shown in Figure 5 on page 19. In this case, you keep the
DOR, but it communicates with DBCTL; that is, DBCTL replaces local DL/I, but
not the DOR.

18 CICS TS for OS/390: CICS IMS Database Control Guide

v CICS Transaction Server for OS/390 Release 3 systems running in a separate
MVS image from DBCTL must function ship their DL/I requests to a CICS
Transaction Server for OS/390 Release 3 system located in the same MVS image
as DBCTL.

v If you want batch programs to run concurrently with CICS, and you do not
already use IMS data sharing or DBRC:
– Install DBRC in the existing CICS system and become familiar with it before

migrating to DBCTL; or
– Install DBCTL and use DBRC to control logs only. Run the batch programs as

BMPs. When you are familiar with this environment, extend your usage of
DBRC to control database integrity.

v You have an IMS data sharing environment, in which you are running multiple
CICS systems that are data sharing with one another and with batch, and all the
data sharing is taking place within a single-MVS environment. In this case, you
could consider migrating completely to a single DBCTL within an MVS image
instead of using data sharing. If you do this, migrate all the DL/I batch jobs
involved to BMPs, which will simplify log management.
You can use IMS data sharing across multiple DBCTLs in a single- or multi-MVS
environment.

v If your current CICS is sharing databases with IMS/VS DB/DC or IMS/ESA
DM/TM using IMS data sharing, it may be appropriate to migrate to using the
IMS/VS DB/DC or IMS/ESA DM/TM region as the DBCTL region.

Setting up test and production systems
Note the following points when setting up your test and/or production systems.

Number of DBCTL subsystems to use
You will need to determine the number of DBCTLs you require in a single-MVS
environment; for example, one DBCTL subsystem for the whole MVS image, or
one DBCTL subsystem for each CICS system in single-MVS environment. Balance
the number of DBCTLs within a single MVS image against the amount of CSA
needed. Also, be aware of the need to differentiate DBCTL systems on the same
MVS image to avoid causing any confusion between subsystems.

You are recommended to have only one production DBCTL in a single-MVS
environment. Normally, this should be large enough to serve all CICS Transaction
Server for OS/390 Release 3 systems within one MVS image. For multiple CICS
systems with local and remote DL/I, running in several MVS images using IMS
data sharing, count the number of DL/I threads needed. If the sum of these
threads, plus the number of expected active BMPs is less than 255, you should
need only one DBCTL without data sharing.

You need one log for each DBCTL, so bear in mind that logging can become more
complex the more DBCTLs you have. Balance the need for multiple DBCTLs

MVS A MVS B

AORs DOR DBCTL

Figure 5. Function shipping to a DOR in a different MVS image with DBCTL

Chapter 3. Migration considerations for DBCTL 19

against the logging procedures you will need. However, log throughput time
should be improved compared with local DL/I, because DBCTL uses the write
ahead data set (WADS), which can reduce the elapsed time needed for a log write.

20 CICS TS for OS/390: CICS IMS Database Control Guide

Chapter 4. Installing DBCTL, and defining CICS and IMS
system resources

This chapter describes how to install DBCTL and define CICS and IMS system
resources under the following sections:
v “Checklist for installing and generating DBCTL”
v “Defining CICS system resources” on page 22 for a DBCTL environment, and

describing the effects on system definitions in an existing DL/I environment
v “Generating DBCTL” on page 28, including some examples of JCL you can copy

to provide a basic DBCTL subsystem
v “Starting DBCTL, DLISAS, and DBRC” on page 37
v “Defining the IMS DRA startup parameter table” on page 38, including some

example JCL
v “Customizing DBCTL” on page 42, by means of a user-replaceable program and

two global user exits.

Checklist for installing and generating DBCTL
In this checklist, it is assumed that you have already installed CICS Transaction
Server for OS/390 Release 3 and IMS/ESA 4.1 or higher,and have read the
program directory for each product to check for any PTFs or APARs that you may
need, as advised in the CICS Transaction Server for OS/390 Installation Guide. This
checklist is an example to help you develop your own procedures for installing
DBCTL, depending on the DBCTL facilities you want to use. When developing
your own checklist, refer to the IMS Installation Guide and the IMS System Definition
Reference manual manual or IMS/ESA Installation Volume 2: System Definition and
Tailoring for further guidance on IMS installation and system definition.

CICS supplies a DBCTL installation verification procedure, DFHIVPDB. For more
information about this IVP, see the CICS Transaction Server for OS/390 Installation
Guide.

Using DBCTL instead of local DL/I simplifies installation, because you do not
have to perform a partial system generation of CICS to use DL/I resources. Also,
you do not have to do a partial system generation if you use remote DL/I support.
1. Prepare a PDIR that does not specify PSBs for an application that is to be

migrated to DBCTL for testing. (See “PSB directories (PDIRs)” on page 25.)
2. Perform DBCTL startup. (See “Starting DBCTL, DLISAS, and DBRC” on

page 37.)
3. Update system procedure libraries; for example, SYS1.PROCLIB, with the

startup procedures for DBCTL, DLISAS, DBRC, and the IRLM (if you are
using it). (These startup procedures are in the IMS.PROCLIB library.)

4. Check that DBCTL has been fully installed, integrated with MVS, and that all
required online data sets have been allocated and initialized, where applicable.
(For further guidance on doing this, see the IMS Installation Guide.)

5. Perform an ACB generation to create members of the IMS.ACBLIB, if you
have not done this already.
An ACB generation should have been performed when CICS with local DL/I
was migrated to IMS/ESA 3.1 or later. DBCTL can use ACBs generated for a

© Copyright IBM Corp. 1989, 1999 21

local DL/I (IMS/ESA 3.1) environment, but you should not simply include
existing ACBLIBs in the DBCTL and DLISAS JCL. Use a pair of new, separate,
ACBLIBs, which will enable you to use the IMS online change facility. You can
copy them from, say, CICS.LOCAL.ACBLIB into a DBCTL.ONLINE.ACBLIBA
and DBCTL.ONLINE.ACBLIBB but, if you do this, be aware that you might
copy some invalid (that is, pre-IMS/ESA 3.1) ACBs. To avoid this, start with
empty ACBLIBA and ACBLIBB libraries, and regenerate ACBs as required.

6. If you intend to use dynamic allocation, create DFSMDA members. (See “IMS
dynamic allocation macro (DFSMDA)” on page 36.)

7. Start DBCTL. DBCTL will issue a start command for DLISAS and DBRC. This
requires the DLISAS and DBRC JCL procedures to be in SYS1.PROCLIB. (See
“Starting DBCTL, DLISAS, and DBRC” on page 37.)

8. Test DBCTL, for example by using the DBCTL operator command /DISPLAY
to verify that DBCTL recognizes the PSBs and DBDs you defined in the
DBCTL generation. (See “Finding out current status of DBCTL activities” on
page 63.)

9. Check your log archiving setup works before doing any more testing. (See
“Log control with DBRC” on page 34.) If it does not, the IMS logs may
eventually fill and stall the system.

10. Assemble a DRA that will enable CICS to connect to DBCTL. (See “Defining
the IMS DRA startup parameter table” on page 38.)

11. Start CICS and test the connection to DBCTL, using the CDBC transaction.
(See “CDBC transaction for connect and disconnect” on page 47.)

12. Generate an initialization PLT, so that CICS can connect to DBCTL
automatically at startup time. (See “Connecting DBCTL to CICS
automatically” on page 46.)

13. Test the application(s) you defined to DBCTL.
14. Set up and test recovery and restart of CICS and DBCTL, and database

recovery. (See “Chapter 6. Recovery and restart operations for DBCTL” on
page 73.)

Defining CICS system resources
This section tells you how to define system resources for DBCTL.

System initialization parameters
The CICS system initialization parameters contain information needed to initialize
and control system functions and the initialization process. It also contains module
suffixes to enable you to choose between different versions of CICS modules and
tables. You can generate several SITs and select the one that best meets your
current requirements at initialization time. If you have more than one CICS system,
each can use a different SIT.

Specifying DL/I support in system initialization parameters
In CICS Transaction Server for OS/390 Release 3, there is no DLI system
initialization parameter. Support for DBCTL is always present. Support for remote
DL/I is included if the PDIR=YES|xx keyword is specified.

Note: The default is PDIR=NO, meaning that by default support for remote DL/I
is not included.

See the CICS System Definition Guide for more details about these parameters.

22 CICS TS for OS/390: CICS IMS Database Control Guide

Reviewing CICS system initialization parameters
With DBCTL, many CICS system initialization parameters are replaced by DBCTL
generation parameters, and you will need to change what you specify for others
because DL/I code has been removed from the CICS address space.

Table 2 on page 24 lists the CICS system initialization parameters relevant to DL/I.
It states whether each parameter applies to DBCTL or remote DL/I (in the D and
R columns, respectively). Where applicable, it lists the corresponding IMS startup
parameter that applies to DBCTL. Finally, it mentions special considerations for
DBCTL.

See the CICS System Definition Guide for the syntax of CICS system initialization
parameters. See “Generating DBCTL” on page 28 for more information about the
IMS and DBCTL parameters mentioned in this table. See “Defining the IMS DRA
startup parameter table” on page 38 for information about DRA startup table
parameters.

Chapter 4. Installing DBCTL, and defining CICS and IMS system resources 23

Table 2. CICS system initialization parameters and DBCTL

System initialization
parameter

D R IMS/DBCTL startup
parameter

Comments

APPLID Y Y N/A The generic VTAM® application identifier for this
CICS system.

DBCTLCON Y N N/A YES specifies that you want CICS to connect to a
DBCTL subsystem automatically during CICS
initialization. This causes CICS to invoke the
DBCTL attach program, DFHDBCON. The other
information CICS needs for starting the
attachment, such as the DRA startup table suffix
or the DBCTL subsystem name, is taken from an
INITPARM system initialization parameter.

Specifying DBCTLCON=YES means you do not
have to define the DBCTL attach program in the
CICS post-initialization program list table (PLT),
as described in “Program list table (PLT)” on
page 27.

DSALIM Y Y N/A Upper limit of the total amount of storage within
which CICS can allocate the individual dynamic
storage areas (DSAs) below the 16M byte line. See
the CICS System Definition Guide and the CICS
Performance Guide for information about specifying
DSALIM. See the IMS System Administration Guide
for guidance on DBCTL storage estimates.

EDSALIM Y Y N/A Upper limit of the total amount of storage within
which CICS can allocate the individual dynamic
storage areas (EDSAs) above the 16M byte line.
For more information, see the CICS System
Definition Guide and the CICS Performance Guide
for information on specifying EDSALIM. See the
IMS System Administration Guide for guidance on
DBCTL storage estimates.

INITPARM Y N N/A Used to pass parameters to programs (for
example, PLT programs) during CICS startup.
With DBCTL, you can use it to specify DRA
startup parameter table suffix and DBCTL
identifier to automate connection to a particular
DBCTL. INITPARM applies to COLD, INITIAL,
WARM, or EMERGENCY starts of CICS. With
XRF, INITPARM applies only if the active CICS
was not connected to DBCTL. Otherwise, the
alternate CICS is automatically connected to the
same DBCTL as the active.

PDIR N Y N/A—use APPLCTN Suffix of the PDIR. With DBCTL, the PDIR is
generated during DBCTL generation using the
APPLCTN macro.

PSBCHK Y Y N/A Requests PSB authorization checking of a remote
terminal initiating a transaction using transaction
routing. To obtain the check, you must also
specify YES or name on the XPSB system
initialization parameter.

24 CICS TS for OS/390: CICS IMS Database Control Guide

Table 2. CICS system initialization parameters and DBCTL (continued)

System initialization
parameter

D R IMS/DBCTL startup
parameter

Comments

RST Y N N/A Suffix of recoverable service table (RST), which
contains alternative DBCTL IDs to which CICS
can try to connect, and which is used by CICS
XRF with DBCTL. See “Chapter 6. Recovery and
restart operations for DBCTL” on page 73.

XPSB Y Y N/A Security class name by which PSBs are defined to
RACF®. For DBCTL, you specify the RACF
resource class to be used to security check PSBs.
(See the CICS RACF Security Guide for more
information.)

PSB directories (PDIRs)
PSB directories (PDIRs) contain entries defining each PSB to be accessed using
remote DL/I.

If you are using DBCTL exclusively, you do not need to generate a PDIR for CICS.
Instead you must define PSBs and DMBs using the IMS macros APPLCTN and
DATABASE respectively. (For information on the APPLCTN and DATABASE
macros, see “Generating DBCTL” on page 28.)

If you want to function ship requests to a CICS system, at which the database
manager may be DBCTL or remote DL/I (function shipping), you will need to
generate a PDIR. See the CICS System Definition Guide and the CICS Resource
Definition Guide for details about defining PDIRs.

CICS routes DL/I requests to remote DL/I or DBCTL according to the PSB that is
named. If the PSB appears in the CICS PDIR, the request is routed to remote DL/I
(that is, function shipped to another CICS system). If the PSB does not appear in
the CICS PDIR, and CICS is connected to DBCTL, CICS routes the request to
DBCTL. In addition, if the PSB appears in the PDIR and specifies a SYSID that
matches the local SYSID, the request is routed to DBCTL.

DD statements
You must put the following two modules, which appear in the IMS.RESLIB library,
in the CICS STEPLIB data set concatenation:
v The DRA startup parameter table—DFSPZPxx (where xx is the user-defined

suffix)
v The DRA startup router program—DFSPRRC0.

You can do this by placing a DD statement for IMS.RESLIB in the CICS STEPLIB
concatenation (which must be APF-authorized). For example:
//STEPLIB DD DSN=CICSTS13.CICS.SDFHAUTH,DISP=SHR
// DD DSN=IMS.RESLIB,DISP=SHR

IMS.RESLIB (which must also be APF-authorized) contains a default DRA startup
table, in which the suffix is set to 00. You can generate your own versions into this
library. If you decide to use a different library for your own versions, make sure it
is APF-authorized, and is included in the CICS STEPLIB concatenation.

Chapter 4. Installing DBCTL, and defining CICS and IMS system resources 25

The DRA will dynamically allocate the IMS.RESLIB library using the DD name
CCTLDD and the data set name IMS.RESLIB, unless either has been overridden in
the DRA startup parameter table.

DD statements removed from CICS JCL in a DBCTL-exclusive
environment
DFSCTL

For DBCTL, DFSCTL is not required. DBCTL owns the OSAM buffer pools,
which are specified in DBCTL startup JCL and in the DRA startup parameter
table. See “Database buffer specifications and option parameters” on page 36
and “Defining the IMS DRA startup parameter table” on page 38.

DFSRESLB
For DBCTL, DFSRESLB is not required. DFSRESLB is replaced by the DRA
dynamically allocating IMS.RESLIB as described in “DD statements” on
page 25.

IEFRDER
Used to define DL/I batch logging. For DBCTL, DL/I logging is to the IMS
log. See “Defining IMS logging parameters” on page 35.

IMSMON
With DBCTL, you can start and stop the IMS monitor dynamically. See “Using
the IMS monitor” on page 152.

IMSACB
For DBCTL, IMSACB is in the DBC procedure and the DLS procedure. There
are additional DD statements—IMSACBA and IMSACBB. One is the active
library and the other is available for the IMS online change utility.

DFSVSAMP
For DBCTL, DFSVSAMP is not used. The information it contains, for example,
VSAM buffer parameters and performance and trace options, is in the
DFSVSMxx member of IMS.PROCLIB in the PROCLIB DD statement of the
DBCTL startup procedure (DBC). The DFSVSMxx member must be available to
DLISAS, which means that you must add a data set with member DFSVSMxx
to the DLISAS address space. The last two characters of the DFSVSM member
are a suffix, which you specify in the VSPEC parameter of the DBCTL startup
procedure (DBC).

RECON data sets
RECON data sets are generally specified in DFSMDA IMS dynamic allocation
members in the IMS.RESLIB library. See “IMS dynamic allocation macro
(DFSMDA)” on page 36. For DBCTL, RECON data sets can be specified in the
DBRC procedure.

JCLPDS
For DBCTL, JCLPDS is in the DBRC procedure.

JCLOUT
For DBCTL, JCLOUT is in the DBRC procedure.

Database DD statements
Generally, you specify database DD statements in DFSMDA IMS dynamic
allocation members in the IMS.RESLIB library. For DBCTL, they can be
specified in the DLS address space for DL/I databases, or in the DBC address
space for DEDBs.

26 CICS TS for OS/390: CICS IMS Database Control Guide

CICS-supplied groups within CICS system definition
Program, transaction, and mapset entries for the CICS system definition (CSD) file
to provide DBCTL support are supplied in the group DFHDBCTL. This includes
the DBCTL connection and disconnection transaction, CDBC, the inquiry
transaction, CDBI, and the operator transaction, CDBM. DFHDBCTL is in
DFHLIST, which contains the CICS resource definitions needed to run
IBM-supplied transactions that must be installed in your system. Also in DFHLIST
is the DFHEDP group, which provides the program definition required to run
EXEC DLI applications. The group DFHEDP must always be installed in the CICS
system. If you need further information on DFHLIST, see the CICS Resource
Definition Guide.

You may also want to specify the following options of the TRANSACTION
definition for transactions using DBCTL:
v RESTART

This option defines whether or not CICS will attempt to restart a transaction that
has been backed out after a failure. (See “Deadlocks and interactions with
automatic restart” on page 89.)

v SPURGE
Specify SPURGE(YES) so that the transaction can be purged using CEMT.
“Purging a transaction that is using DBCTL” on page 68 tells you how to use
CEMT in this way.

Log management
All DBCTL-related information is sent to the IMS log, not the CICS system log.
This method of logging uses the IMS log utilities and the online log data sets
(OLDS) and write-ahead data sets (WADS). Because database change records are
written to the IMS log, you do not need to retain the CICS system log for use by
IMS database recovery utilities in a DBCTL-exclusive environment. IMS logging
operations are described in “IMS logging” on page 33.

Monitoring control table (MCT)
If you were using local DL/I when converting to DBCTL, you can remove the
entries for the DL/I event monitoring points (EMPs) from the monitoring control
table (MCT). However, you will need additional monitoring control table (MCT)
entries if you want to provide support for the monitoring information returned
from DBCTL. These MCT entries are in CICSTS13.CICS.SDFHSAMP in the copy
member DFH$MCTD.

Program list table (PLT)
To connect CICS to DBCTL at CICS startup time, you can invoke it in the second
stage of program list table postinitialization (PLTPI) processing (that is, the third
stage of CICS initialization). You do this by including an entry for DFHDBCON
(the DBCTL connection program) using the DFHPLT macro. See the CICS Resource
Definition Guide for help on using the DFHPLT macro. If you are using XRF, you
must also do this for your alternate CICS subsystems. CICS will then invoke
DFHDBCON after takeover, passing the same DBCTL startup table suffix as was
being used by the active CICS system when the failure occurred.

Including an entry for DFHDBCON in the PLT enables you to connect
automatically to the same DBCTL as when the system was last shut down, or to a
different one. For more information on doing this, see “Connecting DBCTL to CICS
automatically” on page 46.

Chapter 4. Installing DBCTL, and defining CICS and IMS system resources 27

As an alternative, you may use the DBCTLCON system initialization parameter to
make the automatic connection, see Table 2 on page 24.

Transient data queues
You will need a definition for the CDBC transient data queue. The CDBC transient
data queue is used for messages issued by the CICS-DBCTL interface.

You can suppress or reroute messages sent to transient data queues such as CDBC.
You can reroute from CDBC to a list of consoles, from CDBC to a different
transient data queue, or reroute console messages to CDBC. For programming
information about coding the CICS-supplied user exit used to re-route messages,
and on the example user exit provided to help you do so, see the CICS
Customization Guide.

Generating DBCTL
You generate the appropriate IMS control blocks and resource definitions for a
DBCTL subsystem by performing an IMS system definition. IMS system definition
is a two-stage process with an optional preprocessor. Stage 1 checks your input
specifications (appropriate JCL and macro statements, which are described below)
and generates a series of MVS/ESA™ job steps for stage 2. Stage 2 builds IMS
system libraries, execution procedures, and the DBCTL control program. The
optional preprocessor is a convenient tool that checks for duplicate names and
checks the length and format of the names used as input for stage 1.

Defining the DBCTL subsystem
IMS uses macro statements for system definition. These macro statements define
the operating systems, operating system interfaces, storage pools, PSBs, and
databases. From some of these macro statements, DBCTL constructs a set of control
blocks with which to execute.

To define the environment in which DBCTL operates, you use DBCTL startup
parameters and control information in a number of IMS system data sets. You then
use the appropriate suffixes to specify the information to be used for a particular
DBCTL run. (This is similar to selecting CICS tables by specifying their suffixes in
the SIT or in SIT overrides.)

The IMS system generation macros you need are listed in “IMS system generation
macros used by DBCTL”. See the IMS System Definition Reference manual manual or
IMS/ESA Installation Volume 2: System Definition and Tailoring for guidance on the
syntax of these macros. “Appendix B. Illustration of DBCTL startup parameter
creation and selection” on page 167 shows how DBCTL startup parameters are
created and selected during startup. If you are new to IMS system definition, you
may find it helpful to refer to this illustration while reading the information on
generating DBCTL.

IMS system generation macros used by DBCTL
v IMSCTRL

The first macro in a DBCTL system generation is IMSCTRL. It is always required
and there can be only one within each IMS system definition. IMSCTRL
describes the MVS system under which IMS executes, the type of IMS system,
the type of generation to be performed, and the components of the IMS
environment, for example, IRLM and DBRC. Note that, because DBRC is
mandatory for DBCTL, you do not need to specify the IMSCTRL parameter,

28 CICS TS for OS/390: CICS IMS Database Control Guide

DBRC=YES. (If you do specify this parameter, it is ignored.) You can use
IMSCTRL to cause the IMS nucleus and/or the DDIR and PDIR to be
regenerated.
– MAXREGN

MAXREGN is the number of regions (threads) that DBCTL will allocate at
startup. This can be from 1 through 255. It can increase dynamically to a
maximum of 255. Each BMP needs one region. Each connected CICS needs
from MINTHRD to MAXTHRD regions. See also MINTHRD and MAXTHRD,
which are used to specify the minimum and maximum numbers of threads
for a particular CICS system, as described in “Defining the IMS DRA startup
parameter table” on page 38. For information on how these parameters
interact, see “Specifying numbers of threads” on page 157. (MAXREGN is not
the only parameter you need in IMSCTRL, but we mention it here to contrast
it with MINTHRD and MAXTHRD.)

v APPLCTN
You use the APPLCTN macro to name PSBs (one macro for each PSB) that are to
be used by application programs to access databases through DBCTL.
If multiple CICS transactions or BMPs are to schedule a PSB concurrently, the
APPLCTN macro for that PSB must specify SCHDTYP=PARALLEL. If you do
not specify SCHDTYP=PARALLEL, only one transaction at a time will be able
to schedule a PSB. You can change the SCHDTYP of a PSB using the online
change process and the /MODIFY command, which you enter at the DBCTL
console. See “Changing DBCTL resources online” on page 65 for more
information about the online change process and the /MODIFY command.
In DBCTL, PSBs used by CICS transactions can be defined either with the TP
option or the BATCH option. In the example in Figure 6 on page 32, we have
used the BATCH option. Figure 6 also includes an example of defining a PSB for
the CDBM operator transaction.

v BUFPOOLS
You use the BUFPOOLS macro to specify default main storage buffer pool sizes
for DBCTL, including the size of the DMB and PSB pools. You can override
these values at startup using the CSAPSB=, DLIPSB=, and DMB= parameters.

v DATABASE
You use DATABASE macro statements to define the databases that DBCTL will
access (one macro for each database). Each physical database must be referenced
on a DATABASE macro statement. You can change this resource through the
online change process using the /MODIFY command, which you enter at the
DBCTL console. See “Changing DBCTL resources online” on page 65 for more
information on the /MODIFY command.

v FPCTRL
The FPCTRL macro statement defines the fast path options when DEDBs are
used. You need to use this macro only if you want DEDB support.

Note: For DBCTL users, fast path support refers only to DEDBs. Parameters that
begin with FP refer to DEDBs in a DBCTL-exclusive environment.

v IMSCTF
The IMSCTF macro statement includes parameters to define the SVCs to be used
by DBCTL, logging options, and the device type for DBCTL’s restart data set.

v SECURITY
The SECURITY macro statement enables you to specify optional security features
to be in effect during IMS execution, unless they are overridden during system
initialization.

Chapter 4. Installing DBCTL, and defining CICS and IMS system resources 29

If you are implementing IMS security, the security maintenance utility is used to
place descriptions of protected resources into suffixed members of a matrix data
set called IMS.MATRIX.
The IMS.MODBLKS data set is used as input to the security maintenance utility,
which means that:
– The IMS system generation has to be completed before the security

maintenance utility can be run
– The security maintenance utility will use IMS.MODBLKS members that have

the same suffix as you specified for the IMS.MATRIX members about to be
created (as the second parameter of the security maintenance utility EXEC
statement).

For more information about security with DBCTL, see “Chapter 8. Security
checking with DBCTL” on page 115.

v IMSGEN
The IMSGEN macro statement must be the last system definition macro in the
Stage 1 input. It specifies the assembler and linkage editor data sets and options,
and the system definition output options and features. It specifies the suffix
character for the IMS nucleus (DFSVNUCx in IMS.RESLIB) and for the DDIR
(DFSDDIRx) and PDIR (DFSPDIRx) in IMS.MODBLKS. Note that you must
specify the MACLIB parameter of the IMSGEN macro as MACLIB=ALL when
using DBCTL for the first time.

Implementing CICS-supplied transaction, CDBM
CICS provides a transaction, CDBM, which enables DBCTL operator commands to
be input from a CICS terminal (which must be a BMS supported device), as
described in “CDBM operator transaction” on page 55. CDBM uses the AOI
commands (available from IMS/ESA 5.1 onwards) that can be issued across the
DRA interface between CICS and DBCTL. For more information, see “Issue IMS
AIB call format” on page 94.

To use CDBM you must:
1. Have a DBCTL system running IMS/ESA 5.1, or later.
2. Generate, and add to the DBCTL system, a PSB named DFHDBMP. Specifying

parallel scheduling for this PSB enables multiple CDBM transactions to be
active at the same time. DFHDBMP need not have any associated PCBs.
Example input for the PSBGEN is:
PSBGEN LANG=ASSEM,PSBNAME=DFHDBMP,IOASIZE=1000

The IOASIZE parameter must be large enough to cope with the largest AOI
command issued. Large AOI commands can result from using wild cards. For
example, issuing CDBM /START DATABASE D* results in a start command
being issued for all database names beginning with D. See the IMS Utilities
Reference: Systems manual manual for information on defining IOASIZE.

Modifying IMS system data sets using online change
You can modify the IMS system data sets MODBLKS, MATRIX, and ACBLIB using
online change. Each of them must be present in the following copies:
v A staging library, which is identified by an unsuffixed DD statement

(MODBLKS, MATRIX, ACBLIB), and is used offline only to prepare changes to
the active library.

v An active and an inactive library, which are used in flip-flop mode and are
identified by suffixed DD statements (MODBLKSA and MODBLKSB, and so on).
The same parameter (MODBLKSx, where x= A or B) controls the active library

30 CICS TS for OS/390: CICS IMS Database Control Guide

|

for both MODBLKS and MATRIX. While the active library (either ...A or ...B) is
being used online by DBCTL, you can use the online change utility to copy the
contents of the staging library to the inactive library. You use a series of
/MODIFY commands to perform the actual switch from the active library to the
updated inactive library.

The IMS.MODSTAT data set, which is created during the IMS system generation
and updated automatically, indicates which of the suffixed data sets is currently
active. For guidance on using online change, see “Changing DBCTL resources
online” on page 65 and the IMS System Administration Guide or the IMS/ESA
Administration Guide: System.

Example of JCL required to generate a basic DBCTL subsystem
The minimum generation required to generate DBCTL is ON-LINE,DBCTL. (You
will need to perform an online generation to change the SVC numbers.) You must
include the dash (-) in the ON-LINE parameter. If you do not, you will get the
following messages when you try to generate DBCTL:
IEV254 *** MNOTE *** 7+ 4,G002 FOLLOWING OPERAND(S) OMITTED OR INVALID:
IEV254 *** MNOTE *** 8+ 4, SYSTEM

You use an ACB generation to create members of the IMS.ACBLIB. See the IMS
Utilities Reference: Database manual manual for further guidance on doing this.

Figure 6 shows an example DBCTL generation that you can copy and modify to
generate a DBCTL subsystem. Note that this example includes only the parameters
needed to get a “basic” system up and running. It does not include optional
parameters, such as those for DEDB support, and it assumes that you will want to
tune other parameters (such as the number of threads) later, when you have had
an opportunity to see how the subsystem runs.

Note: You can, instead, use the IMS INSTALL/IVP dialog to generate stage 1
macros for DBCTL. For guidance on doing so, see the IMS Installation Guide.

Chapter 4. Installing DBCTL, and defining CICS and IMS system resources 31

//DBCGEN JOB 1,PGMERID,
// MSGCLASS=A,MSGLEVEL=(1,1),
// CLASS=A,NOTIFY=PGMERID
//ASM EXEC PGM=IEV90,
// PARM='DECK,NOOBJECT',
// REGION=4096K
//SYSLIB DD DSN=IMS.OPTIONS,DISP=SHR
// DD DSN=IMS.GENLIB,DISP=SHR
// DD DSN=IMS.GENLIBA,DISP=SHR
// DD DSN=IMS.GENLIBB,DISP=SHR
// DD SYS1.MACLIB
//*
//SYSUT1 DD UNIT=SYSDA,SPACE=(1700,(400,400))
//SYSUT2 DD UNIT=SYSDA,SPACE=(1700,(400,400))
//SYSUT3 DD UNIT=SYSDA,SPACE=(1700,(400,400))
//SYSPRINT DD SYSOUT=*
//SYSPUNCH DD DSN=IMS.STAGE2,DISP=SHR
//SYSIN DD *
* *
* *
* SAMPLE DBCTL SYSTEM DEFINITION STAGE 1 INPUT SPECIFICATIONS *
* *
* *

IMSCTRL SYSTEM=(VS/2,(ON-LINE,DBCTL),3.1), X
MAXREGN=(20,52K,A,A), X
MCS=(2,7),DESC=7,MAXCLAS=1,IMSID=IMSA

*
IMSCTF SVCNO=(,203,202), X

LOG=(DUAL,MONITOR), X
RDS=(3380,4096), X
CPLOG=1000,CORE=(,50,1)

*
* DEFINE SYSTEM BUFFERS
*

BUFPOOLS PSBW=60000,DMB=10000,SASPSB=(20000,80000)
*
* DEFINE DL/I DATABASES
*

DATABASE RESIDENT,DBD=DI21PART

Figure 6. Example JCL to generate DBCTL 1/2

32 CICS TS for OS/390: CICS IMS Database Control Guide

For more detailed system definition examples and further guidance on selecting
the appropriate system definitions, and for IMS system definition examples, see the
IMS System Definition Reference manual manual or IMS/ESA Installation Volume 2:
System Definition and Tailoring.

IMS logging
IMS logging uses two types of data set: online log data sets (OLDS) and write
ahead data sets (WADS). These data sets are described below. For further guidance
on using the OLDS and the WADS, see the IMS Operations Guide.

IMS online log data set (OLDS)
IMS writes log records to a DASD data set called the online log data set (OLDS).
The OLDS is made up of multiple data sets written in wraparound form. Using
more than one OLDS enables IMS to continue logging when the first OLDS is full.
Also, if an I/O error occurs while writing to an OLDS, IMS can continue logging
by isolating the OLDS where the problem occurred and switching to another one.

IMS can write committed log records to the write-ahead data set (WADS) so that
these records are externalized to avoid the need to write partially filled and
padded log blocks to the OLDS. The WADS is described in “IMS write-ahead data
set (WADS)” on page 34.

When the OLDS is full, it is archived to the system log data set (SLDS). How
frequently the OLDS is archived depends on whether you specified automatic
archiving using the ARC=parameter in the DBC JCL. You can specify ARC=1
through ARC=99. Automatic archiving takes place only when the number of OLDS

* DEFINE SAMPLE APPLICATIONS
*

APPLCTN PSB=DFHSAM04,PGMTYPE=BATCH,SCHDTYP=PARALLEL
APPLCTN PSB=DFHSAM05,PGMTYPE=BATCH,SCHDTYP=PARALLEL
APPLCTN PSB=DFHSAM14,PGMTYPE=BATCH,SCHDTYP=PARALLEL
APPLCTN PSB=DFHSAM15,PGMTYPE=BATCH,SCHDTYP=PARALLEL
APPLCTN PSB=DFHSAM24,PGMTYPE=BATCH,SCHDTYP=PARALLEL
APPLCTN PSB=DFHSAM25,PGMTYPE=BATCH,SCHDTYP=PARALLEL
APPLCTN PSB=DFHDBMP,PGMTYPE=BATCH,SCHDTYP=PARALLEL

*
IMSGEN ASM=(H,SYSLIN), X

ASMPRT=ON, X
LKPRT=(XREF,LIST), X
LKSIZE=(880K,64K), X
LKRGN=4096K, X
SUFFIX=1, X
SURVEY=NO, X
SYSMSG=TIMESTAMP, X
MACLIB=ALL, X
OBJDSET=IMS.OBJDSET, X
USERLIB=IMS.LOADLIB, X
PROCLIB=(YES,), X
NODE=(IMS,IMS,IMS), X
JCL=(GENJOB, X
(1), X
PGMERID, X
A, X
(TIME=5,CLASS=K,NOTIFY=PGMERID)), X
SCL=(99)

END

Figure 7. Example JCL to generate DBCTL 2/2

Chapter 4. Installing DBCTL, and defining CICS and IMS system resources 33

you specified is full. The system reuses the OLDS after it has been archived. An
SLDS can be on DASD or on tape. The contents are used as input to the database
recovery process.

IMS archives the OLDS using the log archive utility (DFSUARC0). During
archiving, IMS can write a subset of the log records it writes to the SLDS to the
recovery log data set (RLDS). This subset consists only of the log records required
to perform a database recovery.

During logging, IMS writes system checkpoint ID information (including OLDS
positioning information) to the restart data set (RDS). IMS uses the RDS during the
restart process to determine from which checkpoint to begin a restart. (See the IMS
Operations Guide for further guidance about the RDS.)

IMS write-ahead data set (WADS)
The main purpose of the write-ahead data set (WADS) is to contain a copy of
committed log records that are in the OLDS buffers, but have not yet been written
to the OLDS because the OLDS buffer is not yet full. IMS uses the WADS to avoid
the need to write partially filled and padded blocks to the OLDS. WADS space is
continually reused after the appropriate log data has been written to the OLDS. If
there is a system failure, IMS uses the log data in the WADS to complete the
content of the OLDS in use, and then closes the OLDS as part of an emergency
restart. This is also an option of the IMS log recovery utility (DFSULTR0). (The
OLDS must be closed before database recovery can take place.) You can change the
following specifications for the WADS at any restart:
v Number of WADSs
v Sequence of WADSs
v WADSs data set names
v Use of single or dual WADSs.

Log control with DBRC
Database Recovery Control (DBRC) assists you in controlling DBCTL logs and in
managing recovery of databases. With DBCTL, you must use DBRC to control
DBCTL logs, and you may optionally use it to control batch logs and database
recovery. DBRC places the information it uses to control recovery in the RECON
data sets, which are required with DBCTL. These data sets include information
about the OLDS; for example, it indicates whether an OLDS is available for use or
contains data that must be archived.

Define three RECON data sets when you install DBRC. Two of the RECON data
sets are active; the third is a spare. For most purposes, you can think of the two
active RECON data sets as a single RECON data set, or simply the RECON.

DBCTL requires DBRC to be at SHARECTL level; if it is not, DBCTL will not start.
To initialize the RECON specify (or let it default to) INIT.RECON SHARECTL.
Figure 8 shows some example JCL you can copy to initialize the RECON.

34 CICS TS for OS/390: CICS IMS Database Control Guide

If you already have a RECON, specify (or let it default to) CHANGE.RECON
SHARECTL. When the OLDS is full, DBRC starts a log archive job. Skeleton JCL
statements are edited by DBRC before the job is submitted. The skeleton JCL is
member ARCHJCL of the library specified in the JCLPDS DD statement in the
DBRC JCL. You do not have to wait for the OLDS to fill in order to test the
automatic log archive. Instead, you can cause the OLDS to switch using the
DBCTL operator command /SWITCH OLDS. Alternatively, you can use the
/DBRECOVERY without the NOFEOV keyword. For guidance on the syntax of the
/SWITCH and /DBRECOVERY commands, see the IMS Operator’s Reference
manual. (See also “Operator communication with DBCTL” on page 53 for
information on using DBCTL operator commands.)

For detailed guidance on automatic log archiving and DBRC skeleton JCL, see the
IMS Utilities Reference: Database manual manual. For further guidance on using
DBRC, see the IMS Operations Guide.

Defining IMS logging parameters
You define IMS logging parameters in member DFSVSMxx in the IMS.PROCLIB,
identified by DD name PROCLIB in the DBC and DLISAS JCL. You specify the
suffix xx for DFSVSMxx in the DBCTL startup parameter VSPEC. For an
illustration of the parameters involved, see “Appendix B. Illustration of DBCTL
startup parameter creation and selection” on page 167. The logging parameters in
DFSVSMxx include:
v Number of OLDS
v Number of OLDS buffers
v Selection of single or dual OLDS
v Number of WADS.

A further logging parameter, used to specify single or dual copies of the WADS is
in the DBCTL startup parameters. See “Starting DBCTL, DLISAS, and DBRC” on
page 37 for information about the DBCTL startup procedure.

You must preallocate the OLDS and WADS data sets and specify the block size
when the data set is allocated. See the IMS Installation Guide for guidance on doing
this.

Provide dynamic allocation members for all OLDS and WADS data sets. See “IMS
dynamic allocation macro (DFSMDA)” on page 36.

Archiving
DBRC automatically submits a job to archive the OLDS when:
v IMS terminates
v The OLDS fills and logging switches to an empty OLDS
v You issue a /DBRECOVERY command without the NOFEOV keyword

//INITREC JOB 1,PGMERID,CLASS=Q,MSGCLASS=A
//*
//RECON EXEC PGM=DSPURX00,REGION=1000K
//STEPLIB DD DSN=IMS.RESLIB,DISP=SHR
//DFSRESLB DD DSN=IMS.RESLIB,DISP=SHR
//SYSPRINT DD SYSOUT=*
//RECON1 DD DSN=IMS.RECON1,DISP=SHR
//RECON2 DD DSN=IMS.RECON2,DISP=SHR
//SYSIN DD *
INIT.RECON SSID(IMSA)
/*

Figure 8. Example JCL to initialize the RECON

Chapter 4. Installing DBCTL, and defining CICS and IMS system resources 35

v You switch the OLDS manually.

See the IMS Operations Guide and the IMS Utilities Reference: Database manual
manual for guidance on implementing automatic archiving, and the IMS Operator’s
Reference manual for the syntax of the /DBRECOVERY command. (You can also
use the /DBRECOVERY command without the NOFEOV keyword to test your
implementation.)

IMS dynamic allocation macro (DFSMDA)
Use the IMS dynamic allocation macro (DFSMDA) in all production databases,
because:
v Allocation is controlled from a central point.
v You do not have to change DBCTL JCL or batch job JCL in order to change a

data set name.
v It avoids possible confusion over which DBCTL address space requires the DD

statement for a database, because the library with the DFSMDA members can be
concatenated in the STEPLIB DD statement.

v If you do not use DFSMDA, DL/I database DD statements must be in the
DLISAS (DLS) address space, and DEDB DD statements must be in the DBCTL
(DBC) address space.

To use dynamic allocation, you need one member per database in the IMS.RESLIB
library (or an authorized STEPLIB library), using the IMSDALOC procedure to
assemble and link-edit the appropriate DFSMDA macros. See the IMS System
Administration Guide or the IMS/ESA Administration Guide: System for general
guidance on dynamic allocation and the IMS Utilities Reference: Database manual
manual for guidance on using the DFSMDA macro.

Database buffer specifications and option parameters
You define the VSAM and OSAM database buffer pool specifications and IMS
performance and trace options in the DFSVSMxx member of the IMS.PROCLIB
data set, which is pointed to by the PROCLIB DD statement of the DBCTL startup
procedure (DBC). The last two characters of the DFSVSMxx member are a suffix.
You specify this suffix in the VSPEC parameter of the DBCTL startup procedure.
See the IMS System Definition Reference manual manual or IMS/ESA Installation
Volume 2: System Definition and Tailoring for guidance on the syntax of these
parameters and the IMS Database Administration Guide or the IMS/ESA
Administration Guide: Database Manager for guidance on specifying the database
buffer pool parameters. For an illustration of the parameters involved in DBCTL
startup, see “Appendix B. Illustration of DBCTL startup parameter creation and
selection” on page 167.

Overriding DBCTL generation parameters at execution time
You can change many IMS system definition values at DBCTL startup using
parameters on the DBC procedure. You can specify these override parameters on
the PARM of the EXEC statement. However, there is a 100-character limit to the
length of the PARM field you can specify on a JCL EXEC statement, which means
that you cannot override all possible DBC parameters in the JCL. A better
approach is to use member DFSPBDBC, which allows you to specify DBCTL
control region execution parameters that override those specified in the stage 1
macros.You can place several DFSPBDBC members in PROCLIB by replacing the
member name DFSPBDBC with DFSPBxxx, where xxxmust be three alphanumeric
characters. The RGSUF= keyword in the DBC procedure specifies the xxx suffix to

36 CICS TS for OS/390: CICS IMS Database Control Guide

|
|
|
|
|
|

be used during startup of the DBCTL control region. For more information about
DFSPBDBC, see IMS/ESA Installation Volume 2: System Definition and Tailoring.

Naming convention
The DBCTL display commands (for example, /DISPLAY ACTIVE and /DISPLAY
CCTL, described in “Finding out current status of DBCTL activities” on page 63).
and the DRA startup table USERID parameter, all use what is known in IMS and
DBCTL as the CCTL ID to identify the transaction management subsystem. In the
case of CICS, the CCTL is CICS and the ID is the CICS APPLID.

However, many IMS messages use the jobname of the CICS system instead. An
example of this sort of message is DFS554, which notifies you that a BMP region,
or a thread from a CICS transaction, has terminated abnormally. If the DFS554
message was caused by an abnormal termination of a thread that originated from
CICS, the message text contains the CICS job name or CICS startup procedure
name. You will therefore need a naming convention that enables operators to
immediately identify a corresponding CICS APPLID and CICS JOBNAME. For
example, if you use the APPLID DBDCCICA, your job name could also contain the
characters CICA.

Starting DBCTL, DLISAS, and DBRC
You use the procedure library member DBC that is supplied with DBCTL to start
the DBCTL subsystem. The procedure is generated during IMS system definition
and must be modified to fit your system’s needs.

Also generated during system definition are procedures for DBRC and DLISAS,
which are used to generate the DBRC and DLISAS address spaces. The DBRC and
DLISAS procedures are started automatically by DBCTL during DBCTL startup.

The region types specified for each one are:

PARM='DBC'
for DBCTL PARM='DRC' for DBRC PARM='DLS' for DLISAS

All three procedures use positional parameters on the EXEC statement:
PARM='region type,parm1,parm2,parm3,...'

Many of the positional parameter defaults are specified during system generation,
but you can override them with parameters you specify at execution time.

When all three address spaces have been started successfully, DBCTL issues the
following message indicating it is ready to accept an appropriate restart command:
DFS989I IMS (DBCTL) READY (CRC=x) xxxx

where x is the command recognition character (CRC), as explained in “Operator
communication with DBCTL” on page 53, and xxxx is the DBCTL sysid, as
specified in the IMSID= parameter of the DBCTL startup JCL. See “Messages
issued by DBCTL during startup” on page 171 for a list of other messages that
should be issued at this stage.

See the IMS System Definition Reference manual manual or IMS/ESA Installation
Volume 2: System Definition and Tailoring for guidance on DBCTL procedures,
including JCL and descriptions of parameters.

Chapter 4. Installing DBCTL, and defining CICS and IMS system resources 37

|
|

Defining the IMS DRA startup parameter table
The DRA startup parameter table provides the parameters needed to define the
interface to the DBCTL subsystem. You create the DRA startup parameter table by
assembling the DFSPRP macro and link-editing it into the IMS.RESLIB library (or
another APF-authorized library) as DFSPZPxx, where xx=00, for the default, or any
other alphanumeric characters. Unless your IMS RESLIB uses the default name
IMS.RESLIB, supplied in DFSPZP00, you must specify the name you have chosen
in your version of the DRA. In our example, in “Example JCL to generate a DRA
startup table” on page 40, we have used IMS.RESLIB.

Note: The macro used is DFSPRP, but the name of the module you must link-edit
is DFSPZPxx. You must also link-edit the DRA into an authorized library
that is part of the CICS STEPLIB concatenation.

The parameters for the DFSPRP macro are:
v DSECT=NO

A DSECT statement for PZP will not be generated. You must specify this in
order to create a CSECT, which is required in order to assemble the module
DFSPZPxx.

v FUNCLV=
The CCTL (in this case, CICS) functional level. The default (and the only valid
value) is 1.

v DDNAME=
A 1- to 8-character ddname to be used with dynamic allocation of the DRA
RESLIB. The default is CCTLDD.

v DSNAME=
A 1- to 44-character data set name of the DRA RESLIB. The default is
IMS.RESLIB.

v DBCTLID=xxxx
The 1- to 4-character name of the DBCTL address space. The default is SYS1.
This parameter must be the same as the IMSID in the DBCTL startup procedure
for the DBCTL to which you want this CICS to connect. You can connect
multiple CICS systems to the same DBCTL, but a CICS system can connect to
only one DBCTL at a time.

v USERID=xxxxxxxx
CICS users do not specify this parameter; it is supplied by CICS itself. If you do
specify anything, CICS will override it. However, we explain the USERID
parameter here to show how it is used. USERID is the 1- to 8-character name of
the CICS address space (or CCTLID). The value CICS supplies when it connects
to DBCTL is either the CICS APPLID (in a non-XRF CICS environment) or the
generic APPLID (in a CICS XRF environment). (The generic APPLID is the name
of the active-alternate pair of CICS systems.)

v MINTHRD=xxx
This parameter specifies the number of threads for this CICS system that will be
created when CICS connects to DBCTL and will remain created while the DRA
is active. These threads remain allocated until this CICS system is disconnected
from DBCTL, except if a thread is stopped by a /STOP command or by a thread
failure. Additional threads are created, up to the number specified in
MAXTHRD, or the number specified in MAXREGN, or the maximum of 255,
whichever of these is the lowest. These additional threads (not the MINTHRDs)
are released when there is not enough system activity to require them. The

38 CICS TS for OS/390: CICS IMS Database Control Guide

maximum value you can specify for MINTHRD is 255, and the default is 1. For
information on specifying values for MINTHRD, see “Specifying numbers of
threads” on page 157. See also MAXREGN in “IMS system generation macros
used by DBCTL” on page 28.

v MAXTHRD=xxx
This parameter specifies the maximum number of transactions for which this
CICS system can have PSBs scheduled in DBCTL. Any schedule requests that are
over this limit are queued in the DRA. You can balance the load sent to a single
DBCTL from multiple CICS systems by specifying appropriate values for
MAXTHRD in each CICS.
The maximum value you can specify for MAXTHRD is 255 (but it should not
exceed the value specified for MAXREGN) and the default is 1, or the value you
specified in MINTHRD. For information on specifying values for MAXTHRD,
see “Specifying numbers of threads” on page 157. See also MAXREGN in “IMS
system generation macros used by DBCTL” on page 28.

v TIMER=xx
The frequency, in seconds, with which CICS is to repeat attempts to connect to
DBCTL when connection has failed and the console operator has requested that
CICS wait for connection in reply to a DFS690 message (rather than canceling
the connection attempt). You can specify any value from 0 through 99. However,
note that if you specify 0, the default value is used. The default is 60.

v CNBA=xxx
The total number of DEDB buffers that will be allocated for this CICS system.
The default is 0.

v FPBUF=xxx
The number of DEDB buffers to be allocated and fixed per thread. The default is
0. See “DEDB performance and tuning considerations” on page 158 for
information about defining DEDB buffer pools.

v FPBOF=xxx
The number of DEDB overflow buffers to be allocated per thread. The default is
0. See “DEDB performance and tuning considerations” on page 158 for
information defining DEDB buffer pools.

Notes:

1. For DBCTL users, fast path support refers only to DEDBs. Parameters that
begin with FP refer to DEDBs in the DRA startup table.

2. You do not need the parameters CNBA, FPBUF, and FPBOF if you are not
using DEDBs.

3. For detailed guidance on specifying DEDB buffers, see the IMS System
Administration Guide or the IMS/ESA Administration Guide: System.

v TIMEOUT=xxx
The amount of time, in seconds, that CICS should wait for the a DRA TERM
request to complete. The maximum value is 999, and the default is 60. For
guidance on what to specify, see the section on TIMEOUT in “CICS failure” on
page 87.

v SOD=x
The output class to be used for a snap dump of abnormal thread terminations.
The default is A. See “Dumps produced by the DRA” on page 139 for more
information on these dumps.

v AGN=xxxxxxxx

Chapter 4. Installing DBCTL, and defining CICS and IMS system resources 39

The 1- to 8-character application group name (AGN). You need to use this
parameter only if you have specified AGN security checking for DBCTL. There
is no default. See “Chapter 8. Security checking with DBCTL” on page 115 for
more information.

Example JCL to generate a DRA startup table
Figure 9 on page 41 shows some example JCL you can copy to generate a DRA.

40 CICS TS for OS/390: CICS IMS Database Control Guide

//DRAJOB JOB 1,PGMERID,MSGCLASS=A,MSGLEVEL=(1,1),
// CLASS=A,NOTIFY=PGMERID
//ASM EXEC PGM=IEV90,
// PARM='DECK,NOOBJECT,LIST,XREF(SHORT),ALIGN',
// REGION=4096K
//SYSLIB DD DSN=IMS.OPTIONS,DISP=SHR
// DD DSN=IMS.GENLIB,DISP=SHR
// DD DSN=IMS.GENLIBA,DISP=SHR
// DD DSN=IMS.GENLIBB,DISP=SHR
// DD DSN=SYS1.MACLIB,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(1700,(400,400))
//SYSUT2 DD UNIT=SYSDA,SPACE=(1700,(400,400))
//SYSUT3 DD UNIT=SYSDA,SPACE=(1700,(400,400))
//SYSPUNCH DD DSN=&&OBJMOD,
// DISP=(,PASS),UNIT=SYSDA,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=400),
// SPACE=(400,(100,100))
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
PZP TITLE 'DATABASE RESOURCE ADAPTER STARTUP PARAMETER TABLE'
DFSPZP00 CSECT
**
* MODULE NAME: DFSPZP00 *
* DESCRIPTIVE NAME: DATABASE RESOURCE ADAPTER (DRA) *
* STARTUP PARAMETER TABLE. *
* FUNCTION: TO PROVIDE THE VARIOUS DEFINITIONAL PARAMETERS *
* FOR THE COORDINATOR CONTROL REGION. THIS *
* MODULE MAY BE ASSEMBLED BY A USER SPECIFYING *
* THEIR PARTICULAR NAMES, ETC. AND LINKEDITED *
* INTO THE USER RESLIB AS DFSPZPXX. WHERE XX *
* IS EITHER 00 FOR THE DEFAULT, OR ANY OTHER ALPHA- *
* NUMERIC CHARACTERS. *
**

EJECT
DFSPRP DSECT=NO, X

DBCTLID=IMSA, X
DDNAME=CCTLDD, X
DSNAME=IMS.RESLIB, X
MAXTHRD=99, X
MINTHRD=10, X
TIMER=60, X
USERID=, X
CNBA=10, X
FPBUF=, X
FPBOF=, X
TIMEOUT=60, X
SOD=A, X
AGN=

END
//LNKEDT EXEC PGM=IEWL,
// PARM='LIST,XREF,LET,NCAL'
//SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(100,50))
//SYSPRINT DD SYSOUT=*
//SYSLMOD DD DSN=IMS.RESLIB,DISP=SHR
//SYSLIN DD DISP=(OLD,DELETE),DSN=&&OBJMOD
// DD DDNAME=SYSIN
//SYSIN DD *

NAME DFSPZP00(R)
/*

Figure 9. Example JCL to generate a DRA startup table

Chapter 4. Installing DBCTL, and defining CICS and IMS system resources 41

Customizing DBCTL
This section provides information on facilities that you can use to customize
DBCTL.

DFHDBUEX
DFHDBUEX is an IBM-supplied user-replaceable program that is invoked each
time CICS connects to, and disconnects from, DBCTL. You can use DFHDBUEX to
enable, or disable, CICS-DBCTL transactions at DBCTL connection and
disconnection time. The transactions are available to be run if that DBCTL is
connected. Users who attempt to enter one of these transactions when DBCTL is
not connected are notified immediately that the transaction is unavailable. This
means that end users will not be able to start one of these transactions, only to
find that it fails because the database is unavailable.

To summarize, DFHDBUEX is invoked when:
v CICS has successfully connected to DBCTL.
v CICS is disconnecting from DBCTL, and has been notified that:

– DBCTL has been terminated normally (using a /CHECKPOINT FREEZE or
/CHECKPOINT PURGE command, as described in “Stopping DBCTL
normally” on page 69).

– The DRA has terminated abnormally.
– DBCTL has terminated abnormally.
– The menu transaction CDBC has been used to request disconnection from

DBCTL.

See the CICS Customization Guide for programming information on DFHDBUEX.

Global user exits XDLIPRE and XDLIPOST
There are two global user exits—XDLIPRE and XDLIPOST. They are available to
all DL/I users (that is, local and remote as well as DBCTL), and you can use them
to intercept any Call level or EXEC level DL/I request on entry to and exit from
DL/I. XDLIPRE is invoked before the DL/I request is processed. XDLIPOST is
invoked after the DL/I request is processed. If you are using function shipping, the
exits are invoked from the application owning region (AOR), and the database
owning region (DOR). However, there are restrictions on what actions can be
performed by an exit program running at exit point XDLIPRE or XDLIPOST in a
DOR. For programming information on these exits, see Naming, testing, and
debugging your autoinstall control program and CICS action on return from the
control program in the CICS Customization Guide .

To help with migration of applications from local DL/I to DBCTL, you can use
XDLIPRE to change the PSB name that the application program has scheduled at
execution time. There is an example of XDLIPRE in “Appendix E. Using global
user exit XDLIPRE to change PSB to be scheduled” on page 177 that you can copy
and modify. Note that this example is provided for guidance only. Another
example of using the exits to ease migration from local DL/I to DBCTL concerns
DBCTL enhanced scheduling, whereby the schedule of a PSB does not fail if one of
the databases used by that PSB is unavailable. Instead, a status code is set in the
relevant PCB indicating the database is unavailable. This is different from local
DL/I, where an 0805 response code would have been set for CALLDLI programs,
or a DHTE abend would occur for EXEC DLI programs, if any of the databases are
unavailable. The XDLIPOST exit could be used, on return from a schedule request,

42 CICS TS for OS/390: CICS IMS Database Control Guide

to scan down the list of PCBs and, if any of the status codes indicate a database is
unavailable, the XDLIPOST exit could change the UIB response codes to 0805. This
would cause EXEC DLI programs to abend DHTE, and CALLDLI programs to
receive an 0805 response. With this technique, DBCTL thinks that the PSB is still
scheduled, so a new schedule request must not be attempted before the PSB is
terminated either explicitly, by transaction termination, or by an abend. New
applications should use the EXEC DLI ACCEPT STATUS GROUP(A) command to
cope with DBCTL enhanced scheduling.

To provide an availability enhancement, you can use the XDLIPRE exit to change
the identity of the SYSID during CICS execution. In this way, you can route work
from a SYSID that becomes unavailable to an alternative.

Global user exits XRMIIN and XRMIOUT
The global user exits XRMIIN and XRMIOUT enable you to monitor activity across
the resource manager interface (RMI). XRMIIN is invoked just before control is
passed from the RMI to a task-related user exit, and XRMIOUT is invoked just
after control is returned to the RMI. You can use these exits to monitor DL/I
activity; for example, control being passed to and from DFHDBAT for DBCTL
requests, or DFHEDP for EXEC DLI. For programming information on using these
exits, see Naming, testing, and debugging your autoinstall control program and
CICS action on return from the control program in the CICS Customization Guide .

Global user exits for XRF
If you use CICS support for XRF, global user exits XXDFA, XXDFB, and XXDTO
are available to enable you to establish a takeover mechanism for DBCTL.

Chapter 4. Installing DBCTL, and defining CICS and IMS system resources 43

44 CICS TS for OS/390: CICS IMS Database Control Guide

Chapter 5. Operations with DBCTL

Operating DBCTL involves:
v “Connection to DBCTL”
v “Operator communication with DBCTL” on page 53
v “Dealing with messages from DBCTL and CICS” on page 70

Areas related to recovery are described in “Chapter 6. Recovery and restart
operations for DBCTL” on page 73.

Connection to DBCTL
You can perform CICS and DBCTL startup from a TSO terminal or an MVS
console. Before DBCTL can begin accepting transactions, several things must
happen, as shown in Figure 10. The numbers in the figure and corresponding step
numbers indicate the sequence of events.

1. CICS is started by submitting a job or starting a procedure, as described in the
CICS Operations and Utilities Guide.

2. DBCTL is started by submitting a job or starting a procedure, as described in
“Starting DBCTL, DLISAS, and DBRC” on page 37.

3. After receiving a DBCTL READY message, indicating that startup is complete,
the IMS console operator enters a start command, as follows:
v If starting DBCTL for the first time, use /NRESTART CHECKPOINT 0

FORMAT ALL. This command cold starts DBCTL and formats the write
ahead data set (WADS) and the restart data set (RDS).

v /NRESTART for a warm start.
v /ERESTART for an emergency restart after a failure.

The / used in these commands is explained in “Operator communication with
DBCTL” on page 53. See “Restarting DBCTL” on page 74 for information on
restart options.

When the start has completed, the following message is issued:
DFS994I rtype START COMPLETED

where rtype is the type of start requested (COLD, WARM, or EMERGENCY).
4. The CICS operator requests connection to DBCTL using the CDBC transaction.

Step 1 can be done before, during, or after steps 2 and 3. Steps 2 and 3 must be
done in the sequence shown, and all three steps must be completed successfully
before step 4 can begin.

CICS CONNECT request DBCTL DBCTL READY IMS start
startup startup command
(step 1) (step 4) (step 2) message (step 3)

Figure 10. Connecting to DBCTL

© Copyright IBM Corp. 1989, 1999 45

Connecting DBCTL to CICS automatically
You can specify that CICS is connected automatically to either the same or a
different DBCTL.

If you want to connect automatically to the DBCTL that was being used when
CICS was last shut down, use the DBCTLCON system initialization parameter, or
add an entry for DFHDBCON to the PLTPI so that it is invoked in the second
stage of PLTPI processing (that is, the third stage of CICS initialization), as
described in the CICS Resource Definition Guide.

If you want to connect automatically to a specific DBCTL, or to connect CICS to
DBCTL when it was not connected at shutdown, use the CICS INITPARM system
initialization parameter, in addition to specifying DFHDBCON in the PLTPI.
INITPARM enables DFHDBCON to have access to the DRA startup parameter
table suffix you want to use. Specify:
INITPARM=(DFHDBCON='xx[,yyyy]')

where xx is a 1-to 2-character DRA startup table suffix, which you must enter, and
yyyy is an optional 1-to 4-character DBCTL identifier. The DBCTL identifier
specified in INITPARM overrides the DRA startup parameter DBCTLID.

Using INITPARM avoids the need to use the CRLP or DASD sequential terminal as
your means of automating connection to a specific DBCTL. If you prefer to use a
CRLP or DASD sequential terminal, code the following:
//DDIN DD *

CDBC CONNECT SUFFIX(xx) DBCTLID(yyyy)\

where xx is the 1- to 2-character DRA startup table suffix and yyyy is the 1- to
4-character DBCTL identifier, both of which are optional. Specifying a DBCTL
identifier here overrides the one specified in the DRA startup table parameter
DBCTLID. \ is the end-of-line character. (See the CICS Resource Definition Guide
and the CICS Application Programming Guide for guidance on using sequential
terminal support.)

What happens at startup depends on the type of CICS start being used (or whether
you are using DBCTL with CICS XRF) whether you specified INITPARM, and on
whether DBCTL was connected to CICS when CICS was last shut down.

Connecting to DBCTL after a CICS WARM or EMERGENCY start
If CICS startup is WARM or EMERGENCY:
v If you used INITPARM, the DRA startup table suffix and DBCTL identifier

specified there are used to determine which DBCTL to connect to, whether or
not CICS and DBCTL were connected when CICS was last shut down.

v If you did not use INITPARM:
– If CICS and DBCTL were connected when CICS was last shutdown, CICS is

reconnected to the same DBCTL. DFHDBCON uses the DRA startup
parameter table suffix and DBCTL identifier override (which may be blanks)
from the catalog.

– If CICS and DBCTL were not connected when CICS was last shut down CICS
issues message DFHDB8117 and does not attempt to connect to DBCTL.

Connecting to DBCTL after a CICS COLD or INITIAL start
If CICS startup is COLD or INITIAL:
v If you used INITPARM, CICS attempts to connect to DBCTL, using the suffix

and DBCTL identifier (if any) you specified.

46 CICS TS for OS/390: CICS IMS Database Control Guide

v If you did not use INITPARM, CICS attempts to connect to DBCTL using the
default DRA startup table suffix (00) and no DBCTL identifier override, whether
or not DBCTL was connected when CICS was last shut down.

Connecting to DBCTL after a CICS XRF takeover
If you are using DBCTL in a CICS XRF environment:
v If CICS and DBCTL were connected when takeover occurred, CICS connects to

that DBCTL, whether or not you used INITPARM.
v If CICS and DBCTL were not connected when takeover occurred:

– If you used INITPARM, CICS connects to the DBCTL specified
– If you did not use INITPARM, message DFHDB8117 is issued and no

connection attempt is made.

See “Chapter 6. Recovery and restart operations for DBCTL” on page 73 for
information on using DBCTL with CICS XRF.

Connection, disconnection, and inquiry transactions
There are two CICS transactions that you can use to connect to, disconnect from,
and inquire on the status of the CICS-DBCTL interface. They are:
v CDBC, which enables users (for example, CICS operators and network

controllers) to display a menu to connect to and disconnect from DBCTL.
– For connection, CDBC issues a DBCTL connection request to DFHDBAT,

which issues a DRA INIT request internally to the DRA.
CDBC also enables you to override the DRA startup parameter table suffix
and DBCTL identifier when you are connecting CICS to DBCTL. (See
“Defining the IMS DRA startup parameter table” on page 38 for information
on the contents of the DRA startup table.)

– For disconnection, CDBC can issue an orderly or an immediate disconnection
request to DFHDBAT, which issues a DRA TERM request internally to the
DRA.
(See “CDBC transaction for connect and disconnect” for more information on
using CDBC.)

v CDBI, which enables users to inquire on the status of the CICS-DBCTL interface.
See “CDBI transaction for inquiry” on page 52 for more information.

You can enter CDBC and CDBI from either a CICS terminal or an MVS console.
You can restrict access to these transactions using transaction security. Messages
from CDBC can be sent to the transient data destination CDBC. (For help on
defining transient data destinations, see the CICS Resource Definition Guide.)

CDBC transaction for connect and disconnect
Typing CDBC on a 3270-type terminal displays a menu for connecting CICS to,
and disconnecting it from, DBCTL. Figure 11 on page 48 shows an example of the
menu.

To connect to DBCTL, enter option number 1 after:
Option Selection ==>

Chapter 5. Operations with DBCTL 47

If you want to specify a DRA startup table suffix, you can enter it after:
Startup Table Suffix ==>

If you do not specify a suffix, CICS uses the one that was used when it was last
connected to DBCTL. If this is the first time you have connected CICS to DBCTL,
and you do not specify a suffix, CICS uses the default suffix, which is 00.

If you want to specify a DBCTL identifier, you can enter it after:
DBCTL ID Override ==>

If you do not specify a DBCTL identifier, the DRA uses the DBCTL identifier
specified on the DBCTLID parameter in the DRA startup table.

When you have pressed ENTER, you should get the message:
DFHDB8209 I DBCTL orderly disconnection requested. Press PF5 to confirm.

as shown on the example screen in Figure 11.

The CDBC menu screen displays the following additional information:
v Status of the CICS-DBCTL interface; in this case, DBCTL is connected and ready
v The APPLID of the CICS system; in this case, DBDCCICS
v The identifier of the DBCTL system; in this case, SYS2
v The DRA startup parameter table suffix for this connection; in this case, 00.

The DBCTL identifier and the DRA startup parameter table suffix are only
displayed when CICS has been connected to DBCTL. You can refresh any of the
information on the CDBC menu screen by pressing PF2.

You can obtain a help screen for the CDBC menu by pressing PF1. As you can see
in Figure 12 on page 49, the CDBC help screen reminds you which number to

CDBC CICS-DBCTL CONNECTION/DISCONNECTION 93.259
13:39:20

Select one of the following:

1 Connection
2 ORDERLY disconnection
3 IMMEDIATE disconnection

Option Selection ==> 2
Startup Table Suffix ==> 00
DBCTL ID Override ==>

DFHDB8209D DBCTL orderly disconnection requested. Press PF5 to confirm.

Status of the Interface: DFHDB8293I DBCTL connected and ready.
CICS APPLID: IYAHZCD2

DBCTL ID: SYS2
Startup Table Suffix: 00

PF1 = Help 2 = Refresh 3 = End

Figure 11. CDBC transaction menu screen

48 CICS TS for OS/390: CICS IMS Database Control Guide

specify for which option, what the options mean, and summarizes the
CICS-DBCTL interface information displayed on the CDBC menu screen.

Using CDBC without the menu screen: The menu screen is displayed if you use
CDBC from a 3270-type terminal, However, if you issue CDBC from a CRLP or
DASD sequential terminal or operating system console, the menu screen is not
displayed. For example, if you specify:
CDBC CONnect

DBCTL is connected using the default suffix, 00.

If you specify a suffix:
CDBC CONnect SUFfix(12)

and DBCTL is connected using suffix 12.

You can also type a DBCTL identifier, in addition to the suffix, or on its own. For
example, if you enter:
CDBC CONnect DBCtlid(DBC1)

CICS is connected to the DBCTL named DBC1.

You can also enter:
CDBC CONnect DBCtlid(DBC2) SUFfix(11)

or
CDBC CONnect SUFfix(11) DBCtlid(DBC2)

in either case, CICS is connected to DBCTL DBC2, using suffix 11.

See “What happens when you have requested connection to DBCTL” on page 50
below for details of the system’s response to your connection request.

HELP : CICS-DBCTL CONNECTION/DISCONNECTION

To CONNECT to DBCTL, select option 1. You can also specify a startup
table suffix, or accept the existing suffix. The id of the DBCTL system is
obtained from the startup table, but can be optionally overridden.

To DISCONNECT from DBCTL, select option 2 or option 3.

Select option 2 for ORDERLY disconnection: this allows all CICS-DBCTL
transactions from this CICS to complete before disconnecting from DBCTL.

Select option 3 for IMMEDIATE disconnection: this allows all CICS-DBCTL
requests from this CICS to complete before disconnecting from DBCTL.

--
Displayed information (press PF2 to refresh the information):

STATUS OF THE INTERFACE The current status of the connection to DBCTL.
CICS APPLID The application identifier for this CICS system.

Displayed when available:
DBCTL ID Identifier of the DBCTL system with which this

CICS system is communicating.
STARTUP TABLE SUFFIX Suffix used when CICS was connected to DBCTL.

PRESS ENTER TO RETURN TO SELECTION SCREEN

Figure 12. CDBC transaction menu help screen

Chapter 5. Operations with DBCTL 49

If you disconnect CICS from DBCTL using a BSAM CRLP-type terminal, the menu
screen is not displayed.

For orderly disconnection, specify:
CDBC DISconnect

For immediate disconnection, enter:
CDBC DISconnect IMMediate

See “Deciding whether to use orderly or immediate disconnection” on page 51 for
information on the two types of disconnection request.

What happens when you have requested connection to DBCTL
When you have requested connection to DBCTL, you should get messages
confirming that connection is taking place. If you have used the CDBC menu, the
following messages appear on the terminal:
Status of the Interface: DFHDB8292I DBCTL CONNECT PHASE 2 IN PROGRESS.
Status of the Interface: DFHDB8293I DBCTL CONNECTED AND READY.

If you have not used the CDBC menu, the following messages appear on the MVS
console:
+DFHDB8210D CONNECTION TO DBCTL IS PROCEEDING. CHECK CDBC TD QUEUE.
+DFHDB8225I DBDCCICS THE DBCTL ID IS SYS1. THE DRA STARTUP TABLE SUFFIX IS 00.

The CICS Messages and Codes manual contains information about interpreting the
CICS DFHDBnnnn messages that are issued when you are using CDBC.

If DBCTL is not yet available, the main CICS-supplied IMS control exit,
DFHDBCTX, is invoked. DFHDBCTX in turn calls DFHDXAX. For more
information about the IMS control exit routines, see the appropriate IMS/ESA
Customization Guide.

For a DBCTL restart, the control exit is invoked as for any DBCTL connection
attempt. However, instead of returning control directly to the DRA, the control
transaction invokes the DFHDXAX module. This control exit routine checks to see
if it is being invoked for a failing connection:
v If it is not being invoked for a failing connection, it does not attempt to connect

and passes back control.
v If it is being invoked for a failing connection, it checks the input arguments to

determine whether:
– An IDENTIFY attempt failed, and
– CICS is not in the process of terminating

If an IDENTIFY failed, and CICS is not terminating, the action taken then depends
on whether there is an RST defined, which may or may not contain alternative
DBCTL IDs.

CICS regions without a recoverable service table (RST): If there is no RST,
DFHDXAX selects the current DBCTL ID, and initiates repeated attempts to
reconnect to the current DBCTL, thus avoiding operator intervention.

Retries are made every five seconds for a ten minute period, and message
DFHDB8297 is issued periodically. If reconnection is still not successful after ten
minutes, DFHDXAX abandons the attempt, and requests IMS to issue message
DFS0690A, which requires operator intervention. The IMS Messages and Codes

50 CICS TS for OS/390: CICS IMS Database Control Guide

manual manual contains guidance on interpreting the IMS DFSnnnn messages that
are displayed when you are using CDBC. If you reply CANCEL, the connection
attempt is abandoned. It you reply WAIT, the DRA retries the connection attempt
after the number of seconds specified in the TIMER parameter in the DRA startup
parameter table. If the connection attempt fails again, the DRA will continue to
retry after the same number of seconds. You can stop these repeated connection
attempts by using the CDBC transaction to disconnect from DBCTL. (This can be
either the same instance of CDBC or one from a different terminal.) Disconnection
takes effect when the DRA next tries to reconnect to DBCTL.

CICS regions with an RST: If you are using XRF, and therefore have defined an
RST, and it does contain alternative DBCTL IDs to which CICS can try to connect,
DFHDXAX selects each DBCTL subsystem ID in the RST in turn as a candidate for
reconnection.

The processing, which can take one of two courses, is as described in “I/O PCB”
on page 103.

Deciding whether to use orderly or immediate disconnection
Orderly disconnection allows all existing CICS-DBCTL tasks to complete before
CICS is disconnected from DBCTL. Tasks not currently using DBCTL are prevented
from issuing further PSB schedule requests. This means that there should not be
any in-doubt logical units of work (UOWs), and database records are available to
other CICS systems connected to that DBCTL.

Immediate disconnection allows only current DL/I requests to DBCTL from this
CICS system to complete before CICS is disconnected from DBCTL. Any new DL/I
or PSB schedule requests are prevented. This can cause in-doubt UOWs for the
task involved and leave database records unavailable for other CICS systems
connected to that DBCTL until it is reconnected. What happens depends on the
type of request issued to DBCTL after the immediate disconnection request:
v If it is a PSB schedule request, a DHTJ abend (for a command-level program) or

a DLINA condition (for a call-level program) is issued.
v If it is a DL/I request, the UOW is backed out and an ADCA abend is issued.
v If it is a PREPARE request, the UOW is backed out and an ASP7 abend is

issued.
In all the above cases, database records are available to other applications.

v If it is a COMMIT request, the task remains in-doubt and DBCTL records are
unavailable. The in-doubts will not be resolved until DBCTL is reconnected to
CICS. An abend is issued when the next PSB schedule is received, as described
for PSB schedule request, above.
See “Two-phase commit” on page 78 for information on PREPARE and COMMIT
requests.

So, use immediate disconnection only if necessary. For example, you may need to
use it if you have already issued an orderly disconnection request which has not
taken place, and you need disconnection to take place soon. Orderly disconnection
may be delayed by a task that is issuing many DL/I requests, or by a
conversational task that is awaiting input from an unattended terminal. If you
think the problem is being caused by such a task, you may prefer to identify it
using CEMT INQ TASK, and then use CEMT SET TASK(n) PURGE, where “n” is
the task identifier to purge it. You can then use orderly disconnection. However, if
the problem is being caused by many tasks or by a single task that you cannot
identify, you may have to use immediate disconnection.

Chapter 5. Operations with DBCTL 51

CDBI transaction for inquiry
You can use the CDBI transaction to inquire on the status of the DBCTL
connection. Typing CDBI displays a screen like the one shown in Figure 13. The
CDBI screen shows the status of the CICS-DBCTL interface (in this example,
DBCTL is connected and ready), plus the APPLID of the CICS system (DBDCCICS)
and the DBCTL identifier (SYS1). You can refresh the information by pressing PF2.

You can obtain a help screen for CDBI by pressing PF1. Figure 14 on page 53 shows
an example of such a panel. The CDBI help screen tells you how to refresh the
information on the CDBI screen, and explains that information. It includes a list of
the CICS messages describing the status of the CICS-DBCTL interface that can
appear on the CDBI screen. The CICS Messages and Codes manual tells you how to
interpret these messages.

CDBI CICS-DBCTL INTERFACE INQUIRY 93.194
11:23:50

Status : DFHDB8293 I DBCTL connected and ready.
CICS APPLID: DBDCCICS
DBCTL ID : SYS1

PF1 = Help 2 = Refresh 3 = End

Figure 13. CDBI transaction screen

52 CICS TS for OS/390: CICS IMS Database Control Guide

Operator communication with DBCTL
IMS operations can be done from an IMS master terminal operator console, which
is usually the primary MVS console. This can be the primary MVS console, but
you are advised to have a secondary MVS console that is specifically dedicated to
DBCTL. We refer to this as the DBCTL console.

With IMS/ESA 5.1 onwards, you can choose to issue operator commands to
DBCTL from a CICS terminal, using a CICS-supplied transaction, CDBM, as
described in “CDBM operator transaction” on page 55.

DBCTL operator commands
The operator commands you can use to communicate with DBCTL are a subset of
IMS operator commands. This book summarizes the ways in which you can use
these commands with DBCTL. For guidance on syntax, see the IMS Operator’s
Reference manual. See also “Appendix D. Summary of DBCTL operator commands”
on page 173 for a list of DBCTL operator commands and their corresponding CICS

commands, and a list of valid keywords for DBCTL users.

Format of DBCTL operator commands
DBCTL commands begin with a command recognition character (CRC). A CRC of
/ is the default. (The examples of DBCTL commands in this manual use the
default CRC.) You can override it on the DBCTL job, but remember that each
DBCTL subsystem in a single MVS image must have a different CRC. This CRC
must also be different from every other subsystem in the processor (or
multiprocessor), not just DBCTL subsystems. The same applies to any test systems
you may be using. You can, if you prefer, use the subsystem ID (for example,
SYS1) of the DBCTL you are using instead of a CRC.

The general format of DBCTL commands is a CRC, a verb, then a password (if
required), followed by keyword(s), and finally comments (if any). There must be
no space between the CRC and the verb. Usually there is a space between

HELP : CICS-DBCTL INTERFACE INQUIRY
The CICS-DBCTL interface inquiry screen shows:

STATUS OF THE INTERFACE The status can be:
DFHDB8290I DBCTL NOT CONNECTED TO CICS.
DFHDB8291I DBCTL CONNECT PHASE 1 IN PROGRESS.
DFHDB8292I DBCTL CONNECT PHASE 2 IN PROGRESS.
DFHDB8293I DBCTL CONNECTED AND READY.
DFHDB8294I DBCTL ORDERLY DISCONNECT IN PROGRESS.
DFHDB8295I DBCTL IMMEDIATE DISCONNECT IN PROGRESS.
DFHDB8296I DBCTL CANNOT BE CONNECTED TO CICS.

CICS APPLID The application identifier of this CICS system.
Displayed when available:

DBCTL ID The identifier of the DBCTL system with which this CICS
is communicating

You can press PF2 to update (refresh) the information shown on the screen

PRESS ENTER TO RETURN TO INQUIRY SCREEN

Figure 14. CDBI transaction help screen

Chapter 5. Operations with DBCTL 53

parameters, except as noted for specific parameters in the IMS Operator’s Reference
manual. Many verbs and keywords have abbreviations. Guidance on using them is
in the IMS Operator’s Reference manual.

Multisegment DBCTL operator commands
The DBCTL operator commands /CHANGE, /ERESTART, /RMxxxxxx, and /SSR
can be entered in multiple segments. The format of multisegment commands varies
according to the environment you are using. For multisegment commands in a
DBCTL environment, each segment preceding the last segment requires an
end-of-segment (EOS) indicator, which is the CRC followed by the ENTER key.
The last (or only) segment requires an end-of-message (EOM) indicator, which is
the ENTER key. In addition, each segment must begin with the CRC.

Figure 15 is an example of a multisegment command that has two segments. The
CRC is a slash (/), and appears at the beginning and end of the first segment. The
EOS of the first segment is the CRC (/) followed by the ENTER key, which does
not appear because it is not displayable. The EOM of the second (and last) segment
is the ENTER key, so this segment begins with the CRC, but does not end with it.

DBCTL can handle single-segment commands from an unlimited number of
consoles concurrently, but the number of consoles that can concurrently issue
multisegment commands is limited to eight. A single multisegment command is
limited to 241 bytes. If either of these limits is exceeded, a message is sent to the
issuing console.

For further guidance on multisegment operator commands, see the IMS Operator’s
Reference manual.

You can use null words (for example, FOR, and TO) within the operator
commands to help clarify the syntax without affecting the command itself. Because
null words are reserved, you must not use them to name system resources. For
further guidance on null words, see the IMS Operator’s Reference manual.

/RMI DBRC='ic dbd(dedbdd01) area(dd01ar0) icdsn(fvt31.dedbdd01.dd01ar0
.ic.dummy1) icdsn2/
/(FVT31.DEDBDD01.DD01AR0.IC2.DUMMY1) HSSP'
DFS000I MESSAGE(S) FROM ID=SYS1 490
INIT.IC DBD(DEDBDD01) AREA(DD01AR0) -
ICDSN(FVT31.DEDBDD01.DD01AR0.IC.DUMMY1) -
ICDSN2(FVT31.DEDBDD01.DD01AR0.IC2.DUMMY1) HSSP
DSP0203I COMMAND COMPLETED WITH CONDITION CODE 00
DSP0220I COMMAND COMPLETION TIME 89.045 16:24:58.7
DSP0211I COMMAND PROCESSING COMPLETE
DSP0211I HIGHEST CONDITION CODE = 00
DSP0058I RMI COMMAND COMPLETED
/RMI DBRC='ic dbd(dedbdd01) area(dd01ar0) icdsn(fvt31.dedbdd01.dd01ar0
.ic.dummy2) /
/ICDSN2(FVT31.DEDBDD01.DD01AR0.IC2.DUMMY2) HSSP'
DFS000I MESSAGE(S) FROM ID=SYS1 514
INIT.IC DBD(DEDBDD01) AREA(DD01AR0) -
ICDSN(FVT31.DEDBDD01.DD01AR0.IC.DUMMY2) -
ICDSN2(FVT31.DEDBDD01.DD01AR0.IC2.DUMMY2) HSSP
DSP0203I COMMAND COMPLETED WITH CONDITION CODE 00
DSP0220I COMMAND COMPLETION TIME 89.045 16:28:10.3
DSP0211I COMMAND PROCESSING COMPLETE
DSP0211I HIGHEST CONDITION CODE = 00
DSP0058I RMI COMMAND COMPLETED

Figure 15. Example of using multisegment commands in a DBCTL environment

54 CICS TS for OS/390: CICS IMS Database Control Guide

You may need to use a password, depending on how the verb was defined when
the security maintenance utility was run at system definition. See the IMS Utilities
Reference: Database manual manual for guidance on running the security
maintenance utility; see the IMS System Administration Guide or the IMS/ESA
Administration Guide: System for guidance on determining passwords; and see
“Deleting password security authorization” on page 63 if you need to delete a
password. See “Chapter 8. Security checking with DBCTL” on page 115 for
information about security considerations with DBCTL.

The rest of this chapter describes situations that occur during normal system
operation in which you need DBCTL operator commands, sometimes in
conjunction with CICS operator commands. For information on operator
commands to use if the system (or some part of it) fails, see “Chapter 6. Recovery
and restart operations for DBCTL” on page 73.

CDBM operator transaction
With IMS/ESA 5.1 or later, you can use CDBM to issue most of the IMS operator
commands that are valid for DBCTL across the DRA interface to DBCTL to display
and change the state of selected resources.

CDBM also provides a means of maintaining a command file which stores
commands. You may store commands for any reason, but repeated re-use is likely
to be a frequent purpose. These stored commands may include more databases
than the operator transaction panel has space for.

When dealing with databases, you can use an asterisk (*) to refer to generic
groups; for example DB21* refers to all databases starting with the characters
DB21. You can also use a plus (+) sign in place of a single character; for example,
DB+2 displays databases DB12, DB22, DB32, and so on.

You can issue DBCTL commands via a menu panel, as shown in Figure 16 on
page 56. This panel is obtained by starting the CDBM transaction.

Chapter 5. Operations with DBCTL 55

On this panel you can enter a DBCTL command, for example:
/DISPLAY DB ALL

or a group command, for example:
/GROUP SAMPLE STA

There is also a help screen, as shown in Figure 17 on page 57.

CDBM CICS-DBCTL Operator Transaction 98.135
13:24:20

Type IMS command.
__
__
__
__

For /DBDUMP or /DBRECOVER commands

Choose one. 1 1. Do not force end of volume
2. Force end of volume

Press enter to display responses.

CICS APPLID DBDCCICS
DBCTL ID SYS3

F1=Help F2=Maintenance F3=Exit F5=Refresh F12=Cancel

Figure 16. CDBM CICS-DBCTL operator transaction panel

56 CICS TS for OS/390: CICS IMS Database Control Guide

An example of the use of a /GROUP command from the CICS-DBCTL Operator
Transaction screen is shown in Figure 18.

Responses to commands issued from the CDBM screen are returned on a screen
like the one in Figure 19 on page 58, which shows the first of a number of screens
resulting from a /DISPLAY DB ALL command.

CDBM Help: CICS-DBCTL Operator Transaction

CDBM Use the transaction to send an IMS command to a DBCTL system.

Command Type the command recognition character / followed by an IMS
command and press enter to display responses.

Responses Use the PF keys to page IMS responses.

Wildcards * or + can be used within one database name.

End of volume For /DBDUMP or /DBRECOVER commands only
Choose one.

1. Do not force end of volume
2. Force end of volume

CICS APPLID
These are shown for information.

DBCTL ID
Enter the group common maintenance screen.

Example /DIS DB DEPT* displays the status of several databases.

F3=Exit F12=Cancel

Figure 17. CDBM CICS-DBCTL operator transaction help panel

CDBM CICS-DBCTL Operator Transaction 98.135
13:24:20

Type IMS command.
/GROUP SAMPLE STA__
__
__
__

For /DBDUMP or /DBRECOVER commands

Choose one. 1 1. Do not force end of volume
2. Force end of volume

Press enter to display responses.

CICS APPLID DBDCCICS
DBCTL ID SYS3

F1=Help F2=Maintenance F3=Exit F5=Refresh F12=Cancel

Figure 18. CICS-DBCTL operator transaction panel showing a GROUP command

Chapter 5. Operations with DBCTL 57

Alternatively, you can issue CDBM and the DBCTL command directly, as follows:
CDBM /xxxxxxxx

where / is the default CRC and xxxxxxxx is a IMS operator command that is valid
for use with DBCTL and CDBM.

Note: IMS requires that each command is prefixed with the default CRC. The CRC
is present only for syntax checking; it does not determine to which DBCTL
the command is sent. You cannot use a CRC value to route a command to a
particular DBCTL system through CDBM. It can be sent only to the one
currently connected to CICS. This DBCTL may have its own CRC value
which is different from the default one of ’/’. However, this does not matter
to CDBM, because the ’/’ character is used only for syntax checking, and
the command is presented to the connected DBCTL without a CRC, using
the AIB interface.

The /GROUP may also be entered in this way, for example:
CDBM /GROUP SAMPLE DIS.

DFHDBFK - The CDBM GROUP command file
Before you can use the /GROUP command CDBM requires a file in which all your
predefined commands can be stored. This file, DFHDBFK, is the CDBM GROUP
command file. It is a VSAM KSDS.

The DFHDBFK file is not required until you first attempt to use the /GROUP
command.

Record layout in the CDBM GROUP command file: Each record in the
DFHDBFK file may be up to 1428 characters long, as follows:

CDBM CICS-DBCTL IMS Responses Screen 1
Responses 1 to 18

More: +
DATABASE TYPE TOTAL UNUSED TOTAL UNUSED ACC CONDITIONS
ACCOUNDB UP STOPPED, NOTOPEN, NOTINIT
ADMIDX1 UP STOPPED, NOTOPEN, NOTINIT
ADMOBJ1 UP STOPPED, NOTOPEN, NOTINIT
ADMOBJ2 UP STOPPED, NOTOPEN, NOTINIT
ADMOBJ3 UP STOPPED, NOTOPEN, NOTINIT
ADMSYSDF UP STOPPED, NOTOPEN, NOTINIT
BE1CHKPT DL/I UP NOTOPEN
BE1PARTA UP STOPPED, NOTOPEN, NOTINIT
BE1PARTB UP STOPPED, NOTOPEN, NOTINIT
BE1PARTC UP STOPPED, NOTOPEN, NOTINIT
BE1PARTS UP STOPPED, NOTOPEN, NOTINIT
BE2ORDER DL/I UP NOTOPEN
BE2ORDRX DL/I UP NOTOPEN
BE2PARTS DL/I UP NOTOPEN
BE2PCUST DL/I UP NOTOPEN
BE3ORDER DL/I UP NOTOPEN
BE3ORDRX DL/I UP NOTOPEN

More...

F1=Help F3=Exit F4=Top F6=Bottom F7=Bkwd F8=Fwd F9=Retrieve F12=Cancel

Figure 19. CDBM CICS-DBCTL IMS responses panel

58 CICS TS for OS/390: CICS IMS Database Control Guide

Table 3. table

field length content description

1 12 Group a 12-character field containing your chosen name for
this group. The acceptable characters are A-Z 0-9 $ @
and #. Leading or embedded blanks are not allowed,
but trailing blanks are acceptable.

2 10 IMS
Command

a 10-character field containing any of the IMS
command verbs that are valid for CDBM (see section
61 for details). Leading or embedded blanks are not
allowed, but trailing blanks are acceptable.
Note: The validity of the IMS command verb is not
checked by CDBM. Invalid values will be reported by
IMS when the command is attempted.

3 1406 IMS
Command
parameters

Up to 1406 characters of parameters appropriate to
the chosen IMS command verb. (This will often
consist of lists of databases.)
Note: Wildcard characters may not be used in the
parameters stored in the CDBM Group command file.
This is unlike the other functions of the CDBM
transaction which permit the use of wildcard
characters to describe multiple similarly named
databases.

The MAINTENANCE panel for DFHDBFK
If you press the Maintenance key (PF2) on the main CDBM panel, you get the
panel shown in Figure 20.

Input fields
The input fields are:
v Action
v Group
v IMS Command
v IMS Command parameters

CDBM CICS/DBCTL COMMAND GROUP MAINTENANCE
_ ACTION A add B browse D delete R read U update
____________ GROUP __________ IMS COMMAND
> <
> <
> <
> <
> <
> <
> <
> <
> <
> <
> <
> <
> <
> <
> <
> <
> <
> <
> <
F1=Help F3=Exit F12=Cancel

Figure 20. CICS-DBCTL Group Maintenance Panel

Chapter 5. Operations with DBCTL 59

(between the > < marks).

Group, IMS Command and IMS Command parameters are described in “Record
layout in the CDBM GROUP command file” on page 58

The Action field will accept one of the following:

A Add

Add a new record to the DFHDBFK file. If the key already exists, the Add
fails.

Note: To Add a record that is very similar to an existing record, but which has
a different key, you may find it helpful to Read the existing record,
modify the displayed fields, and then Add this new record.

B Browse

Displays the contents of the command file, record by record. Specify any key
(or none) to indicate where you want the browse to start. Each time you press
ENTER, Browse moves on to the next record. At the end of the file you will be
prompted to wrap around to the start of the file. You can accept this or not as
you prefer. Incomplete keys, and unknown keys are also acceptable as start
points. If no key is provided, the browse starts at the first record in the file.

If you have used Browse to locate a specific record for deletion or for update,
remember to use Read before either Delete or Update.

D Delete

Delete a record from the DFHDBFK file. A Delete must be immediately
preceded by a Read to lock the required record.

R Read

Read displays a specific record. Unlike Browse it does not operate on partial,
or absent keys, and does not present the next record when you press ENTER.

Read is required before those actions (Delete and Update) which change an
existing record. It locks that record against the possibility of being changed by
another operator. This action also serves to help you confirm that the correct
record has been selected.

A lock is released by ending CDBM, or by your next CDBM Maintenance
action (whether that is the Update or Delete you had contemplated, or
something different entirely).

U Update

Update a record in the DFHDBFK file. An Update must be immediately
preceded by a Read to lock the required record.

You cannot update the key fields (GROUP and IMS COMMAND).

Reminder:: Use Add to create a new key.

60 CICS TS for OS/390: CICS IMS Database Control Guide

Note: In the descriptions above, Key refers to the 22 characters at the beginning of
each record in the DFHDBFK file (namely the GROUP and IMS
COMMAND).

If you press the help key (PF1) from the CICS-DBCTL Maintenance panel, you get
the panel shown in Figure 21.

The following IMS operator commands are valid with CDBM:
v /CHANGE
v /CHECKPOINT (simple form) and /CHECKPOINT STATISTICS
v /DBDUMP
v /DBRECOVERY
v /DELETE
v /DEQUEUE
v /DISPLAY
v /LOCK
v /LOG
v /PSTOP
v /RMCHANGE
v /RMDELETE
v /RMGENJCL
v /RMINIT
v /RMLIST
v /RMNOTIFY
v /START
v /STOP
v /SWITCH OLDS
v /TRACE SET PI
v /UNLOCK
v /VUNLOAD

The following IMS operator commands are not valid with CDBM and must be
issued via the MVS console:
v /CHECKPOINT FREEZE and /CHECKPOINT PURGE

CDBM Help: CICS-DBCTL Operator Transaction

Maintenance Store commands for issuing from the CDBM screen.

GROUP Enter the group you want to store a command in.

IMS COMMAND Enter a valid IMS command to execute with the supplied data

ACTION A - Add a command to the command file.
B - Browse the contents of the command file.
D - Delete a command, only after it has been read.
R - Read a command from the file.
U - Update a command, only after it has been read.

Issue commands from the main screen in the format
/GROUP group command.

Example /GROUP SAMPLE DIS shows information for the databases in

F3=Exit F12=Cancel

Figure 21. CICS-DBCTL Maintenance help panel

Chapter 5. Operations with DBCTL 61

v /MODIFY
v /ERESTART
v /NRESTART
v /SSR

For more information, see “Appendix A. Migration task summary for DBCTL” on
page 163.

Issuing DBRC commands
With DBCTL, you must issue DBRC commands via DBCTL console commands
(/RMxxxxxx) because DBRC runs outside the CICS address space. If you are using
IMS/ESA 5.1 or later, you can issue the /RMxxxxxx commands via the
CICS-supplied transaction CDBM.

You can use the following /RMxxxxxx commands online:
v /RMCHANGE—to change or modify information in the RECON
v /RMDELETE—to delete information from the RECON
v /RMGENJCL—to generate JCL for a specified utility
v /RMINIT—to create records in the RECON
v /RMLIST—to list the contents of the RECON
v /RMNOTIFY—to add information to the RECON.

For example:
/RMINIT DBRC='DB DBD(IVPDB2) SHARELVL(3)'.

See the IMS Operator’s Reference manual for further guidance on the syntax of these
commands.

You can also enter DBRC commands in batch, but the syntax is slightly different,
as shown in Figure 22.

Authorizing access to databases and PSBs
To stop a PSB being scheduled, use the /LOCK command with the PROGRAM
keyword. To stop access to a database, use the /LOCK command with the
DATABASE keyword. To negate or reset the effects of previous /LOCK commands,
use the /UNLOCK command with the DATABASE and PROGRAM keywords.

Changing IMS passwords
To protect DBCTL against unauthorized /LOCK and /UNLOCK commands for
certain PSBs (referred to as “programs” in the IMS publications) and databases,
you can establish IMS passwords for those PSBs and databases.

//INITDB JOB 1,PGMERID,CLASS=Q,MSGCLASS=A
//*
//RECON EXEC PGM=DSPURX00,REGION=1000K
//STEPLIB DD DSN=IMS.RESLIB,DISP=SHR
//DFSRESLB DD DSN=IMS.RESLIB,DISP=SHR
//SYSPRINT DD SYSOUT=*
//RECON1 DD DSN=IMS.RECON1,DISP=SHR
//RECON2 DD DSN=IMS.RECON2,DISP=SHR
//SYSIN DD *
INIT.DB DBD(IVPDB2) SHARELVL(3)
/*

Figure 22. Example JCL to register a database with DBRC

62 CICS TS for OS/390: CICS IMS Database Control Guide

IMS passwords are defined by the security maintenance utility or the /CHANGE
command with the PASSWORD keyword. (See “Chapter 8. Security checking with
DBCTL” on page 115 for a description of DBCTL password security.) Using the
/CHANGE command with the PASSWORD keyword changes the password
immediately.

To add a password security definition, use the PASSWORD keyword with the
/MODIFY PREPARE command. To request that password security specifications
should take effect when restart processing has completed, use the PASSWORD
keyword with the /NRESTART command.

Deleting password security authorization
To delete IMS password security authorization for a specified database or PSB, use
the /DELETE command with the PASSWORD keyword. Password security
authorization is used on the /LOCK and /UNLOCK commands, and requires a
password to be supplied when entering that command.

Controlling tracing of DBCTL events
To start and stop tracing of internal DBCTL events dynamically, and define
activities to be monitored by the IMS monitor, use the /TRACE command, as
follows:
v The PI keyword specifies that program isolation (PI) trace data be written to a

trace table. PI trace entries contain information about program isolation
ENQ/DEQ calls and DL/I calls.

v The PSB keyword requests a trace of all DL/I calls issued for a specified PSB.
v The TABLE keyword specifies that online tracing into the specified trace tables

be started or stopped.

Use the CICS-supplied transaction CETR to trace DL/I activity. For DBCTL, CETR
traces a DL/I request until it leaves DFHDBAT. (See the CICS Supplied Transactions
manual for help on using CETR.)

See “Trace entries produced by DBCTL” on page 136 for information on obtaining
DBCTL trace entries. See the IMS Operator’s Reference manual for guidance on the
syntax of /TRACE commands and keywords, and the IMS System Administration
Guide or the IMS/ESA Administration Guide: System for guidance on the effects using
/TRACE commands can have on your system.

Finding out current status of DBCTL activities
To find out the status of particular DBCTL activities, use the /DISPLAY command,
as follows:
v The /DISPLAY command with the ACTIVE keyword gives you an overview of

activity in the entire DBCTL subsystem including processing for BMPs and for
threads processing scheduled CICS transactions. For each thread that is currently
active (has a PSB scheduled) from a CICS transaction, there is an entry “DBT” in
the column headed “TYPE”, as shown in the /DISPLAY command examples in
the IMS Operator’s Reference manual. (The TYPE column shows the thread type
and DBT stands for DBCTL thread.) The display may show fewer DBT threads
than the number specified by MINTHRD in the DRA startup parameter table.

v The /DISPLAY command with the CCTL keyword displays all (or specified)
CICS systems currently connected to DBCTL. To specify a CICS system, add a

Chapter 5. Operations with DBCTL 63

CCTLNAME, which is the APPLID of the connected CICS system. The
/DISPLAY command with the CCTL keyword also displays the following items
for all or specified CICS systems:
– All in-doubts for a given CICS or for all CICS systems (when you enter

/DISPLAY CCTL INDOUBT).
– Pseudo recovery token (only when status is INDOUBT). See “Resolving

in-doubt units of work manually” on page 82 for information on using the
pseudo recovery token in a /CHANGE command.

– Recovery token.
– Thread number (displayed as REGID) for all threads.
– PSB name.
– Status of thread(s).
– All threads for a given CICS or all CICS systems.

Note: The /DISPLAY command uses the CCTL ID (which, in the case of a CICS
system, is the APPLID). However, many IMS messages use the jobname of
the CICS system. Therefore, it is advisable to have a naming convention
that enables operators to immediately identify a corresponding CICS
APPLID and CICS JOBNAME. For example, if you use the APPLID
DBDCICA, your job name could also contain the characters CICA.

v The /DISPLAY command with the OLDS keyword displays the system logging
status. You can use it to determine how many OLDS data sets are available for
use or require archiving.

v The /DISPLAY command with the POOL keyword displays main storage
utilization statistics for IMS storage pools.

v The /DISPLAY command with the AREA keyword displays the status of DEDB
data sets in an area.

v The /DISPLAY command with the DATABASE keyword displays the status (for
example, NOTOPEN or STOPPED) of specified databases. If the database you
specify is a DEDB, the associated DEDB areas are also displayed.

v The /DISPLAY command with the DBD keyword displays, for databases that
are being accessed, their type, the PSBs accessing them, and the type of access.
(You can use the DBD keyword only if you have DEDB support installed.)

v The /DISPLAY command with the MODIFY keyword displays the status of
resources to be deleted or changed using the /MODIFY command. See
“Changing DBCTL resources online” on page 65 for information on the
/MODIFY command.

v The /DISPLAY command with the PSB keyword displays the status of PSBs, the
databases being accessed, and the type of access. (You can use the PSB keyword
only if you have DEDB support installed.)

v The /DISPLAY command with the PROGRAM keyword displays the status of
PSBs; for example, NOTINIT or STOPPED.

v The /DISPLAY command with the SHUTDOWN STATUS keywords displays
system activity during a shutdown type of checkpoint; for example, the number
of regions still active.

v The /DISPLAY command with the STATUS keyword displays the status of
DBCTL resources, such as databases and PSBs.

v The /DISPLAY command with the TRACE keyword displays status and options
for IMS traces and the IMS monitor, and whether restart should occur without
backout of BMP updates. (You can restart without using backout or recovery of

64 CICS TS for OS/390: CICS IMS Database Control Guide

databases—see the description of the COLDBASE keyword of the /ERESTART
command in “Emergency restart” on page 76.)

Specifying messages to be logged on IMS log
Use the /LOG command to specify any alphanumeric character message to be
logged on the IMS log.

Changing DBCTL resources online
The /MODIFY command is a part of the online change process used to control the
modification of DBCTL resources online. However, note that online change for
DBCTL is very different from CICS resource definition online (RDO). You first use
the offline process for doing a generation (whether it be an ACBGEN, a security
maintenance utility matrix data set generation, or a partial MODBLKS generation
for the DATABASE and APPLCTN macros). Guidance information on doing these
generations is in the IMS System Definition Reference manual manual or IMS/ESA
Installation Volume 2: System Definition and Tailoring and the IMS Utilities Reference:
Database manual manual. To bring the new libraries online, use the /MODIFY
command. First use the /MODIFY command with the PREPARE keyword to
indicate the type of system definitions that need to be replaced. Depending on the
parameters entered, the system initiates quiescing of the appropriate resources.
Then use the /MODIFY command with the COMMIT keyword to bring all newly
defined resources online, update the changed resources, and invalidate the deleted
resources. If the /MODIFY command deletes a database, the database is closed and
made unavailable to programs. You cannot use the /MODIFY command on
DEDBs.

If some kind of failure occurred before a COMMIT could complete, the changes
defined by the /MODIFY command with the PREPARE keyword are not recovered
across an emergency restart and you must reenter them. When a commit is
successful, changes persist across all DBCTL restarts.

You can use the /MODIFY command with the ABORT keyword to reset the status
that was set by the /MODIFY command with the PREPARE keyword. You can also
use the /MODIFY command with the ABORT keyword if you have previously
used the /MODIFY command with the COMMIT keyword, but it was not
successful and you decide not to continue with the change. See also “Finding out
current status of DBCTL activities” on page 63 for details of using the /DISPLAY
command with the MODIFY keyword.

Preventing programs and transactions from updating
databases

You can use the /DBDUMP command with the DATABASE keyword to prevent
programs from updating DL/I full function databases.

You can use the /DBRECOVERY command to prevent transactions or programs
from accessing a database (with the DATABASE keyword) or a DEDB area (with
the AREA keyword, which is valid with DEDBs only). The command closes and
deallocates the database(s) or area(s), so that they are not authorized to DBRC.

If a specified database is being used when you enter either /DBDUMP or
/DBRECOVERY, the thread currently using the database is allowed to complete,
but no further PSB schedules are allowed.

Chapter 5. Operations with DBCTL 65

If a database specified in either of these commands is being used by a BMP, an
error message is issued, and the command is ignored for that database. You reenter
the /DBDUMP or /DBRECOVERY command when the database is no longer being
used by a BMP. If you need to recover the database immediately, use the /STOP
command with the THREAD keyword (or its synonym, REGION) to terminate any
BMPs using the database before you reenter the /DBDUMP or /DBRECOVERY
command.

For a whole DEDB, the PSB is not scheduled. For a DEDB area, programs are not
allowed access to data in that area. For a DL/I database, programs are not allowed
access to the database.

Note: Issuing the /DBRECOVERY and /DBDUMP commands causes the OLDS to
switch; an archive job may be generated to archive the previous OLDS. (This
is controlled by the ARC=xx startup parameter.) Use the NOFEOV keyword
to prevent the OLDS switching when you issue these commands.

The /START command reverses the effects of a /DBDUMP or /DBRECOVERY
command. The /START command allocates the database or area. A database is
authorized on the first schedule request it receives, and is opened at the first DL/I
request. An area is authorized and opened on receipt of the first DL/I request.

Switching to a new OLDS
In IMS/ESA 4.1, specifying /SWITCH OLDS causes the IMS log to switch to the
next OLDS. This switch to the next OLDS is marked as a recovery point for log
archiving purposes. If you also specify the (optional) CHECKPOINT keyword, IMS
issues a simple checkpoint after the active log data set has been switched to the
next OLDS. This switch capability is identical to that provided with the
DBRECOVERY command, as described in “Preventing programs and transactions
from updating databases” on page 65 and “Log control with DBRC” on page 34.

Entering external subsystem commands from DBCTL
If you are using DBCTL to access DB2 databases via BMPs, you can use certain
DBCTL operator commands to enter external subsystem commands (where DB2 is
the external subsystem).

To display the status of all or specified external subsystems, use the /DISPLAY
command with the SUBSYS keyword. (This is similar to using the /DISPLAY
command with the CCTL keyword to display the status of CICS systems connected
to DBCTL.)

To display the status of origin application schedule numbers (OASNs), which are
IMS recovery elements in a DB2 subsystem, use the /DISPLAY command with the
OASN and SUBSYS keywords. If you then need to purge any incomplete UOWs in
the external subsystem, use the /CHANGE command with the SUBSYS, OASN,
and RESET keywords.

To enter an external subsystem command from the DBCTL console or a program
authorized do so, use the /SSR command. For example:
/SSR -DISPLAY THREAD

displays information about DB2 threads. The command is processed in DB2 and
the response is sent back to the terminal from which you issued the /SSR
command.

66 CICS TS for OS/390: CICS IMS Database Control Guide

Making DBCTL resources available
To make DBCTL resources available to refer to and use, enter the /START
command, as follows:
v Specify that the stopped status of particular DEDB areas be reset (AREA

keyword).
v Change the automatic archiving option selected at system initialization or

specified in a previous /STOP command (AUTOARCH keyword).
v Specify databases to be started so that they can be referenced by PSB schedule

commands (DATABASE keyword).
Add the NOBACKOUT keyword to the DATABASE keyword for databases that
are not registered in DBRC and were backed out using standard batch backout.
If your databases are registered with DBRC, the /START process inquires with
DBRC whether backout needs to be done before starting a database.

v Specify that a previously stopped online log data set (OLDS) is to be started or
that DBCTL is to add a new OLDS (OLDS keyword). (See “IMS online log data
set (OLDS)” on page 33 for more information on this data set.)

v Specify a PSB to be started (PROGRAM keyword). DBCTL stops a PSB after
most pseudo abend codes that can occur. If this happens, you must use a
/START PROGRAM command before that PSB can be scheduled again.

v Start BMPs from a JCL partitioned data set (REGION keyword). Using /START
REGION in this way enables you to keep all your BMP JCL in one place.

v Specify that a write-ahead data set (WADS) is to be added to the pool of WADS
(WADS keyword).

Preventing scheduling of PSBs and use of databases
The /STOP command stops the scheduling of specific PSBs and can stop the use of
a given database, as follows:
v The ADS keyword specifies that a DEDB area data set (ADS) is to be stopped

and deallocated. Note that this commands stops only the ADS, not the entire
area. The area is stopped only if there is no ADS allocated. This command is
rejected if the ADS you specified is the last data set available in the area because
ADSs are invalidated when they are stopped. ADSs are reestablished by running
the DEDB area data set create utility.

v The AREA keyword specifies that all the data sets associated with an area are to
be stopped and deallocated. The status of this area is set to STOP, as displayed
with a /DISPLAY DATABASE command. (See “Finding out current status of
DBCTL activities” on page 63.) If the area is already stopped, the /STOP
command just deallocates the data sets.

v The AUTOARCH keyword specifies that automatic archiving is to be stopped.
v The DATABASE keyword stops the use of the specified database.
v The OLDS keyword specifies that DBCTL is to stop using an OLDS.
v The PROGRAM keyword specifies that a PSB is to be stopped.
v The REGION or THREAD keywords specify a region or thread that is to be

stopped. This can be a region or thread shown by the /DISPLAY CCTL
command. (See “Finding out current status of DBCTL activities” on page 63.)

v The WADS keyword indicates that a WADS is to be removed from the pool of
WADS.

Chapter 5. Operations with DBCTL 67

Purging a transaction that is using DBCTL
You can query and purge tasks that use DBCTL using the CICS CEMT transaction
as for any CICS task. However, if a transaction has “hung” in DBCTL, and you
need to purge it, you must use the DBCTL command /STOP THREAD.

To find out what is happening to a task:
1. Issue CEMT INQ TASK to find out what tasks are active.
2. Expand the information on individual tasks by typing a ? to the left of the task

you want to see. You will get a display like the one in Figure 23.
Figure 23 includes the following useful information:

Tas(0000110)—task identifier
Tra(DLID)—transaction name of the task
Fac(D2D3)—identifier of the terminal or queue that initiated the task
Sus—the task is suspended
Ter—the task was initiated from a terminal
Pri(001)—the task is running with a priority of 1
Hty(DBCTL)—the task is currently issuing a DL/I request to DBCTL
Hva(DLSUSPND)—the task is suspended in DBCTL
Hti(000007)—how long, in seconds, the task has been sus pended
Sta(TO)—how the task was started; TO means from a terminal by an
operator entering a transaction
Use(CICSUSER)—is the userid of the user who initiated the task
Rec(X'9EDA1F61E11CFA02') shows the recovery token associated with the
task
The screen also contains a reminder of the syntax of the CEMT SET TASK
command, which you may need to use; for example, if you want to purge
the suspended task.
SYSID=CIC1—CICS system identifier, as specified in the system initialization
parameter SYSIDNT.
APPLID=DBDCCICS—APPLID for the CICS system.

3. Issue CEMT INQ TASK again.

I TA
SYNTAX OF SET COMMAND
Tas(0000110) Tra(DLID) Fac(D2D3) Sus Ter Iso Pri(001)

Hty(DBCTL) Hva(DLSUSPND) Hti(000007) Sta(TO)
Use(CICSUSER) Rec(X'9EDA1F61E11CFA02')

CEMT Set TAsk() | < All >
< PRiority() >
< PUrge | FOrcepurge >

SYSID=CIC1 APPLID=DBDCCICS

PF 1 HELP 3 END 7 SBH 8 SFH 9 MSG 10 SB 11 SF

Figure 23. CEMT INQ TASK (expanded)

68 CICS TS for OS/390: CICS IMS Database Control Guide

v If the response indicates that the task is no longer suspended in DBCTL, you
can purge it using CEMT SET TASK(n) PURGE as for any CICS task.
(Information on using CEMT commands is in the CICS Supplied Transactions
manual.) The purge takes place after the DL/I request to DBCTL has
completed.

v If the response indicates that the task is still suspended in DBCTL, the task
has “hung” in DBCTL, and you must use DBCTL operator commands to
purge it.

To do this:
1. From the CEMT INQ TASK display, make a note of the CICS APPLID and the

16-digit recovery token. (You can use a recovery token to find the thread
number of a CICS task in DBCTL. For a fuller definition, see “Recovery tokens”
on page 81.)

2. At the DBCTL console, enter /DISPLAY CCTL cctlname, where cctlname is the
CICS APPLID (in this example, it is DBDCCICS). This causes the current status
of DL/I activity to be displayed, as shown in Figure 24.

3. Find the recovery token (9EDA1F61E11CFA02 in this example) that matches the
one you noted from the CEMT INQ TASK display, and then note the thread
number that is next to it in the REGID column (6 in this example).

4. Issue the command:
/STOP THREAD n ABDUMP

where n is the thread number.

This causes the thread and transaction to terminate when it has finished
processing the current request, and causes a dump to be taken.

If the thread does not stop, use:
/STOP THREAD n CANCEL

Do not use /STOP THREAD CANCEL if you do not need to, because it may
cause DBCTL to terminate with a U113 abend.

Stopping DBCTL normally
To stop DBCTL normally and disconnect it from CICS, use the /CHECKPOINT
command with the FREEZE or PURGE keywords. Active threads are terminated,
CICS threads are terminated when they reach a syncpoint, and BMPs are processed
until they reach a checkpoint, a SYNC call, or the end of a program. Shutdown
then completes and the system status is saved in a system checkpoint on the log,
and in the checkpoint ID table on the restart data set. See “Messages issued by
DBCTL during normal termination” on page 172 for a list of messages that should
be issued at this stage.

0080 /DIS CCTL DBDCCICS
0080 DFS000I MESSAGE(S) FROM ID=SYS1 047
0080 CCTL PSEUDO-RTKN RECOVERY-TOKEN REGID PSBNAME STATUS
0080 DBDCCICS ATTACHED
0080 9EDA1F61E11CFA02 6 PC3COCHD ACTIVE
0080 9EDA1F4E9B571B02 5 PC3COCHD ACTIVE
0080 *88204/101241*

Figure 24. Output from /DISPLAY CCTL cctlname

Chapter 5. Operations with DBCTL 69

The difference between the FREEZE and PURGE keywords applies to BMPs.
FREEZE stops them after the next checkpoint, or at program completion,
whichever is the sooner, and PURGE allows them to complete.

When you have stopped DBCTL using /CHECKPOINT FREEZE or
/CHECKPOINT PURGE, you can warm start it using /NRESTART, as described in
“Warm start” on page 75.

Stopping DBCTL abnormally
There is no equivalent of a CICS immediate shutdown in DBCTL. If you need to
force termination of DBCTL, the MVS console operator has to issue an MVS
MODIFY jobname STOP command. This causes an abnormal termination without a
dump. If you want a dump to be taken, use an MVS MODIFY jobname DUMP
command. For guidance on using MVS commands with IMS, see the IMS
Operator’s Reference manual.

Dealing with messages from DBCTL and CICS
Messages from DBCTL (in the form DFSnnnn) are sent to console(s) as specified in
the MCS= parameter of the IMSCTRL macro in the IMS generation. These
messages include notification of change in status and of abnormal events.

There are many additional messages in the DBCTL environment. You can direct
them to the console from which DBCTL commands will be entered. However, if
you find that the volume of messages means it is impractical to view them “live”
at the console, you may prefer to direct them to the console log and process them
with whatever tool your installation uses to review console output.

The DFS554 message is a notification of the abnormal termination of a BMP region
or a thread from a CICS transaction. If it has been caused by an abnormal
termination of a thread that originated from CICS, the message text contains the
CICS job name or CICS started procedure name. It also contains the abend code in
the form SSS, UUU where SSS is a system abend code and UUU is an IMS user
abend code. (See “Return codes in DBCTL” on page 141 for more information on
these codes.) The message may contain the characters “PSB.” If it does, the PSB
contained in the message has been stopped. All attempts to schedule that PSB will
fail until a /START PROGRAM command is issued for that PSB. See the IMS
Messages and Codes manual manual for guidance on interpreting DFSnnnn
messages.

Messages from CICS that relate to DBCTL begin with DFHDB, and messages that
relate to DBCTL in an XRF environment begin with DFHDX.

Messages from CICS that relate to DBCTL (for example, those relating to the CDBC
transaction) are sent to the transient data destination CDBC so that they are located
in one place. You can reroute these messages from CDBC, as you can with CSMT.

You can suppress or reroute messages sent to transient data queues such as CDBC.
You can reroute from CDBC to a list of consoles, from CDBC to a different
transient data queue, or reroute console messages from their transient data queues
to CDBC. For programming information about coding the CICS-supplied user exit
used to re-route messages and on the example user exit provided to help you do
so, see the CICS Customization Guide.

70 CICS TS for OS/390: CICS IMS Database Control Guide

Messages DFHDB8103 and DFHDB8104 are issued if there is a failure to connect to
DBCTL. They contain the DBCTL reason codes for the connection failure.

Message DFHDB8109 is issued when:
v A schedule request has failed.
v DBCTL has abnormally terminated a thread and, as a result, CICS abnormally

terminates the transaction.

Message DFHDB8109 is not issued when an error type status code is returned to
the application program.

DFHDB8109 enables you to identify the IMS reason for which this CICS
transaction has failed. The IMS Messages and Codes manual manual contains
guidance on interpreting the IMS abend and reason codes referred to above. See
the CICS Messages and Codes manual for help on interpreting messages beginning
with DFH.

Chapter 5. Operations with DBCTL 71

72 CICS TS for OS/390: CICS IMS Database Control Guide

Chapter 6. Recovery and restart operations for DBCTL

Recovery and restart in a DBCTL environment is described under:
v “Overview of CICS and IMS recovery and restart”
v “Commit protocols and units of recovery” on page 78
v “Database utilities” on page 83
v “Log utilities” on page 86
v “Component failures” on page 86

Using CICS with DBCTL introduces a number of changes to recovery and restart
procedures:
v DBCTL performs backout of DL/I databases. DBCTL is a resource manager and

is responsible for the integrity and recoverability of its own resources, regardless
of the using subsystem (for example, CICS or a BMP).

v Because DL/I code is no longer in the CICS address space, you must restart
both the CICS and DBCTL address spaces, and DBCTL must be reconnected to
CICS if there is a processor or power failure.

v Units of work (UOWs) left in-doubt after a failure can be resolved only when
DBCTL has been reconnected to CICS.

Overview of CICS and IMS recovery and restart
CICS and IMS perform similar recovery functions, but there are differences in
terminology and in implementation. The following sections give an overview of
these similarities and differences. See the CICS Recovery and Restart Guide and the
IMS Operations Guide for background information on recovery in CICS and IMS,
respectively. If you are familiar with CICS or IMS, but not both, read this overview
and then read the manual for the product that you are not familiar with.

CICS initialization and termination
CICS has the following types of initialization or restart depending on the system
initialization START parameter and on how it was last terminated:
v Initial start
v Cold start
v Warm start
v Emergency restart.

You cannot specify warm start or emergency restart explicitly. Instead, you specify
the START=AUTO system initialization parameter, and CICS determines which of
these two kinds of start to use. See the CICS Operations and Utilities Guide for
information about specifying CICS START options.

If CICS performs a warm start or an emergency restart on a system to which
DBCTL was connected and you have specified DBCTLCON=YES as a system
initialization parameter or put DFHDBCON in the PLT, so that it is invoked in the
second stage of PLTPI processing, the same DRA startup table suffix is
automatically used when DBCTL is reconnected. The suffix may change if you
have used the INITPARM system initialization parameter (described in “Reviewing
CICS system initialization parameters” on page 23) to override the suffix previously

© Copyright IBM Corp. 1989, 1999 73

used. (For information on methods of connecting to the same, or a different,
DBCTL see “Connecting DBCTL to CICS automatically” on page 46.)

CICS initialization begins when the job is submitted and, in almost all cases,
continues until completion of the specified type of restart. Error conditions may
require operator replies or may cause abnormal termination.

CICS has three types of termination:
v Normal
v Immediate
v Abnormal—due to abend or an MVS CANCEL

The CICS master terminal command to shut down CICS has two options—normal
and immediate. A normal shutdown allows transactions to complete before
shutting down and saves the system status in the CICS catalog. You can do a
warm start after a normal shutdown. An immediate shutdown does not allow
transactions to complete. This means it is equivalent to an abnormal termination,
and you must restart CICS using emergency restart.

There are special considerations for canceling CICS when it is connected to
DBCTL. See the information on causing an abnormal termination of CICS, in
“CICS failure” on page 87.

When considering CICS and IMS recovery and restart, consider the capabilities of
the extended recovery facility (XRF), which can provide you with automatic
takeover of a failing system, based on an emergency restart. For further guidance
on XRF, see:
v CICS/ESA 3.3 XRF Guide for information about XRF support in CICS
v IMS System Administration Guide for information about XRF support in IMS
v “Chapter 6. Recovery and restart operations for DBCTL” on page 73 for

information on using DBCTL with CICS XRF and IMS XRF.

Restarting DBCTL
DBCTL has three types of (re)start:
v Cold (/NRESTART CHECKPOINT 0)
v Warm (/NRESTART)
v Emergency (/ERESTART)

The startup process has two distinct phases: initialization and restart. You can use
AUTO restart to do either a warm start or an emergency restart.

With an AUTO restart, (DBCTL startup parameter AUTO=Y), DBCTL decides
whether warm start or emergency restart is required, based on the contents of the
IMS restart data set (RDS), and proceeds with the restart without your needing to
enter any further restart command.

If you need to enter your own restart command (for example, to perform a cold
start), use a non-AUTO restart (DBCTL startup parameter AUTO=N). Non-AUTO
restart stops after initialization, at which point you must manually enter a restart
command.

AUTO=N will have been specified, or defaulted to, for the first startup of DBCTL.
For subsequent restarts, use warm start or emergency restart, which means that
you will need to change the parameter to AUTO=Y. For guidance on specifying

74 CICS TS for OS/390: CICS IMS Database Control Guide

AUTO=Y and AUTO=N, see the IMS System Definition Reference manual manual or
IMS/ESA Installation Volume 2: System Definition and Tailoring.

During restart processing, the log and RECON are opened.

The sections that follow state how you use these types of (re)start with DBCTL.

Cold start
With this type of start, DBCTL is brought up in the state it was in at system
generation. Do not use cold start after a DBCTL failure. Instead, use an emergency
restart. See “Emergency restart” on page 76 for more information.

To request a cold start of DBCTL, use the /NRESTART command with the
CHECKPOINT 0 keyword. Additional keywords with /NRESTART CHECKPOINT
0 enable you to:
v Specify whether you want the RDS, or the WADS (or both) formatted as part of

restart process (the RDS, WADS, or ALL keywords). Format the RDS and the
WADS if there has been a data set I/O error, if you need to reallocate a data set
or change its size, or if you are starting DBCTL for the first time.

v Specify whether the IMS system definition password security option is to be in
effect—provided your system definition enables operators to change password
security (the PASSWORD keyword).
Before you do a cold start, you must ensure that the IMS you intend to start
does not have a subsystem record in the RECON. This will be the case if it is a
new subsystem, if it was shut down normally the last time it was used, or if it
was not shut down normally but the appropriate DBRC commands (including
DELETE.SUBSYS) and other actions needed to ensure database integrity were
performed.

Warm start
With this type of start, DBCTL is brought up in the environment it was in when it
terminated normally using a /CHECKPOINT FREEZE or /CHECKPOINT PURGE
command, as described in “Stopping DBCTL normally” on page 69. After a warm
start, resources are in the same state they were in at the time the system was shut
down.

The difference between the FREEZE and PURGE keywords applies to BMPs.
FREEZE stops them after the next checkpoint, or at program completion,
whichever is the sooner, and PURGE allows them to complete. See the IMS
Operator’s Reference manual for a list giving guidance on the differences between
these options.

To request a warm start of DBCTL, use the /NRESTART command without
CHECKPOINT 0.

Any in-doubt UOWs are re-created for this type of start. (An in-doubt UOW is a
piece of work that is pending during commit processing. If commit processing fails
between DBCTL’s response to CICS’s request to prepare for commit and CICS’s
decision to execute the commit, recovery processing must resolve the status of any
work that is in-doubt.) See “Resolving in-doubt units of work manually” on
page 82 for information on using operator commands to resolve in-doubt UOWs.

You can use the following optional keywords on /NRESTART:

Chapter 6. Recovery and restart operations for DBCTL 75

v If the WADSs have been reallocated, specify whether you want them to be
formatted as part of the restart process. Format the RDS and the WADS if there
has been a data set I/O error or if you need to reallocate a data set or change its
size.

v Specify whether the IMS system definition password security option is to be in
effect—provided your system definition enables operators to override password
security.

Emergency restart
To perform an emergency restart of DBCTL, use the /ERESTART command. With
this type of start, DBCTL is restarted in the environment it was in before a DBCTL
failure. DL/I in-flight UOWs (that is, those that were still being processed when
the failure occurred) are backed out. Committed but unwritten DEDB changes are
applied to the database. Units of work that were in-doubt are retained and are
resolved automatically when CICS and DBCTL are reconnected. For further
guidance on how this is done, see the IMS Operations Guide. If the UOWs fail to be
resolved automatically, you can use DBCTL operator commands to do so, as
described in “Resolving in-doubt units of work manually” on page 82.

If a failure in emergency restart prevents backout being completed, instead of
using a COLD start, you can reattempt the emergency restart using the
COLDBASE keyword on the emergency restart command. Full function DL/I
databases and DEDB areas that have in-doubt data or that need backout or
recovery are identified and stopped. Database backout and committed DEDB
updates are not done. You must then use the appropriate IMS utilities to backout
or forward recover these databases. (See the IMS Utilities Reference: Database manual
manual for guidance on using the utilities.)

You can also specify whether the restart or write ahead data sets should be
formatted as part of the restart process. Format the RDS and the WADS if there has
been a data set I/O error or if you need to reallocate a data set or change its size.

CICS keypoints and IMS checkpoints
This section discusses system-level keypoint and checkpoint information. Both
CICS and IMS also have task or program (thread) level synchronization
information.

CICS keypoints and IMS checkpoints both contain system status information that is
modified during online operation. The concepts are basically the same, but they are
implemented differently.

A CICS warm start uses a warm keypoint that was written to the CICS catalog by
the previous normal CICS shutdown.

A CICS emergency restart reads the CICS system log backwards until it has located
an activity keypoint. The keypoint contains a record of incomplete UOW chains
which CICS reads directly. These chains can reside on the primary and secondary
system logs.

An IMS warm start reads the checkpoint ID table on the RDS to find the shutdown
checkpoint on the log. The RDS is a data set that IMS uses to record system
checkpoint ID information during the logging process. IMS finds the information it
needs and uses it automatically. If the RDS is not available at restart, you can
obtain the checkpoint information needed from the log, but this may lengthen the
restart process. Generally, you do not need to know the content of the RDS.

76 CICS TS for OS/390: CICS IMS Database Control Guide

However, if you are faced with a particularly complex recovery problem, you may
need to examine the RDS. You can find guidance on its contents in the IMS
Operations Guide.

An IMS emergency restart reads the checkpoint ID table on the RDS and selects
the checkpoint that precedes the last synchronization point of each program that
was active at the time of the failure. It then reads the IMS log forward from the
selected checkpoint.

To take a simple checkpoint of DBCTL, use the /CHECKPOINT command.

Backing out uncommitted updates after a failure
The meaning of the term dynamic backout differs slightly between CICS and IMS.

In CICS, dynamic backout means backout as a result of a transaction (or
application program) failure. The term transaction backout is used for backout
done during CICS emergency restart.

In IMS, dynamic backout means backout as a result of a program failure. In a
DBCTL environment, program failures include CICS transaction abends and BMP
failures. The IMS /ERESTART command also performs emergency restart backout.
IMS provides a batch backout utility, DFSBBO00, which you can use if dynamic
backout or emergency restart fails. See the IMS Operations Guide for guidance on
when to run this utility, and IMS Utilities Reference: Database manual manual for
guidance on how to run it.

Because IMS does the backing out of database updates in a DBCTL environment,
we concentrate on IMS backout in this section.

For IMS full function databases, database changes are placed in the log buffers and
the database buffers as they are made. Depending on system activity, they may be
written before they are committed and so, after a program failure or an IMS
system failure, databases may require backout. The IMS log data sets (OLDS) are
used for dynamic backout. (See “IMS online log data set (OLDS)” on page 33 for
more information.) Additionally, if dynamic backout or /ERESTART backout fails,
for a database, that database is stopped. The backout is automatically reattempted
when the database is restarted.

For DEDBs, no changes are placed in the log buffers until syncpoint processing
begins, and no changes are written to the database until a commit has been
received. This means that they do not need backout if there is a failure during
phase 1 of the syncpoint process. The system can undo the changes by releasing
the database buffers that have been modified but not yet written.

Log records
The IMS log is a record of activities and database changes. Among the log records
written to the IMS log are those that record both phases of the commit for each
unit of work. These log records contain the information necessary for database
recovery and system restart. The IMS Diagnosis Guide and Reference manual manual
contains, for guidance, a list of the types of log records and tells you how to obtain
a listing of these DSECTs. The IMS Utilities Reference: Database manual manual gives
guidance on using the file select and formatting print utility, DFSERA10, to print
the IMS log records.

Chapter 6. Recovery and restart operations for DBCTL 77

Database recovery control (DBRC)
Database recovery control (DBRC) assists you in controlling DBCTL logs, and in
managing recovery of databases. With DBCTL, you must use DBRC to control your
logs, and you may optionally use it to control batch logs and database recovery.
DBCTL requires DBRC to be at SHARECTL level; if it is not, DBCTL will not start.

You may optionally use DBRC to control the data sharing environment by allowing
(or preventing) access to databases by various subsystems sharing those databases.

If you use DBRC to control database recovery, you must register your databases
with DBRC, so that it can record the relevant information in the RECON, and then
use that information to control the recovery of your databases. See the IMS
Operations Guide for general guidance on registering databases. You can register
your databases using either of the following:
v The recovery control utility, DSPURX00. See the IMS Utilities Reference: Database

manual manual for guidance on using DSPURX00.
v The /RMINIT.db and /RMINIT.dbds commands. See the IMS Operator’s

Reference manual for guidance on the syntax of these commands.

To recover a database that is registered with DBRC, use the /RMGENJCL.RECOV
command. DBRC recovers the database using a combination of available input; for
example, image copy data set, change accumulation data sets, log data sets, and
archived log data sets.

Recovery control (RECON) data sets
DBRC automatically records information in dual recovery control (RECON) data
sets. Both data sets contain identical information, and so are usually referred to as
one—the RECON. The information from the RECON is needed during warm and
emergency restarts. DBRC selects the correct data sets to be used by a recovery
utility when you enter a GENJCL command. For a restart, the RECON shows
which data set—the OLDS or the SLDS—contains the most recent log data for each
database data set (DBDS) you have registered with DBRC. For the OLDS, the
RECON shows whether the OLDS has been closed and whether it has been
archived. The RECON contains timestamp information for each log data set and
volume. IMS uses this information to determine which data set and volume
contain the checkpoint information needed to restart DBCTL.

Commit protocols and units of recovery
This section describes what happens when a transaction has updated DBCTL
databases, and is issuing a syncpoint, or a TERM request, or is terminating. If a
failure occurs at any of these stages, DBCTL may not be able to determine whether
CICS intended these updates to be backed out or committed and has to request
this information from CICS when it has been reconnected.

Two-phase commit
DBCTL uses a two-phase commit to record a syncpoint. At the completion of a
two-phase commit, the requested processing is committed and if a failure occurs,
DBCTL does not ABORT committed changes.

Two-phase commit consists of the PREPARE and COMMIT phases. Within the
PREPARE phase, CICS issues a PREPARE request to DBCTL. DBCTL writes to the
log and issues its response to the PREPARE request to CICS. Within the COMMIT
phase, there are two possible actions: COMMIT and ABORT. The ABORT action for

78 CICS TS for OS/390: CICS IMS Database Control Guide

data belonging to full function DL/I databases is backout. There is no backout for
data belonging to DEDBs because, as explained below, it is not written to the
database before the COMMIT phase. The effect of an ABORT for DEDBs is also
referred to as undo. Because a CICS thread may be accessing data belonging to
both full function DL/I databases and DEDBs, we use the term ABORT to refer to
both backout and undo.

When updates are written to databases
The DEDB terms UNDO and REDO are analogous to the DL/I full function terms
BACKOUT and COMMIT respectively. However, although the processes that these
terms refer to have the similar end results, the processes themselves differ. The
difference is in the stage at which updates are written to the database. This is
shown in Figure 25.

This difference in timing of writing updates dictates the action taken during the
second phase of two-phase commit.

For full function DL/I databases:
v If the phase 2 action is COMMIT, no action is needed to commit updates

because DL/I wrote them to the database during phase 1.
v If phase 2 action is ABORT, a BACKOUT of the updates is required because

DL/I wrote them to the database during phase 1.

For DEDBs:
v If phase 2 action is COMMIT, the changes must be REDOne to the database

because they have only been made in main storage. (They are written
(committed) to the database on DASD by the output threads, which are
generated by the IMS system generation parameter OTHREADS. See the IMS
System Definition Reference manual manual or IMS/ESA Installation Volume 2:
System Definition and Tailoring for guidance on this parameter.)

v If phase 2 action is ABORT, no changes have to be made to the database,
because the changes are still in main storage, and can be UNDOne from there.

REDO is also used to refer to the action required for committed DEDBs during
emergency restart of IMS. IMS can determine from the log that a COMMIT was
initiated, but that phase 2 is not indicated as complete. In this case, DEDB updates
must be REDOne. The two phases are:
1. Phase 1, in which CICS directs syncpoint preparation and asks whether or not

the updates to DBCTL databases can be committed.
2. Phase 2, in which CICS tells DBCTL that it must either COMMIT or ABORT the

resources. (CICS can request an ABORT without first issuing a PREPARE
request. That is, CICS can bypass the first phase of two-phase commit when an
update is being backed out.)

PREPARE COMMIT
phase 1 in-doubt phase 2

..................
DL/I updates DEDB updates

Figure 25. When updates are written to databases

Chapter 6. Recovery and restart operations for DBCTL 79

Figure 26 shows two-phase commit and describes the activities taking place.

Notes:

1. The syncpoint request can be EXEC CICS SYNCPOINT, a DL/I TERM call, or a
CICS task termination.

2. If DBCTL indicates that it cannot commit the updates, CICS aborts the unit of
recovery and the rest of the Figure 26 does not apply.

3. If CICS tells DBCTL to commit the updates, DBCTL must commit.
4. At this stage, units of recovery are in-flight and, if DBCTL fails, all database

updates are aborted.
5. At this stage, from the time that DBCTL issues its response to the PREPARE

request to the time it receives a COMMIT request from CICS, units of recovery
are in-doubt. DBCTL retains the in-doubt information. When DBCTL is
restarted after a failure, it inquires with CICS about the status of the in-doubts.
This is part of resynchronization.

UOWs and resources belonging to multiple resource managers
The two-phase commit process also applies if a UOW is updating resources that
belong to more than one resource manager; for example, any of the following:
DBCTL databases (DL/I full function or DEDBs, or both), local VSAM files, and
DB2 databases. As explained above, CICS is the coordinator of the two-phase
commit process; DBCTL is a participant. CICS must ensure that all the resource
managers, including DBCTL, are in synchronization. To do this, at phase 1 of
two-phase commit, it issues a PREPARE request to all the resource managers
involved to find out if a COMMIT can be done. This is as shown in Figure 26, in
which CICS is communicating with DBCTL only. If all the other resource managers

CICS Task-related user exit DBCTL
interface

CICS receives
syncpoint
request (1) In-flight (4)

P Begins phase 1
r PREPARE request
e Enters phase 1
p
a DBCTL writes to log
r DBCTL retains locks
e Response to

(2)
CICS writes PREPARE request
to log In-doubt (5)

Begins phase 2 (3)
COMMIT request

Enters phase 2
C
o DBCTL writes to log
m DBCTL releases locks
m
i OK Committed
t

CICS writes
end-of-syncpoint
record to log

Figure 26. Two-phase commit

80 CICS TS for OS/390: CICS IMS Database Control Guide

indicate that a COMMIT is possible, CICS tells them all to COMMIT. If not, CICS
tells them all to ABORT. The COMMIT or ABORT must now be carried out in all
the resource managers. For this reason, CICS considers the COMMIT or ABORT to
be completed at this stage, even if it is slightly delayed.

DBCTL unit of recovery
A DBCTL unit of recovery is created for each processing request when the first
schedule request is made by the transaction, and is kept until the two-phase
commit is complete. As described in “Resolving in-doubt units of work manually”
on page 82, commands are available to display the units of recovery and take

appropriate actions for committing or ending them.

In-flight unit of recovery: If DBCTL fails and is subsequently restarted, all
in-flight units of recovery are backed out.

In-doubt unit of recovery: When a failure occurs, a recoverable in-doubt structure
(RIS) is constructed for each in-doubt unit of recovery and is also written to the
IMS log. The RIS contains:
v Residual recovery element (RRE), which contains the recovery token.
v In-doubt extended error queue element (IEEQE), which contains the changed

data records.
v Buffer extended error queue element (BEEQE), which indicates a data block that

cannot be accessed because of unresolved in-doubts.
v Extended error queue element link (EEQEL), which links the basic portion of the

RIS (the RRE) with the IEEQE and the BEEQE, which are used to protect
in-doubt data.

The IMS batch backout utility, DFSBBO00, and the IMS database recovery utility,
DFSURDB0, process the in-doubt units of recovery.

CICS units of work (UOWs)
CICS UOWs and DBCTL units of recovery are more or less synonymous, except
that from CICS’s point of view, a UOW begins at the beginning of a task, and a
unit of recovery begins when that task issues its first DL/I request. For simplicity,
in the rest of this book, we use the CICS term UOW to refer to both. The IMS
publications use the term “unit of recovery”.

Recovery tokens
Recovery tokens are created by CICS and passed to DBCTL. They are unique
identifiers for each UOW. The lifetime of a recovery token is the same as for a
UOW. You can use them to correlate work done between CICS and DBCTL in the
same UOW. Each recovery token is 16 bytes long; the first 8 bytes are the CICS
APPLID (passed to DBCTL when CICS is first connected) and the second 8 bytes
are a UOW identifier. CICS creates an identifier like this for every UOW. DBCTL
validates the recovery token to protect against duplication of UOWs. You can use
the recovery token in certain operator commands. For example, you can display it
as part of the output of the /DISP CCTL and CEMT INQ TASK commands, and
you can enter it in /CHANGE commands, in the form of a pseudo recovery token,
as explained below. The recovery token is included in certain messages (for
example, the CICS message DFHDB8109, which is issued when a DL/I request has
failed). Recovery tokens can be useful in problem determination, because they are
displayed in dumps produced by CICS and DBCTL and in trace entries produced
by CICS. See “Chapter 9. Problem determination for DBCTL” on page 123 for more
information.

Chapter 6. Recovery and restart operations for DBCTL 81

The pseudo recovery token is an 8-character decimal token, which can be used in
place of the 8-byte hexadecimal recovery token and is displayed when the status of
a thread is in-doubt. It is made shorter than the recovery token so that it is easier
to make note of (for example, from /DISPLAY commands) and enter (for example,
in /CHANGE commands).

Figure 27 shows a pseudo recovery token (00010040 in the column headed
PSEUDO-RTKN) and a recovery token (F0F58879641002C2) for thread number 4 (in
the column headed REGID) for PSBNAME PC3COCHD, whose STATUS is
INDOUBT.

Resolving in-doubt units of work manually
Normally, an emergency restart of DBCTL followed by reconnection of CICS and
DBCTL after a failure should resolve in-doubts automatically. However, you may
sometimes need to do this yourself. For example, if a CICS system using DBCTL
disconnects abnormally from DBCTL (for instance, if CICS or DBCTL abends, or
CDBC DISCONNECT IMMEDIATE is issued), there may be some incomplete
updates about which DBCTL is in doubt. Even if CICS then needs to be cold
started for some reason, it normally recovers enough information to resolve
indoubts automatically. However, if CICS is started with the START=INITIAL
system initialization parameter, it loses its record of the in-doubt updates and they
must be resolved manually. You are strongly advised not to start CICS with
START=INITIAL specified when there are in-doubt units of work outstanding.

The DFS2283I message, issued during the resynchronization process, indicates that
there are UOWs that have not received a COMMIT or ABORT request, and are
therefore in-doubt.

In this situation you must use DBCTL operator commands (described in “Using
DBCTL operator commands to resolve in-doubts”) to resolve the in-doubts.

Using DBCTL operator commands to resolve in-doubts: Use the following
DBCTL operator commands to commit or backout a unit of work.
1. Use /DISPLAY CCTL cctlname INDOUBT, as shown in Figure 28 on page 83 to

obtain the pseudo recovery token that identifies the in-doubt work. (Pseudo
recovery tokens are defined in “Recovery tokens” on page 81.)

0080 /DIS CCTL DBDCCICS
0080 DFS000I MESSAGE(S) FROM ID=SYS1 047
0080 CCTL PSEUDO-RTKN RECOVERY-TOKEN REGID PSBNAME STATUS
0080 DBDCCICS ATTACHED
0080 9EDA1F61E11CFA02 6 PC3COCHD ACTIVE
0080 9EDA1F4E9B571B02 5 PC3COCHD ACTIVE
0080 00010040 F0F58879641002C2 4 PC3COCHD INDOUBT

Figure 27. /DISPLAY CCTL cctlname command showing pseudo recovery token

82 CICS TS for OS/390: CICS IMS Database Control Guide

2. Use /CHANGE CCTL cctlname PRTKN token command to abort or commit
the in-doubt. The cctlname is the APPLID of the CICS system. The PRTKN
keyword specifies the pseudo recovery token of the element to be processed.
The command is either:
v ABORT to backout changes for a unit of recovery, or COMMIT to commit

changes for recovery. For example:
/CHANGE CCTL DBDCCICS PRTKN 00010040 COMMIT

would commit the in-doubt shown in Figure 28.

When the action you specified has been completed, the recoverable in-doubt
structure (RIS) for the in-doubt UOW is removed.

Database utilities
DBCTL enables you to use utilities that IMS provides to help with the backup and
recovery of your databases. These utilities are listed below.

Note: Because database change records are written to the IMS log, you do not
need to retain the CICS system log for use by IMS database recovery utilities
in a DBCTL-exclusive environment.
v Database image copy utility, DFSUDMP0

The database image copy utility, DFSUDMP0 is a batch utility that creates
a copy of data sets within a database. For DEDBs, you can copy an area
concurrently with DBCTL activity. In IMS/ESA 4.1, you can also use
concurrent image copy for full function DL/I databases.
If the databases are updated while the utility is running, all logs including
the one that was being used when DFSUDMP0 was started, are needed
for use with DFSURDB0. You need both the log and the image copy to
give a complete “picture” of the database for recovery purposes.
If you have not created an image copy, the data set to be recovered is
used as input to DFSURDB0.

v Online database image copy utility, DFSUICP0
The online database image copy utility, DFSUICP0, is a BMP that creates
an output copy of a data set within a full function DL/I database while
the database is allocated and being used by DBCTL.
If the databases are updated while the utility is running, all logs including
the one that was being used when DFSUICP0 was started, are needed for
use with DFSURDB0. You need both the log and the image copy to give a
complete “picture” of the database for recovery purposes.
If you have not created an image copy, the data set to be recovered is
used as input to DFSURDB0.

v Database change accumulation utility, DFSUCUM0

0080 /DIS CCTL DBDCCICS INDOUBT
0080 DFS000I MESSAGE(S) FROM ID=SYS1 047
0080 CCTL PSEUDO-RTKN RECOVERY-TOKEN REGID PSBNAME STATUS
0080 DBDCCICS ATTACHED
0080 00010040 F0F58879641002C2 4 PC3COCHD INDOUBT

Figure 28. /DISPLAY CCTL cctlname command showing in-doubt

Chapter 6. Recovery and restart operations for DBCTL 83

If system availability is a major concern for your installation, you will
probably want to use this utility. It collects the changes from the other log
data sets onto a single log, thus helping to speed recovery. Balance the
benefits of using it against the overhead it incurs, and the fact that you
may not need to use its output.

v Database recovery utility, DFSURDB0
The database recovery utility uses a backup copy of your database
together with either (or both) the change accumulation utility or the logs,
and reapplies changes made since the backup copy to create a new,
reconstructed, database.
The database recovery utility performs recovery at the data set level, or at
the track level. Often, only a single data set of the database requires
recovery. However, if more than one data set has been lost or damaged,
you need to recover each one separately. If an I/O error caused the
problem, you might need to recover only a single track instead of
reconstructing the entire data set.

You can use these utilities together to perform recovery by updating a copy of the
database with the changes logged since the copy was made, as shown in Figure 29
on page 85. See the IMS Utilities Reference: Database manual manual and the IMS
Operations Guide for further guidance on using the utilities, including any
restrictions that may apply.

84 CICS TS for OS/390: CICS IMS Database Control Guide

Note: Input from the image copy and change accumulation utilities is optional.

Log(s)
input

Image
copy
(DFSUDMP0
or
DFSUICP0)

Change
accumulation
(DFSUCUM0)
input

RECON

DBD
library

Data set
to be
recovered

Input control
statements

Recovered
data set

SYSPRINT
messages

Database
recovery
utility,
DFSURDB0

Figure 29. Database recovery utility, DFSURDB0, showing inputs and outputs

Chapter 6. Recovery and restart operations for DBCTL 85

Log utilities
DBCTL enables you to use the following IMS log utilities:
v The log archive utility, DFSUARC0 produces a system log data set (SLDS) from a

filled OLDS. DBCTL can automatically invoke DFSUARC0 to archive the OLDS
when an OLDS switch occurs. You use the ARC= parameter in the DBC
procedure to control automatic archiving. (See the IMS System Definition Reference
manual manual or IMS/ESA Installation Volume 2: System Definition and Tailoring
for further guidance on specifying ARC, and the IMS Utilities Reference: Database
manual manual for guidance on setting up the skeleton JCL needed.)
Alternatively, you can use the DBRC command GENJCL.ARCHIVE to initiate
manually an archive if you did not specify the automatic archive option, or if an
automatic archive fails. See the IMS Operations Guide for further guidance about
automatic archiving. The log archive utility runs as a batch job, and you can run
multiple log archive jobs concurrently. The SLDS it creates may be on DASD,
MSS, or tape. DFSUARC0 is the recommended utility for archiving logs in a
CICS-IMS environment.

v The log recovery utility, DFSULTR0 produces a usable log data set from one that
contains read errors or could not be closed properly. You can recover both
system log data sets (SLDSs) and online log data sets (OLDSs) with this utility.

v The file select and print formatting utility, DFSERA10 enables you to display and
examine data from the IMS log data set in the following ways:
– Print or copy a whole log data set
– Print or copy from multiple log data sets based on control statement input
– Select and print log records according to their sequential position in the data

set
– Select and print log records based upon data contained within the record

itself, such as the contents of a time, date or identification field
– Enable your exit routines to do special processing on selected log records.

See the IMS Utilities Reference: Database manual manual for further guidance on
using these utilities.

Component failures
This section discusses the impact of failures of different components of a
CICS-DBCTL environment and of transaction and thread failures.

86 CICS TS for OS/390: CICS IMS Database Control Guide

CICS failure
If CICS fails, DBCTL retains locks on database records updated by in-doubt UOWs.
These records remain unavailable until in-doubts are resolved. CICS records
information about the disposition of UOWs on its log. A CICS warm start or
emergency restart reconstructs information describing UOWs that may be in-doubt.
When CICS reconnects to DBCTL, DBCTL returns a list of any in-doubt UOWs.
CICS notifies DBCTL of the resolution of all in-doubts, so DBCTL can commit or
backout as appropriate.

If CICS fails, or if you need to cause an immediate shutdown, CICS attempts to
disconnect from DBCTL. At this time, CICS gives the requests in progress time to
complete before shutdown occurs. The time is specified in the DRA startup table
parameter, TIMEOUT. (For information on this parameter, see “Defining the IMS
DRA startup parameter table” on page 38.) If TIMEOUT is exceeded and CICS
terminates while threads are still active in DBCTL, a U113 abend of DBCTL will
occur. If this happens, you will have to restart DBCTL (IMS).

Choosing a value for TIMEOUT involves a trade-off between the length of restart
process, which may be delayed if the value you specify is too high, and the risk of
causing U113 abends, which may increase if you specify to low a value. One
possible solution is to specify a TIMEOUT value that is about equal to the average
length of time between BMP checkpoints. If a BMP checkpoint has been taken,
there is less likelihood that CICS resources are waiting. This lessens the likelihood
of U113 abends without lengthening the restart process too much.

If you want an abnormal termination of CICS, and CICS does not respond to an
immediate shutdown, use an MVS CANCEL command. This command, and CICS
abends with different causes, should not result in an IMS U113 abend because
DBCTL “traps” the CANCEL and an MVS system abend code of 08E is issued
instead. Changing the effect of an MVS CANCEL from a U113 abend to an MVS
system abend of 08E makes the effects of a CANCEL more like the effects of a
CICS immediate shutdown, as described above. If you have been obliged to cancel
CICS in this way, do not start CICS with the START=INITIAL system initialization
parameter unless absolutely necessary, especially if there is a possibility of in-doubt
units of work for DBCTL, because CICS will lose its record of the in-doubt units of
work. (Unlike 4.1 and releases earlier than CICS TS, a cold start of CICS does not
lose the record of in-doubt units of work. This allows in-doubt units of work to be
resolved automatically on reconnection of CICS and DBCTL. The START=INITIAL
system initialization parameter causes CICS to lose its in-doubt units of work. See
“Resolving in-doubt units of work manually” on page 82.)

For further information on the effects of a CICS failure in a DBCTL environment,
see the section on CCTL termination in the appropriate IMS Customization Guide:
Database manual.

Database resource adapter (DRA) failure
If the DRA fails:
v DBCTL notifies CICS that the DRA is terminating abnormally, and message

DFHDB8106 is issued.
v CICS cleans up the storage associated with the CICS-DBCTL interface and

disconnects from DBCTL.
v When it has done this, CICS issues message DFHDB8102.
v You must then reconnect DBCTL using the CDBC CONNECT command.

Chapter 6. Recovery and restart operations for DBCTL 87

DBCTL failure
A termination of DBCTL should not cause CICS to terminate; but simply leaves
CICS without DBCTL services. The DRA is left partially initialized to help reduce
the restart time.

If any of the DBCTL address spaces (DBC, DBRC, or DLISAS) fails, all of these
address spaces are terminated and you must restart the system using an
/ERESTART command.

If you are using the IRLM as your lock manager, and it has failed as well as
DBCTL, you must restart it before restarting DBCTL. See “IRLM failure” on
page 89.

Normally, you terminate DBCTL with a /CHECKPOINT FREEZE or a
/CHECKPOINT PURGE command, but an MVS MODIFY command can be used
to force the termination of DBCTL. The STOP option used with the MODIFY
command forces termination without a dump and the DUMP option forces
termination with a dump. The DBCTL address space terminates with a U0020
abend. The messages received at the system console are:

DFS628I ABNORMAL TERMINATION SCHEDULED DFS629I IMS DBC REGION ABEND
jobname 0020

If DL/I is processing a request and the thread that is doing the processing abends
is active in DL/I or is waiting on a lock, DBCTL abends with a U113 after the
following message has been sent to the system console:
DFS613I DBC RCN U113 DUE TO Sxxx Uyyyy DURING DL/I CALL IN CCTL

zzzzzzzz dddd

where:

xxx is the system abend code. This is S000 if it is a user abend.

yyyy is the user abend code. This is U0000 if it is a system abend.

zzzzzzzz
is the job name of the abending CICS system or BMP.

dddd is the DBCTL system identifier.

For example, for a user abend:
DFS613I DBC RCN U113 DUE TO S000 U0474 DURING DL/I CALL IN CCTL

DBDCCICS IMSA

CICS is isolated from such abends because, in DBCTL, each thread TCB has its
own extended subtask ABEND exit (ESTAE).

The threads are then terminated and the DRA attempts to reconnect to DBCTL.
Any requests made by the subsystem during this period result in a return code of
40, which indicates that no active communications exist with DBCTL, or a return
code 28, which indicates that the specified thread does not exist. These return
codes are included in messages DFHDB8104, DFHDB8109, DFHDB8111, and
DFHDB8130. Guidance on interpreting them is in the DBCTL DRA return codes
appendix of the IMS Messages and Codes manual manual.

The DRA attempts to reconnect to DBCTL. After the first failing attempt, you are
given the opportunity to reply to message DFS690A. You can reply either WAIT, in

88 CICS TS for OS/390: CICS IMS Database Control Guide

which case the DRA continues trying to reconnect, or CANCEL, in which case the
DRA stops trying to reconnect. If you reply CANCEL, you must use the CDBC
transaction to reconnect DBCTL.

If you reply WAIT, the time interval between each attempt to reconnect is as
specified in the DRA startup parameter TIMER (described in “Defining the IMS
DRA startup parameter table” on page 38).

If you reply WAIT and later want to prevent further attempts to reconnect, use the
CDBC DISCONNECT transaction. (See “Deciding whether to use orderly or
immediate disconnection” on page 51.)

IRLM failure
When the IRLM fails, DBCTL subsystems using it cannot continue normal
operations. DBCTL terminates active programs that are using the IRLM with a
U3303 abend and forces any PSB schedule requests to wait until it has been
reconnected to the IRLM. You reconnect DBCTL to the IRLM by first restarting the
IRLM using an MVS START command, and then issuing an MVS MODIFY
RECONNECT command to DBCTL. For guidance on using MVS commands with
the IRLM and DBCTL, see the IMS Operator’s Reference manual.

Transaction and thread failures
If a transaction fails in DBCTL, the CICS transaction is abended.

If a transaction fails in CICS when a DL/I request it has issued is being processed
in DBCTL, the error is passed to the DBCTL thread. When a transaction terminates,
the thread allocated to it is released and a record is written to the IMS log. If there
is an error, a return code is returned to the application in the usual form:
v For command level requests, this is to the DL/I interface block (DIB) as a status

code, or transaction abend. (Definitive Programming Interface and Associated
Guidance Information on what is returned to the DIB is in the IMS Application
Programming: EXEC DLI Commands manual manual.)

v For call level requests, it is to the user interface block (UIB) as a PCB status code
or a transaction abend. (Definitive Programming Interface and Associated
Guidance Information on what is returned to the UIB is in the IMS Application
Programming: DL/I Calls manual manual.)
(Response codes for a DBCTL environment are in “Summary of abends and
return codes” on page 112.)

Where the transaction has been abended, the thread is also terminated, and all
recoverable resources, including DL/I, are backed out. (DL/I backout is assumed
on all thread and transaction failures.)

In some cases, other resources may not have been backed out, but DL/I backout
has taken place. In these cases, one of the following status codes will be returned:
BB, FD, FR, FS. You can also receive the FD status code on a call to a full function
database if the PSB for the program (BMP) has a DEDB PCB. See “Status codes
and backout” on page 102 for actions you should take if this happens.

Deadlocks and interactions with automatic restart
As described in the CICS Recovery and Restart Guide, DBCTL detects transaction
deadlocks, which can occur when two transactions are waiting for the same two
resources to become available; that is, both resources are needed by both
transactions, as illustrated in Figure 30 on page 90.

Chapter 6. Recovery and restart operations for DBCTL 89

If one resource is a DBCTL database and the other is a CICS resource, the task
waiting for the CICS resource is abended after its DTIMOUT period has elapsed, if
you have specified one. (See the CICS Resource Definition Guide for help on
specifying the DTIMOUT option of the TRANSACTION definition.)

In the example shown in Figure 30, transaction A is the one that is abended when
DTIMOUT expires. This is because it is waiting in an enqueue until transaction B
frees the lock held for CICS resource C. However, CICS resource C is not freed
because transaction B is waiting for transaction A to free the lock it is holding on
DBCTL resource D.

If you did not specify DTIMOUT for the task using the CICS resource, both tasks
will remain suspended indefinitely, unless one of them is canceled by the CICS
master terminal operator (as described in “Purging a transaction that is using
DBCTL” on page 68).

If the resources are both DBCTL databases, DBCTL detects the potential deadlock
when the database requests that create the deadlocks are attempted. DBCTL then
causes the task with less update activity to be abended. The abend (ADCD) causes
all resources to be backed out. If a deadlock is detected when you are using
DEDBs, an FD status code is issued instead of an ADCD abend. See “Status codes
and backout” on page 102 for details.

For DL/I full function databases and DEDBs, if you have specified automatic
restart, the task can be restarted at this point. (See the CICS Recovery and Restart
Guide for help on specifying automatic restart.) However, this can take place only if
the transaction abended in the first (or only) UOW, and there has been no terminal
input or output since the initial terminal input was read.

BMP failures
If a BMP fails, DBCTL backs out any changes made by that BMP following the
latest successful syncpoint. You must restart BMPs, because DBCTL does not restart
them automatically.

The JCL used to restart BMPs depends on whether the checkpoint for the BMP is
still on an OLDS available to DBCTL. If the BMP’s last checkpoint records are not
in the OLDS, they will be in the SLDS, and you must add an IMSLOGR DD

Time

1 Transaction A DBCTL resource D

2 Transaction B CICS resource C

3 Transaction A CICS resource C

4 Transaction B DBCTL resource D

Figure 30. Transaction deadlock

90 CICS TS for OS/390: CICS IMS Database Control Guide

statement for the SLDS(s) containing the log records required to the BMP JCL.
Guidance on the JCL needed to do this is in the IMS Utilities Reference: Database
manual manual.

There is an option to defer changes made to databases by backout of BMPs at
emergency restart. If you specify NOBMP on the /ERESTART command, changes
made to databases by BMPs are not backed out and all PSBs affected are stopped.
Databases that were being updated by BMPs when the failure occurred are also
stopped. You must then do batch backout for the databases that are stopped.
(Batch backout will also backout the databases that were affected.) Be aware that
using NOBMP may mean that the online DBCTL is restarted sooner, but it also
delays data availability for the databases that were stopped by the BMP failure.

MVS, processor, or power failures
If an MVS, processor, or power failure occurs, DBRC is unable to mark the
subsystem (SSYS) records in the RECON as having terminated abnormally. This
means that you cannot use automatic restart. Instead, you must use the
/ERESTART command with the OVERRIDE keyword to override the RECON
subsystem record. Alternatively, use the DBRC command CHANGE.SUBSYS to
mark the subsystem record as abnormally terminated. You will need to do this if
you want to run any utilities (such as database recovery or log utilities). This is
because these utilities will fail if the subsystem record is still marked as active. For
information on doing this, see the IMS Utilities Reference: Database manual manual.
Backout of in-flight updates should then occur. You can then restart CICS with an
AUTO (emergency) restart. When CICS has reconnected to DBCTL, CICS decides
whether any in-doubt UOWs exist, and resolves them in the same way as for other
failures.

Chapter 6. Recovery and restart operations for DBCTL 91

92 CICS TS for OS/390: CICS IMS Database Control Guide

Chapter 7. Application programming for DBCTL

Other product information
The information given about IMS commands is intended to help you
understand the facilities available to your CICS system when you use DBCTL.
The information is not part of the CICS Programming Interface and
Associated Guidance Information.

This chapter contains these sections:
v “Overview of application programming for DBCTL”
v “Programming languages and environments” on page 94
v “Additional facilities available with DBCTL” on page 95
v “Migrating programs to DBCTL” on page 110
v “Summary of abends and return codes” on page 112

Overview of application programming for DBCTL
Programming information on DL/I requests is in the IMS Application Programming:
EXEC DLI Commands manual and the IMS Application Programming: DL/I Calls
manual manuals.

Application programming considerations in a DBCTL environment include:
v Additional facilities available to application programmers with DBCTL
v Migrating programs to DBCTL
v Additional abends and return codes that may be issued with DBCTL

In most cases, your existing application programs should not need any changes to
access databases controlled by DBCTL. See “Migrating a DL/I program to a
DBCTL program” on page 110. However, consider the following:
v You must migrate batch CICS shared database programs to BMPs, and you are

advised to migrate “native” IMS batch jobs to use BMPs. (See “Batch message
processing programs (BMPs)” on page 102, “Migrating CICS shared database
batch jobs to BMPs” on page 111, and “Migrating native IMS batch jobs to
BMPs” on page 111.)

v Your application programs will have to deal with a number of abend and
response codes that may be issued with DBCTL. (See “Summary of abends and
return codes” on page 112.)

v Enhanced scheduling with DBCTL enables a PSB to be scheduled even if some
of the full function databases or DEDB areas it requires are not available. (See
“Enhanced scheduling” on page 99.)

v You can use the DL/I LOG request instead of the EXEC CICS WRITE
JOURNALNAME command so that all DBCTL logging information is on the
IMS log instead of the CICS system log. (See “LOG command and call” on
page 106.)

v DBCTL supports additional DL/I requests for application programs. DL/I
requests available with DBCTL are described for guidance. It also supports all
existing call level and EXEC level requests previously supported in the local

© Copyright IBM Corp. 1989, 1999 93

DL/I environment. Programming information on DL/I requests is in the IMS
Application Programming: EXEC DLI Commands manual and the IMS Application
Programming: DL/I Calls manual manuals.

Programming languages and environments
You can write your programs in COBOL (VS COBOL II or OS/VS COBOL), C,
PL/I, or assembler. The examples of DL/I requests in this chapter are in COBOL.

You have a choice of two interfaces—the command level interface (EXEC DLI) and
the call level interface (using DL/I CALLs). The IMS Application Programming:
Design Guide contains guidance on comparing the two interfaces. For programming
information on the functions of EXEC DLI commands and DL/I CALLs, see the
IMS Application Programming: EXEC DLI Commands manual or the IMS Application
Programming: DL/I Calls manual manuals, respectively.

Issue IMS AIB call format
CICS supports IMS requests with the AIBTDLI interface as well as with the PCB
format.

In addition, IMS/ESA 5.1 supports application interface block (AIB) format for
issuing GMSG, ICMD, and RCMD calls. These three calls enable DBCTL operator
commands to be sent in a CICS transaction, CDBM. (See “CDBM operator
transaction” on page 55.)

These are the calls (in IMS/ESA 4.1 onwards) that are supported:
v DELETE
v DEQUEUE
v GET UNIQUE/GET NEXT/GET NEXT IN PARENT
v GET HOLD UNIQUE/GET HOLD NEXT/GET HOLD NEXT IN PARENT
v GETMESSAGE (IMS/ESA 5.1 only)
v ICOMMAND (IMS/ESA 5.1 only)
v INIT
v INQY
v INSERT
v LOG
v POSITION
v RCOMMAND (IMS/ESA 5.1 only)
v REPLACE
v ROLS
v SETS
v STAT

CICS has the following restrictions when function shipping AIB requests:
v The AIB length must be defined as 128 to 256 bytes. IMS recommends 128, but

CICS enforces this range by abend code AXF7.
v Only CICS Transaction Server for OS/390 systems may be in a function-shipping

chain if AIB requests are being issued.
v Do not specify LIST=NO on the PCB statement in the PSB if you intend to

function ship AIB requests for that PCBNAME.

See the IMS/ESA Application Programming: DL/I Calls manual for programming
interface information on these calls, plus information on defining AIB format
instead of PCB format, and on the AIBTDLI entry point for link-edit.

94 CICS TS for OS/390: CICS IMS Database Control Guide

The following table compares the AIB and PCB formats for EXEC DLI calls.

Table 4. Comparison of AIB and PCB formats for EXEC DLI calls

AIB format PCB format

EXEC DLI GU AIB(aibname) EXEC DLI GU USING PCB(n)

EXEC DLI GN AIB(aibname) EXEC DLI GN USING PCB(n)

EXEC DLI GNP AIB(aibname) EXEC DLI GNP USING PCB(n)

EXEC DLI ISRT AIB(aibname) EXEC DLI ISRT USING PCB(n)

EXEC DLI DLET AIB(aibname) EXEC DLI DLET USING PCB(n)

EXEC DLI REPL AIB(aibname) EXEC DLI REPL USING PCB(n)

EXEC DLI POS AIB(aibname) EXEC DLI POS USING PCB(n)

EXEC DLI STAT AIB(aibname) EXEC DLI STAT USING PCB(n)

EXEC DLI QUERY AIB(aibname) EXEC DLI QUERY USING PCB(n)

EXEC DLI DEQ AIB(aibname) EXEC DLI DEQ1

EXEC DLI LOG AIB(aibname) EXEC DLI LOG1

EXEC DLI REFRESH AIB(aibname) EXEC DLI REFRESH1

EXEC DLI ACCEPT AIB(aibname) EXEC DLI ACCEPT1

EXEC DLI SETS AIB(aibname) EXEC DLI SETS1

EXEC DLI ROLS AIB(aibname) EXEC DLI ROLS1

EXEC DLI GMSG AIB(aibname) ---

EXEC DLI ICMD AIB(aibname) ---

EXEC DLI RCMD AIB(aibname) ---

Notes:

1. USING PCB is not required because these commands assume the IOPCB.
2. You cannot use both the AIB and the PCB in a single EXEC DLI command, but

you can choose either of them for each EXEC DLI command in an application
program.

For more information about these commands, see the IMS/ESA Application
Programming: EXEC DLI Commands Summary.

Additional facilities available with DBCTL
Additional facilities available with DBCTL include application program access to
DEDBs, a number of additional commands, calls, and keywords, increased data
availability, and the ability to use BMPs.

Application program access to DEDBs
With DBCTL, your EXEC DLI and CALL DL/I application programs can access
DEDBs. For an overview of the benefits of using DEDBs (including subset
pointers), see “Access to data entry databases (DEDBs)” on page 10.

For programming information on using subset pointers and EXEC DL/I keywords,
see the IMS Application Programming: EXEC DLI Commands manual and the IMS
Application Programming: DL/I Calls manual manuals.

Chapter 7. Application programming for DBCTL 95

Command codes to manage subset pointers in DEDBs
With DEDBs, you can set and use up to eight subset pointers for each direct
dependent segment type in the database description (DBD). You must also define
in the PSB, using the SENSEG statement, which subset pointers your program will
use. You can then use subset pointers from within the application program
together with certain command codes. “Keywords and corresponding command
codes” on page 97 tells you which subset pointers you can use with which
command codes.

Additional EXEC DLI keywords
You can use a number of additional EXEC DLI keywords in a CICS-DBCTL
environment; they are described in the headings that follow. Each of these
keywords has a corresponding CALL DL/I command code. These are shown in
“Keywords and corresponding command codes” on page 97.

LOCKCLASS
The LOCKED keyword corresponds to the Q command code. You use either of
these to reserve a segment so that other programs cannot update until after you
have finished with it. You can associate the Q command code with a 1-character
field, from A through J, but the LOCKED keyword cannot take an argument. The
LOCKCLASS keyword enables you to make full use of the DEQ command.

You use the LOCKCLASS keyword, with retrieve requests only, in the same
situations that the LOCKED keyword can be used. However, the LOCKCLASS
keyword can take a 1-character argument, in the range B to J inclusive. You cannot
use LOCKED and LOCKCLASS for the same segment.

MOVENEXT
The MOVENEXT keyword sets the subset pointer to the segment following the
current segment. You can only use it with a DEDB that uses subset pointers. You
can use it when retrieving, inserting, or replacing a segment. You cannot use it
with a SETZERO keyword for which you have specified subset pointer values, or
with the LOCKED or LOCKCLASS keywords.

MOVENEXT, which corresponds to the M command code, can take an argument,
which can be a constant of up to 8 bytes or a variable of exactly 8 bytes. Each byte
indicates a subset pointer and should be a single number from 1 through 8. If you
use a variable that is longer than the number of subset pointers to be referenced,
you should left justify the data and set the rest of the variable to blanks (for
example, X'F1F3404040').

GETFIRST
The GETFIRST keyword, which corresponds to the R command code, causes the
first segment in a subset to be retrieved or inserted. You can only use it when
retrieving or inserting a segment in a DEDB that uses subset pointers. You can
only use one GETFIRST keyword with each parent or object segment. You cannot
use the GETFIRST keyword with the FIRST, LOCKED, or LOCKCLASS keywords.

GETFIRST can take a single argument, which can be a constant or a 1-byte
variable. The value of the argument must be a number from 1 through 8, in
character form, that indicates a subset pointer.

SET
The SET keyword, which corresponds to the S command code, causes the
appropriate subset pointer to be set unconditionally to the current position, in a
DEDB with subset pointers. Use the SET keyword when retrieving, inserting or

96 CICS TS for OS/390: CICS IMS Database Control Guide

replacing a segment. You cannot use it with a SETZERO keyword that has the
same subset pointer value, or with the LOCKED or LOCKCLASS keywords.

SET can take an argument, which can be a constant of up to 8 bytes, or a variable
of exactly 8 bytes. Each byte indicates a subset pointer and must be a single
integer, in character form, from 1 through 8. If you use a variable that is longer
than the number of subset pointers to be referenced, you should left justify the
data and set the rest of the variable to blanks (for example, X'F1F3404040').

SETCOND
The SETCOND keyword, which corresponds to the W command code, causes the
appropriate subset pointer to be set only if it is not already set to a segment. You
can only use it when processing a DEDB with subset pointers. You can use
SETCOND when retrieving, inserting, or replacing a segment. You cannot use it
with the SETZERO keyword that has the same subset pointer value, or with the
LOCKED or LOCKCLASS keywords.

SETCOND can take an argument, which can be a constant of up to 8 bytes or a
variable of exactly 8 bytes. Each byte indicates a subset pointer and must be a
single number, in character form, from 1 through 8. If you use a variable that is
longer than the number of subset pointers to be referenced, you should left justify
the data and set the rest of the variable to blanks (for example, X'F1F3404040').

SETZERO
The SETZERO keyword, which corresponds to the Z command code, causes the
appropriate segment subset pointer to be set to zero. You can only use it with
DEDBs that use subset pointers. You can use SETZERO when retrieving, inserting,
replacing, or deleting a segment. You cannot use it with SET, SETCOND, or
MOVENEXT keywords that have the same subset pointer values. You cannot use it
with the LOCKED or LOCKCLASS keywords.

SETZERO can take an argument, which can be a constant of up to 8 bytes or a
variable of exactly 8 bytes. Each byte indicates a subset pointer and must be a
single number, in character form, from 1 through 8. If you use a variable that is
longer than the number of subset pointers to be referenced, you should left justify
the data, and set the rest of the variable to blanks (for example, X'F1F3404040').

System service (SYSSERVE)
If your application program issues a system service request in an EXEC DLI
environment, you do not need to specify the PCB number, because the IOPCB is
assumed for this type of request. However, if you are using one of the following
EXEC DLI system service requests:
v LOG command
v REFRESH command
v ACCEPT command
v SETS command
v ROLS command (without the USING PCB(1) option)

first issue a PSB schedule command specifying the SYSSERVE keyword. See “PSB
schedule command and call” on page 105 for the format of the schedule request.

Keywords and corresponding command codes
Table 5 on page 98 lists EXEC DLI keywords and corresponding DL/I CALL
command codes that are valid in a DBCTL environment.

Chapter 7. Application programming for DBCTL 97

Table 5. Keywords and corresponding command codes

EXEC DLI keyword DL/I CALL command code Purpose

KEYS C Using the concatenated key of a segment to identify the
segment.

INTO or FROM specified on
segment level to be
retrieved or inserted

D Retrieving or inserting a sequence of segments in a
hierarchic path using only one request, instead of
having to use a separate request for each segment (path
call or command).

FIRST F Backing up to the first occurrence of a segment under its
parent when searching for a particular segment
occurrence. Disregarded for a root segment.

LAST L Retrieving the last occurrence of a segment under its
parent.

MOVENEXT 1 M 1 Moving a subset pointer to the next segment occurrence
after your current position.

Leaving out the SEGMENT
option for segments you do
not want replaced

N Designating segments you do not want replaced, when
replacing segments after a get hold request. Used when
replacing part of a path of segments.

SETPARENT P Setting parentage at a higher level than usual. (It is
usually the lowest SSA level of the call.)

LOCKED 2 LOCKCLASS 2 Q 2 Reserving a segment so that other programs will not be
able to update it until after you have finished processing
and updating it.

GETFIRST 1 R 1 Starting search with the first segment occurrence in a
subset.

SET 1 S 1 Unconditionally setting a subset pointer to the current
position.

No EXEC equivalent U Limiting the search for a segment to the dependents of
the segment occurrence on which position is established.

CURRENT V Using the current position at this hierarchic level and
above as qualification for the segment.

SETCOND 1 W 1 Setting a subset pointer to your current position, if the
subset pointer is not already set.

SETZERO 1 Z 1 Setting a subset pointer to zero.

Notes:

1. DEDB subset pointer operations only. These command codes are new for CICS
users who are new to DBCTL.

2. Cannot be used with DEDBs.

POS command and call
With DEDBs, you can use the position (POS) command and call to retrieve the
location of a specific sequential dependent segment or the location of the last
inserted sequential dependent segment. The POS command and call also provides
information about unused space.

You can specify only one SSA with the POS request; that is, either the root
segment, or a sequential dependent segment. You can use POS to locate a specific
sequential dependent segment when you already have a valid position of a root
segment. If you do not already have one, you must first issue a separate POS
request, or other request, to establish the position of a root segment.

98 CICS TS for OS/390: CICS IMS Database Control Guide

The format of the POS command is:

The format of the POS call is:
CALL 'CBLTDLI' USING POS,dedb_pcb,i/o_area[,ssa]

See “Keywords and corresponding command codes” on page 97 and “Comparing
EXEC DLI commands and DL/I calls” on page 108 for brief comparisons of
commands and calls. For further guidance on the differences between commands
and calls, see the IMS Application Programming: Design Guide.

Addressing and residency mode
Addressing mode (AMODE) refers to the address length that a program is
prepared to handle: 24-bit addresses, 31-bit addresses, or both (ANY). Programs
with an addressing mode of ANY must have been designed to receive control in
either 24- or 31-bit addressing mode.

Residency mode (RMODE) specifies where a program is expected to reside in
virtual storage. RMODE 24 indicates that a program is coded to reside in virtual
storage below 16MB. RMODE ANY indicates that a program is coded to reside
anywhere in virtual storage.

See the OS/390 MVS Extended Addressability Guidefor more information on AMODE
and RMODE. See also the appropriate programming guides for COBOL and PL/I
for guidance on placing parameters above or below the line.

Note that you cannot place parameters above the 16MB line if you are using
OS/VS COBOL.

With remote DL/I and DBCTL, programs can be AMODE(31) RMODE(any) with
parameters above the 16 MB line, for both DL/I call and command level.

Enhanced scheduling
DBCTL supports enhanced scheduling. That is, PSB scheduling completes
successfully, even if some of the full function databases or DEDB areas it requires
are not available. Full function databases that have been stopped or locked by the
commands /STOP, /DBRECOVERY, or /LOCK, or that are unavailable for update
because a /DBDUMP command has been issued, do not cause scheduling failures.
Instead, the application program is prevented from accessing only the unavailable
database(s) or area(s). Application programs can have read access to databases that
have been made unavailable for update by the /DBDUMP command. If a program
issues a call to an unavailable database or area, a transaction abend is issued. To
avoid this happening, you can issue requests, after a PSB has been scheduled, to
obtain information regarding the availability of each database and to indicate that
your program will handle data availability status codes. These requests are
described in “Obtaining information about database availability” on page 100 and
“Accepting database availability status codes” on page 101.

EXEC DLI POS|POSITION
USING PCB(n)
INTO(data-area)
[KEYFEEDBACK(area)[FEEDBACKLEN(expression)]]
[SEGMENT(name)|SEGMENT((area))]
[WHERE(qualification_statement)[FIELDLENGTH(expression)]]

Figure 31. EXEC DLI POS command

Chapter 7. Application programming for DBCTL 99

Obtaining information about database availability
A PSB scheduling request places data availability status codes in each of the DB
PCBs. You can use DL/I requests to obtain and refresh this information, as
described below.

QUERY and REFRESH DBQUERY commands
In a command-level environment, issue the following command after a PSB
schedule request for each PCB:
EXEC DLI QUERY PCB(n)

where n is the number of a PCB.

This obtains the status code and other information in the DL/I interface block
(DIB). You should get one of the following values in the DIB:
v TH, which means that a PSB has not yet been scheduled and results in a DHTH

abend.
v NA, which means that at least one of the databases that can be accessed using

this PCB is unavailable, but does not result in an abend.
v NU, which means that at least one of the databases that can be updated using

this PCB is unavailable and does not result in an abend.
v (blanks), mean that the data accessible using this PCB is available for all

functions that the PCB sensitivity allows.

DIBDBORG, which is returned when DIBSTAT has been set to NA, NU or ��
(blanks). DIBDBORG contains one of the following values describing the database
organization:
v DEDB
v GSAM
v HDAM
v HIDAM
v HISAM
v INDEX
v HSAM
v SHISAM
v SHSAM.

DIBDBDNM, which is returned when DIBSTAT has been set to NA, NU or blanks,
and contains the DBDNAME. You can refresh these status codes using the
command:
EXEC DLI REFRESH DBQUERY

INIT call—format for refreshing status code information
Application programs using the DL/I CALL interface can access the PCB status
codes directly. You can refresh these status codes using the INIT call as follows:
CALL 'CBLTDLI' USING INIT,i/o pcb,i/o_area

where i/o_area contains a string in the format LLZZcharacter_string.
v LL is a halfword containing the length of the character_string including LLZZ.
v ZZ contains binary zeros
v character_string contains DBQUERY.

The data availability status codes used in this context are:
v (blanks), which means that all of the databases are available.

100 CICS TS for OS/390: CICS IMS Database Control Guide

v NA, which means that at least one of the databases that can be accessed using
this PCB is unavailable.

v NU, which means that at least one of the databases that can be updated using
this PCB is unavailable for update.

Accepting database availability status codes
You can use DL/I requests to indicate that your application program is prepared to
accept and handle database availability status codes for DL/I calls, as described in
“ACCEPT STATUSGROUP command” and “INIT call—format for accepting status
codes”. These status codes may have been issued because PSB scheduling has
completed without all of the referenced databases being available.

ACCEPT STATUSGROUP command
For command level application programs, use:
EXEC DLI ACCEPT STATUSGROUP('A')

INIT call—format for accepting status codes
For call level application programs, use:
CALL 'CBLTDLI' USING INIT,i/o pcb,i/o_area

where i/o_area contains a string in the format LLZZcharacter_string.
LL is a halfword containing the length of the character_string including LLZZ
ZZ contains binary zeros
Character_string contains STATUSGROUPA.

If you have used ACCEPT STATUSGROUP, and a DL/I request tries to access a
database or a DEDB area that is not available after PSB schedule, DBCTL returns a
status code instead of abending the transaction. If you have not used ACCEPT
STATUSGROUP, the transaction will be abnormally terminated with ADCI if it
tries to access unavailable data. (See “Summary of abends and return codes” on
page 112 for details of accompanying return codes.)

The status codes used are:
v (blanks), which means that the request completed successfully.
v BA, which means that the request could not be completed because a database

was not available. In this case, only the updates done for the current DL/I call
are backed out.

v BB, which means that the request could not be completed because a database
was not available. In this case, all DL/I updates are backed out to the last
commit point.

Note: Only DL/I resources are backed out because the transaction has not
abended. Therefore, ensure that you keep DL/I and other resources in
synchronization.

See the IMS Application Programming: EXEC DLI Commands manual or the IMS
Application Programming: DL/I Calls manual manuals for programming information
on status codes.

Although a PSB can contain PCBs for GSAM and MSDB databases, and the PSB
can be scheduled, programs using DBCTL (or any other kind of CICS-DL/I
program) cannot access those GSAM or MSDB databases online from CICS. Access

Chapter 7. Application programming for DBCTL 101

to such databases is by means of batch and BMPs only. See “I/O PCB” on page 103
for information on the option SCHD, which you can use to state whether you
require an input/output PCB (I/O PCB).

Status codes and backout
The following DEDB status codes are returned when DL/I backout has taken
place: BB, FD, FR, FS. If you receive one of these status codes, it is as if any update
requests you issued to full function databases or to DEDBs in the same UOW had
not taken place.

If you are using EXEC DLI, these status codes are, as usual, accompanied by a
DHBB, DHFD, DHFR, or DHFS abend.

If you are using CALL DL/I and if you want any other resources you may have
been updating in the same UOW to be backed out, issue an EXEC CICS ABEND
request or a SYNCPOINT ROLLBACK command.

Batch message processing programs (BMPs)
Batch message processing programs (BMPs) are application programs that perform
batch type processing online and can access databases controlled by DBCTL. You
can run the same program as a BMP or as a batch program. Figure 32 on page 103
shows the kind of data BMPs can access. See the IMS Application Programming:
Design Guide for further guidance on using BMPs.

102 CICS TS for OS/390: CICS IMS Database Control Guide

System service requests

I/O PCB
A PSB used in a DBCTL environment can contain any of the following PCB types:
v I/O PCB. In a CICS-DBCTL environment, an input/output PCB (I/O PCB) is

needed to issue DBCTL service requests. Unlike other types of PCB, it is not
defined with PSB generation. If the application program is using an I/O PCB,
this has to be indicated in the PSB scheduling request, as explained in “Format
of a PSB” on page 104.

v Alternate TP PCB(s). An alternate TP PCB defines a logical terminal and can be
used instead of the I/O PCB when it is necessary to direct a response to a
terminal. Alternate TP PCBs appear in PSBs used in a CICS-DBCTL
environment, but are used only in an IMS/VS DC or IMS/ESA TM environment.
CICS applications using DBCTL cannot successfully issue requests that specify
an alternate TP PCB, an MSDB PCB, or a GSAM PCB, but PSBs that contain this
kind of PCB can be scheduled successfully in a CICS-DBCTL environment.
Alternate PCBs are included in the PCB address list returned to a call level
application program. The existence of alternate PCBs in the PSB can affect the

DB2

BMPMVS files GSAM

DBCTL

DEDBs DL/I full
function

Figure 32. BMP access

Chapter 7. Application programming for DBCTL 103

PCB number used in the PCB keyword in an EXEC DLI application program,
depending on whether you are using CICS online, batch programs, or BMPs. For
more information, see “PCB summary” below.

v DB PCB(s). A database PCB (DB PCB) is the PCB that defines an application
program’s interface to a database. One DB PCB is needed for each database view
used by the application program. It can be a full function PCB, or a DEDB PCB.

v GSAM PCB(s). A GSAM PCB defines an application program’s interface for
GSAM operations.

With DBCTL, a CICS online application program receives, by default, a DB PCB as
the first PCB in the parameter list passed to it after scheduling.

With the EXEC DLI interface, in order to use system service requests, you specify
the SYSSERVE keyword on the SCHD command to indicate that your application
program can handle an I/O PCB. In an EXEC DLI environment, the SYSSERVE
keyword does not change the PCB numbering, which means that your first PCB is
still the DB PCB, and you do not need to specify a PCB number when you issue a
system service request.

With the DL/I CALL interface, in order to use system service requests, you use the
IOPCB parameter on the PCB to indicate that your application program can handle
an I/O PCB. The I/O PCB will then be the first PCB in the parameter address list
passed back to your application program.

Format of a PSB
PSBs used in a DBCTL environment will be of the following form:

Each PSB must contain at least one PCB. A DB PCB can be a full function PCB, or
a DEDB PCB.

PCB summary
This section summarizes information concerning I/O PCBs and alternate PCBs in
the supported environments. Read it if you intend to issue system service requests.

CICS online programs:

v EXEC DLI
The first PCB in your PCB address list always refers to the first database PCB
(DB PCB) whether or not you specify the SYSSERVE keyword.

v CALL DL/I
If you specify the IOPCB option on the PCB call, the first PCB in your PCB
address list will be the I/O PCB, followed by any alternate PCBs, followed by
the DB PCBs.
If you do not specify the IOPCB option, the first PCB in your PCB address list
will be the first DB PCB.

BMPs:

v EXEC DLI and CALL DL/I

[IOPCB]
[Alternate TP PCB ... Alternate TP PCB]
[DBPCB ... DBPCB]
[GSAMPCB ... GSAMPCB]

Figure 33. General format of a PSB in a DBCTL environment

104 CICS TS for OS/390: CICS IMS Database Control Guide

The PCB list always contains the address of the I/O PCB, followed by the
addresses of any alternate PCBs, followed by the addresses of the DB PCBs.

Batch programs: Alternate PCBs are always returned to batch programs
irrespective of whether you have specified CMPAT=Y. The I/O PCB is returned
depending on the CMPAT option, as follows:
v EXEC DLI and CALL DL/I

If you specify CMPAT=Y, the PCB list contains the address of the I/O PCB,
followed by any alternate PCBs, and then the DB PCBs.
If you do not specify CMPAT=Y, the PCB list contains the addresses of any
alternate PCBs followed by the addresses of the DB PCBs.

Table 6 summarizes the I/O PCB and alternate PCB information.

Table 6. PCB summary

Environment EXEC DLI CALL DL/I

I/O PCB
count

included
in

PCB(n)

Alternate
PCB

count
included

in
PCB(n)

I/O PCB
address
returned

Alternate
PCB

address
returned

CICS DBCTL (1) No No No No

CICS DBCTL (2) No No Yes Yes

BMP Yes Yes Yes Yes

Batch (3) No Yes No Yes

Batch (4) Yes Yes Yes Yes

Notes:

1. SCHD request issued without the IOPCB or SYSSERVE option.
2. SCHD request issued with the IOPCB or SYSSERVE for a CICS DBCTL request

or for a function shipped request which is satisfied by a CICS system using
DBCTL.

3. CMPAT=N specified.
4. CMPAT=Y specified.

PSB schedule command and call
The format of the schedule command is:
EXEC DLI SCHD PSB(name)[SYSSERVE]

Specifying SYSSERVE does not affect the PCB number you specify in the USING
PCB keyword because PCB(1) will always refer to the first DB PCB. The
application program must establish addressability to the I/O PCB. See the IMS
Application Programming: Design Guide for further guidance on doing this.

The format of the schedule call is:
CALL 'CBLTDLI' USING PCB�,psbname,uibptr[,sysserve]

where sysserve is an optional 8-byte variable, set to either IOPCB or NOIOPCB.

Chapter 7. Application programming for DBCTL 105

Almost all the new DL/I calls supported in the CICS-DBCTL environment require
an I/O PCB. The two exceptions are the ROLS call, which can use a DB PCB, and
the POS call, which uses a DEDB PCB.

Preventing DHxx abends after EXEC DLI SCHD PSB failure: When a PSB
schedule request fails (for example, because a database is unavailable), CICS
abends the transaction with a DHxx abend code. In a production system, PSB
schedule request failures are more likely to be caused by unavailability of a
database than by application coding errors, which means that end users may see
DHxx abends unnecessarily. To prevent this happening, you can use the EXEC DLI
SCHD PSB keyword, NODHABEND, which specifies that no DHxx abends are
issued for that PSB schedule request. Instead, the xx value is returned to the
application program in DIBSTAT, enabling the application to deal with the
situation in a more user-friendly way, and avoiding the need to code global
HANDLE ABENDs (EXEC DLI does not support HANDLE CONDITION).

DEQ command and call
The DEQ (dequeue) request releases segments that were retrieved using the
LOCKCLASS keyword or the Q command code.

The LOCKED keyword cannot take an argument, and cannot be used with DEQ.
(Segments locked using the LOCKED keyword are released when a SYNCPOINT is
taken.) Instead, you use LOCKCLASS with DEQ, which can take a 1-character
argument in the range B to J inclusive. (These keywords correspond to the Q
command code, which you can associate with a 1-character field in the range A to
J.) You cannot use LOCKED and LOCKCLASS for the same segment. Using
LOCKCLASS or Q on retrieval requests enables you to reserve segments for
exclusive use by your transaction. No other transaction is allowed to update these
reserved segments until your transaction reaches a syncpoint, or the DEQ request
has been issued, when the reserved segments are released. This means that your
application can leave these segments and retrieve them later without them being
changed in the meantime.

The format of the DEQ command is:

EXEC DLI DEQ LOCKCLASS(data_value)

where data_value is a 1-byte alphabetic character in the range B to J.

The format of the DEQ call is:

CALL 'CBLTDLI' USING function,i/o pcb,i/o_area

where function is the address of a 4-byte area that contains the value of the DEQb
function, i/o pcb is the name of the I/O PCB (mandatory), and i/o_area is a 1-byte
alphabetic character in the range A to J.

LOG command and call
You can use the LOG request online when you want a record to be written from an
application program to the IMS log. Your program can specify whatever
information you want to be on the log. You may prefer to use it instead of EXEC
CICS journal commands so that all your DBCTL information will be on the IMS
log instead of the CICS log. IMS uses different log codes to distinguish different
types of log record. All user log records in the IMS log have the same code.
Records logged using the LOG request will not be backed out if synchronization
fails and the UOW is aborted.

106 CICS TS for OS/390: CICS IMS Database Control Guide

The format of the LOG command is:
EXEC DLI LOG FROM(area) LENGTH(expression)

The format of the LOG call is:
CALL 'CBLTDLI' USING LOG�,i/o-pcb,data-area

where LOG� is the address of a 4-byte area that contains the value of the LOG�
function.

Defining intermediate backout points for DBCTL resources
The SETS and ROLS requests enable you to define multiple points at which to
preserve the state of DL/I full function databases and to return to these points
later. The backout points are not CICS syncpoints, they are intermediate backout
points that apply only to DBCTL resources. For example, you can use them to
allow your program to handle the consequences of PSB scheduling having
completed without all of the referenced DL/I databases being available.

The SETS and ROLS requests apply to DL/I full function databases only. If an
UOW is updating recoverable resources other than full function databases, for
example, DEDBs and VSAM files, the SETS and ROLS requests have no effect on
the non-DL/I resources. Therefore, take steps to ensure the consistency of other
resources involved, if any. See “Summary of abends and return codes” on page 112
for explanations of relevant return codes.

SETS command and call: You can use a SETS request to define points in your
application at which to preserve the state of DL/I databases before initiating a set
of DL/I calls to perform a function. Your application can issue a ROLS request
later if it cannot complete that function.

The format of the SETS command is:

EXEC DLI SETS [TOKEN(mytoken) AREA(data-area)]

where mytoken is a 4-byte token associated with the current processing point.

data-area is an area to be restored to the program when a ROLS request is issued.
The first two bytes of the data-area field contain the length of the data-area,
including the length itself. The second two bytes must be set to X’0000’.

The format of the SETS call is:

CALL 'CBLTDLI' USING SETS,i/o_pcb[,i/o_area,token]

TOKEN(mytoken) AREA(data-area) in the command version and i/o_area,token in
the call version are optional, but if you do omit them, this cancels any intermediate
backout points set in previous SETS requests and ROLS backs out to the last
commit point.

ROLS command and call: You can use the ROLS request to backout to the state
all full function databases were in before: (a) a specific SETS request or (b) the
most recent commit point.

The format of the ROLS command is:

EXEC DLI ROLS [TOKEN(mytoken) AREA(data-area)]

Chapter 7. Application programming for DBCTL 107

The format of the ROLS call is:

CALL 'CBLTDLI' USING ROLS,pcb[,i/o_area,token]

i/o_area and token on the call, and TOKEN(mytoken) AREA(data-area) on the
command are optional. If you include them, ROLS backs out to the SETS you
specified. If you omit them, ROLS backs out to the most recent SETS.

The ROLS command has a second format, the purpose of which is to backout to
before an ACCEPT STATUSGROUPA request:

EXEC DLI ROLS [USING(PCB(n)]

where n is the name of a database PCB that has received a “data” unavailable
status code. This causes the same action to take place that would have occurred
had the program not issued an ACCEPT STATUSGROUPA request. (See
“Accepting database availability status codes” on page 101.)

Comparing EXEC DLI commands and DL/I calls
Table 7 lists corresponding EXEC DLI and CALL DL/I requests and their functions.

Table 7. EXEC commands and DL/I calls

EXEC DLI CALL DL/I Function

GU, GN, and GNP GU, GN, and GNP Retrieving segments from the database

GU, GN, and GNP GHU, GHN, and GHNP Retrieving segments from database for updating

DLET DLET Deleting segments from a database

REPL REPL Replacing segments in a database

ISRT ISRT Adding segments to a database

LOAD ISRT Initially loading a database

SCHD PCB Scheduling a PSB

TERM TERM Terminating a PSB

CHKP CHKP (basic) Issuing a basic checkpoint

SYMCHKP CHKP (extended) Issuing a symbolic checkpoint

XRST RETRIEVE XRST Issuing an extended restart

-----1 SYNC Requesting syncpoint processing

DEQ DEQ Releasing segments retrieved using Q command
code

-----1 GSCD Retrieving system addresses

LOG LOG Writing a message to the system log

ROLL or ROLB ROLL or ROLB Dynamically backing out changes

STAT STAT Obtaining system and buffer pool statistics (see
also Table 8 on page 109)

REFRESH ACCEPT QUERY2 INIT Refreshing, accepting and querying data
availability status codes

SETS SETS Setting a backout point

ROLS ROLS Backing out to a previously set backout point

-----1 GSAM Issuing requests to GSAM databases

108 CICS TS for OS/390: CICS IMS Database Control Guide

Table 7. EXEC commands and DL/I calls (continued)

EXEC DLI CALL DL/I Function

POS POS Retrieving positioning and/or space usage
information in a DEDB area

Notes:

1. No EXEC DLI equivalent. Use a DL/I CALL, but note that you cannot mix
EXEC and CALL in the same UOW.

2. Status codes are available directly to CALL DL/I applications. EXEC DLI
QUERY corresponds to code in the CALL DL/I program instructing it to
examine the PCB.

DL/I requests supported
Table 8 summarizes the DL/I requests you can use and the environments in which
they apply.

Table 8. DL/I requests supported

Request type CICS and DBCTL1 Batch BMP

Get commands and calls (GU, GHU, GN,
GHN, GNP, GHNP)

Yes Yes Yes

DLET command and call Yes Yes Yes

REPL command and call Yes Yes Yes

ISRT command and call Yes Yes Yes

ISRT call (initial load) No Yes No

LOAD command No Yes No

PCB call Yes No No

SCHD command Yes No No

TERM command and call Yes No No

CHKP command and call (basic) No Yes Yes

CHKP call (extended) No Yes Yes

SYMCHKP command No Yes Yes

XRST command and call No Yes Yes

RETRIEVE command No Yes Yes

SYNC call No No Yes

DEQ command and call Yes Yes Yes

GSCD call No Yes No

LOG call Yes Yes Yes

LOG command Yes Yes Yes

ROLL call No Yes Yes

ROLL command No Yes Yes

ROLB command and call No Yes Yes

STAT command and call Yes2 Yes2 Yes2

INIT call Yes Yes Yes

REFRESH command Yes Yes Yes

ACCEPT command Yes Yes Yes

Chapter 7. Application programming for DBCTL 109

Table 8. DL/I requests supported (continued)

Request type CICS and DBCTL1 Batch BMP

QUERY command Yes Yes Yes

SETS command and call Yes Yes Yes

ROLS command and call Yes Yes Yes

GSAM calls No Yes Yes

POS command and call Yes No Yes

Notes:

1. Requests are also supported with function shipping to a remote CICS that uses
DBCTL.

2. Enhancements to the STAT call are available in IMS/ESA 3.1, via an SPE, and
in IMS/ESA 4.1. For programming information on keywords used to request
the enhanced statistics, see the IMS Application Programming: DL/I Calls manual
manual. (If you do not have the correct level of IMS installed, and request the
enhanced statistics, the transaction will receive a PCB status code indicating an
invalid DL/I call, as shown in Table 9 on page 112.)

Migrating programs to DBCTL
Considerations for migrating programs to DBCTL include using your existing local
DL/I programs with DBCTL, and changing CICS shared data base programs and
“native” IMS batch jobs to run as BMPs.

Migrating a DL/I program to a DBCTL program
Your existing CICS application programs should not require any changes in order
to run in the DBCTL environment.

However, you must define the names of all DMBs to be owned by DBCTL to
DBCTL using system definition DATABASE statements. Make sure that you have
defined the names of all PSBs to be used by application programs when accessing
DBCTL databases using system definition APPLCTN statements (which are
equivalent to DFHDLPSB in local DL/I). All DMBs to be owned by a given PSB
must be owned by the same DBCTL. See the IMS Application Programming: Design
Guide for further guidance on defining PSBs.

Your applications may receive some different abend codes. You may also get a
message that DL/I is not available. This may occur because DBCTL can be
disconnected dynamically from CICS, using the CDBC transaction, and because,
unlike local DL/I, a failure in DBCTL should not cause CICS to fail, but merely
leaves it without DL/I services. New abend codes are summarized in “Summary
of abends and return codes” on page 112.

An application program that updates DL/I databases owned by DBCTL and has
activated an exit to use HANDLE ABENDs, should terminate the abend exit
routine with an ABEND request.

We recommend that programs that have read-only access to the database, and an
abend exit is active, should not attempt to reschedule a PSB as part of abend
processing. This is because if the high order bit of the DBCTL return code
(PAPLRETC) is set on, the DBCTL thread has been withdrawn from use by the
transaction and any further DBCTL request is abended with a code of AEY9. The

110 CICS TS for OS/390: CICS IMS Database Control Guide

only exception to this is if the abending request was a schedule, this is because the
thread is not obtained until the schedule completes successfully.

Migrating CICS shared database batch jobs to BMPs
With CICS Transaction Server for OS/390 Release 3, you must migrate any batch
jobs that currently use the CICS shared database facility to BMPs so that they
communicate directly with the DBCTL address space. BMPs perform batch
processing and are started with job control language (JCL) like programs in a batch
environment. The JCL for this is in the IMS procedure IMSBATCH. (For further
guidance on IMSBATCH, see the IMS System Definition Reference manual manual or
IMS/ESA Installation Volume 2: System Definition and Tailoring.) Migrating these
batch jobs gives you:
v A performance advantage, because BMPs communicate directly with DBCTL

instead of accessing databases through CICS. For more information on BMP
performance, see “Chapter 10. Statistics, monitoring, and performance for
DBCTL” on page 145.

v The ability to use system service requests, such as symbolic checkpoint (CHKP)
and extended restart (XRST).

v Access to DEDBs.
v Access to GSAM databases.
v Logging to the IMS log (so there is no need for multiple logs).
v Automatic restart from last checkpoint without requiring JCL changes.

Automatic backout, which you will already be using for your shared database
programs, also applies to BMPs.

With BMPs, the PCB always includes an I/O PCB. If you have specified CMPAT=Y
in the JCL to execute your CICS shared database job, need not change any source
code in your application. If you have specified CMPAT=N, change your code to
allow for the addition of an I/O PCB. For example, in COBOL, you do this by
changing the ENTRY statement in the PROCEDURE division to include the I/O
PCB. For guidance on doing this, in COBOL, PL/I and assembler language, see the
IMS Application Programming: EXEC DLI Commands manual or the IMS Application
Programming: DL/I Calls manual manuals.

Migrating native IMS batch jobs to BMPs
You are advised to migrate “native” IMS batch jobs to BMPs that use DBCTL. This
will give you:
v Logging to the IMS log (no need for multiple logs).
v Automatic restart from the last checkpoint (no JCL changes required).
v Concurrent access to databases.
v Automatic backout. (You may already have this for your batch programs if you

use disk logging.)

General design considerations for BMPs
Your applications must take checkpoints and must be restartable from the last
checkpoint (also known as checkpoint restart). This is particularly important for
batch programs migrated to BMPs. A disconnection request cannot complete until a
BMP checkpoint occurs if a CICS thread is waiting for a lock held by a BMP.

Design and code your batch programs to be restartable from checkpoints, even if
you have no immediate intention of running them as BMPs. This is because it is

Chapter 7. Application programming for DBCTL 111

simpler to design batch programs with checkpoint restart than to introduce it to
existing programs if you do decide to migrate them later.

The following is a summary of what to consider when designing BMPs and
applications to run in a DBCTL environment:
v All BMPs and applications should issue frequent checkpoints to avoid locking

out other resource users.
v All BMPs and applications must be restartable from last checkpoint. This is

because records in the same database may have since been updated, and these
updates would be lost if the database were restored from a previous backup.

v BMPs and applications should not hold on to locks for long periods without
issuing checkpoints or syncpoints (either explicitly or implicitly).

v Beware of long-running applications that do not issue syncpoints or that hold
data over terminal conversations.

v Be aware that small but very frequently updated databases may cause
contention for resources.

v Review the use of control records; that is, records that are accessed by most
applications. If they have to be updated, it is important to remember that the CI
or physical block is locked from other subsystems until the updates are
committed.

Summary of abends and return codes
With DBCTL, your PSB scheduling request might fail either because DBCTL is not
available, or because the PSB could not be found. However, after a successful PSB
schedule, CICS might be disconnected from DBCTL for some reason, and
subsequent DBCTL requests will fail. This situation, which is unique to a DBCTL
environment, causes an ADCJ abend to be issued. Table 9 summarizes the schedule
failure codes and abends in a DBCTL environment, and the conditions that can
arise on a PSB schedule request because DBCTL is not available or the PSB cannot
be found.

Table 9. Summary of abends and return codes

Request EXEC
abend

CALL UIBDLTR CALL UIBFCTR CALL
abend

Explanation

PSB schedule
request

DHTA X'01' (PSBNF) X'08' (INVREQ) ---- PSB not found1.

PSB schedule
request

DHTC X'03' (PSBSCH) X'08' (INVREQ) ---- PSB already scheduled
detected in CICS.

PSB schedule
request

DHTE X'05' (PSBFAIL) X'08' (INVREQ) ---- PSB initialization failed in
DBCTL only.

PSB schedule
request

DHTJ X'FF' (DLINA) X'08' (INVREQ) ---- DBCTL not available on PSB
scheduling2.

PSB schedule
request

ADCC ---- ---- ADCC PSB already scheduled
detected in DBCTL.

PSB schedule
request

ADCP ---- ---- ADCP The user is not authorized to
use the PSB.

PSB schedule
request

ADCQ ---- ---- ADCQ The SYSSERVE keyword or
the I/O PCB option was not
specified, and the PSB does
not contain any DB PCBs.

112 CICS TS for OS/390: CICS IMS Database Control Guide

Table 9. Summary of abends and return codes (continued)

Request EXEC
abend

CALL UIBDLTR CALL UIBFCTR CALL
abend

Explanation

PSB schedule
request

ADDA ---- ---- ADDA An error response from the
storage domain.

DL/I request DHTH X'08' (FUNCNS) X'08' (INVREQ) ---- PSB not scheduled, detected
by CICS.

DL/I request ADCB ---- ---- ADCB PSB not scheduled.

DL/I request ADCD ---- ---- ADCD Deadlock detected.

DL/I request ADCI ---- ---- ADCI Lock outstanding.

DL/I request ADCJ ---- ---- ADCJ DBCTL not available on
DL/I request3.

DL/I request ADCR ---- ---- ADCR DL/I request (other than PSB
schedule) issued when
DBCTL not connected.

Terminate request DHTG X'07' (TERMNS) X'08' (INVREQ) ---- PSB not scheduled.

PSB schedule,
DL/I, and
terminate requests

DHxx ---- ---- ---- Many reasons. xx is the PCB
status code. (See also
“Preventing DHxx abends
after EXEC DLI SCHD PSB
failure” on page 106.)

PSB schedule or
DL/I request

---- X'00' (INVARG) X'08' (INVREQ) ---- Invalid argument.

PSB schedule or
DL/I request

---- TR
status
code in
DIB-
STAT

X'04' (NOTDONE) X'08' (INVREQ) ---- Global user exit XDLIPRE
indicates that DL/I request
should not be executed.

PSB schedule or
DL/I request

ADCA ---- ---- ADCA Error, detected in DBCTL.

PSB schedule or
DL/I request

ADCE ---- ---- ADCE Bad response code has been
returned from DFHDBAT.

PSB schedule or
DL/I request

ADCN ---- ---- ADCN FORCEPURGE issued while
executing in DBCTL.

Notes:

1. The PSB was not found in PDIR and DBCTL was not ready. Alternatively, the
PSB was not found in PDIR and DBCTL was ready but the PSB was not found
in DBCTL APPLCTN.

2. DBCTL was not ready at the time of the DL/I request.
3. DBCTL is in use, and a PSB has been scheduled. However, the connection

between CICS and DBCTL has since been broken.

See the Messages and Codes manual for details of these abends, and see the
IMS/ESA Application Programming: EXEC DLI Commands manual for details of DL/I
status codes.

If you use remote DL/I with DBCTL, you may also receive Axxx and DHxx
abends not listed here. For information about DHxx abends (where ’xx’ indicates
the DL/I status code), see the IMS/ESA Application Programming: EXEC DLI
Commands manual.

Chapter 7. Application programming for DBCTL 113

114 CICS TS for OS/390: CICS IMS Database Control Guide

Chapter 8. Security checking with DBCTL

Considerations for using security checking with DBCTL are:
v The different types of security checking you may need
v Migration

When using CICS with DBCTL, you may want to use one or more of the following
optional security facilities:
v “PSB authorization checking by CICS”
v “Resource access security checking by DBCTL”. This comprises checks at:

– Connect time
– PSB scheduling time.

For more information, see also the information on defining resource security
checking for PSBs in the CICS RACF Security Guide.

v “DBCTL password security checking” on page 118, for /LOCK and /UNLOCK
commands.

v “Migration considerations for security with DBCTL” on page 118

Of the resources you can protect using IMS security, you need be concerned only
with PSBs, databases, and commands.

PSB authorization checking by CICS
At PSB scheduling time, CICS invokes security checking to find out whether the
terminal user is authorized to access the PSB. The actual check is carried out by an
external security manager, which can be RACF or your own security program.

Although PSB scheduling requests are sent to DBCTL for processing, CICS does
PSB authorization checking. See the CICS Customization Guide for programming
information on writing your own security program.

Resource access security checking by DBCTL
DBCTL views all the resources that can be accessed by one particular CICS system
or BMP as a single entity. Resources in this context means one or more PSBs. The
set of PSBs that one CICS or BMP can access are grouped together in an entity
called an application group. Each application group has a name—its AGN, and the
AGNs are defined in matrix data sets.

Application groups, and the names of the resources within those groups, are
placed in tables in DBCTL’s security matrix data set(s) using the IMS security
maintenance utility. You can use the IMS online change facility to bring new
security tables online.

The AGN that CICS intends to use is specified in the DRA startup table referenced
by CICS when it attempts to connect to DBCTL. You can assign the same AGN to
different CICS systems, if you need to.

© Copyright IBM Corp. 1989, 1999 115

DBCTL resource access security checking provides the following:
v Checking at connect time

When CICS or a BMP connects to DBCTL, DBCTL initiates a check to find out if
CICS or the BMP is authorized. The check is carried out either by RACF in
conjunction with DBCTL or by a user exit routine (DFSISIS0):
1. RACF and DBCTL

This check has two parts:
– RACF checks whether the userid supplied in the JOB statement of the

CICS startup job (or in the started procedure table), or BMP JCL, is
authorized to access the AGN supplied by CICS or the BMP during the
connect request.

– If the above check is successful, DBCTL carries out the second part of the
check. This involves verifying that the supplied AGN is in the matrix data
sets used for this DBCTL startup.

2. User exit routine (DFSISIS0), which gives or refuses authorization by setting
the appropriate return code.
If you use DBCTL connect-time checking, you must also use DBCTL PSB
schedule-time checking. That is, you can use both of these checks, or neither,
but you cannot use only one of them.
See the IMS System Administration Guide or the IMS/ESA Administration Guide:
System for guidance on specifying security, and the IMS Utilities Reference:
Database manual manual for guidance on the security maintenance utility.

v Checking at PSB scheduling time
This is completely unrelated to and independent of the PSB authorization
checking by CICS, which is described in “PSB authorization checking by CICS”
on page 115.

This check is carried out by DBCTL and involves verifying that the PSB belongs
to the AGN specified during the connection process.

116 CICS TS for OS/390: CICS IMS Database Control Guide

Relationships between AGNs, PSBs, and DBCTL ID in security
checking

Figure 34 summarizes the relationships between AGNs, PSBs, and the DBCTL ID in
security checking.

The two levels of security mean that if a new PSB is introduced, there are two
kinds of table that you must update:
v The RACF table that defines the CICS PSB resource class
v The security management utility AGN definition.

If the AGN is changed in the DRA startup parameter table, update the following
tables:
v The RACF table that defines the AGN resource class
v The security management utility AGN definition

Parameters for DBCTL resource access security
You specify the kind of security checking you want by using either the DBCTL
system generation macro SECURITY or the DBCTL startup parameter ISIS. See the
IMS System Definition Reference manual manual or IMS/ESA Installation Volume 2:
System Definition and Tailoring for further guidance on this parameter.

For guidance on the RACF aspects of implementing DBCTL security, see the
Resource Access Control Facility (RACF) Security Administrator’s Guide.

DRA AGN= parameter
CICS BMP JOB EXEC parameters DBCTL

Connection of
interface

CICS A AGN=01 (DFSISIS or RACF)

PSB1 CICSA AGN01
PSB2 CICSB AGN02
. BMP AGN03
. . .

. .

CICS B AGN=02
PSB schedule

PSB2 time
PSB3
. PSB 1 AGN01
. PSB 2 AGN01
. PSB 2 AGN02

PSB 3 AGN02
PSB 4 AGN03
. .

BMP AGN=03 . .

PSB4

Figure 34. Relationships between AGNs, PSBs and DBCTL ID in security checking

Chapter 8. Security checking with DBCTL 117

DBCTL password security checking
You can protect DBCTL against unauthorized /LOCK and /UNLOCK commands
for certain PSBs (referred to as “programs” in the IMS publications) and databases
by establishing passwords for these PSBs and databases. The IMS security
maintenance utility is used to place the definitions needed into DBCTL’s matrix
data sets:
)(PROGRAM PSB11

PASSWORD PWP11
)(PROGRAM PSB12

PASSWORD PWP12
)(DATABASE DB21

PASSWORD PWD21
)(DATABASE DB22

PASSWORD PWD22

Note: The parentheses shown in the above example are used by the security
maintenance utility to recognize input commands.

Security considerations for using BMPs with DBCTL
In most cases, PSB authorization checking by CICS provides sufficient security. The
fact that CICS and DBCTL run in the same MVS image, and that the connection
parameters (in the DRA startup table) have to be in an authorized library should
usually allow you enough control over the connection process, and you will not
need to implement the DBCTL security checking described in “Resource access
security checking by DBCTL” on page 115. However, these considerations do not
apply if you are using BMPs with DBCTL. To provide security control for BMPs,
use DBCTL resource access security checking. This is because DBCTL resources,
such as PSBs, can be accessed by programs that operate in dependent regions. To
MVS, these dependent regions are normal MVS jobs that anyone can initiate using
the MVS job entry subsystem. This means that a user who is not authorized to
access a database using a RACF-protected CICS transaction could access that
database by submitting a BMP region with the correct parameters in the EXECUTE
statement. (See “Making DBCTL resources available” on page 67 for information on
starting BMP JCL using a DBCTL operator command.)

Migration considerations for security with DBCTL
Before migrating, review the security facilities available and decide which ones you
want to use in a CICS-DBCTL environment—in particular, whether you need to
use the additional DBCTL checks.

Security migration scenarios
Figure 35 and Figure 36 on page 119 show considerations for migrating installations
that already use PSB security checking.

CICS PSB authorization checking
Figure 35 on page 119 shows migration from a CICS system with local DL/I to a
CICS system with DBCTL. In this situation, you can retain all existing
security-related definitions.

118 CICS TS for OS/390: CICS IMS Database Control Guide

Figure 36 shows migration from a multiregion operation (MRO) installation with a
CICS database-owning region (DOR) and local DL/I to DBCTL, which replaces
local DL/I and the DOR. If you already use PSB security checking in the CICS
application-owning regions (AORs), you do not need any security-related changes.

CICS

Local DL/I
DBCTL

Databases Databases

CICS

Figure 35. CICS with local DL/I to CICS with DBCTL

CICS AOR CICS AOR CICS AOR CICS AOR

CICS DOR

Local DL/I

DBCTL

Databases Databases

Figure 36. MRO installation with CICS DOR with DBCTL replacing local DL/I

Chapter 8. Security checking with DBCTL 119

Figure 37 shows PSB RACF checking being done in the CICS DOR.

If you want this kind of checking after replacing the DOR with DBCTL, it must be
done in the CICS AORs that use DBCTL, as shown in Figure 38.

Decide whether you want to keep your previous setup with respect to grouping
PSBs, and using or not using prefixes.

Review the CICS system initialization parameters SEC, XPSB, and PSBCHK for
each CICS AOR. Depending on any changes you make to these parameters, you
may also need to change the corresponding RACF definitions (CDT class names,
RDEFINE, and PERMIT).

DBCTL resource access security checking
Follow the steps below only if you have decided to use the additional DBCTL
checks.
1. DBCTL system generation

Select the appropriate macros and parameters:
v IMSGEN PSWDSEC=...
v SECURITY TYPE=...,PASSWD=...,RCLASS=...

2. Application group name (AGN)
For multiple CICS systems connected to DBCTL, first decide whether you want
to use the same, or different, AGNs.
Specify the appropriate AGN in the DRA startup parameter table for each
CICS, or by a BMP JCL parameter (AGN=).

3. Allocate MATRIX data set, and
If you want to use online change, you must also define MATRIXA and
MATRIXB.

CICS AOR 1
no PSB RACF checking

CICS AOR 2
no PSB RACF checking

CICS DOR
with PSB RACF checking

Local
DL/I

Database

Figure 37. Local DL/I environment—PSB RACF checking in CICS DOR

CICS AOR 1
with PSB RACF checking

CICS AOR 2
with PSB RACF checking

DBCTL Database

Figure 38. DBCTL environment—PSB RACF checking in CICS AOR

120 CICS TS for OS/390: CICS IMS Database Control Guide

For further guidance on space calculations, see the section on establishing IMS
security in the IMS System Administration Guide or the IMS/ESA Administration
Guide: System.

4. Define AGNs and their PSBs using the IMS security maintenance utility,
DFSISMP0.
Note that you can run DFSISMP0 only after DBCTL system generation has
completed.

5. For password security checking, define the PSBs (or programs) and/or
databases and the passwords to be used with /LOCK and /UNLOCK in the
MATRIX data set.

6. Specify the value of the DBCTL startup parameter ISIS. Values are as follows:
ISIS=0 - no checks
ISIS=1 - checks using RACF
ISIS=2 - checks using an installation exit (DFSISIS0)

RACF preparations
1. CICS P/QCICSPSB definitions.

v CICS with local DL/I to CICS with DBCTL (Figure 35 on page 119)—no
modifications required.

v MRO installation with CICS DOR with DBCTL replacing local DL/I
(Figure 36 on page 119)—depending on whether you decided to differentiate
or not, you may have to adjust the RDEFINEs and PERMITs accordingly.

2. Specify RDEFINE for AGNs in RACF CLASS AIMS.
3. Specify PERMIT for CICS USERIDs.

Before CICS or a BMP can connect to DBCTL, the USERID from the JOB
statement of the CICS startup job or the BMP JCL must be authorized to access
its AGN.

4. You may want to write a simple program to list existing RACF profiles for
PCICSPSB and QCICSPSB and construct the control statements needed for the
IMS security maintenance utility. The group structure for PSBs within RACF
(QCICSPSB) will probably be the same as that required within DBCTL AGN
groups, plus the additional groups needed for BMPs.

Chapter 8. Security checking with DBCTL 121

122 CICS TS for OS/390: CICS IMS Database Control Guide

Chapter 9. Problem determination for DBCTL

This chapter contains Diagnosis, Modification, or Tuning information.

This discussion of problem determination with DBCTL is placed under these
headings:
v “Interactions between CICS and DBCTL”
v “DBCTL error scenarios” on page 124
v “Trace” on page 127
v “Dumps” on page 138
v “Messages” on page 141
v “Using CICS EDF to debug application programs in DBCTL” on page 143

In a CICS-DBCTL environment, you need to correlate information produced by the
CICS system with information produced by the DBCTL system. This information
includes:
v Trace entries produced by CICS and DBCTL
v Dumps produced by CICS, the DRA, and DBCTL
v Messages produced by CICS, the DRA, and DBCTL

The link between CICS and DBCTL in all the above cases is the recovery token. It
appears in trace entries, in dumps (including the dump header), and in messages
issued by CICS and DBCTL.

See the CICS Problem Determination Guide for more detailed help on dealing with
problems, beginning from symptoms through to identification and solution. For
detailed component descriptions of DBCTL, which you may find useful in
debugging, see the CICS Diagnosis Reference. See the CICS Messages and Codes
manual for help on interpreting, and suggested responses to, messages and abend
codes that are issued by the CICS system. See the IMS Messages and Codes manual
manual for similar guidance on messages and abend codes issued by the DRA and
by DBCTL.

Interactions between CICS and DBCTL
Errors can occur at any of the following stages in a CICS-DBCTL environment.

Interactions between CICS and DBCTL at the interface level
v Connection to DBCTL.

See “Connection to DBCTL has failed to complete” on page 124.
v Disconnection from DBCTL. (This includes intentional operator-requested

disconnection, and unintentional disconnections caused by failures of the system,
or parts of the CICS-DBCTL interface.)
See “Disconnection from DBCTL has failed to complete” on page 125.

Interactions between CICS and DBCTL caused by requests
v Requests that are issued by applications:

– Waits or failures during PSB scheduling.
See “Failures during PSB scheduling” on page 126.

© Copyright IBM Corp. 1989, 1999 123

– Waits or failures during the processing of a DL/I request.
See “Failures during DL/I request processing” on page 126.

v Requests that are issued as a result of task termination, including syncpoint
processing:
– Failures during PREPARE processing
– Failures during COMMIT processing (TERM call or task termination)
– Failures during resynchronization of UOWs

In all these cases, see “Thread termination” on page 136.

DBCTL error scenarios
The headings that follow describe a number of DBCTL error situations and tell you
how to go about solving them.

Connection to DBCTL has failed to complete
In this situation, the DRA may be in a “wait” state because you attempted to
connect CICS to DBCTL using the CDBC transaction, but the connection process
failed to complete.

Connection to DBCTL using the CICS-supplied transaction CDBC takes place in
two phases. In phase 1, CDBC passes the request for connection to IMS and
returns. In phase 2, IMS processes the request asynchronously and returns to CICS
when connection is complete. To discover where the problem occurred, try to find
out how far the connection attempt has progressed by:
v Pressing PF2 on the CDBC menu panel to refresh this display, as described in

“CDBC transaction for connect and disconnect” on page 47; or
v Using the CDBI inquiry panel, as described in “CDBI transaction for inquiry” on

page 52.

If connection is in phase 1, the following message is issued:
DFHDB8291 I DBCTL CONNECT PHASE 1 IN PROGRESS

It is very unlikely that a wait will occur during this phase, unless there is a
problem with the CICS transaction.

If connection is in phase 2, the following message is issued:
DFHDB8292 I DBCTL CONNECT PHASE 2 IN PROGRESS

124 CICS TS for OS/390: CICS IMS Database Control Guide

If phase 2 fails to complete, the failure is associated with IMS. This may be
because:
v The DRA startup table is pointing to the wrong system because the DBCTL

subsystem ID is incorrect. If this is so, CICS issues a WTO message saying:
SUBSYSTEM xxxx NOT ACTIVE. REPLY WAIT OR CANCEL

where xxxx is the subsystem ID indicated on the CDBC panel.

See “Defining the IMS DRA startup parameter table” on page 38 for information
on specifying the DBCTL subsystem ID.

v DBCTL has been initialized, but no restart command has been issued. Remember
that DBCTL needs a restart command unless you are using AUTO start. See
“Connection to DBCTL” on page 45 and “Restarting DBCTL” on page 74 for
information on restarting DBCTL and on the implications of different restart
options.

If neither of the above situations applies, the problem is in IMS; see the IMS
Diagnosis Guide and Reference manual manual for further guidance.

For an example of the trace entries produced by CICS for a successful connection
to DBCTL, see “Connection to DBCTL” on page 128.

Disconnection from DBCTL has failed to complete
In this case, the DRA may be in a wait state because you attempted to disconnect
CICS from DBCTL using the CDBC transaction, but the disconnection process
failed to complete.

For an example of the trace entries produced by CICS for a successful
disconnection from DBCTL, see “Disconnection from DBCTL” on page 131.

When you use CDBC to disconnect from DBCTL, it invokes another CICS
transaction, CDBT. CDBT makes the disconnection request to DBCTL, and is
suspended by CICS while DBCTL services the request asynchronously.

If disconnection fails to complete, you can inquire on CDBT using CEMT INQ
TASK to see how far disconnection has progressed. You will probably find CDBT is
waiting on resource name DLSUSPND and resource type DBCTL, which means the
request is being processed by DBCTL. For an illustrated example, see the
description of CEMT INQ TASK in “Purging a transaction that is using DBCTL” on
page 68.
v If CDBT is waiting on DLSUSPND, what you do next depends on whether the

disconnection requested was orderly or immediate. (Use the CDBI inquiry panel,
as described in “CDBI transaction for inquiry” on page 52, if you need to find
out.)
– If you have requested orderly disconnection, it is likely that DBCTL is waiting

for a task issuing many DL/I requests, or for a conversational task, perhaps
one that is waiting for input from an unattended terminal.
You can, if necessary, override an orderly disconnection by requesting
immediate disconnection, in which case the process should conclude at once.
However, be aware that immediate disconnection can cause in-doubt UOWs,
and leave database records unavailable to other CICS systems using that
DBCTL until it is reconnected, as described in “Deciding whether to use
orderly or immediate disconnection” on page 51.

Chapter 9. Problem determination for DBCTL 125

– If you have requested immediate disconnection, and it has not taken place, it
is likely that an unexpected wait within IMS has occurred. See the IMS
Diagnosis Guide and Reference manual manual for further guidance.

v If CDBT is not waiting on DLSUSPND, this indicates a problem in CICS. See the
CICS Problem Determination Guide for information on dealing with it.

Failures during PSB scheduling
For examples of trace entries produced by CICS during PSB scheduling (both
successful and failed), see “PSB schedule” on page 133 and “PSB scheduling
failure” on page 134.

Use the DBCTL operator command /DISPLAY as follows:
v /DISPLAY PROGRAM psbname to check that the ACB is valid. A status of

“invalid” means that the PSB was not defined during IMS system generation. A
status of “notinit” means that the ACB is not in the ACBLIB. A status of
“stopped” means an error has caused DBCTL to stop the PSB, or that a /STOP
command has been issued for the PSB. Investigate the cause of this error. When
resolved, use /START PROGRAM psbname to start the PSB again.

v /DISPLAY DATABASE dbname to check that the databases are valid.

Failures during DL/I request processing
The DRA may have entered a “wait” state because you have a CICS task in a wait
state.

For an example of the trace entries produced by CICS during DL/I request
processing, see “CICS task issuing DL/I requests to be processed by DBCTL” on
page 135 . For an example of the trace entries produced by DBCTL during DL/I
request processing, see “Trace entries produced by DBCTL” on page 136.

If a task appears to have “hung”, query it using CEMT INQ TASK, as for any CICS
task. If you have a task waiting on a resource name of DLSUSPND and resource
type DBCTL, the task has made a DL/I request and has been suspended in CICS
while DBCTL services that request. If repeated use of CEMT INQ TASK shows the
task still waiting on DLSUSPND, it has “hung” in DBCTL. If you want to purge
the task, you must use DBCTL operator commands to do so. See “Purging a
transaction that is using DBCTL” on page 68 for an illustrated example of using
CEMT INQ TASK and the relevant DBCTL operator commands in this way.

If the task is not waiting on DLSUSPND, this may indicate a problem in CICS. See
the CICS Problem Determination Guide for information about dealing with it.

Correlating activity in DBCTL and CICS
Using the /DISPLAY command to display DBCTL activity and the CEMT INQ
TASK to display CICS activity are useful means of correlating what is happening
on each side of the interface. Check to see that the recovery token matches in CICS
and DBCTL. If it does not, this may indicate a thread hanging. /DISPLAY CCTL
ALL displays all the threads associated with CICS tasks in DBCTL. If you enter
/DISPLAY ACTIVE ALL, region and DC activity is also displayed, enabling you to
find out if a BMP is waiting in DBCTL.

126 CICS TS for OS/390: CICS IMS Database Control Guide

Trace
When examining traces entries produced by CICS and DBCTL, you need to relate
them according to whether they are produced at the same time in CICS and in
DBCTL, or at different times. You also need to know how to find the relevant parts
of each trace and use them to correlate what is happening in CICS and in DBCTL.

Trace entries produced by CICS
Use the CICS-supplied transaction CETR to trace DBCTL activity. CETR traces
DL/I requests until they leave DFHDBAT. See the CICS Supplied Transactions
manual for information on using CETR.

The sections that follow give examples of CICS trace entries produced at the
following points:
v “Connection to DBCTL” on page 128
v “Disconnection from DBCTL” on page 131
v “PSB schedule” on page 133
v “PSB scheduling failure” on page 134
v “CICS task issuing DL/I requests to be processed by DBCTL” on page 135
v “Thread termination” on page 136

These trace examples were produced using abbreviated auxiliary trace with file
control level 1 trace points selected. You will probably find this amount of
information sufficient. If it is not, selecting file control level 2 will give you more
details on, for example, entry to and exit from DFHDBAT and DFHERM.

See the CICS Problem Determination Guide for details of the general format of CICS
trace entries, how to select trace options for component and task tracing, whether
to use “standard” or “special” tracing, and how to start and stop tracing
selectively. Trace point IDs are listed in the CICS Diagnosis Reference. See the CICS
Operations and Utilities Guide for help on formatting and printing trace entries,
including a sample job you can use to do so.

The numbers in the margin to the left of the example traces point to things that
you may find useful in correlating CICS and DBCTL activity, but please note that
these additional numbers are not part of the trace output. Also note that we have
omitted some trace entries for brevity. This is indicated by the following symbol:
.
.

Chapter 9. Problem determination for DBCTL 127

Connection to DBCTL

Figure 39 shows an example of the CICS trace entries produced when CICS
connects to DBCTL.

1 .
.

2 00028 1 AP 00E1 EIP ENTRY LINK 0004,07301464,08000E02
00028 1 PG 1101 PGLE ENTRY LINK_EXEC DFHDBCON,07301088 , 00000014
00028 1 DD 0301 DDLO ENTRY LOCATE 06D08F80,07301698,PPT,DFHDBCON
00028 1 DD 0302 DDLO EXIT LOCATE/OK D7D7E3C5 , 06D89858
00028 1 LD 0001 LDLD ENTRY ACQUIRE_PROGRAM 06D8BF50

.

.
3 00028 1 XM 1101 XMAT ENTRY ATTACH CDBO,07302E38 , 00000004,0,NONE,C,NO,YES,NO,0

00028 1 XM 0401 XMLD ENTRY LOCATE_AND_LOCK_TRANDEF CDBO
00028 1 DD 0301 DDLO ENTRY LOCATE 06D00040,07303314,TXD,CDBO
00028 1 DD 0302 DDLO EXIT LOCATE/OK 06D86B78 , D7000000

.

.
4 00028 1 LD 0001 LDLD ENTRY ACQUIRE_PROGRAM DFHDBSPX,YES

00028 1 LD 0002 LDLD EXIT ACQUIRE_PROGRAM/OK 870A0020,070A0000
.
.

5 00028 1 AP 00E1 EIP ENTRY ENABLE 0004,07302AD4 ...M,08002202
.

6 1CICS/ESA - AUXILIARY TRACE FROM 07/20/95 - APPLID CICSKPG1 - TIME OF FIRST ENTRY ON THIS PAGE 11:26:58.7144860002
.

7 00028 1 AP 2522 ERM EVENT PASSING-CONTROL-TO-TRUE(DBCTL)
00028 1 AP 0310 DBAT ENTRY APPLICATION REQUEST

8 00028 1 AP 0314 DBAT EVENT DRA-ROUTER-LOAD , LOAD-RESPONSE-CODE (00000000)
9 00028 1 AP 0315 DBAT EVENT ABOUT-TO-INVOKE-DRA FOR INTERFACE REQUEST , 0100
10 00028 1 AP 0316 DBAT EVENT RECEIVES-CONTROL-FROM-DRA FOR INTERFACE REQUEST , 00000000

00028 1 AP 0313 DBAT EXIT DBAT-RESPONSE-CODE (00000000)
11 00028 1 AP 2523 ERM EVENT REGAINING-CONTROL-FROM-TRUE(DBCTL)

00028 1 AP 2521 ERM EXIT APPLICATION-CALL-TO-TRUE(DBCTL)
12 00028 1 ME 0301 MEME ENTRY SEND_MESSAGE 1FB4,073D642C , 00000004,073D5060 , 00000002,DB

00028 1 ME 0501 MEIN ENTRY INQUIRE_MESSAGE_DATA 86BB5AE0,DFHMET1E,1FB4,073039CD , 00000000 , 0000001C,07303967 , 00000000
00028 1 KE 0101 KETI ENTRY INQ_LOCAL_DATETIME_DECIMAL
00028 1 KE 0102 KETI EXIT INQ_LOCAL_DATETIME_DECIMAL/OK 07201995,095757,097993,MMDDYYYY
00028 1 KE 0401 KEGD ENTRY INQUIRE_KERNEL
00028 1 KE 0402 KEGD EXIT INQUIRE_KERNEL/OK CICSKPG1,CIA1
00028 1 ME 0502 MEIN EXIT INQUIRE_MESSAGE_DATA/OK 06BB5D7C,06BC5E07,06BC5E1D,06BC5E7C,,I,095757,20071995,M,CIA1,CICSKPG1
00028 1 ME 0312 MEME EVENT ISSUE-MVS-GETMAIN
00028 1 ME 0313 MEME EVENT MVS-GETMAIN-COMPLETE

13 00028 1 DU 0500 DUDT ENTRY INQUIRE_SYSTEM_DUMPCODE DB8116
00028 1 DU 0600 DUTM ENTRY INQUIRE_SYSTEM_DUMPCODE DB8116
00028 1 DU 0601 DUTM EXIT INQUIRE_SYSTEM_DUMPCODE/EXCEPTION DUMPCODE_NOT_FOUND,0,0,,,,
00028 1 DU 0501 DUDT EXIT INQUIRE_SYSTEM_DUMPCODE/EXCEPTION DUMPCODE_NOT_FOUND,0,0,,,,
00028 1 ME 0401 MEBU ENTRY BUILD_MESSAGE 06BC5E07,06BB5D7C,20071995,M,095757,CIA1,CICSKPG1,0730369D , 00000009,073
00028 1 ME 0402 MEBU EXIT BUILD_MESSAGE/OK 0
00028 1 ME FF35 MEFO ENTRY -FUNCTION(FORMAT_MESSAGE) 0698B390 , 0000006F,1,78,073039EB , 00000001,YES
00028 1 ME FF36 MEFO EXIT -FUNCTION(FORMAT_MESSAGE) OK

14 00028 1 AP F600 TDA ENTRY WRITE_TRANSIENT_DATA CDBC,073039FB , 00000001,NO
.
.

15 00028 1 DU 0500 DUDT ENTRY INQUIRE_SYSTEM_DUMPCODE DB8210
.
.

16 00028 1 DU 0500 DUDT ENTRY INQUIRE_SYSTEM_DUMPCODE DB8292
.

17 .
00038 1 DS 0005 DSSR EXIT WAIT_MVS/OK

18 00038 1 AP 0306 DBCT EVENT POSTED FOR CONNECTION COMPLETE
19 00038 1 ME 0301 MEME ENTRY SEND_MESSAGE 1FA5,0698B240 , 00000004,073D5060 , 00000002,DB

.

.
00038 1 DU 0500 DUDT ENTRY INQUIRE_SYSTEM_DUMPCODE DB8101

.

.
20 00038 1 GC 2010 CCCC ENTRY WRITE 00108194 , 00000008,DBCTL,STATUS

.

.
00038 1 GC 2050 CCCC EXIT WRITE/OK

21 00038 1 PG 0A01 PGLU ENTRY LINK_URM DFHDBUEX,001081F0 , 0000000B,NO
00038 1 DD 0301 DDLO ENTRY LOCATE 06D08F80,00108220,PPT,DFHDBUEX
00038 1 DD 0302 DDLO EXIT LOCATE/OK D7D7E3C5 , 06D89A50

.

.
22 00038 1 AP 0064 USER EVENT APPLICATION-PROGRAM-ENTRY CONNECT DBCTL HAS JUST BEEN CONNECTED

.

.
00038 1 AP 1941 APLI EXIT START_PROGRAM/OK,DFHDBUEX
00038 1 LD 0001 LDLD ENTRY RELEASE_PROGRAM 0732B450,86D5B028
00038 1 LD 0002 LDLD EXIT RELEASE_PROGRAM/OK 06D5B000,3A8,ECDSA
00038 1 PG 0A02 PGLU EXIT LINK_URM/OK
00038 1 AP 00E1 EIP ENTRY RESYNC 0004,001087C4 ..gD,08001604

Figure 39. CICS trace entries produced during connection to DBCTL 1 of 2

128 CICS TS for OS/390: CICS IMS Database Control Guide

Notes:

1. Phase 1 of connection begins.
2. Locating DFHDBCON and loading if not already loaded. (In this example,

CICS and DBCTL have already been connected during this CICS session, so
DFHDBCON has already been loaded.)

3. The control transaction, CDBO, is attached. CDBO enables the DRA to pass
information from itself and DBCTL independently of CICS. It is invoked
whenever the DRA needs to determine whether to continue processing, which
is when:
v The DRA has successfully connected to DBCTL
v DBCTL has been terminated normally using /CHECKPOINT FREEZE or

/CHECKPOINT PURGE
v Connection to DBCTL has failed
v A CICS request to connect to DBCTL has been canceled
v The DRA fails
v DBCTL fails

4. Loading programs needed: DFHDBSPX (shown in example), plus DFHDBCX,
DFHDBMOX, DFHDBREX, DFHDBSTX, DFHDBSSX, DFHDBTOX, and
DFHDBAT.

5. DFHDBCON enables DFHDBAT.
6. A timestamp is included in the header line of every page of CICS abbreviated

auxiliary trace output to help you match trace entries with external events.
7. DFHERM invokes DFHDBAT for connection request.
8. DRA router module DFSPRRC0 loaded.
9. DRA is invoked for interface request. The type of interface request is indicated

by request type from the PAPL—0100 is a CONNECT request. (See “PAPL
request and return codes” on page 142.)

10. DBCTL return code (00000000). See “Return codes in DBCTL” on page 141.
11. Control is passed back to DFHERM.
12. Phase 1 of connection has ended at this point. Message DFHDB8116 is issued

confirming that connection is proceeding. The message includes the DBCTL
identifier and the DRA suffix used.

13. When a message has been issued, the CICS dump domain checks to see if the
user has requested any action for that message (using the CEMT SET
SYDUMPCODE, as described in the CICS Supplied Transactions manual or the
EXEC CICS SET SYSDUMPCODE commands, as described for programming
purposes in the CICS System Programming Reference manual). (In this case, no

22 00038 1 AP 0064 USER EVENT APPLICATION-PROGRAM-ENTRY CONNECT DBCTL HAS JUST BEEN CONNECTED
.
.

00038 1 AP 1941 APLI EXIT START_PROGRAM/OK,DFHDBUEX
00038 1 LD 0001 LDLD ENTRY RELEASE_PROGRAM 0732B450,86D5B028
00038 1 LD 0002 LDLD EXIT RELEASE_PROGRAM/OK 06D5B000,3A8,ECDSA
00038 1 PG 0A02 PGLU EXIT LINK_URM/OK
00038 1 AP 00E1 EIP ENTRY RESYNC 0004,001087C4 ..gD,08001604

.

.
23 00038 1 AP E161 EXEC EXIT RESYNC 'DBCTL ' AT X'0713F062','JB1A ' AT X'8698B270',AT X'00000000',0 AT X

00038 1 AP E111 EISR EXIT TRACE_EXIT/OK
00038 1 AP 00E1 EIP EXIT RESYNC OK 00F4,00000000,00001604
00038 1 AP 00E1 EIP ENTRY SYNCPOINT 0004,001087C4 ..gD,08001602

.

.
00038 1 AP E161 EXEC EXIT SYNCPOINT 0,0,ASM,09490000

.

.
24 00028 1 ME 0301 MEME ENTRY RETRIEVE_MESSAGE 2065,000550A7 , 00000000 , 00000033,E,DB

00028 1 ME 0501 MEIN ENTRY INQUIRE_MESSAGE_DATA 86BB5AE0,DFHMET1E,2065,07301F95 , 00000000 , 0000001C,07301F2F , 00000000
.
.

00028 1 ME 0502 MEIN EXIT INQUIRE_MESSAGE_DATA/OK 06BB5D7C,06BC7416,06BC742C,06BC744D,I,,095759,20071995,M,CIA1,CICSKPG1
00028 1 DU 0500 DUDT ENTRY INQUIRE_SYSTEM_DUMPCODE DB8293

Figure 40. CICS trace entries produced during connection to DBCTL 2 of 2

Chapter 9. Problem determination for DBCTL 129

dump has been requested, as indicated by DUMPCODE_NOT_FOUND.)
However, when you are using abbreviated trace, entries such as
INQUIRE_SYSTEM_DUMPCODE DB8116 (in which the system dump code is
the message number without the characters “DFH”) are useful in indicating
which messages have been issued. (Complete message numbers are included
in full trace.)

14. Message DFHDB8116 is sent to transient data destination CDBC.
15. Message DFHDB8210 is issued confirming that connection to DBCTL is

proceeding.
16. Message DFHDB8292 is issued indicating that CICS is in phase 2 of

connecting to DBCTL.
17. At this point, DBCTL exits are loaded, which causes I/O activity. The task is

suspended, and the control transaction, CDBO, starts. This is indicated by the
task number changing (from 00031 to 00032). Control transaction enters a
series of waits. CDBO invokes the CICS-DBCTL interface control program
(DFHDBCT).

18. DBCTL notifies CICS that CICS-DBCTL connection is complete.
19. Message DFHDB8101 is issued.
20. A record is written to the global catalog, indicating which DBCTL should be

reconnected to if there is a CICS failure. (See “Program list table (PLT)” on
page 27 and “Connecting DBCTL to CICS automatically” on page 46.)

21. DFHDBUEX, the CICS-supplied user replaceable program for use with
DBCTL, is linked. Trace entries following invocation of DFHDBUEX depend
on what you have coded in your own version. (See “DFHDBUEX” on
page 42.)

22. In this example, the user has coded DFHDBUEX to issue a trace entry stating
that DBCTL has just been connected.

23. CICS issues an EXEC CICS RESYNC command to resynchronize any
outstanding DBCTL in-doubt UOWs. (See “Chapter 6. Recovery and restart
operations for DBCTL” on page 73.)

24. Control transaction waits have ended—task number changes back again (from
00032 to 00031). Message DFHDB8293 is issued confirming that DBCTL is
connected and ready.

130 CICS TS for OS/390: CICS IMS Database Control Guide

Disconnection from DBCTL
Figure 41 shows some examples of CICS trace entries produced at disconnection
from DBCTL.

Notes:

1. Timestamp, as mentioned in “Connection to DBCTL” on page 128.
2. Phase 1 of disconnection begins at this stage.
3. The CICS-DBCTL interface disconnection transaction, CDBT, is attached.
4. Message DFHDB8211 is issued to confirm that orderly disconnection is

proceeding. This message is issued in response to the user pressing PF5 on the
CDBC screen. (For an immediate disconnection, message DFHDB8212 is
issued.)

1 1CICS/ESA - AUXILIARY TRACE FROM 07/20/95 - APPLID CICSKPG1 - TIME OF FIRST ENTRY ON THIS PAGE 11:26:58.7144860002
.

2 .
00047 1 AP 00E1 EIP ENTRY START 0004,07301464,08001008

3 00047 1 XM 0401 XMLD ENTRY LOCATE_AND_LOCK_TRANDEF CDBT
00047 1 DD 0301 DDLO ENTRY LOCATE 06D00040,07301820,TXD,CDBT
00047 1 DD 0302 DDLO EXIT LOCATE/OK 06D86C10 , D7000000

.

.
4 00047 1 DU 0500 DUDT ENTRY INQUIRE_SYSTEM_DUMPCODE DB8211

.

.
5 00047 1 DU 0500 DUDT ENTRY INQUIRE_SYSTEM_DUMPCODE DB8294

.

.
6 00048 1 PG 0901 PGPG ENTRY INITIAL_LINK DFHDBDSC

.

.
7 00048 1 AP 00E1 EIP ENTRY ADDRESS 0004,0005B010,08000202

.

.
8 00048 1 PG 0A01 PGLU ENTRY LINK_URM DFHDBUEX,0005B0C4 , 0000000B,NO

00048 1 DD 0301 DDLO ENTRY LOCATE 06D08F80,0005B3A4,PPT,DFHDBUEX
00048 1 DD 0302 DDLO EXIT LOCATE/OK D7D7E3C5 , 06D89A50
00048 1 LD 0001 LDLD ENTRY ACQUIRE_PROGRAM 0732B450
00048 1 LD 0002 LDLD EXIT ACQUIRE_PROGRAM/OK 86D5B028,06D5B000,3A8,0,REUSABLE,ECDSA,OLD_COPY

9 00048 1 AP 1940 APLI ENTRY START_PROGRAM DFHDBUEX,NOCEDF,FULLAPI,URM,NO,07309828,0005B0C4 , 0000000B,2
.
.

00048 1 AP 0065 USER EVENT APPLICATION-PROGRAM-ENTRY DISCONN DBCTL HAS JUST BEEN DISCONNECTED
.
.

10 00048 1 LD 0001 LDLD ENTRY RELEASE_PROGRAM 0732B450,86D5B028
00048 1 LD 0002 LDLD EXIT RELEASE_PROGRAM/OK 06D5B000,3A8,ECDSA
00048 1 PG 0A02 PGLU EXIT LINK_URM/OK
00048 1 AP 2520 ERM ENTRY APPLICATION-CALL-TO-TRUE(DBCTL)

.

.
00048 1 AP 2522 ERM EVENT PASSING-CONTROL-TO-TRUE(DBCTL)
00048 1 AP 0310 DBAT ENTRY APPLICATION REQUEST

11 00048 1 AP 0315 DBAT EVENT ABOUT-TO-INVOKE-DRA FOR INTERFACE REQUEST , 0400
12 00048 1 AP 0304 DBSPX EVENT ABOUT-TO-ISSUE-WAIT FOR DISCONNECTION REQUEST

00048 1 DS 0004 DSSR ENTRY WAIT_MVS DLSUSPND,DBCTL,0005B444,NO,OTHER_PRODUCT
00048 1 DS 0005 DSSR EXIT WAIT_MVS/OK
00048 1 AP 0305 DBSPX EVENT POSTED FOR DISCONNECTION REQUEST

13 00048 1 AP 0316 DBAT EVENT RECEIVES-CONTROL-FROM-DRA FOR INTERFACE REQUEST , 00000000
.
.

14 00048 1 ST 0003 STST ENTRY RECORD_STATISTICS 072F7618 , 00000054,USS
.
.

00048 1 ST 0004 STST EXIT RECORD_STATISTICS/OK
00048 1 AP 0313 DBAT EXIT DBAT-RESPONSE-CODE (00000000)
00048 1 AP 2523 ERM EVENT REGAINING-CONTROL-FROM-TRUE(DBCTL)
00048 1 AP 2521 ERM EXIT APPLICATION-CALL-TO-TRUE(DBCTL)

15 00048 1 GC 2010 CCCC ENTRY WRITE 0005B0BC , 00000008,DBCTL,STATUS
16 .

.
00048 1 DS 0004 DSSR ENTRY WAIT_MVS ASYNRESP,CCVSAMWT,06C8D5C0,NO,IO
00038 1 DS 0005 DSSR EXIT WAIT_MVS/OK

17 00038 1 AP 0306 DBCT *EXC* EVENT POSTED FOR DFHDBCT SHOULD TERMINATE
00038 1 AP 00E1 EIP ENTRY START 0004,001087C4 ..gD,08001008

.

.
00038 1 XM 0401 XMLD ENTRY LOCATE_AND_LOCK_TRANDEF CDBD
00038 1 DD 0301 DDLO ENTRY LOCATE 06D00040,0730C078,TXD,CDBD
00038 1 DD 0302 DDLO EXIT LOCATE/OK 06D86918 , D7000000

.

.
00038 1 AP 00F3 ICP ENTRY INITIATE CDBD 4003,0000000C,00000000,CDBD

.

.
18 00049 1 LD 0001 LDLD ENTRY RELEASE_PROGRAM DFHDBSSX,8711A910

00049 1 LD 0002 LDLD EXIT RELEASE_PROGRAM/OK
.
.

00049 1 ME 0502 MEIN EXIT INQUIRE_MESSAGE_DATA/OK 06BB5D7C,06BC56B8,06BC56CE,06BC5710,,I,100011,20071995,M,CIA1,CICSKPG1
19 00049 1 DU 0500 DUDT ENTRY INQUIRE_SYSTEM_DUMPCODE DB8102

Figure 41. CICS trace entries produced during disconnection from DBCTL

Chapter 9. Problem determination for DBCTL 131

5. Message DFHDB8294 is issued confirming that orderly disconnection is in
progress. (If immediate disconnection had been requested, message
DFHDB8295 would have been issued.)

6. CDBT invokes CICS-DBCTL interface disconnection program, DFHDBDSC. A
wait is entered (task number changes, from 00034 to 00035).

7. The EXEC interface program, DFHEIP, links to the CICS-DBCTL
user-replaceable program, DFHDBUEX.

8. DFHDBUEX is loaded.
9. Trace entries at this point depend on what, if anything, you have coded in

your own version of DFHDBUEX. (See “DFHDBUEX” on page 42.) In this
example, DFHDBUEX has been coded to issue a trace entry stating that
DBCTL has just been disconnected.

10. DFHDBUEX is released and control is passed back to DFHDBDSC.
11. The DRA is invoked for an interface request. (PAPL request type 0400

indicates the request is a DISCONNECT. See “PAPL request and return codes”
on page 142.)

If there is DL/I activity at the time of the disconnect, and the disconnect is
orderly (not immediate) DFHDBAT links to DFHDBSPX (the CICS-DBCTL
suspend exit) to wait for all DL/I activity to complete. In this example, there
was no DL/I activity at the time the disconnect was issued.

12. The DRA links to DFHDBSPX to cause the CICS task to wait while the DRA
processes the disconnect request.

13. DBCTL return code (00000000). (See “Return codes in DBCTL” on page 141.)
14. Statistics for this session are recorded. (See “DBCTL statistics” on page 146.)
15. DFHDBDSC writes a record to the CICS global catalog, to indicate that CICS

is no longer connected to DBCTL.
16. Phase 2 of disconnection begins.
17. DFHDBDI’s associated transaction, CDBD, runs and disables DFHDBAT to

make it unavailable. (The transaction number changes from 00035 to 00032.)
18. Programs loaded at startup are disabled. This example shows DFHDBSPX. A

complete trace should also include similar entries for other programs loaded
at startup, as listed in “Connection to DBCTL” on page 128.

19. Message DFHDB8102 is issued confirming that disconnection from DBCTL is
complete.

132 CICS TS for OS/390: CICS IMS Database Control Guide

PSB schedule
Figure 42 shows an example of some CICS trace entries produced at PSB schedule
time.

Notes:

1. Timestamp, as mentioned in “Connection to DBCTL” on page 128.
2. DL/I command or call type—PCB indicates a schedule request using the DL/I

call interface.
3. PSB name (TDLRA1).
4. Recovery token (C3C9C3E2D2D7C7F1AB6538123994CA01).
5. The DRA is invoked for a thread request—0301 is a PSB schedule request. (See

“PAPL request and return codes” on page 142.)
6. DFHDBAT must wait, because the request has entered IMS code.
7. The DFHDBAT wait ends and DBCTL return code (00000000) is issued. The

DBCTL return code is 00000000 because the PSB was successfully scheduled.
See Figure 43 on page 134 for an example of the DBCTL return code in the case
of a PSB scheduling failure. See “Return codes in DBCTL” on page 141 for an
explanation of DBCTL return codes.

8. 00 in the UIBFCTR, and 00 in the UIBDLTR (underscored in this example)
indicate that the PSB was scheduled successfully. See “PSB scheduling failure”
on page 134 for an example of the contents of these fields, PSB scheduling fails.

See “Summary of abends and return codes” on page 112 for information on the
UIBFCTR and UIBDLTR.

.

.
1 1CICS/ESA - AUXILIARY TRACE FROM 07/20/95 - APPLID CICSKPG1 - TIME OF FIRST ENTRY ON THIS PAGE 11:26:58.7144860002

.

.
00039 1 AP 00E1 EIP ENTRY CALLDLI 0004,00182718,00004000 .. .

2,3 00039 1 AP 0328 DLI ENTRY FUNCTION_CODE(PCB) 000C7526,TDLRA1
.
.

00039 1 AP 0330 DLIDP ENTRY DBCTL
.
.

00039 1 AP 2520 ERM ENTRY APPLICATION-CALL-TO-TRUE(DBCTL)
.
.

00039 1 AP 2522 ERM EVENT PASSING-CONTROL-TO-TRUE(DBCTL)
00039 1 AP 0310 DBAT ENTRY APPLICATION REQUEST

4,5 00039 1 AP 0311 DBAT EVENT ABOUT-TO-INVOKE-DRA FOR THREAD REQUEST , C3C9C3E2D2D7C7F1AB6538123994CA01,0301
6 00039 1 AP 0304 DBSPX EVENT ABOUT-TO-ISSUE-WAIT FOR THREAD REQUEST

00039 1 DS 0004 DSSR ENTRY WAIT_MVS DLSUSPND,DBCTL,0732001C,NO,OTHER_PRODUCT
00039 1 DS 0005 DSSR EXIT WAIT_MVS/OK
00039 1 AP 0305 DBSPX EVENT POSTED FOR THREAD REQUEST

4,7 00039 1 AP 0312 DBAT EVENT RECEIVES-CONTROL-FROM-DRA FOR THREAD REQUEST , C3C9C3E2D2D7C7F1AB6538123994CA01,00000000
00039 1 AP 0313 DBAT EXIT DBAT-RESPONSE-CODE (00000000)
00039 1 AP 2523 ERM EVENT REGAINING-CONTROL-FROM-TRUE(DBCTL)

.

.
00039 1 AP 2521 ERM EXIT APPLICATION-CALL-TO-TRUE(DBCTL)
00039 1 AP 0331 DLIDP EXIT DBCTL
00039 1 AP 0329 DLI EXIT IMS_PCB_FORMAT 0000,0000,PCB

8 00039 1 AP 00E1 EIP EXIT CALLDLI OK 00F4,00000000,00004000 .. .

Figure 42. CICS trace entries produced for successful PSB schedule

Chapter 9. Problem determination for DBCTL 133

PSB scheduling failure
Figure 43 shows an example of the trace entries produced if PSB scheduling fails.

Notes:

1. Timestamp, as explained in “Connection to DBCTL” on page 128.
2. DL/I command or call—PCB indicates a schedule request using the DL/I call

interface.
3. PSB name (TXLRA1).
4. Recovery token (C3C9C3E2D2D7C7F1AB654BD5E4F07E04).
5. The DRA is invoked for a thread request—0301 is a PSB schedule request. (See

“PAPL request and return codes” on page 142.)
6. The reason for the PSB scheduling failure is in the DBCTL return code

(880001AC). In this case, it is X'1AC', indicating an IMS user abend U0428
(decimal), which was issued because the PSB was not defined to DBCTL.

7. Message DFHDB8109 is issued. It contains the IMS user abend, the recovery
token, and the DBCTL ID. (For an example and explanation of how messages
are displayed in abbreviated trace, see “Connection to DBCTL” on page 128.)

8. 0805 (underscored in this example) indicates that a PSB scheduling failure has
occurred. 08 is in the UIBFCTR, and 05 in the UIBDLTR. (See “Summary of
abends and return codes” on page 112 for information on the UIBFCTR and
UIBDLTR.)

1 1CICS/ESA - AUXILIARY TRACE FROM 07/20/95 - APPLID CICSKPG1 - TIME OF FIRST ENTRY ON THIS PAGE 11:26:58.7144860002
.
.

00064 1 AP 00E1 EIP ENTRY CALLDLI 0004,00182718,00004000 .. .
2,3 00064 1 AP 0328 DLI ENTRY FUNCTION_CODE(PCB) 000C8946,TXLRA1

.

.
00064 1 AP 0330 DLIDP ENTRY DBCTL

.

.
00064 1 AP 2520 ERM ENTRY APPLICATION-CALL-TO-TRUE(DBCTL)

.

.
00064 1 AP 2522 ERM EVENT PASSING-CONTROL-TO-TRUE(DBCTL)
00064 1 AP 0310 DBAT ENTRY APPLICATION REQUEST

4,5 00064 1 AP 0311 DBAT EVENT ABOUT-TO-INVOKE-DRA FOR THREAD REQUEST , C3C9C3E2D2D7C7F1AB654BD5E4F07E04,0301
6 00064 1 AP 0304 DBSPX EVENT ABOUT-TO-ISSUE-WAIT FOR THREAD REQUEST

00064 1 DS 0004 DSSR ENTRY WAIT_MVS DLSUSPND,DBCTL,0732001C,NO,OTHER_PRODUCT
00064 1 DS 0005 DSSR EXIT WAIT_MVS/OK
00064 1 AP 0305 DBSPX EVENT POSTED FOR THREAD REQUEST
00064 1 AP 0312 DBAT EVENT RECEIVES-CONTROL-FROM-DRA FOR THREAD REQUEST , C3C9C3E2D2D7C7F1AB654BD5E4F07E04,880001AC
00064 1 AP 0313 DBAT EXIT DBAT-RESPONSE-CODE (00000000)
00064 1 AP 2523 ERM EVENT REGAINING-CONTROL-FROM-TRUE(DBCTL)
00064 1 AP 2521 ERM EXIT APPLICATION-CALL-TO-TRUE(DBCTL)
00064 1 ME 0301 MEME ENTRY SEND_MESSAGE 1FAD,00051230 , 00000004,0011F5D0 , 00000005,0011F5D5 , 00000008,0011F3CC
00064 1 ME 0501 MEIN ENTRY INQUIRE_MESSAGE_DATA 86BB5AE0,DFHMET1E,1FAD,073017ED , 00000000 , 0000001C,07301787 , 00000000

.

.
7 00064 1 DU 0500 DUDT ENTRY INQUIRE_SYSTEM_DUMPCODE DB8109

.

.
00064 1 AP 0331 DLIDP EXIT DBCTL

8 00064 1 AP 0329 DLI EXIT IMS_PCB_FORMAT 0805,0000,PCB
00064 1 AP 00E1 EIP EXIT CALLDLI OK 00F4,00000000,00004000 .. .

Figure 43. CICS trace entries produced for failed PSB schedule

134 CICS TS for OS/390: CICS IMS Database Control Guide

CICS task issuing DL/I requests to be processed by DBCTL
Figure 44 shows an example of CICS trace entries produced when a DL/I request
is issued. For an example of trace entries produced by DBCTL for processing of a
DL/I request, see “Trace entries produced by DBCTL” on page 136.

Notes:

1. Timestamp, as mentioned in “Connection to DBCTL” on page 128.
2. DL/I command or call—GU indicates a GET UNIQUE request. (See

“Comparing EXEC DLI commands and DL/I calls” on page 108 and “DL/I
requests supported” on page 109.)

3. DBD name (DLIDBDR).
4. Recovery token (C3C9C3E2D2D7C7F1AB653817A31F9000). 3
5. The DRA is invoked for a thread request—0303 is a DL/I request. (See “PAPL

request and return codes” on page 142.)
6. DBCTL return code (00000000). (See “Return codes in DBCTL” on page 141.)
7. Status code in the DIBSTAT (underscored in this example) is 0000, indicating

that the request was successful. See “Summary of abends and return codes” on
page 112 for the contents of DIBSTAT in the case of an unsuccessful request.

1 1CICS/ESA - AUXILIARY TRACE FROM 07/20/95 - APPLID CICSKPG1 - TIME OF FIRST ENTRY ON THIS PAGE 11:26:58.7144860002
00040 1 AP 00E1 EIP ENTRY CALLDLI 0004,00183718,00004000 .. .

2,3 00040 1 AP 0328 DLI ENTRY FUNCTION_CODE(GU) 0001A8AC,DLIDBDR
00040 1 AP 0330 DLIDP ENTRY DBCTL
00040 1 AP 2520 ERM ENTRY APPLICATION-CALL-TO-TRUE(DBCTL)
00040 1 AP 2522 ERM EVENT PASSING-CONTROL-TO-TRUE(DBCTL)
00040 1 AP 0310 DBAT ENTRY APPLICATION REQUEST

4,5 00040 1 AP 0311 DBAT EVENT ABOUT-TO-INVOKE-DRA FOR THREAD REQUEST , C3C9C3E2D2D7C7F1AB653817A31F9000,0303
00040 1 AP 0304 DBSPX EVENT ABOUT-TO-ISSUE-WAIT FOR THREAD REQUEST
00040 1 DS 0004 DSSR ENTRY WAIT_MVS DLSUSPND,DBCTL,0739501C,NO,OTHER_PRODUCT
00041 1 DS 0005 DSSR EXIT WAIT_MVS/OK
00041 1 AP 0305 DBSPX EVENT POSTED FOR THREAD REQUEST

4,6 00041 1 AP 0312 DBAT EVENT RECEIVES-CONTROL-FROM-DRA FOR THREAD REQUEST , C3C9C3E2D2D7C7F1AB653817A6C96600,00000000
00041 1 AP 0313 DBAT EXIT DBAT-RESPONSE-CODE (00000000)
00041 1 AP 2523 ERM EVENT REGAINING-CONTROL-FROM-TRUE(DBCTL)
00041 1 RM 0301 RMLN ENTRY SET_LINK 01050000,073D69D4 , 00000000 , 00000008,NECESSARY,
00041 1 RM 0302 RMLN EXIT SET_LINK/OK
00041 1 AP 2521 ERM EXIT APPLICATION-CALL-TO-TRUE(DBCTL)
00041 1 AP 0331 DLIDP EXIT DBCTL

7 00041 1 AP 0329 DLI EXIT IMS_PCB_FORMAT 0000,0000,PCB
00041 1 AP 00E1 EIP EXIT CALLDLI OK 00F4,00000000,0 0004000 .. .

Figure 44. CICS trace entries produced for a DL/I request

Chapter 9. Problem determination for DBCTL 135

Thread termination
Figure 45 shows example trace entries produced during PREPARE, COMMIT, and
TERMINATE request processing. See “Two-phase commit” on page 78 for a
description of PREPARE and COMMIT request processing.

Notes:

1. Timestamp, as mentioned in “Connection to DBCTL” on page 128.
2. Enters syncpoint manager.
3. Recovery token (C3C9C3E2D2D7C7F1AB6538123994CA01).
4. The DRA is invoked for a thread request—0304 is a PREPARE request. See

“PAPL request and return codes” on page 142.
5. DBCTL return code (00000000), one for each of the requests PREPARE,

COMMIT, and TERMINATE THREAD.
6. The DRA is invoked for a thread request—0307 is a COMMIT request. See

“PAPL request and return codes” on page 142.
7. The DRA is invoked for a thread request—030F is a TERMINATE THREAD

request. See “PAPL request and return codes” on page 142.
8. Leaves syncpoint manager. (See “Return codes in DBCTL” on page 141.)

Trace entries produced by DBCTL
In DBCTL, tracing is started by specifying an option in member DFSVSMxx in the
IMS.PROCLIB (where xx is the suffix specified by VSPEC= in the DBCTL startup
JCL). See the IMS System Definition Reference manual manual or IMS/ESA Installation
Volume 2: System Definition and Tailoring for guidance on the DFSVSMxx member.
Alternatively, you can start tracing dynamically with the /TRACE command. (See
the IMS Operator’s Reference manual for guidance on the /TRACE command and its
keywords.)

.

.
1 1CICS/ESA - AUXILIARY TRACE FROM 07/20/95 - APPLID CICSKPG1 - TIME OF FIRST ENTRY ON THIS PAGE 09:59:09.1299476250
2 00039 1 AP 2520 ERM ENTRY SYNCPOINT-MANAGER-CALL-TO-TRUE(DBCTL)

00039 1 AP 2522 ERM EVENT PASSING-CONTROL-TO-TRUE(DBCTL)
00039 1 AP 0310 DBAT ENTRY SYNCPOINT-MANAGER REQUEST

3,4 00039 1 AP 0311 DBAT EVENT ABOUT-TO-INVOKE-DRA FOR THREAD REQUEST , C3C9C3E2D2D7C7F1AB6538123994CA01,0304
00039 1 AP 0304 DBSPX EVENT ABOUT-TO-ISSUE-WAIT FOR THREAD REQUEST
00039 1 DS 0004 DSSR ENTRY WAIT_MVS DLSUSPND,DBCTL,0732001C,NO,OTHER_PRODUCT
00039 1 DS 0005 DSSR EXIT WAIT_MVS/OK
00039 1 AP 0305 DBSPX EVENT POSTED FOR THREAD REQUEST

3,5 00039 1 AP 0312 DBAT EVENT RECEIVES-CONTROL-FROM-DRA FOR THREAD REQUEST , C3C9C3E2D2D7C7F1AB6538123994CA01,00000000
00039 1 AP 0313 DBAT EXIT DBAT-RESPONSE-CODE (00000004)
00039 1 AP 2523 ERM EVENT REGAINING-CONTROL-FROM-TRUE(DBCTL)
00039 1 AP 2521 ERM EXIT SYNCPOINT-MANAGER-CALL-TO-TRUE(DBCTL)

.

.
00039 1 AP 2520 ERM ENTRY SYNCPOINT-MANAGER-CALL-TO-TRUE(DBCTL)
00039 1 AP 2522 ERM EVENT PASSING-CONTROL-TO-TRUE(DBCTL)
00039 1 AP 0310 DBAT ENTRY SYNCPOINT-MANAGER REQUEST

3,6 00039 1 AP 0311 DBAT EVENT ABOUT-TO-INVOKE-DRA FOR THREAD REQUEST , C3C9C3E2D2D7C7F1AB6538123994CA01,0307
00039 1 AP 0304 DBSPX EVENT ABOUT-TO-ISSUE-WAIT FOR THREAD REQUEST
00039 1 DS 0004 DSSR ENTRY WAIT_MVS DLSUSPND,DBCTL,0732001C,NO,OTHER_PRODUCT

.

.
00039 1 DS 0005 DSSR EXIT WAIT_MVS/OK
00039 1 AP 0305 DBSPX EVENT POSTED FOR THREAD REQUEST

3,5 00039 1 AP 0312 DBAT EVENT RECEIVES-CONTROL-FROM-DRA FOR THREAD REQUEST , C3C9C3E2D2D7C7F1AB6538123994CA01,00000000
00039 1 MN 0201 MNMN ENTRY MONITOR 1,DBCTL,7320090,100
00039 1 MN 0202 MNMN EXIT MONITOR/OK

3,7 00039 1 AP 0311 DBAT EVENT ABOUT-TO-INVOKE-DRA FOR THREAD REQUEST , C3C9C3E2D2D7C7F1AB6538123994CA01,030F
00039 1 AP 0304 DBSPX EVENT ABOUT-TO-ISSUE-WAIT FOR THREAD REQUEST
00039 1 DS 0004 DSSR ENTRY WAIT_MVS DLSUSPND,DBCTL,0732001C,NO,OTHER_PRODUCT

.

.
00039 1 DS 0005 DSSR EXIT WAIT_MVS/OK
00039 1 AP 0305 DBSPX EVENT POSTED FOR THREAD REQUEST

3,5 00039 1 AP 0312 DBAT EVENT RECEIVES-CONTROL-FROM-DRA FOR THREAD REQUEST , C3C9C3E2D2D7C7F1AB6538123994CA01,00000000
00039 1 AP 2523 ERM EVENT REGAINING-CONTROL-FROM-TRUE(DBCTL)

8 00039 1 AP 2521 ERM EXIT SYNCPOINT-MANAGER-CALL-TO-TRUE(DBCTL)

Figure 45. CICS trace entries produced during thread termination after DL/I request

136 CICS TS for OS/390: CICS IMS Database Control Guide

In DBCTL, you can start PI tracing in the DFSVSMxx member of the
IMS.PROCLIB, as explained above. Alternatively, you can start PI tracing in
DBCTL by issuing the command:
/TRACE SET ON PI

DBCTL produces an external trace when DL/I requests are issued to be processed
by DBCTL. This trace corresponds to the CICS trace for a DL/I request being
processed by DBCTL, as shown in Figure 44 on page 135. (DBCTL does not
produce any external traces that correspond with the other CICS trace examples
given.)

Figure 46 shows an example of the trace records produced when you use the DL/I
trace table. To start the DL/I trace table, DLI=ON must have been specified in the
DFSVSMxx member of IMS.PROCLIB. Specifying DLI=ON also enables program
isolation and lock trace. For guidance on specifying DLI=ON, see the IMS System
Definition Reference manual manual or IMS/ESA Installation Volume 2: System
Definition and Tailoring. Alternatively, you can start DL/I tracing dynamically using
the /TRACE command, as follows:
/TRACE SET ON TABLE DL/I

For a more detailed example, see the IMS Operator’s Reference manual, example 8.

The DBCTL trace entry shown in Figure 46 includes:
v X'AC'—the database call analyzer entry, which is only present for DBCTL.
v The partition specification table (PST) number. The PST number is equivalent to

a particular DL/I thread number, as displayed using the /DISPLAY command,
and can be used to find all DBCTL trace records for a particular thread. (For an
example of a thread number being displayed, see “Purging a transaction that is
using DBCTL” on page 68.)

v The trace sequence number.
v An “eyecatcher” recovery token. This is the actual characters “RTKN”, used to

draw attention to the recovery token in the same line, and is the same in every
X'AC' entry.

v The recovery token that is passed from CICS via DFHDBAT.

You can print and format the above data using the IMS/ESA file select and
formatting print utility, DFSERA10. You would typically print and format several
log types, plus the X'AC' records to enable you to correlate the DBCTL activity
with your CICS trace for a DL/I request.

AC070E87 D9E3D2D5 00000000 00000000 C3C9C3E2 E6D2D8F1 A031BB3E D5863000

Recovery token
Not used

Eyecatcher RTKN

Trace sequence number

PST number

x'AC' database call analyzer entry

Figure 46. X’AC’ trace entry

Chapter 9. Problem determination for DBCTL 137

Printing and formatting IMS X’67FA’ log records
Figure 47 shows an example of JCL and DD statements that you can use to print
and format IMS X'67FA' log records. For further examples, see the IMS Utilities
Reference: Database manual manual.

The output should contain the following:
v The request type.
v The recovery token, plus an eyecatcher (GRTKN) to indicate presence of the

recovery token, which includes the CICS APPLID.
v The database name.

See the IMS Utilities Reference: Database manual manual for examples of formatted
DL/I trace tables.

Dumps
The headings that follow describe dumps produced by CICS, the DRA, and
DBCTL.

CICS transaction dump
This dump is produced whenever a CICS task terminates abnormally. For a
CICS-DBCTL task, that is, a task which has issued a DFHRMCAL request to
DFHDBAT, this dump includes:
v The CICS-DBCTL global and task local areas
v DFHDBAT’s global and task local areas
v PCBs

The recovery token for the task at the point of abnormal termination appears in the
TCA (TCARTKN).

The EXEC CICS SET TRANDUMPCODE command and the CEMT SET
TRANDUMPCODE transaction enable you to change some of the values recorded
in entries in the transaction dump code table, to add new entries to the table, and
to remove existing entries from the table. For example, you can specify an action
for a particular CICS message, as mentioned in Figure 39 on page 128.

For information about transaction dump codes, and interpreting CICS dumps, see
the CICS Problem Determination Guide.

//LOGPRINT JOB 1,PGMERID,MSGCLASS=A,MSGLEVEL=(1,1),
// CLASS=A
//ERA10 EXEC PGM=DFSERA10,REGION=4096K
//STEPLIB DD DISP=SHR,DSN=IMS.RESLIB
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=1330)
//LOGIN DD DISP=SHR,DSN=IMS.SLDS.OLDS00
//SYSIN DD *
CONTROL CNTL DDNAME=LOGIN
OPTION PRINT OFFSET=5,FLDLEN=2,VALUE=67FA,COND=E,EXITR=DFSERA60
END
/*
//

Figure 47. Example JCL to print and format IMS ’67FA’ log records

138 CICS TS for OS/390: CICS IMS Database Control Guide

CICS system dump
This dump is produced when a CEMT PERFORM DUMP|SNAP or an EXEC CICS
DUMP SYSTEM command is issued, or when CICS abends. CICS specifies all
options when issuing this type of dump, for example, CSA and NUC. All MVS
control blocks appear in this type of dump, including those corresponding to any
subordinate TCBs. You can format and analyze this type of dump using the
interactive problem control system (IPCS). For guidance on using IPCS, see the
OS/390 MVS IPCS User’s Guide.

The EXEC CICS SET SYSDUMPCODE command and the CEMT SET
SYSDUMPCODE transaction enable you to change some of the values recorded in
entries in the transaction dump code table, to add new entries to the table, and to
remove existing entries from the table. For example, you can specify an action for a
particular CICS message, as mentioned in Figure 39 on page 128.

For information about system dump codes, and interpreting CICS dumps, see the
CICS Problem Determination Guide.

Determining whether a problem is occurring in CICS or
DBCTL

To help you determine whether a problem is occurring in DBCTL or CICS,
examine the CICS transaction or system dump. These dumps include indications of
the point at which DFHDBAT passes control to DBCTL and the point at which
DBCTL returns control to DFHDBAT. Correlating this with the time at which the
problem occurred should tell you whether it was in CICS or DBCTL.

Each page of auxiliary trace output also includes a timestamp, as mentioned in
“Connection to DBCTL” on page 128. These timestamps should also help you
correlate events in CICS with events in DBCTL.

DRA snap data set
The DRA’s snap data set is dynamically allocated to the CICS address space when
DBCTL is connected. The SYSOUT class used is determined by a parameter in the
DRA startup table. The DRA dumps its control blocks (those associated with its
own work unit and that of DBCTL) to this data set whenever a high order bit is set
in PAPLRETC. (The participant adapter parameter list (PAPL) is a part of the DRA.
For guidance on the PAPL and its contents, see the appropriate IMS/ESA
Customization Guide.) The high order bit is set on if a thread is terminating. It then
closes the snap file. The recovery token appears in the dump produced.

What is provided in a CICS dump
When a transaction abends or requests a dump, the following areas are written to
the CICS dump data set(s):
v The TCA representing the task.
v The CSA and CSA optional feature list (CSAOPFL) table. The CSAOPFL points

to DFHDLPDS, the CICS-DL/I interface parameter block.
v The internal trace table, if CICS trace was active.
v Any areas acquired.

Dumps produced by the DRA
DBCTL creates an SDUMP containing diagnostic information for a DL/I request
failure from CICS using the system dump data sets from the CICS job.

Chapter 9. Problem determination for DBCTL 139

The DRA produces an SDUMP in the following situations:
v If the DRA fails
v If a thread fails
v If DL/I set a high order bit in PAPLRETC for a thread request

However, the DRA does not always take a dump if DL/I sets the high order bit
in PAPLRETC. If it does not, it sets the second high order bit on to indicate this.
For example:
– If PAPLRETC is 1000 0000 3 2 4 0 0 0, a dump was taken
– If PAPLRETC is 1000 1000 3 2 4 0 0 0, a dump was not taken

(See “Return codes in DBCTL” on page 141, “Using return codes to find out
what kind of dump has been produced” on page 142 and “PAPL request and
return codes” on page 142 for information on interpreting these return codes.)

An SDUMP is created in a terminate address space request or a terminate thread
request while running in DBCTL and under the DRA TCB.

An SDUMP contains:
v DBCTL address space
v DLISAS address space
v A storage list for the DRA area on the request
v Key 0 and key 7 CSA storage for the request processing
v MVS storage blocks—address space control block (ASCB), TCB, and RBS for the

failing DRA TCB
v The local system queue area (LSQA)

If the SDUMP request fails, a SNAP dump (which contains a subset of the
information in an SDUMP) is produced instead. (See “Return codes in DBCTL” on
page 141.) The SNAP contains the following subset of the information produced in
an SDUMP:
v MVS storage blocks—address space control block (ASCB), TCB, and RBS for the

failing DRA TCB
v A storage list for the DRA area on the request

Because the DRA runs in problem state, it cannot access other storage areas, such
as CSA or DBCTL storage. This may mean that the SNAP does not contain enough
information, and you may have to recreate the failure and use the DBCTL address
space dump.

See the IMS Diagnosis Guide and Reference manual manual for a further comparison
of the information produced in SDUMPs and SNAP dumps, which you may find
useful in diagnosis. The IMS Diagnosis Guide and Reference manual manual also
contains information on the IMS offline dump formatter (ODF) which you can use
to show the layout of IMS blocks referred to in these dumps.

Dumps produced by DBCTL
The formatted dump feature of IMS is available with DBCTL. This feature formats
the system, database, and data communication areas of IMS. It formats the control
blocks and data areas in an IMS region.

See the IMS Diagnosis Guide and Reference manual manual for guidance information
on the areas that are dumped.

140 CICS TS for OS/390: CICS IMS Database Control Guide

Control blocks generated by DBCTL have an “eyecatcher” for visual identification.
For example:
v **SCD — system contents directory area
v **SSA — SAP and save area
v **DSP — dispatcher area.

The recovery token is included in dumps produced by DBCTL. Output is to the
IMS log.

Messages
DBCTL-related messages fall into the following categories:
v Messages issued by the CDBC transaction and displayed on your screen. These

messages relate to the end user’s interaction with the transaction and they do
not appear on CSMT. Any CDBC type messages issued from the initialization
transaction, when it is running from the PLT during CICS startup, are issued as
writes-to-operator (WTOs).

v Messages that appear on the status line of the CDBC and CDBI transaction
screens.

CICS and IMS messages relating to CICS tasks that issue DL/I requests include the
recovery token. See also “Dealing with messages from DBCTL and CICS” on
page 70.

CICS messages relating to DBCTL begin with DFHDB81 or DFHDB82. CICS
messages relating to DBCTL with XRF begin with DFHDX83. See the CICS
Messages and Codes manual for help on interpreting, and responding to,
DFHDBnnnn and DFHDXnnnn messages.

All DBCTL-related messages are routed to a separate destination called CDBC. If
you prefer, you can direct them elsewhere (for example to CSMT).

You can suppress or reroute messages sent to transient data queues such as CDBC.
You can reroute from CDBC to a list of consoles, from CDBC to a different
transient data queue, or reroute console messages to CDBC. For programming
information on coding the CICS-supplied user exit used to re-route messages and
on the sample user exit provided to help you do so, see the CICS Customization
Guide.

Messages produced with DBCTL dumps and traces are sent to the DBCTL master
terminal operator. IMS messages begin with “DFS”. See the IMS Messages and Codes
manual manual for guidance on interpreting, and responding to, IMS messages.

Return codes in DBCTL
When DBCTL responds to CICS with a return code, this can be an MVS system
abend code, an IMS user abend code, or a DBCTL return code. The return code
includes an indicator to help you determine what kind of abend it is. The DBCTL
return code (also known as the PAPLRETC) displayed in the CICS trace can
contain:
v An MVS system abend code
v A user abend code (also known as a pseudo abend code)
v A DBCTL return code (also known as a DBCTL DRA return code)

Chapter 9. Problem determination for DBCTL 141

The return code is 4 bytes long and is in the following form:

H H S S S U U U

If the top bit (bit 0 of the HH byte) is set:
v SSS is a nonzero hexadecimal return code, for example:

1000 0000 3 2 4 0 0 0 324 (hex) system abend code = 804 (decimal)
MVS system abend

which indicates an MVS system abend code (as explained in the OS/390 MVS
System Codes), or
v UUU is a nonzero hexadecimal, for example:

1000 0000 0 0 0 3 4 D 34D (hex) IMS user abend code = 845 (decimal)
IMS user abend

which indicates a user abend code (as explained, for guidance, in the section on
user abend codes in the IMS Messages and Codes manual manual).

If the top bit (bit 0 of the HH byte) is not set, and the DBCTL return code in the
CICS trace is nonzero, then UUU is a DBCTL nonzero return code, for example:

0000 0000 0 0 0 0 3 0 30 (hex) DBCTL return code = 48 (decimal) DBCTL
return code

as explained, for guidance, in the DBCTL return codes section of the IMS Messages
and Codes manual manual.

Using return codes to find out what kind of dump has been
produced
The top byte of the return codes indicates whether a dump has been produced
and, if so, whether it is an SDUMP or a SNAP dump.
v X'80' means that an SDUMP or SNAP dump will be produced. (A SNAP dump

is produced if the SDUMP request fails.)
v X'84' means that a SNAP dump only is produced.
v X'88' and X'00' both mean that neither an SDUMP nor a SNAP dump is

produced.

See the IMS Messages and Codes manual manual for guidance on interpreting IMS
return codes and DBCTL return codes (also known as DRA return codes).
Messages issued by CICS also distinguish the kind of return code you are
receiving. See the CICS Messages and Codes manual for help on interpreting and
responding to CICS messages.

PAPL request and return codes
The trace examples given contain a number of 4-digit hexadecimal request codes
issued by the participant adapter parameter list (PAPL). These request codes are a
concatenation of a 2-digit PAPL function code and a 2-digit PAPL subfunction
code. For further guidance on the contents of the PAPL, see the appropriate
IMS/ESA Customization Guide.

142 CICS TS for OS/390: CICS IMS Database Control Guide

Table 10 summarizes the PAPL request codes that are sent from CICS to the DRA,
and are displayed in CICS trace output as 4-digit request codes. See “Trace entries
produced by CICS” on page 127 for examples of traces containing these request
codes.

Table 10. PAPL request codes

Event Request
code

Connection 0100

Disconnection 0400

Disconnection due to CICS failure 0404

PSB schedule 0301

DL/I request 0303

COMMIT request 0307

PREPARE request 0304

ABORT request 030D

Terminate thread 030F

COMMIT request during resynchronization 0201

ABORT request during resynchronization 0202

Lost because CICS was initial started before resynchronization 0203

DBCTL should not be in-doubt 0204

Table 11 summarizes the PAPL return codes that are sent from the DRA to CICS.
CICS intercepts these return codes and displays them as explanatory text in trace
output.

Table 11. PAPL return codes

Event Return code

Connection complete 0500

Identify failure 0501

Connection request (DRA INIT) canceled in reply to DFS690 message 0502

DBCTL has terminated abnormally 0503

The DRA has terminated abnormally 0504

/CHECKPOINT FREEZE or /CHECKPOINT PURGE command was issued
to terminate DBCTL normally

0505

Using CICS EDF to debug application programs in DBCTL
You can use the CICS execution (command-level) diagnostic facility (EDF), with
local and remote application programs that access databases controlled by DBCTL.
EDF supports the additional EXEC DLI commands and keywords that you can use
with DBCTL, and the additions to the DL/I interface block (DIB) mentioned in
“QUERY and REFRESH DBQUERY commands” on page 100.

However, a number of storage areas that resided in the CICS address space with
local DL/I are outside the CICS address space with DBCTL. These areas include
the PDIR, DDIR, the PSB pool, and the DMB pool. You cannot access these areas
using the WORKING STORAGE option of the CEDF transaction that invokes EDF.

Chapter 9. Problem determination for DBCTL 143

Instead, you use the DBCTL operator command /DISPLAY (with the keywords
PSB, DBD, or POOL) to display the corresponding DBCTL information.

For information on using EDF, see the CICS Application Programming Guide.

144 CICS TS for OS/390: CICS IMS Database Control Guide

Chapter 10. Statistics, monitoring, and performance for
DBCTL

This chapter contains the following sections:
v “Data available for a CICS-DBCTL system”
v “Monitoring DBCTL—transaction level data” on page 148
v “Tuning a CICS-DBCTL system” on page 156

Note: In CICS and IMS, the term statistics means data produced concerning
timing and resources used by the system as a whole over a specified period
of time. Additionally, in CICS, monitoring means data produced concerning
timing and resources used by a task or a logical unit of work (UOW). IMS
does not make this distinction—all data returned is referred to as statistics.
Here, we use the terms statistics and monitoring in the CICS sense.

For programming information on monitoring in CICS, see the CICS Customization
Guide. For information on statistics and on CICS performance and tuning, see the
CICS Performance Guide. For information on IMS performance and tuning, see the
IMS System Administration Guide or the IMS/ESA Administration Guide: System.

Data available for a CICS-DBCTL system
As with your CICS or IMS system, observing the performance of DBCTL involves
collecting and interpreting data gathered by various CICS and IMS performance
tools. The difference with DBCTL is that you need to keep an eye on events taking
place in separate address spaces. Figure 48 on page 146 gives an overview of where
DBCTL monitoring and statistics data is sent to and the tools you can use to
produce output from this data. The data and tools mentioned are described in the
sections that follow.

© Copyright IBM Corp. 1989, 1999 145

DBCTL statistics
DBCTL supplies CICS with statistics information when CICS disconnects from
DBCTL. These are known as unsolicited statistics, because they are not produced
as part of normal internal processing, but are produced as a USS statistics record.
The statistics are written to SMF regardless of the status of statistics recording.

CICS-DBCTL statistics are collected whenever DBCTL is disconnected as a result
of:
v An orderly or immediate disconnection of DBCTL
v An orderly termination of CICS

CICS-DBCTL statistics are not collected if there is an immediate shutdown or
abend of CICS.

When statistics are collected, the following happens:

CICS
monitoring
facility
reports

CICS
statistical
reports

RMF
reports

SLR
output

IMS
monitor
output

DFH$MOLS DFHSTUP RMF SLR DFSUTR20
utility

MVS

CICS DRA DBCTL

DFHMNDUP
SMF

IMS log
X'07' record
X'08' record
X'45' record

IMS
monitor
data set

Figure 48. Overview of DBCTL statistics and monitoring data

146 CICS TS for OS/390: CICS IMS Database Control Guide

1. The DRA returns statistics for the CICS-DBCTL session that has just ended to
DFHDBAT.

2. DFHDBAT invokes the CICS statistics exit for DBCTL statistics (DFHDBSTX).
3. DFHDBSTX invokes the CICS statistics domain.
4. The CICS statistics domain writes the statistics to the SMF data set.

CICS-DBCTL session statistics are contained in the DFHDBUDS DSECT, which you
can generate from the copybook DFHDBUDS. DFHDBUDS includes the following
information, which is returned from the DRA for that CICS session:
v DBCTL identifier for the CICS-DBCTL session (STATDBID).
v DBCTL recoverable service element (RSE) name (STARSEN). (For more

information about RSEs, see “Chapter 6. Recovery and restart operations for
DBCTL” on page 73.)

v Time CICS connected to DBCTL (STACTIME).
v Time CICS disconnected from DBCTL (STADTIME).
v Minimum number of threads specified in the DRA startup table (STAMITHD).
v Maximum number of threads specified in the DRA startup table (STAMATHD).
v Number of times that the CICS-DBCTL session “collapsed” threads down to the

minimum thread value specified in the DRA startup table (STANOMITHD).
v Number of times that the CICS-DBCTL session reached the maximum thread

value specified in the DRA startup table (STANOMATHD).
v Elapsed time, expressed in hours, minutes, and seconds, for which the

CICS-DBCTL session ran at the maximum thread value (STAELMAX).
v Largest number (also known as the “high-water mark”) of threads used during

the CICS-DBCTL session (STHIWAT).
v Total number of times this CICS-DBCTL session successfully scheduled a PSB

(STAPSBSU).

For information on DBCTL statistics see the CICS Performance Guide.

To extract and print a report from these statistics, run the CICS-supplied statistics
utility program (DFHSTUP), specifying the specific APPLID of the relevant CICS
system. The output will include CICS-DBCTL session statistics provided DBCTL
was connected to CICS when the statistics were collected. For information about
other parameters needed to run DFHSTUP, and a sample job stream you can use,
see the CICS Operations and Utilities Guide. Figure 49 shows an example of a report
produced by running DFHSTUP.

Unsolicited Statistics Report Collection Date-Time 09/16/93-15:16:18 Last Reset 15:06:46 Applid IYAHZCD2 Jobname CI13JTD5

DBCTL SESSION TERMINATION STATISTICS

CICS DBCTL Session Number : 2
DBCTL identifier : SYS2
DBCTL RSE name : DBCTLSY2
Time CICS connected to DBCTL : 15:14:02.8506
Time CICS disconnected from DBCTL : 15:16:18.3689
Minimum number of threads : 1
Maximum number of threads : 3
Times minimum threads hit : 1
Times maximum threads hit : 1
Elapsed time at maximum threads : 00:00:09.4371
Peak number of threads : 3
Successful PSB schedules : 9

Figure 49. Example of CICS-DBCTL session statistics output

Chapter 10. Statistics, monitoring, and performance for DBCTL 147

Note: The statistics report produced by running DFHSTUP (shown in Figure 49)
displays the times at which CICS connected to and disconnected from
DBCTL in hours, minutes, and seconds (hhmmss) format in local time. The
DBCTL USS record mapped by the DFHDBUDS DSECT contains the connect
and disconnect times as four 8-byte store clock (STCK) values. These are:
connect and disconnect time expressed in local time and connect and
disconnect time in Greenwich Mean Time (GMT).

CICS statistics that contain the number of DL/I requests by type, issued against
each DL/I database are not produced by CICS in the DBCTL environment. Instead,
DBCTL produces this type of information. You can obtain DBCTL buffer pool
utilization information from the DBCTL /DISPLAY command, or from the IMS log
records of type X'45'.

Monitoring DBCTL—transaction level data
Monitoring data for DBCTL is passed to CICS and IMS components. (See Figure 48
on page 146.) See the CICS Operations and Utilities Guide for help on switching
monitoring on, and on printing and formatting the data.

DBCTL monitoring data returned to CICS
Monitoring data at the transaction level is passed back to CICS by DBCTL
whenever a TERM request occurs, either explicitly, or implicitly at the end of task
termination. The data is appended to the CICS monitoring facility performance
record of the issuing task. The data returned is as follows:
v PSB name.
v Elapsed wait time for pool space. In a PSB schedule, when the pool space is

insufficient for PSB/DMB blocks, the schedule request is put on a wait queue.
The total wait time for it is in this field.

v Elapsed wait time for intent conflict. In a PSB schedule, when an intent conflict
is detected, the schedule request is put on a wait queue. The total wait time for
it is in this field.

v Elapsed time for the schedule request.
v Elapsed wait time for database I/O.
v Elapsed wait time for locking. The total wait time to get the PI locks which are

local segment level locks.
v Total number of database I/O counts.
v Number of DL/I requests for each of the following:

Get unique
Get next
Get next within parent
Get hold unique
Get hold next
Get hold next within parent
Insert requests
Delete requests
Replace requests

v Total number of DL/I database requests.
v Number of test enqueues.
v Number of times requesting the PI locks on segments.
v Number of waits on test enqueues.
v Number of times requesting the PI locks on segments.

148 CICS TS for OS/390: CICS IMS Database Control Guide

v Number of dequeues.
v Number of times PI locks are released.
v Number of update enqueues.
v Number of times the update locks are not available for a request and requires a

wait.
v Number of update dequeues.
v Number of times requesting the exclusive lock.
v Number of waits on exclusive enqueues.
v Number of times the exclusive locks are released.
v Number of exclusive dequeues.
v Number of times the exclusive locks are released.
v DEDB statistics:

Number of DEDB requests
Number of DEDB I/Os
Number of overflow buffers used
Number of waits for DEDB buffer
Number of unit of work contentions

v Date of schedule start.
v Time of schedule start.
v Date of schedule end.
v Time of schedule end.
v Elapsed UOW CPUTIME for DRA thread (see note below).

Note: The elapsed CPUTIME field was introduced by IMS APAR PL83370. The
CPUTIME represents the time spent in the DRA Thread TCB from the time
the PSB is scheduled, to the time the PSB is terminated. CICS always
terminates the PSB at the end of the Unit of work (UOW). The CPUTIME
does not include any time spent in the DBCTL region.

Obtaining DBCTL monitoring data sent to CICS
DBCTL supplies CICS with monitoring data, which is then output to the CICS
monitoring domain in the following cases:
v When CICS receives the response to a PSB schedule request from DBCTL, it

checks whether this task has already been scheduled successfully to DBCTL. If it
has, CICS forces the monitoring data from the previous PSB schedule out; that
is, it writes the performance class record for the task and resumes monitoring
that task. If it has not been scheduled before, no monitoring processing is done.

v When CICS receives a response from the DBCTL as a result of a COMMIT or
ABORT request, CICS outputs the monitoring data, but does not write it.

v In the case of the final PSB schedule for a task, the monitoring data is
automatically written at the end of a task.

To obtain the monitoring data that DBCTL returns to CICS, code two additional
event monitoring points (EMPs) in your CICS monitoring control table (MCT).
DBCTL EMPs can be found in CICSTS13.CICS.SDFHSAMP member DFH$MCTD.

For programming information on EMPs, and the format of monitoring records, see
the CICS Customization Guide.

When you have obtained the monitoring data, you can use monitoring tools such
as the CICS monitoring facility and the Service Level Reporter (SLR) with the data

Chapter 10. Statistics, monitoring, and performance for DBCTL 149

supplied to tune your CICS-DBCTL environment. See the CICS Customization Guide
for programming information on using the CICS monitoring facility.

Service Level Reporter (SLR)
Service Level Reporter (SLR) is an IBM database and reporting program that
collects and analyzes data from CICS and other IBM systems and products. SLR
collects CICS data from CICS monitoring records and from a subset of CICS
statistics on the SMF log data set. It then analyzes the data, summarizes the results,
and stores the data in the SLR database.

The DBCTL data in the CICS monitoring records is output as one 256-byte block,
and is written by the EMP DBCTL.2, as defined in CICSTS13.CICS.SDFHSAMP
member DFH$MCTD. The DSECT for this 256-byte block of data is mapped by the
DFSDSTA macro in the IMS GENLIBs. The SLR tables CICSTRANSLOG and
CICSTRANSNUM contain the fields in this block.

During SLR installation, you must specify whether you want DBCTL data. For
guidance on the format of this data, see the description of the DFSDSTA macro in
the appropriate IMS/ESA Customization Guide. For information on SLR data in CICS
and IMS, see the CICS Performance Guide and the IMS System Administration Guide
or the IMS/ESA Administration Guide: System. For help on using SLR, including
examples of SLR reports and how to make use of them, see the Service Level
Reporter Version 3 General Information manual.

Note: There is a follow-on product to SLR, called Performance Reporter for MVS,
which has DB2 as a prerequisite. This product includes the functions that are
carried out by SLR. Performance Reporter for MVS CICS Performance Feature
Guide and Reference, SH19-6820, describes the way this product works with
CICS.

IMS monitor reports with DBCTL
This section summarizes DBCTL-related data in IMS monitor reports. (This
information also applies if your CICS system is connected to an IMS/ESA DM/TM
system to obtain DBCTL support.)

IMS monitor reports that apply to DBCTL
v Call summary
v Program I/O
v DB buffer pool
v VSAM buffer pool
v Program summary

Note: In a DBCTL environment, interpret the terms “program” and “transaction”
in these reports as “PSB” and “PSB scheduling”, respectively.

IMS monitor reports that apply partially to DBCTL
v Region summary
v Region IWAIT

(An IWAIT occurs when a DBCTL request causes I/O activity. IWAIT time
denotes the time DBCTL spends waiting for IMS resources, in addition to the
number of I/Os.)

v Any other region based reports.

150 CICS TS for OS/390: CICS IMS Database Control Guide

Note: In a DBCTL environment, interpret the term “region” in these reports as the
representation of a CICS thread or a BMP region in DBCTL, but beware that
a DBCTL region may represent different CICS threads or BMP regions
during a monitor run.

IMS monitor reports that do not apply to DBCTL
The following reports, related to transaction management and communication, do
not apply to DBCTL, and either do not appear, or are shown as headings without
any data:
v Communication wait
v Communication summary
v Line functions
v Message format buffer pool
v Message queue pool
v MSC queuing summary
v MSC summaries
v MSC traffic

Data contained in relevant IMS monitor reports
This section tells you what kind of data you can find in the IMS monitor reports
that apply to DBCTL.

General wait time events
All threads built for a CICS system have the same job name as that CICS system.
They are shown in the jobnames for regions in the “General reports”.

General reports
The “general reports” include the “Regions and jobname” report and the “Region
summary report”.

Regions and jobname report
Within a trace interval, a thread can be assigned to multiple CICS systems but it
can only be assigned to one CICS at any one time. So, depending on the number of
CICS systems connected to DBCTL, the regions and jobname report can show:
v One region with only one jobname.
v One region with multiple jobnames.
v Multiple regions with multiple jobnames where some regions have the same

jobname, and some have multiple jobnames.
v Multiple regions with only one jobname.

Any monitor report for a region is a summary for all connected CICS systems that
a thread has served during the trace interval. For example, the elapsed time of
schedule end to first call means the sum of this elapsed time for all CICS systems
that a thread has been assigned to during the trace interval.

Depending on the workload of a CICS system, a trace interval may be a relatively
short period of time, and thread switching between depending regions may not
occur very often. However, the more the workload fluctuates, the more frequently
threads are likely to be assigned amongst connected CICS systems.

Region summary report
A region summary report can show:
v Scheduling and termination, including:

Chapter 10. Statistics, monitoring, and performance for DBCTL 151

– The time from PSB schedule request being received by DBCTL to when the
request is completed by DBCTL. This includes the time spent by DBCTL
allocating IMS resources and does not include any schedule time spent in
CICS or being processed by the DRA.

– The time from when a PSB unschedule request is received by DBCTL to when
the request is completed by DBCTL. This request could be an unschedule PSB
request, or a request imbedded in any synchronization type terminate request,
or a terminate thread request.

v Schedule to first call is the time from when DBCTL completed the PSB schedule
to when DBCTL received the first DL/I request. This time includes all time
spent processing in CICS, including application program, CICS itself, and DRA
processing. (Because CICS is the transaction manager, how and when its own
applications are loaded or scheduled cannot be interpreted by DBCTL in the IMS
monitor reports.)

v Elapsed execution is the time between the completion of the DBCTL PSB
schedule request and when DBCTL receives the PSB unschedule request. It
indicates the amount of time IMS resources were allocated to a CICS thread.

v Region occupancy is the ratio of the elapsed time when a thread is active (that
is, with IMS resources allocated) to the trace interval.

v DL/I calls is the time between DBCTL receiving the DL/I request and the
request being completed in DBCTL.

Program summary
DBCTL does not process any messages. For the purpose of using the DC monitor
report, it counts each PSB schedule as one message dequeued. Because DBCTL is
not the transaction manager, it has to assume a one-to-one relation between a CICS
transaction and a PSB schedule. This is shown in program summary, where the
number of transactions dequeued is the same as the number of scheduled requests.
“Per transaction” means requests per schedule, and “elapsed time per transaction”
means elapsed time per schedule.

Run profile
In run profile, the number of messages dequeued means the number of scheduled
PSBs and transactions per second means PSB schedules per second.

Transaction queuing report
This report can include a list of “transactions” for DBCTL. Each transaction name
is an 8-byte transaction ID specified by CICS on the schedule request. A transaction
ID from CICS comprises of a 4-byte CICS transaction name, plus a 4-byte CICS
identifier. If CICS does not specify a transaction ID, DBCTL takes the CICS region
ID, obtained at connection time. In this report, for DBCTL, the transaction “number
dequeued” means number of PSB schedules. The “on queue when scheduled” in
this report is always zero because the IMS message queues do not apply to
DBCTL.

For examples of IMS monitor reports and detailed guidance on interpreting their
contents, see the IMS Utilities Reference: Database manual manual.

Using the IMS monitor
DBCTL enables CICS users who do not have an IMS/VS DB/DC or
IMS/ESA/DM/TM system to use the IMS monitor online. The IMS monitor is the
main tool provided by IMS for monitoring. It collects data from the system while it
is running. It formats and records significant events during execution, and is useful
in tuning constrained systems.

152 CICS TS for OS/390: CICS IMS Database Control Guide

Monitoring data is written to a separate data set or tape defined by the IMSMON
DD statement in the DBCTL JCL. To define this data set or tape and to run the IMS
monitor with DBCTL, add an IMSMON DD statement to your DBCTL JCL. For
further guidance on doing so, see the IMS System Definition Reference manual
manual or IMS/ESA Installation Volume 2: System Definition and Tailoring.

To allocate an IMSMON data set, use the IEFBR14 utility to allocate a data set
without any DCB parameters; for example:
//ALLOC EXEC PGM IEFBR14
//IMSMON DD DISP=(NEW,CATLG),UNIT=3380,VOL=SER=xxxxxx,SPACE=(CYL,(5,5))

You can start and stop the IMS monitor dynamically using the /TRACE command
with the MON keyword. For example:
/TRACE SET ON MON ALL

gives you all the activity that the monitor collects. For guidance on using the
/TRACE command and its keywords more selectively, see the IMS Operator’s
Reference manual.

Chapter 10. Statistics, monitoring, and performance for DBCTL 153

The IMS monitor has two phases:
v During the first phase, the monitor programs collect the data and store it on

either disk or tape.
v During the second, the data is retrieved from the data set, and is organized and

printed.

The data collected by the monitor (also known as DFSMNTR0) is organized and
printed by the IMS monitor report print program, DFSUTR20. See the IMS Utilities
Reference: Database manual manual for guidance on using the IMS monitor report
print utility, DFSUTR20, and for information on using the IMS monitor to identify
constraints.

DBCTL data returned to IMS log
In addition to the information returned to the monitor, as described in “IMS
monitor reports with DBCTL” on page 150, IMS writes some monitoring
information to the log records. This information is always recorded; you do not
have to request it. IMS appends the following information to the X'08' log records
during scheduling.
v Total elapsed wait time due to intent conflict
v Total elapsed wait time due to pool space not being available
v Total elapsed time for a schedule request

IMS appends the following information to the X'07' log records at PSB termination:
v Total number of databases used involved in I/O
v Total number of DL/I database requests
v Total elapsed wait time due to databases involved in I/O
v Total elapsed wait time due to locking
v Total number of gets
v Total number of inserts
v Total number of replace
v Total number of deletes

Program isolation trace
For full function DL/I databases, you can use the program isolation (PI) trace to
get records that indicate queueing activity taking place for program isolation. The
PI trace records are written to the IMS log. You can then print them using the IMS
file select and formatting utility. See the IMS System Administration Guide for
further guidance on using PI trace.

DL/I trace
For full function databases, you can use DL/I trace with DBCTL by enabling the
DL/I trace table in the DFSVSMxx member or by issuing the /TRACE command,
as described in “Controlling tracing of DBCTL events” on page 63. Using the
/TRACE command enables you to turn DL/I trace on and off while the system is
running. Output is to the IMS log as type X'67FA' records. See the IMS Diagnosis
Guide and Reference manual manual for guidance on using DL/I trace for diagnosis,
the IMS Operator’s Reference manual for guidance on the commands needed to
invoke it, and the IMS Utilities Reference: Database manual manual for guidance on
printing its output.

Using the IMS log statistics utilities
You can use the following IMS log statistics utilities to process the information
from the IMS log. See “DBCTL data returned to IMS log” for a list of the data
returned to the IMS log.

154 CICS TS for OS/390: CICS IMS Database Control Guide

v File select and formatting print utility, DFSERA10, formats and prints selected
records from the IMS log data set. The active OLDS must have been archived
before you can access the log data. You normally specify the SLDS to
DFSERA10. You can also use DFSERA10 with the program isolation trace record
format and print module, DFSERA40, to format PI trace.

v DEDB log analysis utility, DBFULTA0, prepares statistical reports for DEDBs
based on data recorded on the IMS system log.

v IMS program isolation trace report utility, DFSPIRP0. If you use program
isolation (PI), you can use DFSPIRP0 with the IMS log to obtain information
about deadlocked tasks. DFSPIRP0 prints a report that shows only those
enqueue requests that required a wait because the resource was not immediately
available.

See the IMS Utilities Reference: Database manual manual for guidance on using these
utilities.

Trace facilities
CICS trace facilities are intended primarily as debugging tools. However, because
they record all requests for CICS, you can use them to analyze the performance of
individual transactions. See “Chapter 9. Problem determination for DBCTL” on
page 123 for information on trace entries produced in a DBCTL environment. See
the CICS Problem Determination Guide for information about specifying CICS trace
parameters.

CICS auxiliary trace facility
The CICS auxiliary trace facility enables you to record trace entries on a separate
data set to be analyzed later. Trace entries are time-stamped and they can provide
very detailed information for analyzing constraints or other problems that may
occur while CICS is running. For examples of CICS auxiliary trace output, see
“Trace entries produced by CICS” on page 127.

However, consider carefully how often you need to use CICS auxiliary trace
because it generates a large volume of entries, which means that there may be a
considerable overhead if you run it all the time. Also, you may find it difficult to
make effective use of too large a volume of such data. See the CICS Performance
Guide for information on using auxiliary trace as a performance tool.

Additional performance tools
The following are additional performance tools that you may want to consider
using with DBCTL if you already have them or are considering adding them to
your system.

Generalized trace facility (GTF)
If you use the IRLM as your locking manager, you can use the generalized trace
facility (GTF) to provide a trace of its activity. It traces request handler request
completions, the PTB input/output buffers, and statistical data relevant to the
IRLM. You can print the records GTF produces offline. Output is collected in a
data set specified by its user in the GTF job. For guidance on using GTF, which
you may find of use in debugging, see the IMS Diagnosis Guide and Reference
manual manual.

MVS/ESA Resource Measurement Facility (RMF)
The MVS/ESA Resource Measurement Facility (RMF) is a measurement tool
designed to meet the needs of performance management in the large systems
environment that MVS/ESA supports. Its primary purpose is to reduce the amount

Chapter 10. Statistics, monitoring, and performance for DBCTL 155

of system programmer time and expertise required to identify and to diagnose
system tuning problems. It is designed to monitor selected areas of system activity
and present the data collected in the form of SMF records and/or formatted
reports. Display reports are also available for some system activities. For more
details, see the CICS Performance Guide, and the Resource Measurement Facility User’s
Guide.

Tuning a CICS-DBCTL system
This section describes how you tune your CICS-DBCTL setup to make efficient use
of resources to help you reach performance objectives.

Performance parameters in CICS
System design considerations for CICS with DBCTL are similar to those that
applied to local DL/I. For example, do not allow excessive database accesses or
updates in a single UOW.

However, there are some differences.

The fact that DBCTL is structured to have one TCB per thread is an additional
consideration for CICS. This allows more concurrent processing, but you must be
aware of the need to specify minimum and maximum numbers of threads that are
consistent with your system’s needs. For more information, see “Specifying
numbers of threads” on page 157.

The storage specified in CICS system initialization parameters DSALIM and
EDSALIM is used for different resources in a CICS-DBCTL environment. DSALIM
is used to specify the upper limit of the total amount of storage within which CICS
can allocate the individual DSAs below the 16MB line. EDSALIM is used to
specify the upper limit of the total amount of storage within which CICS can
allocate the individual EDSAs above the 16MB line. Local uses DSA for PSB and
DMB pools, but with DBCTL, these blocks are stored outside CICS. Instead, you
need to allow for the storage DBCTL needs in CICS for DRA code when specifying
DSALIM and EDSALIM. This storage is allocated in the CICS region, but not from
DSA or EDSA storage. See the CICS System Definition Guide and the CICS
Performance Guide for information about specifying DSALIM and EDSALIM, and
the IMS System Administration Guide or the IMS/ESA Administration Guide: System
for guidance on DBCTL storage estimates.

Performance parameters in IMS
From an IMS point of view, tuning DBCTL is much like tuning an IMS system.
Additional considerations are DRA threads, described in “Specifying numbers of
threads” on page 157, and DEDBs, described in “DEDB performance and tuning
considerations” on page 158.

Response time—assigning job dispatching priorities
To minimize response times, we recommend that you assign a higher dispatching
priority to the CICS address space than to the DBCTL address spaces (DBCTL,
DLISAS, DBRC). Although CICS can be regarded as a “front-end” to DBCTL, you
should be aware that CICS also has to manage the network and the application
environment for non-DLI transactions such as DB2 or VSAM. This means that it
has very different CPU requirements from other front ends to DBCTL such as a
BMP or a MPP. For example, when a CICS transaction is waiting for a response to
a DBCTL request, CICS dispatches other CICS transactions.

156 CICS TS for OS/390: CICS IMS Database Control Guide

We recommend that if IRLM is assigned a priority of n, CICS should have a
priority of n-1, DBRC a priority of n-2, and DBCTL and DLISAS a priority of n-3.

For further guidance on assigning priorities, see the IMS System Administration
Guide or the IMS/ESA Administration Guide: System.

Specifying numbers of threads
The DRA startup parameters MINTHRD and MAXTHRD specifies the minimum
and maximum numbers of threads that can process DBCTL DL/I or DEDB
requests. (See “Defining the IMS DRA startup parameter table” on page 38 for
information on DRA startup parameters.)

The IMS system generation parameter MAXREGN specifies the number of regions
(or threads), to be allocated at startup, that DBCTL can handle for all connected
CICS systems and BMPs. The number can increase dynamically, to a limit of 255,
as needed. (See “Generating DBCTL” on page 28 for information on system
generation parameters.)

The number you specify for MAXREGN should be no less than the sum of
MINTHRDs specified for active CICS systems, and for BMPs.

In Figure 50, the following threads are in use: one from BMPA, one from BMPB,
five from CICSA and three from CICSB, making a total of 10 threads. A
MAXREGN of 10 has therefore been specified for DBCTLA.

The maximum number of threads you can specify in DBCTL is 255. One thread is
equivalent to one MVS TCB. The number you specify must be large enough for
your system’s needs, but if you specify a number that exceeds those needs, this
will have an adverse effect on the performance of the DRA. If you specify a
minimum thread value that is higher than your system’s actual minimum activity,
this will tie up threads unnecessarily, preventing DBCTL from allocating them to
other CICS systems or BMPs. If you specify a minimum thread value that is too
low, this can also affect performance; if the level of thread activity falls, this could
cause the DRA to release threads down to the minimum value. These threads
would then have to be reestablished if the thread requests increased again.

The number you specify for MAXTHRD should reflect what you consider to be the
peak load of DBCTL threads needed. The number of threads you specify will affect
performance. The larger the number you have preallocated, the more storage is

CICSA 1
MINTHRD=5 2 1 BMPA
MAXTHRD=10 3 DBCTLA

4 MAXREGN=10
5

1
2 1 BMPB

CICSB 3
MINTHRD=3
MAXTHRD=10

Figure 50. Interaction of MAXREGN, MINTHRD, and MAXTHRD

Chapter 10. Statistics, monitoring, and performance for DBCTL 157

#
#

needed. However, if threads are preallocated, the time needed to allocate them on
demand is saved, thus improving response time and throughput. So, if your
system is storage constrained, specify a lower value for MINTHRD, and use
MAXTHRD as a “safety valve”. If response time and throughput are more
important than storage requirements, specify a higher number for MINTHRD so
that more threads are ready to be used.

Also bear DBCTL thread activity in mind when specifying the MXT system
initialization parameter. You use MXT to specify the maximum number of tasks
that CICS will allow to exist at any time. With DBCTL, MXT should be enough to
allow for the number specified in MINTHRD, plus the number you need for
“standard” CICS tasks. With DB2, there is no minimum number of threads. See the
CICS Performance Guide for general help on MXT.

To help you decide on the optimum values for minimum and maximum numbers
of DBCTL threads, monitor thread usage and IMS task throughput (to see if tasks
are being delayed), and IMS I/O rates. For details of thread statistics produced,
including maximum and minimum thread usage, see “DBCTL statistics” on
page 146. See “DBCTL data returned to IMS log” on page 154 for details of data
produced for monitoring IMS I/O rates. You can also use CICS auxiliary trace to
check for queueing for threads and PSBs.

DEDB performance and tuning considerations
If you use DEDBs, you must define the characteristics and usage of the IMS DEDB
buffer pool. You do this by specifying parameters (including DRA startup
parameters, as described in “Defining the IMS DRA startup parameter table” on
page 38) during IMS system definition or execution.

The main concerns in defining DEDB buffer pools are the total number of buffers
in the IMS region and how they are shared by CICS threads. You use the following
parameters on the IMS FPCTRL macro to define the number of buffers:
v DBBF—total number of buffers
v DBFX—number of buffers used exclusively for DEDB overflow threads

The number of buffers available for the needs of CICS threads is the number
remaining when you subtract the value specified for DBFX from DBBF. In this
discussion, we have assumed a fixed number for DBFX. DBBF must therefore be
large enough to accommodate all BMPs and CICS systems that you want to
connect to a particular DBCTL.

When a CICS thread connects to IMS, its DEDB buffer requirements are as
specified using a normal buffer allocation (NBA) parameter. For a CICS system,
there are two NBA parameters in the DRA startup table:
v CNBA—total buffers needed for the CICS system. This is taken from the total

specified in DBBF.
v FPBUF—number of buffers to be given to each CICS thread. This is taken from

the number specified in CNBA. FPBUF is used for each thread that requests
DEDB resources, and so should be large enough to handle the requirements of
any application that can run in that CICS system.

A CICS system may fail to connect to DBCTL if its CNBA value is more than that
available from DBBF. An application attempting to schedule PSBs that contains
references to DEDBs may receive a schedule failure if the FPBUF value is more
than that available from CNBA.

158 CICS TS for OS/390: CICS IMS Database Control Guide

When a CICS system has successfully connected to DBCTL, and the application
has successfully scheduled a PSB containing DEDBs, the DRA startup parameter
FPBOF becomes relevant. FPBOF specifies the number of overflow buffers each
thread will get if it exceeds FPBUF. These buffers are not taken from CNBA.
Instead, they are buffers that are serially shared by all CICS applications or other
dependent regions that are currently exceeding their NBA allocation.

Because overflow buffer allocation (OBA) usage is serialized, thread performance
can be affected by NBA and OBA specifications. If FPBUF is too small, more
applications need to use OBA, which may cause delays due to contention. If both
NBA and OBA are too small, the application fails. If FPBUF is too large, this affects
the number of threads that can concurrently access DEDB resources, and increases
the number of schedule failures.

In a CICS-DBCTL environment, the main performance concern is the trade-off
between speed and concurrent access. The size of this trade-off is dictated by the
kind of applications you are running in the CICS system. If the applications have
approximately the same NBA requirements, there is no trade-off. You can specify a
FPBUF large enough to never need OBA. This speeds access and there is no waste
of buffers in CNBA, thus enabling a larger number of concurrent threads using
DEDBs. The more the buffer requirements of your applications vary, the greater the
trade-off. If you want to maintain speed of access (because OBAs are not being
used) but decrease concurrent access, you should increase the value of FPBUF. If
you prefer to maintain concurrent access, do not increase the value of FPBUF.
However, speed of access will decrease because this and possibly other threads
will need to use the OBA function.

For information on specifying the parameters CNBA, FPBOF, and FPBUF, see
“Defining the IMS DRA startup parameter table” on page 38. For further guidance
on DEDB buffer specification and tuning, see sections on DEDBs in the IMS
Database Administration Guide and the IMS System Administration Guide, or, for
Version 5, the IMS/ESA Administration Guide: Database Manager and the IMS/ESA
Administration Guide: System.

Using DEDBs
Using DEDBs can give you performance improvements in the following areas:
v Reduced path length

– DEDBs use Media Manager for more efficient control interval (CI) processing,
which can reduce pathlength.

– DEDBs have their own resource manager, which means:
- Less interaction with whichever lock manager you are using (PI or the

IRLM), provided you are not using block level sharing.
- Simplified buffer handling (and reduced pathlength) because DEDBs have

their own buffer pool.
v Parallel processing

DEDB writes are not done during the life of the transactions but are kept in
buffers. Actual update operations are delayed until a synchronization point and
are done by asynchronous processing using output threads in the control region.
The output thread runs as a service request block (SRB)—a separate dispatchable
MVS task. You can specify up to 255 output threads. This means that:
– The CICS task can be freed earlier
– Parallel processing is increased and throughput on multiprocessors is

improved.

Chapter 10. Statistics, monitoring, and performance for DBCTL 159

v Less I/O
The cost of I/O per SDEP segment inserted can be very low because SDEP
segments are gathered in one buffer and are written out only when it is full.
This means that many transactions can “share the cost” of SDEP CI writes to a
DEDB. SDEPs should have larger CIs to reduce I/Os.

v Reduced logging overhead.
DEDB log buffers are written to OLDS only when they are full. This means less
I/O than would be needed with full function databases.

High speed sequential processing (HSSP)
Using DBCTL enables you to use high speed sequential processing (HSSP), which
is available from IMS/ESA Version 3. HSSP is useful with applications that do
large scale sequential updates to DEDBs, which may require an image copy after
the DEDBs are updated. Using HSSP provides the following major benefits:
v DEDB processing time can be improved by using the IBM 3990 Storage Control

Model 3 Fast Write capability and the IBM 3990 Storage Control Model 3
Sequential Mode for both READs and WRITEs.

v You can take an HSSP image copy during a sequential update job. This avoids
having to make a subsequent sequential pass through the DEDB areas to take an
image copy.

v HSSP reduces elapsed DEDB processing time by using private buffer pools and
optimizing locking.

v Only a minimum amount of log data is written to the IMS system log when you
request an HSSP image copy. This reduces the large amount of logging that such
large scale sequential runs usually involve.

For further guidance on HSSP, see the IMS Release Planning Guide.

IMS asynchronous database buffer purge facility
IMS/ESA 4.1 includes the asynchronous database buffer purge facility. At
syncpoint time, when database buffers are to be flushed, buffers that are to be
written to different devices are written concurrently, rather than serially, as in
earlier releases of IMS. (For further guidance, see the IMS System Administration
Guide or the IMS/ESA Administration Guide: System).

The asynchronous database buffer purge facility should improve response time for
transactions that update databases on multiple devices in a single UOW.

Virtual storage usage
CICS regions that previously used local DL/I can obtain considerable virtual
storage constraint relief because the following storage areas reside in the DBCTL
address spaces:
v All DL/I and DBRC code and control blocks
v OSAM and VSAM buffer pools and related control blocks
v PSB, DMB, and ENQ pools

However, DBCTL requires some MVS CSA storage, which may lower the
maximum available region size in the MVS system. See the CICS Performance Guide
and the IMS System Administration Guide or the IMS/ESA Administration Guide:
System for details of CSA and other DBCTL storage requirements.

160 CICS TS for OS/390: CICS IMS Database Control Guide

Improved throughput on multiprocessors
You can obtain throughput improvements on multiprocessors because the
CICS-DBCTL interface resides in multiple address spaces and because it uses
separate MVS subtasks to manage threads.

If you currently use MRO function shipping, converting the CICS DOR to use
DBCTL should result in improved throughput due to multiprocessor exploitation
and the reduced instruction pathlength of the CICS-DBCTL interface. DBCTL
provides a separate TCB for each CICS application thread, which significantly
improves the amount of concurrent processing.

You can obtain further performance improvements by using DEDBs instead of
full-function databases. See “Access to data entry databases (DEDBs)” on page 10
for introductory guidance on DEDBs, and “Using DEDBs” on page 159 for
information on the performance aspects.

CICS shared database jobs and IMS batch jobs run as BMPs
When you migrate your CICS shared database batch and IMS batch jobs to use
BMPs, this will simplify log management. Although a BMP may run more slowly
than the same job running as an IMS batch job, performance for CICS shared
database jobs running as BMPs should be improved. Observations show that the
elapsed time for CICS shared database job converted to run as a BMP job is
considerably shorter, and the CICS degradation of the CICS online workload in
terms of transaction response and throughput is significantly less.

Chapter 10. Statistics, monitoring, and performance for DBCTL 161

162 CICS TS for OS/390: CICS IMS Database Control Guide

Appendix A. Migration task summary for DBCTL

This summary lists the tasks involved in migration to DBCTL and makes cross
references to further information in the main body of this book under these
headings:
v “Education task list”
v “Installation, system and resource definition task list”
v “Operations task list” on page 164
v “Recovery and restart task list” on page 165
v “Application programming task list” on page 165
v “Security task list” on page 165
v “Problem determination task list” on page 166
v “Monitoring, statistics, and performance task list” on page 166

Education task list
You should plan the kind of education necessary before implementing DBCTL. You
will probably find that it is most needed in the areas of operations and system
programming.

Operator topics include:
v DBRC
v DBCTL console operator
v Log archiving
v Recovery and restart
v Monitoring and statistics

System programmer topics include:
v DBCTL system definition
v DBRC
v Log archiving
v Recovery and restart
v Debugging
v Monitoring and statistics
v Tuning

Application programmer topics include:
v New function
v New transaction abends
v Dump analysis (CICS-DBCTL correlated information)

There is a certain amount of new vocabulary, which is explained in context, and,
for quick reference, in “Glossary” on page 183.

Installation, system and resource definition task list
See “Chapter 4. Installing DBCTL, and defining CICS and IMS system resources”
on page 21. The following considerations apply:
v CICS installation is simplified, because there is no need to do a partial system

generation.

© Copyright IBM Corp. 1989, 1999 163

v In CICS resource definition, there are changes to:
– System initialization parameters.
– Monitoring control table (MCT) entries.
– CICS system definition (CSD) file entries.
– Program list table (PLT).
– Some DD statements are removed from CICS JCL, and some are changed

because of DBCTL.
– PDIRs are not needed for DBCTL. You define PSBs using IMS APPLCTN

macros.
– DDIRs are not needed for DBCTL. You define DBDs using IMS DATABASE

macros.
– New DBCTL startup parameters.
– DRA startup table parameters.
– Customization—user-replaceable program DFHDBUEX and DL/I global user

exits XDLIPRE and XDLIPOST. If you use CICS support for XRF, global user
exits XXDFA, XXDFB, and XXDTO are available to enable you to establish
takeover decision mechanisms for DBCTL.

System programmers should also:
v Set up procedures for operations and recovery
v Review use of DBRC
v Review use of data sharing
v Check exits
v Consider new problem determination techniques
v Consider new performance tuning techniques

Operations task list
There are many changes to CICS operations for operators who are not familiar
with IMS/ESA DM/TM. See “Chapter 5. Operations with DBCTL” on page 45.
v Starting and stopping DBCTL.

The DBCTL address space starts the DBRC and DLISAS address spaces
automatically. Each address space issues messages. (See also “Appendix C.
Messages issued during DBCTL startup and termination” on page 169 for
examples of these messages.)

v New and changed CICS and DBCTL messages.
v DBCTL is operated via an operating system console, if not using the

CICS-supplied transaction, CDBM. (See “CDBM operator transaction” on
page 55.)

v New DBCTL operator commands (a subset of IMS operator commands). (See
also “Appendix D. Summary of DBCTL operator commands” on page 173 for
tables comparing CICS and DBCTL operator commands, and listing keywords of
IMS operator commands valid for DBCTL users.)

v Changes to CICS master terminal operator transactions.
v New CICS master terminal operator transactions to connect to and disconnect

from DBCTL dynamically, and to inquire on the status of the interface.
v Additional considerations for XRF. (See also “Migrating CICS shared database

batch jobs to BMPs” on page 111.)
v Online change using the /MODIFY command. This is very different to CICS

resource definition online (RDO).

164 CICS TS for OS/390: CICS IMS Database Control Guide

v Use of recovery token to correlate CICS tasks with DBCTL threads using CICS
recovery token. (See also “Recovery tokens” on page 81.)

v High speed sequential processing (HSSP), if used. (See “High speed sequential
processing (HSSP)” on page 160 and the IMS Release Planning Guide.)

Recovery and restart task list
See “Chapter 6. Recovery and restart operations for DBCTL” on page 73.
v Use emergency restart, not cold start after a DBCTL failure.
v Log management—CICS system log and DBCTL (IMS) log.
v DBCTL uses two-phase commit, for which CICS system log is needed.
v Implementing DBRC.
v Resolving in-doubt threads, using the pseudo recovery token and DBCTL

CHANGE CCTL command.
v High speed sequential processing (HSSP) and image copy, if used. (See “High

speed sequential processing (HSSP)” on page 160 and the IMS Release Planning
Guide.

v Online image copy.

Application programming task list
See “Chapter 7. Application programming for DBCTL” on page 93.
v Data availability is always active. This means that a transaction can fail after PSB

schedule because of unavailable data.
v New CICS transaction abend codes and messages.
v Access needed to an MVS console (referred to in this book as DBCTL

console—see also “Operator communication with DBCTL” on page 53) to take
databases offline.

v Migrating CICS shared database and “native” IMS batch programs to use BMPs.
v New DL/I requests.
v DEDB subset pointers.
v Batch programs migrated to DBCTL must issue checkpoints and be restartable

from the last checkpoint. You will have to change any existing batch jobs to do
this before you can run them on DBCTL.

Security task list
See “Chapter 8. Security checking with DBCTL” on page 115.
v CICS invokes PSB security checking by RACF (or an equivalent external security

manager), as with local DL/I previously.
v Optional DBCTL resource security checking, which you may require if you

decide to use BMPs. It also includes DBCTL password security checking.
v Migrating security definitions from CICS system with local DL/I to CICS system

with DBCTL.
v Database security - for example, SENSEG and PROCOPT - still applies with

DBCTL.

Appendix A. Migration task summary for DBCTL 165

Problem determination task list
See “Chapter 9. Problem determination for DBCTL” on page 123.

The following considerations apply:
v Correlation of CICS and DBCTL problem determination information.

– CICS trace, transaction dump, system dump, and log.
– DRA dump.
– DBCTL dump, trace, and log.

Monitoring, statistics, and performance task list
See “Chapter 10. Statistics, monitoring, and performance for DBCTL” on page 145.
v Monitoring:

– New format of monitoring data returned with DBCTL
– New DBCTL monitor reports from IMS monitor online

v Statistics:
– Data returned at the end of a CICS-DBCTL session
– DL/I statistics summary by database no longer available at CICS shutdown

v Performance, tuning, and resource utilization:
– You have new parameters to tune, for example DBCTL and DRA startup table

parameters.
– There should be enough space to increase number of buffers and pool sizes.
– System initialization parameters DSALIM and EDSALIM are used to store

different resources.
– Adapt MINTHRD, MAXTHRD, MAXREGN, and MXT for each CICS

connected to DBCTL. You can have up to 255 threads in a single DBCTL.

You may need more common storage area (CSA) if you have:
– Regions that already have constrained virtual storage
– Test and production DBCTL subsystems in the same MVS image
– XRF in a single-MVS environment (which means two DBCTL subsystems in

the same MVS image)

166 CICS TS for OS/390: CICS IMS Database Control Guide

Appendix B. Illustration of DBCTL startup parameter creation
and selection

Figure 51 on page 169 shows how DBCTL startup parameters are created and
selected during startup. If you are new to IMS system definition, you will probably
find it helpful to refer to this figure while reading “Generating DBCTL” on
page 28.

Note: “OCU” in Figure 51 on page 169 refers to the IMS online change utility.

© Copyright IBM Corp. 1989, 1999 167

168 CICS TS for OS/390: CICS IMS Database Control Guide

Appendix C. Messages issued during DBCTL startup and
termination

These examples show the messages you should expect to see during a successful
startup and normal termination of DBCTL. Messages are issued separately by each
of the three address spaces involved (DBCTL, DLISAS, and DBRC). As you can see

IMS system SMU/OCU ACBGEN/
definition ------- OCU
---------------- PARM= -------
IMSCTRL SYSTEM= '...,x'
ALL/MODBLKS/
NUCLEUS/...

IMS. IMS. IMS.
MODBLKSm MATRIXm ACBLIBm
--------- ------ - ------

O DFS .
DATABASE DFSDDIRx AGT0x .
... C .

.
U

APPLCTN DFSPDIRx
...

IMSGEN SUFFIX=x

IMS.
RESLIB

DFSVNUCx

Assembled/ IMS start-
link-edited up parms
------------ DFSPBxxx
INCLUDE... EXEC
NAME parms
DFSPBxxx(R) -------- MODBLKSm, IMSACBm

IMS.PROCLIB IMS.MODSTAT
----------------- RGSUF=x

SUF=x
DFSVSMxx
(VSAM .. parms)

VSPEC=xx

DFSFIXxx
(Page fixing)

FIX=xx

DFSMPLxx
(Resid.modules)

PRLD=xx

Figure 51. Creating and selecting DBCTL startup parameters

© Copyright IBM Corp. 1989, 1999 169

from the timestamp in the messages, they are issued at varying times; that is,
DBCTL does not complete its startup before DLISAS and DBRC begin. (The same
applies at termination time.) The numbers prefixed with STC that are displayed
after the timestamp and before the message number indicate which address space
issued which message. In these examples, 9303 indicates messages issued by
DBCTL, 9573 indicates DLISAS messages, and 9574 indicates DBRC messages. See
the CICS Operations and Utilities Guide for similar information on CICS startup
messages.

170 CICS TS for OS/390: CICS IMS Database Control Guide

Messages issued by DBCTL during startup

Messages issued by DLISAS during startup

17.00.00 STC 9303 $HASP373 DBCTL STARTED
17.00.03 STC 9303 IEF188I PROBLEM PROGRAM ATTRIBUTES ASSIGNED
17.00.06 STC 9303 DFS0578I - READ SUCCESSFUL FOR DDNAME PROCLIB MEMBER = DFSVSM00 IMSA
17.00.15 STC 9303 DFS3410I DATASETS USED ARE IMSACBA FORMATA MODBLKSB P=89107 1148431 C=89107 1148431 IMSA
17.00.17 STC 9303 START DLIS
17.00.19 STC 9303 START DBRC
17.00.20 STC 9303 DFS3613I - STM TCB INITIALIZATION COMPLETE IMSA
17.00.20 STC 9303 DFS3613I - MOD TCB INITIALIZATION COMPLETE IMSA
17.00.22 STC 9303 DFS3613I - STC TCB INITIALIZATION COMPLETE IMSA
17.00.22 STC 9303 DFS3613I - RDS TCB INITIALIZATION COMPLETE IMSA
17.00.22 STC 9303 DFS3613I - DYC TCB INITIALIZATION COMPLETE IMSA
17.00.23 STC 9303 DFS3613I - RST TCB INITIALIZATION COMPLETE IMSA
17.00.24 STC 9303 DFS2208I DUAL LOGGING IN EFFECT ON IMS LOG DATA SET IMSA
17.00.24 STC 9303 DFS2208I DUAL LOGGING IN EFFECT ON WRITE AHEAD DATA SET IMSA
17.00.24 STC 9303 DFS2207I IMS LOG(S) BLOCKSIZE=18432, BUFNO=005 IMSA
17.00.24 STC 9303 DFS3613I - DLG TCB INITIALIZATION COMPLETE IMSA
17.00.35 STC 9303 DFS0759I THE FOLLOWING VIRTUAL ADDRESSES HAVE BEEN FIXED IMSA
17.00.35 STC 9303 DFS0759I ESCD 00BE8428-00BE8CAC IMSA
17.00.35 STC 9303 DFS0759I LBUF 0296B5A8-0296D5A8 IMSA
17.00.35 STC 9303 DFS0760I THE FOLLOWING FIX OPERANDS WERE NOT FIXED IMSA
17.00.35 STC 9303 DFS0760I DMHR OTHR DEDB IMSA
17.00.35 STC 9303 DFS3613I - FP TCB INITIALIZATION COMPLETE IMSA
17.00.35 STC 9303 *DFS227A - CTL REGION WAITING FOR DLS REGION (DLIS) INIT - IMSA
17.02.47 STC 9303 DFS3613I - CTL TCB INITIALIZATION COMPLETE IMSA
17.02.47 STC 9303 *DFS989I IMS (DBCTL) READY (CRC=X) - IMSA
17.02.48 STC 9303 DFS000I MESSAGE(S) FROM ID=IMSA

DFS3136I NORMAL RESTART IN PROCESS.
17.02.49 STC 9303 DFS000I MESSAGE(S) FROM ID=IMSA

DFS680I USING CHKPT 89111/171600
17.02.49 STC 9303 DFS000I MESSAGE(S) FROM ID=IMSA

DFS2591I NO MSDB HEADERS FOUND, IMAGE COPY LOAD IGNORED
17.02.49 STC 9303 DFS000I MESSAGE(S) FROM ID=IMSA

DFS2500I DATASET DFSOLP01 SUCCESSFULLY ALLOCATED
17.02.51 STC 9303 DFS000I MESSAGE(S) FROM ID=IMSA

DFS3257I ONLINE LOG NOW OPENED ON DFSOLS01
17.02.51 STC 9303 DFS000I MESSAGE(S) FROM ID=IMSA

DFS3257I ONLINE LOG NOW OPENED ON DFSOLS01
17.02.51 STC 9303 DFS000I MESSAGE(S) FROM ID=IMSA

DFS3261I WRITE AHEAD DATA SET NOW ON DFSWADS0
17.02.51 STC 9303 DFS000I MESSAGE(S) FROM ID=IMSA

DFS3261I WRITE AHEAD DATA SET NOW ON DFSWADS1
17.02.51 STC 9303 DFS000I MESSAGE(S) FROM ID=IMSA

DFS994I *CHKPT 89114/170251**SIMPLE*
17.02.51 STC 9303 DFS000I MESSAGE(S) FROM ID=IMSA

DFS3499I ACTIVE DDNAMES: MODBLKSB IMSACBA FORMATA MODSTAT ID: 4
17.02.51 STC 9303 DFS000I MESSAGE(S) FROM ID=IMSA

DFS3804I LATEST RESTART CHKPT: 89114/170251
17.02.51 STC 9303 DFS000I MESSAGE(S) FROM ID=IMSA

DFS994I WARM START COMPLETED.

Figure 52. Messages issued by DBCTL during startup

17.02.12 STC 9573 $HASP373 DLIS STARTED
17.02.41 STC 9573 IEF188I PROBLEM PROGRAM ATTRIBUTES ASSIGNED
17.02.42 STC 9573 DFS0578I - READ SUCCESSFUL FOR DDNAME PROCLIB MEMBER = DFSVSM00 IMSA
17.02.45 STC 9573 DFS228I - DLS REGION STORAGE COMPRESSION INITIALIZED IMSA
17.02.45 STC 9573 DFS228I - DLS REGION DYNAMIC ALLOCATION INITIALIZED IMSA
17.02.47 STC 9573 DFS228I - DLS REGION INITIALIZATION COMPLETE IMSA

Figure 53. Messages issued by DLISAS during startup

Appendix C. Messages issued during DBCTL startup and termination 171

Messages issued by DBRC during startup

Messages issued by DBCTL during normal termination

Messages issued by DLISAS during normal termination

Messages issued by DBRC during normal termination

17.02.17 STC 9574 $HASP373 DBRC STARTED
17.02.18 STC 9574 IEF188I PROBLEM PROGRAM ATTRIBUTES ASSIGNED
17.02.24 STC 9574 DFS3613I - DRC TCB INITIALIZATION COMPLETE IMSA

Figure 54. Messages issued by DBRC during startup

17.08.51 STC 9303 DFS000I MESSAGE(S) FROM ID=IMSA
DFS058I CHECKPOINT COMMAND IN PROGRESS

17.08.52 STC 9303 DFS000I MESSAGE(S) FROM ID=IMSA
DFS994I *CHKPT 89114/170852**FREEZE*

17.08.52 STC 9303 DFS000I MESSAGE(S) FROM ID=IMSA
DFS3499I ACTIVE DDNAMES: MODBLKSB IMSACBA FORMATA MODSTAT ID: 4

17.08.52 STC 9303 DFS000I MESSAGE(S) FROM ID=IMSA
DFS3804I LATEST RESTART CHKPT: 89114/170852

17.08.53 STC 9303 DFS000I MESSAGE(S) FROM ID=IMSA
DFS3257I ONLINE LOG CLOSED ON DFSOLP01

17.08.53 STC 9303 DFS000I MESSAGE(S) FROM ID=IMSA
DFS3257I ONLINE LOG CLOSED ON DFSOLS01

17.08.55 STC 9303 DFS000I MESSAGE(S) FROM ID=IMSA
DFS2484I JOBNAME=ARCHJOB GENERATED BY LOG AUTOMATIC ARCHIVING

17.08.55 STC 9303 DFS000I MESSAGE(S) FROM ID=IMSA
DFS092I IMS LOG TERMINATED

17.08.55 STC 9303 DFS000I MESSAGE(S) FROM ID=IMSA
DFS2091I IMS TIMER SERVICE SHUTDOWN COMPLETED

17.08.57 STC 9303 DFS994I IMS (DBCTL) SHUTDOWN COMPLETED IMSA
17.08.57 STC 9303 DFS627I IMS RTM CLEANUP (EOT) COMPLETE FOR JS DBCTL .IEFPROC .DBCTL ,RC=00
17.08.58 STC 9303 DBCTL IEFPROC DFSMVRC0 0000
17.08.58 STC 9303 $HASP395 DBCTL ENDED

Figure 55. Messages issued by DBCTL during normal termination

17.08.52 STC 9573 DFS603I IMS DLS CLEANUP (EOT) COMPLETE FOR JS DLIS .DB1ADLIS. ,RC=00
17.08.52 STC 9573 DLIS DB1ADLIS DFSMVRC0 0000
17.08.52 STC 9573 $HASP395 DLIS ENDED

Figure 56. Messages issued by DLISAS during normal termination

17.08.57 STC 9574 DBRC IEFPROC DFSMVRC0 0000
17.08.57 STC 9574 $HASP395 DBRC ENDED

Figure 57. Messages issued by DBRC during normal termination

172 CICS TS for OS/390: CICS IMS Database Control Guide

Appendix D. Summary of DBCTL operator commands

Table 12 and Table 13 on page 175 list:
v CICS operator commands, corresponding DBCTL operator commands, and

which DBCTL commands can be issued using the CICS-supplied transaction
CDBM.

v IMS operator commands and keywords valid with DBCTL.

“Chapter 5. Operations with DBCTL” on page 45 and “Chapter 6. Recovery and
restart operations for DBCTL” on page 73 contain information on using operator
commands with DBCTL. For further guidance on the syntax of DBCTL operator
commands, see the IMS Operator’s Reference manual.

Note: The / used in these commands is the default command recognition
character (CRC). For information on the usage of CRCs, see “Operator
communication with DBCTL” on page 53.

Table 12. DBCTL operator commands and CICS equivalents

DBCTL operator command CICS equivalent Valid with
CDBM

/CHANGE None Yes

/CHECKPOINT (simple form) ACTIVITY KEYPOINT Yes

/CHECKPOINT FREEZE or /CHECKPOINT
PURGE

CEMT PERFORM SHUTDOWN No

/CHECKPOINT STATISTICS CEMT PERFORM STATISTICS RECORD Yes

/DBDUMP None Yes

/DBRECOVERY None Yes

/DELETE None Yes

/DEQUEUE None Yes

/DISPLAY ACTIVE or /DISPLAY CCTL CEMT INQUIRE TASK Yes

/DISPLAY DATABASE None Yes

/DISPLAY DBD, /DISPLAY POOL, and
/DISPLAY PSB

None Yes

/ERESTART SIT with START=AUTO resulting in EMER
restart

No

/LOCK None Yes

/LOG None Yes

/MODIFY None No

/NRESTART CHECKPOINT 0 SIT START=INITIAL No

/NRESTART (without CHECKPOINT 0) SIT with START=AUTO resulting in WARM
start

No

/PSTOP None Yes

/RMCHANGE None Yes

/RMDELETE None Yes

/RMGENJCL None Yes

© Copyright IBM Corp. 1989, 1999 173

Table 12. DBCTL operator commands and CICS equivalents (continued)

DBCTL operator command CICS equivalent Valid with
CDBM

/RMINIT None Yes

/RMLIST None Yes

/RMNOTIFY None Yes

/SSR None No

/START DATABASE None Yes

/STOP DATABASE None Yes

/STOP THREAD CEMT SET TASK PURGE Yes

/SWITCH OLDS (IMS/ESA 4.1, or later) None Yes

/TRACE SET PI None Yes

/UNLOCK None Yes

/VUNLOAD (IMS/ESA Version 5.1 or later) None Yes

MVS MODIFY jobname,RECONNECT CEMT PERFORM RECONNECT N/A — MVS
command

MVS MODIFY jobname,STOP|DUMP CEMT PERFORM SHUTDOWN IMMEDIATE N/A — MVS
command

174 CICS TS for OS/390: CICS IMS Database Control Guide

Table 13. DBCTL operator commands and keywords

DBCTL operator
command

Keyword(s)

/CHANGE CCTL, PASSWORD, SUBSYS

/CHECKPOINT FREEZE, PURGE, ABDUMP, SNAPQ

/DBDUMP DATABASE

/DBRECOVERY AREA, DATABASE

/DELETE DATABASE, PASSWORD, PROGRAM

/DISPLAY ACTIVE, AREA, CCTL, DATABASE, DBD, INDOUBT, MODIFY, OASN SUBSYS, OLDS,
POOL, PROGRAM, PSB, SHUTDOWN STATUS, STATUS, TRACE

/ERESTART CHECKPOINT, COLDBASE, COLDCOMM, COLDSYS, FORMAT, NOBMP

/LOCK DATABASE, PROGRAM

/LOG None

/MODIFY ABORT, COMMIT, PREPARE

/NRESTART CHECKPOINT 0, FORMAT, NOPASSWORD, PASSWORD

/PSTOP REGION

/RMCHANGE DBRC modifier

/RMDELETE DBRC modifier

/RMGENJCL DBRC modifier

/RMINIT DBRC modifier

/RMLIST DBRC modifier

/RMNOTIFY DBRC modifier

/SSR Commands and keywords from appropriate subsystem (for example, DB2)

/START AREA, AUTOARCH, DATABASE, OLDS, PROGRAM, REGION|THREAD1, WADS

/STOP ADS, AREA, AUTOARCH, DATABASE, OLDS, PROGRAM, REGION|THREAD1, WADS

/SWITCH OLDS

/TRACE SET, MONITOR, PI, PSB, TABLE

/UNLOCK DATABASE, PROGRAM

/VUNLOAD AREA

Note: THREAD is a synonym for REGION.

Appendix D. Summary of DBCTL operator commands 175

176 CICS TS for OS/390: CICS IMS Database Control Guide

Appendix E. Using global user exit XDLIPRE to change PSB
to be scheduled

This chapter contains Product-sensitive Programming Interface information.

To help with migration of applications from local DL/I to DBCTL, you can use the
global user exit XDLIPRE to change the PSB name that the application program
has scheduled at execution time. Figure 58 contains an example of XDLIPRE that
you can copy and modify. Note that this example is provided for guidance only.
See the CICS Customization Guide for programming information on global user
exits.

You can also use the XDLIPRE exit to change the identity of the SYSID, enabling
work to be rerouted from a SYSID that becomes unavailable to one that is
available.

**
* This is an example for global user exit XDLIPRE *
* *
* It is invoked prior to any DLI call being passed to *
* the local, remote, or DBCTL processors. *
* *
* A check is made for the presence of a PSB. *
* If not, a normal return is made *
* *
* If the PSB is in a predefined table, it is changed to a *
* different value, and a normal return is made. *
* *
* If not, set PSB name to blanks and normal return. *
* *
* In all cases,a trace entry is written describing the action *
* taken, using TRACE-POINT 384 (hex '0180') *
* *
**
* *
* The first few instructions set up the global user exit *
* environment, identify the user exit point, prepare for the use of*
* the exit programming interface, and copy in the definitions that *
* are to be used by the XPI function. *
* *
**
*

DFHUEXIT TYPE=EP,ID=XDLIPRE PROVIDE DFHUEPAR PARAMETER
* LIST AND LIST OF EXITID
* EQUATES
*

DFHUEXIT TYPE=XPIENV SET UP ENVIRONMENT FOR
* EXIT PROGRAMMING INTERFACE
* MUST BE ISSUED BEFORE ANY
* XPI MACROS ARE ISSUED

Figure 58. Example of XDLIPRE user exit to change PSB names 1/6

© Copyright IBM Corp. 1989, 1999 177

*
COPY DFHTRPTY DEFINE PARAMETER LIST FOR

* USE BY DFHTRPTX MACRO
*

COPY DFHSMMCY DEFINE PARAMETER LIST FOR
* USE BY DFHSMMCX MACRO
*
**
*The following DSECT maps a storage area to be used as work area *
*for the information in the TRACE entry. *
**
*
DSA DSECT DSECT FOR GETMAINED STORAGE

USING DSA,R7
*
RETCODE DS F store return code
MESSAGEA DS F message address for trace
MESSAGEL DS F message length for trace
MESSAGE DS 0CL37
OLDPSB DS CL8
MESS1 DS CL21
NEWPSB DS CL8

*The next instructions form the normal start of a global user *
exit program, setting the program addressing mode to 31-bit, saving
the calling program's registers, establishing base addressing
*and establishing the addressing of the user exit parameter list. *

*
DLIPR CSECT
DLIPR AMODE 31
*

SAVE (14,12) SAVE CALLING PROGRAM'S RGSTRS
*

LR R11,R15 SET UP USER EXIT PROGRAM'S
USING DLIPR,R11 BASE REGISTER

*
LR R2,R1 SET UP ADDRESSING FOR USER
USING DFHUEPAR,R2 EXIT PARAMETER LIST -- USE

* REGISTER 2 AS XPI CALLS USE
* REGISTER 1
*
**
*Before issuing an XPI function call, set up addressing to XPI *
*parameter list. *
**
*

L R5,UEPXSTOR SET UP ADDRESSING FOR XPI
* PARAMETER LIST

Figure 59. Example of XDLIPRE user exit to change PSB names 2/6

178 CICS TS for OS/390: CICS IMS Database Control Guide

**
* Before issuing an XPI function call, you must ensure that register*
* 13 addresses the kernel stack. *
**
*

L R13,UEPSTACK ADDRESS KERNEL STACK
*
**
* Issue a GETMAIN to get storage for work area *
**
*

USING DFHSMMC_ARG,R5 MAP PARAMETER LIST
*

DFHSMMCX CALL, X
CLEAR, X
IN, X
FUNCTION(GETMAIN), X
GET_LENGTH(100), X
STORAGE_CLASS(USER), X
SUSPEND(NO), X
OUT, X
ADDRESS((R7)), X
RESPONSE(*), X
REASON(*)

*
**
* SET UP THE NORMAL RETURN CODE *
**
*

LA R6,UERCNORM
ST R6,RETCODE

*
**
* See if a PSB exists *
**
*

L R6,UEPPSBNX PSB EXISTENCE FLAG
TM 0(R6),UEPPSB1 PSB EXISTS?
BO PSBCALL YES
MVC MESSAGE,MESS3T NO-MOVE MESSAGE TO DSA
B TRACE

*
**
* See if we want to change a PSB name *
**
*
PSBCALL EQU *

L R6,UEPPSBNM ADDRESS OF PASSED PSB NAME
LA R8,PSBS ADDRESS OF table of PSB pairs
CLC 0(8,R6),0(R8) SAME?

Figure 60. Example of XDLIPRE user exit to change PSB names 3/6

Appendix E. Using global user exit XDLIPRE to change PSB to be scheduled 179

BE FOUND YES
LA R8,16(R8) BUMP TO NEXT PAIR
CLC 0(8,R6),0(R8)
BE FOUND
LA R8,16(R8) BUMP TO NEXT PAIR
CLC 0(8,R6),0(R8)
BE FOUND
B NOTFOUND NO MATCH - END

*
**
* Move new PSB name in *
**
*
FOUND EQU *

MVC 0(8,R6),8(R8)
*
**
* SET UP MESSAGE BLOCK FOR TRACE ENTRY FOR CHANGED NAME *
**
*

MVC MESS1,MESS1T SET UP MESSAGE
MVC NEWPSB,8(R8) NEW PSB NAME
MVC OLDPSB,0(R8) OLD PSB NAME
B TRACE GO PUT TRACE ENTRY

*
**
* SET UP MESSAGE BLOCK FOR TRACE ENTRY FOR PSB NOT FOUND *
* SETUP THE NORMAL RETURN CODE *
**
*
NOTFOUND EQU *

MVC 0(8,R6),DUMMYPSB
MVC MESS1,MESS2T SET UP MESSAGE
MVC OLDPSB,0(R6) SUPPLIED PSB NAME
MVC NEWPSB,=CL8'' CLEAR FIELD
LA R1,UERCNORM SET UP NORMAL RETURN CODE
B TRACE GO PUT TRACE ENTRY

*
**
* Issue trace put macro *
**
*
TRACE EQU *

LA R6,MESSAGE STORE ADDRESS...
ST R6,MESSAGEA ...INTO BLOCK DESCRIPTOR
LA R6,L'MESSAGE STORE LENGTH...
ST R6,MESSAGEL ...INTO BLOCK DESCRIPTOR
LA R8,384 SET UP TRACE-ID

*

Figure 61. Example of XDLIPRE user exit to change PSB names 4/6

180 CICS TS for OS/390: CICS IMS Database Control Guide

DROP R5 REUSE R5 TO MAP DFHTRPT
USING DFHTRPT_ARG,R5 XPI PARAMETER LIST

*
DFHTRPTX CALL, X

CLEAR, X
IN, X
FUNCTION(TRACE_PUT), X
POINT_ID((R8)), X
DATA1(MESSAGEA,MESSAGEL), X
OUT, X
RESPONSE(*)

*
**
*When the rest of the exit program is complete, free the storage *
*and return. *
**
*

DROP R5 REUSE REGISTER 5 TO MAP DFHSMMC
USING DFHSMMC_ARG,R5 XPI PARAMETER LIST

*
**
* Issue the DFHSMMCX macro call *
* Store the return code in register 6 *
**
*

L R6,RETCODE PICK UP SAVED RETURN CODE
*

DFHSMMCX CALL, X
CLEAR, X
IN, X
FUNCTION(FREEMAIN), X
ADDRESS((R7)), X
STORAGE_CLASS(USER), X
OUT, X
RESPONSE(*), X
REASON(*)

*

Restore registers, set return code, and return to user exit handler

*

L R13,UEPEPSA
ST R6,16(13) STORE INTO R15 SLOT OF SA
RETURN (14,12)

*

*old and new PSB names, in pairs *

*

Figure 62. Example of XDLIPRE user exit to change PSB names 5/6

Appendix E. Using global user exit XDLIPRE to change PSB to be scheduled 181

182 CICS TS for OS/390: CICS IMS Database Control Guide

Glossary

ABORT. Two-phase commit consists of the PREPARE
and COMMIT phases. Within the COMMIT phase,
there are two possible actions: COMMIT and ABORT.
The ABORT action for data belonging to full function
DL/I databases is backout. There is no backout for
data belonging to DEDBs, because it has not been
written to the database before the COMMIT phase. The
effect of an ABORT on DEDBs is also referred to as an
undo. Because a CICS thread may be accessing data
belonging to both full function DL/I databases and
DEDBs, we use the term ABORT to refer to both
backout and undo.

ACB (application control block). Created from the
output of DBDGEN and PSBGEN and placed in the
ACB library (ACBLIB) for use during online and DBD
region type execution of IMS.

active. In an XRF environment, active describes the
system that is currently supporting processing requests.

ADS (area data set). A copy of a DEDB area. You can
have up to seven copies of the same area, which are all
automatically maintained in synchronization.

AGN (application group name). DBCTL views the set
of PSBs that can be accessed by one particular CICS
system or BMP as a single entity, known as an
application group. Application groups, and the names
of the resources within those groups, are placed in
tables in DBCTL’s security matrix data set(s) using the
IMS security maintenance utility. An AGN for a CICS
system is specified in the DRA startup table. When a
CICS system requests connection to DBCTL, RACF
checks against its resource class table to ensure that the
AGN being specified authorizes it to connect to that
DBCTL subsystem.

alternate. In an XRF environment, alternate describes
system that is standing by waiting to take over the
workload when the active system fails or a takeover is
initiated.

alternate TP PCB. An alternate TP (transaction
processing) PCB defines an alternate destination (a
logical terminal or a message program) and can be
used instead of the I/O PCB when it is necessary to
direct a response to a terminal. Alternate TP PCBs
appear in PSBs used in a CICS-DBCTL environment,
but are used only in an IMS/VS DC or IMS/ESA TM
environment. CICS applications using DBCTL cannot
successfully issue requests that specify an alternate TP
PCB, an MSDB PCB, or a GSAM PCB. However, a PSB
that contains PCBs of these types can be scheduled
successfully in a CICS-DBCTL environment. Alternate
PCBs are included in the PCB address list returned to a
call level application program The existence of alternate
PCBs in the PSB affects the PCB number used in the
PCB keyword in an EXEC DLI application program.

AMODE (addressing mode). Refers to whether
program addresses are 24 or 31 bits.

AOR (application-owning region). A CICS address
space whose primary purpose is to manage application
programs. It receives transaction routed requests from a
terminal-owning region (TOR). It may also contain file
related resources in a system that does not have a
database-owning region (DOR). See also DOR
(database-owning region) and TOR (terminal-owning
region).

APPLID. Operand of the CICS system initialization
table that specifies the 1- to 8-character application
name of a CICS system. It is the name by which the
CICS system is to be known to other systems or
regions.

PSBS EQU *
DC CL8'PC3CONEW' VALID
DC CL8'PC3CONE2' VALID
DC CL8'PC3FRED' INVALID
DC CL8'PC3CONEW' VALID
DC CL8'PC3JOE' INVALID
DC CL8'PC3JOEX' INVALID

*
MESS1T DC CL21' HAS BEEN CHANGED TO '
MESS2T DC CL21' WAS NOT FOUND'
MESS3T DC CL37'THIS WAS NOT A DLI SCHEDULE CALL'
DUMMYPSB DC CL8' '

LTORG
END DLIPR

Figure 63. Example of XDLIPRE user exit to change PSB names 6/6

© Copyright IBM Corp. 1989, 1999 183

AVM (MVS availability manager). Handles
communication between active and alternate IMS XRF
systems. See also CAVM (CICS availability manager).

BMP (batch message processing program). BMPs are
application programs that perform batch type
processing online and can access databases controlled
by DBCTL. You can run the same program as a BMP or
as a batch program.

call. An instruction in COBOL, assembler, or PL/I that
is used by an application program to request DL/I
services. It does not require translation. Contrast with
command.

CAVM (CICS availability manager). Handles
communication between active and alternate CICS
systems in a CICS system with XRF. See also AVM
(MVS availability manager).

CCTL (coordinator control subsystem). This refers to
the transaction management subsystem that
communicates with the DRA, which in turn
communicates with DBCTL. In a CICS-DBCTL
environment, the CCTL is CICS. The term is used in a
number of IMS operator commands that apply to
DBCTL, and in the IMS manuals.

checkpoint. For applications, a point at which the
program commits that the changes it has made to the
database are consistent and complete, and releases
database segments for use by other programs. You can
request checkpoints at appropriate points in a program
to provide places from which you can restart that
program if it, or the system, fails.

For systems, a point in time from which IMS can start
again if a failure makes recovery necessary. The
checkpoint is performed by IMS itself.

CI (control interval). The unit of information
transmitted to or from auxiliary storage by VSAM,
independent of logical record size.

CICS monitoring facility. The CICS monitoring
facility gives a comprehensive set of operational data
for CICS, using a data recording program. Data is
normally output to the system in SMF data sets.

cold start. The standard initialization sequence that is
performed by the system initialization program without
regard for prior system activity.

command. In CICS, an instruction similar in format to
a high-level programming language statement. CICS
commands usually include the verb EXECUTE
(abbreviated to EXEC), and can be issued by an
application program to make use of CICS facilities.
With DL/I, the format of the command is EXEC DLI.
Commands require processing by the CICS translator.
Contrast with call.

CRC (command recognition character). A character
that denotes a DBCTL operator command. DBCTL

operator commands have / as their default CRC. You
can override the default CRC on the DBCTL job, but
remember that each DBCTL subsystem within an MVS
image must have a unique CRC and that CRC must be
unique with respect to every other subsystem on the
processor, not just DBCTL subsystems. If you are using
the CICS-supplied operator transaction, CDBM, to issue
operator commands to DBCTL, you must use the
default CRC, even though your DBCTL is using some
other CRC.

CRLP (card reader/line printer). Or in-stream
sequential terminal. Can be used as a means of
automating connection to a different DBCTL or to
connect automatically when CICS was not connected to
DBCTL at shutdown.

data availability. Data availability is an IMS
enhancement available with DBCTL. It allows PSB
scheduling to complete successfully even if some of the
full function databases it requires are not available.

database integrity. The protection of data items in a
database while they are available to any application
program. Protection includes isolating the effects of
concurrent updates to a database by two or more
application programs.

database organization. The physical arrangement of
related data on a storage device. DL/I database
organizations are hierarchical.

database record. (1) A collection of DL/I data
elements known as segments that are hierarchically
related to a single root segment. (2) In a DL/I or IMS
database, a root segment and all its descendant
segments.

database reorganization. The process of unloading
and reloading a database to optimize physical segment
adjacency, or to modify the DBD.

data sharing. An IMS term. Data sharing can be done
at:
v Block level, which allows multiple subsystem access

to the same database, controlled by means of a lock
manager.

v Database level, which allows application programs
in one IMS subsystem to read data while another
program in another IMS subsystem reads from, or
updates, the same database.

DBCTL. DBCTL is an interface between CICS
Transaction Server for OS/390 and IMS/ESA that
allows access to IMS DL/I full function databases and
to Data Entry Databases (DEDBs) from one or more
CICS systems without the need for data sharing. It also
provides release independence, virtual storage
constraint relief, operational flexibility, and failure
isolation.

DBD (database description). In IMS, the collection of
macro parameter statements that describes an IMS

184 CICS TS for OS/390: CICS IMS Database Control Guide

database. These statements describe the hierarchical
structure, IMS organization, segment length, sequence
fields, and alternate search fields. They are assembled
to produce database description blocks.

DB PCB (database PCB). A PCB that supports
communication between an application program and a
database.

DBRC (database recovery control). An IMS facility
that maintains information needed for database
recovery, generates recovery control statements, verifies
recovery input, maintains a separate change log for
database data sets, and supports sharing of IMS DL/I
database by multiple IMS systems.

DDIR (database directory). A list of data management
blocks (DMBs) that define for DL/I the physical and
logical characteristics of databases that are used by
application programs. A CICS system initialization
parameter of the same name specifies a suffix to
identify a DDIR.

DEDB (data entry database). In IMS, a direct-access
database originally provided in the Fast Path feature.
DEDBs can be divided into independent areas, which
increases availability of data. DEDBs provide a high
level of availability for, and efficient access to, large
volumes of data. They are hierarchic structures that
contain a special type of segment called a sequential
dependent segment (SDEP) that is used for fast
collection of information and is useful, for example, in
journaling and auditing applications. Applications that
access DEDBs can also use subset pointers, which allow
more efficient processing of long segment chains. The
database is accessed using Media Manager, which is a
component of Data Facility Product (DFP).

DFHDBAT. The interface between the DRA and CICS.
DFHDBAT adapts CICS’s calls to the DRA’s interface
when accessing DBCTL databases. See also DRA
(database resource adapter).

DFHDBCON. DFHDBCON, the DBCTL connection
program, is invoked during connection to DBCTL.

DFHDLI. The CICS DL/I router module. Determines
whether a DL/I request should be processed by local
DL/I, remote DL/I, or passed to DBCTL.

DFH$INDB. DFH$INDB, the CICS-supplied sample
in-doubt resolution program helps you decide whether
to commit or backout updates that are in-doubt after
CICS has disconnected abnormally from DBCTL.
DFH$INDB produces a list of in-doubts, plus the action
needed to resolve each one.

DIB (DL/I interface block). Whenever you issue an
EXEC DLI command, DL/I responds by storing the
information in the DIB in your program. It is inserted
automatically into your program by the CICS translator.
See also DIBSTAT.

DIBSTAT. The DL/I status code, which is contained
in the DIB. It indicates the success (or otherwise) of
your EXEC DLI command.

DL/I (Data Language/I). A high-level interface
between applications and IMS. It is invoked from PL/I,
COBOL, or Assembler language, or (for command-level
only) C language. by means of ordinary subroutine
calls. DL/I enables you to define data structures, to
relate structures to the application, and to load and
reorganize these structures. It enables applications
programs to retrieve, replace, delete and add segments
to databases. See also command.

DMB (data management block). An IMS control block
that resides in main storage and describes and controls
a physical database. It is constructed from information
obtained from the application control block (ACB)
library or the database description (DBD) library.

domain. A logical grouping of CICS function; for
example, the storage domain or the monitoring
domain.

DOR (database-owning region). A CICS address
space whose primary purpose is to manage files and
databases. See also AOR (application-owning region)
and TOR (terminal-owning region).

DRA (database resource adapter). The architected
interface that enables DBCTL databases to be accessed
from CICS.

DRA control exit. Enables the DRA to pass
information from itself and DBCTL independently of
CICS. It is invoked whenever the DRA needs to
determine whether to continue processing, as follows:
v The DRA successfully connects to DBCTL
v DBCTL is terminated normally using

/CHECKPOINT FREEZE or /CHECKPOINT PURGE
v An attempt to connect to DBCTL fails
v A CICS INIT request is canceled
v The DRA fails.

DRA startup parameter table. The DRA startup
parameter table provides the parameters needed to
define a DBCTL subsystem.

equivalent. In an XRF environment, equivalent
describes DBCTL subsystems that are defined as
members of the same RSE. See also RSE (recoverable
service element) and RST (recoverable service table).

full function databases. Full function databases are
hierarchic databases that can be accessed using DL/I
and can be processed by batch programs and BMPs.

function shipping. The process by which CICS
accesses resources on another CICS system. The process
is transparent to application programs. See also remote
DL/I.

Glossary 185

generic APPLID. The name by which the
active-alternate pair of CICS systems is known to other
systems or regions.

gigabyte. The exact value 1 073 741 824.

global user exit. A global user exit is a point in a
CICS module at which CICS can pass control to a
program that you have written (known as an exit
program), and then resume control when your program
has finished. When an exit program is enabled for a
particular exit point, the program is called every time
the exit point is reached. Global user exits used with
DBCTL are: XDLIPRE and XDLIPOST, XRMIIN and
XRMIOUT; plus XXDFA, XXDFB, and XXDTO, which
are used with XRF. See also task-related user exit.

HSSP (high speed sequential processing). An
IMS/ESA Version 3 facility. HSSP is useful with
applications that do large scale sequential updates to
DEDBs. It can reduce DEDB processing time, enables
an image copy to be taken during a sequential update
job, and minimizes the amount of log data written to
the IMS log. See also DEDB (data entry database).

IMS monitor. An IMS monitoring tool, which can be
run online, unlike the IMS DB monitor which can be
run in batch only. DBCTL enables CICS users who do
not have an IMS/ESA DM/TM system to use the IMS
monitor.

in-doubt. Refers to a piece of work that is pending
during commit processing. If commit processing fails
between polling of subsystems and the decision to
execute the commit, recovery processing must resolve
the status of any work that is in-doubt.

in-flight. Refers to a piece of work that is being
processed when a system failure occurs.

I/O PCB. An input/output PCB that is needed to
issue DBCTL service requests.

IRLM (internal resource lock manager). A global lock
manager that resides in its own address space, and
gives the option of keeping most of its control blocks in
local storage instead of in the common storage area
(CSA). You must use the IRLM to maintain data
integrity if you are sharing databases at block level.
(For VSAM databases, a block is a control interval (CI);
for any other kind of database, it is a physical block.)
You also need the IRLM to process a set of common
databases from multiple IMS/ESA (or CICS Transaction
Server for OS/390) subsystems. You may optionally use
the IRLM in a database level sharing environment for
improved integrity for read-only subsystems. The IRLM
is also the lock manager used by DATABASE 2 (DB2).

JES (job entry subsystem). The subsystem used in
CICS with XRF to route commands and queries from
the alternate to the active system.

journal. A set of one or more data sets to which
records are written during a CICS run:
v By CICS to implement user-defined resource

protection (logging to the system log)
v By CICS to implement user-defined automatic

journaling (to any journal, including the system log)
v Explicitly by JOURNAL command (or macro) from

an application program (user journaling to any
journal including the system log).

KB (kilobyte). The abbreviation KB (as in 1KB)
represents the exact value of 1024.

linkage editor. A processing program that prepares
the output of language translators for execution. It
combines separately produced object modules, resolves
symbolic cross-references among them, and produces
executable code that is ready to be fetched or loaded
into virtual storage.

local DL/I. DL/I residing in the CICS address space.
Discontinued in CICS Transaction Server for OS/390
Release 3.

LP (logical partition). A partition, in a central
processing complex, capable of running its own MVS
image. It comprises a set of hardware resources
(processors, storage, channels, and so on, sufficient to
allow a system control program such as MVS to
execute.

MB (megabyte). The abbreviation MB (as in 1MB)
represents the exact value of 1 048 576.

monitoring. In CICS, data produced on timing and
resources used by a task or a logical unit of work
(UOW). Note that CICS distinguishes between
monitoring and statistics, but IMS does not. See also
statistics.

multi-MVS environment. An environment that
supports more than one MVS image. See also MVS
image.

MVS image. Can be a physical processing system
(such as an IBM 3090™), which can be partitioned. Each
partition, which has one or more processors, is an MVS
image.

NODHABEND. A keyword on the EXEC DLI SCHD
PSB command. Used to prevent DHxx abends being
issued after PSB schedule request failures that may
have been caused by unavailable databases. Prevents
end users seeing abends unnecessarily, enables the
application to deal with the situation in a more
user-friendly way, and avoids the need to code global
HANDLE ABEND commands.

OASN (origin application schedule number). An IMS
recovery element in an external subsystem (for
example, DB2). The OASN is equivalent to the unit of
recovery ID in the CICS recovery token. It is coupled
with the IMS ID to become the recovery token for

186 CICS TS for OS/390: CICS IMS Database Control Guide

UOWs in external subsystems. You can display it using
the DBCTL operation command /DISPLAY and then
use the /CHANGE SUBSYS OASN RESET command to
purge incomplete UOWs.

OLDS (online log data set). A data set on direct
access storage that contains the log records written by
DBCTL. When the current OLDS is full, IMS continues
logging to a further available OLDS.

overseer. A CICS program running in its own address
space that provides status information about active and
alternate CICS systems. You can use it to automate a
restart of failed regions.

PAPL (participant adapter parameter list). A
component of the DRA. See also DRA (database
resource adapter).

PAPLRETC. The response code field from the DRA.

PCB (program communication block). An IMS control
block that describes an application program’s interface
to an IMS database or, additionally, for message
processing and batch message processing (BMP)
programs, to the source and destination of messages.
See also PSB (program specification block).

PDIR (PSB directory). Contains entries defining each
PSB to be accessed using local DL/I. Also contains
entries for remote PSBs, to which requests are
function-shipped using remote DL/I. A CICS system
initialization parameter of the same name specifies a
suffix for the PDIR.

physical partition. Part of a central processing
complex (CPC) that operates as a CPC in its own right,
with its own copy of the operating system.

PI (program isolation). An IMS facility that protects
all activity of an application program from any other
active application program until that application
program indicates, by reaching a syncpoint, that the
data it has modified is consistent and complete.

PSB (program specification block). An IMS control
block that describes databases and logical message
destinations used by an application program. A PSB
consists of one or more program communication blocks
(PCBs). See also PCB (program communication block).

pseudo recovery token. A pseudo recovery token
consists of 8 decimal characters, which can be used in
place of the recovery token in certain circumstances.
For example, a pseudo recovery token is displayed
when the status of an application thread is in-doubt. It
is made shorter so that it is easier to make note of and
enter, for example, in certain DBCTL commands. See
also recovery token.

PST (partition specification table). An IMS control
block that contains information about a dependent
region; for example, type of region, data transferred by

DL/I, and status codes. In a CICS-DBCTL environment,
the dependent region is CICS.

RDS (restart data set). An IMS direct access data set
used to contain system checkpoint ID information
written during the logging process. The information is
used when restarting IMS (DBCTL). This checkpoint
information is contained in a table called the
checkpoint ID table, which contains an entry for each
checkpoint taken. During restart, IMS uses the table to
determine from which checkpoint restart should take
place. IMS finds the information it needs and uses it
automatically. If the RDS is not available at restart, you
can obtain the checkpoint information needed from the
log, but this may lengthen the restart process.

(RECON) recovery control data sets. DBRC
automatically records information in dual recovery
control (RECON) data sets. Both data sets contain
identical information, and so are usually referred to as
one—the RECON. You need the information from the
RECON during warm and emergency restarts. DBRC
selects the correct data sets to be used by a recovery
utility for you when you enter a GENJCL command.
For a restart, the RECON shows which data set—the
OLDS or the SLDS—contains the most recent log data
for each database data set (DBDS) you have registered
with DBRC. For the OLDS, the RECON shows whether
the OLDS has been closed and whether it has been
archived. The RECON contains timestamp information
for each log data set and volume. You use this
information to determine which data set and volume
contain the checkpoint information needed to restart
DBCTL.

recovery token. A recovery token is a 16-byte unique
identifier that is created by CICS (and passed to
DBCTL) for each UOW. Its lifetime is the same as the
UOW. The first 8 bytes are the CICS APPLID (in an
XRF environment, this is the generic APPLID) and the
second 8 bytes are a unit of recovery ID. (CICS creates
a unit of recovery ID for every UOW.) DBCTL validates
the recovery token to protect against duplication of
units of recovery. The DBCTL operator can display the
recovery token by using the /DISP CCTL command. It
is also displayed in a number of CICS and IMS
messages. See also pseudo recovery token.

redo. A DEDB term, which is more or less analogous
to the full function DL/I term COMMIT. It has the
same aim, but the means of achieving it are different.
For DEDBs, if phase two action is COMMIT, the
changes must be written to the database using REDO,
because the DEDB changes have only been made in
main storage.

REDO is also used to refer to the action required for
committed DEDBs during emergency restart of IMS.
You can determine from the log that a COMMIT was
initiated, but that phase two is not indicated as
complete. In this case, DEDB updates must be REDOne.

Glossary 187

remote DL/I. Accessing a DL/I database by function
shipping, in which CICS sends a DL/I request to
another CICS system. See also function shipping.

return code equate. An alphameric equivalent of a
numeric return code, such as UERCNOAC for “take no
action”. In DBCTL, return code equates are used in the
XRF global user exits XXDFA, XXDFB, and XXDTO.

RMI (resource manager interface). A program or a
group of programs that enable you to structure calls
from your CICS system in such a way that they can
access non-CICS resources, such as databases, that you
would not normally be able to access. An RMI is
written using the CICS task-related user exit interface.
DBCTL is accessed by means of a CICS-supplied RMI.
See also task-related user exit.

RMODE (residency mode). Specifies where a program
is expected to reside in virtual storage. RMODE 24
indicates that a program is coded to reside in virtual
storage below the 16MB line. RMODE ANY indicates
that a program is coded to reside anywhere in virtual
storage.

RIS (recoverable in-doubt structure). When a failure
occurs, an RIS is constructed for each unit of recovery
and is written to the IMS log. Its contents include the
recovery token, the changed data records, and the
identity of the data block that cannot be accessed
because of unresolved in-doubts.

RSE (recoverable service element). Each recoverable
service element (RSE) contains a set of DBCTL
subsystem identifiers of equivalent DBCTL subsystems
together with their associated job names, and the
specific APPLIDs of the CICS systems that will use
them.

When CICS attempts to connect to DBCTL using a
particular startup table, it attempts to connect using the
specific subsystem ID associated with that startup table,
or any other DBCTL subsystem ID in the RSE to which
the specific subsystem ID belongs. See also equivalent
and RST (recoverable service table).

RST (recoverable service table). A suffixable table,
specified by a CICS system initialization parameter. You
use the CICS RST to define the relationships between
your DBCTL subsystems (DBCTL is a subsystem to
MVS) and CICS systems. The RST consists of a set of
recoverable service elements (RSEs).

CICS can use the RST when connecting to a DBCTL
system, or when a connection to a DBCTL system fails.
A CICS alternate can also use the RST to determine
whether it is authorized to cancel a particular DBCTL
subsystem. See also equivalent and RSE (recoverable
service element).

SCHEDULE PSB. An application schedules a PSB to
obtain access to PCBs. See also PCB (program
communication block) and PSB (program specification
block).

scheduling. Selecting jobs or tasks that are to be run.

single-MVS environment. An environment that
supports one MVS image. See also MVS image.

SIT (system initialization table). A CICS table that
contains user-specified information to initialize and
control system functions, module suffixes for selection
of user-specified versions of CICS modules and tables,
and information used to control the initialization
process. You can generate several SITs and then select
the one that best meets your current requirements at
initialization time.

SLDS (system log data set). When the OLDS is full, it
is archived as an SLDS. An SLDS can be on DASD or
tape. The contents are used as input to the database
recovery process. See also OLDS (online log data set)
and WADS (write ahead data set).

snap dump. A snap (or snapshot) dump can be
requested by a task at any time during which that task
is being processed.

startup job stream. A set of job control statements
used to initialize CICS.

statistics. In CICS and IMS, data produced on timing
and resources used by the system as a whole over a
specified period of time. Note that CICS distinguishes
between monitoring and statistics, but IMS does not.
See also monitoring.

subsystem. A secondary or subordinate system of the
main system; for example, DBCTL, which is a
subsystem to MVS.

SVC (supervisor call). An instruction that interrupts
the program being executed and passes control to the
supervisor so that it can perform a specific service
indicated by the instruction.

syncpoint. A syncpoint (or synchronization point) is a
logical point in execution of an application program
where the changes made to the databases by the
program are consistent and complete and can be
committed to the database. The output, which has been
held up to that point, is sent to its destination(s), the
input is removed from the message queues, and the
database updates are made available to other
applications. CICS recovery and restart facilities do not
backout updates prior to a syncpoint if the program
has terminated abnormally.

A syncpoint is created by any of the following:
v A DL/I CHECKPOINT command or CHKP call
v A DL/I TERMINATE command or TERM call
v A CICS syncpoint request
v An end of task or an end of program.

See also UOW (unit of work).

188 CICS TS for OS/390: CICS IMS Database Control Guide

SYSPLEX (systems complex). In an MVS/ESA
environment, a set of one or more MVS systems given
an XCF name and in which programs in these systems
can then use XCF services.

takeover. In XRF, the shift of workload from the active
to the alternate CICS system, and the switching of
resources needed for this to happen.

task-related user exit. A task-related user exit enables
you to write a user exit program that is associated with
specified events in a particular task, rather than with
every occurrence of a particular event in CICS
processing (as is the case with global user exits).
Task-related user exits can be used to build a resource
manager interface (RMI) that enables you to access
non-CICS resources, such as databases. DBCTL is
accessed by means of a CICS-supplied RMI. See also
global user exit and RMI (resource manager interface).

TCB (task control block). An MVS concept. Anything
in the operating system needs a TCB to execute. In a
non-DBCTL environment, CICS needs only one TCB.
DBCTL provides a separate TCB for each CICS
application thread, which significantly improves the
amount of concurrent processing. See also thread.

thread. A CICS application thread provides a two-way
link between an application and DBCTL. It is the
representation in DBCTL of a CICS transaction when
that transaction issues a DL/I request to DBCTL. The
DRA creates a thread for each transaction when it first
schedules a PSB. The thread is terminated and made
available for other work at syncpoint or when an abend
occurs. It identifies the transaction’s existence, traces its
progress, sets aside the resources it needs to be
processed, and delimits its accessibility to other
resources. You can display and stop threads using IMS
operator commands. You can use them in problem
determination and in performance tuning, because they
are displayed (as recovery tokens) in various messages,
traces, dumps, and thread activity is included in
DBCTL statistics. See also recovery token and TCB
(task control block).

TOR (terminal-owning region). A CICS address space
whose primary purpose is to manage terminals. See
also AOR (application-owning region) and DOR
(database-owning region).

tracking. In XRF, monitoring of terminals in the active
CICS system by the alternate CICS system.

two-phase commit. A two-step process by which
recoverable resources in an IMS system and a CICS
system are committed. During the first step, the
subsystems are polled to ensure that they are ready to
commit. If they all respond positively, they are then
instructed to execute commit processing.

UIB (user interface block). Whenever you issue an
DL/I call, DL/I responds by storing the information in
the UIB in your program. Include the UIB in your

application program only if it is to be referenced. The
UIB is acquired by the interface routine when an
application issues a schedule request specifying a
pointer reference to be set with the address of the UIB.
Information on the success (or otherwise) is returned to
UIBFCTR and UIBDLTR.

undo. A DEDB term, which is more or less analogous
to the full function DL/I term BACKOUT. It has the
same aim, but the means of achieving it are different.
The difference is in the stage at which updates are
written to the database. For DEDBs, if phase two action
of two-phase commit is ABORT, no changes have to be
made to the database, because the changes are still in
main storage, and can be UNDOne from there.

unit of recovery. In DBCTL, a unit of recovery is
created for each processing request when the first DL/I
update request is received from CICS and is kept until
a two-phase commit is complete. A unit of recovery is
more or less synonymous with a CICS UOW, except
that it begins when the first DL/I request is received
from CICS, and not when the CICS task begins. See
UOW (unit of work).

UOW (unit of work). Synonymous with logical unit
of work. In CICS, a sequence of processing actions (for
example, database changes) that must be completed
before any of the individual actions can be regarded as
committed. A UOW begins when a task starts or at a
syncpoint you specified, and ends at a syncpoint you
specified or when a task ends. If you do not specify
any syncpoints, an entire task will be an UOW.

If changes are committed when the UOW completes
successfully and the syncpoint is recorded on the
system log, these changes do not need to be backed out
if there is a subsequent failure of the task or system.
See also unit of recovery and syncpoint.

user-replaceable program. A CICS-supplied program
that is always invoked at a particular point in CICS
processing as if it were part of CICS code. The program
contains points at which you can enter your own code.
DFHDBUEX is a user-replaceable program for use with
DBCTL.

WADS (write ahead data set). A data set that contains
log records that reflect committed operations but are
not yet written to an OLDS (online log data set).

XCF (Cross Systems Coupling Facility). A facility of
MVS/ESA that provides some initial MVS services
needed to support a multisystem environment while
still maintaining a single system image. Systems
coupled using XCF are known as an XCF SYSPLEX.

XRF (extended recovery facility). A software function
that minimizes the impact of various system failures on
users by transferring activity to an alternate system in
the same MVS image or a different one.

Glossary 189

190 CICS TS for OS/390: CICS IMS Database Control Guide

Index

Special Characters
/CHANGE CCTL, DBCTL operator

command 82
/CHANGE PASSWORD, DBCTL

command 62
/CHECKPOINT, DBCTL operator

command 77
/CHECKPOINT command, DBCTL

operator command 88
/CHECKPOINT FREEZE, DBCTL

operator command 69
/CHECKPOINT PURGE, DBCTL

operator command 69
/DBDUMP, DBCTL operator

command 65
/DBRECOVERY, DBCTL operator

command 65
/DELETE,DBCTL operator command 63
/DISPLAY, DBCTL operator

command 63
/ERESTART, DBCTL operator

command 76
/LOCK, DBCTL operator command 62
/LOG, DBCTL operator command 65
/MODIFY, DBCTL operator

command 65
/NRESTART, DBCTL operator

command 75
/RMINIT.dbds, DBCTL operator

command 78
/RMxxxxxx, DBCTL operator commands,

for DBRC 62
/SSR, DBCTL operator command 66
/START, DBCTL operator command 67
/STOP, DBCTL operator command 67
/SWITCH OLDS, DBCTL operator

command 35, 66
/TRACE, DBCTL operator command 63,

153, 154
/UNLOCK, DBCTL command 62

Numerics
24-bit addressing 99
31-bit addressing 99

A
abend U113, IMS 88
abends, DL/I CALL

ADCA 113
ADCB 113
ADCC 112
ADCD 113
ADCE 113
ADCI 113
ADCJ 112, 113
ADCN 113
ADCP 112
ADCQ 112
ADCR 113

abends, DL/I CALL (continued)
ADDA 113
UIB (user interface block) 89
UIBDLTR 112, 113
UIBFCTR 112, 113

abends, EXEC DLI
ADCA 113
ADCB 113
ADCC 112
ADCD 113
ADCE 113
ADCI 113
ADCJ 112, 113
ADCN 113
ADCP 112
ADCQ 112
ADCR 113
ADDA 113
DHTA 112
DHTC 112
DHTE 112
DHTG 113
DHTH 113
DHTJ 112
DHxx 113
DL/I interface block (DIB) 89
preventing after PSB schedule

failure 106
UIBDLTR 112, 113

abnormal termination of DBCTL 88
ACCEPT STATUSGROUP command 101
ACTIVE keyword 63
address spaces 6
addressing, 24-bit 99
addressing, 31-bit 99
addressing mode (AMODE) 99
AGN, DRA startup parameter 39, 115
AIB (application interface block) 94
alternate PCB, summary 104
alternate TP PCB 103
AMODE (addressing mode) 99
APPLCTN macro 24, 29, 110
application interface block (AIB) 94
application programming, DL/I

access to DEDBs 95
additional facilities with DBCTL 95
BMP design considerations 111
comparison, command codes and

keywords 97
considerations with DBCTL 93
defining DMBs 110
I/O PCB 103
return codes and abends 112
subset pointers 96
system service requests 103
with BMPs 102

APPLID, system initialization
parameter 24

archiving an OLDS 35
asynchronous database buffer purge

facility, IMS 160

automating connection to DBCTL 46

B
backout, status codes 102
batch backout for in-doubt units of

recovery 81
BEEQE (buffer extended error queue

element) 81
benefits of DBCTL 9

access to DEDBs 10
BMPs 9
data availability 9
failure isolation 13
improved sharing of databases 13
multiple TCBs 14
multiprocessor throughput 14
online utilities 13
performance 14
release independent interface 13
summary 1
system service requests 10
VSCR 14
XRF 14

BMP (batch message processing
program) 102

benefits 9
design considerations 111
migrating from CICS shared database

batch jobs 111
security considerations 118

buffer extended error queue element
(BEEQE) 81

BUFPOOLS macro 29

C
CALL DL/I application programming

interface
calls supported 109
comparison, commands and calls 108
DBCTL support 94
DEQ 10, 106
IMS AIB call format 94
INIT 100, 101
LOG 10, 106
ROLS 107
schedule PSB 105
SETS 107
subset pointers 96
UIB (user interface block) 89

CANCEL command, response to
DFS690A 51, 88

CBRC transaction 62
CCTL (coordinator control subsystem) 7
CCTL keyword with /DISPLAY

command 63
CCTLDD, DD name 26
CDBC, transient data queue 28
CDBC transaction

functions 47

© Copyright IBM Corp. 1989, 1999 191

CDBC transaction (continued)
help screen 49
immediate disconnection 51
menu screen 47
orderly disconnection 51
to connect to DBCTL 45
using 47

CDBI transaction
help screen 53
inquiring on status of interface 52
inquiry screen 52
using 47

CDBM Group command
DFHBFK file 58
maintenance panel for DFHBFK

file 59
record layout 58

CDBM transaction
example help screen 56
example screen 55
implementing 30
issuing IMS operator commands 55

CDBT transaction 125
CEMT INQ TASK command 51, 68, 125
CEMT PERFORM DUMP|SNAP

command 139
CEMT SET TASK purge command 51
CICS system definition (CSD) file 27
CICS XRF (extended recovery facility)

with DBCTL
connecting to DBCTL after

takeover 47
DFHDXnnnn messages 70
INITPARM 47
introduction 14
preinitialized DBCTL 14

CNBA, DRA startup parameter 39
coexistence of local DL/I and DBCTL

XDLIPRE to change PSB to be
scheduled 177

cold starting DBCTL 75
command codes, DL/I CALL 97
command recognition character

(CRC) 53
COMMIT request, trace 136
communicating with DBCTL 53
components of DBCTL

adapter 5
CCTL (coordinator control

subsystem) 7
CICS 4
DBCTL 6
DBRC 6
DFHDBAT 5
DFHDLI 4
DLISAS 6
DRA 5
DRA startup parameter table 5, 38
IMS 5
IRLM 6
major components 7
PI (program isolation) 6
resources DBCTL can access 8
task-related user exit interface 5

connection to DBCTL
after CICS COLD start 46
after CICS INITIAL start 46

connection to DBCTL (continued)
after CICS WARM or EMERGENCY

start 46
after CICS XRF takeover 47
automating 27, 46
CDBC transaction 47
connection fails 124
DBCTL not available 50
INIT request 47
INITPARM and DBCTLID 46
introduction 3
messages issued 50
requesting 45
trace 128
using CDBC from CRLP-type

terminal 49
using CDBC menu 47
using CDBC without menu 49

console, DBCTL 53
control information for startup 28
coordinator control subsystem (CCTL) 7
CRC (command recognition

character) 53
CSAPSB, IMS system generation

parameter 29
CSD (CICS system definition) file 27
customizing DBCTL 42

D
data availability 9
data set level recovery 84
database change accumulation utility,

DFSUCUM0 83
DATABASE macro 29, 110
database PCB (DB PCB) 104
database recovery utility, DFSURDB0 84

to process in-doubt units of
recovery 81

DB PCB (database PCB) 104
DBC procedure library member 37
DBCTLCON, system initialization

parameter 24
DBCTLID, DRA startup parameter 38
DBFULTA0, DEDB log analysis

utility 155
DBRC (Database Recovery Control)

/RMxxxxxx commands 62
archiving 35
CBRC transaction 62
commands used to register

databases 78
functions 6
log control 34, 78
normal termination messages 172
procedure 37
RECON 78
startup messages 172
termination messages 172

DD statements in CICS
for DBCTL 25
removed with DBCTL 26

DDNAME, DRA startup parameter 38
DEDB (data entry database)

application program access to 95
area data set compare utility 11
area data set create utility 11
benefits 10

DEDB (data entry database) (continued)
direct reorganization utility 10
FPCTRL macro 29
HSSP (high speed sequential

processing) 160
initialization utility 11
log analysis utility 155
parameters, tuning 158
performance 159
POS command 98
sequential dependent delete

utility 11
sequential dependent scan utility 11
subset pointers 12, 96
using command codes 98

defining DBCTL 28
DEQ call 10, 106
DEQ command 10, 106
DFHDBAT (database

adapter/transformer)
DRA parameter lists 5
functions 5

DFHDBCON program, DBCTL
connection 27

DFHDBFK
CDBM Group command 58

DFHDBnnnn messages 50
DFHDBSTX exit, DBCTL statistics 147
DFHDBUEX, user-replaceable program

for DBCTL 42
DFHDLI, CICS-DL/I router 4
DFHDLPSB macro 25
DFHDXAX 50
DFHDXnnnn, CICS XRF messages 70
DFHIVPDB, DBCTL IVP 21
DFHSTUP, statistics utility program 147
DFS989I message 37
DFSERA10, file select and formatting

print utility 77, 86, 137, 154, 155
DFSMDA, IMS dynamic allocation

macro 36
DFSPBDBC member 36
DFSPIRP0, program isolation trace report

utility 155
DFSPRP macro

AGN 39, 115
CNBA 39
DBCTLID 38
DDNAME 38
DSECT 38
DSNAME 38
FPBOF 39
FPBUF 39
FUNCLV 38
MAXTHRD 39
MINTHRD 38
SOD 39
TIMEOUT 39
TIMER 39
USERID 38

DFSPRRC0, DRA startup router
program 25

DFSPZPxx, DRA startup parameter table
module 25

DFSUARC0, log archive utility 86
DFSUCUM0, database change

accumulation utility 83

192 CICS TS for OS/390: CICS IMS Database Control Guide

DFSULTR0, log recovery utility 86
DFSURDB0 database recovery utility 84
DFSUTR20, IMS monitor report print

program 154
DFSVSMxx member

contents 26
for DL/I trace 154
starting DBCTL trace 136

DIB (DL/I interface block) 89
contents for successful DL/I

request 135
status after PSB schedule 100
TR status code in 113

disconnecting DBCTL
CDBC transaction 47
disconnection fails 125
immediate 47, 51
long running tasks 51
orderly 47, 51
reconnection attempts 88
trace 131
using CDBC 51

DL/I (Data Language/I)
CALL abends 112, 113
comparison, keywords and command

codes 97
contents of DIBSTAT for successful

DL/I request 135
interface block (DIB) 89, 100
procedure 37
request handling 2, 3
requests supported 109
specifying in CICS system

initialization parameters 22
support available 2
trace of DL/I request 135

DLIPSB, IMS system generation
parameter 29

DLISAS (DL/I separate address space)
contents 6
normal termination messages 172
startup messages 171
termination messages 172

DMB (data management block)
defining 110
during migration 110
IMS macros to define 25

DRA (database resource adapter)
AGN 115
CCTLDD 26
creating 38
DD statements 25
DFSPRP macro 38
DFSPRRC0, startup router

program 25
DFSPZPxx, startup parameter

table 25
DFSPZPxx module 38
DRA startup router program,

DFSPRRC0 25
example JCL to generate 40
failure 87
functions 5
INIT request 47
parameter lists 5
recovery 87
snap data set 139

DRA (database resource adapter)
(continued)

specification of number of
threads 157

startup table parameters 38
TERM request 47
time override for connection

attempts 51
DSALIM, system initialization

parameter 24
DSECT, DRA startup parameter 38
DSNAME, DRA startup parameter 38
dumps, CICS

problem occurring in CICS or
DBCTL 139

system 139
transaction 138
what is provided for DBCTL 139

dumps, DBCTL
description 140
produced by DBCTL 140

dumps, DRA
return codes 142
SDUMP, contents 140
SDUMP, when produced 139
SNAP, contents 140
snap data set 139
when produced 139

dynamic backout
meaning in CICS 77
meaning in IMS 77

E
EDF (execution diagnostic facility) with

DBCTL 143
EDSALIM, system initialization

parameter 24
EEQEL (extended error queue element

link) 81
emergency restart, DBCTL

description 76
status of in-flight UOWs 76

enhanced scheduling
accepting status codes 101
increased 99
obtaining information about 100
QUERY command 100
REFRESH command 100
refreshing PCB status codes 100

environment of DBCTL 3
error scenarios, DBCTL

connection fails 124
connection to DBCTL not

complete 124
disconnection fails 125
DLSUSPND 126
immediate disconnection 125
orderly disconnection 125
PSB scheduling failures 126
trace of COMMIT request 136
trace of connection to DBCTL 128
trace of disconnection from

DBCTL 131
trace of DL/I request 135
trace of failed PSB schedule 134
trace of PREPARE request 136

error scenarios, DBCTL (continued)
trace of successful PSB schedule 133
trace of TERMINATE thread

request 136
waits 124

EXEC CICS DUMP SYSTEM
command 139

EXEC DLI application programming
interface

abends 112, 113
ACCEPT command 101
additional keywords 96
commands supported 109
comparison, commands and calls 108
comparison, keywords and command

codes 97
DBCTL support 94
DEQ 10, 106
DHxx abends 106
DIB (DL/I interface block) 89
GETFIRST keyword 96
LOCKCLASS keyword 96
LOG 10, 106
MOVENEXT keyword 96
NODHABEND keyword 106
obtaining information in DIB 100
QUERY command 100
REFRESH command 100
ROLS command 107
SCHD PSB 105
SCHD PSB failure 106
SET keyword 96
SETCOND keyword 97
SETS and ROLS commands 107
SETS command 107
SETZERO keyword 97
subset pointers 96
SYSSERVE keyword 97

execution diagnostic facility (EDF) with
DBCTL 143

extended error queue element link
(EEQEL) 81

external subsystem commands 66

F
file select and formatting print utility,

DFSERA10 77, 86, 137, 154, 155
FPBOF, DRA startup parameter 39
FPBUF, DRA startup parameter 39
FPCTRL macro 29
FUNCLV, DRA startup parameter 38
function shipping AIB requests 94

G
generalized trace facility (GTF) 155
generating DBCTL

checklist 21
database buffers 36
example JCL 31
IMS INSTALL/IVP 31
introduction 28
naming convention 37
overriding DBCTL generation

parameters 36
GETFIRST keyword 96

Index 193

global user exits
for XRF 43
XDLIPOST 42
XDLIPRE

example 177
function 42
in migration 18

XRMIIN 43
XRMIOUT 43

GSAM PCB 104
GTF (generalized trace facility) 155

H
high speed sequential processing

(HSSP) 160
HSSP (high speed sequential

processing) 160

I
I/O PCB (input/output PCB) 103

summary 104
IEEQE (in-doubt extended error queue

element) 81
IMS dynamic allocation macro,

DFSMDA 36
IMS INSTALL/IVP 31
IMS log statistics 154
IMS logging 33
IMS monitor 152, 154

allocating IMSMON data set 153
first phase 154
general reports 151
general wait time events 151
program summary 152
region summary report 151
regions and jobname report 151
report print program, DFSUTR20 154
reports not used with DBCTL 151
reports used with DBCTL 150
run profile 152
running 152
second phase 154
starting and stopping

dynamically 153
transaction queuing report 152

IMS.RESLIB library 25, 26
IMS system data sets, modifying 30
IMS XRF (extended recovery facility)

introduction 14
IMSCTF macro 29
IMSCTRL macro 28
IMSGEN macro 30
in-doubt extended error queue element

(IEEQE) 81
INIT call 101

accept status codes 101
refresh PCB status codes 100

INIT request 47
INITPARM, system initialization

parameter 24, 46
inquiring on status of DBCTL

interface 52
inquiry transaction, CDBI 47, 52
installing DBCTL

checklist 21

installing DBCTL (continued)
DBC procedure library member 37
DBCTL IVP, DFHIVPDB 21
DBRC procedure 37
DLI procedure 37

IRLM (internal resource lock manager)
functions 6
tracing activity with GTF 155

J
JCL example to generate DBCTL 31

K
keywords, EXEC DLI 97

L
local DL/I

AMODE/RMODE support 99
APPLID parameter 24
DBCTLCON parameter 24
definition 2
directory lists 25
DSALIM parameter 24
EDSALIM parameter 24
partial system generation 21

LOCKCLASS keyword 10, 96
log, IMS

defined by IMSCTF 29
IMS statistics 154
log records written during two-phase

commit 77
PI trace records 154

log analysis utility, DEDB 155
log archive utility, DFSUARC0 86
LOG call 10, 106
LOG command 10, 106
log management

CICS system log not needed with
DBCTL 27

with DBCTL 27
log records 77

X’07’ 154
X’08’ 154

log recovery utility, DFSULTR0 86
logging with DBCTL

/SWITCH OLDS command 35
archiving 35
DBRC 34
defining IMS parameters 35
OLDS 33
switching OLDS 66
WADS 34

M
macros, IMS system generation

APPLCTN 24, 29
BUFPOOLS 29
creating control information for

startup 28
DATABASE 29
DFHDLPSB 25
FPCTRL 29

macros, IMS system generation
(continued)

IMSCTF 29
IMSCTRL 28, 29

MAXREGN 29
IMSGEN 30
SECURITY 29

main storage buffer pool sizes 29
MAXREGN parameter, IMSCTRL system

generation macro
in system definition 29
tuning 157

MAXTHRD, DRA startup table parameter
in DRA startup table 39
tuning 157

MCT (monitoring control table)
additional entries DBCTL 27
CICS monitoring control table 149
DFH$MCTD 27

messages, CICS-DBCTL
categories 141
dealing with 70
DFHDB8101 130
DFHDB8102 87, 132
DFHDB8103 71
DFHDB8104 71, 88
DFHDB8106 87
DFHDB8109 71, 81, 88, 134
DFHDB8111 88
DFHDB8116 129
DFHDB8117 46
DFHDB8130 88
DFHDB8209 47, 48
DFHDB8210 50
DFHDB8211 131
DFHDB8212 131
DFHDB8225 50
DFHDB8290 53
DFHDB8291 53, 124
DFHDB8292 50, 53, 124
DFHDB8293 47, 52, 53, 130
DFHDB8294 53
DFHDB8295 53
DFHDB8296 53
DFHDBnnnn, CICS 50
DFHDXnnnn, CICS XRF 70
DFS690A 51
on menu and inquiry screens 141
rerouting 141
routed to CDBC 141
suppressing 141
user interaction 141

messages, DBCTL
categories 141
DBCTL normal termination 172
DBCTL startup 171
DBRC startup 172
DBRC termination 172
dealing with 70
DFS613I 88
DFS628I 88
DFS629I 88
DFS690A 88
DFS989I 37
DFS994I 45
DLISAS normal termination 172
DLISAS startup 171

194 CICS TS for OS/390: CICS IMS Database Control Guide

messages, DBCTL (continued)
user interaction 141

migration to DBCTL
based on current setup 18
CICS-IMS release compatibility 15
CICS PSB authorization checking 118
CICS shared database batch jobs to

BMPs 111
DBCTL resource access checking 120
DL/I program to DBCTL

program 110
native IMS batch jobs to BMPs 111
other methods of accessing DL/I 15
paths 16

CICS with function shipping 16
CICS with IMS data sharing and

batch 16
CICS with IMS/VS DB/DC or

IMS/ESA DM/TM 17
CICS with local DL/I 16
CICS with local DL/I and data

sharing 16
CICS with shared database 16

planning
number of DBCTL subsystems to

use 19
setting up test and production

systems 19
RACF preparations 121
remote DL/I 15
security considerations 118
security migration scenarios 118
suggested procedure 17
task summary 163
tasks

application programming 165
education 163
installation 163
monitoring 166
operations 164
performance 166
problem determination 166
recovery and restart 165
resource definition 163
security 165
statistics 166
system definition 163

MINTHRD, DRA startup table parameter
tuning 157

MODIFY command, MVS
STOP option 88

monitoring, DBCTL data
obtaining 149
program isolation trace 154
returned to CICS 148
returned to IMS log 154
statistics 146

MOVENEXT keyword 96
MTO (master terminal operator)

CDBC transaction 5, 45, 47
CDBI transaction 47
connection to DBCTL 5
disconnection from DBCTL 5

multisegment operator commands,
DBCTL 54

MVS console, for DBCTL operations 53

MVS/ESA Resource Measurement
Facility 155

MVS MODIFY command 70, 89
DFSnnnn messages 70

MXT, system initialization parameter,
tuning 158

N
NODHABEND keyword 106
null words in DBCTL operator

commands 54

O
OLDS (online log data set) 33

recovery with log recovery utility 86
online change, to modify IMS system

data sets 30
online change utility 13
online image copy utility 13
online reorganization 14
operations, DBCTL 45

CDBM 30
command summary 173
using MVS console 53

operator commands, DBCTL
/CHANGE CCTL 82
/CHANGE PASSWORD 62
/CHECKPOINT 77
/CHECKPOINT command 77, 88
/DELETE 63
/DISPLAY 63
/ERESTART 76
/LOCK 62
/LOG 65
/NRESTART 75
/RMINIT.db 78
/RMxxxxxx, for DBRC 62
/SWITCH OLDS 35
/TRACE 63, 153, 154
/UNLOCK 62
CICS and DBCTL, comparison 173
CRC 53
DBCTL commands valid with

CDBM 173
DBCTL operator, summary 173
DBRC 62
external subsystem 66
format of 53
multisegment 54
null words 54
passwords with 54
status of RIS 83
to start CICS 45
to start DBCTL 45
to start IMS 45
used for termination of DBCTL 88

operator commands, MVS
F jobname,RECONNECT 89
F jobname,STOP|DUMP 70
MODIFY 29
MVS MODIFY 70, 89
used for termination of DBCTL 88

operator communication with
DBCTL 53

overview of DBCTL 1

P
PAPL (participant adapter parameter list)

description of request codes 142
description of return codes 142
PAPLRETC 139
return codes from CICS to DRA 143
return codes from DRA to CICS 143

passwords with operator commands 54
PCB (program control block)

alternate TP PCB 103
batch programs 105
BMPs 104
CICS online programs 104
comparison with AIB for EXEC DLI

calls 95
DB PCB 104
GSAM PCB 104
I/O PCB 103
summary 104

PDIR, system initialization parameter 24
performance, DBCTL

asynchronous database buffer
purge 160

auxiliary trace 155
benefits 14
CICS shared database jobs as

BMPs 161
DEDB parameters, tuning 158
DEDBs 159
HSSP (high speed sequential

processing) 160
IMS batch jobs as BMPs 161
job dispatching priorities 156
monitoring 145
multiprocessor throughput 161
numbers of threads 157
parameters in CICS 156
parameters in IMS 156
statistics 145, 146
tuning 156
virtual storage 160

performance tools, DBCTL
CICS auxiliary trace facility 155
GTF (generalized trace facility) 155
MVS/ESA Resource Measurement

Facility 155
PI (program isolation)

functions 6
trace 154
trace report utility, DFSPIRP0 155

PLT (program list table) 27
PLTPI, connecting to DBCTL at CICS

startup 27
POS command and call with DEDBs 98
preinitialized DBCTL with XRF 14
PREPARE request, trace 136
problem determination 123

CICS trace entries 127
connection fails 124
connection to DBCTL not

complete 124
correlating activity in DBCTL and

CICS 126
DBCTL dumps 140
DBCTL error scenarios 124
DBCTL return codes 141
disconnection fails 125

Index 195

problem determination 123 (continued)
DLSUSPND 125, 126
immediate disconnection 125
IMS X’67FA’ log records 138
interactions at interface level 123
interactions at request level 123
interactions between CICS and

DBCTL 123
kind of dump produced 142
orderly disconnection 125
PAPL request codes 142
PAPL return codes 142
problem occurring in CICS or

DBCTL 139
PSB scheduling failures 126
starting tracing in DBCTL 136
trace 127
trace of COMMIT request 136
trace of connection to DBCTL 128
trace of disconnection from

DBCTL 131
trace of DL/I request 135
trace of failed PSB schedule 134
trace of PREPARE request 136
trace of successful PSB schedule 133
trace of TERMINATE thread

request 136
waits 124

procedure library member DBC 37
PROCOPT=P parameter 18
program list table (PLT) 27
PSB (program specification block)

containing PCBs for GSAM and
MSDB 101

data availability 9
defining for application program

access 110
defining when generating DBCTL 29
enhanced scheduling 99
format 104
IMS macros to define 25
in APPLCTN macro statement 29
PDIR list 24
preventing abends after schedule

failure 106
schedule failed, contents of

UIBDLTR 134
schedule failed, contents of

UIBFCTR 134
schedule requests during

disconnect 51
schedule successful, contents of

UIBDLTR 133
schedule successful, contents of

UIBFCTR 133
status in DIB 100
trace of schedule failure 134
trace of successful schedule 133
XDLIPRE to change PSB to be

scheduled 177
XPSB parameter 25

pseudo recovery tokens 81
purging a transaction 68

Q
Q command code 10
QUERY command 100

R
RACF (resource access control facility)

checking by DBCTL 115
definition of PSBs 25

RECON (recovery control data sets)
DBCTL operator commands 62
example JCL to initialize 34
information 78
information included 34
specified in DFSMDA 26

reconnecting DBCTL, with MVS MODIFY
command 89

reconnecting to DBCTL 50
recoverable service table (RST) 25
recovery and restart with DBCTL 73

/CHECKPOINT command 77
/CHECKPOINT FREEZE 75
/CHECKPOINT PURGE 75
/ERESTART command 76
/SWITCH OLDS command 35
ABORT 78
archiving 35
backing out uncommitted updates 77
backout 79
BEEQE 81
BMP failure 90
CICS failure 87
CICS keypoints 76
CICS units of work (UOWs) 81
cold start 75
COMMIT 78
commit protocols 78
data set level 84
database change accumulation

utility 83
database recovery utility 84
database utilities 83
DBCTL failure 88
DBCTL unit of recovery 81
DBRC 34
deadlocks and automatic restart 89
DEDB UNDO 79
defining IMS logging parameters 35
description of CICS initialization 73
description of CICS termination 73
DRA failure 87
EEQEL 81
emergency restart 76
IEEQE 81
IMS checkpoints 76
IMS logging 33
in-doubt units of recovery 81
in-flight unit of recovery 81
IRLM failure 89
log archive utility 86
log records 77
log recovery utility 86
log utilities 86
multiple resource managers 80
MVS failure 91
OLDS 33
online log data set (see OLDS) 33
overview of CICS procedures 73
overview of IMS procedures 73
power failure 91
PREPARE 78
processor failure 91

recovery and restart with DBCTL 73
(continued)

pseudo recovery tokens 81
RECON 78
recovery tokens 81
restarting DBCTL 74
RIS 81
RRE 81
switching OLDS 66
thread failure 89
TIMEOUT 87
track level 84
transaction failure 89
two-phase commit 78
units of recovery 78
WADS 34
warm start 75
when updates are written to

databases 79
write-ahead data set (see WADS) 34

recovery tokens 81, 136
REFRESH command 100
release independence 13
remote DL/I

AMODE/RMODE support 99
APPLID parameter 24
DBCTLCON parameter 24
DSALIM parameter 24
EDSALIM parameter 24
partial system generation 21
PDIR list 24
support available 2

request handling 2
residency mode (RMODE) 99
residual recovery element (RRE) 81
resource definition, DBCTL 22
Resource Measurement Facility,

MVS/ESA 155
resources accessed in DBCTL 8
restarting DBCTL 74
return codes, DBCTL 141

PAPL 142
to indicate type of dump 142

return codes for programs 112
RGSUF= keyword 36
RIS (recoverable in-doubt structure)

contents of 81
status with emergency restart 76

RMODE (residency mode) 99
ROLS call 107
ROLS command 107
RRE (residual recovery element) 81
RST (recoverable service table) 25
RST, system initialization parameter 25

S
SCHD PSB command 105
schedule PSB call 105
security, DBCTL

AGNs 117
CICS PSB authorization 118
DBCTL checking 115
DBCTL considerations 115
DBCTL ID 117
DBCTL resource access checking 120
DBCTL resource access security

parameters 117

196 CICS TS for OS/390: CICS IMS Database Control Guide

security, DBCTL (continued)
DRA startup table 115, 118
migration considerations 118
migration scenarios 118
password security checking 118
PSB authorization checking by

CICS 115
PSBs 117
RACF 115, 121
security maintenance utility 115
using BMPs with DBCTL 118

security class name 25
SECURITY macro 29
security maintenance utility, IMS

descriptions of protected
resources 30

IMS.MODBLKS 30
IMS passwords 63

SET keyword 96
SETCOND keyword 97
SETS call 107
SETS command 107
SETZERO keyword 97
SLDS (system log data set) 86
SLR (Service Level Reporter) 150
SOD, DRA startup parameter 39
startup messages, DBCTL 171
startup messages, DBRC 172
startup messages, DLISAS 171
startup parameters 28
startup parameters, illustration 167
statistics, unsolicited 146
statistics utility program, DFHSTUP 147
status codes

accepting 101
BA 101
BB 101
DL/I interface block (DIB) 89
UIB (user interface block) 89
with backout 102

stopping DBCTL
abnormally 70
normally 69

subordinate TCBs 139
subset pointers 12, 96
SYSSERVE keyword 97
system definition, IMS 28

stage 1 28
stage 2 28
using to define DBCTL 28

system definition parameters
APPLID 24
CICS system initialization parameters,

reviewing 23
CSAPSB 29
DBCTL startup 28
DBCTLCON 24
DLIPSB 29
DSALIM 24
EDSALIM 24
for DBCTL startup, illustration 167
INITPARM 24, 46
PDIR 24
PSBCHK 24
RST 25
system initialization 22
XPSB 25

system dumps, CICS 139
system initialization parameters

APPLID 24
DBCTLCON 24
DSALIM 24
EDSALIM 24
INITPARM 24, 46
parameters 22
PDIR 24
PSBCHK 24
RST 25
specifying DL/I support 22
XPSB 25

system log data set (SLDS) 86
system service requests 10, 103

T
task control block (TCB) 14
TCB (task control block) 14
TERM request 47
TERMINATE thread request, trace 136
terminating DBCTL 88

DUMP option 88
with /CHECKPOINT command 77
with MVS MODIFY command 70

termination, abnormal 88
termination messages, DBCTL 172
termination messages, DBRC 172
termination messages, DLISAS 172
threads

definition 5
specification in DRA startup

table 157
trace of termination 136

TIMEOUT, DRA startup parameter 39
TIMEOUT parameter 87
TIMER, DRA startup parameter 39
trace, CICS-DBCTL

as debugging tool 127
auxiliary 155
connection to DBCTL 128
contents of UIBDLTR 133
contents of UIBFCTR 133
disconnection from DBCTL 131
DL/I request 135
entries produced 127
PSB schedule, successful 133
PSB scheduling failure 134
thread termination 136

trace, DBCTL
as debugging tool 127
DL/I trace 154
entries produced 136
IMS X’67FA’ log records 138
starting 136
using /TRACE command 63

track level recovery 84
transaction dumps, CICS 138
transaction level monitoring data 148
transaction using DBCTL, purging 68
transactions for DBCTL

CDBC 47
CDBI 47

transient data queues, entry for
CDBC 28

tuning, CICS-DBCTL 156
two-phase commit, DBCTL

ABORT 78

two-phase commit, DBCTL (continued)
COMMIT 78
DEDB REDO 79
log records 77
phase 1 79
phase 2 79
PREPARE 78
unit of recovery 81
when updates are written to

databases 79

U
U113, IMS abend 88
UIB (user interface block)

description 89
UIBDLTR, after PSB schedule 135
UIBDLTR, contents 112, 113
UIBFCTR, after PSB schedule 135
UIBFCTR, contents 112, 113

unit of recovery
during two-phase commit 81
in-doubt 81
in-flight 81
status with emergency restart 76

unsolicited statistics 146
UOW (unit of work)

definition 81
in-doubt, resolving manually 82
in-doubt during two-phase

commit 81
in-flight during two-phase

commit 81
user-replaceable programs 42

DFHDBUEX 42
USERID, DRA startup parameter 38
utilities, IMS

batch backout 81
database change accumulation 83
database recovery 81, 84
DEDB area data set compare

utility 11
DEDB area data set create utility 11
DEDB direct reorganization utility 10
DEDB initialization utility 11
DEDB log analysis utility 155
DEDB sequential dependent delete

utility 11
DEDB sequential dependent scan

utility 11
file select and formatting print 86,

154
file select and formatting print utility,

DFSERA10 77, 155
IMS monitor 152
log archive 86
log recovery 86
online change utility 13
online image copy utility 13
online reorganization for DEDBs 14
program isolation trace report 155
security maintenance 54, 115

utility programs, CICS

DFHSTUP 147

Index 197

V
VSCR (virtual storage constraint relief)

freeing storage in CICS 14
tuning a DBCTL system 160

W
WADS (write-ahead data set) 34

WAIT command, response to
DFS690A 51, 88

waits, DBCTL 124

warm restart, DBCTL

after /CHECKPOINT FREEZE 75
after /CHECKPOINT PURGE 75
state of resources 75

write-ahead data set (WADS) 34

X
XDLIPOST, global user exit 42

XDLIPRE, global user exit

function 42
to change PSB to be scheduled 177

XPSB, system initialization parameter 25

XRMIIN, global user exit 43

XRMIOUT, global user exit 43

XXDFA, global user exit for XRF 43

XXDFB, global user exit for XRF 43

XXDTO, global user exit for XRF 43

198 CICS TS for OS/390: CICS IMS Database Control Guide

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which
the information is presented.

To request additional publications, or to ask questions or make comments about
the functions of IBM products or systems, you should talk to your IBM
representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

You can send your comments to IBM in any of the following ways:
v By mail, to this address:

Information Development Department (MP095)
IBM United Kingdom Laboratories
Hursley Park
WINCHESTER,
Hampshire
SO21 2JN
United Kingdom

v By fax:
– From outside the U.K., after your international access code use

44–1962–870229
– From within the U.K., use 01962–870229

v Electronically, use the appropriate network ID:
– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
– IBMLink

™

: HURSLEY(IDRCF)
– Internet: idrcf@hursley.ibm.com

Whichever you use, ensure that you include:
v The publication number and title
v The topic to which your comment applies
v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 1989, 1999 199

����

Program Number: 5655-147

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC33-1700-31

Sp
in

e
in

fo
rm

at
io

n:

�
�

�
C

IC
S

T
S

fo
r

O
S/

39
0

C
IC

S
IM

S
D

at
ab

as
e

Co
nt

ro
lG

ui
de

R
el

ea
se

3

	Contents
	Notices
	Programming interface information
	Trademarks

	Preface
	Who this book is for
	What this book is about
	What you need to know before reading this book
	How to use this book
	Determining if a publication is current
	Terms used

	Bibliography
	CICS Transaction Server for OS/390
	CICS books for CICS Transaction Server for OS/390
	CICSPlex SM books for CICS Transaction Server for OS/390
	Other CICS books

	Summary of changes
	Changes for CICS Transaction Server for OS/390 Release 3
	Changes for CICS Transaction Server for OS/390 Release 2
	Changes for CICS TS for OS/390 release 1
	Changes for the CICS/ESA 4.1 edition
	Changes for the CICS/ESA 3.3 edition

	Chapter 1. Overview of Database Control (DBCTL)
	Summary of the benefits of DBCTL
	Overview of DL/I request handling in CICS
	Connecting to DBCTL
	CICS-IMS DBCTL environment
	CICS-IMS DBCTL environment—description of components
	CICS-DBCTL interface control components in CICS addressspace
	CICS-DL/I router (DFHDLI)
	CICS database adapter transformer (DFHDBAT)
	Database resource adapter (DRA)

	Components of DBCTL in IMS address spaces
	DBCTL
	DL/I separate address space (DLISAS)
	Database Recovery Control (DBRC)
	Internal resource lock manager (IRLM)
	Summary of DBCTL components in CICS and IMS

	Coordinator control subsystem (CCTL)
	Resources you can access from a CICS environment that includesDBCTL

	Chapter 2. Benefits of using DBCTL
	Function
	Data availability
	Batch message processing programs (BMPs)
	System service requests
	Access to data entry databases (DEDBs)

	System availability
	Release independent interface
	Improved sharing of databases between multiple CICSsystems
	Failure isolation
	Operational flexibility
	Online image copy utility
	Online change utility
	Online reorganization for DEDBs

	Ability to use XRF

	Performance
	Virtual storage constraint relief
	Improved throughput on multiprocessors

	Chapter 3. Migration considerations for DBCTL
	Other methods for accessing DL/I
	Withdrawn support of local DL/I and shared database

	CICS-IMS release compatibility
	Possible migration paths
	CICS with local DL/I
	CICS with local DL/I and data sharing
	CICS with shared database
	CICS with IMS data sharing and batch
	CICS with function shipping
	CICS with IMS/ESA DM/TM
	Scenario 1
	Scenario 2

	Suggested migration procedure
	Planning your new DBCTL setup
	Setting up test and production systems
	Number of DBCTL subsystems to use

	Chapter 4. Installing DBCTL, and defining CICS and IMSsystem resources
	Checklist for installing and generating DBCTL
	Defining CICS system resources
	System initialization parameters
	Specifying DL/I support in system initialization parameters
	Reviewing CICS system initialization parameters

	PSB directories (PDIRs)
	DD statements
	DD statements removed from CICS JCL in a DBCTL-exclusiveenvironment

	CICS-supplied groups within CICS system definition
	Log management
	Monitoring control table (MCT)
	Program list table (PLT)
	Transient data queues

	Generating DBCTL
	Defining the DBCTL subsystem
	IMS system generation macros used by DBCTL
	Implementing CICS-supplied transaction, CDBM
	Modifying IMS system data sets using online change
	Example of JCL required to generate a basic DBCTL subsystem

	IMS logging
	IMS online log data set (OLDS)
	IMS write-ahead data set (WADS)
	Log control with DBRC
	Defining IMS logging parameters
	Archiving

	IMS dynamic allocation macro (DFSMDA)
	Database buffer specifications and option parameters
	Overriding DBCTL generation parameters at execution time
	Naming convention

	Starting DBCTL, DLISAS, and DBRC
	Defining the IMS DRA startup parameter table
	Example JCL to generate a DRA startup table

	Customizing DBCTL
	DFHDBUEX
	Global user exits XDLIPRE and XDLIPOST
	Global user exits XRMIIN and XRMIOUT
	Global user exits for XRF

	Chapter 5. Operations with DBCTL
	Connection to DBCTL
	Connecting DBCTL to CICS automatically
	Connecting to DBCTL after a CICS WARM or EMERGENCY start
	Connecting to DBCTL after a CICS COLD or INITIAL start
	Connecting to DBCTL after a CICS XRF takeover

	Connection, disconnection, and inquiry transactions
	CDBC transaction for connect and disconnect
	What happens when you have requested connection to DBCTL
	Deciding whether to use orderly or immediate disconnection
	CDBI transaction for inquiry

	Operator communication with DBCTL
	DBCTL operator commands
	Format of DBCTL operator commands
	Multisegment DBCTL operator commands

	CDBM operator transaction
	DFHDBFK - The CDBM GROUP command file
	The MAINTENANCE panel for DFHDBFK
	Input fields

	Issuing DBRC commands
	Authorizing access to databases and PSBs
	Changing IMS passwords
	Deleting password security authorization
	Controlling tracing of DBCTL events
	Finding out current status of DBCTL activities
	Specifying messages to be logged on IMS log
	Changing DBCTL resources online
	Preventing programs and transactions from updatingdatabases
	Switching to a new OLDS
	Entering external subsystem commands from DBCTL
	Making DBCTL resources available
	Preventing scheduling of PSBs and use of databases
	Purging a transaction that is using DBCTL
	Stopping DBCTL normally
	Stopping DBCTL abnormally

	Dealing with messages from DBCTL and CICS

	Chapter 6. Recovery and restart operations for DBCTL
	Overview of CICS and IMS recovery and restart
	CICS initialization and termination
	Restarting DBCTL
	Cold start
	Warm start
	Emergency restart

	CICS keypoints and IMS checkpoints
	Backing out uncommitted updates after a failure

	Log records
	Database recovery control (DBRC)
	Recovery control (RECON) data sets

	Commit protocols and units of recovery
	Two-phase commit
	When updates are written to databases
	UOWs and resources belonging to multiple resource managers
	DBCTL unit of recovery
	CICS units of work (UOWs)
	Recovery tokens
	Resolving in-doubt units of work manually

	Database utilities
	Log utilities
	Component failures
	CICS failure
	Database resource adapter (DRA) failure
	DBCTL failure
	IRLM failure
	Transaction and thread failures
	Deadlocks and interactions with automatic restart

	BMP failures
	MVS, processor, or power failures

	Chapter 7. Application programming for DBCTL
	Overview of application programming for DBCTL
	Programming languages and environments
	Issue IMS AIB call format

	Additional facilities available with DBCTL
	Application program access to DEDBs
	Command codes to manage subset pointers in DEDBs

	Additional EXEC DLI keywords
	LOCKCLASS
	MOVENEXT
	GETFIRST
	SET
	SETCOND
	SETZERO
	System service (SYSSERVE)

	Keywords and corresponding command codes
	POS command and call
	Addressing and residency mode
	Enhanced scheduling
	Obtaining information about database availability
	QUERY and REFRESH DBQUERY commands
	INIT call—format for refreshing status code information

	Accepting database availability status codes
	ACCEPT STATUSGROUP command
	INIT call—format for accepting status codes

	Status codes and backout
	Batch message processing programs (BMPs)
	System service requests
	I/O PCB
	Format of a PSB
	PCB summary
	PSB schedule command and call
	DEQ command and call
	LOG command and call
	Defining intermediate backout points for DBCTL resources

	Comparing EXEC DLI commands and DL/I calls
	DL/I requests supported

	Migrating programs to DBCTL
	Migrating a DL/I program to a DBCTL program
	Migrating CICS shared database batch jobs to BMPs
	Migrating native IMS batch jobs to BMPs
	General design considerations for BMPs

	Summary of abends and return codes

	Chapter 8. Security checking with DBCTL
	PSB authorization checking by CICS
	Resource access security checking by DBCTL
	Relationships between AGNs, PSBs, and DBCTL ID in securitychecking
	Parameters for DBCTL resource access security

	DBCTL password security checking
	Security considerations for using BMPs with DBCTL

	Migration considerations for security with DBCTL
	Security migration scenarios
	CICS PSB authorization checking
	DBCTL resource access security checking
	RACF preparations

	Chapter 9. Problem determination for DBCTL
	Interactions between CICS and DBCTL
	Interactions between CICS and DBCTL at the interface level
	Interactions between CICS and DBCTL caused by requests

	DBCTL error scenarios
	Connection to DBCTL has failed to complete
	Disconnection from DBCTL has failed to complete
	Failures during PSB scheduling
	Failures during DL/I request processing
	Correlating activity in DBCTL and CICS

	Trace
	Trace entries produced by CICS
	Connection to DBCTL
	Disconnection from DBCTL
	PSB schedule
	PSB scheduling failure
	CICS task issuing DL/I requests to be processed by DBCTL
	Thread termination
	Trace entries produced by DBCTL
	Printing and formatting IMS X'67FA' log records

	Dumps
	CICS transaction dump
	CICS system dump
	Determining whether a problem is occurring in CICS orDBCTL
	DRA snap data set
	What is provided in a CICS dump
	Dumps produced by the DRA
	Dumps produced by DBCTL

	Messages
	Return codes in DBCTL
	Using return codes to find out what kind of dump has beenproduced

	PAPL request and return codes

	Using CICS EDF to debug application programs in DBCTL

	Chapter 10. Statistics, monitoring, and performance forDBCTL
	Data available for a CICS-DBCTL system
	DBCTL statistics

	Monitoring DBCTL—transaction level data
	DBCTL monitoring data returned to CICS
	Obtaining DBCTL monitoring data sent to CICS
	Service Level Reporter (SLR)

	IMS monitor reports with DBCTL
	IMS monitor reports that apply to DBCTL
	IMS monitor reports that apply partially to DBCTL
	IMS monitor reports that do not apply to DBCTL

	Data contained in relevant IMS monitor reports
	General wait time events
	General reports

	Regions and jobname report
	Region summary report
	Program summary
	Run profile
	Transaction queuing report
	Using the IMS monitor

	DBCTL data returned to IMS log
	Program isolation trace

	DL/I trace
	Using the IMS log statistics utilities

	Trace facilities
	CICS auxiliary trace facility

	Additional performance tools
	Generalized trace facility (GTF)
	MVS/ESA Resource Measurement Facility (RMF)

	Tuning a CICS-DBCTL system
	Performance parameters in CICS
	Performance parameters in IMS
	Response time—assigning job dispatching priorities
	Specifying numbers of threads
	DEDB performance and tuning considerations

	Using DEDBs
	High speed sequential processing (HSSP)

	IMS asynchronous database buffer purge facility
	Virtual storage usage
	Improved throughput on multiprocessors
	CICS shared database jobs and IMS batch jobs run as BMPs

	Appendix A. Migration task summary for DBCTL
	Education task list
	Installation, system and resource definition task list
	Operations task list
	Recovery and restart task list
	Application programming task list
	Security task list
	Problem determination task list
	Monitoring, statistics, and performance task list

	Appendix B. Illustration of DBCTL startup parameter creationand selection
	Appendix C. Messages issued during DBCTL startup andtermination
	Messages issued by DBCTL during startup
	Messages issued by DLISAS during startup
	Messages issued by DBRC during startup
	Messages issued by DBCTL during normal termination
	Messages issued by DLISAS during normal termination
	Messages issued by DBRC during normal termination

	Appendix D. Summary of DBCTL operator commands
	Appendix E. Using global user exit XDLIPRE to change PSBto be scheduled
	Glossary
	Index
	Sending your comments to IBM

