

CICS Transaction Server for OS/390 IBM

CICSPlex SM Application Programming
Guide
Release 3

 SC34-5457-00

CICS Transaction Server for OS/390 IBM

CICSPlex SM Application Programming
Guide
Release 3

 SC34-5457-00

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page vii.

First Edition, March 1999

This edition applies to Release 3 of CICS Transaction Server for OS/390, program number 5655-147, and to all subsequent versions,
releases, and modifications until otherwise indicated in new editions. Information in this edition was previously contained in
SC33-1430-02, which is now obsolete. Make sure you are using the correct edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
addresses given below.

At the back of this publication is a page titled “Sending your comments to IBM”. If you want to make comments, but the methods
described are not available to you, please address your comments to:

IBM United Kingdom Laboratories, Information Development,
Mail Point 095, Hursley Park, Winchester, Hampshire, England, SO21 2JN.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1995, 1999. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 contents

 Contents

Notices . vii
Sample programs . viii
Programming interface information . viii
Trademarks . viii

Preface . ix
Who this book is for . ix
What you need to know . ix
How to use this book . ix
Notes on terminology . ix
CICS System Connectivity . x

Bibliography . xiii
CICS Transaction Server for OS/390 . xiii

CICS books for CICS Transaction Server for OS/390 xiii
CICSPlex SM books for CICS Transaction Server for OS/390 xiv
Other CICS books . xiv

Books from related libraries . xiv

Summary of Changes . xvii
Major changes to this book include the following: xvii

Chapter 1. An overview of the CICSPlex SM API 1
Supported environments and languages . 1
Available interfaces . 1
Connecting to CICSPlex SM . 2

The connection process . 4
Security considerations . 5

Compatibility between environments . 6
Compatibility between releases of CICSPlex SM 7

| Migrating applications to a new release . 8
Accessing resource tables from a new release 8
Accessing resource tables from a previous release 9

Sample programs . 11
Where to find more information . 11

Chapter 2. Using the CICSPlex SM API . 13
CICSPlex SM managed objects . 13

Types of managed objects . 13
CICSPlex SM resource tables . 15

| Building a customized resource table record 16
| How to create copybooks for customized resource table records 17

Selecting managed objects . 19
Setting the context and scope . 19
Using filter expressions . 20

Working with result sets . 23
An overview of result set commands . 23
Retrieving records from a result set . 26
Positioning the record pointer in a result set 28
Processing selected records in a result set 29

 Copyright IBM Corp. 1995, 1999 iii

 contents

Summarizing the records in a result set . 32
Sorting the records in a result set . 34

Modifying managed resources . 35
Modifying resource attributes . 36
Performing an action against a resource . 37
Working with CICSPlex SM and CICS definitions 37

Asynchronous processing . 39
Using the LISTEN command . 41
Using the NOWAIT option . 41
Using tokens to identify a request . 42
Using the ADDRESS command . 42
Using the RECEIVE command . 43

Using CICSPlex SM tokens . 44
| Using meta-data resource tables . 44
| ATTR . 45
| ATTRAVA . 49
| METADESC . 49
| OBJACT . 50
| OBJECT . 51
| Querying the CICSPlex SM API exit . 53

Chapter 3. Writing an EXEC CPSM program 55
Using the resource table copy books . 55

How to access the copy books . 55
Copybook names and aliases . 55
Copybook format . 56
Copybook data characteristics . 56
Supplied copy books . 57

Language and environment considerations . 68
Assembler H considerations . 68
PL/I considerations . 68
NetView considerations . 69
User-replaceable programs . 69

| CICS Global User exit programs . 69
Status programs . 69

Translating your program . 70
Specifying the CPSM translator option . 70

Compiling your program . 71
Assembler H considerations . 71
PL/I considerations . 72
COBOL considerations . 72
C/370 considerations . 72

Link editing your program . 73
Assembler H considerations . 73
PL/I, VS COBOL II, and C/370 considerations 74

Run-time considerations . 74

Chapter 4. Dealing with exception conditions 77
| Default CICSPlex SM exception handling . 77

Using the RESPONSE and REASON options 77
Types of responses . 77
Testing for RESPONSE and REASON . 80

Retrieving FEEDBACK records . 81
Using the FEEDBACK command . 81

iv CICSPlex SM Application Programming Guide

 contents

Evaluating a FEEDBACK record . 82
Availability of FEEDBACK records . 84
An example of FEEDBACK for a result set 85
Additional processing for BAS . 86
Evaluating error result set records . 86
Evaluating BINSTERR resource table records 86
Evaluating BINCONRS resource table records 87
Evaluating BINCONSC resource table records 88
An example of a BAS error result set . 89

Chapter 5. Writing a REXX program . 91
Accessing the API environment . 91
Specifying an API command . 92
Accessing resource table data . 93

Translating attribute values . 94
Processing CHANGETIME and CREATETIME attributes 95

Chapter 6. REXX error handling . 97
Translation errors . 97
Run-time errors . 98
TPARSE and TBUILD errors . 98
Messages . 98
EYU_TRACE data . 98

| Appendix A. BINCONRS, BINCONSC, and BINSTERR error codes . . . 101
| BINCONRS . 101
| BINCONSC . 101
| BINSTERR . 102

Appendix B. Sample program listings . 103
Sample program EYU#API1 . 104
Sample program EYUCAPI2 . 108
Sample program EYUAAPI3 . 115

| Sample program EYULAPI4 . 134

Glossary . 147

Index . 159

Sending your comments to IBM . 161

 Contents v

 contents

vi CICSPlex SM Application Programming Guide

 Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply in the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply to
you.

This publication could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this publication
at any time without notice.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact IBM United Kingdom Laboratories,
MP151, Hursley Park, Winchester, Hampshire, England, SO21 2JN. Such
information may be available, subject to appropriate terms and conditions, including
in some cases, payment of a fee.

 Copyright IBM Corp. 1995, 1999 vii

The licensed program described in this document and all licensed material available
for it are provided by IBM under terms of the IBM Customer Agreement, IBM
International Programming License Agreement, or any equivalent agreement
between us.

 Sample programs
This publication contains sample programs. Permission is hereby granted to copy
and store the sample programs into a data processing machine and to use the
stored copies for internal study and instruction only. No permission is granted to
use the sample programs for any other purpose.

Programming interface information
This book is intended to help you write application programs using the
CICSPlex SM application programming interface (API). This book documents
General-use Programming Interface and Associated Guidance Information provided
by CICSPlex SM.

General-use programming interfaces allow the customer to write programs that
obtain the services of CICSPlex SM.

 Trademarks
The following terms are trademarks of International Business Machines Corporation
in the United States, or other countries, or both:

Other company, product, and service names may be trademarks or service marks
of others.

CICS MVS/ESA
CICS OS/2 NetView
CICS/ESA OS/2
CICS/MVS OS/390
CICS/VSE RACF
CICSPlex S/370
C/370 S/390
DB2 SP
IBM System/390
IMS VSE/ESA
IMS/ESA VTAM

viii CICSPlex SM Application Programming Guide

 Preface

This book provides programming information for the IBM CICSPlex System
Manager (CICSPlex SM) element of CICS Transaction Server for OS/390
Release 3. It describes how to use the application programming interface (API) to
access CICSPlex SM data and services.

Who this book is for
This book is for application programmers who want to access the services of
CICSPlex SM.

What you need to know
It is assumed that you have experience writing programs in COBOL, C, PL/I,
assembler language, or REXX. You should also have knowledge of the
CICSPlex SM concepts and terminology introduced in the CICSPlex SM Concepts
and Planning book.

For guidance information on how to use the CICSPlex SM API see the CICSPlex
SM Application Programming Reference.

While you are using this book, you will need to refer to the CICSPlex SM Resource
Tables Reference for descriptions of the resource tables that you can access. You
may also need to refer to the following books:

CICSPlex SM Managing Business Applications
For information about Business Application Services definitions.

CICSPlex SM Managing Resource Usage
For information about real-time analysis and Monitoring definitions.

CICSPlex SM Managing Workloads
For information about Workload Manager definitions.

How to use this book
This book provides guidance information for the CICSPlex SM API.

It introduces the API, describes the various environments it supports, and provides
examples of its use. If this is your first experience with the API, it will probably help
to read through the guide more or less from start to finish.

Notes on terminology
In the text of this book, the term CICSPlex SM (spelled with an uppercase
letter ‘P’) means the IBM CICSPlex System Manager element of CICS Transaction
Server for OS/390. The term CICSplex (spelled with a lowercase letter ‘p’) means
the largest set of CICS systems to be managed by CICSPlex SM as a single entity.

 Copyright IBM Corp. 1995, 1999 ix

Other terms used in this book are:

Term Meaning

API Application programming interface

ASM Assembler language

CICS TS for OS/390
The CICS element of the CICS TS for OS/390

MVS MVS/Enterprise Systems Architecture SP (MVS/ESA)

CICS System Connectivity
| This release of CICSPlex SM may be used to control CICS systems that are
| directly connected to it, and indirectly connected through a previous release of
| CICSPlex SM.

| For this release of CICSPlex SM, the directly-connectable CICS systems are:

| � CICS Transaction Server for OS/390 1.3
| � CICS Transaction Server for OS/390 1.2
| � CICS Transaction Server for OS/390 1.1
| � CICS for MVS/ESA 4.1
| � CICS Transaction Server for VSE/ESA Release 1
| � CICS for VSE/ESA 2.3
| � CICS for OS/2 3.1
| � CICS for OS/2 3.0

| CICS systems that are not directly connectable to this release of CICSPlex SM are:

| � CICS for MVS/ESA 3.3
| � CICS for MVS 2.1.2
| � CICS for VSE/ESA 2.2
| � CICS/OS2 2.0.1

| Note: IBM Service no longer supports these CICS release levels.

| You can use this release of CICSPlex SM to control CICS systems that are
| connected to, and managed by, your previous release of CICSPlex SM. However,
| if you have any directly-connectable release levels of CICS, as listed above, that
| are connected to a previous release of CICSPlex SM, you are strongly
| recommended to migrate them to the current release of CICSPlex SM, to take full
| advantage of the enhanced management services. See the CICS Transaction
| Server for OS/390: Migration Guide for information on how to do this.

| Table 1 on page xi shows which CICS systems may be directly connected to
| which releases of CICSPlex SM.

x CICSPlex SM Application Programming Guide

| Table 1. Directly-connectable CICS systems by CICSPlex SM release

| CICS system| CICSPlex SM component
| of CICS TS 1.3
| CICSPlex SM 1.3| CICSPlex SM 1.2

| CICS TS 1.3| Yes| No| No

| CICS TS 1.2| Yes| Yes| No

| CICS TS 1.1| Yes| Yes| Yes

| CICS for MVS/ESA 4.1| Yes| Yes| Yes

| CICS for MVS/ESA 3.3| No| Yes| Yes

| CICS for MVS 2.1.2| No| Yes| Yes

| CICS TS for VSE/ESA Rel 1| Yes| No| No

| CICS for VSE/ESA 2.3| Yes| Yes| Yes

| CICS for VSE/ESA 2.2| No| Yes| Yes

| CICS for OS/2 3.1| Yes| No| No

| CICS for OS/2 3.0| Yes| Yes| Yes

| CICS/OS2 2.0.1| No| Yes| Yes

 Preface xi

xii CICSPlex SM Application Programming Guide

 Bibliography

CICS Transaction Server for OS/390
CICS Transaction Server for OS/390: Planning for Installation GC33-1789
CICS Transaction Server for OS/390: Release Guide GC34-5352
CICS Transaction Server for OS/390: Migration Guide GC34-5353
CICS Transaction Server for OS/390: Installation Guide GC33-1681
CICS Transaction Server for OS/390: Program Directory GC33-1706
CICS Transaction Server for OS/390: Licensed Program Specification GC33-1707

CICS books for CICS Transaction Server for OS/390
General

CICS Master Index SC33-1704
CICS User's Handbook SX33-6104
CICS Glossary (softcopy only) GC33-1705

Administration
CICS System Definition Guide SC33-1682
CICS Customization Guide SC33-1683
CICS Resource Definition Guide SC33-1684
CICS Operations and Utilities Guide SC33-1685
CICS Supplied Transactions SC33-1686

Programming
CICS Application Programming Guide SC33-1687
CICS Application Programming Reference SC33-1688
CICS System Programming Reference SC33-1689
CICS Front End Programming Interface User's Guide SC33-1692
CICS C++ OO Class Libraries SC34-5455
CICS Distributed Transaction Programming Guide SC33-1691
CICS Business Transaction Services SC34-5268

Diagnosis
CICS Problem Determination Guide GC33-1693
CICS Messages and Codes GC33-1694
CICS Diagnosis Reference LY33-6088
CICS Data Areas LY33-6089
CICS Trace Entries SC34-5446
CICS Supplementary Data Areas LY33-6090

Communication
CICS Intercommunication Guide SC33-1695
CICS Family: Interproduct Communication SC33-0824
CICS Family: Communicating from CICS on System/390 SC33-1697
CICS External Interfaces Guide SC33-1944
CICS Internet Guide SC34-5445

Special topics
CICS Recovery and Restart Guide SC33-1698
CICS Performance Guide SC33-1699
CICS IMS Database Control Guide SC33-1700
CICS RACF Security Guide SC33-1701
CICS Shared Data Tables Guide SC33-1702
CICS Transaction Affinities Utility Guide SC33-1777
CICS DB2 Guide SC33-1939

 Copyright IBM Corp. 1995, 1999 xiii

CICSPlex SM books for CICS Transaction Server for OS/390
General

CICSPlex SM Master Index SC33-1812
CICSPlex SM Concepts and Planning GC33-0786
CICSPlex SM User Interface Guide SC33-0788
CICSPlex SM View Commands Reference Summary SX33-6099

Administration and Management
CICSPlex SM Administration SC34-5401
CICSPlex SM Operations Views Reference SC33-0789
CICSPlex SM Monitor Views Reference SC34-5402
CICSPlex SM Managing Workloads SC33-1807
CICSPlex SM Managing Resource Usage SC33-1808
CICSPlex SM Managing Business Applications SC33-1809

Programming
CICSPlex SM Application Programming Guide SC34-5457
CICSPlex SM Application Programming Reference SC34-5458

Diagnosis
CICSPlex SM Resource Tables Reference SC33-1220
CICSPlex SM Messages and Codes GC33-0790
CICSPlex SM Problem Determination GC33-0791

Other CICS books

If you have any questions about the CICS Transaction Server for OS/390 library,
see CICS Transaction Server for OS/390: Planning for Installation which discusses
both hardcopy and softcopy books and the ways that the books can be ordered.

CICS Application Programming Primer (VS COBOL II) SC33-0674
CICS Application Migration Aid Guide SC33-0768
CICS Family: API Structure SC33-1007
CICS Family: Client/Server Programming SC33-1435
CICS Family: General Information GC33-0155
CICS 4.1 Sample Applications Guide SC33-1173
CICS/ESA 3.3 XRF Guide SC33-0661

Books from related libraries
Books in related libraries include:

IBM CICS for MVS/ESA Version 4.1

Application Programming Guide, SC33-1169

Application Programming Reference, SC33-1170

System Programming Reference, SC33-1171

IBM CICS TS for OS/390 Release 1

CICS Application Programming Guide, SC33-1687

CICS Application Programming Reference, SC33-1688

CICS System Programming Reference, SC33-1689

CICS Distributed Transaction Programming Guide, SC33-1691

CICS Front End Programming Interface User's Guide, SC33-1692

Please refer to the CICS Library Guide for your release of CICS for the titles
and form numbers of additional books that support these releases.

xiv CICSPlex SM Application Programming Guide

TSO/E Version 2

Programming Guide, SC28-1874

Programming Services, SC28-1875

REXX/MVS User’s Guide, SC28-1882

REXX/MVS Reference, SC28-1883

NetView Version 2.4

Application Programming Guide, SC31-7081

RODM Programming Guide, SC31-7095

Customization: Using Assembler, SC31-7094

Customization: Using PL/I and C, SC31-7093

Assembler H Version 2

Application Programming Guide, SC26-4036

Application Programming Language Reference, GC26-4037

VS COBOL II Version 1.3.2

Application Programming Guide for MVS and CMS, SC26-4045

Application Programming Guide for VSE, SC26-4697

Application Programming Language Reference, GC26-4047

Application Programming Debugging, SC26-4049

PL/I Version 2.3

Programming Language Reference, SC26-4308

Optimizing Compiler Programmer’s Guide, SC33-0006

IBM C/370 Version 2.1

Programming Guide, SC09-1384

Reference Summary, SC09-1211

 Bibliography xv

xvi CICSPlex SM Application Programming Guide

Summary of Changes

This book is based on information from the CICSPlex System Manager Application
Programming Interface Release 3, SC33-1430-02. The information in this book has
been updated to incorporate changes made for CICSPlex SM for CICS Transaction
Server for OS/390 Release 3. Changes made since the last edition are indicated by
vertical bars to the left of the change.

Major changes to this book include the following:
The following additions and changes have been made to the functions of
CICSPlex SM for CICS Transaction Server for OS/390 Release 3.

� The information in this book derives from the old CICSPlex System Manager
Application Programming Interface which as been split into two books the other
being the CICSPlex SM Application Programming Reference.

� The Resource Table Summary has been moved to the CICSPlex SM Resource
Tables Reference.

� Chapter 4, “Dealing with exception conditions” on page 77 has been
reorganized and expanded and now includes new data in Table 7 on page 83
and a new section “An example of a BAS error result set” on page 89.

� There is a new Appendix A, “BINCONRS, BINCONSC, and BINSTERR error
codes” on page 101.

 Copyright IBM Corp. 1995, 1999 xvii

xviii CICSPlex SM Application Programming Guide

 available interfaces

Chapter 1. An overview of the CICSPlex SM API

The CICSPlex SM application programming interface (API) provides you with
access to CICS system management information and allows you to invoke
CICSPlex SM services from an external program. The API can provide a single
interface for programs designed to monitor and control the CICS systems in your
enterprise. In addition, the API provides an interface to CICSPlex SM itself. So you
can also write programs to access the administrative functions that control the way
CICSPlex SM operates.

Some typical uses of the API include:

� Monitoring key resources in your CICS environment.

� Changing the status of CICS resources relative to other conditions in your
enterprise.

� Controlling the flow of change to your CICS environment.

� Passing the information provided by CICSPlex SM to an automation product.

� Developing alternative display and report formats for CICS and CICSPlex SM
data.

� Processing CICSPlex SM notifications about events such as:

– Real-time analysis thresholds being reached

– Operational state changes in resources being reported to the NetView
Resource Object Data Manager (RODM) facility

| � Creating and maintaining CICSPlex SM definitions for Business Application
| Services, for workload management, real-time analysis, and resource
| monitoring.

� Creating and maintaining CICS resource definitions in the CICSPlex SM data
repository.

Supported environments and languages
The API can be called from programs running in a variety of environments:

 � MVS/ESA batch
 � MVS/ESA TSO
 � MVS/ESA NetView
 � CICS/ESA.

Note: The CICSPlex SM API cannot be called from within a NetView RODM
method. For details on the restrictions that apply to RODM method
services, see the NetView RODM Programming Guide.

 Available interfaces
CICSPlex SM provides two interfaces for API users:

Command-level interface
This interface uses the CICS translator to accept EXEC CPSM statements and
translate them into the appropriate sequence of instructions in the source

 Copyright IBM Corp. 1995, 1999 1

 connecting to CICSPlex SM

language. These instructions are then linked to an interface stub routine that is
supplied by CICSPlex SM.

The command-level interface is available for programs written in the following
languages:

� Assembler H Version 2 and later
� OS PL/I Optimizing Compiler Version 2.3 and later
� VS COBOL II Compiler Version 1.3.2 and later
� C/370 Version 2.1. and later

Table 2 shows which languages are supported by the command-level interface
in each environment.

Run-time interface
The run-time interface supports programs written as REXX EXECs in the
following MVS/ESA environments:

 � Batch
 � TSO
 � NetView.

This interface consists of a REXX function package that is supplied by
CICSPlex SM. The function package accepts commands in the form of text
strings and generates the appropriate API calls.

Table 2. Programming languages supported by the command-level interface

Environment Assembler COBOL PL/I C

CICS/ESA √ √ √ √

MVS/ESA Batch √ √ √ √

MVS/ESA TSO √ √ √ √

MVS/ESA NetView √ √ √

Connecting to CICSPlex SM
You can think of a CICSPlex SM API program as existing in or having access to
three environments:

User environment
The program itself and the environment in which it runs, such as MVS/ESA or
CICS.

CICSPlex SM environment
The data that CICSPlex SM maintains and the services it provides to the
program.

Managed resource environment
The resources that CICSPlex SM manages and which the program can access.

Before your program can access the CICSPlex SM environment and the resources
it manages, you must establish a connection to CICSPlex SM. This connection is
called an API processing thread and serves two basic purposes:

� When a thread is created, the user is identified so that security validation and
auditing of the program’s operations can take place transparently.

2 CICSPlex SM Application Programming Guide

 connecting to CICSPlex SM

� There are implicit relationships between some API functions, and those
relationships are maintained at the thread level. Each thread is considered a
unique API user and no resources can cross the boundary of a thread.

Once a thread is created, your program can issue commands within a context that
includes:

� The local CMAS in the MVS/ESA image where the program runs.
� Any CICSplex that is managed by the local CMAS.
� Any CMAS with an active communication link to the local CMAS.

A simple API program would establish only a single thread. You could establish the
thread, perform the desired operations, and then terminate the thread. A more
complex program might maintain several concurrent threads to perform parallel
operations that would be prohibited on a single thread or to simplify the correlation
of commands and results.

You can use the following commands to manage an API thread:

CONNECT Establishes a connection to CICSPlex SM, defines an API
processing thread, and provides default settings for the thread. The
thread is maintained by the CMAS that is supporting your API
session.

DISCONNECT Disconnects an API processing thread from CICSPlex SM and
releases any resources associated with the thread.

QUALIFY Defines the CICSPlex SM context and scope for subsequent
commands issued by the thread.

TERMINATE Terminates all API processing on all the threads created by the
CICS or MVS/ESA task that issues the command.

These commands manage the connection between the user environment (your
program) and CICSPlex SM; they do not affect the managed resources. Figure 1
on page 4 illustrates the impact these commands have on the API environment.

 Chapter 1. An overview of the CICSPlex SM API 3

 connecting to CICSPlex SM

CONNECT

DISCONNECT

QUALIFY

TERMINATE

Environmental Commands

User

Environment

CICSPlex SM

Environment

Managed

Resources

CICS System

User-Written

Program

CICSPlex SM

API Client Code Processing

thread

Figure 1. API commands involved in managing a thread

For complete descriptions of these commands, see CICSPlex SM Application
Programming Reference.

The connection process
The process of connecting to CICSPlex SM varies according to what type of
program you write and where it runs. For programs written using the
command-level interface, keep in mind the following requirements:

CICS
A program written to run as a CICS application must be linked with the proper
stub routine and must run in a CICS system that is being actively managed by
CICSPlex SM as a local MAS.

A connection is established first to the MAS agent code that resides in the CICS
system and then to the CMAS that controls that MAS. On the CONNECT
command, you can specify a CONTEXT of:

� The CMAS that is being connected to
� Any CICSplex that is managed by that CMAS
� Any CMAS with an active communication link to that CMAS

Batch, NetView, or TSO
A program written to run as a batch job or under NetView or TSO must be
linked with the proper stub routine and must run in the same MVS image as the
CMAS to which you want to connect.

In these environments, if there is more than one CMAS in the MVS/ESA image,
the API selects a suitable CMAS and establishes a connection. The following
rules apply to the selection of a CMAS:

4 CICSPlex SM Application Programming Guide

 connecting to CICSPlex SM

� The CMAS must be running the same version of CICSPlex SM as the
run-time module (EYU9AB00).

� If the context specified on the CONNECT command is a CMAS,
CICSPlex SM connects to that CMAS. If that CMAS is either not active or
not running the appropriate version of CICSPlex SM, the CONNECT
command fails.

� If the context specified on CONNECT is a CICSplex, CICSPlex SM selects
a CMAS running the appropriate version that participates in the
management of the CICSplex.

� If no context is specified on CONNECT, CICSPlex SM connects to the
CMAS that was most recently started, provided it is running the appropriate
version of CICSPlex SM.

The CICSPlex SM API also supports another type of batch environment. A
program can issue API commands from an address space that is running a
CICS system without itself being a CICS transaction. In other words, the
program can run as a separate MVS/ESA task in the same address space as
the CICS system. This type of program must be linked with the batch
environment stub routine and the connection process is the same as for other
batch programs.

Note: A program that is a CICS transaction must be run in a CICS system that
is a CICSPlex SM MAS.

For details on the stub routines that are required for each of these environments,
see “Link editing your program” on page 73.

Note: For programs written in REXX, the connection process is the same as for a
command-level program that runs in the same environment (batch, TSO, or
NetView). No stub routine is required, but the REXX function package that
is supplied by CICSPlex SM must have been properly installed.

 Security considerations
When an API program requests a connection to CICSPlex SM, the CMAS being
connected to attempts to extract user authorization data from the environment. How
the connection is established depends upon whether such authorization data exists
and whether security is active in the CMAS:

If security exists
Regardless of whether CMAS security is active, if a security environment exists
where the API program is running:

� The API security routine, EYU9XESV, is not called.

� The USER and SIGNONPARM options on the CONNECT command are
ignored.

� The API program is connected with the user ID of the invoking user, as
obtained from the accessor environment element (ACEE).

Note: If CMAS security is not active, the ACEE user ID is not validated by
CICSPlex SM.

This type of security environment may exist when a program runs under TSO,
batch, NetView, or a local MAS where CICS security is active. Security checking
is performed by the environment where the API program is running.

 Chapter 1. An overview of the CICSPlex SM API 5

 compatibility between environments

If security does not exist and CMAS security is not active

� The API security routine, EYU9XESV, is not called.

� The USER and SIGNONPARM options on the CONNECT command are
ignored.

� No signon is performed. However, the user ID specified in the
XESV_CONN_USERID field of the security routine parameter block,
EYUBXESV, is associated with the connection.

This type of security environment may exist when a program runs under a local
MAS where CICS security is not active. Since CMAS security is not active, no
security checking is performed.

If security does not exist and CMAS security is active

� The API security routine, EYU9XESV, is called.

� The USER and SIGNONPARM values from the CONNECT command are
passed to EYU9XESV.

� A signon is performed using the user ID returned by EYU9XESV, but no
password checking is performed. By default, EYU9XESV returns the default
CICS user ID for the CMAS (the DFLT_UID value).

This type of security environment may exist when a program runs under a local
MAS where CICS security is not active. Since CMAS security is active, security
checking is performed by EYU9XESV.

Table 3 summarizes the levels of API security and the conditions under which they
are implemented.

For a description of the USER and SIGNONPARM options, see the API CONNECT
Command in the CICSPlex SM Application Programming Reference. For a
description of EYU9XESV and information on customizing this security routine, see
CICS RACF Security Guide.

Table 3. Possible API security environments

Environment
Security

CMAS Security No CMAS Security

YES EYU9XESV not called.
CONNECT options ignored.
User ID=ACEE.

EYU9XESV not called.
CONNECT options ignored.
User ID=ACEE (not checked).

NO EYU9XESV called.
CONNECT options passed.
User ID=As returned by
EYU9XESV (signon with no
password checking).

EYU9XESV not called.
CONNECT options ignored.
User ID= XESV_CONN_USERID (no
signon).

Compatibility between environments
Once you have written a CICSPlex SM API program to run in one environment,
you can take that program and run it in another environment with only minor
modifications.

For example, if you want to take a CICS application written with EXEC CPSM
commands and convert it to an MVS/ESA batch program, you should:

6 CICSPlex SM Application Programming Guide

 compatibility between releases

� Make the appropriate code changes, such as:

– Remove any EXEC CICS commands that may be included
– Add the necessary MVS calls

� Relink-edit the program with the batch environment stub routine.

Note: A REXX program can be moved from one MVS/ESA environment (batch,
TSO, or NetView) to another without modification, provided you have not
used any environment-specific functions.

Before you try to move an EXEC CPSM program to an environment other than the
one for which it was written, you should review the following sections:

� “Language and environment considerations” on page 68
� “Translating your program” on page 70
� “Link editing your program” on page 73.

Compatibility between releases of CICSPlex SM
Once you have written an API program to run under one release of CICSPlex SM,
you can continue to access the data provided by that release, or you can access
the data available from a later release of the product. In general, if you plan to
access more than one release of the CICSPlex SM API, keep the following in
mind:

Run-time environment
The run-time version of a CICSPlex SM API program is equal to the level of the
CMAS to which it connects:

� For a program written to run as a CICS application, the run-time version is
that of the CMAS to which the MAS is connected.

� For a program written to run as a batch job or under NetView or TSO, the
version is determined by the version of the CICSPlex SM run-time module

| (EYU9AB00), which is distributed in the version's SEYUAUTH library.

The run-time version of a program must be greater than or equal to:

� The version of the stub routine module (EYU9AxSI) with which the program
was link edited.

– For CICS programs, the stub module is called EYU9AMSI and is
| distributed in the version's SEYULOAD library.

– For batch, TSO, or NetView programs, the module is called EYU9ABSI
| and is distributed in the version's SEYUAUTH library.

In addition, the version of the stub module for any separately link edited and
called programs must be the same as the version used to link edit the
program that issued the CONNECT command.

� The value specified on the VERSION option of the CONNECT command.

Note: For programs written in REXX, the run-time version must be greater than
or equal to the version of the function package (EYU9AR00), which is

| distributed in the version's SEYUAUTH library.

VERSION option
The VERSION option on the CONNECT command controls which release of
CICSPlex SM resource tables are available to your program (resource tables
are the external representation of CICSPlex SM data).

 Chapter 1. An overview of the CICSPlex SM API 7

 compatibility between releases

� An API program cannot access data from a release of CICSPlex SM earlier
than Release 2 (the release in which the API was introduced). The
VERSION value must be set to 0120 or greater.

� An API program cannot access data from a release of CICSPlex SM later
than the run-time module that you specify. The VERSION value must be
less than or equal to the release of the run-time module.

� An API program can access data from a later release of CICSPlex SM than
that which the program was originally written for, provided:

– You compile your program using the appropriate copy books for the
version specified.

– Your program is compatible with the copy books for the version
specified.

CONTEXT option
The CONTEXT option that is supported by various API commands determines
which CICS systems your program receives data from. The CONTEXT value
can be set to any CMAS or CICSplex running any currently supported release of
CICSPlex SM. Note, however, that the release level of the CMAS or CICSplex
must be the same as the release of the run-time module.

CURRENT option
When specifying the CURRENT option, the record pointer does not move (that
is, a subsequent FETCH retrieves the same record). Previously, the record
pointer moved to the next record. For further information, see “Positioning the
record pointer in a result set” on page 28.

| Migrating applications to a new release
| In order to migrate your application programs to the new release so that they can
| benefit from the full function available there, see “Accessing resource tables from a
| new release.” If you need to continue to run application programs in an earlier
| release CICSPlex SM environment whilst being able to manage this environment
| using the services provided in the new release, you must first read the sections on
| CICSPlex SM migration in the CICS Transaction Server for OS/390: Migration
| Guide.

Accessing resource tables from a new release
You can access the most up-to-date CICSPlex SM resource tables by running an
existing program under a new release of the API.

Note: To take full advantage of a new CICSPlex SM function (such as Business
Application Services), however, you would have to modify an existing
program or create a new one.

To run an existing API program under a new release of CICSPlex SM:

� Make sure the following are available to your program:

| – The run-time module for the new release (EYU9AB00 from the new
| release's SEYUAUTH library)

– A CMAS that is running the new release

| � Change the VERSION value on the CONNECT command to reflect the new
| release of CICSPlex SM (for example, 0140 for CICS Transaction Server for

8 CICSPlex SM Application Programming Guide

 compatibility between releases

| OS/390 Release 3) and relink-edit the program using the stub module supplied
| in the new release.

� Review the possible effects of any changes to the CICSPlex SM resource
tables.

Attributes may be added to a resource table in a new release, which could
affect your program's references to that table. And with the addition or
modification of attributes, the length of a given resource table may change from
one release to another. The resource table copy books that are distributed with
the new release are a good source of information about such changes.

If your program receives RESPONSE and REASON values of INVALIDPARM
LENGTH when you run it under a new release of CICSPlex SM, the table
length may have increased and your data buffer may not be long enough to

| accommodate the new resource table records.

| � If you are using customized views of resource tables, you are advised to check
| that the names of any new resource tables do not duplicate the names of your
| customized views, as this could affect your processing. For further details,
| see“Building a customized resource table record” on page 16 .

| For a complete list of new and changed resource tables in a given release,
refer to CICSPlex SM Resource Tables Reference.

Accessing resource tables from a previous release
To continue accessing the resource tables supplied with a previous release of
CICSPlex SM:

� Specify the release of CICSPlex SM data that you want to access on the
VERSION option of the CONNECT command.

� Use the run-time module (EYU9AB00) supplied with the release you want to
access or a subsequent release that supports it.

� Use a version of the stub module (EYU9AxSI) that is less than or equal to the
run-time module.

Table 4 on page 10 illustrates valid combinations of the VERSION option, stub
module and run-time module for accessing data from different releases of
CICSPlex SM.

 Chapter 1. An overview of the CICSPlex SM API 9

 compatibility between releases

Table 4. Valid ways to access data from different releases

VERSION
value

Stub module
(EYU9AxSI)

Run-time
module
(EYU9AB00)

CMASs
available

CMAS used Data available

0120 V1R2 V1R2 V1R2 V1R2 V1R2

0120 V1R2 V1R3 V1R3 V1R3 V1R2

0120 V1R3 V1R3 V1R2
V1R3

V1R3 V1R2

| 0120| V1R4| V1R4| V1R2
| V1R3
| V1R4

| V1R2| V1R2

0130 V1R3 V1R3 V1R2
V1R3

V1R3 V1R3

| 0130| V1R3| V1R4| V1R2
| V1R3
| V1R4

| V1R4| V1R3

| 0130| V1R4| V1R4| V1R2
| V1R3
| V1R4

| V1R4| V1R3

| 0140| V1R4| V1R4| V1R2
| V1R3
| V1R4

| V1R4| V1R4

Table 5 shows some invalid combinations of the VERSION option, run-time
module, and stub module and describes why they produce an error.

Table 5. Common errors in accessing different releases

VERSION
value

Stub module
(EYU9AxSI)

Run-time
module
(EYU9AB00)

CMASs
available

Error description

0120 V1R3 V1R2 V1R2
V1R3

Stub module release level is greater
than run-time module.

0130 V1R3 V1R2 V1R2
V1R3

Stub module release level is greater
than run-time module.

0130 V1R2 V1R2 V1R2 VERSION value is greater than
run-time module.

0130 V1R3 V1R3 V1R2 No CMAS available at the required
run-time level.

Note: For programs written in REXX, the compatibility issues are similar. The
Release 2 function package (which contains the necessary stub module)
can run successfully with either the Release 2 or Release 3 run-time
module. The Release 3 function package, however, cannot run with the
Release 2 run-time module; the Release 3 module is required.

10 CICSPlex SM Application Programming Guide

 where to find more information

 Sample programs
Sample programs for each supported language are distributed with CICSPlex SM
in source form. These samples are provided to illustrate the types of programs you
can write and the commands you need to use in those programs.

The sample programs are distributed in members called EYUxAPIn, where x is a
1-character language identifier and n is a sequential program identifier. For
example, EYUCAPI1 is sample program number 1 coded in C.

The names of the sample programs and the libraries where they can be found are
shown in the following table.

A listing is provided for each sample program (in one of its supported languages) in
Appendix B, “Sample program listings” on page 103.

Note: Additional sample CICSPlex SM API programs are available on the World
Wide Web at:

| http://www.software.ibm.com/ts/cicsplex/

Table 6. Sample programs provided with CICSPlex SM

Language Programs Library

Assembler EYUAAPI1
EYUAAPI2
EYUAAPI3

SEYUSAMP

COBOL EYULAPI1
EYULAPI2

| EYULAPI4

SEYUCOB

PL/I EYUPAPI1
EYUPAPI2

SEYUPL1

C EYUCAPI1
EYUCAPI2

SEYUC370

REXX EYU#API1
EYU#API2
EYU#API3

SEYUCLIB

Where to find more information
| This book is divided into three parts. Background information on the CICSPlex SM
| API and guidance for writing an API program are contained in the following chapter
| in part one:

| � Chapter 2, “Using the CICSPlex SM API” on page 13 introduces a variety of
| concepts that you need to understand before you use the API.

| Part two deals with EXEC CPSM programming considerations:

| � Chapter 3, “Writing an EXEC CPSM program” on page 55 describes how to
| write an API program using the command-level interface.

| � Chapter 4, “Dealing with exception conditions” on page 77 describes the tools
| and techniques you can use to handle errors in a CICSPlex SM API program.

| Part three deals with REXX programming considerations:

 Chapter 1. An overview of the CICSPlex SM API 11

 where to find more information

| � Chapter 5, “Writing a REXX program” on page 91 describes how to write an
| API program using the REXX run-time interface.

| � Chapter 6, “REXX error handling” on page 97 explains how to handle REXX
| errors.

| Complete descriptions of the API commands, as well as some REXX-specific
| functions and commands, are contained in the CICSPlex SM Application
| Programming Reference .

12 CICSPlex SM Application Programming Guide

 CICSPlex SM managed objects

Chapter 2. Using the CICSPlex SM API

This chapter introduces a variety of concepts that you need to understand before
you use the CICSPlex SM API, including managed objects, resource tables, and
result sets.

CICSPlex SM managed objects
CICSPlex SM is an object-oriented system. This means that each resource in the
CICSPlex SM environment is considered to be an instance of an object. Each
object is considered to be a specific type and each has a unique, formally defined
name.

Types of managed objects
There are various types of objects in the CICSPlex SM environment. Some objects,
such as CICS systems, programs, and transactions are real-world resources that
CICSPlex SM manages. Definition objects, such as monitor specifications and
workload definitions, are resources created solely for use within CICSPlex SM. An
event is an example of a run-time object that is generated as a result of
CICSPlex SM processing.

The CICSPlex SM managed objects can be grouped into the following categories:

� Managed CICS resources

 – CICS resources
– Monitored CICS resources

� CICS resource definitions

 � CICSPlex SM definitions

� CICSPlex SM manager resources

 � CICSPlex SM notifications

 � CICSPlex SM meta-data.

Managed CICS resources
These objects represent actual CICS resources that exist in the CICS systems
being managed by CICSPlex SM. Each object of this type describes a CICS
resource that CICSPlex SM can report on and manipulate. Managed objects exist
for all the resources that are available to CICSPlex SM using standard CICS
interfaces. In some cases, the CICSPlex SM managed objects offer a more
definitive representation of the resources than CICS does. For example, the
LOCTRAN and REMTRAN objects, which CICSPlex SM uses to separately
represent local transactions and remote transactions, are combined by CICS as
transactions.

In addition to the standard CICS resources, CICSPlex SM creates managed
objects as a result of its resource monitoring activity. Monitored CICS resources
contain a subset of the resource attributes, normally those that reflect the state and
consumption characteristics of the resource. In addition, CICSPlex SM may provide
derived attributes that show resource utilization as an average, rate, or percentage.
MLOCTRAN and MREMTRAN are examples of monitored CICS resource objects;

 Copyright IBM Corp. 1995, 1999 13

 CICSPlex SM managed objects

they are derived from the LOCTRAN and REMTRAN CICS resource objects. A
monitored CICS resource object can exist after the associated CICS resource
object is removed from the CICS system, or even after the system itself is shut
down.

CICS resource definitions
These objects represent definitions of CICS resources that CICSPlex SM can
assign to, and possibly install in, CICS systems. The actual definitions are stored in
the CICSPlex SM data repository as definition records. For example, the
TRANDEF object represents a CICS transaction that can be assigned both locally
and remotely to multiple CICS systems throughout the CICSplex.

Assigning CICS resources to CICS systems enables CICSPlex SM to manage
those resources as a logical group, such as an application. In addition,
CICSPlex SM can actually install instances of a resource in CICS systems that
support the EXEC CICS CREATE command.

 CICSPlex SM definitions
These objects represent the definitions that are used by CICSPlex SM
management applications. The actual definitions are stored in the CICSPlex SM
data repository as definition records. For example, the MONSPEC object
represents a user-defined monitor specification that CICSPlex SM uses to establish
resource monitoring in a CICS system.

Any changes you make to CICSPlex SM definitions are automatically distributed
throughout the CICSplex. In addition, certain definitions are bound to other
definitions for the purpose of referential integrity. If you remove one of these
definitions, all the related definitions are also removed. For example, removing a
CPLEXDEF object causes all definition objects for that CICSplex to be
automatically removed from all CMASs that manage the CICSplex.

CICSPlex SM manager resources
These objects represent run-time resources that are either built from CICSPlex SM
definitions or created by CICSPlex SM management applications during
processing. You can manipulate a CICSPlex SM manager resource without
necessarily affecting the underlying definition. The RTAACTV object is an example
of a CICSPlex SM manager resource; it describes the currently installed RTADEF
and STATDEF definition objects.

There are other CICSPlex SM manager resources that are not directly related to
any definition. For example, the CRESCONN object is a Topology Services
resource map that describes the CICS connections in an active MAS.

 CICSPlex SM notifications
CICSPlex SM notifications are really messages that are generated asynchronously
by a CICSPlex SM managed object. Notifications describe an interesting event
related to the object. CICSPlex SM manager resources can register interest in one
or more of these events. When a notification is generated, the manager resource
performs whatever processing is needed based on the event that occurred.

An API program can also register interest in events that generate CICSPlex SM
notifications. The EMSTATUS, EMASSICK, and EMASWELL objects are examples
of notification messages generated by the CICSPlex SM MAS agent. These
notifications describe the current state of the MAS.

14 CICSPlex SM Application Programming Guide

| The ERMCxxxx objects are generated by CICSPlex SM when a Topology resource
| map is changed. CICSPlex SM maintains resource maps which describe the
| topology of certain CICS resources in the MASs. CICS resources for which
| resource maps are maintained have a corresponding ERMCxxxx notification object.
| The CICSPlex SM agent detects the installs and discards of these CICS resources
| and causes the Topology resource map to be updated. For example, if a file
| definition is installed in a MAS, the Topology resource map will be changed and an
| ERMCFILE notification will be generated. The ACTION attribute of the ERMCFILE
| notification indicates that an install has occurred. Furthermore, for CICS/MVS,
| CICS/ESA 3.3, and CICS/VSE MASs, the CICSPlex SM MAS agent detects
| updates to these CICS resources. For example, if a program is disabled, the
| ERMCPRGM notification will be generated with the ACTION attribute indicating an
| update.

 CICSPlex SM meta-data
These objects describe the structure of CICSPlex SM managed resources. This
information is maintained in an object directory that exists in each active CMAS.

An API program can request the following types of meta-data from the object
directory:

OBJECT General characteristics of an object
OBJACT Valid actions for an object
METADESC Basic description of an object's attributes
ATTR Complete description of an object's attributes
ATTRAVA Valid EYUDA or CVDA values for an attribute

CICSPlex SM resource tables
Each CICSPlex SM managed object is represented externally by a resource table.
A resource table defines all the attributes of an object. The attributes represent the
collection of data that is available for that object.

The formal object name is used as the name of the resource table that describes
the object's attributes. You identify an object in your API program by specifying its
resource table name. For example, to find out about the programs in one or more
CICS systems, you could access the PROGRAM object. PROGRAM is the name
of the CICSPlex SM resource table that describes CICS programs.

Each instance of an object is formatted as a resource table record that describes
an actual resource in the CICSPlex SM environment. The object attributes are
presented in the individual fields of a resource table record. It is important to note
that a resource table is not itself an object. A resource table record is merely the
format in which information about a managed object is returned by CICSPlex SM.
This information includes the current attribute values, the actions that the object
supports, and the releases of CICS for which the object is valid.

There is a resource table type for each type of CICSPlex SM managed object:

Resource table type Object type

CICS Definition CICS resource definitions
CICS Resource CICS resources
CICS Monitored Monitored CICS resources
CPSM Definition CICSPlex SM definitions

 Chapter 2. Using the CICSPlex SM API 15

CPSM Manager CICSPlex SM manager resources
CPSM Notification CICSPlex SM notifications
CPSM MetaData CICSPlex SM meta-data

| CPSM Configuration CICSPlex SM configuration definitions

| For a summary of the CICSPlex SM resource tables by type and complete
| descriptions of specific resource tables see the Resource table summary in the
| CICSPlex SM Resource Tables Reference.

Restricted Resource Table Attributes

Certain attributes in the CICSPlex SM resource tables are for internal use only;
they cannot be modified or manipulated by an API program.

In CICS Resource and CICS Monitored tables, CICSPlex SM uses the following
attributes to uniquely identify which CICS system contains the resource:

 � EYU_CICSNAME
 � EYU_CICSREL.

These attributes are included in every CICS Resource and CICS Monitored
resource table record. You can specify these attributes in a GROUP command
to summarize the records in a result set. However, you should not specify these
attributes in an ORDER, SPECIFY FILTER, or SPECIFY VIEW command.

CPSM Definition and CICS Definition tables include a CHANGETIME attribute,
which reflects the date and time at which the definition was last modified. CICS
Definition tables also include a CREATETIME attribute, which is the date and
time at which the definition was created. CICSPlex SM is solely responsible for
maintaining the CHANGETIME and CREATETIME attributes; you should not
attempt to modify these attribute values.

| Building a customized resource table record
| Normally, when you create a result set, each resource table record contains the
| complete set of attributes in the format defined by CICSPlex SM. There may be
| times, however, when you want to work with a subset of those attributes or work
| with them in a different order. The SPECIFY VIEW command lets you decide which
| attributes of a resource table to include in a record and what order to present them
| in. In effect, you are building a temporary, custom-made resource table.

| You can build views only for resource tables with a type of CICS Resource; you
| cannot build views for any other type of resource table. Also, a view can be built
| from the attributes of only one resource table at a time. You cannot combine
| attributes from different resource tables into a single view.

| When you build a resource table view, you have to give it a name. The name you
| assign to a view takes precedence over any existing resource table names. This
| means you can redefine an existing resource table name to represent a subset of
| the attributes in a different order than they appear in the original table.

| For ease of maintenance of your programs, you are recommended to give unique
| names to your customized resource table views. If you do not use unique names,
| you should be aware that you cannot access another view with the same name in
| the same processing thread, without the programming overhead of discarding the
| original view. You should also check, when you upgrade your version of

16 CICSPlex SM Application Programming Guide

| CICSPlex SM, that any new resource tables do not duplicate your customized view
| names.

| To tell CICSPlex SM which resource table attributes you want to include and in
| what order, you specify an order expression on the FIELDS option of the
| SPECIFY VIEW command. This expression is similar to the one you use when
| sorting records in a result set with the ORDER command. The order expression
| consists of a list of the attributes to be included in the view.

| The syntax of an order expression for building a view is:

| Order Expression – Building a View|

| ┌ ┐─,──
| 55─ ── ───

6
┴attr . ───5%

| where:

| attr Is the name of an attribute in the resource table.

| You can specify as many attribute names as you like, but the total length
| of an order expression, including commas and blank spaces, must not
| exceed 255 characters.

| Notes:

| 1. You cannot specify the EYU_CICSNAME or EYU_CICSREL attributes in an
| order expression. To identify the CICS system from which a view record was
| collected, retrieve the OBJSTAT information along with the data. You can do
| this by specifying the BOTH option on the FETCH command.

| 2. An order expression must be followed by either blank spaces or null characters
| to the end of the specified buffer. That is, the buffer length you specify (using
| the LENGTH option) should not include any data other than an order
| expression.

| For example, to build a limited view of the LOCTRAN resource table, you could
| specify:

| TRANID,STATUS,USECOUNT,PROGRAM,PRIORITY,TRANCLASS.

| Once a view is built, you can specify it on the OBJECT option of a GET command,
| just as you would the resource table itself. The resource table records returned by
| GET include only those attributes you named in the order expression on the
| SPECIFY VIEW command.

| Any views that you build are associated with the specific processing thread on
| which you build them; they cannot be shared by other processing threads. When
| you terminate your processing thread, any views you built on it are discarded. You
| can also choose to discard a view at any time by using the DISCARD command.

| How to create copybooks for customized resource table records
| You can build a structure for your customized view by using the SPECIFY VIEW,
| GET and FETCH commands to move the data into your structure. For example:

 Chapter 2. Using the CICSPlex SM API 17

| \\\

| \ SPECIFY VIEW \

| \\\

| STRING 'POOLNAME,MINITEMLEN,QUELENGTH,NUMITEMS,'

| 'RECOVSTATUS,MAXITEMLEN,LASTUSEDINT,'

| 'NAME,TRANSID,LOCATION.'

| DELIMITED BY SIZE INTO BUFFERA.

| MOVE 96 TO BUFFERL.

| EXEC CPSM SPECIFY

| VIEW('VTSQSHR')

| FIELDS(BUFFERA)

| LENGTH(BUFFERL)

| OBJECT('TSQSHR')

| THREAD(TTKN(1))

| RESPONSE(SMRESP)

| REASON(SMRESP2)

| END-EXEC.

| Figure 2. SPECIFY VIEW command to build a structure

| The associated structure will consist of each attribute specified in the SPECIFY
| VIEW FIELDS keyword and is shown in Figure 3.

| ð1 VTSQSHR.

| \ Shared Temporary Storage Queue

| ð2 POOLNAME PIC X(ððð8).

| \ TS Pool Name

| ð2 MINITEMLEN PIC S9(ððð4) USAGE BINARY.

| \ Smallest item Length in bytes

| ð2 QUELENGTH PIC S9(ððð8) USAGE BINARY.

| \ Total length in bytes . FLENGT

| ð2 NUMITEMS PIC S9(ððð4) USAGE BINARY.

| \ Number items in queue

| ð2 RECOVSTATUS PIC S9(ððð8) USAGE BINARY.

| \ Recovery Status

| ð2 MAXITEMLEN PIC S9(ððð4) USAGE BINARY.

| \ Largest item length in bytes

| \ --\

| \ LASTUSEDINT \

| \ Invalid CICSREL = E33ð E41ð O3ðð O311 N5ðð \

| \ --\

| ð2 LASTUSEDINT PIC S9(ððð8) USAGE BINARY.

| \ Interval since last use

| ð2 NAME-R PIC X(ðð16).

| \ Queue Name -- RESERVED WORD --

| \ --\

| \ TRANSID \

| \ Invalid CICSREL = E33ð E41ð O3ðð O311 N5ðð \

| \ --\

| ð2 TRANSID PIC X(ððð4).

| \ Trans that created tsqueue

| ð2 LOCATION PIC S9(ððð8) USAGE BINARY.

| \ Queue Location

| Figure 3. Structure of a customized view

| Note that the EYU-CICSNAME, EYU-CICSREL, and EYU-RESERVED attributes or
| any field alignment or padding attributes are not used in this structure.

18 CICSPlex SM Application Programming Guide

 selecting managed objects

Selecting managed objects
Any given API program is likely to be interested in only a subset of the
CICSPlex SM managed objects. You can identify the managed objects you want to
work with by:

� Setting the context and scope for your program
� Using filter expressions on individual commands.

Setting the context and scope
The set of managed objects that your API program can work with is determined
primarily by the context and scope associated with the processing thread. As with
all CICSPlex SM operations, the context and scope of an API program identify the
CICS systems on which the program can act.

In general, you can set the context and scope values as follows:

CONTEXT For most operations in a CICSplex, the context is the name of the
CICSplex. For operations related to CMAS configuration (such as
defining CICSplexes or CMAS communication links), the context
must be a CMAS name.

SCOPE When the context is a CICSplex, the scope can be:

� The CICSplex itself
� A CICS system or CICS system group within the CICSplex
� A logical scope, as defined in a CICSPlex SM resource

description (RESDESC)

When the context is a CMAS, the scope value is ignored.

You can set a default context and scope for your program by using one of these
commands:

CONNECT Defines a default context and scope when the API processing
thread is established.

QUALIFY Changes the default context and scope for subsequent commands
issued on the thread.

The values you set on either of these commands are in effect for all API commands
that use context and scope.

Alternatively, you can specify context and scope values for individual API
commands. The following commands support one or both of the CONTEXT and
SCOPE options:

 � CREATE
 � GET
 � LISTEN
 � PERFORM OBJECT
 � REMOVE
 � UPDATE.

The context and scope values you set on any of these commands are in effect for
that command alone. If you specified a default context and scope for the thread,
the values on any of these commands temporarily override the default values. If
you did not specify a default context and scope and you issue a command that

 Chapter 2. Using the CICSPlex SM API 19

 selecting managed objects

expects these values (such as GET), you must specify a context and scope on the
command.

Using filter expressions
A request for CICSPlex SM managed object data can produce a large number of
resource table records. The default is to return all the resource table records that
exist for a given object within the current context and scope. For example, if you
ask for PROGRAM object data, you receive a resource table record for every
program in every CICS system in the current context and scope. However, if you
are only interested in certain programs, you can use a filter expression to limit the
number of records returned based on the current values of certain PROGRAM
attributes.

How you can use filter expressions
You can use filter expressions in one of two ways:

� With the CRITERIA option of a GET or PERFORM OBJECT command to filter
the resource table records returned by that command. The filter expression is
used only once and is discarded when the command that used it completes its
processing.

� With a SPECIFY FILTER command to define a filter that can be used
repeatedly.

Once a filter is defined, you can use it with these commands to limit the
resource table records being processed:

 – COPY
 – DELETE
 – FETCH
 – GET
 – GROUP
 – LISTEN
 – LOCATE
 – MARK
 – PERFORM OBJECT
 – PERFORM SET
 – REFRESH
 – SET
 – UNMARK

A filter expression that you define with the SPECIFY FILTER command is
available to your program until you either discard it (with the DISCARD
command) or terminate the processing thread.

How to build a filter expression
A filter expression is a character string that defines logical expressions to be used
in filtering resource table records. A filter expression can be made up of one or
more attribute expressions in the form:

20 CICSPlex SM Application Programming Guide

 selecting managed objects

 Filter Expression

55─ ───┤ logic_expr ├─. ───5%

logic_expr:
 ┌ ┐─AND/OR──────────────────────────

├─ ───
6

┴──┬ ┬───── ──┬ ┬───┤ attr_expr ├─ ─── ─────────────────────────────┤
 └ ┘──NOT └ ┘──(─┤ logic_expr ├─)

attr_expr:
├─ ──attropervalue ───┤

where:

attr Is the name of an attribute in the resource table.

You can name the same attribute more than once in a filter
expression.

Note: You cannot specify the EYU_CICSNAME or EYU_CICSREL
attributes in a filter expression.

oper Is one of the following comparison operators:

< Less than
<= Less than or equal to
= Equal to
>= Greater than or equal to
> Greater than
¬= Not equal to

value Is the value for which the attribute is being tested. The value must be
a valid one for the resource table attribute.

| Generic values If the attribute accepts character data, this
value can be a generic. Generic values can
contain:

� An asterisk (*), to represent any number
of characters, including zero. The asterisk
must be the last or only character in the
specified value. For example:

 TRANID=PAY\

� A plus sign (+), to represent a single
character. A + can appear in one or more
positions in the specified value. For
example:

 TRANID=PAY++96

| Imbedded blanks or special characters

If the value contains imbedded blanks or
special characters (such as periods, commas,
or equal signs), the entire value string must
be enclosed in single quotes. For example:

 TERMID=‘Z AB’

 Chapter 2. Using the CICSPlex SM API 21

 selecting managed objects

To include a single quote or apostrophe in a
value, you must repeat the character, like
this:

 DESCRIPTION=‘October''s Payroll’

Note: Be sure to consider the quoting
conventions of your programming
language when using single quotes in
a CICSPlex SM value string.

| Hexadecimal data If the attribute has a datatype of HEX the
| value must be in hexadecimal notation.

| For example, the NAME attribute of the
| REQID resource table is a HEX datatype. To
| specify a name equal to 01234567 the value,
| using hexadecimal notation, would be

| NAME=FðF1F2F3F4F5F6F7

AND/OR Combines attribute expressions into compound logic expressions
using the logical operators AND and OR, like this:

attr_expr AND attr_expr.

Filter expressions are evaluated from left to right. You can use
parentheses to vary the meaning of a filter expression. For example,
this expression:

attr_expr AND (attr_expr OR attr_expr).

has a different meaning than this one:

(attr_expr AND attr_expr) OR attr_expr.

NOT Negates one or more attribute expressions.

You can negate a single attribute expression, like this:

 NOT attr_expr

You can also negate multiple attribute expressions or even a whole
filter expression, like this:

NOT (attr_expr OR attr_expr).

Note that you must place parentheses around the attribute
expressions (or the filter expression) to be negated.

Note: A filter expression must be followed by either blank spaces or null
characters to the end of the specified buffer. That is, the buffer length you
specify (using the LENGTH option) should not include any data other than a
filter expression.

For example, the following is a simple filter expression that you could use to select
LOCTRAN objects representing local transactions that are enabled and have a
storage violation count greater than zero:

STATUS=ENABLED AND STGVCNT>ð.

You can build more complex filter expressions to select objects with a very specific
combination of attributes. For example, to select LOCTRAN objects that:

� Have a transaction ID starting with P
� Have a program name starting with PAY

22 CICSPlex SM Application Programming Guide

 working with result sets

 � Are enabled
� Have a nonzero use count and storage violations, or have been restarted.

you could specify a filter expression like this:

(TRANID=P\ AND PROGRAM=PAY\ AND STATUS=ENABLED) AND
((USECOUNT>ð AND STGVCNT>ð) OR NOT RESTARTCNT═ð).

Note that the RESTARTCNT attribute in this example could also have been
specified with the greater than operator instead of the NOT operator.

Working with result sets
CICSPlex SM places the resource table records that you select in a result set. A
result set is a logical group of resource table records that can be accessed,
reviewed, and manipulated by an API program.

A result set can be created in one of two ways:

� By a direct API request to obtain resource data. The GET command is the
primary means of collecting resource data and creating a result set.

� By an API request that manipulates one result set to create another. COPY is
an example of a command that can create a new result set from the records in
an existing one. The result set from which records are being copied is referred
to as the source result set. The one being copied to is the target result set.

The resource table records in a result set must all represent one type of managed
object. That is, a result set that contains PROGRAM resource table records cannot
also contain LOCTRAN resource table records. The resource table records must
also be collected from the same CICSPlex SM context. So a result set that
contains records from one CICSplex cannot be used to hold records from any other
CICSplex. Once a result set is created, its resource type and context are fixed. The
only way to change the type or context of a result set is to completely replace the
contents of the result set with new resource table records.

Keep in mind that a resource table record in a result set is not the actual managed
object; it is a report of the managed object's attributes at the point in time when
data was collected. This is an important distinction because the actual managed
object may have changed or may no longer exist by the time the resource table
record is returned to your program. The number of records returned may vary as
managed objects come and go, but the structure of the records in a result set
remains constant.

A simple API program might deal with only one result set at a time. Each new
request for data could create a result set that replaces the previous one. A more
complex program might maintain several result sets concurrently and control the
retention of those result sets more directly.

An overview of result set commands
You can use the following commands to create result sets and manage the
resources that they represent:

GET Returns a result set containing selected resource table records that
represent instances of a managed resource.

 Chapter 2. Using the CICSPlex SM API 23

 working with result sets

PERFORM Performs an action on one or more managed resources. PERFORM
SET acts upon the resource table records in an existing result set.
PERFORM OBJECT does not require a result set to exist; it creates
one implicitly.

REFRESH Refreshes the data for some or all of the managed resources as
represented by resource table records in a result set.

SET Modifies the attributes of one or more managed resources as
represented by resource table records in a result set.

These commands affect not only the resource table records in a result set, but also
the managed resources that those records represent. Figure 4 illustrates the
relationship of these commands to the API environment.

User
Environment

CICSPlex SM
Environment

Managed
Resources

CICS System
User-Written

Program

CICSPlex SM
API Client Code Processing

thread

Result
Set

GET
PERFORM OBJECT

PERFORM SET
REFRESH

SET

Managed Resource Commands

Figure 4. API commands that manipulate managed resources

Once a result set is created, you can perform various operations on the records it
contains. You can sort, mark, copy, delete, and summarize the records in a result
set. Most importantly, perhaps, you can retrieve records from a result set into local
storage where they can be processed by your program.

You can use the following commands to manipulate one or more records in a result
set:

COPY Copies some or all of the resource table records in one result set to
another result set.

DELETE Deletes one or more resource table records from a result set.

FETCH Retrieves data and status information for one or more resource
table records in a result set.

24 CICSPlex SM Application Programming Guide

 working with result sets

GROUP Returns a summarized result set by grouping some or all of the
resource table records in a result set.

LOCATE Positions the record pointer within a result set.

MARK Marks selected resource table records in a result set.

ORDER Sorts the resource table records in a result set.

UNMARK Removes the marks placed on resource table records by a previous
MARK command.

These commands affect only the current contents of a result set; they have no
impact on the managed resources that the result set represents. Figure 5 illustrates
the relationship of these commands to the API environment.

User

Environment

CICSPlex SM

Environment

Managed

Resources

CICS System

User-Written

Program

CICSPlex SM

API Client Code Processing

thread

Result

Set

Result Set Record CommandsCOPY

DELETE

FETCH

GROUP

LOCATE

MARK

ORDER

UNMARK

Figure 5. API commands that manipulate result set records

CICSPlex SM also provides tools for managing result sets as a whole: filters and
views for controlling the contents of a result set and commands for reviewing and
discarding result sets.

You can use the following commands to manage result sets and their contents:

DISCARD Discards a result set.

QUERY Retrieves information about a result set and the resource table
records it contains.

SPECIFY FILTER Defines an attribute or value filter that can be used to control
the contents of a result set.

 Chapter 2. Using the CICSPlex SM API 25

 working with result sets

SPECIFY VIEW Builds a customized view of a resource table that can be used
to control the contents of a result set

These commands affect only an existing or newly created result set; they have no
impact on the managed resources that the result set represents. Figure 6 illustrates
the relationship of these commands to the API environment.

User

Environment

CICSPlex SM

Environment

Managed

Resources

CICS System
User-Written

Program

CICSPlex SM

API Client Code Processing

thread

Result

Set

Result Set Commands

View

Filter

DISCARD

QUERY

SPECIFY FILTER

SPECIFY VIEW

Figure 6. API commands that manipulate result sets

Retrieving records from a result set
Once you have created a result set (using the GET command), you can transfer
some or all of the records it contains to local storage for processing. You can use
the FETCH command to retrieve a single resource table record, multiple selected
records, or the entire result set at one time.

Each resource table record that you retrieve contains current data about the
managed resource that it represents. Each record also contains certain status
information that is maintained by CICSPlex SM. This status information, which is
presented in the form of a resource table called OBJSTAT, includes:

� The name and release level of the CICS system from which data was collected
� The context in effect when data was collected
� The name and type of the managed resource
� The last operation performed against the resource
� The current status of the resource.

In effect, each record in a result set contains a pair of resource tables: an instance
of the OBJSTAT resource table followed by an instance of the resource table that
was requested. The managed resource data and the OBJSTAT status information
can be retrieved either as a pair or separately, depending on the option you specify
with the FETCH command:

26 CICSPlex SM Application Programming Guide

 working with result sets

DATA Retrieves only the specified resource table data.
STATUS Retrieves only the OBJSTAT status information.
BOTH Retrieves both the resource table data and the OBJSTAT status

information.

Figure 7 illustrates the information available in result set records and the FETCH
commands you can use to retrieve that information.

TOKENA Result Set

OBJSTAT
Num, Context, MAS, Object, CntRecords, . . .

1, PLEX1, MAS1, LOCTRAN, 1, . . .

2, PLEX1, MAS2, LOCTRAN, 1, . . .

3, PLEX1, MAS1, LOCTRAN, 1, . . .

4, PLEX1, MAS2, LOCTRAN, 1, . . .

5, PLEX1, MAS1, LOCTRAN, 1, . . .

6, PLEX1, MAS2, LOCTRAN, 1, . . .

FETCH STATUS FETCH DATA

FETCH BOTH

LOCTRAN
MAS, Tranid, Program, Status, UseCount, . . .

MAS1,

MAS2,

MAS1,

MAS2,

MAS1,

MAS2,

TR01,

TR01,

TR02,

TR02,

TR03,

TR03,

PROG01,

PROG01,

PROG01,

PROG01,

PROG02,

PROG02,

ENABLED,

ENABLED,

ENABLED,

DISABLED,

DISABLED,

ENABLED,

10, . . .

20, . . .

15, . . .

10, . . .

0, . . .

15, . . .

GET OBJECT(LOCTRAN) RESULT(TOKENA) . . .

Figure 7. Using FETCH to retrieve result set records

The result set referenced by TOKENA was created by issuing a GET command for
LOCTRAN records. Each record in the result set consists of LOCTRAN data and
OBJSTAT data.

You can use the FETCH commands shown in Figure 7 to selectively retrieve some
or all of the data. For example, Figure 8 shows the output of a FETCH DATA
command.

MAS1,

MAS2,

MAS1,

MAS2,

MAS1,

MAS2,

TR01,

TR01,

TR02,

TR02,

TR03,

TR03,

PROG01,

PROG01,

PROG01,

PROG01,

PROG02,

PROG02,

ENABLED,

ENABLED,

ENABLED,

DISABLED,

DISABLED,

ENABLED,

10, . . .

20, . . .

15, . . .

10, . . .

0, . . .

15, . . .

FETCH DATA ALL RESULT(TOKENA) INTO(AREA1) . . .

Figure 8. Sample FETCH DATA output

 Chapter 2. Using the CICSPlex SM API 27

 working with result sets

Positioning the record pointer in a result set
CICSPlex SM maintains a current record pointer in each result set. When you first
create a result set (with a GET command, for example), the pointer is positioned at
the top of the result set. The first command that you issue against the result set
affects the first record.

In most cases, when you issue FETCH commands to retrieve records from the
result set, the record pointer is positioned to the next record in the result set (that
is, the record following the last record that was fetched). However, certain API
commands always act upon the last record that was fetched. When you issue any
of these commands after a FETCH command, the record pointer is not advanced to
the next record:

 � COPY
 � DELETE
 � MARK.
 � UNMARK.

The record pointer in a result set may actually move either forward or backward,
depending on the direction in which you are retrieving records. If you issue a
FETCH command and no records are found that match the specified criteria, no
records are retrieved. In that case, the pointer is positioned to the top or bottom of
the result set, depending on the direction the pointer was moving.

The GET and FETCH commands leave the record pointer in specific, predefined
positions, but other API commands do not. Many API commands manipulate
records or update the data in a result set. The position of the record pointer after
one of these commands depends on a combination of factors, including the options
that you specified on the command. The pointer may have moved forward or
backward one or more records, or it may be positioned to the top or bottom of the
result set. If you specified the CURRENT option, the record pointer does not move;
it remains positioned on the current record after the command is complete.

For this reason, CICSPlex SM provides the LOCATE command, which lets you
explicitly position the record pointer within a result set. If you want to use the record
pointer after issuing any of these commands, first use the LOCATE command to
reposition it:

 � COPY
 � DELETE
 � GETDEF
 � GROUP
 � MARK
 � ORDER
 � PERFORM OBJECT
 � PERFORM SET
 � REFRESH
 � SET
 � UNMARK.

28 CICSPlex SM Application Programming Guide

 working with result sets

Processing selected records in a result set
If you want to process a subset of the resource table records in a result set, you
can identify the records you are interested in by:

� Using the SPECIFY FILTER command to define a filter for selecting records, as
described in “Using filter expressions” on page 20.

� Using the MARK and UNMARK commands to mark the records.

Using MARK and UNMARK
The MARK command enables you to mark some or all of the resource table
records in a result set for future reference. The UNMARK command removes
existing marks from selected records. Once you have marked records in a result
set, you can refer to the records that are either marked or not marked in
subsequent commands. The following API commands support the MARKED and
NOTMARKED options:

 � COPY
 � DELETE
 � FETCH
 � GROUP
 � LOCATE
 � PERFORM SET
 � REFRESH
 � SET

For example, Figure 9 on page 30 shows a result set in which selected resource
table records have been marked. The MARKED option is then used with the
FETCH command to retrieve only those records that are marked.

 Chapter 2. Using the CICSPlex SM API 29

 working with result sets

TOKENA Result Set

OBJSTAT
Num, Context, MAS, Object, CntRecords, . . .

1, PLEX1, MAS1, LOCTRAN, 1, . . .

2, PLEX1, MAS2, LOCTRAN, 1, . . .

3, PLEX1, MAS1, LOCTRAN, 1, . . .

4, PLEX1, MAS2, LOCTRAN, 1, . . .

5, PLEX1, MAS1, LOCTRAN, 1, . . .

6, PLEX1, MAS2, LOCTRAN, 1, . . .

LOCTRAN
MAS, Tranid, Program, Status, UseCount, . . .

MAS1,

MAS2,

MAS1,

MAS2,

MAS1,

MAS2,

TR01,

TR01,

TR02,

TR02,

TR03,

TR03,

PROG01,

PROG01,

PROG01,

PROG01,

PROG02,

PROG02,

ENABLED,

ENABLED,

ENABLED,

DISABLED,

DISABLED,

ENABLED,

10, . . .

20, . . .

15, . . .

10, . . .

0, . . .

15, . . .

3, PLEX1, MAS1, LOCTRAN, 1, . . .

4, PLEX1, MAS1, LOCTRAN, 1, . . .

6, PLEX1, MAS1, LOCTRAN, 1, . . .

TR02,

TR02,

TR03,

PROG01,

PROG01,

PROG02,

ENABLED,

DISABLED,

ENABLED,

15, . . .

10, . . .

15, . . .

MAS1,

MAS2,

MAS2,

FETCH BOTH MARKED RESULT(TOKENA) INTO(AREA2) . . .

GET OBJECT(LOCTRAN) RESULT(TOKENA) . . .
MARK PARM(`3,4,6.') RESULT(TOKENA) . . .

Figure 9. Marking and retrieving records in a result set

Identifying the records to be marked
By default, when you issue a MARK or UNMARK command, only the current
resource table record is marked or unmarked. But there are a variety of ways that
you can identify the records to be marked:

� To mark a specific record other than the current record, use the POSITION
option and identify the record by its relative position in the result set.

� To mark one or more records that meet previously defined filtering criteria, use
the FILTER or NOTFILTER option.

� To mark all the records in a result set, use the ALL option.

In addition to these options, you can use the PARM option to identify a list of
records to be marked. To use the PARM option, you specify a character string of
record numbers in a parameter expression. The parameter expression can contain:

� Individual record numbers, separated by commas.

� Ranges of record numbers, with the low and high numbers separated by a
colon.

The whole parameter expression must end with a period.

For example, to mark records 1, 3, 6 through 9, and 24 in a result set, you would
specify:

 PARM(‘1,3,6:9,24.’)

30 CICSPlex SM Application Programming Guide

 working with result sets

When you use the PARM option, you must also use the PARMLEN option to
specify the length of the buffer that contains the parameter expression.

Notes:

1. Negative values and 0 are not valid record numbers. If you specify an invalid
record number, the MARK (or UNMARK) command returns RESPONSE and
REASON values of INVALIDPARM PARM.

2. If you mistakenly specify the higher value in a range first (such as 9:6),
CICSPlex SM reverses the values to produce a valid range.

3. If you mistakenly specify a single value preceded or followed by a colon (such
as 6:), the colon is ignored. CICSPlex SM marks only the specified record.

Identifying records that could not be marked
When you are marking or unmarking records, it might be useful to know if all the
records you identified were successfully processed. For example, you might
mistakenly ask CICSPlex SM to mark or unmark a record that was previously
deleted from the result set. Or you might identify a record number that is out of
range for the result set.

You can use the COUNT option on a MARK or UNMARK command to determine
the number of records that could not be marked or unmarked. You can also use the
INTO and LENGTH options to identify a buffer to receive a list of records that could
not be marked. When deciding on the length of the INTO buffer, keep in mind that
it must be long enough to hold the maximum number of record numbers that could
result from your MARK request (in the event that none of them can be marked).
Furthermore, all record numbers are listed individually (not by range) in the INTO
buffer and are separated by commas. So if you specified the PARM option like this:

 PARM(‘1,3:6,12,15.’)

the INTO buffer would have to be long enough to hold the following character
string:

 1,3,4,5,6,12,15

If the INTO buffer you specify is not long enough to hold a complete list of records
that could not be marked, you receive a RESPONSE value of WARNING
AREATOOSMALL. In that case, the INTO buffer returns a partial list of records and
the LENGTH value is set to the buffer length that would be required for a complete
list. You could then resubmit the MARK command with the appropriate LENGTH
value to determine which records could not be marked.

How to remove the marks in a result set
You can use the UNMARK command to remove some or all of the marks placed on
resource table records by a previous MARK command. However, if you want to
mark other records at the same time, you can save a step by using the RESET
option of the MARK command.

By default, the records you specify on a MARK command are marked in addition to
any records that are already marked in the result set. That is, any resource table
records that were marked previously remain marked unless you use the RESET
option. RESET wipes the result set clean of any previous marks. So the records
identified on the current MARK command are the only records marked when

 Chapter 2. Using the CICSPlex SM API 31

 working with result sets

processing is complete. Using the RESET option on a MARK command is an
alternative to using the UNMARK command before the MARK command.

Note: Any marks that you placed on resource table records are also removed
when you use the COPY command to copy those records from one result
set to another.

Summarizing the records in a result set
If you want to analyze or modify a large number of records in a result set, you
might find it useful to summarize those records. The GROUP command lets you
summarize the records in a result set based upon the value of some resource table
attribute.

When you issue a GROUP command, CICSPlex SM summarizes the records in
one result set to create a new, summarized result set. A summarized result set is a
special type of result set. It contains summary resource table records that
correspond to one or more records in the source result set.

For example, you could use the GROUP command to summarize a result set that
contains LOCTRAN resource table records. If you want to group the records
according to the value of the STATUS attribute, the summarized result set would
contain, at most, two records: one representing those records with a STATUS value
of ENABLED, and one representing those with a STATUS of DISABLED. Figure 10
illustrates this use of the GROUP command.

TOKENB Summarized Result Set

OBJSTAT
Num, Context, MAS, Object, CntRecords, . . .

, , , , 4 , . . .

, , , , 2 , . . .

LOCTRAN
MAS, Tranid, Program, Status, UseCount, . . .

, TR0*, PROG0*,

, TR0*, PROG0*,

ENABLED,

DISABLED

15, . . .

5, . . .

GROUP BY(STATUS) FROM(TOKENA) TO(TOKENB) . . .

Figure 10. Using GROUP to summarize result set records

In general, you can work with a summarized result set in the same ways that you
do a regular result set. You can use the FETCH command to retrieve records from
a summarized result set. You can also retrieve the individual records of the source
result set on which the summary is based. The DETAIL option of the FETCH
command lets you retrieve that subset of records in the source result set that
correspond to a particular summary record.

Figure 11 on page 33 shows an example of fetching the detail records associated
with a summary record. In this case, the summary record was a LOCTRAN record
that represented all enabled transactions.

32 CICSPlex SM Application Programming Guide

 working with result sets

MAS1,

MAS2,

MAS1,

MAS2,

TR01,

TR01,

TR02,

TR03,

PROG01,

PROG01,

PROG01,

PROG02,

ENABLED,

ENABLED,

ENABLED,

ENABLED,

10, . . .

20, . . .

15, . . .

15, . . .

FETCH DETAIL RESULT (TOKENB) INTO (AREA3) . . .

Figure 11. Sample FETCH DETAIL output

You can modify the records in a summarized result set using the PERFORM or
SET commands. This is equivalent to modifying all the records in the source result
set that are represented by a given summary record. However, since each record in
a summarized result set has a single OBJSTAT record associated with it (rather
than one for each of the source records being modified), you may want to use the
FETCH DETAIL command to determine the results of a summary action.

The OBJSTAT records in a source result set are not summarized when you issue a
GROUP command. So the OBJSTAT records in a summarized result set do not
represent the OBJSTAT information for all of the source records. However, the
OBJSTAT records in a summarized result set do include a summary count, which
indicates how many source records were combined to produce each summary
record.

A summarized result set and its source result set should be thought of as a pair to
be used together. They share certain attributes and the summarized result set has
certain dependencies on the source result set:

� A summarized result set cannot exist without the source result set from which it
was built. If you discard a source result set, all the summarized result sets that
were built from it are also discarded.

� You can reuse a summarized result only to resummarize the records in the
same source result set. An existing summarized result set cannot be used as
the target of a GROUP command for a different source result set.

� If you modify a source or summarized result set in any way, all the summarized
result sets that have been built from the source result set are rebuilt.

Note: To prevent this from happening, you can specify the NOREFRESH
option on the PERFORM or SET command.

Specifying summary expressions
The attributes of a summary record are set according to a summary option that is
appropriate for the attribute's data type. For each resource table attribute,
CICSPlex SM defines a default summary option. CICSPlex SM uses these
defaults when summarizing records unless you explicitly override them.

You tell CICSPlex SM how to summarize the attributes in a record by specifying a
summary expression on the SUMOPT option of the GROUP command. A summary
expression is a character string that consists of one or more summary options and
the resource table attributes to which they apply.

The syntax of a summary expression is:

 Chapter 2. Using the CICSPlex SM API 33

 working with result sets

 Summary Expression

 ┌ ┐──────────────────
 │ │┌ ┐─,──
55─ ── ───

6
┴ sumopt(───

6
┴attr) . ───5%

where:

sumopt Is the summary option to be used for the specified resource table
attributes:

AVG Provides the average attribute value. Valid for numeric fields
only.

DIF Provides those characters that are common to all underlying
records and displays an asterisk (*) for those not common.
Valid for character fields only.

LIKE Provides the CVDA or EYUDA value, if all records contain a
common value. Otherwise, displays N/A. Valid for CVDA and
EYUDA fields only.

MAX Provides the maximum attribute value. Valid for numeric
fields only.

MIN Provides the minimum attribute value. Valid for numeric fields
only.

SUM Provides the sum of the attribute values. Valid for numeric
fields only.

You can specify the same summary option more than once in a
summary expression.

attr Is the name of an attribute in the resource table.

You can specify as many attribute names for each summary option as
you like.

Note: A summary expression must be followed by either blank spaces or null
characters to the end of the specified buffer. That is, the buffer length you
specify (using the LENGTH option) should not include any data other than a
summary expression.

For example, you could use a summary expression like this when grouping
LOCTRAN records:

 SUM(USECOUNT) MAX(PRIORITY,TWASIZE).

By default, the values for these attributes would be averaged. But this summary
expression specifies that each summary record should include the sum of all
USECOUNT values and the maximum PRIORITY and TWASIZE values.

Sorting the records in a result set
The records in a result set are normally sorted by the key attributes for that
resource table. In the case of CICS Resource and CICS Monitored tables, records
are sorted by the CICS system from which they were collected. In working with
result sets, you may find it easier to process the records if they are in some logical
order of your own choosing. The ORDER command lets you sort the records in a
result set according to the values of a particular resource table attribute.

34 CICSPlex SM Application Programming Guide

 modifying managed resources

You tell CICSPlex SM how to sort the records by specifying an order expression on
the BY option of the ORDER command. An order expression is a character string
that consists of one or more attribute names to be used in sorting the resource
table records.

The syntax of an order expression for sorting records is:

Order Expression – Sorting Records

 ┌ ┐─,──────────
55─ ── ───

6
┴attr ──┬ ┬──── . ───5%

 └ ┘─/D─

where:

attr Is the name of an attribute in the resource table.

You can specify as many attribute names as you like, but the total length
of an order expression, including commas and blank spaces, must not
exceed 255 characters.

Note: You cannot specify the EYU_CICSNAME or EYU_CICSREL
attributes in an order expression.

/D Indicates the attribute values should be sorted in descending order. By
default, the values are sorted in ascending order.

Note: An order expression must be followed by either blank spaces or null
characters to the end of the specified buffer. That is, the buffer length you
specify (using the LENGTH option) should not include any data other than
an order expression.

For example, to sort a result set of LOCTRAN records by transaction ID and
enabled status, you could specify:

 TRANID,STATUS.

In this example, transaction ID is the primary sort key and enabled status is the
secondary sort key.

To sort records in descending order of use count, add /D to the end of the attribute
name, like this:

 USECOUNT/D

Modifying managed resources
This section describes various ways in which you can modify the resources
managed by CICSPlex SM. The actions described here are issued against
resource table records in a result set. However, the changes that you request are
made to the actual resources which those records represent.

 Chapter 2. Using the CICSPlex SM API 35

 modifying managed resources

Modifying resource attributes
You can change the current value of a resource attribute by using the SET or
UPDATE command. SET modifies the attributes of a CICS resource, while
UPDATE modifies CICSPlex SM and CICS definitions. The MODIFY option of
these commands accepts a modification expression, which is a character string that
defines the attribute changes to be made.

A modification expression can be made up of one or more attribute expressions in
the form:

 Modification Expression

 ┌ ┐─,────────
55─ ── ───

6
┴attr═value . ───5%

where:

attr Is the name of a modifiable attribute in the resource table.

value Is the value to which you want the attribute set. The following restrictions
apply:

� The value must be a valid one for the attribute.

� If the value contains imbedded blanks or special characters (such as
periods, commas, or equal signs), the entire value string must be
enclosed in single quotes, like this:

 DESCRIPTION=‘Payroll.OCT’

� To include a single quote or apostrophe in a value, you must repeat
the character, like this:

 DESCRIPTION=‘October''s Payroll’

Note: Be sure to consider the quoting conventions of your programming
language when using single quotes in a CICSPlex SM value string.

Note: A modification expression must be followed by either blank spaces or null
characters to the end of the specified buffer. That is, the buffer length you
specify (using the LENGTH option) should not include any data other than a
modification expression.

For example, to disable one or more local transactions (LOCTRAN), you could
specify:

 STATUS=DISABLED.

in the MODIFY option of a SET command.

If you issue a SET command against CICS systems that do not support the
requested modification, the request is ignored for those CICS systems. If your
context and scope consist solely of CICS systems that do not support the
modification, you receive RESPONSE and REASON values of NOTAVAILABLE
SCOPE.

To change the task storage location of a CICS transaction definition (TRANDEF),
you could specify:

 TASKDATALOC=ANY

36 CICSPlex SM Application Programming Guide

 modifying managed resources

in the MODIFY option of an UPDATE command.

Note that the MODIFY option of UPDATE is valid only for CICS Definition resource
tables.

For a list of the attributes for each resource and their valid values, refer to the
CICSPlex SM Resource Tables Reference.

Performing an action against a resource
In addition to modifying individual attributes, you can also perform actions against
many resources by using either of the PERFORM commands, PERFORM OBJECT
or PERFORM SET. The difference between these two commands is that
PERFORM SET performs an action against the resource table records in an
existing result set, while PERFORM OBJECT first creates a result set and then
performs the requested action.

Some actions are self-contained and self-explanatory; specifying the action is
enough to indicate the changes to be made to the resource. For example, you can
discard a local file by issuing the DISCARD action against a LOCFILE resource
table record.

Other actions require you to specify additional parameters. For these actions, you
have to specify the PARM option on the PERFORM command. The PARM option
accepts a parameter expression, which is a character string that defines the
parameters required for an action to complete. For example, to disable a local file,
you must indicate how to handle a file that is currently busy. To do that, you could
specify the following parameter expression:

 PARM('BUSY(cvda).')

where cvda is a valid CVDA value for the file busy condition.

If you issue a PERFORM command against CICS systems that do not support the
requested action, the request is ignored for those CICS systems. If your context
and scope consist solely of CICS systems that do not support the action, you
receive RESPONSE and REASON values of NOTAVAILABLE SCOPE.

For a list of the valid actions for each resource and their required parameters, refer
to the CICSPlex SM Resource Tables Reference.

Working with CICSPlex SM and CICS definitions
When you work with CICSPlex SM and CICS definitions there are some special
API commands and command options available.

Creating, updating, and removing definitions
You can use the following API commands to maintain the CICSPlex SM and CICS
definitions in your data repository:

CREATE Creates a new CICSPlex SM or CICS definition using the attribute
values you specify. The new definition is stored in the data
repository.

UPDATE Updates an existing CICSPlex SM or CICS definition according to
the attribute values you specify. The updated definition replaces the
existing definition in the data repository.

 Chapter 2. Using the CICSPlex SM API 37

 modifying managed resources

REMOVE Removes a CICSPlex SM or CICS definition from the data
repository.

Notes:

1. Before you can update or remove a definition you must use the FETCH
command to retrieve the appropriate resource table record from a result set.

2. For CICSPlex SM definitions that have a CICSplex as their context (such as
workload management or real-time analysis definitions), any changes you make
are automatically distributed to all the CMASs involved in managing the
CICSplex.

With each of these commands, you use the FROM option to supply a CPSM
Definition or CICS Definition resource table record for the definition you are working
with. The record must include all of the attributes identified in the resource table for
the definition. If you do not want to specify certain optional attributes, you must set
those fields to the appropriate null values for the attribute's data type (that is,
zeroes or blank spaces).

As an alternative, when you are updating CICS definitions, you can use the
RESULT and MODIFY options of the UPDATE command. These options enable
you to modify multiple definitions at one time (this is the equivalent of issuing the
ALTER action command from the CICSPlex SM end-user interface).

To update CICS definitions, identify a result set that contains CICS Definition
resource table records in the RESULT option. Then use the MODIFY option to
specify the changes to be made to the definitions. MODIFY accepts a modification
expression, as described in “Modifying resource attributes” on page 36.

The CHANGETIME and CREATETIME attributes
When you work with existing CICSPlex SM or CICS definitions, keep in mind that
the first 8 bytes of each record contain an attribute called CHANGETIME, which
reflects the date and time at which the record was last modified. CICS Definition
records also include a CREATETIME attribute, which is the date and time at which
the definition was created.

The CHANGETIME and CREATETIME attributes are maintained internally by
CICSPlex SM; you should not attempt to modify these attribute values. When you
update or remove a definition resource table record, the CHANGETIME and
CREATETIME values you return to CICSPlex SM must be the same values you
received.

Using the PARM option
For most CICSPlex SM and CICS definitions, all of the information needed to
process an API request is included in the attributes of the resource table. Some
definitions, however, allow you to supply optional data and some actually require
additional data. For those definitions, you have to specify the PARM option on the
appropriate API command:

 � CREATE
 � UPDATE
 � REMOVE
 � GET

The PARM option accepts a parameter expression, which is a character string that
defines the parameters required for a definition to be processed.

38 CICSPlex SM Application Programming Guide

 asynchronous processing

For example, suppose you want to create an LNKSMSCG definition, which is a
CICSPlex SM definition that describes the association between a CICS system
group and a monitor specification (MONSPEC). Before CICSPlex SM can process
your request, it must know how to handle other links that may be affected by the
change. So when you issue the CREATE command, you must specify a parameter
expression like this on the PARM option:

 PARM('FORCE.')

which tells CICSPlex SM that all CICS systems in the CICS system group are to
inherit the new specification.

The PARM option is especially useful when working with CICS definitions. For
each CICS Definition resource table there is another resource table that describes
the definition's association with a resource group (RESGROUP), if one exists. For
example, the CONNDEF resource table represents a connection definition and the
CONINGRP resource table represents an association between a connection
definition and a resource group. The RESGROUP parameter provided with the
CREATE and GET commands for CICS Definitions simplifies the processing of
these records.

When you create a CICS Definition record, you can identify an existing resource
group to which the definition should be added. To do this, use the PARM option to
identify the resource group like this:

 PARM('RESGROUP(resgroup).')

Using the RESGROUP parameter automatically creates an xxxINGRP record (such
as a CONINGRP record), which describes the association between the CICS
definition and its resource group.

When you use the GET command to request CICS Definition records from the data
repository, you can select definitions according to the resource group to which they
belong. To do this, use the PARM option to identify the resource group like this:

 PARM('RESGROUP(resgroup).')

which tells CICSPlex SM to select CICS definitions only from the specified
resource group. If you do not use the PARM option, CICSPlex SM selects
definitions from all resource groups, according to the other criteria you specify on
the GET command.

Note: For a complete list of the CREATE, UPDATE, REMOVE, and GET
parameters required (or supported) by a given resource table, see the
CICSPlex SM Resource Tables Reference.

 Asynchronous processing
Most CICSPlex SM API commands normally function in a synchronous manner,
where your program issues a request and then waits until command processing is
complete. However, some of the API commands also support asynchronous
processing. This allows you to request data or perform actions without waiting for
the request to complete. This support also enables you to receive notification when
events of interest occur in the CICSplex.

The API commands you can use to request asynchronous processing are:

 Chapter 2. Using the CICSPlex SM API 39

 asynchronous processing

 � LISTEN
 � CANCEL
 � GET
 � PERFORM OBJECT
 � PERFORM SET
 � REFRESH
 � SET.

The LISTEN command is, by its very nature, an asynchronous request because
you are asking to be notified whenever a certain event occurs. The CANCEL
command simply cancels an outstanding LISTEN request. The other commands
can be used in either a synchronous or asynchronous manner. If you specify the
NOWAIT option on any of these commands, the request is processed
asynchronously.

The API commands you can use to monitor and receive the results of
asynchronous processing are:

 � ADDRESS
 � RECEIVE.

Figure 12 illustrates the relationship of these commands to the API environment.

User
Environment

CICSPlex SM
Environment

Managed
Resources

CICS System
User-Written

Program

CICSPlex SM
API Client Code

Processing
thread

Result
Set

LISTEN
CANCEL

NOWAIT option
ADDRESS
RECEIVE

Asynchronous Processing Commands

Asynchronous
Request

Figure 12. API commands for asynchronous processing

40 CICSPlex SM Application Programming Guide

 asynchronous processing

Using the LISTEN command
Many of the resources that are managed by CICSPlex SM have the ability to notify
the system when events occur that are considered significant to the CICSplex.
Such events are not scheduled and cannot be anticipated, so a program designed
to process these notifications must do so asynchronously. You can identify the
event notifications you are interested in by using the LISTEN command.

The events that can be listened for are represented by resource tables with a type
of CPSM Notification. For example, an EMASSICK notification is produced by a
MAS when a condition occurs that adversely affects the health of the CICS system.
For a list of the CPSM Notification resource tables, and complete descriptions of
other resource table's, see CICSPlex SM Resource Tables Reference.

When you issue a LISTEN command, the resulting notifications are added to an
outstanding data queue for the API processing thread. The number of completed
asynchronous requests, including event notifications and requests issued with the
NOWAIT option, is reported by the SENTINEL option of the ADDRESS command.
You can retrieve the event notifications by issuing a RECEIVE command.

Using the NOWAIT option
If you specify the NOWAIT option on a GET, PERFORM OBJECT, PERFORM
SET, REFRESH, or SET command, the request does not complete processing
immediately. Instead, the request is scheduled for processing, the command
returns a RESPONSE value of SCHEDULED, and control returns to your program.

While the asynchronous request is executing, your program can perform other
processing, even issuing another CICSPlex SM API command. However, as long
as a command is active, the result set it has been given to process is unavailable.
A RESPONSE value of INUSE is returned if you try to access a result set that is
still being processed by an asynchronous request.

An ASYNCREQ resource table record is produced when the asynchronous request
completes. The number of completed asynchronous requests, including
ASYNCREQ records that represent requests issued with the NOWAIT option, is
reported by the SENTINEL option of the ADDRESS command. You can retrieve
ASYNCREQ records by issuing a RECEIVE command.

The ASYNCREQ resource table includes much of the information that is normally
returned by the command itself. Because control returns to your program before the
command completes processing, that information is not available to the command.
The information returned in the ASYNCREQ resource table includes:

� The command that was issued.

� The associated result set token.

� The RESPONSE and REASON values returned by the command.

� The diagnostic data normally returned in a FEEDBACK resource table record, if
the RESPONSE value is not OK.

� A user-defined token that identifies the asynchronous request, if one was
specified.

 Chapter 2. Using the CICSPlex SM API 41

 asynchronous processing

Note: To access the ASYNCREQ data from a REXX program, you can use either
the CICSPlex SM TPARSE command with the ASIS option or the REXX
SUBSTR function.

Using tokens to identify a request
To keep track of the asynchronous requests your program issues, you can assign
each request a unique identifying token. This allows your program to correlate
LISTEN requests and requests made with the NOWAIT option with the results of a
subsequent RECEIVE command. The CICSPlex SM API makes no use of any
tokens you define. User token values are simply held until the associated requests
are complete and then returned to your program by the RECEIVE command.
You can use any 1- to 4-character value as an identifying token. For example, you
might specify:

� A literal constant
� An offset of a service routine
� The address of a data structure.

Using the ADDRESS command
When you issue a CONNECT command and an API processing thread is
established, two control fields are created in the MVS/ESA address space or CICS
system where the program is running. By requesting the addresses of these thread
control fields, you can determine if asynchronous output is available without the
need for polling or suspending processing.

You can use the ADDRESS ECB() SENTINEL() command to request the
addresses of these fields:

ECB
The ECB is posted by the API each time an asynchronous request completes
and is added to the thread's outstanding data queue. With the ECB address,
you can:

� Test the appropriate MVS/ESA post bits to determine if output is available.

� Issue an MVS/ESA WAIT command in a batch, TSO, or NetView program.

� Issue an EXEC CICS WAITCICS or WAIT EXTERNAL command in a CICS
program.

The ECB field is cleared whenever the counter value in the SENTINEL field
reaches 0.

SENTINEL
The sentinel is a 4-byte counter of completed asynchronous requests associated
with the thread.

The sentinel value increases each time an asynchronous request completes.
Examples of completed asynchronous requests include:

� An event occurs that is named in a LISTEN command
� A command that was issued with the NOWAIT option completes processing.

The sentinel value decreases when a RECEIVE command is issued.

42 CICSPlex SM Application Programming Guide

 asynchronous processing

Notes:

1. You should use the ADDRESS command before issuing the RECEIVE
command. If the sentinel value is 0, it means there are no completed
asynchronous requests to be received.

2. Because of the nature of asynchronous processing, the sentinel value may
understate the actual number of outstanding requests at any point in time.
When processing multiple asynchronous requests, you should issue the
RECEIVE IMMEDIATE command until a response of NODATA is returned to
ensure that all output has been received.

Using the RECEIVE command
You can use the RECEIVE command to determine if any of the asynchronous
requests you issued have completed. RECEIVE returns the output from those
requests. The output returned can be:

� A resource table record representing an event named in a previous LISTEN
command

� An ASYNCREQ resource table record representing completion of an
asynchronous GET, PERFORM, REFRESH, or SET request.

Note: Before you issue the RECEIVE command, you should issue the ADDRESS
command and check the SENTINEL value to determine if there are any
outstanding asynchronous requests to be received. If the sentinel value is 0,
there are no outstanding asynchronous requests to be received.

As an example, your program might issue a LISTEN command and a GET
command with the NOWAIT operand on the same API thread. Then, in response to
a RECEIVE command, you would receive either an ASYNCREQ resource table
record for the GET command or a resource table record associated with the event
you were listening for.

Alternatively, you can use multiple API threads to separate the output returned by
subsequent RECEIVE commands. For example, you might create one thread and
use it only for receiving event notifications from the LISTEN command. You might
also create another thread for use by other API functions. In this way, you can
control what output is returned by the RECEIVE commands issued against each
thread.

Another reason you might want to create multiple API threads is because each
thread can have only 256 asynchronous requests outstanding at one time. If your
program issues a large number of asynchronous requests on a single API thread,
you should issue the RECEIVE command at regular intervals. If a processing
thread reaches its maximum of 256, asynchronous requests are discarded and are
not processed.

By default, the RECEIVE command waits until asynchronous output is available
before returning control to your program. This means processing is suspended until
an asynchronous request completes. As an alternative to waiting indefinitely, you
can specify one of these options on the RECEIVE command:

DELAY(data-value)

Checks for asynchronous output, waits the specified number of seconds for
output to become available, and then returns control to the processing thread,
with or without output.

 Chapter 2. Using the CICSPlex SM API 43

 meta-data resource tables

IMMEDIATE
Checks for asynchronous output and then immediately returns control to the
processing thread, whether or not any output is available.

 Using CICSPlex SM tokens
Many of the CICSPlex SM API commands are interrelated; you use them in
conjunction with each other to accomplish the objectives of your program. For
example, you issue a GET command to build a result set and then issue a FETCH
command to access the resource table records in that result set.

To correlate the results of various operations with subsequent requests that you
make, CICSPlex SM assigns 4-byte tokens to the following objects of the API
environment:

 � Processing threads
 � Result sets
 � Filters
 � Views
 � LISTEN requests.

So, for example, each processing thread has a unique, 4-byte identifying token.
You must specify a thread token on each API command that your program issues
to identify the thread where it should be processed. Likewise, once a result set or
filter is created, you refer to it on subsequent commands by supplying the token
value assigned to it by CICSPlex SM. And each LISTEN request is given a token
so that you can cancel the request using the CANCEL command.

Notes:

1. CICSPlex SM assigns a token to views for internal use only. Externally, you
refer to a view by the name which you assigned to it.

2. There is a limit to the number of CICSPlex SM tokens available to each
processing thread. In general, the number of result sets, filters, views, and
LISTEN requests created on a processing thread cannot exceed 255.

Token values are not only unique for individual objects, but the structure of the
tokens varies by object type. So a thread token cannot be mistaken by
CICSPlex SM for any other type of token. If you specify an invalid token (such as,
a result set token on the FILTER option), you receive a RESPONSE value of
INVALIDPARM.

| Using meta-data resource tables
| The GETDEF command is used to obtain records describing the structure of the
| CICSPlex SM managed objects, including general characteristics, valid actions, and
| object attributes.

| The OBJECT option of the GETDEF command identifies the type of meta-data to
| be retrieved. The contents of the following meta-data resource tables are described
| below:

| � ATTR
| � ATTRAVA
| � METADESC

44 CICSPlex SM Application Programming Guide

 meta-data resource tables

| � OBJACT
| � OBJECT

| ATTR
| The ATTR resource table provides detailed information for a specific attribute of a
| managed object.

| Attribute Description

| OBJECT The name of the managed object to which the specific attribute
| belongs.

| TABLEVER The version of the table identified by the OBJECT attribute.

| NAME The name of the specific attribute. 1 to 12 characters in length.

| LENGTH The length of the data associated with the attribute. Not to be
| confused with the length of the ATTRattribute NAME.

| OFFSET The offset in the resource table at which the attribute data
| begins.

| DATATYPE The data type of the attribute data:

| COMPID CMPID

| BINARY Binary

| RATE Rate

| PERCENT Percent

| SUM Sum

| RATIO Ratio

| AVERAGE Average

| TIMESTP Time stamp

| BIT Bit string

| TEXT Text

| CHAR Character

| EYUDA EYUDA

| CVDAS Standard CVDA

| CVDAT Terminal CVDA

| RESTYPE Restype

| DECIMAL Packed Decimal

| DATE Date

| ILABEL Internal Label

| HHMM Binary Hours/Minutes

| SCLOCK CICS CMF SCHLOCK

| INTUSEC Interval in usec

| INTMSEC Interval in millisec

| INT16US Interval in 16usec

 Chapter 2. Using the CICSPlex SM API 45

 meta-data resource tables

| INTSEC Interval in Seconds

| INTTSTP Interval Timestamp Delta

| DTGROUP Date Time Group

| DECTSTP Decimal Timestamp

| ADDRESS Address

| CNUMERIC Coded Numeric

| HIDCHAR Non Display Character

| HEX Hexadecimal

| SUMOPT The default summary option used for the attribute:

| AVG Average

| DIFF Difference

| MIN Minimum

| MAX Maximum

| SUM Summary

| LIKE Like

| SETVALID Whether or not the attribute may be set/modified: Y or N

| REQUIRED Whether or not the attribute is required for CREATE: Y or N

| AVAAVAIL Whether or not attribute value assertion information is available
| for the attribute: Y or N. When available, refer to the ATTR
| attributes:

| AVACOUNT

| Use the ATTRAVA resource table to obtain attribute value
| assertion information.

| CICSVALAVAIL Whether or not CICS validity data is available: Y or N. When
| available, refer to the ATTR attributes:

| VALCICSESA
| VALCICSVSE
| VALCICSOS2
| VALCICSWNT

| HDRTXTAVAIL Whether or not attribute header text is available: Y or N. When
| available, refer to the ATTR attributes:

| HDRTEXT

| VALSETAVAIL Whether or not value set information is available: Y or N. When
| available, refer to the ATTR attributes:

| VALCOUNT

| Use the ATTRAVA resource table to obtain value set
| information.

| SOURCE The source of the attribute data:

| V Created by CPSM

| I Acquired from CICS INQ

46 CICSPlex SM Application Programming Guide

 meta-data resource tables

| S Acquired from CICS STATS

| P Acquired from CICS CMF data

| KEY Whether or not the attribute participates in the key of the
| managed object: 0 or n, where 0 means the attribute is not part
| of the key, and n means the part number of the key.

| AVACOUNT The number of attribute value assertions for the attribute. This
| value corresponds to the number of ATTRAVA resource table
| records available with a LISTTYPE value of AVA for the
| attribute. Only present if the AVAAVAIL attribute is Y.

| VALCOUNT The number of value set values for the attribute. This value
| corresponds to the number of ATTRAVA resource table records
| available with a LISTTYPE value of VALUE for the attribute.
| Only present if the VALSETAVAIL attribute is Y.

| VALCICSESA Flags indicating whether or not the attribute is valid in different
| versions of CICS/ESA:

| 1... X'8ð' CICS/MVS 2.1.2

| .1.. X'4ð' CICS/ESA 3.3.ð

| ..1. X'2ð' CICS/ESA 4.1.ð

| ...1 X'1ð' CICS Transaction Server for

| OS/39ð Release 1

| 1... X'ð8' CICS Transaction Server for

| OS/39ð Release 2

|1.. X'ð4' CICS Transaction Server for

| OS/39ð Release 3

|11 Reserved

| The attribute is not valid in the version of CICS if the bit is set
| on.

| VALCICSVSE Flags indicating whether or not the attribute is valid in different
| versions of CICS/VSE:

| 1... X'8ð' CICS/VSE 2.2.ð

| .1.. X'4ð' CICS/VSE 2.3.ð

| ..1. X'2ð' CICS/VSE 4.1.ð

| ...1 1111 Reserved

| The attribute is not valid in the version of CICS if the bit is set
| on.

| VALCICSOS2 Flags indicating whether or not the attribute is valid in different
| versions of CICS OS/2:

| 1... X'8ð' CICS OS/2 2.ð.1

| .1.. X'4ð' CICS OS/2 3.ð.ð

| ..1. X'2ð' CICS OS/2 3.1.ð

| ...1 1111 Reserved

| The attribute is not valid in the version of CICS if the bit is set
| on.

| VALCICSWNT Flags indicating whether or not the attribute is valid in different
| versions of CICS/NT:

| 1... X'8ð' CICS NT 5.ð.ð

| .111 1111 Reserved

 Chapter 2. Using the CICSPlex SM API 47

 meta-data resource tables

| The attribute is not valid in the version of CICS if the bit is set
| on.

| SETCICSESA Flags indicating whether or not the attribute is modifiable in
| different versions of CICS/ESA:

| 1... X'8ð' CICS/MVS 2.1.2

| .1.. X'4ð' CICS/ESA 3.1.ð

| ..1. X'2ð' CICS/ESA 4.1.ð

| ...1 X'1ð' CICS Transaction Server for

| OS/39ð Release 1

| 1... X'ð8' CICS Transaction Server for

| OS/39ð Release 2

|1.. X'ð4' CICS Transaction Server for

| OS/39ð Release 3

|11 Reserved

| The attribute is not modifiable in the version of CICS if the bit is
| set on.

| SETCICSVSE Flags indicating whether or not the attribute is modifiable in
| different versions of CICS/VSE:

| 1... X'8ð' CICS/VSE 2.2.ð

| .1.. X'4ð' CICS/VSE 2.3.ð

| ..1. X'2ð' CICS/VSE 4.1.ð

| ...1 1111 Reserved

| The attribute is not modifiable in the version of CICS if the bit is
| set on.

| SETCICSOS2 Flags indicating whether or not the attribute is modifiable in
| different versions of CICS OS/2:

| 1... X'8ð' CICS OS/2 2.ð.1

| .1.. X'4ð' CICS OS/2 3.ð.ð

| ..1. X'2ð' CICS OS/2 3.1.ð

| ...1 1111 Reserved

| The attribute is not modifiable in the version of CICS if the bit is
| set on.

| SETCICSWNT Flags indicating whether or not the attribute is modifiable in
| different versions of CICS/NT:

| 1... X'8ð' CICS NT 5.ð.ð

| .111 1111 Reserved

| The attribute is not modifiable in the version of CICS if the bit is
| set on.

| IGNVALUE The value that signifies Not Applicable or Ignore for the
| attribute.

| LOWVALUE The lowest value allowed in the range of valid values for the
| attribute.

| HIGHVALUE The highest value allowed in the range of valid values for the
| attribute.

| HDRTEXT The header text of the attribute. Only present if the
| HDRTXTAVAIL attribute value is Y.

48 CICSPlex SM Application Programming Guide

 meta-data resource tables

| DESC The description of the attribute.

| DEFAULT The default value for the attribute, if any.

| UCHAR Whether or not the attribute value is uppercase: Y or N.

| ATTRAVA
| The ATTRAVA resource table provides attribute value information for a specific
| attribute of a managed object.

| Information in this resource table is only available when the AVAAVAIL or
| VALSETAVAIL attributes of the ATTR resource table have a value of Y.

| Attribute Description

| OBJECT The name of the managed object to which the specific attribute
| belongs.

| TABLEVER The version of the table identified by the OBJECT attribute.

| NAME The name of the specific attribute. 1 to 12 characters in length.

| AVAVALUE A value for the attribute.

| LISTTYPE Indicates if the AVAVALUE data is an attribute value assertion
| or an attribute value list:

| AVA A value in an attribute value assertion list

| VALUE A value in an attribute value list

| IOTYPE Indicates whether the attribute value is used for input, output,
| or input and output operations:

| I Input

| O Output

| B Input and output

| METADESC
| The METADESC resource table provides basic structure and layout information for
| a specific attribute of a managed object.

| Attribute Description

| NAME The name of the specific attribute. 1 to 12 characters in length.

| LENGTH The length of the data associated with the attribute. Not to be
| confused with the length of the METADESC attribute NAME.

| OFFSET The offset in the resource table at which the attribute data
| begins.

| DATATYPE The data type of the attribute data:

| 0 Component Identifier

| 4 Binary Numeric

| 8 Binary Derived Rate

| 12 Binary Derived Percent

| 16 Binary Derived Sum

 Chapter 2. Using the CICSPlex SM API 49

 meta-data resource tables

| 20 Binary Derived Ratio

| 24 Binary Derived Average

| 28 System/370 Timestamp

| 32 Bit

| 36 Text

| 40 Character

| 44 EYUDA

| 48 CVDA Standard

| 52 CVDA Terminal

| 56 Resource Type

| 60 Packed Decimal

| 64 Date

| 68 Internal Label Field

| 72 Binary HHMM

| 76 Interval Store Clock

| 80 Interval Microseconds

| 84 Interval Milliseconds

| 88 Interval 16 Microseconds

| 92 Interval Seconds

| 96 Interval Store Clock delta

| 100 Date Time Group

| 104 Packed Decimal Timestamp

| 108 Address

| 112 Coded Numeric

| 116 Non Display Character

| 120 Hexadecimal

| INHERIT Whether or not the attribute value is inheritable: Y or N. Valid
| only for CPSM Definition resource tables that participate in
| CICSplex inheritance.

| OBJACT
| The OBJACT resource table provides action information for a specific managed
| object.

| Attribute Description

| OBJECT The name of the managed object to which the specific action
| applies.

| TABLEVER The version of the table identified by the OBJECT attribute.

| ACTION The name of the action. 1 to 12 characters in length.

50 CICSPlex SM Application Programming Guide

 meta-data resource tables

| VALCICSESA Flags indicating whether or not the action is valid in different
| versions of CICS/ESA:

| 1... X'8ð' CICS/MVS 2.1.2

| .1.. X'4ð' CICS/ESA 3.3.ð

| ..1. X'2ð' CICS/ESA 4.1.ð

| ...1 X'1ð' CICS Transaction Server for

| OS/39ð Release 1

| 1... X'ð8' CICS Transaction server for

| OS/39ð Release 2

|1.. X'ð4' CICS Transaction Server for

| OS/39ð Release 3

|11 Reserved

| The action is not valid in the version of CICS if the bit is set on.

| VALCICSVSE Flags indicating whether or not the action is valid in different
| versions of CICS/VSE:

| 1... X'8ð' CICS/VSE 2.2.ð

| .1.. X'4ð' CICS/VSE 2.3.ð

| ..1. X'2ð' CICS/VSE 4.1.ð

| ...1 1111 Reserved

| The action is not valid in the version of CICS if the bit is set on.

| VALCICSOS2 Flags indicating whether or not the action is valid in different
| versions of CICS OS/2:

| 1... X'8ð' CICS OS/2 2.ð.1

| .1.. X'4ð' CICS OS/2 3.ð.ð

| ..1. X'2ð' CICS OS/2 3.1.ð

| ...1 1111 Reserved

| The action is not valid in the version of CICS if the bit is set on.

| VALCICSWNT Flags indicating whether or not the action is valid in different
| versions of CICS/NT:

| 1... X'8ð' CICS NT 5.ð.ð

| .111 1111 Reserved

| The action is not valid in the version of CICS if the bit is set on.

| OBJECT
| The OBJECT resource table provides detailed information for a specific managed
| object.

| Attribute Description

| NAME The name of the managed object. 1 to 8 characters in length.

| NUMTBLVER The number of different versions of the managed object which
| are known to exist.

| HIGHTBLVER The number of the highest version of the managed object.

| RELTBLVER The version of the managed object at the current CPSM
| release.

| OWNERNAME The name of the component which owns the managed object.

| CREATREL CPSM release at which the managed object was introduced.

| QUERYREL CPSM release of the querying CMAS.

 Chapter 2. Using the CICSPlex SM API 51

 meta-data resource tables

| OBJTYPE The object type of the managed object:

| C CICS Resource

| M Monitored CICS Resource

| D CPSM Definition

| V CPSM Resource

| O CPSM Metadata

| N CPSM Notification

| R CICS Resource Definition

| L CPSM Configuration Definition

| CURTBLVER Version of the managed object at the current CONNECT
| version

| CURNUMATTR Number of attributes in the managed object at the current
| CONNECT version

| CURSTGSIZE External length of the managed object at the current
| CONNECT version

| CURCPSMREL CPSM release when the version of the managed object at the
| current CONNECT version was created

| CURVALRTA Whether or not the managed object is valid for use with RTA: Y
| or N.

| CURVALUTL Whether or not the managed object is valid for use with the
| batch utility: Y or N.

| CURGETVAL Whether or not the managed object is valid for GET requests:
| Y or N.

| CURSETVAL Whether or not the managed object is valid for SET requests: Y
| or N.

| CURCREVAL Whether or not the managed object is valid for CREATE
| requests: Y or N.

| CURUPDVAL Whether or not the managed object is valid for UPDATE
| requests: Y or N.

| CURREMVAL Whether or not the managed object is valid for REMOVE
| requests: Y or N.

| CURACTVAL Whether or not the managed object has actions defined: Y or
| N.

| Use the OBJACT resource table to obtain action information.

| CURVALESA Flags indicating whether or not the managed object is valid in
| different versions of CICS/ESA:

52 CICSPlex SM Application Programming Guide

| 1... X'8ð' CICS/MVS 2.1.2

| .1.. X'4ð' CICS/ESA 3.3.ð

| ..1. X'2ð' CICS/ESA 4.1.ð

| ...1 X'1ð' CICS Transaction Server for

| OS/39ð Release 1

| 1... X'ð8' CICS Transaction Server for

| OS/39ð Release 2

|1.. X'ð4' CICS Transaction Server for

| OS/39ð Release 3

|11 Reserved

| The object is not valid in the version of CICS if the bit is set on.

| CURVALVSE Flags indicating whether or not the managed object is valid in
| different versions of CICS/VSE:

| 1... X'8ð' CICS/VSE 2.2.ð

| .1.. X'4ð' CICS/VSE 2.3.ð

| ..1. X'2ð' CICS/VSE 4.1.ð

| ...1 1111 Reserved

| The object is not valid in the version of CICS if the bit is set on.

| CURVALOS2 Flags indicating whether or not the managed object is valid in
| different versions of CICS OS/2:

| 1... X'8ð' CICS OS/2 2.ð.1

| .1.. X'4ð' CICS OS/2 3.ð.ð

| ..1. X'2ð' CICS OS/2 3.1.ð

| ...1 1111 Reserved

| The object is not valid in the version of CICS if the bit is set on.

| CURVALWNT Flags indicating whether or not the managed object is valid in
| different versions of CICS/NT:

| 1... X'8ð' CICS NT 5.ð.ð

| .111 1111 Reserved

| The object is not valid in the version of CICS if the bit is set on.

| DESC The description of the managed object.

| Querying the CICSPlex SM API exit
| In a CICS LMAS environment the CICSPlex SM API function is implemented via a
| task related user exit. CICS application programs can use the EXEC CICS
| INQUIRE EXITPROGRAM command to retrieve information about the CICSPlex
| SM API task related user exit:

| EXEC CICS INQUIRE EXITPROGRAM(EYU9XLAP)

| CONNECTST(cvda)

| QUALIFIER(data-area)

| In CICS systems that support the CONNECTST and QUALIFIER keywords of the
| INQUIRE EXITPROGRAM command, CONNECTST returns a CVDA indicating the
| status of the CICSPlex SM API task related user exit (see the CICS System
| Programming Reference for more details on INQUIRE EXITPROGRAM), and
| QUALIFIER returns the name of the CICSplex to which the LMAS is connected.

 Chapter 2. Using the CICSPlex SM API 53

54 CICSPlex SM Application Programming Guide

 using the resource table copy books

Chapter 3. Writing an EXEC CPSM program

This chapter describes how to use the CICSPlex SM command-level interface to
write an API program. It describes the language-specific copy books that are
supplied for each CICSPlex SM resource table. It also describes the translation
process and the compile, link-edit, and run-time considerations for each
environment.

Using the resource table copy books
The CICSPlex SM API accepts and returns resource data in the form of records
that contain the resource attributes. For example, if you issue a FETCH command
against a result set containing LOCTRAN resource table records, the API returns all
the attributes for a given transaction in a single record. Your program must identify
an area of storage to receive the resource table records.

Note: This method of returning data differs from the EXEC CICS system
programming interface, where you must fetch each attribute of a resource
individually.

To simplify the use of these resource table records, CICSPlex SM provides a set of
copy books for each resource table that you can access from an API program. By
including these copy books in your program, you can access the resource table
data in the appropriate structure and format for the language you are using.

How to access the copy books
| The copy books are installed as part of the CICSPlex SM installation process. They
| are placed into the following CICS Transaction Server for OS/390 Release 3
| libraries, according to the language they support:

| Language Library name
| Assembler CICSTS13.CPSM.SEYUMAC
| PL/I CICSTS13.CPSM.SEYUPL1
| COBOL CICSTS13.CPSM.SEYUCOB
| C CICSTS13.CPSM.SEYUC370

If you want to include the copy books in your program, make sure the appropriate
library is available to the assemble or compile step.

Note: The CICSPlex SM API uses variable names that begin with EYU. Make
sure your program does not define variables or structures with variable
names that are the same as variable names generated by the translator or
declared in the resource table copy books. Also be careful that your
program does not implicitly generate such variable names.

Copybook names and aliases
Each CICSPlex SM resource table has a name that is unique within the product. In
addition, a unique name is created for each copy book version of the resource table
in each language. The copy book names take the form:

 EYUtnnnn

where:

 Copyright IBM Corp. 1995, 1999 55

 using the resource table copy books

t Identifies which language the copy book supports, as one of the
following:

A Assembler
P PL/I
L COBOL
C C

nnnn Is a 4-character numeric resource table identifier.

For example:

EYUA0001 Is the Assembler DSECT for the CICSRGN resource table.

EYUC2451 Is the C structured data type for the CMAS resource table.

To make the copy books easy to reference in your program, CICSPlex SM
provides alias support for the copy book names. The appropriate data set contains
the following two entries for each resource table:

EYUtnnnn The resource table copy book name.

formname The format name alias, which is the resource table name as shown in
CICSPlex SM Resource Tables Reference.

So, using the previous example, the Assembler DSECT for the CICSRGN resource
table could be referred to as either EYUA0001 or its alias, CICSRGN.

 Copybook format
Each copy book contains a prologue that describes the resource table and its
characteristics, including:

� Valid API operations
� Any parameters that are required for an operation
� Valid API actions
� CICS releases that do not support the resource table, if any.

A description is provided for each attribute of the resource table. In addition, the
following information is provided for an attribute, if appropriate:

� Whether the attribute can be modified by a SET command
� CICS releases that do not support the attribute, if any
� CICS releases that do not allow the attribute to be modified, if any.

Copybook data characteristics
Each resource table that can be processed by an API program contains data
values for each of its attributes. The attribute values are presented in an internal
format that is appropriate for the data type and the environment in which the
program is running:

� Standard System/390 data formats are used. No translation or formatting
operations are performed on the attribute values.

� For programs written in C, variable-length character fields do not contain the
zero-byte ending delimiter.

� The lengths of all resource table records are a multiple of 8 bytes. Each copy
book contains a definition of the resource table length.

� System/390 boundary alignments are observed for all data types. That means
all resource table records are maintained internally starting on

56 CICSPlex SM Application Programming Guide

 using the resource table copy books

doubleword-aligned storage locations. Alignment fields are automatically
generated in each copy book. These alignment fields, which contain binary
zeros, have names like:

 EYU_RSVnnnn

Make sure the data areas your program uses to send and receive resource
table records have proper boundary alignment.

Supplied copy books
This section provides detailed information about the resource table copy books
supplied for each language.

Assembler H copy books
| Distributed in: CICSTS13.CPSM.SEYUMAC

Distributed as: DSECTs

Copybook names: EYUAnnnn

Note the following as you use the Assembler H copy books:

� DSECT and DS statements are used to describe the resource table.

� The DSECT name is the resource table format name (such as, EMASSTRT).

� The attribute names are a concatenation of the resource table format name and
the attribute name, connected by an underscore (such as,
EMASSTRT_CMASNAME).

Note: Because attribute names exceed 8 bytes in length, versions of
Assembler other than Assembler H are not supported.

� EQU statements are used to describe the setting of indicator fields for bit,
binary, and character values.

� The table length field is a concatenation of the resource table format name and
the constant TBL_LEN, connected by an underscore (such as,
EMASSTRT_TBL_LEN).

The resource table data types are defined using the data definition operands of the
DS statement. The following data type definitions are used:

DS X - Bit, binary values greater than 8 bytes

- Odd number binary values less than 8 bytes

- Mixed character and binary data

DS H - 2-byte binary numeric values

DS F - 4-byte binary numeric values

- 4-byte intervals

DS D - Time stamps and 8-byte intervals

- 8-byte numeric values

DS P - Packed decimal data

DS C - Character data

 Chapter 3. Writing an EXEC CPSM program 57

 using the resource table copy books

Figure 13 is a representative extract of an Assembler H resource table copy book:

 \--\

\ Name = EYUA24ðð \

\ Format Name = EMASSTRT \

\ Version = ððð1 \

\ Status = CPSMREL(ð14ð) \

\ Function = Base Table Structure generator \

\ Format definition for this element = EMASSTRT \

\ Valid Operations = None \

\ Valid Actions = None \

 \--\

EMASSTRT DSECT Notify CICS System Start Event

 EMASSTRT_CMASNAME DS CLððð8 CMAS Name

 EMASSTRT_PLEXNAME DS CLððð8 CICSPlex Name

, VS COBOL

 EMASSTRT_CSYSNAME DS CLððð8 CICS System Name

 EMASSTRT_MON_SPEC DS CLððð8 Monitor Spec Name

 EMASSTRT_RTA_SPEC DS CLððð8 Real Time Analysis Spec Name

 EMASSTRT_WLM_SPEC DS CLððð8 Work Load Manager Spec Name

 EMASSTRT_STATUS DS XLððð1 Status

 EMASSTRT_STATUS_LOCAL EQU 128 Local MAS

 EMASSTRT_STATUS_REMOTE EQU 64 Remote MAS

 EMASSTRT_DYNROUTE DS XLððð1 Dynamic Routing Mode

 EMASSTRT_DYNROUTE_ACTIVE EQU 1 Routing ACTIVE

 EMASSTRT_DYNROUTE_SUSPEND EQU 2 Routing SUSPENDED

 EMASSTRT_DYNTYPE DS CLððð3 Dynamic Routing Type

 EMASSTRT_DYNTYPE_WLMTOR EQU C'TOR' Routing TOR

 EMASSTRT_DYNTYPE_WLMAOR EQU C'AOR' Routing AOR

 EMASSTRT_DESC DS CLðð3ð Description

 EMASSTRT_CSYSAPPL DS CLððð8 CICS System VTAM APPLID

, VS COBOL

 EMASSTRT_EYU_RSVðð15 DS XLððð5 Alignment Padding

EMASSTRT_MASSTART DS D MAS Start STCK Value

 EMASSTRT_TMEZONEO DS XLððð1 Time Zone Offset

 EMASSTRT_TMEZONE DS CLððð1 Time Zone

 EMASSTRT_EYU_RSVðð19 DS XLððð2 Alignment Padding

EMASSTRT_DAYLGHTSV DS F DayLight savings in effect

 EMASSTRT_SYSID DS CLððð4 MAS System Id

 EMASSTRT_OPSYSREL DS CLððð4 MAS Op Sys Release

 EMASSTRT_MVSNAME DS CLððð4 MVS System Name

 EMASSTRT_JOBNAME DS CLððð8 MAS Job Name

 EMASSTRT_CECNAME DS CLððð8 CEC Name

 EMASSTRT_SYSPLEX DS CLððð8 SYSPlex Name

, VS COBOL

 EMASSTRT_EYU_RSVð257 DS XLððð4 Alignment Padding

EMASSTRT_TBL_LEN EQU 152 Current Table size

Figure 13. Sample Assembler H copy book

PL/I copy books
Distributed in: CICSTS13.CPSM.SEYUPL1

Distributed as: Based structures

Copybook names: EYUPnnnn

Note the following as you use the PL/I copy books:

� The variable EYUPTPTR must be explicitly declared as follows:

DCL EYUPTPTR POINTER;

58 CICSPlex SM Application Programming Guide

 using the resource table copy books

� The structure level 1 name is the resource table format name (such as,
EMASSTRT).

� The attribute names are used as subordinate level names.

� For attributes that describe bit indicators, subordinate structure levels are used.
Each bit indicator is assigned a unique name.

� All other indicator attributes result in constant declarations being generated at
the end of the resource table. These constants can be used for assignment or
evaluation of the attribute. The constant name is a concatenation of the
resource table name, the attribute name, and the indicator name, connected by
underscores (such as, EMASSTRT_DYNROUTE_ACTIVE).

� The table length field is a concatenation of the resource table format name and
the constant TBL_LEN, connected by an underscore (such as,
EMASSTRT_TBL_LEN).

The resource table data types are mapped into the valid set of PL/I data types.
However, exact mapping is not always possible. The resource table data types are
mapped as follows:

BIT(8) ALIGNED - 1-byte binary numeric values

FIXED BIN(15) - 2-byte binary numeric values

FIXED BIN(31) - 4-byte binary numeric values

- 4-byte intervals

(2) FIXED BIN(31) - Time stamps and 8-byte intervals

- 8-byte binary numeric values

(an array of two fullwords)

FIXED DEC(n) - Packed decimal data

CHAR(nnnn) - Character data

- Binary values greater than 8 bytes

- Odd number binary values less than 8 bytes

Figure 14 is a representative extract of a PL/I resource table copy book:

 Chapter 3. Writing an EXEC CPSM program 59

 using the resource table copy books

 /\--\/

/\ Name = EYUP24ðð \/

/\ Format Name = EMASSTRT \/

/\ Version = ððð1 \/

/\ Status = CPSMREL(ð14ð) \/

/\ Function = Base Table Structure generator \/

/\ Format definition for this element = EMASSTRT \/

/\ Valid Operations = None \/

/\ Valid Actions = None \/

 /\--\/

DCL ð1 EMASSTRT BASED(EYUPTPTR), /\ Notify CICS System Start Event\/

 ð2 CMASNAME CHAR(ððð8),

/\ CMAS Name \/

 ð2 PLEXNAME CHAR(ððð8),

, VS COBOL

/\ CICSPlex Name \/

 ð2 CSYSNAME CHAR(ððð8),

/\ CICS System Name \/

 ð2 MON_SPEC CHAR(ððð8),

/\ Monitor Spec Name \/

 ð2 RTA_SPEC CHAR(ððð8),

/\ Real Time Analysis Spec Name \/

 ð2 WLM_SPEC CHAR(ððð8),

/\ Work Load Manager Spec Name \/

 ð2 STATUS,

 /\ Status \/

 ð3 LOCAL BIT(1) UNALIGNED,

/\ Local MAS \/

 ð3 REMOTE BIT(1) UNALIGNED,

/\ Remote MAS \/

 ð3 RSVDððð3 BIT(1) UNALIGNED,

 /\ Reserved \/

 ð3 RSVDððð4 BIT(1) UNALIGNED,

 /\ Reserved \/

 ð3 RSVDððð5 BIT(1) UNALIGNED,

 /\ Reserved \/

 ð3 RSVDððð6 BIT(1) UNALIGNED,

 /\ Reserved \/

 ð3 RSVDððð7 BIT(1) UNALIGNED,

 /\ Reserved \/

 ð3 RSVDððð8 BIT(1) UNALIGNED,

 /\ Reserved \/

Figure 14 (Part 1 of 3). Sample PL/I copy book

60 CICSPlex SM Application Programming Guide

 using the resource table copy books

 ð2 DYNROUTE BIT(8) ALIGNED,

/\ Dynamic Routing Mode \/

 ð2 DYNTYPE CHAR(ððð3),

/\ Dynamic Routing Type \/

 ð2 DESC CHAR(ðð3ð),

 /\ Description \/

 ð2 CSYSAPPL CHAR(ððð8),

, VS COBOL

/\ CICS System VTAM APPLID \/

, VS COBOL

 ð2 EYU_RSVðð15 CHAR(ððð5),

/\ Alignment Padding \/

 ð2 MASSTART(2) FIXED BIN(31),

/\ MAS Start STCK Value \/

 ð2 TMEZONEO BIT(8) ALIGNED,

/\ Time Zone Offset \/

 ð2 TMEZONE CHAR(ððð1),

/\ Time Zone \/

 ð2 EYU_RSVðð19 CHAR(ððð2),

/\ Alignment Padding \/

 ð2 DAYLGHTSV FIXED BIN(31),

/\ DayLight savings in effect \/

 ð2 SYSID CHAR(ððð4),

/\ MAS System Id \/

 ð2 OPSYSREL CHAR(ððð4),

/\ MAS Op Sys Release \/

 ð2 MVSNAME CHAR(ððð4),

/\ MVS System Name \/

 ð2 JOBNAME CHAR(ððð8),

/\ MAS Job Name \/

 ð2 CECNAME CHAR(ððð8),

/\ CEC Name \/

 ð2 SYSPLEX CHAR(ððð8),

, VS COBOL

/\ SYSPlex Name \/

 ð2 EYU_RSVð257 CHAR(ððð4);

/\ Alignment Padding \/

Figure 14 (Part 2 of 3). Sample PL/I copy book

 Chapter 3. Writing an EXEC CPSM program 61

 using the resource table copy books

 /\--\/

 /\ \/

/\ EMASSTRT Constants for Table \/

 /\ \/

 /\--\/

DCL EMASSTRT_DYNROUTE_ACTIVE BIT(8) ALIGNED STATIC INIT('ð1'BX);

/\ Routing ACTIVE \/

DCL EMASSTRT_DYNROUTE_SUSPEND BIT(8) ALIGNED STATIC INIT('ð2'BX);

/\ Routing SUSPENDED \/

DCL EMASSTRT_DYNTYPE_WLMTOR CHAR(3) STATIC INIT('TOR');

/\ Routing TOR \/

DCL EMASSTRT_DYNTYPE_WLMAOR CHAR(3) STATIC INIT('AOR');

/\ Routing AOR \/

DCL EMASSTRT_TBL_LEN FIXED BIN(15) STATIC INIT(152);

Figure 14 (Part 3 of 3). Sample PL/I copy book

 VS COBOL II copy books
Distributed in: CICSTS13.CPSM.SEYUCOB

Distributed as: Structures

Copybook names: EYULnnnn

Note the following as you use the VS COBOL II copy books:

� The structure level 1 name is the resource table format name (such as,
EMASSTRT).

� The attribute names are used as subordinate level names.

� For attributes that describe indicators, subordinate 88 levels are used. Each
indicator is assigned a unique name. Hexadecimal literals are used to describe
the content of the indicator setting.

� By default, CICSPlex SM attribute names are formed with a connecting
underscore character, as in WLM_SPEC. However, since VS COBOL II syntax
does not support underscores, all attribute names that contain underscores are
converted in the copy books to use hyphens, as in WLM-SPEC. When
attribute names are passed to the API, they must contain the underscore
character, not the hyphen used by VS COBOL II.

� All the resource tables use apostrophe characters as literal delimiters. When
you translate or compile your program with a supplied copy book, you must
specify the APOST option. Otherwise, you will receive VS COBOL II warning
messages.

� VS COBOL II reserves many words for its own use. Some of the
CICSPlex SM resource table and attribute names conflict with these reserved
words. To prevent such a conflict, any CICSPlex SM name that conflicts with a
VS COBOL II reserved word is modified by adding a suffix of -R. For example,
the name of the CONNECT resource table becomes CONNECT-R and the
name of the STATUS attribute becomes STATUS-R. The comment area for a
name that would conflict with VS COBOL II shows the description “--
RESERVED WORD --”. When resource table or attribute names are passed to
the API, they must not include the -R suffix.

� VS COBOL II does not support duplicate names at different levels in the same
data structure. Some of the CICSPlex SM attribute names are the same as
resource table names. To prevent a duplicate name problem, any attribute

62 CICSPlex SM Application Programming Guide

 using the resource table copy books

name that is the same as a resource table name is modified by adding a suffix
of -A. For example, the name of the DSNAME attribute becomes DSNAME-A.
The name of the DSNAME resource table remains unchanged. The comment
area for an attribute that has the same name as a resource table shows the
description “-- RESERVED WORD --”. When attribute names are passed to the
API, they must not include the -A suffix.

� The table length field is a concatenation of the resource table format name and
the constant TBL-LEN, connected by a hyphen (such as,
EMASSTRT-TBL-LEN).

The resource table data types are mapped into the valid set of VS COBOL II data
types. However, exact mapping is not always possible. The resource table data
types are mapped as follows:

PIC S9(ððð4) USAGE BINARY - 2-byte binary numeric values

PIC S9(ððð8) USAGE BINARY - 4-byte binary numeric values

- 4-byte intervals

PIC S9(ðð16) USAGE BINARY - Time stamps and 8-byte intervals

- 8-byte binary numeric values

PIC S9(nnnn) USAGE PACKED-DECIMAL - Packed decimal data

PIC X(ððð1) - 1-byte binary and bit indicators

PIC X(nnnn) - Character data

- Binary values greater than 8 bytes

- Odd number binary values less than

 8 bytes

Figure 15 is a representative extract of a VS COBOL II resource table copy book:

 Chapter 3. Writing an EXEC CPSM program 63

 using the resource table copy books

 \ ---\

\ Name = EYUL24ðð \

\ Format Name = EMASSTRT \

\ Version = ððð1 \

\ Status = CPSMREL(ð14ð) \

\ Function = Base Table Structure generator \

\ Format definition for this element = EMASSTRT \

\ Valid Operations = None \

\ Valid Actions = None \

 \ ---\

 ð1 EMASSTRT.

\ Notify CICS System Start Event

 ð2 CMASNAME PIC X(ððð8).

\ CMAS Name

 ð2 PLEXNAME PIC X(ððð8).

, VS COBOL

\ CICSPlex Name

 ð2 CSYSNAME PIC X(ððð8).

\ CICS System Name

 ð2 MON-SPEC PIC X(ððð8).

\ Monitor Spec Name

 ð2 RTA-SPEC PIC X(ððð8).

\ Real Time Analysis Spec Name

 ð2 WLM-SPEC PIC X(ððð8).

\ Work Load Manager Spec Name

 ð2 STATUS-R PIC X(ððð1).

\ Status -- RESERVED WORD --

 88 LOCAL VALUE X'8ð'.

\ Local MAS

 88 REMOTE VALUE X'4ð'.

\ Remote MAS

 ð2 DYNROUTE PIC X(ððð1).

\ Dynamic Routing Mode

 88 ACTIVE VALUE X'ð1'.

\ Routing ACTIVE

 88 SUSPEND VALUE X'ð2'.

\ Routing SUSPENDED

 ð2 DYNTYPE PIC X(ððð3).

\ Dynamic Routing Type

 88 WLMTOR VALUE 'TOR'.

\ Routing TOR

 88 WLMAOR VALUE 'AOR'.

\ Routing AOR

 ð2 DESC PIC X(ðð3ð).

 \ Description

 ð2 CSYSAPPL PIC X(ððð8).

, VS COBOL

\ CICS System VTAM APPLID

, VS COBOL

 ð2 EYU-RSVðð15 PIC X(ððð5).

Figure 15 (Part 1 of 2). Sample VS COBOL II copy book

64 CICSPlex SM Application Programming Guide

 using the resource table copy books

\ Alignment Padding

ð2 MASSTART PIC S9(ðð16) USAGE BINARY.

\ MAS Start STCK Value

 ð2 TMEZONEO PIC X(ððð1).

\ Time Zone Offset

 ð2 TMEZONE PIC X(ððð1).

\ Time Zone

 ð2 EYU-RSVðð19 PIC X(ððð2).

\ Alignment Padding

ð2 DAYLGHTSV PIC S9(ððð8) USAGE BINARY.

\ DayLight savings in effect

 ð2 SYSID PIC X(ððð4).

\ MAS System Id

 ð2 OPSYSREL PIC X(ððð4).

\ MAS Op Sys Release

 ð2 MVSNAME PIC X(ððð4).

\ MVS System Name

 ð2 JOBNAME PIC X(ððð8).

\ MAS Job Name

 ð2 CECNAME PIC X(ððð8).

\ CEC Name

 ð2 SYSPLEX PIC X(ððð8).

, VS COBOL

\ SYSPlex Name

 ð2 EYU-RSVð257 PIC X(ððð4).

\ Alignment Padding

 \ ---\

 \ \

\ EMASSTRT Constants for Table \

 \ \

 \ ---\

ð1 EMASSTRT-TBL-LEN PIC S9(4) USAGE BINARY VALUE 152.

Figure 15 (Part 2 of 2). Sample VS COBOL II copy book

C/370 copy books
Distributed in: CICSTS13.CPSM.SEYUC370

Distributed as: Structured data types

Copybook names: EYUCnnnn

Note the following as you use the C/370 copy books:

� Typedef statements are used to describe the resource table.

� The structure name is the resource table format name (such as, EMASSTRT).

� The attribute names are used as subordinate names.

� For attributes that describe bit indicators, #define statements are generated at
the end of the resource table Each #define statement identifies a single
indicator value. These constants can be used for assignment or evaluation of
the attribute. The constant name is a concatenation of the resource table name,
the attribute name, and the indicator name, connected by underscores (such
as, EMASSTRT_DYNROUTE_ACTIVE).

� The copy books use trigraphs, which are multi-character combinations, to
represent square brackets.

� Any variable-length data that you send to the API must be padded with blanks
to the end of the field. The API does not insert the zero-byte ending delimiter.

 Chapter 3. Writing an EXEC CPSM program 65

 using the resource table copy books

� The table length field is a concatenation of the resource table format name and
the constant TBL_LEN, connected by an underscore (such as,
EMASSTRT_TBL_LEN).

The resource table data types are mapped into the valid set of C data types.
However, exact mapping is not always possible. The resource table data types are
mapped as follows:

char - 1-byte binary numeric values

short int - 2-byte binary numeric values

long - 4-byte binary numeric values

- 4-byte intervals

long 2 - Time stamps and 8-byte intervals

8- byte binary numeric values

(an array of two fullwords)

char nnnn - Packed decimal data

char nnnn - Character data

- Binary values greater than 8 bytes

- Odd number binary values less than 8 bytes

Figure 16 on page 67 is a representative extract of a C/370 resource table copy
book:

66 CICSPlex SM Application Programming Guide

 using the resource table copy books

 /\--\

\ Name = EYUC24ðð \

\ Format Name = EMASSTRT \

\ Version = ððð1 \

\ Status = CPSMREL(ð14ð) \

\ Function = Base Table Structure generator \

\ Format definition for this element = EMASSTRT \

\ Valid Operations = None \

\ Valid Actions = None \

 \--\/

typedef struct EMASSTRT {

char CMASNAME??(8??); /\ CMAS Name \/

char PLEXNAME??(8??); /\ CICSPlex Name \/

, VS COBOL

char CSYSNAME??(8??); /\ CICS System Name \/

char MON_SPEC??(8??); /\ Monitor Spec Name \/

char RTA_SPEC??(8??); /\ Real Time Analysis Spec Name \/

char WLM_SPEC??(8??); /\ Work Load Manager Spec Name \/

 char STATUS; /\ Status \/

char DYNROUTE; /\ Dynamic Routing Mode \/

char DYNTYPE??(3??); /\ Dynamic Routing Type \/

 char DESC??(3ð??); /\ Description \/

char CSYSAPPL??(8??); /\ CICS System VTAM APPLID \/

, VS COBOL

char EYU_RSVðð15??(5??); /\ Alignment Padding \/

long MASSTART??(2??); /\ MAS Start STCK Value \/

char TMEZONEO; /\ Time Zone Offset \/

char TMEZONE; /\ Time Zone \/

char EYU_RSVðð19??(2??); /\ Alignment Padding \/

long DAYLGHTSV; /\ DayLight savings in effect \/

char SYSID??(4??); /\ MAS System Id \/

char OPSYSREL??(4??); /\ MAS Op Sys Release \/

char MVSNAME??(4??); /\ MVS System Name \/

char JOBNAME??(8??); /\ MAS Job Name \/

char CECNAME??(8??); /\ CEC Name \/

char SYSPLEX??(8??); /\ SYSPlex Name \/

, VS COBOL

char EYU_RSVð257??(4??); /\ Alignment Padding \/

 } EMASSTRT;

Figure 16 (Part 1 of 2). Sample C/370 copy book

 Chapter 3. Writing an EXEC CPSM program 67

 language and environment considerations

 /\--\

 \ \

\ EMASSTRT Defines for Table \

 \ \

 \--\/

 #define EMASSTRT_STATUS_LOCAL 128

 #define EMASSTRT_STATUS_REMOTE 64

 #define EMASSTRT_DYNROUTE_ACTIVE 1

 #define EMASSTRT_DYNROUTE_SUSPEND 2

 #define EMASSTRT_DYNTYPE_WLMTOR "TOR"

 #define EMASSTRT_DYNTYPE_WLMAOR "AOR"

 #define EMASSTRT_TBL_LEN 152

Figure 16 (Part 2 of 2). Sample C/370 copy book

Language and environment considerations
This section describes various language and environment considerations that you
should keep in mind when writing a CICSPlex SM API program. Note that all of the
usual language considerations that apply to the various environments (CICS,
MVS/ESA batch, TSO, and NetView) also apply to CICSPlex SM programs written
to run in those environments.

Assembler H considerations
For Assembler H programs that run in an MVS/ESA batch, TSO, or NetView
environment, you need to be aware of the following special considerations:

� Since the program does not execute in CICS, do not use the DFHEIENT or
DFHEIRET macros. Instead, use the CICS translator options NOEPILOG,
NOPROLOG, and NOSYSEIB.

� You must explicitly code the DFHEISTG and DFHEIEND macros to provide the
required work areas for EXEC CPSM commands. Your program is responsible
for acquiring storage for the DFHEISTG area and setting up any necessary
base registers prior to making any EXEC CPSM calls. This storage can be
acquired dynamically using local GETMAIN services or, if the program is
nonreentrant, the storage can be defined directly in the program area.
Reentrant programs are recommended if there is any possibility of the program
being used concurrently in the same address space.

� You must make the appropriate CICS macro library available in the SYSLIB
concatenation for the Assembler step. The DFHEISTG, DFHEIEND, and
DFHSCALL macros are fetched from this library.

 PL/I considerations
For PL/I programs, you need to be aware of the following special considerations:

� The variable EYUPTPTR must be explicitly declared as follows:

DCL EYUPTPTR POINTER;

68 CICSPlex SM Application Programming Guide

 language and environment considerations

 NetView considerations
If you plan to run C/370 programs under NetView, you need to be aware of the
following special considerations:

� Depending on which resource tables you access, you may encounter some
name conflicts between the CICSPlex SM #define statements for resource
table attributes and the standard NetView #define statements. For example, the
NetView statement #include "dsic.h" generates the following define
statement:

#define COMMAND "COMMAND "

Some of the CICSPlex SM resource tables use COMMAND as an attribute
name. If you use #include "dsic.h" as supplied by NetView, the resource
table attribute names are converted and cannot be processed by
CICSPlex SM.

One way of handling any potential conflicts is to undefine the COMMAND
value, like this:

 #include "dsic.h"

 #undef COMMAND

 #include "feedback.h"

 .

 .

 .

If you want to, you can also redefine the COMMAND value using a new name
that does not conflict with any resource table attribute name, like this:

 #include "dsic.h"

 #undef COMMAND

#define XCOMMAND "COMMAND "

 #include "feedback.h"

 .

 .

 .

 User-replaceable programs
The CICSPlex SM API cannot be used from within the user-replaceable programs
EYU9XESV and EYU9WRAM.

| CICS Global User exit programs
| The CICSPlex SM API may be used from within the CICS XICEREQ Global User
| Exit program. You must avoid recursion within the CICSPlex SM API program and
| the exit should not delay any requests issued by CPSM related tasks.

| The use of the CICSPlex SM API from within other CICS Global User Exit points is
| not recommended as the results are unpredictable.

 Status programs
The CICSPlex SM API cannot be used from within a program that is invoked
through the STATDEF view. Where access to the API is required, you must start
another task and invoke the API from the new task.

 Chapter 3. Writing an EXEC CPSM program 69

 translating your program

Translating your program
For programs written using the command-level interface, you must use a language
translator to interpret the source program for the API. Any external program that
contains EXEC CPSM commands must be processed by the appropriate version of
the CICS/ESA command level translator.

The following versions of the CICS translator support EXEC CPSM commands:

� CICS/ESA 4.1 with APAR PN73812
� CICS TS for OS/390

Notes:

1. If you are using the CICS/ESA 4.1 version of the translator, make sure the
appropriate APAR has been applied before you attempt to translate your
program.

2. If you are using Business Application Services (BAS) to create CICS resource
definitions, be sure to use the appropriate version of the translator for the
definitions you are creating. That is, if you want to create CICS TS for OS/390
resource definitions, you must use the translator that is distributed with that
version of CICS.

Specifying the CPSM translator option
Because CICSPlex SM uses the CICS/ESA translator, you can use your CICS
translate JCL as a model for translating CICSPlex SM API programs. You must
specify one additional translator option, called CPSM, in order to translate
CICSPlex SM programs. The CPSM option can be specified by using either the
PARM operand of the EXEC statement or a language-specific XOPTS options
statement.

If your program also contains EXEC CICS commands, those commands are
processed in the same translation step. The CICS translator inserts the necessary
variable and invocation definitions required for proper execution of the program.

| When using the CPSM API in a non-CICS environment, be sure to remove any
| CICS or SP translator options, and only specify the CPSM translator option.

As a result of the translation process, EXEC CPSM statements are replaced with
language specific calls to an EXEC interface stub program.

Sample Assembler H translation
To specify the CPSM translator option, use either the PARM operand of the EXEC
statement, like this:

//TRANSLAT EXEC PGM=DFHEAP1$,PARM='CPSM',REGION=4ð96K

or an XOPTS options statement, like this:

 \ASM XOPTS(...CPSM)

70 CICSPlex SM Application Programming Guide

 compiling your program

Sample PL/I translation
To specify the CPSM translator option, use either the PARM operand of the EXEC
statement, like this:

//TRANSLAT EXEC PGM=DFHEPP1$,PARM='CPSM',REGION=4ð96K

or an XOPTS options statement, like this:

 \PROCESS XOPTS(...CPSM)

 Sample VS COBOL II translation
To specify the CPSM translator option, use either the PARM operand of the EXEC
statement, like this:

//TRANSLAT EXEC PGM=DFHECP1$,PARM='COBOL2,CPSM',REGION=4ð96K

or an XOPTS options statement, like this:

 PROCESS XOPTS(...CPSM)

Note that when you translate a VS COBOL II program, you must specify both the
CPSM and the COBOL2 translator options.

Sample C/370 translation
To specify the CPSM translator option, use either the PARM operand of the EXEC
statement, like this:

//TRANSLAT EXEC PGM=DFHEDP1$,PARM='CPSM',REGION=4ð96K

or an XOPTS options statement, like this:

 #pragma XOPTS(...CPSM)

Compiling your program
Compiling a CICSPlex SM API program is similar to compiling a CICS program.
You can use your CICS compile JCL as a model and then make the following
modifications according to the language you are using.

Assembler H considerations
You can use only the following Assembler compiler to process CICSPlex SM
programs written in Assembler:

� Assembler H Compiler Version 2 (or later)

To assemble CICSPlex SM programs, you must include a SYSLIB statement for
| the CICSTS13.CPSM.SEYUMAC macro library in your compile JCL, like this:

| //ASM EXEC PGM=IEV9ð,REGION=4ð96K

| .

| .

| .

| //SYSLIB DD DSN=CICSTS13.CPSM.SEYUMAC,DISP=SHR

| .

| .

| .

 Chapter 3. Writing an EXEC CPSM program 71

 compiling your program

 PL/I considerations
You can use only the following PL/I compiler to process CICSPlex SM programs
written in PL/I:

� OS PL/I Optimizing Compiler Version 2.3 (or later)

To compile CICSPlex SM programs, you must include a SYSLIB statement for the
| CICSTS13.CPSM.SEYUPL1 macro library in your compile JCL, like this:

| //COMPILE EXEC PGM=IELðAA,REGION=1ðððK,

| // PARM='OBJECT,MACRO,LIST'

| .

| .

| .

| //SYSLIB DD DSN=CICSTS13.CPSM.SEYUPL1,DISP=SHR

| .

| .

| .

 COBOL considerations
You can use only the following COBOL compiler to process CICSPlex SM
programs written in COBOL:

� VS COBOL II Compiler Version 1.3.2 (or later)

To compile CICSPlex SM programs, you must include a SYSLIB statement for the
| CICSTS13.CPSM.SEYUCOB macro library in your compile JCL, like this:

| //COMPILE EXEC PGM=IGYCRCTL,REGION=4ð96K

| .

| .

| .

| //SYSLIB DD DSN=CICSTS13.CPSM.SEYUCOB,DISP=SHR

| .

| .

| .

 C/370 considerations
You can use only the following compiler and library to process CICSPlex SM
programs written in C/370:

� C/370 Compiler Version 2.1 (or later)
� C/370 Library Version 2.1 (or later).

To compile CICSPlex SM programs, you must include a SYSLIB statement for the
| CICSTS13.CPSM.SEYUC370 macro library in your compile JCL, like this:

| //COMPILE EXEC PGM=EDCCOMP,REGION=4ð96K

| .

| .

| .

| //SYSLIB DD DSN=CICSTS13.CPSM.SEYUC37ð,DISP=SHR

| .

| .

| .

72 CICSPlex SM Application Programming Guide

 link editing your program

Link editing your program
The CICS/ESA translator inserts a call to the CICSPlex SM EXEC interface stub
program. The stub entry name is not the name of an object or load module. Since
CICSPlex SM API programs can run in a variety of environments, the stub
reference must be resolved to a module consistent with the intended usage. This
resolution is performed at link-edit time using the INCLUDE linkage editor control
statement.

You must link edit all program load modules with the correct CICSPlex SM stub
module for the environment where the program will run. To do this, specify one of
the following stub modules in the INCLUDE statement:

EYU9AMSI For CICS/ESA programs. EYU9AMSI is supplied in the
| CICSTS13.CPSM.SEYULOAD library.

EYU9ABSI For batch, TSO, or NetView programs. EYU9ABSI is supplied in the
| CICSTS13.CPSM.SEYUAUTH library.

Each of these stub modules contains the appropriate entrypoint identifier. The
services provided by the entrypoint are unique to the type of execution
environment.

Note: You should not attempt to run a program identified as a CICS program in a
batch environment. Likewise, batch programs are not suitable for running
under CICS.

You can use your CICS link-edit JCL as a model for link editing CICSPlex SM
programs. Be sure to review the language-specific considerations in the remainder
of this section and modify your JCL accordingly.

In addition, if your program contains EXEC CICS commands, you should review the
link-edit considerations in the Application Programming Guide for your version of
CICS. Likewise, if your program runs under NetView, you should refer to the
NetView customization book for your programming language, either Customization:
Using Assembler, or Customization: Using PL/I and C.

Assembler H considerations
Assembler load modules can reside in 24- or 31-bit storage and can be entered in
either addressing mode.

To link edit an Assembler module to run with a CICSPlex SM program, you must
| include a SYSLIB statement for the SEYULOAD load library in your link-edit step.

This allows you to include the appropriate CICSPlex SM stub module when link
editing. For example:

 Chapter 3. Writing an EXEC CPSM program 73

 run-time considerations

| //LKED EXEC PGM IEWL,

| // PARM='XREF,LET,LIST,AMODE=ANY,RMODE=31',

| // REGION=4ð96K,COND=(7,LT,ASM)

| .

| .

| .

| //SYSLIB DD DSN=CICSTS13.CPSM.SEYULOAD,DISP=SHR

| .

| .

| .

| INCLUDE SYSLIB(userprog)

| INCLUDE SYSLIB(EYU9AMSI)

| NAME LMODNAME(R)

 PL/I, VS COBOL II, and C/370 considerations
PL/I, VS COBOL II, and C/370 load modules can reside in 24- or 31-bit storage
and can be entered in either addressing mode.

To link edit a module to run with a CICSPlex SM program, you must include a
| SYSLIB statement for the SEYULOAD load library in your link-edit step. This allows

you to include the appropriate CICSPlex SM stub module when link editing. For
example:

| //LKED EXEC PGM=IEWL,

| // PARM='XREF,LET,LIST,AMODE=ANY,RMODE=31',

| // REGION=4ð96K,COND=(8,LE,COMPILE)

| .

| .

| .

| //SYSLIB DD DSN=CICSTS13.CPSM.SEYULOAD,DISP=SHR

| .

| .

| .

| INCLUDE SYSLIB(userprog)

| INCLUDE SYSLIB(EYU9AMSI)

| NAME LMODNAME(R)

 Run-time considerations
� The run-time version of a CICSPlex SM API program is equal to the level of

the CMAS to which it connects:

– For a program written to run as a CICS application, the run-time version is
that of the CMAS to which the MAS is connected.

– For a program written to run as a batch job or under NetView or TSO, the
version is determined by the version of the CICSPlex SM run-time module
(EYU9AB00).

EYU9AB00 is distributed in CPSMnnn.SEYUAUTH, where nnn is the
version of CICSPlex SM. At run time, CICSPlex SM must find EYU9AB00
in the STEPLIB, MVS linklist, or LPA library concatenation.

� The run-time version of a program must be greater than or equal to:

– The version of the stub routine module (EYU9AxSI) with which the program
was link edited.

74 CICSPlex SM Application Programming Guide

 run-time considerations

– The value specified on the VERSION option of the CONNECT command.

� For programs written in PL/I, VS COBOL II, or C/370, a set of run-time libraries
is shipped with the language compiler. To run a CICSPlex SM program written
in one of these languages, you must modify your environment startup
procedure to reference the appropriate run-time libraries for the language.

| � Before running any CICSPlex SM program under CICS, make sure the
| program and its associated transaction are defined to CEDA. The program may
| be defined with an EXECKEY value of either User or CICS. The associated
| transaction may be defined with a TASKDATAKEY value of either User or
| CICS.

 Chapter 3. Writing an EXEC CPSM program 75

 run-time considerations

76 CICSPlex SM Application Programming Guide

 using RESPONSE and REASON

Chapter 4. Dealing with exception conditions

This chapter describes the tools and techniques that are available for dealing with
error conditions in a CICSPlex SM API program.

Note: For information on additional diagnostic data that is available for an API
program, refer to CICSPlex SM Problem Determination.

| Default CICSPlex SM exception handling
| The CICSPlex SM API writes an exception trace, in the form of a user trace record,
| to the CICS trace data set. Resources available via the CICSPlex SM API are not
| recoverable, and, therefore, resources updated prior to the exception are neither
| recovered nor are they available for backout by the application using EXEC CICS
| SYNCPOINT and EXEC CICS SYNCPOINT ROLLBACK commands.

Using the RESPONSE and REASON options
The RESPONSE and REASON options are required on each API command. You
should specify these options as user-defined variables to receive the numeric

| response and reason values returned by a command. You can then convert the
| numeric values into more meaningful character equivalents. In general,

RESPONSE describes the result of command processing and REASON further
qualifies the response to certain commands.

Note: The TBUILD and TPARSE commands, which can be used only with the
REXX run-time interface, do not use the RESPONSE and REASON options.
The result of these REXX-specific processes is returned by their STATUS
option. For more information, see Chapter 6, “REXX error handling” on
page 97.

Types of responses
There are three types of responses that an API command can return:

 � Normal
 � Warning
 � Error.

The character equivalents of the RESPONSE and REASON values that can be
returned are given in the description of each command. For a summary of
RESPONSE and REASON character values by command, see CICSPlex SM
Application Programming Reference. For a list of RESPONSE and REASON
character values and their numeric equivalents, also see CICSPlex SM Application
Programming Reference.

 Normal responses
A normal response indicates the API command completed processing successfully.
The following values represent a normal response:

OK The command was successfully processed and control was
returned to the program. There are no reasons associated with
a response of OK.

 Copyright IBM Corp. 1995, 1999 77

 using RESPONSE and REASON

SCHEDULED A command that was issued with the NOWAIT option has been
scheduled for processing. The actual result of command
processing is returned by the RECEIVE command in an
ASYNCREQ resource table record. There are no reasons
associated with a response of SCHEDULED.

 Warning responses
A warning response indicates the API command was successfully processed, but a
condition occurred that should be investigated. A REASON value is also returned
that describes the condition. The following values represent a warning response:

NODATA A command that normally results in data being returned to the
program was processed successfully, but there was no data to
return. The reasons for a NODATA response are given with the
commands that return it.

WARNING A command that normally results in data being returned to the
program was processed successfully, but not all of the
available data was returned. A typical reason for this response
might be that the output area provided by the program was not
large enough to hold all the data. The actual reasons for a
WARNING response are given with the commands that return
it.

 Error responses
An error response indicates the API command was not successful. One or more
REASON values are also returned that describe the error.

| Note: Note that, except for the FAILED error response, these response codes
| usually indicate either an error in the user’s API program (for example,
| failing to discard resources when they are no longer required), or an error
| with the CICSPlex SM environment (for example, a CMAS or MAS is not
| available).

The following values represent an error response:

BUSY A resource referred to by the command is currently being
processed by another command. This situation can occur when
a command that was previously issued with the NOWAIT option
is processing a resource that is required by the current
command. The reasons for a BUSY response are given with
the commands that return it.

DUPE A resource referred to by the command already exists. The
reasons for a DUPE response are given with the commands
that return it.

ENVIRONERROR An environmental condition (such as short on storage)
prevented the command from being processed. The reasons for
an ENVIRONERROR response are given with the commands
that return it.

FAILED An unexpected problem occurred during command processing.
The reasons for a FAILED response are given with the
commands that return it.

78 CICSPlex SM Application Programming Guide

 using RESPONSE and REASON

In the case of a FAILED EXCEPTION response, you should
check the following sources for information related to the
condition:

 � EYULOG
 � Job log
� AUXTRACE data set

INCOMPATIBLE Two or more resources referred to by the command are
incompatible. The reasons for an INCOMPATIBLE response
are given with the commands that return it.

INUSE A resource referred to by the command is in use and,
therefore, cannot be discarded. The reasons for an INUSE
response are given with the commands that return it.

INVALIDATA The command parameter list contains invalid data. The reason
for an INVALIDATA response is always the name of the
parameter that contains invalid data. The reasons are given
with the commands that return this response.

INVALIDPARM The command parameter list is invalid. There are a variety of
situations that could result in an INVALIDPARM response. For
example:

Syntax error
The syntax of an input parameter is incorrect (for example,
a resource table name begins with a numeric character).

Null parameter address
An input parameter could not be found because the
generated address for that parameter is 0.

The reason for an INVALIDPARM response is always the name
of the parameter that is invalid. The reasons are given with the
commands that return this response.

NOTAVAILABLE A required CMAS or MAS resource is not available. The
reasons for a NOTAVAILABLE response are given with the
commands that return it.

NOTFOUND A resource referred to by the command could not be found.
The reasons for a NOTFOUND response are given with the
commands that return it.

NOTPERMIT The API request is not permitted by the external security
manager (ESM) at your enterprise. The reasons for a
NOTPERMIT response are given with the commands that
return it.

SERVERGONE The CMAS to which the processing thread was connected is no
longer active. There are no reasons associated with a
response of SERVERGONE.

TABLEERROR An error was detected in a resource table record (either a result
set record or a CICSPlex SM definition record). The reasons
for a TABLEERROR response are given with the commands
that return it.

 Chapter 4. Dealing with exception conditions 79

 using RESPONSE and REASON

VERSIONINVL An invalid version of CICSPlex SM was detected. The reasons
for a VERSIONINVL response are given with the commands
that return it.

Testing for RESPONSE and REASON
To evaluate the results of an API command, you simply code the RESPONSE and
REASON options on the command and follow the command immediately with a test
of the returned values. The RESPONSE and REASON options return numeric

| values. Different built-in functions are provided for converting and testing the
numeric response and reason values in the command-level interface and the REXX
run-time interface.

Using the command-level interface
When you are using the CICSPlex SM command-level interface, you can use the

| EYUVALUE built-in function to convert and test the numeric RESPONSE and
REASON values returned by an API command.

As an example, consider this API command:

EXEC CPSM CONNECT

 CONTEXT(WCONTEXT)

 SCOPE(WSCOPE)

 VERSION('ð14ð')

 THREAD(WTHREAD)

 RESPONSE(WRESPONSE)

 REASON(WREASON)

 .

 .

To test for the RESPONSE value in each of the supported languages, you could
code:

COBOL or PL/I:

IF WRESPONSE NOT = EYUVALUE(OK) GO TO NOCONNECT.

C/370:

if (WRESPONSE ¬= EYUVALUE(OK)) { goto NOCONNECT; }

Assembler language:

 CLC WRESPONSE,EYUVALUE(OK)

 BNE NOCONNECT

which the built-in function changes to:

 CLC WRESPONSE,=F'1ð24'

You can use EYUVALUE in the same way to test for the REASON value, if the
RESPONSE is one that returns a reason.

Using the REXX run-time interface
When you are using the REXX run-time interface, you can use the EYURESP and

| EYUREAS built-in functions to convert and test the numeric RESPONSE and
REASON values returned by an API command.

As an example, consider this API command:

80 CICSPlex SM Application Programming Guide

 retrieving FEEDBACK records

var = EYUAPI('CONNECT' ,

 'CONTEXT('WCONTEXT')' ,

 'SCOPE('WSCOPE')' ,

 'VERSION(ð14ð)' ,

 'THREAD(WTHREAD)' ,

 'RESPONSE(WRESPONSE)' ,

 'REASON(WREASON)')

 .

 .

To test for the RESPONSE value, you could code:

If WRESPONSE <> EYURESP(OK) Then Signal NOCONNECT

to compare the numeric RESPONSE value returned in WRESPONSE with the
numeric equivalent of OK.

Alternatively, you could code:

If EYURESP(WRESPONSE) <> "OK" Then Signal NOCONNECT

| to convert the numeric RESPONSE value to its character equivalent first.

Note: The RESPONSE and REASON options report only run-time errors. Errors in
interpreting an API command are reported in either the REXX RC variable
or the variable assigned to a REXX function.

Retrieving FEEDBACK records
In addition to the specific values returned by a command’s RESPONSE and
REASON options, CICSPlex SM also provides diagnostic data in the form of
FEEDBACK resource table records. This data can help you evaluate the results of
an API command, especially if the command did not complete successfully.

Using the FEEDBACK command
You can retrieve diagnostic data about a previously issued API command by
issuing the FEEDBACK command. The type of command for which you want
diagnostic data affects how you specify the FEEDBACK command and where the
data is placed:

A command that processed a result set
Use the RESULT option of the FEEDBACK command to retrieve data about the
last command that processed a specific result set.

| If the command that processed the result set returned a RESPONSE other than
| OK, a FEEDBACK resource table record is appended to the end of each
| resource table record in the result set that had an error associated with it. You
| can use the FIRST, NEXT, and COUNT options of the FEEDBACK command to
| retrieve multiple FEEDBACK records.

The diagnostic data in a result set is available to the FEEDBACK command until
another command processes the same result set. At that point, the data is
replaced with FEEDBACK records for the subsequent command.

Note: No FEEDBACK records are produced if the command that processed
the result set returned a RESPONSE of OK.

 Chapter 4. Dealing with exception conditions 81

 retrieving FEEDBACK records

A command that did not process a result set
Use the FEEDBACK command without the RESULT option to retrieve data
about the command issued immediately before FEEDBACK.

The FEEDBACK resource table records are returned in a separate feedback
area. The records in that feedback area are cleared and refreshed for each
command that is not result set-oriented. So for commands that place their
diagnostic data in the feedback area rather than in a result set, FEEDBACK can
retrieve data only for the most recently issued command.

Once you have issued the FEEDBACK command to retrieve diagnostic data for a
command, the feedback record or area is cleared. You cannot request the same
FEEDBACK resource table records more than once.

Evaluating a FEEDBACK record
The diagnostic data for a CICSPlex SM API command is presented in a
FEEDBACK resource table record. The attributes of that resource table provide a
variety of information about the completion status of an API command.

Note: This section provides general information about FEEDBACK records. The
FEEDBACK resource table copy book that is supplied by CICSPlex SM
provides a detailed description of the contents and structure of a
FEEDBACK record. You should refer to the CICSPlex SM Resource Tables
Reference or the supplied copy book when writing a program that uses the
FEEDBACK command.

To identify which API operation the FEEDBACK record applies to, check the values
in these fields:

COMMAND A numeric code that identifies the command to which this
| FEEDBACK record applies. The API commands and their
| numeric equivalents are given in Table 7 on page 83.

| OBJECT The CICSPlex SM object that the command was issued against.

| OBJECT_ACT The action that was being performed against the CICSPlex SM
| object.

| RSLTRECID If the FEEDBACK record applies to a result set, the numeric ID of
| the result set record associated with this FEEDBACK record.

82 CICSPlex SM Application Programming Guide

 retrieving FEEDBACK records

To determine what type of problem the FEEDBACK record describes, check the
values in these fields:

ATTRDATAVAL Indicates whether attribute data is available for the command.
Attribute data is included only if the command itself did not
complete successfully.

If the ATTRDATAVAL value is Y, the FEEDBACK record
identifies as many as five attributes (ATTR_NM1 through
ATTR_NM5) that contributed to the error. Each attribute is
identified by its name and its offset and relative number within the
resource table record. The data type and length of each attribute
is also included.

If the ATTRDATAVAL value is N, you can ignore the ATTR_
fields.

| Table 7. Numeric codes and API commands

| Numeric code| Mnemonic| Command

| 02| CANCEL| Cancel

| 03| CONNECT| Connect

| 04| COPY| Copy

| 05| CREATE| Create

| 06| DELETE| Delete

| 07| DISCARD| Discard

| 08| DISCONN| Disconnect

| 09| FETCH| Fetch

| 10| GET| Get

| 11| LOCATE| Locate

| 12| MARK| Mark

| 13| ORDER| Order

| 14| PERFSET| Perform Set

| 15| PERFOBJ| Perform Object

| 16| QUALIFY| Qualify

| 17| QUERY| Query

| 18| RECEIVE| Receive

| 19| REMOVE| Remove

| 20| FILTER| Specify Filter

| 21| UNMARK| Unmark

| 22| ADDRESS| Address

| 23| GETDEF| Getdef

| 24| LISTEN| Listen

| 25| REFRESH| Refresh

| 26| SET| Set

| 27| VIEW| Specify View

| 28| TERM| Terminate

| 29| TRANS| Translate

| 30| GROUP| Group by

| 31| UPDATE| Update

 Chapter 4. Dealing with exception conditions 83

 retrieving FEEDBACK records

CEIBDATAVAL Indicates whether CICS EIB data is available for the command.
EIB data is included only if the command encountered a CICS
error.

If the CEIBDATAVAL value is Y, the FEEDBACK record includes
the EIBFN, RESP, and RESP2 values as provided by CICS.

If the CEIBDATAVAL value is N, you can ignore the CEIBFN,
CEIBRESP, and CEIBRESP1 fields.

ERRCODEVAL Indicates whether a CICSPlex SM error code is available for the
command. An error code is included only if the command itself
did not complete successfully.

If the ERRCODEVAL value is Y, the FEEDBACK record includes
a numeric ERROR_CODE value. Each resource table copy book
includes a list of the error codes for that object and their
meanings.

If the ERRCODEVAL value is N, you can ignore the
ERROR_CODE field, as well as the RESPONSE and REASON
fields.

| For some API operations that affect BAS resources, the FEEDBACK record may
| point to additional diagnostic data in an error result set. For more information about
| using the diagnostic data in error result sets, see “Additional processing for BAS”
| on page 86.

Availability of FEEDBACK records
In general, FEEDBACK records are produced for all API commands, whether they
are successful or not. However, for some API commands and in some situations,
FEEDBACK records are not produced because they would not provide useful
diagnostic data.

FEEDBACK records are not available for these commands:

DISCONNECT and TERMINATE
When you disconnect an API processing thread from CICSPlex SM, any
remaining diagnostic data is discarded.

FEEDBACK
The FEEDBACK command cannot report on its own processing.

TBUILD and TPARSE
These REXX-specific commands issue a series of API commands internally and
reuse the same feedback area. Therefore, the feedback area cannot represent
the entire sequence of events.

FEEDBACK records are also not available in these situations:

� A command processes a result set and completes with a RESPONSE value of
OK.

� A command is processed asynchronously (that is, you specify the NOWAIT
option). The diagnostic data for asynchronous requests is returned in the
ASYNCREQ notification resource table.

84 CICSPlex SM Application Programming Guide

 retrieving FEEDBACK records

An example of FEEDBACK for a result set
As an example of how you can use FEEDBACK data, Figure 17 illustrates the
results of issuing a SET command. In this case, SET was issued to modify the
service status of CONNECT records in the result set referenced by TOKENC.

TOKENC Result Set

OBJSTAT
Num, Context, Object, Lastoper, Status . . .

1, PLX01, CONNECT, SET, . . .

2, PLX01, CONNECT, SET, OPERERR, . . .

3, PLX01, CONNECT, SET, . . .

4, PLX01, CONNECT, SET, . . .

CONNECT
CICS,Rel, Name, ConnStatus, ServStatus, . . .

MAS1A,

MAS1B,

MAS1A,

MAS1A,

E410,

E330,

E410,

E410,

C001,

C002,

C003,

C004,

RELEASED,

ACQUIRED,

RELEASED,

RELEASED,

OUTSERVICE, . . .

INSERVICE, . . .

OUTSERVICE, . . .

OUTSERVICE, . . .

SET MODIFY(`SERVSTATUS=OUTSERVICE.') RESULT(TOKENC) . . .

FEEDBACK

Figure 17. Using SET to modify result set records

One of the connections (C002 in MAS1B) was not successfully taken out of service
by the SET command. The ServStatus field is still set to INSERVICE and there is a
pointer to FEEDBACK data.

Figure 18 shows how you can use the FEEDBACK command to retrieve the
FEEDBACK records associated with the result set referenced by TOKENC.

SET, N, Y, N, TABLEERROR, DATAERROR, . . ., 16, 2, . . ., CONNECT, . . .

FEEDBACK RESULT(TOKENC) INTO(AREA5) . . .

Figure 18. Using FEEDBACK to retrieve diagnostic data for a result set

The FEEDBACK record shown in Figure 18 reveals the cause of the problem.
CICSPlex SM returned RESPONSE and REASON values of TABLEERROR
DATAERROR, which means the value associated with one or more resource table
attributes is invalid. Furthermore, CICS responded to the SET request for this
connection with RESP(16) RESP2(2). A check of the CICS response codes
indicates that the attempt to take the connection out of service was invalid because
the connection is currently acquired.

Note: The LASTOPER and STATUS attributes of the OBJSTAT resource table
and some of the FEEDBACK attributes are actually binary fields (that is,
they are represented by a bit being set on or off). For detailed information
about the attribute values for a given resource table, refer to the CICSPlex
SM Resource Tables Reference or the supplied copy books.

 Chapter 4. Dealing with exception conditions 85

 BAS processing

Additional processing for BAS
| For API operations that affect BAS resources, the diagnostic data in a FEEDBACK
| record may not be enough to fully describe an error condition. In these cases, the
| FEEDBACK record points to an error result set. An error result set is identified by
| the following fields:

| ERR_RESULT A 4-byte token identifying an error result set.

| ERR_COUNT The number of records in the error result set referenced by
| ERR_RESULT.

| ERR_OBJECT The type of records in the error result set referenced by
ERR_RESULT. This value is the 1- to 8-character name of a
CICSPlex SM resource table, and may be BINSTERR,
BINCONRS, BINCONSC, or FEEDBACK.

Note: For details of the BINSTERR, BINCONRS, and BINCONSC resource tables,
see the CICSPlex SM Resource Tables Reference.

Evaluating error result set records
| If the ERR_OBJECT field of the FEEDBACK record contains FEEDBACK, the error

result set contains errors that arose when CICSPlex SM attempted to update CICS
resources. In response to the API command:

UPDATE RESULT(token) MODIFY(string)

CICSPlex SM tries to update multiple CICS definition records in a result set
according to the supplied modification string. For each CICS definition that could
not be modified, an error record is created in the error result set. The RESPONSE
and REASON values returned are TABLEERROR and DATAERROR.

The records are standard FEEDBACK records. To access the error result records,
use the FEEDBACK command to retrieve diagnostic data about each of the CICS
definitions in the ERR_RESULT result set. The ERR_COUNT value in the original
FEEDBACK record for the UPDATE command indicates how many records are in
the ERR_RESULT result set and therefore the number of times you should issue
the FEEDBACK command against the ERR_RESULT result set.

Evaluating BINSTERR resource table records
If the ERR_OBJECT field of the FEEDBACK record contains BINSTERR, errors
were encountered while CICS resources were being installed. In response to one of
the following API commands:

PERFORM OBJECT ACTION(INSTALL)

PERFORM SET ACTION(INSTALL)

CICSPlex SM tries to install CICS resources in one or more active systems running
CICS/ESA 4.1 or later. A BINSTERR record is created for each CICS resource that
cannot be installed. The RESPONSE and REASON values returned are
TABLEERROR and DATAERROR.

The BINSTERR records that you receive contain the following information:

CMASNAME The 1- to 8-character name of a CMAS that manages the specified
CICSplex.

86 CICSPlex SM Application Programming Guide

PLEXNAME The 1- to 8-character name of the CICSplex to which the specified
CICS system belongs.

CICSNAME The 1- to 8-character name of the CICS system into which the
resource could not be installed.

RESNAME The name of the CICS resource that could not be installed.

RESVER The version of the CICS definition that represents the resource
being installed.

| ERRCODE A numeric CICSPlex SM error code. See “BINSTERR” on
| page 102. The BINSTERR resource table copy book also contains

a list of the error codes and their meanings.

CRESP1 The RESP value as returned by CICS.

CRESP2 The RESP2 value as returned by CICS.

CEIBFN The EIBFN value as returned by CICS.

To access the error result set records, use the FETCH command to retrieve the
BINSTERR records from the ERR_RESULT result set. The ERR_COUNT value in
the FEEDBACK record for the PERFORM command indicates how many records
are in the ERR_RESULT result set and therefore the number of times you should
issue the FETCH command against the ERR_RESULT result set.

Evaluating BINCONRS resource table records
| If the ERR_OBJECT field of the FEEDBACK record contains BINCONRS,
| inconsistent resource set errors were encountered when attempting to update or
| create the specified definition. In response to one of the following API commands:

 CREATE OBJECT(basdef)

 UPDATE OBJECT(basdef)

CICSPlex SM tries to create or update one of the following Business Application
Services definitions:

� RASGNDEF (resource assignment)
� RASINDSC (resource assignment in resource description)
� RESDESC (resource description)
� RESGROUP (resource group)
� RESINDSC (resource group in resource description)

A BINCONRS resource table record is created for each CICS definition that would
cause an inconsistent set error. The RESPONSE and REASON values returned are
TABLEERROR and DATAERROR.

The BINCONRS records that you receive contain the following information:

CMASNAME The 1- to 8-character name of a CMAS that manages the specified
CICSplex.

PLEXNAME The 1- to 8-character name of the CICSplex to which the specified
CICS system belongs.

CICSNAME The 1- to 8-character name of the CICS system that experienced
inconsistent resource set errors.

RESTYPE The type of CICS resource.

 Chapter 4. Dealing with exception conditions 87

ERROP A numeric value that identifies the operation being performed when
| the error occurred (such as updating a RASGNDEF). See
| “BINCONRS” on page 101. The BINCONRS resource table copy

book also contains a list of the ERROP values and their meanings.

CANDNAME The name of the candidate resource

CANDVER The version of the candidate resource

CANDRGRP The group of the candidate resource

CANDRASG The assignment of the candidate resource

CANDRDSC The description of the candidate resource

CANDUSAGE The candidate assignment usage

CANDSGRP The candidate system group

CANDTYPE The candidate system type

CANDASGOVR The candidate assignment override

EXISTNAME The name of the existing resource

EXISTVER The version of the existing resource

EXISTRGRP The group of the existing resource

EXISTRASG The assignment of the existing resource

EXISTRDSC The description of the existing resource

EXISTUSAGE The existing assignment usage

EXISTSGRP The existing system group

EXISTTYPE The existing system type

EXISTASGOVR The existing assignment override

To access the error result records, use the FETCH command to retrieve the
BINCONRS records from the ERR_RESULT result set. The ERR_COUNT value in
the FEEDBACK record for the CREATE or UPDATE command indicates how many
records are in the ERR_RESULT result set and therefore the number of times you
should issue the FETCH command against the ERR_RESULT result set.

Evaluating BINCONSC resource table records
| If the ERR_OBJECT field contains BINCONSC, inconsistent scope errors were
| encountered while attempting to update or create the specified definition. In

response to one of the following API commands:

 CREATE OBJECT(basdef)

 UPDATE OBJECT(basdef)

CICSPlex SM tries to create or update one of the following Business Application
Services definitions:

� RASGNDEF (resource assignment)
� RASINDSC (resource assignment in resource description)
� RESDESC (resource description)
� RESGROUP (resource group)
� RESINDSC (resource group in resource description)

88 CICSPlex SM Application Programming Guide

A BINCONSC resource table record is created for each CICS definition that would
cause an inconsistent scope error. The RESPONSE and REASON values returned
are TABLEERROR and DATAERROR.

BINCONSC records contain the following information:

CMASNAME The 1- to 8-character name of a CMAS that manages the specified
CICSplex.

PLEXNAME The 1- to 8-character name of the CICSplex to which the specified
CICS system belongs.

CICSNAME The 1- to 8-character name of the CICS system that experienced
inconsistent scope errors.

ERROP A numeric value that identifies the operation being performed when
| the error occurred (such as updating a RASGNDEF). See
| “BINCONSC” on page 101. The BINCONSC resource table copy

book also contains a list of the ERROP values and their meanings.

| ERRCODE A numeric CICSPlex SM error code. See “BINCONSC” on
| page 101. The BINCONSC resource table copy book contains a list

of the error codes and their meanings.

TARGSCOPE The name of the target scope

TARGRASG The assignment for the target scope

TARGRDSC The description for the target

RELSCOPE The name of the related scope

RELRASG The assignment for the related scope

RELRDSC The description for the related scope

To access the error result records, use the FETCH command to retrieve the
BINCONSC records from the ERR_RESULT result set. The ERR_COUNT value in
the FEEDBACK record for the CREATE or UPDATE command indicates how many
records are in the ERR_RESULT result set and therefore the number of times you
should issue the FETCH command against the ERR_RESULT result set.

An example of a BAS error result set
| As an example of how you can the FEEDBACK data to obtain BAS error result set
| information, Figure 19 on page 90 illustrates the results of issuing a PERFORM
| OBJECT command. In this case, PERFORM OBJECT ACTION(INSTALL) was
| issued to install the CONNDEF definitions in the result set referenced by TOKENC.

 Chapter 4. Dealing with exception conditions 89

00000000, 1, CON01, VTAM, ...

00000000, 1, CON04, TCPIP, ...

00000000, 1, CON03, XM, ...

00000000, 2, CON02, VTAM, ...

CONNDEF
Changetime, Defver, Name, Accessmethod,...

Result Set

FEEDBACK

PERFORM OBJECT ACTION (INSTALL) RESULT (TOKENC)

TOKENC

| Figure 19. Using PERFORM OBJECT to install BAS definitions

| One of the connection definitions (CON02,VTAM) was not successfully installed by
| the PERFORM OBJECT command. There is a pointer to the FEEDBACK data.

| Figure 20 shows how you can use the FEEDBACK command to retrieve the
| FEEDBACK records associated with the result set referenced by TOKENC.

PERFORM OBJECT, N, Y, N, TABLEERROR, DATAERROR, ..., , 1, BINSTERR

FEEDBACK RESULT (TOKENC) INTO (AREA5) ...

| Figure 20. Using FEEDBACK to retrieve diagnostic data for a result set

| The FEEDBACK data shown in Figure 20 reveals the cause of the problem.
| CICSPlex SM returned RESPONSE and REASON values of TABLEERROR
| DATAERROR, which means that one or more connection definitions did not install
| successfully. Furthermore, the ERR_RESULT attribute points to an error result set
| which contains a single BINSTERR resource table record.

BINSTERR
Cmasname, Plexname, CICSname, Resname,

Error Result Set

1, CMAS1, PLX01, MAS1B, CON02, ...

TOKENE

| Figure 21. BINSTERR error result set

| The BINSTERR error result set referenced by TOKENE, and shown in Figure 21 is
| accessed using a FETCH command.

CMAS1, PLX01, MAS1B, CONO2, 2, FORCENO, ...

FETCH RESULT (TOKENE) INTO (AREA6) ...

| Figure 22. Using FETCH to retrieve BINSTERR records

| Figure 22 shows how you can use the FETCH command to retrieve the BINSTERR
| records associated with the error result set referenced by TOKENE.

90 CICSPlex SM Application Programming Guide

 accessing the API environment

Chapter 5. Writing a REXX program

This chapter describes how to use the REXX run-time interface to write an API
program. It describes how to access the API through the REXX function package
that is supplied with CICSPlex SM, how to specify an API command, and how to
process the data in a resource table record.

Accessing the API environment
The REXX run-time interface does not require any translation of API commands.
The commands are interpreted by a REXX function package that is supplied by
CICSPlex SM.

Note: For instructions on installing the REXX function package, see CICS
Transaction Server for OS/390: Installation Guide.

The REXX run-time interface consists of a single load module containing two entry
points:

EYU9AR00 The function package
EYU9AR01 The host subcommand

The function package contains these functions:

EYUAPI() Passes an API command to CICSPlex SM.

EYUINIT() Initializes the CICSPlex SM API environment and allocates the
necessary REXX resources.

EYUREAS() Translates the value returned by the REASON option of an API
command.

EYURESP() Translates the value returned by the RESPONSE option of an API
command.

EYUTERM() Terminates the CICSPlex SM API environment and releases any
allocated REXX resources.

For complete descriptions of these functions, see CICSPlex SM Application
Programming Reference.

In general, you access the CICSPlex SM API environment through the supplied
function package. The first call to CICSPlex SM in your program must be an
EYUINIT or EYUAPI function. EYUINIT is the primary means of initializing the API
environment. However, if EYUINIT is not issued first, the EYUAPI function initializes
the environment.

For example, sample program EYUxAPI1, which is distributed in the SEYUxxxx
library, begins like this:

 Copyright IBM Corp. 1995, 1999 91

 specifying an API command

Say 'Initializing API...'

XX = EYUINIT()

If XX <> ð Then Signal UNEXPECTED

Say 'Establishing connection...'

XX = EYUAPI('CONNECT' ,

 'CONTEXT('W_CONTEXT')' ,

 'SCOPE('W_SCOPE')' ,

 'VERSION(ð14ð)' ,

 'THREAD(W_THREAD)' ,

 'RESPONSE(W_RESPONSE)' ,

 'REASON(W_REASON)')

If XX <> ð Then Signal UNEXPECTED

In this example, the EYUINIT function is issued first to initialize the API
environment. Then an EYUAPI function is used to issue the API CONNECT
command.

Once you have issued an EYUINIT or EYUAPI function, you can:

� Issue any other CICSPlex SM function.

� Access the host subcommand environment by issuing the REXX ADDRESS
command.

Once the API environment is initialized, it exists until it is terminated, either by your
program or by REXX. Therefore, the final call to CICSPlex SM in your program
should always be an EYUTERM function. If you do not issue EYUTERM, some
REXX resources, such as storage, may remain allocated and REXX becomes
responsible for releasing them.

For example, sample program EYUxAPI1 ends like this:

XX = EYUAPI('TERMINATE RESPONSE(W_RESPONSE) REASON(W_REASON)')

XX = EYUTERM()

In this example, the EYUAPI function is used to issue an API TERMINATE
command. Then EYUTERM is issued to terminate the API environment and release
its allocated resources.

Using the EYUTERM function is always a good idea. However, if the CICSPlex SM
host subcommand environment is actually installed at your enterprise (as opposed
to being called from the function package), you may not need to use the EYUTERM
function at the end of every program. Depending on the programming guidelines at
your enterprise, the REXX resources that remain allocated can be reused by the
next CICSPlex SM API program that accesses the host subcommand environment.

Specifying an API command
When you write a program in REXX, you pass a character image of the command
to be issued to the REXX function package supplied by CICSPlex SM. The
command string can include imbedded REXX variables, as appropriate. You can
specify the command in one of two ways:

� Invoke the EYUAPI function with the name of the command as its parameter.

� Use the REXX ADDRESS command to pass subsequent statements to the
function package.

92 CICSPlex SM Application Programming Guide

 accessing resource table data

Note: You can also use the REXX PARSE VALUE command to pass API
commands to the function package. However, the processing overhead of
PARSE VALUE is quite high. Furthermore, the EYUAPI function returns
only a single character (0 or 1), so there is no need to parse its results. For
these reasons, using PARSE VALUE is not recommended.

The following example shows a partial GET command as it would be issued using
the EYUAPI function:

var = EYUAPI('GET OBJECT(LOCTRAN)...')

var is the variable assigned to receive the return code from the EYUAPI function.

The next example shows the same GET command being issued by the REXX
ADDRESS command:

ADDRESS CPSM 'GET OBJECT(LOCTRAN)...'

When the data in a REXX variable is to be passed to the function package the text
portion of the API command must be terminated, the REXX variable provided, and
the rest of the API command completed. The following is an example of a complete
GET command that demonstrates the imbedded use of REXX variables:

var = EYUAPI('GET OBJECT(LOCTRAN)' ,

'RESULT(setvar) THREAD(THRD1)' ,

 'RESPONSE(rspvar) REASON(reavar)')

In this example, the result set to receive the LOCTRAN objects, and the
RESPONSE and REASON options are all specified as REXX variables.

Because of the way REXX handles variable substitution, you must keep in mind
whether a variable is being used to send data to the API, receive data from the
API, or both. The next example shows a CONNECT command where the USER
and VERSION options send data to the API. The THREAD, RESPONSE, and
REASON options all name variables to receive data from the API. Note that names
of variables that receive data are specified as part of the command.

var = EYUAPI('CONNECT USER('userid') VERSION(ð14ð)' ,

'THREAD(thdtkn) RESPONSE(rspvar) REASON(reavar)')

In those cases where you want to access a resource table, special processing is
required. An example of this is a FETCH command, which requires an INTO option
to define where the resource table data should be placed for processing by your
program. In REXX, you must specify the INTO option as the prefix of a stem
variable to receive one or more resource table records. The zero entry of the stem
variable indicates the number of records returned.

Accessing resource table data
Because of the way CICSPlex SM supplies resource table data to REXX, two
additional commands are provided as part of the REXX function package:

TPARSE Extracts individual resource table attributes from a record and places
them into standard REXX variables. The resource table record itself
can be supplied in any valid REXX variable, including a stem variable.

You can use TPARSE to break down and access the attribute data in
a resource table record.

 Chapter 5. Writing a REXX program 93

 accessing resource table data

TBUILD Builds a CPSM Definition or CICS Definition resource table record
from a set of variables that you supply. Each variable must contain an
individual resource table attribute.

You can use TBUILD to build the resource table record for a definition
that you want to create, update, or remove in the CICSPlex SM data
repository.

Note: TBUILD only uses attributes that you specify; it does not
assume any default values for optional attributes. If you do not
supply a variable for an attribute that is optional, the
corresponding field in the resource table record is initialized
according to its data type (that is, character fields are set to
blanks, binary data and EYUDA values are set to zeroes).

The variables that represent the resource table attributes are created either by
CICSPlex SM, in the case of TPARSE, or by you, in the case of TBUILD. The
variable names are formed by adding a prefix to the attribute name, like this:

 prefix_fieldname

where:

prefix Is a text string that you supply. The maximum allowable length for a
prefix is determined by REXX and the environment in which the
program runs.

fieldname Is the name of an attribute in the resource table.

An underscore character (_) must be inserted between the prefix and the attribute
name.

When a program written in REXX passes resource table records to the API, the
format and layout of the record must be exactly as it is defined by CICSPlex SM.

For complete descriptions of the TBUILD and TPARSE commands, see CICSPlex
SM Application Programming Reference.

Translating attribute values
| The TBUILD and TPARSE commands use the TRANSLATE API command when
| processing certain resource table attributes. For example, EYUDA and CVDA
| values are maintained in a resource table record in their numeric form. By default,
| the TPARSE command converts these values into a displayable character form.
| TBUILD, on the other hand, converts any EYUDA or CVDA character values that
| you supply into their numeric equivalents.

| However, if you use the ASIS option on these commands, attribute values are not
| converted. If you specify ASIS on the TPARSE command, you must also specify
| ASIS on the TBUILD command when you rebuild the record so that the API does
| not try to reconvert the values.

| If you specify ASIS on the TPARSE command and then decide you want to convert
| the attribute values, you can use the TRANSLATE API command.

94 CICSPlex SM Application Programming Guide

 accessing resource table data

Processing CHANGETIME and CREATETIME attributes
The first 8 bytes of every CPSM Definition and CICS Definition resource table
record contain an attribute called CHANGETIME, which reflects the date and time
at which the record was last modified. CICS Definition records also include a
CREATETIME attribute, which is the date and time at which the definition was
created. The CHANGETIME and CREATETIME attributes are maintained internally
by CICSPlex SM; you should not attempt to modify these attribute values. When
you update a resource table record, the CHANGETIME and CREATETIME values
you pass to the TBUILD command must be the same values you received from
TPARSE.

By default, the TPARSE command translates the CHANGETIME and
CREATETIME values into displayable, character values. However, the character
forms of these values cannot be passed back to TBUILD. So, if you plan to update
a definition and then rebuild the resource table record, you should use the ASIS
option on the TPARSE and TBUILD commands. When you use ASIS, the
CHANGETIME and CREATETIME values appear as 16-byte hexadecimal values.

 Chapter 5. Writing a REXX program 95

 accessing resource table data

96 CICSPlex SM Application Programming Guide

 REXX error handling

Chapter 6. REXX error handling

 Translation errors
Errors that occur while REXX is trying to interpret a CICSPlex SM API command
result in a REXX return code. If REXX cannot process a command string or
function, the run-time interface sets the REXX return code in one of two places:

RC variable
When the ADDRESS CPSM command is used.

The return code value is one of the following:

0 The command was successfully processed.
8 The command contained syntax errors that prevented REXX from

processing it. EYUARnnnn messages that describe the error are written to
the destination defined on your system for IRXSAY WRITEERR output.

16 The command could not be processed because of some system failure
(such as a lack of storage). REXX messages that describe the error may
be produced.

−3 The CICSPlex SM API environment is not available. This condition can
occur if the function package is not properly installed. If the function
package is installed, it could mean that you did not issue at least one
EYUxxxx REXX function before invoking the ADDRESS CPSM command.

Function variable
When an EYUxxxx REXX function is used.

For most EYUxxxx functions, the return code value is one of the following:

0 The function was successfully processed.
1 The function failed. EYUARnnnn messages that describe the error are

written to the destination defined on your system for IRXSAY WRITEERR
output.

For the EYURESP and EYUREAS functions, the return code is either the
numeric equivalent of the value being translated or −1, if the translation failed.

In general, if the REXX return code is anything other than:

0 From EYUAPI, EYUINIT, or EYUTERM

A valid RESPONSE or REASON value
From EYURESP or EYUREAS

the API command was not successfully interpreted by REXX and, therefore, was
not passed to CICSPlex SM for processing. If a command is not processed, the
RESPONSE and REASON values are not set and you do not need to check them.

If the return code is 0, the API command was interpreted by REXX and passed to
CICSPlex SM. Note that a return code of 0 does not indicate whether the
command was successfully processed by CICSPlex SM. To determine the results
of an API command, refer to the RESPONSE and REASON values returned by the
command.

 Copyright IBM Corp. 1995, 1999 97

 REXX error handling

 Run-time errors
Errors that occur while CICSPlex SM is trying to process an API command are
reported by the RESPONSE and REASON values for the command. For more
information, see “Using the RESPONSE and REASON options” on page 77.

TPARSE and TBUILD errors
The results of a TPARSE or TBUILD command are returned by the STATUS
option, which is a required option on those commands. The STATUS option serves
a similar purpose to the RESPONSE and REASON options on other API
commands.

The STATUS option returns the REXX status value in character form as one of the
following:

OK
The command completed processing successfully.

SYNTAX ERROR
The command could not be processed because of a syntax error. EYUARnnnn
messages that describe the error are written to the destination defined on your
system for IRXSAY WRITEERR output.

FAILURE
The command failed because some of the data it was attempting to process is
invalid. Trace data is written to a REXX stem variable called EYUTRACE.
EYUARnnnn messages that describe the failure may also be written to the
destination defined on your system for IRXSAY WRITEERR output.

For more information about the EYUTRACE stem variable, see “EYU_TRACE
data.”

 Messages
Many of the error conditions you might encounter when using the REXX run-time
interface are accompanied by messages that describe the error. These messages,
which begin with the prefix EYUARnnnn, are written to the destination defined on
your system for IRXSAY WRITEERR output. By default, such output goes to one of
the following places:

� For a program running in TSO foreground, the output goes to the terminal.

� For a program running in background, the output goes to the SYSTSPRT DD
destination.

 EYU_TRACE data
The run-time interface creates a REXX stem variable called EYU_TRACE anytime
an error occurs that warrants tracing. Such conditions include:

� A STATUS of FAILURE from a TBUILD or TPARSE command

� A return code other than 0 from an EYUxxxx function.

The zero entry of the stem array indicates the number of trace records that were
produced. Entries 1 through n contain the actual trace records.

98 CICSPlex SM Application Programming Guide

 REXX error handling

If you are having problems with a REXX program or the run-time interface, IBM
support may request the trace records from EYU_TRACE. CICSPlex SM
distributes a REXX EXEC that IBM support will ask you to include in your REXX
program to format and print the EYU_TRACE records. The formatting routine is
called EYU#TRCF and is distributed in the SEYUCLIB library. EYU#TRCF should
be used only at the request of IBM support.

 Chapter 6. REXX error handling 99

 REXX error handling

100 CICSPlex SM Application Programming Guide

 error codes

| Appendix A. BINCONRS, BINCONSC, and BINSTERR error
| codes

| This appendix contains the error codes in the BINCONRS, BINCONSC, and
| BINSTERR copy books. See “Retrieving FEEDBACK records” on page 81 for
| information on interpreting feedback error result sets containing these error codes.

| BINCONRS

| Table 8. BINCONRS error codes–ERROP field

| Value| Code| Reason

| 01| ADDSYS| Add System to System Group

| 02| ADDTOGRP| Add Definition to Group

| 03| UPDINGRP| Update Definition in Group

| 04| ADDRASI| Add RASINDSC

| 05| ADDRESI| Add RESINDSC

| 06| UPDRASG| Update RASGNDEF

| 07| UPDRASI| Update RASINDSC

| 08| UPDRESI| Update RESDESC Install Scope

| 09| UPDRDSC| Update RESDESC

| BINCONSC

| Table 9. BINCONSC error codes–ERROP field

| Value| Code| Reason

| 01| ADDRASI| Add RASINDSC

| 02| UPDRASG| Update RASGNDEF

| 03| UPDRASI| Update RASINDSC

| 04| UPDRDSC| Update RESDESC

| 05| ADDSYS| Add System to Group

| Table 10. BINCONSC error codes–ERRCODE field

Value Code Reason

| 01| SAMESCP| Target/Related scopes are same

| 02| TRGINREL| Target Scope is in Related

| 03| RELINTRG| Related Scope is in Target

| 04| SYSNBOTH| CICSNAME in Target and Related

| 05| MULTREL| Multiple Systems in Related

| 06| RELNOSYS| Related System has no SYSID

 Copyright IBM Corp. 1995, 1999 101

 error codes

| BINSTERR

| Table 11. BINSTERR error codes–ERRCODE field

| Value| Code| Reason

| 01| SYSSTATE| System inactive/not create capable

| 02| INSTNAUT| Install not authorized

| 03| DSCDNAUT| Discard not authorized

| 04| INSTFAIL| Install failure

| 05| DSCDFAIL| Install discard failure

| 06| INSTCPFL| Install Complete failure

| 07| INSTNCON| Install Connection failure

| 08| INSTSTAT| Install status failure

| 09| INSTNSUP| Install not supported

| 10| FORCENO| Resource Install negated

| 11| DSCRDERR| Discard failure

| 12| METHFAIL| MAS method failure

| 13| NOCREATE| System not create capable

102 CICSPlex SM Application Programming Guide

 sample program listings

Appendix B. Sample program listings

This appendix provides listings for the sample programs that are distributed with
CICSPlex SM. Each sample program is shown here in one of the languages in
which it is distributed. For a list of the sample programs provided in each language
and the libraries where they are distributed, see Table 6 on page 11.

Note: Additional sample CICSPlex SM API programs are available on the World
Wide Web at:

 http://www.software.ibm.com/ts/cicsplex/

 Copyright IBM Corp. 1995, 1999 103

 sample program EYU#API1

Sample program EYU#API1
Program EYU#API1 is written in REXX for the TSO environment.

| EYUxAPI1 This program does the following:

| � Establishes a connection to the API.

| � Creates a result set containing all PROGRAM resource table
| records that do not begin with DFH, EYU, or IBM.

| � Retrieves each record in the result set.

| � Translates any CICS CVDA attributes into meaningful character
| values.

| � Displays each record on the terminal, showing the program name,
| language, enable status, and CEDF status.

| � Terminates the API connection.

| Commands Used: CONNECT, FETCH, GET, TERMINATE,
| TRANSLATE

104 CICSPlex SM Application Programming Guide

 sample program EYU#API1

/\ REXX \/

/\\/

/\ \/

/\ MODULE NAME = EYU#API1 \/

/\ \/

/\ DESCRIPTIVE NAME = CPSM Sample API Program 1 \/

/\ (Sample REXX Version) \/

/\ \/

/\ 5695-ð81 \/

/\ COPYRIGHT = NONE \/

/\ \/

/\ STATUS = %CPðð \/

/\ \/

/\ FUNCTION = \/

/\ \/

/\ To provide an example of the use of the following EXEC CPSM \/

/\ commands: CONNECT, GET, FETCH, TRANSLATE, TERMINATE. \/

/\ \/

/\ When invoked, the program depends upon the values held in the \/

/\ W_CONTEXT and W_SCOPE declarations when establishing a \/

/\ connection with CICSPlex SM. They must take the following \/

/\ values: \/

/\ \/

/\ W_CONTEXT = The name of a CMAS or CICSplex. Refer to the \/

/\ description of the EXEC CPSM CONNECT command \/

/\ for further information regarding the CONTEXT \/

/\ option. \/

/\ \/

/\ W_SCOPE = The name of a CICSplex, CICS system, or CICS \/

/\ system group within the CICSplex. Refer to the \/

/\ description of the EXEC CPSM CONNECT command \/

/\ for further information regarding the SCOPE \/

/\ option. \/

/\ \/

/\ This sample requires no parameters at invocation time. \/

/\ \/

/\ The sample establishes an API connection and issues a GET \/

/\ command to create a result set containing program resource \/

/\ table records which match the criteria. \/

/\ \/

/\ Using the FETCH command each record in the result set is \/

/\ retrieved. Once retrieved the TRANSLATE command is used to \/

/\ convert those attributes of each record which are EYUDA or \/

/\ CVDA values into meaningful character representations. A \/

/\ record is then displayed on the terminal showing the program \/

/\ name, language, program status, and CEDF status. \/

/\ \/

/\ Finally, the API connection is terminated. \/

/\ \/

/\--\/

/\NOTES : \/

/\ DEPENDENCIES = S/39ð, TSO \/

/\ RESTRICTIONS = None \/

/\ REGISTER CONVENTIONS = \/

/\ MODULE TYPE = Executable \/

/\ PROCESSOR = REXX \/

/\ ATTRIBUTES = Read only, Serially Reusable \/

/\ \/

 Appendix B. Sample program listings 105

 sample program EYU#API1

/\--\/

/\ \/

/\ENTRY POINT = EYU#API1 \/

/\ \/

/\ PURPOSE = All Functions \/

/\ \/

/\ LINKAGE = From TSO as a REXX EXEC. \/

/\ \/

/\ INPUT = None. \/

/\ \/

/\--\/

/\ \/

Address 'TSO'

Parse Value ð ð With W_RESPONSE W_REASON .

/\--\/

/\ CHANGE W_CONTEXT AND W_SCOPE TO MATCH YOUR INSTALLATION \/

/\--\/

W_CONTEXT = 'RTGA'

W_SCOPE = 'RTGA'

/\--\/

/\ OBTAIN A CPSM API CONNECTION. \/

/\ \/

/\ THE API WILL RETURN A TOKEN IDENTIFYING THE THREAD IN \/

/\ VARIABLE W_THREAD. \/

/\--\/

Say 'Initializing API...'

XX = EYUINIT()

If XX <> ð Then Signal UNEXPECTED

Say 'Establishing connection...'

XX = EYUAPI('CONNECT' ,

 'CONTEXT('W_CONTEXT')' ,

 'SCOPE('W_SCOPE')' ,

 'VERSION(ð14ð)' ,

 'THREAD(W_THREAD)' ,

 'RESPONSE(W_RESPONSE)' ,

 'REASON(W_REASON)')

If XX <> ð Then Signal UNEXPECTED

If W_RESPONSE <> EYURESP(OK) Then Signal NO_CONNECT

/\--\/

/\ GET THE PROGRAM RESOURCE TABLE. \/

/\ \/

/\ CREATE A RESULT SET CONTAINING ENTRIES FOR ALL PROGRAMS \/

/\ WITH NAMES NOT BEGINNING DFH, EYU or IBM. \/

/\ THE NUMBER OF ENTRIES MEETING THE CRITERIA IS RETURNED IN \/

/\ VARIABLE W_RECCNT. \/

/\--\/

Say 'Get the PROGRAM resource table...'

W_CRITERIA = 'NOT (PROGRAM=DFH\ OR PROGRAM=EYU\ OR PROGRAM=IBM\).'

W_CRITERIALEN = 'LENGTH'(W_CRITERIA)

XX = EYUAPI('GET OBJECT(PROGRAM)' ,

 'CRITERIA(W_CRITERIA)' ,

 'LENGTH('W_CRITERIALEN')' ,

 'COUNT(W_RECCNT)' ,

 'RESULT(W_RESULT)' ,

 'THREAD(W_THREAD)' ,

 'RESPONSE(W_RESPONSE)' ,

 'REASON(W_REASON)')

If XX <> ð Then Signal UNEXPECTED

If W_RESPONSE <> EYURESP(OK) Then Signal NO_GET

106 CICSPlex SM Application Programming Guide

 sample program EYU#API1

/\--\/

/\ RETRIEVE INFORMATION ABOUT EACH PROGRAM. \/

/\ \/

/\ FETCH EACH ENTRY AND USE TPARSE TO OBTAIN EACH ATTRIBUTE. \/

/\ DISPLAY DETAILS OF EACH PROGRAM TO THE USER. \/

/\--\/

Say 'Fetching' W_RECCNT 'PROGRAM entries...'

Say 'Program Language Status CEDF Status'

W_INTO_OBJECTLEN = 136 /\ LENGTH OF PROGRAM TABLE \/

Do III = 1 To W_RECCNT

XX = EYUAPI('FETCH INTO(W_INTO_OBJECT)' ,

 'LENGTH(W_INTO_OBJECTLEN)' ,

 'RESULT(W_RESULT)' ,

 'THREAD(W_THREAD)' ,

 'RESPONSE(W_RESPONSE)' ,

 'REASON(W_REASON)')

If XX <> ð Then Signal UNEXPECTED

If W_RESPONSE <> EYURESP(OK) Then Signal NO_FETCH

XX = EYUAPI('TPARSE OBJECT(PROGRAM)' ,

 'PREFIX(PGM)' ,

 'STATUS(W_RESPONSE)' ,

 'VAR(W_INTO_OBJECT.1)' ,

 'THREAD(W_THREAD)')

If W_RESPONSE <> 'OK' Then Signal UNEXPECTED

W_TEXT = PGM_PROGRAM

W_TEXT = 'OVERLAY'(PGM_LANGUAGE,W_TEXT,1ð)

W_TEXT = 'OVERLAY'(PGM_STATUS,W_TEXT,23)

W_TEXT = 'OVERLAY'(PGM_CEDFSTATUS,W_TEXT,36)

 Say W_TEXT

End III

Signal ENDIT

/\--\/

/\ PROCESSING FOR API FAILURES. \/

/\--\/

UNEXPECTED:

W_MSG_TEXT = 'UNEXPECTED ERROR.'

 Signal SCRNLOG

NO_CONNECT:

W_MSG_TEXT = 'ERROR CONNECTING TO API.'

 Signal SCRNLOG

NO_GET:

W_MSG_TEXT = 'ERROR GETTING RESOURCE TABLE.'

 Signal SCRNLOG

NO_FETCH:

W_MSG_TEXT = 'ERROR FETCHING RESULT SET.'

 Signal SCRNLOG

SCRNLOG:

 Say W_MSG_TEXT

Say 'RESPONSE='||W_RESPONSE ,

 'REASON='||W_REASON 'RESULT='XX

ENDIT:

/\--\/

/\ TERMINATE API CONNECTION. \/

/\--\/

XX = EYUAPI('TERMINATE RESPONSE(W_RESPONSE) REASON(W_REASON)')

XX = EYUTERM()

Exit

| The C/370, COBOL and PL/1 versions of EYUxAPI1 are written for the CICS
| environment and can be converted to run the MVS/ESA batch environment by
| commenting the EXEC CICS SEND commands, and uncommenting the preceeding
| language specific output statements.

 Appendix B. Sample program listings 107

 sample program EYUCAPI2

Sample program EYUCAPI2
Program EYUCAPI2 is written in C/370 for the CICS ENVIRONMENT.

| EYUxAPI2 This program does the following:

| � Establishes a connection to the API.

| � Defines a filter to identify PROGRAM resource table records with
| a language attribute of Assembler.

| � Creates a result set containing all PROGRAM resource table
| records that do not begin with DFH, EYU, or IBM.

| � Marks those records in the result set that match the specified filter
| (LANGUAGE=ASSEMBLER).

| � Copies the marked records to a new result set.

| � Deletes the marked records from the original result set.

| � For each result set (LANGUAGE=ASSEMBLER and
| LANGUAGE≠ASSEMBLER):

| – Retrieves each record.
| – Translates any CICS CVDA attributes.
| – Displays each record on the terminal.

| � Terminates the API connection.

| Commands Used: CONNECT, COPY, DELETE, FETCH, GET,
| LOCATE, MARK, SPECIFY FILTER, TERMINATE, TRANSLATE

108 CICSPlex SM Application Programming Guide

 sample program EYUCAPI2

 /\\/

 /\ \/

 /\ MODULE NAME = EYUCAPI2 \/

 /\ \/

 /\ DESCRIPTIVE NAME = CPSM Sample API Program 2 \/

 /\ (Sample C Version) \/

 /\ \/

 /\ 5695-ð81 \/

 /\ COPYRIGHT = NONE \/

 /\ \/

 /\ STATUS = %CPðð \/

 /\ \/

 /\ FUNCTION = \/

 /\ \/

 /\ To provide an example of the use of the following EXEC CPSM \/

 /\ commands: CONNECT, SPECIFY FILTER, GET, MARK, COPY, DELETE, \/

 /\ LOCATE, FETCH, TRANSLATE, TERMINATE. \/

 /\ \/

 /\ When invoked, the program depends upon the values held in the \/

 /\ W_CONTEXT and W_SCOPE declarations when establishing a \/

 /\ connection with CICSPlex SM. They must take the following \/

 /\ values: \/

 /\ \/

/\ W_CONTEXT = The name of a CMAS or CICSplex. Refer to the \/

 /\ description of the EXEC CPSM CONNECT command \/

 /\ for further information regarding the CONTEXT \/

 /\ option. \/

 /\ \/

 /\ W_SCOPE = The name of a CICSplex, CICS system, or CICS \/

 /\ system group within the CICSplex. Refer to the \/

 /\ description of the EXEC CPSM CONNECT command \/

 /\ for further information regarding the SCOPE \/

 /\ option. \/

 /\ \/

 /\ This sample requires no parameters at invocation time. \/

 /\ \/

 /\ The sample establishes an API connection and issues a SPECIFY \/

 /\ FILTER command to create a filter which will match only \/

 /\ specific program resource table records. The filter is used \/

 /\ later in the program by the MARK command. \/

 /\ \/

 /\ A GET command is issued to create a result set containing \/

 /\ program resource table records which match the criteria. The \/

 /\ result set is then used by the MARK command to flag records \/

 /\ meeting the previous filter specification. The marked records \/

 /\ are then COPYed to a new result set, and then DELETEd from \/

 /\ the original result set. After this sequence of commands we \/

 /\ have two results sets; one containing records which did not \/

 /\ meet the filter specification (that is, records where the \/

 /\ LANGUAGE is not ASSEMBLER), and one containing records \/

 /\ which did match the filter (that is, records where the \/

 /\ LANGUAGE is ASSEMBLER). \/

 /\ \/

 /\ Taking each of the two results sets in turn a LOCATE command \/

 /\ is used to ensure we start at the top of the result set \/

 /\ before a FETCH command is used to retrieve each record in \/

 /\ the result set. Once retrieved the TRANSLATE command is used \/

 /\ to convert those attributes of each record which are EYUDA \/

 /\ or CVDA values into meaningful character representations. A \/

 /\ record is then displayed on the terminal showing the program \/

 /\ name, language, program status, and CEDF status. \/

 /\ \/

 /\ Finally, the API connection is terminated. \/

 /\ \/

 Appendix B. Sample program listings 109

 sample program EYUCAPI2

\ --\

 /\NOTES : \/

 /\ DEPENDENCIES = S/39ð, CICS \/

 /\ RESTRICTIONS = None \/

 /\ REGISTER CONVENTIONS = \/

 /\ MODULE TYPE = Executable \/

 /\ PROCESSOR = C \/

 /\ ATTRIBUTES = Read only, Serially Reusable \/

 /\ \/

 /\--\/

 /\ \/

 /\ENTRY POINT = EYUCAPI2 \/

 /\ \/

 /\ PURPOSE = All Functions \/

 /\ \/

 /\ LINKAGE = From CICS either with EXEC CICS LINK or as a CICS \/

 /\ transaction. \/

 /\ \/

/\ INPUT = None. \/

 /\ \/

 /\--\/

 /\ \/

#include <PROGRAM>

void main()

{

/\--\/

/\ CHANGE W_CONTEXT AND W_SCOPE TO MATCH YOUR INSTALLATION \/

/\--\/

char \W_CONTEXT = "RTGA ";

char \W_SCOPE = "RTGA ";

int W_RESPONSE;

int W_REASON;

int W_THREAD;

char \W_CRITERIA;

int W_CRITERIALEN;

int W_FILTER_TOKEN;

int W_RESULT = ð;

int W_COUNT;

int W_RESULT2 = ð;

int W_COUNT2;

int III;

int JJJ;

int W_RESULT_TOK;

int W_RECCNT;

PROGRAM W_INTO_OBJECT;

int W_INTO_OBJECTLEN;

char W_TRANSCVDA??(12??);

char W_TEXT??(81??);

char W_MSG_TEXT??(81??);

W_TEXT??(8ð??) = ðx13;

W_MSG_TEXT??(8ð??) = ðx13;

/\--\/

/\ OBTAIN A CPSM API CONNECTION. \/

/\ \/

/\ THE API WILL RETURN A TOKEN IDENTIFYING THE THREAD IN \/

/\ VARIABLE W_THREAD. \/

/\--\/

strcpy(W_TEXT,"Establishing connection...");

/\ printf("Establishing connection...\n"); \/

EXEC CICS SEND FROM(W_TEXT) LENGTH(81) ERASE;

EXEC CPSM CONNECT

 CONTEXT(W_CONTEXT)

 SCOPE(W_SCOPE)

 VERSION("ð14ð")

 THREAD(W_THREAD)

 RESPONSE(W_RESPONSE)

 REASON(W_REASON) ;

if (W_RESPONSE != EYUVALUE(OK)) { goto NO_CONNECT; }

110 CICSPlex SM Application Programming Guide

 sample program EYUCAPI2

/\--\/

/\ CREATE A FILTER. \/

/\ \/

/\ CREATE A FILTER WHICH WILL MATCH ONLY THOSE PROGRAMS WITH \/

/\ A LANGUAGE OF ASSEMBLER. \/

/\ THE FILTER WILL BE USED IN A SUBSEQUENT MARK COMMAND. \/

/\--\/

strcpy(W_TEXT,"Create a filter... ");

/\ printf("Create a filter...\n"); \/

EXEC CICS SEND FROM(W_TEXT) LENGTH(81) WAIT;

W_CRITERIA = "LANGUAGE=ASSEMBLER.";

W_CRITERIALEN = strlen(W_CRITERIA);

EXEC CPSM SPECIFY FILTER(W_FILTER_TOKEN)

 CRITERIA(W_CRITERIA)

 LENGTH(W_CRITERIALEN)

 OBJECT("PROGRAM ")

 THREAD(W_THREAD)

 RESPONSE(W_RESPONSE)

 REASON(W_REASON) ;

if (W_RESPONSE != EYUVALUE(OK)) { goto NO_FILTER; }

/\--\/

/\ GET THE PROGRAM RESOURCE TABLE. \/

/\ \/

/\ CREATE A RESULT SET CONTAINING ENTRIES FOR ALL PROGRAMS \/

/\ WITH NAMES NOT BEGINNING DFH, EYU OR IBM. \/

/\ THE NUMBER OF ENTRIES MEETING THE CRITERIA IS RETURNED IN \/

/\ VARIABLE W_COUNT. \/

/\--\/

strcpy(W_TEXT,"Get the PROGRAM resource table...");

/\ printf("Get the PROGRAM resource table...\n"); \/

EXEC CICS SEND FROM(W_TEXT) LENGTH(81) WAIT;

W_CRITERIA = "NOT (PROGRAM=DFH\ OR PROGRAM=EYU\ OR PROGRAM=IBM\).";

W_CRITERIALEN = strlen(W_CRITERIA);

EXEC CPSM GET OBJECT("PROGRAM ")

 CRITERIA(W_CRITERIA)

 LENGTH(W_CRITERIALEN)

 COUNT(W_COUNT)

 RESULT(W_RESULT)

 THREAD(W_THREAD)

 RESPONSE(W_RESPONSE)

 REASON(W_REASON) ;

if (W_RESPONSE != EYUVALUE(OK)) { goto NO_GET; }

sprintf(W_TEXT,"Total number of entries: %d", W_COUNT);

/\ printf(W_TEXT); \/

EXEC CICS SEND FROM(W_TEXT) LENGTH(81) WAIT;

/\--\/

/\ MARK SELECTED PROGRAM ENTRIES. \/

/\ \/

/\ USING THE FILTER WE MARK THOSE ENTRIES IN THE RESULT SET \/

/\ WHICH MEET THE FILTER SPECIFICATION IE. THOSE ENTRIES WITH \/

/\ A LANGUAGE OF ASSEMBLER. \/

/\--\/

strcpy(W_TEXT,"Mark LANGUAGE=ASSEMBLER entries...");

/\ printf("Mark LANGUAGE=ASSEMBLER entries...\n"); \/

EXEC CICS SEND FROM(W_TEXT) LENGTH(81) WAIT;

EXEC CPSM MARK FILTER(W_FILTER_TOKEN)

 RESULT(W_RESULT)

 THREAD(W_THREAD)

 RESPONSE(W_RESPONSE)

 REASON(W_REASON) ;

if (W_RESPONSE != EYUVALUE(OK)) { goto NO_MARK; }

 Appendix B. Sample program listings 111

 sample program EYUCAPI2

/\--\/

/\ COPY MARKED ENTRIES TO ANOTHER RESULT SET. \/

/\ \/

/\ HAVING MARKED ENTRIES IN THE RESULT SET WE CAN COPY THEM \/

/\ TO A NEW RESULT SET. \/

/\ AFTER THIS COMMAND WE WILL HAVE TWO RESULT SETS. ONE \/

/\ CONTAINING ALL THE PROGRAM ENTRIES, AND THE OTHER CONTAINING \/

/\ JUST THOSE ENTRIES WITH A LANGUAGE OF ASSEMBLER. \/

/\--\/

strcpy(W_TEXT,"Copy marked entries... ");

/\ printf("Copy marked entries...\n"); \/

EXEC CICS SEND FROM(W_TEXT) LENGTH(81) WAIT;

EXEC CPSM COPY FROM(W_RESULT)

 TO(W_RESULT2)

 MARKED

 COUNT(W_COUNT2)

 THREAD(W_THREAD)

 RESPONSE(W_RESPONSE)

 REASON(W_REASON) ;

if (W_RESPONSE != EYUVALUE(OK)) { goto NO_COPY; }

sprintf(W_TEXT,"Number of entries copied: %d", W_COUNT2);

/\ printf(W_TEXT); \/

EXEC CICS SEND FROM(W_TEXT) LENGTH(81) WAIT;

/\--\/

/\ DELETE MARKED ENTRIES FROM RESULT SET. \/

/\ \/

/\ WE CAN NOW DELETE THE MARKED ENTRIES FROM THE ORIGINAL \/

/\ RESULT SET. \/

/\ AFTER THIS COMMAND WE HAVE TWO RESULT SETS. ONE RESULT SET \/

/\ CONTAINING ENTRIES WITH LANGUAGE NOT ASSEMBLER, AND THE \/

/\ OTHER CONTAINING ENTRIES WITH A LANGUAGE OF ASSEMBLER. \/

/\--\/

strcpy(W_TEXT,"Delete marked entries... ");

/\ printf("Delete marked entries...\n"); \/

EXEC CICS SEND FROM(W_TEXT) LENGTH(81) WAIT;

EXEC CPSM DELETE MARKED

 COUNT(W_COUNT)

 RESULT(W_RESULT)

 THREAD(W_THREAD)

 RESPONSE(W_RESPONSE)

 REASON(W_REASON) ;

if (W_RESPONSE != EYUVALUE(OK)) { goto NO_DELETE; }

sprintf(W_TEXT,"Number of entries remaining: %d", W_COUNT);

/\ printf(W_TEXT); \/

EXEC CICS SEND FROM(W_TEXT) LENGTH(81) WAIT;

112 CICSPlex SM Application Programming Guide

 sample program EYUCAPI2

/\--\/

/\ RETRIEVE INFORMATION ABOUT EACH PROGRAM. \/

/\ \/

/\ FETCH EACH ENTRY, USE INCLUDED STRUCTURE TO OBTAIN EACH \/

/\ ATTRIBUTE AND USE TRANSLATE TO CONVERT CICS CVDAS. \/

/\ DISPLAY DETAILS OF EACH PROGRAM TO THE USER. \/

/\--\/

W_INTO_OBJECTLEN = PROGRAM_TBL_LEN;

for (JJJ = 1; JJJ <= 2; JJJ++)

 {

if (JJJ == 1)

 {

sprintf(W_TEXT,"Fetching %d non-ASSEMBLER PROGRAM entries...\n",

 W_COUNT);

W_RESULT_TOK = W_RESULT;

W_RECCNT = W_COUNT;

 }

 else

 {

sprintf(W_TEXT,"Fetching %d ASSEMBLER PROGRAM entries...\n",

 W_COUNT2);

W_RESULT_TOK = W_RESULT2;

W_RECCNT = W_COUNT2;

 }

/\ printf(W_TEXT); \/

EXEC CICS SEND FROM(W_TEXT) LENGTH(81) WAIT;

EXEC CPSM LOCATE TOP

 RESULT(W_RESULT_TOK)

 THREAD(W_THREAD)

 RESPONSE(W_RESPONSE)

 REASON(W_REASON) ;

if (W_RESPONSE != EYUVALUE(OK)) { goto NO_LOCATE; }

 strcpy(W_TEXT,"Program Language Status CEDF Status");

/\ printf("Program Language Status CEDF Status\n"); \/

EXEC CICS SEND FROM(W_TEXT) LENGTH(81) WAIT;

for (III = 1; III <= W_RECCNT; III++)

 {

EXEC CPSM FETCH INTO(&W_INTO_OBJECT)

 LENGTH(W_INTO_OBJECTLEN)

 RESULT(W_RESULT_TOK)

 THREAD(W_THREAD)

 RESPONSE(W_RESPONSE)

 REASON(W_REASON) ;

if (W_RESPONSE != EYUVALUE(OK)) { goto NO_FETCH; }

 memcpy(W_TEXT,W_INTO_OBJECT.PROGRAM,8);

EXEC CPSM TRANSLATE OBJECT("PROGRAM ")

 ATTRIBUTE("LANGUAGE ")

 FROMCV(W_INTO_OBJECT.LANGUAGE)

 TOCHAR(W_TRANSCVDA)

 THREAD(W_THREAD)

 RESPONSE(W_RESPONSE)

 REASON(W_REASON) ;

if (W_RESPONSE != EYUVALUE(OK)) { goto NO_TRANSLATE; }

 memcpy(W_TEXT+9,W_TRANSCVDA,12);

EXEC CPSM TRANSLATE OBJECT("PROGRAM ")

 ATTRIBUTE("STATUS ")

 FROMCV(W_INTO_OBJECT.STATUS)

 TOCHAR(W_TRANSCVDA)

 THREAD(W_THREAD)

 RESPONSE(W_RESPONSE)

 REASON(W_REASON) ;

 Appendix B. Sample program listings 113

 sample program EYUCAPI2

if (W_RESPONSE != EYUVALUE(OK)) { goto NO_TRANSLATE; }

 memcpy(W_TEXT+22,W_TRANSCVDA,12);

EXEC CPSM TRANSLATE OBJECT("PROGRAM ")

 ATTRIBUTE("CEDFSTATUS ")

 FROMCV(W_INTO_OBJECT.CEDFSTATUS)

 TOCHAR(W_TRANSCVDA)

 THREAD(W_THREAD)

 RESPONSE(W_RESPONSE)

 REASON(W_REASON) ;

if (W_RESPONSE != EYUVALUE(OK)) { goto NO_TRANSLATE; }

 memcpy(W_TEXT+35,W_TRANSCVDA,12);

/\ printf("%s\n",W_TEXT); \/

EXEC CICS SEND FROM(W_TEXT) LENGTH(81) WAIT;

 }

 }

goto ENDIT;

/\--\/

/\ PROCESSING FOR API FAILURES. \/

/\--\/

NO_CONNECT:

strcpy(W_MSG_TEXT,"ERROR CONNECTING TO API.\n");

 goto SCRNLOG;

NO_FILTER:

strcpy(W_MSG_TEXT,"ERROR CREATING FILTER.\n");

 goto SCRNLOG;

NO_GET:

strcpy(W_MSG_TEXT,"ERROR GETTING RESOURCE TABLE.\n");

 goto SCRNLOG;

NO_MARK:

strcpy(W_MSG_TEXT,"ERROR MARKING RESULT SET.\n");

 goto SCRNLOG;

NO_COPY:

strcpy(W_MSG_TEXT,"ERROR COPYING RESULT SET.\n");

 goto SCRNLOG;

NO_DELETE:

strcpy(W_MSG_TEXT,"ERROR DELETING FROM RESULT SET.\n");

 goto SCRNLOG;

NO_LOCATE:

strcpy(W_MSG_TEXT,"ERROR LOCATING TO TOP OF RESULT SET.\n");

 goto SCRNLOG;

NO_FETCH:

strcpy(W_MSG_TEXT,"ERROR FETCHING RESULT SET.\n");

 goto SCRNLOG;

NO_TRANSLATE:

strcpy(W_MSG_TEXT,"ERROR TRANSLATING ATTRIBUTE\n");

 goto SCRNLOG;

SCRNLOG:

/\ printf(W_MSG_TEXT); \/

EXEC CICS SEND FROM(W_MSG_TEXT) LENGTH(81) WAIT;

 sprintf(W_MSG_TEXT,"RESPONSE=%d REASON=%d\n",W_RESPONSE,W_REASON);

/\ printf(W_MSG_TEXT); \/

EXEC CICS SEND FROM(W_MSG_TEXT) LENGTH(81) WAIT;

ENDIT:

/\--\/

/\ TERMINATE API CONNECTION. \/

/\--\/

EXEC CPSM TERMINATE RESPONSE(W_RESPONSE) REASON(W_REASON);

EXEC CICS RETURN;

}

| The C/370, COBOL and PL/1 versions of EYUxAPI2 are written for the CICS
| environment and can be converted to run the MVS/ESA batch environment by
| commenting the EXEC CICS SEND commands, and uncommenting the preceeding
| language specific output statements.

114 CICSPlex SM Application Programming Guide

 sample program EYUAAPI3

Sample program EYUAAPI3
Program EYUAAPI3 is written in Assembler H for the MVS/ESA batch environment.

| EYUxAPI3 This program does the following:

| � Establishes a connection to the API with the context set to an
| existing CICSplex.

| � Verifies that a proposed new CICSplex name is not already
| defined to CICSPlex SM as a CICSplex, CMAS, CICS system, or
| CICS system group.

| � Creates a result set containing the CPLEXDEF resource table
| record for the existing CICSplex definition and retrieves that
| record.

| � Creates a new CPLEXDEF resource table record using the
| existing record as a model.

| � Creates a result set containing the CICSPLEX resource table
| records associated with the existing CICSplex and retrieves those
| records.

| � Creates new CICSPLEX resource table records using the existing
| records as models.

| � Sequentially retrieves all the resource table records associated
| with the existing CICSplex, including CICS systems, CICS system
| groups, workload management definitions, real-time analysis
| definitions, and resource monitoring definitions.

| � Creates all the necessary resource table records for the new
| CICSplex using the existing records as models.

| � If an error occurs before all the necessary resource table records
| are created, removes the new CICSplex definition.

| � Disconnects the API processing thread.

| Commands Used: CONNECT, CREATE, DISCARD, DISCONNECT,
| FETCH, GET, PERFORM OBJECT, QUALIFY, QUERY, REMOVE

 Appendix B. Sample program listings 115

 sample program EYUAAPI3

\

EYUAAPI3 TITLE 'EYUAAPI3 - CPSM SAMPLE API PROGRAM 3 - ASSEMBLER'

\\\

\ \

\ MODULE NAME = EYUAAPI3 \

\ \

\ DESCRIPTIVE NAME = API sample program 3 ASSEMBLER Version \

\ \

\ 5695-ð81 \

\ COPYRIGHT = NONE \

\ \

\ STATUS = %CPðð \

\ \

\ FUNCTION = \

\ \

\ To mirror an existing PLEX to a new PLEX. \

\ \

\ When invoked, the program depends upon the values held in the \

\ OLDPLEX, NEWPLEX, and MPCMAS variables. They must be set to \

\ the following values: \

\ \

\ OLDPLEX = The name of an existing PLEX that will be mirrored. \

\ \

\ NEWPLEX = The name that will be given to the new PLEX. \

\ \

\ MPCMAS = The maintenance point CMAS of the OLDPLEX. This \

\ will also be the MP for the NEWPLEX. \

\ \

\ This sample requires no parameters at invocation time. \

\ \

\ The sample processes as follows: \

\ \

\ - a CONNECTion is established to CPSM, with the CONTEXT and \

\ SCOPE of the OLDPLEX. \

\ \

\ - since a PLEX can be either a CONTEXT or SCOPE, we verify \

\ that the NEWPLEX is not already a valid CONTEXT (i.e, an \

\ existing CICSplex or CMAS) or SCOPE in the OLDPLEX (i.e, \

\ an existing CICS system or CICS system group). \

\ \

\ - we GET the CPLEXDEF record for the OLDPLEX, and use this as \

\ a module to CREATE the NEWPLEX. \

\ \

\ - we GET the CICSPLEX records for the OLDPLEX, and use these \

\ to add the CMASs in the OLDPLEX to the NEWPLEX. \

\ \

\ - using a list that contains all possible CICSplex definitions, \

\ we GET and FETCH the records from the OLDPLEX, and CREATE \

\ them in the NEWPLEX. \

\ \

\ - we then DISCONNECT from CPSM. \

\ \

116 CICSPlex SM Application Programming Guide

 sample program EYUAAPI3

\ --\

\ \

\ NOTES : \

\ DEPENDENCIES = S/37ð \

\ RESTRICTIONS = None \

\ REGISTER CONVENTIONS = \

\ Rð Workarea / external call parameter pointer \

\ R1 Workarea / external call parameter pointer \

\ R2 Resource Table record pointer \

\ R3 Loop counter \

\ R4 List pointer \

\ R5 Loop counter \

\ R6 Unused \

\ R7 Unused \

\ R8 Unused \

\ R9 Subroutine linkage \

\ R1ð Subroutine linkage \

\ R11 Base register \

\ R12 Base register \

\ R13 Workarea pointer \

\ R14 External call linkage \

\ R15 External call linkage \

\ \

\ MODULE TYPE = Executable \

\ PROCESSOR = Assembler \

\ ATTRIBUTES = Read only, Serially Reusable \

\ AMODE(31), RMODE(ANY) \

\ \

\ --\

\ \

\ ENTRY POINT = EYUAAPI3 \

\ \

\ PURPOSE = All Functions \

\ \

\ LINKAGE = Executed as a batch program. \

\ \

\ INPUT = None \

\ \

\ OUTPUT = File for messages. \

\ DDNAME = SYSPRINT \

\ DSORG = PS \

\ RECFM = FB \

\ LRECL = 8ð \

\ BLKSIZE = as desired (a multiple of 8ð) \

\ \

\ --\

 EJECT

EYUAAPI3 CSECT

 STM R14,R12,12(R13)

 LR R12,R15

 USING EYUAAPI3,R12

\---\

\ GETMAIN working storage and set up SA chain. \

\---\

 GETMAIN R,LV=WORKLEN

 ST R13,4(,1)

 ST R1,8(,R13)

 L R1,24(,R13)

 L R13,8(,R13)

 USING SAVEAREA,R13

 Appendix B. Sample program listings 117

 sample program EYUAAPI3

\---\

\ Preset return code to error - will change to ð if all ok. \

\---\

 MVC RETCODE,=F'8'

\---\

\ OPEN file for error messages. \

\---\

 OPEN (SYSPRINT,OUTPUT)

\---\

\ Specify variables: OLDPLEX, NEWPLEX, MPCMAS \

\ \

\ Insure that the values specified are valid NAME type (i.e, \

\ valid member name) or following code will fail. \

\---\

MVC OLDPLEX,=CL8'plexold' \\\ SPECIFY AS DESIRED \\\

MVC NEWPLEX,=CL8'plexnew' \\\ SPECIFY AS DESIRED \\\

MVC MPCMAS,=CL8'mpcmas' \\\ SPECIFY AS DESIRED \\\

\---\

\ Connect to CPSM API via OLDPLEX. \

\---\

 MVC CONTEXT,OLDPLEX

 EXEC CPSM CONNECT X

 CONTEXT(CONTEXT) X

 VERSION(=CL4'ð13ð') X

 THREAD(THREAD) X

 RESPONSE(RESPONSE) X

 REASON(REASON)

 CLC RESPONSE,EYUVALUE(OK) RESPONSE OK?

BNE ERRCON No - msgs and out

\---\

\ Verify that the desired NEWPLEX name is not already a \

\ PLEX or CMAS. We do this by trying to set the CONTEXT \

\ to the NEWPLEX name. If successful (NEWPLEX already exists \

\ as a CONTEXT) issue messages and get out. \

\---\

 EXEC CPSM QUALIFY X

 CONTEXT(NEWPLEX) X

 THREAD(THREAD) X

 RESPONSE(RESPONSE) X

 REASON(REASON)

 CLC RESPONSE,EYUVALUE(OK) RESPONSE OK?

BE ERRNISPC Yes - already a CONTEXT

118 CICSPlex SM Application Programming Guide

 sample program EYUAAPI3

\---\

\ Verify that the desired NEWPLEX name is not already a \

\ CSYSDEF or CSYSGRP in the old, soon to be new, CICSplex. \

\ \

\ Here we will start issuing EXEC CPSM GET requests, to \

\ get result sets of different Resource Tables. We make \

\ the call through the GETOBJ subroutine. Variable OBJECT \

\ must be set with the Resource Table name. If we only want \

\ a subset of the records for a given Resource Table, we also \

\ set variable CRITERIA with a selection criteria string. \

\ This string can contain references to any fields in the \

\ Resource Table, connected by logical operators, and must \

\ end with a period - . -. Variable CRITLEN must be loaded \

\ with the length of the criteria string. \

\ \

\ We will check the RESPONSE from GET calls inline, instead \

\ of in the subroutine. The reason for this is that sometimes \

\ a RESPONSE of OK will mean that we have a problem (e.g., \

\ the NEWPLEX name already exists as a CICS System name). \

\---\

\

\ Ask for a CSYSSYS record equal to the NEWPLEX name.

\

 MVC OBJECT,=CL8'CSYSDEF'

 MVC CRITERIA(5),=CL5'NAME='

 MVC CRITERIA+5(8),NEWPLEX

 MVI CRITERIA+13,C'.'

 MVC CRITLEN,=F'14'

BAS R1ð,GETOBJ Build result set

 CLC RESPONSE,EYUVALUE(OK) RESPONSE OK?

BE ERRNISC Yes - already a CICS system

CLC RESPONSE,EYUVALUE(NODATA) No CSYSDEF with NEWPLEX name?

BE NOTCSYS Yes - continue

B ERRGETO No - some error - msgs and out

NOTCSYS DS ðH

\

\ Ask for a CSYSGRP record equal to the NEWPLEX name.

\

 MVC OBJECT,=CL8'CSYSGRP'

 MVC CRITERIA(6),=CL6'GROUP='

 MVC CRITERIA+6(8),NEWPLEX

 MVI CRITERIA+14,C'.'

 MVC CRITLEN,=F'15'

BAS R1ð,GETOBJ Build the result set

 CLC RESPONSE,EYUVALUE(OK) RESPONSE OK?

BE ERRNISS Yes - already a system group

CLC RESPONSE,EYUVALUE(NODATA) No CSYSGRP with NEWPLEX name?

BE NOTCGRP Yes - continue

B ERRGETO No - some error - msgs and out

NOTCGRP DS ðH

\---\

\ If we have gotten this far, we know that NEWPLEX is not \

\ already the name of a CICSplex, CMAS, CICS System, or \

\ CICS System group - so we can start building the NEWPLEX. \

\ \

\ Switch CONTEXT to MPCMAS to build NEWPLEX and add CMASs. \

\---\

 MVC CONTEXT,MPCMAS

 Appendix B. Sample program listings 119

 sample program EYUAAPI3

\---\

\ Build new plex using OLDPLEX as a model. \

\ \

\ The record that defines a CICSplex is the CPLEXDEF Resource \

\ Table. We will GET the OLDPLEX CPLEXDEF record, modify \

\ it as needed, and then CREATE the NEWPLEX CPLEXDEF records. \

\ This creates the NEWPLEX. \

\---\

MVI PLEXBLT,C'N' Indicate NEWPLEX not built yet

\

\ First GET CPLEXDEF record for the OLDPLEX.

\

 MVC OBJECT,=CL8'CPLEXDEF'

 MVC CRITERIA(9),=CL9'CICSPLEX='

 MVC CRITERIA+9(8),OLDPLEX

 MVI CRITERIA+17,C'.'

 MVC CRITLEN,=F'18'

BAS R1ð,GETOBJ Build result set

 CLC RESPONSE,EYUVALUE(OK) RESPONSE OK?

BNE ERRGETO No - msgs and out

\

\ Here we start using the GETBUF subroutine. This subroutine

\ GETMAINs a buffer into which we can FETCH the records of the

\ result set that we last issued a GET for.

\

BAS R1ð,GETBUF Get storage to receive recs

\

\ Here we start using the FETCH subroutine. This subroutine

\ reads all the records from the result set into the buffer.

\ On return to mainline, R2 points to the first record in

\ the buffer.

\

BAS R1ð,FETCH Sets R2 to fetched record

\

\ Change the OLDPLEX CPLEXDEF record into the NEWPLEX

\ CPLEXDEF record.

\

USING CPLEXDEF,R2 Map the record

 MVC CPLEXDEF_CICSPLEX,NEWPLEX X

Set CICSplex name to NEWPLEX

MVC CPLEXDEF_DESC,=CL3ð'API cloned from' X

Modify CICSPlex

 MVC CPLEXDEF_DESC+16(8),OLDPLEX X

 description

 MVC NEWPLXD(CPLEXDEF_TBL_LEN),ð(R2) X

Save NEWPLEX def and len

 MVC NEWPLXDL,=A(CPLEXDEF_TBL_LEN) X

.... for possible later REMOVE

120 CICSPlex SM Application Programming Guide

 sample program EYUAAPI3

\

\ Here we start using the CREATE subroutine. This subroutine

\ will cause a CPSM Resource Table record to be built. Variable

\ OBJECT needs to be preset to the Resource Table name, the

\ Resource Table record to be built must be pointed to by R2

\ and must be filled out prior to called CREATE.

\

 BAS R1ð,CREATE CREATE NEWPLEX

MVI PLEXBLT,C'Y' Indicate NEWPLEX now built

\

\ Here we start using the FREEBUF subroutine. This subroutine

\ FREEMAINs the buffer into which we FETCHed the records.

\

BAS R1ð,FREEBUF Free record storage

\

\ When a result set is built (in our program by either GET or

\ PERFORM) an id is associated with the result set and placed

\ into the variable pointed to by keyword RESULT (for GET we

\ are using variable RESULT - for PERFORM, RESULT2). This is

\ done so that subsequent calls can reference the result set

\ built (e.g, FETCH can retrieve records for GET). When we

\ are done using a result set, we must DISCARD it, so that

\ CPSM frees us resources allocated for the result set.

\ Note that we have not done this with the 2 previous GETs

\ we did since the object of them was to NOT get a result set.

\ If any of the previous GETs caused a result set to get built,

\ we DISCONNECT from CPSM - which causes all our resources to

\ be released - and exit.

\

MVC RESULTD,RESULT Copy GET result set id for X

 DISCARD

BAS R1ð,DISCARD Discard the GET result set

DROP R2 Drop mapping to CPLEXDEF rec

\---\

\ Add CMASs in OLDPLEX to NEWPLEX. \

\ \

\ There is a CICSPLEX Resource Table record for each CMAS \

\ that participates in the management of a plex. We first \

\ ask for all the CICSPLEX records for OLDPLEX, and use \

\ this info to add the CMASs to the NEWPLEX. \

\---\

\ Ask for the CICSPLEX records from the OLDPLEX.

\

 MVC OBJECT,=CL8'CICSPLEX'

 MVC CRITERIA(9),=CL9'PLEXNAME='

 MVC CRITERIA+9(8),OLDPLEX

 MVI CRITERIA+17,C'.'

 MVC CRITLEN,=F'18'

BAS R1ð,GETOBJ Build result set

 CLC RESPONSE,EYUVALUE(OK) RESPONSE OK?

BNE ERRGETO no - msgs and out

BAS R1ð,GETBUF Get storage for records

BAS R1ð,FETCH Points R2 to first record

USING CICSPLEX,R2 Map the Resource Table

L R5,COUNT Will loop the number of X

 returned CMASs

\ The MP CMAS is added to the CICSplex when the CPLEXDEF

\ record was CREATEd. To add any other CMASs to the CICSplex

\ we issue a PERFORM against the CPLEXDEF record for NEWPLEX,

\ with a parm = CICSPLEX(newplex) CMAS(cmasname).

\

MVC ADDCPARM(ADDCLEN),ADDC Build most of parm

MVC PARMLEN,=A(ADDCLEN) Set its length

MVC ADDCPLEX,NEWPLEX Add CICSplex name to parm

MVC OBJECT,=CL8'CPLEXDEF' PERFORM against CPLEXDEF

ADDCMAS DS ðH

CLC CICSPLEX_CMASNAME,MPCMAS CMAS = MPCMAS?

BE NOADDMP Yes - don't add it then

 MVC ADDCCMAS,CICSPLEX_CMASNAME X

Add CMAS name to PARM X

This comes from the CICSPLEX X

 records.

 Appendix B. Sample program listings 121

 sample program EYUAAPI3

\

\ Note that we already have the CICSPLEX result set active,

\ with the id in RESULT. So here we will use RESULT2 for

\ result set that is built for each PERFORM.

\

MVC RESULT2,=F'ð' Always build new result set

 EXEC CPSM PERFORM X

 OBJECT(OBJECT) X

 ACTION(=CL12'ASSIGN') X

 PARM(ADDCPARM) X

 PARMLEN(PARMLEN) X

 RESULT(RESULT2) X

 CONTEXT(CONTEXT) X

 THREAD(THREAD) X

 RESPONSE(RESPONSE) X

 REASON(REASON)

 CLC RESPONSE,EYUVALUE(OK) RESPONSE OK?

BNE ERRPERF no - msgs and out

MVC RESULTD,RESULT2 Copy PERFORM result set id for X

 DISCARD

BAS R1ð,DISCARD Discard the PERFORM result set

NOADDMP DS ðH

\

\ We need to get to the next CICSPLEX record for the next CMAS.

\ The GETBUF subroutine places into variable RECLEN the length

\ of the Resource Table record. We now add this to the address

\ of the current record to point to the next record.

\

 A R2,RECLEN

BCT R5,ADDCMAS Add the next CMAS

\

\ No more CICSPLEX records - discard the CICSPLEX result set

\ and continue on.

\

BAS R1ð,FREEBUF Free FETCHed record storage

MVC OBJECT,=CL8'CICSPLEX' For possible DISCARD error msg

MVC RESULTD,RESULT Copy GET result set id for X

 DISCARD

BAS R1ð,DISCARD Discard the GET result set

DROP R2 Drop mapping to CICSPLEX rec

122 CICSPlex SM Application Programming Guide

 sample program EYUAAPI3

\---\

\ Take all defs in OLDPLEX and put into NEWPLEX. \

\ \

\ We have a list of all CICSplex Resource Table names. We \

\ loop through this list, getting all the records for a \

\ specific Resource Table from the OLDPLEX and adding them \

\ to the NEWPLEX. \

\---\

MVC CRITLEN,=F'ð' Want all records from each X

Resource Table - so we don't X

want a CRITERIA for GET.

LA R3,DEFNUM Get number of Resource Tables

LA R4,DEFLIST Point R4 to first Resource X

Table in list

BLDLOOP DS ðH

MVC OBJECT,ð(R4) Move in Resource Table name

\

\ Get old data - set CONTEXT to OLDPLEX.

\

 MVC CONTEXT,OLDPLEX

 MVC SCOPE,OLDPLEX

BAS R1ð,GETOBJ Build result set

 CLC RESPONSE,EYUVALUE(OK) RESPONSE OK?

BE GOTDEFS Yes - FETCH and add

CLC RESPONSE,EYUVALUE(NODATA) No records returned?

BE NODATA Yes - on to next Resource Tab

B ERRGETO GET error - msgs and out

GOTDEFS DS ðH

BAS R1ð,GETBUF Get storage for records

BAS R1ð,FETCH Point R2 to first record

L R5,COUNT Load number of records for loop

\

\ Add new data - set CONTEXT to NEWPLEX.

\

 MVC CONTEXT,NEWPLEX

CRELOOP DS ðH

\

\ We need to check if the object being created is a RTAINAPS

\ table. If it is, we need to check if the SCOPE is the

\ OLDPLEX name - and if so, change it to the NEWPLEX name.

\ The RTAINAPS table is the only resource table in our list

\ that may have the OLDPLEX specified as a SCOPE.

\

CLC OBJECT,=CL8'RTAINAPS' Creating an RTAINAPS?

BNE CRELOOP2 No, just CREATE it

USING RTAINAPS,R2 May to the record

CLC RTAINAPS_SCOPE,OLDPLEX Is SCOPE equal to OLDPLEX?

BNE CRELOOP2 No, don't change record

MVC RTAINAPS_SCOPE,NEWPLEX Alter SCOPE to NEWPLEX

DROP R2 Drop mapping to RTAINAPS rec

CRELOOP2 DS ðH

BAS R1ð,CREATE CREATE record in NEWPLEX

A R2,RECLEN Point to next record

 BCT R5,CRELOOP Loop

BAS R1ð,FREEBUF Release record storage

MVC RESULTD,RESULT Copy GET result set id for X

 DISCARD

BAS R1ð,DISCARD Discard the GET result set

NODATA DS ðH

LA R4,8(,R4) Point to next Resource Table

BCT R3,BLDLOOP Do next Resource Table

\

\ We have gone through all the Resource Tables ok. Set

\ the return code to ð.

\

 MVC RETCODE,=F'ð'

 Appendix B. Sample program listings 123

 sample program EYUAAPI3

\---\

\ Disconnect the connection and exit the program. \

\---\

EXITDISC DS ðH

 EXEC CPSM DISCONNECT X

 THREAD(THREAD) X

 RESPONSE(RESPONSE) X

 REASON(REASON)

EXIT DS ðH

 CLOSE (SYSPRINT)

\---\

\ Unchain save area, FREEMAIN working storage, and restore \

\ registers. \

\---\

L R2,RETCODE Retrieve return code

 L R13,4(,R13)

 L R1,8(,R13)

 FREEMAIN R,A=(R1),LV=WORKLEN

 L R14,12(,R13)

 LR R15,R2

 LM Rð,R12,2ð(R13)

 LA R15,ð

 BR R14

124 CICSPlex SM Application Programming Guide

 sample program EYUAAPI3

\---\

\ Error routines. \

\---\

ERRCON DS ðH

MVC OUTLINE,=CL8ð'Error: Connecting to the API'

 BAS R9,PUTMSG

BAS R1ð,DORR Format and msg RESPONSE/REASON

 B EXIT Exit

ERRNISPC DS ðH

MVC OUTLINE,=CL8ð'Error: NEWPLEX is already defined as a CICX

Splex or CMAS'

 BAS R9,PUTMSG

B EXITDISC DISCONNECT and exit

ERRNISC DS ðH

MVC OUTLINE,=CL8ð'Error: NEWPLEX is already defined as a CICX

S system in the OLDPLEX'

 BAS R9,PUTMSG

B EXITDISC DISCONNECT and exit

ERRNISS DS ðH

MVC OUTLINE,=CL8ð'Error: NEWPLEX is already defined as a CICX

S system group in the OLDPLEX'

 BAS R9,PUTMSG

B EXITDISC DISCONNECT and exit

ERRPERF DS ðH

MVC OUTLINE,=CL8ð'Error: Adding a CMAS to the NEWPLEX'

 BAS R9,PUTMSG

 MVC OUTLINE,=CL8ð' '

 MVC OUTTXT1,=CL1ð'CMASNAME:'

 MVC OUTDAT1,ADDCCMAS

 BAS R9,PUTMSG

BAS R1ð,DORR Format and msg RESPONSE/REASON

 B EXITERR

ERRGETO DS ðH

MVC OUTLINE,=CL8ð'Error: GETting an object'

 BAS R9,PUTMSG

 B DOOBJMSG

ERRQUERY DS ðH

MVC OUTLINE,=CL8ð'Error: QUERYing a record size.'

 BAS R9,PUTMSG

 B DOOBJMSG

ERRFETCH DS ðH

MVC OUTLINE,=CL8ð'Error: FETCHing an object.'

 BAS R9,PUTMSG

 B DOOBJMSG

ERRCREAT DS ðH

MVC OUTLINE,=CL8ð'Error: CREATEing an object.'

 BAS R9,PUTMSG

 B DOOBJMSG

ERRDISCA DS ðH

MVC OUTLINE,=CL8ð'Error: DISCARDing object.'

 BAS R9,PUTMSG

DOOBJMSG DS ðH

 MVC OUTLINE,=CL8ð' '

 MVC OUTTXT1,=CL1ð'OBJECT:'

 MVC OUTDAT1,OBJECT

 BAS R9,PUTMSG

 BAS R1ð,DORR

EXITERR DS ðH

CLI PLEXBLT,C'Y' Did we CREATE the NEWPLEX?

BNE EXITDISC No - just DISCONNECT and exit

 Appendix B. Sample program listings 125

 sample program EYUAAPI3

\

\ We had already CREATEd the NEWPLEX when an error occurred

\ so we want to delete the NEWPLEX before ending our program.

\

 EXEC CPSM REMOVE X

 OBJECT(=CL8'CPLEXDEF') X

 FROM(NEWPLXD) X

 LENGTH(NEWPLXDL) X

 CONTEXT(MPCMAS) X

 THREAD(THREAD) X

 RESPONSE(RESPONSE) X

 REASON(REASON)

 CLC RESPONSE,EYUVALUE(OK) RESPONSE OK?

BE EXITDISC Yes - DISCONNECT and exit

MVC OUTLINE,=CL8ð'Error: REMOVEing NEWPLEX.'

 BAS R9,PUTMSG

 BAS R1ð,DORR

B EXITDISC DISCONNECT and exit

\---\

\ End of error routines. \

\---\

\ Subroutines. \

\---\

PUTMSG DS ðH

 PUT SYSPRINT,OUTLINE

 BR R9

DORR DS ðH

\---\

\ Subroutine: DORR \

\ Entry: Via BAS R1ð,DORR \

\ Function: Put out error messages indicating what function \

\ failed and the RESPONSE and REASON from that \

\ function. \

\ Processing: - Format the EXEC CPSM RESPONSE and move to the \

\ OUTLINE. \

\ - Format the EXEC CPSM REASON and move to the \

\ OUTLINE. \

\ - Call the PUTMSG subroutine to send the \

\ RESPONSE/REASON data to SYSPRINT. \

\ - Return to caller. \

\---\

MVC OUTLINE,=CL8ð' ' clear format area

MVC OUTTXT1,=CL1ð'RESPONSE:' move in

L R3,RESPONSE load up the RESPONSE

CVD R3,DOUBLE convert to decimal

MVC OUTDAT1(6),=XL6'4ð2ð2ð2ð212ð' move in EDIT pattern

ED OUTDAT1(6),DOUBLE+5 EDIT RESPONSE to format area

MVC OUTTXT2,=CL1ð'REASON:' constant data

L R3,REASON load up the REASON

CVD R3,DOUBLE convert to decimal

MVC OUTDAT2(6),=XL6'4ð2ð2ð2ð212ð' move in EDIT pattern

ED OUTDAT2(6),DOUBLE+5 EDIT REASON to format area

 BAS R9,PUTMSG SEND it

MVC OUTLINE,=CL8ð' ' clear out OUTLINE again

BAS R9,PUTMSG put out blank line

BR R1ð return to caller

126 CICSPlex SM Application Programming Guide

 sample program EYUAAPI3

GETOBJ DS ðH

\---\

\ Subroutine: GETOBJ \

\ Entry: Via BAS R1ð,GETOBJ \

\ Function: Issue the EXEC CPSM GET command to create a \

\ result set for a specific object. Note that \

\ all operands for GET must be preset in \

\ mainline code - except for RESULT. \

\ Processing: - Clear out the result set id - RESULT - so \

\ that a new result set is always built. It \

\ is the responsibility of mainline to DISCARD \

\ any previous result set for GET. \

\ - Determine if the GET request has a CRITERIA \

\ and use the proper EXEC CPSM GET call. \

\ - Note that GETOBJ does not check the RESPONSE \

\ from CPSM - this is done in mainline. \

\ - Return to caller. \

\---\

MVC RESULT,=F'ð' Always get new result set

 CLC CRITLEN,=F'ð'

 BE GETNOCRT

 EXEC CPSM GET X

 OBJECT(OBJECT) X

 CRITERIA(CRITERIA) X

 LENGTH(CRITLEN) X

 COUNT(COUNT) X

 RESULT(RESULT) X

 THREAD(THREAD) X

 CONTEXT(CONTEXT) X

 RESPONSE(RESPONSE) X

 REASON(REASON)

 BR R1ð

GETNOCRT DS ðH

 EXEC CPSM GET X

 OBJECT(OBJECT) X

 COUNT(COUNT) X

 RESULT(RESULT) X

 THREAD(THREAD) X

 CONTEXT(CONTEXT) X

 RESPONSE(RESPONSE) X

 REASON(REASON)

 BR R1ð

 Appendix B. Sample program listings 127

 sample program EYUAAPI3

GETBUF DS ðH

\---\

\ Subroutine: GETBUF \

\ Entry: Via BAS R1ð,GETBUF \

\ Function: Get a buffer to hold all the records contained \

\ in the last result set we build though GET. \

\ Processing: - Issue EXEC CPSM QUERY to get the length of \

\ the Resource Table record. We use the same \

\ OBJECT and RESULT from the GET. Variable \

\ RECLEN gets the record length. \

\ - Check the RESPONSE from QUERY and issue msgs \

\ and EXIT if not OK. \

\ - Multiple the RECLEN times the COUNT (returned \

\ from last GET) to determine the buffer size \

\ required and GETMAIN it. \

\ - Save the buffer length (BUFLEN) and buffer \

\ address (BUFFER) for the FREEMAIN call in \

\ the FREEBUF subroutine. \

\ - Return to caller. \

\---\

 EXEC CPSM QUERY X

 OBJECT(OBJECT) X

 DATALENGTH(RECLEN) X

 RESULT(RESULT) X

 THREAD(THREAD) X

 RESPONSE(RESPONSE) X

 REASON(REASON)

 CLC RESPONSE,EYUVALUE(OK) RESPONSE OK?

BNE ERRQUERY No - msgs and out

 L Rð,RECLEN

 L R1,COUNT

 MR Rð,Rð

 GETMAIN R,LV=(R1)

 ST Rð,BUFLEN

 ST R1,BUFFER

 BR R1ð

FREEBUF DS ðH

\---\

\ Subroutine: FREEBUF \

\ Entry: Via BAS R1ð,FREEBUF \

\ Function: To FREEMAIN the buffer created to hold the \

\ records from the last result set we built . \

\ through GET. \

\ Processing: - Use BUFLEN and BUFFER from GETBUF, FREEMAIN \

\ the buffer area. \

\ - Return to caller. \

\---\

 L Rð,BUFLEN

 L R1,BUFFER

 FREEMAIN R,A=(R1),LV=(Rð)

 BR R1ð

128 CICSPlex SM Application Programming Guide

 sample program EYUAAPI3

FETCH DS ðH

\---\

\ Subroutine: FETCH \

\ Entry: Via BAS R1ð,FETCH \

\ Function: Issue the EXEC CPSM FETCH command to retrieve \

\ the result set created by the last GET. \

\ mainline code - except for RESULT. \

\ Processing: - For FETCH we must provide a receiving area \

\ and length. We put in the area length into \

\ R2 and the area length in variable LENGTH. \

\ Note that we got both the area and length \

\ in the GETBUF routine. \

\ - Issue the FETCH request using the result set \

\ id - RESULT - from the last GET. \

\ - Check the RESPONSE - if not OK, issue msgs \

\ and exit. \

\ - Return to caller. \

\---\

 L R2,BUFFER

 MVC LENGTH,BUFLEN

 EXEC CPSM FETCH X

 ALL X

 INTO(ð(,R2)) X

 LENGTH(LENGTH) X

 COUNT(COUNT) X

 RESULT(RESULT) X

 THREAD(THREAD) X

 RESPONSE(RESPONSE) X

 REASON(REASON)

 CLC RESPONSE,EYUVALUE(OK)

 BNE ERRFETCH

 BR R1ð

 Appendix B. Sample program listings 129

 sample program EYUAAPI3

CREATE DS ðH

\---\

\ Subroutine: CREATE \

\ Entry: Via BAS R1ð,CREATE \

\ Function: Issue the EXEC CPSM CREATE to build a Resource \

\ Table record. \

\ Processing: - Place the length of the record to be build \

\ (RECLEN from GETBUF) into variable LENGTH. \

\ R2 should have been set by mainline to point \

\ to the record itself. \

\ - When CREATEing a LNKxxCG record (spec to \

\ group link) we need to specify a parm - \

\ NONE. - to indicate that we only want the \

\ CREATE to associate the spec to the group. \

\ Any systems in the group that need to be \

\ added to the spec have already been done \

\ by CREATE of LNKxxCS records (spec to \

\ system link). If this is a LNKxxCG record, \

\ set the PARM and PARMLENgth. \

\ - Issue the proper format of EXEC CPSM CREATE \

\ (either with PARM/PARMLEN or without). \

\ - Check the RESPONSE - if not OK, issue msgs \

\ and exit. \

\ - Return to caller. \

\---\

 MVC LENGTH,RECLEN

 CLC OBJECT(4),=CL4'LNKS'

 BNE CRENOPRM

 CLC OBJECT+6(2),=CL2'CG'

 BNE CRENOPRM

 MVC PARM,=CL5'NONE.'

 MVC PARMLEN,=F'5'

 EXEC CPSM CREATE X

 OBJECT(OBJECT) X

 FROM(ð(,R2)) X

 LENGTH(LENGTH) X

 PARM(PARM) X

 PARMLEN(PARMLEN) X

 THREAD(THREAD) X

 CONTEXT(CONTEXT) X

 RESPONSE(RESPONSE) X

 REASON(REASON)

 B CRECHKRR

CRENOPRM DS ðH

 EXEC CPSM CREATE X

 OBJECT(OBJECT) X

 FROM(ð(,R2)) X

 LENGTH(LENGTH) X

 THREAD(THREAD) X

 CONTEXT(CONTEXT) X

 RESPONSE(RESPONSE) X

 REASON(REASON)

CRECHKRR DS ðH

 CLC RESPONSE,EYUVALUE(OK)

 BNE ERRCREAT

 BR R1ð

130 CICSPlex SM Application Programming Guide

 sample program EYUAAPI3

DISCARD DS ðH

\---\

\ Subroutine: DISCARD \

\ Entry: Via BAS R1ð,DISCARD \

\ Function: Issue the EXEC CPSM DISCARD to discard a result \

\ set built by CPSM. In our program, both GET \

\ and PERFORM build result sets. \

\ Processing: - Issue EXEC CPSM DISCARD for the result set. \

\ The result set id must be placed into \

\ RESULTD by mainline. \

\ - Check the RESPONSE - if not OK, issue msgs \

\ and exit. \

\ - Return to caller. \

\---\

 EXEC CPSM DISCARD X

 RESULT(RESULTD) X

 THREAD(THREAD) X

 RESPONSE(RESPONSE) X

 REASON(REASON)

 CLC RESPONSE,EYUVALUE(OK)

 BNE ERRDISCA

 BR R1ð

\---\

\ End of subroutines. \

\---\

 Appendix B. Sample program listings 131

 sample program EYUAAPI3

\---\

\ Following is a list of all CPSM Resource Tables that can \

\ be part of a CICSplex. The order that they are in (which \

\ is the order they will be built in our program) is \

\ important, since some Resource Tables will reference other \

\ Resource Tables previously built. The following list is \

\ complete and the order OK for the current release of \

\ CPSM (V1R3Mð). \

\---\

DEFLIST DS ðC

DC CL8'PERIODEF' Time period definitions

DC CL8'ACTION ' RTA action definitions

DC CL8'CSYSDEF ' CICS system definitions

DC CL8'CSYSGRP ' CICS system group definitions

DC CL8'CSGLCGCS' CICS systems in groups links

DC CL8'CSGLCGCG' CICS groups in groups links

 DC CL8'MONDEF ' Monitor definitions

DC CL8'MONGROUP' MON group definitions

DC CL8'MONSPEC ' MON specification definitions

DC CL8'MONINGRP' MON def in MON group links

DC CL8'MONINSPC' MON spec to MON group links

DC CL8'LNKSMSCS' MON spec to CICS system links

DC CL8'LNKSMSCG' MON spec to CICS group links

DC CL8'EVALDEF ' RTA evaluation definitions

DC CL8'RTADEF ' Real time analysis definitions

DC CL8'STATDEF ' User status probe definitions

DC CL8'RTAGROUP' RTA group definitions

DC CL8'RTASPEC ' RTA specification definitions

DC CL8'RTAINGRP' RTADEF in RTA group links

DC CL8'STAINGRP' STATDEF in RTA group links

DC CL8'RTAINSPC' RTA spec to RTA group links

DC CL8'LNKSRSCS' RTA spec to CICS group links

DC CL8'LNKSRSCG' RTA spec to CICS system links

DC CL8'APSPEC ' RTA/APM specification defs

DC CL8'RTAINAPS' RTA/APM spec to RTA group links

DC CL8'CMDMPAPS' RTA spec to primary CMAS links

DC CL8'CMDMSAPS' RTA spec to secondary CMAS links

DC CL8'TRANGRP ' transaction group definitions

 DC CL8'WLMDEF ' Workload definitions

DC CL8'WLMGROUP' WLM group definitions

DC CL8'WLMSPEC ' WLM specification definitions

DC CL8'DTRINGRP' Transactions in trangrp links

DC CL8'WLMINGRP' WLM def in WLM group links

DC CL8'WLMINSPC' WLM spec to WLM group links

DC CL8'LNKSWSCS' WLM spec to CICS group links

DC CL8'LNKSWSCG' WLM spec to CICS system links

DEFNUM EQU (\-DEFLIST)/8

ADDC DS ðX

 DC CLð9'CICSPLEX('

 DC CLð8' '

 DC CLð7') CMAS('

 DC CLð8' '

 DC CLð2').'

ADDCLEN EQU \-ADDC

SYSPRINT DCB DDNAME=SYSPRINT,DSORG=PS,MACRF=PM

WORKSTOR DSECT

SAVEAREA DS 18F

DFHEIPL DS 13F

 DS 51F

132 CICSPlex SM Application Programming Guide

 sample program EYUAAPI3

DOUBLE DS D

RETCODE DS F

RESPONSE DS F

REASON DS F

THREAD DS F

RESULT DS F

RESULT2 DS F

RESULTD DS F

COUNT DS F

LENGTH DS F

PARMLEN DS F

BUFLEN DS F

BUFFER DS F

RECLEN DS F

NEWPLXDL DS F

CRITLEN DS F

CRITERIA DS CL8ð

CONTEXT DS CL8

SCOPE DS CL8

OBJECT DS CL8

OLDPLEX DS CL8

NEWPLEX DS CL8

MPCMAS DS CL8

OUTLINE DS ðCL8ð

OUTTXT1 DS CL1ð

OUTDAT1 DS CL8

 DS CL2

OUTTXT2 DS CL1ð

OUTDAT2 DS CL8

 DS CL42

PARM DS CL5

PLEXBLT DS CL1

ADDCPARM DS ðXL(ADDCLEN)

 DS CLð9

ADDCPLEX DS CLð8

 DS CLð7

ADDCCMAS DS CLð8

 DS CLð2

 DS D

NEWPLXD DS XL(CPLEXDEF_TBL_LEN)

WORKLEN EQU \-WORKSTOR

 COPY CPLEXDEF

 COPY CICSPLEX

 COPY RTAINAPS

Rð EQU ð

R1 EQU 1

R2 EQU 2

R3 EQU 3

R4 EQU 4

R5 EQU 5

R6 EQU 6

R7 EQU 7

R8 EQU 8

R9 EQU 9

R1ð EQU 1ð

R11 EQU 11

R12 EQU 12

R13 EQU 13

R14 EQU 14

R15 EQU 15

 END EYUAAPI3

 Appendix B. Sample program listings 133

 sample program EYULAPI4

| Sample program EYULAPI4
| Program EYULAPI4 is written in COBOL for the CICS environment.

| EYUxAPI4 This program does the following:

| � Establishes a connect to the API.

| � Creates a BAS definition for a TS Model (TSMDEF) specifying a
| version of 1.

| � Creates a result set containing the previously defined TSMDEF.

| � Issues a PERFORM OBJECT command to INSTALL the TSMDEF
| into the target scope.

| � Terminates the API connection.

| � BAS errors are processed using BINCONRS, BINCONSC, and
| BINSTERR resource table records.

| Commands Used: CONNECT, CREATE, GET, PERFORM, OBJECT,
| TERMINATE, FEEDBACK, FETCH TERMINATE, TRANSLATE

134 CICSPlex SM Application Programming Guide

 sample program EYULAPI4

| IDENTIFICATION DIVISION.

| PROGRAM-ID. EYULAPI4

| \\\

| \ \

| \ MODULE NAME = EYULAPI4 \

| \ \

| \ DESCRIPTIVE NAME = CPSM SAMPLE API PROGRAM 4 \

| \ (SAMPLE COBOL VERSION) \

| \ \

| \ COPYRIGHT = Licensed Materials - Property of IBM \

| \ 5695-ð81 \

| \ (C) Copyright IBM Corp. 1995, 1997 \

| \ All Rights Reserved \

| \ \

| \ US Government Users Restricted Rights - Use, \

| \ duplication or disclosure restricted by GSA ADP \

| \ Schedule Contract with IBM Corp. \

| \ \

| \ STATUS = %CPðð \

| \ \

| \ FUNCTION = \

| \ \

| \ TO PROVIDE AN EXAMPLE OF THE USE OF THE FOLLOWING EXEC CPSM \

| \ COMMANDS: CONNECT, CREATE, FEEDBACK, FETCH, GET, \

| \ PERFORM OBJECT, TERMINATE. \

| \ \

| \ WHEN INVOKED, THE PROGRAM DEPENDS UPON THE VALUES HELD IN THE \

| \ W-CONTEXT AND W-SCOPE DECLARATIONS WHEN ESTABLISHING A \

| \ CONNECTION WITH CICSPLEX SM. THEY MUST TAKE THE FOLLOWING \

| \ VALUES: \

| \ \

| \ W-CONTEXT = THE NAME OF A CMAS OR CICSPLEX. REFER TO THE \

| \ DESCRIPTION OF THE EXEC CPSM CONNECT COMMAND \

| \ FOR FURTHER INFORMATION REGARDING THE CONTEXT \

| \ OPTION. \

| \ \

| \ W-SCOPE = THE NAME OF A CICSPLEX, CICS SYSTEM, OR CICS \

| \ SYSTEM GROUP WITHIN THE CICSPLEX. REFER TO THE \

| \ DESCRIPTION OF THE EXEC CPSM CONNECT COMMAND \

| \ FOR FURTHER INFORMATION REGARDING THE SCOPE \

| \ OPTION. \

| \ \

| \ THIS SAMPLE REQUIRES NO PARAMETERS AT INVOCATION TIME. \

| \ \

| \ WHEN CREATING THE BAS DEFINITION THE PROGRAM DEPENDS UPON THE \

| \ VALUES HELD IN THE W-DEFNAME AND W-DEFPREFIX DECLARATIONS. \

| \ THEY MUST TAKE THE FOLLOWING VALUES: \

| \ \

| \ W-DEFNAME = THE NAME OF THE CREATED BAS DEFINITION. A \

| \ 1 TO 8 CHARACTER VALUE. \

| \ \

| \ W-DEFPFIX = THE MODEL PREFIX OF THE CREATED BAS DEFINITION. \

| \ A 1 TO 16 CHARACTER VALUE. \

| \ \

| \ \

 Appendix B. Sample program listings 135

 sample program EYULAPI4

| \ WHEN INSTALLING THE BAS DEFINITION THE PROGRAM USES THE \

| \ VALUE HELD IN THE W-TSCOPE DECLARATION AS THE TARGET FOR \

| \ THE INSTALL OPERATION. IT MUST TAKE THE FOLLOWING VALUE : \

| \ \

| \ W-TSCOPE = THE NAME OF A CICS SYSTEM, OR CICS \

| \ SYSTEM GROUP WITHIN THE CICSPLEX. REFER TO THE \

| \ DESCRIPTION OF THE TARGET PARAMETER OF AN \

| \ INSTALL ACTION IN THE RESOURCE TABLE REFERENCE \

| \ FOR FURTHER INFORMATION REGARDING THE TARGET \

| \ SCOPE VALUE. \

| \ \

| \ \

| \ THE SAMPLE ESTABLISHES AN API CONNECTION AND ISSUES A CREATE \

| \ COMMAND TO CREATE A BAS DEFINITION. A GET COMMAND IS ISSUED \

| \ TO OBTAIN A RESULT SET CONTAINING THE CREATED BAS DEFINITION. \

| \ \

| \ USING THE PERFORM OBJECT ACTION(INSTALL) COMMAND EACH RECORD \

| \ IN THE RESULT SET IS INSTALLED INTO THE TARGET SCOPE \

| \ IDENTIFIED BY THE W-SCOPE DECLARATION. \

| \ \

| \ FINALLY, THE API CONNECTION IS TERMINATED. \

| \ \

| \ ANY BAS ERRORS ARE REPORTED USING THE BINCONRS, BINCONSC, AND \

| \ BINSTERR RESOURCE TABLES. \

| \ \

| \ NOTES : \

| \ DEPENDENCIES = S/39ð, CICS \

| \ RESTRICTIONS = NONE \

| \ REGISTER CONVENTIONS = \

| \ MODULE TYPE = EXECUTABLE \

| \ PROCESSOR = COBOL \

| \ ATTRIBUTES = READ ONLY, SERIALLY REUSABLE \

| \ \

| \ --- \

| \ ENTRY POINT = EYULAPI4 \

| \ \

| \ PURPOSE = ALL FUNCTIONS. \

| \ \

| \ LINKAGE = FROM CICS EITHER WITH EXEC CICS LINK OR AS A CICS \

| \ TRANSACTION. \

| \ \

| \ INPUT = NONE. \

| \ \

| \ --- \

| ENVIRONMENT DIVISION.

| DATA DIVISION.

| WORKING-STORAGE SECTION.

| \---\

| \ CHANGE W-CONTEXT AND W-SCOPE TO MATCH YOUR INSTALLATION \

| \ CHANGE W-DEFNAME AND W-DEFPFIX FOR THE CREATE COMMAND. \

| \ CHANGE W-TSCOPE FOR THE PERFORM OBJECT COMMAND. \

| \---\

| ð1 W-CONTEXT PIC X(8) VALUE 'RTGA '.

| ð1 W-SCOPE PIC X(8) VALUE 'RTGA '.

| ð1 W-DEFNAME PIC X(8) VALUE 'EYULAPI4'.

| ð1 W-DEFPFIX PIC X(16) VALUE 'EYUL\ '.

| ð1 W-TSCOPE PIC X(8) VALUE 'RTGF '.

| \---\

136 CICSPlex SM Application Programming Guide

 sample program EYULAPI4

| ð1 W-RESPONSE PIC S9(8) USAGE BINARY.

| ð1 W-REASON PIC S9(8) USAGE BINARY.

| ð1 W-BUFFER PIC X(32767).

| ð1 W-BUFFERLEN PIC S9(8) COMP.

| ð1 W-FBBUFF PIC X(248).

| ð1 W-FBTTKN PIC S9(8) COMP.

| ð1 W-THREAD PIC S9(8) USAGE BINARY.

| ð1 W-RESULT PIC S9(8) USAGE BINARY.

| ð1 W-RECCNT PIC S9(8) USAGE BINARY.

| ð1 W-CRITERIA PIC X(8ð) VALUE SPACES.

| ð1 W-CRITERIALEN PIC S9(8) USAGE BINARY.

| ð1 W-PARM PIC X(8ð) VALUE SPACES.

| ð1 W-PARMLEN PIC S9(8) USAGE BINARY.

| ð1 W-MSG-TEXT.

| ð2 W-TEXT PIC X(8ð) VALUE SPACES.

| ð2 W-LINECTL PIC X(1) VALUE X'13'.

| ð1 ARRAYS.

| ð2 CH8ARR OCCURS 2ð TIMES PIC X(8).

| ð2 FULLARR OCCURS 6ð TIMES PIC S9(8) COMP.

| ð1 III PIC S9(8) VALUE ZERO.

| ð1 CODEV PIC S9(8) COMP.

| ð1 CHARV PIC X(12).

| ð1 LASTCMD PIC X(2ð).

| ð1 LASTTHR PIC S9(8) COMP.

| ð1 LASTRES PIC S9(8) COMP VALUE ð.

| ð1 BINZERO PIC X(1) VALUE X'ðð'.

| ð1 BLNKPAD PIC X(4ð)

| VALUE ' '.

| ð1 FBCHAR2 PIC X(2).

| ð1 FBHALF4 REDEFINES FBCHAR2.

| ð2 FBHALF PIC S9(4) COMP.

| ð1 PICZZZ9A PIC ZZZ9.

| ð1 PICZZZ9B PIC ZZZ9.

| ð1 PICZZZ9 PIC ZZZ9.

| ð1 PYCZZZ9 PIC ZZZ9.

| ð1 PIKZZZ9 PIC ZZZ9.

| ð1 PYKZZZ9 PIC ZZZ9.

| ð1 PICZZZZZZZ9 PIC ZZZZZZZ9.

| ð1 CHR8 PIC X(8).

| ð1 CHR12 PIC X(12).

| ð1 CHAR6 PIC X(6).

| ð1 CHAR12 PIC X(12).

| \ Include the resource table copybooks...

| COPY TSMDEF.

| COPY FEEDBACK.

| COPY BINCONRS.

| COPY BINCONSC.

| COPY BINSTERR.

 Appendix B. Sample program listings 137

 sample program EYULAPI4

| \\\\\\\\\\\\\\\\\\\\\\\\\\\\

| \ Start of LINKAGE section \

| \\\\\\\\\\\\\\\\\\\\\\\\\\\\

| LINKAGE SECTION.

| PROCEDURE DIVISION.

| EYULAPI4-START SECTION.

| EYULAPI4-ðð.

| \---\

| \ OBTAIN A CPSM API CONNECTION. \

| \ \

| \ THE API WILL RETURN A TOKEN IDENTIFYING THE THREAD IN \

| \ VARIABLE W-THREAD. \

| \---\

| MOVE 'Establishing Connection...' TO W-TEXT.

| \ DISPLAY W-TEXT.

| EXEC CICS SEND FROM(W-TEXT) LENGTH(81) ERASE END-EXEC.

| EXEC CPSM CONNECT

| CONTEXT(W-CONTEXT)

| SCOPE(W-SCOPE)

| VERSION('ð14ð')

| THREAD(W-THREAD)

| RESPONSE(W-RESPONSE)

| REASON(W-REASON)

| END-EXEC.

| IF W-RESPONSE NOT = EYUVALUE(OK) GO TO NO-CONNECT.

| \---\

| \ CREATE A TS MODEL DEFINITION (TSMDEF) \

| \ \

| \ A TSMDEF is created with a version of 1. \

| \---\

| INITIALIZE TSMDEF.

| MOVE X'ð1' TO DEFVER OF TSMDEF.

| MOVE W-DEFNAME TO NAME-R OF TSMDEF.

| MOVE W-DEFPFIX TO PREFIX OF TSMDEF.

| MOVE DFHVALUE(AUXILIARY) TO LOCATION OF TSMDEF.

| MOVE EYUVALUE(NO) TO RECOVERY OF TSMDEF.

| MOVE EYUVALUE(NO) TO SECURITY-R OF TSMDEF.

| MOVE 'Sample TSMDEF definition' TO DESCRIPTION OF TSMDEF.

| \ Copy the definition into our buffer...

| MOVE TSMDEF TO W-BUFFER.

| MOVE TSMDEF-TBL-LEN TO W-BUFFERLEN.

| MOVE 'Creating TSMDEF...' TO W-TEXT.

| \ DISPLAY W-TEXT.

| EXEC CICS SEND FROM(W-TEXT) LENGTH(81) WAIT END-EXEC.

| EXEC CPSM CREATE

| OBJECT('TSMDEF')

| FROM(W-BUFFER)

| LENGTH(W-BUFFERLEN)

| THREAD(W-THREAD)

| RESPONSE(W-RESPONSE)

| REASON(W-REASON)

| END-EXEC.

| MOVE 'CREATE' TO LASTCMD.

| MOVE W-THREAD TO LASTTHR.

| MOVE ð TO LASTRES.

| IF W-RESPONSE NOT = EYUVALUE(OK) GO TO UNEXPECTED.

138 CICSPlex SM Application Programming Guide

 sample program EYULAPI4

| \---\

| \ GET THE TSMDEF RESOURCE TABLE. \

| \ \

| \ CREATE A RESULT SET CONTAINING ENTRIES FOR ALL TSMDEFS \

| \ WITH NAMES EQUAL TO THE VALUE OF W-DEFNAME. . \

| \ THE NUMBER OF ENTRIES MEETING THE CRITERIA IS RETURNED \

| \ IN VARIABLE W-RECCNT. \

| \---\

| MOVE 'Get the created TSMDEF Resource Table...' TO W-TEXT.

| \ DISPLAY W-TEXT.

| EXEC CICS SEND FROM(W-TEXT) LENGTH(81) WAIT END-EXEC.

| STRING 'NAME=' DELIMITED BY SIZE

| W-DEFNAME DELIMITED BY SIZE

| '.' DELIMITED BY SIZE

| INTO W-CRITERIA.

| MOVE LENGTH OF W-CRITERIA TO W-CRITERIALEN.

| MOVE BINZERO TO W-RESULT.

| EXEC CPSM GET OBJECT('TSMDEF')

| CRITERIA(W-CRITERIA)

| LENGTH(W-CRITERIALEN)

| COUNT(W-RECCNT)

| RESULT(W-RESULT)

| THREAD(W-THREAD)

| RESPONSE(W-RESPONSE)

| REASON(W-REASON)

| END-EXEC.

| IF W-RESPONSE NOT = EYUVALUE(OK) GO TO NO-GET.

| \---\

| \ INSTALL EACH RECORD INTO THE SCOPE IDENTIFIED BY THE \

| \ VALUE OF W-TSCOPE. \

| \---\

| MOVE W-RECCNT TO PICZZZZZZZ9.

| STRING 'Installing ' DELIMITED BY SIZE

| PICZZZZZZZ9 DELIMITED BY SIZE

| ' TSMDEF Entries...' DELIMITED BY SIZE

| INTO W-TEXT.

| \ DISPLAY W-TEXT

| EXEC CICS SEND FROM(W-TEXT) LENGTH(81) WAIT END-EXEC.

| STRING '(USAGE(LOCAL) TARGET(' DELIMITED BY SIZE

| W-TSCOPE DELIMITED BY SIZE

| ')).' DELIMITED BY SIZE

| INTO W-PARM.

| MOVE LENGTH OF W-PARM TO W-PARMLEN.

| EXEC CPSM PERFORM OBJECT('TSMDEF')

| ACTION('INSTALL')

| PARM(W-PARM)

| PARMLEN(W-PARMLEN)

| RESULT(W-RESULT)

| THREAD(W-THREAD)

| RESPONSE(W-RESPONSE)

| REASON(W-REASON)

| END-EXEC.

| MOVE 'PERFORM OBJECT' TO LASTCMD.

| MOVE W-THREAD TO LASTTHR.

| MOVE W-RESULT TO LASTRES.

| IF W-RESPONSE NOT = EYUVALUE(OK) GO TO UNEXPECTED.

| MOVE 'Completed. Remove TSMDEF to re-run.' TO W-TEXT.

| GO TO SCRNLOG2.

 Appendix B. Sample program listings 139

 sample program EYULAPI4

| \\

| \ Branch here if an unexpected CPSM error occurs \

| \\

| UNEXPECTED.

| MOVE W-RESPONSE TO PICZZZ9.

| STRING '\\\ RESPONSE=' DELIMITED BY SIZE PICZZZ9

| DELIMITED BY SIZE BLNKPAD DELIMITED BY SIZE INTO W-TEXT.

| PERFORM SCRNLOG2.

| MOVE W-REASON TO PICZZZ9.

| STRING '\\\ REASON=' DELIMITED BY SIZE PICZZZ9

| DELIMITED BY SIZE BLNKPAD DELIMITED BY SIZE INTO W-TEXT.

| PERFORM SCRNLOG2.

| MOVE '\\\ Unexpected error condition arose' TO W-TEXT.

| PERFORM SCRNLOG2.

| \ Obtain FEEDBACK information

| IF LASTCMD = 'DISCONNECT' GO TO NOFEED.

| IF LASTCMD = 'FEEDBACK' GO TO NOFEED.

| IF LASTCMD = 'TERMINATE' GO TO NOFEED.

| STRING

| '\\\ Getting FEEDBACK data for ' DELIMITED BY SIZE

| LASTCMD DELIMITED BY SIZE

| INTO W-TEXT.

| PERFORM SCRNLOG2.

| STRING

| BLNKPAD DELIMITED BY SIZE

| BLNKPAD DELIMITED BY SIZE

| INTO W-TEXT.

| \ Get the FEEDBACK data

| GETFEED.

| \ Clear error result set count

| MOVE ð TO FULLARR(1).

| PERFORM GETFB THROUGH EGETFB

| \ Display FEEDBACK information

| \ Display information

| IF W-RESPONSE = EYUVALUE(OK)

| PERFORM DISPFEED

| IF FULLARR(1) NOT = ð PERFORM GETFERT THROUGH EGETFER END-I

| -F

| IF LASTRES NOT = ð GO TO GETFEED END-IF

| MOVE '\\\ End of FEEDBACK data' TO W-TEXT

| PERFORM SCRNLOG2

| GO TO NOFEED

| END-IF.

| MOVE W-RESPONSE TO PICZZZ9.

| MOVE W-REASON TO PYCZZZ9.

| STRING '\\\ FEEDBACK not available (' DELIMITED BY SIZE

| PICZZZ9 DELIMITED BY SIZE ',' DELIMITED BY SIZE

| PYCZZZ9 DELIMITED BY SIZE ')' DELIMITED BY SIZE

| BLNKPAD DELIMITED BY SIZE INTO W-TEXT END-STRING.

| PERFORM SCRNLOG2.

| NOFEED.

| EXEC CICS DELAY FOR SECONDS(1ð) END-EXEC.

| \ Exit from test case

| EXEC CICS RETURN END-EXEC.

| GOBACK.

| EXIT.

140 CICSPlex SM Application Programming Guide

 sample program EYULAPI4

| \\\

| \ This subroutine obtains the FEEDBACK data \

| \\\

| GETFB.

| \ Use exact buffer size

| MOVE FEEDBACK-TBL-LEN TO W-BUFFERLEN.

| IF LASTRES = ð GO TO NORESULT.

| RESULT.

| EXEC CPSM FEEDBACK

| INTO(W-FBBUFF) LENGTH(W-BUFFERLEN)

| RESULT(LASTRES)

| THREAD(LASTTHR)

| RESPONSE(W-RESPONSE)

| REASON(W-REASON)

| END-EXEC.

| \ If command didn't execute, get FEEDBACK no result set

| \ Command didn't execute?

| IF W-RESPONSE = EYUVALUE(NODATA)

| MOVE ð TO LASTRES

| GO TO NORESULT

| END-IF.

| GO TO ENDFBACK.

| NORESULT.

| \ Use exact buffer size

| MOVE FEEDBACK-TBL-LEN TO W-BUFFERLEN.

| EXEC CPSM FEEDBACK

| INTO(W-FBBUFF) LENGTH(W-BUFFERLEN)

| THREAD(LASTTHR)

| RESPONSE(W-RESPONSE)

| REASON(W-REASON)

| END-EXEC.

| ENDFBACK.

| EGETFB.

| EXIT.

 Appendix B. Sample program listings 141

 sample program EYULAPI4

| \\

| \ Branch here if FEEDBACK Error Result Token available \

| \\

| GETFERT.

| MOVE ERR-OBJECT OF FEEDBACK TO CH8ARR(1).

| STRING

| '\\\ Getting ' DELIMITED BY SIZE

| CH8ARR(1) DELIMITED BY SIZE

| ' error result set data for FEEDBACK' DELIMITED BY SIZE

| INTO W-TEXT.

| PERFORM SCRNLOG2.

| FERTRES.

| \ Use largest buffer size

| MOVE FEEDBACK-TBL-LEN TO W-BUFFERLEN.

| EXEC CPSM FETCH

| INTO(W-BUFFER) LENGTH(W-BUFFERLEN)

| RESULT(ERR-RESULT OF FEEDBACK)

| THREAD(LASTTHR)

| RESPONSE(W-RESPONSE)

| REASON(W-REASON)

| END-EXEC.

| \ Display FEEDBACK Error Result Token information

| \ Display information

| IF W-RESPONSE = EYUVALUE(OK)

| IF CH8ARR(1)= 'FEEDBACK'

| MOVE W-BUFFER TO W-FBBUFF

| PERFORM DISPFEED

| END-IF

| IF CH8ARR(1)= 'BINSTERR'

| PERFORM DISPBIER

| END-IF

| IF CH8ARR(1)= 'BINCONRS'

| PERFORM DISPBIRS

| END-IF

| IF CH8ARR(1)= 'BINCONSC'

| PERFORM DISPBISC

| END-IF

| GO TO FERTRES

| END-IF.

| MOVE W-RESPONSE TO PICZZZ9.

| MOVE W-REASON TO PYCZZZ9.

| STRING '\\\ FEEDBACK not available (' DELIMITED BY SIZE

| PICZZZ9 DELIMITED BY SIZE ',' DELIMITED BY SIZE

| PYCZZZ9 DELIMITED BY SIZE ')' DELIMITED BY SIZE

| BLNKPAD DELIMITED BY SIZE INTO W-TEXT END-STRING.

| PERFORM SCRNLOG2.

| EGETFER.

| EXIT.

142 CICSPlex SM Application Programming Guide

 sample program EYULAPI4

| \\\

| \ This subroutine displays FEEDBACK information \

| \\\

| DISPFEED.

| MOVE W-FBBUFF TO FEEDBACK.

| STRING BINZERO COMMAND OF FEEDBACK DELIMITED BY SIZE

| INTO FBCHAR2.

| MOVE FBHALF TO PICZZZ9.

| MOVE RESPONSE OF FEEDBACK TO PYCZZZ9.

| MOVE REASON OF FEEDBACK TO PIKZZZ9.

| MOVE RSLTRECID OF FEEDBACK TO PYKZZZ9.

| MOVE SPACES TO W-TEXT.

| STRING 'Cmd=' PICZZZ9 ' Attr=' ATTRDATAVAL OF

| FEEDBACK ' Eib=' CEIBDATAVAL OF FEEDBACK ' Err='

| ERRCODEVAL OF FEEDBACK ' Rspn=' PYCZZZ9 ' Reas='

| PIKZZZ9 ' ResId=' PYKZZZ9

| DELIMITED BY SIZE INTO W-TEXT END-STRING.

| PERFORM SCRNLOG2.

| MOVE ERROR-CODE OF FEEDBACK TO PICZZZ9.

| MOVE CEIBRESP OF FEEDBACK TO PYCZZZ9.

| MOVE CEIBRESP1 OF FEEDBACK TO PIKZZZ9.

| MOVE CEIBFN OF FEEDBACK TO PYKZZZ9.

| MOVE SPACES TO W-TEXT.

| STRING ' ECode=' PICZZZ9 ' RESP=' PYCZZZ9

| ' RESP1=' PIKZZZ9 ' EibFn=' PYKZZZ9 ' Obj='

| OBJECT-A OF FEEDBACK ' OAct=' OBJECT-ACT OF FEEDBACK

| DELIMITED BY SIZE INTO W-TEXT END-STRING.

| PERFORM SCRNLOG2.

| MOVE SPACES TO W-TEXT.

| STRING ' Att1=' ATTR-NM1 OF FEEDBACK ' 2='

| ATTR-NM2 OF FEEDBACK ' 3=' ATTR-NM3 OF FEEDBACK

| ' 4=' ATTR-NM4 OF FEEDBACK ' 5=' ATTR-NM5 OF

| FEEDBACK DELIMITED BY SIZE INTO W-TEXT END-STRING.

| PERFORM SCRNLOG2.

| MOVE ERR-COUNT OF FEEDBACK TO PICZZZ9.

| MOVE SPACES TO W-TEXT.

| STRING ' FObj=' ERR-OBJECT OF FEEDBACK

| ' FCnt=' PICZZZ9

| DELIMITED BY SIZE INTO W-TEXT END-STRING.

| PERFORM SCRNLOG2.

| MOVE ERR-COUNT OF FEEDBACK TO FULLARR(1).

| EXIT.

| \\\

| \ This subroutine displays BINSTERR information \

| \\\

| DISPBIER.

| MOVE W-BUFFER TO BINSTERR.

| MOVE SPACES TO W-TEXT.

| STRING 'CMAS=' CMASNAME OF BINSTERR ' Plex='

| PLEXNAME OF BINSTERR ' CSys=' CICSNAME OF BINSTERR

| ' ResName=' RESNAME OF BINSTERR

| DELIMITED BY SIZE INTO W-TEXT END-STRING.

| PERFORM SCRNLOG2.

| MOVE RESVER OF BINSTERR TO PICZZZ9.

| MOVE ERRCODE OF BINSTERR TO PYCZZZ9.

| MOVE CRESP1 OF BINSTERR TO PIKZZZ9.

| MOVE CRESP2 OF BINSTERR TO PYKZZZ9.

| MOVE SPACES TO W-TEXT.

| STRING ' ResVer=' PICZZZ9 ' ECode=' PYCZZZ9

| ' RESP=' PIKZZZ9 ' RESP1=' PYKZZZ9

| DELIMITED BY SIZE INTO W-TEXT END-STRING.

| PERFORM SCRNLOG2.

| MOVE CEIBFN OF BINSTERR TO PICZZZ9.

| MOVE SPACES TO W-TEXT.

| STRING ' EibFn=' PICZZZ9

| DELIMITED BY SIZE INTO W-TEXT END-STRING.

| PERFORM SCRNLOG2.

| EXIT.

 Appendix B. Sample program listings 143

 sample program EYULAPI4

| \\\

| \ This subroutine displays BINCONRS information \

| \\\

| DISPBIRS.

| MOVE W-BUFFER TO BINCONRS.

| MOVE ERROP OF BINCONRS TO PICZZZ9.

| MOVE SPACES TO W-TEXT.

| STRING 'CMAS=' CMASNAME OF BINCONRS ' Plex='

| PLEXNAME OF BINCONRS ' CSys=' CICSNAME OF BINCONRS

| ' ResType=' RESTYPE OF BINCONRS ' EOp=' PICZZZ9

| DELIMITED BY SIZE INTO W-TEXT END-STRING.

| PERFORM SCRNLOG2.

| MOVE CANDVER OF BINCONRS TO PICZZZ9.

| MOVE SPACES TO W-TEXT.

| STRING ' CandName=' CANDNAME OF BINCONRS

| ' CandVer=' PICZZZ9 ' CResGrp=' CANDRGRP OF BINCONRS

| ' CResAss=' CANDRASG OF BINCONRS ' CResDes='

| CANDRDSC OF BINCONRS

| DELIMITED BY SIZE INTO W-TEXT END-STRING.

| PERFORM SCRNLOG2.

| MOVE CANDUSAGE OF BINCONRS TO CODEV.

| MOVE 'BINCONRS' TO CHR8.

| MOVE 'CANDUSAGE' TO CHR12.

| PERFORM XCV2CH

| MOVE CHARV TO CHAR6.

| MOVE CANDTYPE OF BINCONRS TO CODEV.

| MOVE 'BINCONRS' TO CHR8.

| MOVE 'CANDTYPE' TO CHR12.

| PERFORM XCV2CH

| MOVE CHARV TO CHAR12.

| MOVE CANDASGOVR OF BINCONRS TO CODEV.

| MOVE 'BINCONRS' TO CHR8.

| MOVE 'CANDASGOVR' TO CHR12.

| PERFORM XCV2CH

| MOVE SPACES TO W-TEXT.

| STRING ' CandUsa=' CHAR6

| ' CandSGrp=' CANDSGRP OF BINCONRS

| ' CandSTyp=' CHAR12 ' CandAssO=' CHARV

| DELIMITED BY SIZE INTO W-TEXT END-STRING.

| PERFORM SCRNLOG2.

| MOVE EXISTVER OF BINCONRS TO PICZZZ9.

| MOVE EXISTUSAGE OF BINCONRS TO CODEV.

| MOVE 'BINCONRS' TO CHR8.

| MOVE 'EXISTUSAGE' TO CHR12.

| PERFORM XCV2CH

| MOVE SPACES TO W-TEXT.

| STRING ' ExistName=' EXISTNAME OF BINCONRS

| ' ExistVer=' PICZZZ9 ' EResGrp=' EXISTRGRP OF

| BINCONRS ' EResAss=' EXISTRASG OF BINCONRS

| ' EResDes=' EXISTRDSC OF BINCONRS ' ExistUsa=' CHARV

| DELIMITED BY SIZE INTO W-TEXT END-STRING.

| PERFORM SCRNLOG2.

| MOVE EXISTTYPE OF BINCONRS TO CODEV.

| MOVE 'BINCONRS' TO CHR8.

| MOVE 'EXISTTYPE' TO CHR12.

| PERFORM XCV2CH

| MOVE CHARV TO CHAR12.

| MOVE EXISTASGOVR OF BINCONRS TO CODEV.

| MOVE 'BINCONRS' TO CHR8.

| MOVE 'EXISTASGOVR' TO CHR12.

| PERFORM XCV2CH

| MOVE SPACES TO W-TEXT.

| STRING ' ExistSGrp=' EXISTSGRP OF BINCONRS

| ' ExistSTyp=' CHAR12 ' ExistAssO=' CHARV

| DELIMITED BY SIZE INTO W-TEXT END-STRING.

| PERFORM SCRNLOG2.

| EXIT.

144 CICSPlex SM Application Programming Guide

 sample program EYULAPI4

| \\\

| \ This subroutine displays BINCONSC information \

| \\\

| DISPBISC.

| MOVE W-BUFFER TO BINSTERR.

| MOVE ERROP OF BINCONSC TO PICZZZ9.

| MOVE ERRCODE OF BINCONSC TO PYCZZZ9.

| MOVE SPACES TO W-TEXT.

| STRING 'CMAS=' CMASNAME OF BINCONSC ' Plex='

| PLEXNAME OF BINCONSC ' EOp=' PICZZZ9 ' ECode='

| PYCZZZ9 ' TScope=' TARGSCOPE OF BINCONSC

| ' TAssgn=' TARGRASG OF BINCONSC

| DELIMITED BY SIZE INTO W-TEXT END-STRING.

| PERFORM SCRNLOG2.

| MOVE SPACES TO W-TEXT.

| STRING ' TDesc=' TARGRDSC OF BINCONSC ' RScope='

| RELSCOPE OF BINCONSC ' RAssgn=' RELRASG OF BINCONSC

| ' RDesc=' RELRDSC OF BINCONSC ' CSys=' CICSNAME OF

| BINCONSC

| DELIMITED BY SIZE INTO W-TEXT END-STRING.

| PERFORM SCRNLOG2.

| EXIT.

| \\

| \ This subroutine converts coded value to character string \

| \\

| XCV2CH.

| \ Use new thread for TRANSLATE

| EXEC CPSM CONNECT

| VERSION('ð14ð')

| THREAD(W-FBTTKN)

| RESPONSE(W-RESPONSE)

| REASON(W-REASON)

| END-EXEC.

| \ Translate internal coded value to character value

| EXEC CPSM TRANSLATE

| OBJECT(CHR8)

| ATTRIBUTE(CHR12)

| FROMCV(CODEV) TOCHAR(CHARV)

| THREAD(W-FBTTKN)

| RESPONSE(W-RESPONSE)

| REASON(W-REASON)

| END-EXEC.

| EXIT.

| \---\

 Appendix B. Sample program listings 145

 sample program EYULAPI4

| \ PROCESSING FOR API FAILURES. \

| \---\

| NO-CONNECT.

| MOVE 'ERROR CONNECTING TO API.' TO W-MSG-TEXT.

| GO TO SCRNLOG.

| NO-CREATE.

| MOVE 'ERROR CREATING DEFINITION.' TO W-MSG-TEXT.

| GO TO SCRNLOG.

| NO-GET.

| MOVE 'ERROR GETTING RESOURCE TABLE.' TO W-MSG-TEXT.

| GO TO SCRNLOG.

| NO-INSTALL.

| MOVE 'ERROR INSTALLING RESULT SET.' TO W-MSG-TEXT.

| GO TO SCRNLOG.

| NO-TRANSLATE.

| MOVE 'ERROR TRANSLATING ATTRIBUTE.' TO W-MSG-TEXT.

| GO TO SCRNLOG.

| SCRNLOG.

| \ DISPLAY W-MSG-TEXT.

| EXEC CICS SEND FROM(W-MSG-TEXT) LENGTH(81) WAIT END-EXEC.

| MOVE W-RESPONSE TO PICZZZ9A.

| MOVE W-REASON TO PICZZZ9B.

| STRING 'RESPONSE=' DELIMITED BY SIZE

| PICZZZ9A DELIMITED BY SIZE

| ' REASON= ' DELIMITED BY SIZE

| PICZZZ9B DELIMITED BY SIZE

| INTO W-MSG-TEXT.

| SCRNLOG2.

| \ DISPLAY W-MSG-TEXT.

| EXEC CICS SEND FROM(W-MSG-TEXT) LENGTH(81) WAIT END-EXEC.

| ENDIT.

| \---\

| \ TERMINATE API CONNECTION. \

| \---\

| EXEC CPSM TERMINATE RESPONSE(W-RESPONSE) REASON(W-REASON)

| END-EXEC.

| EXEC CICS RETURN END-EXEC.

| \ GOBACK

| EXIT.

| EYULAPI4-END.

| The COBOL version of EYUxAPI4 is written for the CICS environment and can be
| converted to run in the MVS/ESA batch environment by commenting the EXEC
| CICS SEND commands, and uncommenting the preceding language specific output
| statement.

146 CICSPlex SM Application Programming Guide

 Glossary

This glossary defines CICSPlex SM terms and
abbreviations used in this book with other than their
everyday meaning. Terms that are defined in the IBM
Dictionary of Computing, New York: McGraw-Hill, 1994,
are not defined here unless CICSPlex SM usage is
different from the meaning given there.

If you cannot find the definition you need, refer to the
Dictionary of Computing or the CICSPlex SM Master
Index, SC33-1812.

A
action command . A CICSPlex SM command that
affects one or more of the resources represented in a
view. Action commands can be issued from either the
COMMAND field in the control area of the information
display panel or the line command field in a displayed
view. Valid action commands are listed with the
description of each view. See also overtype field.

action definition (ACTNDEF) . In real-time analysis, a
definition of the type of external notification that is to be
issued when the conditions identified in an analysis
definition are true.

activity . See BTS activity.

adjacent CMAS . A CICSPlex SM address space
(CMAS) that is connected to the local CMAS via a
direct CMAS-to-CMAS link. Contrast with indirect
CMAS. See also local CMAS.

alter expression . A character string that defines the
changes to be made to a resource attribute. An alter
expression is made up of one or more attribute
expressions.

alternate window . A window to which the results of a
hyperlink can be directed. By default, the results of a
hyperlink are displayed in the same window from which
the hyperlink is initiated. Contrast with current window.

alternate window (ALT WIN) field . In the control area
of an information display panel, the field in which you
can specify an alternate window to receive the results of
a hyperlink.

analysis definition . In real-time analysis, a definition
of the evaluations to be performed on specified CICS
resources, the intervals at which those evaluations are
to be performed, and the actions to be taken when a
notifiable condition occurs.

analysis group . In real-time analysis, a group of one
or more analysis definitions, status definitions, or both.

Analysis definitions and status definitions must belong
to an analysis group if they are to be installed
automatically in a CICS system when that system
starts.

analysis point monitoring (APM) . In real-time
analysis, resource monitoring across multiple CICS
systems within a CICSplex that results in a single
notification of a condition, rather than one notification for
each system. Contrast with MAS resource monitoring.

analysis point specification . In real-time analysis, a
specification that identifies the CMASs that are to be
responsible for analysis point monitoring.

analysis specification . In real-time analysis, a
specification that establishes system availability
monitoring or MAS resource monitoring within a group
of CICS systems.

AOR. Application-owning region.

API. Application programming interface

APM. Analysis point monitoring.

application-owning region (AOR) . In a CICSplex
configuration, a CICS region devoted to running
applications. For dynamic routing, the terms requesting
region, routing region, and target region are used
instead of AOR to signify the role of the region in the
dynamic routing request.

ARM. Automatic restart manager.

ASU. Automatic screen update.

attribute . See resource attribute, resource table
attribute.

attribute expression . A reference to a resource table
attribute and, in some cases, its value. Attribute
expressions are used to build filter expressions,
modification expressions, and order expressions.

attribute value . The data currently associated with a
resource table attribute. For example, the file attribute
OPENSTATUS might have a value of CLOSED.

automatic restart manager (ARM) . A recovery
function of MVS/ESA 5.2 that provides improved
availability for batch jobs and started tasks by restarting
them automatically if they end unexpectedly. The
affected batch job or started task can be restarted on
the same system or on a different one, if the system
itself has failed.

 Copyright IBM Corp. 1995, 1999 147

automatic screen update (ASU) . A CICSPlex SM
facility that automatically updates the data in all
unlocked windows at user-defined intervals. See also
automatic screen update interval.

automatic screen update interval . The time interval
between one automatic screen update and the next.
This interval can be set in the CICSPlex SM user
profile or when the ASU facility is turned on. See also
automatic screen update (ASU).

B
BAS . Business Application Services

batched repository-update facility . A CICSPlex SM
facility, invoked from the CICSPlex SM end user
interface, for the bulk application of CICSPlex SM
definitions to a CMAS data repository.

BTS. CICS business transaction services

BTS activity . One part of a process managed by
CICS BTS. Typically, an activity is part of a business
transaction.

BTS process . A collection of more than one CICS
BTS activities. Typically, a process is an instance of a
business transaction.

BTS set . See CICS system group

business application . Any set of CICS resources that
represent a meaningful entity to an enterprise or a user
(such as, Payroll).

Business Application Services (BAS) . The
component of CICSPlex SM that provides the ability to
define and manage business applications in terms of
their CICS resources and associated CICS systems.
BAS provides a central definition repository for CICS
systems, complete with installation facilities and the
ability to restrict a CICSPlex SM request to those
resources defined as being part of the business
application. See also business application, scope.

business transaction . A self-contained business
function, for example, the booking of an airline ticket.

C
CAS. Coordinating address space.

CBIPO. Custom-built installation process offering.

CBPDO. Custom-built product delivery offering.

CEDA. A CICS transaction that defines resources
online. Using CEDA, you can update both the CICS

system definition data set (CSD) and the running CICS
system.

CICS Business Transaction Services (BTS) . A CICS
domain that supports an application programming
interface (API) and services that simplify the
development of business transactions.

CICS system . The entire collection of hardware and
software required by CICS. In CICSPlex SM topology, a
definition referring to a CICS system that is to be
managed by CICSPlex SM. See also CICSplex, CICS
system group.

CICS system group . A set of CICS systems within a
CICSplex that can be managed as a single entity. In
CICSPlex SM topology, the user-defined name,
description, and content information for a CICS system
group. A CICS system group can be made up of CICS
systems or other CICS system groups. In CICS
business transaction services (BTS), a BTS set, that is
the set of CICS regions across which BTS processes
and activities may execute. See also CICSplex, CICS
system.

CICSplex . A CICS complex. A CICSplex consists of
two or more CICS regions that are linked using CICS
intercommunication facilities. The links can be either
intersystem communication (ISC) or interregion
communication (IRC) links, but within a CICSplex are
more commonly IRC. Typically, a CICSplex has at least
one terminal-owning region (TOR), more than one
application-owning region (AOR), and may have one or
more regions that own the resources being accessed by
the AORs. In CICSPlex SM, a management domain.
The largest set of CICS regions, or CICS systems, to
be manipulated by CICSPlex SM as a single entity.
CICS systems in a CICSplex being managed by
CICSPlex SM do not need to be connected to each
other. See also CICS system, CICS system group.

CICSPlex SM . IBM CICSPlex System Manager.

CICSPlex SM address space (CMAS) . A
CICSPlex SM component that is responsible for
managing CICSplexes. A CMAS provides the
single-system image for a CICSplex by serving as the
interface to other CICSplexes and external programs.
There must be at least one CMAS in each MVS image
on which you are running CICSPlex SM. A single
CMAS can manage CICS systems within one or more
CICSplexes. See also coordinating address space
(CAS), managed application system (MAS).

CICSPlex SM token . Unique, 4-byte values that
CICSPlex SM assigns to various elements in the API
environment. Token values are used by CICSPlex SM
to correlate the results of certain API operations with
subsequent requests.

148 CICSPlex SM Application Programming Guide

client program . In dynamic routing, the application
program, running in the requesting region, that issues a
remote link request.

CMAS. CICSPlex SM address space.

CMAS link . A communications link between one
CICSPlex SM address space (CMAS) and another
CMAS or a remote managed application system
(remote MAS). CMAS links are defined when
CICSPlex SM is configured.

CODB. A CICSPlex SM transaction for interactive,
system-level debugging of CMASs and of CICS/ESA,
CICS/MVS, and CICS/VSE MASs. CODB must be used
only at the request of customer support personnel.

COD0. A CICSPlex SM transaction for interactive,
method-level debugging of CMASs and of CICS/ESA,
CICS/MVS, CICS/VSE, and CICS for OS/2 MASs.
COD0 must be used only at the request of customer
support personnel.

COLU. A CICSPlex SM transaction for generating
reports about CMAS and local MAS components. COLU
must be used only at the request of customer support
personnel.

COMMAND field . In the control area of an information
display panel, the field that accepts CICSPlex SM,
ISPF, and TSO commands. Contrast with option field.

command-level interface . A CICSPlex SM API
interface that uses the CICS translator to translate
EXEC CPSM statements into an appropriate sequence
of instructions in the source language.

Common Services . A component of CICSPlex SM
that provides commonly requested services (such as
GETMAIN, FREEMAIN, POST, and WAIT processing)
to other CICSPlex SM components.

communication area (COMMAREA) . A CICS area
that is used to pass data between tasks that
communicate with a given terminal. The area can also
be used to pass data between programs within a task.

Communications . A component of CICSPlex SM that
provides all services for implementing CMAS-to-CMAS
and CMAS-to-MAS communication.

context . A named part of the CICSPlex SM
environment that is currently being acted upon by
CICSPlex SM. For configuration tasks, the context is a
CICSPlex SM address space (CMAS); for all other
tasks, it is a CICSplex. See also scope.

control area . The top three lines of an information
display panel, containing the panel title, the screen
update time, the short message area, the COMMAND

and SCROLL fields, and the current window (CUR WIN)
and alternate window (ALT WIN) fields.

coordinating address space (CAS) . An MVS
subsystem that provides ISPF end-user access to the
CICSplex to be accessed. See also CICSPlex SM
address space, managed application system (MAS).

coordinating address space subsystem ID .
Identifies the coordinating address space (CAS) which
can be up to 4 characters, to be connected to when
issuing CICSPlex SM requests. The name of the CAS
is installation-dependent, and is defined in the
CICSPlex SM user profile.

cross-system coupling facility (XCF) . XCF is a
component of MVS that provides functions to support
cooperation between authorized programs running
within a sysplex.

current window . The window to which the results of
all commands issued in the COMMAND field are
directed, unless otherwise requested. Contrast with
alternate window.

current window (CUR WIN) field . In the control area
of an information display panel, the field that contains
the window number of the current window. You can
change the number in this field to establish a new
current window.

custom-built installation process offering (CBIPO) .
A product that simplifies the ordering, installation, and
service of MVS system control programs and licensed
programs by providing them with current updates and
corrections to the software that is already integrated.

custom-built product delivery offering (CBPDO) . A
customized package of both products and service, or of
service only, for MVS system control programs and
licensed programs.

D
Data Cache Manager . A component of CICSPlex SM
that manages logical cache storage for use by other
CICSPlex SM components.

data repository . In CICSPlex SM, the VSAM data set
that stores administrative data, such as topology and
monitor definitions, for a CICSPlex SM address space
(CMAS).

Data Repository . A component of CICSPlex SM that
provides methods for creating, accessing, updating, and
deleting data in the CICSPlex SM data repository. See
also Managed Object Services.

Database Control (DBCTL) . An IMS/ESA facility
providing an interface between CICS/ESA and IMS/ESA

 Glossary 149

that allows access to IMS DL/I full-function databases
and to data-entry databases (DEDBs) from one or more
CICS/ESA systems.

Database 2 (DB2) . An IBM licensed program. DB2 is
a full-function relational database management system
that presents a data structure as a table consisting of a
number of rows (or records) and a number of columns.

DBCTL . Database Control.

DB2. Database 2.

derived field . On a monitor view, a field whose value
does not come directly from CICS or CICSPlex SM
data, but is calculated based on the values in other
fields. See also derived value.

derived value . A rate, average, or percentage that
results from CICSPlex SM processing of CICS
statistics.

display area . On an information display panel, the
area where windows can be opened to display data.
The display area appears below the control area. The
bottom two lines of the display area can be used to
display the PF key assignments in effect for a
CICSPlex SM session.

display attributes . A CICSPlex SM user profile option
that controls the appearance of the window information
line, field headings, and threshold values in a view.

display command . A CICSPlex SM command that
extends the ISPF interface to create and control a
multiwindow environment.

distributed program link (DPL) . Function of CICS
intersystem communication that enables CICS to ship
LINK requests between CICS regions.

distributed routing program (DSRTPGM) . A
CICS-supplied user-replaceable program that can be
used to dynamically route:

� CICS BTS processes and activities

� Transactions started by non-terminal related EXEC
CICS START commands

DPL. Distributed program link.

DTR. Dynamic transaction routing.

dynamic routing . The automatic routing of a
transaction or program, at the time it is initiated, from a
requesting region to a suitable target region. Routing
terminal data to an alternative transaction at the time
the transaction is invoked. To do this, CICS allows the

dynamic routing program to intercept the terminal data
and redirect it to any system and transaction it chooses.
See also dynamic routing program (EYU9XLOP)

dynamic routing program (EYU9XLOP) . A
user-replaceable CICS program that selects dynamically
both the system to which a routing request is to be sent
and the transaction’s remote name. The alternative to
using this program is to make these selections when a
remote transaction is defined to CICS (static routing).
See also static routing

dynamic transaction routing (DTR) . The automatic
routing of a transaction, at the time it is initiated, from a
transaction-owning region (TOR) to a suitable
application-owning region (AOR).

E
Environment Services System Services (ESSS) . A
component of CICSPlex SM that implements the formal
MVS/ESA subsystem functions required by the product.
ESSS provides cross-memory services, data space
management, connection services, and lock
management. An ESSS system address space is
created at CICSPlex SM initialization and remains in
the MVS image for the life of the IPL.

ESSS. Environment Services System Services.

evaluation definition . In real-time analysis, a
definition of the resources that are to be sampled.
When the result of an evaluation is true, an associated
analysis definition is used to determine whether a
notifiable condition has occurred.

event . A significant occurrence within the CICSplex or
system for which the user has requested notification.
For example, the end of processing, a subsystem
failure, or any unusual condition in the system could be
defined by a user as an event.

event notification . A CICSPlex SM notification of a
significant occurrence within a CICSplex or CICS
system.

extended diagnostic mode (XDM) . A CICSPlex SM
online internal diagnostic facility. XDM provides no
information about resources managed by
CICSPlex SM, and should be turned on only at the
request of IBM customer support personnel. XDM can
be turned on and off in the CICSPlex SM user profile.

external notification . In RTA, an event notification,
generic alert, or operator message issued when a
notifiable condition occurs.

150 CICSPlex SM Application Programming Guide

F
file-owning region . In a CICSplex configuration, a
CICS system devoted to managing CICS file access.

filter expression . A character string that consists of
logical expressions to be used in filtering resource table
records. A filter expression is made up of one or more
attribute expressions.

FOR. File-owning region.

form . The way in which data obtained from a query is
presented in a view. See also query, view.

G
generic alert . A Systems Network Architecture (SNA)
Network Management Vector that enables a product to
signal a problem to the network. CICSPlex SM uses
generic alerts as part of its interface to NetView.

GMFHS. Graphic Monitor Facility host subsystem.

goal algorithm . In CICSPlex SM’s workload
balancing, an algorithm used to select an AOR to
process a dynamic transaction. Using the goal
algorithm, CICSPlex SM selects the AOR that is the
least affected by conditions such as short-on-storage,
SYSDUMP, and TRANDUMP; is the least likely to
cause the transaction to abend; and is most likely to
enable the transaction to meet response-time goals set
for it using the Workload Manager component of
MVS/ESA SP 5.1. Contrast with queue algorithm.

Graphic Monitor Facility host subsystem . A
NetView feature that manages configuration and status
updates for non-SNA resources.

H
hyperlink . A direct connection between the data in
one CICSPlex SM view and a view containing related
information. For example, from a view that lists multiple
CICS resources, there may be a hyperlink to a detailed
view for one of the resources. To use a hyperlink, place
the cursor in the data portion of a hyperlink field and
press Enter.

hyperlink field . On a CICSPlex SM view, a field for
which a hyperlink is defined. The headings of hyperlink

fields are shown in high intensity or color, depending on
the terminal type.

I
IBM CICSPlex System Manager for MVS/ESA
(CICSPlex SM) . An IBM CICS system-management
product that provides a single-system image and a
single point of control for one or more CICSplexes that
can be installed on heterogeneous operating systems.

indirect CMAS . A CICSPlex SM address space
(CMAS) that the local CMAS can communicate with via
an adjacent CMAS. There is no direct CMAS-to-CMAS
link between the local CMAS and an indirect CMAS.
Contrast with adjacent CMAS. See also local CMAS.

information display panel . The panel that supports
the CICSPlex SM window environment. It consists of a
control area and a display area. CICSPlex SM views
are displayed in windows within the display area of this
panel.

information display parameters . A CICSPlex SM
user profile option that defines the initial screen
configuration, how frequently the screen will be updated
by ASU, and how long a window will wait for command
processing to complete before timing out.

installation verification procedure (IVP) . A
procedure distributed with a system that tests the newly
generated system to verify that the basic facilities of the
system are functioning correctly.

interregion communication . Synonym for multiregion
operation.

intersystem communication (ISC) . Communication
between separate systems by means of SNA
networking facilities or by means of the
application-to-application facilities of an SNA access
method.

intertransaction affinity . A relationship between CICS
transactions, usually the result of the ways in which
information is passed between those transactions, that
requires them to execute in the same CICS region.
Intertransaction affinity imposes restrictions on the
dynamic routing of transactions.

IRC. Interregion communication.

ISC. Intersystem communication.

IVP. Installation verification procedure.

 Glossary 151

K
Kernel Linkage . A component of CICSPlex SM that is
responsible for building data structures and managing
the interfaces between the other CICSPlex SM
components. The environment built by Kernel Linkage is
known as the method call environment.

L
line command field . In a CICSPlex SM view, the 3
character field, to the left of the data, that accepts
action commands.

local CMAS . The CICSPlex SM address space
(CMAS) that a user identifies as the current context
when performing CMAS configuration tasks.

local MAS . A managed application system (MAS) that
resides in the same MVS image as the CICSPlex SM
address space (CMAS) that controls it and that uses the
Environment Services System Services (ESSS) to
communicate with the CMAS.

logical scope . A set of logically related CICS
resources that are identified in a CICSPlex SM
resource description. A logical scope can be used to
qualify the context of a CICSPlex SM request.

M
maintenance point . A CICSPlex SM address space
(CMAS) that is responsible for maintaining
CICSPlex SM definitions in its data repository and
distributing them to other CMASs involved in the
management of a CICSplex. See also data repository.

Major object descriptor block (MODB) . In
CICSPlex SM, a control structure built by Kernel
Linkage during initialization of a CICSPlex SM
component that contains a directory of all methods that
make up that component. The structure of the MODB is
the same for all components.

Major object environment block (MOEB) . In
CICSPlex SM, a control structure built by Kernel
Linkage during initialization of a CICSPlex SM
component and pointed to by the MODB. The MOEB
stores information critical to a CICSPlex SM component
and anchors data used by the component. The structure
of the MOEB is unique to the component it supports.

MAL . Message argument list.

managed application system (MAS) . A CICS system
that is being managed by CICSPlex SM. See local
MAS, remote MAS.

managed object . A CICSPlex SM-managed CICS
resource or a CICSPlex SM definition represented by a
resource table. A view is based on a single managed
object.

Managed Object Services . A subcomponent of the
Data Repository component of CICSPlex SM that
translates a request for data (from real-time analysis, for
example) into the method calls required to obtain the
data.

MAS. Managed application system.

MAS agent . A CICSPlex SM component that acts
within a CICS system to provide monitoring and data
collection for the CICSPlex SM address space (CMAS).
The level of service provided by a MAS agent depends
on the level of CICS the system is running under and
whether it is a local or remote MAS. See also
CICSPlex SM address space (CMAS), local MAS,
remote MAS.

MAS resource monitoring (MRM) . In real-time
analysis, resource monitoring at the CICS system level;
it results in one notification of a condition for each
system in which it occurs. If the same condition occurs
in three CICS systems where MAS resource monitoring
is active, three notifications are issued. Contrast with
analysis point monitoring.

Message argument list (MAL) . In CICSPlex SM, a
data structure passed between methods using Kernel
Linkage method call services.

message line . On an information display panel, the
line in the control area where a long message appears
when the HELP command is issued in response to a
short message. The message line temporarily overlays
the CURR WIN and ALT WIN fields.

Message Services . A component of CICSPlex SM
that provides services for building and issuing MVS/ESA
console messages to other CICSPlex SM components.

meta-data . Internal data that describes the structure
and characteristics of CICSPlex SM managed objects.

method . (Action.) An application programming
interface (API) instruction that resolves into an EXEC
CICS command, issued against one or more resources
in one or more CICS systems, within the current context
and scope.

method . In CICSPlex SM, one of the programs that
make up a CICSPlex SM component. See also
message argument list (MAL).

mirror transaction . CICS transaction that recreates a
request that is function shipped from one system to
another, issues the request on the second system, and
passes the acquired data back to the first system.

152 CICSPlex SM Application Programming Guide

MODB. Major object descriptor block.

modification expression . A character string that
defines the changes to be made to a resource attribute.
A modification expression is made up of one or more
attribute expressions.

MOEB. Major object environment block.

monitor definition . A user-defined statement of the
specific resource occurrences (such as the program
named PAYROLL) to be monitored by CICSPlex SM. A
monitor definition can either be linked to a monitor
specification as part of a monitor group or be installed
directly into an active CICS system. See also monitor
group, monitor specification.

monitor group . A user-defined set of CICSPlex SM
monitor definitions that can either be linked to a monitor
specification for automatic installation or be installed
directly into an active CICS system. See also monitor
definition, monitor specification.

monitor interval . The number of minutes that are to
elapse before the statistics counters containing
accumulated resource monitoring data are automatically
reset. This value is part of a CICSplex definition and
affects all of the CICS systems and CICS system
groups associated with that CICSplex. See also period
definition, sample interval.

monitor specification . A user-defined statement of
the types of resources (such as programs) to be
monitored by CICSPlex SM and how often data should
be collected. A monitor specification is associated with
a CICS system and is automatically installed each time
the CICS system starts up. See also monitor definition,
monitor group.

Monitoring Services . A component of CICSPlex SM
that is responsible for monitoring resources within a
CICS system and making the collected data available to
other CICSPlex SM components.

MRM. MAS resource monitoring.

MRO. Multiregion operation.

MSM. MultiSystem Manager.

multiregion operation (MRO) . Communication
between CICS systems without the use of SNA network
facilities. Synonymous with interregion communication.

MultiSystem Manager . An object-oriented, graphical
systems management application that runs under
NetView for MVS.

MVS image . A single instance of the MVS operating
system.

MVS system . An MVS image together with its
associated hardware.

N
NetView . An IBM network management product that
can provide rapid notification of events and automated
operations. CICSPlex SM can be set up to send
generic alerts to NetView as part of its event processing
capabilities.

NetView Graphic Monitor Facility (NGMF) . A
function of the NetView program that provides the
network operator with a graphic topological presentation
of a network controlled by the NetView program and
that allows the operator to manage the network
interactively.

NetView program . An IBM licensed program used to
monitor and manage a network and to diagnose
network problems.

NGMF. NetView Graphic Monitor Facility.

notification . A message that is generated
asynchronously by a CICSPlex SM managed object to
describe an event related to the object.

O
option field . On a CICSPlex SM menu, the field in
which you can specify an option number or letter.
Contrast with command field.

order expression . A character string that defines
either the attributes to be used in sorting resource table
records, or the attributes to be included in a resource
table view. An order expression is made up of one or
more attribute expressions.

override expression . A character string that defines
the changes to be made to a resource attribute. An
override expression is made up of one or more attribute
expressions.

overtype field . On a CICSPlex SM view, a field
containing a value that can be changed by typing a new
value directly into the field. Values that can be
overtyped are shown in high intensity or color,
depending on the terminal type. Acceptable values for
overtype fields are listed with the description of each
view. See also action command.

 Glossary 153

P
parameter expression . A character string that defines
the parameters required for an action to complete or a
definition to be processed.

parameter repository . In CICSPlex SM, a data set
that stores cross-system communication definitions that
allow one coordinating address space (CAS) to
communicate with other CASs.

period definition . A user-defined range of hours and
minutes and the time zone to which that range applies.
A period definition is used to indicate when an action,
such as resource monitoring, is to occur. See also
monitor interval, sample interval.

PlexManager . A service utility that can be used to
manage the communication connections between
multiple coordinating address spaces (CASs) and
between a CAS and its associated CICSPlex SM
address spaces (CMASs) and CICSplexes.

process . See BTS process

processing thread . A connection between an
application program and the CICSPlex SM API. A
program can establish multiple processing threads, but
each one is considered a unique API user; no
resources can be shared across the boundary of a
thread.

pseudoconversation . A CICS application designed to
appear to the user as a continuous conversation, but
that consists internally of multiple separate tasks.

Q
query . A request for specific data that is generated by
a view command. See also form, view.

queue algorithm . In CICSPlex SM’s workload
balancing, an algorithm used to select an AOR to
process a dynamic transaction. Using the queue
algorithm, CICSPlex SM selects the AOR that has the
shortest queue of transactions (normalized to
MAXTASKs) waiting to be processed; is the least
affected by conditions such as short-on-storage,
SYSDUMP, and TRANDUMP; and is the least likely to
cause the transaction to abend. Contrast with goal
algorithm.

Queue Manager . A component of CICSPlex SM that
creates and manages queues of data in a cache that is
shared by a CMAS and its local MASs.

R
RACF. Resource Access Control Facility.

real-time analysis (RTA) . A component of
CICSPlex SM that is responsible for monitoring the
status of a CICS system or resource against its desired
status, and issuing one or more external notifications
when deviations occur.

record pointer . An internal indicator of the next
resource table record to be processed in a result set.

related scope . A CICS system where resources
defined to CICSPlex SM as remote should be assigned
and, optionally, installed as local resources. See also
target scope.

remote MAS . A managed application system (MAS)
that uses MRO or LU 6.2 to communicate with the
CICSPlex SM address space (CMAS) that controls it. A
remote MAS may or may not reside in the same MVS
image as the CMAS that controls it.

requesting region . The region in which a dynamic
routing request originates. For dynamic transaction
routing and inbound client dynamic program link
requests, this is typically a TOR; for dynamic START
requests and peer-to-peer dynamic program link
requests, this is typically an AOR.

resource . Any physical or logical item in a CICS
system, such as a transient data queue, a buffer pool, a
file, a program, or a transaction.

Resource Access Control Facility (RACF) . An IBM
licensed program that provides for access control by
identifying and verifying the users to the system,
authorizing access to protected resources, logging any
detected unauthorized attempts to enter the system,
and logging the detected accesses to protected
resources.

resource assignment . A user-defined statement that
selects resource definitions to be assigned to CICS
systems and, optionally, specifies resource attributes to
override those definitions. A resource assignment
applies to a single resource type and must be
associated with a resource description. See also
resource definition, resource description.

resource attribute . A characteristic of a CICS
resource, such as the size of a buffer pool.

resource definition . In CICSPlex SM, a user-defined
statement of the physical and operational characteristics
of a CICS resource. Resource definitions can be
associated with resource descriptions as part of a
resource group. See also resource description, resource
group.

154 CICSPlex SM Application Programming Guide

resource description . A user-defined set of
CICSPlex SM resource definitions that can be
automatically installed in CICS systems and named as
a logical scope for CICSPlex SM requests. Resource
descriptions represent the largest set of CICS resources
that can be managed by CICSPlex SM as a single
entity. A resource description can be associated with
one or more resource assignments. See also logical
scope, resource assignment, resource definition.

resource group . A user-defined set of CICSPlex SM
resource definitions. A resource group can be
associated with resource descriptions either directly or
by means of resource assignments. See also resource
assignment, resource definition, resource description.

Resource Object Data Manager (RODM) . A
component of the NetView program that operates as a
cache manager and that supports automation
applications. RODM provides an in-memory cache for
maintaining real-time data in an address space that is
accessible by multiple applications.

resource table . The external representation of a
CICSPlex SM managed object. A resource table
defines all the attributes, or characteristics, of a
managed object.

resource table attribute . A characteristic of a
CICSPlex SM managed object, as represented by a
field in a resource table.

resource type . A group of related resources, such as
files.

result set . A logical group of resource table records
that can be accessed, reviewed, and manipulated by an
API program.

retention period . For a monitored CICS system, the
period of time for which monitor data is retained after
the system becomes inactive. If a system is being
monitored, becomes inactive, and remains inactive
beyond the specified retention period, the monitor data
is discarded. If the system becomes active before the
retention period expires, the monitor data gathered
before the system became inactive is retained, and
monitoring continues.

RODM. Resource Object Data Manager.

routing region . The region in which the decision is
made as to which is the most suitable target region for
a dynamic routing request. For dynamic transaction
routing, dynamic START requests, and inbound client
dynamic program link requests, this is typcially a TOR;
for dynamic peer-to-peer program link requests, this is
typically an AOR.

RTA. real-time analysis.

run-time Interface . A CICSPlex SM API interface that
accepts commands in the form of text strings and
generates the appropriate API calls. The run-time
interface supports programs written as REXX EXECs.

S
SAM. System availability monitoring.

sample interval . The duration, in seconds, between
occurrences of data collection for a specific resource
type. See also monitor interval, period definition,
resource type.

scope . A named part of the CICSPlex SM
environment that qualifies the context of a
CICSPlex SM request. The scope can be the CICSplex
itself, a CICS system, a CICS system group, or any set
of CICS resources that are defined as a logical scope in
a CICSPlex SM resource description. For configuration
tasks, where the context is a CICSPlex SM address
space (CMAS), the scope is ignored. When you are
applying security, scope must be a single CICS system
or CICSplex. It cannot be a CICS system group or any
combination of individual CICSplexes or CICS systems.
See also context, logical scope.

screen configuration . A user-defined, named layout
of windows and the context, scope, view, and sort order
associated with each. The initial configuration to be
displayed when CICSPlex SM is accessed can be
identified on the user profile.

screen repository . In CICSPlex SM, a data set that
stores screen configuration definitions created by the
SAVESCR display command. See also screen
configuration.

selection list . In CICSPlex SM, a data set that stores
cross-system communication definitions that allow one
coordinating address space (CAS) to communicate with
other CASs.

selection list . A list of named items, such as views or
screen configurations, from which one can be selected.

server program . In dynamic routing, the application
program specified on the link request, and which is
executed in the target region.

service point . One of the combinations of products
and contexts that is known to the coordinating address
space (CAS) to which you are connected. See also
context.

session control parameters . A CICSPlex SM user
profile option that sets the coordinating address space
(CAS) subsystem ID used for accessing CICSPlex SM
views and controls the extended diagnostic mode
(XDM).

 Glossary 155

short message area . In the control area of an
information display panel, that part of the title line that
displays short messages.

single point of control . The ability to access and
manage all CICS systems and their resources in a
CICSplex from a single terminal or user session.

single system image . The collection and presentation
of data about multiple CICS systems as though they
were a single CICS system. In CICSPlex SM, the
single-system image is provided by the CICSPlex SM
address space (CMAS).

specification . See analysis specification, monitor
specification, workload specification.

Starter Set . A part of CICSPlex SM comprising
sample CICSPlex SM definitions and sample JCL. The
Starter Set samples may be used as supplied for
educational purposes. They may also be copied and
adapted for the customer environment.

static routing . Non-dynamic routing. The routing
request is routed to a predetermined system. Static
transaction routing occurs when NO is specified is the
Dynamic field in either the transaction definition or the
progam definition. In both cases, the request is routed
to the system named in the Remote Sysid field.

status definition . In real-time analysis, a definition of
a user-written program to be invoked at specified
intervals to evaluate the status of a non-CICS resource.

summarized result set . A special type of result set
that is produced by grouping, or summarizing, the
resource table records in a result set. See also result
set.

summary expression . A character string that consists
of one or more summary options and the resource table
attributes to which they apply. See also summary
option.

summary option . A value that indicates how the
attribute values in a resource table are to be
summarized.

sysplex . A set of MVS systems communicating and
cooperating with each other through specific
multisystem hardware components and software
services to process customer workloads.

system availability monitoring (SAM) . In real-time
analysis, the monitoring of CICS systems to determine
whether: they are active during their defined hours of
operation; they are experiencing a short-on-storage,
SYSDUMP, TRANDUMP, MAXTASK, or STALL
condition. If a CICS system becomes inactive or one of
the specified conditions occurs, an external notification
is issued.

system image . The representation of a program and
its related data as it exists in main storage.

T
target region . The region selected from a set of target
regions as the most suitable region in which to execute
the work request. For all dynamic routing requests, this
is typically an AOR.

target scope . A CICS system or CICS system group
where resources defined to CICSPlex SM should be
assigned and, optionally, installed. See also related
scope.

temporary maintenance point . A CICSPlex SM
address space (CMAS) that serves as the maintenance
point when the identified maintenance point is
unavailable. See also maintenance point.

terminal-owning region . In a CICSplex configuration,
a CICS region devoted to managing the terminal
network. For dynamic routing, the terms requesting
region and routing region are used instead of TOR to
signify the role of the region in the dynamic routing
request.

thread . See processing thread.

time-period definition . A user-defined range of hours
and minutes, and the time zone to which that range
applies. A time-period definition is used to indicate
when an action, such as resource monitoring, is to
occur.

token . See CICSPlex SM token, user token.

topology . An inventory of CICS and CICSPlex SM
resources, and a map of their relationships.
CICSPlex SM supports the definition of resource and
system topology.

topology definition . A named subset of CICS and
CICSPlex SM resources. Topology definitions are
user-created and can include CICSplexes, CICS
systems, and CICS system groups.

Topology Services . A component of CICSPlex SM
that is responsible for maintaining topology information
about CICSplexes and resources, and making it
available to other CICSPlex SM components.

TOR. Terminal-owning region.

Trace Services . A component of CICSPlex SM that
provides other CICSPlex SM components with the
ability to write trace records to the CICS trace table and
trace data sets. Trace Services also writes trace

156 CICSPlex SM Application Programming Guide

records created by a MAS to the trace table and data
set of the managing CMAS.

transaction group . A user-defined, named set of
transactions that determines the scope of workload
balancing and the affinity relationships between
transactions.

U
user token . Unique, 1- to 4-byte values that an API
user can assign to asynchronous requests. User token
values are not used by CICSPlex SM; they are simply
held until the request is complete and then returned to
the user.

V
view . In the CICSPlex SM API, a temporary,
customized form of a resource table. A view can consist
of some or all of the resource table attributes in any
order. In the CICSPlex SM ISPF end-user interface, a
formatted display of selected data about CICS
resources or CICSPlex SM definitions. The data in a
view is obtained from a query and can be presented in
one or more forms. The data can be limited to a subset
of CICSplex resources or definitions by establishing a
context and scope.

view command . A CICSPlex SM command that
displays a view in a window of the display area. The
name of the view displayed matches the name of the
view command. See also view.

W
window . In CICSPlex SM, a subdivision of the display
area. The results of any CICSPlex SM view or display
command are directed to a single window, which is the
current window by default. Contrast with view. See also
current window, alternate window.

window identifier . On a window information line, the
field that identifies the window. A window identifier
consists of a one-character status code and a number
in the range 1 through 20.

window information line . The top line of each
window in the display area. It includes the window
identifier, the name of the view displayed in the window,
the context and scope in effect, the date and time when
the view was last refreshed, and the product name.

window number . A number assigned by
CICSPlex SM to a window when it is opened. The
window number is the second part of the window
identifier on the window information line.

window status code . A one-character code that
indicates whether a window is ready to receive
commands, is busy processing commands, is not to be
updated, or contains no data. It also indicates when an
error has occurred in a window. The window status
code is the first character of the window identifier on the
window information line.

WLM. Workload Manager.

workload . The total number of transactions that a
given CICSplex is intended to process in a specific
period. For example, a workload could be expressed as
a number of transactions per hour, or per day. In
CICSPlex SM, a named set of transactions and CICS
systems, acting as requesting regions, routing regions,
and target regions that form a single, dynamic entity.

workload balancing . The technique of balancing a
workload across multiple target regions that are capable
of processing the work.

workload definition . A user-defined statement of the
transaction groups associated with a CICS system that
is an AOR. A workload definition can either be linked to
a workload specification as part of a workload group or
be installed directly into an active workload. See also
workload group, workload specification.

workload group . A user-defined set of CICSPlex SM
workload definitions that can either be linked to a
workload specification for automatic installation or be
installed directly into an active workload. See also
workload definition, workload specification.

Workload Manager (WLM) . A component of
CICSPlex SM that is responsible for managing the
transaction workload in a CICSplex through the use of
dynamic transaction routing.

workload separation . The technique of separating a
workload into discrete parts, and allocating specific
transactions to specific AORs.

workload specification . A user-defined statement that
identifies a workload and a set of CICS systems acting
as AORs. A workload specification also provides default
management criteria for transactions that are not
defined to CICSPlex SM. It is associated with a CICS
system that is a TOR and is automatically installed each
time the CICS system starts up. See also workload
definition, workload group.

X
XCF. Cross-system coupling facility of MVS/ESA.

XDM. Extended diagnostic mode

 Glossary 157

158 CICSPlex SM Application Programming Guide

 index

 Index

A
accessing API from REXX 91
accessing CICSPlex SM 2
accessing resource tables from REXX 93
actions, performing 37
Assembler language programs

compiling 71
language considerations 68
link editing 73
run-time considerations 74
supported environments 2
translating 70
using resource table copy books 57

asynchronous processing
overview 39
using ADDRESS 42
using LISTEN 41
using NOWAIT 41
using RECEIVE 43
using tokens 42

ASYNCREQ records
description 41
retrieving 43

attribute expression
in filter expression 20
in modification expression 36

attributes, resource table
modifying 36
ordering 16
translating

in REXX program 94
availability, CICS release 1

B
BINCONRS resource table records 87, 88, 101
BINCONSC resource table records 87, 88, 101
BINSTERR resource table records 86, 102

C
C programs

compiling 72
link editing 74
run-time considerations 74
running under NetView 69
supported environments 2
translating 71
using resource table copy books 65

CHANGETIME attribute
description 16, 38
processing with REXX 95

CICS definitions
description 14
working with 37

CICS Global User exit programs 69
CICS release availability 1
CICS resources, managed

description 13
resource tables 15

CICSPlex SM API in status program 69
CICSPlex SM API in user-replaceable program 69
CICSPlex SM definitions

description 14
resource tables 15
working with 37

CICSPlex SM manager resources
description 14
resource tables 15

CICSPlex SM meta-data
description 15
resource tables 15

CICSPlex SM notifications
description 14
processing 41
resource tables 15

CICSPlex SM tokens 44
CICSPlex SM API task related user exit 53
COBOL programs

compiling 72
link editing 74
run-time considerations 74
supported environments 2
translating 71
using resource table copy books 62

command responses
testing for

using the command-level interface 80
using the run-time interface 80

types 77
command-level interface

compiling a program 71
environment considerations 68
language considerations 68
link editing a program 73
run-time considerations 74
supported environments 1
translating a program 70
using resource table copy books 55

compatibility of API programs
between environments 6
between releases 7

compiling a command-level program 71

 Copyright IBM Corp. 1995, 1999 159

 index

CONNECT command
using 2

connecting to CICSPlex SM 2
context

description 19
specifying on commands 19

copy books, resource table 101
accessing 55
Assembler H 57
BINCONRS 87, 101
BINCONSC 88, 101
BINSTERR 86, 102
C/370 65
data characteristics 56
description 55
format 56
names and aliases 55
PL/I 58
VS COBOL II 62

CREATETIME attribute
description 38
processing with REXX 95

customizing resource table records 16

D
definitions, CICS

description 14
working with 37

definitions, CICSPlex SM
description 14
resource tables 15
working with 37

E
ECB field

description 42
environment

compatibility 6
considerations 69
support 1

error codes 101
error handling

in REXX programs 97
using error result sets 86
using FEEDBACK data 81
using RESPONSE and REASON 77

error result set
description 86
fields in FEEDBACK record 84
for BAS definitions 87, 88
for installing CICS resources 86
for updating CICS definitions 86

event control block (ECB)
description 42

event, listening for 41
expression

attribute
in filter expression 20
in modification expression 36

filter 20
modification 36
order 17, 35
parameter 37, 38
summary 33

EYU_ attributes 16
EYU_TRACE stem variable 98
EYU9AR00 91
EYU9AR01 91
EYU9XESV security routine

considerations 5
EYU9XLAP 53
EYUAPI function

using 91, 92
EYUINIT function

using 91
EYUREAS function

using 80
EYURESP function

using 80
EYUTERM function

using 92
EYUVALUE function

using for response and reason 80

F
FEEDBACK command

using 81
feedback records

availability 84
description 82
example 85
location 81
retrieving 81

FETCH command
using 26

filter
description 20

filter expression
description 20

filtering result set records 20
function package, REXX 91

G
GROUP command

using 32

160 CICSPlex SM Application Programming Guide

L
language considerations

Assembler H 68
PL/I 68

link editing a command-level program 73
LISTEN command

using 41
listening for event 41
LOCATE command

using 28
locating a result set record 28

M
managed CICS resources

description 13
resource tables 15

managed object
modifying 35
selecting 19
types 13

MARK command
using 29

meta-data, CICSPlex SM
description 15
resource tables 15

migrating an API program 7
modification expression

description 36
modifying CICS definitions 38
modifying CICSPlex SM definitions 38
modifying resource attributes 36

N
NetView

considerations for C programs 69
languages supported 2

notifications, CICSPlex SM
description 14
processing 41
resource tables 15

NOWAIT option, using 41

O
objects, managed by CICSPlex SM

modifying 35
selecting 19
types 13

OBJSTAT records
description 26
in summarized result set 33
retrieving 26

ORDER command
using 34

order expression
description 17, 35

ordering result set records 34

P
parameter expression

for CICS definitions 30, 38
for CICSPlex SM definitions 38
when performing an action 37

performing actions 37
PL/I programs

compiling 72
language considerations 68
link editing 74
run-time considerations 74
supported environments 2
translating 71
using resource table copy books 58

programs, sample
descriptions 11
list of supplied 11
listings 103

R
REASON option

using 77
RECEIVE command

using 43
record pointer, positioning 28
release compatibility 7
resource table

copy books 55
customizing 16
description 15
restricted attributes 16
translating attributes

in REXX program 94
using with command-level interface 55
using with REXX 93
view 16

resource table copy books 101
accessing 55
Assembler H 57
BINCONRS 87, 101
BINCONSC 88, 101
BINSTERR 86, 102
C/370 65
data characteristics 56
description 55
format 56
names and aliases 55
PL/I 58
VS COBOL II 62

 Index 161

RESPONSE option
using 77

responses, command
testing for

using the command-level interface 80
using the run-time interface 80

types 77
restricted resource table attributes 16
result set

commands
overview 23

creating 23
description 23
positioning record pointer 28
records

customizing 16
filtering 20
locating 28
retrieving 26
sorting 34
summarizing 32

result set, error
description 86
fields in FEEDBACK record 84
for BAS definitions 87, 88
for installing CICS resources 86
for updating CICS definitions 86

retrieving ASYNCREQ records 43
retrieving FEEDBACK records 81
retrieving OBJSTAT records 26
retrieving result set records 26
REXX function package 91
REXX run-time interface

accessing resource tables 93
EYU_TRACE data 98
function package 91
messages 98
run-time errors 98
STATUS values 98
supported environments 2
translation errors 97
using 91

run-time considerations, command-level 74
run-time errors, REXX 98

S
sample programs

descriptions 11
list of supplied 11
listings 103

scheduling a request 41
scope

description 19
specifying on commands 19

security
considerations 5

selecting managed objects
using context and scope 19
using filter expressions 20

sentinel field
description 42

sorting result set records 34
SPECIFY VIEW command

using 16
status program

CICSPlex SM API 69
STATUS values, interpreting 98
summarized result set

description 32
summarizing result set records 32
summary expression

description 33
summary options

description 34
supported environments 1

T
task related user exit 53
TBUILD command

handling errors 98
using 93

tokens
CICSPlex SM 44
user-defined 42

TPARSE command
handling errors 98
using 93

translating
command-level program 70
resource table attributes

in REXX program 94
RESPONSE and REASON values

using the command-level interface 80
using the run-time interface 80

translation errors, REXX 97

U
UNMARK command

using 29
user tokens 42
user-replaceable program

CICSPlex SM API 69

V
view

description 16

162 CICSPlex SM Application Programming Guide

X
XICEREQ 69

 Index 163

164 CICSPlex SM Application Programming Guide

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the methods listed below to send your
comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on the accuracy, organization, subject
matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which the information is presented.

To request additional publications, or to ask questions or make comments about the functions of IBM products or
systems, you should talk to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any way
it believes appropriate, without incurring any obligation to you.

You can send your comments to IBM in any of the following ways:

� By mail, to this address:

Information Development Department (MP095)
IBM United Kingdom Laboratories
Hursley Park
WINCHESTER,
Hampshire
SO21 2JN
United Kingdom

 � By fax:

– From outside the U.K., after your international access code use 44–1962–870229

– From within the U.K., use 01962–870229

� Electronically, use the appropriate network ID:

– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL

 – IBMLink: HURSLEY(IDRCF)

 – Internet: idrcf@hursley.ibm.com

Whichever you use, ensure that you include:

� The publication number and title

� The topic to which your comment applies

� Your name and address/telephone number/fax number/network ID.

 Copyright IBM Corp. 1995, 1999 165

IBM

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC34-5457-ðð

Spine information:

IBM CICS TS for OS/390 CICSPlex SM Application Programming Guide Release 3

