
CICS Transaction Server for z/OS
Version 5 Release 6

Db2 Guide

IBM

Note

Before using this information and the product it supports, read the information in Product Legal
Notices.

This edition applies to the IBM® CICS® Transaction Server for z/OS®, Version 5 Release 6 (product number 5655-
Y305655-BTA) and to all subsequent releases and modifications until otherwise indicated in new editions.
© Copyright International Business Machines Corporation 1974, 2020.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/documentation/notices.dita
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/documentation/notices.dita

Contents

About this PDF...vii

Chapter 1. Overview of the CICS Db2 interface...1
Overview: How CICS connects to Db2.. 1

The Db2 address spaces.. 2
Overview: How threads work...4

Thread TCBs in the open transaction environment...5
Overview: Enabling CICS application programs to access Db2..7

Preparing a CICS application program that accesses Db2..7
The bind process.. 9
Plans, packages and dynamic plan exits... 9

Chapter 2. Defining the CICS Db2 connection... 11
Overview: How you can define the CICS Db2 connection.. 11
Using the Db2 group attach facility... 13
The MAXOPENTCBS system initialization parameter and TCBLIMIT.. 14
What happens during SQL processing.. 15

Thread creation.. 15
SQL processing... 15
Commit processing...16
Thread release..16
Thread termination...16

How threads are created, used, and terminated.. 17
Protected entry threads... 18
Unprotected entry threads for critical transactions..19
Unprotected entry threads for background transactions... 19
Pool threads..20

Selecting thread types for optimum performance..20
Selecting BIND options for optimum performance.. 21
Coordinating your DB2CONN, DB2ENTRY, and BIND options... 22

Chapter 3. Administering with CICS Db2.. 25
Starting the CICS Db2 attachment facility.. 25
Stopping the CICS Db2 attachment facility.. 25

Automatic disconnection at CICS termination.. 25
Manual disconnection.. 25

Resolving indoubt units of work (UOWs)...26
Resolving indoubt UOWs when using group attach.. 26
Resolving indoubt units of work using Db2 restart-light...27
Recovery of resynchronization information for indoubt UOWs...27

Managing the CICS Db2 attachment facility... 28
Entering Db2 commands... 29
Starting SMF for Db2 accounting, statistics, and tuning...29
Starting GTF for Db2 accounting, statistics and tuning.. 30
CICS-supplied transactions for CICS Db2.. 30

Issuing commands to Db2 using the DSNC transaction... 31
DSNC DISCONNECT... 33
DSNC DISPLAY... 34
DSNC MODIFY.. 37
DSNC STOP...39

 iii

DSNC STRT... 41

Chapter 4. Security for Db2..45
Controlling access to Db2-related resources in CICS.. 46

Controlling users' access to DB2CONN, DB2TRAN, and DB2ENTRY resource definitions................47
Using resource security to control access to DB2ENTRY and DB2TRAN resource definitions......... 47
Using command security to control the issuing of SPI commands against DB2CONN,

DB2ENTRY, and DB2TRAN resource definitions..49
Using surrogate security and AUTHTYPE security to control access to the authorization IDs

that CICS provides to Db2...50
Controlling users' access to Db2-related CICS transactions..52

Providing authorization IDs to Db2 for the CICS region and for CICS transactions................................ 53
Providing authorization IDs to Db2 for a CICS region... 54
Providing a primary authorization ID for a CICS region.. 54
Providing secondary authorization IDs for a CICS region... 55
Providing authorization IDs to Db2 for CICS transactions.. 56
Providing a primary authorization ID for CICS transactions... 57
Providing secondary authorization IDs for CICS transactions..59

Authorizing users to access resources in Db2.. 60
Controlling users' access to Db2 commands.. 60
Controlling users' access to plans... 61

Db2 multilevel security and row-level security.. 63

Chapter 5. Application design and development considerations for CICS Db2........65
Designing the relationship between CICS applications and Db2 plans and packages............................66

A sample application..67
Using Db2 packages... 68
Using one large plan for all transactions... 70
Using many small plans... 71
Using plans based on transaction grouping.. 72
Dynamic plan exits... 72
If you need to create plans for an application that has already been developed.............................. 75
If you need to switch plans within a transaction...75
Dynamic plan switching... 76
Switching transaction IDs in order to switch plans...76

Developing a locking strategy in the CICS Db2 environment...79
SQL, threadsafe and other programming considerations for CICS Db2 applications80

Enabling CICS Db2 applications to use OTE through threadsafe programming................................ 80
SQL language..83
Using qualified and unqualified SQL.. 83
Views...84
Updating index columns...84
Dependency of unique indexes..84
Commit processing...84
Serializing transactions.. 85
Page contention..85
CICS and CURSOR WITH HOLD option..87
EXEC CICS RETURN IMMEDIATE command... 87
Avoiding AEY9 abends... 88

Chapter 6. Using JDBC and SQLJ to access Db2 data from Java programs............. 91
The IBM Data Server Driver for JDBC and SQLJ .. 91
Configuring a JVM server to support Db2... 91

Setting the Db2 schema in a JVM server... 92
Programming to the JDBC and SQLJ APIs.. 92

Deploying a serialized SQLJ profile in a JVM server..93
Acquiring a connection to a database... 93

iv

Acquiring a DriverManager connection to a database.. 94
Acquiring a DataSource connection to a database... 95
JDBC and SQLJ connection considerations...95

Closing a connection to a database...96
Committing a unit of work... 96

Autocommit.. 97
Syncpoint issues for DriverManager with explicit and default URLs.. 97

CICS abends during JDBC or SQLJ requests.. 97

Chapter 7. Preparing CICS Db2 programs for execution and production99
The CICS Db2 test environment..99
CICS Db2 program preparation... 99

CICS SQLCA formatting routine... 102
What to bind after a program change... 103
Bind options and considerations for programs...103

RETAIN... 104
Isolation level...104
Plan validation time..104
ACQUIRE and RELEASE... 104

CICS Db2 program testing and debugging ...104
Going into production: checklist for CICS Db2 applications.. 105
Tuning a CICS application that accesses Db2.. 107

Chapter 8. Monitoring Db2... 109
CICS-supplied accounting and monitoring information...109
Db2-supplied accounting and monitoring information.. 109
Monitoring a CICS Db2 environment: Overview... 110
Monitoring the CICS Db2 attachment facility... 111

Monitoring by using CICS commands..112
Monitoring by using Db2 commands... 112
Monitoring by using CICS Db2 statistics... 112

Monitoring CICS transactions that access Db2 resources... 115
Monitoring Db2 when used with CICS.. 116

Monitoring Db2 using the Db2 statistics facility..116
Monitoring Db2 using the Db2 accounting facility.. 118
Monitoring Db2 using the Db2 performance facility... 118

Monitoring the CICS system in a CICS Db2 environment...118
Accounting in a CICS Db2 environment: Overview...119
Accounting information provided by the Db2 accounting facility.. 119

Data types in Db2 accounting records...120
Db2 accounting reports... 121

Relating Db2 accounting records to CICS performance class records.. 122
What are the issues when matching Db2 accounting records and CICS performance records?.... 123
Controlling the relationship between Db2 accounting records and CICS performance class

records.. 123
Using data in the Db2 accounting record to identify the corresponding CICS performance class

records.. 124
Strategies to match Db2 accounting records and CICS performance class records and charge

resources back to the user... 125
Accounting for processor usage in a CICS Db2 environment.. 127

Accounting CLASS 1 processor time... 132
Accounting CLASS 2 processor time... 133
Calculating CICS and Db2 processor times for DB2 Version 5 or earlier... 133
Calculating CICS and Db2 processor times for Db2... 134

Chapter 9. Troubleshooting Db2...135
Thread TCBs (task control blocks).. 135

 v

Wait types for CICS Db2.. 135
Messages for CICS Db2... 137
Trace for CICS Db2.. 138

CSUB trace... 144
Dump for CICS Db2..146
Db2 thread identification...146
Transaction abend codes for CICS Db2.. 146
Execution Diagnostic Facility (EDF) for CICS Db2.. 147
Handling deadlocks in the CICS Db2 environment.. 148

Two deadlock types... 149
Detecting deadlocks.. 150
Finding the resources involved..150
Finding the SQL statements involved.. 150
Finding the access path used.. 150
Determining why the deadlock occurred.. 151
Resolving deadlocks.. 151

Notices..153

Index.. 159

vi

About this PDF

This PDF provides introductory and guidance information on evaluating, installing, and using the CICS
Db2® attachment facility, and on defining and maintaining your CICS Db2 environment.

For details of the terms and notation used in this book, see Conventions and terminology used in the CICS
documentation in IBM Knowledge Center.

Date of this PDF

This PDF was created on May 28th 2020.

© Copyright IBM Corp. 1974, 2020 vii

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/documentation/conventions.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/documentation/conventions.html

viii CICS TS for z/OS: Db2 Guide

Chapter 1. Overview of the CICS Db2 interface
This section gives an overview of the CICS interface to Db2.

Overview: How CICS connects to Db2
A CICS Db2 attachment facility is provided with CICS. The CICS Db2 attachment facility provides CICS
applications with access to Db2 data while operating in the CICS environment.

CICS coordinates recovery of both Db2 and CICS data if transaction or system failure occurs.

The CICS Db2 attachment facility creates an overall connection between CICS and Db2. CICS applications
use this connection to issue commands and requests to Db2. The connection between CICS and Db2 can
be created or terminated at any time, and CICS and Db2 can be started and stopped independently. You
can name an individual Db2 subsystem to which CICS connects, or (if you have DB2® Version 7 or later)
you can use the group attach facility to let Db2 choose any active member of a data-sharing group of Db2
subsystems for the connection. You also have the option of CICS automatically connecting and
reconnecting to Db2. A Db2 system can be shared by several CICS systems, but each CICS system can be
connected to only one Db2 subsystem at a time.

You define the CICS Db2 connection using three different CICS resource definitions: DB2CONN (the Db2
connection definition), DB2ENTRY (the Db2 entry definition), and DB2TRAN (the Db2 transaction
definition). You must install a DB2CONN resource definition before you can start the CICS Db2
connection. (Do not confuse this resource definition with the DB2CONN system initialization parameter,
which specifies whether you want CICS to start the Db2 connection automatically during initialization.)
You can also create DB2ENTRY and, if necessary, DB2TRAN definitions to ensure that your important
transactions are prioritized. Overview: How you can define the CICS Db2 connection has more information
about these resource definitions.

Attachment commands display and control the status of the CICS Db2 attachment facility, and are issued
using the CICS supplied transaction DSNC. The attachment commands are:

• STRT - start the connection to Db2
• STOP - stop the connection to Db2
• DISP - display the status of threads, and display statistics
• MODI - modify characteristics of the connection to Db2
• DISC - disconnect threads

The connection between CICS and Db2 is a multithread connection. Within the overall connection
between CICS and Db2, there is a thread—an individual connection into Db2—for each active CICS
transaction accessing Db2. Threads allow each CICS transaction to access Db2 resources, such as a
command processor or an application plan (the information that tells Db2 what the application program's
SQL requests are, and the most efficient way to service them). See Overview: How threads work for a full
explanation of how threads work.

When an application program operating in the CICS environment issues its first SQL request, CICS and
Db2 process the request as follows:

• A language interface, or stub, DSNCLI, that is link-edited with the application program calls the CICS
resource manager interface (RMI).

• The RMI processes the request, and passes control to the CICS Db2 attachment facility's task-related
user exit (TRUE), the module that invokes Db2 for each task.

• The CICS Db2 attachment facility schedules a thread for the transaction. At this stage, Db2 checks
authorization, and locates the correct application plan.

• Db2 takes control, and the CICS Db2 attachment facility waits while Db2 services the request.
• When the SQL request completes, Db2 passes the requested data back to the CICS Db2 attachment

facility.

© Copyright IBM Corp. 1974, 2020 1

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/database/dfhtk0a.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/database/dfhtk6h.html

• CICS now regains control, and the CICS Db2 attachment facility passes the data and returns control to
the CICS application program.

The Db2 address spaces
Db2 requires several different address spaces.

Figure 1 on page 3 shows these address spaces.

2 CICS TS for z/OS: Db2 Guide

Connections

CICS DB2 Subsystem

CICS
address space

DSN1SPAS
address space

IRLMPROC
address space

DSN1DIST
address space

DSN1DBM1
address space

DSN1MSTR
address space

Figure 1. The Db2 address spaces

Chapter 1. Overview of the CICS Db2 interface 3

Various tasks are performed in the different address spaces, as follows:

DSN1MSTR
for system services that perform a variety of system-related functions.

DSN1DBM1
for database services that manipulate most of the structures in user-created databases.

DSN1DIST
for distributed data facilities that provide support for remote requests.

IRLMPROC
for the internal resource lock manager (IRLM), which controls Db2 locking.

DSN1SPAS
for stored procedures, which provide an isolated execution environment for user-written SQL.

Overview: How threads work
Each CICS transaction needs its own thread to access Db2.

Threads are created when they are needed by transactions, at the point when the application issues its
first SQL or command request. The transaction uses the thread to access resources managed by Db2.
When a thread is no longer needed by the transaction, because the transaction has accessed all the
resources it needs to use, the thread is released (typically after syncpoint completion). It takes processor
resources to create a thread, so when a thread is released, the CICS Db2 attachment facility checks to
see if another transaction needs a thread. If another transaction is waiting for a thread, the CICS Db2
attachment facility reuses the existing thread for that transaction to access Db2. If the thread is no longer
needed by any transaction, it is terminated, unless you have requested that it should be protected (kept)
for a period of time. A protected thread is reused if another transaction requests it within that period of
time; if not, it is terminated when the protection time expires.

There are different types of thread, and you can set a limit on the number of each type of thread that can
be active at any one time. This prevents the overall CICS Db2 connection from becoming overloaded with
work. A special type of thread is used for Db2 commands issued using the DSNC transaction, and you can
also define special threads for CICS transactions with particular requirements, such as transactions that
require a fast response time. You can define what a transaction must do if no more threads of the type it
needs are available — it can wait until a thread of the right type is available; it can use a general-purpose
thread, called a pool thread; or it can abend.

The types of thread provided by the CICS Db2 attachment facility are:
Command threads

Command threads are reserved by the CICS Db2 attachment facility for issuing commands to Db2
using the DSNC transaction. They are not used for commands acting on the CICS Db2 attachment
facility itself, because these commands are not passed to Db2. When a command thread is not
available, commands automatically overflow to the pool, and use a pool thread. Command threads are
defined in the command threads section of the DB2CONN definition.

Entry threads
Entry threads are specially defined threads intended for transactions with special requirements, such
as transactions that require a fast response time, or transactions with special accounting needs. You
can instruct the CICS Db2 attachment facility to give entry threads to particular CICS transactions.
You define the different types of entry threads that are needed for different transactions, and you can
set a limit on the number of each of these types of entry thread. If a transaction is permitted to use an
entry thread, but no suitable entry thread is available, the transaction can overflow to the pool and
use a pool thread, or wait for a suitable entry thread, or abend, as you have chosen in the definition for
the entry thread.

A certain number of each type of entry thread can be protected. When an entry thread is released, if it
is protected it is not terminated immediately. It is kept for a period of time, and if another CICS
transaction needs the same type of entry thread during that period, it is reused. This avoids the
overhead involved in creating and terminating the thread for each transaction. An entry thread that is

4 CICS TS for z/OS: Db2 Guide

unprotected is terminated immediately, unless a CICS transaction is waiting to use it the moment it is
released.

Entry threads are defined using a DB2ENTRY definition.

Pool threads
Pool threads are used for all transactions and commands that are not using an entry thread or a Db2
command thread. Pool threads are intended for low volume transactions, and for overflow
transactions that could not obtain an entry thread or a Db2 command thread. A pool thread is
terminated immediately if no CICS transaction is waiting to use it. Pool threads are defined in the pool
threads section of the DB2CONN definition.

For more detailed information on how the different types of thread are created, used and terminated, see
How threads are created, used, and terminated.

Each thread runs under a thread task control block (thread TCB) that belongs to CICS. CICS and Db2 both
have connection control blocks linked to the thread TCB. They use these connection control blocks to
manage the thread into Db2, and to communicate information to each other about the thread. The Db2
connection control block controls the thread within Db2. The CICS connection control block, called the
CSUB, acts as a pointer to the Db2 connection control block, and contains the information CICS requires
to call the Db2 connection control block when the thread is needed. Db2 calls these connection control
blocks “agent structures”.

While CICS is connecting to a Db2 subsystem, the CICS Db2 task-related user exit (the module that
invokes Db2 for each task) is automatically enabled as open API, so it can use the open transaction
environment (OTE).

Both types of TCB that the CICS Db2 attachment facility uses to run the threads, the open TCBs and the
subtask TCBs, are referred to in this documentation as “thread TCBs”. In many situations, the different
nature of the two types of thread TCB does not lead to any differences in the operation of the CICS Db2
connection. Where the different types of thread TCB do cause the CICS Db2 connection to behave
differently, a distinction is made between the two types. For more technical information on thread TCBs,
see Thread TCBs (task control blocks).

Thread TCBs in the open transaction environment
When CICS is connected to DB2 Version 7 or later, or JDBC 2.0 or later, it uses the open transaction
environment. In this environment, the CICS Db2 attachment facility uses open TCBs (L8 mode) as the
thread TCBs, rather than using specially created subtask TCBs.

Open TCBs perform other tasks besides accessing Db2 resources. In the open transaction environment,
the CICS Db2 task-related user exit runs on an open TCB rather than on the CICS main TCB. If the
application program that made the Db2 request is threadsafe, it can also run on the open TCB. (See
Enabling CICS Db2 applications to use OTE through threadsafe programming for more information on
application programs in the open transaction environment.)

Open TCBs are not permanently associated with a CSUB and Db2 connection control block. The CICS Db2
attachment facility can associate them with any CSUB and Db2 connection control block that are
available, and therefore with any thread that is available. When the open TCB no longer needs the
connection to Db2, it dissociates from, or releases, the thread, CSUB and Db2 connection control block.
The thread, CSUB and Db2 connection control block can then be used by a different open TCB for the
tasks it wants to perform in Db2.

If the thread is terminated before it is reused, the CSUB and Db2 connection control block remain
available in the system. If no existing threads are available, and an open TCB needs a connection to Db2,
the CICS Db2 attachment facility can associate the unused CSUB and Db2 connection control block with
the open TCB, and reuse them to run a new thread into Db2.

Figure 2 on page 6 summarizes how thread TCBs operate in the open transaction environment.

Chapter 1. Overview of the CICS Db2 interface 5

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/databases/dfhtk2h.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/dfhtk5u.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/database/dfhtk6i.html

Figure 2. Thread TCBs in the open transaction environment

In Figure 2 on page 6, situation 1 shows CICS using a thread to access Db2 in the open transaction
environment. The CICS Db2 task-related user exit has been invoked by the Resource Manager Interface
(RMI), and it is operating on an open TCB. The CICS Db2 attachment facility has associated a CSUB and a
Db2 connection control block with the open TCB. The Db2 connection control block has a thread into Db2.
The plan associated with the thread is held in Db2.

Situation 2 shows a thread that is not currently in use, but is protected. The CSUB and Db2 connection
control block are still linked to each other and have a thread, but no open TCB is attached to them. The
thread is available for reuse.

Situation 3 shows an assembly that remains after a thread was terminated. The CSUB and Db2
connection control block are available for reuse. They need a new thread.

Situation 4 shows open TCBs that are available for reuse. The CICS Db2 attachment facility can use these
open TCBs and associate CSUB and Db2 connection control block assemblies with them to run threads
into Db2.

6 CICS TS for z/OS: Db2 Guide

Overview: Enabling CICS application programs to access Db2
A CICS application program that accesses Db2 must be prepared in the same way as a normal CICS
application program, and must also go through the Db2 bind process to produce an application plan.

About this task

The Db2 bind process produces an application plan (often just called a “plan”). Each plan contains the
bound form of all the SQL statements from the application programs that use it, and it allows those
application programs to access Db2 data at run time.

The plans are held in Db2, and each thread into Db2 relates to a plan. The plan that each type of thread
uses is named on the DB2CONN definition (for pool threads) or the thread's DB2ENTRY definition (for
entry threads). The plan for a particular type of thread must contain the bound form of the SQL
statements from all the application programs that use that type of thread to access Db2. You can either
name the plan explicitly or name a dynamic plan exit. A dynamic plan exit is a routine that determines
which plan to use for the transaction that has requested a thread of that type.

Preparing a CICS application program that accesses Db2
A CICS application program that access DB must be put through a number of processes to build a DBRM
and create the application load module before it enters the bind process.

About this task

Figure 3 on page 8 shows the steps in preparing a CICS application program to access Db2.

The first step is to put the program through the Db2 precompiler. The Db2 precompiler builds a database
request model (DBRM) that contains information about each of the program's SQL statements.

The second, third and fourth steps are the normal process for preparing any CICS application program,
whether or not it accesses Db2. The second step is to put the program through the CICS command
language translator. The third step is to compile or assemble the program. The fourth step is to link-edit
the program with the necessary interfaces (including the CICS Db2 language interface module DSNCLI).
The end product of Steps 2, 3 and 4 is an application load module that enables the program to run. For
more information on these steps, see CICS Db2 program preparation.

An extra step is required to enable the program to use the information in the DBRM that was created in
Step 1. This fifth step is the bind process. The bind process requires Db2, and it uses the DBRM to
produce an application plan that enables the program to access Db2 data. See “The bind process” on
page 9 for an explanation of the bind process.

If you are using one of the Language Environment®-conforming compilers for COBOL and PL/I, you can
combine some of these steps into a single task, because these compilers have integrated the CICS
command language translator, and (depending on your version of Db2) an SQL statement coprocessor.
See CICS Db2 program preparation for more information.

Chapter 1. Overview of the CICS Db2 interface 7

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/deploying/dfhtk20.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/deploying/dfhtk20.html

USER JCL AND SUBMIT TO BATCH
OR

DB2I

DB2 PRECOMPILER DBRM(1)

(2)

(3)

(4)

(5)

CICS COMMAND LANGUAGE
TRANSLATOR

COMPILE OR ASSEMBLE PROGRAM

LINK EDIT WITH INTERFACES

APPLICATION LOAD MODULE

(5) BIND

PLAN

Figure 3. Steps to prepare a CICS application program that accesses Db2

8 CICS TS for z/OS: Db2 Guide

The bind process
Before a CICS application that accesses Db2 can run, it must go through the bind process.

For the bind process, you require:

• Db2
• The DBRM (database request module) produced by the Db2 precompiler for each program in the

application.

The DBRM contains the SQL statements that the Db2 precompiler has extracted from the application
program. In the bind process, the SQL statements in the DBRM are put into an operational (“bound”)
form, by being translated into the control structures that Db2 uses when it runs SQL statements. The
resulting material can be made into a package, or it can be placed straight into an application plan (see
“Plans, packages and dynamic plan exits” on page 9). The whole process is called “binding” the DBRM.
For more information on binding, see Programming for Db2 for z/OS in Db2 for z/OS product
documentation. See Bind options and considerations for programs for more detail on options you should
choose during the bind process in the CICS Db2 environment.

Plans, packages and dynamic plan exits
An application plan allows application programs to access Db2 data at execution time. The plan contains
the bound, operational, form of the SQL statements from the DBRMs that were built from the application
programs. It also relates the whole application process to the local instance of Db2 where it will be used.

The operational SQL statements from a DBRM can be placed straight into the plan, in which case we say
that the DBRM is bound into a plan. Alternatively, you can bind a DBRM into a package (using the BIND
PACKAGE command), which contains the operational SQL statements from a single DBRM. You can group
related packages into collections. You can then include the package name or collection name in a list of
packages, and bind the list of packages into the plan. A single plan can contain both a package list, and
DBRMs bound directly into the plan. You can create a plan using the DBRMs from a single CICS
application, or you can use the DBRMs from more than one application to create a single plan. Designing
the relationship between CICS applications and Db2 plans and packages discusses the advantages and
disadvantages of different designs for your plans and packages.

As well as being created, application plans need to be maintained. If the SQL statements change in one or
more of the application programs using a plan, you need to rebuild the DBRMs for the changed application
programs. If you bound the old versions of those DBRMs directly into your plan, you need to identify all
the DBRMs that are bound directly into that plan, for both the changed programs and any unchanged
programs, and bind them all into the plan again. While you are binding the DBRMs into the plan,
applications cannot use the plan to access Db2. However, if you bound the old versions of the DBRMs for
the changed application programs into packages, and then included the names of the packages (or of the
collections containing them) on the package list in the plan, you do not need to bind any other packages
or directly-bound DBRMs into the plan again. You bind the new versions of the DBRMs for the changed
application programs into packages with the same names as the old versions. You do not need to bind the
plan again—it locates the new versions of the packages. While you are changing the packages, application
programs can still use the other packages and directly-bound DBRMs in the plan. See What to bind after a
program change for more information on maintaining plans.

Each thread into Db2 relates to a plan—see “Overview: How threads work” on page 4 for more
information about threads. The plan that each type of thread uses is named on the DB2CONN definition
(for pool threads) or the thread's DB2ENTRY definition (for entry threads). When CICS requests the use of
a thread for an application to access Db2, it tells Db2 the name of the plan associated with that type of
thread, and Db2 locates the plan. The definition for each type of thread can either name a specific plan, or
it can name a dynamic plan exit, a routine that determines which plan to use for the transaction that has
requested the thread.

If the definition of the pool thread or entry thread names a specific plan, all the transactions that use that
type of thread must use that plan. The transactions that can use a type of entry thread are specified in the
DB2ENTRY and DB2TRAN definitions for the thread. If the DB2ENTRY definition for the thread names a
specific plan, the DBRMs from all the application programs that could run under all those transaction IDs
must be bound into the same plan, or bound into packages that are then listed in the same plan. If the

Chapter 1. Overview of the CICS Db2 interface 9

https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/nav/src/tpc/db2z_applicationprogrammingfordb2.html
https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/nav/src/tpc/db2z_applicationprogrammingfordb2.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/deploying/dfhtk22.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/database/dfhtk2a.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/database/dfhtk2a.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/deploying/dfhtk21.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/deploying/dfhtk21.html

DBRMs from any of the application programs that run under those transaction IDs are bound directly into
the plan, and you change the SQL statements in any of those application programs, the whole plan will be
inaccessible while you bind all the directly-bound DBRMs into the plan again. This means that no
transaction can use that type of entry thread while you are maintaining the plan. Pool threads could be
used by any of your CICS applications that access Db2, so if the DB2CONN definition names a specific
plan for the pool threads, the plan needs to be prepared and maintained using the DBRMs from all those
applications. If any of the DBRMs have been bound directly into the plan, the whole plan will be
inaccessible during maintenance, and no transaction will be able to use a pool thread.

There are two ways to avoid making types of thread unavailable while you are maintaining plans. The best
solution is to avoid binding DBRMs directly into plans, by using packages instead. If you bind each
separate DBRM as a package and include them in package lists in plans, the plans are still accessible
while you are maintaining individual packages. While you are carrying out maintenance work on a
particular program, the pool threads or entry threads related to plans involving that program are still
available, because the plans are still accessible. This means that you can safely name a specific plan for
each thread. If you want to start using packages, see Using Db2 packages and Programming for Db2 for
z/OS in Db2 for z/OS product documentation for details of how to implement packages.

An alternative solution, developed before packages were available in Db2, is to use a dynamic plan exit.
Using a dynamic plan exit means that you do not have to name a specific plan for each type of thread, so
even when a particular plan is inaccessible during maintenance, the threads are still available. To
implement this solution, you create many small plans for your CICS applications, each containing the
DBRMs from a few closely-related programs. Then, instead of specifying a plan name in the PLAN
attribute of the DB2CONN or DB2ENTRY definition for each type of thread, you specify an exit program in
the PLANEXITNAME attribute. When an application program issues its first SQL statement and a certain
type of thread is requested, the exit program that you have specified in the thread definition selects the
plan to use for that application program. If a particular plan is inaccessible during maintenance, the
application programs requiring that plan cannot use a thread, but other application programs can use the
same type of thread with their own plans. However, note that once a particular instance of a type of
thread has been created for an application program to use, that thread instance is associated with the
plan that the dynamic plan exit selected. For another application program to reuse the thread, it must use
the same plan. If the dynamic plan exit selects a different plan for the application program, it must find or
create a different thread with the correct plan. This reduces the opportunities for thread reuse. See
Dynamic plan exits for more information on dynamic plan exits.

10 CICS TS for z/OS: Db2 Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/database/dfhtk77.html
https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/nav/src/tpc/db2z_applicationprogrammingfordb2.html
https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/nav/src/tpc/db2z_applicationprogrammingfordb2.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/database/dfhtk62.html

Chapter 2. Defining the CICS Db2 connection
The structure and performance of your CICS Db2 connection is determined when you define the
DB2CONN, DB2ENTRY, and DB2TRAN objects.

About this task

The DB2CONN, DB2ENTRY, and DB2TRAN objects describe the global attributes of the CICS Db2
connection, the relationship between CICS transactions and Db2 resources (including application plans
and command processors), the attributes of each type of thread, and the type of thread that each
transaction can use.

Overview: How you can define the CICS Db2 connection
Defining the CICS Db2 connection involves three different CICS resource definitions: DB2CONN (the Db2
connection definition), DB2ENTRY (the Db2 entry definition), and DB2TRAN (the Db2 transaction
definition).

The CICS Db2 connection consists of an overall connection between CICS and Db2, and individual
connections known as threads. You can use these resource definitions to define the attributes of the
overall connection, and the attributes of the different types of thread. If you have specially defined entry
threads for key transactions, you can tell the CICS Db2 attachment facility which CICS transactions can
use those threads.

There are several ways to define DB2CONN, DB2ENTRY, and DB2TRAN objects to CICS. You can:

• Define and install DB2CONN, DB2ENTRY, and DB2TRAN objects using the IBM CICS Explorer®.
• Use CICSPlex® SM to define the objects.
• Define and install DB2CONN, DB2ENTRY, and DB2TRAN objects using RDO.
• Define the objects using the CICS batch utility DFHCSDUP.

The scope of each object is as follows:

DB2CONN

DB2CONN is the main definition for the CICS Db2 connection. You must install a DB2CONN resource
definition before you can start the CICS Db2 connection. You use the DB2CONN definition to define the
following items:

• The attributes of the overall CICS Db2 connection:

– The Db2 subsystem to which CICS connects, or the data-sharing group of Db2 subsystems from
which Db2 picks an active member for CICS to connect to.

– If the connection to Db2 fails, whether CICS reconnects automatically or not, and, if you are using the
group attach facility, whether CICS reconnects to the same Db2 subsystem or not.

– A general-purpose authorization ID for the CICS Db2 attachment facility to sign on to a thread, if no
other authorization is needed for the thread.

– The limit on the total number of TCBs that CICS can use to run threads into Db2 at any one time.
– How long protected threads are kept before termination.
– The limit on the number of times a thread can be reused before being terminated.
– How error messages are communicated to CICS, and what transactions should do if their thread fails.
– Where messages and statistics are sent.

• The attributes of command threads, which are the special threads used by the DSNC transaction for
issuing Db2 commands:

– The limit on the number of command threads that CICS can use at any one time.

© Copyright IBM Corp. 1974, 2020 11

– What type of authorization ID Db2 checks when a command thread is requested (for example, the ID
of the user, the ID of the transaction, and the general-purpose CICS Db2 attachment facility ID).

• The attributes of pool threads, which are the general-purpose threads that are used when transactions
do not need a special command or entry thread, or when there are no special threads left for a
transaction to use:

– What type of authorization ID Db2 checks when a pool thread is requested (for example, the ID of the
user, the ID of the transaction, the general-purpose CICS Db2 attachment facility ID).

– What the priority of the thread TCBs is relative to the CICS main TCB.
– The limit on the number of pool threads that CICS can use at any one time.
– If a transaction cannot get a pool thread, whether it should wait for one, or be abended.
– What application plan or dynamic plan exit is used for the pool threads (see Plans, packages and

dynamic plan exits).
– At what point during a transaction's use of the thread Db2 accounting records are produced.
– If there is a deadlock, whether changes made by the transaction using the thread are rolled back.

You can have only one DB2CONN definition installed in a CICS system at one time, and all the DB2ENTRY
and DB2TRAN definitions that you install in the system are associated with the DB2CONN definition. If
you discard a DB2CONN definition, all the DB2ENTRY and DB2TRAN definitions are discarded as well. You
cannot discard a DB2CONN definition and install another one while CICS is connected to Db2.

Do not confuse the DB2CONN resource definition with the DB2CONN system initialization parameter,
which specifies whether you want CICS to start the Db2 connection automatically during initialization.

You can start the CICS Db2 connection with only a DB2CONN definition installed; you do not need any
DB2ENTRY and DB2TRAN definitions to make the connection. If you do this, there are no special threads
for key transactions (entry threads). All transactions use general-purpose threads from the pool, and the
most important transactions have to wait just as long as the least important transactions to get their
individual connection into Db2. To ensure that your important transactions are prioritized, create
DB2ENTRY and, if necessary, DB2TRAN definitions for them.

DB2ENTRY

You can set up many DB2ENTRY definitions to define different types of entry threads. The entry threads
can be used by the transactions that you specify, to gain priority access (or specialized access) to Db2
resources. In effect, you are reserving a certain number of threads that can only be used by those
transactions. You can also protect a number of each type of entry thread, which improves performance for
heavily-used transactions.

In a DB2ENTRY definition, you can specify a particular transaction, or (by using a wildcard) a group of
transactions, that are associated with the DB2ENTRY and can use the type of entry thread that it defines.
When those transactions request a thread, the CICS Db2 attachment facility gives them that type of entry
thread, if one is available. If you want other transactions to use the same type of entry thread, you can
create a DB2TRAN definition for those transactions, which tells CICS that the transactions are associated
with a particular DB2ENTRY.

You use each DB2ENTRY definition to define the following items:

• A transaction, or (by using a wildcard in the name) a group of transactions, that can use this type of
entry thread.

• The attributes of this type of entry thread:

– What type of authorization ID Db2 checks when this type of entry thread is requested (for example,
the ID of the user, the ID of the transaction, and the general-purpose CICS Db2 attachment facility
ID).

– What the priority of the thread TCBs is relative to the CICS main TCB.
– The limit on the number of this type of entry thread that CICS can use at any one time.

12 CICS TS for z/OS: Db2 Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/database/dfhtk6o.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/database/dfhtk6o.html

– The number of this type of entry thread that are protected for a period of time while they are not
being used.

– If a transaction associated with the DB2ENTRY cannot get this type of entry thread, whether it should
wait for this type of entry thread, overflow to use a pool thread, or be abended.

– What application plan or dynamic plan exit is used for this type of entry thread (see Plans, packages
and dynamic plan exits).

– At what point during a transaction's use of the thread Db2 accounting records are produced.
– If there is a deadlock, whether changes made by the transaction using the thread are rolled back.

You cannot discard a DB2ENTRY while transactions are using that type of entry thread. You must disable
it first, to quiesce activity on the DB2ENTRY, and then discard it. If you discard a DB2ENTRY, the
DB2TRANs associated with it are “orphaned”, and the transactions listed in them will use pool threads.

If you are using CECI, the command-level interpreter transaction, to test the syntax of CICS commands in
an application program, be aware that in this situation, CICS uses the transaction ID CECI to check for
matching DB2ENTRY definitions. If you have set up a DB2ENTRY for your application program and you
want to replicate it when using CECI, set up a DB2ENTRY with the same properties for the CECI
transaction.

DB2TRAN

You can use DB2TRAN definitions to associate additional transactions with a particular DB2ENTRY. The
transactions then use that type of entry thread. Only one DB2TRAN definition can be installed for a
specific transaction. In each DB2TRAN definition, you specify the following items:

• The name of a DB2ENTRY.
• A transaction, or (by using a wildcard in the name) a group of transactions, that are associated with the

particular DB2ENTRY and can use this type of entry thread.

When those transactions request a thread, the CICS Db2 attachment facility sees that they are associated
with the particular DB2ENTRY, and treats them like the transaction or transactions named on the
DB2ENTRY definition itself.

Using the Db2 group attach facility
When you are defining the connection between CICS and Db2, you can choose to have CICS connect to a
specific Db2 subsystem.

About this task

You can specify the name of this Db2 subsystem using the DB2ID attribute of the DB2CONN definition.
However, if you have multiple Db2 subsystems that are using DB2 Version 7 or later, you might want to
use the Db2 group attach facility to make it possible for CICS to connect to any of your subsystems, rather
than just one named subsystem.

Group attach is a Db2 facility that allows CICS to connect to any one member of a data-sharing group of
Db2 subsystems, rather than to a specific Db2 subsystem. The group attach facility chooses any one
member of the group that is active on the local MVS™ image for the connection to CICS (members that are
active on other MVS images are not eligible for selection).

To use the group attach facility:

Procedure

1. Activate the group attach facility using the DB2GROUPID attribute of the DB2CONN definition. Specify
the group attach name for the group of Db2 subsystems, instead of using the DB2ID attribute to
specify the ID of an individual Db2 subsystem.
With DB2 Version 10, you can also use a subgroup attach name to identify a subset of the group. Group
attach means that you can use a common DB2CONN definition, specifying a DB2GROUPID, across
multiple cloned AORs, and CICS connects to any active member of that data-sharing group or

Chapter 2. Defining the CICS Db2 connection 13

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/database/dfhtk6o.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/database/dfhtk6o.html

subgroup. See DB2CONN resources for information about how to define and install a DB2CONN
definition.

2. Specify the RESYNCMEMBER attribute of the DB2CONN definition to resolve any indoubt units of work
if the connection between CICS and Db2 is broken.
If the connection is broken, CICS might not reconnect to the same Db2 subsystem - it might choose a
different member of the data-sharing group of Db2 subsystems. This means that if indoubt UOWs are
being held by the first Db2 subsystem to which CICS connected, they cannot be resolved. See
Resolving indoubt units of work (UOWs) for information about the RESYNCMEMBER attribute and how
to set it.

3. After the connection has been established, use the INQUIRE DB2CONN DB2ID() command to find
out which member of the data-sharing group has been chosen for the current connection.

4. If you want CICS to connect to a specific Db2 subsystem, you can override the group attach.
For example, if you want CICS to connect to the Db2 subsystem with an ID of “xyz”, you can specify
the DB2ID using:

• A SET DB2CONN DB2ID(xyz) command
• A DSNC STRT xyz command (see DSNC STRT)

Each of the previous methods overrides group attach by setting a DB2ID in the installed DB2CONN
definition.

Results
Specifying a DB2ID in the previous steps causes the DB2GROUPID attribute of the installed DB2CONN
definition to be blanked out. If you want to revert to using group attach, set the DB2GROUPID attribute
again using a SET DB2CONN DB2GROUPID() command. However, specifying a DB2ID on the
INITPARM=(DFHD2INI=db2id) system initialization parameter does not override group attach. If a
DB2GROUPID is set in the DB2CONN definition, the INITPARM setting is ignored. See INITPARM system
initialization parameter for more information about this parameter.

The MAXOPENTCBS system initialization parameter and TCBLIMIT
As well as the DB2CONN, DB2ENTRY, and DB2TRAN objects you define, the CICS Db2 connection is
affected by a system initialization parameter, MAXOPENTCBS. MAXOPENTCBS controls the total number
of L8 and L9 mode open TCBs that the CICS region can have in operation at any time.

MAXOPENTCBS is relevant when CICS is connected to Db2 because CICS uses L8 and L9 mode open
TCBs to run threads into Db2. L8 and L9 mode open TCBs are reserved for use by task-related user exits
that are enabled with the OPENAPI option. These include the CICS Db2 task-related user exit.

In the open transaction environment, the TCBLIMIT attribute of the DB2CONN definition controls how
many of the L8 and L9 mode open TCBs can be used by the CICS Db2 task-related user exit to run threads
into Db2. If the TCBLIMIT is reached, the CICS Db2 task-related user exit can obtain a TCB from the pool
controlled by MAXOPENTCBS, but it must wait before it can use the TCB to run a thread into Db2. When
another task stops using its L8 or L9 mode TCB to run a thread into Db2, and so the number of TCBs in
use running threads falls below TCBLIMIT, the waiting task is allowed to use its own L8 or L9 mode TCB
to run a thread into Db2. However, if MAXOPENTCBS is reached, no more L8 and L9 mode open TCBs are
allowed in the CICS region, and the CICS Db2 task-related user exit cannot even obtain an L8 or L9 mode
TCB for its use. It must wait until an L8 mode TCB or an L9 mode TCB (used by OPENAPI programs) is
released by another task and returned to the pool controlled by MAXOPENTCBS. If an L8 TCB is released,
the task can use this TCB, if it was an L9 TCB that was released then CICS "steals" the TCB, meaning it
detaches the L9 TCB and attaches an L8 TCB in its place for the task to use.

To ensure that you have enough L8 and L9 mode open TCBs available to meet your Db2 workload, set the
limit in your MAXOPENTCBS system initialization parameter to a value greater than the limit set in the
TCBLIMIT attribute of your DB2CONN definition. If MAXOPENTCBS is lower than TCBLIMIT, the system
can run out of L8 and L9 mode open TCBs before it reaches TCBLIMIT. When CICS connects to Db2, a
warning message, DFHDB2211, is issued if the CICS Db2 attachment facility detects that the setting of

14 CICS TS for z/OS: Db2 Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/db2conn/dfha4_summary.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfhtk0k.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfhtk0t.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/sit/dfha2_initparm.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/sit/dfha2_initparm.html

MAXOPENTCBS in the SIT is lower than the TCBLIMIT setting in the DB2CONN definition. If you receive
this warning message, adjust your MAXOPENTCBS limit.

In addition, when running with Transaction Isolation active, set MAXOPENTCBS to the value of max tasks
(MXT) or higher. This setting minimizes the possibility of TCB stealing due to a TCB being allocated to the
wrong subspace.

What happens during SQL processing
The main Db2 activities involved in processing CICS transactions with SQL calls are: thread creation, SQL
processing, commit processing, thread release, and thread termination.

These main activities are performed for each transaction. The exact work involved in each activity
depends on the DB2CONN and DB2ENTRY options, the BIND options, and whether packages are used.

Thread creation
At thread creation time a number of activities occur, these activities include the plan authorization check,
which must always happens.

The following activities can occur at thread creation time, depending on the BIND options that have been
specified:

• Sign on.
• Check the maximum number of threads.
• For an application plan, load the skeleton cursor table (SKCT) and header, if not already in the

environmental description manager (EDM) pool.
• Create a copy of the SKCT header in the cursor table (CT).
• Perform the plan authorization check.

The control block for an application plan, the SKCT, is divided into sections. The header and directory of
an SKCT contain control information; SQL sections contain SQL statements from the application. A copy of
the SKCT, the CT, is made for each thread executing the plan. Only the header and directory are loaded
when the thread is created, if they are not already in the EDM pool.

The SQL sections of the plan segments are never copied into the CT at thread creation time. They are
copied in, section by section, when the corresponding SQL statements are executed. For a protected
thread with RELEASE(DEALLOCATE), the CT increases in size until all segments have been copied into the
CT.

If the SQL statements for the transaction are bound to a package rather than a plan, Db2 uses a skeleton
package table (SKPT) rather than an SKCT, and a package table (PT) rather than a CT. The SKPT is
allocated when the first SQL statement is executed; it is not allocated when the thread is created.

SQL processing
For each SQL statement that is processed there are a number of activities that can occur. These activities
vary depending on thread reuse and the BIND options.

• For the first SQL call in a transaction reusing a thread with a new authorization ID the following actions
can occur:

– Signon
– Authorization check

• Load the SKCT SQL section, if it is not already in the EDM pool.
• Create a copy of the SKCT SQL section in the CT, if it is not already there.
• Acquire referenced TS locks, if not already taken.
• Load DBDs in the EDM pool, if they are not already there.
• Process the SQL statement.

Chapter 2. Defining the CICS Db2 connection 15

If the SQL statement is in a package, the SKPT directory and header are loaded. The PT is allocated at
statement execution time, rather than at thread creation time, as in the case with the SKCT and the CT for
binding plans.

Commit processing
At commit time a number of activities can occur, these activities include the releasing of page locks and
TS locks.

The following activities can occur at commit time, depending on your BIND options:

• Release the page locks
• If RELEASE(COMMIT) is specified:

– Release the TS locks
– Free the CT pages.

Thread release
Transactions release the thread they are using at different times depending on whether the transaction is
terminal-oriented and the options that have been specified.

If the transaction is terminal-oriented, or if it is non-terminal-oriented 1 and NONTERMREL=YES is
specified in the DB2CONN, the thread is released at SYNCPOINT as well as at end of task (EOT). This
makes it efficient to use a protected thread for transactions issuing many SYNCPOINTS, if combined with
the BIND options ACQUIRE(USE) and RELEASE(DEALLOCATE). In this case the resources to do the
following activities are saved for each syncpoint:

• Terminate and start the thread.
• Release and acquire the TS locks.
• Release and copy segments of the plan into the CT.

Threads are not released at SYNCPOINT time if:

• Held cursors are open.
• Certain Db2 modifiable special registers are not at their initial value. SQL: The language of Db2 in Db2

for z/OS product documentation lists these special registers.
• The Db2 modifiable special register, CURRENT DEGREE, is ever changed during the lifetime of the CICS

task.

If the transaction is not terminal-oriented and you specify NONTERMREL=NO, the thread is released at
EOT only. You do not need to use a protected thread to get thread reuse after an EXEC CICS
SYNCPOINT command. You may still want to use a protected thread if this is a frequently used
transaction. The BIND options ACQUIRE(USE) and RELEASE(DEALLOCATE) give the same advantages as
for the terminal-oriented transactions with many syncpoints.

Note: 1 Non-terminal-oriented transactions are transactions that are not associated with a terminal.

Thread termination
At thread termination time a number of activities can occur, these activities include the release of TS
locks and freeing work storage.

The following activities can occur at thread termination time, depending on the BIND options:

• If RELEASE(DEALLOCATE) is specified:

– Release TS locks
– Free CT pages

• Free work storage.

16 CICS TS for z/OS: Db2 Guide

https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/sqlref/src/tpc/db2z_structuredquerylanguage.html
https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/sqlref/src/tpc/db2z_structuredquerylanguage.html

How threads are created, used, and terminated
Three main types of threads are used by the CICS Db2 attachment facility: command threads, entry
threads, and pool threads. There are specific rules that apply to thread creation, use, and termination.

When CICS is connected to Db2, the thread TCB is the open TCB on which the CICS Db2 attachment
facility is already running. When it needs to run a thread, the CICS Db2 attachment facility associates the
open TCB with the Db2 connection control block and thread it wants to use, and the open TCB then runs
the thread. When the thread is no longer needed, the open TCB dissociates from it, and the Db2
connection control block and thread become available for reuse by another open TCB.

The following general rules apply to thread creation, use, and termination:

• When CICS is connected to Db2 and is using open TCBs as the thread TCBs, before an SQL request can
be passed to Db2 a thread must be available for the transaction. The open TCB associates itself with the
thread, and becomes the thread TCB until it dissociates from the thread.

• When a thread is created and another transaction with a new authorization ID is reusing a thread, Db2
makes an authorization check for the new authorization ID.

• A terminal-oriented transaction typically releases the thread at sync point and end-of-task. The thread
is not released at sync point if held cursors are open or any modifiable special registers are not in their
initial state.

• A non-terminal-oriented transaction releases the thread at end-of-task only, unless NONTERMREL=YES
is specified in the DB2CONN.

• When a transaction releases a thread, the thread can be reused by another transaction that is specifying
the same plan and that is defined in the same DB2ENTRY. Pool threads can be reused by any waiting
(queued) transaction that is specifying the same plan and using a pool thread.

• An unprotected thread is terminated immediately it is released, unless another transaction is waiting
(queued) for the thread.

• A protected thread is terminated if it is not used during two consecutive purge cycles. With default
settings, this averages about 45 seconds. This value can be modified by the PURGECYCLE parameter of
the DB2CONN.

• A thread is canceled and terminated if it is active in Db2 at the time the CICS task that is using the
thread is purged or forcepurged.

• The REUSELIMIT parameter of the DB2CONN specifies the maximum number of times a thread can be
reused before it is terminated. The reuse limit applies to unprotected threads both in the pool and on a
DB2ENTRY, and to protected DB2ENTRY threads.

• The THREADWAIT parameter defines whether the requests for a thread should be queued, abended, or
sent to the pool thread in the case of a shortage of entry or command threads. If THREADWAIT=YES is
specified instead of THREADWAIT=POOL the transaction is queued rather than sent to the pool thread.
Using THREADWAIT=YES avoids the thread initialization and termination overhead. If a transaction is
made to wait because of the lack of entry threads, the CICS Db2 attachment facility queues the
transaction. The advantages of this queuing are that, when the entry thread finishes its current piece of
work, it continues with the next transaction immediately.

• TCBLIMIT specifies the maximum number of TCBs that can be used to run Db2 threads, which, in turn,
limits the maximum number of active Db2 threads. THREADLIMIT specifies the maximum number of
active Db2 threads. THREADLIMIT is modified dynamically. CTHREAD is specified in ZPARMS, and it
defines the number of concurrent threads for all of Db2. The sum of all the active threads from TSO
users, all CICS and IMS systems and other systems accessing Db2 should not exceed CTHREAD.
Otherwise, the result could be unpredictable response times. When this occurs, a CICS Db2 attachment
facility "create thread" request is queued by Db2, and the CICS transaction is placed is a wait state until
a thread is available.

CICS manages the total number of L8 and L9 mode TCBs that the CICS region has in operation at any
one time. The maximum number of L8 and L9 mode TCBs in the open TCB pool is controlled by either
the MXT or MAXOPENTCBS system initialization parameters. The MAXOPENTCBS system initialization
parameter, if specified, sets the value for the open TCB pool. If the MAXOPENTCBS system initialization

Chapter 2. Defining the CICS Db2 connection 17

is not specified, CICS sets the limit for the L8 and L9 mode open TCB pool automatically based on the
maximum number of tasks specified for the CICS region (the MXT value), using the formula (2 * MXT
Value) + 32. In the open transaction environment, TCBLIMIT controls how many of these open TCBs
can be used by the CICS Db2 task-related user exit to run threads into Db2. If the limit set by CICS is
reached, no more open TCBs are allowed in the CICS region, and the CICS Db2 task-related user exit
cannot obtain an open TCB for its use.

Each thread linking CICS to Db2 has a corresponding TCB in the CICS address space. Too many TCBs
per address space involve the MVS dispatcher scanning the TCBs to identify an active TCB. If there are a
large number of TCBs, there could be a significant cost of processor time. However, if you have too few
TCBs available to meet your Db2 workload, transactions must wait to obtain a TCB.

Increasing the TCBLIMIT value or setting up an additional CICS system with access to the same Db2
system may require increasing the CTHREAD parameter of Db2.

For a protected entry thread environment, review the number of application plans and, if possible,
reduce the number of plans by combining infrequently used ones while balancing the issues of plan size
and security. Initially, you should start with one thread per plan. In a high-volume transaction
processing environment, you can estimate the initial number by using the occupancy time of a thread by
a transaction and multiplying it with the expected transaction rate. For example, an occupancy time of
0.2 seconds and a transaction rate of 20 transactions per second (0.2 x 20) would give an initial thread
number of between three and four.

Protected entry threads
Protected entry threads are defined with the following DB2ENTRY parameters: PROTECTNUM(n) and
THREADLIMIT(n)

Protected entry threads are recommended for:

• High-volume transactions of any type
• Terminal-oriented transactions with many commits
• Non-terminal-oriented transactions with many commits (if NONTERMREL=YES is specified in the

DB2CONN)

Protected entry threads are created, used, and terminated as follows:
TCB attach

When CICS is connected to Db2, and is using the open transaction environment, a new or existing
open TCB is allocated to the CICS task before calling the CICS Db2 attachment facility. If the limit set
automatically by CICS for the number of L8 and L9 mode open TCBs is reached, no more open TCBs
can be created, and the task enters a CICS dispatcher wait until an open TCB is available. At the end
of the task, the open TCB is returned to the pool of open TCBs managed by the CICS dispatcher.

Thread creation
A thread is created only if an existing thread is not available. If no thread is available for a task, a new
thread is created and related to the task's open TCB, provided THREADLIMIT is not exceeded. If
TCBLIMIT is reached, no more open TCBs can be used as thread TCBs for the DB2ENTRY.

Thread termination
If the current number of protected threads is less than the PROTECTNUM value when the thread is
released and there is no new work queued, the thread is marked as protected. Otherwise it is
terminated. A protected thread is terminated if it is unused for two consecutive purge cycles.

Thread reuse
Other transactions using the same DB2ENTRY may reuse a thread, if it is available. This is likely
because the threads remain active for about 45 seconds after being released, depending on the
PURGECYCLE value.

Overflow to pool
If THREADWAIT=POOL is specified, requests for threads are transferred to the pool when the value of
THREADLIMIT is exceeded. When a transaction overflows to the pool, the transaction is now
controlled by the PRIORITY, THREADLIMIT, and THREADWAIT attributes that are specified for pool
threads in the DB2CONN definition, and those attributes in the DB2ENTRY definition are ignored. The

18 CICS TS for z/OS: Db2 Guide

remaining attributes that are specified in the DB2ENTRY definition for the entry thread still apply to
the transaction, that is, ACCOUNTREC, AUTHID or AUTHTYPE, DROLLBACK, and PLAN or
PLANEXITNAME. The PROTECTNUM attribute in the DB2ENTRY definition is no longer relevant for a
transaction that overflows to the pool, so this setting is ignored.

Unprotected entry threads for critical transactions
Unprotected entry threads for critical transactions are defined with the following DB2ENTRY parameters:
PROTECTNUM(0) and THREADLIMIT(n).

This is the recommended type of definition for:

• Critical transactions requiring a fast response time, but with a volume so low that a protected thread
cannot be used

• Limited concurrency transactions

You could use a protected thread for limited concurrency transactions, if the transaction rate makes it
possible to reuse the thread.

Unprotected entry threads for critical transactions are created, used, and terminated as follows:
TCB attach

No thread TCBs are attached when the CICS Db2 attachment facility is started.

A TCB is attached only if needed by a thread.

Thread creation
A thread is created only when needed by a transaction.

When CICS is connected to Db2 (and so is using the open transaction environment), if no thread is
available, but an open TCB can be used as a thread TCB for this DB2ENTRY, a new thread is created
and related to the TCB, provided THREADLIMIT is not exceeded. If TCBLIMIT is reached, no more
open TCBs can be used as thread TCBs for the DB2ENTRY.

Thread termination
The thread is terminated immediately after it is released, unless it has a transaction queued for it.

Thread reuse
Other transactions specified to use the same DB2ENTRY can reuse a thread, if it is available. This
happens only if a transaction is waiting for the thread when the thread becomes available.

Overflow to pool
If THREADWAIT=POOL is specified, requests for threads are transferred to the pool when the value of
THREADLIMIT is exceeded. When a transaction overflows to the pool, the transaction is now
controlled by the PRIORITY, THREADLIMIT, and THREADWAIT attributes that are specified for pool
threads in the DB2CONN definition, and those attributes in the DB2ENTRY definition are ignored. The
remaining attributes that are specified in the DB2ENTRY definition for the entry thread still apply to
the transaction, that is, ACCOUNTREC, AUTHID or AUTHTYPE, DROLLBACK, and PLAN or
PLANEXITNAME. The PROTECTNUM attribute in the DB2ENTRY definition is no longer relevant for a
transaction that overflows to the pool, so this setting is ignored.

Note that you should not allow overflow to the pool for limited concurrency transactions.

Unprotected entry threads for background transactions
Unprotected entry threads are defined with the following DB2ENTRY parameters: PROTECTNUM(0),
THREADLIMIT(0), and THREADWAIT(POOL).

Unprotected entry threads are recommended for low volume transactions that do not require a fast
response time. All transactions are forced to use pool threads.

Unprotected entry threads for background transactions are created, used, and terminated as follows:
TCB attach

No subtask thread TCB is ever attached for this thread definition because THREADLIMIT=0. A pool
thread TCB (or, in the open transaction environment, an open TCB) is used. All activity related to this

Chapter 2. Defining the CICS Db2 connection 19

entry definition is forced to a thread and a TCB in the pool. A transaction is then under the control of
the PRIORITY, THREADLIMIT, and THREADWAIT parameters for the pool. The transaction keeps the
PLAN and the AUTHID/AUTHTYPE values you specified for the entry thread.

Thread creation
A thread is created in the pool when needed by a transaction unless the THREADLIMIT value for the
pool was reached.

Thread termination
The thread is terminated when it is released, unless it has a transaction queued for it.

Thread reuse
Other transactions using the same plan can reuse the thread, when it becomes available.

Pool threads
Pool threads are defined with the THREADLIMIT(n) DB2CONN parameter.

There are four situations where a pool thread can be used:

1. A transaction is not specified in any DB2ENTRY or DB2TRAN, but issues SQL requests. This transaction
defaults to the pool and uses the plan specified for the pool.

2. A transaction is specified in a DB2ENTRY or DB2TRAN referencing a DB2ENTRY, but is forced to the
pool because the DB2ENTRY specifies THREADLIMIT(0) and THREADWAIT(POOL). This transaction
uses the plan specified in the DB2ENTRY.

3. A transaction is specified in a DB2ENTRY or DB2TRAN referencing a DB2ENTRY, but overflows to the
pool (THREADWAIT=POOL) when the THREADLIMIT value is exceeded. This transaction uses the plan
specified in the DB2ENTRY.

4. A transaction is specified in a DB2ENTRY or a DB2TRAN referencing a DB2ENTRY, but the DB2ENTRY
is disabled. The DISABLEDACT keyword is set to POOL, therefore a pool thread is used. This
transaction uses the plan specified for the pool.

Pool threads are always unprotected threads.

Pool threads are created, used, and terminated as follows:
TCB attach

No thread TCBs are attached when the CICS Db2 attachment facility is started.

A TCB is attached only if needed by a thread.

Thread creation
A thread is created only when needed by a transaction.

Thread termination
The thread is terminated immediately after it is released, unless it has a transaction queued for it.

Thread reuse
Other transactions using the same plan can reuse a thread when it becomes available. In the pool this
happens only if there is a queue for threads and the first transaction in the queue requests the same
plan used by the thread being released.

Selecting thread types for optimum performance
To optimize performance, select the thread type to use for a set of transactions together with the BIND
parameters for the corresponding plan.

Selecting the thread type and BIND parameters together is important because the BIND parameters
determine whether a number of activities are related to the thread or to the transactions. For more
information, see “Selecting BIND options for optimum performance” on page 21.

The following types of thread are available:
Protected entry threads

Protected entry threads are recommended for:

20 CICS TS for z/OS: Db2 Guide

• High-volume transactions of any type
• Terminal-oriented transactions with many commits
• Non-terminal-oriented transactions with many commits (if NONTERMREL=YES is specified in the

DB2CONN)

For more information, see “How threads are created, used, and terminated” on page 17.
Unprotected entry threads for critical transactions

Unprotected entry threads for critical transactions are recommended for:

• Critical transactions requiring a fast response time, but with a volume so low that a protected thread
cannot be used

• Limited concurrency transactions

You could use a protected thread for limited concurrency transactions, if the transaction rate makes it
possible to reuse the thread.

Unprotected entry threads for background transactions
Unprotected entry threads for background transactions are recommended for transactions with low
volume that do not require a fast response time. All transactions are forced to use pool threads.

Using protected threads (by specifying PROTECTNUM=n on the DB2ENTRY definition for an entry thread)
is a performance option that reduces the resources involved in creating and terminating a thread. A
protected thread is not terminated when a transaction ends, and the next transaction associated with the
same DB2ENTRY reuses the thread. By using protected threads, you eliminate much of the work required
for thread creation and termination for individual transactions. For performance reasons, it is
recommended that you use protected entry threads whenever possible, and especially where a
transaction is frequently used, or issues many SYNCPOINTS. The main exception is when a transaction is
infrequently used, because even a protected thread is likely to terminate between such transactions.

From an accounting viewpoint, the situation is different. An accounting record is produced for each thread
termination and for each new user signon. This means that only one accounting record is produced if the
thread stays alive and the user ID does not change. This record contains summarized values for all
transactions using the same thread, but it is not possible to assign any value to a specific transaction. This
can be overcome by specifying ACCOUNTREC(UOW) to make sure an accounting record is cut per unit of
work, or by specifying ACCOUNTREC(TASK) to make sure there is an accounting record cut per CICS task.
See Accounting and monitoring in a CICS Db2 environment in Monitoring for more information about
accounting in a CICS Db2 environment.

Several transactions can be specified to use the same DB2ENTRY. Ideally, they should all use the same
plan. Each low-volume transaction can have its own DB2ENTRY. In this case thread reuse is not likely and
you should specify PROTECTNUM=0. An alternative is to group a number of low-volume transactions in
the same DB2ENTRY and specify PROTECTNUM=n. This gives better thread utilization and less overhead.

Authorization checks take place when a thread is created and when a thread is reused with a new user.
Avoiding the overhead in the security check is part of the performance advantage of using protected
threads. This means that from a performance viewpoint all transactions defined to use the same
DB2ENTRY with PROTECTNUM>0 should use the same authorization ID. At least they should avoid
specifying TERM, OPID, and USERID for the AUTHTYPE parameter, because these values often vary
among instances of a transaction.

It is important that you coordinate your DB2CONN, DB2ENTRY, and BIND options. For more information,
see “Coordinating your DB2CONN, DB2ENTRY, and BIND options” on page 22.

Selecting BIND options for optimum performance
You must coordinate the BIND options that you select for a plan with the thread types used by the
transactions associated with that plan.

For an overview of the bind process, see The bind process. For advice on selecting thread types, see
“Selecting thread types for optimum performance” on page 20.

Chapter 2. Defining the CICS Db2 connection 21

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/monitoring/dfhtk17.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/database/dfhtk6p.html

The bind option VALIDATE can affect performance. Use VALIDATE(BIND) in a CICS environment. For more
information, see Bind options and considerations for programs.

It is important that you coordinate your DB2CONN, DB2ENTRY, and BIND options. For more information,
see “Coordinating your DB2CONN, DB2ENTRY, and BIND options” on page 22.

Coordinating your DB2CONN, DB2ENTRY, and BIND options
You can create many different combinations of DB2CONN, DB2ENTRY, and BIND options.

One of the most important things that you are required to do to optimize performance is to define whether
a given set of transactions must use one or more protected threads. “Selecting thread types for optimum
performance” on page 20 has more detailed advice about this. Next; consider defining the BIND
parameters to minimize the total amount of work related to the main activities involved in processing SQL
transactions. See “Selecting BIND options for optimum performance” on page 21 for more information.

In general, you are recommended to set the initial values for your DB2CONN, DB2ENTRY, and BIND
options to the values shown in Table 1 on page 22. You might find that you get better performance from
other combinations for your own transactions. For each transaction type, a recommended thread type and
BIND option are shown. There are also recommendations for whether transactions overflow to the pool.

Table 1. Recommended combinations of DB2CONN, DB2ENTRY and BIND options

Transaction Description Thread Type Overflow ACQUIRE RELEASE

High volume (all types) Protected Entry Note 1 USE DEALLOCATE

Terminal-oriented with many
commits (plus non-terminal if
NONTERMREL=YES)

Protected Entry Note 2 USE DEALLOCATE

Low volume, requires fast
response time

Unprotected Entry Yes USE COMMIT

Low volume, limited
concurrency

Unprotected Entry Never USE COMMIT

Low volume, does not require
fast response time

Pool Not Applicable USE COMMIT

Non-terminal-oriented with
many commits
(NONTERMREL=NO)

Note 3 Note 3 USE DEALLOCATE

Notes:

1. Yes, but define enough entry threads so this happens infrequently.
2. Yes, but if it overflows to the pool no protected thread is used.
3. Threads are held until EOT. Use pool threads for a short transaction. Consider entry threads for longer

running transactions.

In Table 1 on page 22 limited concurrency means only a limited number (n) of transactions are allowed to
run at the same time. A special case exists when n=1, in this case the transactions are serialized. You can
still use a protected thread if the transaction rate is high enough to make it worthwhile. The transactions
cannot be controlled, if overflow to the pool is allowed. You are recommended to use the CICS
mechanism for limiting the number of transactions running in a specific class, rather than forcing
transactions to queue for a limited number of threads.

As Table 1 on page 22 shows, a few combinations of DB2CONN, DB2ENTRY, and BIND options are
generally recommended. However, in specific situations other combinations can be used.

Table 2 on page 23 shows a summary of the activities involved in processing SQL requests for the three
recommended sets of DB2CONN, DB2ENTRY, and BIND specifications. The table also demonstrates the

22 CICS TS for z/OS: Db2 Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/deploying/dfhtk22.html

performance advantage of using protected threads without changing the authorization ID. Required
activities are marked as follows in the table:
X

Required activity
(1)

Required only if new authorization ID
(2)

Required only if SQL section is not already in EDM pool
(3)

Required only if SQL section is not already in Cursor Table

Table 2. Activities involved in processing SQL requests for different DB2CONN, DB2ENTRY, and BIND
specifications

Activity Protected Threads Unprotected Threads

ACQUIRE(USE)
RELEASE(DEALLOCATE)

ACQUIRE(USE)
RELEASE(COMMIT)

ACQUIRE(USE)
RELEASE(DEALLOCATE)

Activity for
each thread

Activity for
each

transaction

Activity for each
transaction

Activity for each
transaction

Create thread: X X X

SIGNON X (1) X X

Authorization Check X (1) X X

Load SKCT Header X X X

Load CT Header X X X

Acquire all TS locks X X X

Load all DBDs X X X

For each SQL statement:

Load SKCT SQL section (2) (2) (2)

Create CT copy (3) X X

Acquire all TS locks X X

Load all DBDs X X

Commit:

Release page locks X X X

Release TS locks X

Free CT pages X

Terminate Thread: X X X

Release TS locks X X X

Free CT pages X X

Free work storage X X X

Chapter 2. Defining the CICS Db2 connection 23

24 CICS TS for z/OS: Db2 Guide

Chapter 3. Administering with CICS Db2
This information discusses operating the CICS Db2 attachment facility.

Starting the CICS Db2 attachment facility
The CICS Db2 attachment facility can be started automatically at initialization, or manually.

About this task
Automatic connection at CICS initialization

You can configure CICS, by any one of the following methods, so that at initialization, an automatic
connection between CICS and Db2 is established:

• Specifying DB2CONN=YES in the SIT, or as a SIT override
• Specifying program DFHD2CM0 after the DFHDELIM statement of your PLTPI
• Specifying a user-written program that issues an EXEC CICS SET DB2CONN CONNECTED

command, after the DFHDELIM statement of your PLTPI

Manual connection
You can manually establish the connection between CICS and Db2 by any one of the following
methods:

• Using a DSNC STRT command
• Using a CEMT SET DB2CONN CONNECTED command
• Running a user application that issues an EXEC CICS SET DB2CONN CONNECTED command

Stopping the CICS Db2 attachment facility
The CICS Db2 attachment facility, and hence the CICS-Db2 connection, can be quiesce stopped or force
stopped.

About this task

A quiesce stop waits for all CICS transactions currently using Db2 to complete.

A force stop causes all CICS transactions currently using Db2 to be forcepurged.

Automatic disconnection at CICS termination
During startup of the CICS Db2 attachment facility, the CICS Db2 task-related user exit (TRUE) is enabled
with the SHUTDOWN option. This means that CICS automatically invokes the TRUE when CICS is shut
down and shuts down the CICS Db2 connection.

About this task

When invoked during a quiesce shutdown of CICS, the CICS DB2 TRUE initiates a quiesce stop of the
attachment facility. Likewise an immediate shutdown of CICS causes a force shutdown of the attachment
facility to be initiated by the TRUE. If CICS is canceled, no shutdown of the attachment facility is initiated
by the TRUE.

Manual disconnection
You can disconnect CICS from Db2 in a number of ways.

About this task

The connection between CICS and Db2 can be stopped or disconnected by using any one of the following
methods:

© Copyright IBM Corp. 1974, 2020 25

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/transactions/dfha7n4.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-programming/commands-spi/dfha8_setdb2conn.html

• Using the DSNC STOP command.

For information on the DSNC STOP command see “DSNC STOP” on page 39.
• Using a CEMT SET DB2CONN NOTCONNECTED command.
• Running the CICS-supplied CDBQ transaction that issues an EXEC CICS SET DB2CONN

NOTCONNECTED command.

The CDBQ transaction runs program DFHD2CM2. The transaction can be run directly from the terminal
or by using the EXEC CICS START command. No messages are output to the terminal. The CICS Db2
adapter however outputs messages to transient data as part of its shutdown procedure.

• Running the CICS supplied CDBF transaction that issues an EXEC CICS SET DB2CONN NOTCONNECTED
FORCE command.

The CDBF transaction runs program DFHD2CM3. The transaction can be run directly from the terminal
or EXEC CICS STARTed. No messages are output to the terminal. The CICS Db2 adapter, however,
outputs messages to transient data as part of its shutdown procedure.

• Running a user application that issues an EXEC CICS SET DB2CONN NOTCONNECTED command.

Resolving indoubt units of work (UOWs)
Indoubt units of work (UOWs) can occur when CICS, Db2, or the whole system fails while a transaction is
carrying out syncpoint processing, that is, during processing of an EXEC CICS SYNCPOINT or EXEC
CICS RETURN command. Indoubt UOWs are typically resolved when the connection between CICS and
Db2 is reestablished.

If more than one recoverable resource is involved, CICS uses the two-phase commit protocol when trying
to commit the UOW. Between replying “yes” to the phase 1 prepare call, and before receiving the commit
or backout call at phase 2 time, Db2 is indoubt as to the outcome of the UOW. If a failure occurs at this
time, Db2 remains indoubt about the UOW; it has an indoubt UOW and must ask CICS to resynchronize.

In situations where only Db2 and a single CICS system are involved with the unit of work, CICS is always
the coordinator. If further parties are involved, for example, by means of a LU6.2 communication link, it is
possible that a remote CICS system might be the overall coordinator of the unit of work instead of the
local CICS system. In this situation, it is possible that both Db2 and the local CICS system are indoubt
about the outcome of the UOW. If a failure occurs in this situation, the local CICS system might shunt the
unit of work, depending on the definition for the transaction. The unit of work is then considered to be
shunted indoubt.

Indoubt UOWs are typically resolved automatically when the connection between CICS and Db2 is
reestablished. CICS and Db2 exchange information regarding the indoubt UOWs; that is, CICS informs
Db2 whether the UOW was backed out or committed. If a UOW is shunted indoubt, this exchange of
information is deferred until the remote coordinator has informed CICS of the outcome. However, if you
are using group attach, CICS might reconnect to a different Db2 subsystem, and be unable to exchange
information about the indoubt UOWs held by the previously connected Db2 subsystem. The
RESYNCMEMBER attribute of the DB2CONN definition is used to solve this problem.

Resolving indoubt UOWs when using group attach
If you are using group attach and the connection between CICS and Db2 is broken, CICS might not
reconnect to the same Db2 subsystem—it might choose a different member of the data-sharing group of
Db2 subsystems. This means that if indoubt UOWs are being held by the first Db2 subsystem to which
CICS connected, they cannot be resolved.

To solve this problem, CICS maintains a history of the last Db2 data-sharing group member to which it
connected, which is cataloged and maintained across warm, emergency and cold starts (but not initial
starts). During connection or reconnection to Db2, the CICS Db2 attachment facility checks this history to
see if any outstanding UOW information is being held for the last Db2 data-sharing group member to
which it connected, and acts as follows:

• If no outstanding UOW information is being held and if CICS has not performed an emergency restart,
group attach operates normally and chooses any active member of the data-sharing group for the

26 CICS TS for z/OS: Db2 Guide

connection. If CICS has performed an emergency restart, CICS attempts to connect to the member that
it was last connected to.

• If outstanding UOW information is being held, the next action depends on the setting you have chosen
for the RESYNCMEMBER attribute of the DB2CONN definition.

– If RESYNCMEMBER is set to YES, indicating that you require resynchronization with the last recorded
Db2 data-sharing group member, CICS ignores the group attach facility, and the CICS Db2
attachment facility waits until it can reconnect to that last connected Db2 data sharing group
member, to resolve the indoubt units of work. UOWs which are shunted indoubt are not included in
this process, because CICS itself is unable to resolve those UOWs at this time. Resynchronization for
those UOWs will occur when CICS has resynchronized with its remote coordinator.

– If RESYNCMEMBER is set to NO, perhaps because you want to reconnect as fast as possible, CICS
makes one attempt to reconnect to the last recorded Db2 data-sharing group member. If this
attempt is successful, the indoubt UOWs (with the exception of UOWs that are shunted indoubt) can
be resolved. If it is unsuccessful, CICS uses group attach to connect to any active member of the Db2
data-sharing group, and the warning message DFHDB2064 is issued stating that there may be
unresolved indoubt UOWs with the last recorded member.

See DB2CONN resources for information on setting RESYNCMEMBER. The RESYNCMEMBER option can
also be set using a SET DB2CONN RESYNCMEMBER command.

Resolving indoubt units of work using Db2 restart-light
CICS supports the enhanced Db2 restart-light capability provided in DB2 Version 8.

Restart-light mode is intended for a cross-system restart in the event of an MVS system failure, where the
CICS systems are configured to use group attach (see Using the Db2 group attach facility). In DB2 Version
7, the Db2 restart-light capability allowed a Db2 data-sharing member to restart with a minimal storage
footprint, free retained locks, and then terminate normally. However, this only applied to in-flight units of
work, and not indoubt units of work. For DB2 Version 8, this capability was extended to encompass
indoubt units of work. This enables a CICS system to connect to a Db2 restart-light subsystem for the
purpose of resynchronizing indoubt units of work. This capability is especially useful because Db2 does
not support peer recovery; that is, one Db2 subsystem cannot resynchronize indoubt units of work on
behalf of another Db2 subsystem.

In a typical scenario, if an MVS LPAR fails, a cross-system restart can be initiated which involves
restarting the failed CICS systems on another LPAR, and bringing up the failed Db2 subsystem on that
LPAR in restart-light mode. Assume that the CICS systems have been configured to use group attach, with
RESYNCMEMBER(YES) and STANDBYMODE(RECONNECT) on the DB2CONN definition, and there are
indoubt units of work outstanding in Db2. The Db2 restart-light subsystem initializes, frees retained locks
for any in-flight UOWs, and then awaits resynchronization with CICS for the indoubt UOWs. Each CICS
system initializes, and detects whether it has outstanding units of work and whether
RESYNCMEMBER(YES) has been specified. Where both these conditions are true, the CICS system
ignores group attach and reconnects back to the last Db2 subsystem, which is the Db2 restart-light
subsystem. The indoubt UOWs are now resynchronized, but no new transactions are allowed to access
Db2. When all the indoubt UOWs have been resolved in the Db2 restart-light subsystem, it terminates.
Because the CICS systems are defined with STANDBYMODE(RECONNECT), when the Db2 restart-light
subsystem terminates, they drop into standby mode and attempt a reconnection to Db2. Now, because
all the indoubt units of work have been resolved, RESYNCMEMBER does not apply and group attach can
be used. The CICS systems will reconnect to a normal, active Db2 subsystem.

Recovery of resynchronization information for indoubt UOWs
CICS maintains information about UOWs needed for resynchronization on its system log.
Resynchronization information is maintained by CICS across warm, emergency, and cold starts.

Resynchronization information is lost if an initial start of CICS is performed as the system log is initialized
and all information is lost, deleting all information about previous units of work. You should rarely need to
initial start CICS. If you want to reinstall resources from the CSD, use a cold start, which allows any
resynchronization information to be recovered. In particular, an initial start of CICS should be avoided if

Chapter 3. Administering with CICS Db2 27

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/db2conn/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/databases/dfhtk6g.html

the previous warm shutdown of CICS issued message DFHRM0131 indicating that resynchronization is
outstanding.

If CICS is initial started when Db2 resynchronization is required, when the CICS Db2 connection is re-
established, message DFHDB2001 is output for each UOW that failed to be resynchronized, and the UOW
must be resynchronized in Db2 using the DB2 RECOVER INDOUBT command.

Managing the CICS Db2 attachment facility
You can manage the status of the connection between CICS and Db2 using CEMT commands and
commands provided by the CICS Db2 attachment facility. The same function provided by CEMT is also
available via EXEC CICS INQUIRE and SET commands.

About this task

Below is a summary of the functions available:

CEMT INQUIRE and SET DB2CONN
The global status of the connection and its attributes along with attributes of pool threads and
command threads can be inquired upon and set using these commands. See CEMT INQUIRE
DB2CONN and CEMT SET DB2CONN.

CEMT INQUIRE and SET DB2ENTRY
The attributes of a particular DB2ENTRY defining threads to be used by a specific transaction or set of
transactions can be inquired upon and set using these commands. See CEMT INQUIRE DB2ENTRY
and CEMT SET DB2ENTRY.

CEMT INQUIRE and SET DB2TRAN
Use these commands to find out and alter which transaction IDs use which DB2ENTRYs. See CEMT
INQUIRE DB2TRAN and CEMT SET DB2TRAN.

DSNC DISC (disconnect)
This CICS Db2 attachment command can be used to cause currently connected threads to be
terminated as soon as they are not being used by a transaction. For active threads, that means when
the transaction releases the thread, which is typically at syncpoint time. Protected threads are
threads that currently are not being used by a transaction and normally are released if they have not
been reused after two protected thread purge cycles. A DSNC DISCONNECT command pre-empts the
purge cycles and causes them to be terminated immediately. For more information on the DSNC
DISCONNECT command, see “DSNC DISCONNECT” on page 33.

DSNC DISP (display)
This CICS Db2 attachment command can be used to display the status of active threads for a
particular plan, for a particular transaction, or for all plans and transactions. For more information, see
“DSNC DISPLAY” on page 34.

The DSNC DISP command also displays CICS Db2 statistics to a CICS terminal. These statistics are
only a subset of the CICS Db2 statistics that you can obtain using the CICS COLLECT STATISTICS and
PERFORM STATISTICS commands. These statistics are subject to the same resetting characteristics
as all CICS statistics.

For more information on the DSNC DISP STAT command, see “DISPLAY STATISTICS output” on page
36. For more information on the full CICS Db2 statistics available, see CICS Db2 statistics in
Reference.

DSNC MODI (modify)
This CICS Db2 attachment command can be used to modify where unsolicited messages are sent and
the number of threads allowed for a DB2ENTRY or for the pool or command threads. This function is
superseded by the CEMT commands described which allow these attributes to be modified and all
other attributes of a DB2CONN, DB2ENTRY or DB2TRAN. For more information, see “DSNC MODIFY”
on page 37.

28 CICS TS for z/OS: Db2 Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/transactions/dfha7lq.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/transactions/dfha7lq.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/transactions/dfha7n4.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/transactions/dfha7lr.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/transactions/dfha7n5.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/transactions/dfha7ls.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/transactions/dfha7ls.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/transactions/dfha7q1.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/statistics/dfht3_stats_db2.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/statistics/dfht3_stats_db2.html

Entering Db2 commands
Once the connection between CICS and Db2 has been established, terminal users authorized by CICS can
use the DSNC transaction to route commands to the Db2 subsystem.

About this task

Commands that use the DSNC transaction to route commands to the Db2 subsystem are defined as
follows:

 DSNC -DB2command

The command is routed to Db2 for processing. Db2 checks that the user is authorized to issue the
command entered. Responses are routed back to the originating CICS user. The command recognition
character (CRC) of “-” must be used to distinguish Db2 commands from CICS Db2 attachment facility
commands. This command recognition character is not used to identify the Db2 subsystem to which the
command is to be sent. The command is sent to the Db2 subsystem to which CICS is currently connected.
Figure 4 on page 29 shows the CICS Db2 attachment facility commands. These require CICS
authorization to use the DSNC transaction and the Db2 commands. For more information about the DSNC
-DB2COMMAND, see “Issuing commands to Db2 using the DSNC transaction” on page 31.

Figure 4. Examples of CICS Db2 attachment facility commands and some Db2 commands

Starting SMF for Db2 accounting, statistics, and tuning
Through its instrumentation facility, Db2 produces a system management facility (SMF) type 101
accounting record at each CICS Db2 thread termination and at each CICS Db2 signon. Db2 also produces
an SMF type 100 record to hold Db2 statistics on a Db2 sub system basis. Performance and global trace
records are produced as SMF type 102 records.

About this task

The SMF records produced by Db2 can be directed to an SMF data set in the following ways:

• Specifying at Db2 installation that accounting or statistics data or both are required.

Chapter 3. Administering with CICS Db2 29

To do this the MON,SMFACCT or SMFSTAT of the initialization macro DSN6SYSP are set to YES. See Db2
for z/OS product documentation for more details.

• Activating SMF to write the records.

Add entries for type 100, 101, and 102 records to the existing SMF member (SMFPRMxx) entry in
SYS1.PARMLIB.

• Starting Db2 trace.

Starting Db2 trace can be done at Db2 startup time by setting the parameters of the initialization macro
DSN6SYSP, or by using the Db2 -START TRACE command giving the specific trace and classes to be
started. The latter is the way to start recording accounting, statistics and performance data on a
periodic basis.

Db2 does not produce any reports from the recorded data for accounting, monitoring, or performance
purposes. To produce your own reports you can write your own programs to process this data, or use the
Db2 Performance Monitor (DB2PM) Program Product.

Starting GTF for Db2 accounting, statistics and tuning
Instead of, or in addition to, recording accounting, statistics, and performance data to SMF, you can use
Db2 to send this data to a generalized trace facility (GTF). Db2 provides -START TRACE and -STOP TRACE
commands which you can issue from a CICS terminal using the DSNC transaction.

About this task

Use the following commands with the DSNC transaction to specify the trace scope, trace destination, and
trace constraints:
Trace scope

Set this to GLOBAL for Db2 subsystem activity, PERF for performance, ACCTG for accounting, STAT for
statistics, or MONITOR for monitoring activity.

Trace destination
GTF, in main storage, or SMF.

Trace constraints
Specific plans, authorization IDs, classes, location, and resource managers.

CICS-supplied transactions for CICS Db2
CICS provides a number of transactions that you can use to manage the interface with Db2.

CEMT

The following CEMT options are available:

• CEMT INQUIRE DB2CONN
• CEMT SET DB2CONN
• CEMT INQUIRE DB2ENTRY
• CEMT SET DB2ENTRY
• CEMT INQUIRE DB2TRAN
• CEMT SET DB2TRAN

The equivalent EXEC CICS INQUIRE and EXEC CICS SET commands are described in System
commands.

PLAN and PLANEXITNAME options are available on the INQUIRE DB2TRAN command, so you can find
out in a single step which plan is used by a specified transaction or set of transactions, or which
transactions use a specified plan.

30 CICS TS for z/OS: Db2 Guide

https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/home/src/tpc/db2z_11_prodhome.html
https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/home/src/tpc/db2z_11_prodhome.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/transactions/dfha7lq.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/transactions/dfha7n4.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/transactions/dfha7lr.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/transactions/dfha7n5.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/transactions/dfha7ls.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/transactions/dfha7q1.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-programming/commands-spi/dfha81j.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-programming/commands-spi/dfha81j.html

DSNC

The DSNC transaction can be used to perform the following:

• Enter Db2 commands from a CICS terminal.
• Cause threads to be terminated when they are released (DSNC DISCONNECT).
• Display information about transactions using the CICS Db2 interface, and display statistics (DSNC

DISPLAY).
• Modify the unsolicited message destinations, and modify the number of active threads used by a

DB2ENTRY, the pool, or for commands (DSNC MODIFY).
• Shut down the CICS Db2 interface (DSNC STOP).
• Start the CICS Db2 interface (DSNC STRT).

The DSNC transaction executes program DFHD2CM1, which handles both CICS Db2 attachment facility
and Db2 commands. You can distinguish Db2 commands from CICS Db2 attachment facility commands
by the hyphen (-) character, which is entered with Db2 commands. This character is not a Db2 subsystem
recognition character, but a command recognition character. It is always a -, independent of the character
defining the Db2 subsystem, since CICS can only connect to one Db2 subsystem at a time. There is no
need to use different Db2 subsystem recognition characters from CICS, and thus we use only the default -
character.

DFHD2CM1 can also be activated by transactions other than DSNC. Thus you can give a different
transaction code to each CICS Db2 attachment facility command, and to each Db2 command. This
enables you to apply different levels of security to each command.

Alternative transaction definitions for CICS Db2, supplied in sample group DFH$DB2

Alternative transaction definitions for CICS Db2 attachment facility commands are supplied with the
following names:

• DISC
• DISP
• STRT
• STOP
• MODI

Alternative transaction definitions for Db2 commands are also supplied with the following names:

-ALT -CAN -ARC

-DIS -MOD -REC

-RES -SET -STA

-STO -TER

Issuing commands to Db2 using the DSNC transaction
The DSNC transaction allows you to enter Db2 commands from CICS.

Environment
This command can be issued only from a CICS terminal.

Syntax
DSNC syntax

DSNC

destination

db2-command

Chapter 3. Administering with CICS Db2 31

Abbreviation

You can omit DSNC from the Db2 command if the relevant transaction definition is installed from the CICS
Db2 sample group, DFH$DB2. For example, if you are installing the -DIS transaction definition.

DSNC -DIS THD(*)

can be abbreviated to:

-DIS THD(*)

The sample CICS Db2 group, DFH$DB2, contains the following transaction definitions for issuing Db2
commands:

-ALT -ARC -CAN

-DIS -MOD -REC

-RES -SET -STA

-STO -TER

Authorization

Issuing Db2 commands using DSNC does not require any authorization from CICS over and above
transaction attach security required to run the DSNC transaction. It does, however, require Db2
privileges. For more information about CICS security, see Security in a CICS DB2 environment.

Parameter description
destination

Identifies another terminal to receive display information. It must be a valid terminal that is defined to
CICS and supported by basic mapping support (BMS).

db2-command
Specifies the exact Db2 command that you want to enter from a CICS terminal. It must be preceded
by a hyphen.

Usage note
Screen scrolling

BMS paging support can be used to support the scrolling of DSNC Db2 commands from your terminal.
For example specify SIT keywords:
PGCHAIN=X/,
PGCOPY=C/,
PGPURGE=T/,
PGRET=P/,
SKRPF7='P',
SKRPF8='N',
For further information about the SIT keywords and parameters, see System initialization parameter
descriptions and summary.

Example

Issue the Db2 command -DISPLAY THREAD from a CICS terminal to display threads for a CICS with
applid IYK4Z2G1.

 DSNC -DISPLAY THREAD(IYK4Z2G1)

32 CICS TS for z/OS: Db2 Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/database/dfhtk16.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/sit/dfha2_sitparm_descriptions.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/sit/dfha2_sitparm_descriptions.html

 DSNV401I : DISPLAY THREAD REPORT FOLLOWS -
 DSNV402I : ACTIVE THREADS -
 NAME ST A REQ ID AUTHID PLAN ASID TOKEN
 IYK4Z2G1 N 3 JTILLI1 00BA 0
 IYK4Z2G1 T 3 ENTRXC060001 CICSUSER TESTC06 00BA 16
 IYK4Z2G1 T 3 POOLXP050002 CICSUSER TESTP05 00BA 17
 IYK4Z2G1 T * 6 COMDDSNC0003 JTILLI1 00BA 18
 DISPLAY ACTIVE REPORT COMPLETE
 DSN9022I : DSNVDT '-DIS THREAD' NORMAL COMPLETION
 DFHDB2301 07/09/98 13:36:36 IYK4Z2G1 DSNC DB2 command complete.

Figure 5. Sample output from DSNC -DISPLAY command

DSNC DISCONNECT
Use the CICS Db2 attachment facility command DSNC DISCONNECT to disconnect threads. This
command provides manual control to release resources being shared by normal transactions so that
special purpose processes, such as Db2 utilities, can have exclusive access to the resources.

Environment

This command can be issued only from a CICS terminal.

Syntax
DISC syntax

DSNC DISConnect plan-name

Abbreviation

DSNC DISC or DISC (using the DISC transaction from the CICS Db2 sample group DFH$DB2).

Authorization

Access to this command can be controlled using the CICS transaction attach security check for
transaction DSNC and the CICS command security check for resource DB2CONN. This command requires
READ access.

For more information about CICS security, see Security in a CICS DB2 environment.

Parameter description
plan-name

Specifies a valid application plan.

Usage notes
Preventing creation of threads

The command DSNC DISCONNECT does not prevent threads from being created on behalf of
transactions. The command only causes currently connected threads to be terminated as soon as
they are not being used by a transaction. To interrupt a transaction and cancel a thread faster, you can
use the Db2 CANCEL THREAD command.

You can stop the transactions associated with a particular plan ID in CICS with the MAXACTIVE
setting for TRANCLASS. This prevents new instances of the transaction from causing a re-creation of a
thread.

Alternative for protected threads
You might want to deallocate a plan for rebinding or for running a utility against the database. If you
are using a protected thread use EXEC CICS SET DB2ENTRY(entryname) THREADLIMIT(0), or DSNC

Chapter 3. Administering with CICS Db2 33

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/database/dfhtk16.html

MODIFY rather than DSNC DISCONNECT, to send all the threads to the pool. The protected thread
terminates on its own within two purge cycles. See the PURGECYCLE attribute of DB2CONN.

Example

Disconnect active and protected threads for plan TESTP05:

 DSNC DISC TESTP05

 DFHDB2021 07/09/98 13:46:29 IYK4Z2G1 The disconnect command is complete.

Figure 6. Sample output from DSNC -DISCONNECT command

DSNC DISPLAY
Use the CICS Db2 attachment facility command DSNC DISPLAY to display information about active CICS
Db2 threads and the CICS transaction using them, or to display statistical information associated with
DB2ENTRYs and the DB2CONN resource.

Environment

This command can be issued only from a CICS terminal.

Syntax
DISPLAY syntax

DSNC DISPlay PLAN - planname -

TRANsaction - transactionID -

STATistics

destination

Abbreviation

DSNC DISP or DISP (using the DISP transaction from the CICS Db2 sample group DFH$DB2).

Authorization

Access to this command can be controlled using the CICS transaction attach security check for
transaction DSNC and the CICS command security check for resource DB2CONN. This command requires
READ access.

For more information about CICS security, see Security in a CICS DB2 environment.

Parameter description
PLAN planname

Displays information about the threads for planname. Planname is a valid plan name for which
information is displayed.

If you do not specify planname (or if you specify an asterisk, *), information is displayed for all active
threads.

For example, the following command displays information on all active CICS Db2 plan IDs and sends
the display information to another terminal designated as MTO2.

DSNC DISP PLAN * MTO2

34 CICS TS for z/OS: Db2 Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/database/dfhtk16.html

Tran transactionID
Contains the transaction ID for which thread information is displayed. transactionID is a valid
transaction ID for which thread information is displayed.

If you do not specify a transaction ID, information is displayed for all active threads.

For example, the following command displays information about all active CICS Db2 transactions.

 DSNC DISP TRAN

STAT
Displays the statistical counters associated with each CICS Db2 resource definition. The counters
concern the usage of the available connections of the CICS Db2 attachment facility to Db2.

Note that a more detailed set of CICS Db2 statistics can be obtained using standard CICS statistics
interfaces, for example, the commands EXEC CICS COLLECT STATISTICS and EXEC CICS
PERFORM STATISTICS, or using the DFH0STAT sample program.

destination
Specify a different terminal to receive the requested information. destination is the identifier of
another terminal to receive the requested display information. It must be a valid terminal that is
defined to CICS and supported by basic mapping support (BMS).

Because the optional destination is sometimes preceded by an optional plan name or transaction ID
in the command, each parameter must be unique and separately identifiable as either a name or a
terminal identifier. If only one parameter is entered, it is first checked to see whether it is a plan name
or a transaction ID, and it is then checked as a destination. To use a character string that is both a
plan name or transaction ID and also a valid terminal identifier, you must use both the name and
destination parameters to display the required information at the required terminal.

When an alternate destination is specified to receive the requested display information, the following
message is sent to the requesting terminal:
DFHDB2032 date time applid alternate destination display command complete

Usage notes

If you issue this command from CICS while the CICS Db2 attachment facility is active but the Db2
subsystem is not, a statistics display is produced with no obvious indication that the subsystem is not
operational.

Message DFHDB2037 appears in the CICS message log to indicate that the attachment facility is waiting
for Db2 to start.

DISPLAY PLAN or TRAN output
The output of the DSNC DISPLAY PLAN or DSNC DISPLAY TRANSACTION command includes the
name of the DB2ENTRY, *POOL, or *COMMAND for the DSNC command call.

Figure 7 on page 35 shows an example of the output for the DSNC DISPLAY (PLAN or TRANSACTION)
command. For each created thread, the output shows the name of the DB2ENTRY, *POOL for the pool, or
the *COMMAND for the DSNC command call.

DFHDB2013 07/09/98 15:26:47 IYK4Z2G1 Display report follows for threads
accessing DB2 DB3A
DB2ENTRY S PLAN PRI-AUTH SEC-AUTH CORRELATION TRAN TASK UOW-ID
*POOL A TESTC05 JTILLI1 POOLXC050001 XC05 01208 AEEEC0321ACDCE00
XC06 * TESTC06 JTILLI1 ENTRXC060003 XC06 01215 AEEEC0432F8EFE01
XP05 A TESTP05 JTILLI1 ENTRXP050002 XP05 01209 AEEEC03835230C00
XP05 I TESTP05 JTILLI1 ENTRXP050004
DFHDB2020 07/09/98 15:26:47 IYK4Z2G1 The display command is complete.

Figure 7. Sample output from DSNC DISPLAY (PLAN or TRANSACTION) command

Chapter 3. Administering with CICS Db2 35

The column named 'S' denotes the status of the thread, and can take the following values:
*

The thread is active within a unit of work, and is currently executing in Db2.
A

The thread is active within a unit of work, but is not currently executing in Db2.
I

The thread is inactive; it is a protected thread that is waiting for new work.

The PLAN associated with the thread is displayed (there is no plan for command threads).

The PRI-AUTH field shows the primary authorization ID used for the thread. The SEC-AUTH field shows
the secondary authorization ID (if any) for the thread.

The CORRELATION fields shows the 12-byte thread correlation ID which is made up as eeeettttnnnn
where eeee is either COMD, POOL or ENTR indicating whether it is a command, pool or DB2ENTRY thread;
tttt is the transid, and nnnn is a unique number.

Note: A correlation ID passed to Db2 can be changed only by the CICS Attachment Facility issuing a
signon to Db2. If signon reuse occurs by a thread using a primary authorization ID which remains constant
across multiple transactions (for example, by using AUTHID(name)) only one signon will occur. In this
instance the tttt in the correlation ID does not match the running transaction ID. It is the ID of the
transaction for which the initial signon occurred.

If the thread is active within a unit of work, the CICS transaction name, its task number and finally the
CICS local unit of work ID is displayed.

The correlation ID used in this display is also output on Db2 commands such as DISPLAY LOCK. For
example, by using this display in conjunction with a display locks command you can find out which CICS
task is holding a lock within Db2.

DISPLAY STATISTICS output
This topic describes the output of a DSNC DISPLAY STATISTICS command.

DFHDB2014 07/09/98 14:35:45 IYK4Z2G1 Statistics report follows for RCTJT
accessing DB2 DB3A
 -----COMMITS----
DB2ENTRY PLAN CALLS AUTHS W/P HIGH ABORTS 1-PHASE 2-PHASE
*COMMAND 1 1 1 1 0 0 0
*POOL ******** 4 1 0 1 0 2 0
XC05 TESTP05 22 1 11 2 0 7 5
XP05 ******** 5 2 0 1 0 1 1
DFHDB2020 01/17/98 15:45:27 IYKA4Z2G1 The display command is complete.

Figure 8. Sample output from DSNC DISPLAY STATISTICS command

DB2ENTRY
Name of the DB2ENTRY, or *COMMAND for DSNC command calls, or *POOL for pool statistics.

PLAN
The plan name associated with this entry. Eight asterisks in this field indicate that this transaction is
using dynamic plan allocation. The command processor transaction DSNC does not have a plan
associated with it.

If a plan name associated with an entry is dynamically changed, the last plan name is the one put into
use.

CALLS
The total number of SQL statements issued by transactions associated with this entry.

AUTHS
The total number of signon invocations for transactions associated with this entry. A signon does not
indicate whether a new thread is created or an existing thread is reused. If the thread is reused, a
signon occurs only if the authorization ID or transaction ID has changed.

36 CICS TS for z/OS: Db2 Guide

W/P
The number of times that all available threads for this entry were busy. This value depends on the
value of THREADWAIT for the entry. If THREADWAIT is set to POOL, W/P indicates the number of
times the transaction overflowed to the pool. An overflow to the pool only shows up in the statistics
for the individual DB2ENTRY, and is not reflected in the pool statistics.

If THREADWAIT is set to YES, this reflects the number of times that either the transaction had to wait
for a thread (because the number of active threads had reached THREADLIMIT), or the transaction
could not use a new thread TCB (because the number of TCBs in use running threads had reached
TCBLIMIT).

HIGH
The maximum number of threads acquired by transactions associated with this entry at any time
since the connection was started, that is, a high-water mark of threads.

Note: In releases of CICS before CICS Transaction Server for OS/390®, Version 1 Release 2, the HIGH
value also included the transactions forced to wait for a thread or those diverted to the pool. From
CICS Transaction Server for OS/390, Version 1 Release 2 onwards, the HIGH value only represents
threads created on the entry.

ABORTS
The total number of units of recovery which were rolled back. It includes both abends and syncpoint
rollbacks, including syncpoint rollbacks generated by -911 SQL codes.

COMMITS
One of the following two fields is incremented each time a Db2 transaction associated with this entry
has a real or implied (such as EOT) syncpoint. Units of recovery that do not process SQL calls are not
reflected here.

1-PHASE
The total number of single-phase commits for transactions associated with this entry. This total does
not include any two-phase commits (see the explanation for 2-PHASE). This total does include read-
only commits as well as single- phase commits for units of recovery which have performed updates. A
two-phase commit is needed only when the application has updated recoverable resources other than
DB2.

2-PHASE
The total number of two-phase commits for transactions associated with this entry. This number does
not include single phase commit transactions.

DSNC MODIFY
Use the CICS Db2 attachment facility command DSNC MODIFY to modify: the message queue
destinations of the DB2CONN, the THREADLIMIT value for the pool, DSNC commands, or DB2ENTRYs.
These modifications can also be made using CEMT, or EXEC CICS, SET DB2CONN or DB2ENTRY
commands.

Environment

This command can be issued only from a CICS terminal.

Syntax
MODIFY syntax

DSNC MODIFY DESTination old new

TRANsaction transaction-id integer

Abbreviation

DSNC MODI or MODI (using the MODI transaction from the CICS Db2 sample group DFH$DB2).

Chapter 3. Administering with CICS Db2 37

Authorization

You can control access to this command using CICS authorization checks:

• Transaction attach security for transaction DSNC.
• Command security for resource DB2CONN. This command requires UPDATE access.
• For DSNC MODIFY TRANSACTION commands modifying the attributes of a DB2ENTRY. There are also

command security checks for resources DB2ENTRY and DB2TRAN and resource security for the
DB2ENTRY. The command requires READ access to resource DB2TRAN, and UPDATE access to
resource DB2ENTRY for command security. In addition, the resource security command requires
UPDATE access to the particular DB2ENTRY involved. For more information about CICS security, see
Security in a CICS DB2 environment.

Parameter description
DESTination

Specifies that the MSGQUEUE parameter of the DB2CONN table is to be changed, replacing the "old"
destination ID with the "new" destination ID.
old

Any destination ID currently set in the MSGQUEUE of the DB2CONN.
new

A new destination identifier.
TRANsaction transaction-ID integer

Specifies that the THREADLIMIT value associated with the given transaction or group is to be
modified. The command uses a transaction ID to identify either the pool, command, or the DB2ENTRY
THREADLIMIT value to be modified.

• To change the THREADLIMIT value of the pool, a transaction ID of CEPL must be used.
• To change the THREADLIMIT for command threads, a transaction ID of DSNC must be used.
• To change the THREADLIMIT for a DB2ENTRY, use the transaction ID of any transaction that is
defined to use the DB2ENTRY.

integer is a new maximum value.

Usage notes

The integer specified in the command DSNC MODIFY TRANSACTION cannot be larger than the value
specified for the TCBLIMIT parameter of the DB2CONN. The lowest possible value is zero.

Examples
Example 1

To change the specification of the MSGQUEUE parameter in the DB2CONN from MTO1 to MTO2:

 DSNC MODI DEST MTO1 MTO2

 DFHDB2039 07/09/98 14:47:17 IYK4Z2G1 The error destinations are: MT02 ****
 ****.

Figure 9. Sample output from DSNC MODIFY DESTINATION command

Example 2
To change the pool thread limit to 12:

 DSNC MODI TRAN CEPL 12

38 CICS TS for z/OS: Db2 Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/database/dfhtk16.html

 DFHDB2019 07/09/98 14:49:28 IYK4Z2G1 The modify command is complete.

Figure 10. Sample output from DSNC MODIFY TRANSACTION command (pool thread)

Example 3
To change the command thread limit to 3:

 DSNC MODI TRAN DSNC 3

 DFHDB2019 07/09/98 14:49:28 IYK4Z2G1 The modify command is complete.

Figure 11. Sample output from DSNC MODIFY TRANSACTION command (for a command thread)

Example 4
To change the thread limit of the DB2ENTRY used by transaction XP05 to 8:

 DSNC MODI TRAN XP05 8

 DFHDB2019 07/09/98 14:49:28 IYK4Z2G1 The modify command is complete.

Figure 12. Sample output from DSNC MODIFY TRANSACTION command (changing DB2ENTRY thread
limit)

DSNC STOP
Use the CICS Db2 attachment facility command DSNC STOP to stop the attachment facility. Alternatively,
you can issue a CEMT or EXEC CICS SET DB2CONN NOTCONNECTED command to stop the attachment
facility.

Environment

This command can be issued only from a CICS terminal.

Syntax
STOP syntax

DSNC STOP
FORCE

QUIESCE

Abbreviation

DSNC STOP or STOP (using the STOP transaction from the CICS Db2 sample group DFH$DB2).

Authorization

Access to this command can be controlled using the CICS transaction attach security check for
transaction DSNC, and the CICS command security check for resource DB2CONN. This command requires
UPDATE access.

This command requires UPDATE access. For more information about CICS security, see Security in a CICS
DB2 environment.

Chapter 3. Administering with CICS Db2 39

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/database/dfhtk16.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/database/dfhtk16.html

Parameter description
QUIESCE

Specifies that the CICS Db2 attachment facility is to be stopped after CICS transactions currently
running complete. QUIESCE waits for all active transactions to complete, so new UOWs can start and
acquire threads.

FORCE
Specifies that the CICS Db2 attachment facility is to be stopped immediately by forcing disconnection
with Db2, regardless of any transactions that are running. Currently running transactions that have
accessed Db2 are forcepurged. This includes transactions that may have committed updates to Db2
in a previous UOW, but have not yet accessed Db2 in their current UOW.

Usage notes

For a DSNC STOP QUIESCE, message DFHDB2012 is output to the terminal. The terminal then remains
locked until shutdown is complete, when message DFHDB2025 is output.

For a DSNC STOP FORCE, message DFHDB2022 is output to the terminal. The terminal then remains
locked until shutdown is complete, when message DFHDB2025 is output.

Examples
Example 1

To quiesce stop the CICS Db2 attachment facility:

 DSNC STOP

DFHDB2012 07/09/98 14:54:28 IYK4Z2G1 Stop quiesce of the CICS-DB2 attachment
facility from DB2 subsystem DB3A is proceeding.

Figure 13. Sample output from DSNC STOP command

The message resulting from the DSNC STOP command shown in Figure 13 on page 40 is replaced by
the message shown in Figure 14 on page 40 when shutdown is complete.

DFHDB2025I 07/09/98 14:58:53 IYK4Z2G1 The CICS-DB2 attachment has disconnected
from DB2 subsystem DB3A

Figure 14. Sample output from DSNC STOP when shutdown is complete

Example 2
To force stop the CICS Db2 attachment facility:

 DSNC STOP FORCE

DFHDB2022 07/09/98 15:01:51 IYK4Z2G1 Stop force of the CICS-DB2 attachment
facility from DF2D is proceeding.

Figure 15. Sample output from DSNC STOP FORCE command

The message resulting from the DSNC STOP FORCE command shown in Figure 15 on page 40 is
replaced by the message shown in Figure 16 on page 41 when shutdown is complete.

40 CICS TS for z/OS: Db2 Guide

DFHDB2025I 07/09/98 15:10:55 IYK4Z2G1 The CICS-DB2 attachment has disconnected
from DB2 subsystem DF2D group DFP2

Figure 16. Sample output from DSNC STOP FORCE when shutdown is complete

In this example, group attach was used, so the name of the Db2 subsystem and the name of its group
are shown.

DSNC STRT
Use the DSNC STRT command to start the CICS Db2 attachment facility. The CICS Db2 attachment
facility allows CICS application programs to access Db2 databases. Alternatively, issue a CEMT or EXEC
CICS SET DB2CONN CONNECTED command to allows your CICS application programs to access Db2
databases.

Environment

This command can be issued only from a CICS terminal.

Syntax
STRT syntax

DSNC STRT

ssid

Abbreviation

DSNC STRT or STRT (using the STRT transaction from the CICS Db2 sample group DFH$DB2).

Authorization

Access to this command can be controlled using the CICS transaction attach security check for
transaction DSNC, and the CICS command security check for resource DB2CONN. This command requires
UPDATE access.

For more information about CICS security, see Security in a CICS DB2 environment.

Parameter description
ssid

Specifies a Db2 subsystem ID to override the Db2 subsystem ID (DB2ID) or Db2 data-sharing group
ID (DB2GROUPID) specified in the DB2CONN. You cannot specify a Db2 data-sharing group ID in a
DSNC STRT command.

Usage notes

If a DB2CONN is not installed when the DSNC STRT command is issued, error message DFHDB2031 is
produced, indicating that no DB2CONN is installed. Resource definitions must be installed from the CSD
before attempting to start the CICS Db2 attachment facility.

If you issue a DSNC STRT command and specify a Db2 subsystem ID, any DB2GROUPID in the installed
DB2CONN definition is blanked out, and needs to be set again (using CEDA INSTALL or a SET DB2CONN
command) to use group attach on subsequent occasions.

The hierarchy for determining the Db2 subsystem to use is as follows:

1. Use the subsystem ID if specified in a DSNC STRT command.
2. Use the DB2ID in the installed DB2CONN if not blank.
3. Use the DB2GROUPID in the installed DB2CONN for group attach.

Chapter 3. Administering with CICS Db2 41

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/database/dfhtk16.html

4. Use the subsystem ID if specified on the INITPARM when the DB2ID and DB2GROUPID in the last
installed DB2CONN are blank (or have subsequently been set to blanks). On any startup, INITPARM is
always used if the last installed DB2CONN contained a blank DB2ID and a blank DB2GROUPID, even if
the DB2ID or DB2GROUPID were subsequently changed using a SET command.

5. Use a default subsystem ID of DSN.

Examples
Example 1

To start the CICS Db2 attachment facility using the Db2 subsystem ID (DB2ID) or Db2 data-sharing
group ID (DB2GROUPID) from an installed DB2CONN:

 DSNC STRT

In this example, group attach is used, so the name of the Db2 subsystem and the name of its group
are shown.

DFHDB2023I 07/09/98 15:06:07 IYK4Z2G1 The CICS DB2 attachment has connected to
DB2 subsystem DF2D group DFP2

Figure 17. Sample output from DSNC STRT command

Example 2
To start the CICS Db2 attachment facility, using an installed DB2CONN, but overriding the Db2
subsystem ID (DB2ID) or Db2 data-sharing group ID (DB2GROUPID) in the DB2CONN with the Db2
subsystem ID DB3A:

 DSNC STRT DB3A

DFHDB2023I 07/09/97 15:06:07 IYK4Z2G1 The CICS DB2 attachment has connected to
DB2 subsystem DB3A

Figure 18. Sample output from DSNC STRT using DB3A

If you are not using group attach, and the Db2 subsystem is not active when an attempt is made to start
the CICS Db2 attachment facility, the following output is received if STANDBYMODE=NOCONNECT is
specified in the DB2CONN:

DFHDB2018 07/09/98 15:14:10 IYK4Z2G1 DB3A DB2 subsystem is not active.

Figure 19. Sample output from DSNC STRT when Db2 is not active and STANDBYMODE=NOCONNECT

If STANDBYMODE=CONNECT or RECONNECT, the following output is received:

 DFHDB2037 07/09/98 15:15:42 IYK4Z2G1 DB2 subsystem DB3A is not active.
 The CICS DB2 attachment facility is waiting.

Figure 20. Sample output from DSNC STRT when Db2 is not active and STANDBYMODE=CONNECT or
RECONNECT

If you are using group attach, and no Db2 subsystems in the data-sharing group are active when an
attempt is made to start the CICS Db2 attachment facility, the following output is received if
STANDBYMODE=NOCONNECT is specified in the DB2CONN:

42 CICS TS for z/OS: Db2 Guide

 DFHDB2037 07/09/01 12:30:10 IYK2ZFV1 DB2 group DFP2 has no active members.

Figure 21. Sample output from DSNC STRT with group attach when no Db2 subsystems in the data-sharing
group are active and STANDBYMODE=NOCONNECT

If STANDBYMODE=CONNECT or RECONNECT, the following output is received:

 DFHDB2037 07/09/01 12:55:00 IYK2ZFV1 DB2 group DFP2 has no active members.
 The CICS DB2 attachment facility is waiting.

Figure 22. Sample output from DSNC STRT with group attach when no Db2 subsystems in the data-sharing
group are active and STANDBYMODE=CONNECT or RECONNECT

Chapter 3. Administering with CICS Db2 43

44 CICS TS for z/OS: Db2 Guide

Chapter 4. Security for Db2
In the CICS Db2 environment, there are four main stages at which you can implement security checking.

The four stages are:

• When a CICS user signs on to a CICS region. CICS sign-on authenticates users by checking that they
supply a valid user ID and password..

• When a CICS user tries to use or modify a CICS resource that is related to Db2. This could be a
DB2CONN, DB2ENTRY or DB2TRAN resource definition; or a CICS transaction that accesses Db2 to
obtain data; or a CICS transaction that issues commands to the CICS Db2 attachment facility or to Db2
itself. At this stage, you can use CICS security mechanisms, which are managed by RACF® or an
equivalent external security manager, to control the CICS user's access to the resource.

• When the CICS region connects to Db2, and when a transaction acquires a thread into Db2. Both the
CICS region and the transaction must provide authorization IDs to Db2, and these authorization IDs are
validated by RACF or an equivalent external security manager.

• When a CICS user tries to use a CICS transaction to execute or modify a Db2 resource. This could be a
plan, or a Db2 command, or a resource that is needed to execute dynamic SQL. At this stage, you can
use Db2 security checking, which is managed either by Db2 itself, or by RACF or an equivalent external
security manager, to control the CICS user's access to the resource.

You can also use RACF, or an equivalent external security manager, to protect the components that make
up CICS and Db2 from unauthorized access. You can apply this protection to Db2 databases, logs,
bootstrap data sets (BSDSs), and libraries outside the scope of Db2, and to CICS data sets and libraries.
You can use VSAM password protection as a partial replacement for the protection provided by RACF. For
more information, see CICS system resource security.

Note: RACF is referred to here as the external security manager used by CICS. Except for the explicit
RACF examples, the general discussion applies equally to any functionally equivalent non-IBM external
security manager.

Figure 23 on page 46 shows the security mechanisms involved in a CICS Db2 environment.

© Copyright IBM Corp. 1974, 2020 45

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/cics/dfht53c.html

Figure 23. Overview of the CICS Db2 security mechanisms

Controlling access to Db2-related resources in CICS
You can control access to Db2 resources in your CICS region, and initiate security checking for the
resources, by enabling an external security manager and the appropriate CICS security mechanism.

About this task

CICS users might want to perform the following activities involving Db2:

• Inquire on, modify, create or discard DB2CONN, DB2ENTRY, and DB2TRAN resource definitions.
• Use a transaction that accesses Db2 to obtain data, or issue CICS Db2 attachment facility commands or

Db2 commands using the DSNC transaction.

46 CICS TS for z/OS: Db2 Guide

Use RACF, or an equivalent external security manager to perform security checks in your CICS region.
When a user tries to access protected resources, CICS calls the external security manager to perform
security checking. RACF makes security checks using the CICS user's ID, which is authenticated when the
user signs on to CICS. If a user does not sign on to CICS, they are given the default user ID, unless a user
ID has been permanently associated with a terminal using preset security.

Enable the appropriate security mechanism for your CICS region: transaction-attach security, resource
security, command security, or surrogate security.

For more information about CICS security, see CICS TS security.

Controlling users' access to DB2CONN, DB2TRAN, and DB2ENTRY resource definitions
You can control users' access to DB2CONN, DB2TRAN, and DB2ENTRY resource definitions by enabling
different CICS security mechanisms.

About this task

The following security mechanisms can be used to control user access to Db2 resource definitions.

• Control users' ability to access particular resources by using the CICS resource security mechanism.
Resource security is implemented at the transaction level. For example, you could prevent some users
from modifying a particular DB2ENTRY definition. “Using resource security to control access to
DB2ENTRY and DB2TRAN resource definitions” on page 47 tells you how to use this security
mechanism.

• Control users' ability to issue particular SPI commands against Db2-related resources by using the CICS
command security mechanism. Command security is also implemented at the transaction level. For
example, you could permit only certain users to issue CREATE and DISCARD commands against
DB2ENTRY resource definitions. “Using command security to control the issuing of SPI commands
against DB2CONN, DB2ENTRY, and DB2TRAN resource definitions” on page 49 tells you how to use
this security mechanism.

• Control users' ability to modify the authorization IDs that CICS provides to Db2, by using the CICS
surrogate security and AUTHTYPE security mechanisms. The authorization IDs are used for Db2
security checking, and they are set by the AUTHID, COMAUTHID, AUTHTYPE and COMAUTHTYPE
attributes on Db2-related resource definitions, and by the SIGNID attribute on the DB2CONN definition
for the CICS region. CICS checks that the user who wants to modify the authorization ID, is permitted to
act on behalf of the existing authorization ID that is specified in the resource definition. “Using
surrogate security and AUTHTYPE security to control access to the authorization IDs that CICS provides
to Db2” on page 50 tells you how to use these security mechanisms.

Using resource security to control access to DB2ENTRY and DB2TRAN resource
definitions

The CICS resource security mechanism controls users' access to named CICS resources. For example,
you can use it to protect certain resources, such as a particular DB2ENTRY definition, from being modified
by particular users.

About this task

CICS command security can prevent users from performing certain actions on types of resources, such as
"all DB2ENTRY definitions", but it cannot protect individual items within the resource type.

Because your CICS region only has one DB2CONN definition, you do not need to use resource security to
protect it; you can control access to the DB2CONN definition using command security. Also, DB2TRAN
definitions, for the purpose of resource security, are treated as extensions of the DB2ENTRY definition to
which they refer, and are not defined for resource security in their own right. If you give a user permission
to access a DB2ENTRY definition, you also give them permission to access the DB2TRAN definitions that
refer to it. (In the case where a transaction changes the name of the DB2ENTRY with which a DB2TRAN
definition is associated, a double security check is performed, to verify the user's authority to modify both

Chapter 4. Security for Db2 47

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/security.html

the old DB2ENTRY to which the definition referred, and the new DB2ENTRY to which it will refer.) For
resource security, you therefore only need to define your DB2ENTRY definitions to RACF.

When resource security is enabled for a transaction, the external security manager checks that the user
ID associated with the transaction is authorized to modify the resource that is involved. Security of
resource definitions has more information about this process.

To protect your Db2-related resources using resource security, complete these steps.

Procedure

1. To enable RACF, or an equivalent external security manager, and make resource security available for
a CICS region, specify SEC=YES as a system initialization parameter for the CICS region.

2. In RACF, create general resource classes to contain your Db2-related resources. You need a member
class and a grouping class.
Unlike the RACF default resource class names for CICS, there are no IBM-supplied default class
names for DB2ENTRY resources. Create your own installation-defined class names by adding new
class descriptors to the installation-defined part (module ICHRRCDE) of the RACF class descriptor
table (CDT). For an example of how to do this, see the IBM-supplied sample job, RRCDTE, supplied in
member DFH$RACF of CICSTS56.CICS.SDFHSAMP. This gives an example of a member class called
XCICSDB2, and a grouping class called ZCICSDB2. This example uses the same naming convention as
the default resource class names for CICS. Do not use existing CICS class names for Db2-related
resource definitions; instead, create new class names using a similar naming convention.

3. Define profiles for your DB2ENTRY definitions in the resource classes that you have created.
For example, to add a number of DB2ENTRY names to the XCICSDB2 resource class, use the RDEFINE
command as follows:

RDEFINE XCICSDB2 (db2ent1, db2ent2, db2ent3.., db2entn) UACC(NONE)
 NOTIFY(sys_admin_userid)

Protecting DB2ENTRY resource definitions also protects access to associated DB2TRAN definitions,
because a DB2TRAN is considered to be an extension to the DB2ENTRY to which it refers. You do not
need to protect your DB2CONN definition using resource security.

4. To activate resource security for your Db2-related resources, specify XDB2=name as a system
initialization parameter for the CICS region, where name is the general resource class name that you
defined for your Db2-related resources.

5. Specify RESSEC=YES in the resource definition for any transactions involving Db2-related resources
for which you want to enable resource security. Now, when a user tries to use one of these
transactions to access one of the Db2-related resources that you have protected, RACF checks that
the user ID is authorized to access that resource.

6. Give permission to your CICS users, or groups of users, to perform appropriate actions on each Db2-
related resource that you have protected.
Remember that if a user has permission to perform actions on a DB2ENTRY definition, they are
automatically authorized to perform the same actions on DB2TRAN definitions associated with it.The
access that users need to perform certain actions is as follows:
INQUIRE command

Requires READ authority
SET command

Requires UPDATE authority
CREATE command

Requires ALTER authority
DISCARD command

Requires ALTER authority

48 CICS TS for z/OS: Db2 Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/system/dfha4a9.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/system/dfha4a9.html

For example, you can use the PERMIT command to authorize a group of users to modify a protected
DB2ENTRY, db2ent1 in class XCICSDB2, with UPDATE authority, as follows:

PERMIT db2ent1 CLASS(XCICSDB2) ID(group1) ACCESS(UPDATE)

Using command security to control the issuing of SPI commands against DB2CONN,
DB2ENTRY, and DB2TRAN resource definitions

Use CICS command security mechanisms to protect DB2CONN, DB2ENTRY, and DB2TRAN resource
definitions.

About this task

The CICS command security mechanism controls users' ability to issue particular SPI commands against
types of Db2-related resource. For example, you can use it to control which users are allowed to issue
CREATE and DISCARD commands against DB2ENTRY resource definitions. Unlike resource security, CICS
command security cannot protect individual named resources; it is designed to protect types of resource.
You can use command security to protect DB2CONN, DB2ENTRY, and DB2TRAN resource definitions.

When command security is enabled for a transaction, the external security manager checks that the user
ID associated with the transaction is authorized to use that command to modify the type of resource that
is involved. CICS command security has more information about this process.

If you have both resource security and command security enabled for a particular transaction, RACF
performs two security checks against the user ID. For example, if a transaction involves the user issuing a
DISCARD command against DB2ENTRY definition db2ent1, RACF checks:

1. That the user ID is authorized to issue the DISCARD command (ALTER authority) against the
DB2ENTRY resource type.

2. That the user ID is authorized to access the DB2ENTRY definition db2ent1 with ALTER authority.

To protect your Db2-related resources using command security, complete these steps.

Procedure

1. To enable RACF, or an equivalent external security manager, for a CICS region, specify SEC=YES as a
system initialization parameter for the region.

2. Add the Db2 resource names DB2CONN, DB2ENTRY, and DB2TRAN as resource identifiers in one of
the IBM-supplied RACF resource classes for CICS commands, CCICSCMD or VCICSCMD.
Alternatively, you can use a user-defined general resource class for your CICS commands. CICS
resources subject to command security checking tells you more about this.
For example, you can use the REDEFINE command to define a profile named CMDSAMP in the default
class VCICSCMD, and use the ADDMEM operand to specify that the Db2 resource types are to be
protected by this profile, as follows:

 RDEFINE VCICSCMD CMDSAMP UACC(NONE)
 NOTIFY(sys_admin_userid)
 ADDMEM(DB2CONN, DB2ENTRY, DB2TRAN)

3. To make command security available for a CICS region:
a) If you have used the IBM-supplied RACF resource classes CCICSCMD or VCICSCMD for CICS

command profiles, specify XCMD=YES as a system initialization parameter for the region.
Specifying YES means that CCICSCMD and VCICSCMD are used to build RACF's in-storage profiles.

b) If you have used a user-defined general resource class for CICS commands, specify
XCMD=user_class as a system initialization parameter for the region, where user_class is the name
of the user-defined general resource class.

4. Specify CMDSEC=YES in the resource definition for any transactions involving Db2-related resources
for which you want to enable command security. Now, when a user tries to use one of these

Chapter 4. Security for Db2 49

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/cics/dfht53l.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/cics/dfht5m1.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/cics/dfht5m1.html

transactions to issue a command to modify one of the Db2-related resources that you have protected,
RACF checks that the user ID is authorized to issue that command against that type of resource.

5. Give permission to your CICS users, or groups of users, to issue appropriate commands against each
type of Db2-related resource. For command security, you need to give separate permissions relating to
the DB2TRAN resource type, as well as to the DB2ENTRY resource type. You can also protect the
DB2CONN resource type (that is, the CICS region's DB2CONN definition).

The access that users need to issue certain commands is as follows:
INQUIRE command

Requires READ authority
SET command

Requires UPDATE authority
CREATE command

Requires ALTER authority
DISCARD command

Requires ALTER authority

For example, if you have defined the Db2 resource types in the CMDSAMP profile as in the example in
Step 2, you can use the PERMIT command to authorize a group of users to issue EXEC CICS INQUIRE
commands against the Db2 resource types as follows:

PERMIT CMDSAMP CLASS(VCICSCMD) ID(operator_group) ACCESS(READ)

Within a transaction, you can query whether a user ID has access to Db2 resource types by using the
EXEC CICS QUERY SECURITY RESTYPE(SPCOMMAND) command, with the RESID parameter
specifying DB2CONN, DB2ENTRY, or DB2TRAN.

Using surrogate security and AUTHTYPE security to control access to the authorization
IDs that CICS provides to Db2

The CICS surrogate security and AUTHTYPE security mechanisms control users' ability to modify the
authorization IDs that CICS provides to Db2.

About this task

Use surrogate security and AUTHTYPE security to ensure that only certain users are permitted to change
the authorization IDs, which are used for security checking by Db2 own security checking. Surrogate
security and AUTHTYPE security are set for the whole CICS region, and any transactions that involve
changes to the authorization IDs are subject to them.

“Providing authorization IDs to Db2 for the CICS region and for CICS transactions” on page 53 explains
how to select and change these authorization IDs. To summarize, the authorization IDs that CICS
provides to Db2 are set by the AUTHID, COMAUTHID, AUTHTYPE, and COMAUTHTYPE attributes on Db2-
related resource definitions, and by the SIGNID attribute on the DB2CONN definition for the CICS region.
To change the authorization IDs, you first need authority to modify the DB2CONN and DB2ENTRY
definitions, which might be protected by command security or resource security. Surrogate security
provides an extra layer of protection, because it involves CICS acting on behalf of Db2 to check that the
user that is modifying the authorization ID is permitted to act as a surrogate for the existing authorization
ID that is specified in the resource definition.

True surrogate security provides security checking when a user attempts to change the SIGNID, AUTHID
or COMAUTHID attributes on a DB2CONN or DB2ENTRY definition, all of which specify an authorization ID
that is used when a process signs on to Db2. CICS uses the surrogate user facility of RACF to perform this
checking. A surrogate user is one who has the authority to do work on behalf of another user, without
knowing that other user's password. When a user attempts to change one of the SIGNID, AUTHID or
COMAUTHID attributes, CICS calls RACF to check that the user is authorized as a surrogate of the
authorization ID that is presently specified on the SIGNID, AUTHID or COMAUTHID attribute.

50 CICS TS for z/OS: Db2 Guide

For the AUTHTYPE and COMAUTHTYPE attributes, which give a type of authorization ID to be used rather
than specifying an exact authorization ID, CICS cannot use true surrogate security. Instead, it uses a
mechanism called AUTHTYPE security. When a user attempts to change one of the AUTHTYPE or
COMAUTHTYPE attributes, CICS calls RACF to check that the user is authorized through a profile that you
have defined for the resource definition in the RACF FACILITY general resource class. Although
AUTHTYPE security is not true surrogate security, it is enabled by the same system initialization
parameter, and you will probably want to use it in addition to surrogate security, so the instructions in this
topic tell you how to set up both types of security.

Note that when DB2CONN and DB2ENTRY resource definitions are installed as part of a cold or initial
start of CICS, if surrogate security and AUTHTYPE security are enabled, RACF makes surrogate security
and AUTHTYPE security checks for the CICS region user ID. If you install DB2CONN and DB2ENTRY
resource definitions in this way, ensure that the CICS region user ID is defined as a surrogate user for any
authorization IDs specified in the resource definitions, and also that it is authorized through the correct
profiles in the RACF FACILITY general resource class.

To implement surrogate security and AUTHTYPE security to protect the authorization IDs that CICS
provides to Db2, complete the following steps:

Procedure

1. To enable RACF, or an equivalent external security manager, for a CICS region, specify SEC=YES as a
system initialization parameter for the region.

2. To activate surrogate security and AUTHTYPE security for a CICS region, specify XUSER=YES as a
system initialization parameter for the region. This system initialization parameter enables both the
security mechanisms. When the security mechanisms are enabled, CICS calls RACF to perform
security checks whenever a transaction involves EXEC CICS SET, CREATE, and INSTALL commands
that operate on the SIGNID, AUTHID, COMAUTHID, AUTHTYPE and COMAUTHTYPE attributes of
DB2CONN and DB2ENTRY resource definitions. For the SIGNID, AUTHID and COMAUTHID attributes,
RACF performs the surrogate security check, and for the AUTHTYPE or COMAUTHTYPE attributes,
RACF performs the AUTHTYPE security check.

3. For the purpose of surrogate security, you need to define appropriate CICS users, or groups of users,
as surrogates of any authorization IDs that are specified on the SIGNID, AUTHID or COMAUTHID
attributes of your DB2CONN and DB2ENTRY definitions. To define a user ID as a surrogate of an
authorization ID:
a) Create a profile for the authorization ID in the RACF SURROGAT class, with a name of the form

authid.DFHINSTL, with the authorization ID defined as the owner.
For example, if you have specified DB2AUTH1 as an authorization ID on a SIGNID, AUTHID or
COMAUTHID attribute, use the following command to create a profile:

 RDEFINE SURROGAT DB2AUTH1.DFHINSTL UACC(NONE) OWNER(DB2AUTH1)

b) Permit appropriate CICS users to act as a surrogate for the authorization ID, by giving them READ
authority to the profile you have created.
For example, to permit a user with the ID CICSUSR1 to act as a surrogate for the authorization ID
DB2AUTH1, and therefore to install or modify any SIGNID, AUTHID or COMAUTHID attributes that
specify DB2AUTH1 as the existing authorization ID, use the following command:

PERMIT DB2AUTH1.DFHINSTL CLASS(SURROGAT) ID(CICSUSR1) ACCESS(READ)

Repeat this process for all the authorization IDs that you have specified on SIGNID, AUTHID or
COMAUTHID attributes.

c) If you might need to install DB2CONN and DB2ENTRY resource definitions containing SIGNID,
AUTHID or COMAUTHID attributes as part of a cold or initial start of CICS, permit the CICS region
user ID to act as a surrogate for any authorization IDs specified by those attributes.
The defaults for DB2CONN and DB2ENTRY resource definitions do not involve the AUTHID and
COMAUTHID attributes. The default SIGNID for an installed DB2CONN definition is the applid of
the CICS region.

Chapter 4. Security for Db2 51

4. For the purpose of AUTHTYPE security, you need to create a profile for each of your DB2CONN or
DB2ENTRY resource definitions in the RACF FACILITY general resource class, and give appropriate
CICS users, or groups of users, READ authority to the profiles. (This process imitates the true
surrogate security mechanism, but does not involve the use of a specific authorization ID; instead, it
protects each resource definition.) To do this:
a) Create a profile for the DB2CONN or DB2ENTRY resource definition in the RACF FACILITY general

resource class, with a name of the form DFHDB2.AUTHTYPE.authname, where authname is the
name of the DB2CONN or DB2ENTRY resource definition.
For example, to define a profile for a DB2CONN resource definition named DB2CONN1, use the
following command:

 RDEFINE FACILITY DFHDB2.AUTHTYPE.DB2CONN1 UACC(NONE)

b) Give appropriate CICS users READ authority to the profile you have created.
For example, to permit a user with the ID CICSUSR2 to install or modify the AUTHTYPE or
COMAUTHTYPE attributes on a DB2CONN resource definition named DB2CONN1, use the following
command:

 PERMIT DFHDB2.AUTHTYPE.DB2CONN1 CLASS(FACILITY) ID(CICSUSR2) ACCESS(READ)

Repeat this process for each of your DB2CONN and DB2ENTRY resource definitions. Also, if you might
need to install DB2CONN and DB2ENTRY resource definitions containing AUTHTYPE or
COMAUTHTYPE attributes as part of a cold or initial start of CICS, give READ authority to the CICS
region user ID on the profiles for those resource definitions.

Controlling users' access to Db2-related CICS transactions
Use the CICS transaction-attach security mechanism to control users' access to: CICS transactions that
access Db2 to obtain data, the DSNC transaction, and to any other transactions that issue CICS Db2
attachment facility commands and Db2 commands.

About this task

When transaction-attach security is enabled, RACF, or an equivalent external security manager, checks
that the CICS user is authorized to run the transaction that they have requested.

To protect Db2-related transactions using transaction-attach security, follow the instructions in
Transaction security. The process is the same for all CICS transactions; there are no special
considerations for Db2-related transactions as far as the transaction-attach security mechanism is
concerned. The instructions tell you how to:

• Set up appropriate system initialization parameters for the CICS region to activate transaction-attach
security (see CICS parameters controlling transaction-attach security).

• Define transaction profiles to RACF for the transactions that you want to protect (see RACF profiles).

If you have defined transactions other than DSNC to issue CICS Db2 attachment facility commands and
Db2 commands (for example, if you have created a separate transaction to run each command),
remember to define these transactions to RACF as well.

You can now control which CICS users can use transactions that access Db2. Add the appropriate users
or groups of users to the access list for the transaction profiles, with READ authority. RACF profiles has
some recommendations about this.

For transactions that issue CICS Db2 attachment facility commands and Db2 commands, bear in mind
that:

• CICS Db2 attachment facility commands operate on the connection between CICS and Db2, and they
run entirely within CICS. Db2 commands operate in Db2 itself, and they are routed to Db2. You can
distinguish Db2 commands from CICS Db2 attachment facility commands by the hyphen (-) character,
which is entered with Db2 commands.

• If you have access to the DSNC transaction, CICS allows you to issue all of the CICS Db2 attachment
facility commands and Db2 commands.

52 CICS TS for z/OS: Db2 Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/cics/dfht535.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/cics/dfht536.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/cics/dfht52z.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/cics/dfht52z.html

• If you have defined separate transactions to run individual CICS Db2 attachment facility commands and
Db2 commands, you can give different CICS users authorization to subsets of these transaction codes,
and therefore to subsets of the commands. For example, you could give some users authority to issue
CICS Db2 attachment facility commands, but not Db2 commands. CICS-supplied transactions for CICS
Db2 has the names of the separate transaction definitions that CICS supplies for the CICS Db2
attachment facility commands and the Db2 commands.

CICS Db2 attachment facility commands do not flow to Db2, so they are not subject to any further
security checking. They are only protected by CICS transaction-attach security. However, Db2
commands, and CICS transactions that access Db2 to obtain data, are subject to further stages of security
checking by the Db2 security mechanisms, as follows:

• When a transaction signs on to Db2, it must provide valid authorization IDs to Db2. The authorization
IDs are checked by RACF or an equivalent external security manager.

• Because the transaction is issuing a Db2 command or accessing Db2 data, the authorization IDs that it
has provided must have permission to perform these actions within Db2. In Db2, you can use GRANT
statements to give the authorization IDs permission to perform actions.

In addition, the CICS region itself must be authorized to connect to the Db2 subsystem.

“Providing authorization IDs to Db2 for the CICS region and for CICS transactions” on page 53 tells you
how to authorize the CICS region to connect to the Db2 subsystem, and how to provide valid authorization
IDs for transactions.

“Authorizing users to access resources in Db2” on page 60 tells you how to grant permissions to the
authorization IDs that the transactions have provided to Db2.

Providing authorization IDs to Db2 for the CICS region and for CICS
transactions

CICS has two types of process that must provide Db2 with authorization IDs: the overall connection
between a CICS region and Db2, and CICS transactions that acquire a thread into Db2.

About this task

For the purposes of security, Db2 uses the term “process” to represent all forms of access to data, either
by users interacting directly with Db2, or by users interacting with Db2 by way of other programs,
including CICS. A process that connects to or signs on to Db2 must provide one or more Db2 short
identifiers, called authorization IDs, that can be used for security checking in the Db2 address space.
Every process must provide a primary authorization ID, and it can optionally provide one or more
secondary authorization IDs. Db2 privileges and authority can be granted to either primary or secondary
authorization IDs. For example, users can create a table using their secondary authorization ID. The table
is then owned by that secondary authorization ID. Any other user that provides Db2 with the same
secondary authorization ID has associated privileges over the table. To take privileges away from a user,
the administrator can disconnect the user from that authorization ID.

CICS has two types of process that need to provide Db2 with authorization IDs:

• The overall connection between a CICS region and Db2, which is created by the CICS Db2 attachment
facility. This process has to go through Db2 connection processing to provide Db2 with authorization
IDs.

• CICS transactions that acquire a thread into Db2. These could be, for example, a transaction that is
retrieving data from a Db2 database, or the DSNC transaction that is issuing a Db2 command. For each
CICS transaction, the actual process that Db2 sees is the thread TCB, which CICS uses to control a
transaction's thread into Db2. These processes have to go through the Db2 sign-on processing to
provide Db2 with authorization IDs.

During connection processing and sign-on processing, Db2 sets the primary and secondary authorization
IDs for the process to use in the Db2 address space. By default, Db2 uses the authorization IDs that the
process has provided. However, both connection processing and sign-on processing involve exit routines,
and these exit routines allow you to influence the setting of the primary and secondary authorization IDs.

Chapter 4. Security for Db2 53

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfhtk0r.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfhtk0r.html

Db2 has a default connection exit routine and a default sign-on exit routine. You can replace these with
your own exit routines, and a sample connection exit routine and sign-on exit routine are supplied with
Db2 to assist you with this.

Providing authorization IDs to Db2 for a CICS region
CICS provides a primary authorization ID and one or more secondary authorization IDs to Db2.

About this task

When the CICS Db2 attachment facility creates the overall connection between a CICS region and Db2,
the process goes through the Db2 connection processing. The CICS region can provide:

• A primary authorization ID. The primary authorization ID becomes the CICS region's primary ID in Db2.
For the connection between a CICS region and Db2, you cannot choose the primary authorization ID
that is initially passed to the Db2 connection processing; it is the user ID for the CICS region. However,
it is possible to change the primary ID that Db2 sets during connection processing, by writing your own
connection exit routine. If RACF, or an equivalent external security manager, is active, the user ID for
the CICS region must be defined to it. “Providing a primary authorization ID for a CICS region” on page
54 tells you about the possible primary authorization IDs for a CICS region.

• One or more secondary authorization IDs. You can use the name of a RACF group, or list of groups, as
secondary authorization IDs for the CICS region. If you do this, you need to replace the default Db2
connection exit routine DSN3@ATH, which only passes primary authorization IDs to Db2. The sample
Db2 connection exit routine DSN3SATH passes the names of RACF groups to Db2 as secondary
authorization IDs. Alternatively, you can write your own connection exit routine that sets secondary IDs
for the CICS region. “Providing secondary authorization IDs for a CICS region” on page 55 tells you
how to set up secondary authorization IDs for a CICS region.

Providing a primary authorization ID for a CICS region
The primary authorization ID that is passed to Db2 depends whether CICS is running as a started task, a
started job, or a job.

About this task

The connection type that CICS requests from Db2 is single address space subsystem (SASS). For the
connection between a CICS region and Db2, you cannot choose the primary authorization ID that is
initially passed to the Db2 connection processing. The ID that is passed to Db2 as the primary
authorization ID for the CICS region is one of the following:

• The user ID taken from the RACF started procedures table, ICHRIN03, if CICS is running as a started
task.

• The user parameter of the STDATA segment in a STARTED general resource class profile, if CICS is
running as a started job.

• The user ID specified on the USER parameter of the JOB card, if CICS is running as a job.

The user ID that a CICS region might use must be defined to RACF, or your equivalent external security
manager, if the external security manager is active. Define the user ID to RACF as a USER profile. It is not
sufficient to define it as a RESOURCE profile.

Once you have defined the CICS region's user ID to RACF, permit it to access Db2, as follows:

1. Define a profile for the Db2 subsystem with the single address space subsystem (SASS) type of
connection, in the RACF class DSNR. For example, the following RACF command creates a profile for
SASS connections to Db2 subsystem DB2A in class DSNR:

 RDEFINE DSNR (DB2A.SASS) OWNER(DB2OWNER)

54 CICS TS for z/OS: Db2 Guide

2. Permit the user ID for the CICS region to access the Db2 subsystem. For example, the following RACF
command permits a CICS region with a user ID of CICSHA11 to connect to Db2 subsystem DB2A:

 PERMIT DB2A.SASS CLASS(DSNR) ID(CICSHA11) ACCESS(READ)

The Db2 connection exit routine takes the primary authorization ID (the user ID) provided by the CICS
region, and sets it as the primary ID for the CICS region in Db2. The default Db2 connection exit routine
DSN3@ATH, and the sample Db2 connection exit routine DSN3SATH, both behave in this way. It is
possible to change the primary ID that Db2 sets, by writing your own connection exit routine. For more
information about the sample connection exit routine and about writing exit routines, see Securing Db2 in
Db2 for z/OS product documentation. However, you might find it more straightforward to provide
secondary authorization IDs for the CICS region, and grant permissions to the CICS region based on
these, rather than on the primary authorization ID.

Providing secondary authorization IDs for a CICS region
When a CICS region connects to Db2, it can provide one or more secondary authorization IDs to Db2, in
addition to the primary authorization ID. You can use the name of the RACF group, or list of groups, to
which the CICS region is connected, as secondary authorization IDs. This enables you to grant Db2
privileges and authority to RACF groups, and then connect multiple CICS regions to the same groups,
instead of granting Db2 privileges to all the possible primary authorization IDs for each CICS region.

About this task

To provide the name of the RACF group, or list of groups, to which a CICS region is connected, to Db2 as
secondary authorization IDs, complete the following steps.

Procedure

1. Specify SEC=YES as a system initialization parameter for the CICS region, to ensure that CICS uses
RACF.

2. Connect the CICS region to the appropriate RACF group or list of groups.
See RACF group profiles.

3. Replace the default Db2 connection exit routine DSN3@ATH.
This exit routine is driven during connection processing. The default connection exit routine does not
support secondary authorization IDs, so you need to replace it with the sample connection exit routine
DSN3SATH, which is provided with Db2, or with your own routine. DSN3SATH is shipped in source
form in the Db2 SDSNSAMP library, and you can use it as a basis for your own routine. DSN3SATH
passes the names of the RACF groups to which the CICS region is connected, to Db2 as secondary
authorization IDs. If the RACF list of groups option is active, DSN3SATH obtains all the group names to
which the CICS region is connected, and uses these as secondary authorization IDs. If the RACF list of
groups option is not active, DSN3SATH uses the name of the CICS region's current connected group as
the only secondary authorization ID.

Results

When the CICS region connects to Db2, the sample connection exit routine sets the CICS region's primary
authorization ID (the region's user ID) as the primary ID, and sets the names of the RACF groups to which
the CICS region is connected, as secondary IDs.

What to do next

As an alternative to providing the names of RACF groups as secondary authorization IDs to Db2, you can
write your own connection exit routine that sets secondary IDs for the CICS region. For information about
writing connection exit routines, see Securing Db2 in Db2 for z/OS product documentation.

Chapter 4. Security for Db2 55

https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/nav/src/tpc/db2z_securityintro.html
https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/nav/src/tpc/db2z_securityintro.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/cics/dfht521.html
https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/nav/src/tpc/db2z_securityintro.html

Providing authorization IDs to Db2 for CICS transactions
So that CICS can pass authorization IDs to Db2, CICS must be using RACF; SEC=YES must be specified in
the SIT. This is because CICS needs to pass a RACF access control environment element (ACEE) to Db2.

About this task

When a CICS transaction's thread TCB signs on to Db2 and goes through the Db2 sign-on processing, it
can provide:

• A primary authorization ID. For CICS transactions, you can choose the primary authorization ID. It can
be the user ID or operator ID of the CICS user, or a terminal ID, or a transaction ID; or it can be an ID
that you have specified. The ID that is used as the primary authorization ID is determined by attributes
in the DB2ENTRY definition (for entry threads), or in the DB2CONN definition (for pool threads and
command threads). “Providing a primary authorization ID for CICS transactions” on page 57 tells you
how to choose the primary authorization ID for a CICS transaction.

• One or more secondary authorization IDs. You can use the name of a RACF group, or list of groups, as
secondary authorization IDs. This has the advantage that you can grant Db2 privileges and authority to
RACF groups, rather than to each individual CICS user. To use secondary authorization IDs, use the
AUTHTYPE attribute in the DB2ENTRY definition (for entry threads), or the AUTHTYPE or
COMAUTHTYPE attributes in the DB2CONN definition (for pool threads or command threads), to specify
the GROUP option. You also need to replace the default Db2 sign-on exit routine DSN3@SGN, because
the default routine does not pass secondary authorization IDs to Db2. When you specify the GROUP
option, the primary authorization ID is automatically defined as the user ID of the CICS user associated
with the transaction. “Providing secondary authorization IDs for CICS transactions” on page 59 tells
you how to set up and use secondary authorization IDs.

A key consideration for choosing the authorization IDs that CICS transactions provide to Db2 is the
security mechanism that you have chosen for security checking in the Db2 address space. This security
checking covers access to Db2 commands, plans, and dynamic SQL. You can choose to have this security
checking carried out by:

• Db2 internal security.
• RACF, or an equivalent external security manager.
• Partly Db2, and partly RACF.

If you are using RACF for some or all of the security checking in your Db2 address space, CICS
transactions that sign on to Db2 must provide an authorization ID by one of the following methods:

• Specify AUTHTYPE(USERID) or COMAUTHTYPE(USERID) in the appropriate definition for the thread
(DB2ENTRY or DB2CONN), to provide the user ID of the CICS user associated with the transaction to
Db2 as the primary authorization ID.

• Specify AUTHTYPE(GROUP) or COMAUTHTYPE(GROUP) in the appropriate definition for the thread
(DB2ENTRY or DB2CONN), to provide the user ID of the CICS user associated with the transaction to
Db2 as the primary authorization ID, and the name of a RACF group or list of groups as the secondary
authorization IDs.

• Specify AUTHTYPE(SIGN) in the appropriate definition for the thread (DB2ENTRY or DB2CONN), and
specify the CICS region user ID in the SIGNID attribute of the DB2CONN, to provide the CICS region ID
to Db2 as the primary authorization ID.

Note that if the RACF access control environment element (ACEE) in the CICS region is changed in a way
that affects the CICS Db2 attachment facility, Db2 is not aware of the change until a sign-on occurs. You
can use the CEMT or EXEC CICS SET DB2CONN SECURITY(REBUILD) command to cause the CICS Db2
attachment facility to issue a Db2 sign-on the next time a thread is reused, or when a thread is built on an
already signed-on TCB. This ensures that Db2 is made aware of the security change.

56 CICS TS for z/OS: Db2 Guide

Providing a primary authorization ID for CICS transactions
When a CICS transaction's thread TCB signs on to Db2, it must provide a primary authorization ID to Db2.
The ID that a transaction uses as its primary authorization ID is determined by an attribute in the resource
definition for the thread that the transaction uses to access Db2.

About this task

This means that all transactions that use the same type of thread (either the same type of entry thread, or
pool threads, or command threads) must use the same type of primary authorization ID. In each CICS
region, you need to set a primary authorization ID for:

• Each type of entry thread, using your DB2ENTRY definitions.
• The pool threads, using your DB2CONN definition.
• The command threads (used for the DSNC transaction), using your DB2CONN definition.

Before you start to set primary authorization IDs, ensure that you have authority to do so. As well as
having authority to change your DB2CONN or DB2ENTRY definitions, if surrogate user checking is in force
for the CICS region (that is, the system initialization parameter XUSER is set to YES), you need to obtain
special authority to perform operations involving Db2 authorization IDs. These operations are modifying
the AUTHID, COMAUTHID, AUTHTYPE, or COMAUTHTYPE attributes on a DB2ENTRY or DB2CONN
definition, and modifying the SIGNID attribute on a DB2CONN definition. “Using surrogate security and
AUTHTYPE security to control access to the authorization IDs that CICS provides to Db2” on page 50 tells
you how to grant users authority to perform these operations.

There are two methods of setting the primary authorization ID for a particular type of thread:

1. Use the AUTHID attribute in the DB2ENTRY definition (for entry threads), or the AUTHID or
COMAUTHID attribute in the DB2CONN definition (for pool threads or command threads), to specify a
primary authorization ID. For example, you could define AUTHID=test2. In this case, the CICS Db2
attachment facility passes the characters TEST2 to Db2 as the primary authorization ID.

Using AUTHID or COMAUTHID does not permit the use of secondary authorization IDs, and also is not
compatible with the use of RACF, or an equivalent external security manager, for security checking in
the Db2 address space.

2. Use the AUTHTYPE attribute in the DB2ENTRY definition (for entry threads), or the AUTHTYPE or
COMAUTHTYPE attribute in the DB2CONN definition (for pool threads or command threads), to
instruct CICS to use an existing ID that is relevant to the transaction as the primary authorization ID.
This ID can be a CICS user ID, operator ID, terminal ID, or transaction ID; or it can be an ID that you
have specified in the DB2CONN definition for the CICS region.

Using AUTHTYPE or COMAUTHTYPE is compatible with the use of RACF (or an equivalent external
security manager) for security checking in the Db2 address space, if you use the USERID or GROUP
options, and with the use of secondary authorization IDs, if you use the GROUP option.

The two methods of determining the primary authorization ID are mutually exclusive; you cannot specify
both AUTHID and AUTHTYPE, or COMAUTHID and COMAUTHTYPE, in the same resource definition.

Remember that all IDs that you select as primary authorization IDs must be defined to RACF, or your
equivalent external security manager, if the security manager is active for the Db2 subsystem. For RACF,
the primary authorization IDs must be defined as RACF USER profiles, not just as RESOURCE profiles (for
example, as a terminal or transaction).

Follow the instructions in DB2CONN resources and DB2ENTRY resources to set up or modify DB2CONN
and DB2ENTRY definitions. If you are using the AUTHTYPE or COMAUTHTYPE attributes to determine the
primary authorization ID for a type of thread, use Table 3 on page 58 to identify the options that provide
the required authorization ID and support the facilities you want. The key points to consider are:

• If you want to provide secondary authorization IDs to Db2 as well as a primary authorization ID, you
need to select the GROUP option. When you specify the GROUP option, your primary authorization ID is
automatically defined as your CICS user ID, but you can base your security checking on the secondary
authorization IDs instead.

Chapter 4. Security for Db2 57

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/db2conn/dfha4_summary.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/db2entry/dfha4_summary.html

• If you are using RACF for security checking in the Db2 address space, you need to select either the
GROUP option, or the USERID option. Only these options can pass the RACF access control
environment element (ACEE) to Db2, which is required when RACF is used for security checking.

• Think about the performance and maintenance implications of your choice of authorization ID. Selecting
authorization IDs for performance and maintenance outlines these. With the USERID, OPID, TERM, TX
or GROUP options, sign-on processing occurs more frequently, and maintenance also takes more time,
because you need to grant permissions to a greater number of authorization IDs. With the SIGN option,
or using the AUTHID attribute instead of the AUTHTYPE attribute, sign-on processing is decreased, and
maintenance is less complicated. However, using standard authorization IDs makes the Db2 security
checking less granular.

• Think about the accounting implications of your choice of authorization ID. The authorization ID is used
in each Db2 accounting record. From an accounting viewpoint, the most detailed information is
obtained if using USERID, OPID, GROUP or TERM. However, depending on the ACCOUNTREC
specification, it may not be possible to account at the individual user level in any case. For more
information about accounting in a CICS Db2 environment, see Accounting and monitoring in a CICS Db2
environment in Monitoring.

Table 3 on page 58 shows the primary authorization IDs that the CICS Db2 attachment facility passes to
Db2 when you select each option for the AUTHTYPE or COMAUTHTYPE attributes.

Table 3. Options available on the AUTHTYPE and COMAUTHTYPE attributes

Option Primary authorization ID passed to Db2 Supports RACF
checking for Db2?

Supports secondary
auth IDs?

USERID User ID associated with the CICS
transaction, as defined to RACF and used in
CICS sign-on

Yes No

OPID User's CICS operator ID, defined in the CICS
segment of the RACF user profile

No No

SIGN An ID you specified in the SIGNID attribute
of the DB2CONN definition for the CICS
region. Defaults to the applid of the CICS
region

Yes, when the
SIGNID attribute of

the DB2CONN
resource matches the

CICS region userid.

No

TERM Terminal ID of the terminal associated with
the transaction

No No

TX Transaction ID No No

GROUP User's CICS RACF user ID used in CICS sign-
on

Yes Yes

If you are not planning to provide secondary authorization IDs for your CICS transactions, you do not need
to replace the default Db2 sign-on exit routine DSN3@SGN. The default sign-on exit routine handles
primary authorization IDs. However, the Db2 subsystem to which you are connecting might use a different
sign-on exit routine for some other reason. If the Db2 subsystem uses the sample sign-on exit routine
DSN3SSGN, you might need to make a change to DSN3SSGN, if all of the following conditions are true:

• You have chosen an AUTHID or AUTHTYPE option other than GROUP.
• RACF list of groups processing is active.
• You have transactions whose primary authorization ID is not defined to RACF.

If this is the case, see Securing Db2 in Db2 for z/OS product documentationfor the change you need to
make to the sample sign-on exit routine.

58 CICS TS for z/OS: Db2 Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/dfht3ff.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/dfht3ff.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/monitoring/dfhtk17.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/monitoring/dfhtk17.html
https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/nav/src/tpc/db2z_securityintro.html

Providing secondary authorization IDs for CICS transactions
When a thread TCB that belongs to a CICS transaction signs on to Db2, it can provide one or more
secondary authorization IDs to Db2, in addition to the primary authorization ID.

About this task

You can provide Db2 with the name of a CICS user's RACF group, or list of groups, as secondary
authorization IDs. This has the advantage that you can grant Db2 privileges and authority to RACF groups,
rather than to each individual CICS user. CICS users can then be connected to, or removed from, RACF
groups as required. RACF group profiles explains how users can be placed into RACF groups.

You can only provide secondary authorization IDs to Db2 for CICS transactions if you specify the GROUP
option for the AUTHTYPE attribute in the DB2ENTRY definition (for entry threads), or the AUTHTYPE or
COMAUTHTYPE attributes in the DB2CONN definition (for pool threads or command threads). If you
specify any other option for AUTHTYPE or COMAUTHTYPE, the secondary authorization ID is set to
blanks. When you specify the GROUP option, you cannot choose the primary authorization ID for the
thread type; it is automatically defined as the user ID of the CICS user associated with the transaction.
You should base your security checking on the secondary authorization IDs instead.

To provide the names of a user's RACF groups to Db2 as secondary authorization IDs, complete the
following steps:

1. Specify SEC=YES as a system initialization parameter for the CICS region, to ensure that CICS uses
RACF. If your CICS transaction profile names are defined with a prefix, also specify the system
initialization parameter SECPRFX=YES or SECPRFX=prefix.

2. If the CICS region is using MRO:

a. Ensure that each connected CICS region is also using RACF security (SEC=YES).
b. Specify ATTACHSEC=IDENTIFY on the CONNECTION definition for the TOR, to ensure that sign-on

information is propagated from the TOR to the AORs.
3. Replace the default Db2 sign-on exit routine DSN3@SGN. This sign-on exit routine is driven during

sign-on processing. The default sign-on exit routine does not support secondary authorization IDs, so
you need to replace it with the sample sign-on exit routine DSN3SSGN, which is provided with Db2, or
with your own routine. DSN3SSGN is shipped in source form in the Db2 SDSNSAMP library, and you
can use it as a basis for your own routine. For information about sign-on exits and about writing exit
routines, see Securing Db2 in Db2 for z/OS product documentation. If the RACF list of groups option is
not active, DSN3SSGN passes the name of the current connected group as the secondary
authorization ID. If the RACF list of groups is active, DSN3SSGN obtains the names of all the groups to
which the user is connected, and passes them to Db2 as secondary authorization IDs.

4. Use the AUTHTYPE attribute in the DB2ENTRY definition (for entry threads), or the AUTHTYPE or
COMAUTHTYPE attribute in the DB2CONN definition (for pool threads or command threads), to specify
the GROUP option as the authorization type for each type of thread for which you want to provide
secondary authorization IDs. If surrogate user checking is in force for the CICS region (that is, the
system initialization parameter XUSER is set to YES), you need to obtain special authority to perform
operations involving Db2 authorization IDs. “Using surrogate security and AUTHTYPE security to
control access to the authorization IDs that CICS provides to Db2” on page 50 tells you how to do this.

If you have successfully completed all the steps listed above, when a CICS transaction's thread TCB signs
on to Db2 with the types of thread that you have defined with the GROUP option, the CICS user's user ID
will be passed to Db2 as the primary authorization ID, and the user's RACF group or list of groups will be
passed to Db2 as secondary authorization IDs. If you have not successfully completed all the steps, the
CICS Db2 attachment facility will issue an authorization failed message.

As an alternative to providing the names of RACF groups as secondary authorization IDs to Db2, you can
write your own sign-on exit routine that sets secondary IDs for CICS transactions. See Securing Db2 in
Db2 for z/OS product documentation.

Chapter 4. Security for Db2 59

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/cics/dfht521.html
https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/nav/src/tpc/db2z_securityintro.html
https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/nav/src/tpc/db2z_securityintro.html
https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/nav/src/tpc/db2z_securityintro.html

Authorizing users to access resources in Db2
Once the user has accessed the Db2 address space from a CICS transaction they might need permission
to issue Db2 commands or execute a plan.

About this task

Access to the Db2 resources that a CICS user needs to issue Db2 commands or execute a plan is subject
to security checking by the Db2 security mechanisms. You can choose to have this security checking
carried out by:

• Db2 internal security.
• RACF, or an equivalent external security manager.
• Partly Db2, and partly RACF.

For more information about setting up RACF to perform security checking in the Db2 address space, see
Securing Db2 in Db2 for z/OS product documentation.

If you are using RACF for some or all of the security checking in your Db2 address space, remember that
CICS transactions that sign on to Db2 must provide an authorization ID. For more information, see
“Providing authorization IDs to Db2 for CICS transactions” on page 56. CICS must also be using RACF
(SEC=YES must be specified in the SIT). This is because when RACF is used for security checking in the
Db2 address space, CICS needs to pass a RACF access control environment element (ACEE) to Db2. CICS
can only produce an ACEE if it has RACF active, and only threads defined with the GROUP, SIGN or
USERID option can pass the ACEE to Db2.

When the ACEE is passed to Db2, it is used by the Db2 exit DSNX@XAC, which determines whether RACF,
or an equivalent non-IBM external security manager, or Db2 internal security is used for security
checking. DSNX@XAC is driven when a transaction whose thread has signed on to Db2, issues API
requests. You can modify DSNX@XAC. For more information, see Securing Db2 in Db2 for z/OS product
documentation.

Db2, or the external security manager, performs security checking using the authorization IDs that the
CICS transaction provided to Db2 when the thread that it was using signed on to Db2. The authorization
IDs could be related to the individual CICS user (for example, the CICS user's user ID and the RACF
groups to which the user is connected), or they could be related to the transaction (for example, the
terminal ID or transaction ID), or they could be related to the whole CICS region. For more information,
see “Providing authorization IDs to Db2 for the CICS region and for CICS transactions” on page 53.

Db2, or the external security manager, checks that you have given the authorization IDs permission to
perform the relevant actions in Db2. You can give the authorization IDs this permission by using GRANT
statements in Db2. For information about how to grant, and revoke, Db2 permissions for authorization
IDs, see Securing Db2 in Db2 for z/OS product documentation.

Controlling users' access to Db2 commands
For CICS users, the first security checking related to Db2 commands is performed in the CICS address
space, when the user tries to access a CICS transaction that issues Db2 commands. This could be DSNC,
or a user-defined transaction that invokes DFHD2CM1 and runs an individual Db2 command.

About this task

“Controlling users' access to Db2-related CICS transactions” on page 52 describes how to control users'
access to transactions that issues Db2 commands in the CICS address space.

When a user issues a Db2 command through a CICS transaction, they are also subject to Db2 security
checking, which verifies that they are authorized to Db2 to issue the command. This security checking
uses the authorization IDs (primary or secondary) that the transaction has passed from CICS. “Providing
authorization IDs to Db2 for the CICS region and for CICS transactions” on page 53 tells you how to
choose these authorization IDs and provide them to Db2. For transactions that use DFHD2CM1 to issue
Db2 commands, the authorization IDs are set by the COMAUTHID or COMAUTHTYPE attribute of the CICS
region's DB2CONN definition. For other applications that issue Db2 commands, the authorization IDs are

60 CICS TS for z/OS: Db2 Guide

https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/nav/src/tpc/db2z_securityintro.html
https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/nav/src/tpc/db2z_securityintro.html
https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/nav/src/tpc/db2z_securityintro.html
https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/nav/src/tpc/db2z_securityintro.html

set by the AUTHID or AUTHTYPE attribute for the CICS region's resource definition for the type of thread
used by the transaction (pool thread or entry thread). These attributes control the authorization ID, or
type of authorization ID, that is passed to Db2 by a transaction that is using that type of thread.

Db2 commands are therefore subject to two security checks, one in the CICS address space and one in
the Db2 address space. Figure 24 on page 61 illustrates the process.

Figure 24. Security mechanisms for Db2 commands

In most cases, only a limited number of users are permitted to execute Db2 commands. A convenient
solution can be to specify COMAUTHTYPE(USERID) on the DB2CONN definition, which resolves to the 8-
byte CICS user ID as the authorization ID in Db2. Using this method, you can give different Db2 privileges
explicitly to CICS user IDs. For example, you can use GRANT DISPLAY to give specific CICS user IDs
permission to use only the -DIS command.

To authorize a user to issue a Db2 command, use a GRANT command to grant Db2 command privileges to
the authorization ID that the transaction has passed from CICS. For information about how to grant, and
revoke, Db2 permissions for authorization IDs, see Securing Db2 in Db2 for z/OS product documentation.

Controlling users' access to plans
A number of checks take place before a user can access plans in Db2. These checks start in the CICS
address space before the request is passed to Db2 for further checks.

About this task

For Db2 commands, the first security check for users' access to plans takes place in the CICS address
space, when CICS verifies that the user is permitted to access the transaction that will execute the plan.
The second security check takes place in the Db2 address space, when Db2 verifies that the authorization
ID provided by the transaction, is authorized to execute the plan. Figure 25 on page 62 illustrates this
process.

Chapter 4. Security for Db2 61

https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/nav/src/tpc/db2z_securityintro.html

Figure 25. Security mechanisms for executing a plan

To authorize a user to execute a plan, use a GRANT command to grant Db2 command privileges to the
authorization ID that the transaction has passed from CICS. For information about how to grant, and
revoke, Db2 permissions for authorization IDs, see Securing Db2 in Db2 for z/OS product documentation.

If a plan includes dynamic SQL
When using static SQL, the binder of the plan must have the privileges needed to access the data, and the
authorization ID passed from CICS to Db2 need only have the privileges to execute the plan.

About this task

However, if a plan includes the use of dynamic SQL, the authorization ID passed from CICS to Db2 must
possess the privileges required to access all the Db2 resources involved, both the plan and the data. For
example, if you specify AUTHTYPE(USERID), the CICS user ID must be granted Db2 privileges to the Db2
resources involved in the dynamic SQL. If this user ID is also a TSO user ID, it has access to the Db2
resources directly from SPUFI, QMF, and other utilities.

If you do not want to spend too much time granting Db2 privileges, where a transaction executes a plan
that involves the use of dynamic SQL, consider using one of the following methods of supplying an
authorization ID to Db2:

• Use the SIGN option on the AUTHTYPE attribute of the DB2ENTRY definition for the thread used by the
transaction. This results in the transaction having the primary authorization ID that you specified in the
SIGNID attribute of the DB2CONN definition for the CICS region. (This method is not suitable where
RACF is used for security checking in the Db2 address space.)

• Use the AUTHID attribute of the DB2ENTRY definition for the thread used by the transaction, to specify
a standard authorization ID. Use the same authorization ID for all the transactions that need to access
dynamic SQL. (This method is not suitable where RACF is used for security checking in the Db2 address
space.)

62 CICS TS for z/OS: Db2 Guide

https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/nav/src/tpc/db2z_securityintro.html

• Create a RACF group, and connect your CICS users to this RACF group. Use the GROUP attribute of the
DB2ENTRY definition for the thread used by the transaction, so that the RACF group is one of the
secondary IDs that is passed to Db2.

In each case, you can then grant Db2 privileges for Db2 resources involved in all dynamic SQL to a single
ID, either the standard authorization ID from the DB2CONN definition or the AUTHID attribute, or the
name of the RACF group. “Providing authorization IDs to Db2 for the CICS region and for CICS
transactions” on page 53 tells you how to provide authorization IDs by all these methods.

Db2 multilevel security and row-level security
DB2 Version 8 introduced support for multilevel security. CICS does not provide specific support for
multilevel security, but you can use CICS in a multilevel-secure environment provided that you take care
with the configuration.

For more information about multilevel security, see the following publications:

• Securing Db2 in Db2 for z/OS product documentation
• z/OS Planning for Multilevel Security and the Common Criteria
• IBM Redbooks: Securing DB2 and Implementing MLS on z/OS

When multilevel security is implemented at row level (row-level security) for data in DB2 Version 8 or
later, the RACF SECLABEL class is activated, and a set of security labels is defined for users and for the
Db2 table rows. The RACF options SETR MLS and MLACTIVE are not required to be active. You can use
Db2 row-level security without impact on the rest of the MVS system.

CICS is able to access Db2 rows secured in this way. For CICS, you need to ensure that the RACF user
profile for a CICS user that needs access to the Db2 rows is defined in RACF to include a default
SECLABEL. For details, see the z/OS Security Server RACF Security Administrator's Guide.

When a CICS user signs on to a CICS region with SEC=YES specified in the SIT, RACF associates the
default SECLABEL with the RACF access control environment element (ACEE) for the user. The
DB2ENTRY definition (or DB2CONN definition if the pool is being used) needs to specify
AUTHTYPE=USERID or AUTHTYPE=GROUP, which ensures the ACEE is passed on to Db2 for further
security checking. An individual CICS user can therefore only have one associated SECLABEL.

For non-terminal tasks or programs, such as PLT programs, if the PLTPIUSR system initialization
parameter is not specified and the PLTPISEC=NONE system initialization parameter is specified, PLT
programs are run under the CICS region userid. In this case, you need to define the CICS region userid
with a default SECLABEL. If you need to define different SECLABELS for a transaction, you would need to
run each transaction in a separate CICS region which has a different CICS region userid and associated
SECLABEL.

Chapter 4. Security for Db2 63

https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/nav/src/tpc/db2z_securityintro.html
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.e0ze100/toc.htm
https://www.redbooks.ibm.com/abstracts/sg246480.html?Open
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.icha700/abstract.htm

64 CICS TS for z/OS: Db2 Guide

Chapter 5. Application design and development
considerations for CICS Db2

During the design process

During the application design process, decisions you take can affect applications currently under
development and planned future applications. Key design considerations include:

• The relationship between CICS applications and Db2 plans and packages. To gain the greatest benefits
for the performance and administration of your system, the relationship between Db2 plans,
transactions, and application programs must be defined when you are designing applications.

• The locking strategy. Locking is affected by options you choose when creating tables in Db2, by the
design of your application programs, and by options you choose when binding plans, so you need to
take it into account throughout the development process.

• Consider the security aspects of both the CICS Db2 test system and the CICS Db2 production system.
• Use of commands and programming techniques. These can improve the performance of your

application and avoid potential problems. The use of qualified and unqualified SQL can also influence
other aspects of the CICS Db2 environment. To run Java™ applications in the JVM server environment
and gain the performance benefits of the open transaction environment (OTE), application programs
must be threadsafe. For more information, see “SQL, threadsafe and other programming considerations
for CICS Db2 applications ” on page 80.

• Java programs in the CICS Db2 environment. For information about the support and programming
considerations, see Chapter 6, “Using JDBC and SQLJ to access Db2 data from Java programs,” on page
91 .

• Additional steps to take when application development is complete and the application is put into
production.

• Connections defined for improved performance. Define your CICS Db2 connections to enhance
application performance. For example, using protected entry threads for the application programs to
access Db2 improves performance for heavily-used applications.

Factors affected by design

The design that you implement can influence:

• Performance
• Concurrency
• Operation
• Security
• Accounting
• The development environment

Factors that affect application performance

A well-designed CICS Db2 application should work properly when initially deployed into a production
environment. However, some factors can affect the performance of well-designed applications:

• Increased transaction rate
• Continued development of existing applications
• More people involved in developing CICS Db2 applications
• Existing tables used in new applications

© Copyright IBM Corp. 1974, 2020 65

• Integration of applications

Because of these factors, it is important to develop a consistent set of standards on the use of Db2 in the
CICS environment.

Applications with data stored in VSAM and DL/1

For applications that have data stored in VSAM or DL/I, differences exist in the way in which some
processes work, when compared with CICS Db2 applications. Differences to consider are:

• Locking mechanism
• Security
• Recovery and restart
• BIND process
• Operational procedures
• Performance
• Programming techniques

One of the main differences between batch program and online program design is that online systems
should be designed for a high degree of concurrency. At the same time, no compromise should be made
to data integrity. In addition, most online systems have design criteria related to performance.

Additional information

See the following additional sources of information on application design:

• Programming for Db2 for z/OS in Db2 for z/OS product documentation
• Designing applications

Designing the relationship between CICS applications and Db2 plans and
packages

When CICS applications use Db2 data, the application architecture must take account of design aspects
related to the CICS Db2 attachment facility. One of the most important aspects to consider is the
relationship between transaction IDs, Db2 plans and packages, and program modules.

If any of the program modules uses SQL calls, a corresponding Db2 plan or package must be available.
The plan to be used for a transaction ID is specified in the DB2CONN or DB2ENTRY definition for the
thread that the transaction uses to access Db2. The plan can be named explicitly, or a plan exit routine
can be named that selects the plan name. The plan must include the DBRMs from all modules that could
possibly run under this transaction ID. The DBRMs can be bound directly into the plan, or they can be
bound as packages and named in a package list in the plan.

To control the characteristics of the plan and the CICS Db2 attachment facility threads, the relationship
between transaction IDs, Db2 plans, and the program modules must be defined in the design step. Some
of the characteristics of the threads, environmental description manager (EDM) pool, and plans that
depend on the design are listed below:

• Plan sizes
• Number of different plans concurrently in use
• Number of threads concurrently in use
• Possibility of reusing a thread
• Size of the EDM pool
• I/O activity in the EDM pool
• Overall page rate in the system
• Authorization granularity

66 CICS TS for z/OS: Db2 Guide

https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/nav/src/tpc/db2z_applicationprogrammingfordb2.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/designing/dfhp3_concepts_design.html

• Use of Db2 packages

There are various design techniques for combining CICS transactions with Db2 plans, the recommended
technique is to use plans based on packages.

A sample application
A simple example can be used to explain the consequences of different application design techniques.

Figure 26 on page 67 shows how CICS MAPs and transaction IDs are correlated, and how the
transactions work, without Db2 considerations.

Figure 26. Example of a typical application design

In this example:

• The transaction ID, TRX0, is specified in the EXEC CICS RETURN TRANSID(TRX0) command, when a
program (not shown) returns control after displaying MAP0.

• The next transaction then uses the transaction ID, TRX0, independent of what the terminal user
decided to do.

• Program P0 is the initial program for transaction TRX0.
• We assume that all programs shown are issuing SQL calls.
• Depending on the option chosen by the terminal user, program P0 performs a CICS transfer control

(XCTL) to one of the programs: P1, P2, or P3.
• After issuing some SQL calls, these programs display one of the maps: MAP1, MAP2, or MAP3.
• The example shown on the right side of the figure works in the same way.

Chapter 5. Application design and development considerations for CICS Db2 67

• In some situations, program P3 transfers control to program PB.

Using Db2 packages
Using packages is the best way to ensure that the relationship between CICS transactions and Db2 plans
is easy to manage.

In early releases of Db2, before packages were available, the DBRMs from all the programs that could run
under a particular CICS transaction had to be directly bound into a single plan. Changing one DBRM in a
plan (because the SQL calls for that program had changed) required all the DBRMs in the plan to be bound
again. Binding a large plan can be very slow, and the entire transaction is unavailable for processing
during the operation. Just quiescing an application can be very difficult for a highly used one, but to leave
the plan out of commission for an extended time while it is being rebound is usually unacceptable.

Dynamic plan exits were an interim solution designed to address this problem. The dynamic plan exit is
an exit program that you specify in the DB2CONN or DB2ENTRY definition instead of specifying a plan
name. You create many small plans for your CICS applications, each containing the DBRMs from a few
programs, and the exit program selects the correct plan when each unit of work begins. You can also use
the dynamic plan exit to switch between plans within a transaction. However, each small plan must still
be rebound and taken out of commission every time an SQL statement changes in one of the programs
that uses it. Also, the use of dynamic plan switching requires an implicit or explicit CICS SYNCPOINT to
allow switching between plans.

Now that packages are available in Db2, using them is the best way to manage your plans. With packages,
you can break the program units into much smaller parts, which you can rebind individually without
affecting the entire plan, or even affecting the current users of the particular package you are rebinding.

Since updating a plan is easier with packages, you can build much larger applications without the need to
switch transactions, programs, or plans to accommodate Db2 performance or availability. This also
means that you do not have to maintain as many RDO definitions. You can also avoid situations where you
might otherwise use dynamic SQL to obtain program flexibility. In a plan, you can even specify packages
that do not exist yet, or specify package collections to which you can add packages. This means that
DBRMs from new programs could be added without disturbing the existing plan at all.

The qualifier option on packages and plans to reference different table sets can give you more flexibility
to avoid plan switching.

In summary, packages:

• Minimize plan outage time, processor time, and catalog table locks during bind for programs that are
logically linked together with START, LINK, or RETURN TRANSID and have DBRMs bound together to
reduce DB2ENTRY definitions.

• Reduce CICS STARTS or exits.
• Avoid cloning CICS and DB2ENTRY definitions.
• Provide the ability to bind a plan with null packages for later inclusion in the plan.
• Allow you to specify collection at execution time using SET CURRENT PACKAGESET= variable , which is

a powerful feature when used with QUALIFIER
• Provide the QUALIFIER parameter, which adds flexibility to:

– Allow you to reference different table sets using unqualified SQL
– Reduce the need for synonyms and aliases
– Lessen the need for dynamic SQL

There are other benefits that using packages can provide in a CICS environment:

• It allows you to use fewer plans.
• It allows you to bind low-use transactions into a single plan.
• It increases thread reuse potential.

You can also optimize your application by using package lists that order their entries to reduce search
time or by keeping package list entries to a minimum.

68 CICS TS for z/OS: Db2 Guide

Db2 also provides accounting at the package level. For more information about packages, refer to the
discussions of planning to bind and preparing an application program to run in the Programming for Db2
for z/OS in Db2 for z/OS product documentation and the IBM Redbooks® publication, Db2 9 for z/OS :
Packages Revisited .

Converting to packages
You can convert transactions that use dynamic plan exits or switching techniques to use packages
instead.

About this task

A transaction that currently uses a dynamic plan exit or dynamic plan switching techniques can be
converted to use packages as follows:

• Bind all of the DBRMs contained in the plan associated with the transaction into packages in a single
collection.

• Bind a new plan with a PKLIST containing a single wildcard entry for this collection.
• Modify the DB2ENTRY entry for this transaction to use the new plan. Protected threads can now be

used for this transaction to optimize thread reuse.

You could choose to have a single plan for the whole application, or one plan per transaction. The
following sections give more detailed instructions for converting your transactions, based on this choice.

A similar approach can be taken for converting all CICS applications, whether they use a dynamic plan
exit or not.

Note that high-usage packages can be bound with RELEASE(DEALLOCATE), with low-usage packages
bound with RELEASE(COMMIT). This results in the high-usage packages being retained in the plan's
package directory until plan deallocation, while the low-usage packages are removed from the directory,
and the space in the EDM pool is released. The disadvantage of this approach is that if you use
RELEASE(DEALLOCATE) and then need to rebind a highly-used package, you must intervene to force
deallocation of the package if it is allocated to a long-running thread. Consider that to rebind a package is
less expensive than to rebind a plan, in terms of the time spent doing it.

Using one plan for the application
Using one plan for the application gives the greatest flexibility in defining the DB2ENTRYs and DB2TRANs
for the application, because the transactions involved can be grouped to better utilize protected threads
and optimize thread reuse. Follow this procedure to convert to this environment.

Procedure

1. Bind all DBRMs for the transactions in the application into packages using a single collection such as
COLLAPP1.

2. Bind a new plan, PLANAPP1, with a package list consisting of a single entry, COLLAPP1.*.

BIND PLAN (PLANAPP1) PKLIST (COLLAPP1.*) ..

3. In the DB2ENTRY, replace the dynamic plan exit program name with the name of this new plan.
For example, replace

PLANEXITNAME=DSNCUEXT

with

PLAN=PLANAPP1

Chapter 5. Application design and development considerations for CICS Db2 69

https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/nav/src/tpc/db2z_applicationprogrammingfordb2.html
https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/nav/src/tpc/db2z_applicationprogrammingfordb2.html
http://www.redbooks.ibm.com/redpieces/abstracts/sg247688.html
http://www.redbooks.ibm.com/redpieces/abstracts/sg247688.html

Using one plan per transaction
This approach was recommended prior to DB2 Version 3 because accounting at the individual package
level was not possible, which forced accounting to be done by plan name. However, current releases of
Db2 provide accounting at the package level, which allows for plans to be made up of a large number of
packages while still providing the required accounting granularity.

Procedure

1. Bind the DBRMs for groups of transactions or all transactions into packages.
The collections to be used could be based on the transactions being converted, such as TRAN1, or on
the application. The latter approach is preferable because creating and maintaining collections on a
transaction basis requires greater administrative effort, particularly if there are many common
routines.

2. Bind a new plan for each transaction with a package list referring to a single wildcard package list
entry that would depend on the approach taken.

• Use TRAN1.* if the collections were based on transactions:

BIND PLAN (TRAN1) PKLIST (TRAN1.*) ...

• Use COLLAPP1.* if a single collection was set up for all transactions:

BIND PLAN (TRAN1) PKLIST (COLLAPP1.*) ...

3. Modify the DB2ENTRY definitions to replace the dynamic plan exit with the plan names associated
with the transactions.

If you have packages and still want to use dynamic plan switching techniques

For dynamic plan switching users, if the value of a modifiable special register (for example, the CURRENT
PACKAGESET register) is changed during processing and not reset to the initial state before the
SYNCPOINT is taken, the following occur:

• The thread is not released by the CICS Db2 attachment facility.
• Thread reuse does not occur because the task continues to use this thread with the same plan

allocated.
• Dynamic plan switching does not occur because the same thread and plan are used; that is, the

dynamic plan switching exit is not taken on the first SQL statement issued following the SYNCPOINT.

Therefore you should take care to ensure that any modifiable special register is reset to its initial value
before the SYNCPOINT is taken if you want to use dynamic plan switching. SQL: The language of Db2 in
Db2 for z/OS product documentation lists the modifiable special registers.

Using one large plan for all transactions
A straightforward way to avoid having to switch plans during a transaction is to use one large plan for all
CICS transactions that issue SQL calls.

For the example in Figure 26 on page 67 :

• There is one plan, PLAN0, using the DBRMs from P0, P1, P2, P3, PA, PB, PC, and PD
• In CICS, define one DB2ENTRY specifying PLAN0 plus a DB2TRAN per transaction ID required (unless a

wildcard transaction ID can be specified). One DB2ENTRY gives the best overall thread utilization if
protected threads are used.

Advantages

• There are no restrictions regarding which program modules can be executed under any transaction ID.
For example, it is possible that program P3 can transfer control to program PB. This does not require
any changes for the plan or the definition in CICS.

70 CICS TS for z/OS: Db2 Guide

https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/sqlref/src/tpc/db2z_structuredquerylanguage.html
https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/sqlref/src/tpc/db2z_structuredquerylanguage.html

• Each DBRM exists in only one plan (PLAN0).
• Thread reuse is easy to obtain. All transactions could use the same DB2ENTRY.

Disadvantages
There are certain disadvantages to using a single large plan for all transactions.

• The complete plan must be rebound for any Db2 program modification.
• BIND can be time-consuming for large plans.
• The BIND process cannot take place while the plan is in use. The plan is likely to be in use in a

production system most of the time due to normal activity. In a test environment, the transaction rate is
normally low, but programmers can use debugging tools that make the response times longer with
conversational programs. This can effectively keep the thread and plan busy.

• Db2-invoked REBIND (due to plan invalidation) allows no Db2 transactions to execute this plan.
• There is no real information value in messages and statistics pointing out the plan name, because there

is only one plan.
• EDMPOOL must be large enough to cope with DBDs, SKCTs, and CTs and must allow some

fragmentation. Remember that the plan segmentation feature allows Db2 to load into CTs only parts of
the application plans being executed. Nevertheless, the header and directory parts of an application
plan are loaded in their entirety into the SKCT (if not already loaded), then copied from the SKCT to CTs.
This happens at thread creation time.

Because the application plan directory size is directly dependent on the number of segments in the
plan, using a large plan influences the EDMPOOL size and the number of I/O operations needed to
control it.

Using many small plans
Using many small plans requires many transaction IDs, each of which has a corresponding plan. This
technique reduces plan sizes and plan overlap.

You are recommended to use packages rather than using many small plans.

Using many small plans implies either that the program flow follows a narrow path with limited
possibilities for branching out, or that plan switching takes place frequently.

In the example in Figure 26 on page 67 , the switching could take place between program P0 and the
programs at the next lower level, or between program PA and the programs at the next lower level.

• PLAN1 for (TRX0) using the DBRMs from programs P0, P1, P2, and P3.
• PLANA for (TRXA) using the DBRMs from programs PA, PB, PC, and PD.

However, program P3 can transfer control (using the XCTL command) to program PB. A plan switching
technique must then be used.

A special variation of using small plans exists. In some applications, it can be convenient to have the
terminal user specify the transaction ID for the next transaction. It is typically in read-only applications,
where the user can choose between many different information panels by entering a systematically built
1- to 4-character transaction ID. The advantage for the user is the ability to jump from any panel to any
other panel without passing a hierarchy of submenus.

If a Db2 plan is associated with each transaction ID, the application ends up with many small plans.

Advantages

• Plan maintenance is relatively simple, because little overlap exists between plans.
• High information value in messages, statistics, and so on, pointing out the plan name.

Note: Packages offer these advantages, too.

Disadvantages

• Plan switching occurs often, unless the application flow follows a narrow path.

Chapter 5. Application design and development considerations for CICS Db2 71

• It is difficult to use protected threads, because the transactions are spread over many sets of
transaction IDs, plans, and threads.

• Resource consumption can be high, due to plan switching and low thread reuse.

Note: Packages avoid these disadvantages.

Using plans based on transaction grouping
Transaction grouping can produce a number of midsize independent plans, where a plan switch can occur
if required.

It is often possible to define such groups of programs, where the programs inside a group are closely
related. That means that they are often executed in the same transaction, or in different transactions
being executed consecutively. One separate plan should then be used for each group.

In the example in Figure 26 on page 67 two plans could be built:

• PLAN1 for (TRX0) using the DBRMs from programs P0, P1, P2, and P3.
• PLANA for (TRXA) using the DBRMs from programs PA, PB, PC, and PD.

However, program P3 can transfer control to program PB. A plan switching technique could then be used.
It is recommended that plan switching is an exception and not the normal case, mainly due to additional
processor overhead.

In this case, the result of the transaction grouping technique matches the result for the technique of using
many small plans. This is because of the simplicity of the example used. Normally the transaction
grouping technique produces a larger plan.

Advantages

• The plan size and the number of different plans can be controlled by the user.
• Thread reuse is likely, depending on the transaction rate within the group.

Disadvantages

• Plan overlap can occur.
• The optimum grouping can change over time.
• Plan switching may be necessary.
• Plan switching is handled in the application code.

Dynamic plan exits
You are recommended to use packages rather than dynamic plan exits, because of the advantages that
packages provide. The use of dynamic plan exits was an interim solution that was designed to address
problems in the CICS Db2 environment before packages were available in Db2.

You can design CICS applications around numerous small plans and select the plan dynamically at
execution time. A small plan is not the same as a package, which has a strictly one-to-one
correspondence to a database request module (DBRM).

Normally, a dynamic plan exit is driven to determine which plan to use at the start of the first unit of work
(UOW) of the transaction. This is referred to as dynamic plan selection.

A dynamic plan exit can also be driven at the start of a subsequent UOW (assuming the thread was
released at syncpoint) to determine what plan to use for the next UOW. The plan exit can decide to use a
different plan. This is referred to as dynamic plan switching.

When a dynamic plan exit is used, Db2 plan allocation occurs only upon execution of the first SQL
statement in a program, or after the program issues a syncpoint and links or transfers control to another
program with a separate DBRM.

This is accomplished by using an exit program specified in:

• DB2ENTRY, exit for a specific transaction code specified in the keyword PLANEXITNAME

72 CICS TS for z/OS: Db2 Guide

• DB2CONN, exit for transactions using the pool specified in the keyword PLANEXITNAME.

IBM supplies two sample assembler language exit programs, DSNCUEXT and DFHD2PXT, in both source
and object code form. You can also write other exit programs.

Note that the use of the following items within the dynamic exit program is not supported:

• SQL commands.
• IFI calls.
• EXEC CICS SYNCPOINT commands.

The sample exit programs, DSNCUEXT and DFHD2PXT
Two sample assembler language exit programs, DSNCUEXT and DFHD2PXT, are supplied in both source
and object code. The programs are functionally identical, but the CICS-supplied program definition for
DSNCUEXT specifies CONCURRENCY(QUASIRENT), while the CICS-supplied program definition for
DFHD2PXT specifies CONCURRENCY(THREADSAFE).

There are two sample programs because when CICS exploits the open transaction environment (OTE), the
CICS Db2 task-related user exit operates as a threadsafe program and can receive control on an open
TCB (L8 mode). For further explanation, see “Enabling CICS Db2 applications to use OTE through
threadsafe programming” on page 80 . If the application program that made the Db2 request is
threadsafe, it can also run on the open TCB. In this situation, TCB switching should not be needed.

However, if a dynamic plan exit is used that is defined with CONCURRENCY(QUASIRENT), like DSNCUEXT,
this causes a switch back to the QR TCB, incurring an additional cost. Dynamic plan exits that are defined
with CONCURRENCY(THREADSAFE) and are coded to threadsafe standards, like DFHD2PXT, can run on
the open TCB, and do not incur the additional cost.

Therefore, when CICS is connected to Db2, use DFHD2PXT as your dynamic plan exit rather than
DSNCUEXT. Remember that if you add logic that is not threadsafe to the supplied sample program, or
issue non-threadsafe CICS commands in the exit, this will cause a switch back to the QR TCB, and the
additional cost is incurred. To gain performance benefits by avoiding TCB switching, use a dynamic plan
exit that is defined as threadsafe, code logic that is threadsafe, and ensure that the program contains only
threadsafe commands.

The object code (load module) for the sample plan exits are included in the SDFHLOAD library. DSNCUEXT
is the default dynamic plan exit, and it is invoked as a CICS user-replaceable program. The source code
for both sample programs is written in assembler language and supplied in the SDFHSAMP library. The
sample programs show how to address the parameter list, but do not change the plan name.

A parameter list is passed to the sample program through a COMMAREA, and has the following format in
the Assembler version:

Table 4. Example of a parameter list passed to the DSNCUEXT or DFHD2PXT sample program through a
COMMAREA

Assembler version format

CPRMPLAN DS CL8 The DBRM/plan name of the first SQL statement on entry to the
sample program. The field can be modified to establish a new
plan.

CPRMAUTH DS CL8 The current authorization ID that is passed to Db2 at signon time.
This is for information only. Any changes made to it are ignored.

CPRMUSER DS CL4 A user area that is reserved for use by the sample program. The
CICS Db2 attachment preserves this field across invocations of
the sample program.

CPRMAPPL DS CL8 The name of the application program that issued the SQL call.

• The Assembler version of the parameter list is shipped as member DSNCPRMA in SDFHMAC library.
• The COBOL version is DSNCPRMC in SDFHCOB library.

Chapter 5. Application design and development considerations for CICS Db2 73

• The PL/I version is DSNCPRMP in SDFHPLI library.

Before calling the dynamic plan exit, the CICS Db2 attachment facility sets CPRMPLAN to the name of the
DBRM set in the parameter list of the first EXEC SQL statement executed in the unit of work. As supplied
by CICS , the dynamic plan exits DSNCUEXT and DFHD2PXT do not modify the plan name as input in
CPRMPLAN by the CICS Db2 attachment facility, but return immediately, leaving the plan name as that
chosen by the CICS Db2 attachment facility.

As a consequence of adding support for JDBC and SQLJ support for Java applications for CICS , the CICS-
supplied dynamic plan exits have been changed. SQLJ and JDBC require Db2 to produce four DBRMs for
each application program to support dynamic change of isolation levels. For JDBC and SQLJ applications,
the DBRM name is restricted to seven characters so that the eighth character can be used as a suffix of 1,
2, 3, or 4. Therefore, for JDBC and SQLJ applications you cannot use a default naming convention of
program name equals dbrm name equals plan name, because the DBRM name has a suffix of 1, 2, 3 or 4.

For JDBC applications, SQLJ applications, and mixed JDBC and SQLJ applications, the Db2 JDBC driver
uses information from the JDBC profile to set the name of the DBRM in the parameter list of the first EXEC
SQL statement executed. The first SQL issued always has the DBRM name set to the JDBC base program
with the default isolation level appended; that is, by default, DSNJDBC2. For example, if the JDBC profile
is generated using pgmname=OTHER, the DBRM name will be OTHER2. If dynamic plan exits are not
used, the plan name is obtained from the DB2CONN or DB2ENTRY definition; the plan name in the
properties file is ignored.

To support a default naming convention for the IBM Data Server Driver for JDBC and SQLJ, the CICS-
supplied dynamic plan exits DSNCUEXT and DFHD2PXT can detect an input CPRMPLAN name whose first
characters are SYSSTAT, SYSLH or SYSLN. If such a plan name is detected, the plan name is changed to
"DSNJCC " (the seventh and eighth characters set to blanks). To use the default dynamic plan exits with
Java applications for CICS, bind the multiple DBRMs into a plan called DSNJCC.

Writing your own exit program
You can write your exit program in assembler, COBOL, or PL/I.

About this task

The exit program is a CICS program, which means it must:

• Adhere to normal CICS conventions.
• Be defined to CICS (unless program autoinstall is being used.
• Use CICS command level statements.
• Return to CICS using an EXEC CICS RETURN command.

The CICS Db2 attachment facility program passes a parameter list to the exit program using a
COMMAREA. The exit program can change the default plan name (DBRM name) supplied in the parameter
list, when the first SQL statement is processed by the CICS Db2 attachment facility. The name specifies
the plan name for this execution of the transaction.

If CICS is connected to DB2 Version 7 or later, then as explained in “Enabling CICS Db2 applications to
use OTE through threadsafe programming” on page 80, you should ensure that the logic in your dynamic
plan exit is coded to threadsafe standards, and that the program is defined as threadsafe (like the sample
exit program DFHD2PXT). If the program is not defined as threadsafe, each use of the program causes a
switch back to the QR TCB, incurring an additional cost. If the program is defined as threadsafe but uses
non-threadsafe CICS commands (which is permitted), each non-threadsafe command causes a switch
back to the QR TCB and incurs the additional cost.

74 CICS TS for z/OS: Db2 Guide

If you need to create plans for an application that has already been developed
Use this technique if the applications were developed with little attention to the Db2 plan aspects. After
the application is completely developed, the plans are defined to match the transaction.

About this task

In general, defining plans after the application has already been developed is not recommended, but this
technique is useful for conversion projects, where the application design is unchanged but the application
now uses Db2.

The advantages and disadvantages of this technique completely depend on the actual application design
and the result of the steps.

Procedure

When defining the Db2 plans and the DB2ENTRY specifications, you can perform the following steps:
1. For each program module with SQL calls, analyze under which CICS transaction codes they might run.

It is likely that a given program module is used under more than one CICS transaction code.

The output from this step is a list of DBRMs for each transaction.
2. For each CICS transaction code, decide on a plan that it should use.

Only one plan may be specified in the DB2ENTRY for a given CICS transaction code. More than one
transaction may use the same plan.

For this step you have many alternatives. The possible number of plans to use is between one and the
number of different transaction IDs. The best way to manage the plans is to use packages, binding all
the DBRMs into packages that are then listed in plans. For details, see “Using Db2 packages” on page
68.

If you do not use packages, alternative techniques are described in “Using one large plan for all
transactions” on page 70, “Using many small plans” on page 71, and “Using plans based on
transaction grouping” on page 72.

Example

Applied to the example in Figure 26 on page 67, a possible solution would be:

• One plan, PLAN0, using the DBRMs from P0, P1, P2, P3, and PB, used by the transaction ID TRX0
• One plan, PLANA, using the DBRMs from PA, PB, PC, and PD, used by the transaction ID TRXA
• Two DB2ENTRY definitions, one for each plan

If you need to switch plans within a transaction
The plan that a transaction uses to access Db2 must contain or reference the DBRMs from all the
application programs that could operate under that transaction ID. If the plan doesn't contain all the
relevant DBMRs you might consider switching plans within a transaction.

If the design of your applications has changed, some of your older plans might not contain all the relevant
DBRMs. In this case, the application design could require a switch to a different plan in the course of a
transaction, if the transaction requires that a program not included in the current plan must be executed.
This situation could also occur if the structure of the Db2 plans was imperfectly considered during the
design of the application.

The best solution to this problem is to use packages. You can bind the DBRM from the missing program
into a package, and add the package to a package list in the existing plan. The transaction can now access
the missing program without needing to switch plans. There are two other possible solutions, which are
discussed as follows:

• “Dynamic plan switching” on page 76
• “Switching transaction IDs in order to switch plans” on page 76

Chapter 5. Application design and development considerations for CICS Db2 75

Dynamic plan switching
Use dynamic plan switching (DPS) if you want to use more than one plan in a transaction.

Dynamic plan switching (DPS) allows you to use more than one plan in a transaction. However, as noted
above, switching plans in a CICS transaction instance should be a rare occurrence. The dynamic plan exit
was designed to select a plan dynamically at the start of the transaction (dynamic plan selection), not to
change plans frequently within transactions.

To do dynamic plan switching, the thread must be released at syncpoint and reacquired, to drive the
dynamic plan exit. The dynamic plan exit can then be used to select the plan for the program you need to
execute. This enables the use of a different plan for different UOWs within a transaction.

If you have coded your own dynamic plan exit, check that the logic copes with subsequent invocations for
the same task. Either the user application or the dynamic plan exit must be written to tolerate
consequences of additional calls to the exit. If the dynamic plan exit would change the plan when not
wanted, the user application can avoid this by ensuring the thread is not released at syncpoint.
Preferably, if the thread is released, the dynamic plan exit must provide the proper plan for the new cases
when it is called, that is, a DB2ENTRY with THREADLIMIT > 0.

To invoke the dynamic plan exit to do plan switching after the end of a UOW, your transaction must
release the thread at syncpoint. A transaction releases a thread at syncpoint only if:

• It is a terminal driven task, or a nonterminal driven task and NONTERMREL=YES is set in the DB2CONN
• No held cursors are open
• Any Db2 special registers modified have been set back the their initial state.
• Db2 special register CURRENT DEGREE has ever been modified by this transaction.

Switching transaction IDs in order to switch plans
Once a transaction has started, you cannot control the plan used by the transaction ID, but you can
control the transaction ID itself. Therefore you can switch plans by switching transaction IDs. However,
you are not recommended to do this.

About this task

Instead of switching transaction IDs to switch plans, you are recommended to bind the DBRM from the
missing program into a package, and add the package to a package list in the existing plan.

If you have to switch transaction IDs, note that in most cases, the first program transfers data to the next
program. The preferred method of doing this is to use an EXEC CICS RETURN IMMEDIATE command.
Alternatively, you can start a new CICS task against the same terminal, using an EXEC CICS START
command, or using a transient data queue with a trigger level of one. The old program should issue
RETURN to CICS to make the new task start. For both of these switching techniques, the work done in one
user transaction is split up into more than one UOW. If the new task is backed out, the work done in the
first task remains committed.

If you switch transaction IDs in order to switch plans, the application programs contain the logic to decide
when to switch transaction ID. This means that if you want to change the plan structure (for example for
performance and operational reasons), you need to change the application programs as well.

A different technique is to have the program flow controlled by a table, instead of having code to do this in
several programs. The main idea is that it is simpler to maintain the relationship between the plans,
programs, and transaction IDs in a table than to maintain code in each application program to do the
logic. Developing the application programs is also simpler if a standard interface is provided.

Using a control table to control program flow
You are recommended to use packages instead of this technique to control program flow.

The design principle presented is an example of a standard method that can be used to implement
different types of application design. It allows the use of, for example, one large plan or many small plans
without changing the programs.

76 CICS TS for z/OS: Db2 Guide

Table 5 on page 77 shows an example of the contents of a control table. The example is based on the
design situations described in Figure 26 on page 67.

Table 5. Control table for sample application

Function name Program Transaction Plan name New TRANS ID

P0 TRX0 PLAN0 *

Sales P1 TRX0 PLAN0

Order P2 TRX0 PLAN0

Pay P3 TRX0 PLAN0

PA TRXA PLANA *

Price PB TRXA PLANA

Order PC TRXA PLANA

Parts PD TRXA PLANA

Price PB TEMP PLANX *

Function name
The function name field of the table supplements the program field. It works in exactly the same way.
It is used in the cases where the terminal user enters a function name in a command field, eventually
supplied with a key. The PFCP program can accept either a function name or a program name.

PFCP then uses the function column to search for a valid transaction.

In this way, the logic to interpret the user's choices is also removed from the programs and placed in
the table, where it is easy to maintain.

Program
The name of the program described in this row.

Transaction
The transaction ID name under which the program in the program column can be executed.

Plan name
The plan name field is not used. It is shown for illustration purposes only. It shows the plan name
used by the corresponding transaction.

New TRANS ID
An * in this column of the table means that the corresponding row can be used when searching for a
new transaction ID to start a given program.

The control table reflects the following main relationships:

• Relationships between plans and programs/DBRMs, which are described in the Db2 catalog table
SYSIBM.SYSDBRM

• Relationships between transaction codes and plans, which are described using the DB2ENTRY and
DB2TRAN CICS definitions

The control table can be implemented in different ways. The most useful solutions are probably either a
Db2 table or a main storage table.

A Db2 table is the simplest to develop and maintain. One or two SELECT calls are needed for each
invocation of PFCP. These SELECTs should return only one row and indexes can be used. The data and
index pages are referenced often and probably stay in the buffer pool. The response time impact is thus
minimal.

A main storage table is faster to access, at least until a certain number of rows in the table is reached. It is
more complicated to maintain.

Chapter 5. Application design and development considerations for CICS Db2 77

The principle in the program flow is shown in Figure 27 on page 78.

Figure 27. Table-controlled program flow

The flow for the application design used in Figure 26 on page 67 is as follows:

1. The terminal user sends a transaction to CICS. The transaction ID is TRX0.
2. The transaction definition points to program P0.
3. Program P0 receives the map, does some processing, and decides that program P3 is needed.
4. Instead of transferring control to program P3 (the DBRM for P3 could be part of another plan), P0

transfers control to the program flow control program (PFCP in this example). P0 also passes a
COMMAREA.

5. PFCP does a table lookup in the control table to see if program P3 is included in the plan currently in
use (PLAN0). This is done by checking if P3 is specified in the same row as the current transaction ID
(TRX0). In the example, this is the case (line 4 in the table).

6. PFCP then transfers control to program P3. It also passes the COMMAREA it received from P0 to P3.
7. P3 processes the necessary SQL calls and finishes either by sending a map to the terminal or by

transferring control to PFCP (not shown) to execute another program.
8. Assuming that this other program is PB, PFCP again checks whether PB is allowed to run under the

current transaction ID, which still is TRX0.

The table shows that PB must not be executed under TRX0. PFCP then examines the table to find a
transaction ID under which program PB can be executed. In the example, both TRXA and TEMP are
valid transaction IDs. However, TRXA is pointing to program PA in the transaction definition. The
New_TRANS_ID column of the table shows that only the rows with an * can be used when searching
for a new transaction ID to start a given program. In this case, it is the TEMP transaction.

There are two possibilities for program names in the RDO transaction definition entry for the TEMP
transaction ID:

• The RDO transaction definition can point directly to the new program (PB). In this case, there must
be a transaction ID for each program that could be started in this way. Also, to use the COMMAREA,
the program being started must contain logic to find out whether it is being started by START or by
gaining control from an XCTL.

78 CICS TS for z/OS: Db2 Guide

• The RDO transaction definition can point to a common program, here called the RELAY program. In
this case, one or more transaction IDs can be used. All of them point to the RELAY program in the
RDO transaction definition. The purpose of the RELAY is to transfer control to the appropriate
program. All these programs are then never begun with START and do not need to handle this
situation.

The solution with the RELAY program is shown in Figure 27 on page 78.
9. PFCP starts the transaction TEMP, passing the COMMAREA.

10. The RELAY program is started. It must use an EXEC CICS RETRIEVE command to retrieve the
COMMAREA.

11. From the COMMAREA, RELAY picks up the program name PB.
12. RELAY transfers control to PB, passing the COMMAREA.
13. The plan switch is completed.

Advantages

• This method allows you to implement different types of application design, such as using one large plan
or many small plans.

• The decision of when to switch plans is taken away from the development process, and is not part of the
coding.

• Only the control table needs to be updated when new programs are set into production. The existing
programs do not need to be changed, even if they can call the new functions.

• The relationship between the transaction IDs, the Db2 plans, and the programs can be changed without
changing the programs. However, the control table must then be changed.

• Information from the Db2 catalog (SYSPLAN and SYSDBRM) can be used to build the control table.
• Alternatively, the control table can be used to generate information about the DBRM structure of the

plans.
• The control table contains information that can assist in defining the DB2ENTRYs and DB2TRANs in

CICS, (if the plan name column is available).
• Other functions can be included in a control table structure, for example information about which

transaction ID to use in the TRANSID option of the EXEC CICS RETURN command.

Disadvantages
There are certain disadvantages to switching transaction IDs to switch plans.

The two major disadvantages of this technique are the costs of designing and developing the solution and
the execution time overhead.

The cost of getting from program to program is approximately doubled. However, this should normally not
correspond to more than a few percent increase in the processor time for the transaction. To decide
whether or not to use such a solution, you should balance these disadvantages against the advantages.

Developing a locking strategy in the CICS Db2 environment
Db2 uses a lock mechanism to allow concurrency while maintaining data integrity.

In a CICS environment, concurrency is likely to be high. To give maximum concurrency, you should use
row level locking or page locking instead of table space locking. You can do this by defining
LOCKSIZE(PAGE), LOCKSIZE(ROW) or LOCKSIZE(ANY) when creating the table space, and by defining the
isolation level as cursor stability at BIND time. For more information, see Managing Db2 performance in
Db2 for z/OS product documentation.

Specifying LOCKSIZE(ANY) allows Db2 to decide if lock escalation can take place for the table space. The
Db2 parameter NUMLKTS is the number of concurrent locks for a table space. If the number of locks
exceeds NUMLKTS, lock escalation takes place. NUMLKTS should then be set to a value so high that lock
escalation does not take place for normal CICS operation.

Chapter 5. Application design and development considerations for CICS Db2 79

https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/perf/src/tpc/db2z_managingdb2perf.html
https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/perf/src/tpc/db2z_managingdb2perf.html

If a table space lock is achieved and the plan was bound with RELEASE(DEALLOCATE), the table space is
not released at COMMIT time, as only page locks are released. This can mean that a thread and plan
monopolizes use of the table space.

Using ANY instead of PAGE gives Db2 the option to use lock escalation for programs that require many
page locks before committing. This is typically the case in batch programs. Db2 also provides the ability to
lock at the row level rather than the page or tablespace level, thus providing better granularity and
reducing lock contention.

You can override Db2 rules for choosing initial lock attributes by using the SQL statement LOCK TABLE in
an application program. However, you should avoid using the LOCK TABLE statement, unless it is strictly
necessary. If the LOCK TABLE statement is used in an online program, it can prevent the use of
RELEASE(DEALLOCATE) and of protected threads. If you do use a LOCK TABLE statement, your plan
should use the bind option RELEASE(COMMIT).

In general, it is recommended that you design CICS programs so that:

• Locks are kept as short as possible.
• The number of concurrent locks is minimized.
• The access order of the tables is the same for all transactions.
• The access order of the rows inside a table is the same for all transactions.

SQL, threadsafe and other programming considerations for CICS Db2
applications

When developing application programs, you must be aware of certain programming considerations in
order to improve the performance of your application and avoid potential problems. Whether you use
qualified or unqualified SQL influences many other aspects of the CICS Db2 environment. To gain the
performance benefits of the open transaction environment (OTE), your application programs must be
threadsafe.

Enabling CICS Db2 applications to use OTE through threadsafe programming
The CICS Db2 attachment facility includes a CICS Db2 task-related user exit (TRUE), DFHD2EX1, that is
invoked when an application program makes an SQL request. It manages the process of acquiring a
thread connection into Db2, and of returning control to the application program when the Db2 processing
is complete.

About this task
The CICS Db2 attachment facility uses the OTE to enable the CICS Db2 TRUE to invoke and return from
Db2 without switching TCBs. In the OTE, the CICS Db2 TRUE operates as a threadsafe and open API
TRUE program;it is automatically enabled using the OPENAPI option on the ENABLE PROGRAM command
during connection processing. This enables it to receive control on an open L8 mode TCB. Requests to
Db2 are also issued on the L8 TCB, so it acts as the thread TCB, and no switch to a subtask TCB is needed.

In the OTE, if the user application program that invoked the TRUE conforms to threadsafe coding
conventions and is defined to CICS as threadsafe, it can also run on the L8 TCB. Before its first SQL
request, the application program runs on the CICS main TCB, the QR TCB. When it makes an SQL request
and invokes the TRUE, control passes to the L8 TCB, and Db2 processing is carried out. On return from
Db2, if the application program is threadsafe, it now continues to run on the L8 TCB.

Programs defined with CONCURRENCY(REQUIRED) run on an open TCB from the start of the program. For
CICSAPI programs, CICS uses an L8 open TCB regardless of the execution key of the program. For
OPENAPI programs, CICS uses an L9 TCB if EXECKEY(USER) is set and an L8 TCB if EXECKEY(CICS) is
set.

Where the correct conditions are met, the use of open TCBs for CICS Db2 applications decreases usage of
the QR TCB, and avoids TCB switching. An ideal CICS Db2 application program for the OTE is a threadsafe
program, containing only threadsafe EXEC CICS commands, and using only threadsafe user exit
programs. An application like this moves to an L8 TCB when it makes its first SQL request, and then

80 CICS TS for z/OS: Db2 Guide

continues to run on the L8 TCB through any amount of Db2 requests and application code, requiring no
TCB switching. This situation produces a significant performance improvement where an application
program issues multiple SQL calls. If the application program does not issue many SQL calls, the
performance benefits might not be as significant.

If the execution of the program involves any actions that are not threadsafe, CICS switches back to the
QR TCB at that point. Such actions are non-threadsafe CICS requests issued by the program, the use of
non-threadsafe dynamic plan exits, the use of non-threadsafe TRUEs, and the involvement of non-
threadsafe global user exits (GLUEs). Switching back and forth between the open TCB and the QR TCB is
detrimental to the performance of the application.

In order to gain the performance benefits of the OTE for CICS Db2 applications, you must meet the
following conditions:

• CICS must be connected to a supported version of Db2. For details of the Db2 releases that are
supported and the APARs that must be applied, see https://www.ibm.com/support/pages/uid/
swg27018287.

• The system initialization parameter FORCEQR must not be set to YES. FORCEQR forces programs that
are defined as threadsafe to run on the QR TCB, and it might be set to YES as a temporary measure
while problems that are connected with threadsafe-defined programs are investigated and resolved.

• The CICS Db2 application must have threadsafe application logic (that is, the native language code in
between the EXEC CICS commands must be threadsafe), use only threadsafe EXEC CICS commands,
and be defined to CICS as threadsafe. Only code that has been identified as threadsafe is permitted to
execute on open TCBs. If your CICS Db2 application is not defined as threadsafe, or if it uses EXEC CICS
commands that are not threadsafe, TCB switching takes place and some or all of the performance
benefits of OTE exploitation are lost.

• Any dynamic plan exits used by the CICS Db2 attachment facility must be coded to threadsafe
standards and defined to CICS as threadsafe. The default dynamic plan exit DSNCUEXT, which is
started as a CICS user-replaceable program, is not defined to CICS as threadsafe, but the alternative
CICS-supplied sample dynamic plan exit DFHD2PXT is defined as threadsafe. See “Dynamic plan exits”
on page 72 for more information.

• Any GLUEs on the execution path used by the application must be coded to threadsafe standards and
defined to CICS as threadsafe (for CICS Db2 applications. In particular the GLUEs XRMIIN and
XRMIOUT).

• Any other TRUEs used by the application must be defined to CICS as threadsafe, or as OPENAPI.

See Threadsafe programs for information about how to make application programs and user exit
programs threadsafe. By defining a program to CICS as threadsafe, you are only specifying that the
application logic is threadsafe, not that all the EXEC CICS commands included in the program are
threadsafe. CICS can ensure that EXEC CICS commands are processed safely by switching to the QR TCB
for those commands not yet converted that still rely on quasi-reentrancy. In order to permit your program
to run on an open TCB, CICS needs you to guarantee that your application logic is threadsafe.

The EXEC CICS commands that are threadsafe, and so do not involve TCB switching, are indicated in the
command syntax diagrams in the description of the API and SPI commands.

If a user application program in the OTE is not defined as threadsafe, the CICS Db2 TRUE still runs on an
L8 TCB, but the application program runs on the QR TCB throughout the task. Every time the program
makes an SQL request, CICS switches from the QR TCB to the L8 TCB and back again, so the performance
benefits of the OTE are negated. The maximum TCB switching for a CICS Db2 application would occur if
your program used a non-threadsafe user exit program and a non-threadsafe EXEC CICS command after
every Db2 request. In particular, the use of a non-threadsafe exit program on the CICS-Db2 mainline path
(for example, a program that is enabled at XRMIIN or XRMIOUT) causes more TCB switching than the
level that is experienced when CICS is connected to earlier versions of Db2.

The table shows what happens when application programs with different concurrency attributes invoke
the CICS Db2 TRUE when CICS is connected to different versions of Db2.

Chapter 5. Application design and development considerations for CICS Db2 81

https://www.ibm.com/support/pages/uid/swg27018287
https://www.ibm.com/support/pages/uid/swg27018287
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/designing/dfhp3_concepts_threadsafe.html

Table 6. Combinations of application programs and the CICS Db2 TRUE

Program's concurrency
attribute

CICS Db2 TRUE's
operation

Effect

QUASIRENT Threadsafe and open API Application program runs under the CICS QR
TCB. TRUEs run under an L8 TCB, and Db2
requests are executed under the L8 TCB. CICS
switches to and from the CICS QR TCB and the
L8 TCB for each Db2 request.

THREADSAFE Threadsafe and open API OTE exploitation. TRUEs run under an L8 TCB,
and Db2 requests are executed under the L8
TCB. The application program also runs on the
L8 TCB when control is returned to it. No TCB
switches are needed until the task terminates,
or if it issues a non-threadsafe CICS request
which forces a switch back to the QR TCB.

REQUIRED with
API(CICSAPI)

Threadsafe and open API OTE exploitation. TRUEs run under an L8 TCB,
and Db2 requests are executed under the L8
TCB. The application program runs on the L8
TCB from the start. The program always uses
an L8 TCB irrespective of the execution key of
the program. No TCB switches are needed until
the task terminates, or if it issues a non-
threadsafe CICS request which forces a switch
back to the QR TCB and then a switch back
afterward to the L8 TCB.

REQUIRED with
API(OPENAPI)

Threadsafe and open API OTE exploitation. Not preferred for user key
CICS-Db2 applications (and when storage
protection is active), as it causes switching
from the L9 TCB to the L8 TCB and back again
for every Db2 request.

In summary, to gain the performance benefits of the OTE:

• CICS must be connected to Db2.
• FORCEQR must not be set to YES.
• The CICS Db2 application must have threadsafe application logic (that is, the native language code in

between the EXEC CICS commands must be threadsafe). If the application logic is not threadsafe, the
program must be defined as CONCURRENCY(QUASIRENT), and so must operate on the CICS QR TCB. In
this case TCB switching occurs for every Db2 request, even if the TRUE is running on an open TCB.

• A threadsafe application can be defined to CICS as CONCURRENCY(THREADSAFE) API(CICSAPI) or
CONCURRENCY(REQUIRED) API(CICSAPI). The setting to use depends on how many non-threadsafe
EXEC commands the program uses. If there are many non-threadsafe CICS commands the program is
best defined as CONCURRENCY(THREADSAFE). If the program has few or no non-threadsafe CICS
commands, then CONCURRENCY(REQUIRED) can be used. Programs defined with
CONCURRENCY(REQUIRED) have the benefit of starting on an L8 open TCB, but every non-threadsafe
CICS command results in two TCB switches.

• The CICS Db2 application must use only threadsafe or open API dynamic plan exits, TRUEs, and GLUEs.
If any non-threadsafe exits are used, this forces a switch back to the QR TCB.

If all these conditions are met, you can gain the performance benefits of the OTE.

82 CICS TS for z/OS: Db2 Guide

SQL language
The complete SQL language is available to the CICS programmer with only minor restrictions.

For a detailed description on using the SQL language in a CICS program, see the Programming for Db2 for
z/OS in Db2 for z/OS product documentation.

In a CICS program, it is possible to use:

• Data manipulating language (DML)
• Data description language (DDL)
• GRANT and REVOKE statements

CICS also supports both dynamic and static SQL statements.

However, for performance and concurrency reasons, it is recommended that in general you do not issue
DDL and GRANT and REVOKE statements in CICS. You should also limit dynamic SQL use.

The reason for these recommendations is that the Db2 catalog pages can be locked, with a lower
concurrency level as a consequence. Also the resource consumption for these types of SQL statements is
typically higher than resource consumption for static DML SQL statements.

Using qualified and unqualified SQL
Programmers writing CICS Db2 programs can use qualified or unqualified SQL. In qualified SQL, the
creator is specified in front of the table or view name. In unqualified SQL, the creator is not specified.

When programmers develop CICS Db2 standards, it is important to determine the use of qualified and
unqualified SQL. This decision influences many other aspects of the Db2 environment. The main
relationships to other Db2 areas and some consequences for the two types of SQL statements are shown
in Table 7 on page 83.

Table 7. Qualified and unqualified SQL

Relationship to other Db2 areas Qualified SQL Unqualified SQL

Use of synonyms Not possible Possible

Binder ID Any Same as creator

Number of creators for tables and table
spaces

Any One

Use of VALIDATE(RUN) Is qualified Uses binder to qualify

Use of dynamic SQL Is qualified Uses executor to qualify

Require a separate test Db2 subsystem Yes No

Require same creator in test Db2 and
production Db2

Yes No

Possibility of using multiple versions of the
test tables in the same test Db2 subsystem

No Yes

Some of the limitations shown in Table 7 on page 83 can be bypassed if you develop your own
preprocessor to modify the source code before invoking the Db2 precompiler. This allows you, for
example, to change the creator in the SQL statements.

It is recommended that you use qualified SQL for dynamic SQL statements, because it is easier to
administer.

If you use unqualified SQL, you must decide how to supply the CREATOR to fully identify the tables and
views. There are two possibilities:

• You can use synonyms. The synonym must be created by the authorization id specified in the
DB2ENTRY and DB2CONN. Synonyms can only be created by the authorization ID itself. That means

Chapter 5. Application design and development considerations for CICS Db2 83

https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/nav/src/tpc/db2z_applicationprogrammingfordb2.html
https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/nav/src/tpc/db2z_applicationprogrammingfordb2.html

that you must develop a method to create the synonyms. You can use a TSO ID with the same ID as the
authorization ID specified in the DB2ENTRY or DB2CONN. Another possibility is to design a CICS
transaction ID (using the same authorization ID) that itself could do the CREATE SYNONYM statement.
However, neither of these methods is advisable.

• If you do not use synonyms, the CREATOR used in the bind process is the authorization ID of the binder.
All tables and views referenced in the dynamic SQL must then be created with this ID. All transactions
using dynamic SQL to access a common set of Db2 resources must then have the same authorization ID
specified in the DB2ENTRY or DB2CONN. In most cases, it must be the SIGNID, or a character string.
This restriction is normally not acceptable.

For these reasons, the use of unqualified SQL in dynamic SQL statements is not recommended.

Views
It is generally recommended that you use views where appropriate. Note that some views cannot be
updated.

In a real-time, online system, you often need to update rows you have retrieved using views. If the view
update restriction forces you to update the base table directly (or by using another view), consider only
views that can be updated. In most cases this makes the program easier to read and modify.

Updating index columns
When you update index columns, you must consider two things.

• When updating a field in a table, Db2 does not use any index containing this field to receive the rows.
This includes the fields listed in the FOR UPDATE OF list in the DECLARE CURSOR statement. It is
independent of whether the field is updated.

• A table space that today is nonpartitioned can be recreated with more than one partition. SQL updates
are not allowed against a partitioning key field. That means that programs doing updates of these fields
must be changed to use DELETE and INSERT statements instead.

Dependency of unique indexes
A programmer can take advantage of the fact that Db2 returns only one row from a table with a unique
index, if the full key is supplied in the SELECT statement. A cursor is not needed in this case.

If the index is changed and the uniqueness is dropped, the program does not execute correctly when two
or more rows are returned. The program receives an SQL error code.

Commit processing
CICS ignores any EXEC SQL COMMIT statements in your application programs. The Db2 commit must be
synchronized with CICS, which means that your program must issue an EXEC CICS SYNCPOINT
command. CICS then performs the commit processing with Db2. An implicit SYNCPOINT is always
invoked by the EXEC CICS RETURN at end of task.

Be aware of the actions that happen at SYNCPOINT:

• The UOW is completed. This means that all updates are committed in both CICS and in Db2.
• The thread is released for terminal-oriented transactions (unless a held cursor is open). If the thread is

released and there is no use for it, it is terminated unless it is a protected thread.
• The thread is not released for non-terminal-oriented transactions, unless NONTERMREL=YES is
specified in the DB2CONN. It first happens when the transaction is finished.

• All opened cursors are closed.
• All page locks are released.
• If RELEASE(COMMIT) was specified in the BIND process:

– Table space locks are released
– The cursor table segments of the plan in the EDM pool are released.

• Table space locks obtained by dynamic SQL are released independently of the BIND parameters.

84 CICS TS for z/OS: Db2 Guide

Serializing transactions
You might need to serialize the execution of one or more transactions. This typically occurs when the
application logic was not designed to deal with concurrency and in cases where the risk of deadlocks is
high.

About this task

You must allow serialization only for low-volume transactions because of potential queuing time.

The following methods each have different serialization start and end times:
CICS transaction classes

The CICS facility of letting only one transaction execute at a time in a CLASS is useful to serialize the
complete transaction.

Db2 thread serialization
In cases where the serialization may be limited to an interval from the first SQL call to syncpoint (for
terminal-oriented transactions, and nonterminal-oriented transactions if NONTERMREL=YES is
defined), you can use your DB2ENTRY specifications to ensure that only one thread of a specific type
is created at one time. This technique allows concurrency for the first part of the transaction, and is
useful if the first SQL call is not in the beginning of the transaction. Do not use this technique if your
transaction updated other resources before it issues its first SQL statement.

CICS enqueue and dequeue
If you know that the serialization period necessary is only a small part of the programs, then the CICS
enqueue and dequeue technique can be useful. The advantage is that only the critical part of the
transaction is serialized. This part can be as small as just one SQL statement. It allows a higher
transaction rate than the other methods, because the serialization is kept to a minimum.

The disadvantage compared to the other techniques is that the serialization is done in the application
code and requires the programs to be changed.

LOCK TABLE statement
It is recommended that you do not use the LOCK TABLE statement.

The LOCK TABLE statement can be used to serialize CICS transactions and other programs, if
EXCLUSIVE mode is specified. Note that it is the whole table space that is locked, not the table
referenced in the statement.

The serialization starts when the LOCK statement is executed. The end time for the serialization is
when the table space lock is released. This can be at syncpoint or at thread deallocation time.

Use this technique with care, because of the risk of locking the table space until thread deallocation
time. However, this technique is the only one that works across the complete Db2 system. The other
techniques are limited to controlling serialization of only CICS transactions.

Page contention
When designing applications and databases, consider the impact of having many transactions accessing
the same part of a table space. The term "hot spot" is often used to describe a small part of the table
space, where the access density is significantly higher than the access density for the rest of the table
space.

If the pages are used for SELECT processing only, there is no concurrency problem. The pages are likely
to stay in the buffer pool, so little I/O activity takes place. However, if the pages are updated frequently,
you may find that you have concurrency problems, because the pages are locked from first update until
syncpoint. Other transactions using the same pages have to wait. Deadlocks and timeouts often occur in
connection with hot spots.

Two examples of hot spots are sequential number allocation and insert in sequence.

Chapter 5. Application design and development considerations for CICS Db2 85

Sequential number allocation
If you use one or more counters to supply your application with new sequential numbers, consider the
following points.

• You should calculate the frequency of updates for each counter. You should also calculate the elapsed
time for the update transaction, measured from update of the counter until commit. If the update
frequency multiplied by the calculated elapsed time exceeds about 0.5 in peak hours, the queue time
can be unacceptable.

• If you are considering having more than one counter in the same table space, you should calculate the
total counter busy time.

• If the counters are placed in the same row, they are always locked together.
• If they are placed in different rows in the same table space, they can be in the same page. Since the

locks are obtained at the page level, the rows are also locked together in this case.
• If the rows are forced to different pages of the same table space (for example by giving 99% free space)

it is still possible that the transactions can be queued.

When for example row 2 in page 2 is accessed, a table space scan can occur. The scan stops to wait at
page number 1, if this page is locked by another transaction. You should therefore avoid a table space
scan.

• If an index is defined to avoid the table space scan, it is uncertain whether it can be used. If the number
of pages in the table space is low, the index is not used.

• A solution is then to have only one counter in each table space. This solution is preferred, if more than
one CICS system is accessing the counters.

• If only one CICS system is accessing the counters, a BDAM file can be an alternative solution. However,
the possibility of splitting the CICS system into two or more CICS systems at a later time can make this
solution less attractive.

Insert in sequence
In situations where many transactions are inserting rows in the same table space, consider the sequence
of the inserted rows.

If you base a clustering index on a field with a time stamp, or a sequential number, Db2 tries to insert all
rows adjacent to each other. The pages where the rows are inserted can then be considered a hot spot.

Note that in the clustering index, all inserts are also in the same page, within a given period.

If there is more than one index and the nonclustering index is used for data retrieval, the risk of deadlock
between index and data is increased. In general terms, the INSERT obtains the X-locks (exclusive locks)
in the following order:

1. Clustering index leaf page
2. Data page
3. Nonclustering index leaf page

When the SELECT statement uses the nonclustered index, the S-locks (shared locks) are obtained in this
order:

1. Nonclustering index leaf page
2. Data page

This is the opposite order to the order of the INSERT locks. Often the SELECT rate is higher for the new
rows. This means that the data pages are common for the INSERT and the SELECT statements. Where the
index page is also the same, a deadlock can occur.

A solution to the deadlock risk is to spread the rows by choosing another index as clustering.

The general methods of how to handle deadlock situations are described in Handling deadlocks in the
CICS Db2 environment.

86 CICS TS for z/OS: Db2 Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/dfhtk38.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/dfhtk38.html

CICS and CURSOR WITH HOLD option
Use CURSOR WITH HOLD in your CICS program to keep the cursor open and in position during a
SYNCPOINT.

The WITH HOLD option on a CURSOR declaration in a CICS program causes the following effects during a
SYNCPOINT:

• The cursor is kept open.
• The cursor remains in position after the last row which was retrieved, and before the next row in the

results table.
• Dynamic SQL statements are still prepared.

All locks are released, except for those required to maintain the cursor's position. Any exclusive page
locks are downgraded to shared locks.

In conversational CICS applications, you can use DECLARE CURSOR...WITH HOLD to request that the
cursor is not closed at syncpoint time. However, all cursors are always closed at end of task (EOT) and on
SYNCPOINT ROLLBACK. Across EOTs, a cursor declared WITH HOLD must be reopened and repositioned
just as if the WITH HOLD option were not specified. The scope of the held cursor is a single task.

In summary:

• The next FETCH following a syncpoint must come from the same task.
• You cannot hold a cursor across end of task.
• Therefore, cursors are not held across the EOT portions of pseudoconversational transactions.

If you try to hold a cursor across EOT, the cursor is closed and you get an SQLCODE -501 when you
execute the next FETCH. The precompiler cannot detect this and you do not get a warning message
notifying you of this situation.

In general, threads can become candidates for reuse at each syncpoint. When you use DECLARE
CURSOR...WITH HOLD in the CICS applications, consider the following recommendations:

• Close held cursors as soon as they are no longer needed. Once all held cursors are closed, syncpoint
can free the thread for thread reuse.

• Always close held cursors before EOT. If you do not close your held cursors, the CICS Db2 attachment
facility forces signon to restore the thread to the initial state, and this incurs additional processor time.

EXEC CICS RETURN IMMEDIATE command
When the TRANSID option is specified in conjunction with the IMMEDIATE option, CICS avoids sending an
end bracket (EB) to the terminal during the termination of the transaction that issued the RETURN
command, and immediately initiates the transaction designated by the TRANSID option. The keyboard
remains locked during this transaction, because no EB was sent to the terminal.

The new transaction behaves as if it were started by input from the terminal. You can pass data to the
transaction designated by the TRANSID option, using a COMMAREA. If you choose to, the transaction
issuing the RETURN command can also pass a terminal input message using the INPUTMSG and
INPUTMSGLEN options. This facility allows you to immediately initiate a transaction that expects to be
initiated as a result of terminal input.

This facility provides the same general capability as that achieved by issuing an EXEC CICS START
TRANSID(....) with TERMID(....) set to the EIBTRMID value, but with much less overhead and without the
momentary keyboard unlocking. The EXEC CICS RETURN TRANSID() IMMEDIATE command permits a
pseudoconversational transaction to switch transaction codes. This could be advisable, for example, to
keep Db2 plan sizes smaller or to have better accounting statistics for charge-back purposes.

Chapter 5. Application design and development considerations for CICS Db2 87

Avoiding AEY9 abends
An AEY9 abend occurs if an application issues an EXEC SQL command when the CICS Db2 attachment
facility has not been enabled.

About this task

You can use the following CICS command to detect whether the CICS Db2 attachment facility is enabled:

EXEC CICS EXTRACT EXIT PROGRAM('DFHD2EX1')
ENTRY('DSNCSQL')
GASET(name1)
GALENGTH(name2)

If you specify a program name of DSNCEXT1 or DSN2EXT1 CICS dynamically changes it to the required
name DFHD2EX1. If you get the INVEXITREQ condition, the CICS Db2 attachment facility is not enabled.

When the CICS Db2 attachment facility is enabled, it is not necessarily connected to Db2. It can be
waiting for Db2 to initialize. When this occurs, and an application issues an EXEC SQL command when
CONNECTERROR=ABEND is specified in the DB2CONN, an AEY9 abend would result.
CONNECTERROR=SQLCODE would result in a -923 SQL code being returned to the application.

You can use the INQUIRE EXITPROGRAM command with the CONNECTST keyword in place of the
EXTRACT EXIT command to determine whether the CICS is connected to Db2.

The CONNECTST keyword of the INQUIRE EXITPROGRAM command returns values:

• CONNECTED, when the CICS Db2 attachment facility is ready to accept SQL requests
• NOTCONNECTED, when the CICS Db2 attachment facility is not ready to accept SQL requests

If the command fails with PGMIDERR, this is the same as NOTCONNECTED.

Figure 28 on page 88 shows an example of assembler code using the INQUIRE EXITPROGRAM
command.

CSTAT DS F
 ENTNAME DS CL8
 EXITPROG DS CL8
 ...
 MVC ENTNAME,=CL8'DSNCSQL'
 MVC EXITPROG,=CL8'DFHD2EX1'
 EXEC CICS INQUIRE EXITPROGRAM(EXITPROG) X
 ENTRYNAME(ENTNAME) CONNECTST(CSTAT) NOHANDLE
 CLC EIBRESP,DFHRESP(NORMAL)
 BNE NOTREADY
 CLC CSTAT,DFHVALUE(CONNECTED)
 BNE NOTREADY

Figure 28. Example of the INQUIRE EXITPROGRAM command

If you specify a program name of DSN2EXT1, CICS dynamically changes it to the required name,
DFHD2EX1.

Further consideration on the use of the EXTRACT EXIT or INQUIRE EXITPROGRAM commands by
applications has to be made when running in an environment where dynamic workload balancing using
the z/OS Workload Manager (WLM) is taking place.

Testing for the availability of Db2 can lead to the "storm drain effect". If an application returns normally
when a connection to a workload manager is unavailable, a workload manager can be deluded into
routing more work to the CICS region, because it believes that good response times are being achieved.
For an explanation of the storm drain effect, see Avoiding the storm drain effect. You are, therefore,
advised to do the following:

• Specify STANDBYMODE=RECONNECT in the DB2CONN. This ensures that the CICS Db2 attachment
facility waits (in standby mode) for DB2 to initialize and connect automatically, should Db2 be down

88 CICS TS for z/OS: Db2 Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/designing/dfhp3_stormdrain.html

when connection is first attempted. Also, if Db2 subsequently fails, the CICS Db2 attachment facility
reverts again to standby mode and wait for Db2. It then automatically connects when Db2 returns.

• Use CONNECTERROR=SQLCODE provided applications handle the -923 code correctly.
• Avoid using EXTRACT EXIT or INQUIRE EXITPROGRAM commands if CONNECTERROR=SQLCODE can

be used.
• Use CONNECTERROR=ABEND if an AEY9 abend is required. Use the INQUIRE EXITPROGRAM

command instead of the EXTRACT EXIT command.
• It is worth noting that AEY9 abends can still occur even when STANDBYMODE=RECONNECT and

CONNECTERROR=SQLCODE are specified if:

– The CICS Db2 attachment facility is never started. An AEY9 results if an application issues an EXEC
SQL command. You should always specify DB2CONN=YES in the SIT, or program DFHD2CM0 in
PLTPI. Therefore the CICS Db2 attachment is at minimum in standby mode.

– The CICS Db2 attachment is shut down using a DSNC STOP or CEMT/EXEC CICS SET DB2CONN
NOTCONNECTED command.

It is advisable to avoid shutting down the attachment. The CICS Db2 SPI commands allow dynamic
modification of the environment without shutting down the attachment.

Chapter 5. Application design and development considerations for CICS Db2 89

90 CICS TS for z/OS: Db2 Guide

Chapter 6. Using JDBC and SQLJ to access Db2 data
from Java programs

Java programs that run in CICS can use several methods to access data held in a Db2 database.

Java programs can:

• Use a JCICS LINK command to link to a CICS program that uses Structured Query Language (SQL)
commands to access the data.

• Directly access the data by using the Java Data Base Connectivity (JDBC) or Structured Query Language
for Java (SQLJ) application programming interfaces.

The IBM Data Server Driver for JDBC and SQLJ
When a Java application for CICS makes JDBC and SQLJ requests of either type 2 connectivity or type 4
connectivity to an IBM Db2 and other programs for Db2 for z/OS database, the requests are processed by
the IBM Data Server Driver for JDBC and SQLJ.

In a CICS environment using type 2 connectivity, the IBM Data Server Driver for JDBC and SQLJ converts
the JDBC or SQLJ requests into their EXEC SQL equivalents. The converted requests flow into the CICS
Db2 attachment facility in the same way as EXEC SQL requests from non-Java programs. The
customization and tuning options for the CICS Db2 attachment facility apply equally to Java and non-Java
programs.

When you are using type 2 connectivity, Db2 client information such as the ClientUser and
ClientHostName values are not supported and are ignored.

The Liberty JVM server also supports type 4 connectivity that uses TCP/IP to connect to the Db2
subsystem instead of the CICS Db2 attachment facility. To use the IBM Data Server Driver for JDBC and
SQLJ with CICS, you must be connected to a Db2 subsystem that supports the appropriate level of your
driver version.

Details of how to code and build Java applications that use the JDBC and SQLJ application programming
interfaces that apply to your version of Db2 can be found in Java application development for IBM data
servers.

Configuring a JVM server to support Db2
A JVM server is the runtime environment for Java applications. You can configure the JVM server to
support JDBC and SQLJ-based applications.

Before you begin

To use the JVM server with Db2, it is best practice to install the latest version of the IBM Data Server
Driver for JDBC and SQLJ. You must add the Db2 SDSNLOD2 library to the CICS STEPLIB concatenation.
For more information about required APARs, see Detailed system requirements.

About this task
Enable your applications to use the IBM Data Server Driver for JDBC and SQLJ that is supplied with Db2
with the following steps.

Procedure

1. To set up the driver for a Liberty JVM server, see Configuring a Liberty JVM server. For an OSGi JVM
server, see Configuring a JVM server for OSGi applications.

© Copyright IBM Corp. 1974, 2020 91

https://www.ibm.com/support/knowledgecenter/en/SSEPEK_12.0.0/java/src/tpc/imjcc_c0024189.html
https://www.ibm.com/support/knowledgecenter/en/SSEPEK_12.0.0/java/src/tpc/imjcc_c0024189.html
https://www.ibm.com/software/reports/compatibility/clarity/softwareReqsForProduct.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_jvmserver_liberty.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_jvmserver_app.html

2. The Db2 environment variable DB2SQLJPROPERTIES is not supported in a JVM server. Therefore, you
must set the properties that are related to the Db2 driver directly in your JVM profile. For a list of
available properties, see Programming for Db2 for z/OS in Db2 for z/OS product documentation.

3. Optional: If you want to generate Db2 trace for a JVMSERVER, the following JVM profile properties are
useful:

-Ddb2.jcc.traceDirectory=/u/<userID>/db2trace/
-Ddb2.jcc.traceFile=jccTrace.txt
-Ddb2.jcc.appendFile=true
-Ddb2.jcc.traceLevel=-1

Important: If a Db2 property is set in the JVM profile, it becomes the default for all dataSources that
do not otherwise set them.

What to do next

If you want to use JDBC or SQLJ from a Java application in an OSGi JVM server with a Java 2 security
policy mechanism active, see Enabling a Java security manager.

Setting the Db2 schema in a JVM server
You can set the current Db2 schema for a JVM server that accesses Db2 in a number of ways.

If the default Db2 schema is not the one that you want, you have two options:

• You can set the db2.jcc.currentSchema to the name of the schema you want in the JVM profile. For
example, the -Ddb2.jcc.currentSchema=CICSDB2Setting schema in the JVM profile ensures that
all of the Db2 access through the JCC driver respects the chosen schema. For a Liberty JVM server, all
dataSource definitions respect this value, unless they are otherwise overridden in the dataSource
definition.

• If you are using a Liberty JVM server, you can set the schema for an individual dataSource. For example:

<dataSource id="ds1" jndiName="jdbc/ds1">
 <jdbcDriver libraryRef="db2Lib"/>
 <properties.db2.jcc currentSchema="TESTER"/>
</dataSource>

Tip: If you use the CICS default dataSource (created by using autoconfigure), then any values that are set
in server.xml are overwritten each time the server is started. Create your own dataSource to prevent
potential updates to the CICS default dataSource overwriting your values.

Programming to the JDBC and SQLJ APIs
Java programs for CICS must adhere to the programming rules of the JDBC application programming
interfaces (API), which might be more restrictive than the general CICS programming model.

The IBM Data Server Driver for JDBC and SQLJ provides support for JDBC 4.2 and earlier versions.

When connecting an OSGi Java program to Db2, add com.ibm.db2.jcc;resolution:=optional to
the Import-Package in your bundle manifest.

Note: SQLJ using type 2 connectivity is supported in a Liberty JVM server. SQLJ using type 4 connectivity
is not supported.

You can find more information about the JDBC APIs at the Oracle JDBC website. For information about
developing Java applications that use the JDBC and SQLJ APIs, see Java application development for IBM
data servers in Db2 for z/OS product documentation.

92 CICS TS for z/OS: Db2 Guide

https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/nav/src/tpc/db2z_applicationprogrammingfordb2.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/topics/dfhpj5u.html
https://www.oracle.com/technetwork/java/javase/tech/index-jsp-136101.html
https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/java/src/tpc/imjcc_c0024189.html
https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/java/src/tpc/imjcc_c0024189.html

Deploying a serialized SQLJ profile in a JVM server
SQLJ provides support for embedded static SQL in Java applications. You deploy a serialized SQLJ profile
in an OSGi JVM server or a Liberty JVM server as an alternative to using the JDBC application
programming interface.

Before you begin

You must prepare your SQLJ program using the following process: Program preparation for SQLJ
programs.

Once the DBRMs have been created they must be bound into a Db2 Plan or Package and a Db2 Entry
specifying the Db2 plan defined to CICS. Failing to do this will most probably result in SQL -805 errors or
SQLJ defaulting to use JDBC. Download the serialized profile file to the workstation where the bundle is
being created. Ensure that the transfer is done using the binary format, so that there is no code page
conversion. This will prevent problems later.

Now a decision is needed about where to put the serialized profile file. There are two scenarios:

Procedure

1. Scenario one - keep the serialized profile within the deployed bundle.
a) For OSGI bundles the serialized profile can be kept in the bundle root directory or in the bundles

class directory. For Liberty bundles it must go into the bin directory with the other classes.
2. Scenario two - externalize the profile.

a) Move the serialized profile from within the jar to a directory in the USS file system, for
example /usr/lpp/cicsts/dev/sqlj.profile.dir . The file needs to be in a directory with
the same package structure such as /usr/lpp/cicsts/dev/sqlj.profile.dir/com/ibm/
cics/test/sqlj/CurrentTimeStamp_SJProfile0.ser.

b) Add an entry to the bundle manifest.

Bundle-ClassPath: .,external:$sqlj.profile.dir$

The string 'external' indicates a location external to the bundle and the string enclosed with $
substitutes the value of a Java system property, that is sqlj.profile.dir.

c) Add a Java system property similar to this example in the JVM profile:

-Dsqlj.profile.dir=/usr/lpp/cicsts/dev/sqlj.profile.dir

Results
You have successfully deployed a serialized SQLJ profile.

Acquiring a connection to a database
Before executing SQL statements, a JDBC or SQLJ application must acquire a connection to a database.
The application connects to a target data source using one of two Java interfaces.

About this task

The two Java interfaces are:

• DriverManager: This class connects an application to a database which is specified by a database URL.
• DataSource: This interface is preferred over DriverManager because it allows details about the

underlying database to be transparent to your application making applications more portable. The
DataSource implementation is created externally to the Java program and obtained with a Java Naming
and Directory Interface (JNDI) DataSource name lookup. The DataSource interface is only available in a
Liberty JVM server.

In an OSGi JVM server only type 2 connectivity using DriverManager is supported for use with Db2.

Chapter 6. Using JDBC and SQLJ to access Db2 data from Java programs 93

https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.java/src/tpc/imjcc_sqljprep.html
https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z11.doc.java/src/tpc/imjcc_sqljprep.html

In a Liberty JVM server, you can use the DriverManager or DataSource interfaces to access Db2.

If you are using JDBC type 2 connectivity, you do not need to specify a user ID and password, as the
existing CICS Db2 security procedures are used instead. It is also advisable to use a default URL, for more
detail, see Committing a unit of work.

There are JDBC examples for both OSGi and Liberty JVM servers supplied in the IBM CICS SDK for Java.
For more information, see Developing Java applications to run in a Liberty JVM server.

For more information on using the JDBC DriverManager and DataSource interfaces to acquire a
connection, and sample code that you can use in your application, see the Db2 for z/OS : Programming for
Java which is appropriate for your version of Db2.

Acquiring a DriverManager connection to a database
Using the DriverManager class, the connection to the database is identified by a database Uniform
Resource Locator (URL) that is provided to the JDBC driver.

About this task

A DriverManager connection is configured for an OSGi JVM server by specifying the Db2 JDBC jars and
native DLLs in the JVM profile OSGI_BUNDLES and LIBPATH_SUFFIX JVM profile.

In a Liberty JVM server, the DriverManager configuration is provided by the CICS JDBC Liberty feature.

The JDBC driver recognizes two types of URL:
Default URL

A default URL does not include the location name of a Db2 subsystem. A default URL for Db2 for z/OS
can be specified in one of two formats:

 jdbc:db2os390sqlj:
 or
 jdbc:default:connection

When a default URL is specified, the application is given a connection to the local Db2 to which CICS is
connected. If your installation uses Db2 data sharing, you can access all the data in your sysplex from
the local Db2.

Explicit URL
An explicit URL includes the location name of a Db2 subsystem. The basic structure of an explicit URL
for Db2 for z/OS is:

 jdbc:db2os390:<location-name>
 or
 jdbc:db2os390sqlj:<location-name>

Typically, the location name is the name of the local Db2 to which CICS is connected. However, you
can specify the name of a remote Db2 to access. In this case, CICS uses the local Db2 as a pass-
through, and uses Db2 Distributed Data Facilities to access the remote Db2.

It is advisable to use a default URL when accessing Db2 with type 2 connectivity. The use of an explicit
URL might cause specific actions when a connection closes that could be inconvenient when multiple
programs are used in the same application suite. Also, when a default URL is used, the behavior of the
connection is not affected by the JDBC driver version.

To acquire a connection, your Java application needs to invoke the getConnection() method with the
URL. For example:

Connection connection =
DriverManager.getConnection("jdbc:default:connection");

94 CICS TS for z/OS: Db2 Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/database/dfhtk4t.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/dfhpj_devjavaweb.html

When connecting an OSGi Java program to Db2, add com.ibm.db2.jcc;resolution:=optional to
the Import-Package in your bundle manifest.

Acquiring a DataSource connection to a database
Using the DataSource interface, the connection to the database is obtained with a Java Naming and
Directory Interface (JNDI) DataSource name lookup. JDBC DataSource implementation is provided by
either the cicsts:jdbc-1.0, the Liberty jdbc-4.1 or jdbc-4.2 feature.

About this task

The term data source can be used in two different contexts, careful attention is needed, as they are
distinguished by capitalization:

• A data source is a source of data such as a database.
• A DataSource is the Java EE way of encapsulating a set of properties that identify and describe the real

world data source that it represents. A DataSource object can be thought of as a factory for connections
to the particular data source that it represents.

• If a DataSource object is registered with a JNDI naming service, an application can use the JNDI API to
access that DataSource object, which can then be used to connect to the data source it represents.

• A DataSource object can choose to implement a connection pool (a set of temporary logical
representations of a physical connection). When the application closes such a connection, the
temporary connection (also known as a JDBC connection) is not closed, but returned to a pool for re-
use.

If you are using JDBC type 4 connectivity, and want to coordinate database updates with the updates
made in the CICS unit of work, use the CICS JTA integration support and perform your updates within the
scope of a UserTransaction. See Java Transaction API (JTA) for more information. Additionally you should
ensure that your DataSource is an XADataSource (specified by adding the element
type="javax.sql.XADataSource " to your definition). If you use the Liberty default DataSource
<dataSource id="DefaultDataSource"> it is an XADataSource by default.

After the DataSource is configured, the application can use the use the value of the jndiName specified in
either the cicsts_dataSource element, or the dataSource element, respectively, in the Liberty server
configuration to obtain an instance of that DataSource class from the JNDI naming service. The
getConnection() method can then be called on that DataSource object to get a connection. For
example:

Context context = new InitialContext();
DataSource dataSource = (DataSource)
context.lookup("jdbc/defaultCICSDataSource");

Connection connection = dataSource.getConnection();

JDBC and SQLJ connection considerations
When using the IBM Data Server Driver for JDBC and SQLJ in CICS Java applications, the following
information should be considered.

Using the IBM Data Server Driver for JDBC and SQLJ with type 2 connectivity

If you are using type 2 connectivity, a Java application for CICS can only have one JDBC connection or one
SQLJ connection open at once.

Although JDBC allows an application to have multiple connections at the same time, use of type 2
connectivity restricts this to one. However, an application can close an existing connection and open a
connection to a new Db2 location, if required.

As a guideline, an application that has an open connection should close the connection before linking to
another application that might use JDBC or SQLJ. For Java programs that are part of an application suite,
you need to consider the implications of closing the connection, because if you are using an explicit URL,

Chapter 6. Using JDBC and SQLJ to access Db2 data from Java programs 95

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/dfhpj2_jta.html

closing the connection can cause a syncpoint to be taken. If you are using a default URL, a syncpoint does
not have to be taken when the connection is closed.

See “Committing a unit of work” on page 96 for more information about type 2 connectivity.

Using the IBM Data Server Driver for JDBC and SQLJ with type 4 connectivity (Liberty JVM server
only)

If you are using type 4 connectivity, a Java application for CICS can have multiple JDBC connections or
multiple SQLJ connections open at once. Care should be taken to maintain data integrity. It is advisable to
use the Java Transaction API to clearly demarcate transaction boundaries.

Note:

The JDBC 4.0, 4.1 and 4.2 implementations reside in the same driver.

When you use the jdbc-4.1 or the jdbc-4.2 feature, the RowSetFactory interface and
RowSetProvider class attempt to create a new JDBC connection.

Closing a connection to a database
When you close a connection to a database, JDBC and SQLJ resources are automatically released.
Typically, a connection to a database is closed when the task ends.

For performance reasons, an application might leave the JDBC connection open for a subsequent user of
the same JVM to use. If the JDBC connection is left open, the application must ensure that JDBC
resources are not leaked over time.

If the application leaves the JDBC or SQLJ connection open, the application must do the following:

• Ensure that JDBC and SQLJ resources are released.
• Recover following a Db2 SIGNON for the underlying Db2 connection.
• Recycle the cached connection if it become invalid; for example, StaleConnection, SQLCODE=4499.

If connections are cached, you are recommended to include logic in your application that recycles the
connection after a given number of transactions. Recycling cached connections protects against resource
leakage.

Committing a unit of work
When using type 2 connectivity, your JDBC and SQLJ applications can issue JDBC and SQLJ commit and
rollback method calls. The IBM Data Server Driver for JDBC and SQLJ converts these calls into a JCICS
commit or a JCICS rollback call, resulting in a CICS syncpoint being taken.

About this task

A JDBC or SQLJ commit results in the whole CICS unit of work being committed, not just the updates
made to Db2. CICS does not support committing work done using a JDBC connection independently of
the rest of the CICS unit of work.

A JDBC or SQLJ application can also issue JCICS commit or rollback directly, and this has the same result
as issuing a JDBC or SQLJ commit or rollback method call. The whole unit of work is committed or rolled
back together, both Db2 updates and updates to CICS controlled resources.

When you are working with JDBC connections, there are some circumstances in which you cannot avoid a
syncpoint being taken, and the unit of work being committed, when the connection to the Db2 database is
closed. This applies in either of the following circumstances:

• You have used the autocommit property of a JDBC connection.
• You have acquired the DriverManager connection using an explicit URL.

For a stand-alone application, these rules do not cause a problem, as CICS ensures that an end of task
syncpoint is taken in addition to any syncpoint that is taken when the connection is closed. However, the

96 CICS TS for z/OS: Db2 Guide

JDBC and SQLJ application programming interfaces do not support the concept of multiple application
programs for each unit of work. If you have a number of programs that make up an application, one
program might access Db2, then call another program that also accesses Db2, in the course of a single
unit of work. If you want these programs to be Java programs that use JDBC or SQLJ, you need to ensure
that the unit of work is not committed when the connection to Db2 is closed, or else the application will
not operate as planned. You should be particularly aware of this requirement if you are replacing
programs in an existing application with Java programs that use JDBC or SQLJ, and you want to share the
same CICS-Db2 thread between the programs. To address this issue, use a DriverManager with default
URL or a DataSource connection.

Autocommit
JDBC applications can use the autocommit property of a JDBC connection. The autocommit property
causes a commit after each update to Db2. When using type 2 connectivity, this commit is a CICS ®
commit, and results in the whole unit of work being committed.

Using the autocommit property also causes a commit to be taken when a connection is closed. The use of
autocommit in with type 2 connectivity is not recommended. For this reason the IBM Data Server Driver
for JDBC and SQLJ sets a default of autocommit(false) when it runs in a CICS environment with type
2 connectivity. For type 4 connectivity the default is autocommit(true).

Syncpoint issues for DriverManager with explicit and default URLs
When a Java application for CICS that uses JDBC or SQLJ acquires a connection using an explicit URL, it
operates in an environment similar to that of a DPL server program linked to with the SYNCONRETURN
attribute.

When an application program that uses JDBC or SQLJ closes the explicit URL connection, if CICS is using
the IBM Data Server Driver for JDBC and SQLJ, no implicit syncpoint is taken.

However, the close of an explicit URL connection is only successful when on a unit of work boundary. The
application must therefore take a syncpoint, by issuing a JDBC or SQLJ commit method call or a JCICS
commit, before closing the connection. (The application could use autocommit(true) to ensure that a
syncpoint is taken, but the use of this property is discouraged in the CICS environment.) When the
application program closes an explicit URL connection, that is the end of the unit of work.

You can overcome this restriction by acquiring the connection using a default URL instead of an explicit
URL, or by using a data source that provides a default URL connection (see “Acquiring a connection to a
database” on page 93). When a default URL is used, the Java application does not have to close the
connection on a unit of work boundary, and no syncpoint is taken when the connection is closed (provided
that autocommit(true) has not been specified).

It is recommended that you always use default URL connections when using DriverManager type 2
connectivity.

CICS abends during JDBC or SQLJ requests
CICS abends issued during processing of an EXEC SQL request, built by the IBM Data Server Driver for
JDBC and SQLJ, are not converted into Java Exceptions, and therefore are not catchable by a Java
application for CICS. The CICS transaction will abend and rollback to the last syncpoint.

Chapter 6. Using JDBC and SQLJ to access Db2 data from Java programs 97

98 CICS TS for z/OS: Db2 Guide

Chapter 7. Preparing CICS Db2 programs for
execution and production

This section discusses program preparation in a CICS Db2 environment.

For information on support for Java programs in the CICS Db2 environment, see Using JDBC and SQLJ to
access Db2 data from Java programs .

These topics contains diagnosis, modification or tuning information.

The CICS Db2 test environment
When setting up your CICS Db2 test environment, consider how many CICS systems you want to connect
to your Db2 systems.

You can connect more than one CICS system to the same Db2 system. However, the CICS Db2
attachment facility does not allow you to connect one CICS system to more than one Db2 system at a
time.

You can set up production and test environments with:

• A single CICS system connected to one Db2 system
• Two or more CICS systems for production and test, connected to the same Db2 system
• Two or more CICS systems connected to two or more different Db2 systems

The first alternative, using a single CICS system for both production and test, is not recommended
because applications in test could affect the performance of the production system.

The second alternative, with just one Db2 system, could be used for both test and production. Whether it
is suitable depends on the development and production environments involved. Running a test CICS
system and a production CICS system separately allows test failures without impacting production.

The third alternative, with, for example, one test and one production Db2 system, is the most flexible.
Two CICS subsystems can run with one or more Db2 systems. Where the CICS systems are attached to
different Db2 systems:

• User data and the Db2 catalog are not shared. This is an advantage if you want to separate test data
from production data.

• Wrong design or program errors in tested applications do not affect the performance in the production
system.

• Authorization within the test system can be less strict because production data is not available. When
two CICS systems are connected to the same Db2 system, authorization must be strictly controlled,
both in terms of the functions and the data that are available to programmers.

CICS Db2 program preparation
You can prepare your CICS Db2 program by using the Db2 Interactive (DB2I) interface, or you can submit
your own JCL for batch processing.

About this task

The steps shown in Figure 29 on page 100 summarize how to prepare your program for execution after
your application program design and coding is complete.

© Copyright IBM Corp. 1974, 2020 99

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/database/dfhtk6j.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/database/dfhtk6j.html

USER JCL AND SUBMIT TO BATCH
OR

DB2I

DB2 PRECOMPILER DBRM(1)

(2)

(3)

(4)

(5)

CICS COMMAND LANGUAGE
TRANSLATOR

COMPILE OR ASSEMBLE PROGRAM

LINK EDIT WITH INTERFACES

APPLICATION LOAD MODULE

(5) BIND

PLAN

Figure 29. Steps to prepare a CICS application program that accesses Db2

100 CICS TS for z/OS: Db2 Guide

For an overview of the stages in this process, see Preparing a CICS application program that accesses
Db2.

When you prepare CICS application programs that access Db2:

• The Db2 precompiler (Step 1) builds a DBRM that contains information about each of the program's SQL
statements. It also validates SQL statements in the program. For more information about using the Db2
precompiler, see Programming for Db2 for z/OS in Db2 for z/OS product documentation.

• If the source program is written in PL/I, the input to Step 1, the Db2 precompiler, is the output from the
PL/I macro phase (if used).

• You can run Step 1, the Db2 precompiler, and Step 2, the CICS command language translator, in either
sequence. The sequence shown is the preferred method, and it is the method supported by the DB2I
program preparation panels. If you run the CICS command language translator first, it produces a
warning message for each EXEC SQL statement it encounters, but these messages do not affect the
result.

• If you use one of the Language Environment-conforming compilers (COBOL and PL/I) that has
integrated the CICS translator, translation of the EXEC CICS commands (Step 2) takes place during
program compilation (Step 3). For more information on the integrated CICS translator and the compilers
that support it, see Translation and compilation.

• If you are running DB2 Version 7 or later and preparing a COBOL or PL/I program using one of the
Language Environment-conforming COBOL or PL/I compilers, the compiler also provides an SQL
statement coprocessor (which produces a DBRM), so you do not need to use the separate Db2
precompiler (Step 1). See Programming for Db2 for z/OS in Db2 for z/OS product documentation for
more information on using the SQL statement coprocessor.

• If you are running DB2 Version 6 or earlier and preparing a COBOL or PL/I program, use the separate
Db2 precompiler. For a COBOL program, ensure that you specify a string delimiter that is the same for
the Db2 precompiler and the integrated CICS translator. The default delimiters are not compatible.

• In the link edit of the program (Step 4), include both the appropriate CICS EXEC interface module, or
stub, for the language in which you are coding, and the CICS Db2 language interface module DSNCLI.
The CICS EXEC interface module must be included first in the load module. You can link DSNCLI with
your program in either 24-bit or 31-bit addressing mode (AMODE=31). If your application program runs
in 31-bit addressing mode, you should link-edit the DSNCLI stub to your application with the attributes
AMODE=31 and RMODE=ANY so that your application can run above 16MB.

• The bind process (Step 5) requires Db2. The bind process uses the DBRM to produce an application
plan (often just called a plan) that enables the program to access Db2 data. See The bind process for
more information on the bind process. A group of transactions that use the same entry thread (in other
words, specified in the same DB2ENTRY) must use the same application plan. Their DBRMs must be
bound into the same application plan, or bound into packages that are then listed in the same
application plan.

Table 8 on page 101 shows the tasks that you need to perform to prepare a CICS Db2 program,
depending on the language of the program and on your version of Db2:

Table 8. Tasks to prepare a CICS program that accesses Db2

Db2 version and
program language

Step 1 (SQL
statement
processing)

Step 2 (CICS
command
translation)

Step 3
(Program
compile)

Step 4 (Link-edit) Step 5
(Bind)

DB2 Version 6 and
Assembler

Db2
precompiler

CICS-supplied
separate
translator

Language
compiler

Link-edit with
EXEC interface and
DSNCLI

Bind
process

DB2 Version 6 and
PL/I

Db2
precompiler

Language compiler that supports
integrated CICS translator

Link-edit with
EXEC interface and
DSNCLI

Bind
process

Chapter 7. Preparing CICS Db2 programs for execution and production 101

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/database/dfhtk6n.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/database/dfhtk6n.html
https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/nav/src/tpc/db2z_applicationprogrammingfordb2.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/compiler/dfhp3_transl_intro.html
https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/nav/src/tpc/db2z_applicationprogrammingfordb2.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/database/dfhtk6p.html

Table 8. Tasks to prepare a CICS program that accesses Db2 (continued)

Db2 version and
program language

Step 1 (SQL
statement
processing)

Step 2 (CICS
command
translation)

Step 3
(Program
compile)

Step 4 (Link-edit) Step 5
(Bind)

DB2 Version 6 and
COBOL

Db2
precompiler

Language compiler that supports
integrated CICS translator

Link-edit with
EXEC interface and
DSNCLI

Bind
process

DB2 Version 6 and
other languages

Db2
precompiler

CICS-supplied
separate
translator

Language
compiler

Link-edit with
EXEC interface and
DSNCLI

Bind
process

DB2 Version 7 (or
later) and
Assembler

Db2
precompiler

CICS-supplied
separate
translator

Language
compiler

Link-edit with
EXEC interface and
DSNCLI

Bind
process

DB2 Version 7 (or
later) and PL/I

Language compiler that supports integrated CICS
translator and SQL statement coprocessor

Link-edit with
EXEC interface and
DSNCLI

Bind
process

DB2 Version 7 (or
later) and COBOL

Language compiler that supports integrated CICS
translator and SQL statement coprocessor

Link-edit with
EXEC interface and
DSNCLI

Bind
process

DB2 Version 7 (or
later) and other
languages

Db2
precompiler

CICS-supplied
separate
translator

Language
compiler

Link-edit with
EXEC interface and
DSNCLI

Bind
process

You prepare your CICS Db2 program by using the Db2 Interactive (DB2I) interface or by submitting your
own JCL for batch execution.

• Db2 Interactive (DB2I) interface: DB2I provides panels to precompile, compile or assemble, and link-
edit an application program and to bind the plan. For details about application program preparation, see
the Programming for Db2 for z/OS in Db2 for z/OS product documentation.

• User JCL submitted to batch execution: Members DSNTEJ5C and DSNTEJ5P in the Db2 library,
SDSNSAMP, contain samples of the JCL required to prepare COBOL and PL/I programs for CICS.

If you prepare your program for execution while CICS is running, you might need to issue a CEMT
NEWCOPY command to make the new version of the program known to CICS.

CICS SQLCA formatting routine
DSNTIAR, the IBM-supplied SQLCODE message formatting procedure, lets you send "SQL messages
online" to your application.

With DB2 Version 3.1, DSNTIAR was split into two front-end modules (DSNTIAC and DSNTIAR) and a
runtime module (DSNTIA1). DSNTIAC is used for CICS applications and DSNTIAR for other Db2
interfaces. This change removed the need, previous to DB2 Version 3.1, to relink-edit your application
modules every time a change is made to DSNTIAR, either by change of release or by applying
maintenance. If you have applications that have previously been link-edited with DSNTIAR, you should
consider link-editing them again using DSNTIAC instead, which will provide performance improvements
and isolate them from changes to DSNTIAR.

The CICS front-end part, DSNTIAC, is supplied as a source member in the Db2 library SDSNSAMP.

The necessary program definitions for DSNTIAC and DSNTIA1 are provided in IBM supplied group
DFHDB2 on the CSD. You must add the SDSNLOAD library to the CICS DFHRPL concatenation (after the
CICS libraries) so that DSNTIA1 can be loaded.

102 CICS TS for z/OS: Db2 Guide

https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/nav/src/tpc/db2z_applicationprogrammingfordb2.html

What to bind after a program change
If you change a program, you must prepare it and rebind it before it can be used.

About this task

For an overview of the bind process, see The bind process. For an overview of plans and packages, see
Plans, packages and dynamic plan exits.

Imagine you have a CICS transaction that consists of four program modules: module 1 is the main
module. Module 1 calls module 2. Module 1 also calls module 3, and module 3 calls module 4. It is not
unusual that the number of modules is high in a real transaction. Assuming that at least one SQL
statement changed in one of the modules, you must perform the following procedure to prepare the
program and to make the transaction executable again.

Procedure

1. Precompile the program on Db2.
2. Translate the program using the CICS translator.
3. Compile the host language source statements.
4. Link-edit.
5. If the DBRM for program C was bound into a package, bind that package using the new DBRM, and

all the application plans that use program C will automatically locate the new package.
6. If the DBRM for program C was bound directly into any application plans, locate all the application

plans that include the DBRM for program C. Bind all the application plans again, using the DBRMs for
all the programs directly bound into them, to get new application plans. For the programs that were
not changed, use their old DBRMs. Note that you cannot use the REBIND subcommand, because input
to REBIND is the plan and not the DBRMs.

Note: If you have not used packages before, note that using packages simplifies the rebinding
process. You can bind each separate DBRM as a package and include them in a package list. The
package list can be included in a PLAN. You can then use the BIND PACKAGE command to bind the
DBRMs for any changed programs, instead of using the BIND PLAN command to bind the whole
application plan. This provides increased transaction availability and better performance. See Using
Db2 packages for more information on using packages.

Bind options and considerations for programs
When binding multiple programs into an application plan, be aware of the way in which Db2 uses time
stamps.

For each program, the Db2 precompiler creates the following:

• The Db2 precompiler creates a DBRM with a time stamp of Td x. For example, Td1 for the first program,
Td2 for the second program, and so on.

• The Db2 precompiler creates a modified source program with a time stamp of Ts x in the SQL parameter
list. For example, Ts1 and Ts2, if two programs are involved.

At bind time, the DBRM for each program is bound into the package or plan that you have specified. In
addition, Db2 updates its catalog table SYSIBM.SYSDBRM with one line for each DBRM, together with its
time stamp. At execution time, Db2 checks the time stamps for each SQL statement, and returns a -818
SQL code if the time stamp for the DBRM and the time stamp it has placed in the source program are
different (in our example, if Td1 and Ts1 are different, or Td2 and Ts2 are different). To avoid -818 SQL
codes, use one of the following strategies:

• Bind all programs into packages, and list these packages in the application plan. When a program
changes, precompile, compile, and link-edit the program, and bind it into a package again.

• If you bind any programs directly into application plans, ensure that for every new or changed program,
you precompile, compile, and link-edit the program, then bind all the application plans that involve that

Chapter 7. Preparing CICS Db2 programs for execution and production 103

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/database/dfhtk6p.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/database/dfhtk6o.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/database/dfhtk77.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/database/dfhtk77.html

program, using the DBRMs from all the programs directly bound into those plans. Use the BIND
command, not the REBIND command, to do this.

When you bind a plan, a number of options are available. Almost all bind options are application
dependent and should be taken into account during the application design. You should develop
procedures to handle different BIND options for different plans. Also, the procedures should be able to
handle changes in BIND options for the same plan over time.

The following sections describe some specific recommendations for BIND options with CICS.

RETAIN
RETAIN means that BIND and EXECUTE authorities from the old plan are not changed.

When the RETAIN option is not used, all authorities from earlier GRANTs are REVOKED. The user
executing the BIND command becomes the creator of the plan, and all authorities must be reestablished
by new GRANT commands.

This is why it is recommended that you use the RETAIN option when binding your plans in the CICS
environment.

Isolation level
The isolation level is specified for the complete plan. You are recommended to use Cursor Stability (CS)
unless there is a specific need for using Repeatable Read (RR). Using CS allows a high level of
concurrency and reduces the risk of deadlocks.

Note that the isolation level is specified for the complete plan. This means that if RR is necessary for a
specific module in CICS, then all the DBRMs included in the plan must also use RR.

Also, if for performance reasons you decide to group a number of infrequently used transactions together
to use the same DB2ENTRY and let them use a common plan, then this new plan must also use RR, if just
one of the transactions requires RR.

Plan validation time
A plan is bound with VALIDATE(RUN) or VALIDATE(BIND). VALIDATE(RUN) is used to determine how to
process SQL statements that cannot be bound.

If a statement must be bound at execution time, it is rebound for each execution. This means that the
statement is rebound for every new unit of work (UOW).

Binding a statement at execution time can affect performance. A statement bound at execution time is
rebound for each execution. That is, the statement must be rebound after each syncpoint. It is not
recommended that you use this option with CICS.

Note that using dynamic SQL does not require VALIDATE(RUN). Nevertheless, dynamic SQL implies that a
statement is bound at execution.

You should use VALIDATE(BIND) in a CICS Db2 environment.

ACQUIRE and RELEASE
The ACQUIRE and RELEASE parameters change from plan to plan over time because they are related to
the transaction rate.

The general recommendations for these parameters are described in Selecting BIND options for optimum
performance.

CICS Db2 program testing and debugging
The tools that are typically used in a CICS environment can be used to test and debug a CICS application
program that accesses Db2. These include: the execution diagnostic facility (EDF), the CICS auxiliary
trace, and transaction dumps.

For information about these and other problem determination processes, see Troubleshooting Db2.

104 CICS TS for z/OS: Db2 Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/databases/dfhtk2e.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/databases/dfhtk2e.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/dfhtk2n.html

Going into production: checklist for CICS Db2 applications
This checklist shows the tasks you need to perform after designing, developing, and testing an
application, in order to put the application into production.

About this task

These tasks are highly dependent on the standards you have used in the test system. For example, the
tasks to be performed are different if:

• There are separate Db2 systems for test and production
• Only one Db2 is used for both test and production.

The following discussion assumes that you use separate Db2 and CICS subsystems for test and
production.

Going into production implies performing the following activities:

Use DDL to prepare production databases
All DDL operations must run on the production Db2 system, using DDL statements from the test
system as a base. Some modifications are probably needed, for example, increasing the primary and
secondary allocations, as well as defining other volume serial numbers and defining a new VCAT in the
CREATE STOGROUP statements.

Prepare DCLGEN
For COBOL and PL/I programs, you may have to run DCLGEN operations on the production Db2
system, using DCLGEN input from the test Db2 system.

Depending on the option taken for compilations (if no compilations are run on the production system),
an alternative could be to copy the DCLGEN output structures from the test libraries into the
production libraries. This keeps all information separate between test and production systems.

Precompile for the production system
If you have bound your programs into packages on the test system, you do not need to perform this
step. You can move the packages straight to the production system. See "Produce an application plan
for the production system" for details of how to do this. However, if you want to bind your programs
directly into application plans, or if you want to bind the programs into packages on the production
system, you need to put the DBRMs for the programs on the production system. You can either:

• Precompile CICS modules containing EXEC SQL statements on the production system, or
• Copy DBRMs from the test system to the production system libraries.

Compile and link-edit for the production system
To produce load modules:

• If the DBRMs were produced by precompiling on the production system, compile and link-edit the
CICS modules on the production system; or

• If the DBRMs were copied, or if you are moving packages from the test system to the production
system, copy the load modules from the test system to the production system libraries.

Table 9 on page 105 shows a procedure you can use to copy a changed load module from a test
system to a production system library, replacing the old version of the load module.

Table 9. Moving a changed program from the test environment to the production environment

Test system Production system Notes

USER.PROD.LOADLIB(PGM3) The original load module

USER.TEST.LOADLIB(PGM3) The test load module

USER.OLD.PROD.LOADLIB(PGM3) The old version of the program is
placed in other production library

Chapter 7. Preparing CICS Db2 programs for execution and production 105

Table 9. Moving a changed program from the test environment to the production environment (continued)

Test system Production system Notes

USER.PROD.LOADLIB(PGM3) The new version of the program is
placed in the production library

By selecting the production run library using the proper JCL, you can run either the old version or the
new version of the program. Then the correct version of the package is run, determined by the
consistency token embedded in the program load module.

Produce an application plan for the production system
If you have bound your programs into packages on the test system, you can copy the packages to the
production system, including them in a collection that is listed in the application plan. When you copy
a package to the production system, you do not need to bind the application plan on the production
system again, as long as the package is included in a collection that is already listed in the application
plan.

Table 10 on page 106 shows a procedure you can use to copy a changed package from a test system
to a production system library, replacing the old version of the package. This example uses the
VERSION keyword at precompile time to distinguish the different versions of the packages. For a full
explanation and use of the VERSION keyword, see Programming for Db2 for z/OS in Db2 for z/OS
product documentation.

Table 10. Moving a changed package from the test environment to the production environment

Test system Production system Notes

location_name.
PROD_COLL.PRG3.VER1

The old version of the
package

location_name. TEST_COLL.PRG3.VER2 A new version of the package
is bound on the test system
and then copied to the
production system

location_name.
PROD_COLL.PRG3.VER1

The old version is still in the
production collection

location_name.
PROD_COLL.PRG3.VER2

The new version is placed in
the production collection

If you want to bind your programs directly into application plans, or if you want to bind the programs
into packages on the production system, you must perform the bind process on the DBRMs that you
have placed on the production system. If you are binding your programs directly into application
plans, you must then bind all the application plans on the production system that involve those
programs. See The bind process for more information on the bind process. Note that due to various
factors, such as the sizes of tables and indexes, comparing the EXPLAIN output between test and
production systems can be useless. Nevertheless, it is recommended that you run EXPLAIN when you
first bind a plan on the production system, to check the Db2 optimizer decisions.

GRANT EXECUTE
You must grant users EXECUTE authority for the Db2 application plans on the production system.

Tests
Although no further tests should be necessary at this point, stress tests are useful and recommended
to minimize the occurrence of resource contention, deadlocks, and timeouts and to check that the
transaction response time is as expected.

CICS definitions
To have new application programs ready to run, update the following RDO definitions on the CICS
production system.

106 CICS TS for z/OS: Db2 Guide

https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/nav/src/tpc/db2z_applicationprogrammingfordb2.html
https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/nav/src/tpc/db2z_applicationprogrammingfordb2.html

• RDO transaction definitions for new transaction codes
• RDO program definitions for new application programs and maps
• SIT for specific Db2 requirements, if it is the first Db2-oriented application going into production
• RDO DB2ENTRY and DB2TRAN definitions for the applications. RDO DB2CONN definition if it is the
first Db2-oriented application going into production. When defining the new transactions and
application plans in the DB2ENTRY you can use unprotected threads to get detailed accounting and
performance information in the beginning. Later, you can use protected threads as needed.

In addition, if RACF is installed, you need to define new users and Db2 objects.

Tuning a CICS application that accesses Db2
CICS applications that access Db2 must be tuned before they move to production and periodically whist
they are in production.

About this task

When moving a CICS application that accesses Db2 to production, add these checks to those already
performed for CICS :

• Check that all the application programs that make Db2 requests are threadsafe. If they are, you will be
exploiting the open transaction environment (OTE), and improving the performance of the application.
See Enabling CICS Db2 applications to use OTE through threadsafe programming for an explanation of
how application programs work in the open transaction environment.

• Ensure that the number and type of SQL statements used meet the program specifications (use the Db2
accounting facility).

• Check if the number of get and updated pages in the buffer pool is higher than expected (use the Db2
accounting facility).

• Check that planned indexes are being used (use EXPLAIN), and that inefficient SQL statements are not
being used.

• Check if DDL is being used and, if so, the reasons for using it (use the Db2 accounting facility).
• Check if conversational transactions are being used.

Determine whether pseudoconversational transactions can be used instead. If conversational design is
needed, check the Db2 objects that are locked across conversations. Check also that the number of
new threads needed because of this conversational design is acceptable.

• Check the locks used and their duration.

Make sure that tablespace locks are not being used because of incorrect or suboptimal specification of,
for example:

– LOCK TABLE statement
– LOCKSIZE=TS specification
– ISOLATION LEVEL(RR) specification
– Lock escalation.

This information is available in the catalog tables, except for lock escalation, which is an installation
parameter (DSNZPARM).

• Check the plans used and their sizes. Even though the application plans are segmented, the more
DBRMs used in the plan, the longer the time needed to BIND and REBIND the plans in case of
modification. Try to use packages whenever possible. Packages were designed to solve the problems
of:

– Binding the whole plan again after modifying your SQL application. (This was addressed by dynamic
plan selection, at the cost of performance.)

– Binding each application plan if the modified SQL application is used by many applications.

Chapter 7. Preparing CICS Db2 programs for execution and production 107

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/database/dfhtk6i.html

When this tuning is complete, use the expected transaction load to decide on the DB2ENTRY definitions
required, and the number of threads required. Check also the impact of these transactions on the Db2
and CICS subsystems.

When tuning a CICS application that accesses Db2 in production:

• Check that the CICS applications use the planned indexes by monitoring the number of GET PAGES in
the buffer pool (use the Db2 accounting facility). The reasons for an index not being used may be that
the index has been dropped, or that the index was created after the plan was bound.

• Use the lock manager data from the accounting facility to check on suspensions, deadlocks, and
timeouts.

108 CICS TS for z/OS: Db2 Guide

Chapter 8. Monitoring Db2
Accounting and monitoring in a CICS Db2 environment.

CICS-supplied accounting and monitoring information
CICS includes several facilities that provide accounting and monitoring. You can use these facilities to
measure the use of different resources in a CICS system.

The most frequently used tools are as follows:

• Statistics data.

CICS statistics are the simplest tool for monitoring a CICS system. They contain information about the
CICS system as a whole, such as its performance and use of resources. CICS statistics are suitable for
performance tuning and capacity planning. CICS collects statistics during online processing, and
processes them offline later. The statistics domain collects this data and then writes records to the
System Management Facility (SMF) data set provided by MVS. The records are of SMF type 110. You can
process these records offline using the DFHSTUP program.

• Monitoring data.

CICS monitoring collects data about all user and CICS-supplied transactions during online processing
for later offline analysis. The records produced by CICS monitoring are also of SMF type 110 and are
written to the SMF data sets. Data provided by CICS monitoring is useful for performance tuning and for
charging your users for the resources they use. Monitoring provides the following classes of data:

– Performance class for detailed transaction level information
– Transaction resource data for additional transaction-level information about individual resources

accessed by a transaction
– Exception class for exception conditions

CICS is a multitasking address space, and CICS monitoring facilities are generally used to determine the
processor time and other resources that are consumed by the individual transactions, or functions
performed by CICS.

For a full description of the CICS monitoring facilities, and details on activating, collecting, and processing
this information, see CICS monitoring facility: Performance and tuning .

For both statistics data and monitoring data, you can use an offline processing facility. CICS Performance
Analyzer and IBM Z® Decision Support are two tools that collect and analyze data from CICS and other
IBM systems and products. They can build reports that help you with:

• Systems overview
• Service levels
• Availability
• Performance and tuning
• Capacity planning

For more information, see CICS Performance Analyzer for z/OS (CICS PA) and IBM Z Decision Support in
Improving performance.

Db2-supplied accounting and monitoring information
The instrumentation facility component of Db2 enables you to use six types of traces: statistics,
accounting, audit, performance, monitor, and global. For each trace type, you can activate a number of
trace classes.

You can use SMF as the trace output destination. Another alternative is to externalize the trace output
under control of GTF.

© Copyright IBM Corp. 1974, 2020 109

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/dfht35e.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/dfht3zf.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/dfht31n.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/dfht31n.html

Statistics
Describe the total work executed in Db2. This information is not related to any specific user. The main
purposes of the Db2 statistics trace are to:

• Supply data for Db2 capacity planning.
• Assist with monitoring and tuning at the Db2 subsystem level.
• Assist in accounting for Db2 activity.

The statistics records are written at user-defined intervals. You can reset the statistical collection
interval and the origination time without stopping and starting the trace by using the MODIFY TRACE
command. All Db2 activity for the statistical collection interval is reported in the record. This can
make it difficult to directly relate the activity to specific users.

The Db2 statistics trace can be activated for several classes. If the statistics records are written to
SMF, the SMF types are 100 and 102.

Accounting
Describes the work performed on behalf of a particular user (authorization ID from the DB2CONN or
DB2ENTRY). The main purposes of the accounting records are to charge the Db2 cost to the
authorization ID and perform monitoring and tuning at the program level. Db2 produces an accounting
record at thread termination or when a transaction is reusing a thread with a new authorization ID.
That means that if a thread is defined as protected (PROTECTNUM>0) and all transactions with the
same transaction code for this DB2ENTRY use the same authorization ID, only one accounting record
is produced, describing all activity done in the thread. Additionally, accounting records are written if
you set ACCOUNTREC in your DB2ENTRY or DB2CONN definitions to UOW, TASK, or TXID. Setting
ACCOUNTREC to these options is considered a signon, even if you use the same authorization ID.

You can activate the Db2 accounting trace for several classes. If the accounting records are written to
SMF, the SMF type is 101 and 102.

Audit
Collects information about Db2 security controls and is used to ensure that data access is allowed
only for authorized purposes. If the audit records are written to SMF, the SMF type is 102.

Performance
Records information for a number of different event classes. The information is intended for:

• Program-related monitoring and tuning
• Resource-related monitoring and tuning
• User-related monitoring and tuning
• System-related monitoring and tuning
• Accounting-related profile creation

You can activate the Db2 performance trace for several classes. If the performance records are
written to SMF, the SMF type is 102.

Monitor
Records data for online monitoring with user written programs

Global
Aids serviceability. If the global trace records are written to SMF, the SMF type is 102.

Monitoring a CICS Db2 environment: Overview
The objective of monitoring the CICS Db2 attachment facility is to provide a basis for accounting and
tuning.

About this task

You can use monitoring to obtain the following data:

• The number of transactions accessing Db2 resources.

110 CICS TS for z/OS: Db2 Guide

• The average number of SQL statements issued by a transaction.
• The average processor usage for a transaction.
• The average response time for a transaction.
• The cost associated with particular transactions.
• Buffer pool activity associated with a transaction.
• Locking activity associated with a transaction. This includes whether table space locks are used instead

of page locks, and whether lock escalation occurs, for example due to repeatable read.
• The level of thread usage for DB2ENTRYs and the pool.
• The level of thread reuse for protected threads in DB2ENTRYs.

It is recommended that you monitor your test environment for the following reasons:

• To check that new programs function correctly (that is, use the correct call sequence) against test
databases.

• To detect any performance problems due to excessive I/O operations or inefficient SQL statements.
• To detect bad design practices, such as holding Db2 resources across screen conversations.
• To set up optimum locking protocols to balance the application isolation requirements with the

requirements of existing applications.

Include monitoring in the acceptance procedures for new applications so that any problems not detected
during the test period can be quickly identified and corrected.

You can use some, or all, of the following tools to monitor the CICS Db2 attachment facility and CICS
transactions that access Db2 resources.

• Monitor the CICS Db2 attachment facility using:

– CICS Db2 attachment facility commands
– Db2 commands
– CICS Db2 statistics

See “Monitoring the CICS Db2 attachment facility” on page 111.
• Monitor CICS transactions using:

– CICS monitoring facility (CMF)
– CICS auxiliary trace

See “Monitoring CICS transactions that access Db2 resources” on page 115.
• Monitor Db2 using:

– Db2 statistics records
– Db2 accounting records
– Db2 performance records

See “Monitoring Db2 when used with CICS” on page 116.
• Monitor the CICS system (for example, the dispatcher) with CICS statistics. See “Monitoring the CICS

system in a CICS Db2 environment” on page 118.

Monitoring the CICS Db2 attachment facility
Monitor the CICS Db2 attachment facility by using commands addressed to both Db2 and the CICS Db2
attachment facility itself.

About this task

Chapter 8. Monitoring Db2 111

Monitoring the CICS Db2 attachment facility using CICS Db2 attachment facility
commands

You can monitor the status of CICS-Db2 threads, and the corresponding CICS transactions using them,
with the DSNC DISPLAY PLAN or TRAN command provided by the CICS Db2 attachment facility.

You can also use commands provided by CICS, such as the CEMT or EXEC CICS INQUIRE command, on
the DB2CONN or on individual DB2ENTRYs. Used on the DB2CONN, the commands enable you to monitor
the status of the overall connection between CICS and Db2, as well as the use of the pool. Used on an
individual DB2ENTRY, the commands enable you to monitor the use of the DB2ENTRY.

For more information, see CICS-supplied transactions for CICS Db2.

Monitoring the CICS Db2 attachment facility using Db2 commands
Once a connection between CICS and Db2 is established, terminal users authorized by CICS security can
use the DSNC transaction to route commands to the Db2 system.

About this task

The commands take the following form:

 DSNC-DB2command

For example, the DSNC -DIS THREAD command can show CICS Db2 threads.

The command is routed to Db2 for processing. Db2 checks that the authorization ID passed from CICS is
authorized to issue the command entered.

Responses are routed back to the originating CICS user. The command recognition character (CRC) of a
hyphen, (-), must be used to distinguish Db2 commands from CICS Db2 attachment facility commands.
For Db2 commands issued from CICS, the CRC is always -, regardless of the subsystem recognition
character.

Both CICS and Db2 authorization are required to issue Db2 commands from a CICS terminal:

• CICS authorization is required to use the DSNC transaction, and
• Db2 authorization is required to issue Db2 commands.

For more information see CICS-supplied transactions for CICS Db2.

Monitoring the CICS Db2 attachment facility using CICS Db2 statistics
In addition to the limited statistics output by the DSNC DISP STAT command and those output to the
STATSQUEUE destination of the DB2CONN during attachment facility shutdown, a more comprehensive
set of CICS Db2 statistics can be collected using standard CICS statistics interfaces.

About this task

The CICS Db2 global and resource statistics are described in detail in CICS Db2 statistics in Reference.

CICS Db2 statistics are supported for all types of CICS statistics, namely:

• Requested statistics - CICS Db2 statistics are written as a result of an EXEC CICS PERFORM
STATISTICS RECORD command with the Db2 keyword.

• Requested reset statistics - a special case of requested statistics in which the statistics counters are
reset after collection.

• Interval statistics - statistics written when a requested interval expires.
• End of day statistics - a special case of interval statistics.
• Unsolicited statistics - CICS writes Db2 global and resource statistics to SMF when the attachment

facility is shut down. Also, Db2 resource statistics are written to SMF when a DB2ENTRY is discarded.

112 CICS TS for z/OS: Db2 Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfhtk0r.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfhtk0r.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/statistics/dfht3_stats_db2.html

Procedure

1. Use one of the following methods to collect Db2 statistics.

• Use the EXEC CICS COLLECT statistics command with the DB2CONN keyword to allow CICS Db2
global statistics to be collected. CICS Db2 global statistics are mapped by the DFHD2GDS DSECT.

• Use the EXEC CICS COLLECT statistics command with the DB2ENTRY() keyword to allow CICS
Db2 resource statistics to be collected for a particular DB2ENTRY. CICS Db2 resource statistics are
mapped by the DFHD2RDS DSECT.

• Use the EXEC CICS PERFORM STATISTICS command with the Db2 keyword to allow the user to
request that CICS Db2 global and resource statistics to be written out to SMF.

Alternatively you can use the CICS sample statistics program DFH0STAT to collect Db2 statistics. It
uses EXEC CICS COLLECT STATISTICS commands with the DB2CONN and DB2ENTRY keywords
to collect statistics. It also uses EXEC CICS INQUIRE commands for the DB2CONN and DB2ENTRYs
to collect data. An example of the output from DFH0STAT is shown in Figure 30 on page 114.

2. When you have collected the statistics, the important fields to look at as regards performance and
tuning are:
a) The number of calls made using a thread from a DB2ENTRY or the pool, and the number of thread

reuses (that is, the number of times an existing thread was reused). Thread reuse is reported for
each DB2ENTRY, and (in the Db2 Connection statistics) for the pool. Thread reuse is good for
performance, because it avoids the overhead of creating a thread for each CICS transaction or each
unit of work. The use of protected threads can increase thread reuse.

b) If THREADWAIT(YES) is specified, the peak number of tasks on the readyq waiting for a thread. It is
better to limit transactions using a transaction class rather than allow them to queue for threads.

c) In the Db2 Connection statistics, check the field “Peak number of tasks on Pool Readyq”, and also
the field “Peak number of Tasks on TCB Readyq”. If the latter is nonzero, tasks were queued
waiting for a Db2 connection to use with their open TCBs, rather than waiting for a thread. The
tasks were queued because the TCBLIMIT, the maximum number of TCBs that can be used to
control threads into Db2, had been reached. This shows that the number of threads available (the
sum of the THREADLIMIT values for the pool, for command threads and for all DB2ENTRYs)
exceeds the number of TCBs allowed. TCBLIMIT or the THREADLIMIT values should be adjusted in
this case.

Chapter 8. Monitoring Db2 113

Example

Applid IYK2Z2G1 Sysid JOHN Jobname CI13JTD5 Date 09/09/2001 Time 10:38:50 CICS
6.2.0 PAGE 2

DB2 Connection

 DB2 Connection Name. : RCTJT
 DB2 Group ID : Resync Group Member. : N/A
 DB2 Sysid. : DE2D
 DB2 Release. : 6.2.0

 DB2 Connection Status. : CONNECTED DB2 Connect Date and Time . . . : 09/09/2001
10:37:19.21354
 DB2 Connection Error : SQLCODE
 DB2 Standby Mode : RECONNECT

 DB2 Pool Thread Plan Name. :
 DB2 Pool Thread Dynamic Plan Exit Name . : DSNCUEXT

 Pool Thread Authtype : USERID Command Thread Authtype. : N/A
 Pool Thread Authid : Command Thread Authid. : JTILLI1

 Signid for Pool/Entry/Command Threads. . : SSSSSSSS

 Create Thread Error. : ABEND Message TD Queue 1. : CDB2
 Protected Thread Purge Cycle : 00.30 Message TD Queue 2. :
 Deadlock Resolution. : ROLLBACK Message TD Queue 3. :
 Non-Terminal Intermediate Syncpoint. . . : NORELEASE
 Pool Thread Wait Setting : WAIT Statistics TD Queue : CDB2

 Pool Thread Priority : HIGH DB2 Accounting records by : NONE

 Current TCB Limit. : 100
 Current number of TCBs : 10
 Peak number of TCBs. : 10

 Current number of free TCBs. : 5

 Current number of tasks on TCB Readyq. . : 0
 Peak number of tasks on TCB Readyq . . . : 0

 Pool Thread Limit. : 3 Number of Calls using Pool
Threads. : 0
 Current number of Pool Threads : 0 Number of Pool Thread
Signons : 0
 Peak number of Pool Threads. : 2 Number of Pool Thread Partial
Signons . . . : 0
 Number of Pool Thread Waits. : 0 Number of Pool Thread
Commits : 0
 Number of Pool Thread
Aborts. : 0
 Current number of Pool Tasks : 0 Number of Pool Thread Single
Phase. : 0
 Peak number of Pool Tasks. : 0 Number of Pool Thread
Reuses. : 0
 Current Total number of Pool Tasks . . . : 0 Number of Pool Thread
Terminates. : 0

 Current number of Tasks on Pool Readyq . : 0
 Peak number of Tasks on Pool Readyq. . . : 0

 Current number of DSNC Command threads . : 0 Number of DSNC Command
Calls. : 0
 Peak number of DSNC Command threads. . . : 0 Number of DSNC Command
Signons. : 0
 DSNC Command Thread Limit. : 2 Number of DSNC Command Thread
Terminates. . : 0
 Number of DSNC Command Thread
Overflows . . : 0

Figure 30. Example output from DFH0STAT: the Db2 Connection report

114 CICS TS for z/OS: Db2 Guide

Applid IYK2Z2G1 Sysid JOHN Jobname CI13JTD5 Date 09/09/2001 Time 10:38:50 CICS
6.2.0 PAGE 3

DB2 Entries

 DB2Entry Name. : XP05 DB2Entry Status : ENABLED
 DB2Entry Static Plan Name. : TESTP05 DB2Entry Disabled Action. : POOL
 DB2Entry Dynamic Plan Exit Name. : DB2Entry Deadlock Resolution. : ROLLBACK

 DB2Entry Authtype. : N/A DB2Entry Accounting records by. : NONE
 DB2Entry Authid. : JTILLI1
 Number of Calls using DB2Entry. :
16,500
 DB2Entry Thread Wait Setting : WAIT Number of DB2Entry
Signons. : 10
 Number of DB2Entry Partial
Signons. : 0
 DB2Entry Thread Priority : HIGH Number of DB2Entry
Commits. : 0
 DB2Entry Thread Limit. : 10 Number of DB2Entry
Aborts : 0
 Current number of DB2Entry Threads . . . : 0 Number of DB2Entry Single Phase :
5,500
 Peak number of DB2Entry Threads. : 10 Number of DB2Entry Thread Reuses. :
5,031
 Number of DB2Entry Thread
Terminates. . . . : 464
 DB2Entry Protected Thread Limit. : 5 Number of DB2Entry Thread Waits/
Overflows . : 306
 Current number of DB2Entry Protected Threads . . : 5
 Peak number of DB2Entry Protected Threads. . . . : 5

 Current number of DB2Entry Tasks : 0
 Peak number of DB2Entry Tasks. : 28
 Current Total number of DB2Entry Tasks : 5,500

 Current number of Tasks on DB2Entry Readyq . . . : 0
 Peak number of Tasks on DB2Entry Readyq. : 18

Figure 31. Example output from DFH0STAT: the Db2 Entries report

Monitoring CICS transactions that access Db2 resources
CICS provides accounting and monitoring facilities for the resources required by CICS transactions in the
CICS address space.

About this task

These CICS accounting and monitoring facilities can produce three types of records:

• Performance records that record the resources used by each transaction in the CICS address space.
• Transaction resource data to record additional information about individual resources accessed by a

transaction
• Exception records that record shortages of resources.

The CICS performance class monitoring records include the following Db2-related data fields, in the
group DFHDATA:
DB2REQCT (180)

The total number of Db2 EXEC SQL and instrumentation facility interface (IFI) requests issued by a
transaction.

DB2RDYQW (187)
The elapsed time the transaction waited for a Db2 thread to become available.

DB2CONWT (188)
The elapsed time the transaction waited for a Db2 connection to become available to use with its
open TCB.

CICS monitoring is used in the CICS Db2 environment with the Db2 accounting facility, to monitor
performance and to collect accounting information.

For more information about matching up CICS performance class records and Db2 accounting records,
see “Relating Db2 accounting records to CICS performance class records” on page 122. For more
information about calculating processor consumption, see “Accounting for processor usage in a CICS Db2
environment” on page 127.

Chapter 8. Monitoring Db2 115

You can use the CICS auxiliary trace facility to trace SQL calls issued by a CICS application program.

For more information about trace output by the CICS Db2 attachment facility, see Troubleshooting Db2.

Monitoring Db2 when used with CICS
Use the SMF or GTF records produced by Db2 to monitor Db2 usage with CICS .

About this task

The Db2 performance monitor (DB2PM) program product is useful to provide reports based on:

• Statistics records
• Accounting records
• Performance records

The reports in this topic are shown as examples. Refer to the documentation of the DB2PM release you
are using for the format and meaning of the fields involved in the reports.

Monitoring Db2 using the Db2 statistics facility
Db2 produces statistical data on a subsystem basis at the end of each time interval, as specified at
installation time. This data is collected and written to the SMF and GTF data set only if the facility is
active.

About this task

For more information about activating these facilities and directing the output to SMF and GTF, see
Issuing commands to Db2 using the DSNC transaction, and Starting GTF for Db2 accounting, statistics
and tuning.

Data related to the system services address space is written as SMF instrumentation facility component
identifier (IFCID) 0001 records. Data related to the database services address space is written as SMF
IFCID 0002 records. Refer to Managing Db2 performance in Db2 for z/OS product documentation for a
description of these records.

These statistics are useful for tuning the Db2 subsystem, since they reflect the activity for all subsystems
connected to Db2.

It is difficult to interpret this data when more than one subsystem is connected to Db2 (that is, both CICS
and TSO). However, the counts obtained while running the CICS Db2 attachment facility in a controlled
environment (that is, with CICS as the only subsystem connected, or with limited TSO activity) can be very
useful.

Managing Db2 performance in Db2 for z/OS product documentation shows and analyzes, from a Db2
viewpoint, the statistical data reported for the database and system services address spaces. Included
here is a reduced version of the statistics report. You can use this report to monitor the average CICS
transaction. Figure 32 on page 117 shows a small part of the report provided by DB2PM. Refer to
Managing Db2 performance in Db2 for z/OS product documentation for additional information on these
reports.

116 CICS TS for z/OS: Db2 Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/dfhtk2n.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfhtk0v.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfhtk0o.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfhtk0o.html
https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/perf/src/tpc/db2z_managingdb2perf.html
https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/perf/src/tpc/db2z_managingdb2perf.html
https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/perf/src/tpc/db2z_managingdb2perf.html

 LOCATION: DSN710P2 DB2 PERFORMANCE MONITOR (V7)
 GROUP: DSN710P2 STATISTICS REPORT - LONG
 MEMBER: DF2D
 SUBSYSTEM: DF2D
DB2 VERSION: V7 SCOPE: MEMBER

SQL DML QUANTITY /SECOND /THREAD /COMMIT
--------------------------- -------- ------- ------- -------
SELECT 1.00 0.00 0.05 0.02
INSERT 9.00 0.00 0.41 0.21
UPDATE 0.00 0.00 0.00 0.00
DELETE 0.00 0.00 0.00 0.00

PREPARE 17.00 0.00 0.77 0.40
DESCRIBE 34.00 0.00 1.55 0.79
DESCRIBE TABLE 0.00 0.00 0.00 0.00
OPEN 31.00 0.00 1.41 0.72
CLOSE 26.00 0.00 1.18 0.60
FETCH 827.00 0.00 37.59 19.23

TOTAL 945.00 0.00 42.95 21.98

SQL DCL QUANTITY /SECOND /THREAD /COMMIT
--------------------------- -------- ------- ------- -------
LOCK TABLE 0.00 0.00 0.00 0.00
GRANT 0.00 0.00 0.00 0.00
REVOKE 0.00 0.00 0.00 0.00
SET HOST VARIABLE 0.00 0.00 0.00 0.00
SET CURRENT SQLID 0.00 0.00 0.00 0.00
SET CURRENT DEGREE 0.00 0.00 0.00 0.00
SET CURRENT RULES 0.00 0.00 0.00 0.00
SET CURRENT PATH 0.00 0.00 0.00 0.00
SET CURRENT PRECISION 0.00 0.00 0.00 0.00

CONNECT TYPE 1 0.00 0.00 0.00 0.00
CONNECT TYPE 2 29.00 0.00 1.32 0.67
RELEASE 0.00 0.00 0.00 0.00
SET CONNECTION 0.00 0.00 0.00 0.00

ASSOCIATE LOCATORS 0.00 0.00 0.00 0.00
ALLOCATE CURSOR 0.00 0.00 0.00 0.00

HOLD LOCATOR 0.00 0.00 0.00 0.00
FREE LOCATOR 0.00 0.00 0.00 0.00

TOTAL 29.00 0.00 1.32 0.67

SUBSYSTEM SERVICES QUANTITY /SECOND /THREAD /COMMIT
--------------------------- -------- ------- ------- -------
IDENTIFY 23.00 0.00 1.05 0.53
CREATE THREAD 22.00 0.00 1.00 0.51
SIGNON 39.00 0.00 1.77 0.91
TERMINATE 57.00 0.00 2.59 1.33
ROLLBACK 8.00 0.00 0.36 0.19

COMMIT PHASE 1 0.00 0.00 0.00 0.00
COMMIT PHASE 2 0.00 0.00 0.00 0.00
READ ONLY COMMIT 0.00 0.00 0.00 0.00

UNITS OF RECOVERY INDOUBT 0.00 0.00 0.00 0.00
UNITS OF REC.INDBT RESOLVED 0.00 0.00 0.00 0.00

SYNCHS(SINGLE PHASE COMMIT) 35.00 0.00 1.59 0.81
QUEUED AT CREATE THREAD 0.00 0.00 0.00 0.00
SUBSYSTEM ALLIED MEMORY EOT 0.00 0.00 0.00 0.00
SUBSYSTEM ALLIED MEMORY EOM 0.00 0.00 0.00 0.00
SYSTEM EVENT CHECKPOINT 3.00 0.00 0.14 0.07

CPU TIMES TCB TIME SRB TIME TOTAL TIME /THREAD /COMMIT
------------------------------- --------------- --------------- --------------- --------------- ---------------
SYSTEM SERVICES ADDRESS SPACE 17:40.602755 1:09.182200 18:49.784954 51.353862 26.274069
DATABASE SERVICES ADDRESS SPACE 6.100449 11.626277 17.726726 0.805760 0.412249
IRLM 0.051894 2:43.867972 2:43.919867 7.450903 3.812090
DDF ADDRESS SPACE 1.195607 0.212343 1.407950 0.063998 0.032743

TOTAL 17:47.950705 4:04.888792 21:52.839497 59.674523 30.531151

Figure 32. Sample statistics report from DB2PM

Figure 32 on page 117 includes information about:

• SQL DML. This information can be used to monitor the SQL requests issued.
• SQL DCL. This information can be used to check whether the application is using LOCK statements.

Chapter 8. Monitoring Db2 117

• Subsystem Services. This section provides information on thread usage and signon activity. For
performance reasons, thread reuse is recommended in CICS environments, to avoid the overhead of
creating a thread for each CICS transaction.

Further useful information in the statistics reports, not shown in Figure 32 on page 117, is:

• Locking can be used to monitor the number of timeouts and deadlocks. For more information about
deadlocks, see Handling deadlocks in the CICS Db2 environment.

• Buffer Pool provides information on:

– The number of data sets opened (Data sets Opened)
– The number of pages retrieved (GETPAGE Requests)
– Number of I/Os (Read Operations and Write I/O Operations)

This statistical data is not checkpointed and is not retained by Db2 across restarts.

Monitoring Db2 using the Db2 accounting facility
The Db2 accounting facility output for a single transaction can be used for monitoring and tuning
purposes.

About this task

For information on using the Db2 accounting facility, see “Db2 accounting reports” on page 121.

Monitoring Db2 using the Db2 performance facility
The Db2 performance facility trace provides detailed information on the flow of control inside Db2.

About this task

While the main purpose of this trace is to supply debugging information, it can also be used as a
monitoring tool because of the timing data provided with each entry.

Due to high resource consumption, the Db2 performance trace should be used only in specific cases,
where it becomes difficult to use any other tool to monitor Db2-oriented transactions.

Even in this case, only the needed classes of performance trace should be started, for only a limited time
and for only the transactions that need to be carefully monitored.

Monitoring the CICS system in a CICS Db2 environment
You can monitor the activity of the CICS Db2 TCBs using the CICS dispatcher statistics.

About this task

For more information about using the statistics provided by the CICS dispatcher, see CICS dispatcher:
performance and tuning.

For example, data in the dispatcher statistics section provides the accumulated time for each of the CICS
TCBs. The field Accum/TCB is the total processor time used by the corresponding TCB. For more
information about the CICS Dispatcher statistics, see Dispatcher domain statistics.

You can obtain the total processor time used by the CICS address space from RMF Monitor II reports.
This time is usually greater than the sum of all CICS task TCBs.

The difference between the processor time reported by RMF and the sum of CICS TCBs in the CICS
dispatcher statistics report is the processor time consumed by all the other subtask TCBs. The subtasks
are used for:

• Processor time consumed in the DBCTL threads
• Processor time consumed by the IBM MQ threads

118 CICS TS for z/OS: Db2 Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/dfhtk38.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/dfht3yq.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/dfht3yq.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/statistics/dfht3_stats_disp.html

These are global performance reports and can help you determine how much of your processor time is
being used by CICS.

Accounting in a CICS Db2 environment: Overview
Accounting in a CICS Db2 environment can be used to analyze the transactions being executed in the
system, and to charge back the total amount of resources consumed for a given set of transactions to a
well-defined set of users. The user can be a real user, groups of users, transactions, or any other
expression for the unit to which the resources must be appointed.

Typically the units of consumption include the processor, I/O, and main storage in some weighted
proportion. A typical CICS transaction that accesses Db2, consumes resources in the operating system,
the CICS system, the application code, and the Db2 address spaces. Each of these components can
produce data, which can be used as input to the accounting process. You can combine the output from
the different sources to create a complete picture of resource usage for a transaction.

A typical requirement of an accounting procedure is that the results calculated are repeatable, which
means that the cost of a transaction accessing a set of data is be the same whenever the transaction is
executed. In most cases, this means that the input data to the accounting process must also be
repeatable.

When planning the accounting strategy for your CICS Db2 environment, you must:

• Decide the types of Db2 accounting data to use in your accounting process (processor usage, I/O, calls,
and so on). “Accounting information provided by the Db2 accounting facility” on page 119 tells you
about the accounting data that you can obtain from the Db2 accounting facility.

• Decide how you are going to relate the data from the Db2 accounting record for each transaction to the
CICS performance class data for that transaction, to create a complete picture of resource usage for the
transaction. “Relating Db2 accounting records to CICS performance class records” on page 122 tells
you how you can match up the two types of data.

• Decide whether you are going to relate the CICS performance records and the Db2 accounting records
for each transaction back to the specific user, or whether you are going to define and calibrate a number
of model transactions, measure these transactions in a controlled environment, and count only the
number of model transactions executed by each user. “Strategies to match Db2 accounting records and
CICS performance class records and charge resources back to the user” on page 125 gives suggestions
for when each method is most appropriate.

If you have decided to use processor usage as the basis for your accounting, “Accounting for processor
usage in a CICS Db2 environment” on page 127 has more information on the different classes of
processor time that are reported in the Db2 accounting records, and on how to calculate the total
processor time used by a transaction.

Accounting information provided by the Db2 accounting facility
The Db2 accounting facility provides detailed statistics on the use of Db2 resources by CICS transactions.
You can use Db2 accounting records as the basis for the accounting and tuning of Db2 resources used by
CICS transactions.

Db2 gathers accounting data on an authorization ID within thread basis. When requested, the accounting
facility collects this data and directs it to SMF, GTF, or both when the thread is terminated or when the
authorization ID is changed. For information about activating the Db2 accounting facility and directing the
output to SMF and GTF, see Starting SMF for Db2 accounting, statistics, and tuning, and Starting GTF for
Db2 accounting, statistics and tuning. See Managing Db2 performance in Db2 for z/OS product
documentation for information on the general structure of Db2 SMF and GTF records.

The identification section of each Db2 accounting record written to SMF and GTF provides a number of
keys on which the data can be sorted and summarized. These include the authorization ID, the
transaction ID, the plan name, and the package name.

The Db2 Performance Monitor (DB2PM) program product provides accounting reports taken from the Db2
accounting records.

Chapter 8. Monitoring Db2 119

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfhtk0n.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfhtk0o.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfhtk0o.html
https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/perf/src/tpc/db2z_managingdb2perf.html
https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/perf/src/tpc/db2z_managingdb2perf.html

Data types in Db2 accounting records
This section provides an overview of the different types of data in Db2 accounting records.

You have several possibilities for defining a cost formula based on the Db2 accounting records.

• Where repeatability combined with a reasonable expression for the complexity of the transactions has
high priority, then the processor usage, the GETPAGE count, and the set write intents count are good
candidates.

• If the purpose of the accounting process is to analyze the behavior of the CICS transactions, then any
information in the Db2 accounting records can be used.

Managing Db2 performance in Db2 for z/OS product documentation has details on the individual fields in
the Db2 accounting record.

Processor usage
The processor usage information given in the Db2 accounting record typically shows the majority of the
total processor time used for the SQL calls.

The Db2 statistics records report processor time used in the Db2 address spaces that could not be
related directly to the individual threads.

Consider distributing the processor time reported in the Db2 statistics records proportionally between all
users of the Db2 subsystem (transactions, batch programs, TSO users).

The amount of processor time reported in the Db2 accounting records is (for the same work) relatively
repeatable over time.

See “Accounting for processor usage in a CICS Db2 environment” on page 127 for more information on
reporting processor usage in a CICS Db2 environment.

I/O
In a Db2 system, the I/O can be categorized into five types.

• Synchronous read I/O
• Sequential prefetch (asynchronous reads)
• Asynchronous writes
• EDM pool reads (DBDs and plan segments)
• Log I/O (mainly writes).

Of these five I/O types, only the synchronous read I/O is recorded in the Db2 accounting record.

The number of sequential prefetch read requests is also reported, but the number of read requests is not
equal to the number of I/O.

None of the I/O types should be considered as repeatable over time. They all depend on the buffer sizes
and the workload activity.

Db2 is not aware of any caches being used. That means that Db2 reports an I/O occurrence, even if the
cache buffer satisfies the request.

GETPAGE
GETPAGE shows the number of times that Db2 requested a page from the buffer manager.

GETPAGE represents a number in the Db2 accounting record that is fairly constant over time for the same
transaction. It shows the number of times Db2 requested a page from the buffer manager. Each time Db2
has to read or write data in a page, the page must be available, and at least one GETPAGE is counted for
the page. This is true for both index and data pages. How often the GETPAGE counter is incremented for a
given page used several times depends on the access path selected. However, for the same transaction
accessing the same data, the number of GETPAGEs remains fairly constant over time, but the GETPAGE
algorithm can change between different releases of Db2.

If the buffer pool contains the page requested, no I/O occurs. If the page is not present in the buffer, the
buffer manager requests the page from the media manager, and I/O occurs.

120 CICS TS for z/OS: Db2 Guide

https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/perf/src/tpc/db2z_managingdb2perf.html

The GETPAGE number is thus an indicator of the activity in Db2 necessary for executing the SQL requests.

Write intents
The number of set write intents is held in the QBACSWS field of the Db2 accounting record.

The number of set write intents is not related to the actual number of write I/Os from the buffer pools,
instead it represents the number of times a page has been marked for update. Even in a read-only
transaction this number can be present, because the intended writes to the temporary work files used in a
Db2 sort are also counted.

The typical case is that the number of set write intents is much higher than the number of write I/Os. The
ratio between these two numbers depends on the size of the buffer pool and the workload. It is not a
good measurement for write I/O activity, but does indicate the complexity of the transactions.

SQL call activity
The number and type of SQL calls executed in a transaction are reported in the Db2 accounting record.

The values of SQL call activity are repeatable unless there are many different paths possible through a
complex program, or the access path changes. The access path chosen can change over time, for
example by adding an index.

A given SQL call can be simple or complex, depending on factors such as the access path chosen and the
number of tables and rows involved in the requests.

The number of GETPAGEs is in most cases a more precise indicator of Db2 activity than the number of
different SQL calls.

Transaction occurrence
A straightforward way of accounting is to track the number and type of transactions executed.

Storage
The Db2 accounting record does not contain any information about real or virtual storage related to the
execution of the transactions. One of the purposes of the Db2 subsystem is to optimize the storage use.
This optimization is done at the Db2 level, not at the transaction level.

A transaction uses storage from several places when requesting Db2 services. The most important places
are the thread, the EDM pool, and the buffer pools.

Because no information is given in the Db2 accounting record about the storage consumption and
because the storage use is optimized at the subsystem level, it is difficult to account for storage in a Db2
environment.

Db2 accounting reports
The Db2 Performance Monitor (DB2PM) program product provides accounting reports taken from the Db2
accounting records.

Figure 33 on page 122 and Figure 34 on page 122 show examples of long and short accounting reports
for a CICS transaction accessing DB2Db2 resources.

Chapter 8. Monitoring Db2 121

 LOCATION: DSN710P2 DB2 PERFORMANCE MONITOR (V7) PAGE: 1-1
 GROUP: DSN710P2 ACCOUNTING REPORT - LONG REQUESTED FROM: NOT SPECIFIED
 MEMBER: DF2D TO: NOT SPECIFIED
 SUBSYSTEM: DF2D ORDER: PRIMAUTH-PLANNAME INTERVAL FROM: 11/05/01 10:42:31.25
DB2 VERSION: V7 SCOPE: MEMBER TO: 11/05/01 10:51:03.70

PRIMAUTH: JTILLI1 PLANNAME: DSNJDBC

ELAPSED TIME DISTRIBUTION CLASS 2 TIME DISTRIBUTION
-- --
APPL |===> 98% CPU |=> 3%
DB2 | NOTACC |=> 2%
SUSP |=> 2% SUSP |===> 95%

AVERAGE APPL(CL.1) DB2 (CL.2) IFI (CL.5) CLASS 3 SUSPENSIONS AVERAGE TIME AV.EVENT HIGHLIGHTS
------------ ---------- ---------- ---------- -------------------- ------------ -------- --------------------------
ELAPSED TIME 25.435644 0.504442 N/P LOCK/LATCH(DB2+IRLM) 0.000000 0.00 #OCCURRENCES : 2
 NONNESTED 25.435644 0.504442 N/A SYNCHRON. I/O 0.085908 6.50 #ALLIEDS : 2
 STORED PROC 0.000000 0.000000 N/A DATABASE I/O 0.085908 6.50 #ALLIEDS DISTRIB: 0
 UDF 0.000000 0.000000 N/A LOG WRITE I/O 0.000000 0.00 #DBATS : 0
 TRIGGER 0.000000 0.000000 N/A OTHER READ I/O 0.042337 1.00 #DBATS DISTRIB. : 0
 OTHER WRTE I/O 0.000000 0.00 #NO PROGRAM DATA: 2
CPU TIME 0.016663 0.015404 N/P SER.TASK SWTCH 0.352902 4.00 #NORMAL TERMINAT: 2
 AGENT 0.016663 0.015404 N/A UPDATE COMMIT 0.000000 0.00 #ABNORMAL TERMIN: 0
 NONNESTED 0.016663 0.015404 N/P OPEN/CLOSE 0.206822 1.50 #CP/X PARALLEL. : 0
 STORED PRC 0.000000 0.000000 N/A SYSLGRNG REC 0.024259 1.00 #IO PARALLELISM : 0
 UDF 0.000000 0.000000 N/A EXT/DEL/DEF 0.121821 1.50 #INCREMENT. BIND: 0
 TRIGGER 0.000000 0.000000 N/A OTHER SERVICE 0.000000 0.00 #COMMITS : 3
 PAR.TASKS 0.000000 0.000000 N/A ARC.LOG(QUIES) 0.000000 0.00 #ROLLBACKS : 0
 ARC.LOG READ 0.000000 0.00 #SVPT REQUESTS : 0
SUSPEND TIME N/A 0.481147 N/A STOR.PRC SCHED 0.000000 0.00 #SVPT RELEASE : 0
 AGENT N/A 0.481147 N/A UDF SCHEDULE 0.000000 0.00 #SVPT ROLLBACK : 0
 PAR.TASKS N/A 0.000000 N/A DRAIN LOCK 0.000000 0.00 MAX SQL CASC LVL: 0
 CLAIM RELEASE 0.000000 0.00 UPDATE/COMMIT : 0.00
NOT ACCOUNT. N/A 0.007891 N/A PAGE LATCH 0.000000 0.00 SYNCH I/O AVG. : 0.013217
DB2 ENT/EXIT N/A 35.00 N/A NOTIFY MSGS 0.000000 0.00
EN/EX-STPROC N/A 0.00 N/A GLOBAL CONT. 0.000000 0.00
EN/EX-UDF N/A 0.00 N/A FORCE-AT-COMMIT 0.000000 0.00
DCAPT.DESCR. N/A N/A N/P ASYNCH IXL REQUESTS 0.000000 0.00
LOG EXTRACT. N/A N/A N/P TOTAL CLASS 3 0.481147 11.50

Figure 33. Accounting long report for a CICS transaction accessing Db2 resources

 LOCATION: DSN710P2 DB2 PERFORMANCE MONITOR (V7) PAGE: 1-1
 GROUP: DSN710P2 ACCOUNTING REPORT - SHORT REQUESTED FROM: NOT SPECIFIED
 MEMBER: DF2D TO: NOT SPECIFIED
 SUBSYSTEM: DF2D ORDER: PLANNAME INTERVAL FROM: 11/05/01 10:42:31.25
DB2 VERSION: V7 SCOPE: MEMBER TO: 11/05/01 10:50:14.53

 #OCCURS #ROLLBK SELECTS INSERTS UPDATES DELETES CLASS1 EL.TIME CLASS2 EL.TIME GETPAGES SYN.READ LOCK SUS
PLANNAME #DISTRS #COMMIT FETCHES OPENS CLOSES PREPARE CLASS1 CPUTIME CLASS2 CPUTIME BUF.UPDT TOT.PREF #LOCKOUT
--------------------------- ------- ------- ------- ------- ------- ------- -------------- -------------- -------- -------- --------

DSNJDBC 1 0 0.00 0.00 0.00 0.00 1.706541 1.003194 249.00 13.00 0.00
 0 2 4.00 2.00 2.00 2.00 0.027471 0.025984 0.00 5.00 0

TESTP05 2 0 0.00 0.50 0.00 0.00 33.283119 0.215656 7.00 0.00 0.00
 0 2 1.50 0.50 0.00 0.00 0.001908 0.001389 1.00 0.00 0

*** GRAND TOTAL ***
 3 0 0.00 0.33 0.00 0.00 22.757593 0.478169 87.67 4.33 0.00
 0 4 2.33 1.00 0.67 0.67 0.010429 0.009587 0.67 1.67 0

Figure 34. Accounting short report for a CICS transaction accessing Db2 resources

Relating Db2 accounting records to CICS performance class records
To see a complete picture of the usage of resources by each CICS transaction in both the CICS and Db2
address spaces, you must match up the data in the Db2 accounting records with the data in the CICS
performance class records.

About this task

When you have a complete picture of resource usage, you can analyze the resources used by individual
transactions, and also charge back to the user the total amount of resources consumed for a given set of
transactions, using whatever data types you have decided to include in your cost formula.

If you are examining resource usage because you are carrying out performance analysis, rather than
accounting, then you always need to match up the Db2 accounting records and the CICS performance
class records. However, if you are examining resource usage for accounting purposes, you might not need
to match up the Db2 accounting records and the CICS performance class records.

You do not need to match up the records if you have chosen to use processor time consumption as the
basis for your accounting, and you are not using Db2 sysplex query parallelism (parallel query). In this

122 CICS TS for z/OS: Db2 Guide

situation, when parallel query is not used, the processor time consumed in Db2 is reported by the CICS
performance class records as well as by the Db2 accounting records, so the CICS performance class
record for a transaction gives you all the information on processor time that you need to charge the
resources for that transaction back to the user. If you are in this situation, skip the rest of this section, and
instead read the sections “Accounting for processor usage in a CICS Db2 environment” on page 127 (to
understand how processor time consumption is reported), and “Calculating CICS and Db2 processor
times for Db2” on page 134 (to find out how to use the information on processor time that is available to
you).

If you have chosen to use data as well as, or other than, processor time consumption as the basis for your
accounting, read the related concepts to this section to find out how to match up the Db2 accounting
records and the CICS performance class records. If you are using processor time consumption for your
accounting, you can then read the section “Accounting for processor usage in a CICS Db2 environment”
on page 127 to find out how to calculate your processor time consumption using your matched-up Db2
accounting records and CICS performance class records.

What are the issues when matching Db2 accounting records and CICS performance
records?

Because CICS and Db2 have different accounting needs, it is not always easy to match up Db2 accounting
records and CICS performance class records.

There are two main issues involved when trying to match these records:

1. There is not necessarily a one-to-one relationship between the CICS performance class records and
the Db2 accounting records. A Db2 accounting record can contain information about one CICS
transaction, multiple CICS transactions, or part of a CICS transaction.

2. The Db2 accounting records do not have a field that matches exactly with the corresponding CICS
performance records.

For the purpose of charging resources back to users, it is possible to give each user a different
authorization ID from a Db2 viewpoint, by specifying the DB2ENTRY or DB2CONN parameter AUTHTYPE
as OPID, USERID, GROUP, or TERM. In this case, a Db2 accounting record is generated that contains data
only for the authorization ID. You can then collect together all the Db2 accounting records by
authorization ID, and charge the resources consumed directly to the user. This method means that you do
not need to match the Db2 accounting records with the CICS performance class records. However, from a
usability and performance viewpoint, using OPID, USERID, GROUP, and TERM is not an attractive solution,
for the reasons discussed in Controlling users' access to plans. For large networks, specifying these
authorization IDs can complicate maintenance and result in performance overhead. It is preferable to
plan your use of authorization IDs with performance in mind, and assign Db2 accounting records to the
end user by matching them to the CICS performance class records.

This section tells you:

• What you can do to make the relationship between Db2 accounting records and CICS performance class
records more straightforward.

• What information in a Db2 accounting record can be used to identify the corresponding CICS
performance class records.

• What strategies you can use to match Db2 accounting records and CICS performance class records in
four typical scenarios.

Controlling the relationship between Db2 accounting records and CICS performance
class records

By default, Db2 writes its accounting records at thread termination, or at the signon of a new
authorization ID that is reusing the thread.

About this task

If a thread is reused by a transaction that has the same CICS transaction ID and the same Db2
authorization ID as the previous transaction that used the thread, Db2 does not write an accounting

Chapter 8. Monitoring Db2 123

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/database/dfhtk3y.html

record at that point. (See Providing authorization IDs to DB2 for the CICS region and for CICS transactions
for information about the relationship between the CICS transaction ID and the Db2 authorization ID.)
This means that each Db2 accounting record for the thread can contain information about multiple CICS
transactions. In addition, if different types of CICS transactions use the same transaction ID to access
Db2, the Db2 accounting record can contain information about different types of CICS transactions.

There are three ways in which you can influence the relationship between Db2 accounting records and
CICS performance class records, to deal with these issues:

• You could design your CICS applications so that each CICS transaction ID and Db2 authorization ID
always represents the same piece of work, that consumes the same resources. This ensures that each
Db2 accounting record contains either a single piece of work, or more than one occurrence of the same
piece of work, and it will not contain different items. If such a Db2 accounting record contains multiple
items, because the items are identical you can divide the resources used equally between them.
However, it might not be practical to design your applications in this way. For example, take the case
where a terminal user has a menu displayed at the terminal, and can choose different options (involving
different pieces of work) for the next transaction. If the previous transaction ended by setting up the
CICS transaction ID with the EXEC CICS RETURN TRANSID(zzzz) command, the next transaction runs
under the transaction ID zzzz, no matter what piece of work the terminal user chooses. You might not
want to re-design this application for accounting purposes.

• You could avoid reusing threads. This ensures that the thread terminates, and Db2 writes an accounting
record, after each task, so each Db2 accounting record represents a single task. However, by doing this,
you would lose the significant performance advantages of thread reuse. Also, if different types of
transaction used the same transaction ID to access Db2, each Db2 accounting record could still refer to
one of several possible tasks.

• You can make Db2 produce an accounting record each time a CICS task finishes using Db2 resources,
by specifying ACCOUNTREC(TASK) in the DB2CONN or DB2ENTRY definition. ACCOUNTREC(TASK) is
recommended rather than ACCOUNTREC(UOW). This ensures that there is at least one identifiable Db2
accounting record for each task, and the Db2 accounting record will not contain multiple tasks. Also, to
solve the issue of different types of transaction using the same transaction ID to access Db2, when you
specify ACCOUNTREC(TASK), CICS passes its LU6.2 token to Db2 to be included in the accounting
record. You can use this token to match each Db2 accounting record to the relevant CICS transaction.
Using ACCOUNTREC(TASK) is generally the most practical and complete solution to control the
relationship between Db2 accounting records and CICS performance class records. It carries an
overhead for each transaction, but its usefulness for accounting purposes normally outweighs this
overhead.

Even if you specify ACCOUNTREC(TASK), note that Db2 can only recognize a single CICS task as long as
the task continues to use the same thread. If a transaction contains more than one UOW, assuming that it
releases the thread at the end of the UOW, it could use a different thread for each of its UOWs. This can
happen with terminal-oriented transactions issuing multiple syncpoints (commit or rollback), and also
non-terminal-oriented transactions if NONTERMREL(YES) is set in the DB2CONN. In these cases, Db2
produces an accounting record for each UOW, because it does not recognize them as a single task. So for
this kind of transaction, each Db2 accounting record can contain information about only a part of the
transaction, and you need to ensure that all the relevant Db2 accounting records for the transaction are
identified.

Using data in the Db2 accounting record to identify the corresponding CICS performance
class records

Use fields in Db2 accounting records to identify the corresponding CICS performance records.

About this task

The fields in the Db2 accounting records that you might want to use are as follows:

• The CICS LU6.2 token. If you specify either ACCOUNTREC(TASK) or ACCOUNTREC(UOW) in the
DB2ENTRY or DB2CONN, CICS passes its LU6.2 token to Db2 to be included in the Db2 trace records.
The token is written to QWHCTOKN in the correlation header. The presence of this token makes
matching the two sets of records much more simple.

124 CICS TS for z/OS: Db2 Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/database/dfhtk3u.html

• The thread correlation ID, which contains the CICS 4-character transaction ID. Remember that if you
have not specified ACCOUNTREC(TASK) or ACCOUNTREC(UOW), the Db2 accounting record might
contain information about more than one transaction that used this ID. If you have specified
ACCOUNTREC(TASK) or ACCOUNTREC(UOW), the Db2 accounting record might only contain part of a
transaction (a single UOW), and you need to locate the other records relating to the transaction. If
different types of CICS transaction use the same transaction ID, you cannot make a positive
identification from this item alone.

• The authorization ID field. As for the thread correlation ID, the Db2 accounting record might contain
information about more than one transaction that used this authorization ID, or it might only contain
part of a transaction. The authorization ID that a CICS transaction uses is determined by the AUTHID or
AUTHTYPE parameter in the DB2CONN or DB2ENTRY. If different types of CICS transaction use the
same authorization ID, you cannot make a positive identification from this item alone

• The timestamp fields. The start and end time for the thread can help identify the CICS transactions that
the Db2 accounting record covers.

Strategies to match Db2 accounting records and CICS performance class records and
charge resources back to the user

There is not one ideal way of matching Db2 accounting records and CICS performance class records. In a
few cases, it might be impossible to make the matching correct, because transactions are being run
concurrently. In most situations however, there are strategies that you can use to match up the two types
of records with reasonable accuracy.

If the resources used in the individual transaction are the basis for accounting, then when you have
matched up the CICS performance records and the Db2 accounting records, you can relate them back to
the specific user. Alternatively, you can define and calibrate a number of model transactions, measure
these transactions in a controlled environment, and count only the number of model transactions
executed by each user.

The two main factors that determine what strategies you should use are:

• Whether each CICS transaction ID represents only one possible transaction path (and so it always
represents the same amount of resources consumed), or whether many different transaction paths
share the same CICS transaction ID (so it can represent different amounts of resources consumed.

• Whether each Db2 accounting record relates to only one transaction or a part of one transaction
(because you have taken one of the measures described in “Controlling the relationship between Db2
accounting records and CICS performance class records” on page 123), or whether it contains
information about more than one transaction.

Figure 35 on page 126 shows how these factors combine to create four typical scenarios that you might
encounter when matching Db2 accounting records and CICS performance class records. The following
sections suggest strategies for matching the records in each case, and for charging the resources used
back to the user.

Chapter 8. Monitoring Db2 125

Figure 35. Different accounting scenarios

Scenario A: One transaction in each Db2 accounting record, with its own transaction ID
In this scenario, you know that each Db2 accounting record contains information relating to a single,
identifiable CICS transaction. If the transaction accessed Db2 resources more than once, Db2 might have
created more than one accounting record for it. You must match the Db2 accounting records relating to
the transaction, to the CICS performance record for the transaction.

The user for the transaction can be identified from the CICS performance record. This record contains the
CICS activities related to this transaction. You can identify the Db2 accounting records that apply to this
transaction by using any of the data items listed in “Using data in the Db2 accounting record to identify
the corresponding CICS performance class records” on page 124.

As all these transactions are identical, you can expect that they consume comparable amounts of
resources. For accounting purposes, you could create model transactions for each transaction type.
Because you can identify which Db2 accounting records apply to which CICS transactions, you can match
up the Db2 accounting records and the CICS performance record for one transaction, and then assign the
amount of Db2 resources used in those accounting records, to each subsequent transaction of that type.
You should validate the correctness of your models on a regular basis, in case the resource usage
changes.

Scenario B: Several transactions in each Db2 accounting record, but each transaction type has its
own transaction ID
In this scenario, each Db2 accounting record can contain information relating to more than one
transaction, so you cannot match each Db2 accounting record directly to the relevant CICS performance
record. However, you can identify the types of transaction that are present in the Db2 accounting record,
because each transaction ID only refers to one type of transaction.

If only one type of CICS transaction is present in a particular Db2 accounting record, then for accounting
purposes, the resources consumed in Db2 can be split equally between each transaction. This is
reasonable, because the transactions are (by definition) almost identical. The number of commits and
backouts in the Db2 accounting record indicates the number of units of work covered in this record.
However, as noted in “Controlling the relationship between Db2 accounting records and CICS
performance class records” on page 123, units of work in the same transaction might use a different
thread, and so not be present in the same Db2 accounting record. Make sure that you have assigned all
the relevant Db2 resources to each transaction; this can involve examining more than one Db2 accounting
record.

126 CICS TS for z/OS: Db2 Guide

If two or more different types of CICS transaction are present in a particular Db2 accounting record
(because they use the same DB2ENTRY and hence the same thread), you cannot use the method of
distributing the resources equally, because the different types of transaction might use different
resources. In this case, you can create model transactions by periodically measuring the amount of Db2
resources used by each type of CICS transaction. Take these measurements by temporarily disallowing
thread reuse, and looking at the resulting Db2 accounting records, which contains information relating to
only one transaction. Use these model transactions to charge back the resources to the user. You should
periodically validate the correctness of the model transactions.

Scenario C: One transaction in each Db2 accounting record, but several types of transaction use the
same transaction ID
In this scenario, you know that each Db2 accounting record contains information relating to a single CICS
transaction, but because several types of transaction use the same transaction ID, you cannot be sure
which type of transaction is shown by a particular Db2 accounting record.

You cannot match up a set of records for one instance of a transaction and then reuse those figures, as
you could in Scenario A. You must match all the individual CICS performance records with their
corresponding Db2 accounting records. Unless you do this, you cannot know what type of transaction is
represented by each Db2 record.

You can match each of the Db2 accounting records to the relevant CICS performance record by using the
data items listed in “Using data in the Db2 accounting record to identify the corresponding CICS
performance class records” on page 124. If you have specified either ACCOUNTREC(TASK) or
ACCOUNTREC(UOW) in the DB2ENTRY or DB2CONN, so that CICS passes its LU6.2 token to Db2, then
you can match the records together easily. If not, you must match the records based on their time
stamps. In this case, the matching might not be accurate if transactions are being run simultaneously.

You can then use your matched sets of records to charge back the resources used for each transaction, to
the user identified by the CICS performance record.

Scenario D: Several transactions in each Db2 accounting record, and several transaction types use
the same transaction ID
In this scenario, each Db2 accounting record can contain information relating to more than one
transaction, and also you cannot use the transaction IDs to identify which types of transaction are present
in the accounting record.

This situation is best avoided, because you are unlikely to be able to match records accurately. If you do
find yourself in this situation, the best solution is to create model transactions, as described for Scenario
B. Next, find a way to mark the CICS performance records with an identifier that is unique to each
transaction. For example, the user could supply information in a user field in the performance records that
identifies the transaction being executed. Now you can use this field to identify which of the model
transactions should be used for accounting in this case.

Accounting for processor usage in a CICS Db2 environment
Information about processor time consumption is provided in the Db2 accounting and statistics trace
records. You can use these records to calculate the total processor time used in CICS and Db2.

The Db2 accounting trace can be started with CLASS 1, CLASS 2, or CLASS 3. However, CLASS 1 must
always be active to externalize the information collected by activating CLASS 2, CLASS 3, or both classes.

The processor times reported in the Db2 accounting records are the TCB time for the thread TCB running
code in CICS or in the Db2 address space, using cross-memory services; and the SRB time for work
scheduled in CICS.

CLASS 1 (the default) results in accounting data being accumulated by several Db2 components during
normal execution. This data is then collected to write the Db2 accounting record. The data collection does
not involve any overhead of individual event tracing.

CLASS 2 and CLASS 3 activate many additional trace points. Every occurrence of these events is traced
internally, but is not written to an external destination. Rather, the accounting facility uses these traces to

Chapter 8. Monitoring Db2 127

compute the additional total statistics that appear in the accounting record when CLASS 2 or CLASS 3 is
activated. Accounting CLASS 1 must be active to externalize the information.

CLASS 2 collects the delta elapsed and processor times spent 'IN DB2' and records this in the accounting
record.

CLASS 3 collects the I/O elapsed time and lock and latch suspension time spent 'IN DB2' and records this
in the accounting record.

CLASS 7 and CLASS 8 in Db2 collect package level accounting in Db2 and package level accounting wait in
Db2. For information on package level accounting, see Managing Db2 performance in Db2 for z/OS
product documentation.

The statistics trace reports processor time in the statistics records. The processor times reported are:

• Time under a Db2 address space TCB running asynchronous of the CICS address space. Examples of
this are the Db2 log and writes from the buffer pools.

• Time under SRBs scheduled under the Db2 address spaces. An example is the asynchronous read
engine for sequential prefetch.

The Db2 address spaces reported in the statistics record are:

• Database manager address space
• System services address space
• IRLM.

In a CICS Db2 environment, the processor time from the Db2 accounting records is typically much greater
than the processor time reported in the Db2 statistical records, because most of the processor time used
is in the thread TCB itself and in the Db2 address spaces using cross memory services.

Db2 accounting records are produced when a thread is terminated or signon occurs. This means that the
period reported in the Db2 accounting record is the time between thread start or user signon (if reusing a
thread previously used by another user) and thread termination or another signon. If several different
transactions are specified for the same DB2ENTRY, and they use the same CICS transaction ID and the
same Db2 authorization ID to sign on to the thread, then the Db2 accounting record for this thread can
include data for more than one transaction. Also, if a transaction releases its Db2 thread at syncpoint, and
the thread is terminated or re-used by another transaction, then the original transaction has to use a
different thread. A single transaction can therefore be associated with multiple Db2 threads during the
life of its execution. As Db2 produces accounting records for each thread, this can mean that multiple
accounting records are produced for the transaction. See “Controlling the relationship between Db2
accounting records and CICS performance class records” on page 123 for information on how you can
determine the transactions that are included in each Db2 accounting record.

The processor time is accurately obtainable by authorization ID within the transaction by aggregating all
the accounting records for this authorization ID and transaction. Note, however, that the elapsed times
associated with the accounting record would be of little value in this case, because the sum of the
elapsed times does not include the time from one commit point to the first SQL call in the next UOW. The
elapsed time for a thread is associated with the thread and not with the transaction.

Figure 36 on page 129 and Figure 37 on page 131 show each period of processor time that is reported by
CICS and Db2, and where it takes place. The location of processing differs depending on whether or not
the application accessing Db2 is threadsafe. This is because when CICS is connected to Db2, and is
exploiting the open transaction environment, the CICS Db2 attachment facility uses CICS-managed open
TCBs rather than CICS Db2 subtask TCBs.

Figure 36 on page 129 shows the situation when CICS is connected to Db2 and the application accessing
Db2 is not threadsafe.

128 CICS TS for z/OS: Db2 Guide

https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/perf/src/tpc/db2z_managingdb2perf.html
https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/perf/src/tpc/db2z_managingdb2perf.html

This picture shows the environment when CICS is connected
to Db2 when the application
accessing Db2 is not threadsafe.

Times 3 + 6 + 9 are reported as CLASS 1 processor time
(time spent under the thread TCB)
Times 2 + 5 + 8 are reported as CLASS 2 processor time
(time spent in DB2)
Times 1 + 4 + 7 + 10 are reported as CICS processor time
(time spent on the CICS main TCB)

Figure 36. CICS with Db2 and non-threadsafe application: Processor times recorded

If CICS is connected to Db2 but the application accessing Db2 is not threadsafe, then CICS is using an
open TCB to run the thread into Db2, but it is using the open TCB in the same way as it would use a
subtask TCB. The TCB that CICS uses to run the thread into Db2 is called the thread TCB.

The periods of processor time shown in the figure are as follows:

• Time 1: The application starts on the CICS main TCB. At the end of Time 1, the application issues an
EXEC SQL request.

• Time 2: Db2 is fulfilling the application's request. This processor time is spent in the Db2 address space.
At the end of Time 2, Db2 passes its response to the CICS Db2 attachment facility.

• Time 3: The CICS Db2 attachment facility is carrying out processing on the thread TCB. This covers both
the processing needed for the application to access Db2, and the processing needed to pass the Db2
response back to the application. It also includes the processor time taken for Db2 to fulfill the request

Chapter 8. Monitoring Db2 129

and respond. Time 2 is therefore nested within Time 3. At the end of Time 3, the response from Db2 is
passed to the application, and the access to Db2 is complete.

• Time 4: The application has finished with Db2 for the moment. The application code runs on the CICS
main TCB, until the application needs to access Db2 again. At the end of Time 4, the application issues a
second EXEC SQL request.

• Time 5: As for Time 2, Db2 is fulfilling the second request from the application.
• Time 6: The CICS Db2 attachment facility is carrying out processing on the thread TCB related to this

second request, or waiting for a response from Db2.
• Time 7: The application code runs again on the CICS main TCB. It issues a third EXEC SQL request.
• Time 8: As for Time 2, Db2 is fulfilling a third request from the application.
• Time 9: The CICS Db2 attachment facility is carrying out processing on the thread TCB related to this

third request, or waiting for a response from Db2.
• Time 10: The application has now made all its EXEC SQL requests. The application code continues to

run on the CICS main TCB until it terminates.

Figure 37 on page 131 shows the situation when CICS is connected to Db2 and the application accessing
Db2 is threadsafe.

130 CICS TS for z/OS: Db2 Guide

This picture shows the environment when CICS is connected to Db2,
and when the application accessing Db2 is threadsafe.

Times 3 + 4 + 6 + 7 + 9 + 10 are reported as CLASS 1 processor time
(time spent under the open TCB, processing access to DB2
and running application code)
Times 2 + 5 + 8 are reported as CLASS 2 processor time
(time spent in DB2)
Times 1 + 11 are reported as CICS processor time
(time spent on the CICS main TCB)

Figure 37. CICS with Db2 and threadsafe application: Processor times recorded

Here, CICS is using an open TCB to run the thread into Db2. As the application is threadsafe, the
application code can also run on the open TCB. The periods of processor time shown in the figure are as
follows:

• Time 1: The application starts on the CICS main TCB. At the end of Time 1, the application issues an
EXEC SQL request.

• Time 2: Db2 is fulfilling the application's request. This processor time is spent in the Db2 address space.
At the end of Time 2, Db2 passes its response to the CICS Db2 attachment facility.

• Time 3: The CICS Db2 attachment facility is carrying out processing on the thread TCB. This covers both
the processing needed for the application to access Db2, and the processing needed to pass the
response from Db2 back to the application. It also includes the processor time taken for Db2 to fulfil the

Chapter 8. Monitoring Db2 131

request and respond. Time 2 is therefore nested within Time 3. At the end of Time 3, the Db2 response
is passed to the application, and the access to Db2 is complete.

• Time 4: The application has finished with Db2 for the moment. As the application is threadsafe, the
application code now runs on the thread TCB (the open TCB). At the end of Time 4, the application
issues a second EXEC SQL request.

• Time 5: As for Time 2, Db2 is fulfilling the second request from the application.
• Time 6: The CICS Db2 attachment facility is carrying out processing on the thread TCB related to this

second request, or waiting for a response from Db2.
• Time 7: The application code runs again on the thread TCB. It issues a third EXEC SQL request.
• Time 8: As for Time 2, Db2 is fulfilling a third request from the application.
• Time 9: The CICS Db2 attachment facility is carrying out processing on the thread TCB related to this

third request, or waiting for a response from Db2.
• Time 10: The application has now made all its EXEC SQL requests. The application code runs again on

the thread TCB.
• Time 11: The application has completed its processing. The application terminates, and processing

returns to the CICS main TCB.

Note that an application that is defined as threadsafe (that is, you have told CICS that the application
code is threadsafe), can still issue CICS commands that are not threadsafe. These commands force a
switch back to the CICS main TCB, and the application code then continues to run on the CICS main TCB
until the application makes its next EXEC SQL request. The activity associated with the non-threadsafe
CICS command, and with the application code that runs on the CICS main TCB, is reported as CICS
processor time, and not as CLASS 1 processor time. Once the EXEC SQL request is issued, the application
code can run on the open TCB again, and is reported from then on as CLASS 1 processor time.

Accounting CLASS 1 processor time
For CLASS 1, a task processor timer is created when the TCB is attached. When a thread to Db2 starts, the
timer value is saved. When the thread is terminated, or the authorization ID is changed, the timer is
checked again and both the timer start and end values are recorded in the SMF type 101 record.

In Figure 36 on page 129, CLASS 1 is the sum of the times 3, 6, and 9. In Figure 37 on page 131, CLASS 1
is the sum of the times 3, 4, 6, 7, 9, and 10.

The fields in the SMF type 101 record, the Db2 accounting record, used for accounting CLASS 1 processor
time are:

• QWACBJST for begin thread TCB time
• QWACEJST for end thread TCB time
• QWACBSRB for begin ASCB SRB time
• QWACESRB for end ASCB SRB time.

You can find a description of the contents of the Db2 accounting record in Managing Db2 performance in
Db2 for z/OS product documentation. There is also the description of accounting record fields in member
DSNWMSGS, which is shipped in SDSNSAMP.

When CLASS 1 recording becomes active for a thread, it is recording time spent on the L8 open TCB.
Because the L8 TCB is used for both CICS activity and Db2 activity, this includes processor time spent in
the CICS-Db2 attachment facility, including trace calls. It also includes processor time spent running
application code (if the application is threadsafe) and threadsafe CICS commands on the open TCB. If a
thread is reused, the thread housekeeping processor time is also included in the CLASS 1 processor time.
As in previous releases, there is a proportion of thread creation and thread termination processing that is
not captured by CLASS 1 time. The CLASS 1 processor time does not include any time spent running
application code on the QR TCB, which happens as follows:

• In the initial period before the application issues its first EXEC SQL request and moves on to the open
TCB (time 1 in the figure). This initial application code runs on the CICS main TCB, and is not seen by
Db2 accounting.

132 CICS TS for z/OS: Db2 Guide

https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/perf/src/tpc/db2z_managingdb2perf.html
https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/perf/src/tpc/db2z_managingdb2perf.html

• If the application issues a CICS command that is not threadsafe. This forces processing to move back to
the CICS main TCB. The application code then continues to run on the CICS main TCB, where it cannot
be seen by Db2 accounting, until the application issues its next EXEC SQL request. At this point,
processing can move back onto the open TCB.

Unless you are using Db2 sysplex query parallelism (parallel query), you do not need to use the Db2
CLASS 1 processor time for accounting purposes. The processor time recorded in the CICS SMF type 110
record is all that is required to give a complete account of the processor time consumed by an application.
This record includes the time spent in the application code, the thread creation and termination costs,
and the time covered by the Db2 CLASS 1 processor time. For more information, see “Calculating CICS
and Db2 processor times for Db2” on page 134.

Accounting CLASS 2 processor time
For accounting CLASS 2, the timer is checked on every entry and exit from Db2 to record the 'IN DB2' time
in the SMF type 101 record. In this case, it is the difference that is stored in the record. The field in the
SMF type 101 record used for accounting CLASS 2 processor time is QWACAJST.

In Figure 36 on page 129 and Figure 37 on page 131, CLASS 2 is the sum of the times 2, 5, and 8.

For a description of the contents of the Db2 statistics records, see Managing Db2 performance in Db2 for
z/OS product documentation.

The elapsed time (start and end times between the defined points) is also reported in the SMF type 101
record (QWACASC).

When CICS is connected to Db2 there can be a significant difference between CLASS 1 and CLASS 2
processor time, as there is for IMS and TSO. This is because when CICS is connected to Db2, the CLASS 1
processor time includes processor time spent in the CICS-Db2 attachment facility, including trace calls,
and also includes processor time spent running threadsafe application code and threadsafe CICS
commands on the open TCB. All this processor time occurs in the CICS address space, and so is not
reported for accounting CLASS 2. The CLASS 2 processor time itself is not affected by the open
transaction environment.

Unlike accounting CLASS 1, the CLASS 2 elapsed times and processor times accurately reflect the
elapsed times and processor times spent 'IN DB2'. Accounting CLASS 2 information is therefore very
useful for monitoring the performance of SQL execution. However, the processor overhead associated
with having class accounting is quite considerable.

To reduce the overhead, it was usually recommended that the CLASS 2 trace be limited to trace data for
plans and locations of specific authorization IDs. The processor overhead is 0-5%, with 2% being typical.

Calculating CICS and Db2 processor times for DB2 Version 5 or earlier
When your CICS system is connected to DB2 Version 5 or earlier, the CICS performance class record does
not include processor time consumed in Db2. To estimate the total processor time for a single
transaction, add information from the corresponding CICS performance record and the Db2 accounting
record (SMF type 101 record).

About this task

For information about matching CICS performance records with Db2 accounting records, see “Relating
Db2 accounting records to CICS performance class records” on page 122.

Take the CPU field from the CICS performance class record. Using the Db2 accounting record, you can
calculate the Db2 thread processor time (T1) as:

 T1 = QWACEJST - QWACBJST

This calculates the CLASS 1 TCB processor time. The sum of the processor time from the CICS CPU field
and the calculated value of T1 is an expression for the processor time spent in CICS and Db2.

Notes:

• The CLASS 2 processor time is part of the CLASS 1 processor time and should not be added to the sum.

Chapter 8. Monitoring Db2 133

https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/perf/src/tpc/db2z_managingdb2perf.html
https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/perf/src/tpc/db2z_managingdb2perf.html

• If the CLASS 2 processor time is subtracted from the CLASS 1 processor time, this gives an
approximation of CPU utilization of the CICS Db2 attachment facility. This is a useful tuning aid.

• The processor time used in the Db2 address spaces and recorded in the Db2 statistics records is not
related to any specific thread. It can be distributed proportionally to the CPU time recorded in the Db2
accounting records.

• Processor time used in the CICS address space under the subtask TCBs cannot easily be distributed to
the CICS performance records, because it includes the processor times for the Db2 subtasks, which are
already contained in the calculated T1 value. It means that processor time used in subtasks other than
the thread subtasks is not included in the addition.

• Most of the processor time used in the thread TCB to create the thread is not included in any Db2
accounting records associated with this thread, because this processor time is spent before the thread
is created.

• The capture ratio for CICS and Db2 should be taken into account. Capture ratio is the ratio of reported
CPU time to total used CPU time (for more information, see z/OS Resource Measurement Facility (RMF)
User's Guide.

Calculating CICS and Db2 processor times for Db2
When CICS is connected to Db2 and is exploiting the open transaction environment, the CICS Db2
attachment facility uses CICS managed open TCBs rather than CICS Db2 subtask TCBs.

About this task

Using CICS managed open TCBs means the CICS monitoring facility can measure activity that was
previously only reported in the Db2 accounting record (the SMF type 101 record). For example, CICS can
now measure the processor time consumed on the Db2 thread and the processor time consumed in Db2
(the CLASS 1 and CLASS 2 CPU time). When CICS is using L8 open TCBs, the CPU time reported for these
TCBs by the CICS monitoring facility includes the Db2 CLASS 1 processor time.

In the open transaction environment, the CICS L8 task processor time can also include the cost of
creating a Db2 thread.

Unless you are using Db2 parallel query, do not add together the processor time from the CICS records
(SMF type 110 records) and the Db2 accounting records (SMF type 101 records) when calculating the
total processor time for a single transaction, because the Db2 processor time would then be included
twice. The total processor time for a single transaction is recorded in the USRCPUT field in the CICS
records (performance class data field 008 from group DFHTASK). This field includes all processor time
used by the transaction when it was executing on any TCB managed by the CICS dispatcher. CICS-
managed TCBs include the QR, RO, CO, and L8 mode TCBs.

If you are using Db2 parallel query, you do need to add some of the processor time from the Db2
accounting records. With Db2 sysplex query parallelism, Db2 might use multiple TCBs within the Db2
address space to service a query. The TCBs used for this purpose are non-CICS TCBs, so any processor
time that they consume is not accounted for in the CICS SMF type 110 records. To obtain the total
amount of processor time used for a parallel query, you therefore need to add the PAR.TASKS processor
time recorded in the Db2 SMF type 101 record that applies to the transaction, to the processor time
recorded in the USRCPUT field in the CICS SMF type 110 record.

134 CICS TS for z/OS: Db2 Guide

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.erbb200/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.erbb200/toc.htm

Chapter 9. Troubleshooting Db2
This section discusses problem determination for CICS Db2.

These topics contain Diagnosis, Modification or Tuning information.

Thread TCBs (task control blocks)
In the CICS Db2 environment, each thread into Db2 runs under a thread task control block (TCB). This
section provides further technical information about thread TCBs, to assist with problem determination.

See Overview: How threads work for an overview of thread TCBs.

Thread TCBs are open L8 mode TCBs. The open TCBs are “daughters” of the main CICS TCB (the QR
TCB). The CICS Db2 task-related user exit itself runs on the open TCB, as well as using it to run the
thread. The task-related user exit uses the CICS Db2 attach module DFHD2D2 to invoke Db2 when it
needs to acquire a thread. Another module, DFHD2CO, running on a different TCB, deals with aspects of
the overall CICS Db2 connection, including identifying to Db2 and disconnecting CICS from Db2.

The maximum number of open TCBs that can be running threads into Db2 at any one time is controlled
using the TCBLIMIT parameter of the DB2CONN. An open TCB running a thread is not terminated when
the thread is terminated. An open TCB can be terminated if:

• A CICS transaction is force purged from CICS and the thread is still active in Db2. In this case the TCB is
terminated as a means of flushing the request out of Db2. The current UOW in Db2 is backed out.

• CICS is in doubt as to the outcome of a UOW because it has lost contact with its coordinator.
Terminating the TCB causes Db2 to release the thread, but maintain the UOW as indoubt and maintain
its locks. The UOW is completed by a later resynchronization when CICS reestablishes contact with its
coordinator.

• The CICS dispatcher, where open TCBs are returned if they are not being used by the CICS Db2
attachment facility, cleans up the unused open TCBs after 30 minutes.

Wait types for CICS Db2
The CICS Db2 task-related user exit, DFHD2EX1, issues WAIT_MVS calls for different purposes. These
calls are distinguished by their resource name and type values. The resource name and resource type
values are visible in the dispatcher section of a CICS system dump and also appear on the CEMT
INQUIRE TASK panel as Hty and Hva values respectively.

The CICS Db2 task-related user exit and the request into Db2 run on an L8 open TCB. The CICS task is not
put into a CICS dispatcher wait when active in Db2, so there is no related information in the dispatcher
section of the CICS system dump. The CEMT INQUIRE TASK panel shows that the CICS Db2 task is
running on an open TCB. To find out if the task is active in Db2, use the DSNC DISPLAY TRAN command.
This command displays all the threads currently in use, and the task with which each thread is associated.
See DISPLAY PLAN or TRAN output for an example of the output from the command. If the thread
associated with the task has a status of '*' in the 'S' field, this shows that the thread is currently active in
Db2. The task is therefore either running or waiting in Db2.

The full list of waits issued from the CICS Db2 task-related user exit DFHD2EX1, their meanings, and
whether the task can be purged or forcepurged out of this wait is given in Table 11 on page 136. A fuller
explanation of each wait follows the table.

© Copyright IBM Corp. 1974, 2020 135

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/database/dfhtk6h.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfhtk0x.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/database/dfhtk7g.html

Table 11. WAITs issued from the CICS Db2 TRUE

Resource type or
Hty value

Resource name
or Hva value

Meaning Purge and
forcepurge

DB2 LOT_ECB CICS task is waiting for Db2, that is, waiting for
the CICS Db2 task to complete the request.
Used when CICS is connected to DB2 Version
5 or earlier.

Purge: No.
Forcepurge:
Yes

CDB2RDYQ name of
DB2ENTRY or
*POOL

CICS task is waiting for a thread to become
available. The resource name details for which
DB2ENTRY or the pool has a shortage of
threads.

No

CDB2CONN The CICS task has an open TCB but is waiting
for a Db2 connection to become available to
use with the open TCB. This indicates that
TCBLIMIT has been reached, and the
maximum permitted number of open TCBs
(and hence connections) are being used to
access Db2.

No

CDB2RDYQ indicates that the THREADLIMIT value of a DB2ENTRY or the pool has been exceeded, and
that THREADWAIT is set to YES, indicating that the task should wait. Purge of the task in this state is not
allowed. If you attempt to forcepurge the task, message DFHAP0604 is issued to the console, and
forcepurge is deferred until a thread has been acquired and the task is no longer queued waiting for a
thread. Instead of purging the task, you can use a SET DB2ENTRY() THREADLIMIT(n) command to
increase the number of threads available for the DB2ENTRY, or a SET DB2CONN THREADLIMIT(n) if it is
the pool. CICS posts tasks to try again to acquire a thread if the threadlimit is increased.

CDB2CONN indicates that the CICS task has obtained an open TCB from the pool of L8 and L9 mode open
TCBs, but is waiting for a Db2 connection to become available to use with the open TCB. This shows that
the TCBLIMIT specified in the DB2CONN has been reached, which limits the number of open TCBs (and
hence connections) that can be used to access Db2. When the TCBLIMIT is reached, the CICS Db2 task-
related user exit can obtain a TCB from the pool of L8 and L9 mode open TCBs, but it must wait before it
can use the TCB to run a thread into Db2. When another task stops using its L8 or L9 mode TCB to run a
thread into Db2, and so the number of TCBs in use running threads falls below TCBLIMIT, the waiting task
is allowed to use its own L8 or L9 mode TCB to run a thread into Db2.

Purge of the task is not allowed for a CDB2CONN wait. If you attempt to forcepurge the task, message
DFHAP0604 is issued to the console, and forcepurge is deferred until a Db2 connection has been
acquired. Instead of purging the task, you can use a SET DB2CONN TCBLIMIT command to increase
TCBLIMIT, which increases the number of open TCBs permitted to access Db2. If you increase TCBLIMIT,
CICS posts tasks to try again to acquire a Db2 connection.

If the limit set automatically by CICS for the number of L8 and L9 mode open TCBs is reached, so no more
open TCBs can be created, the task is suspended with HTYPE(DISPATCH) and HVALUE(OPEN_TCB). CICS
sets this limit using the formula (2 * MXT value) + 32, with the MXT or MAXTASKS value for the
CICS region. The task is suspended with HTYPE(CDB2CONN) in the situation where this limit is not
exceeded, but TCBLIMIT is exceeded.

Table 12 on page 137 gives details of WAITS issued using WAIT_OLDC dispatcher calls where the ECB is
hand posted:

136 CICS TS for z/OS: Db2 Guide

Table 12. WAITS issued using WAIT_OLDC dispatcher calls

Resource type or
Hty value

Resource name
or Hva value

Meaning Purge and
forcepurge

DB2_INIT CICS Db2 initialization program DFHD2IN1
issues the wait to wait for the CICS
initialization task running program DFHD2IN2
to complete.

Yes

DB2CDISC name of
DB2CONN

A SET DB2CONN NOTCONNECTED command
has been issued with the WAIT or FORCE
option. DFHD2TM waits for the count of tasks
using Db2 to reach zero.

Yes

DB2EDISA name of
DB2ENTRY

A SET DB2ENTRY DISABLED command has
been issued with the WAIT or FORCE option.
DFHD2TM waits for the count of tasks using
the DB2ENTRY to reach zero.

Yes

Table 13 on page 137 shows details of EXEC CICS WAIT EXTERNAL requests issued by the CICS Db2
attachment facility.

Table 13. EXEC CICS WAIT EXTERNAL requests issued by the attachment facility

Resource type or
Hty value

Resource name
or Hva value

Meaning Purge and
forcepurge

USERWAIT CDB2TIME The CICS Db2 service task program
DFHD2EX2 is in its timer wait cycle either
waiting for the protected thread purge cycle to
pop or to be posted for another event.

Yes

USERWAIT DB2START The CICS Db2 service program DFHD2EX2 is
waiting for Db2 to post it when it becomes
active.

Yes

Table 14 on page 137 gives details of EXEC CICS WAIT EVENT requests issued by the CICS Db2
attachment facility:

Table 14. EXEC CICS WAIT EVENT requests

Module Resource name Meaning

DFHD2EX2 PROTTERM A TERM call has been issued for a protected thread during the
protected thread purge cycle.

DFHD2STP CEX2TERM The CICS Db2 shutdown program is waiting for the CICS Db2
service task CEX2 running program DFHD2EX2 to terminate all
subtasks and terminate itself.

Messages for CICS Db2
Messages issued by the CICS Db2 attachment facility use the DFHDB prefix which is also used for CICS
DBCTL messages. Message numbers are in the range 2000 through 2999 and are reserved for CICS Db2.
Thus CICS Db2 attachment messages are of the form DFHDB2xxx.

Where possible, message numbers have been maintained from previous releases of the attachment. For
example, message DFHDB2023 documents the same condition as old messages DSN2023 or DSNC023.
However, the contents of the message have changed. For example, all messages contain the date, time,
and applid.

Chapter 9. Troubleshooting Db2 137

The destination for transient data messages output by the CICS Db2 attachment facility is controlled
using the MSGQUEUE1, MSGQUEUE2 and MSGQUEUE3 parameters of the DB2CONN definition. The same
message can be routed to three transient data queues. By default, messages are sent to a single queue
called CDB2 which is defined as indirect to queue CSSL.

All messages are documented in CICS messages and are available using the CMAC CICS-supplied
transaction.

Trace for CICS Db2
The CICS Db2 attachment facility uses AP domain trace points in the range 3100 to 33FF.

The contents of all trace points issued by the CICS Db2 attachment facility are documented in CICS Db2
trace points.

Standard tracing performed by the CICS Db2 attachment facility is controlled by the RA (Resource
Manager Adapter) and RI (RMI) trace flags. RMI trace controls:

• Trace output from the CICS Db2 task-related user exit, DFHD2EX1
• Trace output from the CICS Db2 thread processor DFHD2D2

All other standard tracing from the attachment is controlled using Resource Manager Adapter tracing. A
large proportion of the possible trace issued from the CICS Db2 attachment facility is exception tracing,
which is output irrespective of RI or RA tracing being active, but is issued independently. You can set the
levels of RA and RI trace required by using the CICS-supplied transaction CETR, or by setting system
initialization parameters STNTRRA and STNTRRI.

CICS Db2 trace output is written to the CICS internal trace table and auxiliary trace and GTF trace
destinations if active.

Sample trace output from the RMI and the CICS Db2 TRUE

This is a sample trace output from the RMI and the CICS Db2 task-related user exit, DFHD2EX1, when
level 1 and level 2 RI tracing is active. The trace shows one SQL statement being executed. In this
example the CICS Db2 task-related user exit is running on an open L8 mode TCB, and uses that same TCB
to run threads into Db2.

AP 2520 ERM ENTRY PLI-APPLICATION-CALL-TO-TRUE(DSNCSQL)

 TASK-00035 KE_NUM-003F TCB-QR /007C5B60 RET-99902F92 TIME-08:32:00.7673270795
INTERVAL-00.0000135312 =000162=
 1-0000 01
*. *
 2-0000 C4E2D5C3 E2D8D340
*DSNCSQL *
 3-0000 B60AF030 A54A8EC0 *..0.v$.
{ *
 4-0000 E3C5E2E3 D7F0F540 00000001 00100000 19900000 999000E0 000114E0 00000000
TESTP05r..\...\....
 0020 00000020 00007BB0 00000000 98400000 0040000A 00101100 00000000 00000000
......#.....q
 0040 00000000 00000000 00000000
*............ *

DS 0002 DSAT ENTRY - FUNCTION(CHANGE_MODE) MODENAME(L8)

 TASK-00035 KE_NUM-003F TCB-QR /007C5B60 RET-8009E318 TIME-08:32:00.7673341108
INTERVAL-00.0000070312 =000163=
 1-0000 00980000 00000003 00000001 00000000 A0000040 00000000 05000102 01000002
.q.................
 0020 01007450 00000000 000002B0 18CCB490 18CCB6D8 9801014C 01031498 18220F30
...&...............Qq..<...q....
 0040 18CCBB70 1833E000 9800E8F0 00007000 190441EC 18CCBB70 00000008 D3F8D8D9
......\.q.Y0................L8QR
 0060 18CCB638 FFFFFFFF 18CB4B00 987D9520 00000001 18DEA4A0 18DEA010 00000001
............q'n.......u.........
 0080 00007550 18CCB776 00000000 0000E8F0 18CCBA28 18CCBA28
*...&..........Y0........ *

DS 0003 DSAT EXIT - FUNCTION(CHANGE_MODE) RESPONSE(OK)

 TASK-00035 KE_NUM-003F TCB-L8000/007C6B90 RET-8009E318 TIME-08:32:00.7673710483
INTERVAL-00.0000369375 =000164=
 1-0000 00980000 00000003 00000001 00000000 A0000040 00000000 05000102 01000002
.q.................

138 CICS TS for z/OS: Db2 Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-messages/cics-messages/DFHmessages.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-diagnostics/trace/dfhs6_ap_3100.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-diagnostics/trace/dfhs6_ap_3100.html

 0020 01007450 00000000 000002B0 18CCB490 18CCB6D8 9801014C 01031498 18220F30
...&...............Qq..<...q....
 0040 18CCBB70 1833E000 9800E8F0 00007000 190441EC 18CCBB70 00000001 D3F8D8D9
......\.q.Y0................L8QR
 0060 18CCB638 FFFFFFFF 18CB4B00 987D9520 00000001 18DEA4A0 18DEA010 00000001
............q'n.......u.........
 0080 00007550 18CCB776 00000000 0000E8F0 18CCBA28 18CCBA28
*...&..........Y0........ *

AP 2522 ERM EVENT PASSING-CONTROL-TO-OPENAPI-TRUE(DSNCSQL)

 TASK-00035 KE_NUM-003F TCB-L8000/007C6B90 RET-99902F92 TIME-08:32:00.7673729077
INTERVAL-00.0000018593 =000165=
 1-0000 01
*. *
 2-0000 C4E2D5C3 E2D8D340
*DSNCSQL *
 3-0000 B60AF030 A54A8EC0 *..0.v$.
{ *
 4-0000 18CCB654 0006F004 19044204 00000000 007A8000 007A8000 18F0005C 18F0CCD0
......0..........:...:...0..0.}*
 0020 190441C0 19044210 19044206 18F000D0 19044200 18CCB490 190441C8 190441B0 *...
{.........0.}...........H....*
 0040 190441AC 190441EC 18CCB5F3 190441FD 18CCB5F4 190441B4 190441B2 00020000
...........3.......4............
 5-0000 D3F8
*L8 *

AP 3180 D2EX1 ENTRY - APPLICATION REQUEST - EXEC SQL FETCH

 TASK-00035 KE_NUM-003F TCB-L8000/007C6B90 RET-8009E4D0 TIME-08:32:00.7673780483
INTERVAL-00.0000051406 =000166=
 1-0000 02000000 00280800 001EE3C5 E2E3D7F0 F5401663 1BA501CD D1DC0002 18F0BA40
*..........TESTP05 ...v..J....0. *
 0020 00000000 18F0CDB0 018D0004
*.....0...... *
 2-0000 00DE6EC4 C6C8C4F2 D3D6E340 40404040 E7D7F0F5 184AC080 18DF2D78 18DCD030 *..>DFHD2LOT
XP05.${.......}.*
 0020 00000000 0006EFF0 00000000 18DF2E0C 18F0CDE0 00000000 00000000 FF6CD800
.......0.........0.\.........%Q.
 0040 00000000 00000000 00000000 00000000 00000000 E3C5E2E3 D7F0F540 000C010C
....................TESTP05
 0060 A000C000 00000000 00000000 00000000 C9E8D2F2 E9F2C7F1 B60AF030 A54A8EC0 *..
{.............IYK2Z2G1..0.v$.{*
 0080 D1E3C9D3 D3C9F140 40404040 40404040 00000000 00000000 C7C2C9C2 D4C9E8C1
JTILLI1 GBIBMIYA
 00A0 C9E8C1D8 E3C3F0F3 0AF030A5 4A8EC6D9 C2400003 000118F0 CD680000 00000000 *IYAQTC03.0.v
$.FRB0........*
 00C0 00000000 00000000 39050001 04000000 00000000 00000000 00000000 0000
*.............................. *

AP 3250 D2D2 ENTRY - FUNCTION(DB2_API_CALL) CSUB_TOKEN(18DCD030)

 TASK-00035 KE_NUM-003F TCB-L8000/007C6B90 RET-98E3321C TIME-08:32:00.7674652827
INTERVAL-00.0000872343 =000167=
 1-0000 00200000 00000034 00000000 00000000 B8000000 00000000 03000100 18DCD030
..............................}.
 2-0000 03006EC4 C6C8C4F2 C3E2C240 40404040 B60AF031 FAD0CB43 18D305E0 18DF2D78
..>DFHD2CSB ..0..}...L.\....
 0020 19044210 007C6B90 00000000 00000000 B60AF030 A54A8EC0 00000000 00000000 *.....@,...........0.v
$.{........*
 0040 18DF2DE4 00000000 00000000 00000000 00000000 00000000 00000000 00000000
...U............................
 0060 00000000 00000000 00000000 E3C5E2E3 D7F0F540 D1E3C9D3 D3C9F140 40404040 *............TESTP05
JTILLI1 *
 0080 40404040 C5D5E3D9 E7D7F0F5 F0F0F0F1 00000000 B60AF032 01359743 C7C2C9C2 *
ENTRXP050001......0...p.GBIB*
 00A0 D4C9E8C1 C9E8C1D8 E3C3F0F3 0AF030A5 4A8E0000 44800000 00000001 00000000 *MIYAIYAQTC03.0.v
$...............*
 00C0 00000000 00000000 00000000 40404040 40404040 40404040 40404040 FF6CD800
............ .%Q.
 00E0 C6D9C240 00030001 18F0CD68 00000000 00000000 00000000 00003905 00010400
FRB0......................
 0100 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 0120 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 0140 00000000 00000000 00000000 00000000 00000000 00000000 98DCD110 00000000
........................q.J.....
 0160 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 0180 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 01A0 00000000 00000000 40404040 40404040 40404040 40404040 40404040 40404040
*........ *
 01C0 40404040 40404040 40404040 40404040 40404040 40404040 40404040 00000000
* *
 01E0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 0200 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
................................

Chapter 9. Troubleshooting Db2 139

 0220 00000000 00000000 00000000 00000000 00000000 00000000 00000004 18DCD2B0
..............................K.
 0240 6E6EE399 81838540 E2A38199 A3406E6E 0100035C C9C4C5D5 00000000 00000000 *>>Trace Start
>>...*IDEN........*
 0260 0200035C E2C9C7D5 00000000 00000000 0300035C C3E3C8C4 00000000 00000000
*...*SIGN...........*CTHD........*
 0280 0400035C C1D7C940 00000000 00000000 00000000 00000000 00000000 00000000
*...*API*
 02A0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 02C0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 02E0 00000000 00000000 00000000 00000000 4C4CE399 81838540 C5958440 40404C4C
................<<Trace End <<
 3-0000 00DE6EC4 C6C8C4F2 D3D6E340 40404040 E7D7F0F5 184AC080 18DF2D78 18DCD030 *..>DFHD2LOT
XP05.${.......}.*
 0020 00000000 0006EFF0 00000000 18DF2E0C 18F0CDE0 00000000 00000000 FF6CD800
.......0.........0.\.........%Q.
 0040 00000000 00000000 00000000 00000000 00000000 E3C5E2E3 D7F0F540 010C010C
....................TESTP05
 0060 A000C000 00000000 00000000 00000000 C9E8D2F2 E9F2C7F1 B60AF030 A54A8EC0 *..
{.............IYK2Z2G1..0.v$.{*
 0080 D1E3C9D3 D3C9F140 40404040 40404040 00000000 00000000 C7C2C9C2 D4C9E8C1
JTILLI1 GBIBMIYA
 00A0 C9E8C1D8 E3C3F0F3 0AF030A5 4A8EC6D9 C2400003 000118F0 CD680000 00000000 *IYAQTC03.0.v
$.FRB0........*
 00C0 00000000 00000000 39050001 04000000 00000000 00000000 00000000 0000
*.............................. *

AP 326C D2D2 EVENT - ABOUT_TO_ISSUE_DB2_API_REQUEST

 TASK-00035 KE_NUM-003F TCB-L8000/007C6B90 RET-98E3321C TIME-08:32:00.7674700952
INTERVAL-00.0000048125 =000168=
 1-0000 98DCD110 00000000 00000000 00000000 00000000 00000000 00000000 00000000
q.J.............................
 2-0000 C6D9C240 00030001 18F0CDE0 00000000 00000000 00000000 00003905 00010400
FRB0.\....................
 0020 00000000 00000000 00000000 00000000
*................ *
 3-0000 E3C5E2E3 D7F0F540
*TESTP05 *
 4-0000 03006EC4 C6C8C4F2 C3E2C240 40404040 B60AF031 FAD0CB43 18D305E0 18DF2D78
..>DFHD2CSB ..0..}...L.\....
 0020 19044210 007C6B90 00000000 00000000 B60AF030 A54A8EC0 00000000 00000000 *.....@,...........0.v
$.{........*
 0040 18DF2DE4 00000000 00000000 00000000 00000000 00000000 00000000 00000000
...U............................
 0060 00000000 00000000 00000000 E3C5E2E3 D7F0F540 D1E3C9D3 D3C9F140 40404040 *............TESTP05
JTILLI1 *
 0080 40404040 C5D5E3D9 E7D7F0F5 F0F0F0F1 00000000 B60AF032 01359743 C7C2C9C2 *
ENTRXP050001......0...p.GBIB*
 00A0 D4C9E8C1 C9E8C1D8 E3C3F0F3 0AF030A5 4A8E0000 44800000 00000001 00000000 *MIYAIYAQTC03.0.v
$...............*
 00C0 00000000 00000000 00000000 40404040 40404040 40404040 40404040 FF6CD800
............ .%Q.
 00E0 C6D9C240 00030001 18F0CDE0 00000000 00000000 00000000 00003905 00010400
FRB0.\....................
 0100 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 0120 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 0140 00000000 00000000 00000000 00000000 00000000 00000000 98DCD110 00000000
........................q.J.....
 0160 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 0180 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 01A0 00000000 00000000 40404040 40404040 40404040 40404040 40404040 40404040
*........ *
 01C0 40404040 40404040 40404040 40404040 40404040 40404040 40404040 00000000
* *
 01E0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 0200 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 0220 00000000 00000000 00000000 00000000 00000000 00000000 00000004 18DCD2B0
..............................K.
 0240 6E6EE399 81838540 E2A38199 A3406E6E 0100035C C9C4C5D5 00000000 00000000 *>>Trace Start
>>...*IDEN........*
 0260 0200035C E2C9C7D5 00000000 00000000 0300035C C3E3C8C4 00000000 00000000
*...*SIGN...........*CTHD........*
 0280 0400035C C1D7C940 00000000 00000000 00000000 00000000 00000000 00000000
*...*API*
 02A0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 02C0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 02E0 00000000 00000000 00000000 00000000 4C4CE399 81838540 C5958440 40404C4C
................<<Trace End <<
 5-0000 00DE6EC4 C6C8C4F2 D3D6E340 40404040 E7D7F0F5 184AC080 18DF2D78 18DCD030 *..>DFHD2LOT
XP05.${.......}.*
 0020 00000000 0006EFF0 00000000 18DF2E0C 18F0CDE0 00000000 00000000 FF6CD800
.......0.........0.\.........%Q.

140 CICS TS for z/OS: Db2 Guide

 0040 00000000 00000000 00000000 00000000 00000000 E3C5E2E3 D7F0F540 010C010C
....................TESTP05
 0060 A000C000 00000000 00000000 00000000 C9E8D2F2 E9F2C7F1 B60AF030 A54A8EC0 *..
{.............IYK2Z2G1..0.v$.{*
 0080 D1E3C9D3 D3C9F140 40404040 40404040 00000000 00000000 C7C2C9C2 D4C9E8C1
JTILLI1 GBIBMIYA
 00A0 C9E8C1D8 E3C3F0F3 0AF030A5 4A8EC6D9 C2400003 000118F0 CD680000 00000000 *IYAQTC03.0.v
$.FRB0........*
 00C0 00000000 00000000 39050001 04000000 00000000 00000000 00000000 0000
*.............................. *

AP 326D D2D2 EVENT - RETURN_FROM_DB2_API_REQUEST

 TASK-00035 KE_NUM-003F TCB-L8000/007C6B90 RET-98E3321C TIME-08:32:00.7678738139
INTERVAL-00.0004037187 =000169=
 1-0000 98DCD110 00000000 00000000 00000000 00000000 00000000 00000000 00000000
q.J.............................
 2-0000 C6D9C240 00030001 18F0CDE0 00000000 00000000 00000000 00003905 00010400
FRB0.\....................
 0020 00000000 00000000 00000000 00000000
*................ *
 3-0000 E3C5E2E3 D7F0F540
*TESTP05 *
 4-0000 03006EC4 C6C8C4F2 C3E2C240 40404040 B60AF031 FAD0CB43 18D305E0 18DF2D78
..>DFHD2CSB ..0..}...L.\....
 0020 19044210 007C6B90 00000000 00000000 B60AF030 A54A8EC0 00000000 00000000 *.....@,...........0.v
$.{........*
 0040 18DF2DE4 00000000 00000000 00000000 00000000 00000000 00000000 00000000
...U............................
 0060 00000000 00000000 00000000 E3C5E2E3 D7F0F540 D1E3C9D3 D3C9F140 40404040 *............TESTP05
JTILLI1 *
 0080 40404040 C5D5E3D9 E7D7F0F5 F0F0F0F1 00000000 B60AF032 01359743 C7C2C9C2 *
ENTRXP050001......0...p.GBIB*
 00A0 D4C9E8C1 C9E8C1D8 E3C3F0F3 0AF030A5 4A8E0000 44800000 00000001 00000000 *MIYAIYAQTC03.0.v
$...............*
 00C0 00000000 00000000 00000000 40404040 40404040 40404040 40404040 FF6CD800
............ .%Q.
 00E0 C6D9C240 00030001 18F0CDE0 00000000 00000000 00000000 00003905 00010400
FRB0.\....................
 0100 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 0120 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 0140 00000000 00000000 00000000 00000000 00000000 00000000 98DCD110 00000000
........................q.J.....
 0160 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 0180 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 01A0 00000000 00000000 40404040 40404040 40404040 40404040 40404040 40404040
*........ *
 01C0 40404040 40404040 40404040 40404040 40404040 40404040 40404040 00000000
* *
 01E0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 0200 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 0220 00000000 00000000 00000000 00000000 00000000 00000000 00000005 18DCD2C0
..............................K{
 0240 6E6EE399 81838540 E2A38199 A3406E6E 0100035C C9C4C5D5 00000000 00000000 *>>Trace Start
>>...*IDEN........*
 0260 0200035C E2C9C7D5 00000000 00000000 0300035C C3E3C8C4 00000000 00000000
*...*SIGN...........*CTHD........*
 0280 0400035C C1D7C940 00000000 00000000 0500035C C1D7C940 00000000 00000000
*...*API*API*
 02A0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 02C0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 02E0 00000000 00000000 00000000 00000000 4C4CE399 81838540 C5958440 40404C4C
................<<Trace End <<

 5-0000 00DE6EC4 C6C8C4F2 D3D6E340 40404040 E7D7F0F5 184AC080 18DF2D78 18DCD030 *..>DFHD2LOT
XP05.${.......}.*
 0020 00000000 0006EFF0 00000000 18DF2E0C 18F0CDE0 00000000 00000000 FF6CD800
.......0.........0.\.........%Q.
 0040 00000000 00000000 00000000 00000000 00000000 E3C5E2E3 D7F0F540 010C010C
....................TESTP05
 0060 A000C000 00000000 00000000 00000000 C9E8D2F2 E9F2C7F1 B60AF030 A54A8EC0 *..
{.............IYK2Z2G1..0.v$.{*
 0080 D1E3C9D3 D3C9F140 40404040 40404040 00000000 00000000 C7C2C9C2 D4C9E8C1
JTILLI1 GBIBMIYA
 00A0 C9E8C1D8 E3C3F0F3 0AF030A5 4A8EC6D9 C2400003 000118F0 CD680000 00000000 *IYAQTC03.0.v
$.FRB0........*
 00C0 00000000 00000000 39050001 04000000 00000000 00000000 00000000 0000
*.............................. *

AP 3251 D2D2 EXIT - FUNCTION(DB2_API_CALL) RESPONSE(OK)

 TASK-00035 KE_NUM-003F TCB-L8000/007C6B90 RET-98E3321C TIME-08:32:00.7697274233
INTERVAL-00.0018536093 =000170=

Chapter 9. Troubleshooting Db2 141

 1-0000 00200000 00000034 00000000 00000000 B8000000 00000000 03000100 18DCD030
..............................}.
 2-0000 03006EC4 C6C8C4F2 C3E2C240 40404040 B60AF031 FAD0CB43 18D305E0 18DF2D78
..>DFHD2CSB ..0..}...L.\....
 0020 19044210 007C6B90 00000000 00000000 B60AF030 A54A8EC0 00000000 00000000 *.....@,...........0.v
$.{........*
 0040 18DF2DE4 00000000 00000000 00000000 00000000 00000000 00000000 00000000
...U............................
 0060 00000000 00000000 00000000 E3C5E2E3 D7F0F540 D1E3C9D3 D3C9F140 40404040 *............TESTP05
JTILLI1 *
 0080 40404040 C5D5E3D9 E7D7F0F5 F0F0F0F1 00000000 B60AF032 01359743 C7C2C9C2 *
ENTRXP050001......0...p.GBIB*
 00A0 D4C9E8C1 C9E8C1D8 E3C3F0F3 0AF030A5 4A8E0000 44800000 00000001 00000000 *MIYAIYAQTC03.0.v
$...............*
 00C0 00000000 00000000 00000000 40404040 40404040 40404040 40404040 FF6CD800
............ .%Q.
 00E0 C6D9C240 00030001 18F0CDE0 00000000 00000000 00000000 00003905 00010400
FRB0.\....................
 0100 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 0120 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 0140 00000000 00000000 00000000 00000000 00000000 00000000 98DCD110 00000000
........................q.J.....
 0160 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 0180 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 01A0 00000000 00000000 40404040 40404040 40404040 40404040 40404040 40404040
*........ *
 01C0 40404040 40404040 40404040 40404040 40404040 40404040 40404040 00000000
* *
 01E0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 0200 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 0220 00000000 00000000 00000000 00000000 00000000 00000000 00000005 18DCD2C0
..............................K{
 0240 6E6EE399 81838540 E2A38199 A3406E6E 0100035C C9C4C5D5 00000000 00000000 *>>Trace Start
>>...*IDEN........*
 0260 0200035C E2C9C7D5 00000000 00000000 0300035C C3E3C8C4 00000000 00000000
*...*SIGN...........*CTHD........*
 0280 0400035C C1D7C940 00000000 00000000 0500035C C1D7C940 00000000 00000000
*...*API*API*
 02A0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 02C0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 02E0 00000000 00000000 00000000 00000000 4C4CE399 81838540 C5958440 40404C4C
................<<Trace End <<
 3-0000 00DE6EC4 C6C8C4F2 D3D6E340 40404040 E7D7F0F5 184AC080 18DF2D78 18DCD030 *..>DFHD2LOT
XP05.${.......}.*
 0020 00000000 0006EFF0 00000000 18DF2E0C 18F0CDE0 00000000 00000000 FF6CD800
.......0.........0.\.........%Q.
 0040 00000000 00000000 00000000 00000000 00000000 E3C5E2E3 D7F0F540 010C010C
....................TESTP05
 0060 A000C000 00000000 00000000 00000000 C9E8D2F2 E9F2C7F1 B60AF030 A54A8EC0 *..
{.............IYK2Z2G1..0.v$.{*
 0080 D1E3C9D3 D3C9F140 40404040 40404040 00000000 00000000 C7C2C9C2 D4C9E8C1
JTILLI1 GBIBMIYA
 00A0 C9E8C1D8 E3C3F0F3 0AF030A5 4A8EC6D9 C2400003 000118F0 CDE00000 00000000 *IYAQTC03.0.v
$.FRB0.\......*
 00C0 00000000 00000000 39050001 04000000 00000000 00000000 00000000 0000
*.............................. *

AP 3181 D2EX1 EXIT - APPLICATION REQUEST - EXEC SQL FETCH

 TASK-00035 KE_NUM-003F TCB-L8000/007C6B90 RET-8009E4D0 TIME-08:32:00.7697348608
INTERVAL-00.0000074375 =000171=
 1-0000 02000000 00280800 001EE3C5 E2E3D7F0 F5401663 1BA501CD D1DC0002 18F0BA40
*..........TESTP05 ...v..J....0. *
 0020 00000000 18F0CDB0 018D0004
*.....0...... *
 2-0000 00DE6EC4 C6C8C4F2 D3D6E340 40404040 E7D7F0F5 184AC080 18DF2D78 18DCD030 *..>DFHD2LOT
XP05.${.......}.*
 0020 00000000 0006EFF0 00000000 18DF2E0C 18F0CDE0 00000000 00000000 FF6CD800
.......0.........0.\.........%Q.
 0040 00000000 00000000 00000000 00000000 00000000 E3C5E2E3 D7F0F540 010C010C
....................TESTP05
 0060 A000C000 00000000 00000000 00000000 C9E8D2F2 E9F2C7F1 B60AF030 A54A8EC0 *..
{.............IYK2Z2G1..0.v$.{*
 0080 D1E3C9D3 D3C9F140 40404040 40404040 00000000 00000000 C7C2C9C2 D4C9E8C1
JTILLI1 GBIBMIYA
 00A0 C9E8C1D8 E3C3F0F3 0AF030A5 4A8EC6D9 C2400003 000118F0 CDE00000 00000000 *IYAQTC03.0.v
$.FRB0.\......*
 00C0 00000000 00000000 39050001 04000000 00000000 00000000 00000000 0000
*.............................. *
 3-0000 00
*. *
 4-0000 E2D8D3C3 C1404040 00000088 00000000 00004040 40404040 40404040 40404040
*SQLCA ...h...... *

142 CICS TS for z/OS: Db2 Guide

 0020 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040
* *
 0040 40404040 40404040 40404040 40404040 40404040 40404040 C4E2D540 40404040
* DSN *
 0060 00000000 00000000 00000000 FFFFFFFF 00000000 00000000 40404040 40404040
*........................ *
 0080 404040F0 F0F0F0F0 *
00000 *
 5-0000 00C86EC4 C6C8C4F2 C5D5E340 40404040 E7D7F0F5 40404040 B60AF017 63D17AC6 *.H>DFHD2ENT
XP05 ..0..J:F*
 0020 E3C5E2E3 D7F0F540 00000000 00000000 00000000 00000000 D1E3C9D3 D3C9F140
*TESTP05JTILLI1 *
 0040 00808080 80000000 67E939C4 B0188B86 B60AF017 63D17AC6 0000000C 00000003
.........Z.D...f..0..J:F........
 0060 00000001 00000001 00000000 00000000 00000001 00000001 00000000 00000000
................................
 0080 00000000 00000002 00000001 00000000 00000000 00000000 00000000 00000000
................................
 00A0 00000000 00000000 00000000 00000000 18DCD030 00000000 00000000 19044210
..................}.............
 00C0 00000000 00000000
*........ *
 6-0000 03006EC4 C6C8C4F2 C3E2C240 40404040 B60AF031 FAD0CB43 18D305E0 18DF2D78
..>DFHD2CSB ..0..}...L.\....
 0020 19044210 007C6B90 00000000 00000000 B60AF030 A54A8EC0 00000000 00000000 *.....@,...........0.v
$.{........*
 0040 18DF2DE4 00000000 00000000 00000000 00000000 00000000 00000000 00000000
...U............................
 0060 00000000 00000000 00000000 E3C5E2E3 D7F0F540 D1E3C9D3 D3C9F140 40404040 *............TESTP05
JTILLI1 *
 0080 40404040 C5D5E3D9 E7D7F0F5 F0F0F0F1 00000000 B60AF032 01359743 C7C2C9C2 *
ENTRXP050001......0...p.GBIB*
 00A0 D4C9E8C1 C9E8C1D8 E3C3F0F3 0AF030A5 4A8E0000 44800000 00000001 00000000 *MIYAIYAQTC03.0.v
$...............*
 00C0 00000000 00000000 00000000 40404040 40404040 40404040 40404040 FF6CD800
............ .%Q.
 00E0 C6D9C240 00030001 18F0CDE0 00000000 00000000 00000000 00003905 00010400
FRB0.\....................
 0100 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 0120 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 0140 00000000 00000000 00000000 00000000 00000000 00000000 98DCD110 00000000
........................q.J.....
 0160 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 0180 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 01A0 00000000 00000000 40404040 40404040 40404040 40404040 40404040 40404040
*........ *
 01C0 40404040 40404040 40404040 40404040 40404040 40404040 40404040 00000000
* *
 01E0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 0200 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 0220 00000000 00000000 00000000 00000000 00000000 00000000 00000005 18DCD2C0
..............................K{
 0240 6E6EE399 81838540 E2A38199 A3406E6E 0100035C C9C4C5D5 00000000 00000000 *>>Trace Start
>>...*IDEN........*
 0260 0200035C E2C9C7D5 00000000 00000000 0300035C C3E3C8C4 00000000 00000000
*...*SIGN...........*CTHD........*
 0280 0400035C C1D7C940 00000000 00000000 0500035C C1D7C940 00000000 00000000
*...*API*API*
 02A0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 02C0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 02E0 00000000 00000000 00000000 00000000 4C4CE399 81838540 C5958440 40404C4C
................<<Trace End <<

AP 2523 ERM EVENT REGAINING-CONTROL-FROM-OPENAPI-TRUE(DSNCSQL)

 TASK-00035 KE_NUM-003F TCB-L8000/007C6B90 RET-99902F92 TIME-08:32:00.7697405327
INTERVAL-00.0000056718 =000172=
 1-0000 01
*. *
 2-0000 C4E2D5C3 E2D8D340
*DSNCSQL *
 3-0000 B60AF030 A54A8EC0 *..0.v$.
{ *
 4-0000 18CCB654 0006F004 19044204 00000000 007A8000 007A8000 18F0005C 18F0CCD0
......0..........:...:...0..0.}*
 0020 190441C0 19044210 19044206 18F000D0 19044200 18CCBCA0 190441C8 190441B0 *...
{.........0.}...........H....*
 0040 190441AC 190441EC 18CCB5F3 190441FD 18CCB5F4 190441B4 190441B2 00020000
...........3.......4............
 5-0000 D3F8
*L8 *

AP 2521 ERM EXIT PLI-APPLICATION-CALL-TO-TRUE(DSNCSQL)

 TASK-00035 KE_NUM-003F TCB-L8000/007C6B90 RET-99902F92 TIME-08:32:00.7697463608

Chapter 9. Troubleshooting Db2 143

INTERVAL-00.0000058281 =000173=
 1-0000 01
*. *
 2-0000 C4E2D5C3 E2D8D340
*DSNCSQL *
 3-0000 B60AF030 A54A8EC0 *..0.v$.
{ *
 4-0000 E3C5E2E3 D7F0F540 00000001 00100000 19900000 999000E0 000114E0 00000000
TESTP05r..\...\....
 0020 00000020 00007BB0 00000000 98400000 0040000A 00101100 00000000 00000000
......#.....q
 0040 00000000 00000000 00000000
*............ *

CSUB trace
The CSUB is the connection control block that CICS uses to manage, and exchange information about, a
thread into Db2. It is the CICS equivalent to the Db2 connection control block. The CSUB is linked to the
thread TCB that CICS uses to run the thread.

See Overview: How CICS connects to Db2 for a full explanation of the relationship between the CSUB, the
Db2 connection control block and the thread TCB.

In addition to using CICS tracing, DFHD2D2 maintains a trace table at the end of the CSUB control block
to record the requests it makes to Db2, and the responses to those requests.

The CSUB trace table is 160 bytes in length allowing ten entries of 16 bytes to be written. The trace table
wraps when all ten entries have been used. The format of each trace entry is shown in Table 15 on page
144.

Table 15. Layout of CSUB trace table entry

Bytes Content Information

Bytes 0-3 Trace request
number

Fullword number of the trace entry written. The number is used to
find the latest entry written.

Bytes 4-7 Trace request Four-character representation of the Db2 request issued. Possible
values are:

ABRT - Abort request
API - SQL or IFI request
ASSO - Associate request
COMM - Commit request
CTHD - Create thread request
DISS - Dissociate request
ERRH - Error handler request
IDEN - Identify request
PREP - Prepare request
PSGN - Partial sign-on request
SIGN - Full sign-on request
SYNC - Single phase request
TERM - Terminate thread request
TIDN - Terminate identify request
TSGN - Terminate sign-on request
*REC - Recovery routine entered

Bytes 8-9 reserved

Bytes 10-11 frb or ifc return code Two-byte return code

Bytes 12-15 frb or ifc reason
code

Four-byte reason code

The CSUB control block is formatted in a CICS system dump. It is also output in traces from CICS task-
related user exit DFHD2EX1 when RI (RMI) level 2 trace is active and in all exception traces from
DFHD2EX1.

144 CICS TS for z/OS: Db2 Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/database/dfhtk5z.html

Figure 38 on page 145 shows that an identify thread, a signon thread, and a create thread have been
issued to Db2. There is an API request, followed by a syncpoint and a dissociate (which dissociates the
Db2 connection control block from the L8 TCB). The transaction now makes another API request, starting
another unit of work, and the Db2 connection control block is reassociated (ASSO) with the L8 TCB. A
partial sign-on occurs to create an accounting record for the previous unit of work. The API request is now
issued to Db2.

6-0000 03206EC4 C6C8C4F2 C3E2C240 40404040 CFE6D380 716D6B32 2B0A1300 2B0D36C0
..>DFHD2CSB .WL.._,........{
 0020 2C6A8370 0098DC88 00000000 00000000 CFE6D381 5F3C62FE 00000000 00000000
..c..q.h.........WLa¬...........
 0040 2B0D372C 00000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 0060 00000000 00000000 00000000 E3C5E2E3 D7F0F540 C3C9C3E2 E4E2C5D9 40404040 *............TESTP05
CICSUSER *
 0080 40404040 C5D5E3D9 E7D7F0F5 F0F0F0F1 00000000 CFE6D380 742927E2 C7C2C9C2 *
ENTRXP050001.....WL....SGBIB*
 00A0 D4C9E8C1 C9E8C3E6 E3F1F5F0 E6D37E22 16AC8000 44A00000 00000001 C3C9C3E2
MIYAIYCWT150WL=.............CICS
 00C0 E4E2C5D9 40404040 40404040 40404040 40404040 40404040 40404040 FF4EA000
USER .+..
 00E0 C6D9C240 00030001 2AF0DCB0 00000000 00000000 00000000 00180A05 00010000
FRB0......................
 0100 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 0120 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 0140 00000000 00000000 00000000 00000000 00000000 00000000 ACB8C110 00000000
..........................A.....
 0160 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 0180 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 01A0 00000000 00000000 00000000 00000000 40404040 40404040 40404040 40404040
*................ *
 01C0 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040
* *
 01E0 40404040 00000001 00000048 42600048 2C6511B8 00000000 00000000 00000000
* -..................*
 0200 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 0220 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
................................
 0240 00000000 00000000 00000000 00000000 00000000 00000000 0000000C 2CB8C2B0
..............................B.
 0260 6E6EE399 81838540 E2A38199 A3406E6E 0100067C C9C4C5D5 00000000 00000000 *>>Trace Start
>>....IDEN........*
 0280 0200067C E2C9C7D5 00000000 00000000 0300067C C3E3C8C4 00000000 00000000
....SIGN............CTHD........
 02A0 0400067C C1D7C940 00000000 00000000 0500067C E2E8D5C3 00000000 00000000
....APISYNC........
 02C0 0600067C C4C9E2E2 00000000 00000000 0700067C C1E2E2D6 00000000 00000000
....DISS............ASSO........
 02E0 0800067C D7E2C7D5 00000000 00000000 0900067C C1D7C940 00000000 00000000
....PSGN............API
 0300 00000000 00000000 00000000 00000000 4C4CE399 81838540 C5958440 40404C4C *................<

Figure 38. Sample CSUB trace — CICS connected to Db2

CSUB Abend information
If a CICS-Db2 subtask abends, as part of the recovery process, CICS saves information from the MVS
SDWA in the CSUB control block.

For example, the CSB_SDWA_REGS (regs 0 -15) and the CSB_SDWA_PSW fields. The CSB_SDWA_REGS is
the 16 words following the SDWA eye catcher. The CSB_SDWA_PSW field is the two words following the
CSB_SDWA_REGS field. Although the CSUB is typically cleared by the FREEMAIN function following the
failure, the exception trace written at the time of failure, AP 319D, captures the CSUB control block
containing the SDWA information.

Chapter 9. Troubleshooting Db2 145

Dump for CICS Db2
Control blocks from the CICS Db2 attachment facility are formatted out in a CICS system dump under the
control of the Db2 keyword of the CICS IPCS verbexit.

The Db2 keyword can specify the following values:

• 0 - no Db2 output
• 1 - summary information only
• 2 - control blocks only
• 3 - summary and control blocks

In a CICS transaction dump, no summary or control blocks appear but the trace table contains the CICS
Db2 trace entries.

A sample showing CICS Db2 summary information from a CICS system dump is shown in Figure 39 on
page 146. The sample provides information on the global state of the CICS Db2 connection, and a
summary of transactions (under the headings Tran id, Task num, TcaAddr, TieAddr, LotAddr, Rctename,
RcteAddr, CsubAddr, Correlation id, Uowid, Subtask running, and TCB in DB2). This sample was output
when CICS was connected to DB2 Version 6 using the open transaction environment.

===DB2: CICS/DB2 - SUMMARY
==DB2: GLOBAL STATE SUMMARY
 Db2conn name: RCTJT
 Connection status: Connected
 In standby mode: No
 DB2 id: DE2D
 DB2 Group id:
 DB2 release: 0610
 Operating in OpenAPI mode: Yes
 Service task started: Yes
 Master subtask started: No - not required
 Tcb limit: 12
 Currently active tcbs: 2
 Message Queue1: CDB2
 Message Queue2:
 Message Queue3:
 Statistics Queue: CDB2
 Standbymode: Reconnect
 Connecterror: Sqlcode
==DB2: TRANSACTION SUMMARY
Tran Task TcaAddr TieAddr LotAddr Rctename RcteAddr CsubAddr Correlation Uowid Subtask TCB
id num id running in DB2
--
XP05 00050 184AB680 190442F0 19044370 XP05 18DF2D78 18D10330 ENTRXP050002 B60A17A16316E1C7 N/A Yes
XP05 00048 184AC680 19044190 19044210 XP05 18DF2D78 18D10030 ENTRXP050001 B60A1794A7A9E7C4 N/A No

Figure 39. Dump example

Db2 thread identification
A thread executing in Db2 on behalf of a CICS transaction is identified by its correlation ID, which is set by
the CICS Db2 Attachment Facility.

Db2 allows up to 12 bytes to be used for the correlation ID.

The format 12 byte correlation ID is made up as eeeettttnnnn where eeee is either COMD, POOL or ENTR
indicating whether it is a command, pool or DB2ENTRY thread; tttt is the transid, and nnnn is a unique
number.

Note: A correlation ID passed to Db2 can be changed only by the CICS Attachment Facility issuing a sign-
on to Db2. If sign-on reuse occurs by a thread using a primary authorization ID which remains constant
across multiple transactions (for example, by using AUTHID(name)) only one sign-on will occur. In this
instance the tttt in the correlation ID does not match the running transaction ID. It is the ID of the
transaction for which the initial sign-on occurred.

Transaction abend codes for CICS Db2
The CICS Db2 attachment facility uses multiple abend codes, each of which is unique to a particular error.

The transaction abend codes are AD2x or AD3x. They are documented in Transaction abend codes and
are available using the CICS-supplied transaction, CMAC.

146 CICS TS for z/OS: Db2 Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-abend-codes/abend-codes/dfhg4k3.html

Execution Diagnostic Facility (EDF) for CICS Db2
The CICS Db2 task-related user exit, DFHD2EX1, is enabled with the FORMATEDF keyword and is called
by CICS to format the screen for SQL API requests when the transaction is being run under EDF.

In EDF mode, the CICS Db2 attachment facility:

• Stops on every EXEC SQL command and deciphers the SQL statement showing it in a file on the panel
• Shows the results before and after SQL calls are processed
• Displays the following:

– The type of SQL statement.
– Any input and output variables.
– The contents of the SQLCA.
– Primary and secondary authorization IDs. (This helps diagnose SQLCODE -922.)

An EDF panel displays a maximum of 55 variables, which is about ten screens. Each EDF SQL session
requires 12KB of CICS temporary storage, which is freed on exit from EDF.

EDF screens for SQL statements are shown in Figure 40 on page 147, and Figure 41 on page 148.

TRANSACTION: XC05 PROGRAM: TESTC05 TASK:0000097 APPLID: CICS41 DISPLAY:00
 STATUS: ABOUT TO EXECUTE COMMAND

 EXEC SQL OPEN
 DBRM=TESTC05, STMT=00221, SECT=00001

 OFFSET: X'001692' LINE: UNKNOWN EIBFN=X'0E0E'

ENTER:
PF1 : UNDEFINED PF2 : UNDEFINED PF3 : UNDEFINED
PF4 : PF5 : PF6 :
PF7 : PF8 : PF9 :
PF10: PF11: UNDEFINED PF12:

Figure 40. EDF example of the "before" SQL EXEC panel

Chapter 9. Troubleshooting Db2 147

TRANSACTION: XC05 PROGRAM: TESTC05 TASK:0000097 APPLID: CICS41 DISPLAY:00
 STATUS: COMMAND EXECUTION COMPLETE
 CALL TO RESOURCE MANAGER DSNCSQL
 EXEC SQL OPEN P.AUTH=SYSADM , S.AUTH=
 PLAN=TESTC05, DBRM=TESTC05, STMT=00221, SECT=00001
 SQL COMMUNICATION AREA:
 SQLCABC = 136 AT X'03907C00'
 SQLCODE = -923 AT X'03907C04'
 SQLERRML = 070 AT X'03907C08'
 SQLERRMC = ' ACCESS,00000000,00000000, '... AT X'03907C0A'
 SQLERRP = 'DSNAET03' AT X'03907C50'
 SQLERRD(1-6) = 000, 000, 00000, 0000000000, 00000, 000 AT X'03907C58'
 SQLWARN(0-A) = '_ _ _ _ _ _ _ _ _ _ _' AT X'03907C70'
 SQLSTATE = 57015 AT X'03907C7B'

 OFFSET: X'001692' LINE: UNKNOWN EIBFN=X'0E0E'

ENTER: CONTINUE
PF1 : UNDEFINED PF2 : UNDEFINED PF3 : END EDF SESSION
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY
PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
PF10: PREVIOUS DISPLAY PF11: UNDEFINED PF12: ABEND USER TASK

Figure 41. EDF example of the "after" SQL EXEC panel

Handling deadlocks in the CICS Db2 environment
Deadlocks can occur in a CICS Db2 system between two or more transactions or between one transaction
and another Db2 user. Deadlocks can involve one or two resources.

About this task

This section covers deadlocks only within Db2. If Db2 resources are involved in this type of deadlock, one
of the partners in the deadlock times out according to the user-defined IRLM parameters. Other possible
deadlocks are where resources outside Db2 are involved.

Deadlocks are expected to occur, but not too often. Give special attention to deadlock in the following
situations:

• Other transactions are often delayed because they access resources held by the partners in the
deadlock. This increases the response times for these transactions, which can result in a cascade.

• The resources involved in the deadlock are expected to be used more intensively in the future, because
of an increased transaction rate either for the transactions involved in the deadlock or for other
transactions.

The IRLM component of the Db2 subsystem performs deadlock detection at user-defined intervals. One
of the partners in the deadlock is the victim and receives a -911 or a -913 return code from Db2. The
actual return code is determined by the DROLLBACK parameter for the DB2CONN (if a transaction is using
a pool thread) or the DB2ENTRY used by the transaction. When DROLLBACK(YES) is specified, the
attachment facility initiates a SYNCPOINT ROLLBACK before returning control to the application.
Additionally the attachment facility changes the SQL return code returned by Db2 from -913 to -911, and
returns -911 to the application. The other partner continues processing after the victim is rolled back.

To solve deadlock situations, you must perform a number of activities. Solving deadlocks means applying
changes somewhere in the system to reduce the deadlock likelihood.

The following steps are often necessary for solving a deadlock situation:

1. Detect the deadlock.
2. Find the resources involved.
3. Find the SQL statements involved.
4. Find the access path used.
5. Determine why the deadlock occurred.

148 CICS TS for z/OS: Db2 Guide

6. Make changes to avoid it.

Related concepts
“Troubleshooting Db2” on page 135
This section discusses problem determination for CICS Db2.
“Thread TCBs (task control blocks)” on page 135
In the CICS Db2 environment, each thread into Db2 runs under a thread task control block (TCB). This
section provides further technical information about thread TCBs, to assist with problem determination.
“Wait types for CICS Db2” on page 135
The CICS Db2 task-related user exit, DFHD2EX1, issues WAIT_MVS calls for different purposes. These
calls are distinguished by their resource name and type values. The resource name and resource type
values are visible in the dispatcher section of a CICS system dump and also appear on the CEMT
INQUIRE TASK panel as Hty and Hva values respectively.
“Messages for CICS Db2” on page 137
Messages issued by the CICS Db2 attachment facility use the DFHDB prefix which is also used for CICS
DBCTL messages. Message numbers are in the range 2000 through 2999 and are reserved for CICS Db2.
Thus CICS Db2 attachment messages are of the form DFHDB2xxx.
“Trace for CICS Db2” on page 138
The CICS Db2 attachment facility uses AP domain trace points in the range 3100 to 33FF.
“Dump for CICS Db2” on page 146
Control blocks from the CICS Db2 attachment facility are formatted out in a CICS system dump under the
control of the Db2 keyword of the CICS IPCS verbexit.
“Db2 thread identification” on page 146
A thread executing in Db2 on behalf of a CICS transaction is identified by its correlation ID, which is set by
the CICS Db2 Attachment Facility.
“Transaction abend codes for CICS Db2” on page 146
The CICS Db2 attachment facility uses multiple abend codes, each of which is unique to a particular error.
“Execution Diagnostic Facility (EDF) for CICS Db2” on page 147
The CICS Db2 task-related user exit, DFHD2EX1, is enabled with the FORMATEDF keyword and is called
by CICS to format the screen for SQL API requests when the transaction is being run under EDF.

Two deadlock types
A deadlock within Db2 can occur when two transactions are both holding a lock wanted by the other
transaction.

In a Db2 environment, two deadlock types can occur when:

• Two resources are involved. Each transaction has locked one resource and wants the other resource in
an incompatible mode. The resources are typically index pages and data pages. This is the classic
deadlock situation.

• Only one resource is involved. The main purpose of update (U) locks is to reduce the number of
situations where a lock promotion caused the deadlock. The U-lock has solved most of these situations,
but it is still possible in specific situations to have a deadlock with only one resource involved, because
the resource can be locked in more than one way.

A typical example of this is when a transaction opens a cursor with the ORDER BY option and uses an
index to avoid the sort. When a row in a page is fetched, Db2 takes a share (S) lock at that page. If the
transaction then issues an update without a cursor for the row last fetched, the S-lock is promoted to an
exclusive (X) lock.

If two of these transactions run concurrently and both get the S-lock at the same page before taking the
X-lock, a deadlock occurs.

Chapter 9. Troubleshooting Db2 149

Detecting deadlocks
Deadlock information is available in the Db2 performance trace or in the MVS log.

About this task

In a normal production environment running without Db2 performance traces activated, the easiest way
to get information about a deadlock is to scan the MVS log to find the messages shown in Figure 42 on
page 150.

 DSNT375I PLAN p1 WITH CORRELATION ID id1
 AND CONNECTION ID id2 IS DEADLOCKED with
 PLAN p2 WITH CORRELATION ID id3
 AND CONNECTION ID id4.

 DSNT501I DSNILMCL RESOURCE UNAVAILABLE
 CORRELATION-ID=id1,CONNECTION-ID=id2
 REASON=r-code
 TYPE name
 NAME name

Figure 42. Deadlock messages

From these messages, both partners in the deadlock are identified. The partners are given by both plan
name and correlation ID.

Also, a second message identifies the resource that the victim could not obtain. The other resource
(whether it is the same or not) is not displayed in the message.

Finding the resources involved
To find the other resources involved in a deadlock, you might have to activate a Db2 performance trace
and recreate the deadlock.

Suppose that the reason for solving the deadlock is that the number of deadlocks is too high. Normally
recreating the deadlock after the trace is started is a minor problem.

Limit the Db2 performance trace to the two plans indicated in the MVS log message. Limiting the trace to
the two CICS transaction IDs (authorization IDs) involved can also be reasonable. Include class(06) for
general locking events and class(03) for SQL events in the performance trace . The Db2 Performance
Monitor (DB2PM) is a useful tool to format the trace output. The DB2PM lock contention report and the
lock suspension report can assist in determining the resources involved in the deadlock.

If the output from the DB2PM reports is too large, you can develop a user program to analyze the output
from the traces. The goal is to find the resources involved in the deadlock and all the SQL statements
involved.

Finding the SQL statements involved
A deadlock can involve many SQL statements. Often solving the deadlock requires finding all SQL
statements.

About this task

If the resources involved are identified from the lock traces, you can find the involved SQL statements in
an SQL trace report by combining the timestamps from both traces.

Finding the access path used
To find the access path used by the SQL statements involved in the deadlock, use the EXPLAIN option of
Db2 for the corresponding plans.

150 CICS TS for z/OS: Db2 Guide

Determining why the deadlock occurred
Identifying the SQL statements and the resources involved in the deadlock, and finding the access path
will typically show you why the deadlock occurred. Knowledge of why the deadlock occurred can help you
to develop a solution. However; this process can be time-consuming.

Resolving deadlocks
You must try to understand why deadlock occurred so that you can choose the right action to solve the
deadlock.

About this task

In general, a deadlock occurs because two or more transactions both want the same resources in
opposite order at the same time and in a conflicting mode. The actions taken to prevent a deadlock must
deal with these characteristics.

Table 16 on page 151 shows a list of preventive actions and the corresponding main effects.

Table 16. Deadlock prevention

Actions Spread
Resources

Change the
Locking Order

Decrease
Concurrency

Change
Locking Mode

Increase Index Freespace X

Increase Index Subpage Size X

Increase TS Freespace X

Change Clustering Index X X

Reorg the Table Space X X X

Add an Index X X (1)

Drop an Index X

Serialize the Transactions X

Use additional COMMITS X

Minimize the Response Time X

Change Isolation Level (2) X X

Redesign Application X X X X

Redesign Database X X X X

Notes:

1. Due to changes in access path.
2. Cursor stability is usually better than repeatable read.

To choose the right action, you must first understand why the deadlock occurred. Then you can evaluate
the actions to make your choices. These actions can have several effects. They can:

• Solve the deadlock problem
• Force a change in access path for other transactions causing new deadlocks
• Cause new deadlocks in the system.

It is therefore important that you carefully monitor the access path used by the affected transactions, for
example by the EXPLAIN facility in Db2. In many cases, solving deadlocks is an iterative process.

Chapter 9. Troubleshooting Db2 151

152 CICS TS for z/OS: Db2 Guide

Notices

This information was developed for products and services offered in the U.S.A. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property rights may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
United States of America

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119 Armonk,
NY 10504-1785
United States of America

© Copyright IBM Corp. 1974, 2020 153

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Programming License Agreement, or
any equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Programming interface information

CICS supplies some documentation that can be considered to be Programming Interfaces, and some
documentation that cannot be considered to be a Programming Interface.

Programming Interfaces that allow the customer to write programs to obtain the services of CICS
Transaction Server for z/OS, Version 5 Release 6 are included in the following sections of the online
product documentation:

• Developing applications
• Developing system programs
• CICS TS security
• Developing for external interfaces
• Application development reference
• Reference: system programming
• Reference: connectivity

Information that is NOT intended to be used as a Programming Interface of CICS Transaction Server for
z/OS, Version 5 Release 6 , but that might be misconstrued as Programming Interfaces, is included in the
following sections of the online product documentation:

• Troubleshooting and support
• CICS TS diagnostics reference

If you access the CICS documentation in manuals in PDF format, Programming Interfaces that allow the
customer to write programs to obtain the services of CICS Transaction Server for z/OS, Version 5 Release
6 are included in the following manuals:

• Application Programming Guide and Application Programming Reference
• Business Transaction Services
• Customization Guide

154 Notices

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/developing_sysprogs.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/security.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/interfaces/externalInterfaces.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-applications/reference-programming.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/home/reference-systemprogramming.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-connectivity/reference-connections.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/troubleshooting.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/home/reference-diagnostics.html

• C++ OO Class Libraries
• Debugging Tools Interfaces Reference
• Distributed Transaction Programming Guide
• External Interfaces Guide
• Front End Programming Interface Guide
• IMS Database Control Guide
• Installation Guide
• Security Guide
• Supplied Transactions
• CICSPlex SM Managing Workloads
• CICSPlex SM Managing Resource Usage
• CICSPlex SM Application Programming Guide and Application Programming Reference
• Java Applications in CICS

If you access the CICS documentation in manuals in PDF format, information that is NOT intended to be
used as a Programming Interface of CICS Transaction Server for z/OS, Version 5 Release 6 , but that
might be misconstrued as Programming Interfaces, is included in the following manuals:

• Data Areas
• Diagnosis Reference
• Problem Determination Guide
• CICSPlex SM Problem Determination Guide

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Apache, Apache Axis2, Apache Maven, Apache Ivy, the Apache Software Foundation (ASF) logo, and the
ASF feather logo are trademarks of Apache Software Foundation.

Gradle and the Gradlephant logo are registered trademark of Gradle, Inc. and its subsidiaries in the
United States and/or other countries.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon,
Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or
its subsidiaries in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the
exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Red Hat®, and Hibernate® are trademarks or registered trademarks of Red Hat, Inc. or its subsidiaries in
the United States and other countries.

Spring Boot is a trademark of Pivotal Software, Inc. in the U.S. and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Notices 155

https://www.ibm.com/legal/copytrade.shtml

Zowe™, the Zowe logo and the Open Mainframe Project™ are trademarks of The Linux Foundation.

Terms and conditions for product documentation

Permissions for the use of these publications are granted subject to the following terms and conditions.
Applicability

These terms and conditions are in addition to any terms of use for the IBM website.
Personal use

You may reproduce these publications for your personal, noncommercial use provided that all
proprietary notices are preserved. You may not distribute, display or make derivative work of these
publications, or any portion thereof, without the express consent of IBM.

Commercial use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications,
or reproduce, distribute or display these publications or any portion thereof outside your enterprise,
without the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted,
either express or implied, to the publications or any information, data, software or other intellectual
property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are
not being properly followed.

You may not download, export or re-export this information except in full compliance with all
applicable laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-
INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM online privacy statement

IBM Software products, including software as a service solutions, (Software Offerings) may use cookies or
other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below:

For the CICSPlex SM Web User Interface (main interface):
Depending upon the configurations deployed, this Software Offering may use session and persistent
cookies that collect each user’s user name and other personally identifiable information for purposes
of session management, authentication, enhanced user usability, or other usage tracking or functional
purposes. These cookies cannot be disabled.

For the CICSPlex SM Web User Interface (data interface):
Depending upon the configurations deployed, this Software Offering may use session cookies that
collect each user's user name and other personally identifiable information for purposes of session
management, authentication, or other usage tracking or functional purposes. These cookies cannot be
disabled.

For the CICSPlex SM Web User Interface ("hello world" page):
Depending upon the configurations deployed, this Software Offering may use session cookies that
collect no personally identifiable information. These cookies cannot be disabled.

For CICS Explorer:
Depending upon the configurations deployed, this Software Offering may use session and persistent
preferences that collect each user’s user name and password, for purposes of session management,

156 Notices

authentication, and single sign-on configuration. These preferences cannot be disabled, although
storing a user's password on disk in encrypted form can only be enabled by the user's explicit action
to check a check box during sign-on.

If the configurations deployed for this Software Offering provide you, as customer, the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM Privacy Policy and IBM Online Privacy Statement, the section entitled Cookies, Web Beacons and
Other Technologies and the IBM Software Products and Software-as-a-Service Privacy Statement.

Notices 157

https://www.ibm.com/privacy
https://www.ibm.com/privacy/details
https://www.ibm.com/software/info/product-privacy

158 CICS TS for z/OS: Db2 Guide

Index

A
abends

AD2x and AD3x 146
AEY9 88
avoiding AEY9 abends 88
transaction abend codes 146

accounting 58, 119
Accounting

combinations in one record 125
combining CICS and Db2 records 122

accounting processor time, CLASS 1 and CLASS 2 132
accounting trace 127
ADDMEM operand 49
address spaces

DSN1DBM1 2
DSN1DIST 2
DSN1IRLMPROC 2
DSN1MSTR 2
DSN1SPAS 2

AEY9 88
application architecture 66
application design

avoiding abends 88
BIND options 103
CICS Db2 design criteria 65
converting CICS applications 69
dynamic plan exits 72
exit program 74
held cursors 87
locking strategy 79
making application programs threadsafe 80
overview 65
packages 68
page contention 85
RETURN IMMEDIATE command 87
security 65
sequential insertion 86
SQL language 80
SQL statements in application design 83
switching CICS transaction codes 75
table-controlled program flow 76
table-controlled program flow technique 76
transaction grouping 72
updating index columns 84
using packages 68

attachment commands 1
authorization IDs, primary 57
authorization IDs, secondary 59
AUTHTYPE security 50
AUTHTYPE values for security

authorization ID 53
group ID 53
sign ID from DB2CONN 53
terminal ID 53
transaction ID 53
user ID 53

auxiliary trace facility 115

B
bind options

bind options
cursor stability 104

cursor stability 104
isolation level 104
RELEASE(COMMIT) 16
repeatable read 104
validation 104

BIND options
in application design 103
in program preparation 103
RETAIN 104

bind process
following a program change 103
options and considerations 103
overview 9

BIND time stamps 103
BMS (basic mapping support) 32

C
CEMT INQUIRE commands 28
CEMT SET commands 28
CICS attachment facility

attachment commands 1
monitoring 111
overview 1

CICS command security
VCICSCMD general resource class 49

CICS DB2
automatic connection 25
operations 25
sample group DFH$DB2 32

CICS Db2 application program
overview 7

CICS Db2 attachment facility
command threads 4
entry threads 4
multithread connections 4
overview 4
pool threads 5
resource manager interface (RMI) 1
SQL request 1
threads 4

CICS DB2 connection
defined using RDO 11

CICS Db2 environment
preparation 99
testing 99

CICS DB2 interface
overview 1

CICS Db2 resource definition
overview 11

Index 159

CICS Db2 statistics 112
CICS Performance Analyzer 109
CICS resource security

XCICSDB2 general resource class 48
CICS security 46
CICS system dump in problem determination 146
CICS transaction codes, switching 75
CICS-supplied information for accounting

monitor data 109
SMF (system management facility) 109
statistics data 109

CICS-supplied transactions
DSNC transactions 30
system programming using CEMT 30

CLASS 1 processor time 128
CLASS 2 processor time 128
command authorization

Db2 60
command recognition characters 29
command threads 4
commit processing 16
CONNECTERROR command 89
connection authorization 54
connection exit routine 55
CONNECTST 88
conversion projects 75
converting CICS applications 69
coordinating DB2CONN, DB2ENTRY, BIND options 22
correlation ID 36, 146
CPRMPLAN 74
CREATE TABLESPACE

LOCKSIZE 79
CSUB trace 144
cursor table (CT) 15
CURSOR with HOLD option 87
customization

dynamic plan switching 76

D
Db2 accounting facility 119
Db2 accounting procedure

relating Db2 accounting data to CICS records 122
Db2 accounting reports 121
Db2 catalogs

SYSIBM.SYSDBRM table 77
SYSPLAN and SYSDBRM 77

DB2 commands 29
Db2 security

accounting 58
authorization to execute a plan 61
establishing authorization IDs 57, 59
primary authorization ID 54
secondary authorization ID 54
security mechanisms 47

Db2 thread serialization 85
Db2-supplied information for accounting

traces 109
DB2CONN 11
DB2CONN message parameters 137
DB2ENTRY 11
DB2SQLJPLANNAME 74
DB2TRAN 11
DBRMs, production of 101

DCLGEN operations 105
deadlock detection 150
deadlock types 149
deadlocks 148
defining DB2CONN, DB2ENTRY, DB2TRAN for RDO 11
design criteria 65
DFH0STAT report

statistics summary report 113
DFHD2PXT, sample exit program 73
DISCONNECT attachment facility command 33
disconnecting CICS and DB2 25
DISPLAY attachment facility command 34
DISPLAY STATISTICS output 36
DSN3SATH sample 55
DSN3SSGN sample 59
DSNC transactions

DISCONNECT 30, 33
DISPLAY 30, 34
MODIFY 30, 37
STOP 30, 39
STRT 30, 41

DSNCUEXT, sample exit program 73
DSNJCC 74
DSNTIAR 102
dynamic plan exits

considerations when using JDBC or SQLJ 74
overview 9

dynamic plan selection
requirement for pool thread 76

dynamic plan switching 70

E
EDF 147
EDF panel for SQL statements. 147
enqueue and dequeue 85
entry threads 4
EXEC CICS INQUIRE and SET commands 28
EXEC CICS RETURN IMMEDIATE command 87
EXEC SQL COMMIT 84
EXPLAIN 106
EXTRACT EXIT program 88

F
frequency of updates 86

G
GETPAGE 120
global trace records 110
GRANT command 60, 106
group attach

and indoubt UOWs 26
DB2GROUPID attribute 13
RESYNCMEMBER 26

GTF (generalized trace facility) 30, 109, 116

H
handling deadlocks 148
held cursors 16, 87
hot spots, examples 85

160 CICS TS for z/OS: Db2 Guide

I
indoubt UOWs

resolution 26
IRLM component 148
isolation level 104

J
JDBC

autocommit 97
CICS abends 97
syncpoint 97

JDBC profile 74
JDBC support 74

L
L8 mode open TCB 80
lock escalation 79
LOCK TABLE statement 80
locking mechanism, Db2 79
locking strategy 79
LOCKSIZE 79

M
MAXOPENTCBS system initialization parameter 14
messages in problem determination 137
MODIFY attachment facility command 37
MODIFY TRACE command 110
monitoring data 109
monitoring DB2 116
monitoring the attachment facility

CICS transactions 111, 115
functions 28
performance 112
tools 111
using CEMT commands 28
using EXEC CICS commands 28

multithread connections 4

N
NUMLKTS 79

O
open TCBs

accounting 134
application programs on 80
as thread TCBs 5, 135

open transaction environment (OTE)
and application programs 80
CICS DB2 task-related user exit 80
MAXOPENTCBS system initialization parameter setting
14
processor times for transactions 134
TCBLIMIT setting 14
thread TCBs 5, 135
threadsafe applications 80

operations with CICS DB2 attachment facility
starting the CICS DB2 attachment facility 25

operations with CICS DB2 attachment facility (continued)
stopping the CICS DB2 attachment facility 25

P
package table (PT) 15
packages

advantages over dynamic plan switching 68
application design 68
converting existing applications 69
overview 9

page contention 85
performance

CICS Db2 attachment facility 112
CICS transactions 115
monitoring 110

plans
overview 9

pool threads 5, 20
problem determination

CSUB trace 144
dump 146
messages 137
trace 138
wait types 135

processor time
calculating for Db2 Version 6 or later 134
class 1 127
class 2 133
consumption 127

processor usage 127
production procedure 105
protected threads 18, 21
PROTECTNUM 19, 21

R
RACF

external security manager 45
RACF class

DSNR 54
RACF default resource profiles

VCICSCMD general resource class 49
RACF list of groups option 59
RELEASE(COMMIT) 16
repeatable read 104
resynchronization information 27
RESYNCMEMBER 26
RETAIN option 104
RETURN IMMEDIATE 87
reusing threads

security 21
RMI (resource manager interface) 1
RRCDTE sample job 48

S
sample connection exit routine (DSN3SATH) 55
sample sign-on exit routine (DSN3SSGN) 59
SASS (single address space) 54
security

AUTHTYPE 50
command security 47

Index 161

security (continued)
DB2TRAN resource security 48
defining RACF profiles 48
RACF 45
RACF class, DSNR 54
resource security 47
SASS 54
surrogate user checking 50

security, surrogate 50
sequential insertion 86
sequential number allocation 86
serialization 85
sign-on exit routine 59
single address space (SASS) 54
skeleton cursor table (SKCT) 15
skeleton package table (SKPT) 15
SMF (system management facility) 29, 116
SMF 101 record

fields 132
special registers 16
SQL

dynamic 62
qualified or unqualified 83
static 62

SQL language 83
SQL processing, main activities 15
SQL request 1
SQL return code

-501 87
-818 103
-911 148
-913 148

SQLCA formatting routine 102
SQLJ

CICS abends 97
syncpoint 97

SQLJ support for Java applications for CICS 74
STANDBYMODE command 89
statistics data 109
statistics monitoring in performance 116
statistics summary report 113
STOP attachment facility command 39
STRT attachment facility command 41
synconreturn 97
system definition parameters

PROTECTNUM 20
THREADLIMIT 20
THREADWAIT 20

system initialization parameters
PROTECTNUM 18
THREADLIMIT 18
THREADWAIT 17

system programming function using CEMT 30

T
table-controlled program flow 76
task-related user exit (TRUE) 2
TCB attach 19, 20
TCB attach, threads 18
TCBLIMIT 14
THRDA 76
thread creation 15
thread identification, Db2 146

thread release 16
thread TCBs

CSUB — CICS connection control block 5
Db2 connection control block 5
DFHD2CO module 135
DFHD2D2 module 135
in open transaction environment 5, 135

thread types
command threads 4
entry threads 4
pool threads 5

THREADLIMIT 19, 76
threads

creating, using and terminating 17
effect on performance 20
releasing 17
unprotected, for background transactions 19
unprotected, for critical transactions 19

THREADWAIT 19
time stamps 103
transaction abend codes 146
transaction definitions for issuing DB2 commands 32
tuning

CICS applications 107
two-phase commit 37
TYPE=ENTRY grouping transactions 21

U
unique indexes 84
UOW (unit of work) 26
updating index columns 84

V
VALIDATE 104
validation 104
VCICSCMD general resource class 49
VERSION keyword 106
views 84

W
wait types 135
write intents 121

X
XCICSDB2 general resource class 48
XCICSDB2 member class 48
XCTL, CICS transfer control 67

Z
ZCICSDB2 grouping class 48

162 CICS TS for z/OS: Db2 Guide

IBM®

	Contents
	About this PDF
	Chapter 1. Overview of the CICS Db2 interface
	Overview: How CICS connects to Db2
	The Db2 address spaces

	Overview: How threads work
	Thread TCBs in the open transaction environment

	Overview: Enabling CICS application programs to access Db2
	Preparing a CICS application program that accesses Db2
	The bind process
	Plans, packages and dynamic plan exits

	Chapter 2. Defining the CICS Db2 connection
	Overview: How you can define the CICS Db2 connection
	Using the Db2 group attach facility
	The MAXOPENTCBS system initialization parameter and TCBLIMIT
	What happens during SQL processing
	Thread creation
	SQL processing
	Commit processing
	Thread release
	Thread termination

	How threads are created, used, and terminated
	Protected entry threads
	Unprotected entry threads for critical transactions
	Unprotected entry threads for background transactions
	Pool threads

	Selecting thread types for optimum performance
	Selecting BIND options for optimum performance
	Coordinating your DB2CONN, DB2ENTRY, and BIND options

	Chapter 3. Administering with CICS Db2
	Starting the CICS Db2 attachment facility
	Stopping the CICS Db2 attachment facility
	Automatic disconnection at CICS termination
	Manual disconnection

	Resolving indoubt units of work (UOWs)
	Resolving indoubt UOWs when using group attach
	Resolving indoubt units of work using Db2 restart-light
	Recovery of resynchronization information for indoubt UOWs

	Managing the CICS Db2 attachment facility
	Entering Db2 commands
	Starting SMF for Db2 accounting, statistics, and tuning
	Starting GTF for Db2 accounting, statistics and tuning
	CICS-supplied transactions for CICS Db2
	Issuing commands to Db2 using the DSNC transaction
	DSNC DISCONNECT
	DSNC DISPLAY
	DISPLAY PLAN or TRAN output
	DISPLAY STATISTICS output

	DSNC MODIFY
	DSNC STOP
	DSNC STRT

	Chapter 4. Security for Db2
	Controlling access to Db2-related resources in CICS
	Controlling users' access to DB2CONN, DB2TRAN, and DB2ENTRY resource definitions
	Using resource security to control access to DB2ENTRY and DB2TRAN resource definitions
	Using command security to control the issuing of SPI commands against DB2CONN, DB2ENTRY, and DB2TRAN resource definitions
	Using surrogate security and AUTHTYPE security to control access to the authorization IDs that CICS provides to Db2
	Controlling users' access to Db2-related CICS transactions

	Providing authorization IDs to Db2 for the CICS region and for CICS transactions
	Providing authorization IDs to Db2 for a CICS region
	Providing a primary authorization ID for a CICS region
	Providing secondary authorization IDs for a CICS region
	Providing authorization IDs to Db2 for CICS transactions
	Providing a primary authorization ID for CICS transactions
	Providing secondary authorization IDs for CICS transactions

	Authorizing users to access resources in Db2
	Controlling users' access to Db2 commands
	Controlling users' access to plans
	If a plan includes dynamic SQL

	Db2 multilevel security and row-level security

	Chapter 5. Application design and development considerations for CICS Db2
	Designing the relationship between CICS applications and Db2 plans and packages
	A sample application
	Using Db2 packages
	Converting to packages
	Using one plan for the application
	Using one plan per transaction

	If you have packages and still want to use dynamic plan switching techniques

	Using one large plan for all transactions
	Advantages
	Disadvantages

	Using many small plans
	Advantages
	Disadvantages

	Using plans based on transaction grouping
	Advantages
	Disadvantages

	Dynamic plan exits
	The sample exit programs, DSNCUEXT and DFHD2PXT
	Writing your own exit program

	If you need to create plans for an application that has already been developed
	If you need to switch plans within a transaction
	Dynamic plan switching
	Switching transaction IDs in order to switch plans
	Using a control table to control program flow
	Advantages
	Disadvantages

	Developing a locking strategy in the CICS Db2 environment
	SQL, threadsafe and other programming considerations for CICS Db2 applications
	Enabling CICS Db2 applications to use OTE through threadsafe programming
	SQL language
	Using qualified and unqualified SQL
	Views
	Updating index columns
	Dependency of unique indexes
	Commit processing
	Serializing transactions
	Page contention
	Sequential number allocation
	Insert in sequence

	CICS and CURSOR WITH HOLD option
	EXEC CICS RETURN IMMEDIATE command
	Avoiding AEY9 abends

	Chapter 6. Using JDBC and SQLJ to access Db2 data from Java programs
	The IBM Data Server Driver for JDBC and SQLJ
	Configuring a JVM server to support Db2
	Setting the Db2 schema in a JVM server

	Programming to the JDBC and SQLJ APIs
	Deploying a serialized SQLJ profile in a JVM server

	Acquiring a connection to a database
	Acquiring a DriverManager connection to a database
	Acquiring a DataSource connection to a database
	JDBC and SQLJ connection considerations

	Closing a connection to a database
	Committing a unit of work
	Autocommit
	Syncpoint issues for DriverManager with explicit and default URLs

	CICS abends during JDBC or SQLJ requests

	Chapter 7. Preparing CICS Db2 programs for execution and production
	The CICS Db2 test environment
	CICS Db2 program preparation
	CICS SQLCA formatting routine

	What to bind after a program change
	Bind options and considerations for programs
	RETAIN
	Isolation level
	Plan validation time
	ACQUIRE and RELEASE

	CICS Db2 program testing and debugging
	Going into production: checklist for CICS Db2 applications
	Tuning a CICS application that accesses Db2

	Chapter 8. Monitoring Db2
	CICS-supplied accounting and monitoring information
	Db2-supplied accounting and monitoring information
	Monitoring a CICS Db2 environment: Overview
	Monitoring the CICS Db2 attachment facility
	Monitoring by using CICS commands
	Monitoring by using Db2 commands
	Monitoring by using CICS Db2 statistics

	Monitoring CICS transactions that access Db2 resources
	Monitoring Db2 when used with CICS
	Monitoring Db2 using the Db2 statistics facility
	Monitoring Db2 using the Db2 accounting facility
	Monitoring Db2 using the Db2 performance facility

	Monitoring the CICS system in a CICS Db2 environment
	Accounting in a CICS Db2 environment: Overview
	Accounting information provided by the Db2 accounting facility
	Data types in Db2 accounting records
	Processor usage
	I/O
	GETPAGE
	Write intents
	SQL call activity
	Transaction occurrence
	Storage

	Db2 accounting reports

	Relating Db2 accounting records to CICS performance class records
	What are the issues when matching Db2 accounting records and CICS performance records?
	Controlling the relationship between Db2 accounting records and CICS performance class records
	Using data in the Db2 accounting record to identify the corresponding CICS performance class records
	Strategies to match Db2 accounting records and CICS performance class records and charge resources back to the user
	Scenario A: One transaction in each Db2 accounting record, with its own transaction ID
	Scenario B: Several transactions in each Db2 accounting record, but each transaction type has its own transaction ID
	Scenario C: One transaction in each Db2 accounting record, but several types of transaction use the same transaction ID
	Scenario D: Several transactions in each Db2 accounting record, and several transaction types use the same transaction ID

	Accounting for processor usage in a CICS Db2 environment
	Accounting CLASS 1 processor time
	Accounting CLASS 2 processor time
	Calculating CICS and Db2 processor times for DB2 Version 5 or earlier
	Calculating CICS and Db2 processor times for Db2

	Chapter 9. Troubleshooting Db2
	Thread TCBs (task control blocks)
	Wait types for CICS Db2
	Messages for CICS Db2
	Trace for CICS Db2
	CSUB trace
	CSUB Abend information

	Dump for CICS Db2
	Db2 thread identification
	Transaction abend codes for CICS Db2
	Execution Diagnostic Facility (EDF) for CICS Db2
	Handling deadlocks in the CICS Db2 environment
	Two deadlock types
	Detecting deadlocks
	Finding the resources involved
	Finding the SQL statements involved
	Finding the access path used
	Determining why the deadlock occurred
	Resolving deadlocks

	Notices
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

