
CICS Transaction Server for z/OS
Version 5 Release 6

Using Web Services with CICS

IBM

Note

Before using this information and the product it supports, read the information in Product Legal
Notices.

This edition applies to the IBM® CICS® Transaction Server for z/OS®, Version 5 Release 6 (product number 5655-
Y305655-BTA) and to all subsequent releases and modifications until otherwise indicated in new editions.
© Copyright International Business Machines Corporation 1974, 2020.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/documentation/notices.dita
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/documentation/notices.dita

Contents

About this PDF...vii

Chapter 1. CICS and web services..1
CICS and SOAP web services ..3

Message handlers and pipelines..4
SOAP nodes.. 9
SOAP messages and the application data structure...10
WSDL and the application data structure..12
WSDL and message exchange patterns...13
The web service binding file...14
SOAP architecture and message format... 15
Planning to use SOAP web services...23

CICS and JSON web services.. 24
Concepts of JSON web services.. 24
Concepts of RESTful JSON web services.. 27
Planning to use JSON web services...28

CICS and z/OS Connect... 34
Capabilities of z/OS Connect for CICS... 38

Chapter 2. Configuring web services in CICS.. 39
Configuring your CICS system for web services... 39

CICS resources for web services... 39
Configuring CICS to use the IBM MQ transport for SOAP web services...42
Interoperability between the web services assistant and WSRR...47

Creating the web services infrastructure.. 48
The web services infrastructure.. 49
Creating the CICS infrastructure for a SOAP service provider..57
Creating the CICS infrastructure for a SOAP service requester..58
Creating the CICS infrastructure for a JSON service provider.. 60
Creating the CICS infrastructure for a non-Java JSON service provider..61
Configuring z/OS Connect for CICS..62
Pipeline configuration files...77
Application handlers.. 122
Message handlers.. 124
The SOAP message handlers...131
Containers used in the pipeline... 135
Runtime processing for web services..162
Support for Web Services transactions... 169
Support for MTOM/XOP optimization of binary data...177
Support for Web Services Addressing... 184
Support for SAML... 203

Chapter 3. Developing web services... 205
Developing JSON web services...205

Creating a JSON service provider application...206
Creating a JSON web service client application..215
JSON web service restrictions...216

Developing SOAP web services...217
The CICS web services assistant...218
Creating a web service provider using the assistant...249

 iii

Creating a web service requester using the assistant.. 258
Developing web services using tooling..260
Creating your own XML-aware web service applications... 261
Validating SOAP messages.. 264

Using Java with web services ...265
Deploying a Java provider-mode web service in an Axis2 JVM server.. 265
Creating a web service that generates and parses XML... 267
Creating a web service that has a COBOL interface..267
Deploying a requester-mode JAX-WS web service.. 267
Deploying a Java provider-mode web service in a Liberty JVM server ... 268

Chapter 4. Developing with JSON...269
The CICS JSON assistant ..269

DFHLS2JS: High-level language to JSON schema conversion for request-response services....... 270
DFHJS2LS: JSON schema to high-level language conversion for request-response services........281
DFHJS2LS: JSON schema to high-level language conversion for RESTful services........................ 293
DFHLS2JS: High-level language to JSON schema conversion for linkable interface...................... 305
DFHJS2LS: JSON schema to high-level language conversion for linkable interface.......................314
How the CICS JSON assistant maps between high-level languages and JSON schemas...............324

Generating mappings from language structure..380
Generating mappings from a JSON schema... 382
Transforming application data to JSON by linking to DFHJSON..383
Transforming application data to JSON by using the TRANSFORM DATATOJSON API command 384
Transforming JSON to application data by linking to DFHJSON..384
Transforming JSON to application data by using the TRANSFORM JSONTODATA API command 385
Handling invalid and uninitialized application-supplied data.. 386

Example 1: toleration of decimal fields...387

Chapter 5. Developing with XML...389
The CICS XML assistant...389

DFHLS2SC: high-level language to XML schema conversion... 390
DFHSC2LS: XML schema to high-level language conversion... 398
How the CICS assistants map between high-level languages and XML schemas...........................407

Querying XML from an application.. 475
Handling XML by data type..476
Handling <xsd:any> data types...478
Handling variably repeating content in COBOL.. 478
Generating mappings from language structures.. 481
Generating mappings from an XML schema... 483
Transforming application data to XML.. 484
Transforming XML to application data.. 485
Validating XML transformations.. 486

Chapter 6. Support for securing web services... 489
Enabling CICS for WS-Security processing...489
Planning to secure SOAP web services...490
Options for securing SOAP messages...491
Authentication using a Security Token Service.. 492

The Trust client interface...493
Signing of SOAP messages..494

Signature algorithms..494
Example of a signed SOAP message... 494

CICS support for encrypted SOAP messages... 495
Encryption algorithms..496
Example of an encrypted SOAP message... 496

Configuring RACF for Web Services Security.. 497
Configuring provider mode web services for identity propagation.. 499

iv

Configuring the pipeline for Web Services Security..501
Writing a custom security handler.. 504
Invoking the Trust client from a message handler... 504
Security for z/OS Connect ...505

Configuring permissions for Services and APIs.. 506

Chapter 7. Troubleshooting web services... 509
Troubleshooting SOAP web services.. 509

Diagnosing deployment errors...509
Diagnosing service provider runtime errors.. 511
Diagnosing service requester runtime errors..512
Diagnosing MTOM/XOP errors... 514
Diagnosing data conversion errors.. 515

Troubleshooting JSON web services.. 517
JSON deployment problems..517
JSON assistant problems...518
Troubleshooting problems with JSON requests... 519
JSON error responses returned to the client.. 520
JSON assistant return codes... 520

Appendix A. JSON transformer linkable interface containers.............................. 523
DFHJSON-JSON container.. 523
DFHJSON-DATA container.. 523
DFHJSON-TRANSFRM container.. 523
DFHJSON-JVMSERVR container... 524
DFHJSON-ERROR container..524
DFHJSON-ERRORMSG container..525

Appendix B. Web services samples.. 527
The CICS catalog manager example application..527

The base application.. 527
Installing and setting up the base application.. 529
Running the example application with the BMS interface..535
Web service support for the example application ..536
Configuring the web client... 545
Running the web service enabled application.. 546
Deploying the example application... 546
Components of the base application...551
File structures and definitions... 558

JSON samples..560
Example HTTP GET request using a query string..560
Example HTTP request with a JSON body.. 560

Notices..563

Index.. 569

 v

vi

About this PDF

This PDF describes how to use web services in CICS. It is aimed at system programmers who are
responsible for configuring CICS to support web services, and application developers who are responsible
for applications that will be deployed in a web services environment. Before CICS TS V5.4, this PDF was
called the "Web Services Guide".

For details of the terms and notation used in this book, see Conventions and terminology used in the CICS
documentation in IBM Knowledge Center.

Date of this PDF

This PDF was created on May 28th 2020.

© Copyright IBM Corp. 1974, 2020 vii

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/documentation/conventions.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/documentation/conventions.html

viii CICS TS for z/OS: Using Web Services with CICS

Chapter 1. CICS and web services
CICS provides support for web services.

What is a web service?

A web service has an interface, which hides the implementation details so that it can be used
independently of the hardware or software platform on which it is implemented, and independently of the
programming language in which it is written. This independence encourages web service based
applications to be loosely coupled, component-oriented, cross-technology implementations. Web
services can be used alone or with other web services to carry out a complex aggregation or a business
transaction.

Web services supported by CICS

CICS supports two distinct web service protocols, the SOAP and the JavaScript Object Notation (JSON)
protocols. These two protocols have distinct characteristics and advantages.

External standards supported by CICS

CICS support for web services conforms to a number of industry standards and specifications. The
supported industry standards and specifications are listed in Supported standards.

Web services terminology

Extensible Markup Language (XML)
A standard for document markup, which uses a generic syntax to mark up data with simple, human-
readable tags. The standard is endorsed by the World Wide Web Consortium (W3C).

Initial SOAP sender
The SOAP sender that originates a SOAP message at the starting point of a SOAP message path.

JavaScript Object Notation (JSON)
A lightweight data-interchange format that is based on the object-literal notation of JavaScript. JSON
is programming-language neutral but uses conventions from languages that include C, C++, C#,
Java™, JavaScript, Perl, Python.

JSON schema
A JavaScript Object Notation document that describes the structure and constrains the contents of
other JSON documents.

RESTful
Pertaining to applications and services that conform to Representational State Transfer (REST)
constraints.

Service provider
The collection of software that provides a web service.

Service provider application
An application that is used in a service provider. Typically, a service provider application provides the
business logic component of a service provider.

Service requester
The collection of software that is responsible for requesting a web service from a service provider.

Service requester application
An application that is used in a service requester. Typically, a service requester application provides
the business logic component of a service requester.

Simple Object Access Protocol
See SOAP.

© Copyright IBM Corp. 1974, 2020 1

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-standards/supportedStandards.html
http://www.w3.org

SOAP
Formerly an acronym for Simple Object Access Protocol. A lightweight protocol for exchange of
information in a decentralized, distributed environment. It is an XML-based protocol that consists of
three parts:

• An envelope that defines a framework for describing what is in a message and how to process it
• A set of encoding rules for expressing instances of application-defined data types
• A convention for representing remote procedure calls and responses

SOAP can be used with other protocols, such as HTTP.

The specification for SOAP 1.1 is published at Simple Object Access Protocol (SOAP) 1.1.

The specification for SOAP 1.2 is published here:

SOAP Version 1.2 Part 0: Primer
SOAP Version 1.2 Part 1: Messaging Framework
SOAP Version 1.2 Part 2: Adjuncts

SOAP intermediary
A SOAP node that is both a SOAP receiver and a SOAP sender and is targetable from within a SOAP
message. It processes the SOAP header blocks targeted at it and forwards a SOAP message toward
an ultimate SOAP receiver.

SOAP message path
The set of SOAP nodes through which a single SOAP message passes. These nodes include the initial
SOAP sender, zero or more SOAP intermediaries, and an ultimate SOAP receiver.

SOAP node
Processing logic that operates on a SOAP message.

SOAP receiver
A SOAP node that accepts a SOAP message.

SOAP sender
A SOAP node that transmits a SOAP message.

Ultimate SOAP receiver
The SOAP receiver that is a final destination of a SOAP message. It is responsible for processing the
contents of the SOAP body and any SOAP header blocks targeted at it.

UDDI
See Universal Description, Discovery and Integration.

Universal Description, Discovery and Integration
Universal Description, Discovery and Integration (UDDI) is a specification for distributed web-based
information registries of web services. UDDI is also a publicly accessible set of implementations of the
specification that allow businesses to register information about the web services that they offer, so
that other businesses can find them. The specification is published by OASIS.

Web service
A software system designed to support interoperable machine-to-machine interaction over a
network. It has an interface described in a machine-processable format (specifically, Web Service
Description Language, or WSDL).

Web Services Addressing
Web Services Addressing (WS-Addressing) provides a transport-neutral mechanism to address web
services and messages.

The specifications for WS-Addressing are published here:

• Web Services Addressing 1.0 - Core
• Web Services Addressing 1.0 - SOAP Binding
• Web Services Addressing 1.0 - Metadata
• Web Services Addressing- Submission

2 CICS TS for z/OS: Using Web Services with CICS

http://www.w3.org/TR/SOAP
http://www.w3.org/TR/soap12-part0
http://www.w3.org/TR/soap12-part1
http://www.w3.org/TR/soap12-part2
https://www.oasis-open.org
http://www.w3.org/TR/ws-addr-core/
http://www.w3.org/TR/ws-addr-soap/
http://www.w3.org/TR/ws-addr-metadata/
http://www.w3.org/Submission/ws-addressing/

Web Services Atomic Transaction
A specification that provides the definition of an atomic transaction coordination type used to
coordinate activities having an "all or nothing" property.

The specification is published by OASIS at Web Services Atomic Transaction.

Web service binding file
A file, associated with a WEBSERVICE resource, that contains information that CICS uses to map data
between input and output messages, and application data structures.

Web service description
An XML document by which a service provider communicates the specifications for invoking a web
service to a service requester. Web service descriptions are written in Web Service Description
Language (WSDL).

Web Service Description Language
An XML application for describing web services. It is designed to separate the descriptions of the
abstract functions offered by a service and the concrete details of a service, such as how and where
that function is offered.

The specification is published at Web Services Description Language (WSDL).

Web Services Security
A set of enhancements to SOAP messaging that provides message integrity and confidentiality. The
specification is published by OASIS at Web Services Security: SOAP Message Security 1.0 (WS-
Security 2004).

WS-Atomic Transaction
See Web Services Atomic Transaction.

WS-I Basic Profile
A set of nonproprietary web services specifications, with clarifications and amendments to those
specifications, which, taken together, promote interoperability between different implementations of
web services. The profile is defined by the Web Services Interoperability Organization (WS-I) and
version 1.0 is available at Web Services Interoperability Organization (WS-I) Basic Profile 1.0.

WSDL
See Web Service Description Language.

WSS
See Web Services Security.

XML
Extensible Markup Language.

The specifications for XML are published here:

SOAP Version 1.2 Part 0: Primer
SOAP Version 1.2 Part 1: Messaging Framework
SOAP Version 1.2 Part 2: Adjuncts

XML namespace
A collection of names, identified by a URI reference, that are used in XML documents as element
types and attribute names.

XML schema
An XML document that describes the structure and constrains the contents of other XML documents.

XML schema definition language
An XML syntax for writing XML schemas, recommended by the World Wide Web Consortium (W3C).

CICS and SOAP web services
You can expose existing CICS applications as SOAP web services and create CICS applications to act as
SOAP web service providers or requesters. CICS supports two different approaches to the deployment of
your CICS applications in a web services environment. One approach enables rapid deployment, with the
least amount of programming effort; the other approach gives you complete flexibility and control over

Chapter 1. CICS and web services 3

https://www.oasis-open.org
http://docs.oasis-open.org/ws-tx/wsat/2006/06
http://www.w3.org/TR/wsdl
https://www.oasis-open.org
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.ws-i.org/Profiles/BasicProfile-1.0.html
http://www.w3.org/TR/soap12-part0
http://www.w3.org/TR/soap12-part1
http://www.w3.org/TR/soap12-part2
http://www.w3.org

your web service applications, using code that you write to suit your particular needs. Both approaches
are underpinned by an infrastructure consisting of one or more pipelines and message handler programs
that operate on web service requests and responses.

When you deploy your CICS applications in a web services environment you can choose from the
following options:

• Use the CICS web services assistant to help you deploy an application with the least amount of
programming effort.

For example, if you want to expose an existing application as a web service, you can start with a high-
level language data structure and generate the web services description. Alternatively, if you want to
communicate with an existing web service, you can start with its web service description and generate a
high-level language structure that you can use in your program.

The CICS web services assistant also generates the CICS resources that you need to deploy your
application. And when your application runs, CICS transforms your application data into a SOAP
message on output and transforms the SOAP message back to application data on input.

• Take complete control over the processing of your data by writing your own code to map between your
application data and the message that flows between the service requester and provider.

For example, if you want to use non-SOAP messages within the web service infrastructure, you can
write your own code to transform between the message format and the format used by your
application.

Whichever approach you follow, you can use your own message handlers to perform additional
processing on your request and response messages, or use CICS-supplied message handlers that are
designed especially to help you process SOAP messages.

Message handlers and pipelines
A message handler is a program in which you can perform your own processing of web service requests
and responses. A pipeline is a set of message handlers that are executed in sequence.

Phases in the operation of a pipeline

There are two distinct phases in the operation of a pipeline:
Request phase

During the request phase, CICS invokes each handler in the pipeline in turn. Each message handler
can process the request before returning control to CICS.

Response phase
Following the request phase is the response phase, during which CICS again invokes each handler in
turn, but with the sequence reversed. That is, the message handler that is invoked first in the request
phase, is invoked last in the response phase. Each message handler can process the response during
this phase.

Not every request is succeeded by a response; some applications use a one-way message flow from
service requester to provider. In this case, although there is no message to be processed, each
handler is invoked in turn during the response phase.

Figure 1 on page 5 shows a pipeline of three message handlers:

4 CICS TS for z/OS: Using Web Services with CICS

Figure 1. Example: A generic CICS pipeline

In this example, the handlers are executed in the following sequence:
In the request phase

1. Handler 1
2. Handler 2
3. Handler 3

Chapter 1. CICS and web services 5

In the response phase

1. Handler 3
2. Handler 2
3. Handler 1

Transition between the phases

In a service provider, the transition between the phases normally occurs in the last handler in the pipeline
(known as the terminal handler) which absorbs the request, and generates a response; in a service
requester, the transition occurs when the request is processed in the service provider. However, a
message handler in the request phase can force an immediate transition to the response phase, and an
immediate transition can also occur if CICS detects an error.

A message handler can modify the message, or can leave it unchanged. For example:

• A message handler that performs encryption and decryption will receive an encrypted message on
input, and pass the decrypted message to the next handler. On output, it will do the opposite: receive a
plain text message, and pass an encrypted version to the following handler.

• A message handler that performs logging will examine a message, and copy the relevant information
from that message to the log. The message that is passed to the next handler is unchanged.

Important: If you are familiar with the SOAP feature for CICS TS, you should be aware that the structure
of the pipeline in this release of CICS is not the same as that used in the feature.

Interrupting the flow

During processing of a request, a message handler can decide not to pass a message to the next handler,
but can, instead, generate a response. Normal processing of the message is interrupted, and some
handlers in the pipeline are not invoked.

Figure 2 on page 6 shows an example pipeline that contains three handlers, handler 1, handler 2 and
handler 3. Suppose that handler 2 is responsible for performing security checks.

Figure 2. Example: Interrupting the pipeline flow

If the request does not bear the correct security credentials, then, instead of passing the request to
handler 3, handler 2 suppresses the request and constructs a suitable response. The pipeline is now in
the response phase, and when handler 2 returns control to CICS, the next handler invoked is handler 1,
and handler 3 is bypassed altogether.

A handler that interrupts the normal message flow in this way must only do so if the originator of the
message expects a response; for example, a handler should not generate a response when an application
uses a one-way message flow from service requester to provider.

Transport-related handlers
CICS supports the use of two transport mechanisms between the web service requester and the provider.
In some cases, you might require different message handlers to be invoked, depending upon which
transport mechanism is in use.

For example, you might want to include message handlers that perform encryption of parts of your
messages when you are using the HTTP transport to communicate on an external network. But encryption
might not be required when you are using the MQ transport on a secure internal network.

6 CICS TS for z/OS: Using Web Services with CICS

To support this, you can configure your pipeline to specify handlers that are invoked only when a
particular transport (HTTP or MQ) is in use. For a service provider, you can be even more specific, and
specify handlers that are invoked only when a particular named resource (a TCPIPSERVICE for the HTTP
transport, a QUEUE for the MQ transport) is in use. This is illustrated in Figure 3 on page 7.

Figure 3. Example: A pipeline with transport-related handlers

In this example, which applies to a service provider:

• Handler 1 is invoked for messages that use the MQ transport.
• Handlers 2 and 3 are invoked for messages that use the HTTP transport.
• Handlers 4 and 5 are invoked for all messages.
• Handler 5 is the terminal handler.

A service provider pipeline
In a service provider pipeline, CICS receives a request, which is passed through a pipeline to the target
application program. The response from the application is returned to the service requester through the
same pipeline.

When CICS is in the role of service provider, it performs the following operations:

1. Receive the request from the service requester.
2. Examine the request, and extract the contents that are relevant to the target application program.
3. Invoke the application program, passing data extracted from the request.
4. When the application program returns control, construct a response, using data returned by the

application program.
5. Send a response to the service requester.

Figure 4 on page 7 illustrates a pipeline of three message handlers in a service provider setting:

Figure 4. A service provider pipeline

1. CICS receives a request from the service requester. It passes the request to message handler 1.
2. Message handler 1 performs some processing, and passes the request to handler 2 (To be precise, it

returns control to CICS, which manages the pipeline. CICS then passes control to the next message
handler).

3. Message handler 2 receives the request from handler 1, performs some processing, and passes the
request to handler 3.

4. Message handler 3 is the terminal handler of the pipeline. It uses the information in the request to
invoke the application program. It then uses the output from the application program to generate a
response, which it passes back to handler 2.

5. Message handler 2 receives the response from handler 3, performs some processing, and passes it to
handler 1.

6. Message handler 1 receives the response from handler 2, performs some processing, and returns the
response to the service requester.

Chapter 1. CICS and web services 7

A service requester pipeline
In a service requester pipeline, an application program creates a request, which is passed through a
pipeline to the service provider. The response from the service provider is returned to the application
program through the same pipeline.

When CICS is in the role of service requester, it performs the following operations:

1. Use data provided by the application program to construct a request.
2. Send the request to the service provider.
3. Receive a response from the service provider.
4. Examine the response, and extract the contents that are relevant to the original application program.
5. Return control to the application program.

Figure 5 on page 8 illustrates a pipeline of three message handlers in a service requester setting:

Figure 5. A service requester pipeline

1. An application program creates a request.
2. Message handler 1 receives the request from the application program, performs some processing, and

passes the request to handler 2 (To be precise, it returns control to CICS, which manages the pipeline.
CICS then passes control to the next message handler).

3. Message handler 2 receives the request from handler 1, performs some processing, and passes the
request to handler 3.

4. Message handler 3 receives the request from handler 2, performs some processing, and passes the
request to the service provider.

5. Message handler 3 receives the response from the service provider, performs some processing, and
passes it to handler 2.

6. Message handler 2 receives the response from handler 3, performs some processing, and passes it to
handler 1.

7. Message handler 1 receives the response from handler 2, performs some processing, and returns the
response to the application program.

CICS pipelines and SOAP
The pipeline which CICS uses to process web service requests and responses is generic, in that there are
few restrictions on what processing can be performed in each message handler. However, many web
service applications use SOAP messages, and any processing of those messages should comply with the
SOAP specification. Therefore, CICS provides special SOAP message handler programs that can help you
to configure your pipeline as a SOAP node.

• A pipeline can be configured for use in a service requester, or in a service provider:

– A service requester pipeline is the initial SOAP sender for the request, and the ultimate SOAP receiver
for the response

– A service provider pipeline is the ultimate SOAP receiver for the request, and the initial SOAP sender
for the response

You cannot configure a CICS pipeline to function as a SOAP intermediary.
• A service requester pipeline can be configured to support SOAP 1.1 or SOAP 1.2, but not both. However,

a service provider pipeline can be configured to support both SOAP 1.1 and SOAP 1.2. Within your CICS
system, you can have many pipelines, some of which support SOAP 1.1 or SOAP 1.2 and some of which
support both.

• You can configure a CICS pipeline to have more than one SOAP message handler.
• The CICS-provided SOAP message handlers can be configured to invoke one or more user-written

header-handling routines.

8 CICS TS for z/OS: Using Web Services with CICS

• The CICS-provided SOAP message handlers can be configured to enforce some aspects of compliance
with the WS-I Basic Profile Version 1.1, and to enforce the presence of particular headers in the SOAP
message.

The SOAP message handlers, and their header handling routines are specified in the pipeline
configuration file.

The SOAP message path
The SOAP message path is the set of SOAP nodes through which a single SOAP message passes,
including the initial SOAP sender, zero or more SOAP intermediaries, and an ultimate SOAP receiver

In the simplest case, a SOAP message is transmitted between two nodes; that is, from a SOAP sender to a
SOAP receiver. However, in more complex cases, messages can be processed by SOAP intermediary
nodes, which receive a SOAP message and then send it to the next node. Figure 6 on page 9 shows an
example of a SOAP message path, in which a SOAP message is transmitted from the initial SOAP sender
node to the ultimate SOAP receiver node, passing through two SOAP intermediary nodes on its route.

Figure 6. An example of a SOAP message path

A SOAP intermediary is both a SOAP receiver and a SOAP sender. It can, and in some cases must, process
the header blocks in the SOAP message, and it forwards the SOAP message toward its ultimate receiver.

The ultimate SOAP receiver is the final destination of a SOAP message. As well as processing the header
blocks, it processes the SOAP body. In some circumstances, a SOAP message might not reach an ultimate
SOAP receiver; for example, because of a problem at a SOAP intermediary.

SOAP nodes
A SOAP node is the processing logic that operates on a SOAP message.

A SOAP node can perform these operations:

• Transmit a SOAP message
• Receive a SOAP message
• Process a SOAP message
• Relay a SOAP message

A SOAP node can be one of these types:
SOAP sender

A SOAP node that transmits a SOAP message.
SOAP receiver

A SOAP node that accepts a SOAP message.
Initial SOAP sender

The SOAP sender that originates a SOAP message at the starting point of a SOAP message path.

Chapter 1. CICS and web services 9

SOAP intermediary
A SOAP intermediary is both a SOAP receiver and a SOAP sender, targetable from within a SOAP
message. It processes the SOAP header blocks targeted at it and acts to forward a SOAP message
toward an ultimate SOAP receiver.

Ultimate SOAP receiver
The SOAP receiver that is a final destination of a SOAP message. It processes the contents of the
SOAP body and any SOAP header blocks targeted at it. In some circumstances, a SOAP message
might not reach an ultimate SOAP receiver; for example, because of a problem at a SOAP
intermediary.

SOAP messages and the application data structure
In many cases, the CICS web services assistant can generate the code to transform the data between a
high-level data structure used in an application program, and the contents of the <Body> element of a
SOAP message. In these cases, when you write your application program, you do not need to parse or
construct the SOAP body; CICS will do this for you.

In order to transform the data, CICS needs information, at run time, about the application data structure,
and about the format of the SOAP messages. This information is held in two files:

• The web service binding file

This file is generated by the CICS web services assistant from an application language data structure,
using utility program DFHLS2WS, or from a web service description, using utility program DFHWS2LS.
CICS uses the binding file to generate the resources used by the web service application, and to
perform the mapping between the application's data structure and the SOAP messages.

• The web service description

This may be an existing web service description, or it may be generated from an application language
data structure, using utility program DFHLS2WS. CICS uses the web service description to perform full
validation of SOAP messages.

Figure 7 on page 10 shows where these files are used in a service provider.

Figure 7. Mapping the SOAP body to the application data structure in a service provider

A message handler in the pipeline (typically, a CICS-supplied SOAP message handler) removes the SOAP
envelope from an inbound request, and passes the SOAP body to the data mapper function. This uses the
web service binding file to map the contents of the SOAP body to the application's data structure. If full
validation of the SOAP message is active, then the SOAP body is validated against the web service
description. If there is an outbound response, the process is reversed.

Figure 8 on page 11 shows where these files are used in a service requester.

10 CICS TS for z/OS: Using Web Services with CICS

Figure 8. Mapping the SOAP body to the application data structure in a service requester

For an outbound request, the data mapper function constructs a SOAP body from the application's data
structure, using information from the web service binding file. A message handler in the pipeline
(typically, a CICS-supplied SOAP message handler) adds the SOAP envelope. If there is an inbound
response, the process is reversed. If full validation of the SOAP message is active, then the inbound SOAP
body is validated against the web service description.

In both cases, the execution environment that allows a particular CICS application program to operate in
a web services setting is defined by three objects. These are the pipeline, the web service binding file, and
the web service description. The three objects are defined to CICS as attributes of the WEBSERVICE
resource definition.

There are some situations in which, even though you are using SOAP messages, you cannot use the
transformation that the CICS web services assistant generates:

• When the same data cannot be represented in the SOAP message and in the high-level language.

All the high-level languages that CICS supports, and XML Schema, support a variety of different data
types. However, there is not a one-to-one correspondence between the data types used in the high-
level languages, and those used in XML Schema, and there are cases where data can be represented in
one, but not in the other. In this situations, you should consider one of the following:

– Change your application data structure. This may not be feasible, as it might entail changes to the
application program itself.

– Construct a wrapper program, which transforms the application data into a form that CICS can then
transform into a SOAP message body. If you do this, you can leave your application program
unchanged. In this case CICS web service support interacts directly with the wrapper program, and
only indirectly with the application program.

• When your application program is in a language which is not supported by the CICS web services
assistant.

In this situation, you should consider one of the following:

– Construct a wrapper program that is written in one of the languages that the CICS web services
assistant does support (COBOL, PL/I, C or C++).

– Instead of using the CICS web services assistant, write your own program to perform the mapping
between the SOAP messages and the application program's data structure.

Chapter 1. CICS and web services 11

WSDL and the application data structure
A web service description contains abstract representations of the input and output messages used by
the service. CICS uses the web service description to construct the data structures used by application
programs. At run time, CICS performs the mapping between the application data structures and the
messages.

The description of a web service contains, among other things:

• One or more operations
• For each operation, an input message and an optional output message
• For each message, the message structure, defined in terms of XML data types. Complex data types used

in the messages are defined in an XML schema which is contained in the <types> element within the
web service description. Simple messages can be described without using the <types> element.

WSDL contains an abstract definition of an operation, and the associated messages; it cannot be used
directly in an application program. To implement the operation, a service provider must do the following:

• It must parse the WSDL, in order to understand the structure of the messages
• It must parse each input message, and construct the output message
• It must perform the mappings between the contents of the input and output messages, and the data

structures used in the application program

A service requester must do the same in order to invoke the operation.

When you use the the CICS web services assistant, much of this is done for you, and you can write your
application program without detailed understanding of WSDL, or of the way the input and output
messages are constructed.

The CICS web services assistant consists of two utility programs:
DFHWS2LS

This utility program takes a web service description as a starting point. It uses the descriptions of the
messages, and the data types used in those messages, to construct high-level language data
structures that you can use in your application programs.

DFHLS2WS
This utility program takes a high-level language data structure as a starting point. It uses the structure
to construct a web services description that contains descriptions of messages, and the data types
used in those messages derived from the language structure.

Both utility programs generate a web services binding file that CICS uses at run time to perform the
mapping between the application program's data structures and the SOAP messages.

An example of COBOL to WSDL mapping
This example shows how the data structure used in a COBOL program is represented in the web services
description that is generated by the CICS web services assistant.

Figure 9 on page 12 shows a simple COBOL data structure:

 * Catalogue COMMAREA structure
 03 CA-REQUEST-ID PIC X(6).
 03 CA-RETURN-CODE PIC 9(2).
 03 CA-RESPONSE-MESSAGE PIC X(79).
 * Fields used in Place Order
 03 CA-ORDER-REQUEST.
 05 CA-USERID PIC X(8).
 05 CA-CHARGE-DEPT PIC X(8).
 05 CA-ITEM-REF-NUMBER PIC 9(4).
 05 CA-QUANTITY-REQ PIC 9(3).
 05 FILLER PIC X(888).

Figure 9. COBOL record definition of an input message defined in WSDL

The key elements in the corresponding fragment of the web services description are shown in Figure 10
on page 13:

12 CICS TS for z/OS: Using Web Services with CICS

<xsd:sequence>
 <xsd:element name="CA-REQUEST-ID" nillable="false">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:length value="6"/>
 <xsd:whiteSpace value="preserve"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="CA-RETURN-CODE" nillable="false">
 <xsd:simpleType>
 <xsd:restriction base="xsd:short">
 <xsd:maxInclusive value="99"/>
 <xsd:minInclusive value="0"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="CA-RESPONSE-MESSAGE" nillable="false">
 ...
 </xsd:element>
 <xsd:element name="CA-ORDER-REQUEST" nillable="false">
 <xsd:complexType mixed="false">
 <xsd:sequence>
 <xsd:element name="CA-USERID" nillable="false">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:length value="8"/>
 <xsd:whiteSpace value="preserve"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="CA-CHARGE-DEPT" nillable="false">
 ...
 </xsd:element>
 <xsd:element name="CA-ITEM-REF-NUMBER" nillable="false">
 ...
 </xsd:element>
 <xsd:element name="CA-QUANTITY-REQ" nillable="false">
 ...
 </xsd:element>
 <xsd:element name="FILLER" nillable="false">
 ...
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:sequence>

Figure 10. WSDL fragment derived from a COBOL data structure

WSDL and message exchange patterns
A WSDL 2.0 document contains a message exchange pattern (MEP) that defines the way that SOAP 1.2
messages are exchanged between the web service requester and web service provider.

CICS supports four out of the eight message exchange patterns that are defined in the WSDL 2.0 Part 2:
Adjuncts specification and the WSDL 2.0 Part 2: Additional MEPs specification for both service provider
and service requester applications. The following MEPs are supported:

In-Only
A request message is sent to the web service provider, but the provider is not allowed to send any
type of response to the web service requester.

• In provider mode, when CICS receives a request message from a web service that uses the In-Only
MEP, it does not return a response message. The DFHNORESPONSE container is put in the SOAP
handler channel to indicate that the pipeline must not send a response message.

• In requester mode, CICS sends the request message to the web service provider and does not wait
for a response.

In-Out
A request message is sent to the web service provider, and a response message is returned to the
web service requester. The response message could be a normal SOAP message or a SOAP fault.

Chapter 1. CICS and web services 13

• In provider mode, when CICS receives a request message from a web service that uses the In-Out
MEP, it returns a response message to the requester.

• In requester mode, CICS sends a request message and waits for a response. This response is either
a normal response message or a SOAP fault message. The length of time that CICS waits for a
response is configured in the pipeline and applies to all web services using that pipeline. If the
request times out before CICS receives a response, an error is returned to the service requester
application.

In-Optional-Out
A request message is sent to the web service provider, and a response message is optionally returned
to the web service requester. If there is a response, it could be either a normal SOAP message or a
SOAP fault.

• In provider mode, the decision about whether to return a SOAP response message, a SOAP fault, or
no response, happens at run time and is dependant on the service provider application logic. If CICS
does not send a response to the web service requester, the DFHNORESPONSE container is put in
the SOAP handler channel to indicate that the pipeline must not send a response message. If no
message is sent, the service provider application must delete the DFHWS-DATA container from the
channel.

• In requester mode, CICS sends a request message and waits for a response from the web service
requester. If the request times out before a response is received, CICS assumes that the message
was received successfully and that the provider did not need to send a response. The length of time
that CICS waits for a response is configured in the pipeline and applies to all web services using that
pipeline.

Robust In-Only
A request message is sent to the web service provider, and a response message is only returned to
the web service requester if an error occurs. If there is an error, a SOAP fault message is sent to the
requester.

• In provider mode, if the pipeline successfully passes the request message to the application, a
DFHNORESPONSE container is put in the SOAP handler channel to indicate that the pipeline must
not send a response message. If an error occurs in the pipeline, a SOAP fault message is returned to
the requester.

• In requester mode, CICS sends the request message to the web service provider and waits for a
specified period before timing out. The length of time that CICS waits for a response is configured in
the pipeline and applies to all web services using that pipeline. If there is a timeout, CICS assumes
that the request message was received successfully.

For more information on message exchange patterns in WSDL 2.0, see the following W3C specifications:

• WSDL 2.0 Part 2: Adjuncts: .
• WSDL 2.0 Part 2: Additional MEPs: .

The web service binding file
The web service binding file contains information that CICS uses to map data between input and output
messages, and application data structures.

A web service description contains abstract representations of the input and output messages used by
the service. When a service provider or service requester application executes, CICS needs information
about how the contents of the messages maps to the data structures used by the application. This
information is held in a web service binding file.

Web service binding files are created:

• By utility program DFHWS2LS when language structures are generated from WSDL.
• By utility program DFHLS2WS when WSDL is generated from a language structure.

14 CICS TS for z/OS: Using Web Services with CICS

At run time, CICS uses information in the web service binding file to perform the mapping between
application data structures and SOAP messages. Web service binding files are defined to CICS in the
WSBIND attribute of the WEBSERVICE resource.

SOAP architecture and message format
SOAP is a protocol for the exchange of information in a distributed environment. SOAP messages are
encoded as XML documents and can be exchanged using various underlying protocols.

Formerly an acronym for Simple Object Access Protocol, SOAP is developed by the World Wide Web
Consortium (W3C), and is defined in the following documents issued by W3C. Consult these documents
for complete, and authoritative, information about SOAP.

Simple Object Access Protocol (SOAP) 1.1 (W3C note)
SOAP Version 1.2 Part 0: Primer (W3C recommendation)
SOAP Version 1.2 Part 1: Messaging Framework (W3C recommendation)
SOAP Version 1.2 Part 2: Adjuncts (W3C recommendation)

The SOAP specifications describe a distributed processing model in which a SOAP message is passed
between SOAP nodes. The message originates at a SOAP sender and is sent to a SOAP receiver. Between
the sender and the receiver, the message might be processed by one or more SOAP intermediaries.

A SOAP message is a one-way transmission between SOAP nodes, from a SOAP sender to a SOAP
receiver, but messages can be combined to construct more complex interactions, such as request and
response, and peer-to-peer conversations.

The specification also includes this information:

• A set of encoding rules for expressing instances of application-defined data types.
• A convention for representing remote procedure calls and responses.

SOAP web services architecture
The SOAP web services architecture is based on interactions between three components: a service
provider, a service requester, and an optional service registry.

The service provider
The collection of software that provides a web service.

• The application program
• The middleware
• The platform on which they run

The service requester
The collection of software that is responsible for requesting a web service from a service provider.

• The application program
• The middleware
• The platform on which they run

The service registry
The service registry is a central location where service providers can publish their service descriptions
and where service requesters can find those service descriptions.

The registry is an optional component of the web services architecture because service requesters
and providers can communicate without it in many situations. For example, the organization that
provides a service can distribute the service description directly to the users of the service in a
number of ways, including offering the service as a download from an FTP site.

Using a service registry offers a number of advantages to both the requester and provider; for
example, using the IBM WebSphere® Service Registry and Repository (WSRR) can help the requester
to find services more quickly and can help the provider to enforce version control of the services being
offered.

Chapter 1. CICS and web services 15

http://www.w3.org
http://www.w3.org
http://www.w3.org/TR/soap11
http://www.w3.org/TR/soap12-part0
http://www.w3.org/TR/soap12-part1
http://www.w3.org/TR/soap12-part2

CICS provides direct support for implementing service requester and service provider components.
However, you need additional software to deploy a service registry in CICS. If you use the IBM
WebSphere Service Registry and Repository (WSRR), CICS provides support for WSRR through the web
services assistant. Alternatively, you can deploy a service registry on another platform.

Interactions between a service provider, a service requester, and, a service registry

The interactions between the service provider, service requester, and service registry involve the
following operations:
Publish

When a service registry is used, a service provider publishes its service description in a service
registry for the service requester to find.

Find
When a service registry is used, a service requester finds the service description in the registry.

Bind
The service requester uses the service description to bind with the service provider and interact with
the web service implementation.

Figure 11. web services components and interactions

Web service description
A web service description is a document by which the service provider communicates the specifications
for starting the web service to the service requester. Web service descriptions are expressed in the XML
application known as Web Service Description Language (WSDL).

The service description describes the web service in such a way as to minimize the amount of shared
knowledge and customized programming that is needed to ensure communication between the service
provider and the service requester. For example, neither the requester nor the provider needs to be aware
of the platform on which the other runs, nor of the programming language in which the other is written.

A service description can conform to either the WSDL 1.1 or WSDL 2.0 specification. Each has differences
in both the terminology and major elements that can be included in the service description. The following
information uses WSDL 1.1 terminology and elements to explain the purpose of the service description.

The structure of WSDL allows a service description to be partitioned into two definitions:

• An abstract service interface definition that describes the interfaces of the service and makes it possible
to write programs that implement and start the service.

• A concrete service implementation definition that describes the location on the network (or endpoint) of
the web service of the provider and other implementation-specific details. It enables a service
requester to connect to the service provider.

See Figure 12 on page 17.

16 CICS TS for z/OS: Using Web Services with CICS

A WSDL 1.1 document uses the following major elements in the definition of network services:
<types>

A container for data type definitions using some type system (such as XML Schema). Defines the data
types used within the message. The <types> element is not required when all messages consist of
simple data types.

<message>
Specifies which XML data types are used to define the input and output parameters of an operation.

<portType>
Defines the set of operations supported by one or more endpoints. Within a <portType> element,
each operation is described by an <operation> element.

<operation>
Specifies which XML messages can appear in the input and output data flows. An operation is
comparable with a method signature in a programming language.

<binding>
Describes the protocol, data format, security, and other attributes for a particular <portType>
element.

<port>
Specifies the network address of an endpoint and associates it with a <binding> element.

<service>
Defines the web service as a collection of related endpoints. A <service> element contains one or
more <port> elements.

Figure 12. Structure of a web service description

Because you can partition the web service description, you can divide responsibility for creating a
complete service description. As an illustration, consider a service that is defined by a standards body for
use across an industry and is implemented by individual companies in that industry:

• The standards body provides a service interface definition, containing the following elements:

<types>
<message>
<portType>
<binding

• A service provider wanting to offer an implementation of the service provides a service implementation
definition, containing the following elements:

Chapter 1. CICS and web services 17

<port>
<service>

Service publication
You can publish a service description using a number of different mechanisms. Each mechanism is
suitable for use in different situations. CICS supports the use of the IBM WebSphere Service Registry and
Repository (WSRR) for publishing service descriptions. Alternatively, you can use other methods to
publish a service description.

WSSR
CICS supports the use of WSRR for publishing service descriptions. For more information about the
support that CICS provides for WSSR, see the "Interoperability between the web services assistant
and WSRR" topic in the Information Center.

Any of the following mechanisms, none of which is directly supported by CICS, can be used with CICS to
publish service descriptions:
Direct publishing

This mechanism is the most straightforward for publishing service descriptions; the service provider
sends the service description directly to the service requester, using an e-mail attachment, an FTP
site, or a CD ROM distribution.

DISCO
These proprietary protocols provide a dynamic publication mechanism. The service requester uses a
simple HTTP GET mechanism to retrieve a web service description from a network location that is
specified by the service provider and identified with a URL.

Universal Description, Discovery and Integration (UDDI)
A specification for distributed web-based information registries of web services. UDDI is also a
publicly accessible set of implementations of the specification that allow businesses to register
information about the web services that they offer so that other businesses can find them.

A service description can be published in more than one form if required.

Structure of a SOAP message
A SOAP message is encoded as an XML document, consisting of an <Envelope> element, which contains
an optional <Header> element, and a mandatory <Body> element. The <Fault> element, contained in the
<Body>, is used for reporting errors.

The SOAP envelope
The SOAP <Envelope> is the root element in every SOAP message. It contains two child elements, an
optional <Header>, and a mandatory <Body>.

The SOAP header
The SOAP <Header> is an optional subelement of the SOAP envelope. It is used to pass application-
related information that is to be processed by SOAP nodes along the message path.

The SOAP body
The SOAP <Body> is a mandatory subelement of the SOAP envelope. It contains information intended
for the ultimate recipient of the message.

The SOAP fault
The SOAP <Fault> is a subelement of the SOAP body, which is used for reporting errors.

With the exception of the <Fault> element, which is contained in the <Body> of a SOAP message, XML
elements in the <Header> and the <Body> are defined by the applications that make use of them.
However, the SOAP specification imposes some constraints on their structure.

Figure 13 on page 19 shows the main elements of a SOAP message.

18 CICS TS for z/OS: Using Web Services with CICS

Figure 13. The structure of a SOAP message

Figure 14 on page 19 is an example of a SOAP message that contains header blocks (the
<m:reservation> and <n:passenger> elements) and a body (containing the <p:itinerary> and
<q:lodging> elements).

<?xml version='1.0' ?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
 <env:Header>
 <m:reservation xmlns:m="http://travelcompany.example.org/reservation"
 env:role="http://www.w3.org/2003/05/soap-envelope/role/next"
 env:mustUnderstand="true">
 <m:reference>uuid:093a2da1-q345-739r-ba5d-pqff98fe8j7d</m:reference>
 <m:dateAndTime>2001-11-29T13:20:00.000-05:00</m:dateAndTime>
 </m:reservation>
 <n:passenger xmlns:n="http://mycompany.example.com/employees"
 env:role="http://www.w3.org/2003/05/soap-envelope/role/next"
 env:mustUnderstand="true">
 <n:name>Åke Jógvan Øyvind</n:name>
 </n:passenger>
 </env:Header>
 <env:Body>
 <p:itinerary
 xmlns:p="http://travelcompany.example.org/reservation/travel">
 <p:departure>
 <p:departing>New York</p:departing>
 <p:arriving>Los Angeles</p:arriving>
 <p:departureDate>2001-12-14</p:departureDate>
 <p:departureTime>late afternoon</p:departureTime>
 <p:seatPreference>aisle</p:seatPreference>
 </p:departure>
 <p:return>
 <p:departing>Los Angeles</p:departing>
 <p:arriving>New York</p:arriving>
 <p:departureDate>2001-12-20</p:departureDate>
 <p:departureTime>mid-morning</p:departureTime>
 <p:seatPreference/>
 </p:return>
 </p:itinerary>
 <q:lodging
 xmlns:q="http://travelcompany.example.org/reservation/hotels">
 <q:preference>none</q:preference>
 </q:lodging>
 </env:Body>
</env:Envelope>

Figure 14. An example of a SOAP 1.2 message

The SOAP header
The SOAP <Header> is an optional element in a SOAP message. It is used to pass application-related
information that is to be processed by SOAP nodes along the message path.

The immediate child elements of the <Header> element are called header blocks. A header block is an
application-defined XML element It represents a logical grouping of data that can be targeted at SOAP
nodes that might be encountered in the path of a message from a sender to an ultimate receiver.

Chapter 1. CICS and web services 19

SOAP header blocks can be processed by SOAP intermediary nodes and by the ultimate SOAP receiver
node. However, in a real application, not every node processes every header block. Rather, each node is
typically designed to process particular header blocks, and, conversely, each header block is intended to
be processed by particular nodes.

The SOAP header allows features to be added to a SOAP message in a decentralized manner without prior
agreement between the communicating parties. SOAP defines a few attributes that can be used to
indicate what will deal with a feature and whether it is optional or mandatory. Such "control" information
includes, for example, passing directives or contextual information related to the processing of the
message. In this way, a SOAP message can be extended in an application-specific manner.

Although the header blocks are application-defined, SOAP-defined attributes on the header blocks
indicate how the header blocks are to be processed by the SOAP nodes. Note these important attributes:
encodingStyle

Indicates the rules used to encode the parts of a SOAP message. SOAP defines a narrower set of rules
for encoding data than the very flexible encoding that XML allows.

role (SOAP 1.2)
actor (SOAP 1.1)

In SOAP 1.2, the role attribute specifies whether a particular node operates on a message. If the role
specified for the node matches the role attribute of the header block, the node processes the header.
If the roles do not match, the node does not process the header block. In SOAP 1.1, the actor
attribute has the same function.

Roles can be defined by the application, and are designated by a URI. For example, http://
example.com/Log might designate the role of a node that performs logging. Header blocks that are
to be processed by this node specify env:role="http://example.com/Log", where the
namespace prefix env is associated with the SOAP namespace name of http://www.w3.org/
2003/05/soap-envelope.

The SOAP 1.2 specification defines three standard roles in addition to the ones that are defined by the
application:
http://www.w3.org/2003/05/soap-envelope/none

None of the SOAP nodes on the message path will process the header block directly. Header
blocks with this role can be used to carry data that is required for processing of other SOAP
header blocks.

http://www.w3.org/2003/05/soap-envelope/next
All SOAP nodes on the message path are expected to examine the header block, provided that the
header has not been removed by a node earlier in the message path.

http://www.w3.org/2003/05/soap-envelope/ultimateReceiver
Only the ultimate receiver node is expected to examine the header block.

mustUnderstand
This attribute is used to ensure that SOAP nodes do not ignore header blocks that are important to the
overall purpose of the application. If a SOAP node determines, using the role or actor attribute, that it
will process a header block, and the mustUnderstand attribute has a value of "true", the node must
either process the header block in a manner consistent with its specification or not at all (and throw a
fault). But if the attribute has a value of "false", the node is not obliged to process the header block.

In effect, the mustUnderstand attribute indicates whether processing of the header block is
mandatory or optional.

The mustUnderstand attribute has these values:
true (SOAP 1.2)
1 (SOAP 1.1)

The node must either process the header block in a manner consistent with its specification, or
not at all (and throw a fault).

20 CICS TS for z/OS: Using Web Services with CICS

false (SOAP 1.2)
0 (SOAP 1.1)

The node is not obliged to process the header block.

relay (SOAP 1.2 only)
When a SOAP intermediary node processes a header block, it removes it from the SOAP message. By
default, it also removes any header blocks that it ignored, because the mustUnderstand attribute had
a value of "false". However, when the relay attribute is specified with a value of "true", the node
retains the unprocessed header block in the message.

The SOAP body
The <Body> is the mandatory element in the SOAP envelope, in which the main end-to-end information
conveyed in a SOAP message is carried.

The <Body> element and its associated child elements are used to exchange information between the
initial SOAP sender and the ultimate SOAP receiver. SOAP defines one child element for the <Body>: the
<Fault> element, which is used for reporting errors. Other elements in the <Body> are defined by the web
service that uses them.

The SOAP fault
The SOAP <Fault> element carries error and status information in the SOAP message.

If an error occurs in a web service, a fault message is returned to the client. The basic structure of the
fault message is defined in the SOAP specifications. Each fault message can include XML that describes
the specific error condition. For example, if an application abend occurs in a CICS web service, a fault
message is returned to the client reporting the abend.

CICS can send different types of fault message:

• Standard SOAP fault messages are defined by the SOAP specifications or one of the web service
specifications that are supported in CICS. The faults report common error conditions, such as
malformed SOAP envelopes.

• Application SOAP fault messages are generated using the EXEC CICS SOAPFAULT API commands in
response to conditions that are detected or handled by the application. The structure of these fault
messages is known to the application, but not to CICS.

• SOAP handler fault messages are generated by the SOAP handler programs in response to general error
handling in CICS. For example, the SOAP handler programs send SOAP faults for abends, XML parsing
failures, and other common errors.

• Application handler fault messages are generated by CICS SOAP application handlers in response to
finding errors when processing the body of a SOAP message. These faults occur during the process of
transforming the XML into binary application data or when generating the response.

If an error occurs, the SOAP <Fault> element must be a body entry and must not be present more than
once in a <Body> element. The XML elements inside the SOAP <Fault> element are different in SOAP
1.1 and SOAP 1.2.

SOAP 1.1
In SOAP 1.1, the SOAP <Fault> element contains the following elements:
<faultcode>

The <faultcode> element is a mandatory element in the <Fault> element. It provides information
about the fault in a form that can be processed by software. SOAP defines a small set of SOAP fault
codes covering basic SOAP faults, and this set can be extended by applications.

<faultstring>
The <faultstring> element is a mandatory element in the <Fault> element. It provides
information about the fault in a form intended for a human reader.

<faultactor>
The <faultactor> element contains the URI of the SOAP node that generated the fault. A SOAP
node that is not the ultimate SOAP receiver must include the <faultactor> element when it creates
a fault. An ultimate SOAP receiver is not obliged to include this element, but may do so.

Chapter 1. CICS and web services 21

<detail>
The <detail> element carries application-specific error information related to the <Body> element.
It must be present if the contents of the <Body> element were not successfully processed. It must
not be used to carry information about error information belonging to header entries. Detailed error
information belonging to header entries must be carried in header entries.

SOAP 1.2
In SOAP 1.2, the SOAP <Fault> element contains the following elements:
<Code>

The <Code> element is a mandatory element in the <Fault> element. It provides information about
the fault in a form that can be processed by software. It contains a <Value> element and an optional
<Subcode> element.

<Reason>
The <Reason> element is a mandatory element in the <Fault> element. The <Reason> element
contains one or more <Text> elements, each of which contains information about the fault in a
different native language.

<Node>
The <Node> element contains the URI of the SOAP node that generated the fault. A SOAP node that is
not the ultimate SOAP receiver must include the <Node> element when it creates a fault. An ultimate
SOAP receiver is not obliged to include this element, but may do so.

<Role>
The <Role> element contains a URI that identifies the role in which the node was operating at the
point the fault occurred.

<Detail>
The <Detail> element is an optional element, which contains application-specific error information
related to the SOAP fault codes describing the fault. The presence of the <Detail> element has no
significance regarding which parts of the faulty SOAP message were processed.

SOAP fault example and schemas

The following example shows a SOAP fault message that is generated by the application handler,
DFHPITP, when processing the body of a SOAP message.

<SOAP-ENV:Fault xmlns="">
 <faultcode>SOAP-ENV:Server</faultcode>
 <faultstring>Conversion to SOAP failed</faultstring>
 <detail>
 <CICSFault xmlns="http://www.ibm.com/software/htp/cics/WSFault">
 DFHPI1008 25/01/2010 14:16:50 IYCWZCFU 00340 XML
 generation failed because of incorrect input
 (CONTAINER_NOT_FOUND container name) for WEBSERVICE
 servicename.
 </CICSFault>
 </detail>
</SOAP-ENV:Fault>

Most of the content in this example is common to all fault messages. The <Detail> element contains the
unique information that describes the problem that was encountered by the application handler. This
specific fault message contains a copy of an error message that is written to the CICS message logs. If
you want to parse application handler SOAP faults programmatically, use the following XML schema:

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.ibm.com/software/htp/cics/WSFault"
xmlns:tns="http://www.ibm.com/software/htp/cics/WSFault"
elementFormDefault="qualified">
 <element name="CICSFault" type="string">
 <annotation>
 <documentation>
 The value of this element is a text string that describes a
 problem encountered during the processing of the Body of a
 SOAP message.
 </documentation>

22 CICS TS for z/OS: Using Web Services with CICS

 </annotation>
 </element>
</schema>

The general purpose fault messages are more complicated because the <Detail> section can be
structured in several different ways. If you want to parse SOAP handler faults programmatically, use the
XML schema that is supplied in usshome/schemas/soapfault/soapfault.xsd, where usshome is
the value of the USSHOME system initialization parameter.

Planning to use SOAP web services
Before you can plan to use SOAP web services in CICS, you need to consider these questions for each
application.

Before you begin
Do you plan to deploy your CICS application in the role of a service provider or a service requester?

You may have a pair of applications that you want to connect using CICS support for web services. In
this case, one application will be the service provider; the other will be the service requester.

Do you plan to use your existing application programs, or write new ones?
If your existing applications are designed with a well defined interface to the business logic, you will
probably be able to use them in a web services setting, either as a service provider or a service
requester. However, in most cases, you will need to write a wrapper program that connects your
business logic to the web services logic.

If you plan to write new applications, you should aim to keep your business logic separated from your
web services logic, and, once again, you will need to write a wrapper program to provide this
separation. However, if your application is designed with web services in mind, the wrapper might be
simpler to write.

Do you intend to use SOAP messages?
SOAP is fundamental to the web services architecture, and much of the support that is provided in
CICS assumes that you will use SOAP. However, there may be situations where you want to use other
message formats. For example, you might have developed your own message formats that you want
to deploy with the CICS web services infrastructure. You can do this with CICS, but you will not be
able to use some of the functions that CICS provides, such as the web services assistant, and the
SOAP message handlers.

If you decide not to use SOAP, your application programs will be responsible for parsing inbound
messages, and constructing outbound messages.

Do you intend to use the CICS web services assistant to generate the mappings between your data
structures and SOAP messages?

The assistant provides a rapid deployment of many applications into a web services setting with little
or no additional programming. And when additional programming is required, it is usually
straightforward, and can be done without changing existing business logic.

However, there are cases which are better handled without using the web services assistant. For
example, if you have existing code that maps data structures to SOAP messages, there is no
advantage in reengineering your application with the web services assistant.

Although the CICS web services assistant supports the most common data types and structures,
there are some that are not supported. In this situation, you should check the list of unsupported data
types and structures for the language in question, and consider providing a program layer that maps
your application data to a format that the assistant can support. If this is not possible, you will need to
parse the message yourself. For details on what the assistant can and cannot support, see High-level
language and XML schema mapping.

If you decide not to use the CICS web services assistant, you can use a tool such as IBM Developer for
Z to create the necessary artifacts, and you can then provide your own code for parsing inbound
messages, and constructing outbound messages. You can also use the provided vendor interface API.

Chapter 1. CICS and web services 23

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/dfhws_hllxmlmapping.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/dfhws_hllxmlmapping.html

Do you intend to use an existing service description, or create a new one?
In some situations, you will be obliged to use an existing service description as a starting point. For
example:

• Your application is a service requester, and it is designed to invoke an existing web service.
• Your application is a service provider, and you want it to conform to an existing industry-standard

service description.

In other situations, you may need to create a new service description for your application.

What to do next

CICS and JSON web services
There are several ways to get started with JSON web services in CICS. The most appropriate way for you
depends on how much you already know and how advanced your plans are for using web services.

CICS supports several different technologies for exposing resources as JSON based services. This section
relates to an older technology called JSON web service. For the equivalent information about z/OS
Connect for CICS 1.0, see “CICS and z/OS Connect” on page 34.

JSON web services is a technology for enabling CICS programs as JSON services. These may be RESTful
services, or request-response remote-procedure-call style services. The technology is derived from that
used for SOAP web services and uses JCL procedures called DFHLS2JS and DFHJS2LS that are used to
generate WSBind files. These WSBind files are deployed into CICS as WEBSERVICE resources. The
WEBSERVICE resources facilitate automatic conversions between JSON and application binary data
formats.

IBM's premiere technology for JSON involves a product called z/OS Connect Enterprise Edition, which is
broadly compatible with CICS JSON web services, but offers many additional integration options and
capabilities.

Here are some starting points for JSON web services in CICS:

• Get familiar with “Concepts of JSON web services” on page 24 and “Concepts of RESTful JSON web
services” on page 27.

• Plan for the deployment of an application as a service provider.

You might already know enough about how you will use web services in CICS to start planning your
applications and the related infrastructure.

• If you are interested in the option of z/OS Connect Enterprise Edition, see Getting started with z/OS
Connect to learn more.

• If you want a hands-on way to learn about web services in CICS, CICS provides an example of a catalog
management application, which you can enable as a JSON web service provider. To do this, use
DFHLS2JS to generate a web service from the language structures provided. You could use a web
browser or third party client application to test the JSON web service. For more information, see
Creating a service provider application from a data structure.

The example application is described in The CICS catalog manager example application.

Concepts of JSON web services
Read this topic to understand the concepts behind JSON web services.

Web services

A web service is a generic term for a software function that is hosted at a network addressable location. In
this general sense it can imply a Cloud based service, a Utility service or even a departmental application.
The term web service can also be used in a more specific sense, such as a hosted service using SOAP
which is described using a WSDL document. It is this more specific meaning that is usually implied by the

24 CICS TS for z/OS: Using Web Services with CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/web-services/zos_connect_overview.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/web-services/zos_connect_overview.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/dfhws_deployProviderFromHll_json.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-samples/web-services/dfhxa_t100.html

term web services in CICS. However, the more general term is often used by the JSON community when
describing JSON based services. JSON web services uses the term in its generic sense.

There are some important differences between SOAP and JSON:

• The content of a SOAP message is XML data, whereas a JSON message contains JSON data. JSON and
XML are different encoding mechanisms for describing structured data. JSON tends to be a more
efficient encoding mechanism, so a typical JSON message will be smaller than the equivalent XML
message.

• JSON is easy to integrate in JavaScript applications, but XML isn't. This makes JSON a preferred data
format with many mobile application developers.

• SOAP provides a mechanism to add Headers to a message, and a family of specifications for qualities of
service (such as security configuration, and distributed transactions). JSON does not provide this
mechanism, it instead relies on the services of the underlying HTTP network protocol. This results in
fewer options for securing and configuring a workload.

• SOAP web services are described using WSDL documents. JSON web services are structured less
formally; they tend to be loosely coupled and prefer documentation by example.

• SOAP web services have an explicit error format involving SOAP Fault messages. There's no equivalent
for JSON.

There are also many similarities between JSON and SOAP:

• The CICS implementation of JSON is derived from the SOAP architecture, and shares many of the
concepts and artifacts.

• Both involve offline utility programs that assist with mapping application data to and from the external
data representation. For SOAP there is DFHLS2WS and DFHWS2LS, for JSON there is DFHLS2JS and
DFHJS2LS.

• The deployment mechanism for both technologies involve a PIPELINE resource, a WEBSERVICE
resource, and a URIMAP resource.

JSON schema

One disadvantage of JSON compared to SOAP is the difficulty in documenting the structure of a JSON
interface. SOAP web services have the advantage of WSDL documents, together with XML schemas. A
WSDL document may not be easy to understand, but there are many tools available to work with WSDL
documents.

The nearest equivalent for JSON is the JSON Schema specification available at http://json-schema.org/.
At the time of writing this is a draft specification which is making its way through the IETF standardization
process. The CICS JSON assistant (DFHLS2JS and DFHJS2LS) supplies a partial implementation of draft 4
of this emerging specification. DFHLS2JS can be used to generate JSON schema, and DFHJS2LS can be
used to process them.

You can use the JSON schema to understand the valid syntax and content model for a JSON web service
that has been implemented in CICS. The JSON schema specification doesn't have the same tooling
ecosystem as the XML schema specification, but a new generation of JSON tools might emerge to use this
data format.

CICS implementation of JSON based web services

CICS supports three modes of JSON web service, z/OS Connect , Request-Response and RESTful. CICS
also supports a programmatic scenario in which applications can transform JSON data to and from
COBOL style data formats themselves.

z/OS Connect
z/OS Connect enables CICS programs to be called with a JavaScript Object Notation (JSON) interface.
z/OS Connect for CICS was first introduced as an alternative to the JSON capabilities of the java
pipelines that were provided in the CICS TS Feature Pack for Mobile Extensions and integrated into
CICS TS Version 5.2. Since then, z/OS Connect has grown into a separate product, called z/OS
Connect Enterprise Edition, with additional capabilities.

Chapter 1. CICS and web services 25

https://json-schema.org/

z/OS Connect is IBM's premiere technology for implementing JSON Services and APIs in CICS. It is
available in three versions, and supports several deployment options. z/OS Connect for CICS is the
entry level edition and a low-cost option, but lacks the enhancements of the other versions. z/OS
Connect EE version 2.0 and 3.0 offer a further range of integration options.

z/OS Connect EE is a separately-orderable IBM product. It builds on the capabilities of z/OS Connect
for CICS, which included support for JSON services. z/OS Connect EE enables API developers to
construct JSON APIs from JSON services. The APIs are constructed and packaged with the Eclipse-
based API Editor that is provided with z/OS Connect EE, then deployed to the z/OS Connect runtime.
The API package includes Swagger 2.0 definitions to make it easier for developers to incorporate the
APIs into their applications. Key z/OS Connect capabilities, such as authorization security checking for
service invocation, creation of System Management Facility (SMF) records, and logging of RESTful
service requests also apply to the APIs.

Request-Response

The Request-Response JSON pattern is very similar to that of SOAP based web services in CICS. The
web service is implemented using a PROGRAM in CICS. The PROGRAM has input and output data
formats, described using language structures (such as COBOL copybooks), and CICS is responsible for
transforming incoming JSON messages into application data, and linking to the application. The
application returns output data back to CICS, and CICS transforms this into JSON data to return to the
client.

In this scenario the JSON client must connect to CICS using the HTTP POST method.

A Request-Response mode JSON web service can be developed in either bottom-up mode or top-
down mode. In bottom-up mode an existing CICS PROGRAM is exposed as a JSON web service using
the DFHLS2JS JSON Assistant. In top-down mode a new JSON web service can be developed to
implement an interface described using existing JSON schemas. In top-down mode, the DFHJS2LS
JSON Assistant is used to generate new language structures, and an application must be created to
use them.

The Request-Response pattern may be used to build JSON Web Services that target either
COMMAREA or channel-attached CICS PROGRAMs. A Request-Response JSON web service can be
used only in provider mode (where CICS acts as the server).

RESTful

This scenario is different to that of SOAP web services. The concept of a RESTful JSON web service is
described more completely in Concepts of RESTful JSON web services. A RESTful JSON web service
implements the architectural principles of the REpresentational State Transfer (REST) design pattern.
This design pattern is unlikely to be relevant for existing CICS applications, so is available only in top-
down mode.

A JSON schema can be processed by DFHJS2LS in RESTful mode. An application must be written to
implement the service and it will have to behave differently depending on the HTTP method that was
used for the incoming request.

CICS implements a pure style of RESTful application, where the data format for POST (create) GET
(inquire) and PUT (replace) are the same.

RESTful JSON web service applications must use a channel based program interface; COMMAREAs
are not supported. A RESTful JSON web service can be used only in provider mode (where CICS acts
as the server).

Programmatic mode

In this scenario an application can LINK to a CICS supplied program, DFHJSON, and ask it to
transform application data into JSON data, or JSON data into application data. For example, an
application might use this facility in order to generate JSON data to send to a remote JSON web
service. To do this, it must contact the remote JSON web service using the CICS WEB API.

CICS has no built-in support for requester mode JSON web services, but an application can call a
remote JSON web service by exploiting the programmatic mode.

26 CICS TS for z/OS: Using Web Services with CICS

Concepts of RESTful JSON web services
Read this topic to understand the concepts behind RESTful web services.

RESTful web services

REpresentational State Transfer, or REST, is a design pattern for interacting with resources stored in a
server. Each resource has an identity, a data type, and supports a set of actions.

The RESTful design pattern is normally used in combination with HTTP, the language of the internet. In
this context the resource's identity is its URI, the data type is its Media Type, and the actions are made up
of the standard HTTP methods (GET, PUT, POST, and DELETE).

This style of service differs from Request-Response style web services:

• Request-Response services start interaction with an Application, whereas RESTful services typically
interact with data (referred to as 'resources').

• Request-Response services involve application defined 'operations', but RESTful services avoid
application specific concepts.

• Request-Response services have different data formats for each message, but RESTful service typically
share a data format across different HTTP methods.

The four major HTTP methods define the four operations that are commonly implemented by RESTful
Services. The HTTP POST method is used for creating a resource, GET is used to query it, PUT is used to
change it, and DELETE is used to destroy it. The most common RESTful architecture involves a shared
data model that is used across these four operations. This data model defines the input to the POST
method (create), the output for the GET method (inquire) and the input to the PUT method (replace). This
simple design pattern is popular within the RESTful community, but it's not the only RESTful design
pattern. The HTTP status code is used to indicate success or failure of the operation. Some RESTful APIs
are designed in other ways.

A fifth HTTP method called 'HEAD' is sometimes supported by RESTful web services. This method is
equivalent to GET, except that it returns only HTTP Headers, and no Body data. It's sometimes used to
test the Existence of a resource. Not all RESTful APIs support use of the HEAD method.

Traditional CICS applications are unlikely to match the RESTful architectural pattern. Typical CICS
applications implement multiple operations, each of which will have data models for input and output
formats. These existing operations are unlikely to map directly to the four HTTP methods. For this reason
the RESTful architectural pattern is primarily aimed at new applications in CICS. To expose existing CICS
applications as RESTful Services you may need to wrap them with a new interface that conforms to the
RESTful principles.

The URI

The identity of a RESTful service is indicated by its URI. A URI can be made up of several components,
including the host name, port number, the path, and an optional query string. The domain name and port
number together target a TCPIPSERVICE resource in CICS. For more information, see TCPIPSERVICE
resources . The URI path is a qualifier, and might be sufficient to uniquely identify the service. However,
many RESTful web services use an additional query string to identify the precise resource. Consider the
following examples:

• http://www.example.org:10000/JSONServices/AccountService
• https://www.example.org:10000/JSONServices?Service=Account

In the first example the URI path is JSONServices/AccountService. In the second example the path
is JSONServices and there is an additional query string of Service=Account. Both styles of URI are
considered to be acceptable for JSON. This is an important difference compared to SOAP. Under SOAP
the first style of URI is preferred.

CICS JSON services can be converted into RESTful services using z/OS Connect Enterprise Edition. A
Graphical User Interface is used to map URI fragments and HTTP headers into fields of an existing
copybook, and different programs can potentially act as the target for each HTTP method. The ability to

Chapter 1. CICS and web services 27

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/tcpipservice/dfha4_summary.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/tcpipservice/dfha4_summary.html

construct RESTful services from existing application assets is one of the main advantages ofz/OS Connect
over the other JSON technologies in CICS.

CICS also has an older technology for implementing a limited form of RESTful service. A URIMAP resource
can be used to identify the appropriate WEBSERVICE and PIPELINE to use when processing an inbound
message. The URIMAP can map a URI to a specific PIPELINE or WEBSERVICE, potentially including the
query string of the URI in that mapping

CICS uses a URIMAP resource to identify the appropriate WEBSERVICE and PIPELINE to use when
processing an inbound message. The URIMAP supports use of a query string as part of the path attribute.
Therefore the URIMAP is suitable for use with both types of URI.

Planning to use JSON web services
Before you can plan to use JSON web services in CICS, you need to consider these questions for each
application.

Before you begin
Do you plan to use your existing application programs, or write new ones?

If your existing applications are designed with a well defined interface to the business logic, you will
probably be able to use them in a web services setting, either as a service provider or a service
requester. However, in most cases, you will need to write a wrapper program that connects your
business logic to the web services logic.

If you plan to write new applications, you should aim to keep your business logic separated from your
web services logic, and, once again, you will need to write a wrapper program to provide this
separation. However, if your application is designed with web services in mind, the wrapper might be
simpler to write.

Do you intend to use the CICS assistant to generate the mappings between your data structures and
JSON schemas?

The assistant provides a rapid deployment of many applications into a JSON web services setting with
little or no additional programming. And when additional programming is required, it is usually
straightforward, and can be done without changing existing business logic.

However, there are cases which are better handled without using the JSON assistant. For example, if
you have existing code that maps data structures to JSON messages, there is no advantage in
reengineering your application with the JSON assistant.

Although the CICS assistant supports the most common data types and structures, there are some
that are not supported. In this situation, you should check the list of unsupported data types and
structures for the language in question, and consider providing a program layer that maps your
application data to a format that the assistant can support. If this is not possible, you will need to
parse the message yourself. For details on what the assistant can and cannot support, see High-level
language and JSON schema mapping.

Planning a JSON service provider application
In general, CICS applications should be structured to ensure separation of business logic and
communications logic. Following this practice will help you to deploy new and existing applications in a
web service provider in a straightforward way. You will, in some situations, need to interpose a simple
wrapper program between your application program and CICS web service support.

Figure 15 on page 29 shows a typical application which is partitioned to ensure a separation between
communication logic and business logic.

28 CICS TS for z/OS: Using Web Services with CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/dfhws_hlljsonmapping.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/dfhws_hlljsonmapping.html

Client

CICS Transaction Server

EXEC CICS LINK Business
logic

Communications
logic

Figure 15. Application partitioned into communications and business logic

Chapter 1. CICS and web services 29

In many cases, you can deploy the business logic directly as a service provider application. This is
illustrated in Figure 16 on page 31.

30 CICS TS for z/OS: Using Web Services with CICS

Client

CICS Transaction Server

CICS EXEC LINK Business
logic

CICS Web
service support

Figure 16. Simple deployment of CICS application as a web service provider

Chapter 1. CICS and web services 31

To use this simple model, the following conditions apply:
When using z/OS Connect to generate the mapping between a JSON schema or Swagger document
and application data structures:

z/OS Connect Enterprise Edition supports a broader range of application copybook structures than are
supported by the CICS assistant. In most cases those copybooks will be supported unchanged. If not,
you might interpose a wrapper program between the z/OS Connect service and your business logic.

When you are using the CICS assistant to generate the mapping between JSON schema and
application data structures:

The data types used in the interface to the business logic must be supported by the CICS assistant. If
this is not the case, you must interpose a wrapper program between CICS web service support and
your business logic.

You will also need a wrapper program when you deploy an existing program to provide a service that
conforms to an existing web service description: if you process the web service description using the
assistant, the resulting data structures are very unlikely to match the interface to your business logic.

When you are not using the CICS assistant:
Message handlers in your service provider pipeline must interact directly with your business logic.

Using a wrapper program
Use a wrapper program when the CICS assistant cannot generate code to interact directly with the
business logic. For example, the interface to the business logic might use a data structure which the CICS
assistant cannot map directly into a JSON message. In this situation, you can use a wrapper program to
provide any additional data manipulation that is required:

32 CICS TS for z/OS: Using Web Services with CICS

Client

CICS Transaction Server

EXEC CICS LINK Business
logic

CICS Web
service support

wrapper
program

Figure 17. Deployment of CICS application as a web service provider using a wrapper program

Chapter 1. CICS and web services 33

You will need to design a second data structure that the assistant can support, and use this as the
interface to your wrapper program. The wrapper program then has two simple functions to perform:

• move data between the two data structures
• invoke the business logic using its existing interface

Error handling

If you are planning to use the CICS assistant, you should also consider how to handle rolling back changes
when errors occur. When a JSON request message is received from a service requester, the JSON
message is transformed by CICS just before it is passed to your application program. If an error occurs
during this transformation, CICS does not automatically roll back any work that has been performed on
the message. For example, if you plan to add some additional processing on the JSON message using
handlers in the pipeline, you need to decide if they should roll back any recoverable changes that they
have already performed.

On outbound JSON messages, for example when your service provider application program is sending a
response message to a service requester, if CICS encounters an error when generating the response
JSON message, all of the recoverable changes made by the application program are automatically backed
out. You should consider whether adding synchronization points is appropriate for your application
program.

Planning a JSON service requester application
CICS does not provide built in support for requester mode JSON web services. Those services are
provided by z/OS Connect Enterprise Edition V3.0.

For more information about z/OS Connect, see “CICS and z/OS Connect” on page 34. To invoke a remote
JSON web service from a CICS application without using z/OS Connect, use the EXEC CICS WEB API
commands. For more information, see Creating a JSON web service client application

CICS and z/OS Connect
z/OS Connect enables CICS programs to be called with a JavaScript Object Notation (JSON) interface.

z/OS Connect for CICS 1.0 was first introduced as an alternative to the JSON capabilities of the Java
Pipelines for JSON that were provided in the CICS TS Feature Pack for Mobile Extensions and integrated
into CICS TS Version 5.2. Since then, z/OS Connect has grown into a separate product, called z/OS
Connect Enterprise Edition, with additional capabilities. This information describes the differences
between the alternative offerings and the steps towards implementation.

z/OS Connect is IBM's premier technology for implementing JSON services and APIs in CICS. It is
available in three versions, and supports several deployment options. z/OS Connect for CICS 1.0 is the
entry level edition and a low-cost option, but lacks the enhancements of the other versions. z/OS Connect
Enterprise Edition version 2.0 and 3.0 offer a further range of integration options.

For an overview of JSON services, see CICS as a service provider for JSON requests.

Maintenance considerations for z/OS Connect Enterprise Edition

Because z/OS Connect Enterprise Edition can run standalone or in Liberty embedded in CICS, the two
environments must be described uniquely. You can run both environments concurrently, but they are not
mutually exclusive, so care is needed when applying maintenance to the WebSphere Liberty Profile (WLP)
client libraries that contain the BBOA* modules.

For more information, see Keeping CICS TS 5.3 and z/OS Connect EE 2.0 maintenance in sync.

z/OS Connect Enterprise Edition

z/OS Connect Enterprise Edition is a separately-orderable IBM product. It builds on the capabilities of
z/OS Connect for CICS 1.0, which included support for JSON services. z/OS Connect Enterprise Edition
enables API developers to construct JSON APIs from JSON services. The APIs are constructed and
packaged with the Eclipse-based API Editor that is provided with z/OS Connect Enterprise Edition, then

34 CICS TS for z/OS: Using Web Services with CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/creating_service_requester_application.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_serviceProviderInfrastructure_json.html
https://developer.ibm.com/answers/questions/337637/how-to-keep-cics-ts-53-and-zosconnect-v2r0-mainten.html#answer-337664

deployed to the z/OS Connect runtime. The API package includes Swagger 2.0 definitions to make it
easier for developers to incorporate the APIs into their applications. Key z/OS Connect capabilities, such
as authorization security checking for service invocation, creation of System Management Facility (SMF)
records, and logging of RESTful service requests also apply to the APIs.

z/OS Connect Enterprise Edition can be configured to run in a Liberty JVM server in CICS. A z/OS Connect
Enterprise Edition server running in a Liberty JVM server in CICS uses a service provider to connect to the
CICS application programs. With z/OS Connect Enterprise Edition V3.0, you can choose which CICS
service provider you use for your configuration:

• If you use z/OS Connect Enterprise Edition V2.0, use the CICS service provider that is supplied with
CICS TS and feature cicsts:zosConnect-2.0. This configuration enables local high-performance
connectivity to CICS programs. This is the only supported service provider for z/OS Connect Enterprise
Edition V2.0.

• If you use z/OS Connect Enterprise Edition V3.0 to connect to a local CICSCICS region, use the CICS
service provider that is supplied with z/OS Connect Enterprise Edition V3.0 and feature
zosconnect:cicsService-1.0. This configuration uses a local optimized connection to the local
CICS region.

• If you use z/OS Connect Enterprise Edition V3.0 to connect to a remote CICS region, use the CICS
service provider that is supplied with z/OS Connect Enterprise Edition V3.0 and feature
zosconnect:cicsService-1.0. This configuration uses an IP interconnectivity (IPIC) connection to
a remote CICS region.

JSON services that were developed for use with z/OS Connect for CICS 1.0, and most of the JSON
services that were developed for use with the Java Pipelines for JSON, can be hosted in z/OS Connect
Enterprise Edition. See “z/OS Connect for CICS 1.0” on page 35 for more details. However, users of the
API Editor that is supplied with z/OS Connect Enterprise Edition should be aware of some restrictions. For
details, see Using APIs from z/OS Connect Enterprise Edition.

For more information, see z/OS Connect Enterprise Edition V3.0 product documentation.

z/OS Connect for CICS 1.0

z/OS Connect for CICS 1.0 is a no-charge feature provided in CICS TS from Version 5.2. It is broadly
equivalent to the Java Pipelines for JSON and most JSON web services can be redeployed from one
environment to the other without changes to applications or WSBind files. However, the URI and security
configuration can be different in each environment. JSON web services that are deployed to z/OS Connect
for CICS 1.0 can also be deployed to z/OS Connect Enterprise Edition.

The version of z/OS Connect that is embedded in CICS TS shares much of the function of z/OS Connect in
WebSphere Liberty for z/OS, but it is optimized for local access to CICS and uses standard CICS services.
If you are familiar with z/OS Connect in WebSphere Liberty for z/OS, the main differences between this
and z/OS Connect for CICS 1.0 are as follows:

• z/OS Connect for CICS 1.0 supports only the deployment of JSON web services for CICS. It cannot be
used to target other z/OS subsystems such as IMS or Batch.

• z/OS Connect for CICS 1.0 integrates with CICS resources. JSON web services are deployed using
WEBSERVICE and URIMAP resources.

• JSON service-enablement techniques from the Java Pipelines for JSON are supported with z/OS
Connect for CICS 1.0, including those that are not normally available in z/OS Connect.

• JSON services can be developed by using both bottom-up and top-down development strategies.
• JSON web services generated for Java Pipelines for JSON can be redeployed to z/OS Connect for CICS

1.0.

For more information about z/OS Connect in WebSphere Liberty for z/OS, see IBM z/OS Connect overview.

Earlier technologies

Other JSON technologies for CICS precede z/OS Connect, including the "Feature Pack for Mobile
Extensions" and "JSON services". The Feature Pack for Mobile Extensions V1.0 applied to CICS TS for

Chapter 1. CICS and web services 35

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/zos_connect_api.html
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/welcome/WelcomePage.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/cwlp_zconnect_overview.html

z/OS V4.2 and V5.1. This Feature Pack provided the capability to expose CICS applications as RESTful
web services with JSON payloads, call existing JSON applications, and convert JSON to and from
application data. In CICS TS V5.2 and later, this capability was integrated into CICS TS. Services deployed
for the older technologies are usually compatible with z/OS Connect. However, z/OS Connect Enterprise
Edition provides the best experience for new services and APIs.

Deployment options for z/OS Connect Enterprise Edition

There are three major deployment options for z/OS Connect Enterprise Edition:
Standalone z/OS Connect Enterprise Edition

Connectivity to CICS is achieved by using either IPIC or WOLA connections from an external address
space. For further information, see Configuring in z/OS Connect Enterprise Edition V3.0 product
documentation.

z/OS Connect Enterprise Edition V3 in a CICS JVMSERVER hosting z/OS Connect administered
services and APIs

z/OS Connect Enterprise Edition V3.0 is hosted within a Liberty JVM server in CICS, and
communication is achieved over a locally optimized IPIC connection. Services are created using rich
UI driven tooling, and deployed using SAR and AAR files. This configuration option is similar to the
standalone z/OS Connect Enterprise Edition option, except that it is hosted in the CICS address space.

z/OS Connect Enterprise Edition in a CICS JVMSERVER hosting CICS administered services
(compatibility mode)

This option is available for any version of z/OS Connect. It offers a hybrid mode in which services that
were formerly deployed for CICS JSON services technology are aggregated into z/OS Connect.
WSBind files are created using the DFHLS2JS or DFHJS2LS JCL procedures, deployed to CICS as
WEBSERVICE resources, but installed into z/OS Connect by CICS. This configuration option brings
many of the advantages of z/OS Connect Enterprise Edition to the older style of JSON services,
although some limitations and differences in capability will be experienced.

Comparing z/OS Connect capabilities

This section compares the capabilities of z/OS Connect Enterprise Edition and z/OS Connect for CICS 1.0.
A comparison for the Java Pipelines for JSON (or the Feature Pack for Mobile Extensions) is also included
because it preceded z/OS Connect for CICS 1.0.

Table 1. Comparing the capabilities of z/OS Connect Enterprise Edition, z/OS Connect for CICS 1.0, and
the Feature Pack for Mobile Extensions.

Capability z/OS Connect
Enterprise Edition

z/OS Connect for CICS
1.0

Java Pipelines for
JSON (or the Feature
Pack for Mobile
Extensions)

Support for standard
z/OS Connect
capabilities

Yes. Service Discovery
requires extra
configuration.

Yes. Service Discovery
requires extra
configuration.

No

Enable CICS programs
as JSON web services

Yes Yes Yes

Support for RESTful
JSON services

Yes Yes Yes

Support for RESTful
APIs

Yes No No

Support for starting
remote JSON services

V3: Yes; V2: No, Use
DFHJSON

No. Use DFHJSON. No (use DFHJSON)

36 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/configuring/configuring.html
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/configuring/configuring.html

Table 1. Comparing the capabilities of z/OS Connect Enterprise Edition, z/OS Connect for CICS 1.0, and
the Feature Pack for Mobile Extensions. (continued)

Capability z/OS Connect
Enterprise Edition

z/OS Connect for CICS
1.0

Java Pipelines for
JSON (or the Feature
Pack for Mobile
Extensions)

Support for CICS data
transformation that uses
the DFHLS2JS and
DFHJS2LS assistants

Yes. See Note 1. Yes Yes

Support for SAR based
Service deployment

V3: Optional; V2: No No No

Support for JSON
schema specification

Yes (draft-04) Yes (draft-04) Yes (draft-04)

Choice of parser
technologies for JSON
transformation

Yes Yes No

Support for PIPELINE
handler programs

No No Yes

Support for interceptor
programs

Yes, by using z/OS
Connect Interceptors

Yes, by using z/OS
Connect Interceptors

Yes, by using Axis2
handlers

Application access to
CICS control containers

Yes Yes Yes

WSBind deployment
through a CICS
PIPELINE resource

V3: Optional; V2: Yes.
See Note 2

Yes Yes

Configuration with
URIMAP and
WEBSERVICE resources

V3: Optional; V2: Yes.
See Note 3

Yes Yes

Network configuration Using WebSphere
Liberty

Using WebSphere
Liberty

Using a TCPIPSERVICE
resource

Security configuration Using WebSphere
Liberty and CICS
security

Using WebSphere
Liberty and CICS
security

Using CICS

Support for Transport
Layer Security (TLS)

Yes Yes Yes

Statistics, monitoring,
user exits, and other
diagnostics
infrastructure

Consistent with
WebSphere Liberty in
CICS

Consistent with
WebSphere Liberty in
CICS

Consistent with
pipelines in CICS

JVM environment A Liberty JVM server
that is preferably
isolated for sole use by
z/OS Connect

A Liberty JVM server
that is preferably
isolated for sole use by
z/OS Connect

A non-OSGi JVM server
configured with
JAVA_PIPELINE=YES,
preferably isolated for
sole use by the Java
Pipelines for JSON

Note:

Chapter 1. CICS and web services 37

1. If you use the CICS service provider that is supplied with CICS TS, this capability is supported for
services. For APIs, use the assistants that are supplied by z/OS Connect Enterprise Edition.

If you use the CICS service provider that is supplied with z/OS Connect Enterprise Edition V3.0, this
capability is not supported. Use the z/OS Connect Enterprise Edition API Toolkit, or use the build
toolkit to create services and then the API toolkit to create APIs.

2. If you use the CICS service provider that is supplied with CICS TS, this capability is supported for
services, but deploying APIs involves additional artifacts. For more information, see z/OS Connect
Enterprise Edition V3.0 product documentation.

If you use the CICS service provider that is supplied with z/OS Connect Enterprise Edition V3.0, this
capability is not supported for services. Use the z/OS Connect Enterprise Edition services directory.
Deploying APIs involves additional artifacts. For more information, see z/OS Connect Enterprise
Edition V3.0 product documentation.

3. This capability is supported for services, only if you use the CICS service provider that is supplied with
CICS TS. The CICS service provider that is supplied with z/OS Connect Enterprise Edition V3.0
supports the manual creation of URIMAPs. You can use a URIMAP, for example, to override the default
CICS transaction (CJSA).

Capabilities of z/OS Connect for CICS
The integrated z/OS Connect capability in CICS has differences from z/OS Connect in other environments.
z/OS Connect for CICS is optimized for local access to CICS, and uses standard CICS services.

z/OS Connect for CICS has the same features and functions as z/OS Connect in WebSphere Liberty for
z/OS, but there are some differences.

• WSBind files can be generated by using the CICS-supplied DFHLS2JS and DFHJS2LS tools.
• WSBind files are deployed to the z/OS Connect for CICSinfrastructure by using WEBSERVICE and
URIMAP resources. This makes the operational management of z/OS Connect for CICS similar to other
CICS web services.

• JSON services that are hosted in CICS can interact with CICS programs through an optimized local
connection.

• JSON services can be developed by using both bottom-up and top-down development strategies.
• The RESTful style of JSON services can be housed in CICS.
• The integrated z/OS Connect for CICS cannot be used to directly interact with assets from other z/OS

subsystems, such as IMS or Batch.
• If the PIPELINE scan command is used to install services, per-service configuration changes are not

required for CICS in the WebSphere Liberty Profile's server.xml file. However, per-service
configuration in server.xml is supported.

• Both z/OS Connect and z/OS Connect for CICS acquire the root context for URIs. You are encouraged to
deploy z/OS Connect for CICS into its own Liberty JVM server environment.

Related information
Configuring z/OS Connect for CICS
Security for z/OS Connect for CICS

38 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/welcome/WelcomePage.html
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/welcome/WelcomePage.html
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/welcome/WelcomePage.html
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/welcome/WelcomePage.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/zos_connect_configuring.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/web-services/zos_connect_security.html

Chapter 2. Configuring web services in CICS
You can configure CICS to support web services, where CICS applications can become web service
requesters or service providers. CICS supports different web service specifications, including binary
attachments and web services addressing. You can also configure CICS to accept web service requests
from WebSphere MQ or HTTP, and retrieve WSDL files from WSRR.

Configuring your CICS system for web services
Before you can use web services, your CICS system must be correctly configured.

Procedure

1. Ensure that you have installed Language Environment® support for PL/I.
For more information, see Installing Language Environment support.

2. Activate z/OS Support for Unicode.
You must enable the z/OS conversion services and install a conversion image that specifies the data
conversions that you want CICS to perform between SOAP messages and an application program. For
more information, see z/OS Unicode Services User's Guide and Reference.

CICS resources for web services
PIPELINE, WEBSERVICE, URIMAP and TCPIPSERVICE resources support web services in CICS.

PIPELINE
A PIPELINE resource definition is required for every web service. It provides information about the
message handler programs that act on a service request and on the response. Typically, a single
PIPELINE resource definition defines an infrastructure that can be used by many applications. The
information about the message handlers is supplied indirectly: the PIPELINE resource definition
specifies the name of a z/OS UNIX file that contains an XML description of the handlers and their
configuration.

A PIPELINE resource that is created for a service requester cannot be used for a service provider, and
vice versa. The two sorts of PIPELINE definitions are distinguished by the contents of the pipeline
configuration file that is specified in the CONFIGFILE attribute: for a service provider, the top-level
element is <provider_pipeline>; for a service requester, it is <requester_pipeline>.

WEBSERVICE
A WEBSERVICE resource definition is required only when the mapping between application data
structure and SOAP messages has been generated using the CICS web services assistant. It defines
aspects of the runtime environment for a CICS application program deployed in a web services
setting.

Although CICS provides the usual resource definition mechanisms for WEBSERVICE resources, they
are typically created automatically from a web service binding file when the pickup directory for the
PIPELINE resource definition is scanned. This can occur when the PIPELINE resource is installed or
as a result of a PERFORM PIPELINE SCAN command. The attributes applied to the WEBSERVICE
resource in this case come from a web services binding file, which is created by the web services
assistant; information in the binding file comes from the web service description, or is supplied as a
parameter of the web services assistant.

A WEBSERVICE resource that is created for a service requester cannot be used for a service provider,
and vice versa. The two sorts of WEBSERVICE resource are distinguished by the PROGRAM attribute
in the resource definition: for a service provider, the attribute must be specified; for a service
requester, it must be omitted.

© Copyright IBM Corp. 1974, 2020 39

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.cunu100/toc.htm

URIMAP
A URIMAP definition is required in a service provider when it contains information that maps the URI
of an inbound web service request to the other resources (such as the PIPELINE resource) that will
service the request. This URIMAP definition is also required if you are using HTTP basic
authentication, because the URIMAP resource definition specifies that the service requester user ID
information is passed in an HTTP authorization header to the service provider.

A second optional URIMAP definition can exist in a service provider for WSDL discovery. This URIMAP
resource definition contains information that maps the URI of an inbound request for the WSDL
document or documents associated with the web service.

For service providers deployed using the CICS web services assistant, although CICS provides the
usual resource definition mechanisms, the URIMAP resources are typically created automatically
when the pick directory is scanned. This scan occurs when the PIPELINE resource is installed or as a
result of a PERFORM PIPELINE SCAN command. The URIMAP resource that provides CICS with the
information to associate the WEBSERVICE resource with a specific URI is a required resource. The
attributes for this resource are specified by a web service binding file in the pickup directory. The
URIMAP resource that provides CICS with the information to associate the WSDL archive file or WSDL
document with a specific URI is an optional resource and is created if either a WSDL file or WSDL
archive file are present in the pickup directory. For more information about creating URIMAP
resources for web service providers, see Creating a web service provider by using the web services
assistant.

For service requesters, CICS does not create any URIMAP resources automatically when the
PIPELINE resource is installed or as a result of a PERFORM PIPELINE SCAN command. Service
requesters are not required to use URIMAP resources when they make requests; they can specify the
URI of the outbound request directly in the application program. However, if you create a URIMAP
resource for the client request, and your service requesters use the URIMAP resource to provide the
URI, you gain these advantages:

• System administrators can manage any changes to the endpoint of the connection, so you do not
need to recompile your applications if the URI of a service provider changes.

• You can choose to make CICS keep the connections that were opened with the URIMAP resource
open after use, and place them in a pool for reuse by the application for subsequent requests, or by
another application that calls the same service. Connection pooling is only available when you
specify a URIMAP resource that has the SOCKETCLOSE attribute set. For more information about
the performance benefits of connection pooling, see Connection pooling for HTTP client
performance.

Configuring URIMAP resource attributes in a certain way might enable inbound requests being
processed by directly attached user transactions, and bypassing the web attach task. For more
information, see HTTP requests are processed by directly attached user transactions.

TCPIPSERVICE
A TCPIPSERVICE definition is required in a service provider that uses the HTTP transport. It contains
information about the port on which inbound requests are received.

The resources that are required to support a particular application program depend on the following
criteria:

• Whether the application program is a service provider or a service requester.
• Whether the application is deployed with the CICS web services assistant.

Service
requester or
provider

CICS web
services
assistant
used PIPELINE required

WEBSERVICE
required URIMAP required

TCPIPSERVICE
required

Provider Yes Yes Yes (but see note 1) Yes (but see note 1) See note 2

Provider No Yes No Yes See note 2

Requester Yes Yes Yes See note 3 No

40 CICS TS for z/OS: Using Web Services with CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/dfhws_deployProviderWithTools.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/dfhws_deployProviderWithTools.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/web/dfht3_connpool.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/web/dfht3_connpool.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/web/csol_bypass_cwxn.html

Service
requester or
provider

CICS web
services
assistant
used PIPELINE required

WEBSERVICE
required URIMAP required

TCPIPSERVICE
required

Requester No Yes No 3 No

Notes:

1. When the CICS web services assistant is used to deploy an application program, the WEBSERVICE and
two URIMAP resources can be created automatically when the pickup directory of the PIPELINE is
scanned. The first URIMAP resource is required and provides CICS with the information to associate
the WEBSERVICE resource with a specific URI. The second URIMAP resource is optional and provides
CICS with the information to associate the WSDL archive file or WSDL document with a specific URI so
that external requesters can use the URI to discover the WSDL archive file or WSDL document. The
pickup directory of the PIPELINE scan occurs when the PIPELINE resource is installed or as a result of
a PERFORM PIPELINE SCAN command.

2. A TCPIPSERVICE resource is required when the HTTP transport is used. When the WebSphere MQ
transport is used, a TCPIPSERVICE resource is not required.

3. A URIMAP resource is optional for a service requester, and the CICS web services assistant does not
generate one automatically. When you define your own URIMAP resources for service requesters to
use, you can implement connection pooling, and manage changes to the URIs for service providers.

Configuring TCPIP resource attributes in a certain way might enable inbound requests being processed by
directly attached user transactions, and bypassing the web attach task. For more information, see HTTP
requests are processed by directly attached user transactions.

Typically, when you deploy many web services applications in a CICS system, you have more than one of
each type of resource. In this case, you can share some resources between applications. Each web
services file or resource is associated with one or more CICS resources of other types.

Table 2. Other CICS resources that are associated with each web services file and resource

Web services file or resource Associated resources

Pipeline configuration file • More than one PIPELINE resource that refers to
the file.

PIPELINE • More than one URIMAP resource that refers to
the PIPELINE resource.

• More than one WEBSERVICE resource that refers
to the PIPELINE resource.

• More than one web service binding file in the
pickup directory of the PIPELINE resource.

Web service binding file • One URIMAP resource that is automatically
generated from the binding file. You can define
further URIMAP resources for a service provider,
and you can define URIMAP resources for a
service requester.

• One WEBSERVICE resource that is automatically
generated from the binding file. You can define
further WEBSERVICE resources if you need to.

Chapter 2. Configuring web services in CICS 41

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/web/csol_bypass_cwxn.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/web/csol_bypass_cwxn.html

Table 2. Other CICS resources that are associated with each web services file and resource (continued)

Web services file or resource Associated resources

WEBSERVICE • More than one URIMAP resource. If the
WEBSERVICE resource is automatically
generated from the binding file for a service
provider, CICS generates one corresponding
URIMAP resource. You can define further
URIMAP resources for a service provider, and
you can define URIMAP resources for a service
requester.

URIMAP • Just one TCPIPSERVICE resource when it is
explicitly named in the URIMAP resource.

TCPIPSERVICE • Many URIMAP resources.

Web services discovery
WSDL documents associated with a Provider mode web service are automatically published to the Web.

A convention exists among web service hosting environments that allows the WSDL for a web service to
be queried by a remote client (typically an Application Developer using a web browser) using the URI for
the web service suffixed with ?wsdl. This convention can make it easier to distribute WSDL to interested
parties without the need for a formal WSDL repository. This convention is implemented in CICS.

For example, you might have a web service hosted in CICS and published under the following URI:

http://www.example.org:1234/example/WebService

The associated WSDL document could be recovered by requesting the following URI using a web browser:

http://www.example.org:1234/example/WebService?wsdl

WSDL documents for service providers can be published for discovery using URIMAP resources. When
you install each PIPELINE resource, CICS scans the directory specified in the WSDIR attribute of the
PIPELINE resource (the pickup directory). If this directory contains either a WSDL archive file or WSDL
document, a second URIMAP resource is installed. This new URIMAP resource provides CICS with the
information to associate the WSDL archive file or a WSDL document with a specific URI so that external
requesters can use the URI to discover the WSDL archive file or WSDL document. This URI has the same
path as the URI associated with the WEBSERVICE with the suffix ?wsdl appended.

The WSDL archive file can contain one or more WSDL documents. If the pickup directory contains a WSDL
archive file and a WSDL document, the URI returns only the WSDL archive. The archive file format that is
supported is the .zip file type. It is also possible to discover the WSDL archive file or WSDL document
using SPI and CEMT. The WSDL document in a WSDL archive file can be used for SOAP message
validation.

Configuring CICS to use the IBM MQ transport for SOAP web services
CICS can receive and send SOAP messages to IBM MQ using the IBM MQ transport, both in the role of
service provider and service requester.

Note: You cannot use the IBM MQ transport for JSON web services.

Before you begin

To use the IBM MQ transport with SOAP web services in CICS, you must set up the CICS-MQ adapter in
your CICS region. For instructions, see Setting up the CICS-MQ adapter.

42 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/mq/zs11290_.html

You must also specify the CICS system initialization parameter MQCONN=YES to start the CICS-MQ
connection automatically at CICS initialization. For details, see MQCONN system initialization parameter.

Overview
CICS as a service provider

As a service provider, CICS uses IBM MQ triggering to process SOAP messages from an application
queue. Triggering works by using an initiation queue and local queues. A local (application) queue
definition includes the following information:

• The criteria for when a trigger message is generated. For example, when the first message arrives
on the local queue, or for every message that arrives on the local queue. For CICS SOAP processing,
specify that triggering occurs when the first message arrives on the local queue.

The local queue definition can also specify that trigger data is passed to the target application, and
in the case of CICS SOAP processing (transaction CPIL), this specifies the default target URL to be
used if this is not passed with the inbound message.

• The process name that identifies the process definition. The process definition describes how the
message is processed. In the case of CICS SOAP processing, specify the CPIL transaction.

• The name of the initiation queue that the trigger message should be sent to.

When a message arrives on the local queue, the Queue Manager generates and sends a trigger
message to the specified initiation queue. The trigger message includes the information from the
process definition. The trigger monitor retrieves the trigger message from the initiation queue and
schedules the CPIL transaction to start processing the messages on the local queue. For more
information about triggering, see Task initiator or trigger monitor (CKTI).

You can configure CICS, so that when a message arrives on a local queue, the trigger monitor
(provided by IBM MQ) schedules the CPIL transaction to process the messages on the local queue
and drive the CICS SOAP pipeline to process the SOAP messages on the queue.

When CICS constructs a response to a SOAP message that is received from IBM MQ, the correlation
ID field is populated with the message ID of the input message, unless the report option
MQRO_PASS_CORREL_ID has been set. If this report option has been set, the correlation ID is
propagated from the input message to the response.

CICS as a service requester

As a service requester, on outbound requests you can specify that the responses for the target web
service is returned on a particular reply queue.

In both cases, CICS and IBM MQ require configuration to define the required resources and queues.

Defining local queues in a service provider
To use the IBM MQ transport in a service provider, you must define one or more local queues that store
request messages until they are processed, and one trigger process that specifies the CICS transaction
that will process the request messages.

Procedure

1. Define an initiation queue.
Use the following command:

DEFINE
QLOCAL('initiation_queue')
DESCR('description')

where initiation_queue is the same as the value specified for the QNAME attribute of the installed
MQMONITOR resource definition for the CICS region, or the value specified for the INITQNAME
attribute of the installed MQCONN resource definition.

2. For each local request queue, define a QLOCAL object.

Chapter 2. Configuring web services in CICS 43

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/sit/dfha2_mqconn2.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/mq/zc12120_.html

Use the following command:

DEFINE
QLOCAL('queuename')
DESCR('description')
PROCESS(processname)
INITQ('initiation_queue')
TRIGGER
TRIGTYPE(FIRST)
TRIGDATA('default_target_service')
BOTHRESH(nnn)
BOQNAME('requeuename')

where:

• queuename is the local queue name.
• processname is the name of the process instance that identifies the application started by the

queue manager when a trigger event occurs. Specify the same name on each QLOCAL object.
• initiation_queue is the name of the initiation queue to be used; for example, the initiation queue
specified in the QNAME attribute of the installed MQMONITOR resource definition for the CICS
region.

• default_target_service is the default target service to be used if a service is not specified on
the request. The target service is of the form '/string' and is used to match the path of a URIMAP
definition; for example, '/SOAP/test/test1'. The first character must be '/' .

• nnn is the number of retries that are attempted.
• requeuename is the name of the queue to which failed messages are sent.

3. Define a PROCESS object that specifies the trigger process.
Use the following command:

DEFINE
PROCESS(processname)
APPLTYPE(CICS)
APPLICID(CPIL)

where:

processname is the name of the process, and must be the same as the name that is used when
defining the request queues.

Defining local queues in a service requester
When you use the IBM MQ transport for outbound requests in a service requester, you can specify in the
URI for the target web service that your responses should be returned on a predefined reply queue. If you
do so, you must define each reply queue with a QLOCAL object.

About this task
If the URI associated with a request does not specify a reply queue, CICS will use a dynamic queue for the
reply.

Procedure

Optional: To define each QLOCAL object that specifies a predefined reply queue, use the following
command.

DEFINE
QLOCAL('reply_queue')
DESCR('description')
BOTHRESH(nnn)

where:

44 CICS TS for z/OS: Using Web Services with CICS

reply_queue is the local queue name.
nnn is the number of retries that will be attempted.

The URI for the IBM MQ transport
When communication between the service requester and service provider uses IBM MQ, the URI of the
target is in a form that identifies the target as a queue and includes information to specify how the
request and response should be handled by IBM MQ.

Syntax

jms:/queue?

&

destination=  queuename
@ queuemanagername

persistence=  message_persistence

priority=  message_priority

replyDestination=  reply_queue

SOAPJMS_targetService=  string

timeout=  timeout

timeToLive=  expiry_time

targetService=  string

Options

CICS uses the following options; other web service providers might use further options that are not
described here. The entire URI is passed to the service provider, but CICS ignores any options that it does
not support and that are coded in the URI. CICS is not sensitive to the case of the option names. However,
some other implementations that support this style of URI are case-sensitive.

destination=queuename [@queuemanagername]

queuename is the name of the input queue in the target queue manager
queuemanagername is the name of the target queue manager

persistence=message_persistence
Specify one of the following options:
0

Persistence is defined by the default queue persistence.
1

Messages are not persistent.
2

Messages are persistent.

If the option is not specified or is specified incorrectly, the default queue persistence is used.

priority=message_priority
Specifies the message priority. CICS supports integer values in the range 0 - 9 for message priorities,
where 9 is assigned to the highest priority messages and 0 is assigned to the lowest priority
messages. Alternatively, specify -1 to use the default priority that is defined for the target queue.

replyDestination=reply_queue
Specifies the queue to be used for the response message. If this option is not specified, CICS uses a
dynamic queue for the response message. You must define the reply queue in a QLOCAL object before
using this option.

Chapter 2. Configuring web services in CICS 45

SOAPJMS_targetService=string
Identifies the target service. If CICS is the service provider, the target service should be of the form
'/string', as CICS uses this as the path when attempting to match with URIMAP. If this option is
not specified, the value that is specified in TRIGDATA on the input queue at the service provider is
used.

timeout=timeout
The timeout in milliseconds for which the service requester waits for a response. If a value of zero is
specified, or if this option is omitted, the request will not time out.

timeToLive=expiry-time
Specifies the expiry time for the request in milliseconds. If the option is not specified or is specified
incorrectly, the request will not expire.

targetService=string
Identifies the target service. If CICS is the service provider, then the target service should be of the
form '/string', as CICS uses this as the path when attempting to match with URIMAP. If this option
is not specified, the value that is specified in TRIGDATA on the input queue at the service provider is
used.

Example

This example shows a URI for the IBM MQ transport:

jms:/queue?destination=queue01@cics007&timeToLive=10&replyDestination=rqueue05&targetService=/myservice

For information about "connectionFactory" and "initialContextFactory", see the IBM MQ
product documentation.

Configuring CICS to support persistent messages
CICS provides support for sending persistent messages using the IBM MQ transport protocol to a web
service provider application that is deployed in a CICS region.

About this task
CICS uses Business Transaction Services (BTS) to ensure that persistent messages are recovered in the
event of a CICS system failure. For this to work correctly, follows these steps:

Procedure

1. Use IDCAMS to define the local request queue and repository file to MVS™.
You must specify a suitable value for STRINGS for the file definition. The default value of 1 is unlikely
to be sufficient, and you are recommended to use 10 instead.

2. Define the local request queue and repository file to CICS.
Details of how to define the local request queue to CICS are described in “Defining local queues in a
service provider” on page 43. You must specify a suitable value for STRINGS in the file definition. The
default value of 1 is unlikely to be sufficient, and it is recommended that you use 10 instead.

3. Define a PROCESSTYPE resource with the name DFHMQSOA, using the repository file name as the
value for the FILE option.

4. Ensure that during the processing of a persistent message, a program issues an EXEC CICS
SYNCPOINT command before the first implicit syncpoint is requested; for example, using an SPI
command such as EXEC CICS CREATE TDQUEUE implicitly takes a syncpoint.
Issuing an EXEC CICS SYNCPOINT command confirms that the persistent message has been
processed successfully. If a program does not explicitly request a syncpoint before trying to implicitly
take a syncpoint, an ASP7 abend is issued.

What to do next
For one way request messages, if the web service abends or backs out, sufficient information is retained
to allow a transaction or program to retry the failing request, or to report the failure appropriately. You

46 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SSFKSJ/
https://www.ibm.com/support/knowledgecenter/SSFKSJ/

need to provide this recovery transaction or program. See “Persistent message processing” on page 47
for details.

Persistent message processing
When a web service request is received in an IBM MQ persistent message, CICS creates a unique BTS
process with the process type DFHMQSOA. Data relating to the inbound request is captured in BTS data-
containers that are associated with the process.

The process is then scheduled to run asynchronously. If the web service completes successfully and
commits, CICS deletes the BTS process. This includes the case when a SOAP fault is generated and
returned to the web service requester.

Error processing

If an error occurs when creating the required BTS process, the web service transaction abends, and the
inbound web service request is not processed. If BTS is not usable, message DFHPI0117 is issued, and
CICS continues without BTS, using the existing channel-based container mechanism.

If a CICS failure occurs before the web service starts or completes processing, BTS recovery ensures that
the process is rescheduled when CICS is restarted.

If the web service ends abnormally and backs out, the BTS process is marked complete with an ABENDED
status. For request messages that require a response, a SOAP fault is returned to the web service
requester. The BTS process is canceled, and CICS retains no information about the failed request. CICS
issues message DFHBA0104 on transient data queue CSBA, and message DFHPI0117 on transient data
queue CPIO.

For one way messages, there is no way to return information about the failure to the requester so the BTS
process is retained in a COMPLETE ABENDED state. CICS issues message DFHBA0104 on transient data
queue CSBA, and DFHPI0116 on transient data queue CPIO.

You can use the CBAM transaction to display any COMPLETE ABENDED processes, or you can supply a
recovery transaction to check for COMPLETE ABENDED processes of the DFHMQSOA and take
appropriate action.

For example, your recovery transaction could:

1. Reset the BTS process using the RESET ACQPROCESS command.
2. Issue the RUN ASYNC command to retry the failing web service. It could keep a retry count in another

data-container on the process, to avoid repeated failure.
3. Use information in the associated data-containers to report on the problem:

The DFHMQORIGINALMSG data-container contains the message received from IBM MQ, which
might contain RFH2 headers.
The DFHMQMSG data-container contains the IBM MQ message with any RFH2 headers removed.
The DFHMQDLQ data-container contains the name of the dead letter queue associated with the
original message.
The DFHMQCONT data-container contains the IBM MQ MQMD control block relating to the MQ GET
for the original message.

Interoperability between the web services assistant and WSRR
The CICS web services assistant can interoperate with the IBM WebSphere Service Registry and
Repository (WSRR). Use WSRR to find web services that you are requesting more quickly and enforce
version control of the web services that you are providing.

Both DFHLS2WS and DFHWS2LS include parameters to interoperate with WSRR. DFHLS2WS also
includes an optional parameter so that you can add your own customized metadata to the WSDL
document in WSRR.

If you want the web services assistant to communicate securely with WSRR, you can use secure socket
level (SSL) encryption. Both DFHLS2WS and DFHWS2LS include parameters for using SSL encryption.

Chapter 2. Configuring web services in CICS 47

To use SSL with the web services assistant and WSRR, see “Example of how to use SSL with the web
services assistant and WSRR” on page 48.

Example of how to use SSL with the web services assistant and WSRR
You can interoperate securely between the web services assistant and an IBM WebSphere Service
Registry and Repository (WSRR) server by using secure socket layer (SSL) encryption. To use SSL
encryption you need a key store and a trust store; you must also specify certain parameters on the web
services assistant.

About this task
Complete the following steps to use SSL encryption for interactions between the web services assistant
and WSRR.

Procedure

1. Create a key store for your private keys and public key certificates (PKC).
a) You can create a key store using a key configuration program such as the IBM Key Management

Utility (iKeyman).
b) Specify the SSL-KEYSTORE parameter in DFHWS2LS or DFHLS2WS with the fully qualified name of

the key store that you have created.
c) Optional: Specify the SSL-KEYPWD parameter in DFHWS2LS or DFHLS2WS with the password of

the key store that you have created.
2. Create a trust store for all your trusted root certificate authority (CA) certificates. These certificates are

used to establish the trust of any inbound public key certificates.
a) You can create a trust store using a key configuration program such as the IBM Key Management

Utility (iKeyman).
b) Specify the SSL-TRUSTSTORE parameter in DFHWS2LS or DFHLS2WS with the fully qualified name

of the trust store that you have created.
c) Optional: Specify the SSL-TRUSTPWD parameter in DFHWS2LS or DFHLS2WS with the password of

the trust store that you have created.

3. Test that the web services assistant is able to communicate with WSRR using SSL encryption.
a) You can use the sample files provided by IBM WebSphere Application Server to test the web

services assistant with WSRR.

• The sample key stores provided by WebSphere Application Server are
DummyClientKeyFile.jks and DummyServerKeyFile.jks.

• The sample trust stores provided by WebSphere Application Server are
DummyClientTrustFile.jks and DummyServerTrustFile.jks.

b) Replace the keys in the sample key and trust store files.
These keys are shipped with WebSphere Application Server and must be replaced for security.

Results
The web services assistant can now use SSL encryption to communicate securely with WSRR across a
network.

Creating the web services infrastructure
To deploy a web service to CICS, you must create the necessary transport infrastructure and define one
or more pipelines that will process your web services requests. Typically, one pipeline can process
requests for many different web services, and, when you deploy a new web service in your CICS system,
you can choose to use an existing pipeline.

48 CICS TS for z/OS: Using Web Services with CICS

The web services infrastructure
CICS applications in a CICS region can either provide a service to, or request a service from, applications
that are external to that region by using a web services pipeline. When CICS is a service provider, the
CICS application supplies a service to the external application. When CICS is a service requester, the
external application supplies a service to the CICS application. Web services pipelines can be configured
to use zEnterprise® Application Assist Processor (zAAP) where available.

CICS as a service provider
For CICS to provide a service to an external service requester, it must receive the service request and
pass it through a pipeline to the target application program. The response from the application is returned
to the service requester through the same pipeline.

Figure 18 on page 49 shows an example configuration of the architecture and resources that are
required to process a request from an external service requester when CICS is a service provider using a
Java pipeline.

Figure 18. The architecture and resources for a service provider

To process a request, CICS must perform the following operations:

1. Receive the request from the service requester.

The TCPIPSERVICE resource specifies a port for incoming requests. This port is monitored by the
CICS-supplied sockets listener transaction (CSOL).

2. Examine the request, and extract the contents that are relevant to the target application program.

When the request message is received on the appropriate port, the URIMAP resource definitions are
scanned for a URIMAP definition that has its USAGE attribute set to PIPELINE and its PATH attribute
set to the URI found in the request. If an appropriate URIMAP definition is found, the PIPELINE and
WEBSERVICE definitions from the PIPELINE and WEBSERVICE attributes of the URIMAP definition are
used. The TRANSACTION attribute of the URIMAP definition determines the name of the transaction
that should be attached to process the pipeline. By default the CPIH transaction is used. The URIMAP

Chapter 2. Configuring web services in CICS 49

definition also identifies the PIPELINE and WEBSERVICE resources to use. These resources control
the processing that CICS performs.

3. Invoke the application program, passing data extracted from the request.

The message handlers in the pipeline and the application handler convert the request message into
application language structure that the service provider application program expects. The program
processes this input and returns a response to the application handler.

4. Construct a response using data returned by the application program, and send a response to the
service requester.

The application handler and message handlers convert the response message received from the
service provider application into a message in the format of the original request. This message is sent
back to the service requester.

Some of the processing within the pipeline can be performed using the zEnterprise Application Assist
Processor (zAAP) if the pipeline is configured appropriately. For more information, see “Java-based SOAP
pipelines” on page 51.

CICS as a service requester
For CICS to invoke an external service, an application program sends a request that is passed through a
pipeline to a target service. The response from the service is returned to the application program through
the same pipeline.

Figure 19 on page 50 shows an example configuration of the architecture and resources that are
required to process a request from a CICS application program for data from a service provider that is
external to the CICS region, using a Java pipeline.

Figure 19. The architecture and resources for a service requester

To process a request, CICS must perform the following operations:

1. Build a request using data provided by the application program.

When the CICS application program initiates a request to a service provider that is external to the CICS
region, the requestor application calls the EXEC CICS INVOKE SERVICE command. The EXEC CICS
INVOKE SERVICE command invokes the pipeline. The pipeline converts the application language
structure into a language that the service provider can process, for example a SOAP message.

2. Send the request to the service provider.

50 CICS TS for z/OS: Using Web Services with CICS

CICS sends the request message to the remote service provider by using either HTTP or WebSphere
MQ.

3. Receive a response from the service provider.

When the service provider response message is received, CICS passes the message back to the
pipeline.

4. Examine the response, and extract the contents that are relevant to the original application program.

The pipeline converts the service provider response message into the application language structure,
which is passed to the application program. Control is then returned to the application program.

Some of the processing within the pipeline can be performed using the zEnterprise Application Assist
Processor (zAAP) if the pipeline is configured appropriately. For more information, see “Java-based SOAP
pipelines” on page 51.

Java-based SOAP pipelines
CICS supports using the Axis2 Java-based SOAP engine to process web service requests in provider and
requester pipelines. Because Axis2 uses Java, the SOAP processing is eligible for offloading to the
zEnterprise Application Assist Processor (zAAP).

Axis2 is an open source web services engine from the Apache foundation and is provided with CICS to
process SOAP messages in a Java environment. You can opt to use Axis2 by adding a Java SOAP handler
to your pipeline configuration file and creating a JVM server to handle the Axis2 processing.

Enabling Axis2 does not require regenerating the binding files for any existing web services that use the
pipeline. The response times might be slower when using Axis2, but you can offload the SOAP processing
to zAAP. For more information about offloading to zAAP, see Java support in CICS.

When CICS is a service provider, the Java-based terminal handler uses Axis2 to parse the SOAP envelope
for a request message. You can use header processing programs to process any SOAP headers associated
with the SOAP message. Axis2 also constructs the SOAP response message. This process is shown in the
following diagram:

When CICS is a service requester, the Java-based initial handler in the pipeline uses Axis2 to generate the
SOAP envelope for a request message. You can use header processing programs to process any SOAP
headers associated with the SOAP message. Axis2 also parses the SOAP response message.

Web service applications and Java

For provider-mode SOAP pipelines, request and response messages are passed between the terminal
handler of the pipeline and the web service application by using an application handler. The application
handler processes the body of a SOAP request so that the request can be used by the application. The
application handler also generates a response by using the returned data from the application. If the

Chapter 2. Configuring web services in CICS 51

http://ws.apache.org/axis2/
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/java/JVMsupport.html

terminal handler of your pipeline is a Java-based message handler, you can specify the supplied Axis2
application handler in the pipeline configuration file, as opposed to specifying the supplied DFHPITP
application handler. The application handler processing can then be offloaded to zAAP. For more
information about application handlers, see “Application handlers” on page 85.

For requester-mode SOAP pipelines, the web service application invokes the pipeline by using the EXEC
CICS INVOKE SERVICE command. The request and response messages are then passed between the
web service application and the initial handler in the pipeline. If you specify a Java-based handler as the
initial handler in the pipeline, then the EXEC CICS INVOKE SERVICE command is processed by Axis2,
making it possible to offload this process to zAAP. If the first handler is not a Java-based handler, then the
EXEC CICS INVOKE SERVICE command is processed by CICS.

Axis2 processing in a JVM server

Axis2 requires a JVM server, which is represented by a JVMSERVER resource in CICS. The JVM server is a
runtime environment that can handle multiple concurrent requests from different Java programs in a
single JVM. The class path for the JVM server must include the Axis2 Java archive files. You can
automatically add all of the required JAR files to the class path by specifying the JAVA_PIPELINE option
in the JVM profile. The pipeline configuration file must also point to the JVMSERVER resource that is
configured to support Axis2.

For more information about JVM servers, see Java support in CICS.

Axis2 header handlers

Although you can use existing header processing programs, it is more efficient to write Axis2 handlers in
Java to process the SOAP headers. These handlers can also run in the JVM server and are therefore
eligible for offloading. For more information about creating Axis2 handlers, see Writing Your Own Axis2
Module.

A header handler program can use Axis2 APIs to modify or interact with the Axis2 environment, SOAP
messages, and individual web services. Do not use these APIs to customize Axis2, as you might change
Axis2 in a way that means CICS cannot run the engine correctly. Axis2 handlers are supported only if they
interact with the Axis2 environment in a way that is compatible with how CICS uses Axis2.

Axis2 repository

Axis2 uses a repository to store all of its configuration files, services, and modules. CICS provides a
default repository in the usshome/lib/pipeline/repository directory on z/OS UNIX, where
usshome is the value of the USSHOME system initialization parameter.

The default repository contains the configuration file, axis2.xml, which is required by CICS to use Axis2.
This file is in the /conf subdirectory in the repository. If you create your own repository, you must copy
this file to your repository for CICS to work with Axis2.

Do not edit the axis2.xml file, unless you are registering handler programs. This file is managed as an
internal part of CICS, so you must not make any other changes to this file unless requested to do so by
IBM support.

Data formatting for Web Services
Different CICS technologies can generate JSON and XML data that is equally specification compliant, but
physically different. They might also report errors that are found in an input message in different ways, as
a result of the order in which they apply checks to validate the data.

CICS uses several different technologies for automatically transforming JSON and XML data. These
include z/OS Connect for CICS (both the Java and non-Java variants), Axis2, and PIPELINE resources.
These technologies generate JSON and XML data in an external format as dictated by the relevant
specifications.

There can be multiple ways to represent data, that are equally specification-compliant, but physically
different. The CICS technologies always generate data that is compliant, but there might be physical

52 CICS TS for z/OS: Using Web Services with CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/java/JVMsupport.html
http://axis.apache.org/axis2/java/core/docs/modules.html
http://axis.apache.org/axis2/java/core/docs/modules.html

differences between them. For example, if you switch between the Java and non-Java z/OS Connect for
CICS options for JSON, you might detect minor differences in the generated JSON.

Such differences might include different error messages being reported under failure conditions,
differences in how white-space characters are inserted, alternative (but equivalent) representations for
numeric data, and variations in how special characters are escaped. Further changes of this nature can be
introduced as a result of applying corrective maintenance to CICS, or with new releases of CICS.

Partner systems, such as a JSON client, should be written to tolerate specification-compliant variations of
this nature. Partners often exploit widely used cross-industry libraries and technologies for interacting
with JSON and XML; such libraries automatically handle such minor formatting differences. However, it is
possible for less-compliant partner systems to detect and respond differently to the formatting
differences in the various CICS technologies, care might therefore be required if you are writing
applications that work directly with the JSON or XML without the benefit of a standards-based parser.

CICS as a service provider for JSON requests
For CICS to provide a service to an external JSON client, it must receive the request and pass it through a
pipeline to the target application program. The response from the application is returned to the JSON
client through the same pipeline.

There are several ways of configuring CICS as a service provider for JSON requests:

• Using z/OS Connect for CICS.

z/OS Connect for CICS is a technology for accessing z/OS assets, such as CICS programs, by using
JSON. For more information about z/OS Connect for z/OS, and some of the differences between z/OS
Connect for CICS and CICS Java pipelines, see Getting started with z/OS Connect.

• Using CICS Java pipelines.

CICS Java pipelines are the technology that is provided in previous versions of CICS to allow access to
CICS programs by using JSON. For more information about CICS Java pipelines, see Java-based SOAP
pipelines.

• Using the JAX-RS and JSON features of the CICS Liberty JVM server directly.
• Using the CICS-supplied terminal handler DFHPIJT.

You can configure a provider pipeline with terminal handler DFHPIJT. This enables the pipeline to
process JSON requests without the necessity of installing a JVM server. The following restrictions
apply:

Restriction:

– RESTful JSON web services are not supported.
– Context switch in the pipeline is not supported.
– It is not possible to use SOAP and JSON web services in a JSON pipeline. DFHPIJT only handles

JSON messages. Receipt of a SOAP message results in an error response.

CICS receives JSON data and transforms it into structured application data that is understood by the CICS
application program. The responses from the CICS application are transformed into a JSON payload for
the outbound response. The transformations require parsing of the messages. If you use z/OS Connect for
CICS, you have the option of using a Java-based JSON parser or a non-Java equivalent. The configuration
option is specified in the z/OS Connect for CICS pipeline configuration file. For more information about
configuring z/OS Connect for CICS, see Configuring z/OS Connect for CICS. If you use CICS Java pipelines,
the parsing is only ever performed by using Java within the JVM server. The implications of the different
configuration decisions are:

• If you parse JSON by using Java, the processing is eligible for offloading to a zEnterprise Application
Assist Processor (zAAP) if it is available. Offloading the processing might have cost benefits.

• If you use the z/OS Connect for CICS non-Java parser, some workloads might get performance and
throughput benefits. For more information about which workloads might benefit, see the performance
material that is made available with this release. Even if you use the non-Java parser, most of the z/OS
Connect for CICS infrastructure processing is eligible for offloading onto zAAP.

Chapter 2. Configuring web services in CICS 53

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/web-services/zos_connect_overview.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_pipelinejava.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_pipelinejava.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/zos_connect_configuring.html

• If you use the CICS-supplied terminal handler DFHPIJT, some workloads might get performance and
throughput benefits. When you use this method of processing JSON requests, none of the processing is
eligible for offloading onto zAAP.

CICS as a service provider for JSON requests using z/OS Connect for CICS
For CICS to provide a service to an external JSON client, it must receive the request into a z/OS Connect
for CICS, transform the JSON message, and pass it to the target application program. The response from
the application is returned to the JSON client through the same mechanism.

Figure 20 on page 54 shows an example configuration of the architecture and resources that are
required to process a request from an external JSON client when CICS is a service provider that uses z/OS
Connect for CICS.

Figure 20. The architecture and resources for a JSON service provider that uses z/OS Connect for CICS

Processing a JSON request with z/OS Connect for CICS

To process a request, CICS completes the following operations:

1. Receive the request from the service requester.

WebSphere Liberty receives the request and passes it to z/OS Connect for CICS.
2. CICS resolves the URIMAP resource for the request, by scanning the URIMAP definitions with a USAGE

attribute set to JVMSERVER. The URIMAP identifies the WEBSERVICE resource that is used. A new
CICS task is started to process the request by using the transaction ID from the URIMAP. By default,
the CPIH transaction is used.

The WEBSERVICE resource controls the processing that CICS performs. In particular, the WSBind file
pointed to by the WEBSERVICE resource is used for data transformation between JSON and structured
application data. WSBind files for JSON web services are generated by using utilities DFHLS2JS and
DFHJS2LS.

Note: Runtime validation of JSON data against schema is not supported. The value of the VALIDATION
attribute of a WEBSERVICE resource that is used with a JSON payload is ignored.

54 CICS TS for z/OS: Using Web Services with CICS

For information about any restrictions that apply, see JSON web service restrictions.
3. z/OS Connect for CICS processes the request according to how it is configured. If z/OS Connect for

CICS is configured to use global interceptors, the interceptors run during this processing.
4. The CICSEndpoint receives control. The JSON payload is transformed to structured application data

according to the configuration option specified in the pipeline configuration file. There are two options
for how the transformation is performed:

• Java transformation is performed within the JVM server. This processing is eligible for offload to a
zAAP processor if one is available.

• Non-Java transformation is performed outside of the JVM server and might provide performance and
throughput benefits for certain workloads. For more information about which workloads might
benefit, see the performance material that is made available with this release.

The mapping is performed according to the information in the WSBind file. The output from the
transform is equivalent in both cases.

5. CICS links to the application program and passes the transformed data. The program processes this
input and returns a response to the JSON generator.

6. The JSON generator generates a JSON response message by using the output from step 5. This
message is sent back to the service requester via z/OS Connect for CICS.

z/OS Connect for CICS also provides a RESTful interface that supports the standard RESTful methods:

POST
PUT
GET
DELETE
HEAD

Where appropriate, this interface uses the transform and generator that the pipeline is configured for, in
the same way as do normal JSON requests. For more information about RESTful JSON web services, see
Concepts of RESTful JSON web services.

Most of the z/OS Connect for CICS infrastructure processing is eligible for offloading onto a zEnterprise
Application Assist Processor (zAAP).

CICS as a service provider for JSON requests using CICS Java pipelines
For CICS to provide a service to an external JSON client, it must receive the request and pass it through a
pipeline to the target application program. The response from the application is returned to the JSON
client through the same pipeline. The JSON transform is performed by using Java within the JVM server.

Figure 21 on page 56 shows an example configuration of the architecture and resources that are
required to process a request from an external JSON client when CICS is a service provider that uses a
Java pipeline. The pipeline processing for a JSON request is similar to the way that CICS processes a
SOAP request in a Java pipeline. For more information, see Java-based SOAP pipelines.

Chapter 2. Configuring web services in CICS 55

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/jsonwebservice_restrictions.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/web-services/concepts_restful.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_pipelinejava.html

Figure 21. The architecture and resources for a JSON service provider that uses a CICS Java pipeline

Processing a JSON request

To process a request, CICS completes the following operations:

1. Receive the request from the service requester.

The TCPIPSERVICE resource specifies a port for incoming requests. This port is monitored by the
CICS-supplied sockets listener task (CSOL).

2. Examine the request, and extract the contents that are relevant to the target application program.

When the request message is received on the appropriate port, the URIMAP resource definitions are
scanned for a URIMAP definition that has its USAGE attribute set to PIPELINE and its PATH attribute
set to the URI found in the request. If an appropriate URIMAP definition is found, the PIPELINE and
WEBSERVICE definitions from the PIPELINE and WEBSERVICE attributes of the URIMAP definition are
used. The TRANSACTION attribute of the URIMAP definition determines the name of the transaction
that should be attached to process the pipeline. By default the CPIH transaction is used. The URIMAP
definition also identifies the PIPELINE and WEBSERVICE resources to use.

These PIPELINE and WEBSERVICE resources control the processing that CICS performs. In particular,
the WSBind file pointed to by the WEBSERVICE resource is used for data transformation between
JSON and language structures. WSBind files for JSON web services are generated by using utilities
DFHLS2JS and DFHJS2LS.

Note: Runtime validation of JSON data against schema is not supported. The value of the VALIDATION
attribute of a WEBSERVICE resource that is used with a JSON payload is ignored.

For information about any restrictions that apply, see JSON web service restrictions.
3. Pipeline processing begins and the request flows through any handlers that are defined. It is not

expected that any of the handlers that are currently provided by CICS for SOAP web services will be
relevant to JSON web services.

4. At the end of the pipeline, the JSON terminal handler is called. This terminal handler is a Java program
that interfaces with the Axis2 pipeline. The terminal handler performs the necessary setup of the Axis2

56 CICS TS for z/OS: Using Web Services with CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/jsonwebservice_restrictions.html

configuration and then starts the Axis2 engine with the HTTP request body. Within the Axis2 pipeline,
the JSON body (if present) is parsed and a Java object model that represents the contents is
constructed. CICS then calls the application handler. The main role of the application handler is to
map the Java object model representation of the request into application data. This mapping is
performed by using the description of the language structure in the WSBind file.

5. Call the application program, passing data that is extracted from the request.

Then the application handler links to the application program. The program processes this input and
returns a response to the application handler.

6. Construct a response by using data returned by the application program, and send a response to the
service requester.

The application handler and message handlers convert the response message received from the
service provider application into a message in the format of the original request. This message is sent
back to the service requester.

Some of the processing within the pipeline is eligible for offloading onto a zEnterprise Application Assist
Processor (zAAP).

Creating the CICS infrastructure for a SOAP service provider
To create the CICS infrastructure for a SOAP service provider, you must create a pipeline configuration file
and create a number of CICS resources.

Before you begin

If you want to use a Java pipeline, ensure that a JVMSERVER resource exists with the
JAVA_PIPELINE=YES option specified in the JVM Profile.

A JVM server can handle SOAP processing for many Java pipelines.

About this task

You can define the PIPELINE resource in a local CICS region using CICS or CICSPlex® SM functions, or you
can use the CICS Explorer® to define the PIPELINE resource either in a local CICS region or in a CICS
bundle. When you use the CICS Explorer to define a PIPELINE resource in a CICS bundle, you also create
the pipeline configuration file and package it in the CICS bundle, so you do not have to manage this file
separately. PROGRAM resources and WEBSERVICE resources can also be defined in CICS bundles. When
you define a WEBSERVICE resource in a CICS bundle, you can import a web service binding file and a
WSDL document or WSDL archive file and include these in the bundle. You can also create URIMAP
definitions to support the web service and package these in a bundle. For more help with using the CICS
Explorer to create and edit resources in CICS bundles, see Working with bundles in the CICS Explorer
product documentation.

Procedure

1. Define the transport infrastructure.
a) If you are using the WebSphere MQ transport, you must define one or more local queues that

store input messages until they are processed, and one trigger process that specifies the CICS
transaction that will process the input messages.

1) See Configuring CICS to use the WebSphere MQ transport for details.
b) If you are using the HTTP transport, you must define a TCPIPSERVICE resource that defines the

port on which inbound requests are received.

1) See CICS resources for web services for details.
2. Optional: Repeat this step for each different transport configuration you need.
3. Define the message handlers and header processing programs that you want to include in the

pipeline configuration file to process inbound web service requests, and their responses.
CICS provides the following handlers and header processing programs:

Chapter 2. Configuring web services in CICS 57

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/jvmserver/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.5.0/com.ibm.cics.core.help/topics/tasks/task_intro_app.html
https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.5.0/com.ibm.cics.core.help/topics/tasks/task_intro_app.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_configureMQ.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_resources.html

a. SOAP message handlers, to process SOAP 1.1 or 1.2 messages. You can support only one level of
SOAP in a service provider pipeline.

b. MTOM handler, to process MIME Multipart/Related messages that conform to the MTOM/XOP
specifications.

c. Support for securing web services, to process secure web service messages.
d. Support for Web Services Transactions, to process atomic transaction messages.

4. Optional: If you want to perform your own processing in the pipeline, you must create a message
handler or header processing program. See Message handlers for details. If you decide to create
custom message handler programs, to optimize performance you must make them threadsafe.

5. Create an XML pipeline configuration file containing your message handlers, header processing
programs, and application handler.

a. CICS provides two basic provider mode pipeline configuration file samples,
basicsoap11provider.xml and basicsoap11javaprovider.xml.

b. You can edit these samples, or add additional message handlers as appropriate. The samples are
provided in the library /usr/lpp/cicsts/cicsts56/samples/pipelines
(where /usr/lpp/cicsts/cicsts56 is the default install directory for CICS files on z/OS
UNIX).

c. For more information about options available in the pipeline configuration file, see Pipeline
configuration files

6. Copy the pipeline configuration file to a suitable directory in z/OS UNIX.
7. Change the pipeline configuration file permissions to allow the CICS region to read the file.
8. Repeat steps 5 through 7 for each different pipeline configuration that you require.
9. Create a PIPELINE resource.

a. The PIPELINE resource defines the location of the pipeline configuration file. It also specifies a
pickup directory, which is the z/OS UNIX directory that contains the web service binding files and
optionally the WSDL.

b. Repeat this step for each different pipeline configuration.

a. When you create a PIPELINE resource, CICS reads any files in the specified pickup directory, and
creates the WEBSERVICE resource and URIMAP resource dynamically.

10. Unless you use autoinstalled PROGRAM definitions, create a PROGRAM resource for each program
that runs in the pipeline. These include the target application program, which normally runs under
transaction CPIH. The transaction is defined with the attribute TASKDATALOC(ANY). Therefore,
when you link-edit the program, you must specify the AMODE(31) option.

Results
Your CICS system now contains the infrastructure needed for each service provider.

What to do next
You can extend the configuration when you need to do so, either to define additional transport
infrastructure, or to create additional pipelines.

Creating the CICS infrastructure for a SOAP service requester
To create the CICS infrastructure for a SOAP service requester, you must create a pipeline configuration
file and create a number of CICS resources.

Before you begin

If you want to use a Java pipeline, ensure that a JVMSERVER resource exists with the
JAVA_PIPELINE=YES option specified in the JVM Profile. See JVMSERVER resources.

A JVM server can handle SOAP processing for many Java pipelines.

58 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_soapnodes.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_attachments_overview.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/web-services/dfhws_WSSecurity.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_wsat_overview.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_nodeinterface.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_pipelineconfig.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_pipelineconfig.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/pipeline/dfha4_summary.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/webservice/dfha4_summary.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/urimap/dfha4_summary.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/program/dfha4_summary.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/jvmserver/dfha4_summary.html

About this task

You can define the PIPELINE resource in a local CICS region using CICS or CICSPlex SM functions, or you
can use the CICS Explorer to define the PIPELINE resource either in a local CICS region or in a CICS
bundle. When you use the CICS Explorer to define a PIPELINE resource in a CICS bundle, you also create
the pipeline configuration file and package it in the CICS bundle, so you do not have to manage this file
separately. PROGRAM, WEBSERVICE and URIMAP resources can also be defined in CICS bundles. When
you define a WEBSERVICE resource in a CICS bundle, you can import a web service binding file and a
WSDL document or WSDL archive file and package these in the bundle, and for a service provider you can
choose to include a PROGRAM definition. You can also create URIMAP definitions to support the web
service and package these in a bundle. For more help with using the CICS Explorer to create and edit
resources in CICS bundles, seeWorking with bundles in the CICS Explorer product documentation.

Procedure

1. Define the message handlers and header processing programs that you want to include in the pipeline
configuration file to process inbound web service requests, and their responses.
CICS provides the following handlers and header processing programs:
a) SOAP message handlers, to process SOAP 1.1 or 1.2 messages.

You can only support one level of SOAP in a service requester pipeline.
b) MTOM handler, to process MIME Multipart/Related messages that conform to the MTOM/XOP

specifications.
c) Security handler, to process secure web service messages.
d) WS-AT header processing program, to process atomic transaction messages.

2. Optional: If you want to perform your own processing in the pipeline, you must create a message
handler or header processing program. See “Message handlers” on page 124 for details. If you decide
to create custom message handler programs, to optimize performance you must make them
threadsafe.

3. Create an XML pipeline configuration file containing your message handlers and header processing
programs.
CICS provides two basic requester mode pipeline configuration file samples,
basicsoap11requester.xml and basicsoap11javarequester.xml, which you can copy and
edit as appropriate. These samples are provided in the library /usr/lpp/cicsts/cicsts56/
samples/pipelines (where /usr/lpp/cicsts/cicsts56 is the default install directory for CICS
files on z/OS UNIX). For more information about options available in the pipeline configuration file, see
“Pipeline configuration files” on page 77

4. Copy the pipeline configuration file to a suitable directory in z/OS UNIX.
5. Change the pipeline configuration file permissions to allow the CICS region to read the file.
6. Repeat steps 3 to 5 for each different pipeline configuration that you require.
7. Create a PIPELINE resource. See PIPELINE resources.

The PIPELINE resource defines the location of the pipeline configuration file. It also specifies a pickup
directory, which is the z/OS UNIX directory that contains the web service binding files and optionally
the WSDL. You can also specify a timeout in seconds, which determines how long CICS waits for a
response from web service providers. Repeat this step for each pipeline configuration file.
When you create a PIPELINE resource, CICS reads any files in the specified pickup directory and
creates the WEBSERVICE resources dynamically (see WEBSERVICE resources).

8. Unless you use autoinstall PROGRAM definitions, create a PROGRAM resource for each program that
runs in the pipeline. See PROGRAM resources.
These programs include the service requester application program, which normally runs under
transaction CPIH. The transaction is defined with the attribute TASKDATALOC(ANY). Therefore, when
you link edit the program, you must specify the AMODE(31) option.

Chapter 2. Configuring web services in CICS 59

https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.5.0/com.ibm.cics.core.help/topics/tasks/task_intro_app.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/web-services/dfhws_WSSecurity.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/pipeline/dfha4_summary.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/webservice/dfha4_summary.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/program/dfha4_summary.html

9. Optional: Create a URIMAP resource (see URIMAP resources) for client requests to each URI that your
service requesters use to make requests, following the instructions in Creating a URIMAP resource for
CICS as a HTTP client.
You can specify the URI directly on the INVOKE SERVICE command in your programs, instead of
using a URIMAP resource. However, using a URIMAP resource means that you do not need to
recompile your applications if the URI of a service provider changes. With a URIMAP resource you can
also choose to implement connection pooling, where CICS keeps the client connection open after use,
so that it can be reused by the application for subsequent requests, or by another application that calls
the same service.

Results
Your CICS system now contains the infrastructure needed for each service requester.

What to do next
You can extend the configuration when you need to do so, to create additional pipelines.

Creating the CICS infrastructure for a JSON service provider
To create the CICS infrastructure for a JSON service provider, you must create a pipeline configuration file
and create a number of CICS resources.

Before you begin
Several different technologies exist for implementing JSON services in CICS. The most feature-rich option
is z/OS Connect. This task describes the alternative options.

If you do not want to use z/OS Connect, use CICS as a service provider for JSON requests, or use the
linkable interface to transform JSON. To use these methods, define and install a JVMSERVER resource
with a JVM profile that specifies the JAVA_PIPELINE=YES option. An example JVMSERVER resource
definition called DFHAXIS is provided in group DFH$AXIS.

Note: The infrastructure described here assumes that you are not using z/OS Connect for CICS to connect
to your JSON service provider, and consequently it uses Java parsing within the JVM server to parse the
JSON messages. If you want to use non-Java JSON parsing, you must use z/OS Connect for CICS to
connect to the JSON web service. For more information about setting up z/OS Connect for CICS, see
Configuring z/OS Connect for CICS.

Procedure

1. Define the transport infrastructure.

Define a TCPIPSERVICE resource that defines the port on which inbound requests are received. See
CICS resources for web services for details.

2. Define the message handlers that you want to include in the pipeline configuration file to process
inbound web service requests, and their responses.

If you want to perform your own processing in the pipeline, you must create a message handler. See
Message handlers for details. If you decide to create custom message handler programs, to optimize
performance you must make them threadsafe.

3. Create an XML pipeline configuration file containing your message handlers, header processing
programs, and application handler.
CICS provides a basic provider mode pipeline configuration file sample, jsonjavaprovider.xml.
You can edit this sample to add additional message handlers as appropriate. This sample is provided
in the directory /usr/lpp/cicsts/cicsts56/samples/pipelines, where /usr/lpp/cicsts/
cicsts56 is the default install directory for CICS files on z/OS UNIX). For more information about
options available in the pipeline configuration file, see “Elements used in service provider and service
requester pipelines” on page 91.

4. Copy the pipeline configuration file to a suitable directory in z/OS UNIX.
5. Change the pipeline configuration file permissions to allow the CICS region to read the file.

60 CICS TS for z/OS: Using Web Services with CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/urimap/dfha4_summary.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web/dfhtl_urioutbound.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web/dfhtl_urioutbound.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/zos_connect_configuring.html

6. Create a PIPELINE resource.
The PIPELINE resource defines the location of the pipeline configuration file. It also specifies a pickup
directory, which is the z/OS UNIX directory that contains the web service binding files. Repeat this step
for each different pipeline configuration.
When you install a PIPELINE resource or perform a PIPELINE SCAN, CICS reads the .wsbind files in
the specified pickup directory, and creates appropriate WEBSERVICE and URIMAP resources
dynamically.

7. Unless you use autoinstalled PROGRAM definitions, create a PROGRAM resource for each program
that runs in the pipeline. These include the target application program, which normally runs under
transaction CPIH. The transaction is defined with the attribute TASKDATALOC(ANY). Therefore, when
you link-edit the program, you must specify the AMODE(31) option.

Results
You have created the infrastructure needed for each service provider and you can now install these
resources on your CICS system.

What to do next
Install the resources. You can extend the configuration when you need to do so, either to define
additional transport infrastructure, or to create additional pipelines.

Creating the CICS infrastructure for a non-Java JSON service provider
You can set up a non-Java environment for processing JSON requests. To create the CICS infrastructure
for a non-Java JSON service provider, you must create a pipeline configuration file and create a number of
CICS resources.

Procedure

1. Define the transport infrastructure.

Define a TCPIPSERVICE resource that defines the port on which inbound requests are received. See
CICS resources for web services for details.

2. Define the message handlers that you want to include in the pipeline configuration file to process
inbound web service requests, and their responses.

If you want to perform your own processing in the pipeline, you must create a message handler. See
Message handlers for details. If you decide to create custom message handler programs, to optimize
performance you must make them threadsafe.

3. Create an XML pipeline configuration file that contains your message handlers.

In the configuration file, you must specify terminal handler program DFHPIJT in a
<terminal_handler> element as shown in Figure 22 on page 61. DFHPIJT is the CICS-supplied
JSON handler program that enables non-Java processing of JSON messages.

 <service>
 <terminal_handler>
 <handler>
 <program>DFHPIJT</program><handler_parameter_list/>
 </handler>
 </terminal_handler>
 </service>

Figure 22. Specifying terminal handler DFHPIJT for non-Java processing of JSON messages

Note: When you use DFHPIJT as the terminal handler, do not define an application handler in the
pipeline configuration file, that is, the pipeline configuration file should not contain an <apphandler>
element. If an application handler is specified, it is not invoked.

For more information about options available in the pipeline configuration file, see “Elements used in
service provider and service requester pipelines” on page 91.

4. Copy the pipeline configuration file to a suitable directory in z/OS UNIX.

Chapter 2. Configuring web services in CICS 61

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/pipeline/dfha4_summary.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/webservice/dfha4_summary.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/urimap/dfha4_summary.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/program/dfha4_summary.html

5. Change the pipeline configuration file permissions to allow the CICS region to read the file.
6. Create a PIPELINE resource.

The PIPELINE resource defines the location of the pipeline configuration file. It also specifies a pickup
directory, which is the z/OS UNIX directory that contains the web service binding files. Repeat this step
for each different pipeline configuration.
When you install a PIPELINE resource or perform a PIPELINE SCAN, CICS reads the .wsbind files in
the specified pickup directory, and creates appropriate WEBSERVICE and URIMAP resources
dynamically.

7. Unless you use autoinstalled PROGRAM definitions, create a PROGRAM resource for each program
that runs in the pipeline. These include the target application program, which normally runs under
transaction CPIH. The transaction is defined with the attribute TASKDATALOC(ANY). Therefore, when
you link-edit the program, you must specify the AMODE(31) option.

Results
You have created the infrastructure needed for each service provider and you can now install these
resources on your CICS system.

What to do next
Install the resources. You can extend the configuration when you need to do so, either to define
additional transport infrastructure, or to create additional pipelines.

Configuring z/OS Connect for CICS

Configuring z/OS Connect in CICS
z/OS Connect is IBM's premier technology for implementing JSON Services and APIs for CICS.

z/OS Connect can be configured in a stand-alone configuration, or be hosted in a Liberty JVM server in
CICS. For more information about the stand-alone configuration, see z/OS Connect Enterprise Edition
V3.0 product documentation.

This information describes how to configure z/OS Connect in a CICS address space.

There are two major versions of z/OS Connect, z/OS Connect for CICS 1.0, and the more advanced z/OS
Connect Enterprise Edition.

Choose the task that matches your requirements.

Configuring z/OS Connect for CICS 1.0
z/OS Connect for CICS 1.0 is distributed as part of CICS Transaction Server. You must configure a JVM
server and set up the pipeline configuration and resources for z/OS Connect, before you can deploy JSON
services. This initial configuration is a one-time activity.

Before you begin
Do you already have a WebSphere Liberty JVM server that is configured in CICS? Although it is possible to
host z/OS Connect and other unrelated services in the same WebSphere Liberty environment, it is good
practice to configure a separate JVM server for the sole use of z/OS Connect.

You can host z/OS Connect for CICS 1.0 in its own CICS region, or group of CICS regions, and use the
Distributed Program Link mechanism to call CICS programs in the application-owning CICS regions.

Procedure

1. Create a JVMSERVER and configure it to support the WebSphere Liberty. For more information about
creating a WebSphere Liberty JVMSERVER, see Configuring a Liberty JVM server.

2. Configure WebSphere Liberty for your security requirements. By default, WebSphere Liberty expects
the use of client-certified SSL certificates. To enable HTTP Basic Authentication, add the following
configuration option to the server.xml file:

62 CICS TS for z/OS: Using Web Services with CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/pipeline/dfha4_summary.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/webservice/dfha4_summary.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/urimap/dfha4_summary.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/program/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/welcome/WelcomePage.html
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/welcome/WelcomePage.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_jvmserver_liberty.html

<!-- Allow fail-over to HTTP Basic Authentication -->
<webAppSecurity allowFailOverToBasicAuth="true"/>

You must also give users of z/OSz/OS Connect the zosConnectAccess security role. For more
information about WebSphere Liberty security, see Configuring security for a Liberty JVM server, and
for z/OSz/OS Connect security, see Security for z/OS Connect.

3. Update the <featureManager> list in the server.xml file for the WebSphere Liberty environment
to include a <feature>cicsts:zosConnect-1.0</feature> feature, as shown in the following
example:

<featureManager>
 <feature>cicsts:core-1.0</feature>
 <feature>transportSecurity-1.0</feature>
 <feature>cicsts:zosConnect-1.0</feature>
</featureManager>

4. Define the z/OS Connect for CICS 1.0 Service Controller by adding the following statement to the
server.xml file:

<com.ibm.cics.wlp.zosconnect.CICSEndpoint
 id="com.ibm.cics.wlp.zosconnect.CICSEndpointService"/>

5. Install the JVMSERVER. Check the generated messages.log file for error or warning messages. This
log contains the messages that are generated by WebSphere Liberty Server, including messages that
are returned by z/OS Connect for CICS 1.0, such as the following:
SRVE0169I: Loading Web Module: z/OS Connect.
SRVE0250I: Web Module z/OS Connect has been bound to default_host.

6. Create an XML pipeline configuration file. Sample pipeline configuration file
jsonzosconnectprovider.xml is provided in the directory /usr/lpp/cicsts/cicsts56/
samples/pipelines/ (where /usr/lpp/cicsts/cicsts56 is the default installation directory for
CICS files on z/OS UNIX). You must decide whether you want to parse the JSON by using Java in the
Liberty JVM server (which is the default), or to use the non-Java JSON parser:

• To parse the JSON by using Java in the Liberty JVM server, you can use the sample pipeline
configuration file, but replace DFHWLP in the <jvmserver> element with the name of your
JVMSERVER from Step 1.

• To parse the JSON by using the non-Java parser, modify the sample configuration file to append
the java_parser="no" attribute to the <provider_pipeline_json> element as in the
following example:

<?xml version="1.0" encoding="EBCDIC-CP-US"?>
<provider_pipeline_json java_parser="no"
 xmlns="http://www.ibm.com/software/htp/cics/pipeline">
 <jvmserver>DFHWLP</jvmserver>
</provider_pipeline_json>

Replace DFHWLP with the name of the JVMSERVER that you created at the start of this procedure.
7. Copy the pipeline configuration file to a suitable directory in zFS and ensure that the file permissions

allow the CICS region to read the file.
For information, see Pipeline configuration files.

8. Create a PIPELINE resource.
The PIPELINE resource defines the location of the pipeline configuration file in the CONFIGFILE
attribute.

9. Optional: Create a default URIMAP resource for z/OS Connect.
URIMAP resources are used to associate a TRANSACTION and default user ID with z/OS Connect
work. One or more URIMAP resources can be used to configure a default policy for z/OS Connect.
For an example URIMAP configuration and more information on configuration options, see Configuring
permissions for z/OS Connect Services and APIs:

Note:

Chapter 2. Configuring web services in CICS 63

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/security_liberty.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/web-services/zos_connect_security.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_pipelineconfig.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/pipeline/dfha4_summary.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/web-services/zos_connect_authentication_for_services.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/web-services/zos_connect_authentication_for_services.html

z/OSz/OS Connect performs extra authentication for individual HTTP requests, so the application tasks
that run in CICS are typically associated with a more specific user ID than the initial user ID from the
URIMAP. The initial user ID is only in effect until user-specific authentication happens in z/OSz/OS
Connect.

Results
Your z/OS Connect for CICS 1.0 instance is configured. You can test the basic configuration by typing this
URL into a web browser: https://hostname:portnumber/zosConnect/services, where hostname
is the IP address or host name of the system on which the CICS region that is hosting z/OS Connect for
CICS 1.0 is running, and portnumber is the httpsPort that is specified in the <httpEndpoint> element
of the server.xml file. The web browser displays a list of installed services; because no services are yet
installed, the list is empty.

If you receive an HTTP 403 AuthorizationFailed response rather than the expected Service list,
review the Security configuration from Step 2. It is likely that the authenticated user is not authorized to
use z/OSz/OS Connect.

What to do next
You are now ready to deploy JSON web services into z/OS Connect for CICS 1.0.

Configuring z/OS Connect for CICS for a CICS JSON web service
After initially configuring z/OS Connect for CICS, you can configure it for a CICS JSON web service. JSON
web services are deployed to z/OS Connect for CICS in a similar way as to other CICS PIPELINE
environments.

Before you begin
You must complete the basic configuration of z/OS Connect before you start this task. For z/OS Connect
for CICS 1.0, see “Configuring z/OS Connect for CICS 1.0” on page 62. For z/OS Connect Enterprise
Edition, see “Configuring z/OS Connect Enterprise Edition” on page 67. You also require a JSON WSBind
file for each service you want to deploy; these binding files can be generated by using the CICS JSON
assistant (the DFHLS2JSand DFHJS2LS utility programs). For more information on these utility programs,
see The CICS JSON assistant.

About this task

Services can be deployed to z/OS Connect as z/OS Connect managed services, or as CICS managed
services. This topic discusses deploying these services as CICS managed services. By deploying services
as CICS managed services, WEBSERVICE resources will exist for each service. This deployment
mechanism is compatible with older JSON web services technology in CICS where services are deployed
to z/OS Connect similar to other CICS PIPELINE environments including SOAP web services.

If you have z/OS Connect Enterprise Edition V3, you might have better results by deploying the services
as z/OS Connect managed resources, as described in the z/OS Connect Enterprise Edition V3.0 product
documentation.

Note: This task applies when you use z/OS Connect Enterprise Edition V1.0 or the CICS service provider
supplied with CICS TS. If you use the CICS service provider supplied with z/OS Connect Enterprise Edition
v3.0, see Automated service archive management in z/OS Connect Enterprise Edition V3.0 product
documentation.

Procedure

• Install a WEBSERVICE resource that associates the WSBind file with the appropriate PIPELINE
resource.
Select a meaningful name for the WEBSERVICE, as this name is also used as the name of the Service in
z/OS Connect. Optionally, you can use the PERFORM PIPELINE SCAN command to install
WEBSERVICE resources. Whichever method you choose to use, ensure that you consider the following
information about URIMAPs:

64 CICS TS for z/OS: Using Web Services with CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/cics_json_assistants.html
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/welcome/WelcomePage.html
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/welcome/WelcomePage.html
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/administering/auto_sar_mgmnt.html
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/administering/auto_sar_mgmnt.html

The URI at which the Service is available in z/OS Connect is taken from one of the following locations:

– The default naming convention that z/OS Connect uses.
– The URI stored in the WSBind file, when the associated WEBSERVICE resource is installed by using

the PERFORM PIPELINE SCAN command.
– The Service specific configuration in the Liberty server.xml file, if the invokeURI configuration

parameter is used.
– z/OS Connect Enterprise Edition only: The Application Archive File (.aar file) for an API that

encapsulates the Service.

If you rely on the default naming convention, the Service is typically exposed through the following
URI:

https://<hostname>:<port>/zosConnect/services/<Service Name>?action=invoke

In this example, <Service Name> refers to the name of the Service (more specifically, the name of
the WEBSERVICE resource), and <hostname> and <port> are taken from the configuration of the
Liberty server.

• Optional: Install a URIMAP resource for the z/OS Connect Service.
A URIMAP resource is used by CICS to associate the work for the Service with a specific transaction ID
in CICS, and an initial User ID.
You can use a single URIMAP to configure one or many Services. You might also define a default
URIMAP resource when you configure CICS for z/OS Connect. If no URIMAP exists to match the URI
for a z/OS Connect Service, the application's tasks run under transaction CJSA, and the CICS default
user ID (typically CICSUSER) is used as the initial user ID. For more information about the role of the
initial User ID, see Configuring permissions for z/OS Connect Services and APIs.

If you choose to create a URIMAP resource, ensure that the associated user ID has authority to run the
specified transaction.

You might also choose to use a URIMAP to associate the URI with a specific WEBSERVICE resource. If
a URIMAP is tightly bound to a WEBSERVICE, the target WEBSERVICE is used for all HTTP requests
that are matched by the URIMAP. If a WEBSERVICE is not specified, the WEBSERVICE is selected
based on the name of the z/OS Connect Service. If the WEBSERVICE attribute of the URIMAP is left
blank, z/OS Connect performs the mapping itself, which allows z/OS Connect Enterprise Edition to
associate different Services with different HTTP methods within an API.

• Optional: Update the server.xml file
Some usage patterns might require changes in the Liberty server configuration file, server.xml. It is
usually not necessary to make Service-specific changes in the server.xml file, unless you require
special-case processing for a Service. For example, you might choose to associate a specific set of
z/OS Connect interceptors with a Service in the server.xml file, or expose a Service by using a URI
that does not match the z/OS Connect default naming convention.

Use these steps to define a Service in the server.xml file:

1. Ensure that the intended Service name does not match the name of a WEBSERVICE resource in
CICS. CICS automatically injects configuration information into z/OS Connect, and if an explicitly
defined Service and a CICS WEBSERVICE have the same name, the resultant behavior is
unpredictable.

2. Set a suitable value for the invokeURI attribute in the server.xml file that matches the URI used
in the URIMAP.

3. Bind the Service to the CICSEndpointService serviceRef element.
4. Ensure that a URIMAP exists to match the URI for the Service to the precise WEBSERVICE that is to

be used. If an invokeURI attribute was set in Step 2, the URIMAP must match that URI.
Otherwise, the URIMAP must assume the z/OS Connect default URI naming convention.

Chapter 2. Configuring web services in CICS 65

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/web-services/zos_connect_authentication_for_services.html

The following example shows an explicit z/OS Connect for CICS 1.0 Service declaration in the
server.xml file:

<zosConnectService invokeURI="/json/myCustomService"
 serviceName="CICSService1"
 serviceRef="com.ibm.cics.wlp.zosconnect.CICSEndpointService"/>

The following example shows the equivalent declaration for z/OS Connect Enterprise Edition in the
server.xml file:

<zosconnect_zosConnectService invokeURI="/json/myCustomService"
 serviceName="CICSService1"
 serviceRef="com.ibm.cics.wlp.zosconnect.CICSEndpointService"/>

In both examples, the "/json/myCustomService" URI is associated with the z/OS Connect for CICS
receiver program, CICSService1.

Results
You can test the configuration for z/OS Connect for CICS by typing this URL into a web browser:
https://hostname:portnumber/zosConnect/services. The hostname is the IP address or name
of the CICS region that hosts z/OS Connect for CICS. The portnumber is the httpsPort that is configured
in the <httpEndpoint> section of the server.xml configuration file. The web browser displays a list of
the installed services.

The service is now ready to be called from a JSON client that uses the same hostname and portnumber.

Each installed Service has an entry in the zosConnect/services list, for example:

{
"id":"EXAMPLE",
"name":"EXAMPLE",
"url":"https://hostname:portnumber/zosConnect/services/EXAMPLE",
"protocol":"REST",
"description":"CICS Service"
}

In this example, the associated WEBSERVICE resource was named "EXAMPLE", and this Service
definition was created dynamically by CICS when the EXAMPLE WEBSERVICE resource was installed. You
can use a web browser to visit https://hostname:portnumber/zosConnect/services/EXAMPLE
that returns a document with more details about the Service, similar to the following:

{
"id":"EXAMPLE",
"name":"EXAMPLE",
"protocol":"REST",
"description":"CICS Service",
"restEndpoints":[
 {
 "name":"EXAMPLE",
 "address":"hostname:portnumber/jsonTests/myExampleService"
 }
]
}

In this example, the "address" is the URI at which the Service is exposed. This URI might be derived
from information in a WSBind file, from an invokeURI attribute, or from the default z/OS Connect naming
convention.

When a request arrives in the Liberty JVM server, it is associated with the z/OS Connect for CICS receiver
that uses the information from the server.xml configuration file. A new CICS task starts to perform this
work, and it is associated with a specific WEBSERVICE resource that uses the information from the
URIMAP resource. The data transformation process occurs in the Liberty JVM server, and the target CICS
program is attached, as named in the WSBind file.

Migrating from JSON web services to z/OS Connect
JSON Services can be re-deployed to z/OS Connect from older JSON web services technology in CICS,
and also from the even older Feature Pack for Mobile Extensions. Such re-deployment requires z/OS

66 CICS TS for z/OS: Using Web Services with CICS

Connect to be configured in compatibility mode. This mode is available in both z/OS Connect for CICS 1.0
and z/OS Connect Enterprise Edition.

About this task

In this task, z/OS Connect refers to both z/OS Connect for CICS 1.0 and z/OS Connect Enterprise Edition.

Redeploying a JSON web service from a Java Pipelines for JSON (as used with the CICS Transaction
Server Feature Pack for Mobile Extensions V1.0) to z/OS Connect is a straightforward process. The
WSBind files that are used for the Java Pipelines for JSON and for z/OS Connect are produced by using
the same tools (DFHLS2JS and DFHJS2LS), and are fully compatible with each other. If you are exploring
this capability in CICS, you can find examples of JSON web services in the IBM Redbooks: Implementing
IBM CICS JSON Web Services for Mobile Applications.

The z/OS Connect environment encourages the use of SSL between the client application and CICS. If
your existing Java Pipelines for JSON environment does not use SSL, the conversion to z/OS Connect
involves an extra step.

Procedure

1. Create the necessary z/OS Connect infrastructure by using the instructions from Configuring z/OS
Connect for CICS. For part of this configuration, you select an SSL TCP/IP port number at which the
Liberty JVM server listens for incoming connections. You have two options to consider:
a) Select a different port number from the port number that is used by the TCPIPSERVICE for the Java

Pipelines for JSON. This option has the advantage of ensuring that both environments can be
installed concurrently on different TCP/IP ports. It means that client programs need updating to
target the new JSON Service. If the old environment didn't use SSL, the conversion to z/OS Connect
requires changes to the URI, so this option is more suitable.

b) Select the same port number as that used by the TCPIPSERVICE for the Java Pipelines for JSON.
The port numbers in the URIs used by the client programs do not need to be changed, but the two
environments cannot be installed concurrently. The URI might need changing for other reasons,
such as switching from HTTP to HTTPS when you enable SSL.

2. Deploy the WSBind files to z/OS Connect. Your existing WSBind files are entirely compatible with z/OS
Connect. Follow the steps to deploy a new JSON web service to z/OS Connect as described in
Configuring z/OS Connect for a CICS JSON web service. CICS does not allow two WEBSERVICE
resources with the same name to both be installed. You therefore have two options:
a) Discard the original WEBSERVICE to allow the new one to install with the same name as was

previously used.
b) Rename the new WEBSERVICE to avoid a clash.

3. If you customized the processing of the Java Pipelines for JSON through use of PIPELINE Handler
programs, consider whether that customization is still needed. If it is needed, create z/OS Connect
Interceptor programs with equivalent functions, and deploy them as global interceptors. For more
information about z/OS Connect interceptors, see Defining z/OS Connect interceptors.

Results

You are now ready to test your new z/OS Connect JSON web services. If you deployed the services by
using the same port number as used in the Java Pipelines for JSON, no changes are needed in the client
(unless the security configuration has changed, such as when enabling SSL). If you changed the port
number or URI for the service, the client needs changing.

Configuring z/OS Connect Enterprise Edition
z/OS Connect Enterprise Edition is a separately-orderable product; it is not supplied as part of CICS TS. It
extends the basic services of z/OS Connect for CICS 1.0 with extra capabilities and can be used to host
CICS' older JSON web services-based services, and also the standard z/OS Connect deployment artifacts
such as SAR and AAR files. You must configure a JVMSERVER resource before you can deploy JSON
services, and can also configure a PIPELINE resource. This initial configuration is required only once.

Chapter 2. Configuring web services in CICS 67

https://www.redbooks.ibm.com/abstracts/sg248161.html?Open
https://www.redbooks.ibm.com/abstracts/sg248161.html?Open
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/zos_connect_configuring.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/zos_connect_configuring.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/zos_connect_configuring_json.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_zconnect_interceptor.html

Before you begin
Install the z/OS Connect Enterprise Edition run time. Follow the instructions in the z/OS Connect
Enterprise Edition V3.0 product documentation. If you are preparing z/OS Connect Enterprise Edition to
run embedded in CICS, you do not need to create a separate Liberty server instance. You must ensure
that the file system components are available on zFS. Installation of the API Toolkit that is supplied with
z/OS Connect Enterprise Edition is not part of this task.

About this task

If you installed z/OS Connect for CICS 1.0 previously, you might have a suitable configuration already and
can omit some steps in the following task. The steps that you can omit are indicated in the procedure.

Procedure

1. Create a JVMSERVER resource and configure it to support a WebSphere Liberty server. For more
information about creating a WebSphere Liberty JVMSERVER, see Configuring a Liberty JVM server.

If you installed z/OS Connect for CICS 1.0 previously, you can omit this step.
2. Add ZCEE_INSTALL_DIR to your JVM server options.

For more information about the option and an example, see JVM server profile options.
3. If you are using z/OS Connect Enterprise Edition version 3.0.24.0 or later, add the
<installation_directory>/runtime/lib/native/zos directory to the JVM server option
LIBPATH_SUFFIX, where <installation_directory> is the z/OS Connect Enterprise Edition installation
directory.
For example:

LIBPATH_SUFFIX=/usr/lpp/IBM/zosconnect/v3r0/runtime/lib/native/zos

For more information about setting LIBPATH_SUFFIX, see JVM server profile options.
4. Configure WebSphere Liberty for your security requirements. By default, it expects the use of client-

certified SSL certificates. To enable HTTP Basic Authentication, add the following configuration option
to the server.xml file:

 <!-- Allow fail-over to HTTP Basic Authentication -->
 <webAppSecurity allowFailOverToBasicAuth="true"/>

You must also give users of z/OS Connect the zosConnectAccess security role. For more information
about WebSphere Liberty security, see Configuring security for a Liberty JVM server, and for z/OS
Connect security, see Security for z/OS Connect.

If you installed z/OS Connect for CICS 1.0 previously, you can omit this step.

What to do next
Follow the steps for your specific version of z/OS Connect Enterprise Edition as described in the following
tasks.

Configuring z/OS Connect for CICS for a CICS JSON web service
After initially configuring z/OS Connect for CICS, you can configure it for a CICS JSON web service. JSON
web services are deployed to z/OS Connect for CICS in a similar way as to other CICS PIPELINE
environments.

Before you begin
You must complete the basic configuration of z/OS Connect before you start this task. For z/OS Connect
for CICS 1.0, see “Configuring z/OS Connect for CICS 1.0” on page 62. For z/OS Connect Enterprise
Edition, see “Configuring z/OS Connect Enterprise Edition” on page 67. You also require a JSON WSBind
file for each service you want to deploy; these binding files can be generated by using the CICS JSON
assistant (the DFHLS2JSand DFHJS2LS utility programs). For more information on these utility programs,
see The CICS JSON assistant.

68 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/welcome/WelcomePage.html
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/welcome/WelcomePage.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_jvmserver_liberty.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/dfha2_jvmprofile_server_options.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/dfha2_jvmprofile_server_options.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/security_liberty.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/web-services/zos_connect_security.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/cics_json_assistants.html

About this task

Services can be deployed to z/OS Connect as z/OS Connect managed services, or as CICS managed
services. This topic discusses deploying these services as CICS managed services. By deploying services
as CICS managed services, WEBSERVICE resources will exist for each service. This deployment
mechanism is compatible with older JSON web services technology in CICS where services are deployed
to z/OS Connect similar to other CICS PIPELINE environments including SOAP web services.

If you have z/OS Connect Enterprise Edition V3, you might have better results by deploying the services
as z/OS Connect managed resources, as described in the z/OS Connect Enterprise Edition V3.0 product
documentation.

Note: This task applies when you use z/OS Connect Enterprise Edition V1.0 or the CICS service provider
supplied with CICS TS. If you use the CICS service provider supplied with z/OS Connect Enterprise Edition
v3.0, see Automated service archive management in z/OS Connect Enterprise Edition V3.0 product
documentation.

Procedure

• Install a WEBSERVICE resource that associates the WSBind file with the appropriate PIPELINE
resource.
Select a meaningful name for the WEBSERVICE, as this name is also used as the name of the Service in
z/OS Connect. Optionally, you can use the PERFORM PIPELINE SCAN command to install
WEBSERVICE resources. Whichever method you choose to use, ensure that you consider the following
information about URIMAPs:

The URI at which the Service is available in z/OS Connect is taken from one of the following locations:

– The default naming convention that z/OS Connect uses.
– The URI stored in the WSBind file, when the associated WEBSERVICE resource is installed by using

the PERFORM PIPELINE SCAN command.
– The Service specific configuration in the Liberty server.xml file, if the invokeURI configuration

parameter is used.
– z/OS Connect Enterprise Edition only: The Application Archive File (.aar file) for an API that

encapsulates the Service.

If you rely on the default naming convention, the Service is typically exposed through the following
URI:

https://<hostname>:<port>/zosConnect/services/<Service Name>?action=invoke

In this example, <Service Name> refers to the name of the Service (more specifically, the name of
the WEBSERVICE resource), and <hostname> and <port> are taken from the configuration of the
Liberty server.

• Optional: Install a URIMAP resource for the z/OS Connect Service.
A URIMAP resource is used by CICS to associate the work for the Service with a specific transaction ID
in CICS, and an initial User ID.
You can use a single URIMAP to configure one or many Services. You might also define a default
URIMAP resource when you configure CICS for z/OS Connect. If no URIMAP exists to match the URI
for a z/OS Connect Service, the application's tasks run under transaction CJSA, and the CICS default
user ID (typically CICSUSER) is used as the initial user ID. For more information about the role of the
initial User ID, see Configuring permissions for z/OS Connect Services and APIs.

If you choose to create a URIMAP resource, ensure that the associated user ID has authority to run the
specified transaction.

You might also choose to use a URIMAP to associate the URI with a specific WEBSERVICE resource. If
a URIMAP is tightly bound to a WEBSERVICE, the target WEBSERVICE is used for all HTTP requests
that are matched by the URIMAP. If a WEBSERVICE is not specified, the WEBSERVICE is selected
based on the name of the z/OS Connect Service. If the WEBSERVICE attribute of the URIMAP is left

Chapter 2. Configuring web services in CICS 69

https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/welcome/WelcomePage.html
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/welcome/WelcomePage.html
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/administering/auto_sar_mgmnt.html
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/administering/auto_sar_mgmnt.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/web-services/zos_connect_authentication_for_services.html

blank, z/OS Connect performs the mapping itself, which allows z/OS Connect Enterprise Edition to
associate different Services with different HTTP methods within an API.

• Optional: Update the server.xml file
Some usage patterns might require changes in the Liberty server configuration file, server.xml. It is
usually not necessary to make Service-specific changes in the server.xml file, unless you require
special-case processing for a Service. For example, you might choose to associate a specific set of
z/OS Connect interceptors with a Service in the server.xml file, or expose a Service by using a URI
that does not match the z/OS Connect default naming convention.

Use these steps to define a Service in the server.xml file:

1. Ensure that the intended Service name does not match the name of a WEBSERVICE resource in
CICS. CICS automatically injects configuration information into z/OS Connect, and if an explicitly
defined Service and a CICS WEBSERVICE have the same name, the resultant behavior is
unpredictable.

2. Set a suitable value for the invokeURI attribute in the server.xml file that matches the URI used
in the URIMAP.

3. Bind the Service to the CICSEndpointService serviceRef element.
4. Ensure that a URIMAP exists to match the URI for the Service to the precise WEBSERVICE that is to

be used. If an invokeURI attribute was set in Step 2, the URIMAP must match that URI.
Otherwise, the URIMAP must assume the z/OS Connect default URI naming convention.

The following example shows an explicit z/OS Connect for CICS 1.0 Service declaration in the
server.xml file:

<zosConnectService invokeURI="/json/myCustomService"
 serviceName="CICSService1"
 serviceRef="com.ibm.cics.wlp.zosconnect.CICSEndpointService"/>

The following example shows the equivalent declaration for z/OS Connect Enterprise Edition in the
server.xml file:

<zosconnect_zosConnectService invokeURI="/json/myCustomService"
 serviceName="CICSService1"
 serviceRef="com.ibm.cics.wlp.zosconnect.CICSEndpointService"/>

In both examples, the "/json/myCustomService" URI is associated with the z/OS Connect for CICS
receiver program, CICSService1.

Results
You can test the configuration for z/OS Connect for CICS by typing this URL into a web browser:
https://hostname:portnumber/zosConnect/services. The hostname is the IP address or name
of the CICS region that hosts z/OS Connect for CICS. The portnumber is the httpsPort that is configured
in the <httpEndpoint> section of the server.xml configuration file. The web browser displays a list of
the installed services.

The service is now ready to be called from a JSON client that uses the same hostname and portnumber.

Each installed Service has an entry in the zosConnect/services list, for example:

{
"id":"EXAMPLE",
"name":"EXAMPLE",
"url":"https://hostname:portnumber/zosConnect/services/EXAMPLE",
"protocol":"REST",
"description":"CICS Service"
}

In this example, the associated WEBSERVICE resource was named "EXAMPLE", and this Service
definition was created dynamically by CICS when the EXAMPLE WEBSERVICE resource was installed. You

70 CICS TS for z/OS: Using Web Services with CICS

can use a web browser to visit https://hostname:portnumber/zosConnect/services/EXAMPLE
that returns a document with more details about the Service, similar to the following:

{
"id":"EXAMPLE",
"name":"EXAMPLE",
"protocol":"REST",
"description":"CICS Service",
"restEndpoints":[
 {
 "name":"EXAMPLE",
 "address":"hostname:portnumber/jsonTests/myExampleService"
 }
]
}

In this example, the "address" is the URI at which the Service is exposed. This URI might be derived
from information in a WSBind file, from an invokeURI attribute, or from the default z/OS Connect naming
convention.

When a request arrives in the Liberty JVM server, it is associated with the z/OS Connect for CICS receiver
that uses the information from the server.xml configuration file. A new CICS task starts to perform this
work, and it is associated with a specific WEBSERVICE resource that uses the information from the
URIMAP resource. The data transformation process occurs in the Liberty JVM server, and the target CICS
program is attached, as named in the WSBind file.

Migrating from JSON web services to z/OS Connect
JSON Services can be re-deployed to z/OS Connect from older JSON web services technology in CICS,
and also from the even older Feature Pack for Mobile Extensions. Such re-deployment requires z/OS
Connect to be configured in compatibility mode. This mode is available in both z/OS Connect for CICS 1.0
and z/OS Connect Enterprise Edition.

About this task

In this task, z/OS Connect refers to both z/OS Connect for CICS 1.0 and z/OS Connect Enterprise Edition.

Redeploying a JSON web service from a Java Pipelines for JSON (as used with the CICS Transaction
Server Feature Pack for Mobile Extensions V1.0) to z/OS Connect is a straightforward process. The
WSBind files that are used for the Java Pipelines for JSON and for z/OS Connect are produced by using
the same tools (DFHLS2JS and DFHJS2LS), and are fully compatible with each other. If you are exploring
this capability in CICS, you can find examples of JSON web services in the IBM Redbooks: Implementing
IBM CICS JSON Web Services for Mobile Applications.

The z/OS Connect environment encourages the use of SSL between the client application and CICS. If
your existing Java Pipelines for JSON environment does not use SSL, the conversion to z/OS Connect
involves an extra step.

Procedure

1. Create the necessary z/OS Connect infrastructure by using the instructions from Configuring z/OS
Connect for CICS. For part of this configuration, you select an SSL TCP/IP port number at which the
Liberty JVM server listens for incoming connections. You have two options to consider:
a) Select a different port number from the port number that is used by the TCPIPSERVICE for the Java

Pipelines for JSON. This option has the advantage of ensuring that both environments can be
installed concurrently on different TCP/IP ports. It means that client programs need updating to
target the new JSON Service. If the old environment didn't use SSL, the conversion to z/OS Connect
requires changes to the URI, so this option is more suitable.

b) Select the same port number as that used by the TCPIPSERVICE for the Java Pipelines for JSON.
The port numbers in the URIs used by the client programs do not need to be changed, but the two
environments cannot be installed concurrently. The URI might need changing for other reasons,
such as switching from HTTP to HTTPS when you enable SSL.

Chapter 2. Configuring web services in CICS 71

https://www.redbooks.ibm.com/abstracts/sg248161.html?Open
https://www.redbooks.ibm.com/abstracts/sg248161.html?Open
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/zos_connect_configuring.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/zos_connect_configuring.html

2. Deploy the WSBind files to z/OS Connect. Your existing WSBind files are entirely compatible with z/OS
Connect. Follow the steps to deploy a new JSON web service to z/OS Connect as described in
Configuring z/OS Connect for a CICS JSON web service. CICS does not allow two WEBSERVICE
resources with the same name to both be installed. You therefore have two options:
a) Discard the original WEBSERVICE to allow the new one to install with the same name as was

previously used.
b) Rename the new WEBSERVICE to avoid a clash.

3. If you customized the processing of the Java Pipelines for JSON through use of PIPELINE Handler
programs, consider whether that customization is still needed. If it is needed, create z/OS Connect
Interceptor programs with equivalent functions, and deploy them as global interceptors. For more
information about z/OS Connect interceptors, see Defining z/OS Connect interceptors.

Results

You are now ready to test your new z/OS Connect JSON web services. If you deployed the services by
using the same port number as used in the Java Pipelines for JSON, no changes are needed in the client
(unless the security configuration has changed, such as when enabling SSL). If you changed the port
number or URI for the service, the client needs changing.

Using APIs from z/OS Connect Enterprise Edition
A primary feature of z/OS Connect Enterprise Edition is the ability to compose JSON APIs from one or
more JSON services. This capability does not exist in z/OS Connect for CICS 1.0. For the best API
development experience, deploy APIs and services to z/OS Connect Enterprise Edition v3.0, rather than
using older JSON web services technology in CICS in compatibility mode. For more information, see the
z/OS Connect Enterprise Edition documentation.

For details about the API Toolkit, see z/OS Connect Enterprise Edition V3.0 product documentation.

There are some slight differences in deploying APIs to z/OS Connect Enterprise Edition for CICS,
compared to deploying APIs to a standalone installation of z/OS Connect Enterprise Edition. The following
considerations apply to deploying APIs to CICS:

• You cannot adopt an existing WSBind file for use with an API. The API Editor requires one or more
Service Archive Resource (SAR) files as part of its input.

If you use the CICS service provider supplied by CICS TS, the WSBind file is created with the BAQLS2JS
or BAQJS2LS assistants that are distributed with z/OS Connect Enterprise Edition. If you want to create
APIs, start by generating the required WSBind and SAR files using the assistants that are supplied with
z/OS Connect Enterprise Edition.

You must set the SERVICE-NAME parameter in BAQLS2JS or BAQJS2LS to match the name of the
WEBSERVICE resource that will be used in CICS. CICS relies on a one-to-one match between the name
of the Service in z/OS Connect, and the name of the WEBSERVICE in CICS.

If you use the CICS service provider that is supplied with z/OS Connect Enterprise Edition, a SAR file is
created with either the service editor in the z/OS Connect Enterprise Edition V3 API Toolkit or the build
toolkit that is distributed with z/OS Connect Enterprise Edition. You must use these tools to generate
the required SAR files before you can create APIs.

• A WEBSERVICE resource definition is required in CICS that matches the name of the service.

If you use the CICS service provider supplied by CICS TS, the WEBSERVICE encapsulates the WSBind
file for the service.

If you use the CICS service provider supplied with z/OS Connect EE V3, a WEBSERVICE resource
definition is not required.

• A URIMAP resource definition may also be provided in CICS. If a URIMAP is used, CICS automatically
associates the work for the API with a transaction ID and sets a suitable initial user ID.

• The API Editor produces an Application archive (AAR) file as output. This must be deployed to the z/OS
Connect EE server using the deployment mechanisms provided by z/OS Connect EE. By default, APIs
are deployed to the /resources/zosconnect/apis directory in the server's configuration directory.

72 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/zos_connect_configuring_json.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_zconnect_interceptor.html
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/welcome/WelcomePage.html

If this directory does not already exist, you must create it, or you might prefer to create an alternative
directory for the APIs and specify that on the zosconnect_APIs element in server.xml.

If you follow the considerations above, the API and its component services are deployed to CICS. CICS is
configured with suitable URIMAP and WEBSERVICE resources, and the AAR file is deployed into the
Liberty configuration work area. The main Liberty configuration file, server.xml, contains an entry for
each component service that is deployed.

Configuring z/OS Connect Enterprise Edition V3.0 for z/OS Connect managed services
z/OS Connect Enterprise Edition is a separately orderable product; it is not supplied as part of CICS TS.
First, you must install the runtime component of z/OS Connect Enterprise Edition and configure a zFS file
so that CICS can locate it. Then you configure a JVM server and set up the pipeline configuration and
resources for z/OS Connect before you can deploy JSON services and APIs. This initial configuration is a
one-time activity that allows z/OS Connect Enterprise Edition to run embedded in the Liberty server that
is distributed with CICS TS.

Before you begin
Install the z/OS Connect Enterprise Edition run time. Follow the instructions in the z/OS Connect
Enterprise Edition V3.0 product documentation. If you are preparing z/OS Connect Enterprise Edition to
run embedded within CICS, then you do not need to create a separate Liberty server instance. You must
install at least the file system components on zFS. Installing the API Toolkit that is supplied with z/OS
Connect Enterprise Edition is not part of this task.

Have you previously installed z/OS Connect for CICS 1.0? If so, several of the steps in this task are not
necessary. The steps that you can skip are indicated in the list.

Procedure

1. Ensure that all the steps in “Configuring z/OS Connect Enterprise Edition” on page 67 are complete.
2. Update the <featureManager> list in the server.xml file to include the
zosconnect:cicsService-1.0 feature.
For example,

 <featureManager>
 <feature>cicsts:core-1.0</feature>
 <feature>zosconnect:cicsService-1.0</feature>
 </featureManager>

Note: The CICS service providers that are supplied by CICS TS and z/OS Connect Enterprise Edition
v3.0 are mutually exclusive. If you upgrade from z/OS Connect for CICS 1.0 to z/OS Connect Enterprise
Edition V3.0, you must change the feature code.

3. Define the elements for the CICS service provider.
If you have z/OS Connect for CICS 1.0 installed, you can skip this step because you are likely to have a
suitable configuration already.

Configure the following elements in server.xml:

a) Define either a local CICS connection, or a remote IPIC connection.
The following example definition is for a local CICS connection:

<zosconnect_cicsLocalConnection id="eciTest"/>

The following example definition is for a remote IPIC connection:

 <zosconnect_cicsIPICConnection
 id="eciTest"
 host="cicshost.company.com"
 port="1111"/>

b) Enable deployment of services by using SAR files:

Chapter 2. Configuring web services in CICS 73

https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/welcome/WelcomePage.html
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/welcome/WelcomePage.html

For example,

<zosconnect_services
 pollingRate="5s"
 updateTrigger="polled">

c) Configure zosconnect_zosConnectManager to disable security.
For more information about configuring the CICS service provider that is supplied with z/OS Connect
Enterprise Edition, see Using the CICS service provider.

4. Install the JVMSERVER. Check the generated messages.log file for error or warning messages.
This log contains the messages that are generated by WebSphere Liberty Server, including messages
that are issued by z/OS Connect Enterprise Edition such as:
SRVE0169I: Loading Web Module: z/OS Connect.
SRVE0250I: Web Module z/OS Connect has been bound to default_host.

Results
Your z/OS Connect Enterprise Edition instance is configured. You can test the basic configuration for z/OS
Connect by typing this URL into a web browser: https://hostname:portnumber/zosConnect/
services, where hostname is the IP address or host name of the system on which the CICS region that
is hosting z/OS Connect is running, and portnumber is the httpsPort that is specified in the
<httpEndpoint> element of the server.xml file. The web browser displays a list of installed services;
because no services are yet installed, the list is empty.

If you receive an HTTP 403 AuthorizationFailed response rather than the expected service list,
review the security configuration step in “Configuring z/OS Connect Enterprise Edition” on page 67. The
authenticated user might not be not be authorized to use z/OS Connect.

What to do next
You are now ready to deploy JSON services or APIs into z/OS Connect Enterprise Edition. For more
information about deploying services, see Exposing z/OS assets as REST APIs in z/OS Connect Enterprise
Edition V3.0 product documentation. For more information about deploying APIs, see “Using APIs from
z/OS Connect Enterprise Edition” on page 72.

Configuring z/OS Connect Enterprise Edition for CICS managed services
z/OS Connect Enterprise Edition is a separately orderable product; it is not supplied as part of CICS TS.
First, you must install the runtime component of z/OS Connect Enterprise Edition and configure a zFS file
so that CICS can locate it. Then, you configure a JVM server and set up the pipeline configuration and
resources for z/OS Connect before you can deploy JSON services and APIs. This initial configuration is a
one-time activity that allows z/OS Connect Enterprise Edition to run embedded in the Liberty server that
is distributed with CICS TS.

Before you begin
Install the z/OS Connect Enterprise Edition run time. Follow the instructions in the z/OS Connect
Enterprise Edition V2.0 product documentation. If you are preparing z/OS Connect Enterprise Edition to
run embedded within CICS, then you do not need to create a separate Liberty server instance. You must
install at least the file system components on zFS. Installing the API Toolkit that is supplied with z/OS
Connect Enterprise Edition is not part of this task.

Have you previously installed z/OS Connect for CICS 1.0? If so, several of the steps in this task are not
necessary. The steps that you can skip are indicated in the list.

Procedure

1. Ensure that all the steps in “Configuring z/OS Connect Enterprise Edition” on page 67 are complete.
2. Update the <featureManager> list in the server.xml file to include the
cicsts:zosConnect-2.0 feature.
For example,

74 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/configuring/cics_service_provider.html
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/designing/apieditor_intro.html
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/designing/apieditor_intro.html
https://www.ibm.com/support/knowledgecenter/SS4SVW_2.0.0/com.ibm.zosconnect.doc/welcome/WelcomePage.html
https://www.ibm.com/support/knowledgecenter/SS4SVW_2.0.0/com.ibm.zosconnect.doc/welcome/WelcomePage.html

<featureManager>
 <feature>cicsts:core-1.0</feature>
 <feature>transportSecurity-1.0</feature>
 <feature>cicsts:zosConnect-2.0</feature>
</featureManager>

Note: z/OS Connect for CICS 1.0 and z/OS Connect Enterprise Edition features are mutually exclusive.
If you upgrade from z/OS Connect for CICS 1.0 to z/OS Connect Enterprise Edition, you must change
the feature.

3. Define the z/OS Connect Service Controller.
If you use the CICS service provider that is supplied with CICS TS, add the following statement to the
server.xml file:

<com.ibm.cics.wlp.zosconnect.CICSEndpoint
 id="com.ibm.cics.wlp.zosconnect.CICSEndpointService"/>

If you have z/OS Connect for CICS 1.0 installed, you can skip this step because you are likely to have a
suitable configuration already.

If you use the CICS service provider that is supplied with z/OS Connect Enterprise Edition V2,
configure the following elements in server.xml:

a) Define either a local CICS connection, or a remote IPIC connection.
The following example definition is for a local CICS connection:

<zosconnect_cicsLocalConnection id="eciTest"/>

The following example definition is for a remote IPIC connection:

<zosconnect_cicsIPICConnection
 id="eciTest"
 host="cicshost.company.com"
 port="1111"/>

b) Enable deployment of services by using SAR files:
For example,

<zosconnect_services
 pollingRate="5s"
 updateTrigger="polled">

For more information about configuring the z/OS Connect Enterprise Edition CICS service provider, see
Using the CICS service provider in z/OS Connect Enterprise Edition V3.0 product documentation.

4. Install the JVMSERVER. Check the generated messages.log file for error or warning messages.
This log contains the messages that are generated by WebSphere Liberty Server, including messages
that are issued by z/OS Connect Enterprise Edition such as:
SRVE0169I: Loading Web Module: z/OS Connect.
SRVE0250I: Web Module z/OS Connect has been bound to default_host.

5. Create an XML pipeline configuration file. Sample pipeline configuration file
jsonzosconnectprovider.xml is provided in the directory /usr/lpp/cicsts/cicsts56/
samples/pipelines/ (where /usr/lpp/cicsts/cicsts56 is the default installation directory for
CICS files on z/OS UNIX). Decide whether you want to parse the JSON by using Java in the Liberty JVM
server (the default), or to use the non Java JSON parser.

• To parse the JSON by using Java in the Liberty JVM server, you can use the sample pipeline
configuration file, but replace DFHWLP in the <jvmserver> element with the name of your
JVMSERVER from step 2.

Chapter 2. Configuring web services in CICS 75

https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/configuring/cics_service_provider.html

• To parse the JSON by using the non Java parser, modify the sample configuration file to append the
java_parser="no" attribute to the <provider_pipeline_json> element as in the following
example:

<?xml version="1.0" encoding="EBCDIC-CP-US"?>
<provider_pipeline_json java_parser="no" xmlns="http://www.ibm.com/software/htp/cics/pipeline">
 <jvmserver>DFHWLP</jvmserver>
</provider_pipeline_json>

Replace DFHWLP with the name of the JVMSERVER that you created at the start of this procedure.

If you have z/OS Connect for CICS 1.0 installed, you can skip this step because you are likely to have a
suitable configuration already.

6. Copy the pipeline configuration file to a suitable directory in zFS and ensure that the file permissions
allow the CICS region to read the file.
For more information, see Pipeline configuration files.

If you have z/OS Connect for CICS 1.0 installed, you can skip this step because you are likely to have a
suitable configuration already.

7. Create a PIPELINE resource.
The PIPELINE resource defines the location of the pipeline configuration file. Do not attempt to use
the SCAN mechanism to install WEBSERVICEs into this PIPELINE.

If you have z/OS Connect for CICS 1.0 installed, you can skip this step because you are likely to have a
suitable configuration already.

8. Optional: Create a default URIMAP resource for z/OS Connect.
URIMAP resources are used to associate a TRANSACTION and default user ID with z/OS Connect
work. One or more URIMAP resources can be used to configure a default policy for z/OS Connect. For
an example of URIMAP configuration and more information on configuration options, see Configuring
permissions for z/OS Connect Services and APIs.

Note:

z/OS Connect performs extra authentication for individual HTTP requests, so the application tasks that
run in CICS are typically associated with a more specific User ID than the initial User ID from the
URIMAP.

This initial User ID is only in effect until user-specific authentication happens within z/OS Connect. Use
a specific User ID such as ZOSCUSER in the URIMAP, rather than relying on the default CICS User ID to
be used (typically "CICSUSER"), and authorizing it to use the target transactions.

Results
Your z/OS Connect Enterprise Edition instance is configured. You can test the basic configuration for z/OS
Connect by typing this URL into a web browser: https://hostname:portnumber/zosConnect/
services, where hostname is the IP address or host name of the system on which the CICS region that
is hosting z/OS Connect is running, and portnumber is the httpsPort that is specified in the
<httpEndpoint> element of the server.xml file. The web browser displays a list of installed services;
because no services are yet installed, the list is empty.

If you receive an HTTP 403 AuthorizationFailed response rather than the expected service list,
review the security configuration step in “Configuring z/OS Connect Enterprise Edition” on page 67. The
authenticated user might not be not be authorized to use z/OS Connect.

What to do next
You are now ready to deploy JSON services or APIs into z/OS Connect Enterprise Edition. For more
information about deploying services, see Configuring z/OS Connect for a CICS JSON web service. For
more information about deploying APIs, see “Using APIs from z/OS Connect Enterprise Edition” on page
72.

76 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_pipelineconfig.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/pipeline/dfha4_summary.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/web-services/zos_connect_authentication_for_services.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/web-services/zos_connect_authentication_for_services.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/zos_connect_configuring_json.html

Pipeline configuration files
The configuration of a pipeline used to handle a web service request is specified in an XML document,
known as a pipeline configuration file.

The pipeline configuration file is stored in the z/OS UNIX System Services file system and its name is
specified in the CONFIGFILE attribute of a PIPELINE resource definition. Use a suitable XML editor or text
editor to work with your pipeline configuration files. The XML schemas for the pipeline configuration files
are in the directory /usr/lpp/cicsts/cicsts56/schemas/pipeline/ (where /usr/lpp/cicsts/
cicsts56 is the default install directory for CICS files on z/OS UNIX). When you work with configuration
files, ensure that the character set encoding is UTF-8. If you import an existing configuration file that is
encoded in EBCDIC, it is automatically converted to UTF-8.

When CICS processes a web service request, it uses a pipeline of one or more message handlers to
handle the request. A pipeline is configured to provide aspects of the execution environment that apply to
different categories of applications, such as support for web service security, and web service
transactions. Typically, a CICS region that has a large number of service provider or service requester
applications needs several different pipeline configurations. However, where different applications have
similar requirements, they can share the same pipeline configuration.

Note: When using CICS Explorer to create a new PIPELINE configuration file as part of a bundle, there
must not be a configuration file with the same name in the root of the bundle.

There are two kinds of pipeline configurations: one describes the configuration of a service provider
pipeline; the other describes a service requester pipeline. Each is defined by its own schema, and each
has a different root element.

Pipeline Schema Root element

Service provider Provider.xsd <provider_pipeline>

Service requester Requester.xsd <requester_pipeline>

Although many of the XML elements used are common to both kinds of pipeline configuration, others are
used only in one or the other, so you cannot use the same configuration file for both a provider and
requester.

Restriction: Namespace-qualified element names are not supported in the pipeline configuration file.

The <provider_pipeline> and <requester_pipeline> elements have the following immediate
sub-elements:

• A <service> element, which specifies the message handlers that are invoked for every request. This
element is mandatory when used within the <provider_pipeline> element, and optional within the
<requester_pipeline> element.

• An optional <transport> element, which specifies message handlers that are selected at run time,
based upon the resources that are being used for the message transport.

• For the <provider_pipeline> only, an optional <apphandler> element, which is used to specify
channel-attached application handlers.

• For the <provider_pipeline> only, an optional <apphandler_class> element, which is used to
specify an Axis2 application handler.

• An optional <service_parameter_list> element, which contains the parameters that are available
to the message handlers in the pipeline.

Certain elements can have attributes associated with them. Each attribute value must have quotes
around it to produce a valid XML document.

Associated with the pipeline configuration file is a PIPELINE resource. The attributes include
CONFIGFILE, which specifies the name of the pipeline configuration file in z/OS UNIX. When you install a
PIPELINE definition, CICS reads the information that it needs in order to configure the pipeline from the
file.

Chapter 2. Configuring web services in CICS 77

CICS supplies sample configuration files that you can use as a basis for developing your own configuration
files. They are provided in library /usr/lpp/cicts/cicsts56/samples/pipelines.
basicsoap11provider.xml

A service provider pipeline definition that uses the SOAP 1.1 protocol for a pipeline that does not
support Java. The pipeline uses the <cics_soap_1.1_handler> message handler and is used
when the CICS application has been deployed using the CICS web services assistant.

basicsoap11requester.xml
A service requester pipeline definition that uses the SOAP 1.1 protocol for a pipeline that does not
support Java. The pipeline uses the <cics_soap_1.1_handler> message handler and is used
when the CICS application has been deployed using the CICS web services assistant.

basicsoap11javaprovider.xml
A service provider pipeline definition that uses the SOAP 1.1 protocol for a pipeline that supports
Java. The pipeline uses the <cics_soap_1.1_handler_java> message handler and is used when
the application has been deployed using the CICS web services assistant. This configuration contains
the element <jvmserver>. This message handler must be edited to specify the appropriate JVM
server before the configuration can be used.

basicsoap11javarequester.xml
A service requester pipeline definition that uses the SOAP 1.1 protocol for a pipeline that supports
Java. The pipeline uses the <cics_soap_1.1_handler_java> message handler and is used when
the application has been deployed using the CICS web services assistant. This configuration contains
the element <jvmserver>. This message handler must be edited to specify the appropriate JVM
server before the configuration can be used.

jsonjavaprovider.xml
A service provider pipeline definition that uses the JSON message format for a pipeline that supports
Java. The pipeline uses the <cics_json_handler_java> message handler and is used when the
CICS application has been deployed using the CICS JSON assistant. This configuration contains the
element <jvmserver>. This message handler must be edited to specify the appropriate JVM server
before the configuration can be used.

jsonzosconnectprovider.xml
A pipeline definition for a JSON web service that is deployed to a PIPELINE that is configured for z/OS
Connect for CICS. The pipeline uses the <provider_pipeline_json> message handler. This
configuration contains the element <jvmserver>. This message handler must be edited to specify
the appropriate JVM server before the configuration can be used.

kerberosprovider.xml

A service provider pipeline definition that adds configuration information for Kerberos support to
basicsoap11provider.xml.

samlprovider.xml

A service provider pipeline definition that adds configuration information for SAML support to
basicsoap11provider.xml.

samlrequester.xml

A service requester pipeline definition that adds configuration information for SAML support to
basicsoap11requester.xml.

propagatesamlprovider.xml

A service provider pipeline definition that adds configuration information for SAML support with
propagation of SAML information through a CICS transaction to basicsoap11provider.xml.

propagatesamlrequester.xml

A service requester pipeline definition that adds configuration information for SAML support with
propagation of SAML information through a CICS transaction to basicsoap11requester.xml.

78 CICS TS for z/OS: Using Web Services with CICS

wsatprovider.xml
A pipeline definition that adds configuration information for web services transactions to
basicsoap11provider.xml.

wsatrequester.xml
A pipeline definition that adds configuration information for web services transactions to
basicsoap11requester.xml.

Example provider pipeline configuration file (JSON application handler)
This is a simple example of a configuration file for a service provider pipeline that uses the
<cics_json_handler_java> element:

<p><?xml version="1.0" encoding="EBCDIC-CP-US"?>
<provider_pipeline xmlns="http://www.ibm.com/software/htp/cics/pipeline">
 <service>
 <terminal_handler>
 <cics_json_handler_java>
 <jvmserver>DFHAXIS</jvmserver>
 <repository>/usr/lpp/cicsts/cicsts52/lib/pipeline/repository</repository>
 </cics_json_handler_java>
 </terminal_handler>
 </service>
 <apphandler_class>com.ibm.cicsts.axis2.CICSAxis2ApplicationHandler</apphandler_class>
</provider_pipeline>

The pipeline contains just one message handler. The handler links to program DFHJSON.

• The <provider_pipeline> element is the root element of the pipeline configuration file for a service
provider pipeline.

• The <service> element specifies the message handlers that are invoked for every request. In the
example, there is just one message handler.

• The <terminal_handler> element contains the definition of the terminal message handler of the
pipeline.

• The <cics_json_handler_java> element indicates that the pipeline is a Java-based pipeline and
the service handler of the pipeline is a message handler that supports JSON messages.

• The <apphandler> element specifies the name of the application handler that the terminal handler of
the pipeline links to by default. In this case, the program is DFHJSON, which is the CICS-supplied
program for applications deployed with the CICS JSON assistant.

Example provider pipeline configuration file (Channel-attached application handler)
This is a simple example of a configuration file for a service provider pipeline that uses the
<cics_soap_1.1_handler> element:

<?xml version="1.0" encoding="EBCDIC-CP-US"?>
<provider_pipeline
 xmlns="http://www.ibm.com/software/htp/cics/pipeline"
 <service>
 <terminal_handler>
 <cics_soap_1.1_handler/>
 </terminal_handler>
 </service>
 <apphandler>DFHPITP</apphandler>
</provider_pipeline>

The pipeline contains just one message handler. The handler links to program DFHPITP.

• The <provider_pipeline> element is the root element of the pipeline configuration file for a service
provider pipeline.

• The <service> element specifies the message handlers that are invoked for every request. In the
example, there is just one message handler.

• The <terminal_handler> element contains the definition of the terminal message handler of the
pipeline.

Chapter 2. Configuring web services in CICS 79

• The <cics_soap_1.1_handler> element indicates that the pipeline is not a Java-based pipeline and
the terminal handler of the pipeline is a message handler that supports SOAP 1.1 messages.

• The <apphandler> element specifies the name of the application handler that the terminal handler of
the pipeline links to by default. In this case, the program is DFHPITP, which is the CICS-supplied
program for applications deployed with the CICS web services assistant.

Example provider pipeline configuration file (Axis2 application handler)
This is a simple example of a configuration file for a service provider pipeline that uses the
<cics_soap_1.1_handler_java> element:

<?xml version="1.0" encoding="EBCDIC-CP-US"?>
<provider_pipeline
 xmlns="http://www.ibm.com/software/htp/cics/pipeline"
 <service>
 <terminal_handler>
 <cics_soap_1.1_handler_java>
 <jvmserver>DFHAXIS</jvmserver>
 </cics_soap_1.1_handler_java>
 </terminal_handler>
 </service>
 <apphandler_class>com.ibm.cicsts.axis2.CICSAxis2ApplicationHandler</apphandler_class>
</provider_pipeline>

The pipeline contains just one message handler. The handler links to program DFHPITP.

• The <provider_pipeline> element is the root element of the pipeline configuration file for a service
provider pipeline.

• The <service> element specifies the message handlers that are invoked for every request. In the
example, there is just one message handler.

• The <terminal_handler> element contains the definition of the terminal message handler of the
pipeline.

• The <cics_soap_1.1_handler_java> element indicates that the pipeline is a Java-based pipeline
and the service handler of the pipeline is a message handler that supports SOAP 1.1 messages.

• The <apphandler_class> element specifies the supplied Axis2 application handler.

Example requester pipeline configuration file

This is a simple example of a configuration file for a service requester pipeline that uses the
<cics_soap_1.2_handler_java> element with Axis2 MTOM/XOP support:

<?xml version="1.0" encoding="EBCDIC-CP-US"?>
<requester_pipeline
 xmlns="http://www.ibm.com/software/htp/cics/pipeline">
 <service>
 <service_handler_list>
 <cics_soap_1.2_handler_java>
 <jvmserver>JVMSERV1</jvmserver>
 <mtom>
 </cics_soap_1.2_handler_java>
 </service_handler_list>
 </service>
</requester_pipeline>

The pipeline contains just one message handler.

• The <requester_pipeline> element is the root element of the pipeline configuration file for a
service requester pipeline.

• The <service> element specifies the message handlers that are invoked for every request. In the
example, there is just one message handler.

• The <service_handler_list> specifies a list of message handlers that are invoked for every
request.

• The <cics_soap_1.2_handler_java> element indicates that the pipeline supports Java and the
service handler of the pipeline is a message handler that supports SOAP 1.2 messages.

80 CICS TS for z/OS: Using Web Services with CICS

• The <jvmserver> element specifies the JVM server to be used.
• The <mtom/> element specifies that outbound XOP documents are packaged into MTOM messages and

sent. By default, inbound MTOM messages are accepted and unpackaged for Java-based pipelines.

Example provider pipeline configuration file for a z/OS Connect for CICS JSON web service

This is a simple example of a configuration file for a service provider pipeline that uses the
<provider_pipeline_json> element. Because a java_parser="NO" attribute is supplied, it uses
the non-Java JSON parser:

<?xml version="1.0" encoding="EBCDIC-CP-US"?>
<provider_pipeline_json java_parser="NO"
 xmlns="http://www.ibm.com/software/htp/cics/pipeline">
 <jvmserver>DFHWLP</jvmserver>
</provider_pipeline_json>

The <provider_pipeline_json> element differs from the <provider_pipeline> element in that
handler programs cannot be defined.

• The <provider_pipeline_json> element is the root element of the pipeline configuration file for a
z/OS Connect for CICS JSON web service provider pipeline.

• The java_parser="NO" attribute specifies that the non-Java JSON parser is used.
• The <jvmserver> element specifies the JVM server to be used.

Note: An attempt to start a <provider_pipeline_json> pipeline by using anything other than z/OS
Connect for CICS results in an error.

Example provider pipeline configuration file for non-Java JSON parsing

<?xml version="1.0" encoding="EBCDIC-CP-US"?>
<provider_pipeline
 xmlns="http://www.ibm.com/software/htp/cics/pipeline">
 <service>
 <terminal_handler>
 <handler>
 <program>DFHPIJT</program><handler_parameter_list/>
 </handler>
 </terminal_handler>
 </service>
</provider_pipeline>

The pipeline contains only one message handler.

• The <provider_pipeline> element is the root element of the pipeline configuration file for a service
provider pipeline.

• The <service> element specifies the message handlers that are invoked for every request. In the
example, there is only one message handler.

• The <terminal_handler> element contains the definition of the terminal message handler of the
pipeline.

• The <handler> element specifies details of the handler.
• The <program> element specifies the program to be invoked. DFHPIJT is the CICS-supplied handler

for non-Java JSON processing.

Transport-related handlers
In the configuration file for each pipeline, you can specify more than one set of message handlers. At run
time, CICS selects the message handlers that are called, based upon the resources that are being used
for the message transport.

In a service provider, and in a service requester, you can specify that some message handlers should be
called only when a particular transport (HTTP or WebSphere MQ) is in use. For example, consider a web
service that you make available to your employees. Those who work at a company location access the
service using the WebSphere MQ transport on a secure internal network; however, employees working at

Chapter 2. Configuring web services in CICS 81

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_provider_pipeline_json.html

a business partner location access the service using the HTTP transport over the internet. In this
situation, you might want to use message handlers to encrypt parts of the message when the HTTP
transport is used, because of the sensitive nature of the information.

In a service provider, inbound messages are associated with a named resource (a TCPIPSERVICE for the
HTTP transport, a QUEUE for the MQ transport). You can specify that some message handlers should be
called only when a particular resource is used for an inbound request.

To make this possible, the message handlers are specified in two distinct parts of the pipeline
configuration file:
The service section

Specifies the message handlers that are called each time the pipeline executes.
The transport section

Specifies the message handlers that might or might not be called, depending upon the transport
resources that are in use.

Remember: At run time, a message handler can choose to curtail the execution of the pipeline. Therefore,
even if CICS decides that a particular message handler should be called based on what is in the pipeline
configuration file, the decision might be overruled by an earlier message handler.

The message handlers that are specified within the transport section (the transport-related handlers) are
organized into several lists. At run time, CICS selects the handlers in just one of these lists for execution,
based on which transport resources are in use. If more than one list matches the transport resources that
are being used, CICS uses the list that is most selective. The lists that are used in both service provider
and service requester pipelines are:
<default_transport_handler_list>

This is the least selective list of transport-related handlers; the handlers specified in this list are
called when none of the following lists matches the transport resources that are being used.

<default_http_transport_handler_list>
In a service requester pipeline, the handlers in this list are called when the HTTP transport is in use.

In a service provider pipeline, the handlers in this list are called when the HTTP transport is in use,
and no <named_transport_entry> names the TCPIPSERVICE for the TCP/IP connection.

<default_mq_transport_handler_list>
In a service requester pipeline, the handlers in this list are called when the WebSphere MQ transport
is in use.

In a service provider pipeline, the handlers in this list are called when the WebSphere MQ transport is
in use, and no <named_transport_entry> names the message queue on which inbound messages
are received.

The following list of message handlers is used only in the configuration file for a service provider pipeline:
<named_transport_entry>

As well as a list of handlers, the <named_transport_entry> specifies the name of a resource, and
the transport type.

• For the HTTP transport, the handlers in this list are called when the resource name matches the
name of the TCPIPSERVICE for the inbound TCP/IP connection.

• For the WebSphere MQ transport, the handlers in this list are called when the resource name
matches the name of the message queue that receives the inbound message.

Example
This is an example of a <transport> element from the pipeline configuration file for a service provider
pipeline:

<transport>

 <!-- HANDLER1 and HANDLER2 are the default transport handlers -->
 <default_transport_handler_list>
 <handler><program>HANDLER1</program><handler_parameter_list/></handler>

82 CICS TS for z/OS: Using Web Services with CICS

 <handler><program>HANDLER2</program><handler_parameter_list/></handler>
 </default_transport_handler_list>

 <!-- HANDLER3 overrides defaults for MQ transport -->
 <default_mq_transport_handler_list>
 <handler><program>HANDLER3</program><handler_parameter_list/></handler>
 </default_mq_transport_handler_list>

 <!-- HANDLER4 overrides defaults for http transport with TCPIPSERVICE(WS00) -->
 <named_transport_entry type="http">
 <name>WS00</name>
 <transport_handler_list>
 <handler><program>HANDLER4</program><handler_parameter_list/></handler>
 </transport_handler_list>
 </named_transport_entry>

</transport>

The effect of this definition is this:

• The <default_mq_transport_handler_list> ensures that messages that use the MQ transport
are processed by handler HANDLER3.

• The <named_transport_entry> ensures that messages that use the TCP/IP connection associated
with TCPIPSERVICE(WS00) are processed by handler HANDLER4.

• The <default_transport_handler_list> ensures that all remaining messages, that is, those that
use the HTTP transport, but not TCPISERVICE(WS00), are processed by handlers HANDLER1 and
HANDLER2.

Remember: Any handlers specified in the service section of the pipeline definition will be called in
addition to those specified in the transport section.

The pipeline definition for a service provider
The message handlers are defined in an XML document, which is stored in z/OS UNIX. The name of the
file that contains the document is specified in the CFGFILE attribute of a PIPELINE definition.

The root element of the pipeline configuration document is the <provider_pipeline> element. The
high-level structure of the document is shown in Figure 23 on page 84.

Chapter 2. Configuring web services in CICS 83

Figure 23. Structure of the pipeline definition for a service provider

The pipeline definition for a service requester
The message handlers are defined in an XML document, which is stored in z/OS UNIX. The name of the
file that contains the document is specified in the CFGFILE attribute of a PIPELINE definition.

The root element of the pipeline configuration document is the <requester_pipeline> element. The
high-level structure of the document is shown in Figure 24 on page 85.

84 CICS TS for z/OS: Using Web Services with CICS

Figure 24. Structure of the pipeline definition for a service requester

Elements used only in service providers
Some of the XML elements used in a pipeline configuration file apply only to service provider pipelines.

Application handlers
An application handler is a CICS program that the terminal handler of a SOAP service provider pipeline
links to at run time.

Application handlers are used in provider mode pipelines in which the terminal handler is one of the
supplied SOAP message handlers. This situation occurs when the <terminal_handler> element
contains a <cics_soap_1.1_handler>, <cics_soap_1.2_handler>,
<cics_soap_1.1_handler_java> or a <cics_soap_1.2_handler_java> element.

The application handler is responsible for processing the body of a SOAP request, and for generating a
response using the returned data. The application handler can call other programs to complete this
processing. Typically the application handler acts as a general-purpose presentation layer around one or

Chapter 2. Configuring web services in CICS 85

more business applications. It is responsible for mapping XML into a form that an application can use,
attaching that application, and then generating a response using the data returned.

An application handler can be attached by CICS in two ways. The typical mechanism involves a channel
and control containers; the other method involves Java bindings for Axis2.

Channel-attached application handlers are specified in the <apphandler> element of the
<provider_pipeline> element. At run time, the DFHWS-APPHANDLER container is populated by the
contents of <apphandler>. However, the DFHWS-APPHANDLER container can be dynamically updated
by any of the other message handlers. Therefore, the program that is linked to at run time can be different
to the program specified in the <apphandler> element. The following application handlers can be
specified in the <apphandler> element or the DFHWS-APPHANDLER container:

• The supplied channel-attached SOAP application handler, DFHPITP. For more information about
channel-attached application handlers, see “Channel-attached application handlers” on page 123

• Your own channel-attached application handler. This application handler can be written in languages
other than Java. For more information about the control containers that can be used in your channel-
attached application handler, see “Control containers” on page 136.

• Your own Java application handler for Java-based pipelines, which implements the ApplicationHandler
Java interface and that is attached to the pipeline using Axis2 MessageContext. For more information
about the ApplicationHandler Java interface, see Interface ApplicationHandler.

To use an application handler that uses Java bindings for Axis2, you must specify the
<apphandler_class> element of the <provider_pipeline> element. Axis2 application handlers
also require that a JVM server must exist for the web services pipeline and application handler to run on
and that the terminal handler of your web services pipeline must be either the
<cics_soap_1.1_handler_java> or the <cics_soap_1.2_handler_java> message handler. To
use the supplied Axis2 application handler, you must specify
com.ibm.cicsts.axis2.CICSAxis2ApplicationHandler in the <apphandler_class> element,
however you can specify your own Axis2 application handler class. At run time, the DFHWS-APPHANCLAS
container is populated by the contents of <apphandler_class>.

For web service applications that are deployed using the CICS web services assistant, you must specify
either DFHPITP or your own application handler that uses DFHPITP in the <apphandler> element, or
specify com.ibm.cicsts.axis2.CICSAxis2ApplicationHandler in the <apphandler_class>
element. For more information about the CICS web services assistant, see The CICS web services
assistant.

It is also possible to deploy Axis2 applications as provider mode web services in CICS using the Axis2
style of web service deployment. For more information, see Deploying a Java provider-mode web service
in an Axis2 JVM server.

The <apphandler_class> pipeline configuration element
Specifies that the terminal handler of the pipeline links to an Axis2 application handler.

The <apphandler_class> element is used to specify an Axis2 application handler when your
<terminal_handler> element contains a <cics_json_handler_java>,
<cics_soap_1.1_handler_java>, or <cics_soap_1.2_handler_java> element. To use the
supplied Axis2 application handler, specify
com.ibm.cicsts.axis2.CICSAxis2ApplicationHandler in the <apphandler_class> element.
When using the CICS SOAP handlers, you can also specify your own Axis2 application handler class.

Alternatively, you can specify the <apphandler> element in your pipeline configuration file if you want to
use a channel-attached application handler, for more information see the <apphandler> element.
However, you must not specify <apphandler_class> and <apphandler> elements in the same
pipeline configuration file.

Note: You must not use the <apphandler> element with the <cics_json_handler_java> element.

You must not use the <apphandler_class> element if your <terminal_handler> element contains
either a <cics_soap_1.1_handler> or <cics_soap_1.2_handler> element.

For more information about application handlers, see “Application handlers” on page 85.

86 CICS TS for z/OS: Using Web Services with CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/pipeline/ApplicationHandler.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/dfhws_utility.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/dfhws_utility.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/dfhws_deploy_axis2_web_service.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/dfhws_deploy_axis2_web_service.html

Used in:

• Service provider

Contained by:

• <provider_pipeline> element

Example

<apphandler_class>com.ibm.cicsts.axis2.CICSAxis2ApplicationHandler</apphandler_class>

The <named_transport_entry> pipeline configuration element
Contains a list of handlers that are to be invoked when a named transport resource is being used by a
service provider.

• For the WebSphere MQ transport, the named resource is the local input queue on which the request is
received.

• For the HTTP transport, the resource is the TCPIPSERVICE that defines the port on which the request
was received.

Used in:

• Service provider

Contained by:

<transport>

Attributes:

Name Description

type The transport mechanism with which the named resource is
associated:
wmq

The named resource is a queue
http

The named resource is a TCPIPSERVICE

Contains:

1. A <name> element, containing the name of the resource
2. An optional <transport_handler_list> element. Each <transport_handler_list> contains

one or more <handler> elements.

If you do not code a <transport_handler_list> element, then the only message handlers that are
invoked when the named transport is used are those that are specified in the <service> element.

Example

<named_transport_entry type="http">
 <name>PORT80</name>
 <transport_handler_list>
 <handler><program>HANDLER1</program><handler_parameter_list/></handler>
 <handler><program>HANDLER2</program><handler_parameter_list/></handler>
 </transport_handler_list>
</named_transport_entry>

Chapter 2. Configuring web services in CICS 87

In this example, the message handlers specified (HANDLER1 and HANDLER2) are invoked for messages
received on the TCPIPSERVICE with the name PORT80.

The <provider_pipeline> pipeline configuration element
Specifies the root element of the XML document that describes the configuration of the CICS pipeline for
a web service provider.

Used in:

• Service provider

Contains:

1. Optional <cics_mtom_handler> element
2. Optional <transport> element
3. <service> element
4. Optional <apphandler> element
5. Optional <apphandler_class> element
6. Optional <service_parameter_list> element, containing XML elements that are made available

to all the message handlers in the pipeline in container DFH-SERVICEPLIST.

Example

<provider_pipeline>
 <service>
 ...
 </service>
 <apphandler>DFHPITP</apphandler>
</provider_pipeline>

The <provider_pipeline_json> pipeline configuration element
Specifies the root element of the XML document that describes the configuration of the CICS pipeline for
a z/OS Connect JSON web service provider.

This differs from the <provider_pipeline> element in that handler programs cannot be defined. This
style of pipeline is used as a container for the WEBSERVICE resources that are used by z/OS Connect. An
attempt to start a <provider_pipeline_json> pipeline using anything other than z/OS Connect will
result in an error. The resultant PIPELINE resource can't be used as the target of a USAGE(PIPELINE)
URIMAP resource. It can only be used with USAGE(JVMSERVER) URIMAP resources.

Used in:

• Service provider

Attributes:
java_parser={yes|no}

Select the type of JSON parser that is used to process inbound messages.

Possible values are:
yes

Perform the JSON parsing by using Java within the JVM server. This is the default.
no

Perform non-Java parsing of the JSON message.

Note: The java_parser attribute is optional. If you do not supply it, the default behavior is to parse the
JSON message by using Java, within the JVM server. This would be the same as specifying
java_parser="yes".

88 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_cics_mtom_handler.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_transport.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_service.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_application_handler.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_application_handler_class.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_service_parameter_list.html

java_generator={yes|no}
Select the type of JSON generator that is used to generate outbound messages.

Possible values are:
yes

Perform the JSON generation by using Java within the JVM server.
no

Perform non-Java generation of the JSON message. This is the default.

Contains:

• A <jvmserver> element, containing the name of the JVMSERVER resource in which z/OS Connect is
configured.

Example that uses Java parsing

 <provider_pipeline_json java_parser="yes">
 <jvmserver>DFHWLP</jvmserver>
 </provider_pipeline_json>

Example that uses non-Java parsing

 <provider_pipeline_json java_parser="no">
 <jvmserver>DFHWLP</jvmserver>
 </provider_pipeline_json>

The <terminal_handler> pipeline configuration element
Contains the definition of the terminal message handler of the service provider pipeline.

Used in:

• Service provider

Contained by:

• <service> element

Contains:

One of the following elements:

<handler>
<cics_json_handler_java>
<cics_soap_1.1_handler>
<cics_soap_1.2_handler>
<cics_soap_1.1_handler_java>
<cics_soap_1.2_handler_java>

If you expect your pipeline to process both SOAP 1.1 and SOAP 1.2 messages, you must use either the
<cics_soap_1.2_handler> or <cics_soap_1.2_handler_java> element.

Remember: In a service provider, you can specify the <cics_soap_1.1_handler> and
<cics_soap_1.2_handler> in the <service_handler_list> element, as well as in the
<terminal_handler> element. However, in a service provider, you can only specify
<cics_soap_1.1_handler_java> and <cics_soap_1.2_handler_java> in the
<terminal_handler> element.

Chapter 2. Configuring web services in CICS 89

Example

 <terminal_handler>
 <cics_soap_1.1_handler>
 ...
 </cics_soap_1.1_handler>
 <service_handler_list>

Example: Enabling non-Java processing of JSON messages

To enable non-Java processing of JSON messages, specify the terminal handler program as DFHPIJT:

 <terminal_handler>
 <handler>
 <program>DFHPIJT</program><handler_parameter_list/>
 </handler>
 </terminal_handler>

Note: When you use DFHPIJT as the terminal handler, do not define an application handler in the pipeline
configuration file, that is, the pipeline configuration file should not contain an <apphandler> element. If
an application handler is specified, it is not invoked.

The <transport_handler_list> pipeline configuration element
Contains a list of message handlers that are invoked when a named resource is used.

• For the MQ transport, the named resource is the name of the local input queue.
• For the HTTP transport, the resource is the TCPIPSERVICE that defines the port on which the request

was received.

Used in:

• Service provider

Contained by:

• <named_transport_entry> element

Contains:

• One or more <handler> elements.

Example

<transport_handler_list>
 <handler>
 ...
 </handler>
 <handler>
 ...
 </handler>
<transport_handler_list>

Elements used in service requesters
Some of the XML elements used in a pipeline configuration file apply only to service requester pipelines.

The <requester_pipeline> configuration element
The root element of the XML document that describes the configuration of a pipeline in a service
requester.

Used in:

• Service requester

90 CICS TS for z/OS: Using Web Services with CICS

Contains:

1. Optional <service> element
2. Optional <transport> element
3. Optional <cics_mtom_handler> element
4. Optional <service_parameter_list> element, containing XML elements that are made available

to the message handlers in container DFH-SERVICEPLIST.

Example

<requester_pipeline>
 <service>
 <service_handler_list>
 <cics_soap_1.1_handler/>
 </service_handler_list>
 </service>
</requester_pipeline>

Elements used in service provider and service requester pipelines
Some of the XML elements used in a pipeline configuration file apply to both service provider and service
requester pipelines.

The <addressing> pipeline configuration element
Specifies the support for Web Services Addressing in Java-based SOAP processing.

Used in:

• Service provider
• Service requester

Contained by:

<cics_soap_1.1_handler_java> element
<cics_soap_1.2_handler_java> element

Contains:

A <namespace> element. In a service provider, this element is optional. The element contains one of
the two WS-Addressing schemas that are supported by CICS. For inbound messages, Axis2 supports
both specifications. For outbound messages, the namespace specified in this element is used. If you
do not specify this element or you have two elements, CICS uses the same specification on the
outbound message as the inbound message. In a service requester, this element is required and you
can specify only one namespace for the outbound message.

This example shows the configuration for a service provider pipeline, where both WS-Addressing
specifications are supported. CICS uses the same specification on the outbound message as the inbound
message. You can get the same results by specifying an empty <addressing> element.

<addressing>
 <namespace>http://www.w3.org/2005/08/addressing</namespace>
 <namespace>http://schemas.xmlsoap.org/ws/2004/08/addressing</namespace>
</addressing>

The <cics_json_handler_java> pipeline configuration element
Specifies the attributes of the handler program for JSON messages in Java-based JSON pipelines.

Used in:

• Service provider

Chapter 2. Configuring web services in CICS 91

Contained by:

The <service_handler_list> element
The <terminal_handler> element

Contains:

1. A <jvmserver> element.
2. An optional <repository> element.

Example

The following example shows the XML for the Java-based JSON handler and its nested elements:

<?xml version="1.0" encoding="EBCDIC-CP-US"?>
<provider_pipeline xmlns="http://www.ibm.com/software/htp/cics/pipeline">
 <service>
 <terminal_handler>
 <cics_json_handler_java>
 <jvmserver>DFHAXIS</jvmserver>
 <repository>/usr/lpp/cicsts/cicsts56/lib/pipeline/repository</repository>
 </cics_json_handler_java>
 </terminal_handler>
 </service>
 <apphandler_class>com.ibm.cicsts.axis2.CICSAxis2ApplicationHandler</apphandler_class>
</provider_pipeline>

The <cics_soap_1.1_handler> pipeline configuration element
Specifies the attributes of the handler program for SOAP 1.1 messages in non-Java pipelines

Used in:

• Service requester
• Service provider

Contained by:

<service_handler_list> element
<terminal_handler> element

Contains:
Zero, one, or more <headerprogram> elements. Each <headerprogram> contains:

1. A <program_name> element, containing the name of a header processing program
2. A <namespace> element, which is used with the following <localname> element to determine which

header blocks in a SOAP message should be processed by the header processing program. The
<namespace> element contains the URI (Uniform Resource Identifier) of the header block's
namespace.

3. A <localname> element, which is used with the preceding <namespace> element to determine
which header blocks in a SOAP message should be processed by the header processing program. The
<localname> contains the element name of the header block.

For example, consider this header block:

<t:myheaderblock xmlns:t="http://mynamespace" ...> </t:myheaderblock>

• The namespace name is http://mynamespace
• The element name is myheaderblock

92 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_service_handler_list.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_terminal_handler.html

To make a header program match this header block, code the <namespace> and <localname>
elements like this:

<namespace>http://mynamespace</namespace>
<localname>myheaderblock</localname>

You can code an asterisk (*) in the <localname> element to indicate that all header blocks in the
namespace whose names begin with a given character string should be processed. For example:

<namespace>http://mynamespace</namespace>
<localname>myhead*</localname>

When you use the asterisk in the <localname> element, a header in a message can match more than
one <headerprogram> element. For example, this header block

<t:myheaderblock xmlns:t="http://mynamespace" ...> </myheaderblock>

matches all the following <headerprogram> elements:

<headerprogram>
 <program_name>HDRPROG1</program_name>
 <namespace>http://mynamespace</namespace>
 <localname>*</localname>
 <mandatory>false</mandatory>
</headerprogram>
<headerprogram>
 <program_name>HDRPROG2</program_name>
 <namespace>http://mynamespace</namespace>
 <localname>myhead*</localname>
 <mandatory>false</mandatory>
</headerprogram>
<headerprogram>
 <program_name>HDRPROG3</program_name>
 <namespace>http://mynamespace</namespace>
 <localname>myheaderblock</localname>
 <mandatory>false</mandatory>
</headerprogram>

When this is the case, the header program that runs is the one specified in the <headerprogram>
element in which the element name of the header block is most precisely stated. In the example, that
is HDRPROG3.

When the SOAP message contains more than one header, the header processing program is invoked
once for each matching header, but the sequence in which the headers are processed is undefined.

If you code two or more <headerprogram> elements that contain the same <namespace> and
<localname>, but that specify different header programs, only one of the header programs will run,
but which of the programs will run is not defined.

4. A <mandatory> element, containing an XML boolean value (true or false). Alternatively, you can
code the values as 1 or 0 respectively.
true

During service request processing in a service provider pipeline, and service response processing
in a service requester pipeline, the header processing program is to be invoked at least once, even
if none of the headers in the SOAP messages matches the <namespace> and <localname>
elements:

• If none of the headers matches, the header processing program is invoked once.
• If any of the headers match, the header processing program is invoked once for each matching

header.

During service request processing in a service requester pipeline, and service response processing
in a service provider pipeline, the header processing program is to be invoked at least once, even
though the SOAP message that CICS creates has no headers initially. If you want to add headers to
your message, you must ensure that at least one header processing program is invoked, by
specifying <mandatory>true</mandatory> or <mandatory>1</mandatory>.

Chapter 2. Configuring web services in CICS 93

false
The header processing program is to be invoked only if one or more of the headers in the SOAP
messages matches the <namespace> and <localname> elements:

• If none of the headers matches, the header processing program is not invoked.
• If any of the headers match, the header processing program is invoked once for each matching

header.

Example

<cics_soap_1.1_handler>
 <headerprogram>
 <program_name> ... </program_name>
 <namespace>...</namespace>
 <localname>...</localname>
 <mandatory>true</mandatory>
 </headerprogram>
</cics_soap_1.1_handler>

The <cics_soap_1.1_handler_java> pipeline configuration element
Specifies the attributes of the handler program for SOAP 1.1 messages in Java-based SOAP pipelines.

Used in:

• Service requester
• Service provider

Contained by:

<service_handler_list> element
<terminal_handler> element

Contains:

1. A <jvmserver> element.
2. An optional <repository> element.
3. An optional <addressing> element. If you enable Web Services Addressing in Axis2, do not use the

DFHWSADH header processing program.
4. Zero, one, or more <headerprogram> elements. Each <headerprogram> element contains:

a. A <program_name> element, containing the name of a header processing program. You can write
Axis2 handlers in Java to process the SOAP headers.

b. A <namespace> element, which is used with the following <localname> element to determine
which header blocks in a SOAP message should be processed by the header processing program.
The <namespace> element contains the URI (Uniform Resource Identifier) of the header block's
namespace.

c. A <localname> element, which is used with the preceding <namespace> element to determine
which header blocks in a SOAP message should be processed by the header processing program.
The <localname> contains the element name of the header block.

For example, consider this header block:

<t:myheaderblock xmlns:t="http://mynamespace" ...> </t:myheaderblock>

The namespace name is http://mynamespace and the element name is myheaderblock.

94 CICS TS for z/OS: Using Web Services with CICS

To make a header program match this header block, code the <namespace> and <localname>
elements like this:

<namespace>http://mynamespace</namespace>
<localname>myheaderblock</localname>

You can code an asterisk (*) in the <localname> element to indicate that all header blocks in the
namespace whose names begin with a given character string should be processed. For example:

<namespace>http://mynamespace</namespace>
<localname>myhead*</localname>

When you use the asterisk in the <localname> element, a header in a message can match more
than one <headerprogram> element. For example, this header block:

<t:myheaderblock xmlns:t="http://mynamespace" ...>.... </myheaderblock>

matches all the following <headerprogram> elements:

<headerprogram>
 <program_name>HDRPROG1</program_name>
 <namespace>http://mynamespace</namespace>
 <localname>*</localname>
 <mandatory>false</mandatory>
</headerprogram>
<headerprogram>
 <program_name>HDRPROG2</program_name>
 <namespace>http://mynamespace</namespace>
 <localname>myhead*</localname>
 <mandatory>false</mandatory>
</headerprogram>
<headerprogram>
 <program_name>HDRPROG3</program_name>
 <namespace>http://mynamespace</namespace>
 <localname>myheaderblock</localname>
 <mandatory>false</mandatory>
</headerprogram>

When this is the case, the header program that runs is the one specified in the <headerprogram>
element in which the element name of the header block is most precisely stated. In the example,
that is HDRPROG3.

When the SOAP message contains more than one header, the header processing program is
invoked once for each matching header, but the sequence in which the headers are processed is
undefined.

If you code two or more <headerprogram> elements that contain the same <namespace> and
<localname> elements, but that specify different header programs, only one of the header
programs will run, but which of the programs will run is not defined.

d. A <mandatory> element, containing an XML boolean value (true or false). Alternatively, you can
code the values as 1 or 0 respectively.
true

During service request processing in a service provider pipeline, and service response
processing in a service requester pipeline, the header processing program is to be invoked at
least once, even if none of the headers in the SOAP messages matches the <namespace> and
<localname> elements:

• If none of the headers matches, the header processing program is invoked once.
• If any of the headers match, the header processing program is invoked once for each

matching header.

During service request processing in a service requester pipeline, and service response
processing in a service provider pipeline, the header processing program is to be invoked at
least once, even though the SOAP message that CICS creates has no headers initially. If you
want to add headers to your message, you must ensure that at least one header processing

Chapter 2. Configuring web services in CICS 95

program is invoked, by specifying <mandatory>true</mandatory> or <mandatory>1</
mandatory>.

false
The header processing program is to be invoked only if one or more of the headers in the SOAP
messages matches the <namespace> and <localname> elements:

• If none of the headers matches, the header processing program is not invoked.
• If any of the headers match, the header processing program is invoked once for each

matching header.

Example

The following example shows the XML for the Java-based SOAP handler and its nested elements:

<cics_soap_1.1_handler_java>
 <jvmserver>JVMSERV1</jvmserver>
 <headerprogram>
 <program_name>HDRPROG4</program_name>
 <namespace>http://mynamespace</namespace>
 <localname>myheaderblock</localname>
 <mandatory>true</mandatory>
 </headerprogram>
</cics_soap_1.1_handler_java>

The <cics_soap_1.2_handler> pipeline configuration element
Specifies the attributes of the handler program for SOAP 1.2 messages in non-Java pipelines.

Used in:

• Service requester
• Service provider

Contained by:

<service_handler_list> element
<terminal_handler> element

Contains:
Zero, one, or more <headerprogram> elements. Each <headerprogram> contains:

1. A <program_name> element, containing the name of a header processing program
2. A <namespace> element, which is used with the following <localname> element to determine which

header blocks in a SOAP message should be processed by the header processing program. The
<namespace> element contains the URI (Uniform Resource Identifier) of the header block's
namespace.

3. A <localname> element, which is used with the preceding <namespace> element to determine
which header blocks in a SOAP message should be processed by the header processing program. The
<localname> contains the element name of the header block.

For example, consider this header block:

<t:myheaderblock xmlns:t="http://mynamespace" ...> </t:myheaderblock>

• The namespace name is http://mynamespace
• The element name is myheaderblock

To make a header program match this header block, code the <namespace> and <localname>
elements like this:

<namespace>http://mynamespace</namespace>
<localname>myheaderblock</localname>

96 CICS TS for z/OS: Using Web Services with CICS

You can code an asterisk (*) in the <localname> element to indicate that all header blocks in the
namespace whose names begin with a given character string should be processed. For example:

<namespace>http://mynamespace</namespace>
<localname>myhead*</localname>

When you use the asterisk in the <localname> element, a header in a message can match more than
one <headerprogram> element. For example, this header block

<t:myheaderblock xmlns:t="http://mynamespace" ...> </myheaderblock>

matches all the following <headerprogram> elements:

<headerprogram>
 <program_name>HDRPROG1</program_name>
 <namespace>http://mynamespace</namespace>
 <localname>*</localname>
 <mandatory>false</mandatory>
</headerprogram>
<headerprogram>
 <program_name>HDRPROG2</program_name>
 <namespace>http://mynamespace</namespace>
 <localname>myhead*</localname>
 <mandatory>false</mandatory>
</headerprogram>
<headerprogram>
 <program_name>HDRPROG3</program_name>
 <namespace>http://mynamespace</namespace>
 <localname>myheaderblock</localname>
 <mandatory>false</mandatory>
</headerprogram>

When this is the case, the header program that runs is the one specified in the <headerprogram>
element in which the element name of the header block is most precisely stated. In the example, that
is HDRPROG3.

When the SOAP message contains more than one header, the header processing program is invoked
once for each matching header, but the sequence in which the headers are processed is undefined.

If you code two or more <headerprogram> elements that contain the same <namespace> and
<localname>, but that specify different header programs, only one of the header programs will run,
but which of the programs will run is not defined.

4. A <mandatory> element, containing an XML boolean value (true or false). Alternatively, you can
code the values as 1 or 0 respectively.
true

During service request processing in a service provider pipeline, and service response processing
in a service requester pipeline, the header processing program is to be invoked at least once, even
if none of the headers in the SOAP messages matches the <namespace> and <localname>
elements:

• If none of the headers matches, the header processing program is invoked once.
• If any of the headers match, the header processing program is invoked once for each matching

header.

During service request processing in a service requester pipeline, and service response processing
in a service provider pipeline, the header processing program is to be invoked at least once, even
though the SOAP message that CICS creates has no headers initially. If you want to add headers to
your message, you must ensure that at least one header processing program is invoked, by
specifying <mandatory>true</mandatory> or <mandatory>1</mandatory>.

false
The header processing program is to be invoked only if one or more of the headers in the SOAP
messages matches the <namespace> and <localname> elements:

• If none of the headers matches, the header processing program is not invoked.

Chapter 2. Configuring web services in CICS 97

• If any of the headers match, the header processing program is invoked once for each matching
header.

Example

<cics_soap_1.2_handler>
 <headerprogram>
 <program_name> ... </program_name>
 <namespace>...</namespace>
 <localname>...</localname>
 <mandatory>true</mandatory>
 </headerprogram>
</cics_soap_1.2_handler>

The <cics_soap_1.2_handler_java> pipeline configuration element
Specifies the attributes of the handler program for SOAP 1.2 messages in Java-based SOAP pipelines.

Used in:

• Service requester
• Service provider

Contained by:

<service_handler_list> element
<terminal_handler> element

Contains:

1. A <jvmserver> element.
2. An optional <repository> element.
3. An optional <addressing> element. If you enable support for Web Services Addressing in Axis2, do

not use header processing programs. You can write Axis2 handlers in Java to process the SOAP
headers.

4. Zero, one, or more <headerprogram> elements. Each <headerprogram> element contains:

a. A <program_name> element, containing the name of a header processing program
b. A <namespace> element, which is used with the following <localname> element to determine

which header blocks in a SOAP message should be processed by the header processing program.
The <namespace> element contains the URI (Uniform Resource Identifier) of the header block's
namespace.

c. A <localname> element, which is used with the preceding <namespace> element to determine
which header blocks in a SOAP message should be processed by the header processing program.
The <localname> contains the element name of the header block.

For example, consider this header block:

<t:myheaderblock xmlns:t="http://mynamespace" ...> </t:myheaderblock>

The namespace name is http://mynamespace and the element name is myheaderblock

To make a header program match this header block, code the <namespace> and <localname>
elements like this:

<namespace>http://mynamespace</namespace>
<localname>myheaderblock</localname>

98 CICS TS for z/OS: Using Web Services with CICS

You can code an asterisk (*) in the <localname> element to indicate that all header blocks in the
namespace whose names begin with a given character string should be processed. For example:

<namespace>http://mynamespace</namespace>
<localname>myhead*</localname>

When you use the asterisk in the <localname> element, a header in a message can match more
than one <headerprogram> element. For example, this header block:

<t:myheaderblock xmlns:t="http://mynamespace" ...> </myheaderblock>

matches all the following <headerprogram> elements:

<headerprogram>
 <program_name>HDRPROG1</program_name>
 <namespace>http://mynamespace</namespace>
 <localname>*</localname>
 <mandatory>false</mandatory>
</headerprogram>
<headerprogram>
 <program_name>HDRPROG2</program_name>
 <namespace>http://mynamespace</namespace>
 <localname>myhead*</localname>
 <mandatory>false</mandatory>
</headerprogram>
<headerprogram>
 <program_name>HDRPROG3</program_name>
 <namespace>http://mynamespace</namespace>
 <localname>myheaderblock</localname>
 <mandatory>false</mandatory>
</headerprogram>

When this is the case, the header program that runs is the one specified in the <headerprogram>
element in which the element name of the header block is most precisely stated. In the example,
that is HDRPROG3.

When the SOAP message contains more than one header, the header processing program is
invoked once for each matching header, but the sequence in which the headers are processed is
undefined.

If you code two or more <headerprogram> elements that contain the same <namespace> and
<localname> elements, but that specify different header programs, only one of the header
programs will run, but which of the programs will run is not defined.

d. A <mandatory> element, containing an XML boolean value (true or false). Alternatively, you can
code the values as 1 or 0 respectively.
true

During service request processing in a service provider pipeline, and service response
processing in a service requester pipeline, the header processing program is to be invoked at
least once, even if none of the headers in the SOAP messages matches the <namespace> and
<localname> elements:

• If none of the headers matches, the header processing program is invoked once.
• If any of the headers match, the header processing program is invoked once for each

matching header.

During service request processing in a service requester pipeline, and service response
processing in a service provider pipeline, the header processing program is to be invoked at
least once, even though the SOAP message that CICS creates has no headers initially. If you
want to add headers to your message, you must ensure that at least one header processing
program is invoked, by specifying <mandatory>true</mandatory> or <mandatory>1</
mandatory>.

false
The header processing program is to be invoked only if one or more of the headers in the SOAP
messages matches the <namespace> and <localname> elements:

Chapter 2. Configuring web services in CICS 99

• If none of the headers matches, the header processing program is not invoked.
• If any of the headers match, the header processing program is invoked once for each

matching header.

Example

The following example shows the XML for the Java-based SOAP handler and its nested elements:

<cics_soap_1.2_handler_java>
 <jvmserver>JVMSERV1</jvmserver>
 <headerprogram>
 <program_name>HDRPROG4</program_name>
 <namespace>http://mynamespace</namespace>
 <localname>myheaderblock</localname>
 <mandatory>true</mandatory>
 </headerprogram>
</cics_soap_1.2_handler_java>

The <default_http_transport_handler_list> pipeline configuration element
Specifies the message handlers that are invoked by default when the HTTP transport is in use.

In a service provider, message handlers specified in this list are invoked only if the list of handlers defined
in a <named_transport_entry> element is less specific.

Used in:

• Service provider
• Service requester

Contained by:

• <transport> element

Contains:

• One or more <handler> elements.

Example

<default_http_transport_handler_list>
 <handler>
 ...
 </handler>
 <handler>
 ...
 </handler>
</default_http_transport_handler_list>

The <default_mq_transport_handler_list> pipeline configuration element
Specifies the message handlers that are invoked by default when the WebSphere MQ transport is in use.

In a service provider, message handlers specified in this list are invoked only if the list of handlers defined
in a <named_transport_entry> element is less specific.

Used in:

• Service provider
• Service requester

Contained by:

• <transport> element

100 CICS TS for z/OS: Using Web Services with CICS

Contains:

• One or more <handler> elements.

Example

<default_mq_transport_handler_list>
 <handler>
 ...
 </handler>
 <handler>
 ...
 </handler>
</default_mq_transport_handler_list>

The <default_transport_handler_list>pipeline configuration element
Specifies the message handlers that are invoked by default when any transport is in use.

In a service provider, message handlers specified in this list are invoked when the list of handlers defined
in any of the following elements is less specific:

<default_http_transport_handler_list>
<default_mq_transport_handler_list>
<named_transport_entry>

Used in:

• Service provider
• Service requester

Contained by:

• <transport> element

Contains:

• One or more <handler> elements.

Example

<default_transport_handler_list>
 <handler>
 <program>HANDLER1</program>
 <handler_parameter_list/>
 </handler>
 <handler>
 <program>HANDLER2</program>
 <handler_parameter_list/>
 </handler>
</default_transport_handler_list>

The <handler> pipeline configuration element
Specifies the attributes of a message handler program.

Some CICS-supplied handler programs do not use the <handler> element. For example, the CICS-
supplied SOAP message handler programs are defined using the <cics_soap_1.1_handler>,
<cics_soap_1.2_handler>, <cics_soap_1.1_handler_java>, and
<cics_soap_1.2_handler_java> elements.

Used in:

• Service provider
• Service requester

Chapter 2. Configuring web services in CICS 101

Contained by:

<default_transport_handler_list>
<transport_handler_list>
<service_handler_list>
<terminal_handler>
<default_http_transport_handler_list>
<default_mq_transport_handler_list>

Contains:

1. <program> element, containing the name of the handler program
2. <handler_parameter_list> element, containing XML elements that are made available to the

message handlers in container DFH-HANDLERPLIST.

Example

<?xml version="1.0"?>
<provider_pipeline>
 xmlns="http://www.ibm.com/software/htp/cics/pipeline">
 <service>
 <service_handler_list>
 <handler>
 <program>MYPROG</program>
 <handler_parameter_list><output print="yes"/></handler_parameter_list>
 </handler>
 </service_handler_list>
 <terminal_handler>
 <cics_soap_1.1_handler>
 ...
 </cics_soap_1.1_handler>
 </terminal_handler>
 </service>
 <apphandler>DFHPITP</apphandler>
</provider_pipeline>

In this example, the handler program is MYPROG. The handler parameter list consists of a single
<output> element; the contents of the parameter list are known to MYPROG.

The <jvmserver> pipeline configuration element
Specifies the name of the JVMSERVER resource.

This element identifies the name of the JVMSERVER resource, which will process the request. If a value is
not supplied, an error message is generated and the PIPELINE is installed in the DISABLED state.

Used in:

• Service provider
• Service requester

Contained by:

• The <cics_json_handler_java> element
• The <cics_soap_1.1_handler_java> element
• The <cics_soap_1.2_handler_java> element
• The <provider_pipeline_json> element

Example

<jvmserver>JVMSERVER_NAME</jvmserver>

102 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_cics_json_handler_java.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_cics_soap_11_handler_java.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_cics_soap_12_handler_java.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_provider_pipeline_json.html

The <repository> pipeline configuration element
Specifies the directory name of the Axis2 repository.

This optional element identifies the directory name of the Axis2 repository. If you use this option, you
must specify The <jvmserver> element beforehand in the handler XML. If the element is not supplied
then, the sample repository will be used. When you install CICS Transaction Server the sample Axis2
repository is installed in the /usr/lpp/cicsts/cicsts56/lib/pipeline/repository directory,
where /usr/lpp/cicsts/cicsts56 is the default installation directory for CICS files on z/OS UNIX.

Used in:

• Service provider
• Service requester

Contained by:

• The <cics_json_handler_java> element
• The <cics_soap_1.1_handler_java> element
• The <cics_soap_1.2_handler_java> element

Example

<cics_soap_1.1_handler_java>
 <jvmserver>JVMSERV1</jvmserver>
 <repository>/lib/pipeline/repository</repository>
</cics_soap_1.1_handler_java>

The <service> pipeline configuration element
Specifies the message handlers that are invoked for every request.

Used in:

• Service provider
• Service requester

Contained by:

<provider_pipeline>
<requester_pipeline>

Contains:

1. <service_handler_list> element
2. In a service provider only, a <terminal_handler> element

Example

<service>
 <service_handler_list>
 ...
 </service_handler_list>
 <terminal_handler>
 ...
 </terminal_handler>
</service>

Chapter 2. Configuring web services in CICS 103

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_jvmserver.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_cics_json_handler_java.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_cics_soap_11_handler_java.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_cics_soap_12_handler_java.html

The <service_handler_list> pipeline configuration element
Specifies a list of message handlers that are invoked for every request.

Used in:

• Service provider
• Service requester

Contained by:

• <service> element

Contains:
One or more of the following elements:

<cics_soap_1.1_handler>
<cics_soap_1.2_handler>
<cics_soap_1.1_handler_java>
<cics_soap_1.2_handler_java>
<handler>
<wsse_handler>

You determine the order that each handler is called at run time by the order that you specify the handler
elements in the <service_handler_list> element. For example, if your pipeline supports WS-
Security, encrypted SOAP messages remain encrypted until the <wsse_handler> element is called.
Therefore, you must specify the <wsse_handler> element before any other handler program that
processes unencrypted messages.

The <service_handler_list> element for a service provider cannot contain the
<cics_soap_1.1_handler_java> and <cics_soap_1.2_handler_java> elements, because these
elements must be specified in the <terminal_handler> element for Java-based pipelines. A service
requestor can contain the <cics_soap_1.1_handler_java> and
<cics_soap_1.2_handler_java>, however if these elements are used, they must be the first element
listed in the <service_handler_list> element.

If you expect your pipeline to process both SOAP 1.1 and SOAP 1.2 messages, you must use either the
<cics_soap_1.2_handler> or <cics_soap_1.2_handler_java> element.

You can use either a SOAP 1.1 or a SOAP 1.2 handler in a service requester pipeline, but in this case the
SOAP 1.2 handler does not support SOAP 1.1 messages. Do not specify the SOAP 1.1 or SOAP 1.2 handler
in the pipeline if your service requester applications are sending complete SOAP envelopes in the
DFHREQUEST container. This avoids duplicating the SOAP message headers in outbound messages.

In a service provider, you can specify the generic handler and SOAP handlers in the
<terminal_handler> element as well as in the <service_handler_list> element. For more
information about processing SOAP header, see “Header processing programs” on page 131.

Example

<service_handler_list>
 <wsse_handler>
 ...
 </wsse_handler>
 <cics_soap_1.1_handler_java>
 ...
 </cics_soap_1.1_handler_java>
 <handler>
 ...
 </handler>
</service_handler_list>

104 CICS TS for z/OS: Using Web Services with CICS

The <service_parameter_list> pipeline configuration element
Specifies the XML elements that are made available to all the message handlers in the pipeline in
container DFH-SERVICEPLIST. This is an optional element.

Used in:

• Service requester
• Service provider

Contains:

• If you are using WS-AT: a <registration_service_endpoint> element
• In a service requester if you are using WS-AT: an optional <new_tx_context_required/> element
• Optional user defined tags

Example

<requester_pipeline>
 <service_parameter_list>
 <registration_service_endpoint>
 http://provider.example.com:7160/cicswsat/RegistrationService
 </registration_service_endpoint>
 <new_tx_context_required/>
 <user_defined_tag1>
 ...
 </user_defined_tag1>
 </service_parameter_list>
</requester_pipeline>

The <transport> pipeline configuration element
Specifies handlers that are to be invoked only when a particular transport is in use.

Used in:

• Service provider
• Service requester

Contained by:

<provider_pipeline>
<requester_pipeline>

Contains:

In a service provider:

1. An optional <default_transport_handler_list> element
2. An optional <default_http_transport_handler_list> element
3. An optional <default_mq_transport_handler_list> element
4. Zero, one, or more <named_transport_entry> elements

In a service requester:

1. An optional <default_target> element. The <default_target> contains a URI that CICS uses to
locate the target web service when the service requester application does not provide a URI. In many
cases, however, the URI of the target will be provided by the service requester application, and
whatever you specify in the <default_target> will be ignored. For example, service provider
applications that are deployed using the CICS web services assistant normally get the URI from the
web service description.

2. An optional <default_http_transport_handler_list> element

Chapter 2. Configuring web services in CICS 105

3. An optional <default_mq_transport_handler_list> element
4. An optional <default_transport_handler_list> element

Example

<transport>
 <default_transport_handler_list>
 ...
 </default_transport_handler_list>
</transport>

Pipeline configuration for MTOM/XOP
CICS SOAP pipelines can support the Message Transmission Optimization Mechanism (MTOM) and XML-
binary Optimized Packaging (XOP) specifications. These specifications define a mechanism for sending
and receiving binary data using SOAP, without incurring the overhead of base64 encoding. To enable
MTOM support, you must configure your pipelines accordingly.

The <mtom> pipeline configuration element
Enables MTOM/XOP support for Java-based pipelines. If this element is defined in the pipeline
configuration file, MTOM support is enabled for all inbound and outbound messages. However, if this
element is not specified in the pipeline configuration file, then MTOM support is enabled for only inbound
messages.

Used in:

• Service provider
• Service requester

Contained by:

<cics_soap_1.1_handler_java>
<cics_soap_1.2_handler_java>

For both provider and requester pipeline configuration files, the <mtom> element should be defined after
the optional <addressing> element and before the optional <headerprogram> element.

Example
For a provider or requester mode pipeline, you could specify:

<cics_soap_1.2_handler_java>
 <jvmserver>JVMSERV1</jvmserver>
 <addressing></addressing>
 <mtom></mtom>
 <headerprogram>
 <program_name>HDRPROG4</program_name>
 <namespace>http://mynamespace</namespace>
 <localname>myheaderblock</localname>
 <mandatory>true</mandatory>
 </headerprogram>
</cics_soap_1.2_handler_java>

The <cics_mtom_handler> pipeline configuration element
Enables the supplied MTOM handler program for SOAP pipelines. This program provides support for
MTOM MIME multipart/related messages that contain XOP documents and binary attachments. MTOM
support is enabled for all inbound messages that are received in the pipeline, but MTOM support for
outbound messages is conditionally enabled subject to further options.

Used in:

• Service provider
• Service requester

106 CICS TS for z/OS: Using Web Services with CICS

Contained by:

<provider_pipeline>
<requester_pipeline>

In a provider pipeline configuration file, the <cics_mtom_handler> element should be defined before
the <transport> element. At run time, the MTOM handler program needs to unpackage the inbound
MTOM message before other handlers including the transport handler process it. It is then invoked as the
last handler for the response message, to package an MTOM message to send to the web service
requester.

In a requester pipeline configuration file the <cics_mtom_handler> element should be defined after
the <transport> element. At run time, the outbound request message is not converted into MTOM
format until all other handlers have processed it. It is then invoked as the first handler for the inbound
response message to unpackage the MTOM message before other handlers process it and return to the
requesting program.

Note: You must not use this handler program with Java-based pipelines. For Java-based pipelines,
specify the <mtom> element.

Contains:

<dfhmtom_configuration> element

Default options can be changed using configuration options specified in the
<dfhmtom_configuration> element. If you do not want to change the default options, you can use an
empty element.

Example
For a provider mode pipeline, you could specify:

<provider_pipeline>
 <cics_mtom_handler></cics_mtom_handler>
 <transport>

 </transport>
 <service>

 </service>
</provider_pipeline>

The <dfhmtom_configuration> pipeline configuration element
Specifies configuration information for the supplied MTOM handler program for pipelines that do not
support Java. This program provides support for MIME messages that contain XOP documents and binary
attachments. If you do not specify any configuration for MTOM, CICS assumes default values.

Used in:

• Service provider
• Service requester

Contained by:

<cics_mtom_handler>

Attributes:

Name Description

version An integer denoting the version of the configuration information. The
only valid value is 1.

Chapter 2. Configuring web services in CICS 107

Contains:

• An optional <mtom_options> element
• An optional <xop_options> element
• An optional <mime_options> element

Example

<dfhmtom_configuration version="1">
 <mtom_options send_mtom="same" send_when_no_xop="no"/>
 <xop_options apphandler_supports_xop="yes"/>
 <mime_options content_id_domain="example.org"/>
</dfhmtom_configuration>

The <mtom_options> pipeline configuration element
Specifies when to use MTOM for outbound SOAP messages for pipelines that do not support Java.

Used in:

• Service provider
• Service requester

Contained by:

<dfhmtom_configuration>

Attributes:

Attribute Description

send_mtom Specifies if MTOM should be used to convert the outbound SOAP
message into a MIME message:
no

MTOM is not used for outbound SOAP messages.
same

In service provider mode, MTOM is used for SOAP response
messages whenever the requester uses MTOM. This is the
default value in a service provider pipeline.

In service requester mode, specifying this value is the same as
when you specify send_mtom="yes".

yes
MTOM is used for all outbound SOAP messages. This is the
default value in a service requester pipeline.

send_when_no_xop Specifies if an MTOM message should be sent, even when there are
no binary attachments present in the message.
no

MTOM is only used when binary attachments are being sent with
the message.

yes
MTOM is used for all outbound SOAP messages, even when there
are no binary attachments to send in the message. This is the
default value, and is primarily used as an indicator to the
receiving program that the sender supports MTOM/XOP.

This attribute can be combined with any of the send_mtom attribute
values, but has no effect if you specify send_mtom="no".

108 CICS TS for z/OS: Using Web Services with CICS

Example

<provider_pipeline>
 <cics_mtom_handler>
 <dfhmtom_configuration version="1">
 <mtom_options send_mtom="same" send_when_no_xop="no"/>
 </dfhmtom_configuration>
 </cics_mtom_handler>
...
</provider_pipeline>

In this provider pipeline example, SOAP messages are converted into MTOM messages only when binary
attachments need to be sent with the message, and the service requester sent an MTOM message.

The <xop_options> pipeline configuration element
Specifies whether XOP processing can take place in direct or compatibility mode for pipelines that do not
support Java.

Used in:

• Service provider
• Service requester

Contained by:

<dfhmtom_configuration>

Chapter 2. Configuring web services in CICS 109

Attributes:

Attribute Description

apphandler_supports_xop In provider mode, specifies if the application handler is capable of
handling XOP documents in direct mode:
no

The application handler cannot handle XOP documents directly.
This is the default value if the <apphandler> element does not
specify DFHPITP.

Compatibility mode is used in the pipeline to handle any inbound
or outbound messages that are received or sent in MTOM format.

yes
The application handler can handle XOP documents. This is the
default value if the <apphandler> element specifies DFHPITP.

Direct mode is used in the pipeline to handle any inbound or
outbound messages that are received or sent in MTOM format.
This is subject to restrictions at run time. For example, if you
have specified WS-Security related elements in the pipeline
configuration file, the MTOM handler determines that the
pipeline should use compatibility mode rather than direct mode
for processing XOP documents.

In requester mode, specifies if service requester applications use
the CICS web services support to create and handle XOP documents
in direct mode.
no

Service requester applications do not use the CICS web services
support. Specify this value if your requester application links to
DFHPIRT to drive the pipeline, and is therefore not capable of
creating and handling XOP documents in direct mode.

yes
Service requester applications do use the CICS web services
support. Specify this value if your requester application uses the
EXEC CICS INVOKE WEBSERVICE command.

Example

<provider_pipeline>
 <cics_mtom_handler>
 <dfhmtom_configuration version="1">
 <xop_options apphandler_supports_xop="no"/>
 </dfhmtom_configuration>
 </cics_mtom_handler>
 ...
</provider_pipeline>

In this provider pipeline example, inbound MTOM messages and outbound response messages are
processed in the pipeline using compatibility mode.

The <mime_options> pipeline configuration element
Specifies the domain name that should be used when generating MIME content-ID values for pipelines
that do not support Java. The MIME content-ID values are used to identify binary attachments.

Used in:

• Service provider
• Service requester

110 CICS TS for z/OS: Using Web Services with CICS

Contained by:

<dfhmtom_configuration>

Attributes:

Attribute Description

content_id_domain The syntax to use is domain.name.

To conform to Internet standards, the name should be a valid
internet host name and should be unique to the CICS system where
the pipeline is installed. Note that this is not checked by CICS.

If this element is omitted, CICS uses the value cicsts.

Example

<provider_pipeline>
<dfhmtom_configuration version="1">
 <mime_options content_id_domain="example.org"/>
</dfhmtom_configuration>
...
</provider_pipeline>

In this example, references to binary attachments are created using
cid:unique_value@example.org.

Pipeline configuration for WS-Security
In order for web service requester and provider applications to participate in WS-Security protocols, you
must configure your pipelines accordingly, by including message handler DFHWSSE, and by providing
configuration information for the handler.

Example
A provider pipeline configuration file that uses WS-Security might take the following form:

<?xml version="1.0"?>
<provider_pipeline
 xmlns="http://www.ibm.com/software/htp/cics/pipeline">
 <service>
 <service_handler_list>
 <wsse_handler>
 <dfhwsse_configuration version="1">
 <authentication trust="blind" mode="basic"/>
 </dfhwsse_configuration>
 </wsse_handler>
 <handler>
 ...
 </handler>
 </service_handler_list>
 <terminal_handler>
 <cics_soap_1.2_handler/>
 </terminal_handler>
 </service>
 <apphandler>DFHPITP</apphandler>
</provider_pipeline>

The <wsse_handler>pipeline configuration element
Specifies parameters used by the CICS-supplied message handler that provides support for WS-Security.

Used in:

• Service provider
• Service requester

Chapter 2. Configuring web services in CICS 111

Contained by:

<service_handler_list>

Contains:

• A The <dfhwsse_configuration>pipeline configuration element.

In a provider pipeline configuration file, the CICS supplied message handler for WS-Security might have to
decrypt an encypted message. The <wsse_handler> element must be defined before any other handler
programs that need to process the unencrypted message content.

In a requester pipeline configuration file, the CICS supplied message handler for WS-Security might have
to encrypt a message. It must be defined after any other handler programs that need to process the
unencrypted message content, including the CICS SOAP handler program.

The <dfhwsse_configuration> pipeline configuration element
Specifies configuration information for the security handler DFHWSSE1, which provides support for
securing web services.

Used in:

• Service provider
• Service requester

Contained by:

<wsse_handler>

Attributes:

Name Description

version An integer denoting the version of the configuration information. The
only valid value is 1.

Contains:

1. Either of the following elements:

• An optional <authentication> element.

– In a service requester pipeline, the <authentication> element specifies the type of
authentication that must be used in the security header of outbound SOAP messages.

– In a service provider pipeline, the element specifies whether CICS uses the security tokens in an
inbound SOAP message to determine the user ID under which work is processed.

• An optional <sts_authentication> element.

The action attribute on this element specifies what type of request to send to the Security Token
Service. If the request is to issue an identity token, then CICS uses the values in the nested elements
to request an identity token of the specified type.

2. If you specify an <sts_authentication> element, you must also specify an <sts_endpoint>
element.

When this element is present, CICS uses the URI in the <endpoint> element to send a request to the
Security Token Service.

3. An optional, empty <expect_signed_body/> element.

The <expect_signed_body/> element indicates that the <body> of the inbound message must be
signed. If the body of an inbound message is not correctly signed, CICS rejects the message with a
security fault.

112 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_service_handler_list.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_dfhwsse_configuration.html

4. An optional, empty <expect_encrypted_body/> element.

The <expect_encrypted_body/> element indicates that the <body> of the inbound message must
be encrypted. If the body of an inbound message is not correctly encrypted, CICS rejects the message
with a security fault.

5. An optional <sign_body> element.

If this element is present, CICS will sign the <body> of the outbound message, using the algorithm
specified in the <algorithm> element contained in the <sign_body> element.

6. An optional <encrypt_body> element.

If this element is present, CICS will encrypt the <body> of the outbound message, using the algorithm
specified in the <algorithm> element contained in the <encrypt_body> element.

7. In provider pipelines only, an optional <reject_signature/> element.

If this element is present, CICS rejects any message that includes a certificate in its header that signs
part or all of the message body. A SOAP fault is issued to the web service requester.

8. In provider pipelines only, an optional <reject_encryption/> element.

If this element is present, CICS rejects any message that is partially or fully encrypted. A SOAP fault is
issued to the web service requester.

Example

<dfhwsse_configuration version="1">
 <sts_authentication action="issue">
 <auth_token_type>
 <namespace>http://example.org.tokens</namespace>
 <element>UsernameToken</element>
 </auth_token_type>
 <suppress/>
 </sts_authentication>
 <sts_endpoint>
 <endpoint>https://example.com/SecurityTokenService</endpoint>
 </sts_endpoint>
 <expect_signed_body/>
 <expect_encrypted_body/>
 <sign_body>
 <algorithm>http://www.w3.org/2000/09/xmldsig#rsa-sha1</algorithm>
 <certificate_label>SIGCERT01</certificate_label>
 </sign_body>
 <encrypt_body>
 <algorithm>http://www.w3.org/2001/04/xmlenc#tripledes-cbc</algorithm>
 <certificate_label>ENCCERT02</certificate_label>
 </encrypt_body>
</dfhwsse_configuration>

The <authentication> pipeline configuration element
Specifies the use of security tokens in the headers of inbound and outbound SOAP messages.

Used in:

• Service provider
• Service requester

Contained by:

<dfhwsse_configuration>

Chapter 2. Configuring web services in CICS 113

Attributes:

Attribute Description

trust and mode Taken together, the trust and mode attributes specify:

• whether asserted identity is used
• the combination of security tokens that are used in SOAP messages.

Asserted identity allows a trusted user to assert that work must run under a
different identity, the asserted identity, without the trusted user having the
credentials that are associated with that identity.

When asserted identity is used, messages contain a trust token and an identity
token. The trust token is used to check that the sender has the correct permissions
to assert identities. The identity token holds the asserted identity, that is, the user
ID under which the request is run.

Use of asserted identity requires that a service provider trusts the requester to
make this assertion. In CICS, the trust relationship is established with security
manager surrogate definitions: the requesting identity must have the correct
authority to start work on behalf of the asserted identity.

The allowable combinations of these attributes, and their meanings, are described
in Table 3 on page 114 and Table 4 on page 115.

Table 3. The mode and trust attributes in a service requester pipeline

trust mode Meaning

none none No credentials are added to the message

none basic Invalid combination of attribute values

none signature Asserted identity is not used. CICS uses a single X.509
security token, which is added to the message, and used to
sign the message body. The certificate is identified with the
<certificate_label> element, and the algorithm is
specified in the <algorithm> element.

blind none Invalid combination of attribute values

blind basic Asserted identity is not used. CICS adds an identity token to
the message, but does not provide a trust token. The identity
token is a user name with no password. The user ID placed in
the identity token is the contents of the DFHWS-USERID
container (which, by default, contains the running task's user
ID).

blind signature Invalid combination of attribute values

basic none Invalid combination of attribute values

basic basic Invalid combination of attribute values

basic signature Invalid combination of attribute values

signature none Invalid combination of attribute values

114 CICS TS for z/OS: Using Web Services with CICS

Table 3. The mode and trust attributes in a service requester pipeline (continued)

trust mode Meaning

signature basic Asserted identity is used. CICS adds the following tokens to
the message:

• The trust token is an X.509 security token.
• The identity token is a user name with no password.

The certificate that is used to sign the identity token and
message body is specified by the <certificate_label>.
The user ID placed in the identity token is the contents of the
DFHWS-USERID container (which, by default, contains the
running task's user ID).

signature signature Invalid combination of attribute values

Table 4. The mode and trust attributes in a service provider pipeline

trust mode Meaning

none none Inbound messages need not contain any credentials, and
CICS does not attempt to extract or verify any credentials that
are found in a message. However, CICS checks that any
signed elements are correctly signed.

none basic Inbound messages must contain a user name security token
with a password. CICS puts the user name in the DFHWS-
USERID container.

none basic-ICRX Invalid combination of attribute values

none basic-kerberos Invalid combination of attribute values

none signature Inbound messages must contain an X.509 security token that
has been used to sign the message body.

blind none Invalid combination of attribute values

blind basic Inbound messages must contain an identity token, where the
identity token contains a user ID and optionally a password.
CICS puts the user ID in the DFHWS-USERID container. If no
password is included, CICS uses the user ID without verifying
it. If a password is included, the security handler DFHWSSE1
verifies it.

blind basic-ICRX Inbound messages must contain an ICRX identity token. CICS
resolves the identity, puts the user ID in the DFHWS-USERID
container, and puts the ICRX in container DFHWS-ICRX.
Authentication, if required, uses client-certified SSL or
another security protocol.

blind basic-kerberos Invalid combination of attribute values

blind signature Inbound messages must contain an identity token, where the
identity token is the first X.509 certificate in the SOAP
message header. The certificate does not need to have signed
the message. The security handler extracts the matching user
ID and places it in the DFHWS-USERID container.

basic none Invalid combination of attribute values

Chapter 2. Configuring web services in CICS 115

Table 4. The mode and trust attributes in a service provider pipeline (continued)

trust mode Meaning

basic basic Inbound messages must use asserted identity:

• The trust token is a user name token with a password
• The identity token is a second user name token without a

password. CICS puts this user name in container DFHWS-
USERID.

basic basic-ICRX Inbound messages must use asserted identity:

• The trust token is a user name token with a password.

CICS establishes whether the user ID and password
combination are valid, and, if they are valid, CICS resolves
the asserted ICRX-based identity to a user ID. CICS then
performs a surrogate security check from the authenticated
identity to the asserted identity.

• The identity token is an ICRX, which identifies the specific
client user. CICS puts the user name in container DFHWS-
USERID and the ICRX in container DFHWS-ICRX.

basic basic-kerberos Inbound messages must use asserted identity.

One token is required, a Kerberos Version 5 token with one of
the following format types:

• http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-
profile-1.1#Kerberosv5_AP_REQ1510

• http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-
profile-1.1#GSS_Kerberosv5_AP_REQ1510

• http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-
profile-1.1#Kerberosv5_AP_REQ4120

• http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-
profile-1.1#GSS_Kerberosv5_AP_REQ4120

The token must be Base-64 encoded. CICS validates the
token by using Network Authentication Service for z/OS and
puts the user ID associated with the token in container
DFHWS-USERID.

basic signature Inbound messages must use asserted identity:

• The trust token is a user name token with a password
• The identity token is an X.509 certificate. CICS puts the

user ID associated with the certificate in container DFHWS-
USERID.

signature none Invalid combination of attribute values

signature basic Inbound messages must use asserted identity:

• The trust token is an X.509 certificate
• The identity token is a user name token without a

password. CICS puts the user name in container DFHWS-
USERID.

The identity token and the body must be signed with the
X.509 certificate.

116 CICS TS for z/OS: Using Web Services with CICS

Table 4. The mode and trust attributes in a service provider pipeline (continued)

trust mode Meaning

signature basic-ICRX Inbound messages must use asserted identity.

• The trust token is an ICRX signed with an X.509 certificate.

CICS resolves the X.509 certificate to a user ID and ensures
that the XML signature is valid. CICS resolves the asserted
ICRX-based identity to a user ID. CICS then performs a
surrogate security check from the authenticated X.509
identity to the asserted ICRX identity.

• The identity token is a user name token without a
password. CICS puts the user name in container DFHWS-
USERID and the ICRX in container DFHWS-ICRX.

signature basic-kerberos Invalid combination of attribute values

signature signature Inbound messages must use asserted identity:

• The trust token is an X.509 certificate
• The identity token is a second X.509 certificate. CICS puts

the user ID associated with this certificate in container
DFHWS-USERID.

The identity token and the body must be signed with the first
X.509 certificate (the trust token).

Notes:

1. The combinations of the trust and mode attribute values are checked when the PIPELINE is installed.
The installation fails if the attributes are incorrectly coded.

2. CICS uses password verification to verify a user ID during the processes described in VERIFY PHRASE.

Contains:

1. An optional, empty <suppress/> element.

If this element is specified in a service provider pipeline, the handler does not attempt to use any
security tokens in the message to determine under which user ID the work runs.

If this element is specified in a service requester pipeline, the handler does not attempt to add to the
outbound SOAP message any of the security tokens that are required for authentication.

2. In a requester pipeline, an optional <algorithm> element that specifies the URI of the algorithm that
is used to sign the body of the SOAP message. You must specify this element if the combination of
trust and mode attribute values indicate that the messages are signed. You can specify only the RSA
with SHA1 algorithm in this element. The URI is http://www.w3.org/2000/09/xmldsig#rsa-
sha1.

3. An optional <certificate_label> element that specifies the label that is associated with an X.509
digital certificate installed in RACF®. If you specify this element in a service requester pipeline and the
<suppress> element is not specified, the certificate is added to the security header in the SOAP
message. If you do not specify a <certificate_label> element, CICS uses the default certificate in
the RACF key ring.

This element is ignored in a service provider pipeline.

Example

<authentication trust="signature" mode="basic">
 <suppress/>
 <algorithm>http://www.w3.org/2000/09/xmldsig#rsa-sha1</algorithm>

Chapter 2. Configuring web services in CICS 117

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-applications/commands-api/dfhp4_verifyphrase.html

 <certificate_label>AUTHCERT03</certificate_label>
</authentication>

The <sts_authentication> pipeline configuration element
Specifies that a Security Token Service (STS) must be used for authentication and determines what type
of request is sent.

Used in:

• Service provider
• Service requester

Contained by:

<dfhwsse_configuration>

Attributes:

Name Description

action Specifies what type of request CICS sends to the STS when a
message is received in the service provider pipeline. Valid values
are as follows:
issue

The STS issues an identity token for the SOAP message. This
value is not valid for SAML in a provider pipeline.

validate
The STS validates the provided identity token and returns
whether the token is valid to the security handler.

If you do not specify this attribute, CICS assumes that the action
is to request an identity token.

In a service requester pipeline, you cannot specify this attribute
because CICS always requests that the STS issues a token.

extract This attribute is valid only when you are using SAML. Are the
elements of the SAML token to be extracted? Valid values are as
follows:
no

The elements of the SAML token are not extracted into
containers.

yes
The main elements of the SAML token are extracted and
placed in containers that are created by CICS.

token_signature This attribute is valid only when you are using SAML. Must a token
signature be supplied? Valid values are as follows:
ignored

Any signature that is supplied is ignored.
required

A valid signature must be supplied. This is the default value.

118 CICS TS for z/OS: Using Web Services with CICS

Name Description

tran_channel This attribute is valid only when you are using SAML. In a service
provider pipeline, this attribute specifies whether SAML assertions
contained in a message that is received in the pipeline are made
available to the target application program in containers in the
transaction channel DFHTRANSACTION. Valid values are as
follows:
yes

The SAML assertions are copied into containers in the
DFHTRANSACTION channel to be made available to the
program. For more information about container names and
types, see The SAML linkable interface, DFHSAML.

no
SAML assertions are not made available to the program via the
DFHTRANSACTION channel, but in containers in the channel
that is passed to the program by the pipeline. This is the
default value.

If you do not specify this attribute for a service provider, the
assertions are made available only in containers in the channel
that is passed to the program from the SOAP pipeline.

In a service requester pipeline, this attribute specifies whether
the SAML token contained in the DFHSAML-OUTTOKEN container
of the transaction channel DFHTRANSACTION is used on the
request. Valid values are as follows:
yes

The contents of the DFHTRANSACTION channel's DFHSAML-
OUTTOKEN container are used as the SAML token for the
request.

no
The contents of the DFHSAML-OUTTOKEN container in the
channel that is passed to the pipeline are used as the
request's SAML token. This is the default value.

If you do not specify this attribute for a service requester, the
SAML token is taken from the DFHSAML-OUTTOKEN container in
the channel that is passed to the SOAP pipeline.

Contains:

1. An <auth_token_type> element. This element is required when you specify a
<sts_authentication> element in a service requester pipeline and is optional in a service provider
pipeline. For more information, see The <auth_token_type> element.

• In a service requester pipeline, the <auth_token_type> element indicates the type of token that
STS issues when CICS sends it the user ID contained in the DFHWS-USERID container. The token
that CICS receives from the STS is placed in the header of the outbound message.

• In a service provider pipeline, the <auth_token_type> element is used to determine the identity
token that CICS takes from the message header and sends to the STS to exchange or validate. CICS
uses the first identity token of the specified type in the message header. If you do not specify this
element, CICS uses the first identity token that it finds in the message header. CICS does not
consider the following as identity tokens:

– wsu:Timestamp
– xenc:ReferenceList

Chapter 2. Configuring web services in CICS 119

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-programming/security/saml_link_int.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_auth_token_type.html

– xenc:EncryptedKey
– ds:Signature

2. In a service provider pipeline only, an optional, empty <suppress/> element. If this element is
specified, the handler does not attempt to use any security tokens in the message to determine the
user ID that the work runs under. The <suppress/> element includes the identity token that is
returned by the STS.

Example

The following example shows a service provider pipeline, where the security handler requests a token
from the STS.

<sts_authentication action="issue">
 <auth_token_type>
 <namespace>http://example.org.tokens</namespace>
 <element>UsernameToken</element>
 </auth_token_type>
 <suppress/>
</sts_authentication>

The <auth_token_type> pipeline configuration element
Specifies what type of identity token is required.

This element is mandatory when you specify the <sts_authentication> element in a service
requester pipeline, and optional in a service provider.

• In a service requester pipeline, the <auth_token_type> element indicates the type of token that STS
issues when CICS sends it the user ID contained in the DFHWS-USERID container. The token that CICS
receives from the STS is placed in the header of the outbound message.

• In a service provider pipeline, the <auth_token_type> element is used to determine the identity
token that CICS takes from the message header and sends to the STS to exchange or validate. CICS
uses the first identity token of the specified type in the message header. If you do not specify this
element, CICS uses the first identity token that it finds in the message header. CICS does not consider
the following as identity tokens:

– wsu:Timestamp
– xenc:ReferenceList
– xenc:EncryptedKey
– ds:Signature

Used in:

• Service provider
• Service requester

Contained by:

<sts_authentication>

Contains:

1. A <namespace> element. This element contains the namespace of the token type that is to be
validated or exchanged.

If you are using SAML, set the content of this element to either
urn:oasis:names:tc:SAML:1.0:assertion or
urn:oasis:names:tc:SAML:2.0:assertion, depending on the version of SAML.

2. An <element> element. This element contains the local name of the token type that is to be validated
or exchanged.

120 CICS TS for z/OS: Using Web Services with CICS

For SAML, use the local name Assertion.

The values of these elements form the Qname of the token.

Example

<auth_token_type>
 <namespace>http://example.org.tokens</namespace>
 <element>UsernameToken</element>
</auth_token_type>

The <sts_endpoint> pipeline configuration element
Specifies the location of the Security Token Service (STS).

Used in:

• Service provider
• Service requester

Contained by:

<dfhwsse_configuration>

Contains:

• An <endpoint> element. This element contains a URI that points to the location of the Security Token
Service (STS) on the network. It is recommended that you use TLS to keep the connection to the STS
secure, rather than using HTTP.

To use SAML support, set the endpoint to cics://PROGRAM/DFHSAML.

You can also specify an IBM MQ endpoint, by using the JMS format of URI.
• An optional <jvmserver> element. This element identifies the JVM server that is configured to run the

SAML token service. If this element is not included, the default sample resource JVM server DFHXSTS is
assumed. This element is valid only if you are using SAML: if you use it in other situations, an error
occurs.

Examples
In this example, the endpoint is configured to use a secure connection to the STS at the specified URI.

<sts_endpoint>
 <endpoint>https://example.com/SecurityTokenService</endpoint>
</sts_endpoint>

In this example, the endpoint is configured to use CICS SAML support.

<sts_endpoint>
 <endpoint>cics://PROGRAM/DFHSAML</endpoint>
</sts_endpoint>

The <sign_body> pipeline configuration element
Directs DFHWSSE to sign the body of outbound SOAP messages, and provides information about how the
messages are to be signed.

Used in:

• Service provider
• Service requester

Chapter 2. Configuring web services in CICS 121

Contained by:

<dfhwsse_configuration>

Contains:

1. An <algorithm> element that contains the URI that identifies the algorithm used to sign the body of
the SOAP message. You can specify the algorithms shown in Signature algorithms.

2. A <certificate_label> element that specifies the label associated with a digital certificate
installed in RACF. The digital certificate provides the key that is used to sign the message.

Example

<sign_body>
 <algorithm>http://www.w3.org/2000/09/xmldsig#rsa-sha1</algorithm>
 <certificate_label>SIGCERT01</certificate_label>
</sign_body>

The <encrypt_body> pipeline configuration element
Directs DFHWSSE to encrypt the body of outbound SOAP messages, and provides information about how
the messages are to be encrypted.

Used in:

• Service provider
• Service requester

Contained by:

<dfhwsse_configuration>

Contains:

1. An <algorithm> element containing the URI that identifies the algorithm used to encrypt the body of
the SOAP message. You can specify the algorithms shown in Encryption algorithms.

2. A <certificate_label> element that specifies the label that is associated with a digital certificate
in RACF. The digital certificate provides the key that is used to encrypt the message.

Example

<encrypt_body>
 <algorithm>http://www.w3.org/2001/04/xmlenc#aes256-cbc</algorithm>
 <certificate_label>ENCCERT02</certificate_label>
</encrypt_body>

Application handlers
An application handler is a CICS program that the terminal handler of a SOAP service provider pipeline
links to at run time.

Application handlers are used in provider mode pipelines in which the terminal handler is one of the
supplied SOAP message handlers. This situation occurs when the <terminal_handler> element
contains a <cics_soap_1.1_handler>, <cics_soap_1.2_handler>,
<cics_soap_1.1_handler_java> or a <cics_soap_1.2_handler_java> element.

The application handler is responsible for processing the body of a SOAP request, and for generating a
response using the returned data. The application handler can call other programs to complete this
processing. Typically the application handler acts as a general-purpose presentation layer around one or
more business applications. It is responsible for mapping XML into a form that an application can use,
attaching that application, and then generating a response using the data returned.

122 CICS TS for z/OS: Using Web Services with CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/web-services/dfhws_signaturealgorithms.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/web-services/dfhws_encryptionalgorithms.html

An application handler can be attached by CICS in two ways. The typical mechanism involves a channel
and control containers; the other method involves Java bindings for Axis2.

Channel-attached application handlers are specified in the <apphandler> element of the
<provider_pipeline> element. At run time, the DFHWS-APPHANDLER container is populated by the
contents of <apphandler>. However, the DFHWS-APPHANDLER container can be dynamically updated
by any of the other message handlers. Therefore, the program that is linked to at run time can be different
to the program specified in the <apphandler> element. The following application handlers can be
specified in the <apphandler> element or the DFHWS-APPHANDLER container:

• The supplied channel-attached SOAP application handler, DFHPITP. For more information about
channel-attached application handlers, see “Channel-attached application handlers” on page 123

• Your own channel-attached application handler. This application handler can be written in languages
other than Java. For more information about the control containers that can be used in your channel-
attached application handler, see “Control containers” on page 136.

• Your own Java application handler for Java-based pipelines, which implements the ApplicationHandler
Java interface and that is attached to the pipeline using Axis2 MessageContext. For more information
about the ApplicationHandler Java interface, see Interface ApplicationHandler.

To use an application handler that uses Java bindings for Axis2, you must specify the
<apphandler_class> element of the <provider_pipeline> element. Axis2 application handlers
also require that a JVM server must exist for the web services pipeline and application handler to run on
and that the terminal handler of your web services pipeline must be either the
<cics_soap_1.1_handler_java> or the <cics_soap_1.2_handler_java> message handler. To
use the supplied Axis2 application handler, you must specify
com.ibm.cicsts.axis2.CICSAxis2ApplicationHandler in the <apphandler_class> element,
however you can specify your own Axis2 application handler class. At run time, the DFHWS-APPHANCLAS
container is populated by the contents of <apphandler_class>.

For web service applications that are deployed using the CICS web services assistant, you must specify
either DFHPITP or your own application handler that uses DFHPITP in the <apphandler> element, or
specify com.ibm.cicsts.axis2.CICSAxis2ApplicationHandler in the <apphandler_class>
element. For more information about the CICS web services assistant, see The CICS web services
assistant.

It is also possible to deploy Axis2 applications as provider mode web services in CICS using the Axis2
style of web service deployment. For more information, see Deploying a Java provider-mode web service
in an Axis2 JVM server.

Channel-attached application handlers
Channel-attached application handlers are application handlers that are attached to CICS using a channel
and control containers.

The channel that is used by the application handler is the DFHAHC-V1 channel. This channel passes the
following containers between the terminal handler and the provider-mode web service application:
DFHWS-XMLNS

Contains a list of name-value pairs that map namespace prefixes to namespaces.

• On input, the list contains the namespaces that are in scope from the SOAP envelope.
• On output, the list contains the namespace data that is assumed to be in the envelope tag.

DFHWS-BODY
Contains the body section of the SOAP envelope. Typically, the application will modify the contents. If
the application does not modify the contents, the application handler program must update the
contents of this container, even if it is putting the same content back into the container before
returning to the terminal handler.

DFHNORESPONSE
In the request phase of a service requester pipeline, indicates that the service provider is not
expected to return a response. The contents of container DFHNORESPONSE are undefined; message

Chapter 2. Configuring web services in CICS 123

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/pipeline/ApplicationHandler.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/dfhws_utility.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/dfhws_utility.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/dfhws_deploy_axis2_web_service.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/dfhws_deploy_axis2_web_service.html

handlers that need to know if the service provider is expected to return a response need only
determine if the container is present or not:

• If container DFHNORESPONSE is present, then no response is expected.
• If container DFHNORESPONSE is absent, then a response is expected.

The channel also passes all the context containers that were passed to the terminal handler. For example,
a header processing program can add containers to the channel. These containers are passed as user
containers. For more information about application handlers, see “Application handlers” on page 85.

Message handlers
A message handler is a CICS program that is used to process a web service request during input and to
process the response during output. Message handlers use channels and containers to interact with one
another and with the system.

The message handler interface lets you perform the following tasks in a message handler program:

• Examine the contents of an XML or JSON request or response, without changing it
• Change the contents of an XML or JSON request or response
• In a non-terminal message handler, pass an XML or JSON request or response to the next message

handler in the pipeline
• In a terminal message handler, call an application program, and generate a response
• In the request phase of the pipeline, force a transition to the response phase, by absorbing the request,

and generating a response
• Handle errors

Tip: It is advisable to use the SOAP handlers, <cics_soap_1.1_handler>, <cics_soap_1.2_handler>,
<cics_soap_1.1_handler_java> or <cics_soap_1.2_handler_java>, to work with SOAP messages. These
handlers let you work directly with the major elements in a SOAP message (the SOAP headers and the
SOAP body).

All programs that are used as message handlers are invoked with the same interface: they are invoked
with a channel that holds a number of containers. The containers can be categorized as the following
types:
Control containers

These are essential to the operation of the pipeline. Message handlers can use the control containers
to modify the sequence in which subsequent handlers are processed.

Context containers
In some situations, message handler programs need information about the context in which they are
invoked. CICS provides this information in a set of context containers that are passed to the programs.

Some of the context containers hold information that you can change in your message handler. For
example, in a service provider pipeline, you can change the user ID and transaction ID of the target
application program by modifying the contents of the appropriate context containers.

User containers
These contain information that one message handler needs to pass to another. The use of user
containers is entirely a matter for the message handlers.

Restriction: Do not use names that start with DFH for user containers.

How containers control the pipeline protocols
The contents of the DFHFUNCTION, DFHREQUEST, and DFHRESPONSE containers together control the
pipeline protocols.

During the two phases of the execution of a pipeline (the request phase and the response phase) the
value of DFHFUNCTION determines which control containers are passed to each message handler:

124 CICS TS for z/OS: Using Web Services with CICS

DFHFUNCTION Context DFHREQUEST DFHRESPONSE

RECEIVE-REQUEST Service provider;
request phase

Present (length > 0) Present (length = 0)

SEND-RESPONSE Service provider;
response phase

Absent Present (length > 0)

SEND-REQUEST Service requester;
request phase

Present (length > 0) Present (length = 0)

RECEIVE-RESPONSE Service requester;
response phase

Absent Present (length > 0)

PROCESS-REQUEST Service provider;
terminal handler

Present (length > 0) Present (length = 0)

HANDLER-ERROR Service requester or
provider; either
phase

Absent Present (length = 0)

NO-RESPONSE Service requester or
provider; response
phase

Absent Absent

Subsequent processing is determined by the containers that your message handler passes back to the
pipeline:
During the request phase

• Your message handler can return the DFHREQUEST container. Processing continues in the request
phase with the next handler. The length of the data in the container must not be zero.

• Your message handler can return the DFHRESPONSE container. Processing switches to the
response phase, and the same handler is called with DFHFUNCTION set to SEND-RESPONSE in a
service provider and to RECEIVE-RESPONSE in a service requester. The length of the data in the
container must not be zero.

• Your message handler can return no containers. Processing switches to the response phase, and
the same handler is called with DFHFUNCTION set to NO-RESPONSE.

In the terminal handler (service provider only)

• Your message handler can return the DFHRESPONSE container. Processing switches to the
response phase, and the previous handler is called with a new value of DFHFUNCTION (SEND-
RESPONSE). The length of the data in the container must not be zero.

• Your message handler can return no containers. Processing switches to the response phase, and
the previous handler is called with a new value of DFHFUNCTION (NO-RESPONSE).

During the response phase

• Your message handler can return the DFHRESPONSE container. Processing continues in the
response phase, and the next handler is called. The length of the data in the container must not be
zero.

• Your message handler can return no containers. Processing continues in the response phase, and
the next handler in sequence is called with a new value of DFHFUNCTION (NO-RESPONSE).

Important: During the request phase, your message handler can return DFHREQUEST or DFHRESPONSE,
but not both. Because both containers are present when your message handler is called, you must delete
one of them.

This table shows the action taken by the pipeline for all values of DFHFUNCTION and all combinations of
DFHREQUEST and DFHRESPONSE returned by each message handler.

Chapter 2. Configuring web services in CICS 125

DFHFUNCTION Context DFHREQUEST DFHRESPONSE Action

RECEIVE-REQUEST Service provider;
request phase

Present (length > 0) Present (error)

RECEIVE-REQUEST Service provider;
request phase

Present (length > 0) Absent Call the next handler with the
RECEIVE-REQUEST function

RECEIVE-REQUEST Service provider;
request phase

Present (length = 0) Not applicable (error)

RECEIVE-REQUEST Service provider;
request phase

Absent Present (length > 0) Switch to response phase, and
invoke the same handler with the
SEND-RESPONSE function

RECEIVE-REQUEST Service provider;
request phase

Absent Present (length = 0) (error)

RECEIVE-REQUEST Service provider;
request phase

Absent Absent Call the same handler with the
NO-RESPONSE function

SEND-RESPONSE Service provider;
response phase

Not applicable Present (length > 0) Call the previous handler with
the SEND-RESPONSE function

SEND-RESPONSE Service provider;
response phase

Not applicable Present (length = 0) (error)

SEND-RESPONSE Service provider;
response phase

Not applicable Absent Call the same handler with the
NO-RESPONSE function

SEND-REQUEST Service requester;
request phase

Present (length > 0) Present (length ≥ 0) (error)

SEND-REQUEST Service requester;
request phase

Present (length > 0) Absent Call the next handler with the
SEND-REQUEST function

SEND-REQUEST Service requester;
request phase

Present (length = 0) Not applicable (error)

SEND-REQUEST Service requester;
request phase

Absent Present (length > 0) Switch to response phase, and
call the previous handler with
the RECEIVE-RESPONSE
function

SEND-REQUEST Service requester;
request phase

Absent Present (length = 0) (error)

SEND-REQUEST Service requester;
request phase

Absent Absent Call the same handler with the
NO-RESPONSE function

RECEIVE-RESPONSE Service requester;
response phase

Not applicable Present (length > 0) Call the previous handler with
the RECEIVE-RESPONSE
function

RECEIVE-RESPONSE Service requester;
response phase

Not applicable Present (length = 0) (error)

RECEIVE-RESPONSE Service requester;
response phase

Not applicable Absent Call the same handler with the
NO-RESPONSE function

PROCESS-REQUEST Service provider;
terminal handler

Not applicable Present (length > 0) Call the previous handler with
the RECEIVE-RESPONSE
function

PROCESS-REQUEST Service provider;
terminal handler

Not applicable Present (length = 0) (error)

PROCESS-REQUEST Service provider;
terminal handler

Not applicable Absent Call the same handler with the
NO-RESPONSE function

HANDLER-ERROR Service requester or
provider; either
phase

Not applicable Present (length > 0) Call the previous handler with
the SEND-RESPONSE function or
the RECEIVE-RESPONSE
function

HANDLER-ERROR Service requester or
provider; either
phase

Not applicable Present (length = 0) (error)

126 CICS TS for z/OS: Using Web Services with CICS

DFHFUNCTION Context DFHREQUEST DFHRESPONSE Action

HANDLER-ERROR Service requester or
provider; either
phase

Not applicable Absent Call the same handler with the
NO-RESPONSE function

Supplying your own message handlers
When you want to perform specialized processing on the messages that flow between a service requester
and a service provider, and CICS does not supply a message handler that meets your needs, you will need
to supply your own.

About this task
In most situations, you can perform all the processing you need with the CICS-supplied message
handlers. For example, you can use the SOAP 1.1 and 1.2 message handlers which CICS supplies to
process SOAP messages. But there are occasions when you will want to perform your own, specialized,
operations on web service requests and responses. To do this, you must supply your own message
handlers.

Procedure

1. Write your message handler program.
A message handler is a CICS program with a channel interface. You can write your program in any of
the languages which CICS supports, and use any CICS command in the DPL subset within your
program.

2. Compile and link-edit your program.
Message handler programs normally run under transaction CPIH, which is defined with the attribute
TASKDATALOC(ANY). Therefore, when you link-edit the program, you must specify the AMODE(31)
option.

3. Install the program in your CICS system in the usual way.
4. Define the program in the pipeline configuration file.

Use the <handler> element to define your message handler. Within the <handler> element, code a
<program> element containing the name of the program.

Working with messages in a non-terminal message handler
A typical non-terminal message handler processes a message, then passes control to another message
handler in the pipeline.

About this task
In a non-terminal message handler, you can work with a request or response, with or without changing it,
and pass it on to the next message handler.

Note: Although web services typically use SOAP messages which contain XML, your message handlers
will work as well with other message formats

Procedure

1. Using the contents of container DFHFUNCTION, determine if the message passed to this message
handler is a request or a response.

DFHFUNCTION Request or
response

Type of message
handler

Inbound or
outbound

RECEIVE-REQUEST Request Non-terminal Inbound

SEND-RESPONSE response Non-terminal Outbound

SEND-REQUEST Request Non-terminal Outbound

RECEIVE-RESPONSE response Non-terminal Inbound

Chapter 2. Configuring web services in CICS 127

Tip:

• If DFHFUNCTION contains PROCESS-REQUEST, the message handler is a terminal message handler,
and these steps do not apply.

• If DFHFUNCTION contains HANDLER-ERROR, the handler is being called for error processing, and
these steps do not apply.

2. Retrieve the request or the response from the appropriate container.

• If the message is a request, it is passed to the program in container DFHREQUEST. Container
DFHRESPONSE is also present, with a length of zero.

• If the message is a response, it is passed to the program in container DFHRESPONSE.
3. Perform any processing of the message which is required.

Depending upon the purpose of the message handler, you might:

• Examine the message without changing it, and pass it to the next message handler in the pipeline.
• Change the request, and pass it to the next message handler in the pipeline.
• If the message is a request, you can bypass the following message handlers in the pipeline, and,

instead, construct a response message.

Note: It is the contents of the containers which a message handler returns that determines which
message handler is invoked next.

It is an error if a message handler makes no changes to any of the containers passed to it.

It is an error for a message handler program to return any of the following:

• An empty DFHRESPONSE container.
• A non-empty DFHREQUEST container and a non-empty DFHRESPONSE container.
• An empty DFHREQUEST container on the outbound request.

Passing a message to the next message handler in the pipeline
In a typical non-terminal message handler, you will process a request or response, with or without
changing it, and pass it on to the next message handler.

Procedure

1. Return the message to the pipeline - changed or unchanged - in the appropriate container.

• If the message is a request and you have changed it, return it in container DFHREQUEST
• If the message is a response and you have changed it, put it in container DFHRESPONSE
• If you have not changed the message, it is already in the appropriate container

2. If the message is a request, delete container DFHRESPONSE.
When a message handler is invoked for a request, containers DFHREQUEST and DFHRESPONSE are
passed to the program; DFHRESPONSE has a length of zero. However, it is an error to return both
DFHREQUEST and DFHRESPONSE.

Results
The message is passed to the next message handler on the pipeline.

Forcing a transition to the response phase of the pipeline
When you are processing a request, there are times when you will want to generate an immediate
response, instead of passing the request to the next message handler in the pipeline.

Procedure

1. Delete container DFHREQUEST.
2. Construct your response, and put it in container DFHRESPONSE.

128 CICS TS for z/OS: Using Web Services with CICS

Results
The response is passed to the next message handler on the response phase of the pipeline.

Suppressing the response
In some situations, you will want to absorb a request without sending a response.

Procedure

1. Delete container DFHREQUEST.
2. Delete container DFHRESPONSE.

Handling one way messages in a service requester pipeline
When a service requester pipeline sends a request to a service provider, there is normally an expectation
that there will be a response, and that, following the sending of the request, the message handlers in the
pipeline will be invoked again when the response arrives. Some web services do not send a response, and
so you must take special action to indicate that CICS should not wait for a response before invoking the
message handlers for a second time.

About this task

To do this, ensure that container DFHNORESPONSE is present at the end of pipeline processing in the
request phase. Typically, this is done by application level code, because the knowledge of whether a
response is expected is lodged in the application:

• For applications deployed with the CICS web services assistant, CICS code will create the container.
• Applications that are not deployed with the assistant will typically create the container before invoking

the application.

If you create or destroy container DFHNORESPONSE in a message handler, you must be sure that doing
so will not disturb the message protocol between the service requester and the provider.

Working with messages in a terminal message handler
A typical terminal handler processes a request, invokes an application program, and generates a
response.

About this task

Note: Although web services typically use SOAP messages which contain XML, your message handlers
will work as well with other message formats

In a terminal message handler, you can work with a request, and - optionally - generate a response and
pass it back along the pipeline. A typical terminal handler will use the request as input to an application
program, and use the application program's response to construct the response.

Procedure

1. Using the contents of container DFHFUNCTION, determine that the message passed to this handler is
a request, and that the handler is being called as a terminal handler.

DFHFUNCTION Request or
response

Type of handler Inbound or
outbound

PROCESS-REQUEST Request Terminal Inbound

Tip:

• If DFHFUNCTION contains any other value, the handler is not a terminal handler, and these steps do
not apply.

2. Retrieve the request from container DFHREQUEST.
Container DFHRESPONSE is also present, with a length of zero.

Chapter 2. Configuring web services in CICS 129

3. Perform any processing of the message which is required.
Typically, a terminal handler will invoke an application program.

4. Construct your response, and put it in container DFHRESPONSE.
If there is no response, you must delete container DFHRESPONSE.

Results
The response is passed to the next handler in the response phase of the pipeline. The handler is invoked
for function SEND-RESPONSE. If there is no response, the next handler is invoked for function NO-
RESPONSE.

Handling errors
Message handlers should be designed to handle errors that might occur in the pipeline.

About this task
When an error occurs in a message handler program, the program is invoked again for error processing.
Error processing always takes place in the response phase of the pipeline; if the error occurred in the
request phase, subsequent handlers in the request phase are bypassed.

In most cases, therefore, you must write your handler program to handle any errors that might occur.

Procedure

1. Check that container DFHFUNCTION contains HANDLER-ERROR, indicating that the message handler
has been called for error processing.

Tip:

• If DFHFUNCTION contains any other value, the message handler has not been invoked for error
processing and these steps do not apply.

2. Analyze the error information, and determine if the message handler can recover from the error by
constructing a suitable response.

Container DFHERROR holds information about the error. For detailed information about this container,
see “DFHERROR container ” on page 136.

Container DFHRESPONSE is also present, with a length of zero.
3. Perform any recovery processing.

• If the message handler can recover, construct a response, and return it in container
DFHRESPONSE.

• If the message handler can recover, but no response is required, delete container DFHRESPONSE,
and return container DFHNORESPONSE instead.

• If the message handler cannot recover, return container DFHRESPONSE unchanged (that is, with a
length of zero).

Results
If your message handler is able to recover from the error, pipeline processing continues normally. If not,
CICS generates a SOAP fault that contains information about the error. In the case of a transaction abend,
the abend code is included in the fault.

The message handler interface
The CICS pipeline links to the message handlers using a channel containing a number of containers. Some
containers are optional, others are required by all message handlers, and others are used by some
message handlers, and not by others.

Before a handler is invoked, some or all of the containers are populated with information which the
handler can use to perform its work. The containers returned by the handler determine the subsequent
processing, and are passed on to later handlers in the pipeline.

130 CICS TS for z/OS: Using Web Services with CICS

The SOAP message handlers
The SOAP message handlers are CICS-provided message handlers that you can include in your pipeline to
process SOAP 1.1 and SOAP 1.2 messages. You can use the SOAP message handlers in a service
requester or in a service provider pipeline.

On input, the SOAP message handlers parse inbound SOAP messages, and extract the SOAP <Body>
element for use by your application program. On output, the handlers construct the complete SOAP
message, using the <Body> element that your application provides.

If you use SOAP headers in your messages, the SOAP handlers can invoke user-written header processing
programs that allow you to process the headers on inbound messages, and to add them to outbound
messages.

SOAP message handlers, and any header processing programs, are specified in the pipeline configuration
file. For pipelines that do not support Java, the <cics_soap_1.1_handler> or
<cics_soap_1.2_handler> message handlers must be specified. For pipelines that support Java, the
<cics_soap_1.1_handler_java>, or <cics_soap_1.2_handler_java> message handlers must
be specified.

Typically, you will need just one SOAP handler in a pipeline. However, there are some situations where
more than one is needed. For example, you can ensure that SOAP headers are processed in a particular
sequence by defining multiple SOAP handlers.

You must not define <cics_soap_1.1_handler> and <cics_soap_1.2_handler>> message
handlers, or <cics_soap_1.1_handler_java> and <cics_soap_1.2_handler_java> message
handlers in the same pipeline. If you expect your pipeline to process both SOAP 1.1 and SOAP 1.2
messages, you should use either the <cics_soap_1.2_handler> or
<cics_soap_1.2_handler_java> message handler.

Header processing programs
Header processing programs are user-written CICS programs that are linked to from the CICS-provided
SOAP 1.1 and SOAP 1.2 message handlers, in order to process SOAP header blocks.

You can write your header processing program in any of the languages that CICS supports, and use any
CICS command in the DPL subset. Your header processing program can link to other CICS programs.

The header processing programs have a channel interface; the containers hold information that the
header program can examine or modify, including the SOAP header block for which the program is
invoked, and the SOAP message body.

The channel and the containers that the header processing program can use are described in “The header
processing program interface” on page 133.

Other containers hold information about the environment in which the header program is invoked, for
example:

• The transaction ID under which the header program was invoked
• Whether the program was invoked for a service provider or requester pipeline
• Whether the message being processed is a request or response

Header processing programs normally run under transaction CPIH, which is defined with the attribute
TASKDATALOC(ANY). Therefore, when you link-edit the program, you must specify the AMODE(31)
option.

How header processing programs are invoked for a SOAP request

The <cics_soap_1.1_handler>, <cics_soap_1.2_handler>,
<cics_soap_1.1_handler_java>, and <cics_soap_1.2_handler_java> elements in a pipeline
configuration contain zero, one, or more <headerprogram> elements, each of which contains the
following children:

<program_name>
<namespace>

Chapter 2. Configuring web services in CICS 131

<localname>
<mandatory>

When a pipeline is processing an inbound SOAP message (a request in the case of a service provider, a
response in the case of a service requester), the header program specified in the <program_name>
element is invoked or not, depending upon the following items:

• The contents of the <namespace>, <localname>, and <mandatory> elements
• The value of certain attributes of the root element of the SOAP header itself (the actor attribute for

SOAP 1.1; the role attribute for SOAP 1.2)

The following rules determine if the header program will be invoked in a given case:
The <mandatory> element in the pipeline configuration file

If the element contains true (or 1), the header processing program is invoked at least once, even if
none of the headers in the SOAP message are selected for processing by the remaining rules:

• If none of the header blocks are selected, the header processing program is invoked once.
• If any of the header blocks are selected by the remaining rules, the header processing program is

invoked once for each selected header.

Attributes in the SOAP header block
For SOAP 1.1, a header block is eligible for processing only if the actor attribute is absent, or has a
value of http://schemas.xmlsoap.org/soap/actor/next
For SOAP 1.2, a header block is eligible for processing only if the role attribute is absent, or has one of
the following values:

http://www.w3.org/2003/05/soap-envelope/role/next
http://www.w3.org/2003/05/soap-envelope/role/ultimateReceiver

A header block that is eligible for processing is not processed unless it is selected by the next rule.
The <namespace> and <localname> elements in the pipeline configuration file

A header block that is eligible for processing according to the previous rule is selected for processing
only if the following conditions are satisfied:

• The name of the root element of the header block matches the <localname> element in the
pipeline configuration file

• The namespace of the root element matches the <namespace> element in the pipeline
configuration file

For example, consider this header block:

<t:myheaderblock xmlns:t="http://mynamespace" ...> </t:myheaderblock>

Subject to the other rules, the header block is selected for processing when the following lines are
coded in the pipeline configuration file:

<namespace>http://mynamespace</namespace>
<localname>myheaderblock</localname>

The <localname> elements can contain an * to indicate that all header blocks in the namespace
should be processed. Therefore, the same header block is selected by the following code:

<namespace>http://mynamespace</namespace>
<localname>*</localname>

When the SOAP message contains more than one header, the header processing program is invoked once
for each matching header, but the sequence in which the headers are processed is undefined.

The CICS-provided SOAP message handlers select the header processing programs that are invoked
based upon the header blocks that are present in the SOAP message at the time when the message
handler receives it. Therefore, a header processing program is never invoked as a result of a header block

132 CICS TS for z/OS: Using Web Services with CICS

that is added to a message in the same SOAP message handler. If you want to process the new header (or
any modified headers) in your pipeline, you must define another SOAP message handler in your pipeline.

For an outbound message (a request in a service requester, a response in a service provider) the CICS-
provided SOAP message handlers create a SOAP message that does not contain any headers. In order to
add one or more headers to the message, you must write a header handler program to add the headers.
To ensure that this header handler is invoked, you must define it in your pipeline configuration file, and
specify <mandatory>true</mandatory>.

If a header handler is invoked in the request phase of a pipeline, it is invoked again in the response phase,
even if the message that flows in the response phase does not contain a matching header.

The header processing program interface
The CICS-provided SOAP 1.1 and SOAP 1.2 message handlers link to the header processing programs
using channel DFHHHC-V1. The containers that are passed on the channel include several that are
specific to the header processing program interface, and sets of context containers and user containers
that are accessible to all the header processing programs and message handler programs in the pipeline.

Container DFHHEADER is specific to the header processing program interface. Other containers are
available elsewhere in your pipeline, but have specific uses in a header processing program. The
containers in this category are DFHWS-XMLNS, DFHWS-BODY, and DFHXMLSS-PARSE.

Note: Although web service that use Axis2 to process SOAP messages can use the header processing
program interface, it is more efficient to write your own Axis2 handlers in Java to process the SOAP
headers. For more information on creating Axis2 handlers, see Writing Your Own Axis2 Module

Container DFHHEADER

When the header processing program is called, DFHHEADER contains the single header block that caused
the header processing program to be driven. When the header program is specified with
<mandatory>true</mandatory> or <mandatory>1</mandatory> in the pipeline configuration file,
it is called even when there is no matching header block in the SOAP message. In this case, container
DFHHEADER has a length of zero. This is the case when a header processing program is called to add a
header block to a SOAP message that does not have header blocks.

The SOAP message that CICS creates has no headers initially. If you want to add headers to your
message, you must ensure that at least one header processing program is called, by specifying
<mandatory>true</mandatory> or <mandatory>1</mandatory>.

When the header program returns, container DFHHEADER must contain zero, one, or more header blocks
that CICS inserts in the SOAP message in place of the original:

• You can return the original header block unchanged.
• You can modify the contents of the header block.
• You can append one or more new header blocks to the original block.
• You can replace the original header block with one or more different blocks.
• You can delete the header block completely.

Container DFHWS-XMLNS
When the header processing program is called, DFHWS-XMLNS contains information about XML
namespaces that are declared in the SOAP envelope. The header program can use this information to
perform the following tasks:

• Resolve qualified names that it encounters in the header block
• Construct qualified names in new or modified header blocks.

Chapter 2. Configuring web services in CICS 133

http://axis.apache.org/axis2/java/core/docs/modules.html

The namespace information consists of a list of namespace declarations, which use the standard XML
notation for declaring namespaces. The namespace declarations in DFHWS-XMLNS are separated by
spaces. For example:

xmlns:na='http://abc.example.org/schema' xmlns:nx='http://xyz.example.org/schema'

You can add further namespace declarations to the SOAP envelope by appending them to the contents of
DFHWS-XMLNS. However, namespaces whose scope is a SOAP header block or a SOAP body are best
declared in the header block or the body respectively. You are advised not to delete namespace
declarations from container DFHWS-XMLNS in a header processing program, because XML elements that
are not visible in the program may rely on them.

Container DFHWS-BODY
This container contains the body section of the SOAP envelope. The header processing program can
modify the contents.

When the header processing program is called, DFHWS-BODY contains the SOAP <Body> element.

When the header program returns, container DFHWS-BODY must again contain a valid SOAP <Body>,
which CICS inserts in the SOAP message in place of the original:

• You can return the original body unchanged.
• You can modify the contents of the body.

You must not delete the SOAP body completely, as every SOAP message must contain a <Body> element.

Container DFHXMLSS-PARSE
When you use either the <cics_soap_1.1_handler> or <cics_soap_1.2_handler> elements in
your pipeline configuration, and header program is called, DFHXMLSS-PARSE contains the XML System
Services (XMLSS) records for that header. This container is not created when
<cics_soap_1.1_handler_java> or <cics_soap_1.2_handler_java> elements are used.

Control, context, and user containers
As well as the containers described, the interface passes the control containers, context containers, and
user containers on channel DFHHHC-V1.

For more information about these containers, see “Containers used in the pipeline” on page 135.

Dynamic routing of inbound requests in a terminal handler
When the terminal handler of a service provider pipeline is one of the CICS-supplied SOAP message
handlers, the target application handler program specified in container DFHWS-APPHANDLER is, in some
cases, eligible for dynamic routing. All pipeline processing before the application handler program is
always performed locally in the CICS region that received the SOAP message.

The transaction that runs the target application handler program is eligible for routing when one of the
following conditions is true:

• The transaction under which the pipeline is processing the message is defined as DYNAMIC or REMOTE.
This transaction is defined in the URIMAP that is used to map the URI from the inbound SOAP message.

• A program in the pipeline has changed the contents of container DFHWS-USERID from its initial value.
• A program in the pipeline has changed the contents of container DFHWS-TRANID from its initial value.
• A WS-AT SOAP header exists in the inbound SOAP message.

In all the preceding scenarios, a task switch occurs during the pipeline processing. The second task runs
under the transaction specified in the DFHWS-TRANID container. This task switch provides an opportunity
for dynamic routing to take place, but only if MRO is used to connect the CICS regions together. In
addition, the CICS region that you are routing to must support channels and containers.

The routing only takes place if the TRANSACTION definition for the transaction named in DFHWS-TRANID
specifies one of the following sets of attributes:

134 CICS TS for z/OS: Using Web Services with CICS

DYNAMIC(YES)
The transaction is routed using the distributed routing model, in which the routing program is
specified in the DSRTPGM system initialization parameter.

DYNAMIC(NO) REMOTESYSTEM(sysid)
The transaction is routed to the system identified by sysid.

For more information about the routing of web service requests, see technote: Routing of provider mode
CICS Web services.

For applications deployed with the CICS web services assistant, there is a second opportunity to
dynamically route the request, at the point where CICS links to the users program. The request is then
routed using the dynamic routing model, in which the routing program is specified in the DTRPGM system
initialization parameter. Eligibility for routing is determined, in this case, by the characteristics of the
program. If you are using a channel and containers when linking to the program, you can only dynamically
route the request to CICS regions that are at V3.1 or higher. If you are using a COMMAREA, this restriction
does not apply.

When a request has been dynamically routed to a target region, it cannot be dynamically routed from the
target to a third region, even though the transaction is defined as ROUTABLE(YES) and DYNAMIC(YES).
The transaction can, however, be statically routed from the target region to a third region.

Containers used in the pipeline
A pipeline typically consists of a number of message handler programs and, when the CICS-supplied
SOAP message handlers are used, a number of header processing programs. CICS uses containers to
pass information to and from these programs. The programs also use containers to communicate with
other programs in the pipeline.

The CICS pipeline links to the message handlers and to the header processing programs using a channel
that has a number of containers. Some containers are optional, others are required by all message
handlers, and others are used by some message handlers and not by others.

Before a handler is invoked, some or all of the containers are populated with information that the handler
can use to perform its work. The containers returned by the handler determine the subsequent
processing, and are passed on to later handlers in the pipeline.

The containers can be categorized in these ways:
Control containers

These containers are essential to the operation of the pipeline. Handlers can use the control
containers to modify the sequence in which the handlers are processed. The names of the control
containers are defined by CICS, and begin with the characters DFH.

Context containers
These containers contain information about the environment in which the handlers are called. CICS
puts information in these containers before it invokes the first message handler, but, in some cases,
the handlers are free to change the contents, or to delete the containers. Changes to the context
containers do not directly affect the sequence in which the handlers are invoked. The names of the
context containers are defined by CICS, and begin with the characters DFH.

Header processing program containers
These containers contain information that is used by header processing programs that are called from
the CICS-supplied SOAP message handlers. For information about these containers, see The header
processing program interface.

Security containers
These containers contain information that is used by the Trust client interface and the security
message handler to process security tokens using a Security Token Service (STS). The names of the
security containers are defined by CICS, and begin with the characters DFH.

Generated containers
These containers contain the data from the SOAP message, such as variable arrays and long strings,
that is passed to and from the application program for processing. CICS automatically creates these
containers during pipeline processing, and the names begin with the characters DFH.

Chapter 2. Configuring web services in CICS 135

https://www.ibm.com/support/pages/routing-provider-mode-cics-web-services
https://www.ibm.com/support/pages/routing-provider-mode-cics-web-services

User containers
These containers contain information that one message handler needs to pass to another. The use of
user containers is entirely a matter for the message handlers. You can choose your own names for
these containers, but you must not use names that start with DFH.

Control containers
The control containers are essential to the operation of the pipeline. Handlers can use the control
containers to modify the sequence in which the handlers are processed.

DFHERROR container
DFHERROR is a container of DATATYPE(BIT) that is used to convey information about pipeline errors to
other message handlers.

Table 5. Structure of the DFHERROR container.

Field name Length (bytes) Contents

PIISNEB-MAJOR-VERSION 1 "1"

PIISNEB-MINOR-VERSION 1 "1"

PIISNEB-ERROR-TYPE 1 A numeric value denoting the
type of error. The values are
described in Table 6 on page
136.

PIISNEB-ERROR-MODE 1 P
The error occurred in a
provider pipeline

R
The error occurred in a
requester pipeline

T
The error occurred in a Trust
client

PIISNEB-ABCODE 4 The abend code when the error is
associated with a transaction
abend.

PIISNEB-ERROR-CONTAINER1 16 The name of the container when
the error is associated with a
container.

PIISNEB-ERROR-CONTAINER2 16 The name of the second
container when the error is
associated with more than one
container.

PIISNEB-ERROR-NODE 8 The name of the handler program
in which the error occurred.

Table 6. Values for the PIISNEB-ERROR-TYPE field

Value of PIISNEB-ERROR-TYPE Meaning

1 The handler program failed. The abend code is in
field PIISNEB-ABCODE.

136 CICS TS for z/OS: Using Web Services with CICS

Table 6. Values for the PIISNEB-ERROR-TYPE field (continued)

Value of PIISNEB-ERROR-TYPE Meaning

2 A container required by the handler was empty.
The name of the container is in field PIISNEB-
ERROR-CONTAINER1.

3 A container required by the handler was missing.
The name of the container is in field PIISNEB-
ERROR-CONTAINER1.

4 Two containers were passed to the handler when
only one was expected. The names of the
containers are in fields PIISNEB-ERROR-
CONTAINER1 and PIISNEB-ERROR-CONTAINER2.

5 An attempt to link to the target program failed. If
the target program failed, the abend code is in
container PIISNEB-ABCODE.

6 The pipeline manager failed to communicate with a
remote server because of an error in the underlying
transport.

7 The DFHWS-STSACTION container has an error. It
is missing, corrupt, or contains an incorrect value.

8 DFHPIRT failed to start the pipeline.

9 DFHPIRT failed to put a message in a container.

10 DFHPIRT failed to get a message from a container.

11 An unhandled error has occurred.

The COBOL declaration of the container's structure is this:

01 PIISNEB.
 02 PIISNEB-MAJOR-VERSION PIC X(1).
 02 PIISNEB-MINOR-VERSION PIC X(1).
 02 PIISNEB-ERROR-TYPE PIC X(1).
 02 PIISNEB-ERROR-MODE PIC X(1).
 02 PIISNEB-ABCODE PIC X(4).
 02 PIISNEB-ERROR-CONTAINER1 PIC X(16).
 02 PIISNEB-ERROR-CONTAINER2 PIC X(16).
 02 PIISNEB-ERROR-NODE PIC X(8).

The following table shows the language copybooks that map the container.

Table 7. Copybooks that map the container

Language Copybook

COBOL DFHPIUCO

PL/I DFHPIUCL

C and C++ dfhpiuch.h

Assembler DFHPIUCD

Chapter 2. Configuring web services in CICS 137

DFHFUNCTION container
DFHFUNCTION is a container of DATATYPE(CHAR) that contains a 16-character string that indicates
where in a pipeline a program is being called.

The string has one of the following values. The rightmost character positions are padded with blank
characters.
RECEIVE-REQUEST

The handler is a nonterminal handler in a service provider pipeline, and is being called to process an
inbound request message. On entry to the handler, the message is in control container DFHREQUEST.

SEND-RESPONSE
The handler is a nonterminal handler in a service provider pipeline, and is being called to process an
outbound response message. On entry to the handler, the message is in control container
DFHRESPONSE.

SEND-REQUEST
The handler is being called by a pipeline that is sending a request; that is, in a service requester that is
processing an outbound message

RECEIVE-RESPONSE
The handler is being called by a pipeline that is receiving a response; that is, in a service requester
that is processing an inbound message

PROCESS-REQUEST
The handler is being called as the terminal handler of a service provider pipeline

NO-RESPONSE
The handler is being called after processing a request, when no response is to be processed.

HANDLER-ERROR
The handler is being called because an error has been detected.

In a service provider pipeline that processes a request and returns a response, the values of
DFHFUNCTION that occur are RECEIVE-REQUEST, PROCESS-REQUEST, and SEND-RESPONSE. Figure 25
on page 139 shows the sequence in which the handlers are called and the values of DFHFUNCTION that
are passed to each handler.

138 CICS TS for z/OS: Using Web Services with CICS

CICS
Application

program

CICS Transaction Server

Handler
1

Handler
2

CICS Web services

non-terminal
handlers

terminal
handler

Request

Response

Handler
3

Service
requester

Figure 25. Sequence of handlers in a service provider pipeline

Chapter 2. Configuring web services in CICS 139

Sequence Handler DFHFUNCTION

1 Handler 1 RECEIVE-REQUEST

2 Handler 2 RECEIVE-REQUEST

3 Handler 3 PROCESS-REQUEST

4 Handler 2 SEND-RESPONSE

5 Handler 1 SEND-RESPONSE

In a service requester pipeline that sends a request and receives a response, the values of
DFHFUNCTION that occur are SEND-REQUEST and RECEIVE-RESPONSE. Figure 26 on page 141 shows
the sequence in which the handlers are called, and the values of DFHFUNCTION that are passed to each
handler.

140 CICS TS for z/OS: Using Web Services with CICS

CICS
Application

program

CICS Transaction Server

Handler
1

Handler
2

CICS Web services

non-terminal
handlers

terminal
handler

Request

Response

Handler
3

Service
provider

Figure 26. Sequence of handlers in a service requester pipeline

Chapter 2. Configuring web services in CICS 141

Sequence Handler DFHFUNCTION

1 Handler 1 SEND-REQUEST

2 Handler 2 SEND-REQUEST

3 Handler 3 SEND-REQUEST

4 Handler 3 RECEIVE-RESPONSE

5 Handler 2 RECEIVE-RESPONSE

6 Handler 1 RECEIVE-RESPONSE

The values of DFHFUNCTION that can be encountered in a given message handler depend on whether the
pipeline is a provider or requester, whether the pipeline is in the request or response phase, and whether
the handler is a terminal handler or a nonterminal handler. The following table summarizes when each
value can occur:

Value of DFHFUNCTION Provider or requester
pipeline

Pipeline phase Terminal or nonterminal
handler

RECEIVE-REQUEST Provider Request phase Nonterminal

SEND-RESPONSE Provider Response phase Nonterminal

SEND-REQUEST Requester Request phase Nonterminal

RECEIVE-RESPONSE Requester Response phase Nonterminal

PROCESS-REQUEST Provider Request phase Terminal

NO-RESPONSE Both Response phase Nonterminal

HANDLER-ERROR Both Both Both

DFHHTTPMETHOD container
This is a container of DATATYPE(CHAR) that is available to application programs in all HTTP provider
mode CICS pipelines.

This container is 8 characters long and holds the name of the HTTP method that was used on the
incoming request. It is not populated if the request did not arrive over HTTP.

DFHHTTPSTATUS container
DFHHTTPSTATUS is a container of DATATYPE(CHAR) that is used to specify the HTTP status code and
status text for a message produced in the response phase of a service provider pipeline.

The content of the DFHHTTPSTATUS container must be the same as the initial status line of an HTTP
response message, which has the following structure:

HTTP/1.1 nnn tttttttt

HTTP/1.1
The version and release of HTTP.

nnn
The 3-digit decimal HTTP status code to return.

tttttttt
The human-readable status text associated with the status code nnn.

The following string is an example of the content:

 HTTP/1.1 412 Precondition Failed

The DFHHTTPSTATUS container is ignored when the pipeline uses the WebSphere MQ transport.

142 CICS TS for z/OS: Using Web Services with CICS

If the container contains more than 45 bytes of data, CICS sends 45 bytes and ignores the remaining
data.

DFHMEDIATYPE container
DFHMEDIATYPE is a container of DATATYPE(CHAR) that is used to specify the media type for a message
produced in the response phase of a service provider pipeline.

The content of the DFHMEDIATYPE container must consist of a type and a subtype separated by a slash
character. The following strings show two examples of correct content for the DFHMEDIATYPE container:

text/plain

image/svg+xml

The DFHMEDIATYPE container is ignored when the pipeline uses the WebSphere MQ transport.

DFHNORESPONSE container
DFHNORESPONSE is a container of DATATYPE(CHAR) that, in the request phase of a service requester
pipeline, indicates that the service provider is not expected to return a response.

The contents of the DFHNORESPONSE container are undefined; message handlers that need to know if
the service provider is expected to return a response need only determine if the container is present or
not:

• If container DFHNORESPONSE is present, no response is expected.
• If container DFHNORESPONSE is absent, a response is expected.

This information is provided, initially, by the service requester application, based on the protocol used
with the service provider. Therefore, you are advised not to delete this container in a message handler (or
to create it, if it does not exist), because doing so might disturb the protocol between the endpoints.

Other than in the request phase of a service requester pipeline, the use of this container is not defined.

DFHREQUEST container
DFHREQUEST is a container of DATATYPE(CHAR) that contains the request message that is processed in
the request phase of a pipeline.

If one of the CICS-supplied SOAP message handlers is configured in the pipeline, the container
DFHREQUEST is updated to include the SOAP message headers in the SOAP envelope. If the message is
constructed by a CICS-supplied SOAP message handler, and has not been changed subsequently,
DFHREQUEST contains a complete SOAP envelope and all of its contents is in the UTF-8 code page.

The DFHREQUEST container is present in the request when a message handler is called, and the
DFHFUNCTION container contains RECEIVE-REQUEST or SEND-REQUEST.

In this situation, the normal protocol is to return DFHREQUEST to the pipeline with the same or modified
contents. Processing of the pipeline request phase continues normally, with the next message handler
program in the pipeline, if there is one.

As an alternative, your message handler can delete container DFHREQUEST, and put a response in the
DFHRESPONSE container. In this way, the normal sequence of processing is reversed, and the processing
continues with the response phase of the pipeline.

DFHRESPONSE container
DFHRESPONSE is a container of DATATYPE(CHAR) that contains the response message that is processed
in the response phase of a pipeline. If the message was constructed by a CICS-supplied SOAP message
handler, and has not been changed subsequently, DFHRESPONSE contains a complete SOAP envelope
and all its contents in UTF-8 code page.

The DFHRESPONSE container is present when a message handler is called, and the DFHFUNCTION
container contains SEND-RESPONSE or RECEIVE-RESPONSE.

Chapter 2. Configuring web services in CICS 143

In this situation, the normal protocol is to return DFHRESPONSE to the pipeline with the same or modified
contents. Pipeline processing continues normally, with the next message handler program in the pipeline,
if there is one.

The DFHRESPONSE container is also present, with a length of zero, when DFHFUNCTION contains
RECEIVE-REQUEST, SEND-REQUEST, PROCESS-REQUEST, or HANDLER-ERROR.

DFHWS-CCSID container
DFHWS-CCSID is a container of DATATYPE(BIT) that contains a fullword (4 bytes) specifying the CCSID of
the data in the response container.

The container is valid only for a provider mode pipeline that uses CICS code to transform the language
structure into XML.

The CCSID must be compatible with the CCSID used to generate the WSBIND file. If it is not, the SOAP
response that is produced might contain incorrect or invalid characters.

The CCSID is not allowed to be changed to or from 930, 1390, 5026 and 1026. Also CICS does not allow
the CCSID to be changed to one that is usable as a client CCSID.

If there are any problems processing the value in the DFHWS-CCSID container, processing continues
using the CCSID from the WSBIND file.

The DFHWS-CCSID container is checked only on return from a channel driven application program.

DFHWS-NODEJSAPP container
DFHWS-NODEJSAPP is a container of DATATYPE(CHAR) that contains the name of the NODEJSAPP
resource for this pipeline.

The container is valid only for a provider mode pipeline, and only if the pipeline is started through a
NODEJSAPP resource using the invoke function from the ibm-cics-api module.

How containers control the pipeline protocols
The contents of the DFHFUNCTION, DFHREQUEST, and DFHRESPONSE containers together control the
pipeline protocols.

During the two phases of the execution of a pipeline (the request phase and the response phase) the
value of DFHFUNCTION determines which control containers are passed to each message handler:

DFHFUNCTION Context DFHREQUEST DFHRESPONSE

RECEIVE-REQUEST Service provider;
request phase

Present (length > 0) Present (length = 0)

SEND-RESPONSE Service provider;
response phase

Absent Present (length > 0)

SEND-REQUEST Service requester;
request phase

Present (length > 0) Present (length = 0)

RECEIVE-RESPONSE Service requester;
response phase

Absent Present (length > 0)

PROCESS-REQUEST Service provider;
terminal handler

Present (length > 0) Present (length = 0)

HANDLER-ERROR Service requester or
provider; either
phase

Absent Present (length = 0)

NO-RESPONSE Service requester or
provider; response
phase

Absent Absent

144 CICS TS for z/OS: Using Web Services with CICS

Subsequent processing is determined by the containers that your message handler passes back to the
pipeline:
During the request phase

• Your message handler can return the DFHREQUEST container. Processing continues in the request
phase with the next handler. The length of the data in the container must not be zero.

• Your message handler can return the DFHRESPONSE container. Processing switches to the
response phase, and the same handler is called with DFHFUNCTION set to SEND-RESPONSE in a
service provider and to RECEIVE-RESPONSE in a service requester. The length of the data in the
container must not be zero.

• Your message handler can return no containers. Processing switches to the response phase, and
the same handler is called with DFHFUNCTION set to NO-RESPONSE.

In the terminal handler (service provider only)

• Your message handler can return the DFHRESPONSE container. Processing switches to the
response phase, and the previous handler is called with a new value of DFHFUNCTION (SEND-
RESPONSE). The length of the data in the container must not be zero.

• Your message handler can return no containers. Processing switches to the response phase, and
the previous handler is called with a new value of DFHFUNCTION (NO-RESPONSE).

During the response phase

• Your message handler can return the DFHRESPONSE container. Processing continues in the
response phase, and the next handler is called. The length of the data in the container must not be
zero.

• Your message handler can return no containers. Processing continues in the response phase, and
the next handler in sequence is called with a new value of DFHFUNCTION (NO-RESPONSE).

Important: During the request phase, your message handler can return DFHREQUEST or DFHRESPONSE,
but not both. Because both containers are present when your message handler is called, you must delete
one of them.

This table shows the action taken by the pipeline for all values of DFHFUNCTION and all combinations of
DFHREQUEST and DFHRESPONSE returned by each message handler.

DFHFUNCTION Context DFHREQUEST DFHRESPONSE Action

RECEIVE-REQUEST Service provider;
request phase

Present (length > 0) Present (error)

RECEIVE-REQUEST Service provider;
request phase

Present (length > 0) Absent Call the next handler with the
RECEIVE-REQUEST function

RECEIVE-REQUEST Service provider;
request phase

Present (length = 0) Not applicable (error)

RECEIVE-REQUEST Service provider;
request phase

Absent Present (length > 0) Switch to response phase, and
invoke the same handler with the
SEND-RESPONSE function

RECEIVE-REQUEST Service provider;
request phase

Absent Present (length = 0) (error)

RECEIVE-REQUEST Service provider;
request phase

Absent Absent Call the same handler with the
NO-RESPONSE function

SEND-RESPONSE Service provider;
response phase

Not applicable Present (length > 0) Call the previous handler with
the SEND-RESPONSE function

SEND-RESPONSE Service provider;
response phase

Not applicable Present (length = 0) (error)

SEND-RESPONSE Service provider;
response phase

Not applicable Absent Call the same handler with the
NO-RESPONSE function

SEND-REQUEST Service requester;
request phase

Present (length > 0) Present (length ≥ 0) (error)

Chapter 2. Configuring web services in CICS 145

DFHFUNCTION Context DFHREQUEST DFHRESPONSE Action

SEND-REQUEST Service requester;
request phase

Present (length > 0) Absent Call the next handler with the
SEND-REQUEST function

SEND-REQUEST Service requester;
request phase

Present (length = 0) Not applicable (error)

SEND-REQUEST Service requester;
request phase

Absent Present (length > 0) Switch to response phase, and
call the previous handler with
the RECEIVE-RESPONSE
function

SEND-REQUEST Service requester;
request phase

Absent Present (length = 0) (error)

SEND-REQUEST Service requester;
request phase

Absent Absent Call the same handler with the
NO-RESPONSE function

RECEIVE-RESPONSE Service requester;
response phase

Not applicable Present (length > 0) Call the previous handler with
the RECEIVE-RESPONSE
function

RECEIVE-RESPONSE Service requester;
response phase

Not applicable Present (length = 0) (error)

RECEIVE-RESPONSE Service requester;
response phase

Not applicable Absent Call the same handler with the
NO-RESPONSE function

PROCESS-REQUEST Service provider;
terminal handler

Not applicable Present (length > 0) Call the previous handler with
the RECEIVE-RESPONSE
function

PROCESS-REQUEST Service provider;
terminal handler

Not applicable Present (length = 0) (error)

PROCESS-REQUEST Service provider;
terminal handler

Not applicable Absent Call the same handler with the
NO-RESPONSE function

HANDLER-ERROR Service requester or
provider; either
phase

Not applicable Present (length > 0) Call the previous handler with
the SEND-RESPONSE function or
the RECEIVE-RESPONSE
function

HANDLER-ERROR Service requester or
provider; either
phase

Not applicable Present (length = 0) (error)

HANDLER-ERROR Service requester or
provider; either
phase

Not applicable Absent Call the same handler with the
NO-RESPONSE function

Context containers
In some situations, user-written message handler programs, and header processing programs, need
information about the context in which they are called. CICS provides this information in a set of context
containers, which are passed to the programs.

CICS initializes the contents of each context container, but, in some cases, you can change the contents
in your message handler programs, and header processing program. For example, in a service provider
pipeline in which the terminal handler is one of the CICS-provided SOAP handlers, you can change the
user ID and transaction ID of the target application program by modifying the contents of the appropriate
context containers.

Some of the information provided in the containers applies only to a service provider, or only to a service
requester, and therefore some of the context containers are not available in both.

DFH-EXIT-HEADER1 container
DFH-EXIT-HEADER1 is a container of DATATYPE(CHAR). It contains one or more SOAP headers that are
added to a response from a web service provider application in CICS.

Programs running global user exit XWSPRRWO can add a header to a SOAP response. The header must be
valid SOAP and the name spaces must be self-contained in the header XML. A program that puts data in

146 CICS TS for z/OS: Using Web Services with CICS

this container must check for its presence and add the new header to the end of the data. By following
this best practice, multiple programs can be driven at the same exit point if required.

DFH-HANDLERPLIST container
DFH-HANDLERPLIST is a container of DATATYPE(CHAR) that is initialized with the contents of the
appropriate <handler_parameter_list> element of the pipeline configuration file.

If you have not specified a handler parameter list in the pipeline configuration file, the container is empty;
that is, it has a length of zero.

You cannot change the contents of this container.

DFH-SERVICEPLIST container
DFH-SERVICEPLIST is a container of DATATYPE(CHAR) that contains the contents of the
<service_parameter_list> element of the pipeline configuration file.

If you have not specified a service parameter list in the pipeline configuration file, the container is empty;
that is, it has a length of zero.

You cannot change the contents of this container.

DFHWS-APPHANDLER container
DFHWS-APPHANDLER is a container of DATATYPE(CHAR) that, in a service provider pipeline, is initialized
with the contents of the <apphandler> element of the pipeline configuration file.

In the terminal handler of a pipeline that contains the <apphandler> element, the supplied SOAP
handlers get the name of the target application program from this container.

You can change the contents of this container in your message handlers or header-processing programs.

CICS does not provide this container in a service requester pipeline.

Related concepts
“Application handlers” on page 85
An application handler is a CICS program that the terminal handler of a SOAP service provider pipeline
links to at run time.

DFHWS-APPHANCLAS container
DFHWS-APPHANCLAS is a container of DATATYPE(CHAR) that, in a service provider pipeline, is initialized
with the contents of the <apphandler_class> element of the pipeline configuration file.

In the terminal handler of a Java-based pipeline, the supplied SOAP handlers,
<cics_soap_1.1_handler_java> and <cics_soap_1.2_handler_java>, get the name of the
target application program from this container.

CICS does not provide this container in a service requester pipeline.

Related concepts
“Application handlers” on page 85
An application handler is a CICS program that the terminal handler of a SOAP service provider pipeline
links to at run time.
Related reference
“The <apphandler_class> pipeline configuration element” on page 86
Specifies that the terminal handler of the pipeline links to an Axis2 application handler.

DFHWS-DATA container
DFHWS-DATA is a container of DATATYPE(BIT) that is used in service requester applications and
optionally in service provider applications that are deployed with the CICS web services assistant. It holds
the top-level data structure that is mapped to and from a SOAP request.

In service requester applications, the DFHWS-DATA container must be present when the service
requester program issues an EXEC CICS INVOKE SERVICE command. When the command is issued,
CICS converts the data structure that is in the container into a SOAP request. When the SOAP response is

Chapter 2. Configuring web services in CICS 147

received, CICS converts it into another data structure that is returned to the application in the same
container.

In service provider applications, the DFHWS-DATA container is used by default when you do not specify
the CONTID parameter on the DFHLS2WS or DFHWS2LS batch jobs. CICS converts the SOAP request
message into the data structure that is passed to the application in the DFHWS-DATA container. The
response is then saved in the same container, and CICS converts the data structure into a SOAP response
message.

DFHWS-DPLTRANID container
DFHWS-DPLTRANID is a container of DATATYPE(CHAR) that can contain the transaction identifier of the
mirror task to be used to run the target application program remotely.

If this container is created in a service provider pipeline, it should contain the transaction identifier of the
mirror task to be used to run the application in a remote region. If the container is to have any effect, it
must be created before control is passed to the target application program. If the container is not
present, remote web service application programs are executed under the default mirror transaction,
CSMI.

DFHWS-FAULT container
DFHWS-FAULT is a container of DATATYPE(BIT) that holds information about the type of SOAP fault CICS
generates.

The container holds a binary fullword that indicates the fault type that can be used in further processing
for a web service response:

1. The most recent SOAP fault was for a CICS fault (for example, CICS or user abend).
2. The most recent SOAP fault was for an application fault. The container is deleted when you issue the

EXEC CICS SOAPFAULT DELETE command. If a second or new SOAP fault is created, CICS updates the
new container appropriately.

You cannot change the contents of this container.

DFHWS-LOCATION container
DFHWS-LOCATION is a container of DATATYPE(CHAR) that contains supplied Location header when the
HTTP response was 302, 303 or 307.

DFHWS-MEP container
DFHWS-MEP is a container of DATATYPE(BIT) that holds a representative value for the message
exchange pattern (MEP) of an inbound or outbound SOAP message. This value is one byte in length.

CICS supports four message exchange patterns for both service requesters and service providers. The
message exchange pattern is defined in the WSDL 2.0 document for the web service and determines
whether CICS responds as the provider, and if CICS expects a response from an external provider. In
requester mode, the time that CICS waits for a response is configured using the PIPELINE resource.

If you used the CICS web services assistant to deploy your application, this container is populated by
CICS:

• In a service provider pipeline, this container is populated by the DFHPITP application handler when it
receives the inbound message from the terminal handler.

• In a service requester pipeline, this container is populated when the application uses the INVOKE
SERVICE command.

If the application uses the DFHPIRT channel to start the pipeline, the application populates this
container. If the container is not present or has no value, CICS assumes that the request is using either
the In-Out or In-Only MEP, depending on whether the DFHNORESPONSE container is present in the
channel.

This container is populated by the supplied application handler program, DFHPITP. If you use a different
application handler then this container is not available for use.

148 CICS TS for z/OS: Using Web Services with CICS

Table 8. Values that can appear in container DFHWS-MEP

Value MEP URI

1 In-Only http://www.w3.org/ns/wsdl/in-only

2 In-Out http://www.w3.org/ns/wsdl/in-out

4 Robust-In-Only http://www.w3.org/ns/wsdl/robust-in-only

8 In-Optional-Out http://www.w3.org/ns/wsdl/in-opt-out

DFHWS-OPERATION container
DFHWS-OPERATION is a container of DATATYPE(CHAR) that is usually used in a service provider
application deployed with the CICS web services assistant. It holds the name of the operation that is
specified in a SOAP request.

In a service provider, the container supplies the name of the operation for which the application is being
called. It is populated when a supplied SOAP message handler passes control to the target application
program, and is visible only when the target program is called with a channel interface.

In a service requester pipeline, the container holds the name specified in the OPERATION option of the
EXEC CICS INVOKE SERVICE command. The container is not available to the application that issues
the command.

This container is populated by the supplied application handler program, DFHPITP. If you use a different
application handler then this container is not available for use.

DFHWS-PIPELINE container
DFHWS-PIPELINE is a container of DATATYPE(CHAR) that contains the name of the PIPELINE in which
the program is being run.

You cannot change the contents of this container.

DFHWS-RESPWAIT container
DFHWS-RESPWAIT is a container of DATATYPE(BIT) that contains an unsigned fullword binary number to
represent the timeout in seconds that applies to outbound web service request and response messages.

The value of this container is supplied by the RESPWAIT attribute of the PIPELINE definition and is set by
CICS when the INVOKE SERVICE command is issued. Any value set in this container by the user
application before the INVOKE SERVICE command is issued will be ignored.

A message handler program that is invoked during pipeline processing can overwrite the value of the
DFHWS-RESPWAIT container. If this is done, the updated value is only used if the PIPELINE definition has
a RESPWAIT attribute that is not set to DEFT or left blank. If the PIPELINE definition has the RESPWAIT
attribute set to DEFT or left blank, the default timeout value of the transport protocol is always used,
regardless of the value in the DFHWS-RESPWAIT container.

This container is used only in requester mode pipelines.

DFHWS-SOAPLEVEL container
DFHWS-SOAPLEVEL is a container of DATATYPE(BIT) that holds information about the level of SOAP used
in the message that you are processing.

The container holds a binary fullword that indicates the level of SOAP that is used for a web service
request or response:
1

The request or response is a SOAP 1.1 message.
2

The request or response is a SOAP 1.2 message.
10

The request or response is not a SOAP message.

Chapter 2. Configuring web services in CICS 149

You cannot change the contents of this container.

DFHWS-TRANID container
DFHWS-TRANID is a container of DATATYPE(CHAR) that is initialized with the transaction ID of the task in
which the pipeline is running.

If you change the contents of this container in a service provider pipeline in which the terminal handler is
one of the CICS-supplied SOAP handlers (and you do so before control is passed to the target application
program), the target application runs in a new task with the new transaction ID.

New tasks cannot be started when both the terminal handler and the application handler of a pipeline run
in the same JVM server. For this reason, if you deploy JAX-WS Axis2 applications into CICS, DFHWS-
TRANID cannot be used to change the user ID.

DFHWS-URI container
DFHWS-URI is a container of DATATYPE(CHAR) that contains the URI of the service.

In a service provider pipeline, CICS extracts the relative URI from the incoming message and places it in
the DFHWS-URI container.

For example, if the URI of the web services is http://example.com/location/address or jms://
queue?destination=INPUT.QUEUE&targetService=/location/address, the relative URI is /
location/address.

If you are using Web Services Addressing in your requester pipeline, this container will be created and
updated in the following order:

1. When the INVOKE SERVICE command runs, it creates the DFHWS-URI container and initiates it with
the value of the WSDL service endpoint address. If the WSACONTEXT BUILD API command was used
to create an addressing context, you must not specify the URI or URIMAP parameters on the INVOKE
SERVICE command.

2. When the web services addressing handler (DFHWSADH) runs, if a <wsa:To> EPR exists in the
addressing context with a non-anonymous URI, the URI in the DFHWS-URI container is overwritten
with the value of the <wsa:To> EPR. The anonymous URI is ignored.

The SOAP message is sent to the service defined by the URI in DFHWS-URI.

In a service requester pipeline, CICS puts the URI that is specified on the INVOKE SERVICE command,
or, if missing, the URI from the web service binding, in the DFHWS-URI container. You can override this
URI by using a message handler in the pipeline.

A service can use an HTTP, HTTPS, JMS, or WebSphere MQ URI for external services. A service can also
use a CICS URI for a service that is provided by another CICS application:

URI Query string Description

cics://PROGRAM/program ?options The CICS transport handler uses an
EXEC CICS LINK PROGRAM
command to link to the specified
program, passing the current channel
and containers. No data transformation
takes place on the application data.

cics://SERVICE/service ?
targetServiceUri=targetServic
eUri&options

The CICS transport handler uses the
path of the service, expressed as the
targetServiceUri, to match a URIMAP
resource to run the request through a
provider pipeline.

You must specify a value for the
targetServiceUri parameter if you
use this URI type.

150 CICS TS for z/OS: Using Web Services with CICS

URI Query string Description

cics://PIPELINE/pipeline ?
targetServiceUri=targetServic
eUri

The CICS transport handler starts
another service requester pipeline.

You can add parameters to each type of CICS URI using the format parameter=value, where each
parameter is separated by an ampersand. The following rules apply to the CICS URI:

• The first parameter in the query string must be prefixed with a question mark. You cannot use a
question mark before this point in the URI.

• To include an ampersand in a parameter value, you must escape the character. For more information,
see the example section at the end of this topic.

• CICS changes any lowercase values for program and pipeline to uppercase.

The parameters on the query string determine how CICS processes the request at the end of the
requester pipeline:

maxCommareaLength=value
Specify the maximum size of the COMMAREA in bytes, that is required for the target application
program. The value must not exceed 32 763. If this parameter is present in the query string, CICS
links to the specified program using a COMMAREA. If this parameter is not present in the query string,
CICS links to the specified program using a channel.
This parameter not case-sensitive and is valid only for the cics://PROGRAM URI.

newTask=yes|no
Specify whether the transport handler will run the request as a new task.
This parameter is not case-sensitive. cics://PROGRAM/testapp?newTask=yes and cics://
PROGRAM/testapp?NEWTASK=Yes are the same.

targetServiceUri=uri
Specify the path of the service to be called. On a SERVICE destination type, the transport handler uses
the value with host=localhost to locate the URIMAP resource to start a service provider pipeline.
On a PIPELINE destination type, the transport handler uses the value to start another requester
pipeline.
This parameter is case-sensitive.

transid=char(4)
Specify a transaction under which the request will run. The transport handler starts a request stream
using the specified transaction ID.
This parameter is case-sensitive.

userid=char(8)
Specify a user ID under which the request will run. The transport handler starts a request stream
using the specified user ID.
This parameter is not case-sensitive.

Destination type Parameters on URI

PROGRAM userid Optional

PROGRAM transid Optional

PROGRAM maxCommareaLength Optional

PROGRAM newTask Optional. Must be yes or not
specified at all if you specify
userid or transid.

PROGRAM targetServiceUri Not supported

SERVICE userid Optional

Chapter 2. Configuring web services in CICS 151

Destination type Parameters on URI

SERVICE transid Optional

SERVICE maxCommareaLength Not supported

SERVICE newTask Optional. Must be yes or not
specified at all if you specify
userid or transid.

SERVICE targetServiceUri Required

PIPELINE userid Not supported

PIPELINE transid Not supported

PIPELINE maxCommareaLength Not supported

PIPELINE newTask Not supported

PIPELINE targetServiceUri Required

Examples of CICS URIs

In this first example, the DFHWS-URI container has the following URI by the time it reaches the end of the
pipeline:

cics://PROGRAM/testapp?newTask=yes&userid=user1

The transport handler links to the CICS program called testapp, passing the channel and containers. No
data transformation takes place, so the target program must be able to process the contents of the
containers on the current channel. CICS links to the program under a new unit of work and a different user
ID of user1.

In this second example, the DFHWS-URI container has the following URI by the time it reaches the end of
the pipeline:

cics://SERVICE/getStockQuote?targetServiceUri=/stock/getQuote&newTask=yes&userid=user2

The transport handler replaces the URI in the DFHWS-URI container with the value /stock/getQuote,
finds the URIMAP using the path in the targetServiceUri parameter to resolve the URI, and starts the
provider pipeline under a new task and different user ID.

In this third example, the DFHWS-URI container has the following URI by the time it reaches the end of
the pipeline:

cics://PIPELINE/reqpipeA?targetServiceUri=cics://PROGRAM/testapp?newTask=yes%26userid=user1

The transport handler replaces the URI in the DFHWS-URI container with the value cics://PROGRAM/
testapp?newTask=yes&userid=user1 and starts the requester pipeline called reqpipeA, passing the
current channel and containers. The %26 characters escape the ampersand, so the transport handler puts
the whole URI in the DFHWS-URI container.

DFHWS-URI-RESID container
This is a container of DATATYPE(CHAR) that is only available to applications attached by a JSON pipeline.

This container holds a simplified copy of the URI path (a RESource IDentifier), in which the path URI
fragment that was used for URIMAP matching has been removed. For example,

If the URIMAP that matched the incoming request has a PATH of:

/JSONServices/CustomerDetails/*

and the incoming URI from the client was:

152 CICS TS for z/OS: Using Web Services with CICS

http://www.example.org:10000/JSONServices/CustomerDetails/customerNumber/13388?action=query

then the contents of DFHWS-URI-RESID would be:

customerNumber/13388

RESTful JSON applications will be able to use this container to help identify the resource id (or primary
key) for RESTful resources that are matched using a wild-carded URIMAP. This should be significantly
simpler than parsing through the contents of DFHWS-URI.

Note: If the PATH attribute of the matching URIMAP isn't wild-carded (i.e. it contained the complete Path
for the URI), the contents of this Container will be empty.

Note: The PATH attribute of the matching URIMAP may contain an optional query string fragment. If so,
the query string fragment is ignored when constructing this container.

DFHWS-URI-QUERY container
This is a container of DATATYPE(CHAR), that is available to application programs in all HTTP provider
mode CICS pipelines.

This container holds the query string fragment of the URI. For example,

If the incoming URI from the client was:

http://www.example.org:10000/JSONServices/CustomerDetails/customerNumber/13388?action=query&page=1

then the contents of DFHWS-URI-QUERY would be:

action=query&page=1

Applications may parse through the contents of this Container to identify
individual name=value parameters from the URI.

Note: If the incoming URI did not include a query string then this Container will not be present on the
Channel.

DFHWS-URIMAPPATH container
This is a container of DATATYPE(CHAR), and holds a copy of the PATH data from the URIMAP that was
used to match the incoming URI.

Any pipeline attached application may make use of this Container to understand more about how it came
to be attached.

DFHWS-USERID container
DFHWS-USERID is a container of DATATYPE(CHAR) that is initialized with the user ID of the task in which
the pipeline is running.

If you change the contents of this container in a service provider pipeline in which the terminal handler is
one of the CICS-supplied SOAP handlers (and you do so before control is passed to the target application
program), the target application runs in a new task that is associated with the new user ID. Unless you
change the contents of container DFHWS-TRANID, the new task has the same transaction ID as the task
in which the pipeline is running.

New tasks cannot be started when both the terminal handler and the application handler of a pipeline run
in the same JVM server. For this reason, if you deploy JAX-WS Axis2 applications into CICS, DFHWS-
USERID cannot be used to change the user ID.

DFHWS-WEBSERVICE container
DFHWS-WEBSERVICE is a container of DATATYPE(CHAR) that is used in a service provider pipeline only.
It holds the name of the web service that specifies the execution environment when the target application
has been deployed using the web services assistant.

CICS does not provide this container in a service requester pipeline.

Chapter 2. Configuring web services in CICS 153

DFHWS-CID-DOMAIN container
DFHWS-CID-DOMAIN is a container of DATATYPE(CHAR). It contains the domain name that is used to
generate content-ID values for referencing binary attachments.

The value of the domain name is cicsts by default. You can override the value by specifying the
<mime_options> element in the pipeline configuration file.

You cannot change the contents of this container.

DFHWS-MTOM-IN container
DFHWS-MTOM-IN is a container of DATATYPE(BIT) that holds information about the specified options for
the <cics_mtom_handler> element of the pipeline configuration file and information about the
message format that has been received in the pipeline.

It contains the information to process an inbound MTOM message in the pipeline. The inbound message
can be a request message from a web service requester or a response message from a web service
provider.

If you do not specify a <cics_mtom_handler> element in the pipeline configuration file, or if a SOAP
message is received instead of an MTOM message, this container is not created.

If web services security is configured in the pipeline, or if validation is switched on for a web service, the
contents of field XOP_MODE in DFHWS-MTOM-IN can be overridden by CICS when the container is
created. For example, if you configure the pipeline to process the content of MTOM messages in direct
mode, and you then switch validation on for the web service, CICS overrides the defined value in the
pipeline configuration file and sets the XOP processing to run in compatibility mode. CICS performs the
override because of the restrictions in support for processing XOP documents and binary attachments in
the pipeline.

You cannot change the contents of this container.

Table 9. Structure of the DFHWS-MTOM-IN container

Field name
Length
(bytes) Contents

MTOM_STATUS 4 Contains the value "1", indicating that the message received
by CICS is in MTOM format.

MTOMNOXOP_STATUS 4 Contains one of the following values:
0

The MTOM message contains binary attachments.
1

The MTOM message does not contain binary
attachments.

XOP_MODE 4 Contains one of the following values:
0

No XOP processing takes place.
1

XOP processing takes place in compatibility mode.
2

XOP processing takes place in direct mode.

DFHWS-MTOM-OUT container
DFHWS-MTOM-OUT is a container of DATATYPE(BIT) that holds information about the specified options
for the <cics_mtom_handler> element of the pipeline configuration file.

It contains the information to process an outbound MTOM message in the pipeline, whether it is a
response message for a web service requester or a request message for a web service provider.

154 CICS TS for z/OS: Using Web Services with CICS

If you do not specify a <cics_mtom_handler> element in the pipeline configuration file, or if the
<mtom_options> element in the pipeline configuration file has the attribute send_mtom="no", this
container is not created.

In provider mode, this container is created at the same time as the DFHWS-MTOM-IN container. If the
<mtom_options> element in the pipeline configuration file has the attribute send_mtom="same", the
MTOM_STATUS field is set to indicate whether the web service requester wants an MTOM or SOAP
response message.

If web services security is configured in the pipeline, or if validation is switched on for a web service, the
XOP_MODE field of DFHWS-MTOM-OUT can be changed by CICS when the container is created. For
example, if you configure the pipeline to process the XOP document and any binary attachments using
direct mode, and you then switch validation on for a web service, CICS overrides the defined value in the
pipeline configuration file and sets the XOP processing to run in compatibility mode when it creates the
container. CICS performs the override because of restrictions in support for processing XOP documents
and binary attachments in the pipeline.

You cannot change the contents of this container.

Table 10. Structure of the DFHWS-MTOM-OUT container

Field name
Length
(bytes) Contents

MTOM_STATUS 4 Indicates whether MTOM is enabled:
0

MTOM is not enabled. The outbound message is sent in SOAP
format.

1
MTOM is enabled. The outbound message is sent in MTOM
format.

MTOMNOXOP_STATUS 4 Indicates whether to use MTOM when there are no binary
attachments:
0

Do not send an MTOM message when there are no binary
attachments.

1
Send an MTOM message when there are no binary
attachments.

XOP_MODE 4 Indicates what XOP processing should take place:
0

No XOP processing takes place.
1

XOP processing takes place in compatibility mode.
2

XOP processing takes place in direct mode.

DFHWS-WSDL-CTX container
DFHWS-WSDL-CTX is a container of DATATYPE(CHAR) that is used in either a service provider or a service
requester application deployed with the CICS web services assistant. It holds WSDL context information
that can be used for monitoring purposes.

DFHWS-WSDL-CTX holds the following context information for the WSDL document:

• The name and namespace of the operation for which the application is being invoked.
• If known, the name and namespace for the WSDL 1.1 port or WSDL 2.0 endpoint that is being used.

Chapter 2. Configuring web services in CICS 155

These values are separated by space characters. DFHWS-WSDL-CTX is populated by CICS only at runtime
level 2.1 and later.

If you used the CICS web services assistant to deploy your application, this container is populated by
CICS:

• In a service provider pipeline, this container is populated by the DFHPITP application handler when it
receives the inbound message from the terminal handler.

• In a service requester pipeline, this container is populated when the application uses the INVOKE
SERVICE command.

If the application uses the DFHPIRT program to start the pipeline, the application populates the DFHWS-
WSDL-CTX container if required.

DFHWS-XOP-IN container
DFHWS-XOP-IN is a container of DATATYPE(BIT). It contains a list of references to the binary
attachments that have been unpackaged from an inbound MIME message and placed in containers using
XOP processing.

Each attachment record in the DFHWS-XOP-IN container consists of these items:

• The 16-byte name of the container that holds the MIME headers for the binary attachment
• The 16-byte name of the container that holds the binary attachment
• The 2-byte length of the content-ID, in signed halfword binary format
• The content-ID, including the < and > delimiters, stored as an ASCII character string

You cannot change the contents of this container.

DFHWS-XOP-OUT container
DFHWS-XOP-OUT is a container of DATATYPE(BIT). It contains a list of references to the containers that
hold binary attachments. The binary attachments are packaged into an outbound MIME message by the
MTOM handler program.

Each attachment record in the DFHWS-XOP-OUT container consists of these items:

• The 16-byte name of the container that holds the MIME headers for the binary attachment
• The 16-byte name of the container that holds the binary attachment
• The 2-byte length of the content-ID, in signed halfword binary format
• The content-ID, including the < and > delimiters, stored as an ASCII character string

You cannot change the contents of this container.

The header processing program containers
The CICS-provided SOAP 1.1 and SOAP 1.2 message handlers link to the header processing programs
using channel DFHHHC-V1. The containers that are passed on the channel include several that are
specific to the header processing program interface, and sets of context containers and user containers
that are accessible to all the header processing programs and message handler programs in the pipeline.

Container DFHHEADER is specific to the header processing program interface. Other containers are
available elsewhere in your pipeline, but have specific uses in a header processing program. The
containers in this category are DFHWS-XMLNS, DFHWS-BODY, and DFHXMLSS-PARSE.

Note: Although web service that use Axis2 to process SOAP messages can use the header processing
program interface, it is more efficient to write your own Axis2 handlers in Java to process the SOAP
headers. For more information on creating Axis2 handlers, see Writing Your Own Axis2 Module

Container DFHHEADER

When the header processing program is called, DFHHEADER contains the single header block that caused
the header processing program to be driven. When the header program is specified with
<mandatory>true</mandatory> or <mandatory>1</mandatory> in the pipeline configuration file,

156 CICS TS for z/OS: Using Web Services with CICS

http://axis.apache.org/axis2/java/core/docs/modules.html

it is called even when there is no matching header block in the SOAP message. In this case, container
DFHHEADER has a length of zero. This is the case when a header processing program is called to add a
header block to a SOAP message that does not have header blocks.

The SOAP message that CICS creates has no headers initially. If you want to add headers to your
message, you must ensure that at least one header processing program is called, by specifying
<mandatory>true</mandatory> or <mandatory>1</mandatory>.

When the header program returns, container DFHHEADER must contain zero, one, or more header blocks
that CICS inserts in the SOAP message in place of the original:

• You can return the original header block unchanged.
• You can modify the contents of the header block.
• You can append one or more new header blocks to the original block.
• You can replace the original header block with one or more different blocks.
• You can delete the header block completely.

Container DFHWS-XMLNS
When the header processing program is called, DFHWS-XMLNS contains information about XML
namespaces that are declared in the SOAP envelope. The header program can use this information to
perform the following tasks:

• Resolve qualified names that it encounters in the header block
• Construct qualified names in new or modified header blocks.

The namespace information consists of a list of namespace declarations, which use the standard XML
notation for declaring namespaces. The namespace declarations in DFHWS-XMLNS are separated by
spaces. For example:

xmlns:na='http://abc.example.org/schema' xmlns:nx='http://xyz.example.org/schema'

You can add further namespace declarations to the SOAP envelope by appending them to the contents of
DFHWS-XMLNS. However, namespaces whose scope is a SOAP header block or a SOAP body are best
declared in the header block or the body respectively. You are advised not to delete namespace
declarations from container DFHWS-XMLNS in a header processing program, because XML elements that
are not visible in the program may rely on them.

Container DFHWS-BODY
This container contains the body section of the SOAP envelope. The header processing program can
modify the contents.

When the header processing program is called, DFHWS-BODY contains the SOAP <Body> element.

When the header program returns, container DFHWS-BODY must again contain a valid SOAP <Body>,
which CICS inserts in the SOAP message in place of the original:

• You can return the original body unchanged.
• You can modify the contents of the body.

You must not delete the SOAP body completely, as every SOAP message must contain a <Body> element.

Container DFHXMLSS-PARSE
When you use either the <cics_soap_1.1_handler> or <cics_soap_1.2_handler> elements in
your pipeline configuration, and header program is called, DFHXMLSS-PARSE contains the XML System
Services (XMLSS) records for that header. This container is not created when
<cics_soap_1.1_handler_java> or <cics_soap_1.2_handler_java> elements are used.

Chapter 2. Configuring web services in CICS 157

Control, context, and user containers
As well as the containers described, the interface passes the control containers, context containers, and
user containers on channel DFHHHC-V1.

For more information about these containers, see “Containers used in the pipeline” on page 135.

Security containers
Security containers are used on the DFHWSTC-V1 channel to send and receive identity tokens from a
Security Token Service (STS) such as Tivoli® Federated Identity Manager. This interface is called the Trust
client interface and can be used in web service requester and provider pipelines.

DFHWS-IDTOKEN container
DFHWS-IDTOKEN is a container of DATATYPE(CHAR). It contains the token that the Security Token
Service (STS) either validates or uses to issue an identity token for the message.

The token must be in XML format.

Use this container only with channel DFHWSTC-V1 for the Trust client interface.

DFHWS-RESTOKEN container
DFHWS-RESTOKEN is a container of DATATYPE(CHAR). It contains the response from the Security Token
Service (STS).

The response depends on the action that was requested from the STS in the DFHWS-STSACTION
container.

• If the action is issue, this container holds the token that the STS has exchanged for the one that was
sent in the DFHWS-IDTOKEN container.

• If the action is validate, this container holds a URI to indicate whether the security token that was sent
in the DFHWS-IDTOKEN container is valid or not valid. The URIs that can be returned are as follows:

URI Description

http://schemas.xmlsoap.org/ws/2005/02/trust/status/
valid

The security token is valid.

http://schemas.xmlsoap.org/ws/2005/02/trust/status/
invalid

The security token is not valid.

This container is returned on the channel DFHWSTC-V1 when using the Trust client interface.

DFHWS-SERVICEURI container
DFHWS-SERVICEURI is a container of DATATYPE(CHAR). It contains the URI that the Security Token
Service (STS) uses as the AppliesTo scope.

The AppliesTo scope is used to determine the web service with which the security token is associated.

Use this container only with channel DFHWSTC-V1 for the Trust client interface.

DFHWS-STSACTION container
DFHWS-STSACTION is a container of DATATYPE(CHAR). It contains the URI of the action that the Security
Token Service (STS) takes to either validate or issue a security token.

The URI values that you can specify in this container are as follows:

URI Description

http://schemas.xmlsoap.org/ws/
2005/02/trust/Issue

The STS issues a token in exchange for the one that is
sent in the DFHWS-IDTOKEN container.

http://schemas.xmlsoap.org/ws/
2005/02/trust/Validate

The STS validates the token that is sent in the DFHWS-
IDTOKEN container.

158 CICS TS for z/OS: Using Web Services with CICS

Use this container only with channel DFHWSTC-V1 for the Trust client interface.

DFHWS-STSFAULT container
DFHWS-STSFAULT is a container of DATATYPE(CHAR). It contains the error that was returned by the
Security Token Service (STS).

If an error occurs, the STS issues a SOAP fault. The contents of the SOAP fault are returned in this
container.

This container is returned on the channel DFHWSTC-V1 when using the Trust client interface.

DFHWS-STSREASON container
DFHWS-STSREASON is a container of DATATYPE(CHAR). It contains the contents of the <wst:Reason>
element, if this element is present in the response message from the Security Token Service (STS).

The <wst:Reason> element contains an optional string that provides information relating to the status of
the validation request that was sent to the STS by CICS. If the security token is not valid, the information
provided by the STS in this element can help you to determine why the token is not valid.

For more information, see the Web Services Trust Language specification that is published at OASIS WS-
Trust v1.4 Standard.

DFHWS-STSURI container
DFHWS-STSURI is a container of DATATYPE(CHAR). It contains the absolute URI of the Security Token
Service (STS) that is used to validate or issue an identity token for the SOAP message.

The format of the URI is http://www.example.com:8080/TrustServer/SecurityTokenService.
You can use HTTP or HTTPS, depending on your security requirements.

Use this container only with channel DFHWSTC-V1 for the Trust client interface.

DFHWS-TOKENTYPE container
DFHWS-TOKENTYPE is a container of DATATYPE(CHAR). It contains the URI of the requested token type
that the Security Token Service (STS) issues as an identity token for the SOAP message.

You can specify any valid token type, but it must be supported by the STS.

Use this container only with channel DFHWSTC-V1 for the Trust client interface.

SAML support containers
The read-only containers that are used by CICS SAML support.

In the following topics, nnn means that there might be more than one container. Containers are
numbered 001 to nnn (the number of containers of this type returned). More than 999 containers of a
particular type are not supported and the data in the SAML assertion that relates to them is ignored.
Containers that are not mapped to a DSECT are variable length.

DFHSAML-AnnnVmmm container
DFHSAML-AnnnVmmm is a container of DATATYPE(CHAR). It contains Attribute Value mmm for attribute
nnn, where nnn and mmm are 3-digit numbers.

The number of attributes is SAMLC-ATTRNUM in DFHSAML-COUNTS container.

The number of values for this attribute is in DFHSAML-ATTRAnnn.

DFHSAML-ASSQNAME container
DFHSAML-ASSQNAME is a container of DATATYPE(CHAR). It contains the SAML Assertion namespace.

Possible values are
SAML 1.1

urn:oasis:names:tc:SAML:1.0:assertion
SAML 2.0

urn:oasis:names:tc:SAML:2.0:assertion

Chapter 2. Configuring web services in CICS 159

http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/errata01/ws-trust-1.4-errata01-complete.html
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/errata01/ws-trust-1.4-errata01-complete.html

This assertion must be a URI. If the assertion is more complex, it extracts into the 3 parts.

DFHSAML-ATTRAnnn container
DFHSAML-ATTRAnnn is a container of DATATYPE(BIT). It contains a BIN(31) field with the number of
values for attribute nnn. The maximum number of values is 999.

The number of attributes is SAMLC-ATTRNUM in DFHSAML-COUNTS container.

DFHSAML-ATTRFnnn container
DFHSAML-ATTRFnnn is a container of DATATYPE(CHAR). It contains the Attribute name format for
attribute nnn, where nnn is a 3-digit number.

The number of attributes is SAMLC-ATTRNUM in DFHSAML-COUNTS container.

DFHSAML-ATTRNnnn container
DFHSAML-ATTRNnnn is a container of DATATYPE(CHAR). It contains the Attribute Name for attribute
nnn, where nnn is a 3-digit number.

The number of attributes is SAMLC-ATTRNUM in DFHSAML-COUNTS container.

DFHSAML-ATTRSnnn container
DFHSAML-ATTRSnnn is a container of DATATYPE(CHAR). It contains the Attribute Name Space for
attribute nnn, where nnn is a 3-digit number.

The number of attributes is SAMLC-ATTRNUM in DFHSAML-COUNTS container.

DFHSAML-ATTRYnnn container
DFHSAML-ATTRYnnn is a container of DATATYPE(CHAR). It contains the Attribute Friendly name for
attribute nnn, where nnn is a 3-digit number.

The number of attributes is SAMLC-ATTRNUM in DFHSAML-COUNTS container.

DFHSAML-AUDNRnnn container
DFHSAML-AUDNRnnn is a container of DATATYPE(CHAR). It contains the AudienceRestriction name.

The number of containers returned is AUDNRNUM.

DFHSAML-AUTHMETH container
DFHSAML-AUTHMETH is a container of DATATYPE(CHAR). It contains the method that is used to
authenticate the token holder.

Methods include password, Kerberos, and ltpa.

DFHSAML-CERTIDN container
DFHSAML-CERTIDN is a container of DATATYPE(CHAR). It contains the issuer's distinguished name of the
SAML signer's X.509 Certificate.

DFHSAML-CERTSDN container
DFHSAML-CERTSDN is a container of DATATYPE(CHAR). It contains the subject's distinguished name of
the SAML signer's X.509 Certificate.

DFHSAML-CERTSNUM container
DFHSAML-CERTSNUM is a container of DATATYPE(CHAR). It is an eight-character field that contains the
SAML signer's X.509 Certificate serial number.

DFHSAML-CONFMETH container
DFHSAML-CONFMETH is a container of DATATYPE(CHAR). It contains the SubjectConfirmation method
that is used in this SAML token.

Valid methods are holder-of-key, bearer, or sender-vouches. The returned string is based on the OASIS
SAML token profile 1.1 and 2.0.

Note: SAML tokens that have more than one confirmation method are not supported. If there is more than
one confirmation method, the results are unpredictable.

160 CICS TS for z/OS: Using Web Services with CICS

DFHSAML-COUNTS container
DFHSAML-COUNTS is a container of DATATYPE(BIT). It contains the number of variable length containers
output.

DFHSAML-FLAGS container
DFHSAML-FLAGS is a container of DATATYPE(CHAR). It contains a collection of flag bytes.

DFHSAML-ISSUER container
DFHSAML-ISSUER is a container of DATATYPE(CHAR). It contains the name of the issuer.

DFHSAML-NAMID container
DFHSAML-NAMID is a container of DATATYPE(CHAR). It contains the value of the name format property.

DFHSAML-NAMIDF container
DFHSAML-NAMIDF is a container of DATATYPE(CHAR). It contains a URI reference that represents the
classification of string-based identifier information.

DFHSAML-NAMIDQ container
DFHSAML-NAMIDQ is a container of DATATYPE(CHAR). It contains the security or administrative domain
that qualifies the name.

DFHSAML-NAMIDSP container
DFHSAML-NAMIDSP is a container of DATATYPE(CHAR). It contains the name identifier that is
established by a service provider or affiliation of providers of the entity.

DFHSAML-NAMIDSPQ container
DFHSAML-NAMIDSPQ is a container of DATATYPE(CHAR). It contains the name of a service provider or
affiliation of providers.

DFHSAML-OUTTOKEN container
DFHSAML-OUTTOKEN is a container of DATATYPE(CHAR). It contains a SAML token.

If this is an input container, it contains the previously validated token, which is being routed to another
service provider, or extended and then routed.

If this is an output container, it contains a SAML token output by DFHSAML processing. If the processing
is validation or extraction, this token is the validated,extracted, or modified and resigned token.

DFHSAML-PROXYnnn container
DFHSAML-PROXYnnn is a container of DATATYPE(CHAR). It contains the ProxyRestriction Audience
name.

DFHSAML-RESPONSE container
DFHSAML-RESPONSE is a container of DATATYPE(BIT). It contains a response code that is used
internally.

DFHSAML-SAMLID container
DFHSAML-SAMLID is a container of DATATYPE(CHAR). It contains a string that represents the ID for
SAML 2.0, or AssertionID for SAML 1.1.

DFHSAML-SUBJADDR container
DFHSAML-SUBJADDR is a container of DATATYPE(CHAR). It contains the IP address in SubjectLocality.

Restriction: This container is not returned for SAML 2.0.

Chapter 2. Configuring web services in CICS 161

DFHSAML-SUBJDNS container
DFHSAML-SUBJDNS is a container of DATATYPE(CHAR). It contains the DNSAddress in SubjectLocality.

DFHSAML-TIMES container
DFHSAML-TIMES is a container of DATATYPE(CHAR). It contains a collection of time values.

Containers generated by CICS
CICS generates containers to store data such as variable arrays and long strings. These containers are
created during pipeline processing and are used as input to, or output from, the application program.
These containers are prefixed with DFH.

The naming convention for these containers is to use the CICS module that created them, combined with
a numeric suffix to make the container name unique in the request. These container names occur during
pipeline processing:
DFHPIAXIS-nnnnnn

Containers that are used to store strings and variable arrays that are passed to the application in
Axis2 pipelines. This container can also include binary data.

DFHPICC-nnnnnnnn
Containers that are used to store strings and variable arrays that are passed to the application. This
container can also include binary data.

DFHPIII-nnnnnnnn
Outbound attachment containers created when the pipeline is enabled with the MTOM message
handler and is running in direct mode. These containers are created when binary data is provided in a
field rather than in a container by the application program.

DFHPIMM-nnnnnnnn
Inbound attachment containers created during the processing of MIME messages. These containers
are generated by CICS when the MTOM message handler is enabled in the pipeline. When direct mode
processing is enabled, these containers can be passed through to the application directly.

DFHPIXO-nnnnnnnn
Outbound attachment containers created when the pipeline is enabled with the MTOM message
handler and is running in compatibility mode.

The numbered container names start from 1 for each web service request; for example,
DFHPICC-00000001. However, if an application program uses the INVOKE SERVICE command to
initiate more than one web service request in the same channel, the containers that were returned to the
application for one response might still exist when a further request is made. In this situation, CICS
checks to see if the container already exists and increments the number of the generated container to
avoid a naming conflict.

User containers
These containers contain information that one message handler needs to pass to another. The use of user
containers is entirely a matter for the message handlers. You can choose your own names for these
containers, but you must not use names that start with DFH.

Runtime processing for web services
To send a request to a web service provider or to receive a request from a web service requester, your
application (or wrapper program) must interact correctly with the web services support in CICS. You can
also control the processing that takes place in the pipeline to determine how the inbound and outbound
requests are handled.

How CICS invokes a service provider program deployed with the web services assistant
When a service provider application that has been deployed using the CICS web services assistant is
invoked, CICS links to it with a COMMAREA or a channel.

You specify which sort of interface is used when you run JCL procedure DFHWS2LS or DFHLS2WS with
the PGMINT parameter. If you specify a channel, you can name the container in the CONTID parameter.

162 CICS TS for z/OS: Using Web Services with CICS

• If the program is invoked with a COMMAREA interface, the COMMAREA contains the top level data
structure that CICS created from the SOAP request.

• If the program is invoked with a channel interface, the top level data structure is passed to your
program in the container that was specified in the CONTID parameter of DFHWS2LS or DFHLS2WS. If
you did not specify the CONTID parameter, the data is passed in container DFHWS-DATA. The channel
interface supports arrays with varying numbers of elements, which are represented as series of
connected data structures in a series of containers. These containers will also be present.

When you code API commands to work with the containers, you do not need to specify the CHANNEL
option, because all the containers are associated with the current channel (the channel that was passed
to the program). If you need to know the name of the channel, use the EXEC CICS ASSIGN CHANNEL
command.

When your program has processed the request, it must use the same mechanism to return the response:
if the request was received in a COMMAREA, then the response must be returned in the COMMAREA; if
the request was received in a container, the response must be returned in the same container.

If an error is encountered when the application program is issuing a response message, CICS rolls back
all of the changes unless the application has performed a syncpoint.

If the web service provided by your program is not designed to return a response, CICS will ignore
anything in the COMMAREA or container when the program returns.

Invoking a web service from an application deployed with the web services assistant
A service requester application that is deployed with the web services assistant uses the EXEC CICS
INVOKE SERVICE command to invoke a web service. The request and response are mapped to a data
structure in container DFHWS-DATA. This method of invoking a service is not supported for JSON.

Procedure

1. Create a channel and populate it with containers.
At the minimum, container DFHWS-DATA must be present. DFHWS-DATA holds the top level data
structure that CICS will convert into a SOAP request. If the SOAP request contains any arrays that have
varying numbers of elements, they are represented as a series of connected data structures in a series
of containers. These containers must also be present in the channel.

2. Invoke the target web service.
Use the following command:

EXEC CICS INVOKE SERVICE(webservice)
 CHANNEL(userchannel)
 OPERATION(operation)

where:

• webservice is the name of the WEBSERVICE resource that defines the web service to be invoked.
The WEBSERVICE resource specifies the location of the web service description and the web service
binding file that CICS uses when it communicates with the web service.

• userchannel is the channel that holds container DFHWS-DATA and any other containers
associated with the application's data structure.

• operation is the name of the operation that is to be invoked in the target web service.

For more information, see “Local optimization for web services” on page 164.
3. If the command was successful, retrieve the response containers from the channel.

At the minimum, container DFHWS-DATA will be present. It holds the top level data structure that
CICS created from the SOAP response. If the response contains any arrays that have varying numbers
of elements, they are a represented as series of connected data structures in a series of containers.
These containers will be present in the channel.

4. If the service requester receives a SOAP fault message from the invoked web service, you must decide
if the application program should roll back any changes.

Chapter 2. Configuring web services in CICS 163

If a SOAP fault occurs, an INVREQ error with a RESP2 value of 6 is returned to the application
program. However, if optimization is in effect, the same transaction is used in both the requester and
provider. If an error occurs in a locally optimized web service provider, all of the work done by the
transaction rolls back in both the provider and the requester. An INVREQ error is returned to the
requester with a RESP2 value of 16.

Local optimization for web services
You can use the provider application name in the web service binding file associated with the
WEBSERVICE resource to enable local optimization of the web service request.

Using the INVOKE SERVICE command, you can specify the URIMAP(urimap) or URI(uri) where the uri is
the URI of the web service to be invoked. If a URIMAP is specified, CICS uses the client mode URIMAP
indicated to resolves the URI. If these options are omitted, CICS uses the URI specified in the web service
description (WSDL) from which the WEBSERVICE was generated.

If the WEBSERVICE indicated is deployed in a requester mode PIPELINE, CICS invokes the remote web
service. This is the most typical scenario.

If the WEBSERVICE indicated is deployed in a provider mode PIPELINE, CICS invokes the service locally.
If you use this optimization, the EXEC CICS INVOKE SERVICE command is optimized to an EXEC CICS
LINK command. This results in significant performance benefits, but introduces the following limitations:

• The PIPELINE is not driven and therefore no handler programs are used.
• The PIPELINE control containers are not present on the Channel. Some containers are present,

including the DFHWS-DATA, DFHWS-OPERATION and DFHWS-URI containers. Any containers that
normally contain XML are not present; this includes the DFH-REQUEST, DFHWS-BODY and DFHWS-
XMLNS containers.

• Both the provider and requester applications must share the same copybooks and be implemented in
the same programming language.

• Both the provider and requester applications share a single unit of work.
• If the web service is not expected to return a response, the EXEC CICS INVOKE SERVICE command

does not return control to the application until after the target PROGRAM has ended.

If you want to use locally optimized web services but require data to be processed through a PIPELINE,
use the cics URI format described here: “Options for controlling requester pipeline processing” on page
167. This mechanism is less efficient than using the fully optimized approach, but it avoids the processing
cost of going out to the network.

Runtime limitations for code generated by the web services assistant
At runtime, CICS is capable of transforming almost any valid SOAP message that conforms to the web
service description (WSDL) into the equivalent data structures. However, there are some limitations that
you should be aware of when developing a service requester or service provider application using the web
services assistant batch jobs.

Code pages

CICS can support SOAP messages sent to it in any code page if there is an appropriate HTTP or
WebSphere MQ header identifying the code page. CICS converts the SOAP message to UTF-8 to process it
in the pipeline, before transforming it to the code page required by the application program. To minimize
the performance impact, it is recommended that you use the UTF-8 code page when sending SOAP
messages to CICS. CICS always sends SOAP messages in UTF-8.

CICS can only transform SOAP messages if the application data is encoded in EBCDIC or UTF-16.
Applications that expect data to be encoded in code pages such as UTF-8, ASCII and ISO8859-1 are
unsupported. If you want to use DBCS characters within your data structures and SOAP messages, then
you must specify a code page that supports DBCS. The EBCDIC code page that you select must also be
supported by both Java and z/OS conversion services. z/OS conversion services must also be configured
to support the conversion from the code page of the SOAP message to UTF-8. See Support for UTF-16 in
application data for more information on UTF-16 support.

164 CICS TS for z/OS: Using Web Services with CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/dfhws_unicode.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/dfhws_unicode.html

To set an appropriate code page, you can either use the LOCALCCSID system initialization parameter or
the optional CCSID parameter in the web services assistant jobs. If you use the CCSID parameter, the
value that you specify overrides the LOCALCCSID code page for that particular web service. If you do not
specify the CCSID parameter, the LOCALCCSID code page is used to convert the data and the web
service binding file is encoded in US EBCDIC (Cp037).

Containers

In service provider mode, if you specify that the PGMINT parameter has a value of CHANNEL, then the
container that holds your application data must be written to and read from in binary mode. This
container is DFHWS-DATA by default. The PUT CONTAINER command must either have the DATATYPE
option set to BIT, or you must omit the FROMCCSID option so that BIT remains the default. For example,
the following code explicitly states that the data in the container CUSTOMER-RECORD on the current
channel should be written in binary mode.

EXEC CICS PUT CONTAINER (CUSTOMER-RECORD)
 FROM (CREC)
 DATATYPE(BIT)

Although the containers themselves are all in BIT mode, any text fields within the language structure that
map this data must use an EBCDIC code page - the same code page as you have specified in the
LOCALCCSID or CCSID parameter. If you are using DFHWS2LS to generate the web service binding file,
there could be many containers on the channel that hold parts of the complete data structure. If this is
the case, then the text fields in each of these containers must be read from and written to using the same
code page.

If the application program is populating containers that are going to be converted to SOAP messages, the
application is responsible for ensuring that the containers have the correct amount of content. If a
container holds less data than expected, CICS issues a conversion error.

If an application program uses the INVOKE SERVICE command, then any containers it passes to CICS
could potentially be reused and the data within them replaced. If you want to keep the data in these
containers, create a new channel and copy the containers to it before you run the program. If you have a
provider mode web service that is also a requester mode web service, it is recommended that you use a
different channel when using the INVOKE SERVICE command, rather than using the default channel that
it was originally attached to. If your application program is using the INVOKE SERVICE command many
times, it is recommended that you either use different channels on each call to CICS, or ensure that all the
important data from the first request is saved before making the second request.

Conforming with the web services description

A web service description could describe some of the possible content of a SOAP message as optional. If
this is the case, DFHWS2LS allocates fields within the generated language structure to indicate whether
the content is present or not. At runtime, CICS populates these fields accordingly. If a field, for example
an existence flag or an occurrence field, indicates that the information is not present, the application
program should not attempt to process the fields associated with that optional content.

If a SOAP message is missing some of its content when CICS transforms it, the equivalent fields within
the data structures are not initialized when passed to the application program.

A web service description can also specify the white space processing rules to use when reading a SOAP
message, and CICS implements these rules at runtime.

• If the value of the xsd:whiteSpace facet is replace, the white space characters such as "tab" and
"carriage return" are replaced with spaces.

• If the value of the xsd:whiteSpace facet is collapse, any trailing white space characters are
removed when generating SOAP messages. At runtime, inbound SOAP messages are parsed according
to the XML Schema specification and all leading, trailing, and embedded white space is removed.

Chapter 2. Configuring web services in CICS 165

SOAP messages

CICS does not support SOAP message content derivation. For example, a SOAP message could use the
xsi:type attribute to specify that an element has a particular type, together with an
xsi:schemaLocation attribute to specify the location of the schema that describes the element. CICS
does not support the capability of dynamically retrieving the schema and transforming the value of the
element based on the content of the schema. CICS does support the xsi:nil attribute when the
mapping level set in the web services assistant is 1.1 or higher, but this is the only XML schema instance
attribute that is supported.

DFHWS2LS might have to make assumptions about the maximum length or size of some values in the
SOAP message. For example, if the XML schema does not specify a maximum length for an xsd:string,
then DFHWS2LS assumes that the maximum length is 255 characters and generates a language structure
accordingly. You can change this value by using the DEFAULT-CHAR-MAXLENGTH parameter in
DFHWS2LS. At runtime, if CICS encounters a SOAP message with a value that is larger than the space that
has been allocated in the language structure, CICS issues a conversion error.

If CICS is the service provider, a SOAP fault message is returned to the requester. If CICS is the service
requester, then an appropriate RESP2 code is returned from the INVOKE SERVICE command.

Some characters have special meanings in XML, such as the < and > characters. If any of these special
characters appear within a character array that is processed by CICS at runtime, then it is replaced with
the equivalent entity. The XML entities that are supported are:

Character XML entity

& &

< <

> >

" "

' '

CICS also supports the canonical forms of the numeric character references used for white space codes:

Character XML entity

Tab 	

Carriage return

Line feed 

Note that this support does not extend to any pipeline handler programs that are invoked.

The null character (x'00') is invalid in any XML document. If a character type field that is provided by the
application program contains the null character, CICS truncates the data at that point. This allows you to
treat character arrays as null terminated strings. Character type fields generated by DFHWS2LS from
base64Binary or hexBinary XML schema data types represent binary data and could contain null
characters without truncation.

Attention: CICS generates XML and JSON data from structured application data. If that
application data contains bit patterns that look like preformatted XML, JSON, HTML, JPEG images,
or any other meaningful content type, CICS is unaware of this semantic meaning, and processes
such data as ordinary text or binary data. CICS does not attempt to recognize patterns in the data,
or to process encoded data differently. For example, if the data contains pre-formatted XML (such
as CDATA encoded text), that data is processed in the same way as any other data. Consider the
following application data: "An example: <here>". This example application-supplied data
contains what looks like an XML tag, but it will be processed as raw text, resulting in the following
XML representation: "An example: < here > ". If an application needs to generate

166 CICS TS for z/OS: Using Web Services with CICS

XML itself, consider using xsd:any constructs in your XML schemas, or using XML-ONLY=TRUE in
the Assistants.

SOAP fault messages

If CICS is the service provider, and you want the application program to issue a SOAP fault message, use
the SOAPFAULT CREATE command. In order to use this API command, you must specify that the web
services assistant PGMINT parameter has a value of CHANNEL. If you do not specify this value, and the
application program invokes the SOAPFAULT CREATE command, CICS does not attempt to generate a
SOAP response message.

Customizing pipeline processing
In addition to providing your own message handlers, you can also use a set of global user exit points
(GLUEs) to customize the processing that occurs for inbound and outbound web services in the pipeline.

Before you begin
You must understand the best practices for writing global user exit programs before customizing the
pipeline. If you are customizing a service provider pipeline, you must be using the supplied DFHPITP or
Axis2 application handler in your pipeline.

About this task
You can use the pipeline domain exits to access containers on a web services provider pipeline, a web
services requester pipeline, or a web services requester pipeline that contains a security handler. The
pipeline global user exits are described in detail in Pipeline domain exits.

Procedure

1. Select which global user exit points to use:

• Use XWSPRRWI, XWSPRROI, XWSPRROO, or XWSPRRWO GLUEs to access containers in a web
services provider pipeline.

• Use XWSRQRWO, XWSRQROO, XWSROROI, or XWSRQRWI GLUEs to access containers in a web
services requester pipeline.

• Use XWSSRRWO, XWSSRROO, XWSSRROI, or XWSSRRWI GLUEs to access containers in a secured
web services requester pipeline.

2. Use the DFH$PIEX sample exit program to write your own global user exit program.
DFH$PIEX is in the SDFHSAMP library. You are recommended to make the program threadsafe.

3. Enable the global user exit program.
4. Test your global user exit program to ensure it works correctly.

Options for controlling requester pipeline processing
In service requester pipelines, message handlers can determine where the web service request is sent by
changing the URI. CICS provides support for different URI formats so that you have much more flexibility
in the way that the pipeline processes web service requests.

When the service requester pipeline reaches the end of its processing, you have the following options:

Linking to a program
If you change the URI to the format cics://PROGRAM/program, where program is the name of the
target application program, CICS passes the current channel and its containers or COMMAREA to the
program using an EXEC CICS LINK command.
This processing is similar to the local optimization that occurs when the service requester and service
provider applications are in the same CICS region. However, using this URI format provides the
benefit of running the request through the pipeline and any custom message handlers first. The target
application program must be able to handle the contents of the containers or COMMAREA.

Chapter 2. Configuring web services in CICS 167

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-programming/user-exits/dfha3_pipelines.html

Starting another requester mode pipeline
If you change the URI to the format cics://PIPELINE/pipeline?
targetServiceUri=targetServiceUri, where pipeline is the name of a PIPELINE resource and
targetServiceUri is the URI that you want to put in the DFHWS-URI container, CICS passes the current
channel and its containers to the specified requester pipeline. Use this URI when you want to link two
or more requester pipelines together before sending the request to the service provider. The number
of requester pipelines that you can chain together is not limited.
In the following example, one generic requester pipeline supports one application. Message handlers
1 or 2 can change the URI for each request depending on the application data in the containers,
sending the request to one of two requester pipelines that contain different message handlers.

Although the example shows only one service requester application, many applications could use the
same generic requester pipeline and have their requests sent to different requester pipelines before
the request is finally sent to the appropriate web service provider.

Sending the request straight to the provider mode pipeline
If you change the URI to the format cics://SERVICE/service?
targetServiceUri=targetServiceUri, where service is the name of the target service and
targetServiceUri is the path to the service, CICS resolves the request by matching the path to a
URIMAP and passes the request to the correct provider pipeline. Use this option when you want to
take advantage of processing the request through both the requester and provider pipelines without
using the network.
This URI might also be useful where the requester and provider applications are written in different
languages, or use different mapping levels, and expect different binary data.

Controlling requester pipeline processing using a URI
In service requester pipelines, a message handler can determine where to send the web service request
by changing the URI. By changing the URI format, you can choose to perform certain optimizations, such
as starting another requester pipeline or starting a service provider pipeline without sending the request
over the network.

Before you begin
Decide which options you want to implement in your requester pipeline. See “Options for controlling
requester pipeline processing” on page 167 for details.

About this task
The web service requester application can populate the DFHWS-URI container using the EXEC CICS
INVOKE SERVICE command or, if no value is supplied by the application, CICS populates the container
using the value in the web service binding file. To modify the URI, you must write a message handler that
changes the contents of this container.

Procedure

1. Write a message handler to modify the DFHWS-URI container according to one of the following URI
formats:

168 CICS TS for z/OS: Using Web Services with CICS

• To link to an application program, use the URI cics://PROGRAM/program, where program is the
target application program. No data transformation takes place, so you must ensure that the
application program can process the contents of the containers on the current channel. The
application program can pass either the current channel and containers or a COMMAREA.

• To start a provider pipeline without going through the network, use the URI cics://SERVICE/
service?targetServiceUri=targetServiceUri, where service is the name of the service
and targetServiceUri is the path of the service. The transport handler uses the path of the service to
locate the URIMAP resource that resolves the request and passes it to the correct provider
pipeline. CICS does not use the name of the service in its processing.

An error occurs if no URIMAP resource is installed for the service. The URIMAP resource definition
must also specify USAGE(PIPELINE). The transport handler puts the value of the
targetServiceUri parameter in the DFHWS-URI container and starts the provider pipeline.

• To start another requester pipeline, use the URI cics://PIPELINE/pipeline?
targetServiceUri=targetServiceUri, where pipeline is the name of the PIPELINE resource
that you want to start and targetServiceUri is the value that you want to pass to the next pipeline in
the DFHWS-URI container.

Each type of URI has additional parameters that you can add as a query string. For more information
about the format of these URIs and the rules for coding them, see the “DFHWS-URI container” on
page 150.

2. Use an XML editor to add the message handler to the pipeline configuration file:

<service>
 <service_handler_list>
 <handler>
 <program>MYPROG</program>
 </handler>
 </service_handler_list>
</service>

3. Disable, discard, and reinstall the PIPELINE resource for the requester pipeline to include your new
message handler program in the pipeline.

4. Install the message handler program in the CICS region.

Results
The next service request to run through the requester pipeline is processed by your new message
handler.

What to do next
Test out the changes to your requester pipeline to make sure that the service requests are going to the
correct location and that your message handler program is behaving as designed.

Support for Web Services transactions
The Web Services Atomic Transaction (or WS-AtomicTransaction) specification and the Web Services
Coordination (or WS-Coordination) specification define protocols for short term transactions that enable
transaction processing systems to interoperate in a web services environment. Transactions that use WS-
AtomicTransaction have the ACID properties of atomicity, consistency, isolation, and durability.

The specifications can be found at OASIS.

Note: CICS supports the November 2004 level of the specifications.

CICS applications that are deployed as web service providers or requesters can participate in distributed
transactions with other web service implementations that support the specifications.

Chapter 2. Configuring web services in CICS 169

http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec.html

Registration services
Registration services is that part of the WS-Coordination model that enables an application to register for
coordination protocols. In a distributed transaction, the registration services in the participating systems
communicate with one another to enable the connected applications to participate in those protocols.

Figure 27. Registration services

Figure 27 on page 170 shows two CICS systems, CICS1 and CICS2. A service requester application in
CICS1 invokes a service provider application in CICS2. The two CICS regions and the applications are
configured so that the two applications participate in a single distributed transaction, using the WS-
Coordination protocols. The service requester application is the coordinator, and the service provider
application is the participant.

In support of these protocols, the registration services in the two CICS regions interact at the start of the
transaction, and again during transaction termination. During these interactions, registration services in
both regions can operate at different times as a service provider and as a requester. Therefore, in each
region, registration services use a service provider pipeline, and a service requester pipeline. The
pipelines are defined to CICS with the PIPELINE and associated resources.

The registration services in each region are associated with an endpoint address. Thus, in the example,
registration services in CICS1 has an endpoint address of requester.example.com; that in CICS2 has
an endpoint address of provider.example.com.

In a CICSplex, you can distribute the registration services provider pipeline to a different region. This is
shown in Figure 28 on page 171.

170 CICS TS for z/OS: Using Web Services with CICS

Figure 28. Registration services in a CICSPlex

In this configuration, the provider pipeline communicates with registration services using MRO or APPC.
The registration services requester pipeline must remain in the same region as the application's requester
pipeline.

This configuration is useful when your service requester and provider applications are distributed across a
large number of regions. When you configure the application's pipelines to participate in web service
transactions, you must provide information about the registration services endpoint by providing the IP
address and port number of the registration services provider pipeline. By having a single endpoint, you
can simplify configuration, because all your pipelines will contain the same information. For example, in
Figure 28 on page 171 the IP address that you specify in the application's requester pipeline is
requester.example.com.

The same arguments apply to the service provider application. In the example, the provider application's
pipeline will specify an IP address of requester.example.com.

Configuring CICS for web service transactions
For web service requester and provider applications to participate in web service transactions, you must
configure CICS accordingly by installing a number of CICS resources.

Before you begin
Before you can install these resources you must know the location of the pipeline configuration files that
CICS supplies in support of web service transactions. By default, the configuration files are supplied in
the /usr/lpp/cicsts/cicsts56/pipeline/configs directory, but the default file path might have
been changed during CICS installation.

About this task
CICS support for web service transactions uses a CICS-supplied registration service. This registration
service consists of a service provider and a service requester. You must install resources for both the

Chapter 2. Configuring web services in CICS 171

service provider and the service requester; even if your applications are all service providers or all service
requesters.

You must also install a program definition for the header handler program that is invoked when you run
your service provider and requester applications.

The resources you require to configure CICS for web service transactions are all supplied in the DFHWSAT
group, except for DFHPIDIR which is supplied in one of the following groups: DFHPIVS, DFHPIVR, or
DFHPICF. The DFHWSAT group is not included in the DFHLIST list, and therefore is not installed
automatically. You cannot change the resources supplied by CICS in the DFHWSAT group.

To configure CICS for web service transactions:

Procedure

1. Add the DFHPIDIR data set to your startup JCL.
DFHPIDIR stores a mapping between contexts and tasks.
a) Add a new DD statement for the DFHPIDIR data set to your CICS startup JCL
b) Create the DFHPIDIR data set using information in DFHDEFDS.JCL.

The default RECORDSIZE of DFHPIDIR is 1 KB, which is adequate for most uses. You can create
DFHPIDIR with a larger RECORDSIZE if you need to.

c) Install the appropriate group for the data set on your CICS system: DFHPIVS, DFHPIVR, or
DFHPICF.
For more information about these groups, see Defining the WS-AT data set.

If you want to share the DFHPIDIR file across CICS regions, the regions must be logically connected
over MRO. You must install one data set per group of regions that are acting as a logical server.

Tip: You are recommended not to share data sets between regions that are not logically connected.
2. Copy the contents of the DFHWSAT group to another group.

You cannot change the resources supplied by CICS in the DFHWSAT group. However, you must change
the CONFIGFILE attribute in the PIPELINE resources.

3. Modify the registration service's provider PIPELINE resource.
The PIPELINE is named DFHWSATP, and specifies the pipeline configuration file /usr/lpp/cicsts/
cicsts56/pipeline/configs/registrationservicePROV.xml in the CONFIGFILE attribute.
a) Change the CONFIGFILE attribute to reflect the location of the file in your system.
b) Leave the other attributes unchanged.
Use the pipeline configuration file exactly as provided; do not change its contents.

4. Install the PIPELINE resource.
The registration services provider PIPELINE resource need not be in the same CICS region as your
service requester or provider applications, but must be connected to that region with a suitable MRO
or APPC connection.

5. Without changing it, install the URIMAP that is used by the registration services provider in the same
region as the PIPELINE.
The URIMAP is named DFHRSURI.

6. Modify the registration service's requester PIPELINE resource.
The PIPELINE is named DFHWSATR, and specifies the pipeline configuration file /usr/lpp/cicsts/
cicsts56/pipeline/configs/registrationserviceREQ.xml in the CONFIGFILE attribute.
a) Change the CONFIGFILE attribute to reflect the location of the file in your system.
b) Leave the other attributes unchanged.
Use the pipeline configuration file exactly as provided; do not change its contents.

7. Install the PIPELINE resource.
The registration services requester PIPELINE resource must be in the same CICS region as the service
requester and provider applications.

172 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/cics/dfha2_def_wsatdatasets.html

8. Install the programs used by the registration service provider pipeline in the same region as your
PIPELINE resources.
The programs are DFHWSATX, DFHWSATR, and DFHPIRS. If both your PIPELINE resources are in
different regions, you must install these programs in both regions.

9. Install the PROGRAM resource definition for the header handler program.
The program is named DFHWSATH. Install the PROGRAM in the regions where your service provider
and requester applications run.

Results
CICS is now configured so that your service provider and requester applications can participate in
distributed transactions using WS-AtomicTransaction and WS-Coordination protocols.

What to do next
You must now configure each participating application individually.

Configuring a service provider for web service transactions
If a service provider application is to participate in web service transactions, the pipeline configuration file
must specify a <headerprogram> element and a <service_parameter_list> element.

Before you begin
If you want your service provider application to participate in web service transactions, it must use SOAP
protocols to communicate with the service requester, and you must configure your pipeline to use one of
the CICS-provided SOAP message handlers. Even if you have configured your service provider application
correctly, it will participate in web service transactions with the service requester only if the requester
application has been set up to participate.

About this task
In addition to the pipeline configuration information that is specific to your application, the configuration
file must contain information that CICS uses to ensure that your application participates in web service
transactions.

CICS provides an example of a pipeline configuration file containing this information in file /usr/lpp/
cicsts/cicsts56/samples/pipelines/wsatprovider.xml directory (where /usr/lpp/
cicsts/cicsts56 is the default install directory for CICS files on z/OS UNIX).

Procedure

1. In the definition of your terminal handler, code a <headerprogram> element in the
<cics_soap_1.1_handler>, <cics_soap_1.2_handler>, <cics_soap_1.1_handler_java>,
or <cics_soap_1.2_handler_java> element.
Code the <program_name>, <namespace>, <localname>, and <mandatory> elements exactly as
shown in this example:

<terminal_handler>
 <cics_soap_1.1_handler>
 <headerprogram>
 <program_name>DFHWSATH</program_name>
 <namespace>http://schemas.xmlsoap.org/ws/2004/10/wscoor</namespace>
 <localname>CoordinationContext</localname>
 <mandatory>false</mandatory>
 </headerprogram>
 </cics_soap_1.1_handler>
</terminal_handler>

Include other <headerprogram> elements if your application needs them.
2. Code a <registration_service_endpoint> element in a <service_parameter_list>.

Chapter 2. Configuring web services in CICS 173

Code the <registration_service_endpoint> as follows:

<registration_service_endpoint>
http://address:port/cicswsat/RegistrationService
</registration_service_endpoint>

address is the IP address of the CICS region where the registration service provider pipeline is
located.
port is the port number used by the registration service provider pipeline.

Code everything else exactly as shown; the string cicswsat/RegistrationService matches the
PATH attribute of URIMAP DFHRSURI:

<registration_service_endpoint>
http://provider.example.com:7160/cicswsat/RegistrationService
</registration_service_endpoint>

Configuring a service requester for web service transactions
If a service requester application is to participate in web service transactions, the pipeline configuration
file must specify a <headerprogram> element and a <service_parameter_list> element.

Before you begin
If you want your service requester application to participate in web service transactions, it must use
SOAP protocols to communicate with the service provider, and your pipeline must be configured to use
one of the CICS-provided SOAP message handlers. Even if you have configured your service requester
application correctly, it will only participate in web service transactions with the service provider if the
provider application has been set up to participate.

About this task
In addition to the pipeline configuration information that is specific to your application, the configuration
file must contain information which CICS uses to ensure that your application participates in web service
transactions.

CICS provides an example of a pipeline configuration file containing this information in file /usr/lpp/
cicsts/cicsts56/samples/pipelines/wsatrequester.xml directory (where /usr/lpp/
cicsts/cicsts56 is the default install directory for CICS files on z/OS UNIX).

Procedure

1. Code a <headerprogram> element in the <cics_soap_1.1_handler>,
<cics_soap_1.2_handler>, <cics_soap_1.1_handler_java>, or
<cics_soap_1.2_handler_java> element.
Code the <program_name>, <namespace>, <localname>, and <mandatory> elements exactly as
shown in the following example:

<cics_soap_1.1_handler>
 <headerprogram>
 <program_name>DFHWSATH</program_name>
 <namespace>http://schemas.xmlsoap.org/ws/2004/10/wscoor</namespace>
 <localname>CoordinationContext</localname>
 <mandatory>true</mandatory>
 </headerprogram>
</cics_soap_1.1_handler>

You can include other <headerprogram> elements if your application needs them.
2. Code a <registration_service_endpoint> element in a <service_parameter_list>.

Code the <registration_service_endpoint> as follows:

<registration_service_endpoint>
http://address:port/cicswsat/RegistrationService
</registration_service_endpoint>

174 CICS TS for z/OS: Using Web Services with CICS

address is the IP address of the CICS region where the registration service provider pipeline is
located.
port is the port number used by the registration service provider pipeline.

There must be no space between the start the <registration_service_endpoint> element, its
contents, and the end of the <registration_service_endpoint> element. Spaces have been
included in this example for clarity.

3. If you want CICS to create a new transactional context for each request, rather than using the same
one for requests in the same unit of work, add the empty element, <new_tx_context_required/>,
in a <service_parameter_list> to your pipeline configuration file:

<service_parameter_list>
 <registration_service_endpoint>
 http://requester.example.com:7159/cicswsat/RegistrationService
 </registration_service_endpoint>
 <new_tx_context_required/>
</service_parameter_list>

There must be no space between the start of the <registration_service_endpoint> element,
its contents, and the end of the <registration_service_endpoint> element. Spaces have been
included in this example for clarity.

The <new_tx_context_required/> setting is not the default for CICS, and is not included in the
example pipeline configuration file, wsatprovider.xml. If you add
<new_tx_context_required/> in a <service_parameter_list> to your pipeline configuration
file, loopback calls to CICS are allowed, so be aware that a deadlock might occur in this situation.

Determining if the SOAP message is part of an atomic transaction
When a CICS web service is invoked in the atomic transaction pipeline, the SOAP message does not
necessarily have to be part of an atomic transaction.

About this task
The <soapenv:Header> element contains specific information when the SOAP message is part of an
atomic transaction. To find out if the SOAP message is part of an atomic transaction, you can either:

Procedure

• Look inside the contents of the <soapenv:Header> element using a trace.
a) Perform an auxiliary trace using component PI and set the tracing level to 2.
b) Look for trace point PI 0A31, which contains the information for the request container.

In particular, look for PIIS EVENT - REQUEST_CNT which appears just before the
<cicswsa:Action> element.

• Use a user-written message handler program in the DFHWSATP pipeline to display the content of the
DFHREQUEST container when it contains the data RECEIVE-REQUEST.
If you opt for this approach, make sure that you define the message handler program in the pipeline
configuration file.

Example
The following example shows the information that you could see in the SOAP envelope header for an
atomic transaction.

<soapenv:Header>
 <wscoor:CoordinationContext soapenv:mustUnderstand="1"> 1
 <wscoor:Expires>500</wscoor:Expires>
 <wscoor:Identifier>com.ibm.ws.wstx:
 0000010a2b5008c80000000200000019a75aab901a1758a4e40e2731c61192a10ad6e921
 </wscoor:Identifier>
 <wscoor:CoordinationType>http://schemas.xmlsoap.org/ws/2004/10/wsat</wscoor:CoordinationType> 2
 <wscoor:RegistrationService 3
 xmlns:wscoor="http://schemas.xmlsoap.org/ws/2004/10/wscoor">
 <cicswsa:Address xmlns:cicswsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">
 http://clientIPaddress:clientPort/_IBMSYSAPP/wscoor/services/RegistrationCoordinatorPort

Chapter 2. Configuring web services in CICS 175

 </cicswsa:Address>
 <cicswsa:ReferenceProperties
 xmlns:cicswsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">
 <websphere-wsat:txID
 xmlns:websphere-wsat="http://wstx.Transaction.ws.ibm.com/extension">com.ibm.ws.wstx:
 0000010a2b5008c80000000200000019a75aab901a1758a4e40e2731c61192a10ad6e921
 </websphere-wsat:txID>
 <websphere-wsat:instanceID
 xmlns:websphere-wsat="http://wstx.Transaction.ws.ibm.com/extension">com.ibm.ws.wstx:
 0000010a2b5008c80000000200000019a75aab901a1758a4e40e2731c61192a10ad6e921
 </websphere-wsat:instanceID>
 </cicswsa:ReferenceProperties>
 </wscoor:RegistrationService>
 </wscoor:CoordinationContext>
</soapenv:Header>

1. The CoordinationContext indicates that the SOAP message is intended to participate in an atomic
transaction. It contains the necessary information for the web service provider to be part of the
coordination service, assuming that the provider is configured to recognize and process the header.

2. The CoordinationType indicates the version of the WS-AT specification that the coordination context
complies with.

3. The coordination RegistrationService describes where the coordinator's registration point is, and the
information that the participating web service must return to the coordinator when it attempts to
register as a component of the atomic transaction.

Checking the progress of an atomic transaction
When a CICS web service is invoked as part of an atomic transaction, the transaction passes through a
number of states. These states indicate whether the transaction was successful or had to roll back.

About this task
If you need to access this information, you can either:

Procedure

• Look inside the contents of the <cicswsa:Action> element using a trace.
a) Perform an auxiliary trace using component PI and set the tracing level to 2.
b) Look for trace point PI 0A31, which contains the information for the request container.

In particular, look for PIIS EVENT - REQUEST_CNT which appears just before the
<cicswsa:Action> element.

• Use a user-written message handler program in the DFHWSATR and DFHWSATP pipelines to display
the content of DFHWS-SOAPACTION containers.
If you opt for this approach, make sure that you define the message handler program in the pipeline
configuration files.

Example
The states for a transaction that completes successfully and is committed are:

"http://schemas.xmlsoap.org/ws/2004/10/wscoor/Register"
"http://schemas.xmlsoap.org/ws/2004/10/wscoor/RegisterResponse"
"http://schemas.xmlsoap.org/ws/2004/10/wsat/Prepare"
"http://schemas.xmlsoap.org/ws/2004/10/wsat/Prepared"
"http://schemas.xmlsoap.org/ws/2004/10/wsat/Commit"
"http://schemas.xmlsoap.org/ws/2004/10/wsat/Committed "

The states for a transaction that is rolled back are:

 "http://schemas.xmlsoap.org/ws/2004/10/wscoor/Register"
"http://schemas.xmlsoap.org/ws/2004/10/wscoor/RegisterResponse"
"http://schemas.xmlsoap.org/ws/2004/10/wsat/Rollback"
"http://schemas.xmlsoap.org/ws/2004/10/wsat/Aborted"

176 CICS TS for z/OS: Using Web Services with CICS

Support for MTOM/XOP optimization of binary data
In standard SOAP messages, binary objects are base64-encoded and included in the message body,
which increases their size by 33%. For very large binary objects, this size increase can significantly impact
transmission time. Implementing MTOM/XOP provides a solution to this problem.

The SOAP Message Transmission Optimization Mechanism (MTOM) and XML-binary Optimized Packaging
(XOP) specifications, often referred to as MTOM/XOP, define a method for optimizing the transmission of
large base64Binary data objects within SOAP messages.

• The MTOM specification conceptually defines a method for optimizing SOAP messages by separating
out binary data, that would otherwise be base64 encoded, and sending it in separate binary
attachments using a MIME Multipart/Related message. This type of MIME message is called an MTOM
message. Sending the data in binary format significantly reduces its size, thus optimizing the
transmission of the SOAP message.

• The XOP specification defines an implementation for optimizing XML messages using binary
attachments in a packaging format that includes but is not limited to MIME messages.

CICS implements support for these specifications in both requester and provider pipelines when the
transport protocol is WebSphere MQ, HTTP, or HTTPS. As an alternative to including the base64Binary
data directly in the SOAP message, CICS applications that are deployed as web service providers or
requesters can use this support to send and receive MTOM messages with binary attachments.

You can configure this support by using additional options in the pipeline configuration file.

MTOM/XOP and SOAP
When MTOM/XOP is used to optimize a SOAP message, it is serialized into a MIME Multipart/Related
message using XOP processing. The base64Binary data is extracted from the SOAP message and
packaged as separate binary attachments within the MIME message, in a similar manner to e-mail
attachments.

The size of the base64Binary data is significantly reduced because the attachments are encoded in binary
format. The XML in the SOAP message is then converted to XOP format by replacing the base64Binary
data with a special <xop:Include> element that references the relevant MIME attachment using a URI.

The modified SOAP message is called the XOP document, and forms the root document within the
message. The XOP document and binary attachments together form the XOP package. When applied to
the SOAP MTOM specification, the XOP package is a MIME message in MTOM format.

The root document is identified by referencing its Content-ID in the overall content-type header of the
MIME message. Here is an example of a content-type header:

Content-Type: Multipart/Related; boundary=MIME_boundary;
 type="application/soap+xml"; start="<claim@insurance.com>"

The start parameter contains the Content-ID of the XOP document. If this parameter is not included in
the content-type header, the first part in the MIME message is assumed to be the XOP document.

The order of the attachments in the MIME message is unimportant. In some messages for example, the
binary attachments could appear before the XOP document. An application that handles MIME messages
must not rely on the attachments appearing in a specific order. For detailed information, read the
MTOM/XOP specifications.

The following example demonstrates how a simple SOAP message that contains a JPEG image is
optimized using XOP processing. The SOAP message is as follows:

<soap:Envelope
 xmlns:soap="http://www.w3.org/2003/05/soap-envelope"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xmime="http://www.w3.org/2003/12/xop/mime">
 <soap:Body>
 <submitClaim>
 <accountNumber>5XJ45-3B2</accountNumber>
 <eventType>accident</eventType>
 <image xmime:contentType="image/jpeg" xsi:type="base64binary">4f3e..(encoded image)</image>
 </submitClaim>

Chapter 2. Configuring web services in CICS 177

 </soap:Body>
</soap:Envelope>

An MTOM/XOP version of this SOAP message is as follows:

MIME-Version: 1.0
Content-Type: Multipart/Related; boundary=MIME_boundary;
 type="application/soap+xml"; start="<claim@insurance.com>" 1

--MIME_boundary
Content-Type: application/soap+xml; charset=UTF-8
Content-Transfer-Encoding: 8bit
Content-ID: <claim@insurance.com> 2

<soap:Envelope
 xmlns:soap="http://www.w3.org/2003/05/soap-envelope"
 xmlns:xop='http://www.w3.org/2004/08/xop/include'
 xmlns:xop-mime='http://www.w3.org/2005/05/xmlmime'>
 <soap:Body>
 <submitClaim>
 <accountNumber>5XJ45-3B2</accountNumber>
 <eventType>accident</eventType>
 <image xop-mime:content-type='image/jpeg'><xop:Include href="cid:image@insurance.com"/></
image> 3
 </submitClaim>
 </soap:Body>
</soap:Envelope>

--MIME_boundary
Content-Type: image/jpeg
Content-Transfer-Encoding: binary
Content-ID: <image@insurance.com> 4

...binary JPG image...

--MIME_boundary--

1. The start parameter indicates which part of the MIME message is the root XOP document.
2. The Content-ID value identifies a part of the MIME message. In this case it is the root XOP document.
3. The <xop:Include> element references the JPEG binary attachment.
4. The Content-ID identifies the JPEG in the binary attachment.

MTOM messages and binary attachments in CICS
CICS supports and controls the handling of MTOM messages in both web service provider and requester
pipelines using an MTOM handler program and XOP processing.

You configure and enable the MTOM support using the pipeline configuration file. If MTOM support is
enabled for a pipeline, CICS unpacks inbound MTOM messages automatically and packages outbound
messages. If MTOM support is not enabled for a pipeline and CICS receives an MTOM message, Java-
based pipelines accept the inbound MTOM message, however other SOAP pipelines reject the inbound
MTOM message with a SOAP fault.

Configuration options for Java-based pipelines

You can configure a provider pipeline to perform the following tasks:

• Accept MTOM messages, but never send MTOM response messages.
• Accept MTOM messages and always send MTOM response messages.
• Process XOP documents and binary attachments in Axis2 mode.

You can configure a requester pipeline to perform the following tasks:

• Never send an MTOM message, but accept MTOM response messages.
• Always send MTOM messages and accept MTOM response messages.
• Process XOP documents and binary attachments in Axis2 mode.

178 CICS TS for z/OS: Using Web Services with CICS

Configuration options for pipelines that do not support Java

You can configure a provider pipeline to perform the following tasks:

• Accept MTOM messages, but never send MTOM response messages.
• Accept MTOM messages and send the same type of response message.
• Accept MTOM messages, but only send MTOM messages when there are binary attachments present.
• Accept MTOM messages and always send MTOM response messages.
• Process XOP documents and binary attachments in direct or compatibility mode.

You can configure a requester pipeline to perform the following tasks:

• Never send an MTOM message, but accept MTOM response messages.
• Only send MTOM messages when there are binary attachments, and accept MTOM response messages.
• Always send MTOM messages and accept MTOM response messages.
• Process XOP documents and binary attachments in direct or compatibility mode.

Modes of support
There are three modes of support provided in the pipeline to handle XOP documents and any associated
binary attachments.
Axis2 mode

Axis2 mode is used when the terminal handler of your web services pipeline is either the
<cics_soap_1.1_handler_java>or the <cics_soap_1.2_handler_java> message handler.

Direct mode

In direct mode, the binary attachments associated with an inbound or outbound MTOM message are
passed in containers through the pipeline and handled directly by the application, without the need to
perform any data conversion.

Compatibility mode
Compatibility mode is used when the pipeline processing requires the message to be in standard XML
format, with any binary data stored as base64Binary fields within the message. For inbound
messages, the XOP document and binary attachments are reconstituted into a standard XML
message, either at the beginning of the pipeline when Web Services Security is enabled, or at the end
of the pipeline when web service validation is enabled. For outbound messages, a standard XML
message is created and passed along the pipeline. This XML message is converted to XOP format by
the MTOM handler just before CICS sends it.

Compatibility mode is much less efficient than direct mode because binary data gets converted to base64
format and back again. However, it does allow your web services to interoperate with other MTOM/XOP
web service requesters and providers without needing to change your applications.

Inbound MTOM message processing for pipelines that do not support Java
When the MTOM handler is enabled in pipelines that do not support Java, it checks the headers of the
inbound message in the DFHREQUEST or DFHRESPONSE container to determine the format of the
message during the transport handling processing.

When a MIME Multipart/Related message is received, the MTOM handler unpackages the message as
follows:

1. It puts the headers and binary data from each binary attachment into separate containers.
2. It puts the list of containers in the DFHWS-XOP-IN container.
3. It puts the XOP document, which formed the root of the message, back in the DFHREQUEST or

DFHRESPONSE container, replacing the original message.

If there are no binary attachments, the XOP document is handled as a normal XML message and no XOP
processing is required. If there are any binary attachments, XOP processing is enabled for the message.

Chapter 2. Configuring web services in CICS 179

If XOP processing is enabled, the MTOM handler checks the pipeline properties to determine if the
current message should be processed in direct or compatibility mode, and puts this information in the
DFHWS-MTOM-IN container.

In provider mode, the MTOM handler also creates the DFHWS-MTOM-OUT container to determine how
the outbound response message should be processed.

Direct mode

When you are using CICS web services support, that is, when a service provider pipeline uses the
DFHPITP application handler or a service requester pipeline is invoked using INVOKE WEBSERVICE, the
pipeline can process the XOP document and binary attachments in direct mode.

In this mode, the XOP document and associated containers are passed by the MTOM handler to the next
message handler in the pipeline for processing. The CICS web services support interprets the
<xop:Include> elements. If the base64Binary field is represented as a container in the application data
structure, then the attachment container name is stored in the structure. If the field is represented as a
variable or fixed length string, the contents of the container are copied to the relevant application data
structure field. The data structure is then passed to the application program.

Compatibility mode

If your pipeline is configured to use a custom application handler, or Web Services Security is also
enabled, the message is processed in compatibility mode. In this mode, the XOP document and binary
attachments are immediately reconstituted into a SOAP message using XOP processing, so that the
content can be successfully processed in the pipeline. The XOP processing performs the following tasks:

1. Scans the XOP document for <xop:Include> elements, replacing each occurrence with the binary
data from the referenced attachment in base64-encoded format.

2. Discards the DFHWS-XOP-IN container and all of the attachment containers.

The reconstituted SOAP message is then passed to the next handler in the pipeline to be processed as
normal.

If web service validation is enabled, the pipeline switches to compatibility mode when the message
reaches the application handler. The message is reconstituted into a SOAP message, validated, and
passed to the application.

Outbound MTOM message processing for pipelines that do not support Java
When a pipeline that does not support Java is configured to send outbound MTOM messages, the web
service and pipeline properties are checked to determine how the message should be processed and
sent.

These properties are stored in two containers, DFHWS-MTOM-OUT and DFHWS-XOP-OUT. In a requester
mode pipeline, these containers are created by CICS when the application issues the EXEC CICS
INVOKE WEBSERVICE command. In a provider mode pipeline, the DFHWS-MTOM-OUT container is
already initialized with the options that were determined when the inbound message was received.

If the outbound message can be processed in direct mode, the optimization of the message takes place
immediately. If the outbound message has to be processed in compatibility mode, the optimization takes
place at the very end of the pipeline processing.

If you have not deployed your web service provider or requester application using the CICS web services
assistant, or if you have web service validation enabled or Web Services Security enabled in your pipeline,
the outbound message is processed in compatibility mode.

Direct mode

In direct mode, the following processing takes place:

1. An XOP document is constructed from the application's data structure in container DFHWS-DATA. Any
binary fields that are equal to or larger in size than 1500 bytes are identified, and the binary data and
MIME headers describing the binary attachment are put in separate containers. If the binary data is

180 CICS TS for z/OS: Using Web Services with CICS

already in a container, that container is used directly as the attachment. A <xop:Include> element is
then inserted in the XML in place of the usual base64-encoded binary data using a generated Content-
ID. For example:

<xop:Include href="cid:generated-content-ID-value"
 xmlns:xop="http://www.w3.org/2004/08/xop/include">

2. All of the containers are added to the attachment list in the DFHWS-XOP-OUT container.
3. When the SOAP handler has processed DFHWS-DATA, the XOP document and SOAP envelope are

stored in the DFHREQUEST or DFHRESPONSE container and processed through the pipeline.
4. When the last message handler has finished, the MTOM handler packages the XOP document and

binary attachments into a MIME Multipart/Related message and sends it to the web service requester
or provider. The DFHWS-XOP-OUT container and any associated containers are then discarded.

Compatibility mode

If the pipeline is not capable of handling the XOP document directly, then the following processing takes
place:

1. The SOAP body is constructed in DFHWS-DATA from the application data structure and processed in
the pipeline as normal.

2. When the final handler has finished processing the message, the MTOM handler checks the options in
the DFHWS-MTOM-OUT container to determine whether MTOM should be used, optionally taking into
account whether any binary attachments are present. If the MTOM handler determines that MTOM is
not required, no XOP processing takes place and a SOAP message is sent by CICS as normal.

3. If the MTOM handler determines that the outbound message should be sent in MTOM format, the XOP
processing scans the message for eligible fields to split the data out into binary attachments. For a
field to be eligible, it must have the MIME contentType attribute specified on the element and the
associated binary value must consist of valid base64Binary data in canonical form. The size of the data
must be greater than 1500 bytes. The XOP processing creates the binary attachments and attachment
list, and then replaces the fields with <xop:Include> elements.

4. The MTOM handler packages the XOP document and binary attachments as a MIME Multipart/Related
message and CICS sends it to the web service requester or provider.

Restrictions when using MTOM/XOP
To support MTOM/XOP you can either specify the <mtom> element in your pipeline configuration file or
enable the MTOM handler in your pipeline. However, there are restrictions associated with each method.

Restrictions for Java-based pipelines
Specifying the <mtom> element in the a pipeline configuration file enables MTOM/XOP support for your
Java-based pipeline. However, there are restrictions with this MTOM/XOP implementation.
DFHPITP application handler

The Axis2 mode of MTOM/XOP support cannot be used with pipelines that specify DFHPITP as the
application handler.

WS-Security
The Axis2 mode of MTOM/XOP support cannot be used with pipelines that use WS-Security
configurations that require XML signatures.

Using the INQUIRE PIPELINE command
If an INQUIRE PIPELINE command is issued against a Java-based pipeline using the Axis2 mode of
MTOM/XOP support, the Mtomst, Sendmtomst, Mtomnoxopst, Xopsupportst, and Xopdirectst
attributes report as Nomtom. For more information, see INQUIRE PIPELINE.

Restrictions for other SOAP pipelines
Enabling the MTOM handler in the pipeline means that you can support web service implementations that
use the MTOM/XOP optimization. The compatibility mode option means that you can interoperate with
these web services without needing to change your web service applications. However, there are certain
situations where you cannot use MTOM/XOP or its use is restricted.

Chapter 2. Configuring web services in CICS 181

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-programming/commands-spi/dfha8_inquirepipeline.html

Using the CICS web services assistant
The direct mode optimization for MTOM/XOP is only available if you are using DFHWS2LS at a
mapping level of at least 1.2, and the WSDL document contains at least one field of type
xsd:base64Binary. Web services that are enabled using DFHLS2WS are not eligible for XOP
optimization.

Web services generated using DFHLS2WS with CHAR-VARYING=BINARY specified may be eligible for
the MTOM/XOP optimizations. Other web services generated using DFHLS2WS do not contain binary
data and are not eligible for the MTOM/XOP optimizations, but will work normally in a PIPELINE that
supports MTOM/XOP.

Provider pipelines
CICS provides a default application handler called DFHPITP that can be configured in a provider
pipeline. This application handler is capable of handling XOP documents and creating the necessary
containers to support the pipeline processing in both direct and compatibility mode. If you are using
your own application handler in a provider pipeline, and want to enable MTOM/XOP, you should
configure the pipeline to run in compatibility mode.

Requester pipelines
If your applications use the INVOKE WEBSERVICE command, CICS handles the optimization of the
SOAP message for you in direct and compatibility mode. If you are using the program DFHPIRT to
start the pipeline, you can only send and receive MIME Multipart/Related messages in compatibility
mode.

Web Services Security
If you enable the MTOM handler in the pipeline configuration file to run in direct mode, and you also
enable the Web Services Security message handler, the pipeline only supports the handling of MTOM
messages in compatibility mode.

Handling binary data
When you have large binary data to include in your web service, for example a graphic file such as a
JPEG, you can use MTOM/XOP to optimize the size of the message that is sent to the service provider
or requester. The minimum size of binary data that can be optimized using MTOM/XOP is 1500 bytes.
If the binary data in a field is less than 1500 bytes, CICS does not optimize the field.

As stated in the XOP specification, there should be no white space in the base64Binary data. Any
application programs that produce base64Binary data must use the canonical form. If the
base64Binary data in an outbound message does contain white space, CICS does not convert the data
to a binary attachment. When base64Binary data is generated by CICS, the fields are provided in
canonical form and therefore contain no white space.

The contentType attribute must be present on base64Binary fields for XOP processing to occur in
compatibility mode on outbound messages. The contentType attribute must not be present on
hexBinary fields.

Web service validation
If you turn on web service validation the following pipeline processing takes place:

• If an inbound XOP document has been passed through the pipeline in direct mode, CICS
automatically switches to compatibility mode and converts it back to standard XML when CICS web
service support is about to validate the document.

• An outbound SOAP message is generated as standard XML and is processed in compatibility mode.

The extra pipeline processing is required because the validation processing cannot handle the
contents of XOP documents.

Configuring CICS to support MTOM/XOP
To support MTOM messages in CICS, you must specify the correct MTOM/XOP support for your type of
pipeline in your pipeline configuration files.

182 CICS TS for z/OS: Using Web Services with CICS

Configuring MTOM/XOP support for Java-based pipelines
To configure MTOM/XOP support for Java-based pipelines, you must add the <mtom> element to your
pipeline configuration files.

Before you begin
Before performing this task, you must identify or create the pipeline configuration files to which you will
add configuration information for MTOM/XOP.

About this task
If the <mtom> element is defined in your pipeline configuration file, MTOM support is enabled for all
inbound and outbound messages. However, if this element is not specified in the pipeline configuration
file, then MTOM support is enabled for only inbound messages.

Procedure

Add a <mtom> element to your pipeline configuration file.
This element should be defined after the optional <addressing> element and before the optional
<headerprogram> element.

Example
For a provider or requester mode pipeline, you could specify:

<cics_soap_1.2_handler_java>
 <jvmserver>JVMSERV1</jvmserver>
 <addressing></addressing>
 <mtom></mtom>
 <headerprogram>
 <program_name>HDRPROG4</program_name>
 <namespace>http://mynamespace</namespace>
 <localname>myheaderblock</localname>
 <mandatory>true</mandatory>
 </headerprogram>
</cics_soap_1.2_handler_java>

Configuring MTOM/XOP for other SOAP pipelines
To configure MTOM/XOP support for pipelines that do not use the <cics_soap_1.1_handler_java>
or <cics_soap_1.2_handler_java> handlers, you must add the MTOM handler to your pipeline
configuration files.

Before you begin
Before performing this task, you must identify or create the pipeline configuration files to which you will
add configuration information for MTOM/XOP.

Procedure

1. Add a <cics_mtom_handler> element to your pipeline configuration file.
This element should be first in the <provider_pipeline> element, and the last element before the
<service_parameter_list> in the <requester_pipeline> element.
Code the following elements:

<cics_mtom_handler>
 <dfhmtom_configuration version="1">
 </dfhmtom_configuration>
</cics_mtom_handler>

The <dfhmtom_configuration> element is a container for the other elements in the configuration.
If you want to accept the default settings for MTOM/XOP processing, you can specify an empty
element as follows:

 <cics_mtom_handler/>

Chapter 2. Configuring web services in CICS 183

2. Optional: Code an <mtom_options> element.
In both a service provider and service requester pipeline, this element specifies whether the outbound
message should be packaged as an MTOM message.
a) Code the send_mtom attribute to define if the outbound message should be sent as an MTOM

message.
For details of this attribute, see “The <mtom_options> pipeline configuration element” on page
108.

b) Code the send_when_no_xop attribute to define if the outbound message should be sent as an
MTOM message when there are no binary attachments present.
For details of this attribute, see “The <mtom_options> pipeline configuration element” on page
108.

3. Optional: Code a <xop_options> element with an apphandler_supports_xop attribute.
This specifies if the application handler is capable of handling XOP documents directly. If you do not
include this attribute, the default depends on whether the <apphandler> element specifies DFHPITP
or another program. For details of this attribute, see “The <xop_options> pipeline configuration
element” on page 109.

4. Optional: Code a <mime_options> element with a content_id_domain attribute.
This specifies the domain name that should be used when generating MIME content-ID values, that
are used to identify binary attachments. For details of this attribute, see “The <mime_options>
pipeline configuration element” on page 110.

Example
The following example shows a completed <cics_mtom_handler> element in which all the optional
elements are present:

<provider_pipeline>
 <cics_mtom_handler>
 <dfhmtom_configuration version="1">
 <mtom_options send_mtom="same" send_when_no_xop="no" />
 <xop_options apphandler_supports_xop="yes" />
 <mime_options content_id_domain="example.org" />
 </dfhmtom_configuration>
 </cics_mtom_handler>
....
</provider_pipeline>

Support for Web Services Addressing
CICS supports services that use the Worldwide Web Consortium (W3C) Web Services Addressing (WS-
Addressing) specifications. This family of specifications provides transport-independent mechanisms to
address web services and facilitate end-to-end addressing.

CICS ensures that your existing web service applications can accept requests from web services that use
WS-Addressing. You can also create new web services that use endpoint references and message
addressing properties in SOAP messages.

WS-Addressing adds addressing information, in the form of Message Addressing Properties (MAPs), to
SOAP message headers. MAPs include messaging information, such as a unique message ID and endpoint
references that detail where the message came from, where the message is going to, and where reply or
fault messages are to be sent. An endpoint reference (EPR) is a specific type of MAP, which includes the
destination address of the message, optional reference parameters for use by the application, and
optional metadata.

Features of the WS-Addressing support

CICS includes the following features to support WS-Addressing:

• Your web service requester and provider applications can interact with other services that are using
WS-Addressing without requiring you to redeploy them. A new message handler, the addressing

184 CICS TS for z/OS: Using Web Services with CICS

message handler DFHWSADH, in the pipeline routes messages that contain WS-Addressing information
to the specified web service.

• You can write an application that uses the WS-Addressing API commands to create an endpoint
reference and to create, update, delete, and query an addressing context.

• You can route response messages to endpoints other than the requester endpoint; for example, you can
route fault messages to a dedicated fault handler.

• You can pass reference parameters to applications as part of the MAPs in the SOAP header.

Support for WS-Addressing specifications and interoperability

By default, CICS supports the recommendation specifications:

• W3C WS-Addressing 1.0 - Core
• W3C WS-Addressing 1.0 - SOAP Binding
• W3C WS-Addressing 1.0 - Metadata

These specifications are identified by the http://www.w3.org/2005/08/addressing namespace.
Unless otherwise stated, WS-Addressing semantics that are described in this documentation refer to the
recommendation specifications.

For interoperability, CICS also supports the submission specification:

• W3C WS-Addressing- Submission

This specification is identified by the http://schemas.xmlsoap.org/ws/2004/08/addressing
namespace. Use the submission specification only if you must interoperate with a client or web service
provider that implements the submission specification.

Web Services Addressing overview
Web Services Addressing (WS-Addressing) provides a standard framework for specifying the endpoints of
a SOAP message. This framework is transport-neutral and improves the interoperability of web services
that use different transport mechanisms. The WS-Addressing specification introduces message
addressing properties and endpoint references.

Web Services Addressing (WS-Addressing) is a Worldwide Web Consortium (W3C) specification that
improves interoperability between web services by defining a standard way to address web services and
provide addressing information in SOAP messages. SOAP messages can be sent over a variety of
transport mechanisms, including HTTP and WebSphere MQ, each of which stores destination information
for the message in a different way.

Existing CICS web services that are deployed in a pipeline configured to use WS-Addressing can use the
default WS-Addressing settings without requiring any changes. To take full advantage of the WS-
Addressing capabilities, use the WS-Addressing API commands. The WS-Addressing implementation
supports one SOAP fault for each WSDL operation.

Message addressing properties
Message addressing properties (MAPs) are a set of well defined WS-Addressing properties that can be
represented as elements in SOAP headers. MAPs provide a standard way of conveying information, such
as the endpoint to which message replies must be directed, or information about the relationship that the
message has with other messages. The MAPs that are defined by the WS-Addressing specification are
summarized in the following table.

Table 11. Message addressing properties defined by the WS-Addressing specification

Abstract WS-
Addressing MAP
name

SOAP WS-
Addressing MAP
name MAP content type Multiplicity Description

[action] <wsa:Action> xs:anyURI 1..1 An absolute URI that uniquely identifies the
semantics of the message. This value is
required.

Chapter 2. Configuring web services in CICS 185

http://www.w3.org/TR/ws-addr-core/
http://www.w3.org/TR/ws-addr-soap/
http://www.w3.org/TR/ws-addr-metadata/
http://www.w3.org/Submission/ws-addressing/

Table 11. Message addressing properties defined by the WS-Addressing specification (continued)

Abstract WS-
Addressing MAP
name

SOAP WS-
Addressing MAP
name MAP content type Multiplicity Description

[destination] <wsa:To> xs:anyURI in the SOAP
message

EndpointReference in the
addressing context

0..1 The absolute URI that specifies the address of
the intended receiver of the message. If this
value is not specified, it defaults to the
anonymous URI that is defined in the
specification: http://www.w3.org/
2005/08/addressing/anonymous.

In the addressing context, the <wsa:To> MAP
is represented as an EPR. When the <wsa:To>
is sent as part of a SOAP message it is split
into its address and its reference parameters,
as defined by the schema.

[reference
parameters] *

[reference
parameters]*

xs:any 0..unbounded Parameters that correspond to
<wsa:ReferenceParameters> properties of the
endpoint reference to which the message is
addressed. This value is optional.

[source endpoint] <wsa:From> EndpointReference 0..1 A reference to the endpoint from which the
message originated. This value is optional.

[reply endpoint] <wsa:ReplyTo> EndpointReference 0..1 An endpoint reference for the intended
receiver of replies to this message. This value
is optional.

If this value is not specified, it defaults to
http://www.w3.org/2005/08/
addressing/anonymous.

[fault endpoint] <wsa:FaultTo> EndpointReference 0..1 An endpoint reference for the intended
receiver of faults relating to this message. This
value is optional and defaults to the value of
the <wsa:ReplyTo> MAP.

[relationship] * <wsa:RelatesTo> xs:anyURI plus optional
attribute of type xs:anyURI

0..unbounded A pair of values that indicate how this
message relates to another message. The
contents of this element conveys the
<wsa:MessageID> of the related message. An
optional attribute conveys the relationship
type. This value is optional.

If this value is not specified, it defaults to
http://www.w3.org/2005/08/
addressing/reply.

[message id] <wsa:MessageID
>

xs:anyURI An absolute URI that uniquely identifies the
message. This value is optional; if not
supplied, CICS generates a value for outbound
requests and responses.

The following example of a SOAP message contains WS-Addressing MAPs:

<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope"
 xmlns:wsa="http://w3.org/2005/08/addressing"
 xmlns:example="http://example.ibm.com/namespace">
 <S:Header>
 ...
 <wsa:To>http://example.ibm.com/enquiry</wsa:To>
 <wsa:ReplyTo>
 <wsa:Address>http://example.ibm.com/enquiryReply</wsa:Address>
 </wsa:ReplyTo>
 <wsa:Action>...</wsa:Action>
 <example:AccountCode wsa:IsReferenceParameter='true'>123456789</example:AccountCode>
 <example:DiscountId wsa:IsReferenceParameter='true'>ABCDEFG</example:DiscountId>
 ...
 </S:Header>

186 CICS TS for z/OS: Using Web Services with CICS

 <S:Body>
 ...
 </S:Body>
</S:Envelope>

Endpoint references
An endpoint reference is a specific type of MAP, which provides a standard mechanism to encapsulate
information about specific endpoints. Endpoint references can be sent to other parties and used to target
the web service endpoint that they represent. The following table summarizes the information model for
endpoint references.

Table 12. Information model for endpoint references

Abstract property name Property type Multiplicity Description

[address] xs:anyURI 1..1 The absolute URI that
specifies the address of
the endpoint.

[reference parameters] * xs:any 0..unbounded Namespace qualified
element information items
that are required to
interface with the
endpoint.

[metadata] xs:any 0..unbounded Description of the
behavior, policies, and
capabilities of the
endpoint.

The following XML fragment illustrates an endpoint reference. The <wsa:EndpointReference>
element references the endpoint at the URI http://example.ibm.com/enquiry and contains
metadata specifying the interface to which the endpoint reference refers and some application-specific
reference parameters.

<wsa:EndpointReference
 xmlns:wsa="http://www.w3.org/2005/08/addressing"
 xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata"
 xmlns:example="http://example.ibm.com/namespace">
 <wsa:Address>http://example.ibm.com/enquiry</wsa:Address>
 <wsa:Metadata
 xmlns:wsdli="http://www.w3.org/ns/wsdl-instance"
 wsdli:wsdlLocation="http://example.ibm.com/wsdl/wsdl-location.wsdl">
 <wsam:InterfaceName>example:reservationInterface</wsam:InterfaceName>
 </wsa:Metadata>
 <wsa:ReferenceParameters>
 <example:AccountCode>123456789</example:AccountCode>
 <example:DiscountId>ABCDEFG</example:DiscountId>
 <wsa:ReferenceParameters>
</wsa:EndpointReference>

WS-Addressing MAPs of type wsa:EndpointReferenceType are: <wsa:From>, <wsa:ReplyTo>, and
<wsa:FaultTo>. However, the <wsa:To> MAP is defined in the WS-Addressing 1.0 standard as having a
type of xs:anyURI. For simplicity CICS treats <wsa:To> MAPs in the addressing context as EPRs. When a
<wsa:To> MAP is sent as part of a SOAP message, CICS splits it into its address and reference
parameters, as required by the standard.

Default namespaces
The following prefix and corresponding namespaces are referred to throughout the WS-Addressing
documentation:

Chapter 2. Configuring web services in CICS 187

Table 13. Prefix and corresponding namespace

Default prefix Namespace

xs http://www.w3.org/2001/XMLSchema

wsa http://www.w3.org/2005/08/addressing (Recommendation schema)

http://schemas.xmlsoap.org/ws/2004/08/addressing (Submission schema)

wsam http://www.w3.org/2007/05/addressing/metadata

Configuring a requester pipeline for Web Services Addressing
To configure a requester pipeline to support Web Services Addressing (WS-Addressing), you must add an
addressing handler to your pipeline configuration file.

Before you begin
You must identify or create the pipeline configuration file to add the configuration information for WS-
Addressing. You must also decide which of the WS-Addressing specifications to use. Use the W3C WS-
Addressing 1.0 Core specification where possible.

About this task
You can add support for WS-Addressing in one of two ways:

• If the SOAP pipeline uses Java, the SOAP processing is handled by Axis2 and you can use the support
provided by this technology to handle requests that use WS-Addressing. All of the header handling is
handled by Axis2 and it is important that you do not add the DFHWSADH header processing program to
the pipeline. You can use your own header processing programs. For better performance, write Axis2
handlers in Java if you want to process SOAP headers.

• If the SOAP pipeline does not use Java, you must add the CICS-supplied header processing program
DFHWSADH to handle the requests.

Procedure

• If the SOAP pipeline uses a <cics_soap_1.1_handler_java> or
<cics_soap_1.2_handler_java> element, add an <addressing> element to the pipeline
configuration file.
Include one <namespace> element that contains the specification that you want to use on the request
message, which can be different to the response message; for example, you can always send a
request that complies with the W3C core specification, even if the response message uses the
submission specification. Axis2 supports both WS-Addressing specifications on inbound messages.

The following example shows how you might configure the requester pipeline:

<requester_pipeline>
 <service>
 <service_handler_list>
 <cics_soap_1.1_handler_java>
 <jvmserver>JVMSERV1</jvmserver>
 <addressing>
 <namespace>http://www.w3.org/2005/08/addressing</namespace>
 </addressing>
 </cics_soap_1.1_handler_java>
 </service_handler_list>
 </service>
</requester_pipeline>

The <jvmserver> element contains the name of the JVMSERVER resource that supports Axis2.
• If the SOAP pipeline does not use Java, add a CICS addressing header program in the

<cics_soap_1.1_handler> or <cics_soap_1.2_handler> to the pipeline configuration file.
The following example shows how you might configure the requester pipeline:

188 CICS TS for z/OS: Using Web Services with CICS

<requester_pipeline>
 <service>
 <service_handler_list>
 <cics_soap_1.1_handler>
 <headerprogram>
 <program_name>DFHWSADH</program_name>
 <namespace>http://www.w3.org/2005/08/addressing</namespace>
 <localname>*</localname>
 <mandatory>true</mandatory>
 </headerprogram>
 </cics_soap_1.1_handler>
 </service_handler_list>
 </service>
</requester_pipeline>

Code the <program_name>, <localname>, and <mandatory> elements exactly as shown. Set
<namespace> to http://www.w3.org/2005/08/addressing to use the W3C WS-Addressing 1.0
Core specification or http://schemas.xmlsoap.org/ws/2004/08/addressing to use the W3C
WS-Addressing Submission specification.

The order of header processing programs is not guaranteed. If you define other header processing
programs, add them in a subsequent CICS SOAP handler element in your
<service_handler_list> element. The DFHWSADH header handler must be in the first SOAP
handler element.

Results
Your requester pipeline is now configured to support WS-Addressing.

What to do next
Create a PIPELINE resource that points to the configuration file. If you are using a Java-based SOAP
pipeline, ensure that a JVMSERVER resource is enabled to handle the Axis2 processing.

Configuring a provider pipeline for Web Services Addressing
To configure a provider pipeline to support Web Services Addressing (WS-Addressing), you must add an
addressing handler to your pipeline configuration file.

Before you begin
You must identify or create the pipeline configuration file to add the configuration information for WS-
Addressing. You must also decide which of the WS-Addressing specifications to use. Use the W3C WS-
Addressing 1.0 Core specification where possible.

About this task
You can add support for WS-Addressing in one of two ways:

• If the SOAP pipeline uses Java, the SOAP processing is handled by Axis2 and you can use the support
provided by this technology to handle requests that use WS-Addressing. All of the header handling is
handled by Axis2 and it is important that you do not add the DFHWSADH header processing program to
the pipeline. You can use your own header processing programs. For better performance, write Axis2
handlers in Java if you want to process SOAP headers.

• If the SOAP pipeline does not use Java, you must add the CICS-supplied header processing program
DFHWSADH to handle the requests.

Procedure

• If the SOAP pipeline uses a <cics_soap_1.1_handler_java> or
<cics_soap_1.2_handler_java> element, add an <addressing> element to the pipeline
configuration file.
You can optionally include one or more <namespace> elements. This element contains the
specification that you want to use on the outbound message, which can be different to the inbound
message; for example, you can always send an outbound response that complies with the W3C core
specification, even if the inbound message uses the submission specification. If you exclude this

Chapter 2. Configuring web services in CICS 189

element, Axis2 uses the same specification on the outbound message as the inbound message. Axis2
supports both WS-Addressing specifications on inbound messages.

The following example shows how you might configure the provider pipeline:

<provider_pipeline>
 <terminal_handler>
 <cics_soap_1.1_handler_java>
 <jvmserver>JVMSERV1</jvmserver>
 <addressing>
 <namespace>http://www.w3.org/2005/08/addressing</namespace>
 </addressing>
 </cics_soap_1.1_handler_java>
 </terminal_handler>
</provider_pipeline>

The <jvmserver> element contains the name of the JVMSERVER resource that supports Axis2.
• If the SOAP pipeline does not use Java, add the CICS addressing header program DFHWSADH to the

SOAP handler in the pipeline configuration file.
The following example shows how you might configure the provider pipeline:

<provider_pipeline>
 <terminal_handler>
 <cics_soap_1.1_handler>
 <headerprogram>
 <program_name>DFHWSADH</program_name>
 <namespace>http://www.w3.org/2005/08/addressing</namespace>
 <localname>*</localname>
 <mandatory>true</mandatory>
 </headerprogram>
 </cics_soap_1.1_handler>
 </terminal_handler>
</provider_pipeline>

Code the <program_name>, <localname>, and <mandatory> elements exactly as shown. Set
<namespace> to http://www.w3.org/2005/08/addressing to use the W3C WS-Addressing 1.0
Core specification or http://schemas.xmlsoap.org/ws/2004/08/addressing to use the W3C
WS-Addressing Submission specification.

The order of header processing programs is not guaranteed. If you define other header processing
programs, add them in another CICS SOAP handler element in a <service_handler_list>
element. The DFHWSADH header handler must be in the last SOAP handler element.

Results
Your provider pipeline is now configured to support WS-Addressing.

What to do next
Create a PIPELINE resource that points to the configuration file. If you are using a Java-based SOAP
pipeline, ensure that a JVMSERVER resource is enabled to handle the Axis2 processing.

Creating a web service that uses WS-Addressing
To create a web service from a WSDL document that uses Web Services Addressing (WS-Addressing), use
parameters on the web services assistant to handle the conversion from XML to language structures.

About this task
You can use the web services assistant job, DFHWS2LS, to control how an end point reference (EPR) is
handled in the WSDL document and determine whether CICS constructs default input, output, and fault
actions.

Procedure

1. Set the MINIMUM-RUNTIME parameter on the web services assistant, DFHWS2LS, to 3.0 or higher.
A runtime level of at least 3.0 ensures that any generated web service binding fully supports WS-
Addressing and can interoperate with other web services platforms.

190 CICS TS for z/OS: Using Web Services with CICS

2. Set the MAPPING-LEVEL parameter on the web services assistant, DFHWS2LS, to 3.0 or higher.
3. Set the WSADDR-EPR-ANY parameter to TRUE if you want to use wsa:EndpointReferenceType

type elements in the request or response messages.
End point references can be included in application data and you have the option of using the EPR in
API commands such as WSACONTEXT BUILD. Setting the WSADDR-EPR-ANY parameter to TRUE
indicates that CICS must not transform the EPR into a language structure at run time; instead, CICS
treats the EPR data as an <xsd:any> element and stores it in a named container.

This example WSDL fragment shows a <wsa:To> MAP being passed as an element of type
wsa:EndpointReferenceType:

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="exampleEPR" targetNamespace="http://example.ibm.com/"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:s0="http://example.ibm.com/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:wsa="http://www.w3.org/2005/08/addressing"
 xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata">
 <types>
 <xs:schema targetNamespace="http://test.org/"
 xmlns:s="http://www.w3.org/2001/XMLSchema"
 xmlns:s0="http://example.ibm.com/"
 xmlns:wsa="http://www.w3.org/2005/08/addressing">
 ...
 <xs:element name="exampleResponse" type="s0:typeResponse"/>
 <xs:complexType name="typeResponse">
 <xs:sequence>
 <xs:element name="myEpr" type="wsa:EndpointReferenceType"/> 1
 </xs:sequence>
 </xs:complexType>
 ...
 </xs:schema>
 </types>
 ...
 <message name="msgResponse">
 <part element="s0:exampleResponse" name="response"/>
 </message>
 ...
</definitions>

When the element, <xs:element name="myEpr" type="wsa:EndpointReferenceType"/> 1 ,
is processed by DFHWS2LS with the WSADDR-EPR-ANY parameter set to TRUE, the myEpr element
data is stored in a named container as an <xsd:any> element and a pointer to the container added to
the generated language structure.

For example, the COBOL language structure generated by DFHWS2LS for the myEpr element is shown
here:

09 myEpr.
 12 myEpr-xml-cont PIC X(16).
 12 myEpr-xmlns-cont PIC X(16).

The myEpr-xml-cont container stores the name of the container that contains the myEpr data. The
myEpr-xmlns-cont is an optional container that is populated with any XML namespace declarations
that are in scope.

4. Save and submit the DFHWS2LS job.

Results
CICS creates a web service binding to handle the data transformation and language structures that you
can use to create the service requester or provider application.

What to do next
To enable the web service, perform a pipeline scan to create the required CICS resources.

Chapter 2. Configuring web services in CICS 191

Default end point references
Most WSDL documents contain the address at which the web service is hosted. In WS-Addressing, the
WSDL document can also contain an end point reference (EPR) for the web service. This EPR can contain
additional metadata to facilitate communication between the requester and provider applications.

If you use DFHWS2LS to process the WSDL, the EPR is saved in the web service binding and is used by
CICS to send request and response messages. Any reference parameters, <wsa:ReferenceParameters>,
that are defined in the EPR are included in the SOAP message. This EPR is known as the default EPR,
because it can be overridden by the application. If the application does not supply an explicit EPR, the
default EPR from the WSDL is used.

The following WSDL 1.1 fragment includes a default EPR: <soap:address location="http://
example.ibm.com:12345/exampleTest" />. The <port> element includes a child element,
<wsa:EndpointReference>, the address specified by the child element, 2 , must match the address
specified by the parent element, 1 :

<service name="exampleService">
 <port name="examplePort" binding="s0:createBinding">
 <soap:address location="http://example.ibm.com:12345/exampleTest" /> 1

 <wsa:EndpointReference
 xmlns:example="http://example.ibm.com/namespace"
 xmlns:wsdli="http://www.w3.org/2006/01/wsdl-instance"
 wsdli:wsdlLocation="http://example.ibm.com/location "
 title="http://example.ibm.com/example/example_wsdl"
 class="http://example.ibm.com/example/example.wsdl">
 <wsa:Address>http://example.ibm.com:12345/exampleTest</wsa:Address> 2
 <wsa:Metadata>
 <wsam:InterfaceName>example:Inventory</wsam:InterfaceName>
 </wsa:Metadata>
 <wsa:ReferenceParameters>
 <example:AccountCode>123456789</example:AccountCode>
 <example:DiscountId>ABCDEFG</example:DiscountId>
 </wsa:ReferenceParameters>
 </wsa:EndpointReference>
 </port>
</service>

Explicit actions
WSDL documents can explicitly define the values of the <wsa:Action> properties. If the WSDL document
does not contain explicitly defined <wsa:Action> properties, CICS builds default actions when the WSDL
is processed by DFHWS2LS.

WSDL 1.1

The following WSDL 1.1 fragment represents a booking system that contains explicitly defined
<wsa:Action> properties:

<definitions targetNamespace="http://example.ibm.com/namespace" ...>
 ...
 <portType name="bookingSystem">
 <operation name="makeBooking">
 <input message="tns:makeBooking"
 wsa:Action="http://example.ibm.com/namespace/makeBooking"
 </input>
 <output message="tns:bookingResponse"
 wsa:Action="http://example.ibm.com/namespace/bookingResponse"
 </output>
 </operation>
 </portType>
 ...
</definitions>

In this example, the input action of the makeBooking operation is explicitly defined as http://
example.ibm.com/namespace/makeBooking, and the output action is explicitly defined as http://
example.ibm.com/namespace/bookingResponse.

192 CICS TS for z/OS: Using Web Services with CICS

WSDL 2.0

The following WSDL 2.0 fragment represents a booking system that contains explicitly defined
<wsa:Action> properties:

<description targetNamespace="http://example.ibm.com/namespace" ...>
 ...
 <interface name="bookingInterface">
 <operation name="makeBooking" pattern="http://www.w3.org/ns/wsdl/in-out">
 <input element="tns:makeBooking" messageLabel="In"
 wsa:Action="http://example.ibm.com/namespace/makeBooking"/>
 <output element="tns:makeBookingResponse" messageLabel="Out"
 wsa:Action="http://example.ibm.com/namespace/makeBookingResponse"/>
 </operation>
 </interface>
 ...
</description>

In this example, the input action of the makeBooking operation is explicitly defined as http://
example.ibm.com/namespace/makeBooking, and the output action is defined as http://
example.ibm.com/namespace/makeBookingResponse.

For more information, see the W3C WS-Addressing 1.0 Metadata specification.

Default actions for WSDL 1.1
If a WSDL 1.1 document does not contain explicitly specified <wsa:Action> properties, CICS builds
default input, output, and fault actions when the WSDL is processed by DFHWS2LS.

Default input and output actions for WSDL 1.1

The following pattern is used by CICS in WSDL 1.1 documents that follow either the recommendation
schema or the submission schema to construct a default input or output action:

[target namespace]/[port type name]/[input|output name]

Default fault actions for WSDL 1.1

If you are following the recommendation schema, the way that CICS builds the default fault action differs
from the behavior described in the schema. The following pattern is used by CICS, in WSDL 1.1
documents that follow the recommendation schema, to construct a default fault message. Notice that the
fault name is omitted.

[target namespace]/[port type name]/[operation name]/Fault/

If you are following the submission schema, the way that CICS builds the default fault action follows the
behavior described in the schema. The following pattern is used by CICS, in WSDL 1.1 documents that
follow the submission schema, to construct a default fault message:

[target namespace]/[port type name]/[operation name]/Fault/[fault name]

Example of the default actions generated by CICS for a WSDL 1.1 document
This example of a booking system illustrates how CICS constructs default actions from a WSDL 1.1
document:

<description targetNamespace="http://example.ibm.com/namespace" ...>
 ...
 <portType name="bookingInterface">
 <operation name="makeBooking">
 <input element="tns:makeBooking" name="MakeBooking"/>
 <output element="tns:bookingResponse" name="BookingResponse"/>
 <fault message="tns:InvalidBooking" name="InvalidBooking"/>
 </operation>
 </interface>

Chapter 2. Configuring web services in CICS 193

http://www.w3.org/TR/ws-addr-metadata/

 ...
</definitions>

The WSDL fragment has the following addressing properties:

Property name Value

[targetNamespace] http://example.ibm.com/namespace

[portType name] bookingInterface

[operation name] makeBooking

[input name] MakeBooking

[output name] BookingResponse

[fault name] InvalidBooking

The following actions are created from these values:

Action Value

Input Action

http://example.ibm.com/namespace/bookingInterface/MakeBooking

If the [input name] is not specified, the value of the [operation name] with
"Request" appended is used instead. For example, in this case the Input Action is
http://example.ibm.com/namespace/bookingInterface/
makeBookingRequest.

Output Action

http://example.ibm.com/namespace/bookingInterface/
BookingResponse

If the [output name] is not specified, the value of the [operation name] with
"Response" appended is used instead. For example, in this case the Output Action
is http://example.ibm.com/namespace/bookingInterface/
makeBookingResponse

Fault Action http://example.ibm.com/namespace/bookingInterface/MakeBooking/
Fault/

(Recommendation
schema)

Notice that the [fault name] is omitted.

Fault Action http://example.ibm.com/namespace/bookingInterface/MakeBooking/
Fault/InvalidBooking

(Submission schema)

For more information, see the W3C WS-Addressing 1.0 Metadata specification.

Default actions for WSDL 2.0
If a WSDL 2.0 document does not contain explicitly specified <wsa:Action> properties, CICS build default
input, output, and fault actions when the WSDL is processed by DFHWS2LS.

Default input and output actions for WSDL 2.0

The following pattern is used by CICS, in WSDL 2.0 documents that follow the recommendation schema,
to construct default actions for inputs and outputs:

[target namespace]/[interface name]/[operation name][direction token]

194 CICS TS for z/OS: Using Web Services with CICS

http://www.w3.org/TR/ws-addr-metadata/

Default fault actions for WSDL 2.0

If you are following the recommendation schema, the way that CICS builds the default action for WS-
Addressing faults differs from the behavior described in the schema. If you are following the submission
schema, the way that CICS builds the default action for WS-Addressing faults follows the behavior
described in the schema.

The following pattern is used by CICS, in WSDL 2.0 documents that follow the recommendation schema,
to construct a default action for faults. Notice that the fault name is omitted.

[target namespace]/[interface name]/

The following pattern is used by CICS, in WSDL 2.0 documents that follow the submission schema, to
construct a default action for faults:

[target namespace]/[interface name]/[fault name]

Example of the default actions generated by CICS for a WSDL 2.0 document
This example shows how CICS constructs default actions for a WSDL 2.0 document following the
recommendation schema:

<description targetNamespace="http://example.ibm.com/namespace" ...>
 ...
 <interface name="bookingInterface">
 <operation name="makeBooking" pattern="http://www.w3.org/ns/wsdl/in-out">
 <input element="tns:makeBooking" messageLabel="In"/>
 <output element="tns:bookingResponse" messageLabel="Out"/>
 </operation>
 </interface>
 ...
</definitions>

The WSDL fragment has the following addressing properties:

Property Name Value

[targetNamespace] http://example.ibm.com/namespace

[interface name] bookingInterface

[operation name] makeBooking

[direction token] Either Request or Response.

The following input and output actions are created from these values:

Action Value

Input Action http://example.ibm.com/namespace/bookingInterface/makeBookingRequest

Output Action http://example.ibm.com/namespace/bookingInterface/makeBookingResponse

For more information, see the W3C WS-Addressing 1.0 Metadata specification.

Message exchanges
Web Services Addressing (WS-Addressing) supports these message exchanges: one-way, two-way
request-response, synchronous request-response, and asynchronous request-response.

Web Services Addressing message exchanges involve message addressing properties (MAPs) and
endpoint references (EPRs).

At run time CICS ensures that the SOAP header of the request message contains the relevant WS-
Addressing message information, the requester application does not have to set the WS-Addressing
headers and might not even be aware that it is using WS-Addressing.

Chapter 2. Configuring web services in CICS 195

http://www.w3.org/TR/ws-addr-metadata/

One-way
This straightforward one-way message is defined as an input-only operation. The web Services
Description Language (WSDL) for this operation takes the following form:

<operation name="myOperation">
 <input message="tns:myInputMessage"/>
</operation>

If you are using WS-Addressing, CICS adds the <wsa:Action> MAPs and the <wsa:MessageID> MAP to the
SOAP message header of the WS-Addressing request message at run time to ensure compliance with the
WS-Addressing specification.

The <wsa:MessageID> MAP is a unique ID, if not specified CICS generates this ID automatically.

The <wsa:Action> MAPs are derived from the WSDL and stored in the WSBind file.

You can override the values of these MAPs using the CICS WS-Addressing API commands.

Two-way request-response
This two-way exchange involves a request message and a response message. The response part of the
operation can be defined as an output message, a fault message, or both. The WSDL definition for a
request-response operation takes the following form:

<operation name="myOperation">
 <input message="tns:myInputMessage"/>
 <output message="tns:myOutputMessage"/>
 <fault="tns:myFaultMessage"/>
</operation>

Responses to, or faults generated from, requests that are directed at endpoints are targeted at the
<wsa:ReplyTo> MAP or the <wsa:FaultTo> MAP depending on whether the reply type is normal or a fault.

Specify a <wsa:ReplyTo> or <wsa:FaultTo> MAP in the request message to indicate where the response
must be sent.

If you are using the recommendation specifications and do not specify a value for the <wsa:ReplyTo>
MAP, the <wsa:ReplyTo> MAP defaults to an endpoint reference that contains the anonymous URI (http://
www.w3.org/2005/08/addressing/anonymous), which causes CICS to send the response back to the
requester.

If you are using the recommendation specifications and do not specify a value for the <wsa:FaultTo> MAP,
the <wsa:FaultTo> MAP defaults the value of the <wsa:ReplyTo> MAP.

If the requester builds MAPs that are incorrect and that cause validation failures, CICS sends the fault
message back to the requester instead of to the address specified by the <wsa:FaultTo> MAP.

Synchronous request-response
By default, the response part of a two-way message is returned according to the underlying protocol in
use. In the case of an HTTP request, the response is returned synchronously in the HTTP response.

Asynchronous request-response

An asynchronous response is targeted at another web service and does not arrive back at the original
requester application. In the case of an HTTP request, the connection with the requesting client is closed
with an HTTP 202 response. If the web service provider is running on a CICS system, the requester
application will receive an empty response message. If the web service provider is running on a
WebSphere MQ system, the requester application will not receive any response.

To change the destination of the response part of a two-way message, you must specify the appropriate
addresses in the <wsa:ReplyTo> MAP, or the <wsa:ReplyTo> and <wsa:FaultTo>, MAPs.

For a full list of the MAPs that are mandatory in WSDL 1.1 and WSDL 2.0, see “Mandatory message
addressing properties for WS-Addressing ” on page 197.

196 CICS TS for z/OS: Using Web Services with CICS

Mandatory message addressing properties for WS-Addressing
The WS-Addressing 1.0 metadata specification states which message addressing properties (MAPs) must
be included in WSDL 1.1 and WSDL 2.0 documents. The CICS implementation of WS-Addressing helps
you to comply with the WS-Addressing specifications by automatically supplying values for these
mandatory MAPs.

You can specify your own values for MAPs in the WSDL that you supply, and you can update these values
in the addressing context using the CICS WS-Addressing API commands. If you do not supply values for
the mandatory MAPs, CICS will generate values for you.

The following table lists which MAPs are mandatory for the different supported message exchange
patterns (MEPs) with WSDL 1.1 and WSDL 2.0:

Table 14. Mandatory message addressing properties for WS-Addressing.

WS-Addressing
MAP name Description Mandatory in WSDL 1.1 Mandatory in WSDL 2.0

<wsa:To> The address of the
intended receiver of the
message.

No No

<wsa:Action> The WS-Addressing
action: input, output, or
fault.

Mandatory for the following
MEPs:

One-way
Two-way (Request)
Two-way (Response)

Mandatory for the following
MEPs:

In-only
Robust In-only (In)
Robust In-only (Fault)
In-out (In)
In-out (Out)
In-optional-out (In)
In-optional-out (Out)

<wsa:From> The endpoint from which
the message originated.

No No

This value not required

<wsa:ReplyTo> The endpoint of the
intended receiver for
replies to the message.

No No

<wsa:FaultTo> The endpoint of the
intended receiver for
faults related to the
message.

No No

<wsa:MessageID
>

A unique message
identifier.

Mandatory for the following
MEPs:

Two-way (Request)

Mandatory for the following
MEPs:

Robust In-only (In)
In-out (In)
In-optional-out (In)

Chapter 2. Configuring web services in CICS 197

Table 14. Mandatory message addressing properties for WS-Addressing. (continued)

WS-Addressing
MAP name Description Mandatory in WSDL 1.1 Mandatory in WSDL 2.0

<wsa:RelatesTo> A pair of values that
indicate how this
message relates to
another message. This
element includes the
<wsa:MessageID> of the
related message and an
optional attribute conveys
the relationship type.

Mandatory for the following
MEPs:

Two-way (Response)

Mandatory for the following
MEPs:

Robust In-only (Fault)
In-out (Out)
In-optional-out (Out)

For more information, see the W3C WS-Addressing 1.0 Metadata specification: http://www.w3.org/TR/ws-
addr-metadata/.

Notes:

• If a value is not set for the address element of the <wsa:ReplyTo> MAP, the address is set to the
anonymous URI: http://www.w3.org/2005/08/addressing/anonymous. The anonymous URI
indicates that responses are sent back to the requester.

• If a value is not specified for the address element of the <wsa:FaultTo> MAP, CICS sets this address to
the same value as the address element of the <wsa:ReplyTo> MAP.

Note that if the requester builds MAPs that are incorrect and which cause validation failures, CICS
sends the fault message back to the requester instead of to the address specified by the <wsa:FaultTo>
MAP.

• If the value of the <wsa:To> MAP is not specified, CICS set the address to the anonymous URI:
http://www.w3.org/2005/08/addressing/anonymous. The anonymous URI indicates that the
request is to be sent to the address specified in the DFHWS-URI container; for more information, see
“DFHWS-URI container” on page 150.

• You can define the <wsa:Action> MAPs explicitly in your WSDL document, or you can let CICS generate
them automatically.

• CICS automatically sets a unique value for the <wsa:MessageID> MAP at run time for request messages
that expect a response, and for response messages.

• The <wsa:RelatesTo> MAP is mandatory for response messages. The relationship type of the message
is optional and defaults to http://www.w3.org/2005/08/addressing/reply.

Web Services Addressing security
Communications traveling on a public network using Web Services Addressing (WS-Addressing) must be
adequately secured and a sufficient level of trust must be established between the communicating
parties. You are recommended to use transport level security, such as SSL or HTTPS, to secure your
communications.

Transport level security, such as SSL or HTTPS, is the most straightforward way to ensure that your WS-
Addressing communications are secure. If transport level security is not available, you can secure your
messages by signing the WS-Addressing message addressing properties and encrypting the endpoint
references.

CICS cannot sign headers containing WS-Addressing message addressing properties or encrypt endpoint
references. However, CICS can verify signatures on incoming messages and can decrypt headers that
have been encrypted. If you want to use signing and encryption to secure your communications, you must
use an external security gateway, such as the IBM WebSphere DataPower® XML Security Gateway. For
more information, see IBM WebSphere DataPower XML Security Gateway.

198 CICS TS for z/OS: Using Web Services with CICS

http://www.w3.org/TR/ws-addr-metadata/
http://www.w3.org/TR/ws-addr-metadata/
https://www.ibm.com/software/products/en/datapower-gateway

Web Services Addressing example
This example provides a high-level overview of the process that takes place when a customer places an
order with a company that uses Web Services Addressing to send messages.

An international company that sells electronic components uses Web Services Addressing in its business.
The infrastructure of this company consists of an Ordering Client, a group of Distribution Services, a
Fulfilment Service, and a Configuration Service.

Using WS-Addressing offers the company the following benefits:

• WS-Addressing provides a transport-independent mechanism for transferring messages, this
encourages interoperability between web services running on different platforms. In this example, the
distribution services owned by the company are running on a variety of platforms; WS-Addressing
makes interoperability between different platforms straightforward because the web service requesters
and providers do not need to be aware of the platform on which the service that they are exchanging
messages with is running.

• WS-Addressing can be used to change the destination of the reply message by updating the EPR in the
<wsa:ReplyTo> MAP. In this example, the Fulfilment Service modifies the destination of the response
message when it selects the Distribution Service to which the message is diverted.

The company has several distribution centers in a number of different countries; each of the distribution
centers is represented in this example by a Distribution Service and is registered with the Configuration
Service.

The Fulfilment Service selects which Distribution service is the most appropriate to process the order
based on a variety of factors, which might include the availability of items requested and the distance of
the Distribution Center from the customer.

Addressing information is passed to and from the Configuration Service. The Configuration Service stores
the addresses of the available services in the form of Endpoint References. New services register with the
Configuration Service by creating an EPR using the WSAEPR CREATE command and sending the EPR to
the Configuration Service. The Configuration Service requires the EPR as a block of XML, so the WSADDR-
EPR-ANY parameter on DFHWS2LS must be set to TRUE. The WSADDR-EPR-ANY=TRUE option is used to
instruct CICS to treat the EPR as an <xsd:any> element; CICS must place it in a container instead of
transforming it into a language structure at run time.

The way in which these services interact is shown in the following diagram. The diagram shows other
services, which have been excluded from the task, that might be relevant in a business application:

• A Tracking Service, which can be updated by each of the other services with the status of the order.
• A Problem Resolution service to handle any fault messages that arise.
• An Ordering Client callback service to handle any reply messages directed at the Ordering Client.

Chapter 2. Configuring web services in CICS 199

Figure 29. Company infrastructure

The following steps describe the process that takes place from the time a customer places an order to the
point at which that order is processed.

1. A customer places an order with the company.

a. The customer places the order on the company website, which is the front end for the Ordering
Client.

b. The Ordering Client takes the customer's contact details as part of the order.
c. The Ordering Client returns a confirmation and a unique order reference to the customer through

the web interface.
2. The Ordering Client sends the order request to the Fulfilment Service.

a. If the Ordering Client does not already know the EPR for the Fulfilment Service, it requests it from
the Configuration Service. The process involved when the Ordering Client requests the EPR of the
Fulfilment Service from the Configuration service is detailed in the Example of <wsa:To> section.

b. The Ordering Client issues the INVOKE SERVICE command for the Fulfilment Service. WS-
Addressing routes the message to the address specified by the To EPR in the request addressing
context.

3. The Fulfilment Service selects a Distribution Service to process the order and redirects the response
message to that service.

a. The Fulfilment Service uses a WSACONTEXT GET command to extract the order reference and other
addressing properties from the addressing context.

b. The Fulfilment Service selects the most appropriate Distribution Service from the Configuration
Service.

c. The <wsa:ReplyTo> EPR is added to the addressing context:

200 CICS TS for z/OS: Using Web Services with CICS

<wsa:EndpointReference
 xmlns:wsa="http://www.w3.org/2005/08/addressing">
 <wsa:Address>http://www.example.ibm.com/DistributionService</wsa:Address>
 </wsa:EndpointReference>

The Fulfilment Service uses the WSACONTEXT BUILD command to add the ReplyTo EPR of the
chosen Distribution Service to the request addressing context.

d. The Fulfilment Service uses the WSACONTEXT BUILD command repeatedly to add the order
reference and other information to the request addressing context.

e. A DFHNORESPONSE container is added to the Ordering Client pipeline to indicate to the Ordering
Client that it will not receive a response and the response message is redirected in the form of a
request message to the Distribution Service.

4. The Distribution Service receives the redirected response message and processes the order.

a. The Distribution Service uses a WSACONTEXT GET command to extract the order reference and
addressing details from the request addressing context.

b. The Distribution Service process the order.

Example of <wsa:To>

1. The Ordering Client requests the EPR of the service that it wants to send a message to from the
Configuration Service. In this example, the Ordering Client requests the EPR of the Fulfilment Service.

2. The Configuration Service creates and sends a response message:

a. The Configuration Service creates the requested <wsa:To> EPR for the Fulfilment Service using the
WSAEPR CREATE API command: EXEC CICS WSAEPR CREATE.

b. The Configuration Service writes the output from the WSAEPR CREATE command to a container:
EXEC CICS PUT CONTAINER(work-cont).

c. The Configuration Service copies the container name into the myEpr-xml-cont element: MOVE
work-cont TO myEpr-xml-cont.

d. The Configuration Service sends a response message to the Ordering Client, this message contains
the contents of the container named by the myEpr-xml-cont container. In this example, the
contents of the work-cont container is sent to the Ordering Client inside the <wsa:myEpr>
element:

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
 ...
 <env:Body>
 <wsa:myEpr>
 <wsa:EndpointReference>
 <wsa:Address>
 Fulfilment_Service_EPR_XML
 </wsa:Address>
 </wsa:EndpointReference>
 </wsa:myEpr>
 </env:Body>
 ...
</env:Envelope>

Figure 30 on page 202 shows the request-response message exchange between the Ordering Client
and the Configuration Service. This message exchange involves two typical web services pipelines.

Chapter 2. Configuring web services in CICS 201

Figure 30. Request-response message exchange between the Ordering Client and the Configuration
Service

3. The Ordering Client receives the response message, builds the <wsa:To> EPR, and sends a request to
the Fulfilment Service:

a. The Ordering Client extracts the <wsa:To> EPR data from the response message.
b. CICS populates a unique container, in this example the DFHPICC-00000001 container, with the

<wsa:To> EPR data.
c. CICS copies the name of the container, in this example DFHPICC-00000001, into the myEpr-xml-
cont element.

d. The Ordering Client reads the contents of the container specified by the myEpr-xml-cont element
and provides it as input to the WSACONTEXT BUILD API command. The WSACONTEXT BUILD
command uses this input to build the <wsa:To> EPR for the Fulfilment Service.

e. The Ordering Client issues an INVOKE SERVICE command which initiates the pipeline processing.
f. The CICS web services addressing handler, DFHWSADH, on the outbound pipeline converts the

<wsa:To> EPR into an address and an optional set of reference parameters which it puts into the
header of the SOAP request message that is being sent to the Fulfilment Service:

 <env:Header>
 <wsa:To>http://example.ibm.com/Fulfilment_Service</wsa:To>
 </env:Header>

Figure 31 on page 203 shows the request from the Ordering Client to the Fulfilment service. This
request involves a web services pipeline that includes the CICS web services addressing handler,
DFHWSADH.

202 CICS TS for z/OS: Using Web Services with CICS

Figure 31. Request from the Ordering Client to the Fulfilment Service

Web Services Addressing terminology
Terms used to explain Web Services Addressing (WS-Addressing) support.

addressing context
An XML document that stores WS-Addressing message addressing properties (MAPs) before they are
sent in SOAP request messages and after they are received from SOAP request and response
messages.

endpoint reference (EPR)
An XML structure containing addressing information that is used to route a message to a web service.
This addressing information includes the destination address of the message, optional reference
parameters for use by the application, and optional metadata.

message addressing property (MAP)
An XML element that conveys addressing information for a specific web service message, such as a
unique message ID, the destination of the message, and the endpoint references of the message.

Support for SAML
CICS supports the use of Security Assertion Markup Language (SAML) for describing and exchanging
security information between online business partners.

CICS supports the SAMLCore1.1 and SAML Core2.0 standards. It does not support the protocols that are
described in those standards.

You can configure provider and requester pipelines to use SAML tokens, but you must first deploy the
CICS Security Token Service (STS). For more information about configuring your CICS installation to
support SAML, see Configuring CICS for SAML.

Chapter 2. Configuring web services in CICS 203

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/saml/deploy_saml.html

204 CICS TS for z/OS: Using Web Services with CICS

Chapter 3. Developing web services
CICS supports two distinct web service protocols, the SOAP and the JavaScript Object Notation (JSON)
protocols.

You can expose existing CICS applications as SOAP web services and create CICS applications to act as
SOAP web service providers or requesters.

You can expose existing CICS applications as JSON web services and create CICS applications to act as
JSON web service providers. CICS does not provide built in support for requester mode JSON web
services. But you can write CICS application programs to call a RESTful web service hosted on another
system.

Follow this section to deploy your CICS applications in a web services environment based on the protocol
used.

Before you begin

For fundamentals on CICS support for web services, see CICS and web services.

Developing JSON web services
You can expose existing CICS applications as JSON web services and create CICS applications to act as
JSON web service providers. CICS does not provide built in support for requester mode JSON web
services. But you can write CICS application programs to call a RESTful web service hosted on another
system.

Before you begin

You must configure your CICS system to support JSON web services. For more information, see Creating
the CICS infrastructure for a JSON service provider.

You must have fundamental knowledge about how CICS supports web services. See also Getting started
with JSON web services.

Be aware of “JSON web service restrictions” on page 216.

Procedure

1. Create a JSON web service.
For JSON web service provider applications

You can create a JSON web service provider application in one of three ways:

• Use the CICS JSON assistant to create the JSON schema or language structures and deploy them
into CICS. Use the PIPELINE SCAN command to automatically create the required CICS
resources.

The CICS JSON assistant is a supplied utility that helps you to create the necessary artifacts for a
JSON web service provider application, or to enable an existing application as a JSON web
service provider. The assistant can create a JSON schema from a high-level language structure
or a high-level language structure from an existing JSON schema; it supports COBOL, C/C++, and
PL/I. It also generates information that is used to enable automatic runtime conversion of the
JSON messages to containers and COMMAREAs, and vice versa. This information is used by the
CICS JSON web services support during pipeline processing.

See “Creating a JSON service provider application” on page 206 for detailed instructions.
• Use z/OS Connect to generate the mapping between a JSON schema or Swagger document and

application data structures. See z/OS Connect Enterprise Edition V3.0 product documentation to
learn more.

© Copyright IBM Corp. 1974, 2020 205

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/web-services/webservices-intro.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_defineprovider_json.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_defineprovider_json.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/web-services/dfhws_support.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/web-services/dfhws_gs000_json.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/web-services/dfhws_gs000_json.html
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/welcome/WelcomePage.html

• Use your own code to map between JSON and application data structures.

For JSON service requester applications
You must use z/OS Connect Enterprise Edition for requester mode JSON web services. See z/OS
Connect Enterprise Edition V3.0 product documentation to learn more.

For CICS applications to invoke remote JSON web services
You can so without using z/OS Connect. You can write an application program to call a RESTful web
service by using the linkable interface to transform JSON and then use the WEB commands to
send it to the remote service provider. For detailed instructions, see “Creating a JSON web service
client application” on page 215.

2. Start the JSON web service to test that it works as you intended.

These steps are explained in more detail in the following topics.

Creating a JSON service provider application
You can create a service provider application from a JSON schema that complies with JSON schema v4
(draft), or from a high-level language data structure. The CICS JSON assistant helps you to deploy your
CICS applications in a service provider setting.

About this task

When you use the assistant to deploy a CICS application as a service provider, you have two options:

• Start with a JSON schema and use the assistant to generate the language data structures.

Use this option when you want to implement a service provider that conforms with an existing web
service description.

• Start with the language data structures and use the assistant to generate the JSON schema.

Use this option when you want to expose an existing program as a JSON service.

Creating a service provider application from a JSON schema
Using the CICS JSON assistant, you can create a service provider application from a JSON schema.

Before you begin
Before you can create a service provider application, the following conditions must be satisfied:

• Your web services description must be in a UNIX file in z/OS and you must create a suitable provider
mode pipeline in the CICS region.

• You must define to OMVS the user ID under which DFHJS2LS runs.
• The user ID must have read permission to z/OS UNIX and PDS libraries and write permission to the

directories specified on the LOGFILE, WSBIND, JSON-SCHEMA-REQUEST, JSON-SCHEMA-RESPONSE,
and JSON-SCHEMA-RESTFUL parameters.

• You must allocate sufficient storage to the user ID for the ID to run Java . You can use any supported
version of Java . By default, DFHJS2LS uses the Java version specified in the JAVADIR parameter.

About this task
You can use the JSON assistant to create language structures from your JSON schema for the service
provider application.

Procedure

1. Use the DFHJS2LS batch program to generate a web service binding file and one or more language
data structures.
DFHJS2LS contains a large set of optional parameters that provide you with flexibility to create the
binding file and language structures that your application requires. Consider these options when you
enable an existing application for web services:

206 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/welcome/WelcomePage.html
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/welcome/WelcomePage.html

• Which mechanism will CICS use to pass data to the service provider application program? You can
use channels and pass the data in containers or use a COMMAREA. Channels and containers are
recommended. Specify them with the PGMINT parameter.

• Which language do you want to generate? DFHJS2LS can generate COBOL, C/C++, or PL/I language
data structures. Specify the language using the LANG parameter.

• Which mapping level do you want to use? The higher the mapping level, the more control and
support you have available for the handling of character and binary data at run time. Some optional
parameters are available only at the higher mapping levels. You are recommended to use the highest
level of mapping available. Specify the mapping level with the MAPPING-LEVEL parameter.

• Which URI do you want the web service requester to use? Specify a relative URI using the URI
parameter; for example, URI=/my/test/webservice. The value is used by CICS when it creates
the URIMAP resource.

• Under which transaction and user ID will you run the web service request and response? You can
use an alias transaction to run the application to compose a response to the service requester. The
alias transaction is attached under the user ID. Specify it with the TRANSACTION and USERID
parameters. These values are used when creating the URIMAP resource. If you do not want to use a
specific transaction, do not use these parameters.

When you submit DFHJS2LS, CICS generates the web service binding file and places it in the location
that you specified with the WSBIND parameter. The language structures are placed in the partitioned
data set that you specified with the PDSLIB parameter.

2. Copy the generated web service binding file to the pickup directory of the provider mode PIPELINE
resource that you want to use for your web service application.
You must copy the binding file in binary mode.

3. Write a service provider application program to interface with the generated language structures and
implement the required business logic.

4. Use the PIPELINE SCAN command to dynamically create the WEBSERVICE resource and a URIMAP
resources.

• The WEBSERVICE resource encapsulates the web service binding file in CICS and is used at run
time.

• The URIMAP resource provides CICS with the information to associate the WEBSERVICE resource
with a specific URI.

Alternatively, you can define the resources yourself, although this is not recommended.

Results
If you have any problems submitting DFHJS2LS, or the resources do not install correctly, see
Troubleshooting the JSON assistant.

Creating a service provider application from a data structure
Use the CICS web services assistant to create a service provider application from a high-level language
data structure.

Before you begin
Before you create a service provider application, make sure that your setup complies with these
preconditions:

• Your high-level language data structures must meet the following criteria:

– The data structures must be defined separately from the source program; for example, in a COBOL
copybook.

– If your PL/I or COBOL application program uses different data structures for input and output, the
data structures must be defined in two different members in a partitioned data set. If the same
structure is used for input and output, the structure must be defined in a single member.

For C and C++, your data structures can be in the same member in a partitioned data set.

Chapter 3. Developing web services 207

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/web-services/troubleshooting_json_assistant.html

• The language structures must be available in a partitioned data set and you must create a suitable
PIPELINE resource in the CICS region.

• You must define to OMVS the user ID that DFHLS2JS uses to run.
• The user ID must have read permission to z/OS UNIX and PDS libraries and write permission to the

directories specified on the LOGFILE , WSBIND , and JSON-SCHEMA-REQUEST and JSON-SCHEMA-
RESPONSE output parameters.

• The user ID must have a sufficiently large storage allocation to run Java . You can use any supported
version of Java . By default, DFHLS2JS uses the Java version that is specified in the JAVADIR
parameter.

Procedure

Follow these steps to create a service provider application from a high-level data structure:
1. If the service provider application interface uses channels and many containers, create a channel

description document that describes the interface in JSON. You must save the channel description
document in a suitable directory on z/OS UNIX.
CICS uses this document to construct and deconstruct a JSON message from the containers on a
channel. Alternatively, you can use one container in a channel and not create a channel description
document.

For more information about how to create a channel description document, see “Creating a channel
description document” on page 212.

2. Use the DFHLS2JS batch program to generate a web service binding file and web service description
from the language structure.
The DFHLS2JS batch program can be found in HLQ .XDFHINST where HLQ is the location where you
installed CICS. DFHLS2JS contains a large set of optional parameters that provide you with flexibility
to create the binding file and language structures that your application requires. Consider the following
options when enabling web services for an existing application:

• Which mechanism do you want CICS to use to pass data to the service provider application program?
You can use channels and pass the data in containers, or use a COMMAREA. Specify the mechanism
by using the PGMINT parameter. If your application interface uses channels and many containers,
specify the REQUEST-CHANNEL parameter and optionally the RESPONSE-CHANNEL . You can use
these parameters only when the mapping level is 3.0 or higher.

• Which mapping level do you want to use? The higher the mapping level, the more control and
support you have available for the handling of character and binary data at run time. Some optional
parameters are available only at the higher mapping levels. You must specify the highest level of
mapping available in the MAPPING-LEVEL parameter.

• Which URI do you want the web service to use? Specify an absolute URI by using the URI parameter;
for example, URI = http://www.example.org:80/my/test/webservice. The relative part of
this address, /my/test/webservice , is used when creating the URIMAP resource.

When you submit DFHLS2JS, CICS generates the web service binding file and places it in the location
that you specified with the WSBIND parameter. The generated JSON schemas are placed in the
location that you specified with the JSON-SCHEMA-REQUEST and JSON-SCHEMA-RESPONSE
parameters.

3. Review the generated JSON schema.

These schemas are used to define the input and output data formats for the JSON web service. The
application developer must use these schemas when creating an application to interact with the JSON
web service.

Note: Changing the generated schema invalidates the generated web service binding file, WSBind.

If you want to change the schema, for example, to rename the fields within the schema, you must use
DFHJS2LS to generate a new web service binding file, and a new set of language structures. The
application program in CICS must be changed to use the new language structures.

208 CICS TS for z/OS: Using Web Services with CICS

4. Copy the web service binding file to the pickup directory of the provider mode pipeline that you want
to use for your web service application.
You must copy the web service binding file in binary mode.

5. Use the PIPELINE SCAN command to dynamically create the WEBSERVICE resource and a URIMAP
resource.

• The WEBSERVICE resource contains the web service binding file in CICS and is used at run time.
• The URIMAP resource provides CICS with the information to associate the WEBSERVICE resource

with a specific URI.

Alternatively, you can define the resources yourself.

Results
The creation of your service provider application is complete.

If you have any problems submitting DFHLS2JS, or the resources do not install correctly, see
Troubleshooting the JSON assistant.

What to do next
Make the web services description available to anyone who develops a web service that will access your
service.

Creating a RESTful web service provider application
The CICS implementation of RESTful JSON web services is similar to that of SOAP web services. Most of
the concepts and architecture are shared, but CICS requires the use of a JSON schema.

About this task
Implementing a RESTful JSON web service involves the following tasks:

Procedure

1. Generate the application interface.

Input:

• The JSON schema that defines the data model for the RESTful web service.

Output:

• The language structures (for example, COBOL copy book) that map the JSON schema.
• A WSBind file.

Run the DFHJS2LS utility and specify the appropriate input parameters. These parameters include:

• The location of the JSON schema.
• The list of supported methods (GET, PUT, POST, and DELETE are enabled by default).
• The URI at which the service is deployed.
• The name of the application PROGRAM that implements the service.
• Any required data-mapping parameters.

2. Create an application that uses this interface.

Input:

• The language structures from step “1” on page 209.
• An awareness of which RESTful operations will be implemented

Output:

• A program suitable for deployment to CICS

Write a program that does the following:

Chapter 3. Developing web services 209

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/web-services/troubleshooting_json_assistant.html

Note: If you supply the name of your own container on the CONTID parameter to DFHJS2LS, you must
use this container instead of DFHWS-DATA whenever it is mentioned in the following steps.

a. Examine the URI to understand the identity of the resource. CICS provides several containers to
help you identify interesting components of the URI. The containers are described in Table 15 on
page 210 . The examples show the contents of each container for the URI:

http://www.example.org:10000/JSONServices/CustomerDetails/13388?action=query

If the URIMAP that matched has PATH of /JSONServices/CustomerDetails/*

Table 15. DFHWS-URI containers. DFHWS-URI containers

Container Contents Example

The complete
URI

The portion of
URI path that
matched the
URIMAP

The query string

b. Validate the URI. If there is a problem, report the problem to CICS and terminate.
c. Query the DFHHTTPMETHOD container to determine which method is being driven. For more

information, see DFHHTTPMETHOD.
d. For a POST (create) method (if needed):

• Read the input data from the DFHWS-DATA container.
• Interpret the data by using the language structure(s) generated in step “1” on page 209.
• Validate the data. If there is a problem, report the problem to CICS and terminate.
• Perform whatever application-specific processing is required to create the resource.
• Optionally, write to the DFHRESPONSE container to notify the client of the identifier of the new

resource. The contents of this container are not transformed by CICS , but sent directly in the
HTTP response. The DFHWS-DATA container is ignored.

e. If a GET (inquire) or HEAD (inquire) method is needed, write the data that represents the resource
to the DFHWS-DATA container.

f. If a PUT (set) method is needed:

• Read the input data from the DFHWS-DATA container.
• Interpret the data by using the language structure(s) generated in step “1” on page 209.
• Validate the data. If there is a problem, report the problem to CICS and terminate.
• Perform whatever application-specific processing is required to update the resource.

g. If a DELETE method is needed, perform whatever application-specific processing is required to
delete the resource.

Note: The RESTful data model that is implemented by CICS does not send a response body for the
PUT, POST, or DELETE methods by default. RESTful applications typically use the HTTP status code to
indicate success or failure. If the application completes normally, CICS sends an HTTP response of
200 (OK). For more information about sending error responses, see Application error reporting. If you
want to send a response body for a PUT, POST or DELETE method, you must write the DFHRESPONSE
container. If present, CICS sends the contents of this container in the HTTP body without further
processing. CICS ignores the DFHWS-DATA container in the response processing for these methods.

3. Deploy the artifacts.

Input:

210 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/DFHHTTPMETHOD.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/restws_error_reporting.html

• The WSBind file from step “1” on page 209.
• The CICS Program from step “2” on page 209.
• A CICS provider mode pipeline resource that is configured for JSON.

Output:

• A deployed RESTful JSON web service.

Deploy the program to CICS in the normal way.

Either:

• Deploy the WSBind file to the Pipeline's 'pickup' directory; then issue a PIPELINE SCAN command
to create the WEBSERVICE and URIMAP resources.

• Manually define and install a WEBSERVICE resource and associated URIMAP resource. The URIMAP
must associate the URI with both the PIPELINE and the WEBSERVICE.

4. Test the service.

Input:

• The JSON schema.
• The URI of the RESTful web service.
• The deployed service from step 3.
• A JSON test client of your choice.

Output:

• A successfully handled request.

Use the test client of your choice to send a JSON request to CICS.

If you receive an unexpected response, attempt problem determination. For more information, see
Troubleshooting problems with JSON requests.

Design considerations for RESTful web service provider applications
This topic describes some issues you should consider when planning and designing a RESTful web service
provider application for JSON.

Collections of Resources

A common design for RESTful APIs is to support the retrieval of collections of resources. For example, a
Service might exist that returns a set of objects as follows:

GET /Services/CustomerDetails?Surname=Cooper

This request is expected to return information on all CustomerDetails objects where the Surname is
"Cooper". Individual CustomerDetails objects may be returned using a more specific URI such as:

GET /Services/CustomerDetails/Customer27

In this example Customer27 is the primary key for a specific customer. The output from this second
query will be an instance of the CustomerDetails object. The output from the first query is less clear: it
could return a list of CustomerDetails objects, or it could return a list of URIs for CustomerDetails objects
(which the client can go on to retrieve individually). Both conventions are common.

To implement a Collection in CICS, create a JSON schema that describes either a list of data instances, or
a list of URIs. You can then build the Service and implement it as normal. In this example you might
choose to only implement the GET method. You could consider implementing a pagination Service to
allow a client to page backwards and forwards through large data sets, for example:

GET
/Services/CustomerDetails?startRecord=200&endRecord=225

Chapter 3. Developing web services 211

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/web-services/troubleshooting_json_requests.html

You're likely to need two URIMAP resources in CICS (and two WEBSERVICE resources). One that maps
the root URI structure for the Collection, and a wild-carded URIMAP for the Instances. For example:

URIMAP1: Path=/Services/CustomerDetails
WEBSERVICE=CollectionService
URIMAP2: Path=/Services/CustomerDetails/* WEBSERVICE=InstanceService

Cache Management

The RESTful architecture encourages integration with standard HTTP cache management techniques.
This allows the results of GET requests to be cached in the network, thereby reducing the burden on the
server. The mechanism for doing this involves setting an expiration date/time for data returned for GET
requests.

There is no general purpose mechanism to support application controlled cache expiration in CICS, but a
Pipeline Handler program could be written to add the appropriate HTTP Header using the EXEC CICS WEB
WRITE HTTPHEADER API. Application programs can do something similar, but only if they are hosted in
the same CICS region that receives the HTTP request.

Application error reporting
Read this topic to understand how RESTful JSON web service provider applications can report errors to
clients.

In top-down scenarios, it is likely that the application is required to report error conditions. For example,
an error might be: " Account Number not recognized " . This requirement is unique to top-down
scenarios; in bottom-up development the application either has an error reporting mechanism that is
encoded in the data fields, or it abends. In the top-down scenario, the JSON schema is unlikely to define a
field in which to report errors, so an alternative is needed.

For SOAP-based web services, this problem is addressed by using the EXEC CICS SOAPFAULT API.
SOAP Fault messages do not exist in JSON. Instead, you can use the DFHHTTPSTATUS container to
report application detected errors for JSON applications. For more information, see DFHHTTPSTATUS.

Note: Applications might also use the DFHRESPONSE container, and other control containers, to provide
a more detailed error response, if they want to do so.

Creating a channel description document
Create a channel description document when your service provider application uses a channel interface
with many containers.

About this task
Use an XML editor to create the channel description document. The schema for the channel description is
called channel.xsd and is in the /usr/lpp/cicsts/cicsts56/schemas/channel directory
(where /usr/lpp/cicsts/cicsts56 is the default install directory for CICS files on z/OS UNIX).

Procedure

1. Create an XML document with a <channel> element and the CICS channel namespace:

<channel name="myChannel"
 xmlns="http://www.ibm.com/xmlns/prod/CICS/channel">
</channel>

2. Add a <container> element for every container that the application program interface uses on the
channel.
You must use name, type and use attributes to describe each container.
The following example shows six containers with different attribute values:

<container name="cont1" type="char" use="required"/>
<container name="cont2" type="char" use="optional"/>
<container name="cont3" type="bit" use="required"/>

212 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_dfhhttpstatus.html

<container name="cont4" type="bit" use="optional"/>
<container name="cont5" type="bit" use="required">
 <structure location="//HLQ.PDSNAME(MEMBER)"/>
</container>
<container name="cont6" type="bit" use="optional">
 <structure location="//HLQ.PDSNAME(MEMBER2)"/>
</container>

The structure element indicates that the content is defined in a language structure located in a
partitioned data set member.

3. Save the XML document in z/OS UNIX.

Channel schema
The channel description document must conform to the following schema:

 <schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.ibm.com/xmlns/prod/CICS/channel"
 xmlns:tns="http://www.ibm.com/xmlns/prod/CICS/channel"
 elementFormDefault="qualified">
 <element name="channel">
 1
 <complexType>
 <sequence>
 <element name="container" maxOccurs="unbounded" "unbounded"
minOccurs="0">
 2
 <complexType>
 <sequence>
 <element name="structure" minOccurs="0">
 3
 <complexType>
 <attribute name="location" type="string" use="required"/>
 <attribute name="structure" type="string" use="optional"/>
 </complexType>
 </element>
 </sequence>
 <attribute name="name" type="tns:name16Type" use="required"/>
 <attribute name="type" type="tns:typeType" use="required"/>
 <attribute name="use" type="tns:useType" use="required"/>
 </element>
 </sequence>
 <attribute name="name" type="tns:name16Type" use="optional" />
 </complexType>
 </element>
 <simpleType name="name16Type">
 <restriction base="string">
 <maxLength value="16"/>
 </restriction>
 </simpleType>
 <simpleType name="typeType">
 <restriction base="string">
 <enumeration value="char"/>
 <enumeration value="bit"/>
 </restriction>
 </simpleType>
 <simpleType name="useType">
 <restriction base="string">
 <enumeration value="required"/>
 <enumeration value="optional"/>
 </restriction>
 </simpleType>
 </schema>

1. This element represents a CICS channel.
2. This element represents a CICS container within the channel.

Chapter 3. Developing web services 213

3. A structure can only be used with 'bit' mode containers. The 'location' attribute indicates the location
of a file that maps the contents of container. The 'structure' attribute may be used in C and C++ to
indicate the name of structure.

What to do next
Run DFHLS2JS to create the mappings and JSON schema for the web service provider application.
DFHLS2JS puts the mappings for the channel in the JSON schema in the order that the containers are
specified in the channel description document.

Customizing generated JSON schemas
The JSON schemas that are generated by DFHLS2JS contain some automatically generated content that
might be appropriate for you to change before publishing. Customizing JSON schemas can result in
regenerating the web services binding file and, in some cases, writing a wrapper program.

About this task
Follow these steps to customize generated JSON schemas:

Procedure

1. To advertise support for HTTPS, use the URI parameter in DFHLS2JS to set an absolute URI.
2. To supply the network location of your web service, use the URI parameter in DFHLS2JS to set an

absolute URI.
3. Consider whether the automatically generated names in the JSON schema are appropriate for your

purposes.
You can rename the properties.

These values form part of the programmatic interface to which you code a client program. If the
generated names are not sufficiently meaningful, maintenance of your application code might be more
difficult over a long period of time.

If you change any of these values, you must use DFHJS2LS to regenerate the web services binding file.
The language structures that are produced are unlikely to be compatible with your existing application,
so application changes might be required. Review the generated language structures, and consider
writing a wrapper program as discussed in step “4” on page 214.

4. Consider if the COMMAREA fields exposed in the JSON schemas are appropriate.
You might consider removing any fields that are not helpful to a JSON client developer:

• Fields that are used only for output values can be removed from the schema that maps the input
data structures.

• Filler fields.
• Automatically generated annotations.

If you make any of these changes, you must regenerate the web services binding file using DFHJS2LS.
The new language structures that are generated are not compatible with the original language
structures, so you must write a wrapper program to map data from the new representation to the old
one. This wrapper program needs to perform an EXEC CICS LINK command to the target application
program and then map the returned data.

This level of customization requires the most effort, but results in the most meaningful programmatic
interfaces for your JSON client developers.

Results
You have a customized JSON schema that matches your business requirements, and a PROGRAM in CICS
that implements them.

214 CICS TS for z/OS: Using Web Services with CICS

Creating a JSON web service client application
You can write an application program to call a RESTful web service by using the linkable interface to
transform JSON and then use the WEB commands to send it to the remote service provider.

Before you begin

You must be familiar with using the linkable interface to transform JSON, as described in Mapping and
transforming application data and JSON, and with the EXEC CICS WEB APIs, as described in Making
HTTP requests through CICS as an HTTP client.

About this task
As part of a CICS application you might want to call a RESTful web service hosted on another system. To
do this, you must first describe the data to be exchanged with the remote service. You can then write an
application program that uses the EXEC CICS WEB API to communicate with the remote service with the
HTTP protocol to send request data to the service and receive response data. You can use the linkable
interface to transform your application data to JSON to use as part of the request, and transform the
JSON response into application data. Some services might not support a payload for both the request and
response.

Procedure

1. Define the interface to the remote service.
a) If the remote service exists, check to see whether a JSON schema is available that describes the

request and response payloads. If not, you must create one. Then, use the JSON assistant to
generate a mapping to a language structure. For more information, see Generating mappings from a
JSON schema.

b) If the remote service does not yet exist and you want to base its interface on your application's
data structure, use the JSON assistant to generate a JSON schema. Then pass the JSON schema to
the remote service application developer. For more information, see Generating mappings from
language structure.

2. Define a BUNDLE resource for the bundle that is generated by the JSON assistant and install the
bundle in CICS.

3. Define a URIMAP resource for the remote service endpoint and install it. For more information, see
URIMAP resources.

4. Create or update an application program to call the remote service as follows:
a) If the remote service requires a JSON payload for the request (for example when the HTTP method

is POST or PUT), use the linkable interface to transform your application data to JSON.
For more information, see Transforming application data to JSON by linking to DFHJSON.

b) Open a connection to the server where the remote service is hosted, by using the EXEC CICS WEB
OPEN command.
For more information, see WEB OPEN.

c) Depending on the requirements of the service, you might want to code the EXEC CICS WEB
WRITE HTTPHEADER command to specify the Content-Type header application/JSON to
indicate that JSON is being supplied.
For more information, see WEB WRITE HTTPHEADER.

d) Code an EXEC CICS WEB CONVERSE command to send the request to the remote service and
receive the response. Specify the query string or request body (from the DFHJSON-JSON container)
if required. If you expect a response from the service, specify the DFHJSON-JSON container to
receive the response JSON.
For more information, see WEB CONVERSE.

e) If you do not expect to make further requests, code an EXEC CICS WEB CLOSE command to close
the connection. For more information, see WEB CLOSE.

Chapter 3. Developing web services 215

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/transforming_json_linkable_interface.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/transforming_json_linkable_interface.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web/dfhtl_outmaking.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web/dfhtl_outmaking.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/generate_mappings_from_jsonschema.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/generate_mappings_from_jsonschema.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/generate_mappings_from_language.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/generate_mappings_from_language.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/urimap/dfha4_summary.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/transforming_applicationdata_to_json.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-applications/commands-api/dfhp4_webopen.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-applications/commands-api/dfhp4_webwritehttpheader.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-applications/commands-api/dfhp4_webconverse.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-applications/commands-api/dfhp4_webclose.html

f) Check the HTTP response code that is returned by the EXEC CICS WEB CONVERSE command and
take appropriate action if an error occurred.
For example, try the request again or return an error to the user.

g) If a response body was expected from the remote service, use the linkable interface to transform
the JSON to application data.
For more information, see Transforming application data to JSON by linking to DFHJSON.

Results
You have created an application that can call a RESTful web service with a JSON payload.

JSON web service restrictions
Use this reference material to understand capabilities that are not supported by JSON web services.

The following capabilities are not supported:

• Requester mode pipelines with JSON are not supported.
• Runtime validation of JSON data against schema is not supported. The value of the VALIDATION

attribute of a WEBSERVICE resource that is used with a JSON payload is ignored.
• Use of namespaces in JSON data (Badgerfish or Mapped conventions) is not supported.
• JSON payloads sent to CICS must be encoded in UTF-8. No other encoding is supported. Similarly,

JSON sent by CICS is always encoded in UTF-8.
• WebSphere MQ transports with JSON pipelines are not supported.
• Vendor transformer programs are not supported for use with the JSON transformer.
• Reuse of WSBind files that are created for SOAP web services applications in a JSON pipeline is not

supported. WSBind files for use with JSON service provider applications must be generated by the
JSON assistant.

• If a JSON payload is missing some mandatory content when CICS transforms it, the equivalent fields
within the data structures are not initialized when passed to the application program.

• CICS cannot transform integer values greater than the maximum value for a signed long (2^63 - 1)
unless they are enclosed within quotation marks.

• Use of simple data types is not supported at the root of a JSON schema. The JSON schema describes a
JSON object or a JSON array, although the JSON object can in turn, contain simple data types, arrays,
and other objects.

• If an array is declared in a JSON schema with a maxItems value of 1, CICS serializes the array as a
simple string or integer when it generates JSON at run time.

Important: The only supported characters for JSON property names are: A-Z a-z _ : for the first
character and A-Z a-z 0-9 _ : . - for all subsequent characters.

The Axis2 web services support today has a number of options for development and deployment of
applications and customizations. The following options are not supported:

• User-supplied application handlers - you must use the CICS supplied application handler class
com.ibm.cicsts.axis2.CICSAxis2ApplicationHandler.

• User-written Axis2 Java applications.
• The SOAPFAULT and WS-Addressing APIs cannot be used with the JSON pipeline.

Container restrictions

Note: Some pipeline containers are not populated when a JSON request is processed. For more
information, see Containers used in the pipeline.

Differences in RESTful web services

On INQUIRE PIPELINE:

216 CICS TS for z/OS: Using Web Services with CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/transforming_applicationdata_to_json.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_PipelineContainers.html

• SOAPLEVEL returns NOTSOAP
• The MTOMNOXOPST, MTOMST, SENDMTOMST, SOAPRNUM, SOAPVNUM, XOPDIRECTST, and

XOPSUPPORTST attributes are not used.

On INQUIRE WEBSERVICE:

• The ARCHIVEFILE, BINDING, VALIDATIONST, XOPDIRECTST, and XOPSUPPORTST attributes are not
used.

• WSDLFILE returns the name of the JSON schema file that is associated with the WEBSERVICE.

On the WEBSERVICE resource:

• The ARCHIVEFILE and VALIDATION parameters are not used and their values are ignored.
• WSDLFILE is the name of the JSON schema file that is associated with the WEBSERVICE.

Developing SOAP web services
You can expose existing CICS applications as SOAP web services and create CICS applications to act as
SOAP web service providers or requesters.

Before you begin

Before you begin to create a SOAP web service, perform these tasks:

1. Configure your CICS system to support web services; see Configuring your CICS system for web
services.

2. Create the necessary infrastructure to support the deployment of your web services; see Creating the
web services infrastructure.

3. Decide whether you want to use the web services assistant; see Planning to use SOAP web services.

You must have fundamental knowledge about how CICS supports web services.

Procedure

1. Create a SOAP web service in one of four ways:

• Use the CICS web services assistant to create the web service description or language structures
and deploy them into CICS. Use the PIPELINE SCAN command to automatically create the required
CICS resources.

The CICS web services assistant is a supplied utility that helps you to create the necessary artifacts
for a SOAP web service provider or a service requester application, or to enable an existing
application as a web service provider. The assistant can create a WSDL document from a simple
language structure or a language structure from an existing WSDL document; it supports COBOL, C/C
++, and PL/I. It also generates information that is used to enable automatic runtime conversion of
the SOAP messages to containers and COMMAREAs, and vice versa. This information is used by the
CICS web services support during pipeline processing.

Follow the instruction in the following topics:

– “Creating a web service provider by using the web services assistant” on page 249
– “Creating a web service requester using the web services assistant” on page 258

• Use IBM Developer for Z or the Java API to create the web service description or language structures
and deploy them into CICS. Use the PIPELINE SCAN command to automatically create the required
CICS resources. For details, see “Developing web services using tooling” on page 260.

• Create or change an application program to handle the XML in the inbound and outbound messages,
including the data conversion, and populate the correct containers in the pipeline. You must create
the required CICS resources manually. For more information, see “Creating your own XML-aware
web service applications” on page 261.

Chapter 3. Developing web services 217

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_configuring.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_configuring.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_create_pipeline.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_create_pipeline.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/web-services/dfhws_gs001.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/web-services/dfhws_support.html

• Deploy an Axis2 application as a web service. For details, see “ Using Java with web services ” on
page 265.

2. Start the web service to test that it works as you intended.

If you are using the web services assistant to deploy your web service, you can use the SET
WEBSERVICE command to turn on validation. This validation checks that the data is converted
correctly.

The CICS web services assistant
The CICS web services assistant is a set of batch utilities that can help you to transform existing CICS
applications into web services and to enable CICS applications to use web services provided by external
providers. The assistant supports rapid deployment of CICS applications for use in service providers and
service requesters, with the minimum of programming effort.

When you use the web services assistant for CICS, you do not have to write your own code for parsing
inbound messages and for constructing outbound messages; CICS maps data between the body of a
SOAP message and the application program's data structure.

The assistant can create a WSDL document from a simple language structure or a language structure from
an existing WSDL document, and supports COBOL, C/C++, and PL/I. It also generates information used to
enable automatic runtime conversion of the SOAP messages to containers and COMMAREAs, and vice
versa.

The CICS web services assistant comprises two utility programs:
DFHLS2WS

Generates a web service binding file from a language structure. This utility also generates a web
service description.

DFHWS2LS
Generates a web service binding file from a web service description. This utility also generates a
language structure that you can use in your application programs.

The JCL procedures to run both programs are in the hlq .XDFHINST library.

The relevant usage mode for the DFHLS2WS or DFHWS2LS procedure depends on your requirements:

• “DFHLS2WS: high-level language to WSDL conversion” on page 219
• “DFHWS2LS: WSDL to high-level language conversion” on page 233

The web service description (WSDL) documents that are generated by DFHLS2WS contain some
automatically generated content that might be appropriate for you to change before publishing.
Customizing WSDL documents can result in regenerating the web services binding file and, in some cases,
writing a wrapper program. For details, see “Customizing generated web service description documents”
on page 255.

For information about the data mappings between high-level language structures and XML schemas or
WSDL documents, see the following topics:

• “How the CICS assistants map between high-level languages and XML schemas” on page 407
• “Mapping levels for the CICS assistants” on page 410
• “Data mapping limitations when using the CICS assistants” on page 408
• “Variable arrays of elements” on page 460

218 CICS TS for z/OS: Using Web Services with CICS

DFHLS2WS: high-level language to WSDL conversion
The DFHLS2WS procedure generates a web service description and a web service binding file from a high-
level language data structure. You can use DFHLS2WS when you expose a CICS application program as a
service provider.

Job control statements for DFHLS2WS
JOB

Starts the job.
EXEC

Specifies the procedure name (DFHLS2WS).
INPUT.SYSUT1 DD

Specifies the input. The input parameters are typically specified in the input stream. However, they
can be defined in a data set or in a member of a partitioned data set.

Symbolic parameters

The following symbolic parameters are defined in DFHLS2WS:

JAVADIR=path
Specifies the name of the Java directory that is used by DFHLS2WS. The value of this parameter is
appended to /usr/lpp/ to produce a complete path name of /usr/lpp/ path .
Typically, you do not specify this parameter. The default value is the value that was supplied to the
CICS installation job (DFHISTAR) in the JAVADIR parameter.

PATHPREF= prefix
Specifies an optional prefix that extends the z/OS UNIX directory path used on other parameters. The
default is the empty string.
Typically, you do not specify this parameter. The default value is the value that was supplied to the
CICS installation job (DFHISTAR) in the PATHPREF parameter.

SERVICE= value
Use this parameter only when directed to do so by IBM Support.

TMPDIR = tmpdir
Specifies the location of a directory in z/OS UNIX that DFHLS2WS uses as a temporary work space.
The user ID under which the job runs must have read and write permission to this directory.
The default value is /tmp.

TMPFILE= tmpprefix
Specifies a prefix that DFHLS2WS uses to construct the names of the temporary workspace files.
The default value is LS2WS.

PATHMAIN =path
Specifies the main part of the name of the CICS TS directory in the UNIX system services file system.
The default value is /usr/lpp/cicsts.
Typically, you do not specify this parameter. The default value is the value that was supplied to the
CICS installation job (DFHISTAR) in the PATHMAIN parameter.

USSDIR = path
Specifies the name of the CICS TS directory in the UNIX system services file system. The value of this
parameter is appended to the value specified by the PATHMAIN parameter.
Typically, you do not specify this parameter. The default value is the value that was supplied to the
CICS installation job (DFHISTAR) in the USSDIR parameter.

The temporary work space

DFHLS2WS creates the following three temporary files at run time:

tmpdir / tmpprefix .in

Chapter 3. Developing web services 219

tmpdir / tmpprefix .out
tmpdir / tmpprefix .err

where:

tmpdir is the value specified in the TMPDIR parameter.
tmpprefix is the value specified in the TMPFILE parameter.

The default names for the files, when TMPDIR and TMPFILE are not specified, are as follows:

/tmp/LS2WS.in
/tmp/LS2WS.out
/tmp/LS2WS.err

Important: DFHLS2WS does not lock access to the z/OS UNIX files or the data set members. If two or
more instances of DFHLS2WS run concurrently and use the same temporary workspace files, nothing
prevents one job from overwriting the workspace files while another job is using them, which might cause
unpredictable failures.

Therefore, you are advised to devise a naming convention, and operating procedures, that avoid this
situation. For example, you can use the system symbolic parameter SYSUID to generate workspace file
names that are unique to an individual user. These temporary files are deleted before the end of the job.

220 CICS TS for z/OS: Using Web Services with CICS

Input parameters for DFHLS2WS
PDSLIB=  value

PDSCP=  value

REQMEM=  value RESPMEM=  value

REQUEST-CHANNEL=  value RESPONSE-CHANNEL=  value

LANG=COBOL

LANG=PLI-ENTERPRISE

LANG=PLI-OTHER

LANG=C

LANG=CPP
STRUCTURE=(

DFHREQUEST

request

,
DFHRESPONSE

response
)

PGMNAME=  value

TRANSACTION=  name USERID=  id

URI=  value

PGMINT=CHANNEL

CONTID=  value

PGMINT=COMMAREA

MAPPING-LEVEL=1.0

MAPPING-LEVEL=1.1

MAPPING-LEVEL=1.2 Mapping level 1.2 and higher

MAPPING-LEVEL=2.0

MAPPING-LEVEL=2.1 Mapping level 2.1 and higher

MAPPING-LEVEL=2.2

MAPPING-LEVEL=3.0 Mapping level 3.0 and higher

MAPPING-LEVEL=4.0 Mapping level 4.0 and higher

MAPPING-LEVEL=4.1 Mapping level 4.1 and higher

MAPPING-LEVEL=4.2

MAPPING-LEVEL=4.3

MINIMUM-RUNTIME-LEVEL=MINIMUM

MINIMUM-RUNTIME-LEVEL=CURRENT

MINIMUM-RUNTIME-LEVEL=1.0

MINIMUM-RUNTIME-LEVEL=1.1

MINIMUM-RUNTIME-LEVEL=1.2

MINIMUM-RUNTIME-LEVEL=2.0

MINIMUM-RUNTIME-LEVEL=2.1

MINIMUM-RUNTIME-LEVEL=2.2

MINIMUM-RUNTIME-LEVEL=3.0

MINIMUM-RUNTIME-LEVEL=4.0

MINIMUM-RUNTIME-LEVEL=4.1

MINIMUM-RUNTIME-LEVEL=4.2

MINIMUM-RUNTIME-LEVEL=4.3

SOAPVER=

1.1

1.2

ALL

DATA-SCREENING=ENABLED

DATA-SCREENING=DISABLED

HTTPPROXY= domain name

IP address

: port number

HTTPPROXY-USERNAME=  value HTTPPROXY-PASSWORD=  value

CCSID=  value REQUEST-NAMESPACE=  value

RESPONSE-NAMESPACE=  value

SYNCONRETURN=NO

SYNCONRETURN=YES

WSBIND=  value
WSDL=  value

WSDL_1.1=  value WSDL_2.0=  value

LOGFILE=  value
WSDLCP=LOCAL

WSDLCP=UTF-8

WSDLCP=EBCDIC-CP-US

WSDL-NAMESPACE=  value OPERATION-NAME=  value

BINDING-NAME=  value PORT-NAME=  value

SERVICE-NAME=  value

WSRR-SERVER=  scheme:// domain name

IP address

: port number

 1

WSRR-DESCRIPTION=  value

WSRR-ENCODING=  value

WSRR-LOCATION=  value

WSRR-USERNAME=  value WSRR-PASSWORD=  value

WSRR-VERSION=1

WSRR-VERSION=  value

SSL-KEYSTORE=  value

SSL-KEYPWD=  value

SSL-TRUSTSTORE=  value

SSL-TRUSTPWD=  value

WSRR-CUSTOM-  PropertyName =  value

1

Mapping level 1.2 and higher

Chapter 3. Developing web services 221

CHAR-VARYING=NO

CHAR-VARYING=NULL

Mapping level 2.1 and higher
CHAR-VARYING=NO

CHAR-VARYING=NULL

CHAR-VARYING=COLLAPSE

CHAR-VARYING=BINARY

Mapping level 3.0 and higher
DATETIME=UNUSED

DATETIME=PACKED15

DATA-TRUNCATION=DISABLED

DATA-TRUNCATION=ENABLED

Mapping level 4.0 and higher
CHAR-OCCURS=STRING

CHAR-OCCURS=ARRAY

CHAR-USAGE=NATIONAL

CHAR-USAGE=DBCS

Mapping level 4.1 and higher
TRUNCATE-NULL-ARRAYS=DISABLED

TRUNCATE-NULL-ARRAYS=ENABLED

TRUNCATE-NULL-ARRAY-VALUES=

,

NULL

PACKEDZERO

SPACE

ZERO

Notes:
1 Each WSRR parameter that can be specified when the WSRR-SERVER parameter is set can be specified only
once. The exception is the WSRR-CUSTOM parameter, which you can specify a maximum of 255 times.

Parameter use

• You can specify the input parameters in any order.
• Each parameter must start on a new line.
• A parameter, and its continuation character, if you use one, must not extend beyond column 72;

columns 73 to 80 must contain blanks.
• If a parameter is too long to fit on a single line, use an asterisk (*) character at the end of the line to

indicate that the parameter continues on the next line. Everything, including spaces, before the asterisk
is considered part of the parameter. For example:

WSBIND=wsbinddir*
 /app1

222 CICS TS for z/OS: Using Web Services with CICS

is equivalent to

WSBIND=wsbinddir/app1

• A # character in the first character position of the line is a comment character. The line is ignored.
• A comma in the last character position of the line is an optional line separator, and is ignored.

Parameter descriptions
BINDING-NAME = value

Specifies the binding name that is used in the generated WSDL document. If no value is supplied, a
default binding name is generated using the value of the PGMNAME parameter followed by
"HTTPSoapBinding" . If SOAPVER is set to ALL, a "12" suffix is appended to the name of the SOAP 1.2
binding.

CCSID = value
Specifies the CCSID that is used at run time to encode character data in the application data
structure. The value of this parameter overrides the value of the LOCALCCSID system initialization
parameter. The value must be an EBCDIC CCSID that is supported by Java and z/OS conversion
services (see z/OS Unicode Services User's Guide and Reference). If you do not specify this
parameter, the application data structure is encoded using the CCSID specified in the system
initialization parameter.

You can use this parameter with any mapping level.

CHAR-VARYING = { NO | NULL | COLLAPSE | BINARY }
Specifies how character fields in the language structure are mapped when the mapping level is 1.2 or
higher. A character field in COBOL is a Picture clause of type X, for example PIC(X) 10 ; a character
field in C/C++ is a character array. You can select these options:
NO

Character fields are mapped to an <xsd:string> and are processed as fixed-length fields. The
maximum length of the data is equal to the length of the field. NO is the default value for the
CHAR-VARYING parameter for COBOL and PL/I at mapping levels 2.0 and earlier.
This value does not apply to Enterprise and Other PL/I language structures.

NULL
Character fields are mapped to an <xsd:string> and are processed as null-terminated strings.
CICS adds a terminating null character when transforming from a SOAP message. The maximum
length of the character string is calculated as one character less than the length indicated in the
language structure. NULL is the default value for the CHAR-VARYING parameter for C/C++.
This value does not apply to Enterprise and Other PL/I language structures.

COLLAPSE
Character fields are mapped to an <xsd:string>. Trailing and embedded white space in the
field is not included in the SOAP message; for example
<space>AB<space><space><space>C<space> becomes AB<space>C. The inbound SOAP
message is parsed to remove all leading, trailing, and embedded white space. COLLAPSE is the
default value for the CHAR-VARYING parameter for COBOL and PL/I at mapping level 2.1
onwards.
For more information about variable-length values and white space, see Support for variable-
length values and white space.

BINARY
Character fields are mapped to an <xsd:base64binary> and are processed as fixed-length
fields. The BINARY value on the CHAR-VARYING parameter is available only at mapping levels 2.1
and onwards.

CHAR-OCCURS = { STRING | ARRAY }
Specifies how character arrays in the language structure are mapped when the mapping level is 4.0 or
higher. For example, PIC X OCCURS 20 . This parameter is only for use by the COBOL language.

Chapter 3. Developing web services 223

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.cunu100/toc.htm

ARRAY
Character arrays are mapped to an XML array. This means that every character is mapped as an
individual XML element. This is also the behavior at mapping levels 3.0 and earlier.

STRING
Character arrays are mapped to an XML string. This means that the entire COBOL array is mapped
as a single XML element.

CHAR-USAGE = { NATIONAL | DBCS }

In COBOL, the national data type, PIC N , can be used for UTF-16 or DBCS data. This setting is
controlled by the NSYMBOL compiler option. You must set the CHAR-USAGE parameter on the
assistant to the same value as the NSYMBOL compiler option to ensure that the data is handled
appropriately. This is typically set to CHAR-USAGE=NATIONAL when you use UTF-16.

DBCS
Data from PIC (n) fields is treated as DBCS encoded data.

NATIONAL
Data from PIC (n) fields is treated as UTF-16 encoded data.

CONTID = value
In a service provider, specifies the name of the container that holds the top-level data structure used
to represent a SOAP message.

The length of the container that CICS passes to the target application program is the greater of the
lengths of the request container and the response container.

DATA-SCREENING = { ENABLED | DISABLED }
Specifies whether application supplied data is screened for errors.
ENABLED

Any application-supplied runtime data that is inconsistent with the language structure, is treated
as an error, and message DFHPI1010 is issued. An error response is returned to the application.

DISABLED
Values in application-supplied runtime data that are inconsistent with the language structure are
replaced by default values. For example, a zero replaces a bad value in a numeric field. Message
DFHPI1010 is not issued and a normal response is returned to the application. This feature can be
used to avoid INVALID_PACKED_DEC and INVALID_ZONED_DEC error responses that are
generated from uninitialized output fields.

DATA-TRUNCATION = { DISABLED | ENABLED }
Specifies whether variable length data is tolerated in a fixed-length field structure:
DISABLED

If the data is less than the fixed length that CICS is expecting, CICS rejects the truncated data and
issues an error message.

ENABLED
If the data is less than the fixed length that CICS is expecting, CICS tolerates the truncated data
and processes the missing data as null values.

DATETIME = { UNUSED | PACKED15 }
Specifies if potential ABSTIME fields in the high-level language structure are mapped as timestamps:
PACKED15

Packed decimal fields of length 15 (8 bytes) are treated as CICS ABSTIME fields, and mapped as
timestamps.

UNUSED
Packed decimal fields of length 15 (8 bytes) are not treated as timestamps.

You can set this parameter at a mapping level of 3.0.

224 CICS TS for z/OS: Using Web Services with CICS

HTTPPROXY = { domain name : port number | IP address : port number }
If your WSDL contains references to other WSDL files that are located on the internet, and the system
on which you are running DFHLS2WS uses a proxy server to access the internet, specify the domain
name or IP address and the port number of the proxy server. For example:

HTTPPROXY=proxy.example.com:8080

In other cases, this parameter is not required.
HTTPPROXY-PASSWORD = value

Specifies the HTTP proxy password that must be used with HTTPPROXY-USERNAME if the system on
which you are running DFHLS2WS uses a HTTP proxy server to access the Internet, and the HTTP
proxy server uses basic authentication. You can use this parameter only when you also specify
HTTPPROXY.

HTTPPROXY-USERNAME = value
Specifies the HTTP proxy username that must be used with HTTPPROXY-PASSWORD if the system on
which you are running DFHLS2WS uses a HTTP proxy server to access the Internet, and the HTTP
proxy server uses basic authentication. You can use this parameter only when you also specify
HTTPPROXY.

LANG = COBOL|PLI-ENTERPRISE|PLI-OTHER|C|CPP
Specifies the programming language of the high-level language structure:
COBOL

COBOL
PLI-ENTERPRISE

Enterprise PL/I
PLI-OTHER

A level of PL/I other than Enterprise PL/I
C

C
CPP

C++
LOGFILE = value

The fully qualified z/OS UNIX name of the file into which DFHLS2WS writes its activity log and trace
information. DFHLS2WS creates the file, but not the directory structure, if it does not already exist.

Typically, you do not use this file, but it might be requested by the IBM service organization if you
encounter problems with DFHLS2WS.

MAPPING-LEVEL = { 1.0 | 1.1 | 1.2 | 2.0 | 2.1 | 2.2 | 3.0 | 4.0 | 4.1 | 4.2 | 4.3 }
Specifies the level of mapping that DFHLS2WS uses when generating the web service binding file and
web service description. You can select these options. Each level of mapping inherits the function of
the previous mapping, where the highest level of mapping offers the best capabilities available. See
“Mapping levels for the CICS assistants” on page 410 for minimum CICS release level required by
each mapping level and other compatibility information.
1.0

This mapping level is the default.
1.1

Use this mapping to regenerate a binding file at this specific level.
1.2

At this mapping level, you can use the CHAR-VARYING parameter to control how character arrays
are processed at run time. VARYING and VARYINGZ arrays are also supported in PL/I.

2.0
Use this mapping level to take advantage of the enhancements to the mapping between the
language structure and web services binding file.

Chapter 3. Developing web services 225

2.1
Use this mapping level to take advantage of the new values for the CHAR-VARYING parameter,
COLLAPSE and BINARY. FILLER fields in COBOL and * fields in PL/I are systematically ignored at
this mapping level, the fields do not appear in the generated WSDL document, and an appropriate
gap is left in the data structures at run time.

2.2
Use this mapping level to take advantage of mapping enhancements when using DFHWS2LS.

3.0
At this mapping level you can create a web service from an application that uses many containers
in its interface by setting the REQUEST-CHANNEL and RESPONSE-CHANNEL parameters. You can
also map dateTime fields to XML timestamps by setting the DATETIME parameter.

4.0
Use this mapping level with a region at CICS TS 5.2, or later. At this mapping level you can use
COBOL OCCURS DEPENDING ON fields and the CHAR-OCCURS parameter.

4.1
For truncatable array support, use this mapping level with a region at CICS TS 5.2 or later.

4.2
No significant changes. Use this mapping level with a region at CICS TS V5.4 or later.

4.3
No significant changes. Use this mapping level with a region at CICS TS V5.4 or later.

For more information about mapping levels, see Mapping levels for the CICS assistants .

MINIMUM-RUNTIME-LEVEL = { MINIMUM | 1.0 | 1.1 | 1.2 | 2.0 | 2.1 | 2.2 | 3.0 | 4.0 | 4.1 | 4.2
| 4.3 | CURRENT }

Specifies the minimum CICS runtime environment into which the web service binding file can be
deployed. If you select a level that does not match the other parameters that you have specified, you
receive an error message. You can select these options:
MINIMUM

The lowest possible runtime level of CICS is allocated automatically given the parameters that you
selected.

1.0
The generated web service binding file deploys successfully into a CICS TS 3.1 region. Some
parameters are not available at this runtime level.

1.1
The generated web service binding file deploys successfully into a CICS TS 3.1 region. You can
use a mapping level of 1.1 or earlier for the MAPPING-LEVEL parameter. Some parameters are
not available at this runtime level.

1.2
The generated web service binding file deploys successfully into a CICS TS 3.1 region. You can
use a mapping level of 1.2 or earlier for the MAPPING-LEVEL parameter. Some parameters are
not available at this runtime level.

2.0
The generated web service binding file deploys successfully into a CICS TS 3.2 or later region. You
can use a mapping level of 2.0 or earlier for the MAPPING-LEVEL parameter. Some parameters
are not available at this runtime level.

2.1
The generated web service binding file deploys successfully into a region at CICS TS 3.2 or later.
You can use a mapping level of 2.1 or earlier for the MAPPING-LEVEL parameter. Some
parameters are not available at this runtime level.

2.2
The generated web service binding file deploys successfully into a region at CICS TS 3.2 region or
later. With this runtime level, you can use a mapping level of 2.2 or earlier for the MAPPING-
LEVEL parameter. Some parameters are not available at this runtime level.

226 CICS TS for z/OS: Using Web Services with CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/dfhws_mappinglevels.html

3.0
The generated web service binding file deploys successfully into a region at CICS TS 4.1 or later.
With this runtime level, you can use a mapping level of 3.0 or earlier for the MAPPING-LEVEL
parameter. Some parameters are not available at this runtime level.

4.0
The generated web service binding file deploys successfully into a region at CICS TS 5.2 or later.
With this runtime level, you can use a mapping level of 4.0 or earlier for the MAPPING-LEVEL
parameter. You can use any optional parameter at this level.

4.1
The generated web service binding file deploys successfully into a region at CICS TS 5.2, or later.
With this runtime level, you can use a mapping level of 4.1 or earlier for the MAPPING-LEVEL
parameter.

4.2
The generated web service binding file deploys successfully into a region at CICS TS V5.4, or later.
With this runtime level, you can use a mapping level of 4.2 or earlier for the MAPPING-LEVEL
parameter.

4.3
The generated web service binding file deploys successfully into a region at CICS TS 5.4, or later.
With this runtime level, you can use a mapping level of 4.3 or earlier for the MAPPING-LEVEL
parameter.

CURRENT
The generated web service binding file deploys successfully into a CICS region at the same
runtime level as the one you are using to generate the web service binding file.

OPERATION-NAME = value
Specifies the operation name that is used in the generated WSDL document. If no value is supplied, a
default name is generated using the value of the PGMNAME parameter followed by the operation
value.

PDSLIB = value
Specifies the name of the partitioned data set that contains the high-level language data structures to
be processed. The data set members used for the request and response are specified in the REQMEM
and RESPMEM parameters respectively.

Restriction: The records in the partitioned data set must have a fixed length of 80 bytes.

PDSCP = value
Specifies the code page used in the partitioned data set members specified in the REQMEM and
RESPMEM parameters, where value is a CCSID number or a Java code page number. If this parameter
is not specified, the z/OS UNIX System Services code page is used. For example, you might specify
PDSCP = 037.

PGMINT = { CHANNEL | COMMAREA }
For a service provider, specifies how CICS passes data to the target application program:
CHANNEL

CICS uses a channel interface to pass data to the target application program.

• At mapping levels earlier than 3.0, the channel can contain only one container, which is used for
both input and output. Use the CONTID parameter to specify the name of the container. The
default name is DFHWS-DATA.

• At mapping level 3.0, the channel can contain multiple containers. Use the REQUEST-CHANNEL
and RESPONSE-CHANNEL parameters. Do not specify PDSLIB , REQMEM , or RESPMEM.

COMMAREA
CICS uses a communication area (COMMAREA) to pass data to the target application program.

When the target application program has processed the request, it must use the same mechanism to
return the response. If the request was received in a communication area then the response must be
returned in the communication area; if the request was received in a container, the response must be
returned in a container. The length of the communication area or container that CICS passes to the

Chapter 3. Developing web services 227

target application program is the greater of the lengths of the request communication area or
container and the response communication area or container.

PGMNAME = value
Specifies the name of the CICS PROGRAM resource for the target application program that will be
exposed as a web service. The CICS web service support will link to this program.

PORT-NAME = value
Specifies the name that is used for the port and portType in the generated WSDL document. If no
value is supplied, a default name is generated using the value of the PGMNAME parameter followed by
"Port" . If SOAPVER is set to ALL, a "12" suffix is appended to the name of the SOAP 1.2 port.

REQMEM = value
Specifies the name of the partitioned data set member that contains the high-level language structure
for the web service request. For a service provider, the web service request is the input to the
application program.

REQUEST-CHANNEL = value
Specifies the name and location of a channel description document. The channel description
describes the containers that the web service provider application can use in its interface when
receiving a SOAP message from a web service requester. The channel description is an XML document
that must conform to the CICS-supplied channel schema.
You can use this parameter at mapping level 3.0 only.

REQUEST-NAMESPACE = value
Specifies the namespace of the XML schema for the request message in the generated web service
description. If you do not specify this parameter, CICS generates a namespace automatically.

RESPMEM = value
Specifies the name of the partitioned data set member that contains the high-level language structure
for the web service response. For a service provider, the web service response is the output from the
application program.

Omit this parameter if no response is involved; that is, for one-way messages.

RESPONSE-CHANNEL = value
Specifies the name and location of a channel description document. The channel description
describes the containers that the web service provider application can use in its interface when
sending a SOAP response message to a web service requester. The channel description is an XML
document that must conform to the CICS-supplied channel schema.
You can use this parameter at mapping level 3.0 only.

RESPONSE-NAMESPACE = value
Specifies the namespace of the XML schema for the response message in the generated web service
description. If you do not specify this parameter, CICS generates a namespace automatically.

SERVICE-NAME = value
Specifies the service name that is used in the generated WSDL document. If no value is supplied, a
default service name is generated using the value of the PGMNAME parameter followed by "Service".

SOAPVER = { 1.1 | 1.2 | ALL }
Specifies the SOAP level to use in the generated web service description. This parameter is available
only when the MINIMUM-RUNTIME-LEVEL is set to 2.0 or higher.
1.1

The SOAP 1.1 protocol is used as the binding for the web service description.
1.2

The SOAP 1.2 protocol is used as the binding for the web service description.
ALL

Both the SOAP 1.1 or 1.2 protocol can be used as the binding for the web service description.

If you do not specify a value for this parameter, the default value depends on the version of WSDL that
you want to create:

• If you require only WSDL 1.1, the SOAP 1.1 binding is used.

228 CICS TS for z/OS: Using Web Services with CICS

• If you require only WSDL 2.0, the SOAP 1.2 binding is used.
• If you require both WSDL 1.1 and WSDL 2.0, both SOAP 1.1 and 1.2 bindings are used for each web

service description.

SSL-KEYSTORE = value
This optional parameter specifies the fully qualified location of the key store file.
Use this parameter if you want the web services assistant to use secure sockets layer (SSL)
encryption to communicate across a network to an IBM WebSphere Service Registry and Repository
(WSRR).

SSL-KEYPWD = value
This optional parameter specifies the password for the key store.
Use this parameter if you want the web services assistant to use secure sockets layer (SSL)
encryption to communicate across a network to an IBM WebSphere Service Registry and Repository
(WSRR).

SSL-TRUSTSTORE = value
This optional parameter specifies the fully qualified location of the trust store file.
Use this parameter if you want the web services assistant to use secure sockets layer (SSL)
encryption to communicate across a network to an IBM WebSphere Service Registry and Repository
(WSRR).

SSL-TRUSTPWD = value
This optional parameter specifies the password for the trust store.
Use this parameter if you want the web services assistant to use secure sockets layer (SSL)
encryption to communicate across a network to an IBM WebSphere Service Registry and Repository
(WSRR).

STRUCTURE = (request , response)
For C and C++ only, specifies the names of the high-level structures contained in the partitioned data
set members that are specified in the REQMEM and RESPMEM parameters:
request

Specifies the name of the high-level structure that contains the request when the REQMEM
parameter is specified. The default value is DFHREQUEST.
The partitioned data set member must contain a high-level structure with the name that you
specify or a structure named DFHREQUEST if you do not specify a name.

response
Specifies the name of the high-level structure containing the response when the RESPMEM
parameter is specified. The default value is DFHRESPONSE.
If you specify a value, the partitioned data set member must contain a high-level structure with
the name that you specify or a structure named DFHRESPONSE if you do not specify a name.

SYNCONRETURN = { NO | YES }
Specifies whether the remote web service can issue a sync point.
NO

The remote web service cannot issue a sync point. This value is the default. If the remote web
service issues a sync point, it fails with an ADPL abend.

YES
The remote web service can issue a sync point. If you select YES , the remote task is committed
as a separate unit of work when control returns from the remote web service. If the remote web
service updates a recoverable resource and a failure occurs after it returns, the update to that
resource cannot be backed out.

TRANSACTION = name
In a service provider, this parameter specifies the 1- to 4-character name of an alias transaction that
can start the pipeline. The value of this parameter is used to define the TRANSACTION attribute of the
URIMAP resource when it is created automatically using the PIPELINE scan command.

Chapter 3. Developing web services 229

Acceptable characters:

A-Z a-z 0-9 $ @ # _ < >

TRUNCATE-NULL-ARRAYS = { DISABLED | ENABLED }
Specifies how structured arrays are processed at mapping level 4.1 or higher. If enabled, CICS will
attempt to recognize empty records within an array (see TRUNCATE-NULL-ARRAY-VALUES for more
information about identifying empty records). If five consecutive empty array records are detected,
the array is truncated at the first such record when generating XML/JSON. This truncation capability is
only enabled for arrays with structured content, arrays of simple primitive fields are not subject to
truncation. Truncation of arrays can result in a more concise representation of the data in JSON/XML,
but is not without risk. If five consecutive data records are misidentified as uninitialized storage
(perhaps because they legitimately contain low values), data loss can be experienced. If TRUNCATE-
NULL-ARRAYS is enabled and TRUNCATE-NULL-ARRAY-VALUES is not set, then the default value for
TRUNCATE-NULL-ARRAY-VALUES is used.

TRUNCATE-NULL-ARRAY-VALUES = { NULL | PACKEDZERO|SPACE | ZERO }
Specifies which values are treated as empty for TRUNCATE-NULL-ARRAYS processing at mapping
level 4.1 or higher. By default, the null value (0x00, or low-values) is treated as empty. If all of the
bytes of storage within a record of a structured array contain nulls, then the entire record is
considered to be empty. One or more of the NULL, PACKEDZERO, SPACE and ZERO values can be
specified in a comma separated list.
NULL

Implies a null character (0x00).
PACKEDZERO

Implies a positive signed packed decimal zero (0x0C), a negative signed packed decimal zero
(0x0D), or an unsigned packed decimal zero (0x0F).

SPACE
Implies an SBCS EBCDIC space (0x40).

ZERO
Implies an unsigned zoned decimal zero (0xF0).

Any matching combination of the selected bytes within a structured array record will cause the entire
record to be identified as empty.

If TRUNCATE-NULL-ARRAY-VALUES has a value defined, TRUNCATE-NULL-ARRAYS must be
enabled.

URI = value
This parameter specifies the relative or absolute URI that a client will use to access the web service.
CICS uses the value specified when it generates a URIMAP resource from the web service binding file
created by DFHLS2WS. The parameter specifies the path component of the URI to which the URIMAP
definition applies.

USERID = id
In a service provider, this parameter specifies a 1- to 8-character user ID, which can be used by any
web client. For an application-generated response or a web service, the alias transaction is attached
under this user ID. The value of this parameter is used to define the USERID attribute of the URIMAP
resource when it is created automatically using the PIPELINE scan command.

Acceptable characters:

A-Z a-z 0-9 $ @ #

WSBIND = value
The fully qualified z/OS UNIX name of the web service binding file. DFHLS2WS creates the file, but not
the directory structure, if it does not already exist. The file extension is .wsbind.

230 CICS TS for z/OS: Using Web Services with CICS

WSDL = value
The fully qualified z/OS UNIX name of the file into which the web service description is written. The
web service description conforms to the WSDL 1.1 specification. DFHLS2WS creates the file, but not
the directory structure, if it does not already exist. The file extension is .wsdl.

WSDL_1.1 = value
The fully qualified z/OS UNIX name of the file into which the web service description is written. The
web service description conforms to the WSDL 1.1 specification. DFHLS2WS creates the file, but not
the directory structure, if it does not already exist. The file extension is .wsdl . This parameter
produces the same result as the WSDL parameter, so you can specify only one or the other.

WSDL_2.0 = value
The fully qualified z/OS UNIX name of the file into which the web service description is written. The
web service description conforms to the WSDL 2.0 specification. DFHLS2WS creates the file, but not
the directory structure, if it does not already exist. The file extension is .wsdl . This parameter can be
used with the WSDL or WSDL_1.1 parameters. It is available only when the MINIMUM-RUNTIME-
LEVEL is set to 2.0 or higher.

WSDLCP = { LOCAL | UTF-8 | EBCDIC-CP-US }
Specifies the code page that is used to generate the WSDL document.
LOCAL

Specifies that the WSDL document is generated using the local code page and no encoding tag is
generated in the WSDL document.

UTF-8
Specifies that the WSDL document is generated using the UTF-8 code page. An encoding tag is
generated in the WSDL document. If you specify this option, you must ensure that the encoding
remains correct when copying the WSDL document between different platforms.

EBCDIC-CP-US
This value specifies that the WSDL document is generated using the US EBCDIC code page. An
encoding tag is generated in the WSDL document.

WSDL-NAMESPACE = value
Specifies the namespace for CICS to use in the generated WSDL document.
If you do not specify this parameter, CICS generates a namespace automatically.

WSRR-CUSTOM- PropertyName = value
Use this optional parameter to add customized metadata to the WSDL document in the WSRR. The
WSRR-CUSTOM- PropertyName = value pairs are added into the WSDL document and appear in WSRR
without the WSSR-CUSTOM prefix.
You can specify a maximum of 255 custom PropertyName = value pairs. Avoid duplicate and blank
PropertyName = value pairs.
Use this parameter only when the WSRR-SERVER parameter is specified.

WSRR-DESCRIPTION = value
Use this optional parameter to specify the metadata that describes the WSDL document being
published.
Use this parameter only when the WSRR-SERVER parameter is specified.

WSRR-ENCODING = value
Use this optional parameter to specify the character set encoding of the WSDL document. If the
WSRR-ENCODING parameter is not specified, WSRR uses the value specified in the WSDL document.
Use this parameter only when the WSRR-SERVER parameter is specified.

WSRR-LOCATION = value
Use this optional parameter to specify the URI that identifies the location of the WSDL document. If
this parameter is not specified, the URI defaults to the filename specified in the WSDL parameter. For
example, if the value of the WSDL parameter is wsrr/example.wsdl , the value of the WSRR-
LOCATION parameter defaults to example.wsdl.
Use this parameter only when the WSRR-SERVER parameter is specified.

Chapter 3. Developing web services 231

WSRR-PASSWORD = value
Use this optional parameter if you must enter a password to access WSRR.
If the WSRR-USERNAME parameter is specified, you must also specify this parameter.
Use this parameter only when the WSRR-SERVER parameter is specified.

WSRR-SERVER = { domain name : port number | IP address : port number }
Use this parameter to specify the location of the IBM WebSphere Service Registry and Repository
(WSRR) server. If this parameter is specified, WSRR parameter validation is used.

WSRR-USERNAME = value
Use this optional parameter if you are required to specify a user name to access WSRR. This user
name is used by WSRR to set the owner property.
Use this parameter only when the WSRR-SERVER parameter is specified.

WSRR-VERSION = { 1 | value }
Use this parameter to set the version property of the WSDL document in WSRR.
Use this parameter only when the WSRR-SERVER parameter is specified.

Other information

• The user ID under which DFHLS2SC runs must be configured to use UNIX System Services. The user ID
must have read permission to the CICS z/OS UNIX file structure and PDS libraries and write permission
to the directories specified on the LOGFILE , WSBIND , and WSDL parameters.

• The user ID must have a sufficiently large storage allocation to run Java.
• The JCL has a maximum parameter length of 100 characters. This can be increased by using the
STDPARM statement, for more information, see z/OS UNIX System Services User's Guide.

Example

 //LS2WS JOB '
 accounting information
 ',
 name,MSGCLASS=A
 // SET QT=''''
 //JAVAPROG EXEC DFHLS2WS,
 // TMPFILE=&QT.&SYSUID.&QT
 //INPUT.SYSUT1 DD *
 PDSLIB=//CICSHLQ.SDFHSAMP
 REQMEM=DFH0XCP4
 RESPMEM=DFH0XCP4
 LANG=COBOL
 LOGFILE=/u/exampleapp/wsbind/example.log
 MINIMUM-RUNTIME-LEVEL=2.1
 MAPPING-LEVEL=2.1
 CHAR-VARYING=COLLAPSE
 PGMNAME=DFH0XCMN
 URI=http://myserver.example.org:8080/exampleApp/example
 PGMINT=COMMAREA
 SOAPVER=1.1
 SYNCONRETURN=YES
 WSBIND=/u/exampleapp/wsbind/example.wsbind
 WSDL=/u/exampleapp/wsdl/example.wsdl
 WSDL_2.0=/u/exampleapp/wsdl/example_20.wsdl
 WSDLCP=LOCAL
 WSDL-NAMESPACE=http://mywsdlnamespace
 /*

232 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.bpxa400/toc.htm

DFHWS2LS: WSDL to high-level language conversion
The DFHWS2LS procedure generates a high-level language data structure and a web service binding file
from a web service description. You can use DFHWS2LS when you expose a CICS application program as
a service provider or when you construct a service requester.

Job control statements for DFHWS2LS
JOB

Starts the job.
EXEC

Specifies the procedure name (DFHWS2LS).
INPUT.SYSUT1 DD

Specifies the input. The input parameters are usually specified in the input stream. However, they can
be defined in a data set or in a member of a partitioned data set.

Symbolic parameters

The following symbolic parameters are defined in DFHWS2LS:

JAVADIR = path
Specifies the name of the Java directory that is used by DFHWS2LS. The value of this parameter is
appended to /usr/lpp/ to produce a complete path name of /usr/lpp/ path .
Typically, you do not specify this parameter. The default value is the value that was supplied to the
CICS installation job (DFHISTAR) in the JAVADIR parameter.

PATHPREF= prefix
Specifies an optional prefix that extends the z/OS UNIX directory path used on other parameters. The
default is the empty string.
Typically, you do not specify this parameter. The default value is the value that was supplied to the
CICS installation job (DFHISTAR) in the PATHPREF parameter.

TMPDIR=tmpdir
Specifies the location of a directory in z/OS UNIX that DFHWS2LS uses as a temporary workspace.
The user ID under which the job runs must have read and write permission to this directory.
The default value is /tmp.

TMPFILE=tmpprefix
Specifies a prefix that DFHWS2LS uses to construct the names of the temporary workspace files.
The default value is WS2LS.

PATHMAIN =path
Specifies the main part of the name of the CICS TS directory in the UNIX system services file system.
The default value is /usr/lpp/cicsts.
Typically, you do not specify this parameter. The default value is the value that was supplied to the
CICS installation job (DFHISTAR) in the PATHMAIN parameter.

USSDIR=path
Specifies the name of the CICS TS directory in the UNIX system services file system. The value of this
parameter is appended to the value specified by the PATHMAIN parameter.
Typically, you do not specify this parameter. The default value is the value that was supplied to the
CICS installation job (DFHISTAR) in the USSDIR parameter.

SERVICE= value
Use this parameter only when directed to do so by IBM Support.

The temporary work space

DFHWS2LS creates the following three temporary files at run time:

tmpdir / tmpprefix .in

Chapter 3. Developing web services 233

tmpdir / tmpprefix .out
tmpdir / tmpprefix .err

where:

tmpdir is the value specified in the TMPDIR parameter.
tmpprefix is the value specified in the TMPFILE parameter.

The default names for the files, when TMPDIR and TMPFILE are not specified, are as follows:

/tmp/WS2LS.in
/tmp/WS2LS.out
/tmp/WS2LS.err

Important: DFHWS2LS does not lock access to the z/OS UNIX files or the data set members. Therefore, if
two or more instances of DFHWS2LS run concurrently, and use the same temporary workspace files,
nothing prevents one job overwriting the workspace files while another job is using them, leading to
unpredictable failures.

Therefore, you are advised to devise a naming convention, and operating procedures, that avoid this
situation. For example, you can use the system symbolic parameter SYSUID to generate workspace file
names that are unique to an individual user. These temporary files are deleted before the end of the job.

234 CICS TS for z/OS: Using Web Services with CICS

Input parameters for DFHWS2LS
PDSLIB=  value

PDSCP=  value REQMEM=  value

RESPMEM=  value

LANG=COBOL

LANG=PLI-ENTERPRISE

LANG=PLI-OTHER

LANG=C

LANG=CPP STRUCTURE=(

request

,
response

)

PGMNAME=  value

URI=  value

PGMINT=CHANNEL

CONTID=  value

PGMINT=COMMAREA TRANSACTION=  name USERID=  id

MAPPING-LEVEL=1.0

MAPPING-LEVEL=1.1

MAPPING-LEVEL=1.2 Mapping level 1.2 and higher

MAPPING-LEVEL=2.0

MAPPING-LEVEL=2.1 Mapping level 2.1 and higher

MAPPING-LEVEL=2.2 Mapping level 2.2 and higher

MAPPING-LEVEL=3.0

MAPPING-LEVEL=4.0

MAPPING-LEVEL=4.1

MAPPING-LEVEL=4.2 Mapping level 4.2 and higher

MAPPING-LEVEL=4.3

MAPPING-OVERRIDES=
SAME-AS-MAPPING-LEVEL

HYPHENS-AS-UNDERSCORES

LESS-DUP-NAMES

NO-ARRAY-NAME-INDEXING

UNDERSCORES-AS-HYPHENS

MINIMUM-RUNTIME-LEVEL=MINIMUM

MINIMUM-RUNTIME-LEVEL=1.0

MINIMUM-RUNTIME-LEVEL=1.1

MINIMUM-RUNTIME-LEVEL=1.2

MINIMUM-RUNTIME-LEVEL=2.0

MINIMUM-RUNTIME-LEVEL=2.1

MINIMUM-RUNTIME-LEVEL=2.2 Runtime level 2.2 and higher

MINIMUM-RUNTIME-LEVEL=3.0 Runtime level 3.0 and higher

MINIMUM-RUNTIME-LEVEL=4.0

MINIMUM-RUNTIME-LEVEL=4.1

MINIMUM-RUNTIME-LEVEL=4.2

MINIMUM-RUNTIME-LEVEL=4.3

MINIMUM-RUNTIME-LEVEL=CURRENT

DATA-SCREENING=ENABLED

DATA-SCREENING=DISABLED

HTTPPROXY= domain name

IP address

: port number

HTTPPROXY-USERNAME=  value HTTPPROXY-PASSWORD=  value

BINDING=  value CCSID=  value

NAME-TRUNCATION=RIGHT

NAME-TRUNCATION=LEFT

LOGFILE=  value

OPERATIONS=  value

SYNCONRETURN=NO

SYNCONRETURN=YES

WSBIND=  value WSDL=  value

WSDL-SERVICE=  value

WSRR-SERVER=  scheme:// domain name

IP address

: port number

WSRR-NAME=  value

WSRR-NAMESPACE=  value

WSRR-USERNAME=  value WSRR-PASSWORD=  value

WSRR-VERSION=  value

SSL-KEYSTORE=  value

SSL-KEYPWD=  value

SSL-TRUSTSTORE=  value

SSL-TRUSTPWD=  value

1
WIDE-COMP3=FULL

WIDE-COMP3=  NO

WIDE-COMP3=  YES

Mapping level 1.2 and higher

Chapter 3. Developing web services 235

CHAR-VARYING=NO

CHAR-VARYING=NULL

CHAR-VARYING=YES

CHAR-VARYING-LIMIT=32767

CHAR-VARYING-LIMIT=  value

CHAR-MULTIPLIER=1

CHAR-MULTIPLIER=  value

DEFAULT-CHAR-MAXLENGTH=255

DEFAULT-CHAR-MAXLENGTH=  value

DEFAULT-FRACTION-DIGITS=3

DEFAULT-FRACTION-DIGITS=  value

Mapping level 2.1 and higher
INLINE-MAXOCCURS-LIMIT=1

INLINE-MAXOCCURS-LIMIT=  value

Mapping level 2.2 and higher

PDSMEM=  value

Mapping level 4.2 and higher
ADDITIONAL-PROPERTIES-DEFAULT=FALSE

ADDITIONAL-PROPERTIES-DEFAULT=TRUE

ADDITIONAL-PROPERTIES-MAX=UNBOUNDED

ADDITIONAL-PROPERTIES-MAX=  value

ADDITIONAL-PROPERTIES-SIZE=255

ADDITIONAL-PROPERTIES-SIZE=  value

Runtime level 2.1 and higher
XML-ONLY=FALSE

XML-ONLY=TRUE

Runtime level 3.0 and higher
WSADDR-EPR-ANY=FALSE

WSADDR-EPR-ANY=TRUE

DATETIME=PACKED15

DATETIME=STRING

DATA-TRUNCATION=DISABLED

DATA-TRUNCATION=ENABLED

Notes:
1 Each of the WSRR parameters that can be specified when the WSRR-SERVER parameter is set can be
specified only once.

236 CICS TS for z/OS: Using Web Services with CICS

Parameter use

• You can specify the input parameters in any order.
• Each parameter must start on a new line.
• A parameter, and its continuation character, if you use one, must not extend beyond column 72;

columns 73 to 80 must contain blanks.
• If a parameter is too long to fit on a single line, use an asterisk (*) character at the end of the line to

indicate that the parameter continues on the next line. Everything, including spaces, before the asterisk
is considered part of the parameter. For example:

WSBIND=wsbinddir*
 /app1

is equivalent to

WSBIND=wsbinddir/app1

• A # character in the first character position of the line is a comment character. The line is ignored.
• A comma in the last character position of the line is an optional line separator, and is ignored.

Parameter descriptions
ADDITIONAL-PROPERTIES-DEFAULT = { true | false }

Indicates whether JSON schema objects that do not explicitly declare support for Additional
Properties are interpreted as supporting them or not. Additional JSON properties are any properties
within a JSON object that are not pre-defined in the JSON Schema. These properties are typically
rejected by the data transformation mechanism as unexpected extra data. If ADDITIONAL-
PROPERTIES-DEFAULT is set to TRUE, or if the JSON schema explicitly sets
additionalProperties:true for an object, then space is allocated in the generated copybooks to
hold such values. Applications can interact with those values using the associated fields in the
copybooks.

You can use this parameter at a mapping level of 4.2 or higher.

ADDITIONAL-PROPERTIES-MAX = { 0-20 | UNBOUNDED }
Indicates how many Additional Properties are supported for a JSON object that supports them. See
ADDITIONAL-PROPERTIES-DEFAULT. The generated copybooks will contain structures suitable for
addressing any additional properties. By default, there is no maximum constraint placed on the
number of properties that are supported. The copybooks are generated in a similar fashion to arrays
with no constraints and use containers. This parameter can be used to apply a maximum constraint
that can be used in combination with the INLINE-MAXOCCURS-LIMIT parameter to cause a fixed
length array to be allocated for the maximum number of properties, thereby avoiding the need for
containers.

You can use this parameter at a mapping level of 4.2 or higher.

ADDITIONAL-PROPERTIES-SIZE = { 16-32767 | 255 }
Indicates the maximum size for each of the JSON additional properties. If a JSON object supports
additional properties, as defined by ADDITIONAL-PROPERTIES-DEFAULT, then the generated
copybooks will have bindings to support properties up to the number specified by ADDITIONAL-
PROPERTIES-MAX. By default, the maximum value supported for each additional property is 255
characters. A field of that size will be generated into the copybooks that are produced. This size can
be customized by setting the ADDITIONAL-PROPERTIES-SIZE parameter. For example, a JSON
object is processed that is found to contain the following property:

"example": { "notes": "this extra property was not defined in the JSON Schema" }

If the copybooks have been generated to support additional properties, then that entire value will be
passed to the application for processing. The value begins with the leading quotation mark before the
property's key, and ends with the trailing right brace in the property's value. It's approximately 100

Chapter 3. Developing web services 237

characters in this example. The value used for ADDITIONAL-PROPERTIES-SIZE must be large
enough to hold the largest such value that might occur. If the allocated buffer is too small for the
value that is processed, an error response is generated.

You can use this parameter at a mapping level of 4.2 or higher.

BINDING = value
If the web service description contains more than one <wsdl:Binding> element, use this parameter
to specify which one is to be used to generate the language structure and web service binding file.
Specify the value of the name attribute that is used on the <wsdl:Binding> element in the web
service description.

CCSID = value
Specifies the CCSID that is used at run time to encode character data in the application data
structure. The value of this parameter overrides the value of the LOCALCCSID system initialization
parameter. The value must be an EBCDIC CCSID that is supported by Java and z/OS conversion
services (see z/OS Unicode Services User's Guide and Reference). If you do not specify this
parameter, the application data structure is encoded using the CCSID specified in the system
initialization parameter.

You can use this parameter with any mapping level.

CHAR-MULTIPLIER = { 1 | value }
Specifies the number of bytes to allow for each character when the mapping level is 1.2 or later. The
value of this parameter can be a positive integer in the range of 1 - 2,147,483,647. All nonnumeric
character-based mappings, are subject to this multiplier. Binary, numeric, zoned, and packed decimal
fields are not subject to this multiplier.

This parameter can be useful if, for example, you are planning to use DBCS characters where you
might opt for a multiplier of 3 to allow space for potential shift-out and shift-in characters around
every double-byte character at run time.

When you set CCSID=1200 (indicating UTF-16), the only valid values for CHAR-MULTIPLIER are 2 or
4. When you use UTF-16, the default value is 2 . Use CHAR-MULTIPLIER=2 when you expect
application data to contain characters that require 1 UTF-16 encoding unit. Use CHAR-
MULTIPLIER=4 when you expect application data to contain characters that require 2 UTF-16
encoding units.

Note: Setting CHAR-MULTIPLIER to 1 does not preclude the use of DBCS characters, and setting it to
2 does not preclude the use of UTF-16 surrogate pairs. However, if wide characters are routinely used
then some valid values will not fit into the allocated field. If a larger CHAR-MULTIPLIER value is used,
it can be possible to store more characters in the allocated field than are valid in the XML. Care must
be taken to conform to the appropriate range restrictions.

CHAR-VARYING = { NO | NULL | YES }
Specifies how variable-length character data is mapped when the mapping level is 1.2 or higher.
Variable-length binary data types are always mapped to either a container or a varying structure. If
you do not specify this parameter, the default mapping depends on the language specified. You can
select these options:
NO

Variable-length character data is mapped as fixed-length strings.
NULL

Variable-length character data is mapped to null-terminated strings.
YES

Variable-length character data is mapped to a CHAR VARYING data type in PL/I. In the COBOL, C,
and C++ languages, variable-length character data is mapped to an equivalent representation that
comprises two related elements: data-length and the data.

CHAR-VARYING-LIMIT = { 32767 | value }
Specifies the maximum size of binary data and variable-length character data that is mapped to the
language structure when the mapping level is 1.2 or higher. If the character or binary data is larger

238 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.cunu100/toc.htm

than the value specified in this parameter, it is mapped to a container and the container name is used
in the generated language structure. The value can range from 0 to the default 32,767 bytes.

CONTID = value
In a service provider, specifies the name of the container that holds the top-level data structure used
to represent a SOAP message.

The length of the container that CICS passes to the target application program is the greater of the
lengths of the request container and the response container.

DATA-SCREENING = { ENABLED | DISABLED }
Specifies whether application supplied data is screened for errors.
ENABLED

Any application-supplied runtime data that is inconsistent with the language structure, is treated
as an error, and message DFHPI1010 is issued. An error response is returned to the application.

DISABLED
Values in application-supplied runtime data that are inconsistent with the language structure are
replaced by default values. For example, a zero replaces a bad value in a numeric field. Message
DFHPI1010 is not issued and a normal response is returned to the application. This feature can be
used to avoid INVALID_PACKED_DEC and INVALID_ZONED_DEC error responses that are
generated from uninitialized output fields.

DATA-TRUNCATION = { DISABLED | ENABLED }
Specifies whether variable length data is tolerated in a fixed-length field structure:
DISABLED

If the data is less than the fixed length that CICS is expecting, CICS rejects the truncated data and
issues an error message.

ENABLED
If the data is less than the fixed length that CICS is expecting, CICS tolerates the truncated data
and processes the missing data as null values.

DATETIME = { PACKED15 | STRING }
Specifies how <xsd:dateTime> elements are mapped to the language structure.
PACKED15

The default is that any <xsd:dateTime> element is processed as a timestamp and is mapped to
CICS ABSTIME format.

STRING
The <xsd:dateTime> element is processed as text.

DEFAULT-CHAR-MAXLENGTH = { 255 | value }
Specifies the default array length of character data in characters for mappings where no length is
implied in the web service description document, when the mapping level is 1.2 or higher. The value
of this parameter can be a positive integer in the range of 1 - 2,147,483,647.

DEFAULT-FRACTION-DIGITS = { 3 | value }
Specifies the default number of fraction digits to use on an XML decimal schema type. The default is
3. For COBOL, the valid range is 0-17, or 0-30 if parameter WIDE-COMP3 is being used. For C or PLI
the valid range is 0-30.

HTTPPROXY = { domain name : port number | IP address : port number }
If your WSDL contains references to other WSDL files that are located on the internet, and the system
on which you are running DFHWS2LS uses a proxy server to access the internet, specify the domain
name or IP address and the port number of the proxy server. For example:

HTTPPROXY=proxy.example.com:8080

In other cases, this parameter is not required.

HTTPPROXY-PASSWORD = value
Specifies the HTTP proxy password that must be used with HTTPPROXY-USERNAME if the system on
which you are running DFHWS2LS uses an HTTP proxy server to access the Internet, and the HTTP

Chapter 3. Developing web services 239

proxy server uses basic authentication. You can use this parameter only when you also specify
HTTPPROXY.

HTTPPROXY-USERNAME = value
Specifies the HTTP proxy username that must be used with HTTPPROXY-PASSWORD if the system on
which you are running DFHWS2LS uses an HTTP proxy server to access the Internet, and the HTTP
proxy server uses basic authentication. You can use this parameter only when you also specify
HTTPPROXY.

INLINE-MAXOCCURS-LIMIT = { 1 | value }
Specifies whether or not inline variable repeating content is used based on the maxOccurs attribute.
Variably repeating content that is mapped inline is placed in the current container with the rest of the
generated language structure. The variably repeating content is stored in two parts, as a counter that
stores the number of occurrences of the data and as an array that stores each occurrence of the data.
The alternative mapping for variably repeating content is container-based mapping, which stores the
number of occurrences of the data and the name of the container where the data is placed. Storing
the data in a separate container has performance implications that might make inline mapping
preferable.

The INLINE-MAXOCCURS-LIMIT parameter is available only at mapping level 2.1 onwards. The value
of INLINE-MAXOCCURS-LIMIT can be a positive integer in the range of 0 - 32,767. A value of 0
indicates that inline mapping is not used. A value of 1 ensures that optional elements are mapped
inline. If the value of the maxOccurs attribute is greater than the value of INLINE-MAXOCCURS-
LIMIT , container-based mapping is used; otherwise inline mapping is used.

When deciding if you want variably repeating lists to be mapped inline, consider the length of a single
item of recurring data. If few instances of long length occur, container-based mapping is preferable; if
many instances of short length occur, inline mapping is preferable.

LANG = COBOL|PLI-ENTERPRISE|PLI-OTHER|C|CPP
Specifies the programming language of the high-level language structure:
COBOL

COBOL
PLI-ENTERPRISE

Enterprise PL/I
PLI-OTHER

A level of PL/I other than Enterprise PL/I
C

C
CPP

C++
LOGFILE = value

The fully qualified z/OS UNIX name of the file into which DFHWS2LS writes its activity log and trace
information. DFHWS2LS creates the file, but not the directory structure, if it does not already exist.

Typically, you do not use this file, but it might be requested by the IBM service organization if you
encounter problems with DFHWS2LS.

MAPPING-LEVEL = { 1.0 | 1.1 | 1.2 | 2.0 | 2.1 | 2.2 | 3.0 | 4.0 | 4.1 | 4.2 | 4.3 }
Specifies the level of mapping that DFHWS2LS uses when generating the web service binding file and
language structure. You can select these options. Each level of mapping inherits the function of the
previous mapping, where the highest level of mapping offers the best capabilities available. See
“Mapping levels for the CICS assistants” on page 410 for minimum CICS release level required by
each mapping level and other compatibility information.
1.0

This mapping level is the default.

240 CICS TS for z/OS: Using Web Services with CICS

1.1
XML attributes and <list> and <union> data types are mapped to the language structure.
Character and binary data that have a maximum length of more than 32,767 bytes are mapped to
a container. The container name is created in the language structure.

1.2
Use the CHAR-VARYING and CHAR-VARYING-LIMIT parameters to control how character data is
mapped and processed at run time. If you do not specify either of these parameters, binary and
character data that have a maximum length of less than 32,768 bytes are mapped to a VARYING
structure for all languages except C++, where character data is mapped to a null-terminated
string.

2.0
Use this mapping level to take advantage of the enhancements to the mapping between the
language structure and web services binding file.

2.1
Use this mapping level for <xsd:any> and xsd:anyType support, the option to map variably
repeating content inline with the INLINE-MAXOCCURS-LIMIT parameter, and support for
minOccurs="0" on <xsd:sequence> , <xsd:choice> , and <xsd:all>.

2.2
Use this mapping level to take advantage of the following support:

• Elements with fixed values
• Enhanced support for <xsd:choice> elements
• Abstract data types
• Abstract elements
• Substitution groups

3.0
At this mapping level you can transform timestamps to CICS ABSTIME format.

4.0
Use this mapping level with a region at CICS TS 5.2 or later when you want to use UTF-16.

4.1
For truncatable array support, use this mapping level with a region at CICS TS 5.2 or later.

4.2
Use this mapping level with a region at CICS TS V5.4 or later.

4.3
Use this mapping level with a region at CICS TS V5.4 or later.

For more information about mapping levels, see Mapping levels for the CICS assistants.

MAPPING-OVERRIDES = { SAME-AS-MAPPING-LEVEL | [HYPHENS-AS-UNDERSCORES] | LESS-DUP-
NAMES | NO-ARRAY-NAME-INDEXING | [UNDERSCORES-AS-HYPHENS] }

Specifies whether the default behavior is overridden for the specified mapping level when generating
language structures.

Note: Any of the sub options may be used in a comma delimited list. The options are not mutually
exclusive; they are combinatorial and unordered.

SAME-AS-MAPPING-LEVEL
This parameter generates language structures in the same style as the mapping level. This is the
default.

HYPHENS-AS-UNDERSCORES
For PL/I only. This parameter converts any hyphens in the WSDL document to underscores rather
than the character X, to improve the readability of the generated PL/I language structures. For
more information, see XML schema to PL/I mapping. This option is enabled automatically at
mapping level 4.2.

Chapter 3. Developing web services 241

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/dfhws_mappinglevels.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/dfhws_wsdl2pli.html

LESS-DUP-NAMES
This parameter generates non-structural structure field names with _value at the end of the
name to enable direct referencing to the field. For example, in the following PL/I language
structure, when MAPPING-OVERRIDES=LESS-DUP-NAMES is specified, level 12 field streetName
is suffixed with _value :

09 streetName,
12 streetName CHAR(255) VARYING
UNALIGNED,
12 filler BIT (7),
12 attr_nil_streetName_value BIT (1),

The resulting structure is as follows:

09 streetName,
12 streetName_value CHAR(255) VARYING
UNALIGNED,
12 filler BIT (7),
12 attr_nil_streetName_value BIT (1),

This option is enabled automatically at mapping level 4.2.

NO-ARRAY-NAME-INDEXING
For COBOL and Enterprise PL/I only. Ensures that the field names within an array are unique only
within the scope of the higher level structure.

UNDERSCORES-AS-HYPHENS
This option is enabled automatically at mapping level 4.0.
For COBOL only. This parameter converts any underscores in the WSDL document to hyphens,
rather than the character X, to improve the readability of the generated COBOL language
structures. If any field name clashes occur, the fields are numbered to ensure they are unique. For
more information, see XML schema to COBOL mapping.

MINIMUM-RUNTIME-LEVEL = { MINIMUM | 1.0 | 1.1 | 1.2 | 2.0 | 2.1 | 2.2 | 3.0 | 4.0 | 4.1 | 4.2
| 4.3 | CURRENT }

Specifies the minimum CICS runtime environment into which the web service binding file can be
deployed. If you select a level that does not match the other parameters that you have specified, you
receive an error message. You can select these options:
MINIMUM

The lowest possible runtime level of CICS is allocated automatically given the parameters that you
selected.

1.0
The generated web service binding file deploys successfully into a CICS TS 3.1 region. Some
parameters are not available at this runtime level.

1.1
The generated web service binding file deploys successfully into a CICS TS 3.1 region. You can
use a mapping level of 1.1 or earlier for the MAPPING-LEVEL parameter. Some parameters are
not available at this runtime level.

1.2
The generated web service binding file deploys successfully into a CICS TS 3.1 region. You can
use a mapping level of 1.2 or earlier for the MAPPING-LEVEL parameter. Some parameters are
not available at this runtime level.

2.0
The generated web service binding file deploys successfully into a CICS TS 3.2 or later region. You
can use a mapping level of 2.0 or earlier for the MAPPING-LEVEL parameter. Some parameters
are not available at this runtime level.

2.1
The generated web service binding file deploys successfully into a region at CICS TS 3.2 or later.
You can use a mapping level of 2.1 or earlier for the MAPPING-LEVEL parameter. Some
parameters are not available at this runtime level.

242 CICS TS for z/OS: Using Web Services with CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/dfhws_wsdl2cobol.html

2.2
The generated web service binding file deploys successfully into a region at CICS TS 3.2 region or
later. With this runtime level, you can use a mapping level of 2.2 or earlier for the MAPPING-
LEVEL parameter. Some parameters are not available at this runtime level.

3.0
The generated web service binding file deploys successfully into a region at CICS TS 4.1 or later.
With this runtime level, you can use a mapping level of 3.0 or earlier for the MAPPING-LEVEL
parameter. Some parameters are not available at this runtime level.

4.0
The generated web service binding file deploys successfully into a region at CICS TS 5.2 or later.
With this runtime level, you can use a mapping level of 4.0 or earlier for the MAPPING-LEVEL
parameter. You can use any optional parameter at this level.

4.1
The generated web service binding file deploys successfully into a region at CICS TS 5.2, or later.
With this runtime level, you can use a mapping level of 4.1 or earlier for the MAPPING-LEVEL
parameter.

4.2
The generated web service binding file deploys successfully into a region at CICS TS V5.4, or later.
With this runtime level, you can use a mapping level of 4.2 or earlier for the MAPPING-LEVEL
parameter.

4.3
The generated web service binding file deploys successfully into a region at CICS TS 5.4, or later.
With this runtime level, you can use a mapping level of 4.3 or earlier for the MAPPING-LEVEL
parameter.

CURRENT
The generated web service binding file deploys successfully into a CICS region at the same
runtime level as the one you are using to generate the web service binding file.

NAME-TRUNCATION = { LEFT | RIGHT }
Specifies whether XML element names are truncated from the left or the right. The CICS web services
assistant truncates XML element names to the appropriate length for the high-level language
specified; by default names are truncated from the right.

OPERATIONS = value
For web service requester applications, specifies a subset of valid <wsdl:Operation> elements
from the web service description that is used to generate the web service binding file. Each
<wsdl:Operation> element is separated by a space; the list can span more than one line if
necessary. You can use this parameter for both WSDL 1.1 and WSDL 2.0 documents.

PDSCP = value
Specifies the code page used in the partitioned data set members specified in the REQMEM and
RESPMEM parameters, where value is a CCSID number or a Java code page number. If this parameter
is not specified, the z/OS UNIX System Services code page is used. For example, you might specify
PDSCP = 037.

PDSLIB = value
Specifies the name of the partitioned data set that contains the generated high-level language. The
data set members used for the request and response are specified in the REQMEM and RESPMEM
parameters respectively.

PDSMEM = value
Specifies a 1- to 6-character prefix that DFHWS2LS uses to generate the names of the partitioned
data set members that will contain the high-level language structures for abstract data types. It
generates the member name by appending a 2-digit number to the prefix.

Use this parameter at a mapping level of 2.2 or higher for naming the language structures associated
with abstract data types. If the PDSMEM parameter is omitted, language structures for abstract data
types are named using the value in the REQMEM parameter.

Chapter 3. Developing web services 243

PGMINT = { CHANNEL | COMMAREA }
For a service provider, specifies how CICS passes data to the target application program:
CHANNEL

CICS uses a channel interface to pass data to the target application program.
COMMAREA

CICS uses a communication area to pass data to the target application program.

This parameter is ignored when the output from DFHWS2LS is used in a service requester.

When the target application program has processed the request, it must use the same mechanism to
return the response. If the request was received in a communication area, the response must be
returned in the communication area; if the request was received in a container, the response must be
returned in a container. The length of the communication area or container that CICS passes to the
target application program is the greater of the lengths of the request communication area or
container and the response communication area or container.

PGMNAME = value
Specifies the name of a CICS PROGRAM resource.
When DFHWS2LS is used to generate a web service binding file that will be used in a service provider,
you must supply this parameter. It specifies the resource name of the application program that is
exposed as a web service.
When DFHWS2LS is used to generate a web service binding file that will be used in a service
requester, omit this parameter.

REQMEM = value
Specifies a 1- to 6-character prefix that DFHWS2LS uses to generate the names of the partitioned
data set members that will contain the high-level language structures for the web service request:

• For a service provider, the web service request is the input to the application program.
• For a service requester, the web service request is the output from the application program.

DFHWS2LS generates a partitioned data set member for each operation. It generates the member
name by appending a 2-digit number to the prefix.

Although this parameter is optional, you must specify it if the web service description contains a
definition of a request.

RESPMEM = value
Specifies a 1- to 6-character prefix that DFHWS2LS uses to generate the names of the partitioned
data set members that will contain the high-level language structures for the web service response:

• For a service provider, the web service response is the output from the application program.
• For a service requester, the web service response is the input to the application program.

DFHWS2LS generates a partitioned data set member for each operation. It generates the member
name by appending a 2-digit number to the prefix.

Omit this parameter if no response is involved; that is, for one-way messages.

SSL-KEYSTORE = value
This optional parameter specifies the fully qualified location of the key store file.
Use this parameter if you want the web services assistant to use secure sockets layer (SSL)
encryption to communicate across a network to an IBM WebSphere Service Registry and Repository
(WSRR).

SSL-KEYPWD = value
This optional parameter specifies the password for the key store.
Use this parameter if you want the web services assistant to use secure sockets layer (SSL)
encryption to communicate across a network to an IBM WebSphere Service Registry and Repository
(WSRR).

244 CICS TS for z/OS: Using Web Services with CICS

SSL-TRUSTSTORE = value
This optional parameter specifies the fully qualified location of the trust store file.
Use this parameter if you want the web services assistant to use secure sockets layer (SSL)
encryption to communicate across a network to an IBM WebSphere Service Registry and Repository
(WSRR).

SSL-TRUSTPWD = value
This optional parameter specifies the password for the trust store.
Use this parameter if you want the web services assistant to use secure sockets layer (SSL)
encryption to communicate across a network to an IBM WebSphere Service Registry and Repository
(WSRR).

STRUCTURE = (request , response)
For C and C++ only, specifies how the names of the request and response structures are generated.
The generated request and response structures are given names of request nn and response nn
where nn is a numeric suffix that is generated to distinguish the structures for each operation.

If one or both names is omitted, the structures have the same name as the partitioned data set
member names generated from the REQMEM and RESPMEM parameters that you specify.

SYNCONRETURN = { NO | YES }
Specifies whether the remote web service can issue a sync point.
NO

The remote web service cannot issue a sync point. This value is the default. If the remote web
service issues a sync point, it fails with an ADPL abend.

YES
The remote web service can issue a sync point. If you select YES , the remote task is committed
as a separate unit of work when control returns from the remote web service. If the remote web
service updates a recoverable resource and a failure occurs after it returns, the update to that
resource cannot be backed out.

TRANSACTION = name
In a service provider, this parameter specifies the 1- to 4-character name of an alias transaction that
can start the pipeline. The value of this parameter is used to define the TRANSACTION attribute of the
URIMAP resource when it is created automatically using the PIPELINE scan command.

Acceptable characters:

A-Z a-z 0-9 $ @ # _ < >

URI = value
In a service provider, this parameter specifies the relative URI that a client uses to access the web
service. CICS uses the value specified when it generates a URIMAP resource from the web service
binding file created by DFHWS2LS. The parameter specifies the path component of the URI to which
the URIMAP definition applies.
In a service requester, the URI of the target web service is not specified with this parameter. CICS
does not generate a URIMAP resource for a service requester. You can define your own URIMAP
resource for service requesters to use when they make client requests to the URI of the target web
service. When a service requester issues the INVOKE SERVICE command, CICS uses the
soap:address location from the wsdl:port specified in the web service description if present. You
can override that and specify a different URI using the URIMAP or URI options on the INVOKE
SERVICE command.

USERID = id
In a service provider, this parameter specifies a 1- to 8-character user ID, which can be used by any
web client. For an application-generated response or a web service, the alias transaction is attached
under this user ID. The value of this parameter is used to define the USERID attribute of the URIMAP
resource when it is created automatically using the PIPELINE scan command.

Chapter 3. Developing web services 245

Acceptable characters:

A-Z a-z 0-9 $ @ #

WIDE-COMP3 = { FULL | NO | YES }
Controls the maximum size of the packed decimal variable length in the generated COBOL or PL/I
language structure.
FULL

For COBOL and PL/I. DFHJS2LS generates a packed decimal field that is large enough to hold all
valid values. The maximum size is 31 digits. This is the default.

NO
For COBOL only. DFHJS2LS limits the packed decimal variable length to 18 when generating the
COBOL language structure type COMP-3. If the packed decimal size is greater than 18, message
DFHPI9022W is issued to indicate that the specified type is being restricted to a total of 18 digits.

YES
For COBOL only. DFHJS2LS supports the maximum size of 31 when generating the COBOL
language structure type COMP-3.

Note: The NO and YES options generate fields that are unable to represent all valid values; the FULL
option avoids this problem. However, the FULL option does allow some invalid values to be
represented in the packed decimal field. For example, if a schema indicates that there are a maximum
of five digits and a maximum of two fractional digits, the FULL option will generate a packed decimal
field that allows for seven digits, and this allows space for valid values such as 25000 and 999.99, but
also provides space for some invalid values such as 9999.99. When you use the FULL option, take
care not to generate invalid values in application data.

WSADDR-EPR-ANY = { TRUE | FALSE }
Specifies whether CICS transforms a WS-Addressing endpoint reference (EPR) into its components
parts in the language structures or treats the EPR as an <xsd:any> type. Treating the EPR as an
<xsd:any> type means that the WSACONTEXT BUILD API can use the EPR XML directly.
FALSE

DFHWS2LS behaves typically, transforming the XML to a high-level language structure.
TRUE

Setting this option to TRUE means that at run time CICS treats the whole EPR as an <xsd:any>
type and places the EPR XML into a container that can be referenced by the application. The
application can use the EPR XML with the WSACONTEXT BUILD API to construct an EPR in the
addressing context.

This parameter is available only at runtime level 3.0 onwards.
WSBIND = value

The fully qualified z/OS UNIX name of the web service binding file. DFHWS2LS creates the file, but not
the directory structure, if it does not already exist. The file extension defaults to .wsbind.

WSDL = value
The fully qualified z/OS UNIX name of the file that contains the web service description. The file name
is restricted to characters that are valid for a URL and in particular may not contain any # character. If
you are using WSRR to retrieve the WSDL document, this parameter specifies the location on the file
system to which a local copy of the WSDL document will be written.

WSDL-SERVICE = value
Specifies the wsdl:Service element that is used when the web service description contains more
than one Service element for a Binding element. If you specify a value for the BINDING parameter,
the Service element that you specify for this parameter must be consistent with the specified Binding
element. You can use this parameter with either WSDL 1.1 or WSDL 2.0 documents.

WSRR-NAME = value
Specifies the name of the WSDL document to retrieve from WSRR. Use this parameter only when the
WSRR-SERVER parameter is specified.

246 CICS TS for z/OS: Using Web Services with CICS

WSRR-NAMESPACE = value
Specifies the namespace of the WSDL document to retrieve from WSRR. You can optionally use this
parameter when the WSRR-SERVER parameter is specified to fully qualify the WSDL document name
specified in the WSRR-NAME parameter.

WSRR-PASSWORD = value
Use this optional parameter if you must enter a password to access WSRR.
If the WSRR-USERNAME parameter is specified, you must also specify this parameter.
Use this parameter only when the WSRR-SERVER parameter is specified.

WSRR-SERVER = { domain name : port number | IP address : port number }
Use this parameter to specify the location of the IBM WebSphere Service Registry and Repository
(WSRR) server. If this parameter is specified, WSRR parameter validation is used.

WSRR-USERNAME = value
Use this optional parameter if you are required to specify a user name to access WSRR. This user
name is used by WSRR to set the owner property.
Use this parameter only when the WSRR-SERVER parameter is specified.

WSRR-VERSION = value
Specifies the version of the WSDL document to retrieve from WSRR. You can use this parameter only
when the WSRR-SERVER parameter is specified.

XML-ONLY = { TRUE | FALSE }
Specifies whether or not CICS transforms the XML in the SOAP message to application data. Use the
XML-ONLY parameter to write web service applications that process the XML themselves.
TRUE

CICS does not perform any transformations to the XML. The service requester or provider
application must work with the contents of the DFHWS-BODY container directly to map data
between XML and the high-level language.

FALSE
CICS transforms the XML to a high-level language.

This parameter is available only at runtime level 2.1 onwards.

Other information

• The user ID under which DFHLS2SC runs must be configured to use UNIX System Services. The user ID
must have read permission to the CICS z/OS UNIX file structure and PDS libraries and write permission
to the directories specified on the LOGFILE , WSBIND , and WSDL parameters.

• The user ID must have a sufficiently large storage allocation to run Java.
• The JCL has a maximum parameter length of 100 characters. This can be increased by using the
STDPARM statement. For more information, see z/OS UNIX System Services User's Guide.

Example

//WS2LS JOB '
accounting information
',
name,MSGCLASS=A
// SET QT=''''
//JAVAPROG EXEC DFHWS2LS,
// TMPFILE=&QT.&SYSUID.&QT
//INPUT.SYSUT1 DD *
PDSLIB=//CICSHLQ.SDFHSAMP
REQMEM=CPYBK1
RESPMEM=CPYBK2
LANG=COBOL
LOGFILE=/u/exampleapp/wsbind/example.log
MAPPING-LEVEL=3.0
MAPPING-OVERRIDES=UNDERSCORES-AS-HYPHENS
CHAR-VARYING=NULL
INLINE-MAXOCCURS-LIMIT=2
PGMNAME=DFH0XCMN

Chapter 3. Developing web services 247

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.bpxa400/toc.htm

URI=exampleApp/example
PGMINT=COMMAREA
SYNCONRETURN=YES
WSBIND=/u/exampleapp/wsbind/example.wsbind
WSDL=/u/exampleapp/wsdl/example.wsdl
/*

Parameters required by DFHWS2LS to support WS-Addressing
When you configure your WSDL for Web Services Addressing, you must set the MINIMUM-RUNTIME and
the MAPPING-LEVEL parameters on the web services assistant, DFHWS2LS, to a value of 3.0 or higher.
You might also want to consider setting the WSADDR-EPR-ANY parameter to TRUE.

Set the MINIMUM-RUNTIME parameter on the web services assistant, DFHWS2LS, to 3.0 or higher. A
runtime level of at least 3.0 ensures that any WSBind files that the assistant generates fully support web
services addressing and can interoperate with other web services platforms.

Set the MAPPING-LEVEL parameter on the web services assistant, DFHWS2LS, to 3.0 or higher.

If you have any elements of type wsa:EndpointReferenceType in the request or response messages
defined in your WSDL document, and you want to use these elements as input to the WSACONTEXT
BUILD API command at run time, set the WSADDR-EPR-ANY parameter to TRUE. Setting the WSADDR-
EPR-ANY parameter to TRUE indicates that CICS must not transform the EPR into a language structure at
run time; instead, CICS must treat the EPR data as an <xsd:any> element and store it in a named
container.

This example WSDL fragment shows a <wsa:To> MAP being passed as an element of type
wsa:EndpointReferenceType:

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="exampleEPR" targetNamespace="http://example.ibm.com/"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:s0="http://example.ibm.com/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:wsa="http://www.w3.org/2005/08/addressing"
 xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata">
 <types>
 <xs:schema targetNamespace="http://test.org/"
 xmlns:s="http://www.w3.org/2001/XMLSchema"
 xmlns:s0="http://example.ibm.com/"
 xmlns:wsa="http://www.w3.org/2005/08/addressing">
 ...
 <xs:element name="exampleResponse" type="s0:typeResponse"/>
 <xs:complexType name="typeResponse">
 <xs:sequence>
 <xs:element name="myEpr" type="wsa:EndpointReferenceType"/> 1
 </xs:sequence>
 </xs:complexType>
 ...
 </xs:schema>
 </types>
 ...
 <message name="msgResponse">
 <part element="s0:exampleResponse" name="response"/>
 </message>
 ...
</definitions>

When the element, <xs:element name="myEpr" type="wsa:EndpointReferenceType"/> 1 , is
processed by DFHWS2LS with the WSADDR-EPR-ANY parameter set to TRUE, the myEpr element data will
be stored in a named container as an <xsd:any> element at runtime and a pointer to the container added
to the generated language structure.

For example, the COBOL language structure generated by DFHWS2LS for the myEpr element is shown
here:

09 myEpr.
 12 myEpr-xml-cont PIC X(16).
 12 myEpr-xmlns-cont PIC X(16).

248 CICS TS for z/OS: Using Web Services with CICS

The myEpr-xml-cont container stores the name of the container that contains the myEpr data. The
myEpr-xmlns-cont is an optional container that is populated with any XML namespace declarations
that are in scope.

Creating a web service provider by using the web services assistant
You can create a service provider application from a web service description that complies with WSDL 1.1
or WSDL 2.0, or from a high-level language data structure. The CICS web services assistant helps you to
deploy your CICS applications in a service provider setting.

About this task
When you use the assistant to deploy a CICS application as a service provider, you have two options:

• Start with a web service description and use the assistant to generate the language data structures.

Use this option when you are implementing a service provider that conforms with an existing web
service description.

• Start with the language data structures and use the assistant to generate the web service description.

Use this option when you are exposing an existing program as a web service and are willing to expose
aspects of the program interfaces in the web service description and the SOAP messages.

You can expose the web service description associated with your service provider using a URI. This URI
has the same path as the URI associated with the WEBSERVICE with the suffix ?wsdl appended. This
enables requesters within your business, or external to it, to discover the WSDL files associated with your
service providers.

Creating a service provider application from a web service description
Using the CICS web services assistant, you can create a service provider application from a web service
description that complies with WSDL 1.1 or WSDL 2.0.

Before you begin
Before you can create a service provider application, the following conditions must be satisfied:

• Your web services description must be in a UNIX file in z/OS and you must create a suitable provider
mode pipeline in the CICS region.

• You must define to OMVS the user ID under which DFHWS2LS runs.
• The user ID must have read permission to z/OS UNIX and PDS libraries and write permission to the

directories specified on the LOGFILE, WSBIND, and WSDL parameters.
• You must allocate sufficient storage to the user ID for the ID to run Java . You can use any supported

version of Java . By default, DFHWS2LS uses the Java version specified in the JAVADIR parameter.

About this task
You can use the web services assistant to create language structures from your WSDL for the service
provider application. You can also use a WSDL document that is stored in an IBM webSphere Service
Registry and Repository (WSRR) server.

Procedure

1. Use the DFHWS2LS batch program to generate a web service binding file and one or more language
data structures.
DFHWS2LS contains a large set of optional parameters that provide you with flexibility to create the
binding file and language structures that your application requires. Consider these options when you
enable an existing application for web services:
a) Which mechanism will CICS use to pass data to the service provider application program?

• You can use channels and pass the data in containers or use a COMMAREA. Channels and
containers are recommended. Specify them with the PGMINT parameter.

b) Which language do you want to generate?

Chapter 3. Developing web services 249

• DFHWS2LS can generate COBOL, C/C++, or PL/I language data structures. Specify the language
using the LANG parameter.

c) Which mapping level do you want to use?

• The higher the mapping level, the more control and support you have available for the handling of
character and binary data at run time. Some optional parameters are available only at the higher
mapping levels. You are recommended to use the highest level of mapping available. Specify the
mapping level with the MAPPING-LEVEL parameter.

d) Which URI do you want the web service requester to use?

• Specify a relative URI using the URI parameter; for example, URI=/my/test/webservice . The
value is used by CICS when it creates the URIMAP resource.

e) Under which transaction and user ID will you run the web service request and response?

• You can use an alias transaction to run the application to compose a response to the service
requester. The alias transaction is attached under the user ID.

• Specify it with the TRANSACTION and USERID parameters. These values are used when creating
the URIMAP resource. If you do not want to use a specific transaction, do not use these
parameters.

f) Where is the WSDL document stored?

• If you want to retrieve a WSDL document from a WSRR server, instead of from the local file
system, you must specify certain parameters in DFHWS2LS.

• As a minimum, you must specify the WSRR-SERVER parameter with the location of the WSRR
server and the WSRR-NAME parameter with the name of the WSDL document that you want to
retrieve from WSRR.

• For information about other parameters that you might want to specify if you are using WSRR, see
“DFHWS2LS: WSDL to high-level language conversion” on page 233.

g) If you intend to retrieve your WSDL document from a WSRR server, do you want to do so using
a secure connection?

• You can use secure socket layer (SSL) encryption by setting the appropriate parameters to
interoperate securely with WSRR. For an example, see Example of how to use SSL with the web
services assistant and WSRR.

• When you submit DFHWS2LS, CICS generates the web service binding file and places it in the
location that you specified with the WSBIND parameter. The language structures are placed in the
partitioned data set that you specified with the PDSLIB parameter.

2. Copy the generated web service binding file to the pickup directory of the provider mode PIPELINE
resource that you want to use for your web service application.
You must copy the binding file in binary mode.

3. Optional: Copy the web service description or the archive file containing one or more web service
descriptions to the same directory as the web service binding file.
The archive file must be a .zip file and the file name must match the WSDL file name. With this copy,
you can discover the WSDL.

4. Write a service provider application program to interface with the generated language structures and
implement the required business logic.

5. Create the WEBSERVICE resource and two URIMAP resources.

• The WEBSERVICE resource encapsulates the web service binding file in CICS and is used at run
time.

• The first URIMAP resource provides CICS with the information to associate the WEBSERVICE
resource with a specific URI.

• The second URIMAP resource provides CICS with the information to associate the WSDL archive file
or WSDL document with a specific URI.

250 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_wsrr_configure_ssl.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_wsrr_configure_ssl.html

– This URI has the same path as the URI associated with the WEBSERVICE with the suffix ?wsdl
appended.

– This URIMAP resource is created so that external requesters can use the URI to discover the
WSDL archive file or WSDL document.

– This URIMAP resource is created only if the web service description or the archive file containing
one or more web service descriptions has been copied to the same directory as the web service
binding file.

– If the pickup directory contains a WSDL archive file and a WSDL document, the URI returns only
the WSDL in the archive file.

– This function is only available for web services installed using the pipeline scan operation.

You can create the resources in the following ways:

a) Using the PIPELINE SCAN command to dynamically create the WEBSERVICE resource and
URIMAP resources.

b) Defining the resources yourself. If you use the CICS Explorer to define a WEBSERVICE resource in a
CICS bundle, you can choose to import a web service binding file and a WSDL document or WSDL
archive file and include these in the bundle. You can then generate the URIMAP definitions to
support the web service and package these in a bundle. For more help with using the CICS Explorer
to create and edit resources in CICS bundles, see Working with bundles in the CICS Explorer
product documentation.

Results
If you have any problems submitting DFHWS2LS, or the resources do not install correctly, see Diagnosing
deployment errors.

Creating a service provider application from a data structure
Using the CICS web services assistant, you can create a service provider application from a high-level
language data structure.

Before you begin
Before you create a service provider application, make sure that these preconditions have been
completed:

• Your high-level language data structures must meet the following criteria:

– The data structures must be defined separately from the source program; for example, in a COBOL
copybook.

– If your PL/I or COBOL application program uses different data structures for input and output, the
data structures must be defined in two different members in a partitioned data set. If the same
structure is used for input and output, the structure must be defined in a single member.

For C and C++, your data structures can be in the same member in a partitioned data set.
• The data structures you process depend on whether you are using a wrapper program:

– If you are using a wrapper program, the copybook is the interface to the wrapper program.
– If you are not using a wrapper program, the copybook is the interface to the business logic.

• The language structures must be available in a partitioned data set and you must create a suitable
PIPELINE resource in the CICS region:

– You must define to OMVS the user ID under which DFHLS2WS runs.
– The user ID must have read permission to z/OS UNIX and PDS libraries and write permission to the

directories specified on the LOGFILE , WSBIND , and WSDL parameters.
– The user ID must have a sufficiently large storage allocation to run Java . You can use any supported

version of Java. By default, DFHLS2WS uses the Java version specified in the JAVADIR parameter.

Chapter 3. Developing web services 251

https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.5.0/com.ibm.cics.core.help/topics/tasks/task_intro_app.html
https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.5.0/com.ibm.cics.core.help/topics/tasks/task_intro_app.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/web-services/dfhws_deploy_errors.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/web-services/dfhws_deploy_errors.html

Procedure

Follow these steps to create a service provider application from a data structure:
1. If the service provider application interface uses channels and many containers, create a channel

description document that describes the interface in XML. You must put the channel description
document in a suitable directory on z/OS UNIX.
CICS uses this document to construct and deconstruct a SOAP message from the containers on a
channel. Alternatively, you can use one container on a channel and not create a channel description
document.

• For more information on how to create a channel description document, see “Creating a channel
description document” on page 254.

2. Use the DFHLS2WS batch program to generate a web service binding file and web service description
from the language structure.
DFHLS2WS contains a large set of optional parameters that provide you with flexibility to create the
binding file and language structures that your application requires. Consider these options when web
service enabling an existing application:
a) Which mechanism will CICS use to pass data to the service provider application program?

• You can use channels and pass the data in containers or use a COMMAREA. Specify the
mechanism using the PGMINT parameter. If your application interface uses channels and many
containers, specify the REQUEST-CHANNEL parameter and optionally the RESPONSE-CHANNEL .
You can only use these parameters when the mapping level is 3.0 or higher.

b) Which level of web service description (WSDL document) do you want to generate?

• CICS generates descriptions that comply with either WSDL 1.1 or WSDL 2.0 documents. If you
want the service provider application to support requests that comply with both levels of WSDL,
specify values for the WSDL_1.1 and WSDL_2.0 parameters. Ensure that the file names are
different when using more than one WSDL parameter. This specification produces two web
service descriptions and a binding file.

c) Which version of the SOAP protocol do you want to use?

• You can specify the version with the SOAPVER parameter. You are recommended to use the ALL
value, which gives the flexibility to use either SOAP 1.1 or SOAP 1.2 as the binding for the web
service description, although you must install the web service into a pipeline that is configured
with the SOAP 1.2 message handler. You can use this parameter only when the MINIMUM-
RUNTIME-LEVEL is 2.0 or higher.

d) Which mapping level do you want to use?

• The higher the mapping level, the more control and support you have available for the handling of
character and binary data at run time. Some optional parameters are available only at the higher
mapping levels. You are recommended to specify the highest level of mapping available in the
MAPPING-LEVEL parameter.

e) Which URI do you want the web service requester to use?

• Specify an absolute URI using the URI parameter; for example, URI = http://
www.example.org:80/my/test/webservice. The relative part of this address, /my/test/
webservice , is used when creating the URIMAP resource. The full URI is used as the
<soap:address> element in the web service description. This usage is true for both HTTP and
WebSphere MQ URIs.

f) Do you want to publish your WSDL document to an IBM WebSphere Service Registry and
Repository (WSRR)?

• If you want to publish your WSDL document to a WSRR, you must specify the WSRR-SERVER
parameter in DFHLS2WS. For more information on the parameters that you can specify when
using WSRR, see “DFHLS2WS: high-level language to WSDL conversion” on page 219.

g) If you intend to publish your WSDL document on a WSRR server, do you want to do so using a
secure connection?

252 CICS TS for z/OS: Using Web Services with CICS

• You can use secure socket layer (SSL) encryption by setting the appropriate parameters to
interoperate securely with WSRR. For an example, see Example of how to use SSL with the web
services assistant and WSRR.

• When you submit DFHLS2WS, CICS generates the web service binding file and places it in the
location that you specified with the WSBIND parameter. The generated web service description is
placed in the location that you specified with the WSDL , WSDL_1.1 , or WSDL_2.0 parameter.

• If you have used the WSRR parameters in DFHLS2WS, your WSDL document is published to the
WSRR server that you specified.

3. Review the generated web service description and perform any necessary customization.
For more information, see “Customizing generated web service description documents” on page 255.

4. Copy the web service binding file to the pickup directory of the provider mode pipeline that you want
to use for your web service application.
You must copy the web service binding file in binary mode.

5. Optional: Copy the web service description or the archive file containing one or more web service
descriptions to the same directory as the web service binding file.
The archive file must be a .zip file and the file name must match the WSDL file name. With this copy,
you can discover the WSDL.

6. Use the PIPELINE SCAN command to dynamically create the WEBSERVICE resource and two
URIMAP resources.
The WEBSERVICE resource encapsulates the web service binding file in CICS and is used at run time.

• The first URIMAP resource provides CICS with the information to associate the WEBSERVICE
resource with a specific URI.

• The second URIMAP resource provides CICS with the information to associate the WSDL archive file
or WSDL document with a specific URI.

– This URI has the same path as the URI associated with the WEBSERVICE with the suffix ?wsdl
appended.

– This URIMAP resource is created so that external requesters can use the URI to discover the
WSDL archive file or WSDL document.

– This URIMAP resource is created only if the web service description or the archive file containing
one or more web service descriptions has been copied to the same directory as the web service
binding file.

– If the pickup directory contains a WSDL archive file and a WSDL document, the URI returns only
the WSDL in the archive file.

– This function is only available for web services installed using the pipeline scan operation.

Alternatively, you can define the resources yourself, although this is not recommended.

Results
When you have successfully created the CICS resources, the creation of your service provider application
is complete.

If you have any problems submitting DFHLS2WS, or the resources do not install correctly, see Diagnosing
deployment errors.

What to do next
Make the web services description available to anyone who needs to develop a web service requester
that will access your service.

Chapter 3. Developing web services 253

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_wsrr_configure_ssl.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_wsrr_configure_ssl.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/web-services/dfhws_deploy_errors.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/web-services/dfhws_deploy_errors.html

Creating a channel description document
Create a channel description document when your service provider application uses a channel interface
with many containers.

About this task
Use an XML editor to create the channel description document. The schema for the channel description is
called channel.xsd and is in the /usr/lpp/cicsts/cicsts52/schemas/channel directory
(where /usr/lpp/cicsts/cicsts52 is the default install directory for CICS files).

Procedure

1. Create an XML document with a <channel>element and the CICS channel namespace:

<channel name="myChannel"
xmlns="http://www.ibm.com/xmlns/prod/CICS/channel">
</channel>

2. Add a <container> element for every container that the application program interface uses on the
channel.
You must use name, type and use attributes to describe each container.
The following example shows six containers with different attribute values:

<container name="cont1" type="char" use="required"/>
<container name="cont2" type="char" use="optional"/>
<container name="cont3" type="bit" use="required"/>
<container name="cont4" type="bit" use="optional"/>
<container name="cont5" type="bit" use="required">
<structure location="//HLQ.PDSNAME(MEMBER)"/>
</container>
<container name="cont6" type="bit" use="optional">
<structure location="//HLQ.PDSNAME(MEMBER2)"/>
</container>

The structure element indicates that the content is defined in a language structure located in a
partitioned data set member.

3. Save the XML document in z/OS UNIX.

Channel schema
The channel description document must conform to the following schema:

 <schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.ibm.com/xmlns/prod/CICS/channel"
 xmlns:tns="http://www.ibm.com/xmlns/prod/CICS/channel"
 elementFormDefault="qualified">
 <element name="channel">
 1
 <complexType>
 <sequence>
 <element name="container" maxOccurs="unbounded" "unbounded"
minOccurs="0">
 2
 <complexType>
 <sequence>
 <element name="structure" minOccurs="0">
 3
 <complexType>
 <attribute name="location" type="string" use="required"/>
 <attribute name="structure" type="string" use="optional"/>
 </complexType>
 </element>
 </sequence>
 <attribute name="name" type="tns:name16Type" use="required"/>
 <attribute name="type" type="tns:typeType" use="required"/>
 <attribute name="use" type="tns:useType" use="required"/>
 </complexType>

254 CICS TS for z/OS: Using Web Services with CICS

 </element>
 </sequence>
 <attribute name="name" type="tns:name16Type" use="optional" />
 </complexType>
 </element>
 <simpleType name="name16Type">
 <restriction base="string">
 <maxLength value="16"/>
 </restriction>
 </simpleType>
 <simpleType name="typeType">
 <restriction base="string">
 <enumeration value="char"/>
 <enumeration value="bit"/>
 </restriction>
 </simpleType>
 <simpleType name="useType">
 <restriction base="string">
 <enumeration value="required"/>
 <enumeration value="optional"/>
 </restriction>
 </simpleType>
 </schema>

1. This element represents a CICS channel.
2. This element represents a CICS container within the channel.
3. A structure can only be used with 'bit' mode containers. The 'location' attribute indicates the location

of a file that maps the contents of container. The 'structure' attribute may be used in C and C++ to
indicate the name of structure.

What to do next
Run DFHLS2WS to create the mappings and WSDL document for the web service provider application.
DFHLS2WS puts the mappings for the channel in the WSDL document in the order that the containers are
specified in the channel description document.

Customizing generated web service description documents
The web service description (WSDL) documents that are generated by DFHLS2WS contain some
automatically generated content that might be appropriate for you to change before publishing.
Customizing WSDL documents can result in regenerating the web services binding file and, in some cases,
writing a wrapper program.

Procedure

Follow these steps to customize generated web service description documents:
1. If you want to advertise support for HTTPS or communicate using IBM MQ, use the URI parameter in

DFHLS2WS to set an absolute URI. If you have not used the URI parameter, you must change the
<wsdl:service> and <wsdl:binding> elements at the end of the WSDL document.
The generated WSDL includes comments to assist you in making these changes. Changing these
elements does not require you to regenerate the web services binding file.

2. If you want to supply the network location of your web service, use the URI parameter in DFHLS2WS
to set an absolute URI. If you have not used the URI parameter, add the details to the soap:address
in the wsdl:service element.
a) If you are using an HTTP-based protocol, replace my-server with the TCP/IP host name of your

CICS region and my-port with the port number of the TCPIPSERVICE resource.
b) If you are using WebSphere MQ as the transport protocol, replace myQueue with the name of the

appropriate queue.
You can make these changes without requiring any change to the web services binding file.

If you are changing the port name and namespace without regenerating the WSBind file, the
monitoring information might be wrong at runtime level 2.1 onwards.

Chapter 3. Developing web services 255

3. Consider whether the automatically generated names in the WSDL document are appropriate for your
purposes.
You can rename these values:

• The targetNamespace of the WSDL document
• The targetNamespace of the XML schemas within the WSDL document
• The <wsdl:portType> name
• The <wsdl:operation> name
• The <wsdl:binding> name
• The <wsdl:service> name
• The names of the fields in the XML schemas in the WSDL document.

These values form part of the programmatic interface to which you code a client program. If the
generated names are not sufficiently meaningful, maintenance of your application code might be more
difficult over a long period of time. Use the DFHLS2WS REQUEST-NAMESPACE and RESPONSE-
NAMESPACE parameters to change the targetNamespace of the XML schemas, and the WSDL-
NAMESPACE parameter to change the targetNamespace of the WSDL document.

If you change any of these values, you must use DFHWS2LS to regenerate the web services binding
file. The language structures that are produced will not be the same as your existing language
structures, but are compatible with your existing application, so no application changes are required.
However, you can ignore the new language structures and use the new web services binding file with
the original structures.

4. Consider if the COMMAREA fields exposed in the XML schemas are appropriate.
You might consider removing any fields that are not helpful to a web service client developer:

• Fields that are used only for output values can be removed from the schema that maps the input
data structures.

• Filler fields.
• Automatically generated annotations.

If you make any of these changes, you must regenerate the web services binding file using DFHWS2LS.
The new language structures that are generated are not compatible with the original language
structures, so you must write a wrapper program to map data from the new representation to the old
one. This wrapper program needs to perform an EXEC CICS LINK command to the target application
program and then map the returned data.

This level of customization requires the most effort, but results in the most meaningful programmatic
interfaces for your web services client developers.

5. If you want to put the generated WSDL document through DFHWS2LS to create new language
structures, decide whether to keep the annotations in the WSDL document.
The annotations override the normal mapping rules when DFHWS2LS generates the language
structures. When you override the mapping rules, ensure that the generated language structures are
compatible with the version that was used by DFHLS2WS. If you want to use the default mapping rules
to produce the language structures, remove the annotations.

Results
If you want to publish your customized WSDL document to an IBM WebSphere Service Registry and
Repository (WSRR) server, you must publish it manually using the WSRR interface.

Example
For an example of a WSDL document, see An example of the generated WSDL document.

256 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-samples/web-services/dfhxa_wsdlexample.html

Sending a SOAP fault
In a service provider, you can use the CICS API to send a SOAP fault to a web service requester. The fault
can be issued by the service provider application or by a header processing program in the pipeline.

Before you begin
To use the API, the service provider application must use channels and containers. If the application uses
COMMAREAs, write a wrapper program that does use channels and containers to create the SOAP fault
message. You can use the API in a header processing program only if it is invoked directly from a CICS-
supplied SOAP message handler.

About this task
You might want to issue a SOAP fault to the web service requester if your application logic cannot satisfy
the request, for example, or if there is an underlying problem with the request message. Note that CICS
does not consider issuing a SOAP fault as an error, so the normal message response pipeline processing
takes place rather than any error processing. If you do want to roll back any transactions, you must use
the application program.

Procedure

1. In your program, use the EXEC CICS SOAPFAULT CREATE command to send a SOAP fault.
2. Add the CLIENT or SERVER option on the command.

This option indicates where the problem has occurred, either on the client side or on the server.

• CLIENT indicates that the problem is with the request message that was received.
• SERVER indicates that the problem occurs when the request message was processed by CICS. This

problem might be in an application program, for example, it might be unable to satisfy the request,
or it might be an underlying problem that occurs during the pipeline processing.

3. Add the FAULTSTRING option and its length in the FAULTSTRLEN option to provide a summary of why
the fault has been issued by the service provider.
The contents of this option are in XML. Any data supplied by the application must be in a format that is
suitable for direct inclusion in an XML document. The application might have to specify some
characters as XML entities.
For example, if the < character is used anywhere other than the start of an XML tag, the application
must change it to < . The following example shows an incorrect FAULTSTRING option:

dcl msg_faultString char(*) constant('Error: Value A
< Value B');

The correct way to specify this FAULTSTRING option is as follows:

dcl msg_faultString char(*) constant('Error: Value A
< Value B');

Tip: To avoid using XML entities, you can wrapper the data in an XML CDATA construct. XML
processors do not parse character data in this construct. Using this method, you could specify the
following FAULTSTRING option:

dcl msg_faultString char(*)
constant('<![CDATA[Error: Value A < Value B]]>');

4. Code the DETAIL option and its length in the DETAILLENGTH option to provide the details of why the
fault has been issued by the service provider.
The contents of this option are in XML. The same guidance applies to the DETAIL option as to the
FAULSTRING option.

5. Optional: If you are invoking the API from a header processing program, define the program in the
pipeline configuration file.

Chapter 3. Developing web services 257

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-applications/commands-api/dfhp4_soapfaultcreate.html

The header processing program is defined in either the <cics_soap_1.1_handler> ,
<cics_soap_1.2_handler> , <cics_soap_1.1_handler_java> or
<cics_soap_1.2_handler_java> element.

Results
When your program issues this command, CICS creates the SOAP fault response message at the
appropriate SOAP level. If your service provider application issues the command, it does not need to
create a SOAP response and put it in the DFHRESPONSE container. The pipeline processes the SOAP fault
through the message handlers and sends the response to the web service provider.

Example
The SOAPFAULT CREATE command has a number of options to provide you with flexibility to respond
appropriately to a web service requester. Here is a simple example of a completed command that creates
a SOAP fault that can be used for both SOAP 1.1 and SOAP 1.2:

EXEC CICS SOAPFAULT CREATE CLIENT
DETAIL(
msg_detail
)
DETAILLENGTH(length(
msg_detail
))
FAULTSTRING(
msg_faultString
)
FAULTSTRLEN(length(
msg_faultString
));

You can code msg_detail and msg_faultString with the following values:

dcl msg_detail char(*)
 constant('<ati:ExampleFault xmlns="http://www.example.org/faults"
 xmlns:ati="http://www.example.org/faults">Detailed error message
 goes here.</ati:ExampleFault>');
 dcl msg_faultString char(*) constant('Something went wrong');

Creating a web service requester using the web services assistant
You can create a service requester application from a web service description that complies with WSDL
1.1 or WSDL 2.0. The CICS web services assistant helps you to deploy your CICS applications in a service
requester setting.

Before you begin
Your web services description must be in a file in z/OS UNIX or it must be published on an IBM
WebSphere Services Registry and Repository (WSRR) server, and a requester mode pipeline must be
installed in the CICS region.

You must allocate sufficient storage to the user ID so that the ID can run Java . You can use any
supported version of Java . By default, DFHWS2LS uses the Java version specified in the JAVADIR
parameter.

About this task
When you use the CICS web services assistant to deploy a CICS application as a service requester, you
must start with a web service description and generate the language data structures from it.

Procedure

1. Use the DFHWS2LS batch program to generate a web service binding file and one or more language
structures.
Consider these options when creating a service requester application from a web service description:

258 CICS TS for z/OS: Using Web Services with CICS

• Which mapping level do you want to use? The higher the mapping level, the more control and
support you have available for the handling of character and binary data at run time. Some optional
parameters are available only at the higher mapping levels. You are recommended to use the
highest level of mapping available.

• Which code page do you want to use when transforming data at run time? If you want to use a
specific code page for your application that is different from the code page for the CICS region, use
the CCSID parameter.

• Do you want to support a subset of the operations that are declared in the web service description?
If you have a very large web service description, and want your service requester application to
support only a certain number of operations, use the OPERATION parameter to list the ones you
want. Each operation must be separated with a space and is case sensitive.

• Where is the WSDL document stored? If the WSDL document that you want to use as input to
DFHWS2LS is stored on a WSRR server, you can retrieve it by running DFHWS2LS with certain
parameters specified. Use the WSRR-SERVER parameter to specify the location of the WSRR server
and use the WSRR-NAME parameter to specify the name of the WSDL document that you want to
retrieve. For information about other parameters on DFHWS2LS that you might want to use to
interact with WSRR, see “DFHWS2LS: WSDL to high-level language conversion” on page 233.

• If you want to retrieve the WSDL document from a WSRR server, do you want to do so using a
secure connection? You can use secure socket layer (SSL) encryption with the web services
assistant to interoperate securely with WSRR. For an example, see Example of how to use SSL with
the web services assistant and WSRR.

Do not specify parameters such as PROGRAM , URI , TRANSACTION , and USERID when you use
DFHWS2LS. These parameters apply only to a service provider application and, if specified, cause a
provider mode web service binding file to be produced.

In addition to the web service binding file, the program generates a language data structure.
2. Check the log file to see whether any problems occurred when DFHWS2LS generated the binding file

and language structures.
CICS might not support some elements or options in the web service description. If any warning or
error messages are issued, read the advice that is provided and take appropriate action. You might
need to rerun the batch program.

3. Copy the web service binding file to the pickup directory of the requester mode pipeline that you want
to use for your web service application.

4. Ensure that the PIPELINE resource is configured for service requester applications.
The value of the MODE parameter shows whether the pipeline supports requester or provider web
service applications.

5. Ensure that the correct SOAP protocol is supported in the pipeline for your web service.
The SOAPLEVEL parameter indicates which version is supported. In service requester mode, the
binding of the web service must match the version of SOAP that is supported in the pipeline. You
cannot install a web service with a SOAP 1.1 binding into a service requester pipeline that supports
SOAP 1.2.

6. Ensure that the configured timeout for the pipeline is suitable for your service requester application.
The timeout is displayed as the value of the RESPWAIT attribute on the PIPELINE resource. If no
timeout is specified on the pipeline, the default for the transport is used.

• The default timeout for HTTP is 10 seconds.
• The default timeout for WebSphere MQ is 60 seconds.

Each transaction in the CICS region has a dispatcher timeout. If this value is less than the default for
either protocol, the timeout occurs with the dispatcher.

7. Optional: Copy the web service description to the same pickup directory as the web service binding
file, so that you can turn on validation for the web service at run time.

8. Create the WEBSERVICE resource. This resource encapsulates the web service binding file in CICS and
is used at run time.

Chapter 3. Developing web services 259

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_wsrr_configure_ssl.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_wsrr_configure_ssl.html

You can do this in the following ways:

a) Using the PIPELINE SCAN command to dynamically create the WEBSERVICE resource.
b) Defining the resource yourself. If you use the CICS Explorer to define a WEBSERVICE resource in a

CICS bundle, you can choose to import a web service binding file and a WSDL document or WSDL
archive file and include these in the bundle. You can then generate URIMAP definitions to support
the web service and package these in a bundle. For more help with using the CICS Explorer to
create and edit resources in CICS bundles, see Working with bundles in the CICS Explorer product
documentation.

9. Write a wrapper program that you can substitute for your communications logic. Use the language data
structure generated in step 1 to write your wrapper program.
Use an EXEC CICS INVOKE SERVICE command in your wrapper program to communicate with the
web service. The command includes these options:

• The URI of the web service
• The operation for which the web service is being called

When you call the web service, you can specify a URIMAP resource that contains the information about
the URI of the web service. You can specify this information directly on the INVOKE SERVICE
command instead of using a URIMAP resource. However, using a URIMAP resource means that you do
not need to recompile your applications if the URI of a service provider changes. With a URIMAP
resource you can also choose to implement connection pooling, where CICS keeps the client
connection open after use, so that it can be reused by the application for subsequent requests, or by
another application that calls the same service. The PIPELINE SCAN command does not create
URIMAP resources for a service requester, so you must define the URIMAP resource yourself following
the instructions in Creating a URIMAP resource for CICS as a HTTP client.

Results
When you have successfully created the CICS resources, the creation of your service requester
application is complete.

Developing web services using tooling
Instead of using the web services assistant JCL, you can use IBM Developer for Z or write your own Java
program to create the required files in CICS.

Procedure

1. You have two choices:

• Use the IBM Developer for Z tool to create a web service binding file and the web service
description or language structures. For more information about this tool, see IBM Developer for z
Systems.

• Write your own Java program, using the provided API, to invoke the web services assistant. This
API is described in JCICS Javadoc information Javadoc. It includes comments that explain the
classes, and sample code is provided to give an example of how you might invoke the web services
assistant. The Javadoc also contains a complete list of the JAR files that are required and their
location in z/OS UNIX.

You can run your Java program on the z/OS, Windows, or Linux® platform. If you run the program on
Windows or Linux, transfer the generated web services binding file to a suitable pickup directory in
binary mode using FTP or an equivalent process.

2. Optional: If you are generating a web service description from a language structure, review the file and
perform any necessary customization.
For more information, see “Customizing generated web service description documents” on page 255.

3. Deploy the generated web service binding file into a suitable pipeline pickup directory.
4. Optional: Copy the web service description into the pickup directory of the pipeline, so that you can

perform validation of the web service to check that it is working as expected.

260 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.5.0/com.ibm.cics.core.help/topics/tasks/task_intro_app.html
https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.5.0/com.ibm.cics.core.help/topics/tasks/task_intro_app.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/urimap/dfha4_summary.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web/dfhtl_urioutbound.html
https://www.ibm.com/us-en/marketplace/developer-for-z-systems
https://www.ibm.com/us-en/marketplace/developer-for-z-systems
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/index.html

5. If you started with a web service description, write a service provider or requester application program
to interface with the generated language structures.

6. Run a PIPELINE SCAN command to automatically create the required CICS resources.

Creating your own XML-aware web service applications
If you decide not to use the CICS-supplied data mappings, you can write your own XML-aware data
applications in two ways instead. You can either use the XML-ONLY parameter on DFHWS2LS or you can
write your own application without using any of the tooling. Using the XML-ONLY parameter is the most
straightforward way to configure the CICS pipeline process to pass the XML data to the application to be
handled.

About this task
Writing your own XML-aware applications involves writing code to both parse and generate XML
documents. One way to write your own XML-aware application uses the XML PARSE and XML GENERATE
statements in COBOL. Another way to write your own XML-aware applications uses other IBM tools; for
example, you can use the IBM Developer for Z for tool to generate COBOL XML converter programs that
can be invoked from your applications.

Creating an XML-aware service provider application
Your XML-aware service provider application must work with the containers that are passed to it and
handle the data conversion between the XML and the program language.

About this task
The following steps guide you through the creation of your XML-aware application, including the decision
about the use of any of the CICS tooling.

Procedure

1. Decide if you want to generate a web service binding file for your XML-aware application using
DFHWS2LS.
The advantage of generating a web service binding file is that you can use CICS services, such as
validation, to test your web service and CICS monitoring using global user exits.

• If you want to generate a web service binding file, run DFHWS2LS specifying the XML-ONLY
parameter and a MINIMUM-RUNTIME-LEVEL of 2.1 or higher. The web service binding file enables
the application program to work directly with the contents of the DFHWS-BODY container. In all
other respects, the generated binding file shares the same deployment characteristics and the
same runtime behavior as a file generated without the XML-ONLY parameter, including parsing of
the XML during SOAP message handling. To prevent this parsing, you must not specify SOAP
message handlers in your pipeline configuration file.

• If you do not want to use a web service binding file, configure your service provider pipeline so that
the web service request reaches your XML-aware application. You can either configure the terminal
handler in the pipeline configuration file to use your XML-aware application program or create a
message handler that dynamically switches to your application depending on the URI that is
received in the pipeline.

2. Write your application to handle the web service request that is held in the following containers:
DFHWS-BODY

The contents of the SOAP body for an inbound SOAP request when the pipeline includes a CICS-
provided SOAP message handler.

DFHREQUEST
The complete request, including the envelope for a SOAP request, received from the pipeline.

DFHWS-XMLNS
A list of name-value pairs that map namespace prefixes to namespaces for the XML content of the
request.

Chapter 3. Developing web services 261

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_soapnodes.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_soapnodes.html

DFHWS-SOAPACTION
The SOAPAction header associated with the SOAP message in container DFHWS-BODY.

When you code API commands to work with the containers, do not specify the CHANNEL option,
because all the containers are associated with the current channel (the channel that was passed to the
program). If you need to know the name of the channel, use the EXEC CICS ASSIGN CHANNEL
command.

3. Optional: Your application can also use additional containers that are available to message handlers in
the pipeline, as well as any other containers that the message handlers create as part of their
processing.
For a complete list of containers, see Containers used in the pipeline.

4. When your application has processed the request, construct a web service response using the
following containers:
DFHRESPONSE

The complete response message to be passed to the pipeline. Use this container if you do not use
SOAP for your messages, or if you want to build the complete SOAP message, including the
envelope, in your program instead of using the CICS-provided SOAP message handler.
If you supply a SOAP body in container DFHWS-BODY, DFHRESPONSE is ignored.

DFHWS-BODY
For an outbound SOAP response, the contents of the SOAP body. Provide this container when the
terminal handler of your pipeline is a CICS-provided SOAP message handler. The message handler
constructs the full SOAP message containing the body.

Your program must create this container, even if the request and response are identical. If you do
not, CICS issues an internal server error.

You can also use any of the other containers to pass information that your pipeline needs for
processing the outbound response.

If your web service does not return a response, you must return container DFHNORESPONSE to
indicate that there is no response. The contents of the container are unimportant, because the
message handler checks only whether the container is present or not.

5. Create a URIMAP resource.
If you are using the XML-ONLY parameter and you have specified a value for the URI parameter of
DFHWS2LS, the URIMAP is created automatically for you during the PIPELINE SCAN process.

Creating an XML-aware service requester application
Your XML-aware web service requester application handles the data conversion between the XML and the
programming language and populates the control containers in the pipeline.

Before you begin
You can write your own XML-aware service requester application using the XML-ONLY parameter on
DFHWS2LS or you can write it without using any of the tooling. The most straightforward way to write
your own XML-aware service requester application is by using the XML-ONLY parameter on DFHWS2LS;
the XML-ONLY parameter is available at runtime level 2.1 and later.

About this task

Using the XML-ONLY parameter results in the generation of a WSBind file that instructs CICS that the
application will work directly with the contents of the DFHWS-BODY container. The generated WSBind file
must be installed into a requester mode PIPELINE to create a requester mode WEBSERVICE resource.
The application must generate XML for the body of the web service request and store it in the DFHWS-
BODY container. It must then call the EXEC CICS INVOKE SERVICE command. The outbound message
is sent to the web services provider. The body of the response message is also in the DFHWS-BODY
container after the call completes.

The XML of the response messages is parsed during SOAP message handling. To prevent this parsing, you
must not specify SOAP message handlers in your pipeline configuration file.

262 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_PipelineContainers.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_soapnodes.html

XML-aware requester applications can receive SOAP Fault messages back from the remote provider
mode application. In this case, the requester application is responsible for interpreting the SOAP Fault
and distinguishing it from a regular response message. If the INVOKE SERVICE command is used with an
XML-ONLY WEBSERVICE, CICS does not set the response code which is normally used to indicate that a
SOAP Fault was received.

If you are writing your own XML-aware service requester application without using the XML-ONLY option,
complete the following steps:

Procedure

1. Create a channel and populate it with containers.
The control containers must all be populated in CHAR mode.
Provide the following information in each container:
DFHWS-PIPELINE

The name of the PIPELINE resource used for the outbound request.
DFHWS-URI

The URI of the target web service
DFHWS-BODY

For an outbound SOAP request, the contents of the SOAP body. Provide this container when the
pipeline includes a CICS-provided SOAP message handler. The message handler constructs the
full SOAP message containing the body.

DFHREQUEST
The complete request message to be passed to the pipeline. Use this container if you do not use
SOAP for your messages or if you want to build the complete SOAP message, including the
envelope, in your program. The pipeline must not include a CICS-provided SOAP message handler
to avoid duplicate SOAP headers being sent in the outbound message.
If you supply a SOAP body in container DFHWS-BODY, DFHREQUEST must be empty. If you supply
content in both DFHWS-BODY and DFHREQUEST, CICS uses DFHREQUEST.

DFHWS-XMLNS
A list of name-value pairs that map namespace prefixes to namespaces for the XML content of the
request.

DFHWS-SOAPACTION
The SOAPAction header to be added to the SOAP message specified in container DFHWS-BODY.

Tip: If you add container DFHWS-NOABEND to the channel, when DFHPIRT is called any abends will
not be issued from within DFHPIRT. This is useful if you are running a C/C++ program because you can
handle errors via the DFHERROR container.

2. Link to program DFHPIRT.
Use this command:

 EXEC CICS LINK PROGRAM(DFHPIRT) CHANNEL(
 userchannel
)

where userchannel is the channel that holds your containers.
The outbound message is processed by the message handlers and header processing programs in the
pipeline and sent to the web service provider.

3. Retrieve the containers that contain the web service response from the same channel.

Chapter 3. Developing web services 263

The response from the web service provider might be a successful response or a SOAP fault. The web
service requester application must be able to handle both types of response from the service provider.
The complete response is contained in the following containers:
DFHRESPONSE

The complete response, including the envelope for a SOAP response, received from the web
service provider.

DFHWS-BODY
When the pipeline includes a CICS-provided SOAP message handler, the contents of the SOAP
body.

DFHERROR
Error information from the pipeline.

Note: In some error cases DFHWS-BODY might not be updated. You must check DFHRESPONSE
for a SOAP fault.

Validating SOAP messages
When you use the CICS web services you can specify that the SOAP messages are to be validated to
ensure that they conform to the schema that is contained in the web service description. You can validate
both provider and requester mode applications.

Before you begin

During development and testing of your web service deployment, full validation assists in detecting
problems in the message exchange between a service requester and a service provider. However,
complete validation of the SOAP messages carries a substantial overhead, and it is inadvisable to validate
messages in a fully tested production application.

CICS uses a Java program to validate SOAP messages. Therefore, you must have Java support enabled in
your CICS region to validate SOAP messages.

About this task
The SOAP message is validated before it is transformed into an application data structure and when a
SOAP message is generated from the application data structure. The SOAP message is validated using the
XML schema in the WSDL and is validated again against the transformation requirements of CICS. You can
use the WSDL file specified in the WSDLFILE attribute of the WEBSERVICE resource or a WSDL file
contained in the .zip file specified in the ARCHIVEFILE attribute of the WEBSERVICE resource. If both
attributes are specified, the WSDL file in the archive file specified in the ARCHIVEFILE attribute is used.

When validation is turned off, CICS does not use the Java program. CICS validates SOAP messages only to
the extent that is necessary to confirm that they contain well-formed XML, and to transform them.
Therefore a SOAP message might be successfully validated but then fail in the runtime environment and
vice versa.

Procedure

1. Set up an OSGi JVM server in the CICS region. SOAP validation using DFHPIVAL will only run in an OSGi
framework, not in an Axis2 or Liberty profile JVM.
a) Install the sample JVM server DFH$JVMS in group DFH$OSGI or create your own JVM server.

For more information, see Setting up a JVM server.
b) If you created your own JVM server, modify the DFHPIVAL program definition in group DFHPIVAL to

reference the name of the JVMSERVER resource.
The DFHPIVAL definition is not locked and can be edited. By default, the definition references DFH
$JVMS.

2. Ensure that you have a web service description associated with your WEBSERVICE resource.

264 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_jvmserver.html

This association is created for WEBSERVICE resources that are automatically created when a WSDL
file or a .zip file that contains one or more WSDL files is present in the pickup directory of the pipeline
during a pipeline scan.

For WEBSERVICE definitions that are created with RDO, the web service description is specified with
the WSDLFILE attribute.

3. Turn web service validation on by specifying VALIDATION=YES attribute of the WEBSERVICE
resource.
You can specify whether validation is required when you define the resource, and you can change this
setting after the resource is installed.

Results
Check the system log to find out whether the SOAP message is valid. Message DFHPI1002 indicates that
the SOAP message was successfully validated, and message DFHPI1001 indicates that the validation
failed.

What to do next
Turn validation off when you no longer need it.

Using Java with web services
You can use Java to create web service applications. Different techniques are used to create these
applications compared with the techniques used with other programming languages. For most non-Java
programming languages, you use the web services assistants to enable applications. Using the web
services assistant means CICS will convert the data from the web service into a form suitable for the
application and place it into a container or COMMAREA . You can use the web services assistant with Java
applications, however, the following tasks provide more suitable methods for creating Java web services
for Java applications.

Deploying a Java provider-mode web service in an Axis2 JVM server
You can deploy an Axis2 application as a provider mode web service in CICS . These applications are
typically generated using JAX-WS and can be hosted in a Java enabled pipeline.
You might want to deploy Java applications using this method for one of the following reasons:

• You have existing investment using Axis2 Handler interfaces.
• You want to use a CICS pipeline configuration.

Note: Axis2-style applications do not use the WEBSERVICE resources. They interact with CICS using the
Axis2 programming model and therefore cannot use the some of the CICS web services support. The
following services are not fully supported for Axis2-style applications:

• SOAPFAULT CREATE
• WSACONTEXT GET
• DFHWS-OPERATION container
• DFHWS-MEP container
• DFHWS-USERID container
• DFHWS-TRANID container
• Options for securing SOAP messages

Before you begin
You must have a Java application that is suitable for deployment in Axis2, for example a POJO application
using JAX-WS. For this task, the following POJO application is used as an example:

/**
 * Simple example
 */
 @javax.jws.WebService(targetNamespace = "com.ibm.cics.example", name

Chapter 3. Developing web services 265

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-applications/commands-api/dfhp4_soapfaultcreate.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-applications/commands-api/dfhp4_wsacontextget.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_dfhwsoperation.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_dfhwsmep.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_dfhwsuserid.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_dfhwtranid.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/web-services/dfhws_securityoptions.html

= "pojoExample")
 public class TestAxis2
 {
 public String getMessage(String input)
 {
 return "CICS got this: '" + input + "'";
 }
 }

This application specifies the XML namespace that is used to generate the WSDL, and a name to associate
with the web service.

The Java code for this application must be compiled, and the JAX-WS generator run, to package the
application into a jar file called TestAxis2.jar . You can do this by issuing the following code:

javac TestAxis2.java
wsgen -cp . TestAxis2 -wsdl
jar -cvf TestAxis2.jar *

The JAX-WS generator also creates a WSDL document and the bindings used by Axis2.

About this task
To deploy an Axis2 web service you must create the pipeline infrastructure for your web services. When
you have created the pipeline, you can create your web services. You can reuse the created pipeline for as
many web services as you need. The following steps describe how to create the pipeline and web
services.

Note: No WEBSERVICE resource is created or installed as part of this task.

Procedure

1. Create the pipeline infrastructure.
a) Create a web service infrastructure for a Java pipeline. For more information, see Creating the CICS

infrastructure for a SOAP service provider.
b) Create an Axis2 repository.

To do this, create a copy of the supplied repository located in $CICS_HOME/lib/pipeline/
repository.

c) Add the <repository> element to your pipeline configuration file. This element must specify the
name of the Axis2 repository that you created.

d) Create and enable a PIPELINE resource.
2. For each web service associated with the pipeline, repeat the following steps to create the web

service.
a) Deploy the Axis2 application to the Axis2 repository. For example, the jar file created in the

example must be deployed to a directory called servicejars in the repository directory. You
must create this directory if it does not exist.

b) Define and install a URIMAP resource for the web service.
The URIMAP resource must specify the URI and PIPELINE resource associated with the web
service. The URI must follow the Axis2 naming conventions for URIs. The default Axis2 naming
convention is: / name_of_service Service. name_of_port Port/ suffix , where
name_of_service is the name of the web service in the WSDL, name_of_port is the name of the port
in the WSDL and suffix is an optional suffix that you can define. For the preceding example, the
following URIMAP resource could be used:

Urimap : EXAMPLE
Group : EXAMPLE
STatus : Enabled
USAge : Pipeline
SCheme : HTTP
POrt : No
HOST : *
PAth : /TestAxis2Service.pojoExamplePort/example/TestAxis2

266 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_defineprovider.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_defineprovider.html

TRansaction : CPIH
PIpeline : EXAMPLE

This example assumes that the PIPELINE resource used is called EXAMPLE.

What to do next
Test that your web services run correctly.

Creating a Java web service that generates and parses XML
You can create Java applications that parse and generate XML themselves. These applications are
consistent with XML-aware applications written in other programming languages, but they benefit from
using standard Java technologies for processing the XML.

Procedure

1. Create an XML-ONLY WEBSERVICE resource.
For more information, see “Creating an XML-aware service requester application” on page 262 or
“Creating an XML-aware service provider application” on page 261.

2. Write a Java web service that can parse and generate XML for the body of the SOAP message.
You can use various tools, such as the Java 6 Java Architecture for XML Binding (JAXB) library, to help
you create a Java web service with these capabilities.

3. Optional: If you are using a provider pipeline and you want to add the capability for a SOAP Fault
message to be returned to the requester, use the JCICS SoapFault class to issue the EXEC CICS
SOAPFAULT CREATE command.

4. Optional: If you are using a requester pipeline, use the JCICS Service class to issue the EXEC CICS
INVOKE SERVICE command.

Creating a Java web service that has a COBOL interface
You can create Java applications that interact with CICS using the same techniques used in other
programming languages. To create these applications, you must write or generate Java code to create
structured COMMERA- or container-style data.

Procedure

1. Use DFHWS2LS to create COBOL language structures for the web service.
2. Write a Java web service that generates and parses COBOL language structures.

For more information about tools that allow Java programs to access existing CICS application data
and links to examples of how to create a Java web service that can generate and parse COBOL
language structures, see Interacting with structured data from Java.

3. Optional: If you are using a provider pipeline and you want to add the capability for a SOAP Fault
message to be returned to the requester, use the JCICS SoapFault class to issue the EXEC CICS
SOAPFAULT CREATE command.

4. Optional: If you are using a requester pipeline, use the JCICS Service class to interface with the CICS
SERVICE API and issue the EXEC CICS INVOKE SERVICE command.

Deploying a requester-mode JAX-WS web service
You can deploy a JAX-WS application as a requester mode web service in CICS . However, these
applications do not use the EXEC CICS INVOKE command, instead they interact with the remote web
services using JAX-WS.

Before you begin
You must have a JVM server configured to support OSGi. For more information, see Setting up a JVM
server.

Chapter 3. Developing web services 267

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/dfhpj_strdata_java.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_jvmserver.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_jvmserver.html

About this task
The advantage of deploying a JAX-WS application as a requester mode web service is that you create a
platform-independent web service requester application, which uses the zEnterprise Application Assist
Processor (zAAP). Using zAAP can reduce the cost of transactions; for more information, see the IBM
Redbooks® publication: zSeries Application Assist Processor (zAAP) Implementation.

Procedure

1. Create a web service requester application in Java and use an appropriate API, such as the Java API
for XML web services (JAX-WS), to call the remote web service.

2. Optional: If you use JAX-WS to start a remote web service, you must also use JAX-WS to generate the
SOAP messages, handle the network communication, and process the SOAP response.

3. Deploy your Java application and install it in the JVM server.

What to do next
Test that your web services start correctly.

Deploying a Java provider-mode web service in a Liberty JVM server
You can deploy a web application as a provider mode web service in a Liberty JVM server. These
applications are created using Java standards JAX-WS and JAXB. This topic applies to CICS integrated-
mode Liberty only.

About this task
CICS TS V5.3 includes the latest WebSphere Application Server Liberty Profile (WLP) that provides
features for the Java API for XML Web Services (JAX-WS) and the Java Architecture for XML Binding
(JAXB). Together these technologies enable you to write SOAP web services in Java as part of a CICS
application. The following article will show you how to set up Eclipse, test a sample web services project,
deploy the sample into CICS , modify the sample to use JCICS and test it with the Web Service Explorer.
For more information, see the CICS DevCenter article, JAX-WS web service sample for Liberty.

You might want to deploy Java applications using this method for one of the following reasons:

• You want to create web services in Java.
• You have complicated WSDL documents that would be difficult to handle using the CICS web services

assistants.
• You want to offload the handling of the web service application to the zEnterprise Application Assist

Processor (zAAP).

Note: Web applications deployed to a Liberty JVM server do not use the WEBSERVICE or TCPIPSERVICE
resources. They interact with web requests using the Liberty HTTP listener and therefore cannot use the
facilities of the CICS web services support.

268 CICS TS for z/OS: Using Web Services with CICS

http://www.redbooks.ibm.com/abstracts/sg246386.html
https://developer.ibm.com/cics/2014/10/07/jax-ws-and-jaxb-support-in-cics-ts-v5-2-liberty-jvm-server/

Chapter 4. Developing with JSON
For any purpose, you can write application programs to transform application binary data into JavaScript
Object Notation (JSON) and vice versa. CICS supports a number of high-level languages and provides a
JSON assistant to map how the data is transformed during runtime processing. CICS uses the same
technology for mapping application data to JSON messages, as part of the web services support.

Before you begin
You must have Java installed to run the JSON assistant. Transformations can be carried out either
internally with CICS or by using a JVM server. If you use Java for the transformations, then you must have
an Axis2 JVM server installed to transform application data and JSON. See Configuring a JVM server for
Axis2 for more information.

About this task

The advantage of using this approach to transform application data to and from JSON is that CICS goes
beyond the capabilities that are offered by a JSON parser. CICS can interpret the JSON and perform
record-based conversions of the application data. Therefore, it is easier and faster for you to create
applications that work with JSON by using this approach.

The CICS JSON assistant is a supplied utility that helps you to create the required mapping artifacts to
transform application binary data to JSON or to transform JSON to application binary data. The JSON
assistant creates the artifacts in a bundle directory.

Procedure

1. Create a bundle using the JSON assistant.
This bundle contains the required mapping artifacts for data transformation.

2. Install the bundle in CICS to make the mappings available.
3. Create or update an application program to handle data transformation.

You have two options:

• Use the TRANSFORM DATATOJSON and TRANSFORM JSONTODATA API commands in the
application program. This is the recommended approach.

• Use the LINK PROGRAM API command to link to CICS -supplied linkable interface DFHJSON.

The application must use a channel-based interface.
4. Run the application to test that the transformation works as you intended.

Steps “1” on page 269 to “4” on page 269 are explained in more detail in the following topics.

The CICS JSON assistant
The CICS JSON assistant is a set of batch utilities that generate mappings between high-level language
structures and JSON schemas for performing transformations between JSON and application data. The
assistant supports rapid deployment of applications that perform JSON processing, for use in service
providers and service requesters, with minimum amount of programming effort.

When you use the CICS JSON assistant for CICS, you do not have to write your own code for parsing
inbound messages and for constructing outbound messages; CICS maps data between the JSON
message and the application program's data structure.

The JSON assistant can create a JSON schema from a simple language structure, or a language structure
from an existing XML schema, and supports COBOL, C/C++, and PL/I. It also generates metadata that
CICS uses at run time to automatically convert XML data to binary application data or vice versa; the
metadata is defined in an XML binding and stored on z/OS UNIX. The schema for the XML binding is
in /usr/lpp/cicsts/cicsts52/schemas/xmltransform/ directory on z/OS UNIX.

© Copyright IBM Corp. 1974, 2020 269

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_jvmserver_axis2.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_jvmserver_axis2.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-applications/commands-api/dfhp4_transform_data2json.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-applications/commands-api/dfhp4_transform_json2data.html

The CICS JSON assistant comprises two utility programs:
DFHLS2JS

DFHLS2JS maps high-level language structures to JSON schemas. It also generates a web service
binding file from a language structure.

DFHJS2LS
DFHJS2LS maps JSON schemas to high-level language structures. This utility generates a web service
binding file from a JSON schema and a language structure that you can use in your application
programs.

The JCL procedures to run both programs are in the hlq .XDFHINST library, where hlq is the high-level
qualifier of your CICS installation.

You must code high-level language structures that are processed by DFHLS2JS according to the rules of
the language, as implemented in the language compilers that CICS supports.

The relevant usage mode for the DFHLS2JS or DFHJS2LS procedure depends on your requirements:

• DFHLS2JS: High-level language to JSON schema conversion for linkable interface
• DFHJS2LS: JSON schema to high-level language conversion for linkable interface
• DFHLS2JS: High-level language to JSON schema conversion for request-response services
• DFHJS2LS: JSON schema to high-level language conversion for request-response services
• DFHJS2LS: JSON schema to high-level language conversion for RESTful services

Data mappings

The mapping from high-level language structures to JSON schemas and the mapping from JSON schemas
to high-level language structures are not symmetrical.

For detailed information, see the following topics:

• “How the CICS JSON assistant maps between high-level languages and JSON schemas” on page 324
• “ Mapping levels for the CICS JSON assistant ” on page 324
• “Variable arrays of elements in DFHJS2LS” on page 375

DFHLS2JS: High-level language to JSON schema conversion for request-response
services

The DFHLS2JS procedure generates a JSON schema file from a high-level language data structure. You
can use DFHLS2JS when you expose a CICS application program as a service provider.

The DFHLS2JS JCL procedure is installed in the data set HLQ.XDFHINST, where HLQ is the high-level
qualifier where CICS is installed.

Job control statements for DFHLS2JS
JOB

Starts the job.
EXEC

Specifies the procedure name (DFHLS2JS).
INPUT.SYSUT1 DD

Specifies the input. The input parameters are typically specified in the input stream. However, they
can be defined in a data set or in a member of a partitioned data set.

Symbolic parameters

The following symbolic parameters are defined in DFHLS2JS:

270 CICS TS for z/OS: Using Web Services with CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/dfhws_ls2jsapi.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/dfhws_js2lsapi.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/dfhws_ls2js.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/dfhws_js2ls.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/dfhws_js2ls_restful.html

JAVADIR = path
Specifies the name of the Java directory that is used by DFHLS2JS. The value of this parameter is
appended to /usr/lpp/ to produce a complete path name of /usr/lpp/ path .
Typically, you do not specify this parameter. The default value is the value that was supplied to the
CICS installation job (DFHISTAR) in the JAVADIR parameter.

PATHPREF = prefix
Specifies a prefix that extends the z/OS UNIX directory path that is used on other parameters, or ''
(empty string) if no prefix is used.
Typically, you do not specify this parameter. The default value is the value that was supplied to the
CICS installation job (DFHISTAR) in the PATHPREF parameter.

SERVICE = value
Use this parameter only when directed to do so by IBM Support.

TMPDIR = tmpdir
Specifies the location of a directory in z/OS UNIX that DFHLS2JS uses as a temporary workspace. The
user ID used to run the job must have read and write permission to this directory.
The default value is /tmp.

TMPFILE = tmpprefix
Specifies a prefix that DFHLS2JS uses to construct the names of the temporary workspace files.
The default value is LS2JS.

PATHMAIN = path
Specifies the name of the CICS TS directory in the UNIX system services file system. The value of this
parameter is appended to the value specified by the USSDIR parameter.
Typically, you do not specify this parameter. The default value is the value that was supplied to the
CICS installation job (DFHISTAR) in the USSDIR parameter.

USSDIR = path
Specifies the name of the CICS TS directory in the UNIX System Services file system. The value of this
parameter is appended to the value specified by the PATHMAIN parameter. This must be specified as
'.' (period) if the default is used.
Typically, you do not specify this parameter. The default value is the value that was supplied to the
CICS installation job (DFHISTAR) in the USSDIR parameter.

The temporary workspace

DFHLS2JS creates the following three temporary files at run time:

tmpdir / tmpprefix .in
tmpdir / tmpprefix .out
tmpdir / tmpprefix .err

where:

tmpdir is the value that is specified in the TMPDIR parameter.
tmpprefix is the value that is specified in the TMPFILE parameter.

The default names for the files, when TMPDIR and TMPFILE are not specified, are as follows:

/tmp/LS2JS.in
/tmp/LS2JS.out
/tmp/LS2JS.err

Important: DFHLS2JS does not lock access to the z/OS UNIX files or the data set members. If two or
more instances of DFHLS2JS run concurrently and use the same temporary workspace files, nothing
prevents one job from overwriting the workspace files while another job is using them, which might cause
unpredictable failures.

Chapter 4. Developing with JSON 271

Therefore, you are advised to devise a naming convention, and operating procedures, that avoid this
situation. For example, you can use the system symbolic parameter SYSUID to generate workspace file
names that are unique to an individual user. These temporary files are deleted before the end of the job.

Input parameters for DFHLS2JS
PDSLIB=  value

PDSCP=  value

REQMEM=  value RESPMEM=  value

REQUEST-CHANNEL=  value RESPONSE-CHANNEL=  value

LANG=COBOL

LANG=PLI-ENTERPRISE

LANG=PLI-OTHER

LANG=C

LANG=CPP
STRUCTURE=(

DFHREQUEST

request

,
DFHRESPONSE

response
)

PGMNAME=  value

TRANSACTION=  name USERID=  id

URI=  value

PGMINT=CHANNEL

CONTID=  value

PGMINT=COMMAREA

MAPPING-LEVEL=1.0

MAPPING-LEVEL=1.1

MAPPING-LEVEL=1.2 Mapping level 1.2 and higher

MAPPING-LEVEL=2.0

MAPPING-LEVEL=2.1 Mapping level 2.1 and higher

MAPPING-LEVEL=2.2

MAPPING-LEVEL=3.0 Mapping level 3.0 and higher

MAPPING-LEVEL=4.0 Mapping level 4.0 and higher

MAPPING-LEVEL=4.1 Mapping level 4.1 and higher

MAPPING-LEVEL=4.2

MAPPING-LEVEL=4.3

DATA-SCREENING=ENABLED

DATA-SCREENING=DISABLED

MINIMUM-RUNTIME-LEVEL=MINIMUM

MINIMUM-RUNTIME-LEVEL=CURRENT

MINIMUM-RUNTIME-LEVEL=1.0

MINIMUM-RUNTIME-LEVEL=1.1

MINIMUM-RUNTIME-LEVEL=1.2

MINIMUM-RUNTIME-LEVEL=2.0

MINIMUM-RUNTIME-LEVEL=2.1

MINIMUM-RUNTIME-LEVEL=2.2

MINIMUM-RUNTIME-LEVEL=3.0

MINIMUM-RUNTIME-LEVEL=4.0

MINIMUM-RUNTIME-LEVEL=4.1

MINIMUM-RUNTIME-LEVEL=4.2

MINIMUM-RUNTIME-LEVEL=4.3

CCSID=  value

SYNCONRETURN=NO

SYNCONRETURN=YES

WSBIND=  value

JSON-SCHEMA-CODEPAGE=LOCAL

JSON-SCHEMA-CODEPAGE=UTF-8

JSON-SCHEMA-CODEPAGE=EBCDIC-CP-US

JSON-SCHEMA-REQUEST=  value JSON-SCHEMA-RESPONSE=  value LOGFILE=  value

272 CICS TS for z/OS: Using Web Services with CICS

Mapping level 1.2 and higher
CHAR-VARYING=NO

CHAR-VARYING=NULL

Mapping level 2.1 and higher
CHAR-VARYING=NO

CHAR-VARYING=NULL

CHAR-VARYING=COLLAPSE

CHAR-VARYING=BINARY

Mapping level 3.0 and higher
DATETIME=UNUSED

DATETIME=PACKED15

DATA-TRUNCATION=DISABLED

DATA-TRUNCATION=ENABLED

Mapping level 4.0 and higher
CHAR-OCCURS=STRING

CHAR-OCCURS=ARRAY

CHAR-USAGE=NATIONAL

CHAR-USAGE=DBCS

Mapping level 4.1 and higher
TRUNCATE-NULL-ARRAYS=DISABLED

TRUNCATE-NULL-ARRAYS=ENABLED

TRUNCATE-NULL-ARRAY-VALUES=

,

NULL

PACKEDZERO

SPACE

ZERO

Parameter use

• You can specify the input parameters in any order.
• Each parameter must start on a new line.
• A parameter, and its continuation character, if you use one, must not extend beyond column 72;

columns 73 - 80 must contain blanks.
• If a parameter is too long to fit on a single line, use an asterisk (*) character at the end of the line to

indicate that the parameter continues on the next line. Everything, including spaces before the asterisk
is considered part of the parameter. For example:

WSBIND=wsbinddir*
 /app1

is equivalent to

Chapter 4. Developing with JSON 273

WSBIND=wsbinddir/app1

• A # character in the first character position of the line is a comment character. The line is ignored.
• A comma in the last character position of the line is an optional line separator, and is ignored.

Parameter descriptions
CCSID = value

Specifies the CCSID that is used at run time to encode character data in the application data
structure. The value of this parameter overrides the value of the LOCALCCSID system initialization
parameter. The value must be an EBCDIC CCSID that is supported by Java and z/OS Unicode Services
User's Guide and Reference . If you do not specify this parameter, the application data structure is
encoded by using the CCSID specified in the system initialization parameter.

CHAR-VARYING = { NO | NULL | COLLAPSE | BINARY }
Specifies how character fields in the language structure are mapped when the mapping level is 1.2 or
higher. A character field in COBOL is a Picture clause of type X, for example PIC(X) 10 ; a character
field in C/C++ is a character array. You can select these options:
NO

Character fields are mapped to a JSON string and are processed as fixed-length fields. The
maximum length of the data is equal to the length of the field. NO is the default value for the
CHAR-VARYING parameter for COBOL and PL/I at mapping levels 2.0 and earlier.
This value does not apply to Enterprise and Other PL/I language structures.

NULL
Character fields are mapped to a JSON string and are processed as null-terminated strings. CICS
adds a terminating null character when transforming from a JSON message. The maximum length
of the character string is calculated as one character less than the length indicated in the language
structure. NULL is the default value for the CHAR-VARYING parameter for C/C++.
This value does not apply to Enterprise and Other PL/I language structures.

COLLAPSE
Character fields are mapped to a JSON string. Trailing and embedded white space in the field is
not included in the JSON message; for example
<space>AB<space><space><space>C<space> becomes AB<space>C. The inbound JSON
message is parsed to remove all leading, trailing, and embedded white space. COLLAPSE is the
default value for the CHAR-VARYING parameter for COBOL and PL/I at mapping level 2.1
onwards.

BINARY
Character fields are mapped to a JSON string containing base64 encoded data and are processed
as fixed-length fields. The BINARY value on the CHAR-VARYING parameter is available only at
mapping levels 2.1 and onwards.

For more information about handling variable-length values and white space, see “Support for
variable-length values and white space” on page 465.

CHAR-OCCURS = { STRING | ARRAY }
Specifies how character arrays in the language structure are mapped when the mapping level is 4.0 or
higher. For example, PIC X OCCURS 20 . This parameter is only for use by COBOL language.
ARRAY

Character arrays are mapped to a JSON array. This means that every character is mapped as an
individual JSON element. This is also the behaviour at mapping levels 3.0 and earlier.

STRING
Character arrays are mapped to an JSON string. This means that the entire COBOL array is
mapped as a single JSON element.

274 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.cunu100/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.cunu100/toc.htm

CHAR-USAGE = { NATIONAL | DBCS }

In COBOL, the national data type, PIC N , can be used for UTF-16 or DBCS data. This setting is
controlled by the NSYMBOL compiler option. You must set the CHAR-USAGE parameter on the
assistant to the same value as the NSYMBOL compiler option to ensure that the data is handled
appropriately. This is typically set to CHAR-USAGE=NATIONAL when you use UTF-16.

DBCS
Data from PIC (n) fields is treated as DBCS encoded data.

NATIONAL
Data from PIC (n) fields is treated as UTF-16 encoded data.

CONTID = value
In a service provider, specifies the name of the container that holds the top-level data structure that
is used to represent a JSON message.

The length of the container that CICS passes to the target application program is the greater of the
lengths of the request container and the response container.

DATA-SCREENING = { ENABLED | DISABLED }
Specifies whether application supplied data is screened for errors.
ENABLED

Any application-supplied runtime data that is inconsistent with the language structure, is treated
as an error, and message DFHPI1010 is issued. An error response is returned to the application.

DISABLED
Values in application-supplied runtime data that are inconsistent with the language structure are
replaced by default values. For example, a zero replaces a bad value in a numeric field. Message
DFHPI1010 is not issued and a normal response is returned to the application. This feature can be
used to avoid INVALID_PACKED_DEC and INVALID_ZONED_DEC error responses that are
generated from uninitialized output fields.

DATA-TRUNCATION = { DISABLED | ENABLED }
Specifies whether variable length data is tolerated in a fixed-length field structure:
DISABLED

If the data is less than the fixed length that CICS is expecting, CICS rejects the truncated data and
issues an error message.

ENABLED
If the data is less than the fixed length that CICS is expecting, CICS tolerates the truncated data
and processes the missing data as null values.

DATETIME = { UNUSED | PACKED15 }
Specifies if potential ABSTIME fields in the high-level language structure are mapped as timestamps:
PACKED15

Packed decimal fields of length 15 (8 bytes) are treated as CICS ABSTIME fields, and mapped as
timestamps.

UNUSED
Packed decimal fields of length 15 (8 bytes) are not treated as timestamps.

You can set this parameter at a mapping level of 3.0.
JSON-SCHEMA-CODEPAGE = { LOCAL | UTF-8 | EBCDIC-CP-US }

Specifies the code page that is used to generate the JSON Schema documents.
LOCAL

Specifies that the JSON Schemas are generated using the default code page for the file system.
UTF-8

Specifies that the JSON Schemas are generated using the UTF-8 code page.
EBCDIC-CP-US

Specifies that the JSON Schemas are generated using the US EBCDIC code page.

Chapter 4. Developing with JSON 275

JSON-SCHEMA-REQUEST = value
This is a mandatory parameter.
The value indicates the UNIX System Services location where the request JSON schema is stored.

JSON-SCHEMA-RESPONSE = value
This is a mandatory parameter.
The value indicates the UNIX System Services location where the response JSON schema is stored.

LANG = COBOL|PLI-ENTERPRISE|PLI-OTHER|C|CPP
Specifies the programming language of the high-level language structure:
COBOL

COBOL
PLI-ENTERPRISE

Enterprise PL/I
PLI-OTHER

A level of PL/I other than Enterprise PL/I
C

C
CPP

C++
LOGFILE = value

The fully qualified z/OS UNIX name of the file into which DFHLS2JS writes its activity log and trace
information. DFHLS2JS creates the file, but not the directory structure, if it does not exist.

Typically, you do not use this file, but it might be requested by the IBM service organization if you
encounter problems with DFHLS2JS.

MAPPING-LEVEL = { 1.0 | 1.1 | 1.2 | 2.0 | 2.1 | 2.2 | 3.0 | 4.0 | 4.1 | 4.2 | 4.3 }
Specifies the level of mapping that DFHLS2JS uses when you generate the web service binding file
and JSON schema. You can select these options:
1.0

This option is retained for compatibility with SOAP web services. It is not recommended for use
with JSON.

1.1
This option is retained for compatibility with SOAP web services. It is not recommended for use
with JSON.

1.2
This option is retained for compatibility with SOAP web services. It is not recommended for use
with JSON.

2.0
This option is retained for compatibility with SOAP web services. It is not recommended for use
with JSON.

2.1
This option is retained for compatibility with SOAP web services. It is not recommended for use
with JSON.

2.2
This option is retained for compatibility with SOAP web services. It is not recommended for use
with JSON.

3.0
Use this mapping level to generate JSON schema using the full set of options available.

4.0
Use this mapping level with a region at CICS TS 5.2, or later. At this mapping level you can use
COBOL OCCURS DEPENDING ON fields and the CHAR-OCCURS parameter.

276 CICS TS for z/OS: Using Web Services with CICS

4.1
For truncatable array support, use this mapping level with a region at CICS TS 5.2 or later.

4.2
No significant changes. Use this mapping level with a region at CICS TS V5.4 or later.

4.3
No significant changes. Use this mapping level with a region at CICS TS V5.4 or later.

For more information about mapping levels, see Mapping levels for the CICS JSON assistants .

MINIMUM-RUNTIME-LEVEL = { MINIMUM | 1.0 | 1.1 | 1.2 | 2.0 | 2.1 | 2.2 | 3.0 | 4.0 | 4.1 | 4.2
| 4.3 | CURRENT }

Specifies the minimum CICS runtime environment into which the web service binding file can be
deployed. If you select a level that does not match the other parameters that you specified, you
receive an error message. You can select these options:
MINIMUM

The lowest possible runtime level of CICS is allocated automatically given the parameters that you
selected.

1.0
This option is retained for compatibility with SOAP web services. It is not recommended for use
with JSON.

1.1
This option is retained for compatibility with SOAP web services. It is not recommended for use
with JSON.

1.2
This option is retained for compatibility with SOAP web services. It is not recommended for use
with JSON.

2.0
This option is retained for compatibility with SOAP web services. It is not recommended for use
with JSON.

2.1
This option is retained for compatibility with SOAP web services. It is not recommended for use
with JSON.

2.2
This option is retained for compatibility with SOAP web services. It is not recommended for use
with JSON.

3.0
The generated web service binding file deploys into a region at CICS TS 4.1 or later.

Note: JSON support is only available from CICS TS 4.2 onwards.

4.0
The generated web service binding file deploys successfully into a region at CICS TS 5.2 or later.
With this runtime level, you can use a mapping level of 4.0 or earlier for the MAPPING-LEVEL
parameter. You can use any optional parameter at this level.

4.1
The generated web service binding file deploys successfully into a region at CICS TS 5.2, or later.
With this runtime level, you can use a mapping level of 4.1 or earlier for the MAPPING-LEVEL
parameter.

4.2
The generated web service binding file deploys successfully into a region at CICS TS 5.4, or later.
With this runtime level, you can use a mapping level of 4.2 or earlier for the MAPPING-LEVEL
parameter.

Chapter 4. Developing with JSON 277

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/dfhws_mappinglevels_json.html

4.3
The generated web service binding file deploys successfully into a region at CICS TS 5.4, or later.
With this runtime level, you can use a mapping level of 4.3 or earlier for the MAPPING-LEVEL
parameter.

CURRENT
The generated web service binding file deploys successfully into a CICS region at the same
runtime level as the one you are using to generate the web service binding file.

PDSLIB = value
Specifies the name of the partitioned data set that contains the high-level language data structures to
be processed. The data set members that are used for the request and response are specified in the
REQMEM and RESPMEM parameters.

Restriction: The records in the partitioned data set must have a fixed length of 80 bytes.

PDSCP = value
Specifies the code page that is used in the partitioned data set members that are specified in the
REQMEM and RESPMEM parameters, where value is a CCSID number or a Java code page number. If
this parameter is not specified, the z/OS UNIX System Services code page is used. For example, you
might specify PDSCP = 037.

PGMINT = { CHANNEL | COMMAREA }
For a service provider, specifies how CICS passes data to the target application program:
CHANNEL

CICS uses a channel interface to pass data to the target application program.

• In mapping levels earlier than 3.0, the channel can contain only one container, which is used for
both input and output. Use the CONTID parameter to specify the name of the container. The
default name is DFHWS-DATA.

• At mapping level 3.0, the channel can contain multiple containers. Use the REQUEST-CHANNEL
and RESPONSE-CHANNEL parameters. Do not specify PDSLIB , REQMEM , or RESPMEM.

COMMAREA
CICS uses a communication area to pass data to the target application program.

When the target application program has processed the request, it must use the same mechanism to
return the response. If the request was received in a communication area, then the response must be
returned in the communication area; if the request was received in a container, the response must be
returned in a container. The length of the communication area or container that CICS passes to the
target application program is the greater of the lengths of the request communication area or
container and the response communication area or container.

PGMNAME = value
Specifies the name of the CICS PROGRAM resource for the target application program that is exposed
as a web service. The CICS web service support links to this program.

REQMEM = value
Specifies the name of the partitioned data set member that contains the high-level language structure
for the web service request. For a service provider, the web service request is the input to the
application program.

REQUEST-CHANNEL = value
Specifies the name and location of a channel description document. The channel description
describes the containers that the web service provider application can use in its interface when it
receives a JSON message from a web service requester. The channel description is an XML document
that must conform to the CICS supplied channel schema. For more information, see “Creating a
channel description document” on page 212.
You can use this parameter at mapping level 3.0 only.

278 CICS TS for z/OS: Using Web Services with CICS

RESPMEM = value
Specifies the name of the partitioned data set member that contains the high-level language structure
for the web service response. For a service provider, the web service response is the output from the
application program.

RESPONSE-CHANNEL = value
Specifies the name and location of a channel description document. The channel description
describes the containers that the web service provider application can use in its interface when it
sends a JSON response message to a web service requester. The channel description is an XML
document that must conform to the CICS supplied channel schema. For more information, see
“Creating a channel description document” on page 212.
You can use this parameter at mapping level 3.0 only.

STRUCTURE = (request , response)
For C and C++ only, specifies the names of the high-level structures that are contained in the
partitioned data set members that are specified in the REQMEM and RESPMEM parameters:
request

Specifies the name of the high-level structure that contains the request when the REQMEM
parameter is specified. The default value is DFHREQUEST.
The partitioned data set member must contain a high-level structure with the name that you
specify or a structure named DFHREQUEST if you do not specify a name.

response
Specifies the name of the high-level structure that contains the response when the RESPMEM
parameter is specified. The default value is DFHRESPONSE.
If you specify a value, the partitioned data set member must contain a high-level structure with
the name that you specify or a structure named DFHRESPONSE if you do not specify a name.

SYNCONRETURN = { NO | YES }
Specifies whether the remote web service can issue a sync point.
NO

The remote web service cannot issue a sync point. This value is the default. If the remote web
service issues a sync point, it fails with an ADPL abend.

YES
The remote web service can issue a sync point. If you select YES , the remote task is committed
as a separate unit of work when control returns from the remote web service. If the remote web
service updates a recoverable resource and a failure occurs after it returns, the update to that
resource cannot be backed out.

TRANSACTION = name
In a service provider, this parameter specifies the one to four character name of an alias transaction
that can start the pipeline. The value of this parameter is used to define the TRANSACTION attribute of
the URIMAP resource when it is created automatically by using the PIPELINE scan command.

Acceptable characters:

A-Z a-z 0-9 $ @ # _ < >

TRUNCATE-NULL-ARRAYS = { DISABLED | ENABLED }
Specifies how structured arrays are processed at mapping level 4.1 or higher. If enabled, CICS will
attempt to recognize empty records within an array (see TRUNCATE-NULL-ARRAY-VALUES for more
information about identifying empty records). If five consecutive empty array records are detected,
the array is truncated at the first such record when generating XML/JSON. This truncation capability is
only enabled for arrays with structured content, arrays of simple primitive fields are not subject to
truncation. Truncation of arrays can result in a more concise representation of the data in JSON/XML,
but is not without risk. If five consecutive data records are misidentified as uninitialized storage
(perhaps because they legitimately contain low values), data loss can be experienced. If TRUNCATE-
NULL-ARRAYS is enabled and TRUNCATE-NULL-ARRAY-VALUES is not set, then the default value for
TRUNCATE-NULL-ARRAY-VALUES is used.

Chapter 4. Developing with JSON 279

TRUNCATE-NULL-ARRAY-VALUES = { NULL | PACKEDZERO|SPACE | ZERO }
Specifies which values are treated as empty for TRUNCATE-NULL-ARRAYS processing at mapping
level 4.1 or higher. By default, the null value (0x00, or low-values) is treated as empty. If all of the
bytes of storage within a record of a structured array contain nulls, then the entire record is
considered to be empty. One or more of the NULL, PACKEDZERO, SPACE and ZERO values can be
specified in a comma separated list.
NULL

Implies a null character (0x00).
PACKEDZERO

Implies a positive signed packed decimal zero (0x0C), a negative signed packed decimal zero
(0x0D), or an unsigned packed decimal zero (0x0F).

SPACE
Implies an SBCS EBCDIC space (0x40).

ZERO
Implies an unsigned zoned decimal zero (0xF0).

Any matching combination of the selected bytes within a structured array record will cause the entire
record to be identified as empty.

If TRUNCATE-NULL-ARRAY-VALUES has a value defined, TRUNCATE-NULL-ARRAYS must be
enabled.

URI = value
This parameter specifies the relative or absolute URI that a client uses to access the web service.
CICS uses the value that is specified when it generates a URIMAP resource from the web service
binding file that is created by DFHLS2JS. The parameter specifies the path component of the URI to
which the URIMAP definition applies.

USERID = id
In a service provider, this parameter specifies a one to eight character user ID, which can be used by
any web client. For an application-generated response or a web service, the alias transaction is
attached under this user ID. The value of this parameter is used to define the USERID attribute of the
URIMAP resource when it is created automatically by using the PIPELINE scan command.

Acceptable characters:

A-Z a-z 0-9 $ @ #

WSBIND = value
The fully qualified z/OS UNIX name of the web service binding file. DFHLS2JS creates the file, but not
the directory structure, if it does not exist. The file extension is .wsbind.

Other information

• The user ID that DFHLS2JS uses to run must be configured to use UNIX System Services. The user ID
must have read permission to the CICS z/OS UNIX file structure and PDS libraries and write permission
to the directories specified on the LOGFILE , WSBIND , and JSON Schema parameters.

• The user ID must have a sufficiently large storage allocation to run Java.
• The JCL has a maximum parameter length of 100 characters. This parameter length can be increased

by using the STDPARM statement, for more information, see z/OS UNIX System Services User's Guide.

Example

//LS2JS JOB '
accounting information
',
name,MSGCLASS=A
// SET QT=''''
//JAVAPROG EXEC DFHLS2JS,

280 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.bpxa400/toc.htm

// TMPFILE=&QT.&SYSUID.&QT,
//INPUT.SYSUT1 DD *
PDSLIB=CICSHLQ.SDFHSAMP
REQMEM=DFH0XCP4
RESPMEM=DFH0XCP4
JSON-SCHEMA-REQUEST=/u/exampleapp/json/example_request.json
JSON-SCHEMA-RESPONSE=/u/exampleapp/json/example_response.json
LANG=COBOL
LOGFILE=/u/exampleapp/wsbind/example.log
MAPPING-LEVEL=4.0
CHAR-VARYING=COLLAPSE
PGMNAME=DFH0XCMN
URI=http://myserver.example.org:8080/exampleApp/example
PGMINT=COMMAREA
SYNCONRETURN=YES
WSBIND=/u/exampleapp/wsbind/example.wsbind
/*

DFHJS2LS: JSON schema to high-level language conversion for request-response
services

The DFHJS2LS procedure generates a high-level language data structure and a web service binding file
from a JSON schema. You can use DFHJS2LS when you prepare to create a CICS application program as a
service provider. This topic lists the job control statements, symbolic parameters, input parameters, and
their descriptions for DFHJS2LS.

The DFHJS2LS JCL procedure is installed in the data set HLQ .XDFHINST , where HLQ is the high-level
qualifier where CICS is installed.

Job control statements for DFHJS2LS
JOB

Starts the job.
EXEC

Specifies the procedure name (DFHJS2LS).
INPUT.SYSUT1 DD

Specifies the input. The input parameters are usually specified in the input stream. However, they can
be defined in a data set or in a member of a partitioned data set.

Symbolic parameters

The following symbolic parameters are defined in DFHJS2LS:

JAVADIR = path
Specifies the name of the Java directory that is used by DFHJS2LS. The value of this parameter is
appended to /usr/lpp/ to produce a complete path name of /usr/lpp/ path .
Typically, you do not specify this parameter. The default value is the value that was supplied to the
CICS installation job (DFHISTAR) in the JAVADIR parameter.

PATHPREF = prefix
Specifies a prefix that extends the z/OS UNIX directory path that is used on other parameters, or ''
(empty string) if no prefix is used.
Typically, you do not specify this parameter. The default value is the value that was supplied to the
CICS installation job (DFHISTAR) in the PATHPREF parameter.

SERVICE = value
Use this parameter only when directed to do so by IBM Support.

TMPDIR = tmpdir
Specifies the location of a directory in z/OS UNIX that DFHJS2LS uses as a temporary workspace. The
user ID under which the job runs must have read and write permission to this directory.
The default value is /tmp.

TMPFILE = tmpprefix
Specifies a prefix that DFHJS2LS uses to construct the names of the temporary workspace files.

Chapter 4. Developing with JSON 281

The default value is JS2LS.
PATHMAIN =path

Specifies the main part of the name of the CICS TS directory in the UNIX system services file system.
The default value is /usr/lpp/cicsts.
Typically, you do not specify this parameter. The default value is the value that was supplied to the
CICS installation job (DFHISTAR) in the PATHMAIN parameter.

USSDIR = path
Specifies the name of the CICS TS directory in the UNIX System Services file system. The value of this
parameter is appended to the value specified by the PATHMAIN parameter. This must be specified as
'.' (period) if the default is used.
Typically, you do not specify this parameter. The default value is the value that was supplied to the
CICS installation job (DFHISTAR) in the USSDIR parameter.

The temporary workspace

DFHJS2LS creates the following three temporary files at run time:

tmpdir / tmpprefix .in
tmpdir / tmpprefix .out
tmpdir / tmpprefix .err

where:

tmpdir is the value that is specified in the TMPDIR parameter.
tmpprefix is the value that is specified in the TMPFILE parameter.

The default names for the files, when TMPDIR and TMPFILE are not specified, are as follows:

/tmp/JS2LS.in
/tmp/JS2LS.out
/tmp/JS2LS.err

Important: DFHJS2LS does not lock access to the z/OS UNIX files or the data set members. Therefore, if
two or more instances of DFHJS2LS run concurrently, and use the same temporary workspace files,
nothing prevents one job from overwriting the workspace files while another job is using them, leading to
unpredictable failures.

Therefore, you are advised to devise a naming convention, and operating procedures, that avoid this
situation. For example, you can use the system symbolic parameter SYSUID to generate workspace file
names that are unique to an individual user. These temporary files are deleted before the end of the job.

282 CICS TS for z/OS: Using Web Services with CICS

Input parameters for DFHJS2LS
PDSLIB=  value

PDSCP=  value

REQMEM( data-value) RESPMEM( data-value)

LANG=COBOL

LANG=PLI-ENTERPRISE

LANG=PLI-OTHER

LANG=C

LANG=CPP STRUCTURE=(

request

,
response

)

PGMNAME=  value

URI=  value

PGMINT

TRANSACTION=  name USERID=  id

MAPPING-LEVEL=1.0

MAPPING-LEVEL=1.1

MAPPING-LEVEL=1.2 Mapping level 1.2 and higher

MAPPING-LEVEL=2.0

MAPPING-LEVEL=2.1 Mapping level 2.1 and higher

MAPPING-LEVEL=2.2

MAPPING-LEVEL=3.0 Mapping level 3.0 and higher

MAPPING-LEVEL=4.0

MAPPING-LEVEL=4.1

MAPPING-LEVEL=4.2 Mapping level 4.2 and higher

MAPPING-LEVEL=4.3

MAPPING-OVERRIDES=
SAME-AS-MAPPING-LEVEL

HYPHENS-AS-UNDERSCORES

INTEGER-AS-PIC9

LESS-DUP-NAMES

UNDERSCORES-AS-HYPHENS

NO-ARRAY-NAME-INDEXING

MINIMUM-RUNTIME-LEVEL=MINIMUM

MINIMUM-RUNTIME-LEVEL=1.0

MINIMUM-RUNTIME-LEVEL=1.1

MINIMUM-RUNTIME-LEVEL=1.2

MINIMUM-RUNTIME-LEVEL=2.0

MINIMUM-RUNTIME-LEVEL=2.1 Runtime level 2.1 and higher

MINIMUM-RUNTIME-LEVEL=2.2 Runtime level 2.2 and higher

MINIMUM-RUNTIME-LEVEL=3.0 Runtime level 3.0 and higher

MINIMUM-RUNTIME-LEVEL=4.0 Runtime level 4.0 and higher

MINIMUM-RUNTIME-LEVEL=4.1 Runtime level 4.1 and higher

MINIMUM-RUNTIME-LEVEL=4.2 Runtime level 4.2 and higher

MINIMUM-RUNTIME-LEVEL=4.3 Runtime level 4.3 and higher

MINIMUM-RUNTIME-LEVEL=CURRENT

JSON-SCHEMA-REQUEST=  value JSON-SCHEMA-RESPONSE=  value

CCSID=  value

DATA-SCREENING=ENABLED

DATA-SCREENING=DISABLED

DEFAULT-ARRAY-MAXITEMS=  value NAME-TRUNCATION=  value

LOGFILE=  value
SYNCONRETURN=NO

SYNCONRETURN=YES

WSBIND=  value

WIDE-COMP3=FULL

WIDE-COMP3=  NO

WIDE-COMP3=  YES

CHAR-WHITESPACE=PRESERVE

CHAR-WHITESPACE=REPLACE

CHAR-WHITESPACE=
COLLAPSE

PGMINT

Chapter 4. Developing with JSON 283

PGMINT=CHANNEL

CONTID=  value

PGMINT=COMMAREA

Mapping level 1.2 and higher

CHAR-VARYING=NO

CHAR-VARYING=NULL

CHAR-VARYING=YES

CHAR-VARYING-LIMIT=32767

CHAR-VARYING-LIMIT=  value

CHAR-MULTIPLIER=1

CHAR-MULTIPLIER=  value

DEFAULT-CHAR-MAXLENGTH=255

DEFAULT-CHAR-MAXLENGTH=  value

DEFAULT-FRACTION-DIGITS=3

DEFAULT-FRACTION-DIGITS=  value

Mapping level 2.1 and higher
INLINE-MAXOCCURS-LIMIT=1

INLINE-MAXOCCURS-LIMIT=  value

Mapping level 3.0 and higher
DATETIME=PACKED15

DATETIME=STRING

DATA-TRUNCATION=DISABLED

DATA-TRUNCATION=ENABLED

Mapping level 4.2 and higher
ADDITIONAL-PROPERTIES-DEFAULT=FALSE

ADDITIONAL-PROPERTIES-DEFAULT=TRUE

ADDITIONAL-PROPERTIES-MAX=UNBOUNDED

ADDITIONAL-PROPERTIES-MAX=  value

ADDITIONAL-PROPERTIES-SIZE=255

ADDITIONAL-PROPERTIES-SIZE=  value

Parameter use

• You can specify the input parameters in any order.
• Each parameter must start on a new line.
• A parameter, and its continuation character, if you use one, must not extend beyond column 72;

columns 73 - 80 must contain blanks.
• If a parameter is too long to fit on a single line, use an asterisk (*) character at the end of the line to

indicate that the parameter continues on the next line. Everything, including spaces before the asterisk
is considered part of the parameter. For example:

284 CICS TS for z/OS: Using Web Services with CICS

WSBIND=wsbinddir*
 /app1

is equivalent to

WSBIND=wsbinddir/app1

• A # character in the first character position of the line is a comment character. The line is ignored.
• A comma in the last character position of the line is an optional line separator, and is ignored.

Parameter descriptions
ADDITIONAL-PROPERTIES-DEFAULT = { true | false }

Indicates whether JSON schema objects that do not explicitly declare support for Additional
Properties are interpreted as supporting them or not. Additional JSON properties are any properties
within a JSON object that are not pre-defined in the JSON Schema. These properties are typically
rejected by the data transformation mechanism as unexpected extra data. If ADDITIONAL-
PROPERTIES-DEFAULT is set to TRUE, or if the JSON schema explicitly sets
additionalProperties:true for an object, then space is allocated in the generated copybooks to
hold such values. Applications can interact with those values using the associated fields in the
copybooks.

You can use this parameter at a mapping level of 4.2 or higher.

ADDITIONAL-PROPERTIES-MAX = { 0-20 | UNBOUNDED }
Indicates how many Additional Properties are supported for a JSON object that supports them. See
ADDITIONAL-PROPERTIES-DEFAULT. The generated copybooks will contain structures suitable for
addressing any additional properties. By default, there is no maximum constraint placed on the
number of properties that are supported. The copybooks are generated in a similar fashion to arrays
with no constraints and use containers. This parameter can be used to apply a maximum constraint
that can be used in combination with the INLINE-MAXOCCURS-LIMIT parameter to cause a fixed
length array to be allocated for the maximum number of properties, thereby avoiding the need for
containers.

You can use this parameter at a mapping level of 4.2 or higher.

ADDITIONAL-PROPERTIES-SIZE = { 16-32767 | 255 }
Indicates the maximum size for each of the JSON additional properties. If a JSON object supports
additional properties, as defined by ADDITIONAL-PROPERTIES-DEFAULT, then the generated
copybooks will have bindings to support properties up to the number specified by ADDITIONAL-
PROPERTIES-MAX. By default, the maximum value supported for each additional property is 255
characters. A field of that size will be generated into the copybooks that are produced. This size can
be customized by setting the ADDITIONAL-PROPERTIES-SIZE parameter. For example, a JSON
object is processed that is found to contain the following property:

"example": { "notes": "this extra property was not defined in the JSON Schema" }

If the copybooks have been generated to support additional properties, then that entire value will be
passed to the application for processing. The value begins with the leading quotation mark before the
property's key, and ends with the trailing right brace in the property's value. It's approximately 100
characters in this example. The value used for ADDITIONAL-PROPERTIES-SIZE must be large
enough to hold the largest such value that might occur. If the allocated buffer is too small for the
value that is processed, an error response is generated.

You can use this parameter at a mapping level of 4.2 or higher.

CCSID = value
Specifies the CCSID that is used at run time to encode character data in the application data
structure. The value of this parameter overrides the value of the LOCALCCSID system initialization
parameter. The value must be an EBCDIC CCSID that is supported by Java and z/OS Unicode Services

Chapter 4. Developing with JSON 285

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.cunu100/toc.htm

User's Guide and Reference . If you do not specify this parameter, the application data structure is
encoded by using the CCSID specified in the system initialization parameter.

CHAR-MULTIPLIER = { 1 | value }
Specifies the number of bytes to allow for each character when the mapping level is 1.2 or later. The
value of this parameter can be a positive integer in the range of 1 - 2,147,483,647. All non-numeric
character-based mappings, are subject to this multiplier. Binary, numeric, zoned, and packed decimal
fields are not subject to this multiplier.

This parameter can be useful if, for example, you are planning to use DBCS characters where you
might opt for a multiplier of 3 to allow space for potential shift-out and shift-in characters around
every double-byte character at run time.

When you set CCSID=1200 (indicating UTF-16), the only valid values for CHAR-MULTIPLIER are 2 or
4. When you use UTF-16, the default value is 2 . Use CHAR-MULTIPLIER=2 when you expect
application data to contain characters that require 1 UTF-16 encoding unit. Use CHAR-
MULTIPLIER=4 when you expect application data to contain characters that require 2 UTF-16
encoding units.

Note: Setting CHAR-MULTIPLIER to 1 does not preclude the use of DBCS characters, and setting it to
2 does not preclude the use of UTF-16 surrogate pairs. However, if wide characters are routinely used
then some valid values will not fit into the allocated field. If a larger CHAR-MULTIPLIER value is used,
it can be possible to store more characters in the allocated field than are valid in the XML. Care must
be taken to conform to the appropriate range restrictions.

CHAR-VARYING = { NO | NULL | YES }
Specifies how variable-length character data is mapped when the mapping level is 1.2 or higher.
Variable-length binary data types are always mapped to either a container or a varying structure. If
you do not specify this parameter, the default mapping depends on the language specified. You can
select these options:
NO

Variable-length character data is mapped as fixed-length strings.
NULL

Variable-length character data is mapped to null-terminated strings.
YES

Variable-length character data is mapped to a CHAR VARYING data type in PL/I. In the COBOL, C,
and C++ languages, variable-length character data is mapped to an equivalent representation that
comprises two related elements: data-length and the data.

CHAR-VARYING-LIMIT = { 32767 | value }
Specifies the maximum size of binary data and variable-length character data that is mapped to the
language structure when the mapping level is 1.2 or higher. If the character or binary data is larger
than the value specified in this parameter, it is mapped to a container and the container name is used
in the generated language structure. The value can range from 0 to the default 32,767 bytes.

CHAR-WHITESPACE = COLLAPSE | REPLACE | PRESERVE

Specifies how white space in values of type string is handled by CICS.

COLLAPSE
Leading, trailing, and embedded white space is removed and all tabs, new lines, and consecutive
spaces are replaced with single space characters.

REPLACE
Any tabs or new lines are replaced with the appropriate number of spaces.

PRESERVE
Retains any white space in the data value.

If the CHAR-WHITESPACE parameter is not set, white space is collapsed.

Note: This parameter does not apply to fields with a format of date-time, uri, base64Binary, or
hexBinary, where white space is always collapsed.

286 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.cunu100/toc.htm

CONTID = value
In a service provider, specifies the name of the container that holds the top-level data structure that
is used to represent a JSON message.

The length of the container that CICS passes to the target application program is the greater of the
lengths of the request container and the response container.

DATA-SCREENING = { ENABLED | DISABLED }
Specifies whether application supplied data is screened for errors.
ENABLED

Any application-supplied runtime data that is inconsistent with the language structure, is treated
as an error, and message DFHPI1010 is issued. An error response is returned to the application.

DISABLED
Values in application-supplied runtime data that are inconsistent with the language structure are
replaced by default values. For example, a zero replaces a bad value in a numeric field. Message
DFHPI1010 is not issued and a normal response is returned to the application. This feature can be
used to avoid INVALID_PACKED_DEC and INVALID_ZONED_DEC error responses that are
generated from uninitialized output fields.

DATA-TRUNCATION = { DISABLED | ENABLED }
Specifies whether variable length data is tolerated in a fixed-length field structure:
DISABLED

If the data is less than the fixed length that CICS is expecting, CICS rejects the truncated data and
issues an error message.

ENABLED
If the data is less than the fixed length that CICS is expecting, CICS tolerates the truncated data
and processes the missing data as null values.

DATETIME = { PACKED15 | STRING }
Specifies how JSON date-time elements are mapped to the language structure.
PACKED15

The default is that any JSON date-time element is processed as a time stamp and is mapped to
CICS ABSTIME format.

STRING
The JSON date-time element is processed as text.

DEFAULT-ARRAY-MAXITEMS = value
Specifies the maximum array boundary to apply where no maximum occurrence information
(maxItems) is implied in the JSON schema. If this parameter is not set, no maximum limit is applied.
The value of this parameter can be a positive integer in the range 1 - 2147483647. This parameter
can be combined with use of the INLINE-MAXOCCURS-LIMIT parameter to influence how JSON
arrays are mapped into the language structures.

DEFAULT-CHAR-MAXLENGTH = { 255 | value }
Specifies the default array length of character data in characters for mappings where no length is
implied in the web service description document, when the mapping level is 1.2 or higher. The value
of this parameter can be a positive integer in the range of 1 - 2,147,483,647.

DEFAULT-FRACTION-DIGITS = { 3 | value }
Specifies the default number of fraction digits to use on a JSON decimal schema type. The default is
3. For COBOL, the valid range is 0-17, or 0-30 if parameter WIDE-COMP3 is being used. For C or PLI,
the valid range is 0-30.

INLINE-MAXOCCURS-LIMIT = { 1 | value }
Specifies whether inline variable repeating content is used based on the maxItems JSON schema
keyword. Variably repeating content that is mapped inline is placed in the current container with the
rest of the generated language structure. The variably repeating content is stored in two parts, as a
counter that stores the number of occurrences of the data and as an array that stores each
occurrence of the data. The alternative mapping for variably repeating content is container-based
mapping, which stores the number of occurrences of the data and the name of the container where

Chapter 4. Developing with JSON 287

the data is placed. Storing the data in a separate container has performance implications that might
make inline mapping preferable.

The INLINE-MAXOCCURS-LIMIT parameter is available only at mapping level 2.1 onwards. The value
of INLINE-MAXOCCURS-LIMIT can be a positive integer in the range of 0 - 32,767. A value of 0
indicates that inline mapping is not used. A value of 1 ensures that optional elements are mapped
inline. If the value of the maxOccurs attribute is greater than the value of INLINE-MAXOCCURS-
LIMIT , container-based mapping is used; otherwise inline mapping is used.

When deciding whether you want variably repeating lists to be mapped inline, consider the length of a
single item of recurring data. If few instances of long length occur, container-based mapping is
preferable; if many instances of short length occur, inline mapping is preferable.

JSON-SCHEMA-REQUEST = value
This is a mandatory parameter.
The value indicates the UNIX System Services location where the request JSON schema is stored.

JSON-SCHEMA-RESPONSE = value
This is a mandatory parameter.
The value indicates the UNIX System Services location where the response JSON schema is stored.

LANG = COBOL|PLI-ENTERPRISE|PLI-OTHER|C|CPP
Specifies the programming language of the high-level language structure:
COBOL

COBOL
PLI-ENTERPRISE

Enterprise PL/I
PLI-OTHER

A level of PL/I other than Enterprise PL/I
C

C
CPP

C++
LOGFILE = value

The fully qualified z/OS UNIX name of the file into which DFHJS2LS writes its activity log and trace
information. DFHJS2LS creates the file, but not the directory structure, if it does not exist.

Typically, you do not use this file, but it might be requested by the IBM service organization if you
encounter problems with DFHJS2LS.

MAPPING-LEVEL = { 1.0 | 1.1 | 1.2 | 2.0 | 2.1 | 2.2 | 3.0 | 4.0 | 4.1 | 4.2 | 4.3 }
Specifies the level of mapping that DFHJS2LS uses when generating the web service binding file and
language structure. You can select these options:
1.0

This option is retained for compatibility with SOAP web services. It is not recommended for use
with JSON.

1.1
This option is retained for compatibility with SOAP web services. It is not recommended for use
with JSON.

1.2
This option is retained for compatibility with SOAP web services. It is not recommended for use
with JSON.

2.0
This option is retained for compatibility with SOAP web services. It is not recommended for use
with JSON.

288 CICS TS for z/OS: Using Web Services with CICS

2.1
This option is retained for compatibility with SOAP web services. It is not recommended for use
with JSON.

2.2
This option is retained for compatibility with SOAP web services. It is not recommended for use
with JSON.

3.0
Use this mapping level to generate JSON schema using the full set of options available.

4.0
Use this mapping level with a region at CICS TS 5.2 or later when you want to use UTF-16.

4.1
For truncatable array support, use this mapping level with a region at CICS TS 5.2 or later.

4.2
For additional properties, use this mapping level with a region at CICS TS 5.4 or later.

4.3
For multidimensional array support, use this mapping level with a region at CICS TS 5.4 or later.

For more information about mapping levels, see Mapping levels for the CICS assistants.

MAPPING-OVERRIDES = { SAME-AS-MAPPING-LEVEL | [HYPHENS-AS-UNDERSCORES] | INTEGER-
AS-PIC9 | LESS-DUP-NAMES | [UNDERSCORES-AS-HYPHENS] | [NO-ARRAY-NAME-INDEXING] }

Specifies whether the default behavior is overridden for the specified mapping level when generating
language structures.
SAME-AS-MAPPING-LEVEL

This parameter generates language structures in the same style as the mapping level. This is the
default.

HYPHENS-AS-UNDERSCORES
For PL/I only. This parameter converts any hyphens in the JSON schema to underscores rather
than the character X, to improve the readability of the generated PL/I language structures. For
more information, see JSON schema to PL/I mapping. This option is enabled automatically at
mapping level 4.2.

INTEGER-AS-PIC9
For COBOL and DFHJS2LS only. This parameter generates language structures which contain
integer values from the JSON schema as numerals rather than alphanumeric characters. This
option is enabled automatically at mapping level 4.0

LESS-DUP-NAMES
This parameter generates non-structural structure field names with _value at the end of the
name to enable direct referencing to the field. For example, in the following PL/I language
structure, when MAPPING-OVERRIDES=LESS-DUP-NAMES is specified, level 12 field streetName
is suffixed with _value :

09 streetName,
12 streetName CHAR(255) VARYING
UNALIGNED,
12 filler BIT (7),
12 attr_nil_streetName_value BIT (1),

The resulting structure is as follows:

09 streetName,
12 streetName_value CHAR(255) VARYING
UNALIGNED,
12 filler BIT (7),
12 attr_nil_streetName_value BIT (1),

This option is enabled automatically at mapping level 4.2.

Chapter 4. Developing with JSON 289

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/dfhws_mappinglevels.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/dfhws_json2pli.html

UNDERSCORES-AS-HYPHENS
For COBOL only. This parameter converts any underscores in the JSON schema to hyphens, rather
than the character X, to improve the readability of the generated COBOL language structures. If
any field name clashes occur, the fields are numbered to ensure they are unique. For more
information, see JSON schema to COBOL mapping.
This option is enabled automatically at mapping level 4.0.

NO-ARRAY-NAME-INDEXING
For COBOL and Enterprise PL/I only. Ensures that the field names within an array are unique only
within the scope of the higher level structure.

MINIMUM-RUNTIME-LEVEL = { MINIMUM | 1.0 | 1.1 | 1.2 | 2.0 | 2.1 | 2.2 | 3.0 | 4.0 | 4.1 | 4.2
| 4.3 | CURRENT }

Specifies the minimum CICS runtime environment into which the web service binding file can be
deployed. If you select a level that does not match the other parameters that you specified, you
receive an error message. You can select these options:
MINIMUM

The lowest possible runtime level of CICS is allocated automatically given the parameters that you
selected.

1.0
This option is retained for compatibility with SOAP web services. It is not recommended for use
with JSON.

1.1
This option is retained for compatibility with SOAP web services. It is not recommended for use
with JSON.

1.2
This option is retained for compatibility with SOAP web services. It is not recommended for use
with JSON.

2.0
This option is retained for compatibility with SOAP web services. It is not recommended for use
with JSON.

2.1
This option is retained for compatibility with SOAP web services. It is not recommended for use
with JSON.

2.2
This option is retained for compatibility with SOAP web services. It is not recommended for use
with JSON.

3.0
The generated web service binding file deploys into a region at CICS TS 4.1 or later.

Note: JSON support is only available from CICS TS 4.2 onwards.

4.0
The generated web service binding file deploys successfully into a region at CICS TS 5.2 or later.
With this runtime level, you can use a mapping level of 4.0 or earlier for the MAPPING-LEVEL
parameter. You can use any optional parameter at this level.

4.1
The generated web service binding file deploys successfully into a region at CICS TS 5.2, or later.
With this runtime level, you can use a mapping level of 4.1 or earlier for the MAPPING-LEVEL
parameter.

4.2
The generated web service binding file deploys successfully into a region at CICS TS 5.4, or later.
With this runtime level, you can use a mapping level of 4.2 or earlier for the MAPPING-LEVEL
parameter.

290 CICS TS for z/OS: Using Web Services with CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/dfhws_json2cobol.html

4.3
The generated web service binding file deploys successfully into a region at CICS TS 5.4, or later.
With this runtime level, you can use a mapping level of 4.3 or earlier for the MAPPING-LEVEL
parameter.

CURRENT
The generated web service binding file deploys successfully into a CICS region at the same
runtime level as the one you are using to generate the web service binding file.

NAME-TRUNCATION = { LEFT | RIGHT }
Specifies whether JSON names are truncated from the left or the right. The CICS web services
assistant truncates JSON names to the appropriate length for the high-level language specified; by
default names are truncated from the right.

PDSCP = value
Specifies the code page that is used in the partitioned data set members that are specified in the
REQMEM and RESPMEM parameters, where value is a CCSID number or a Java code page number. If
this parameter is not specified, the z/OS UNIX System Services code page is used. For example, you
might specify PDSCP = 037.

PDSLIB = value
Specifies the name of the partitioned data set that contains the generated high-level language. The
data set members that are used for the request and response are specified in the REQMEM and
RESPMEM parameters.

PGMINT = { CHANNEL | COMMAREA }
For a service provider, specifies how CICS passes data to the target application program:
CHANNEL

CICS uses a channel interface to pass data to the target application program.
COMMAREA

CICS uses a communication area to pass data to the target application program.

When the target application program has processed the request, it must use the same mechanism to
return the response. If the request was received in a communication area, then the response must be
returned in the communication area; if the request was received in a container, the response must be
returned in a container. The length of the communication area or container that CICS passes to the
target application program is the greater of the lengths of the request communication area or
container and the response communication area or container.

PGMNAME = value
Specifies the name of a CICS PROGRAM resource.
When DFHJS2LS is used to generate a web service binding file that is used in a service provider, you
must supply this parameter. It specifies the resource name of the application program that is exposed
as a web service.
When DFHJS2LS is used to generate a web service binding file that is used in a service requester, omit
this parameter.

REQMEM = value
Specifies a one to six character prefix that DFHJS2LS uses to generate the names of the partitioned
data set members that contains the high-level language structures for the web service request, which
is the input data to the application program.

DFHJS2LS generates the name of partitioned data set member by appending 01 to the prefix.

RESPMEM = value
Specifies a one to six character prefix that DFHJS2LS uses to generate the names of the partitioned
data set members that contains the high-level language structures for the web service response,
which is the output data from the application program.

DFHJS2LS generates the name of partitioned data set member by appending 01 to the prefix.

STRUCTURE = (request , response)
For C and C++ only, specifies how the names of the request and response structures are generated.

Chapter 4. Developing with JSON 291

The generated request and response structures are given names of request01 and response01.

If one or both names are omitted, the structures have the same name as the partitioned data set
member names generated from the REQMEM and RESPMEM parameters that you specify.

SYNCONRETURN = { NO | YES }
Specifies whether the remote web service can issue a sync point.
NO

The remote web service cannot issue a sync point. This value is the default. If the remote web
service issues a sync point, it fails with an ADPL abend.

YES
The remote web service can issue a sync point. If you select YES , the remote task is committed
as a separate unit of work when control returns from the remote web service. If the remote web
service updates a recoverable resource and a failure occurs after it returns, the update to that
resource cannot be backed out.

TRANSACTION = name
In a service provider, this parameter specifies the one to four character name of an alias transaction
that can start the pipeline. The value of this parameter is used to define the TRANSACTION attribute of
the URIMAP resource when it is created automatically by using the PIPELINE scan command.

Acceptable characters:

A-Z a-z 0-9 $ @ # _ < >

URI = value
In a service provider, this parameter specifies the relative URI that a client uses to access the web
service. CICS uses the value that is specified when it generates a URIMAP resource from the web
service binding file that is created by DFHJS2LS. The parameter specifies the path component of the
URI to which the URIMAP definition applies.

USERID = id
In a service provider, this parameter specifies a one to eight character user ID, which can be used by
any web client. For an application-generated response or a web service, the alias transaction is
attached under this user ID. The value of this parameter is used to define the USERID attribute of the
URIMAP resource when it is created automatically by using the PIPELINE scan command.

Acceptable characters:

A-Z a-z 0-9 $ @ #

WIDE-COMP3 = { FULL | NO | YES }
Controls the maximum size of the packed decimal variable length in the generated COBOL or PL/I
language structure.
FULL

For COBOL and PL/I. DFHJS2LS generates a packed decimal field that is large enough to hold all
valid values. The maximum size is 31 digits. This is the default.

NO
For COBOL only. DFHJS2LS limits the packed decimal variable length to 18 when generating the
COBOL language structure type COMP-3. If the packed decimal size is greater than 18, message
DFHPI9022W is issued to indicate that the specified type is being restricted to a total of 18 digits.

YES
For COBOL only. DFHJS2LS supports the maximum size of 31 when generating the COBOL
language structure type COMP-3.

Note: The NO and YES options generate fields that are unable to represent all valid values; the FULL
option avoids this problem. However, the FULL option does allow some invalid values to be
represented in the packed decimal field. For example, if a schema indicates that there are a maximum
of five digits and a maximum of two fractional digits, the FULL option will generate a packed decimal

292 CICS TS for z/OS: Using Web Services with CICS

field that allows for seven digits, and this allows space for valid values such as 25000 and 999.99, but
also provides space for some invalid values such as 9999.99. When you use the FULL option, take
care not to generate invalid values in application data.

WSBIND = value
The fully qualified z/OS UNIX name of the web service binding file. DFHJS2LS creates the file, but not
the directory structure, if it does not exist. The file extension defaults to .wsbind.

Other information

• The user ID under which DFHJS2LS runs must be configured to use UNIX System Services. The user ID
must have read permission to the CICS z/OS UNIX file structure and PDS libraries and write permission
to the directories specified on the LOGFILE , WSBIND , and WSDL parameters.

• The user ID must have a sufficiently large storage allocation to run Java.
• The JCL has a maximum parameter length of 100 characters. This can be increased by using the
STDPARM statement. For more information, see z/OS UNIX System Services User's Guide.

Example

//JS2LS JOB '
accounting information
',
name,MSGCLASS=A
// SET QT=''''
//JAVAPROG EXEC DFHJS2LS,
// TMPFILE=&QT.&SYSUID.&QT
/INPUT.SYSUT1 DD *
PDSLIB=//CICSHLQ.SDFHSAMP
REQMEM=CPYBK1
RESPMEM=CPYBK2
JSON-SCHEMA-REQUEST=example.json
JSON-SCHEMA-RESPONSE=example.json
LANG=COBOL
LOGFILE=/u/exampleapp/wsbind/example.log
MAPPING-LEVEL=4.0
CHAR-VARYING=NULL
INLINE-MAXOCCURS-LIMIT=2
PGMNAME=DFH0XCMN
URI=exampleApp/example
PGMINT=COMMAREA
SYNCONRETURN=YES
WSBIND=/u/exampleapp/wsbind/example.wsbind
/*

DFHJS2LS: JSON schema to high-level language conversion for RESTful services
The DFHJS2LS procedure generates a high-level language data structure and a web service binding file
from a JSON schema. You can use DFHJS2LS when you prepare to create a RESTful JSON service
provider. This topic lists the job control statements, symbolic parameters, input parameters and their
descriptions for DFHJS2LS.

The DFHJS2LS JCL procedure is installed in the data set HLQ .XDFHINST , where HLQ is the high-level
qualifier where CICS is installed.

Job control statements for DFHJS2LS
JOB

Starts the job.
EXEC

Specifies the procedure name (DFHJS2LS).
INPUT.SYSUT1 DD

Specifies the input. The input parameters are usually specified in the input stream. However, they can
be defined in a data set or in a member of a partitioned data set.

Chapter 4. Developing with JSON 293

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.bpxa400/toc.htm

Symbolic parameters

The following symbolic parameters are defined in DFHJS2LS:

JAVADIR = path
Specifies the name of the Java directory that is used by DFHJS2LS. The value of this parameter is
appended to /usr/lpp/ to produce a complete path name of /usr/lpp/ path .
Typically, you do not specify this parameter. The default value is the value that was supplied to the
CICS installation job (DFHISTAR) in the JAVADIR parameter.

PATHPREF = prefix
Specifies a prefix that extends the z/OS UNIX directory path that is used on other parameters, or ''
(empty string) if no prefix is used.
Typically, you do not specify this parameter. The default value is the value that was supplied to the
CICS installation job (DFHISTAR) in the PATHPREF parameter.

SERVICE = value
Use this parameter only when directed to do so by IBM Support.

TMPDIR = tmpdir
Specifies the location of a directory in z/OS UNIX that DFHJS2LS uses as a temporary workspace. The
user ID under which the job runs must have read and write permission to this directory.
The default value is /tmp.

TMPFILE = tmpprefix
Specifies a prefix that DFHJS2LS uses to construct the names of the temporary workspace files.
The default value is JS2LS.

USSDIR = path
Specifies the name of the CICS TS directory in the UNIX System Services file system. The value of this
parameter is appended to /usr/lpp/cicsts/ to produce a complete path name of /usr/lpp/
cicsts/ path . This must be specified as '.' (period) if the default is used.
Typically, you do not specify this parameter. The default value is the value that was supplied to the
CICS installation job (DFHISTAR) in the USSDIR parameter.

The temporary work space

DFHJS2LS creates the following three temporary files at run time:

tmpdir / tmpprefix .in
tmpdir / tmpprefix .out
tmpdir / tmpprefix .err

where:

tmpdir is the value that is specified in the TMPDIR parameter.
tmpprefix is the value that is specified in the TMPFILE parameter.

The default names for the files, when TMPDIR and TMPFILE are not specified, are as follows:

/tmp/JS2LS.in
/tmp/JS2LS.out
/tmp/JS2LS.err

Important: DFHJS2LS does not lock access to the z/OS UNIX files or the data set members. Therefore, if
two or more instances of DFHJS2LS run concurrently, and use the same temporary workspace files,
nothing prevents one job from overwriting the workspace files while another job is using them, leading to
unpredictable failures.

Therefore, you are advised to devise a naming convention, and operating procedures, that avoid this
situation. For example, you can use the system symbolic parameter SYSUID to generate workspace file
names that are unique to an individual user. These temporary files are deleted before the end of the job.

294 CICS TS for z/OS: Using Web Services with CICS

Input parameters for DFHJS2LS
PDSLIB=  value

PDSCP=  value

LANG=COBOL

LANG=PLI-ENTERPRISE

LANG=PLI-OTHER

LANG=C

LANG=CPP STRUCTURE=  data

STRUCTURE=  PDSMEM_value

PDSMEM=  value

PGMNAME=  value

URI=  value

PGMINT

TRANSACTION=  name USERID=  id

DATA-SCREENING=ENABLED

DATA-SCREENING=DISABLED

DEFAULT-ARRAY-MAXITEMS=  value

MAPPING-LEVEL=1.0

MAPPING-LEVEL=1.1

MAPPING-LEVEL=1.2 Mapping level 1.2 and higher

MAPPING-LEVEL=2.0

MAPPING-LEVEL=2.1 Mapping level 2.1 and higher

MAPPING-LEVEL=2.2

MAPPING-LEVEL=3.0 Mapping level 3.0 and higher

MAPPING-LEVEL=4.0

MAPPING-LEVEL=4.1

MAPPING-LEVEL=4.2 Mapping level 4.2 and higher

MAPPING-LEVEL=4.3

MAPPING-OVERRIDES=
SAME-AS-MAPPING-LEVEL

HYPHENS-AS-UNDERSCORES

INTEGER-AS-PIC9

LESS-DUP-NAMES

UNDERSCORES-AS-HYPHENS

NO-ARRAY-NAME-INDEXING

MINIMUM-RUNTIME-LEVEL=MINIMUM

MINIMUM-RUNTIME-LEVEL=1.0

MINIMUM-RUNTIME-LEVEL=1.1

MINIMUM-RUNTIME-LEVEL=1.2

MINIMUM-RUNTIME-LEVEL=2.0

MINIMUM-RUNTIME-LEVEL=2.1 Runtime level 2.1 and higher

MINIMUM-RUNTIME-LEVEL=2.2 Runtime level 2.2 and higher

MINIMUM-RUNTIME-LEVEL=3.0 Runtime level 3.0 and higher

MINIMUM-RUNTIME-LEVEL=4.0 Runtime level 4.0 and higher

MINIMUM-RUNTIME-LEVEL=4.1 Runtime level 4.1 and higher

MINIMUM-RUNTIME-LEVEL=4.2 Runtime level 4.2 and higher

MINIMUM-RUNTIME-LEVEL=4.3 Runtime level 4.3 and higher

MINIMUM-RUNTIME-LEVEL=CURRENT

HTTP-METHODS=GET

HTTP-METHODS=POST

HTTP-METHODS=PUT

HTTP-METHODS=DELETE

HTTP-METHODS=HEAD

JSON-SCHEMA-RESTFUL=  value

CCSID=  value NAME-TRUNCATION=  value

LOGFILE=  value

SYNCONRETURN=NO

SYNCONRETURN=YES

WSBIND=  value
WIDE-COMP3=FULL

WIDE-COMP3=  NO

WIDE-COMP3=  YES

CHAR-WHITESPACE=PRESERVE

CHAR-WHITESPACE=REPLACE

CHAR-WHITESPACE=
COLLAPSE

PGMINT

Chapter 4. Developing with JSON 295

PGMINT=CHANNEL

CONTID=  value

PGMINT=COMMAREA

Mapping level 1.2 and higher

CHAR-VARYING=NO

CHAR-VARYING=NULL

CHAR-VARYING=YES

CHAR-VARYING-LIMIT=32767

CHAR-VARYING-LIMIT=  value

CHAR-MULTIPLIER=1

CHAR-MULTIPLIER=  value

DEFAULT-CHAR-MAXLENGTH=255

DEFAULT-CHAR-MAXLENGTH=  value

DEFAULT-FRACTION-DIGITS=3

DEFAULT-FRACTION-DIGITS=  value

Mapping level 2.1 and higher
INLINE-MAXOCCURS-LIMIT=1

INLINE-MAXOCCURS-LIMIT=  value

Mapping level 3.0 and higher
DATETIME=PACKED15

DATETIME=STRING

Mapping level 4.2 and higher
ADDITIONAL-PROPERTIES-DEFAULT=FALSE

ADDITIONAL-PROPERTIES-DEFAULT=TRUE

ADDITIONAL-PROPERTIES-MAX=UNBOUNDED

ADDITIONAL-PROPERTIES-MAX=  value

ADDITIONAL-PROPERTIES-SIZE=255

ADDITIONAL-PROPERTIES-SIZE=  value

Parameter use

• You can specify the input parameters in any order.
• Each parameter must start on a new line.
• A parameter, and its continuation character, if you use one, must not extend beyond column 72;

columns 73 - 80 must contain blanks.
• If a parameter is too long to fit on a single line, use an asterisk (*) character at the end of the line to

indicate that the parameter continues on the next line. Everything, including spaces before the asterisk
is considered part of the parameter. For example:

296 CICS TS for z/OS: Using Web Services with CICS

WSBIND=wsbinddir*
 /app1

is equivalent to

WSBIND=wsbinddir/app1

• A # character in the first character position of the line is a comment character. The line is ignored.
• A comma in the last character position of the line is an optional line separator, and is ignored.

Parameter descriptions
ADDITIONAL-PROPERTIES-DEFAULT = { true | false }

Indicates whether JSON schema objects that do not explicitly declare support for Additional
Properties are interpreted as supporting them or not. Additional JSON properties are any properties
within a JSON object that are not pre-defined in the JSON Schema. These properties are typically
rejected by the data transformation mechanism as unexpected extra data. If ADDITIONAL-
PROPERTIES-DEFAULT is set to TRUE, or if the JSON schema explicitly sets
additionalProperties:true for an object, then space is allocated in the generated copybooks to
hold such values. Applications can interact with those values using the associated fields in the
copybooks.

You can use this parameter at a mapping level of 4.2 or higher.

ADDITIONAL-PROPERTIES-MAX = { 0-20 | UNBOUNDED }
Indicates how many Additional Properties are supported for a JSON object that supports them. See
ADDITIONAL-PROPERTIES-DEFAULT. The generated copybooks will contain structures suitable for
addressing any additional properties. By default, there is no maximum constraint placed on the
number of properties that are supported. The copybooks are generated in a similar fashion to arrays
with no constraints and use containers. This parameter can be used to apply a maximum constraint
that can be used in combination with the INLINE-MAXOCCURS-LIMIT parameter to cause a fixed
length array to be allocated for the maximum number of properties, thereby avoiding the need for
containers.

You can use this parameter at a mapping level of 4.2 or higher.

ADDITIONAL-PROPERTIES-SIZE = { 16-32767 | 255 }
Indicates the maximum size for each of the JSON additional properties. If a JSON object supports
additional properties, as defined by ADDITIONAL-PROPERTIES-DEFAULT, then the generated
copybooks will have bindings to support properties up to the number specified by ADDITIONAL-
PROPERTIES-MAX. By default, the maximum value supported for each additional property is 255
characters. A field of that size will be generated into the copybooks that are produced. This size can
be customized by setting the ADDITIONAL-PROPERTIES-SIZE parameter. For example, a JSON
object is processed that is found to contain the following property:

"example": { "notes": "this extra property was not defined in the JSON Schema" }

If the copybooks have been generated to support additional properties, then that entire value will be
passed to the application for processing. The value begins with the leading quotation mark before the
property's key, and ends with the trailing right brace in the property's value. It's approximately 100
characters in this example. The value used for ADDITIONAL-PROPERTIES-SIZE must be large
enough to hold the largest such value that might occur. If the allocated buffer is too small for the
value that is processed, an error response is generated.

You can use this parameter at a mapping level of 4.2 or higher.

CCSID = value
Specifies the CCSID that is used at run time to encode character data in the application data
structure. The value of this parameter overrides the value of the LOCALCCSID system initialization
parameter. The value must be an EBCDIC CCSID that is supported by Java and z/OS Unicode Services

Chapter 4. Developing with JSON 297

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.cunu100/toc.htm

User's Guide and Reference . If you do not specify this parameter, the application data structure is
encoded by using the CCSID specified in the system initialization parameter.

CHAR-MULTIPLIER = { 1 | value }
Specifies the number of bytes to allow for each character when the mapping level is 1.2 or later. The
value of this parameter can be a positive integer in the range of 1 - 2,147,483,647. All nonnumeric
character-based mappings, are subject to this multiplier. Binary, numeric, zoned, and packed decimal
fields are not subject to this multiplier.

This parameter can be useful if, for example, you are planning to use DBCS characters where you
might opt for a multiplier of 3 to allow space for potential shift-out and shift-in characters around
every double-byte character at run time.

When you set CCSID=1200 (indicating UTF-16), the only valid values for CHAR-MULTIPLIER are 2 or
4. When you use UTF-16, the default value is 2 . Use CHAR-MULTIPLIER=2 when you expect
application data to contain characters that require 1 UTF-16 encoding unit. Use CHAR-
MULTIPLIER=4 when you expect application data to contain characters that require 2 UTF-16
encoding units.

Note: Setting CHAR-MULTIPLIER to 1 does not preclude the use of DBCS characters, and setting it to
2 does not preclude the use of UTF-16 surrogate pairs. However, if wide characters are routinely used
then some valid values will not fit into the allocated field. If a larger CHAR-MULTIPLIER value is used,
it can be possible to store more characters in the allocated field than are valid in the XML. Care must
be taken to conform to the appropriate range restrictions.

CHAR-VARYING = NO | NULL | YES
Specifies how variable-length character data is mapped when the mapping level is 1.2 or higher.
Variable-length binary data types are always mapped to either a container or a varying structure. If
you do not specify this parameter, the default mapping depends on the language specified. You can
select these options:
NO

Variable-length character data is mapped as fixed-length strings.
NULL

Variable-length character data is mapped to null-terminated strings.
YES

Variable-length character data is mapped to a CHAR VARYING data type in PL/I. In the COBOL, C,
and C++ languages, variable-length character data is mapped to an equivalent representation that
comprises two related elements: data-length and the data.

CHAR-VARYING-LIMIT = 32767 | value
Specifies the maximum size of binary data and variable-length character data that is mapped to the
language structure when the mapping level is 1.2 or higher. If the character or binary data is larger
than the value specified in this parameter, it is mapped to a container and the container name is used
in the generated language structure. The value can range from 0 to the default 32,767 bytes.

CHAR-WHITESPACE = COLLAPSE | REPLACE | PRESERVE

Specifies how white space in values of type string will be handled by CICS.

COLLAPSE
Leading, trailing, and embedded white space is removed and all tabs, new lines, and consecutive
spaces are replaced with single space characters.

REPLACE
Any tabs or new lines are replaced with the appropriate number of spaces.

PRESERVE
Retains any white space in the data value.

If the CHAR-WHITESPACE parameter is not set, white space will be collapsed.

Note: This parameter does not apply to fields with a format of date-time , uri , base64Binary or
hexBinary , where white space is always collapsed.

298 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.cunu100/toc.htm

CONTID = value
In a service provider, specifies the name of the container that holds the top-level data structure that
is used to represent a JSON message.

The length of the container that CICS passes to the target application program is the greater of the
lengths of the request container and the response container.

DATA-SCREENING = { ENABLED | DISABLED }
Specifies whether application supplied data is screened for errors.
ENABLED

Any application-supplied runtime data that is inconsistent with the language structure, is treated
as an error, and message DFHPI1010 is issued. An error response is returned to the application.

DISABLED
Values in application-supplied runtime data that are inconsistent with the language structure are
replaced by default values. For example, a zero replaces a bad value in a numeric field. Message
DFHPI1010 is not issued and a normal response is returned to the application. This feature can be
used to avoid INVALID_PACKED_DEC and INVALID_ZONED_DEC error responses that are
generated from uninitialized output fields.

DATA-TRUNCATION = { DISABLED | ENABLED }
Specifies whether variable length data is tolerated in a fixed-length field structure:
DISABLED

If the data is less than the fixed length that CICS is expecting, CICS rejects the truncated data and
issues an error message.

ENABLED
If the data is less than the fixed length that CICS is expecting, CICS tolerates the truncated data
and processes the missing data as null values.

DATETIME = PACKED15 | STRING
Specifies how JSON date-time elements are mapped to the language structure.
PACKED15

The default is that any JSON date-time element is processed as a timestamp and is mapped to
CICS ABSTIME format.

STRING
The JSON date-time element is processed as text.

DEFAULT-ARRAY-MAXITEMS = value
Specifies the maximum array boundary to apply where no maximum occurrence information
(maxItems) is implied in the JSON schema. If this parameter is not set, no maximum limit is applied.
The value of this parameter can be a positive integer in the range 1 - 2147483647. This parameter
can be combined with use of the INLINE-MAXOCCURS-LIMIT parameter to influence how JSON
arrays are mapped into the language structures.

DEFAULT-CHAR-MAXLENGTH = 255 | value
Specifies the default array length of character data in characters for mappings where no length is
implied in the web service description document, when the mapping level is 1.2 or higher. The value
of this parameter can be a positive integer in the range of 1 - 2,147,483,647.

DEFAULT-FRACTION-DIGITS = { 3 | value }
Specifies the default number of fraction digits to use on a JSON decimal schema type. The default is
3. For COBOL, the valid range is 0-17, or 0-30 if parameter WIDE-COMP3 is being used. For C or PLI,
the valid range is 0-30.

HTTP-METHODS = { GET | POST | PUT | DELETE | HEAD },{ GET | POST | PUT | DELETE | HEAD },*
This is an optional parameter.
The default value is for GET, POST, PUT, and DELETE to be set, which tells DFHJS2LS that the
application supports the four main RESTful operations.

If a value is provided, DFHJS2LS builds a WSBind file in which only the explicitly specified HTTP
methods are accepted.

Chapter 4. Developing with JSON 299

If an application wants to implement the HEAD method, it must deliberately opt-in to doing so. By
default DFHJS2LS assumes that the application does not support incoming HTTP HEAD methods.

If a JSON client attempts to use an unsupported HTTP method, CICS responds with an HTTP 405
response.

INLINE-MAXOCCURS-LIMIT = 1 | value
Specifies whether inline variable repeating content is used based on the maxItems JSON schema
keyword. Variably repeating content that is mapped inline is placed in the current container with the
rest of the generated language structure. The variably repeating content is stored in two parts, as a
counter that stores the number of occurrences of the data and as an array that stores each
occurrence of the data. The alternative mapping for variably repeating content is container-based
mapping, which stores the number of occurrences of the data and the name of the container where
the data is placed. Storing the data in a separate container has performance implications that might
make inline mapping preferable.

The INLINE-MAXOCCURS-LIMIT parameter is available only at mapping level 2.1 onwards. The value
of INLINE-MAXOCCURS-LIMIT can be a positive integer in the range of 0 - 32,767. A value of 0
indicates that inline mapping is not used. A value of 1 ensures that optional elements are mapped
inline. If the value of the maxOccurs attribute is greater than the value of INLINE-MAXOCCURS-
LIMIT , container-based mapping is used; otherwise inline mapping is used.

When deciding whether you want variably repeating lists to be mapped inline, consider the length of a
single item of recurring data. If few instances of long length occur, container-based mapping is
preferable; if many instances of short length occur, inline mapping is preferable.

JSON-SCHEMA-RESTFUL = value
This is a mandatory parameter.
The value indicates the UNIX System Services location where the response JSON schema is stored.

LANG = COBOL|PLI-ENTERPRISE|PLI-OTHER|C|CPP
Specifies the programming language of the high-level language structure:
COBOL

COBOL
PLI-ENTERPRISE

Enterprise PL/I
PLI-OTHER

A level of PL/I other than Enterprise PL/I
C

C
CPP

C++
LOGFILE = value

The fully qualified z/OS UNIX name of the file into which DFHJS2LS writes its activity log and trace
information. DFHJS2LS creates the file, but not the directory structure, if it does not exist.

Typically, you do not use this file, but it might be requested by the IBM service organization if you
encounter problems with DFHJS2LS.

MAPPING-LEVEL = { 1.0 | 1.1 | 1.2 | 2.0 | 2.1 | 2.2 | 3.0 | 4.0 | 4.1 | 4.2 | 4.3 }
Specifies the level of mapping that DFHJS2LS uses when generating the web service binding file and
language structure. You can select these options:
1.0

This option is retained for compatibility with SOAP web services. It is not recommended for use
with JSON.

1.1
This option is retained for compatibility with SOAP web services. It is not recommended for use
with JSON.

300 CICS TS for z/OS: Using Web Services with CICS

1.2
This option is retained for compatibility with SOAP web services. It is not recommended for use
with JSON.

2.0
This option is retained for compatibility with SOAP web services. It is not recommended for use
with JSON.

2.1
This option is retained for compatibility with SOAP web services. It is not recommended for use
with JSON.

2.2
This option is retained for compatibility with SOAP web services. It is not recommended for use
with JSON.

3.0
Use this mapping level to generate JSON schema using the full set of options available.

4.0
Use this mapping level with a region at CICS TS 5.2 or later when you want to use UTF-16.

4.1
For truncatable array support, use this mapping level with a region at CICS TS 5.2 or later.

4.2
For additional properties, use this mapping level with a region at CICS TS 5.4 or later.

4.3
For multidimensional array support, use this mapping level with a region at CICS TS 5.4 or later.

For more information about mapping levels, see Mapping levels for the CICS JSON assistants.

MAPPING-OVERRIDES = { SAME-AS-MAPPING-LEVEL | [HYPHENS-AS-UNDERSCORES] | INTEGER-
AS-PIC9 | LESS-DUP-NAMES | [UNDERSCORES-AS-HYPHENS] | [NO-ARRAY-NAME-INDEXING] }

Specifies whether the default behavior is overridden for the specified mapping level when generating
language structures.
SAME-AS-MAPPING-LEVEL

This parameter generates language structures in the same style as the mapping level. This is the
default.

HYPHENS-AS-UNDERSCORES
For PL/I only. This parameter converts any hyphens in the JSON schema to underscores rather
than the character X, to improve the readability of the generated PL/I language structures. For
more information, see JSON schema to PL/I mapping. This option is enabled automatically at
mapping level 4.2.

INTEGER-AS-PIC9
For COBOL and DFHJS2LS only. This parameter generates language structures which contain
integer values from the JSON schema as numerals rather than alphanumeric characters. This
option is enabled automatically at mapping level 4.0

LESS-DUP-NAMES
This parameter generates non-structural structure field names with _value at the end of the
name to enable direct referencing to the field. For example, in the following PL/I language
structure, when MAPPING-OVERRIDES=LESS-DUP-NAMES is specified, level 12 field streetName
is suffixed with _value :

09 streetName,
12 streetName CHAR(255) VARYING
UNALIGNED,
12 filler BIT (7),
12 attr_nil_streetName_value BIT (1),

Chapter 4. Developing with JSON 301

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/dfhws_mappinglevels_json.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/dfhws_json2pli.html

The resulting structure is as follows:

09 streetName,
12 streetName_value CHAR(255) VARYING
UNALIGNED,
12 filler BIT (7),
12 attr_nil_streetName_value BIT (1),

This option is enabled automatically at mapping level 4.2.

UNDERSCORES-AS-HYPHENS
For COBOL only. This parameter converts any underscores in the JSON schema to hyphens, rather
than the character X, to improve the readability of the generated COBOL language structures. If
any field name clashes occur, the fields are numbered to ensure they are unique. For more
information, see JSON schema to COBOL mapping.
This option is enabled automatically at mapping level 4.0.

NO-ARRAY-NAME-INDEXING
For COBOL and Enterprise PL/I only. Ensures that the field names within an array are unique only
within the scope of the higher level structure.

MINIMUM-RUNTIME-LEVEL = { MINIMUM | 1.0 | 1.1 | 1.2 | 2.0 | 2.1 | 2.2 | 3.0 | 4.0 | 4.1 | 4.2
| 4.3 | CURRENT }

Specifies the minimum CICS runtime environment into which the web service binding file can be
deployed. If you select a level that does not match the other parameters that you specified, you
receive an error message. You can select these options:
MINIMUM

The lowest possible runtime level of CICS is allocated automatically given the parameters that you
selected.

1.0
This option is retained for compatibility with SOAP web services. It is not recommended for use
with JSON.

1.1
This option is retained for compatibility with SOAP web services. It is not recommended for use
with JSON.

1.2
This option is retained for compatibility with SOAP web services. It is not recommended for use
with JSON.

2.0
This option is retained for compatibility with SOAP web services. It is not recommended for use
with JSON.

2.1
This option is retained for compatibility with SOAP web services. It is not recommended for use
with JSON.

2.2
This option is retained for compatibility with SOAP web services. It is not recommended for use
with JSON.

3.0
The generated web service binding file deploys into a region at CICS TS 4.1 or later.

Note: JSON support is only available from CICS TS 4.2 onwards.

4.0
The generated web service binding file deploys successfully into a region at CICS TS 5.2 or later.
With this runtime level, you can use a mapping level of 4.0 or earlier for the MAPPING-LEVEL
parameter. You can use any optional parameter at this level.

302 CICS TS for z/OS: Using Web Services with CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/dfhws_json2cobol.html

4.1
The generated web service binding file deploys successfully into a region at CICS TS 5.2, or later.
With this runtime level, you can use a mapping level of 4.1 or earlier for the MAPPING-LEVEL
parameter.

4.2
The generated web service binding file deploys successfully into a region at CICS TS 5.4, or later.
With this runtime level, you can use a mapping level of 4.2 or earlier for the MAPPING-LEVEL
parameter.

4.3
The generated web service binding file deploys successfully into a region at CICS TS 5.4, or later.
With this runtime level, you can use a mapping level of 4.3 or earlier for the MAPPING-LEVEL
parameter.

CURRENT
The generated web service binding file deploys successfully into a CICS region at the same
runtime level as the one you are using to generate the web service binding file.

NAME-TRUNCATION = { LEFT | RIGHT }
Specifies whether JSON names are truncated from the left or the right. The CICS web services
assistant truncates JSON names to the appropriate length for the high-level language specified; by
default names are truncated from the right.

PDSCP = value
Specifies the code page that is used in the partitioned data set members that are specified in the
PDSMEM parameter, where value is a CCSID number or a Java code page number. If this parameter is
not specified, the z/OS UNIX System Services code page is used. For example, you might specify
PDSCP = 037.

PDSLIB = value
Specifies the name of the partitioned data set that contains the generated high-level language. The
data set members that are used for the request and response are specified in the PDSMEM parameter.

PDSMEM = value
Specifies the 1-6 character prefix that DFHJS2LS uses to generate the name of the partitioned data
set member that will contain the high-level language structures.
DFHJS2LS generates a partitioned data set member by appending 01 to the prefix.

PGMINT = CHANNEL | COMMAREA
For a service provider, specifies how CICS passes data to the target application program:
CHANNEL

CICS uses a channel interface to pass data to the target application program.
COMMAREA

CICS uses a communication area to pass data to the target application program.

When the target application program has processed the request, it must use the same mechanism to
return the response. If the request was received in a communication area, then the response must be
returned in the communication area; if the request was received in a container, the response must be
returned in a container. The length of the communication area or container that CICS passes to the
target application program is the greater of the lengths of the request communication area or
container and the response communication area or container.

PGMNAME = value
Specifies the name of a CICS PROGRAM resource.
When DFHJS2LS is used to generate a web service binding file that is used in a service provider, you
must supply this parameter. It specifies the resource name of the application program that is exposed
as a web service.
When DFHJS2LS is used to generate a web service binding file that is used in a service requester, omit
this parameter.

STRUCTURE = name
For C and C++ only, specifies how the name of the structure is generated.

Chapter 4. Developing with JSON 303

The generated structure is given the name of name 01 .

If the name is omitted, the structure has the same name as the partitioned data set member name
generated from the PDSMEM parameter that you specify.

SYNCONRETURN = { NO | YES }
Specifies whether the remote web service can issue a sync point.
NO

The remote web service cannot issue a sync point. This value is the default. If the remote web
service issues a sync point, it fails with an ADPL abend.

YES
The remote web service can issue a sync point. If you select YES , the remote task is committed
as a separate unit of work when control returns from the remote web service. If the remote web
service updates a recoverable resource and a failure occurs after it returns, the update to that
resource cannot be backed out.

TRANSACTION = name
In a service provider, this parameter specifies the one to four character name of an alias transaction
that can start the pipeline. The value of this parameter is used to define the TRANSACTION attribute of
the URIMAP resource when it is created automatically by using the PIPELINE scan command.

Acceptable characters:

A-Z a-z 0-9 $ @ # _ < >

URI = value
In a service provider, this parameter specifies the relative URI that a client uses to access the web
service. CICS uses the value that is specified when it generates a URIMAP resource from the web
service binding file that is created by DFHJS2LS. The parameter specifies the path component of the
URI to which the URIMAP definition applies. When using wildcards * at the end of a URI, the URI
value must be followed by a comma.

USERID = id
In a service provider, this parameter specifies a one to eight character user ID, which can be used by
any web client. For an application-generated response or a web service, the alias transaction is
attached under this user ID. The value of this parameter is used to define the USERID attribute of the
URIMAP resource when it is created automatically by using the PIPELINE scan command.

Acceptable characters:

A-Z a-z 0-9 $ @ #

WIDE-COMP3 = { FULL | NO | YES }
Controls the maximum size of the packed decimal variable length in the generated COBOL or PL/I
language structure.
FULL

For COBOL and PL/I. DFHJS2LS generates a packed decimal field that is large enough to hold all
valid values. The maximum size is 31 digits. This is the default.

NO
For COBOL only. DFHJS2LS limits the packed decimal variable length to 18 when generating the
COBOL language structure type COMP-3. If the packed decimal size is greater than 18, message
DFHPI9022W is issued to indicate that the specified type is being restricted to a total of 18 digits.

YES
For COBOL only. DFHJS2LS supports the maximum size of 31 when generating the COBOL
language structure type COMP-3.

Note: The NO and YES options generate fields that are unable to represent all valid values; the FULL
option avoids this problem. However, the FULL option does allow some invalid values to be
represented in the packed decimal field. For example, if a schema indicates that there are a maximum

304 CICS TS for z/OS: Using Web Services with CICS

of five digits and a maximum of two fractional digits, the FULL option will generate a packed decimal
field that allows for seven digits, and this allows space for valid values such as 25000 and 999.99, but
also provides space for some invalid values such as 9999.99. When you use the FULL option, take
care not to generate invalid values in application data.

WSBIND = value
The fully qualified z/OS UNIX name of the web service binding file. DFHJS2LS creates the file, but not
the directory structure, if it does not exist. The file extension defaults to .wsbind.

Other information

• The user ID under which DFHJS2LS runs must be configured to use UNIX System Services. The user ID
must have read permission to the CICS z/OS UNIX file structure and PDS libraries and write permission
to the directories specified on the LOGFILE , WSBIND , and WSDL parameters.

• The user ID must have a sufficiently large storage allocation to run Java.
• The JCL has a maximum parameter length of 100 characters. This can be increased by using the
STDPARM statement. For more information, see z/OS UNIX System Services User's Guide.

Example

//JS2LS JOB '
accounting information
',
name,MSGCLASS=A
// SET QT=''''
//JAVAPROG EXEC DFHJS2LS,
// TMPFILE=&QT.&SYSUID.&QT
/INPUT.SYSUT1 DD *
PDSLIB=//CICSHLQ.SDFHSAMP
PDSMEM=CPYBK2
JSON-SCHEMA-RESTFUL=example.json
LANG=COBOL
LOGFILE=/u/exampleapp/wsbind/example.log
MAPPING-LEVEL=4.0
CHAR-VARYING=NULL
INLINE-MAXOCCURS-LIMIT=2
PGMNAME=DFH0XCMN
URI=exampleApp/example/*,
PGMINT=COMMAREA
SYNCONRETURN=YES
WSBIND=/u/exampleapp/wsbind/example.wsbind
/*

DFHLS2JS: High-level language to JSON schema conversion for linkable interface
The DFHLS2JS cataloged procedure generates a JSON schema and a JSON binding file from a high-level
language structure. Use DFHLS2JS when you want to create a CICS program that can parse or create
JSON.

The DFHLS2JS JCL procedure is installed in the data set HLQ.XDFHINST , where HLQ is the high-level
qualifier where CICS is installed.

Job control statements for DFHLS2JS
JOB

Starts the job.
EXEC

Specifies the procedure name (DFHLS2JS).
INPUT.SYSUT1 DD

Specifies the input. The input parameters are specified in the input stream. However, you can also
define them in a data set or in a member of a partitioned data set.

Chapter 4. Developing with JSON 305

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.bpxa400/toc.htm

Symbolic parameters

The following symbolic parameters are defined in DFHLS2JS:

JAVADIR = path
Specifies the name of the Java directory that is used by DFHLS2JS. The value of this parameter is
appended to /usr/lpp/ giving a complete path name of /usr/lpp/ path .
Typically, you do not specify this parameter. The default value is the value that was supplied to the
CICS installation job (DFHISTAR) in the JAVADIR parameter.

PATHPREF = prefix
Specifies an optional prefix that extends the z/OS UNIX directory path that is used on other
parameters. The default is the empty string.
Typically, you do not specify this parameter. The default value is the value that was supplied to the
CICS installation job (DFHISTAR) in the PATHPREF parameter.

SERVICE = value
Use this parameter only when directed to do so by IBM support.

TMPDIR = tmpdir
Specifies the location of a directory in z/OS UNIX that DFHLS2JS uses as a temporary workspace. The
user ID under which the job runs must have read and write permission to this directory.
The default value is /tmp.

TMPFILE = tmpprefix
Specifies a prefix that DFHLS2JS uses to construct the names of the temporary workspace files.
The default value is LS2JS.

PATHMAIN = path
Specifies the name of the CICS TS directory in the UNIX system services file system. The value of this
parameter is appended to the value specified by the USSDIR parameter.
Typically, you do not specify this parameter. The default value is the value that was supplied to the
CICS installation job (DFHISTAR) in the USSDIR parameter.

USSDIR = path
Specifies the name of the CICS TS directory in the z/OS UNIX file system. The value of this parameter
is appended to the value specified by the PATHMAIN parameter. This must be specified as '.'
(period) if the default is used.
Typically, you do not specify this parameter. The default value is the value that was supplied to the
CICS installation job (DFHISTAR) in the USSDIR parameter.

The temporary workspace

DFHLS2JS creates the following three temporary files at run time:

tmpdir / tmpprefix .in
tmpdir / tmpprefix .out
tmpdir / tmpprefix .err

where:

tmpdir is the value that is specified in the TMPDIR parameter.
tmpprefix is the value that is specified in the TMPFILE parameter.

The default names for the files (when TMPDIR and TMPFILE are not specified), are as follows:

/tmp/LS2JS.in
/tmp/LS2JS.out
/tmp/LS2JS.err

Important: DFHLS2JS does not lock access to the z/OS UNIX files or the data set members. Therefore, if
two or more instances of DFHLS2JS run concurrently and use the same temporary workspace files,

306 CICS TS for z/OS: Using Web Services with CICS

nothing prevents one job from overwriting the workspace files while another job is using them, leading to
unpredictable failures.

Devise a naming convention and operating procedures that avoid this situation; for example, you can use
the system symbolic parameter SYSUID to generate workspace file names that are unique to an
individual user.

These temporary files are deleted before the end of the job.

Input parameters for DFHLS2JS

The following syntax diagram shows the available input parameters:

Chapter 4. Developing with JSON 307

CCSID=  value

LANG=COBOL

LANG=PLI-ENTERPRISE

LANG=PLI-OTHER

LANG=C

LANG=CPP

STRUCTURE=DFHDATA

STRUCTURE=  data

LOGFILE=  value BUNDLE=  value
DATA-SCREENING=ENABLED

DATA-SCREENING=DISABLED

MAPPING-LEVEL=1.0

MAPPING-LEVEL=1.1

MAPPING-LEVEL=1.2 Mapping level 1.2 and higher

MAPPING-LEVEL=2.0

MAPPING-LEVEL=2.1 Mapping level 2.1 and higher

MAPPING-LEVEL=2.2

MAPPING-LEVEL=3.0 Mapping level 3.0 and higher

MAPPING-LEVEL=4.0 Mapping level 4.0 and higher

MAPPING-LEVEL=4.1 Mapping level 4.1 and higher

MAPPING-LEVEL=4.2

MAPPING-LEVEL=4.3

JSONTRANSFRM=  value

JSON-SCHEMA-CODEPAGE=LOCAL

JSON-SCHEMA-CODEPAGE=UTF-8

JSON-SCHEMA-CODEPAGE=EBCDIC-CP-US

JSON-SCHEMA=  value

MINIMUM-RUNTIME-LEVEL=MINIMUM

MINIMUM-RUNTIME-LEVEL=3.0

MINIMUM-RUNTIME-LEVEL=4.0

MINIMUM-RUNTIME-LEVEL=4.1

MINIMUM-RUNTIME-LEVEL=4.2

MINIMUM-RUNTIME-LEVEL=4.3

MINIMUM-RUNTIME-LEVEL=CURRENT

OVERWRITE-OUTPUT=NO

OVERWRITE-OUTPUT=YES
PDSCP=  value

PDSLIB=  value

PDSMEM=  value
XMLCP=LOCAL

XMLCP=UTF-8

XMLCP=EBCDIC-CP-US

Mapping level 1.2 and higher
CHAR-VARYING=NO

CHAR-VARYING=NULL

308 CICS TS for z/OS: Using Web Services with CICS

Mapping level 2.1 and higher
CHAR-VARYING=NO

CHAR-VARYING=NULL

CHAR-VARYING=COLLAPSE

CHAR-VARYING=BINARY

Mapping level 3.0 and higher
DATETIME=UNUSED

DATETIME=PACKED15

DATA-TRUNCATION=DISABLED

DATA-TRUNCATION=ENABLED

Mapping level 4.0 and higher
CHAR-OCCURS=STRING

CHAR-OCCURS=ARRAY

CHAR-USAGE=NATIONAL

CHAR-USAGE=DBCS

Mapping level 4.1 and higher
TRUNCATE-NULL-ARRAYS=DISABLED

TRUNCATE-NULL-ARRAYS=ENABLED

TRUNCATE-NULL-ARRAY-VALUES=

,

NULL

PACKEDZERO

SPACE

ZERO

Parameter use

Parameters must conform to the following rules:

• You can specify the input parameters in any order.
• Each parameter must start on a new line.
• A parameter (and its continuation character, if you use one) must not extend beyond column 72;

columns 73 - 80 must contain blanks.
• If a parameter is too long to fit on a single line, use an asterisk (*) character at the end of the line to

indicate that the parameter continues on the next line. Everything (including spaces) before the asterisk
is considered part of the parameter.

• A number sign (#) character in the first character position of the line is a comment character. The line is
ignored.

• A comma in the last character position of the line is an optional line separator, and is ignored.

Chapter 4. Developing with JSON 309

Parameter descriptions
BUNDLE = value

Specifies the path and name of the bundle directory on z/OS UNIX . If you specify this value, the JSON
assistant generates a bundle that contains the JSON binding. The path information for this parameter
overrides any path information for the JSONTRANSFRM parameter.
You can optionally specify an archive file rather than a directory name. The JSON assistant
supports .zip and .jar archives. However, you must uncompress the archive before you try to
install the BUNDLE resource.

CCSID = value
Specifies the CCSID that is used at run time to encode character data in the application data
structure. The value of this parameter overrides the value of the LOCALCCSID system initialization
parameter. The value must be an EBCDIC CCSID that is supported by Java and z/OS conversion
services. If you do not specify this parameter, the application data structure is encoded by using the
CCSID specified in the system initialization parameter.

You can use this parameter with any mapping level.

CHAR-VARYING = { NO | NULL | COLLAPSE | BINARY }
Specifies how character fields in the language structure are mapped when the mapping level is 1.2 or
higher. A character field in COBOL is a Picture clause of type X; for example, PIC(X) 10 . A character
field in C/C++ is a character array. This parameter does not apply to Enterprise and Other PL/I
language structures. You can select these options:
NO

Character fields are mapped to a JSON string and are processed as fixed-length fields. The
maximum length of the data is equal to the length of the field. NO is the default value for the
CHAR-VARYING parameter for COBOL and PL/I at mapping levels 2.0 and earlier.

NULL
Character fields are mapped to a JSON string and are processed as null-terminated strings. CICS
adds a terminating null character when transforming from a JSON schema. The maximum length
of the character string is calculated as one character less than the length indicated in the language
structure. NULL is the default value for the CHAR-VARYING parameter for C/C++.

COLLAPSE
Character fields are mapped to a JSON string. Trailing and embedded white space in the field is
not included in the JSON message; for example
<space>AB<space><space><space>C<space> becomes AB<space>C. COLLAPSE is the
default value for the CHAR-VARYING parameter for COBOL and PL/I at mapping level 2.1
onwards.

BINARY
Character fields are mapped to a JSON string containing base64 encoded data and are processed
as fixed-length fields. The BINARY value on the CHAR-VARYING parameter is available only at
mapping levels 2.1 and greater.

CHAR-OCCURS = { STRING | ARRAY }
Specifies how character arrays in the language structure are mapped when the mapping level is 4.0 or
higher. For example, PIC X OCCURS 20 . This parameter is only for use by COBOL language.
ARRAY

Character arrays are mapped to a JSON array. This means that every character is mapped as an
individual JSON element. This is also the behaviour at mapping levels 3.0 and earlier.

STRING
Character arrays are mapped to an JSON string. This means that the entire COBOL array is
mapped as a single JSON element.

CHAR-USAGE = { NATIONAL | DBCS }
In COBOL, the national data type, PIC N , can be used for UTF-16 or DBCS data. This setting is
controlled by the NSYMBOL compiler option. You must set the CHAR-USAGE parameter on the

310 CICS TS for z/OS: Using Web Services with CICS

assistant to the same value as the NSYMBOL compiler option to ensure that the data is handled
appropriately. This is typically set to CHAR-USAGE=NATIONAL when you use UTF-16.
DBCS

Data from PIC (n) fields is treated as UTF-16 encoded data.
NATIONAL

Data from PIC (n) fields is treated as DBCS encoded data.
DATA-SCREENING = { ENABLED | DISABLED }

Specifies whether application supplied data is screened for errors.
ENABLED

Any application-supplied runtime data that is inconsistent with the language structure, is treated
as an error, and message DFHPI1010 is issued. An error response is returned to the application.

DISABLED
Values in application-supplied runtime data that are inconsistent with the language structure are
replaced by default values. For example, a zero replaces a bad value in a numeric field. Message
DFHPI1010 is not issued and a normal response is returned to the application. This feature can be
used to avoid INVALID_PACKED_DEC and INVALID_ZONED_DEC error responses that are
generated from uninitialized output fields.

DATA-TRUNCATION = { DISABLED | ENABLED }
Specifies whether variable length data is tolerated in a fixed-length field structure:
DISABLED

If the data is less than the fixed length that CICS is expecting, CICS rejects the truncated data and
issues an error message.

ENABLED
If the data is less than the fixed length that CICS is expecting, CICS tolerates the truncated data
and processes the missing data as null values.

DATETIME = { UNUSED | PACKED15 }
Specifies if JSON date-time properties in the high-level language structure, including CICS ABSTIME
values, are mapped as time stamps:
PACKED15

Any JSON date-time properties are mapped as time stamps.
UNUSED

Any JSON date-time properties are not mapped as time stamps. This mapping is the default.
You can set this parameter at a mapping level of 3.0.

JSON-SCHEMA = value

The fully qualified z/OS UNIX name of the file into which the JSON schema is written.

JSON-SCHEMA-CODEPAGE = { LOCAL | UTF-8 | EBCDIC-CP-US }
Specifies the code page that is used to generate the JSON Schema documents.
LOCAL

Specifies that the JSON Schemas are generated using the default code page for the file system.
UTF-8

Specifies that the JSON Schemas are generated using the UTF-8 code page.
EBCDIC-CP-US

Specifies that the JSON Schemas are generated using the US EBCDIC code page.
JSONTRANSFRM = value

This parameter is mandatory for LINKable mode, but invalid for request-response mode. It indicates
the name that is used for the JSONTRANSFRM bundle resource in CICS.

LANG = COBOL|PLI-ENTERPRISE|PLI-OTHER|C|CPP
Specifies the programming language of the high-level language structure:

Chapter 4. Developing with JSON 311

COBOL
COBOL

PLI-ENTERPRISE
Enterprise PL/I

PLI-OTHER
A level of PL/I other than Enterprise PL/I

C
C

CPP
C++

LOGFILE = value
The fully qualified z/OS UNIX name of the file into which DFHLS2JS writes its activity log and trace
information. If it does not exist, DFHLS2JS creates the file, but not the directory structure.

You might be requested to use this parameter by the IBM service organization if you encounter
problems with DFHLS2JS.

MAPPING-LEVEL = { 1.0 | 1.1 | 1.2 | 2.0 | 2.1 | 2.2 | 3.0 | 4.0 | 4.1 | 4.2 | 4.3 }
Specifies the level of mapping for the assistant to use when generating the JSON binding and
language structures. You must use mapping level 3.0 or higher.

MINIMUM-RUNTIME-LEVEL = { MINIMUM | 3.0 | 4.0 | 4.1 | 4.2 | 4.3 | CURRENT }
Specifies the minimum CICS runtime environment into which the JSON binding can be deployed. If
you select a level that does not match the other parameters that you specified, you receive an error
message. The options that you can select are as follows:
MINIMUM

The lowest possible runtime level of CICS is allocated automatically given the parameters that you
selected.

3.0
Specify runtime level 3.0 or above if you want to use the CICS JSON assistant and take advantage
of advanced data mappings.

4.0
The generated web service binding file deploys successfully into a region at CICS TS 5.2 or later.
With this runtime level, you can use a mapping level of 4.0 or earlier for the MAPPING-LEVEL
parameter. You can use any optional parameter at this level.

4.1
The generated web service binding file deploys successfully into a region at CICS TS 5.2, or later.
With this runtime level, you can use a mapping level of 4.1 or earlier for the MAPPING-LEVEL
parameter.

4.2
The generated web service binding file deploys successfully into a region at CICS TS V5.4, or later.
With this runtime level, you can use a mapping level of 4.2 or earlier for the MAPPING-LEVEL
parameter.

4.3
The generated web service binding file deploys successfully into a region at CICS TS 5.4, or later.
With this runtime level, you can use a mapping level of 4.3 or earlier for the MAPPING-LEVEL
parameter.

CURRENT
Use this runtime level to deploy the generated binding file into a CICS region that has the same
runtime environment as the region used to generate the binding file.

OVERWRITE-OUTPUT = { NO | YES }
Controls whether existing CICS BUNDLEs on the file system can be overwritten.

312 CICS TS for z/OS: Using Web Services with CICS

NO
Any existing BUNDLE is not replaced. If an existing BUNDLE is found DFHLS2JS issues error
message DFHPI9689E and terminates.

YES
Any existing BUNDLE is replaced. If an existing BUNDLE is found then message DFHPI9683W is
issued to inform you that the file has been replaced.

PDSCP = value
Specifies the code page that is used in the partitioned data set members, where value is a CCSID
number or a Java code page number. If you do not specify this parameter, the z/OS UNIX System
Services code page is used. For example, you might specify PDSCP=037.

PDSLIB = value
Specifies the name of the partitioned data set that contains the high-level language data structures to
be processed.

Restriction: The records in the partitioned data set must have a fixed length of 80 bytes.

PDSMEM = value
Specifies the name of the partitioned data set member that contains the high-level language
structures that you want to process.

STRUCTURE = { DFHDATA | data }
The name of the top-level data structure in C and C++. The default is DFHDATA.

TRUNCATE-NULL-ARRAYS = { DISABLED | ENABLED }
Specifies how structured arrays are processed at mapping level 4.1 or higher. If enabled, CICS will
attempt to recognize empty records within an array (see TRUNCATE-NULL-ARRAY-VALUES for more
information about identifying empty records). If five consecutive empty array records are detected,
the array is truncated at the first such record when generating XML/JSON. This truncation capability is
only enabled for arrays with structured content, arrays of simple primitive fields are not subject to
truncation. Truncation of arrays can result in a more concise representation of the data in JSON/XML,
but is not without risk. If five consecutive data records are misidentified as uninitialized storage
(perhaps because they legitimately contain low values), data loss can be experienced. If TRUNCATE-
NULL-ARRAYS is enabled and TRUNCATE-NULL-ARRAY-VALUES is not set, then the default value for
TRUNCATE-NULL-ARRAY-VALUES is used.

TRUNCATE-NULL-ARRAY-VALUES = { NULL | PACKEDZERO|SPACE | ZERO }
Specifies which values are treated as empty for TRUNCATE-NULL-ARRAYS processing at mapping
level 4.1 or higher. By default, the null value (0x00, or low-values) is treated as empty. If all of the
bytes of storage within a record of a structured array contain nulls, then the entire record is
considered to be empty. One or more of the NULL, PACKEDZERO, SPACE and ZERO values can be
specified in a comma separated list.
NULL

Implies a null character (0x00).
PACKEDZERO

Implies a positive signed packed decimal zero (0x0C), a negative signed packed decimal zero
(0x0D), or an unsigned packed decimal zero (0x0F).

SPACE
Implies an SBCS EBCDIC space (0x40).

ZERO
Implies an unsigned zoned decimal zero (0xF0).

Any matching combination of the selected bytes within a structured array record will cause the entire
record to be identified as empty.

If TRUNCATE-NULL-ARRAY-VALUES has a value defined, TRUNCATE-NULL-ARRAYS must be
enabled.

//LS2JS JOB '
accounting information

Chapter 4. Developing with JSON 313

',
name,MSGCLASS=A
// SET QT=''''
//JAVAPROG EXEC DFHLS2JS,
// TMPFILE=&QT.&SYSUID.&QT
/INPUT.SYSUT1 DD *
PDSLIB=//CICSHLQ.SDFHSAMP
PDSMEM=CPYBK2
JSON-SCHEMA=example.json
LANG=COBOL
LOGFILE=/u/exampleapp/example.log
MAPPING-LEVEL=4.0
JSONTRANSFRM=EXAMPLE
BUNDLE=/u/exampleapp/bundles/exampleBundle
/*

DFHJS2LS: JSON schema to high-level language conversion for linkable interface
The DFHJS2LS cataloged procedure generates a high-level language data structure and a JSON binding
from a JSON schema. Use DFHJS2LS when you want to create a CICS program that can parse or create
JSON. This topic lists the job control statements, symbolic parameters, input parameters and their
descriptions for DFHJS2LS.

The DFHJS2LS JCL procedure is installed in the data set HLQ .XDFHINST , where HLQ is the high-level
qualifier where CICS is installed.

Job control statements for DFHJS2LS
JOB

Starts the job.
EXEC

Specifies the procedure name (DFHJS2LS).
INPUT.SYSUT1 DD

Specifies the input. The input parameters are specified in the input stream. You can also define them
in a data set or in a member of a partitioned data set.

Symbolic parameters

The following symbolic parameters are defined in DFHJS2LS:

JAVADIR = path
Specifies the name of the Java directory that is used by DFHJS2LS. The value of this parameter is
appended to /usr/lpp/ giving a complete path name of /usr/lpp/ path .
Typically, you do not specify this parameter. The default value is the value that was supplied to the
CICS installation job (DFHISTAR) in the JAVADIR parameter.

PATHPREF = prefix
Specifies an optional prefix that extends the z/OS UNIX directory path that is used on other
parameters. The default is the empty string.
Typically, you do not specify this parameter. The default value is the value that was supplied to the
CICS installation job (DFHISTAR) in the PATHPREF parameter.

SERVICE = value
Use this parameter only when directed to do so by IBM support.

TMPDIR = tmpdir
Specifies the location of a directory in z/OS UNIX that DFHJS2LS uses as a temporary workspace. The
user ID under which the job runs must have read and write permission to this directory.
The default value is /tmp.

TMPFILE = tmpprefix
Specifies a prefix that DFHJS2LS uses to construct the names of the temporary workspace files.
The default value is JS2LS.

314 CICS TS for z/OS: Using Web Services with CICS

PATHMAIN =path
Specifies the main part of the name of the CICS TS directory in the UNIX system services file system.
The default value is /usr/lpp/cicsts.
Typically, you do not specify this parameter. The default value is the value that was supplied to the
CICS installation job (DFHISTAR) in the PATHMAIN parameter.

USSDIR = path
Specifies the name of the CICS TS directory in the UNIX System Services file system. The value of this
parameter is appended to the value specified by the PATHMAIN parameter. This must be specified as
'.' (period) if the default is used.
Typically, you do not specify this parameter. The default value is the value that was supplied to the
CICS installation job (DFHISTAR) in the USSDIR parameter.

The temporary workspace

DFHJS2LS creates the following three temporary files at run time:

tmpdir / tmpprefix .in
tmpdir / tmpprefix .out
tmpdir / tmpprefix .err

where:

tmpdir is the value that is specified in the TMPDIR parameter.
tmpprefix is the value that is specified in the TMPFILE parameter.

The default names for the files (when TMPDIR and TMPFILE are not specified), are as follows:

/tmp/JS2LS.in
/tmp/JS2LS.out
/tmp/JS2LS.err

Important: DFHJS2LS does not lock access to the z/OS UNIX files or the data set members. Therefore, if
two or more instances of DFHJS2LS run concurrently, and use the same temporary workspace files,
nothing prevents one job from overwriting the workspace files while another job is using them, leading to
unpredictable failures.

Therefore, you are advised to devise a naming convention and operating procedures that avoid this
situation; for example, you can use the system symbolic parameter SYSUID to generate workspace file
names that are unique to an individual user.

These temporary files are deleted before the end of the job.

Chapter 4. Developing with JSON 315

Input parameters for DFHJS2LS

CCSID=  value

DATA-SCREENING=ENABLED

DATA-SCREENING=DISABLED

DEFAULT-ARRAY-MAXITEMS=  value

JSONTRANSFRM=  value

JSON-SCHEMA=  value LANG=COBOL

LANG=PLI-ENTERPRISE

LANG=PLI-OTHER

LANG=C

LANG=CPP

BUNDLE=  value

LOGFILE=  value

MAPPING-LEVEL=1.0

MAPPING-LEVEL=1.1

MAPPING-LEVEL=1.2 Advanced data mapping (mapping level 1.2 and higher)

MAPPING-LEVEL=2.0 Advanced data mapping (mapping level 1.2 and higher)

MAPPING-LEVEL=2.1 Advanced data mapping (mapping level 2.1 and higher)

MAPPING-LEVEL=2.2 Advanced data mapping (mapping level 2.1 and higher)

MAPPING-LEVEL=3.0 Advanced data mapping (mapping level 3.0 and higher)

MAPPING-LEVEL=4.0 Advanced data mapping (mapping level 4.0 and higher)

MAPPING-LEVEL=4.1 Advanced data mapping (mapping level 4.1 and higher)

MAPPING-LEVEL=4.2 Advanced data mapping (mapping level 4.2 and higher)

MAPPING-LEVEL=4.3 Advanced data mapping (mapping level 4.3 and higher)

MAPPING-OVERRIDES=
SAME-AS-MAPPING-LEVEL

HYPHENS-AS-UNDERSCORES

INTEGER-AS-PIC9

LESS-DUP-NAMES

UNDERSCORES-AS-HYPHENS

MINIMUM-RUNTIME-LEVEL=MINIMUM

MINIMUM-RUNTIME-LEVEL=3.0

MINIMUM-RUNTIME-LEVEL=4.0

MINIMUM-RUNTIME-LEVEL=4.1

MINIMUM-RUNTIME-LEVEL=4.2

MINIMUM-RUNTIME-LEVEL=4.3

MINIMUM-RUNTIME-LEVEL=CURRENT

OVERWRITE-OUTPUT=  NO

OVERWRITE-OUTPUT=  YES
PDSCP=  value

PDSLIB=  value

PDSMEM=  value

STRUCTURE=  PDSMEM_value

STRUCTURE=  data

WIDE-COMP3=FULL

WIDE-COMP3=  NO

WIDE-COMP3=  YES

Advanced data mapping (mapping level 1.2 and higher)

316 CICS TS for z/OS: Using Web Services with CICS

CHAR-VARYING=NO

CHAR-VARYING=NULL

CHAR-VARYING=YES

CHAR-VARYING-LIMIT=32767

CHAR-VARYING-LIMIT=  value

CHAR-MULTIPLIER=1

CHAR-MULTIPLIER=  value

DEFAULT-CHAR-MAXLENGTH=255

DEFAULT-CHAR-MAXLENGTH=  value

DEFAULT-FRACTION-DIGITS=3

DEFAULT-FRACTION-DIGITS=  value

Advanced data mapping (mapping level 2.1 and higher)
INLINE-MAXOCCURS-LIMIT=1

INLINE-MAXOCCURS-LIMIT=  value

CHAR-WHITESPACE=PRESERVE

CHAR-WHITESPACE=REPLACE

CHAR-WHITESPACE=
COLLAPSE

Advanced data mapping (mapping level 3.0 and higher)
DATETIME=PACKED15

DATETIME=STRING

DATA-TRUNCATION=DISABLED

DATA-TRUNCATION=ENABLED

Advanced data mapping (mapping level 4.2 and higher)
ADDITIONAL-PROPERTIES-DEFAULT=FALSE

ADDITIONAL-PROPERTIES-DEFAULT=TRUE

ADDITIONAL-PROPERTIES-MAX=UNBOUNDED

ADDITIONAL-PROPERTIES-MAX=  value

ADDITIONAL-PROPERTIES-SIZE=255

ADDITIONAL-PROPERTIES-SIZE=  value

Parameter use

• You can specify the input parameters in any order.
• Each parameter must start on a new line.
• A parameter (and its continuation character, if you use one) must not extend beyond column 72;

columns 73 - 80 must contain blanks.

Chapter 4. Developing with JSON 317

• If a parameter is too long to fit on a single line, use an asterisk (*) character at the end of the line to
indicate that the parameter continues on the next line. Everything (including spaces) before the asterisk
is considered part of the parameter.

• A # character in the first character position of the line is a comment character. The line is ignored.
• A comma in the last character position of the line is an optional line separator, and is ignored.

Parameter descriptions
ADDITIONAL-PROPERTIES-DEFAULT = { true | false }

Indicates whether JSON schema objects that do not explicitly declare support for Additional
Properties are interpreted as supporting them or not. Additional JSON properties are any properties
within a JSON object that are not pre-defined in the JSON Schema. These properties are typically
rejected by the data transformation mechanism as unexpected extra data. If ADDITIONAL-
PROPERTIES-DEFAULT is set to TRUE, or if the JSON schema explicitly sets
additionalProperties:true for an object, then space is allocated in the generated copybooks to
hold such values. Applications can interact with those values using the associated fields in the
copybooks.

You can use this parameter at a mapping level of 4.2 or higher.

ADDITIONAL-PROPERTIES-MAX = { 0-20 | UNBOUNDED }
Indicates how many Additional Properties are supported for a JSON object that supports them. See
ADDITIONAL-PROPERTIES-DEFAULT. The generated copybooks will contain structures suitable for
addressing any additional properties. By default, there is no maximum constraint placed on the
number of properties that are supported. The copybooks are generated in a similar fashion to arrays
with no constraints and use containers. This parameter can be used to apply a maximum constraint
that can be used in combination with the INLINE-MAXOCCURS-LIMIT parameter to cause a fixed
length array to be allocated for the maximum number of properties, thereby avoiding the need for
containers.

You can use this parameter at a mapping level of 4.2 or higher.

ADDITIONAL-PROPERTIES-SIZE = { 16-32767 | 255 }
Indicates the maximum size for each of the JSON additional properties. If a JSON object supports
additional properties, as defined by ADDITIONAL-PROPERTIES-DEFAULT, then the generated
copybooks will have bindings to support properties up to the number specified by ADDITIONAL-
PROPERTIES-MAX. By default, the maximum value supported for each additional property is 255
characters. A field of that size will be generated into the copybooks that are produced. This size can
be customized by setting the ADDITIONAL-PROPERTIES-SIZE parameter. For example, a JSON
object is processed that is found to contain the following property:

"example": { "notes": "this extra property was not defined in the JSON Schema" }

If the copybooks have been generated to support additional properties, then that entire value will be
passed to the application for processing. The value begins with the leading quotation mark before the
property's key, and ends with the trailing right brace in the property's value. It's approximately 100
characters in this example. The value used for ADDITIONAL-PROPERTIES-SIZE must be large
enough to hold the largest such value that might occur. If the allocated buffer is too small for the
value that is processed, an error response is generated.

You can use this parameter at a mapping level of 4.2 or higher.

BUNDLE = value
Specifies the path and name of the bundle directory on z/OS UNIX. If you specify this value, the JSON
assistant generates the JSON binding in the bundle directory and creates a bundle manifest for you.
The path information for this parameter overrides any path information for the JSONTRANSFRM
parameter.

CCSID = value
Specifies the CCSID that is used at run time to encode character data in the application data
structure. The value of this parameter overrides the value of the LOCALCCSID system initialization
parameter. The value must be an EBCDIC CCSID that is supported by Java and z/OS conversion

318 CICS TS for z/OS: Using Web Services with CICS

services. If you do not specify this parameter, the application data structure is encoded by using the
CCSID specified in the system initialization parameter.

You can use this parameter with any mapping level.

CHAR-MULTIPLIER = { 1 | value }
Specifies the number of bytes to allow for each character when the mapping level is 1.2 or later. The
value of this parameter can be a positive integer in the range of 1 - 2,147,483,647. All nonnumeric
character-based mappings, are subject to this multiplier. Binary, numeric, zoned, and packed decimal
fields are not subject to this multiplier.

This parameter can be useful if, for example, you are planning to use DBCS characters where you
might opt for a multiplier of 3 to allow space for potential shift-out and shift-in characters around
every double-byte character at run time.

When you set CCSID=1200 (indicating UTF-16), the only valid values for CHAR-MULTIPLIER are 2 or
4 . When you use UTF-16, the default value is 2 . Use CHAR-MULTIPLIER=2 when you expect
application data to contain characters that require 1 UTF-16 encoding unit. Use CHAR-
MULTIPLIER=4 when you expect application data to contain characters that require 2 UTF-16
encoding units.

Note: Setting CHAR-MULTIPLIER to 1 does not preclude the use of DBCS characters, and setting it to
2 does not preclude the use of UTF-16 surrogate pairs. However, if wide characters are routinely used
then some valid values will not fit into the allocated field. If a larger CHAR-MULTIPLIER value is used,
it can be possible to store more characters in the allocated field than are valid in the XML. Care must
be taken to conform to the appropriate range restrictions.

CHAR-VARYING = { NO | NULL | YES }
Specifies how variable-length character data is mapped when the mapping level is 1.2 or higher.
Variable-length binary data types are always mapped to either a container or a varying structure. If
you do not specify this parameter, the default mapping depends on the language specified. You can
select these options:
NO

Variable-length character data is mapped as fixed-length strings.
NULL

Variable-length character data is mapped to null-terminated strings.
YES

Variable-length character data is mapped to a CHAR VARYING data type in PL/I. In the COBOL, C,
and C++ languages, variable-length character data is mapped to an equivalent representation that
consists of two related elements: the data-length and the data.

CHAR-VARYING-LIMIT = { 32767 | value }
Specifies the maximum size of binary data and variable-length character data that is mapped to the
language structure when the mapping level is 1.2 or higher. If the character or binary data is larger
than the value specified in this parameter, it is mapped to a container and the container name is used
in the generated language structure. The value can range from 0 to the default 32 767 bytes.

CHAR-WHITESPACE = COLLAPSE | REPLACE | PRESERVE

Specifies how white space in values of type string will be handled by CICS.

COLLAPSE
Leading, trailing, and embedded white space is removed and all tabs, new lines, and consecutive
spaces are replaced with single space characters.

REPLACE
Any tabs or new lines are replaced with the appropriate number of spaces.

PRESERVE
Retains any white space in the data value.

If the CHAR-WHITESPACE parameter is not set, white space will be collapsed.

Chapter 4. Developing with JSON 319

Note: This parameter does not apply to fields with a format of date-time , uri , base64Binary or
hexBinary , where white space is always collapsed.

DATA-SCREENING = { ENABLED | DISABLED }
Specifies whether application supplied data is screened for errors.
ENABLED

Any application-supplied runtime data that is inconsistent with the language structure, is treated
as an error, and message DFHPI1010 is issued. An error response is returned to the application.

DISABLED
Values in application-supplied runtime data that are inconsistent with the language structure are
replaced by default values. For example, a zero replaces a bad value in a numeric field. Message
DFHPI1010 is not issued and a normal response is returned to the application. This feature can be
used to avoid INVALID_PACKED_DEC and INVALID_ZONED_DEC error responses that are
generated from uninitialized output fields.

DATA-TRUNCATION = { DISABLED | ENABLED }
Specifies whether variable length data is tolerated in a fixed-length field structure:
DISABLED

If the data is less than the fixed length that CICS is expecting, CICS rejects the truncated data and
issues an error message.

ENABLED
If the data is less than the fixed length that CICS is expecting, CICS tolerates the truncated data
and processes the missing data as null values.

DATETIME = { PACKED15 | STRING }
Specifies that JSON date-time properties are mapped to CICS ABSTIME data format or to text:
PACKED15

JSON date-time properties fields are mapped to CICS ABSTIME format.
STRING

JSON date-time properties are mapped to text. This mapping is the same as all previous
mappings levels.

You can use this parameter at a mapping level of 3.0.

DEFAULT-ARRAY-MAXITEMS = value
Specifies the maximum array boundary to apply where no maximum occurrence information
(maxItems) is implied in the JSON schema. If this parameter is not set, no maximum limit is applied.
The value of this parameter can be a positive integer in the range 1 - 2147483647. This parameter
can be combined with use of the INLINE-MAXOCCURS-LIMIT parameter to influence how JSON
arrays are mapped into the language structures.

DEFAULT-CHAR-MAXLENGTH = { 255 | value }
Specifies the default array length of character data in characters for mappings where no length is
implied in the JSON schema document, when the mapping level is 1.2 or later. The value of this
parameter can be a positive integer in the range of 1 to 2 147 483 647.

DEFAULT-FRACTION-DIGITS = { 3 | value }
Specifies the default number of fraction digits to use on a JSON decimal schema type. The default is
3. For COBOL, the valid range is 0-17, or 0-30 if parameter WIDE-COMP3 is being used. For C or PLI,
the valid range is 0-30.

INLINE-MAXOCCURS-LIMIT = { 1 | value }
Specifies whether inline variable repeating content is used based on the maxItems attribute of the
JSON schema keywords.

The INLINE-MAXOCCURS-LIMIT parameter is available only at mapping level 2.1 onwards. The value
of INLINE-MAXOCCURS-LIMIT can be a positive integer in the range of 0 to 32 767. A value of 0
indicates that inline mapping is not used. A value of 1 ensures that optional elements are mapped
inline. If the value of the maxItems attribute is greater than the value of INLINE-MAXOCCURS-
LIMIT , container-based mapping is used; otherwise, inline mapping is used.

320 CICS TS for z/OS: Using Web Services with CICS

If you decide that you want to variably repeat lists to be mapped inline, consider the length of a single
item of recurring data. If you have few instances of long length, container-based mapping is
preferable; if you have many instances of short length, inline mapping is likely to be preferable.

JSONTRANSFRM = value
This parameter is mandatory for LINKable mode, but invalid for request-response and RESTful
modes. It indicates the name that is used for the JSONTRANSFRM bundle-resource in CICS.

JSON-SCHEMA = value
The fully qualified z/OS UNIX name of the file from which the JSON schema is read. If it does not
already exist, DFHJS2LS creates the file, but not the directory structure.

LANG = COBOL
Specifies that the programming language of the high-level language structure is COBOL.

LANG = PLI-ENTERPRISE
Specifies that the programming language of the high-level language structure is Enterprise PL/I.

LANG = PLI-OTHER
Specifies that the programming language of the high-level language structure is a level of PL/I other
than Enterprise PL/I.

LANG = C
Specifies that the programming language of the high-level language structure is C.

LANG = CPP
Specifies that the programming language of the high-level language structure is C++.

LOGFILE = value
The fully qualified z/OS UNIX name of the file into which DFHJS2LS writes its activity log and trace
information. If it does not already exist, DFHJS2LS creates the file, but not the directory structure.

Typically you do not use this file, but it might be requested by the IBM service organization if you
encounter problems with DFHJS2LS.

MAPPING-LEVEL = { 1.0 | 1.1 | 1.2 | 2.0 | 2.1 | 2.2 | 3.0 | 4.0 | 4.1 | 4.2 | 4.3 }
Specifies the level of mapping for the assistant to use when generating the JSON binding and
language structures. You must use the most recent mapping level that is available; for DFHJS2LS, you
must use a mapping level of 3.0 or higher.
3.0

This is the minimum mapping level you can use with DFHJS2LS.
4.0

Use this mapping level with a region at CICS TS 5.2 or later when you want to use UTF-16.
4.1

For truncatable array support, use this mapping level with a region at CICS TS 5.2 or later.
4.2

For additional properties, use this mapping level with a region at CICS TS 5.4 or later.
4.3

For multidimensional array support, use this mapping level with a region at CICS TS 5.4 or later.
MAPPING-OVERRIDES = { SAME-AS-MAPPING-LEVEL | [HYPHENS-AS-UNDERSCORES] | INTEGER-
AS-PIC9 | LESS-DUP-NAMES | [UNDERSCORES-AS-HYPHENS] | [NO-ARRAY-NAME-INDEXING] }

Specifies whether the default behavior is overridden for the specified mapping level when generating
language structures.
SAME-AS-MAPPING-LEVEL

This parameter generates language structures in the same style as the mapping level. This is the
default.

HYPHENS-AS-UNDERSCORES
For PL/I only. This parameter converts any hyphens in the JSON schema to underscores rather
than the character X, to improve the readability of the generated PL/I language structures. For
more information, see JSON schema to PL/I mapping. This option is enabled automatically at
mapping level 4.2.

Chapter 4. Developing with JSON 321

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/dfhws_json2pli.html

INTEGER-AS-PIC9
For COBOL and DFHJS2LS only. This parameter generates language structures which contain
integer values from the JSON schema as numerals rather than alphanumeric characters. This
option is enabled automatically at mapping level 4.0

LESS-DUP-NAMES
This parameter generates non-structural structure field names with _value at the end of the
name to enable direct referencing to the field. For example, in the following PL/I language
structure, when MAPPING-OVERRIDES=LESS-DUP-NAMES is specified, level 12 field streetName
is suffixed with _value :

09 streetName,
12 streetName CHAR(255) VARYING
UNALIGNED,
12 filler BIT (7),
12 attr_nil_streetName_value BIT (1),

The resulting structure is as follows:

09 streetName,
12 streetName_value CHAR(255) VARYING
UNALIGNED,
12 filler BIT (7),
12 attr_nil_streetName_value BIT (1),

This option is enabled automatically at mapping level 4.2.

UNDERSCORES-AS-HYPHENS
For COBOL only. This parameter converts any underscores in the JSON schema to hyphens, rather
than the character X, to improve the readability of the generated COBOL language structures. If
any field name clashes occur, the fields are numbered to ensure they are unique. For more
information, see JSON schema to COBOL mapping.
This option is enabled automatically at mapping level 4.0.

NO-ARRAY-NAME-INDEXING
For COBOL and Enterprise PL/I only. Ensures that the field names within an array are unique only
within the scope of the higher level structure.

MINIMUM-RUNTIME-LEVEL = { MINIMUM | 3.0 | 4.0 | 4.1 | 4.2 | 4.3 | CURRENT }
Specifies the minimum CICS runtime environment into which the JSON binding can be deployed. If
you select a level that does not match the other parameters that you specified, you receive an error
message. The options that you can select are as follows:
MINIMUM

The lowest possible runtime level of CICS is allocated automatically given the parameters that you
selected.

3.0
Specify runtime level 3.0 or above if you want to use the CICS JSON assistant and take advantage
of advanced data mappings.

4.0
The generated web service binding file deploys successfully into a region at CICS TS 5.2 or later.
With this runtime level, you can use a mapping level of 4.0 or earlier for the MAPPING-LEVEL
parameter. You can use any optional parameter at this level.

4.1
The generated web service binding file deploys successfully into a region at CICS TS 5.2, or later.
With this runtime level, you can use a mapping level of 4.1 or earlier for the MAPPING-LEVEL
parameter.

4.2
The generated web service binding file deploys successfully into a region at CICS TS V5.4, or later.
With this runtime level, you can use a mapping level of 4.2 or earlier for the MAPPING-LEVEL
parameter.

322 CICS TS for z/OS: Using Web Services with CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/dfhws_json2cobol.html

4.3
The generated web service binding file deploys successfully into a region at CICS TS 5.4, or later.
With this runtime level, you can use a mapping level of 4.3 or earlier for the MAPPING-LEVEL
parameter.

CURRENT
Use this runtime level to deploy the generated binding file into a CICS region that has the same
runtime environment as the region used to generate the binding file.

OVERWRITE-OUTPUT = { NO | YES }
Controls whether existing CICS BUNDLEs on the file system can be overwritten.
NO

Any existing BUNDLE is not replaced. If an existing BUNDLE is found DFHJS2LS issues error
message DFHPI9689E and terminates.

YES
Any existing BUNDLE is replaced. If an existing BUNDLE is found then message DFHPI9683W is
issued to inform you that the file has been replaced.

PDSCP = value
Specifies the code page that is used in the partitioned data set members, where value is a CCSID
number or a Java code page number. If you do not specify this parameter, the z/OS UNIX System
Services code page is used. For example, you might specify PDSCP=037.

PDSLIB = value
Specifies the name of the partitioned data set that contains the generated high-level language.

PDSMEM = value
Specifies the 1-6 character prefix that DFHJS2LS uses to generate the name of the partitioned data
set member that will contain the high-level language structures.
DFHJS2LS generates a partitioned data set member for each operation. It generates the member
name by appending a two digit number to the prefix.

STRUCTURE = { PDSMEM_value | data }
The name of the top-level data structure in C and C++. The default value is the value of the PDSMEM
parameter.

WIDE-COMP3 = { FULL | NO | YES }
Controls the maximum size of the packed decimal variable length in the generated COBOL or PL/I
language structure.
FULL

For COBOL and PL/I. DFHJS2LS generates a packed decimal field that is large enough to hold all
valid values. The maximum size is 31 digits. This is the default.

NO
For COBOL only. DFHJS2LS limits the packed decimal variable length to 18 when generating the
COBOL language structure type COMP-3. If the packed decimal size is greater than 18, message
DFHPI9022W is issued to indicate that the specified type is being restricted to a total of 18 digits.

YES
For COBOL only. DFHJS2LS supports the maximum size of 31 when generating the COBOL
language structure type COMP-3.

Note: The NO and YES options generate fields that are unable to represent all valid values; the FULL
option avoids this problem. However, the FULL option does allow some invalid values to be
represented in the packed decimal field. For example, if a schema indicates that there are a maximum
of five digits and a maximum of two fractional digits, the FULL option will generate a packed decimal
field that allows for seven digits, and this allows space for valid values such as 25000 and 999.99, but
also provides space for some invalid values such as 9999.99. When you use the FULL option, take
care not to generate invalid values in application data.

Chapter 4. Developing with JSON 323

Example

//JS2LS JOB '
accounting information
',
name,MSGCLASS=A
// SET QT=''''
//JAVAPROG EXEC DFHJS2LS,
// TMPFILE=&QT.&SYSUID.&QT
/INPUT.SYSUT1 DD *
PDSLIB=//CICSHLQ.SDFHSAMP
PDSMEM=CPYBK2
JSON-SCHEMA=example.json
LANG=COBOL
LOGFILE=/u/exampleapp/example.log
MAPPING-LEVEL=4.0
CHAR-VARYING=NULL
JSONTRANSFRM=EXAMPLE
BUNDLE=/u/exampleapp/bundles/exampleBundle
/*

How the CICS JSON assistant maps between high-level languages and JSON schemas
Utility programs DFHJS2LS and DFHLS2JS are collectively known as the CICS JSON assistant. The CICS
JSON assistant generates mappings between high-level language structures and JSON schemas. The
assistant also generates JSON schemas from high-level language data structures, or vice versa.

• DFHLS2JS maps high-level language structures to JSON schemas.
• DFHJS2LS maps JSON schemas to high-level language structures.

The two mappings are not symmetrical:

• If you process a language data structure with DFHLS2JS, and then process the resulting JSON schema
with the DFHJS2LS, do not expect the final data structure to be the same as the original.

• If you process a JSON schema with DFHJS2LS, and then process the resulting language structure with
the DFHLS2JS, do not expect the final JSON schema to be the same as the original.

• In some cases, DFHJS2LS generates language structures that are not supported by DFHLS2JS.

You must code high-level language structures that are processed by DFHLS2JS according to the rules of
the language, as implemented in the language compilers that CICS supports.

Mapping levels for the CICS JSON assistant
A mapping is the set of rules that specifies how information is converted between language structures
and JSON schemas. To benefit from the most sophisticated mappings available, you are recommended to
set the MAPPING-LEVEL parameter in the CICS assistant to the latest level.

Each level of mapping inherits the function of the previous mapping, with the highest level of mapping
offering the best capabilities available. The highest mapping level provides more control over data
conversion at run time and removes restrictions on support for certain data types and JSON properties

You can set the MAPPING-LEVEL parameter to an earlier level if you want to redeploy applications that
were previously enabled at that level.

Limitations at all mapping levels

• Data types used in the JSON schema must be explicitly declared.
• JSON object references to external documents using $ref are not supported within the JSON schema.

Mapping level 4.3

Mapping level 4.3 is compatible with CICS TS V5.4 and higher.

Mapping level 4.3 is primarily for use with DFHJS2LS, but is also included in the CICS web services
assistants, XML assistants, and JSON assistants. This mapping level implements support for
multidimensional arrays in JSON.

324 CICS TS for z/OS: Using Web Services with CICS

Mapping level 4.2

Mapping level 4.2 is compatible with CICS TS V5.4 and higher.

Mapping level 4.2 is primarily for use with DFHJS2LS, but is also included in the CICS web services
assistants, XML assistants, and JSON assistants. This mapping level implements support for Additional
Properties in JSON, and introduces the following three parameters to DFHJS2LS: ADDITIONAL-
PROPERTIES-DEFAULT, ADDITIONAL-PROPERTIES-MAX, and ADDITIONAL-PROPERTIES-SIZE.

Mapping level 4.1

Mapping level 4.1 is compatible with a CICS TS 5.3 region, and higher.

Mapping level 4.1 is added to the CICS web services assistants, XML assistants, and JSON assistants. This
mapping level implements improved mappings for simple arrays generated bottom-up from existing
copybooks; it also adds the ability for CICS to auto-detect uninitialized trailing storage in arrays, and to
omit those records from the generated XML/JSON form.

DFHLS2WS, DFHWS2LS, DFHLS2SC, DFHSC2LS, DFHJS2LS, and DFHLS2JS support the TRUNCATE-
NULL-ARRAYS and TRUNCATE-NULL-ARRAY-VALUES parameters.

If you specify any value for TRUNCATE-NULL-ARRAY-VALUES , you must also specify TRUNCATE-NULL-
ARRAYS=ENABLED.

Mapping level 4.0

This mapping level provides the following support:

At mapping level 4.0 and higher, DFHLS2JS supports the COBOL OCCURS DEPENDING ON clause and
supports mapping of COBOL character arrays into JSON schemas. You can set this behavior by using the
CHAR-OCCURS parameter on the CICS JSON assistant.

• You must specify the parameter DATA-TRUNCATION=ENABLED.
• Complex OCCURS DEPENDING ON is not supported. This limitation means that OCCURS DEPENDING

ON is only supported for the last field of a structure.
• CICS does not support qualified names (using the 'OF' keyword) as the target of an OCCURS

DEPENDING ON clause, for example FIELD1 OF STRUCTURE1.
• CICS does not support the UNBOUNDED keyword. You must specify an integer bound for the maximum

size of the table expected by the application.

At mapping level 4.0 and higher, JSON web services support the conversion of application data that is
encoded using UTF-16 Unicode.

• When you use LS2JS, you can enable this behavior by using language-specific data types for UTF-16.
• When you use JS2LS, you can enable this behavior by setting CCSID=1200.
• CICS supports only a single Unicode code page, " UTF-16BE with IBM Private Use Area " (CCSID 1200).
• Conversion of application data that is encoded using UTF-8 is not supported.

Note: DFHLS2JS does not the support the COBOL GROUP USAGE NATIONAL clause.

Mapping level 3.0 and higher

This mapping level provides the following support:

• DFHJS2LS maps date-time data types to CICS ASKTIME format.
• DFHLS2JS can generate a JSON schema and web service binding from an application that uses many

containers rather than just one container.
• Tolerating truncated data that is described by a fixed length data structure. You can set this behavior by

using the DATA-TRUNCATION parameter on the CICS assistant.

Chapter 4. Developing with JSON 325

Mapping level 2.2 and higher

This option is retained for compatibility with SOAP web services. It is not recommended for use with
JSON.

Mapping level 2.1 and higher

This option is retained for compatibility with SOAP web services. It is not recommended for use with
JSON.

This mapping level includes greater control over the way variable content is handled with the new
INLINE-MAXOCCURS-LIMIT parameter and new values on the CHAR-VARYING parameter.

At mapping level 2.1 and higher, DFHJS2LS offers the following new and improved support for arrays:

• The INLINE-MAXOCCURS-LIMIT parameter
• The minItems property

The INLINE-MAXOCCURS-LIMIT parameter specifies whether variably repeating lists are mapped inline.
For more information on mapping variably repeating content inline, see “Variable arrays of elements in
DFHJS2LS” on page 375.

At mapping level 2.1 and higher, DFHLS2JS support the following JSON mappings:

• FILLER fields in COBOL and PL/I are ignored
• A value of COLLAPSE for the CHAR-VARYING parameter
• A value of BINARY for the CHAR-VARYING parameter

FILLER fields in COBOL and PL/I are ignored; they do not appear in the generated JSON schema and an
appropriate gap is left in the data structures at run time.

COLLAPSE causes CICS to ignore trailing spaces in text fields.

BINARY provides support for binary fields. This value is useful when converting COBOL into a JSON
schema. This option is available only on SBCS character arrays and allows the array to be mapped to a
fixed-length JSON string containing base64 encoded data rather than to a normal string.

Mapping level 1.2 and higher

This option is retained for compatibility with SOAP web services. It is not recommended for use with
JSON.

Greater control is available over the way character and binary data are transformed at run time with these
additional parameters on the batch tools:

• CHAR-VARYING
• CHAR-VARYING-LIMIT
• CHAR-MULTIPLIER
• DEFAULT-CHAR-MAXLENGTH

If you decide to use the CHAR-MULTIPLIER parameter in DFHJS2LS, note that the following rules apply
after the value of this parameter is used to calculate the amount of space required for character data.

• DFHJS2LS provides these mappings:

– Variable-length character data types that have a maximum length of more than 32 767 bytes map to
a container. You can use the CHAR-VARYING-LIMIT parameter to set a lower limit. A 16-byte field is
created in the language structure to store the name of the container. At run time, the character data
is stored in a container and the container name is put in the language structure.

– Variable-length character data types that have a maximum length of less than 32 768 bytes map to a
VARYING structure for all languages except C/C++ and Enterprise PL/I. In C/C++, these data types
are mapped to null-terminated strings, and in Enterprise PL/I these data types are mapped to

326 CICS TS for z/OS: Using Web Services with CICS

VARYINGZ structures. You can use the CHAR-VARYING parameter to select the way that variable-
length character data is mapped.

– Variable-length binary data that has a maximum length of less than 32 768 bytes maps to a VARYING
structure for all languages. If the maximum length is equal to or greater than 32 768 bytes, the data
is mapped to a container. A 16-byte field is created in the language structure to store the name of the
container. At run time, the binary data is stored in a container and the container name is put in the
language structure.

If you have character data types in the JSON schema that do not have a length associated with them, you
can assign a default length using the DEFAULT-CHAR-MAXLENGTH parameter in DFHJS2LS.

DFHLS2JS provides these mappings:

• Character fields map to a string data type and can be processed as fixed-length fields or null-
terminated strings at run time. You can use the CHAR-VARYING parameter to select the way that
variable-length character data is handled at run time for all languages except PL/I.

• Base64Binary data types map to a container if the maximum length of the data is greater than 32 767
bytes or when the length is not defined. If the length of the data is 32 767 or less, the base64Binary
data type is mapped to a VARYING structure for all languages.

Mapping level 1.1 and higher

This option is retained for compatibility with SOAP web services. It is not recommended for use with
JSON.

This mapping level provides improved mapping of JSON character and binary data types, in particular
when mapping data of variable length that has maxLength and minLength properties defined with
different values in the JSON schema. Data is handled as follows:

• Character and binary data types that have a fixed length that is greater than 16 MB map to a container
for all languages except PL/I. In PL/I, fixed-length character and binary data types that are greater than
32 767 bytes are mapped to a container. A 16-byte field is created in the language structure to store
the name of the container. At run time, the fixed-length data is stored in a container and the container
name is put in the language structure.

Because containers are variable in length, fixed-length data that is mapped to a container is not padded
with spaces or nulls, or truncated, to match the fixed length specified in the JSON schema. If the length
of the data is significant, you can either write your application to check it or turn validation on in the
CICS region. Validation has a significant performance impact.

Mapping level 1.1 only

This option is retained for compatibility with SOAP web services. It is not recommended for use with
JSON.

This mapping level provides improved mapping of JSON character and binary data types, in particular
when mapping data of variable length that has maxLength and minLength properties defined with
different values in the JSON schema. Data is handled in the following ways:

• Variable-length binary data types map to a container. A 16-byte field is created in the language
structure to store the name of the container. At run time, the binary data is stored in a container and the
container name is put in the language structure.

• Variable-length character data types that have a maximum length greater than 32 767 bytes map to a
container. A 16-byte field is created in the language structure to store the name of the container. At run
time, the character data is stored in a container and the container name is put in the language structure.

• Character and binary data types that have a fixed length of less than 16 MB map to fixed-length fields
for all languages except PL/I. In PL/I, fixed-length character and binary data types that are 32 767
bytes or less map to fixed-length fields.

Chapter 4. Developing with JSON 327

• CICS encodes and decodes data in the hexBinary format but not in base64Binary format.
Base64Binary data types in the JSON schema map to a field in the language structure. The size of the
field is calculated using the formula: 4×(ceil(z /3)) where:

– z is the length of the data type in the JSON schema.
– ceil(x) is the smallest integer greater than or equal to x.

If the length of z is greater than 24 566 bytes, the resulting language structure fails to compile. If you
have base64Binary data that is greater than 24 566 bytes, you are recommended to use a mapping
level of 1.2. With mapping level 1.2, you can map the base64Binary data to a container instead of using
a field in the language structure.

Mapping level 1.0 only

This option is retained for compatibility with SOAP web services. It is not recommended for use with
JSON.

Note the following limitations, which have been modified in later mapping levels:

• DFHJS2LS map character and binary data types in the JSON schema to fixed-length fields in the
language structure. Look at this partial JSON schema:

 "example":{
"type":"string",
"maxLength":33000

That partial JSON schema appears in a COBOL language structure as:

15 example PIC X(33000)

• CICS encodes and decodes data in the hexBinary format but not in base64Binary format. DFHJS2LS
map Base64Binary data to a fixed-length character field, the contents of which must be encoded or
decoded by the application program.

• DFHLS2JS interpret character and binary fields in the language structure as fixed-length fields and map
those fields to JSON strings that have a maxLength property. At run time, the fields in the language
structure are filled with spaces or nulls if insufficient data is available.

COBOL to JSON schema mapping
The DFHLS2JS utility program supports mappings between COBOL data structures and JSON schema
definitions.

How COBOL names are converted to JSON

COBOL names are converted to JSON names according to the following rules:

• Duplicate names are made unique by the addition of one or more numeric digits.

For example, two instances of year become year and year1.
• Hyphens are replaced by underscores. Strings of contiguous hyphens are replaced by contiguous

underscores.

For example, current-user--id becomes current_user__id.
• Segments of names that are delimited by hyphens and that contain only uppercase characters are

converted to lowercase.

For example, CA-REQUEST-ID becomes ca_request_id.
• A leading underscore is added to names that start with a numeric character.

For example, 9A-REQUEST-ID becomes _9a_request_id.

How COBOL data description elements are mapped to JSON

CICS maps COBOL data description elements to schema elements according to Table 16 on page 330.

328 CICS TS for z/OS: Using Web Services with CICS

Restriction:

• COBOL data description elements that are not shown in Table 16 on page 330 are not supported by
DFHLS2JS.

• Data description items with level numbers of 66 and 77 are not supported. Data description items with
a level number of 88 are ignored.

• The following clauses on data description entries are not supported:

REDEFINES
RENAMES; that is level 66
DATE FORMAT

• The following clauses on data description items are ignored:

BLANK WHEN ZERO
JUSTIFIED
VALUE

• The SIGN clause SIGN TRAILING is supported. The SIGN clause SIGN LEADING is supported only when
the mapping level specified in DFHLS2JS is 1.2 or higher.

• SEPARATE CHARACTER is supported at a mapping level of 1.2 or higher for both SIGN TRAILING and
SIGN LEADING clauses.

• The following phrases on the USAGE clause are not supported:

OBJECT REFERENCE
POINTER
FUNCTION-POINTER
PROCEDURE-POINTER

• The following phrases on the USAGE clause are supported at a mapping level of 1.2 or higher:

COMPUTATIONAL-1
COMPUTATIONAL-2

• The only PICTURE characters that are supported for DISPLAY and COMPUTATIONAL-5 data description
items are 9, S, and Z.

• The PICTURE characters that are supported for PACKED-DECIMAL data description items are 9, S, V,
and Z.

• The only PICTURE characters that are supported for edited numeric data description items are 9 and Z.
• If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING parameter is set to

NULL, character arrays are mapped to a string and are processed as null-terminated strings.
• If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING parameter is set to

BINARY, character arrays are mapped to a string and are processed as binary data.
• If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING parameter is set to

COLLAPSE, trailing white space is ignored for strings.
• The OCCURS DEPENDING ON clause is supported at a mapping level of 4.0 or higher. Complex OCCURS

DEPENDING ON is not supported. This means that OCCURS DEPENDING ON is only supported for the
last field of a structure.

• The OCCURS INDEXED BY clause is supported at any mapping level.

Chapter 4. Developing with JSON 329

Table 16. Mapping reference for COBOL data description elements

COBOL data description JSON schema definition

 PIC X(

 n

)

 PIC A(

 n

)

 PIC G(

 n

) DISPLAY-1

 PIC N(

 n

)

"type":"string",
"maxLength":
n

330 CICS TS for z/OS: Using Web Services with CICS

Table 16. Mapping reference for COBOL data description elements (continued)

COBOL data description JSON schema definition

 PIC S9 DISPLAY
 PIC S99 DISPLAY
 PIC S999 DISPLAY
 PIC S9999 DISPLAY

 PIC S9(

 n

) DISPLAY

 PIC S9(

 n

) COMP

 PIC S9(

 n

) COMP-4

 PIC S9(

 n

) COMP-5

 PIC S9(

 n

) BINARY

"type":"integer",
"minimum":- (
n
+ 1),
"maximum":
n

where n is the maximum value that can be represented by
the pattern of '9' characters.

Chapter 4. Developing with JSON 331

Table 16. Mapping reference for COBOL data description elements (continued)

COBOL data description JSON schema definition

 PIC 9 DISPLAY
 PIC 99 DISPLAY
 PIC 999 DISPLAY
 PIC 9999 DISPLAY

 PIC 9(

 n

) DISPLAY

 PIC 9(

 n

) COMP

 PIC 9(

 n

) COMP-4

 PIC 9(

 n

) COMP-5

 PIC 9(

 n

) BINARY

"type":"integer",
"minimum":0,
"maximum":
n

where n is the maximum value that can be represented by
the pattern of '9' characters.

332 CICS TS for z/OS: Using Web Services with CICS

Table 16. Mapping reference for COBOL data description elements (continued)

COBOL data description JSON schema definition

 PIC S9(

 m

)V9(

 n

) COMP-3

"type":"number",
"format":"decimal",
"minimum":
x
,
"maximum":
y
,
"multipleOf":
z

where:

x is the minimum value that can be represented by the
pattern of '9' characters

y is the maximum value that can be represented by the
pattern of '9' characters

z is the smallest unit available = 1 / 10 n

 PIC 9(

 m

)V9(

 n

) COMP-3

"type":"number",
"format":"decimal",
"minimum": 0,
"maximum":
y
,
"multipleOf":
z

where:

y is the maximum value that can be represented by the
pattern of '9' characters

z is the smallest unit available = 1 / 10 n

 PIC S9(

 15

) COMP-3

Supported at mapping level 3.0 when
DATETIME=PACKED15

"type":"string",
"format":"date-time"

The format of the time stamp is defined by RFC3339.

Chapter 4. Developing with JSON 333

https://tools.ietf.org/html/rfc3339

Table 16. Mapping reference for COBOL data description elements (continued)

COBOL data description JSON schema definition

 PIC S9(

 m

)V9(

 n

) DISPLAY

Supported at mapping level 1.2 and higher

"type":"number",
"format":"decimal",
"minimum":
x
,
"maximum":
y
,
"multipleOf":
z

where:

x is the minimum value that can be represented by the
pattern of '9' characters

y is the maximum value that can be represented by the
pattern of '9' characters

z is the smallest unit available = 1 / 10 n

 COMP-1

Supported at mapping level 1.2 and higher

Note: The IBM Hexadecimal Floating Point (HFP)
data representation is not exactly the same as
the IEEE-754-1985 representation used for
JSON. Some values might not convert exactly
from one representation to the other.

Some extremely large or small values might not
be valid for float data types. Some values might
lose precision when converted to or from HFP
representation. If precise conversions are
important, consider replacing use of COMP-1
data types with fixed precision alternatives.

"type":"number",
"format":"float"

334 CICS TS for z/OS: Using Web Services with CICS

Table 16. Mapping reference for COBOL data description elements (continued)

COBOL data description JSON schema definition

 COMP-2

Supported at mapping level 1.2 and higher

Note: The IBM Hexadecimal Floating Point (HFP)
data representation is not exactly the same as
the IEEE-754-1985 representation used for
JSON. Some values might not convert exactly
from one representation to the other.

Some extremely large or small values might not
be valid for double data types. Some values
might lose precision when converted to or from
HFP representation. If precise conversions are
important, consider replacing use of COMP-2
data types with fixed precision alternatives

.

"type":"number",
"format":"double"

Chapter 4. Developing with JSON 335

Table 16. Mapping reference for COBOL data description elements (continued)

COBOL data description JSON schema definition

data description OCCURS n TIMES At mapping level 4.0 and lower
For primitives:

"type":"array"
"maxItems":
n
"minItems":
n
"items":{
"type":"object",
"properties":{
name
:{
data description JSON
}
}
"required":[
name
]
}

For structures:

"type":"array"
"maxItems":
n
"minItems":
n
"items":{
data description JSON
}

Where data description JSON is the JSON schema
representation of the COBOL data description and name
is the name of the COBOL data description.

At mapping level 4.1 and higher

TRUNCATE-NULL-ARRAYS = DISABLED

Both structured and primitive arrays map as follows.

"type":"array"
"maxItems":
n
"minItems":
n
"items":{
data description JSON
}

TRUNCATE-NULL-ARRAYS = ENABLED

Primitive arrays map as above, and structured arrays as
follows.

"type":"array"
"maxItems":
n
"minItems":
0
"items":{
data description JSON
}

336 CICS TS for z/OS: Using Web Services with CICS

Table 16. Mapping reference for COBOL data description elements (continued)

COBOL data description JSON schema definition

 data description

 OCCURS
 n

 TO

 m

 TIMES

 DEPENDING ON

 t

Supported at mapping level 4.0

"field-name"
:{
"type":
"array"
,
"maxItems":
m
"minItems":
n
"items":{
...
}
}

The content of the array item depends on the datatype
used.

 PIC X OCCURS
 n
 TIMES
 PIC A OCCURS
 n
 TIMES
 PIC G DISPLAY-1 OCCURS
 n
 TIMES
 PIC N OCCURS
 n
 TIMES

When CHAR-OCCURS =STRING :

"field-name"
:{
"type":
"string"
,
"maxLength":
n
}

This is a string.

Chapter 4. Developing with JSON 337

Table 16. Mapping reference for COBOL data description elements (continued)

COBOL data description JSON schema definition

When CHAR-OCCURS =ARRAY :
At mapping level 4.0 and lower

"field-name"
:{
"maxItems":
m
,
"minItems":
n
,
"items":{
"type":
"object"
,
"properties":{
"field-name":{
"type":
"string"
,
"maxLength":1
}
},
"required":[
"field-name"
]
}
}

This is an array of single characters.

At mapping level 4.1 and higher

TRUNCATE-NULL-ARRAYS = DISABLED

Both structured and primitive arrays map as follows.

"type":"array"
"maxItems":
n
"minItems":
n
"items":{
data description JSON
}

TRUNCATE-NULL-ARRAYS = ENABLED

Primitive arrays map as above, and structured arrays as
follows.

"type":"array"
"maxItems":
n
"minItems":
0
"items":{
data description JSON
}

338 CICS TS for z/OS: Using Web Services with CICS

Table 16. Mapping reference for COBOL data description elements (continued)

COBOL data description JSON schema definition

 PIC X OCCURS
 n
 TO
 m
 TIMES

 DEPENDING ON

 t
 PIC A OCCURS
 n
 TO
 m
 TIMES

 DEPENDING ON

 t
 PIC G DISPLAY-1 OCCURS
 n
 TO
 m
 TIMES

 DEPENDING ON

 t
 PIC N OCCURS
 n
 TO
 m
 TIMES

 DEPENDING ON

 t

When CHAR-OCCURS =STRING :

"field-name"
:{
"type":
"string"
,
"maxLength":
m
"minLength":
n
}

PIC N(n) USAGE NATIONAL

When CHAR-USAGE =NATIONAL : PIC N(n)
At mapping level 4.0 and higher:

"type":"string",
"maxLength":
n

At run time, CICS populates the application data structure
field with UTF-16 data.

Chapter 4. Developing with JSON 339

JSON schema to COBOL mapping
The DFHJS2LS utility program supports mappings between JSON schema and COBOL data structures.

How JSON schema element names are converted to COBOL

The CICS assistants generate unique, valid field names for COBOL variables from the schema element
names by using the following rules:

1. COBOL reserved words are prefixed with ' X '.

For example, DISPLAY becomes XDISPLAY.
2. Characters other than A-Z, a-z, 0-9, or hyphen are replaced with ' X '.

For example, monthly_total becomes monthlyXtotal.
3. If the last character is a hyphen, it is replaced with ' X '.

For example, ca-request- becomes ca-requestX.
4. Duplicate names in the same scope are made unique by the addition of one or two numeric digits to

the second and subsequent instances of the name.

For example, three instances of year become year , year1 , and year2.

Should the above behavior be undesirable the user can specify MAPPING-OVERRIDES=NO-ARRAY-
NAME-INDEXING as input to the utility which disables the addition of one or two numeric digits to the
second and subsequent instances of the name.

5. A JSON schema specifies that a variable has varying cardinality if it has a "type" value of "array" ,
and the keywords "minItems" and "maxItems" are omitted or have different values. If the schema
specifies that the variable has varying cardinality, then field names are created with suffixes of
"_cont" and "_num".

For more information, see “Variable arrays of elements in DFHJS2LS” on page 375.
6. A JSON schema specifies that a variable is optional if it does not appear in the "required" keyword

array that is associated with the enclosing JSON schema "object" type. For optional fields, an
additional field is generated with a suffix of _num added to the element name. At run time this is zero
to indicate the value was absent from the JSON data, and non-zero if the value was present in the
JSON data.

7. Field names are limited to 28 characters. If a generated name, including the prefix and suffix, exceeds
this length, the element name is truncated.

How JSON schema types are mapped to COBOL

DFHJS2LS map schema types to COBOL data description elements by using the specified mapping level
according to Table 17 on page 341. Note the following points:

• If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING parameter is set to
NULL, variable-length character data is mapped to null-terminated strings and an extra character is
allocated for the null-terminator.

• If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING parameter is set to
YES, variable-length character data is mapped to two related elements: a length field and a data field.
For example:

"textString": {
"type":"string",
"maxLength":10000,
"minLength":1
}

maps to:

15 textString-length PIC S9999 COMP-5 SYNC
15 textString PIC X(10000)

340 CICS TS for z/OS: Using Web Services with CICS

Table 17. Mapping reference for JSON schema types

JSON Schema keyword COBOL data description

All of:

"type":"null"
"type": []

Not supported

"$schema":"http://json-schema.org/draft-04/
schema#"

This keyword is ignored, but it is assumed to be
compatible with the draft 04 JSON Schema
specification.

"title": "same text"
"description": "more text"

These keywords are ignored.

"format": "<predefined values>" The "format" keyword is used to modify either the
generated structure or runtime value. See the
information later in this table for the supported use of
"format".

"type":
"array",
"items": {<JSON Sub-schema>},
"additionalItems": false,
"maxItems":
m
,
"minItems":
n

Multidimensional arrays are supported from mapping
level 4.3 or higher, and mixed type arrays are not
supported.

"additionalItems" is assumed to be false, and no
other value is supported.

If both "minItems" and "maxItems" are present,
and they are equal, then the array is treated as fixed
cardinality, otherwise it is treated as varying
cardinality. See “Variable arrays of elements in
DFHJS2LS” on page 375.

"type": "array",
"uniqueItems": true

"uniqueItems" is not supported with JSON arrays.

"type": "object",
"additionalProperties": false,
"properties": { ["<element name>": {<JSON Sub-
schema>} [,]]* }
"required": [["<element name>" [,]]*]

The only form of JSON object that is currently
supported is a fixed set of named elements.

This generates a structure (or sub-structure) that uses
the element names.

"additionalProperties" is assumed to be false
if a value is not set in the ADDITIONAL-PROPERTIES-
DEFAULT parameter.

Any element in the "properties" object is
considered "optional" if it is not in the
"required" array or if no "required" array exists.
An "optional" element is given a variable ordinality
of zero to X; where X is either 1 or the maximum
number of items in the array, where that item is
defined as an array. See “Variable arrays of elements
in DFHJS2LS” on page 375.

Chapter 4. Developing with JSON 341

Table 17. Mapping reference for JSON schema types (continued)

JSON Schema keyword COBOL data description

"type": "object",
"additionalProperties": true

The object is mapped as in the previous example, with
additional fields that support additional properties.
The additionalProperties property is assumed to
be false if not set in the ADDITIONAL-PROPERTIES-
DEFAULT parameter.

If enabled, space is allocated up to the value specified
in the ADDITIONAL-PROPERTIES-MAX parameter.
The number of characters in each space is set by the
ADDITIONAL-PROPERTIES-SIZE parameter. Each
individual property is mapped to a PIC X(z) field
where z is defined by the ADDITIONAL-
PROPERTIES-SIZE parameter. If the value of
ADDITIONAL-PROPERTIES-MAX is greater than 0
then the properties are mapped in an equivalent
fashion to that of an array with maxItems set.

Note: There are several ways to configure JSON
support in CICS, including use of z/OS Connect for
CICS. If you are using the older CICS Java Pipeline
technology, Additional Properties are only
supported if the
com.ibm.cics.json.enableAxis2Handlers JVM
system property is not set to true.

"type": "object",
"maxProperties": m,
"minProperties": n,
"patternProperties": {},
"dependencies":

None of these keywords are supported with JSON
objects.

"type":"string"
"maxLength":
m
"pattern": "regular expression>",
"minLength":
l

PIC X(z)

where the value of z is based on m , but dependent on
the settings of the CHAR-VARYING parameter.

m is based on the "maxLength" keyword and treated
as fixed length string.

"pattern" and "minLength" restrictions are
passed through to the language structure only as a
comment.

"type":"string"
"maxLength":
m

When CCSID=1200 at mapping level 4.0 and higher:

PIC N(z) USAGE NATIONAL

where the value of z is based on m , but dependent on
the settings of the CHAR-VARYING parameter.

m is based on the "maxLength " keyword and treated
as fixed length string.

"*name*":{
"type":"string",
 "format":"date-time"
}

PIC S9(15) COMP-3

All supported when DATETIME=PACKED15

Note that "maxLength" and "minLength" are not
supported for this format

342 CICS TS for z/OS: Using Web Services with CICS

Table 17. Mapping reference for JSON schema types (continued)

JSON Schema keyword COBOL data description

"*name*":{
"type":"string",
 "format":"uri"
}

PIC X(m)

where m is based on the "maxLength" keyword and
treated as fixed length string.

When CCSID=1200 at mapping level 4.0 and higher:

PIC N(m) USAGE NATIONAL

where m is based on the "maxLength" keyword and
treated as fixed length string.

"*name*":{
"type":"string",
 "format":"base64Binary"
}

PIC X(m)

where m is based on the "maxLength" keyword

"*name*":{
"type":"string",
 "format":"hexBinary"
}

PIC X(m)

where m is based on the "maxLength" keyword

"*name*":{
"type":"string",
 "format":"<predefined>"
}

PIC X(m)

where m is based on the "maxLength" keyword and
treated as fixed length string, and where
<predefined> is one of: email , hostname , ipv4 , or
ipv6 . A relevant "pattern" is used and passed to the
comment.

When CCSID=1200 at mapping level 4.0 and higher:

PIC N(m) USAGE NATIONAL

where m is based on the "maxLength" keyword and
treated as fixed length string, and where
<predefined> is one of: email , hostname , ipv4 ,
or ipv6 . A relevant "pattern" is used and passed to
the comment.

"type":"boolean" PIC X DISPLAY

The value x'00' implies false, x'01' implies true.

"type": "integer",
"exclusiveMaximum": true,
"exclusiveMinimum": true,
"multipleOf": n

"exclusiveMaximum" and "exclusiveMinimum"
restrictions are passed to the language structure only
as a comment.

"multipleOf" is ignored.

Chapter 4. Developing with JSON 343

Table 17. Mapping reference for JSON schema types (continued)

JSON Schema keyword COBOL data description

"type"="integer",
minimum=0,
maximum=255

Mapping level 3.0 and below:

PIC X DISPLAY

Mapping level 4.0 and above (or when the INTEGER-
AS-PIC9 parameter has been specified, regardless of
the mapping level) :

PIC 9(z) COMP-5 SYNC

or

PIC 9(z) DISPLAY

where 10 (z -1) < m <= 10 z

"type":"integer",
minimum:-128,
maximum:127

Mapping level 3.0 and below:

PIC X DISPLAY

Mapping level 4.0 and above (or when the INTEGER-
AS-PIC9 parameter has been specified, regardless of
the mapping level) :

PIC S9(z) COMP-5 SYNC

or

PIC S9(z) DISPLAY

where 10 (z -1) < m <= 10 z

"type":"integer",
minimum:0,
maximum;
m

PIC 9(z) COMP-5 SYNC

or

PIC 9(z) DISPLAY

where 10 (z -1) < m <= 10 z

"type":"integer",
minimum:-
m
,
maximum:
m
-1

PIC S9(z) COMP-5 SYNC

or

PIC S9(z) DISPLAY

where 10 (z -1) < m <= 10 z

"type": "number",
"maximum": m,
"minimum": n,
"exclusiveMaximum": true,
"exclusiveMinimum": true,
"multipleOf": n

"maximum" , "minimum" , "exclusiveMaximum"
and "exclusiveMinimum" restrictions are passed to
the language structure only as a comment.

"multipleOf" is ignored.

"type":"number"
"format":"decimal"

PIC 9(p)V9(n) COMP-3

where p and n are default values.

344 CICS TS for z/OS: Using Web Services with CICS

Table 17. Mapping reference for JSON schema types (continued)

JSON Schema keyword COBOL data description

"type":"number"
"format":"float"

Mapping level 1.1 and lower:

• PIC X(32)

Mapping level 1.2 and higher:

• COMP-1

Note: The IBM Hexadecimal Floating Point (HFP) data
representation is not exactly the same as the
IEEE-754-1985 representation used for JSON. Some
values might not convert exactly from one
representation to the other.

Some extremely large or small values might not be
valid for float data types. Some values might lose
precision when converted to or from HFP
representation. If precise conversions are important,
consider replacing use of COMP-1 data types with
fixed precision alternatives.

"type":"number"
"format":"double"

Mapping level 1.1 and lower:

• PIC X(32)

Mapping level 1.2 and higher:

• COMP-2

Note: The IBM Hexadecimal Floating Point (HFP) data
representation is not exactly the same as the
IEEE-754-1985 representation used for JSON. Some
values might not convert exactly from one
representation to the other.

Some extremely large or small values might not be
valid for double data types. Some values might lose
precision when converted to or from HFP
representation. If precise conversions are important,
consider replacing use of COMP-2 data types with
fixed precision alternatives

.

Chapter 4. Developing with JSON 345

Table 17. Mapping reference for JSON schema types (continued)

JSON Schema keyword COBOL data description

oneOf: [{ "properties": { "A": {...} } } ,
 { "properties": { "B": {...} } }]
anyOf: [{ "properties": { "A": {...} } } ,
 { "properties": { "B": {...} } }]
allOf: [{ "properties": { "A": {...} } } ,
 { "properties": { "B": {...} } }]

The logical paths through the array of options are
merged together as though a single Object had been
defined of type { "properties": { "A":...,
"B":... } }. Each of the JSON properties is treated
as optional. If the sub-options contain conflicting
definitions for the same property name, an error
message is issued; for example, if a single property is
defined as both a String (in path A) and an Object (in
path B), then such a definition is not supported and
will result in an error message.

It is possible for a JSON schema to define complex
logical structures; however, the subtleties implied in
the complex logical structures might be lost in the
mapping to a language structure. The transformation
process does not attempt to enforce the combinatorial
rules from the schema; it only interacts with the
language structure fields that indicate whether a given
JSON property is present or absent.

If the sub-options contain compatible definitions for
the same property name, DFHJS2LS attempts to
merge the associated pattern of constraints, though
some subtleties might be lost in the process. For
example, assume the following definition:

"A": { "oneOf": [{ "type": "string",
"maxLength": 5}, {"type": "string",
"minLength": 7, "maxLength": 8}] }

"A" is defined as either a string up to 5 characters long
or a string between 7 and 8 characters long. The
merged composition might result in mappings to a
string between 0 and 8 characters long, without
recognizing that length of 6 characters is invalid.

Most scenarios involving logical composition will map
to simple language structures, but complicated logical
composition might result in compromises during the
mapping process. For best results, avoid using logical
composition in a JSON schema to define alternative
declarations for the same JSON property.

Note:

• CICS cannot transform integer values greater than the maximum value for a signed long (2^63 - 1)
unless they are enclosed within quotes.

• Minimum and maximum values specified in the schema for numeric types are used only to map to a
COBOL datatype. Data is not validated against these values at run time.

Some of the schema types that are shown in Table 17 on page 341 map to a COBOL format of COMP-5
SYNC or of DISPLAY, depending on the values (if any) that are specified in the minimum and maximum
keywords:

• For signed types (short , int , and long), DISPLAY is used when the following are specified:

"maximum":

346 CICS TS for z/OS: Using Web Services with CICS

a
"minimum":
-a

where a is a string of '9's.
• For unsigned types (unsignedShort , unsignedInt , and unsignedLong), DISPLAY is used when

the following are specified:

"maximum":
a
"minimum":0

where a is a string of '9's.
• When any other value is specified, or no value is specified, COMP-5 SYNC is used.

C and C++ to JSON schema mapping
The DFHLS2JS utility program supports mappings between C and C++ data types and JSON schema
definitions.

How C and C++ names are converted to JSON

C and C++ names are converted to JSON names according to the following rules:

1. Characters that are not valid in JSON property names are replaced with ' X '.

For example, monthly-total becomes monthlyXtotal.
2. Duplicate names are made unique by the addition of one or more numeric digits.

For example, two instances of year become year and year1.

How C and C++ data types are mapped to JSON

DFHLS2JS maps C and C++ data types to schema elements according to Table 18 on page 348.

The _Packed qualifier is supported for structures.

Restriction:

• C and C++ types that are not shown in Table 18 on page 348 are not supported by DFHLS2JS.
• Header files must contain a top level struct instance.
• You cannot declare a structure type that contains itself as a member.
• The following C and C++ data types are not supported:

decimal
long double
wchar_t (C++ only)

• The following are ignored if they are present in the header file.
Storage class specifiers:

auto
register
static
extern
mutable

Qualifiers

const
volatile
_Export (C++ only)

Chapter 4. Developing with JSON 347

Function specifiers

inline (C++ only)
virtual (C++ only)

Initial values
• The header file must not contain these items:

Unions
Class declarations
Enumeration data types
Pointer type variables
Template declarations
Predefined macros; that is, macros with names that start and end with two underscore characters
(__)
The line continuation sequence (a \ symbol that is immediately followed by a newline character)
Prototype function declarators
Preprocessor directives
Bit fields
The __cdecl (or _cdecl) keyword (C++ only)

• The application programmer must use a 32-bit compiler to ensure that an int maps to 4 bytes.
• The following C++ reserved keywords are not supported:

explicit
using
namespace
typename
typeid

• If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING parameter is set to
NULL, character arrays are mapped to an string and are processed as null-terminated strings.

• If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING parameter is set to
BINARY, character arrays are mapped to xsd:base64Binary and are processed as binary data.

• If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING parameter is set to
COLLAPSE, <xsd:whiteSpace value="collapse"/> is generated for strings.

Table 18. Mapping reference for C and C++ data types

C and C++ data type Schema simpleType

char[z]
"type":"string"
"maxlength":
z

char16_t[n] At mapping level 4.0 and higher:

"type":"string"
"maxlength":
n

At run time, CICS populates the application data structure field with
UTF-16 data.

char[8]

Supported at mapping level 3.0 and
higher when DATETIME=PACKED15

"type":"string"
"format":"date-time"

The format of the timestamp is defined by RFC3339.

348 CICS TS for z/OS: Using Web Services with CICS

https://tools.ietf.org/html/rfc3339#section-5.6

Table 18. Mapping reference for C and C++ data types (continued)

C and C++ data type Schema simpleType

 char
 short
 int
 long
 long long

"type":"integer",
"minimum":- (
n
+ 1),
"maximum":
n

where n is the maximum value that can be represented by the primitive.

 unsigned
char
 unsigned
short
 unsigned int
 unsigned
long
 unsigned
long long

"type":"integer",
"minimum":0,
"maximum":
n

where n is the maximum value that can be represented by the primitive.

bool

(C++ only)

"type":"boolean"

float

Supported at mapping level 1.2 and
higher.

"type":"number",
"format":"float"

Note: The IBM Hexadecimal Floating Point (HFP) data representation is
not exactly the same as the IEEE-754-1985 representation used for
JSON. Some values may not convert exactly from one representation to
the other. Some extremely large or small values might not be valid for
float data types. Some values may lose precision when converted to or
from HFP representation. If precise conversions are important, consider
replacing use of float data types with fixed precision alternatives.

double

Supported at mapping level 1.2 and
higher.

"type":"number",
"format":"double"

Note: The IBM Hexadecimal Floating Point (HFP) data representation is
not exactly the same as the IEEE-754-1985 representation used for
JSON. Some values may not convert exactly from one representation to
the other. Some extremely large or small values might not be valid for
double data types. Some values may lose precision when converted to or
from HFP representation. If precise conversions are important, consider
replacing use of double data types with fixed precision alternatives.

Chapter 4. Developing with JSON 349

Table 18. Mapping reference for C and C++ data types (continued)

C and C++ data type Schema simpleType

type name [n] For primitives:

"type":"array"
"maxItems":
n
"minItems":
n
"items":{
"type":"object",
"properties":{
name
:{
type JSON
}
}
"required":[
name
]
}

For structs:

"type":"array"
"maxItems":
n
"minItems":
n
"items":{
type JSON
}

Where type JSON is the JSON schema representation of the C or C++
type.

JSON schema to C and C++ mapping
The DFHJS2LS utility programs support mappings between the JSON schemas and C and C++ data types.

How JSON schema element names are converted to C and C++

The CICS assistants generate unique, valid field names for C and C++ variables from the schema element
names using the following rules:

1. Characters other than A-Z, a-z, 0-9, or _ are replaced with ' X '.

For example, monthly-total becomes monthlyXtotal.
2. If the first character is not an alphabetic character, it is replaced by a leading ' X '.

For example, _monthlysummary becomes Xmonthlysummary.
3. Duplicate names in the same scope are made unique by the addition of one or two numeric digits to

the second and subsequent instances of the name.

For example, three instances of year become year , year1 , and year2.
4. A JSON schema specifies that a variable has varying cardinality if it has a "type" value of "array" ,

and the keywords "minItems" and "maxItems" are omitted or have different values. If the schema
specifies that the variable has varying cardinality, then field names are created with suffixes of
"_cont" and "_num".

For more information, see “Variable arrays of elements in DFHJS2LS” on page 375.
5. A JSON schema specifies that a variable is optional if it does not appear in the "required" keyword

array that is associated with the enclosing JSON schema "object" type. For optional fields, an
additional field is generated with a suffix of _num added to the element name. At run time this is zero

350 CICS TS for z/OS: Using Web Services with CICS

to indicate the value was absent from the JSON data, and non-zero if the value was present in the
JSON data.

6. Field names are limited to 50 characters. If a generated name, including any prefix and suffix, exceeds
this length, the element name is truncated.

How JSON schema type values are mapped to C and C++

DFHJS2LS maps JSON schema type values to C and C++ data types according to Table 19 on page 351.
The following rules also apply:

• If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING parameter is set to
NULL, variable-length character data is mapped to null-terminated strings and an extra character is
allocated for the null-terminator.

• If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING parameter is set to
YES, variable-length character data is mapped to two related elements: a length field and a data field.

Table 19. Mapping reference for JSON schema type values

JSON Schema keyword C and C++ data type

All of:

"type":"null"
"type": []

Not supported

"$schema":"http://json-schema.org/draft-04/schema#" This keyword is ignored, but it is
assumed to be compatible with the
draft 04 JSON Schema specification.

"title": "same text"
"description": "more text"

These keywords are ignored.

"format": "<predefined values>" The "format" keyword is used to
modify either the generated structure
or runtime value. See the following
information for the supported use of
"format".

"type":
"array",
"items": {<JSON Sub-schema>},
"additionalItems": false,
"maxItems":
m
,
"minItems":
n

Multidimensional arrays are supported
from mapping level 4.3 or higher, and
mixed type arrays are not supported.

"additionalItems" is assumed to
be false, and no other value is
supported.

If both "minItems" and "maxItems"
are present, and they are equal, then
the array is treated as fixed cardinality,
otherwise it is treated as varying
cardinality. See “Variable arrays of
elements in DFHJS2LS” on page 375.

"type": "array",
"uniqueItems": true

"uniqueItems" is not supported with
JSON arrays. The <JSON Sub-
schema> must define a supported
"type" , but that "type" cannot be
"array" . This is a restriction on the
language structure generated.

Chapter 4. Developing with JSON 351

Table 19. Mapping reference for JSON schema type values (continued)

JSON Schema keyword C and C++ data type

"type": "object",
"additionalProperties": false,
"properties": { ["<element name>": {<JSON Sub-schema>}
[,]]* }
"required": [["<element name>" [,]]*]

The only form of JSON object currently
supported is a fixed set of named
elements.

This will generate a structure (or sub-
structure) using the element names.

"additionalProperties" is
assumed to be false if a value is not
set in the ADDITIONAL-PROPERTIES-
DEFAULT parameter.

Any element in the "properties"
object is considered "optional" if it
is not in the "required" array or if no
"required" array exists. An
"optional" element is given a
variable ordinality of zero to X; where X
is either 1 or the maximum number of
items in the array, where that item is
defined as an array. See “Variable
arrays of elements in DFHJS2LS” on
page 375.

352 CICS TS for z/OS: Using Web Services with CICS

Table 19. Mapping reference for JSON schema type values (continued)

JSON Schema keyword C and C++ data type

"type": "object",
"additionalProperties": true

The object is mapped as in the
previous example, with additional
fields that support additional
properties. The
additionalProperties property is
assumed to be false if not set in the
ADDITIONAL-PROPERTIES-DEFAULT
parameter.

If enabled, space is allocated up to the
value specified in the ADDITIONAL-
PROPERTIES-MAX parameter. The
number of characters in each space is
set by the ADDITIONAL-
PROPERTIES-SIZE parameter. Each
individual property is mapped to a PIC
X(z) field where z is defined by the
ADDITIONAL-PROPERTIES-SIZE
parameter. If the value of
ADDITIONAL-PROPERTIES-MAX is
greater than 0 then the properties are
mapped in an equivalent fashion to
that of an array with maxItems set.

Note: There are several ways to
configure JSON support in CICS,
including use of z/OS Connect for CICS.
If you are using the older CICS Java
Pipeline technology, Additional
Properties are only supported if the
com.ibm.cics.json.enableAxis2
Handlers JVM system property is not
set to true.

"type": "object",
"maxProperties": m,
"minProperties": n,
"patternProperties": {},
"dependencies":

None of these keywords are supported
with JSON objects.

"type":"string"
"maxLength":
m
"pattern": "regular expression>",
"minLength":
l

char[z]

where the value of z is based on m , but
dependent on the settings of the
CHAR-VARYING parameter.

m is based on the "maxLength"
keyword and treated as fixed length
string.

"pattern" and "minLength"
restrictions are passed through to the
language structure only as a comment.

Chapter 4. Developing with JSON 353

Table 19. Mapping reference for JSON schema type values (continued)

JSON Schema keyword C and C++ data type

"type":"string"
"maxLength":
m

When CCSID=1200 at mapping level
4.0 and higher:

char16_t[z]

where the value of z is based on m , but
dependent on the settings of the
CHAR-VARYING parameter.

m is based on the "maxLength "
keyword and treated as fixed length
string.

"*name*":{
"type":"string",
 "format":"date-time"
}

char[8]

All supported when
DATETIME=PACKED15

"*name*":{
"type":"string",
 "format":"uri"
}

char[m]

where m is based on the
"maxLength" keyword and treated as
fixed length string.

When CCSID=1200 at mapping level
4.0 and higher:

char16_t[m]

where m is based on the
"maxLength" keyword and treated as
fixed length string.

"*name*":{
"type":"string",
 "format":"base64Binary"
}

char[m]

where m is based on the
"maxLength" keyword.

"*name*":{
"type":"string",
 "format":"hexBinary"
}

char[m]

where m is based on the
"maxLength" keyword.

354 CICS TS for z/OS: Using Web Services with CICS

Table 19. Mapping reference for JSON schema type values (continued)

JSON Schema keyword C and C++ data type

"*name*":{
"type":"string",
 "format":"<predefined>"
}

char[m]

where m is based on the
"maxLength" keyword and treated as
fixed length string, and where
<predefined> is one of: email ,
hostname , ipv4 or ipv6. A relevant
"pattern" is used and passed to the
comment.

When CCSID=1200 at mapping level
4.0 and higher:

char16_t[m]

where m is based on the
"maxLength" keyword and treated as
fixed length string, and where
<predefined> is one of: email ,
hostname , ipv4 , or ipv6 . A relevant
"pattern" is used and passed to the
comment.

"type":"boolean"
 bool
 (C++ only)
 short
 (C only)

"type": "integer",
"exclusiveMaximum": true,
"exclusiveMinimum": true,
"multipleOf": n

"exclusiveMaximum" and
"exclusiveMinimum" restrictions
are passed to the language structure
only as a comment.

"multipleOf" is ignored.

"type":"integer",
minimum:-128,
maximum:127

signed char

"type":"integer",
minimum:0,
maximum:255

unsigned char

"type":"integer",
minimum:-32768,
maximum:32767

short

"type":"integer",
minimum:0,
maximum:65535

unsigned short

Chapter 4. Developing with JSON 355

Table 19. Mapping reference for JSON schema type values (continued)

JSON Schema keyword C and C++ data type

"type":"integer",
minimum:-2147483648,
maximum:2147483647

int

"type":"integer",
minimum:0,
maximum:4294967295

unsigned int

"type":"integer",
minimum:-9223372036854775808,
maximum:9223372036854775807

long long

"type":"integer",
minimum:0,
maximum:18446744073709551615

unsigned long long

"type": "number",
"maximum": m,
"minimum": n,
"exclusiveMaximum": true,
"exclusiveMinimum": true,
"multipleOf": n

"maximum" , "minimum" ,
"exclusiveMaximum" and
"exclusiveMinimum" restrictions
are passed to the language structure
only as a comment.

"multipleOf" is ignored.

"type":"number"
"format":"float"

Mapping level 1.1 and lower:

• char[32]

Mapping level 1.2 and higher:

• float(*)

Note: The IBM Hexadecimal Floating
Point (HFP) data representation is not
exactly the same as the
IEEE-754-1985 representation used
for JSON. Some values may not
convert exactly from one
representation to the other. Some
extremely large or small values might
not be valid for float data types. Some
values may lose precision when
converted to or from HFP
representation. If precise conversions
are important, consider replacing use
of float data types with fixed precision
alternatives.

356 CICS TS for z/OS: Using Web Services with CICS

Table 19. Mapping reference for JSON schema type values (continued)

JSON Schema keyword C and C++ data type

"type":"number"
"format":"double"

Mapping level 1.0 and lower:

• char[32]

Mapping level 1.2 and higher:

• double(*)

Note: The IBM Hexadecimal Floating
Point (HFP) data representation is not
exactly the same as the
IEEE-754-1985 representation used
for JSON. Some values may not
convert exactly from one
representation to the other. Some
extremely large or small values might
not be valid for double data types.
Some values may lose precision when
converted to or from HFP
representation. If precise conversions
are important, consider replacing use
of double data types with fixed
precision alternatives.

Chapter 4. Developing with JSON 357

Table 19. Mapping reference for JSON schema type values (continued)

JSON Schema keyword C and C++ data type

oneOf: [{ "properties": { "A": {...} } } ,
 { "properties": { "B": {...} } }]
anyOf: [{ "properties": { "A": {...} } } ,
 { "properties": { "B": {...} } }]
allOf: [{ "properties": { "A": {...} } } ,
 { "properties": { "B": {...} } }]

The logical paths through the array of
options are merged together as though
a single Object had been defined of
type { "properties":
{ "A":..., "B":... } }. Each of
the JSON properties is treated as
optional. If the sub-options contain
conflicting definitions for the same
property name, an error message is
issued; for example, if a single
property is defined as both a String (in
path A) and an Object (in path B), then
such a definition is not supported and
will result in an error message.

It is possible for a JSON schema to
define complex logical structures;
however, the subtleties implied in the
complex logical structures might be
lost in the mapping to a language
structure. The transformation process
does not attempt to enforce the
combinatorial rules from the schema; it
only interacts with the language
structure fields that indicate whether a
given JSON property is present or
absent.

If the sub-options contain compatible
definitions for the same property
name, DFHJS2LS attempts to merge
the associated pattern of constraints,
though some subtleties might be lost
in the process. For example, assume
the following definition:

"A": { "oneOf": [{ "type":
"string", "maxLength": 5},
{"type": "string",
"minLength": 7, "maxLength":
8}] }

"A" is defined as either a string up to 5
characters long or a string between 7
and 8 characters long. The merged
composition might result in mappings
to a string between 0 and 8 characters
long, without recognizing that length of
6 characters is invalid.

Most scenarios involving logical
composition will map to simple
language structures, but complicated
logical composition might result in
compromises during the mapping
process. For best results, avoid using
logical composition in a JSON schema
to define alternative declarations for
the same JSON property.358 CICS TS for z/OS: Using Web Services with CICS

Note:

• CICS cannot transform integer values greater than the maximum value for a signed long (2^63 - 1)
unless they are enclosed within quotes.

• Minimum and maximum values specified in the schema for numeric types are used only to map to a C or
C++ datatype. Data is not validated against these values at run time.

PL/I to JSON schema mapping
The DFHLS2JS utility program supports mappings between PL/I data structures and JSON schema
definitions. Because the Enterprise PL/I compiler and older PL/I compilers differ, two language options
are supported: PLI-ENTERPRISE and PLI-OTHER.

How PL/I names are converted to JSON

PL/I names are converted to JSON names according to the following rules:

1. Characters that are not valid in JSON property names are replaced with ' x '.

For example, monthly$total becomes monthlyxtotal.
2. Duplicate names are made unique by the addition of one or more numeric digits.

For example, two instances of year become year and year1.

How PL/I data types are mapped to JSON

DFHLS2JS maps PL/I data types to schema elements according to Table 20 on page 360.

Restriction:

• PL/I types that are not shown in Table 20 on page 360 are not supported by DFHLS2JS.
• Data items with the COMPLEX attribute are not supported.
• Data items with the FLOAT attribute are supported at a mapping level of 1.2 or higher. Enterprise PL/I

FLOAT IEEE is not supported.
• VARYING and VARYINGZ pure DBCS strings are supported at a mapping level of 1.2 or higher.
• Data items that are specified as DECIMAL(p , q) are supported only when p ≥ q
• Data items that are specified as BINARY(p , q) are supported only when q = 0.
• If the PRECISION attribute is specified for a data item, it is ignored.
• PICTURE strings are not supported.
• ORDINAL data items are treated as FIXED BINARY(7) data types.
• If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING parameter is set to

NULL, character arrays are mapped to an string and are processed as null-terminated strings; this
mapping does not apply for Enterprise PL/I.

• If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING parameter is set to
BINARY, character arrays are mapped to string and are processed as binary data.

• If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING parameter is set to
COLLAPSE, leading and trailing white space will be removed and multiple spaces are replaced with a
single space.

• DFHLS2JS does not fully implement the padding algorithms of PL/I; therefore, you must declare
padding bytes explicitly in your data structure. DFHLS2JS issues a message if it detects that padding
bytes are missing. Each top-level structure must start on a doubleword boundary and each byte in the
structure must be mapped to the correct boundary.

Example

Consider this code fragment:

Chapter 4. Developing with JSON 359

 3 FIELD1 FIXED BINARY(7),
3 FIELD2 FIXED BINARY(31),
3 FIELD3 FIXED BINARY(63);

In this example:

– FIELD1 is 1 byte long and can be aligned on any boundary.
– FIELD2 is 4 bytes long and must be aligned on a fullword boundary.
– FIELD3 is 8 bytes long and must be aligned on a doubleword boundary.

The Enterprise PL/I compiler aligns the fields in the following order:

1. FIELD3 is aligned first because it has the strongest boundary requirements.
2. FIELD2 is aligned at the fullword boundary immediately before FIELD3.
3. FIELD1 is aligned at the byte boundary immediately before FIELD3.

Finally, so that the entire structure is aligned at a fullword boundary, the compiler inserts three padding
bytes immediately before FIELD1.

Because DFHLS2JS does not insert equivalent padding bytes, you must declare them explicitly before
the structure is processed by DFHLS2JS. For example:

 3 PAD1 FIXED BINARY(7),
3 PAD2 FIXED BINARY(7),
3 PAD3 FIXED BINARY(7),
3 FIELD1 FIXED BINARY(7),
3 FIELD2 FIXED BINARY(31),
3 FIELD3 FIXED BINARY(63);

Alternatively, you can change the structure to declare all the fields as unaligned and recompile the
application that uses the structure. For more information about PL/I structural memory alignment
requirements, see Enterprise PL/I for z/OS product information.

Table 20. Mapping reference for PL/I data types

PL/I data description JSON schema definition

FIXED BINARY (n）
"type":"integer",
"minimum":- (
n
+ 1),
"maximum":
n

where n is the maximum value that can be represented by the primitive.

UNSIGNED FIXED BINARY(n）

Restriction: Enterprise PL/I only "type":"integer",
"minimum":0,
"maximum":
n

where n is the maximum value that can be represented by the primitive.

360 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SSY2V3

Table 20. Mapping reference for PL/I data types (continued)

PL/I data description JSON schema definition

FIXED DECIMAL(n , m)
"type":"number",
"format":"decimal",
"multipleOf":
x
,
"maximum":
y
,
"minimum":-
z

where:

x is the smallest unit available = 1 / 10 m

y is the maximum value that can be represented by the combination of n
and m

z is the maximum value that can be represented by the combination of n
and m

FIXED DECIMAL(15)

Supported at mapping level 3.0 and
higher when DATETIME=PACKED15

"type":"string",
"format":"date-time"

The format of the time stamp is defined by RFC3339.

BIT(n）

where n is a multiple of 8. Other
values are not supported.

"type":"string"
"maxLength":
m

where m = n /8

CHARACTER(n)

VARYING and VARYINGZ are also
supported at mapping level 1.2 and
higher.

Restriction: VARYINGZ is
supported only by Enterprise PL/I

"type":"string"
"maxLength":
n

GRAPHIC(n)

VARYING and VARYINGZ are also
supported at mapping level 1.2 and
higher.

Restriction: VARYINGZ is
supported only by Enterprise PL/I

At a mapping level of 1.0 and 1.1, where m = 2* n :

"type":"string"
"maxLength":
m

At a mapping level of 1.2 or higher:

"type":"string"
"maxLength":
n

Chapter 4. Developing with JSON 361

https://tools.ietf.org/html/rfc3339

Table 20. Mapping reference for PL/I data types (continued)

PL/I data description JSON schema definition

WIDECHAR(n)

Restriction: Enterprise PL/I only

At a mapping level of 1.0 and 1.1, where m = 2* n :

"type":"string"
"maxLength":
m

At a mapping level of 1.2 or higher:

"type":"string"
"maxLength":
n

At mapping level 4.0 and higher, CICS populates the application data
structure field with UTF-16 data.

<xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxlength value="n"/>
 <xsd:whiteSpace value="preserve"/>
 </xsd:restriction>
</xsd:simpleType>

ORDINAL

Restriction: Enterprise PL/I only
"type":"integer",
"minimum":0,
"maximum":255

BINARY FLOAT(n)

where n <= 21

Supported at mapping level 1.2 and
higher.

Note: The IBM Hexadecimal
Floating Point (HFP) data
representation is not exactly the
same as the IEEE-754-1985
representation used for JSON.
Some values may not convert
exactly from one representation to
the other. Some extremely large or
small values might not be valid for
float data types. Some values may
lose precision when converted to or
from HFP representation. If precise
conversions are important,
consider replacing use of BINARY
FLOAT data types with fixed
precision alternatives.

"type":"number",
"format":"float"

362 CICS TS for z/OS: Using Web Services with CICS

Table 20. Mapping reference for PL/I data types (continued)

PL/I data description JSON schema definition

BINARY FLOAT(n)

where 21 < n <= 53

Values greater than 53 are not
supported.

Supported at mapping level 1.2 and
higher.

Note: The IBM Hexadecimal
Floating Point (HFP) data
representation is not exactly the
same as the IEEE-754-1985
representation used for JSON.
Some values may not convert
exactly from one representation to
the other. Some extremely large or
small values might not be valid for
float data types. Some values may
lose precision when converted to or
from HFP representation. If precise
conversions are important,
consider replacing use of BINARY
FLOAT data types with fixed
precision alternatives.

"type":"number",
"format":"double"

DECIMAL FLOAT(n)

where n <= 6

Supported at mapping level 1.2 and
higher.

Note: The IBM Hexadecimal
Floating Point (HFP) data
representation is not exactly the
same as the IEEE-754-1985
representation used for JSON.
Some values may not convert
exactly from one representation to
the other. Some extremely large or
small values might not be valid for
float data types. Some values may
lose precision when converted to or
from HFP representation. If precise
conversions are important,
consider replacing use of DECIMAL
FLOAT data types with fixed
precision alternatives.

"type":"number",
"format":"float"

Chapter 4. Developing with JSON 363

Table 20. Mapping reference for PL/I data types (continued)

PL/I data description JSON schema definition

DECIMAL FLOAT(n)

where 6 < n <= 16

Values greater than 16 are not
supported.

Supported at mapping level 1.2 and
higher.

Note: The IBM Hexadecimal
Floating Point (HFP) data
representation is not exactly the
same as the IEEE-754-1985
representation used for JSON.
Some values may not convert
exactly from one representation to
the other. Some extremely large or
small values might not be valid for
float data types. Some values may
lose precision when converted to or
from HFP representation. If precise
conversions are important,
consider replacing use of DECIMAL
FLOAT data types with fixed
precision alternatives.

"type":"number",
"format":"double"

name (n) data description For primitives:

"type":"array"
"maxItems":
n
"minItems":
n
"items":{
"type":"object",
"properties":{
name
:{
data description JSON
}
}
"required":[
name
]
}

For data declarations:

"type":"array"
"maxItems":
n
"minItems":
n
"items":{
data description JSON
}

Where data description JSON is the JSON schema representation of the
PL/I data description.

364 CICS TS for z/OS: Using Web Services with CICS

JSON schema to PL/I mapping
The DFHJS2LS utility program supports mappings between JSON schemas and PL/I data structures.
Because the Enterprise PL/I compiler and older PL/I compilers differ, two language options are
supported: PLI-ENTERPRISE and PLI-OTHER.

How JSON schema element names are converted to PL/I

The CICS assistants generate unique and valid names for PL/I variables from the schema element names
using the following rules:

1. Characters other than A-Z, a-z, 0-9, @, #, _, or $ are replaced with ' X '.

For example, monthly-total becomes monthlyXtotal.

You can use the MAPPING-OVERRIDES parameter to change the way other characters are handled.
For example, if you set the value HYPHENS-AS-UNDERSCORES , any hyphen in the JSON schema is
converted to an underscore instead of an X. For example, monthly-total becomes
monthly_total.

2. Duplicate names in the same scope are made unique by the addition of one or two numeric digits to
the second and subsequent instances of the name.

For example, three instances of year become year , year1 , and year2.

Should the above behavior be undesirable the user can specify MAPPING-OVERRIDES=NO-ARRAY-
NAME-INDEXING as input to the utility which disables the addition of one or two numeric digits to the
second and subsequent instances of the name.

3. A JSON schema specifies that a variable has varying cardinality if it has a "type" value of "array" ,
and the keywords "minItems" and "maxItems" are omitted or have different values. If the schema
specifies that the variable has varying cardinality, then field names are created with suffixes of
"_cont" and "_num".

For more information, see “Variable arrays of elements in DFHJS2LS” on page 375.
4. A JSON schema specifies that a variable is optional if it does not appear in the "required" keyword

array that is associated with the enclosing JSON schema "object" type. For optional fields, an
additional field is generated with a suffix of _num added to the element name. At run time this is zero
to indicate the value was absent from the JSON data, and non-zero if the value was present in the
JSON data.

5. Field names are limited to 31 characters. If a generated name, including any prefix and suffix, exceeds
this length, the element name is truncated.

The total length of the resulting name is 31 characters or less.

How JSON schema types are mapped to PL/I

DFHJS2LS maps schema type values to PL/I data types according to Table 21 on page 366. Also note the
following points:

• If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING parameter is set to
NULL, variable-length character data is mapped to null-terminated strings and an extra character is
allocated for the null-terminator.

• If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING parameter is not
specified, by default variable-length character data is mapped to a VARYINGZ data type for Enterprise
PL/I and VARYING data type for Other PL/I.

• Variable-length binary data is mapped to a VARYING data type if it less than 32 768 bytes and to a
container if it is more than 32 768 bytes.

Chapter 4. Developing with JSON 365

Table 21. Mapping reference for JSON schema types

JSON Schema keyword PL/I data description

All of:

"type":"null"
"type": []

Not supported

"$schema":"http://json-schema.org/draft-04/schema#" This keyword is ignored, but it is
assumed to be compatible with the
draft 04 JSON Schema specification.

"title": "same text"
"description": "more text"

These keywords are ignored.

"format": "<predefined values>" The "format" keyword is used to
modify either the generated structure
or run-time value. See the following
information for the supported use of
"format".

"type":
"array",
"items": {<JSON Sub-schema>},
"additionalItems": false,
"maxItems":
m
,
"minItems":
n

Multidimensional arrays are supported
from mapping level 4.3 or higher, and
mixed type arrays are not supported.

"additionalItems" is assumed to
be false, and no other value is
supported.

If both "minItems" and "maxItems"
are present, and they are equal, then
the array is treated as fixed cardinality,
otherwise it is treated as varying
cardinality. See “Variable arrays of
elements in DFHJS2LS” on page 375.

"type": "array",
"uniqueItems": true

"uniqueItems" is not supported with
JSON arrays. The <JSON Sub-
schema> must define a supported
"type" , but that "type" cannot be
"array" . This is a restriction on the
language structure generated.

366 CICS TS for z/OS: Using Web Services with CICS

Table 21. Mapping reference for JSON schema types (continued)

JSON Schema keyword PL/I data description

"type": "object",
"additionalProperties": false,
"properties": { ["<element name>": {<JSON Sub-schema>}
[,]]* }
"required": [["<element name>" [,]]*]

The only form of JSON object currently
supported is a fixed set of named
elements.

This will generate a structure (or sub-
structure) using the element names.

"additionalProperties" is
assumed to be false if a value is not
set in the ADDITIONAL-PROPERTIES-
DEFAULT parameter.

Any element in the "properties"
object is considered "optional" if it
is not in the "required" array or if no
"required" array exists. An
"optional" element is given a
variable ordinality of zero to X; where X
is either 1 or the maximum number of
items in the array, where that item is
defined as an array. See “Variable
arrays of elements in DFHJS2LS” on
page 375.

Chapter 4. Developing with JSON 367

Table 21. Mapping reference for JSON schema types (continued)

JSON Schema keyword PL/I data description

"type": "object",
"additionalProperties": true

The object is mapped as in the
previous example, with additional
fields that support additional
properties. The
additionalProperties property is
assumed to be false if not set in the
ADDITIONAL-PROPERTIES-DEFAULT
parameter.

If enabled, space is allocated up to the
value specified in the ADDITIONAL-
PROPERTIES-MAX parameter. The
number of characters in each space is
set by the ADDITIONAL-
PROPERTIES-SIZE parameter. Each
individual property is mapped to a PIC
X(z) field where z is defined by the
ADDITIONAL-PROPERTIES-SIZE
parameter. If the value of
ADDITIONAL-PROPERTIES-MAX is
greater than 0 then the properties are
mapped in an equivalent fashion to
that of an array with maxItems set.

Note: There are several ways to
configure JSON support in CICS,
including use of z/OS Connect for CICS.
If you are using the older CICS Java
Pipeline technology, Additional
Properties are only supported if the
com.ibm.cics.json.enableAxis2
Handlers JVM system property is not
set to true.

"type": "object",
"maxProperties": m,
"minProperties": n,
"patternProperties": {},
"dependencies":

None of these keywords are supported
with JSON objects.

"type":"string"
"maxLength":
m
"pattern": "regular expression>",
"minLength":
l

char[z]

where the value of z is based on m , but
dependent on the settings of the
CHAR-VARYING parameter.

m is based on the "maxLength"
keyword and treated as fixed length
string.

"pattern" and "minLength"
restrictions are passed through to the
language structure only as a comment.

368 CICS TS for z/OS: Using Web Services with CICS

Table 21. Mapping reference for JSON schema types (continued)

JSON Schema keyword PL/I data description

"type":"string"
"maxLength":
m

When CCSID=1200 at mapping level
4.0 and higher:

WIDECHAR(z)

where the value of z is based on m , but
dependent on the settings of the
CHAR-VARYING parameter.

m is based on the "maxLength "
keyword and treated as fixed length
string.

"*name*":{
"type":"string",
 "format":"date-time"
}

FIXED DECIMAL (15,0)

All supported when
DATETIME=PACKED15

"*name*":{
"type":"string",
 "format":"uri"
}

CHAR(m)

where m is based on the
"maxLength" keyword and treated as
fixed length string.

When CCSID=1200 at mapping level
4.0 and higher:

WIDECHAR(m)

where m is based on the
"maxLength" keyword and treated as
fixed length string.

"*name*":{
"type":"string",
 "format":"base64Binary"
}

CHAR(m)

where m is based on the
"maxLength" keyword.

"*name*":{
"type":"string",
 "format":"hexBinary"
}

CHAR(m)

where m is based on the
"maxLength" keyword.

Chapter 4. Developing with JSON 369

Table 21. Mapping reference for JSON schema types (continued)

JSON Schema keyword PL/I data description

"*name*":{
"type":"string",
 "format":"<predefined>"
}

CHAR(m) where m is based on the
"maxLength" keyword and treated as
a fixed length string, and
<predefined> is one of: email ,
hostname , ipv4 or ipv6. A relevant
"pattern" is passed to the comment.

When CCSID=1200 at mapping level
4.0 and higher:

WIDECHAR(m)

where m is based on the
"maxLength" keyword and treated as
fixed length string, and where
<predefined> is one of: email ,
hostname , ipv4 , or ipv6 . A relevant
"pattern" is used and passed to the
comment.

"type":"boolean" Mapping level 1.1 and lower:
Enterprise PL/I

SIGNED FIXED BINARY (7)
Other PL/I

FIXED BINARY (7)

Mapping level 1.2 and higher:
Enterprise PL/I

BIT(7)
BIT(1)

Other PL/I
BIT(7)
BIT(1)

where BIT(7) is provided for
alignment and BIT(1) contains the
Boolean mapped value.

"type": "integer",
"exclusiveMaximum": true,
"exclusiveMinimum": true,
"multipleOf": n

"exclusiveMaximum" and
"exclusiveMinimum" restrictions
are passed to the language structure
only as a comment.

"multipleOf" is ignored.

"type":"integer",
minimum:-128,
maximum:127

Enterprise PL/I
SIGNED FIXED BINARY (7)

Other PL/I
FIXED BINARY (7)

"type":"integer",
minimum:0,
maximum:255

Enterprise PL/I
UNSIGNED FIXED BINARY (8)

Other PL/I
FIXED BINARY (8)

370 CICS TS for z/OS: Using Web Services with CICS

Table 21. Mapping reference for JSON schema types (continued)

JSON Schema keyword PL/I data description

"type":"integer",
minimum:-32768,
maximum:32767

Enterprise PL/I
SIGNED FIXED BINARY (15)

Other PL/I
FIXED BINARY (15)

"type":"integer",
minimum:0,
maximum:65535

Enterprise PL/I
UNSIGNED FIXED BINARY (16)

Other PL/I
FIXED BINARY (16)

"type":"integer",
minimum:-2147483648,
maximum:2147483647

Enterprise PL/I
SIGNED FIXED BINARY (31)

Other PL/I
FIXED BINARY (31)

"type":"integer",
minimum:0,
maximum:4294967295

Mapping level 1.1 and lower:
Enterprise PL/I

UNSIGNED FIXED BINARY(32)

Mapping level 1.2 and higher:
Enterprise PL/I

CHAR(y)

where y is a fixed length that is less
than 16 MB.

All mapping levels:
Other PL/I

BIT(64)

Chapter 4. Developing with JSON 371

Table 21. Mapping reference for JSON schema types (continued)

JSON Schema keyword PL/I data description

"type":"integer",
minimum:-9223372036854775808,
maximum:9223372036854775807

Mapping level 1.1 and lower:
Enterprise PL/I

SIGNED FIXED BINARY(63)

Note: The LIMITS compiler
directive might affect how the PL/I
compiler interprets this field. CICS
expects the field to be of the
declared size, but the compiler
might optimize the field into a
smaller space, which can result in a
mismatch. To avoid such problems,
use the LIMITS(FIXEDBIN(63))
compile-time option.

Mapping level 1.2 and higher:
Enterprise PL/I

CHAR(y)

where y is a fixed length that is less
than 16 MB.

All mapping levels:
Other PL/I

BIT(64)

"type":"integer",
minimum:0,
maximum:18446744073709551615

Mapping level 1.1 and lower:
Enterprise PL/I

UNSIGNED FIXED BINARY(64)

Note: The LIMITS compiler
directive might affect how the PL/I
compiler interprets this field. CICS
expects the field to be of the
declared size, but the compiler
might optimize the field into a
smaller space, which can result in a
mismatch. To avoid such problems,
use the LIMITS(FIXEDBIN(63))
compile-time option.

Mapping level 1.2 and higher:
Enterprise PL/I

CHAR(y)

where y is a fixed length that is less
than 16 MB.

Other PL/I
BIT(64)

"type":"number"
"description":"decimal"

FIXED DECIMAL(n , m)

372 CICS TS for z/OS: Using Web Services with CICS

Table 21. Mapping reference for JSON schema types (continued)

JSON Schema keyword PL/I data description

"type":"number"
"description":"float"

Mapping levels 1.0 and 1.1:

• CHAR(32)

Mapping level 1.2 and higher:
Enterprise PL/I

DECIMAL FLOAT(6) HEXADEC
Other PL/I

DECIMAL FLOAT(6)

Note: The IBM Hexadecimal Floating
Point (HFP) data representation is not
exactly the same as the
IEEE-754-1985 representation used
for JSON. Some values may not
convert exactly from one
representation to the other. Some
extremely large or small values might
not be valid for float data types. Some
values may lose precision when
converted to or from HFP
representation. If precise conversions
are important, consider replacing use
of DECIMAL FLOAT data types with
fixed precision alternatives.

"type":"number"
"description":"double"

Mapping levels 1.0 and 1.1:

• CHAR(32)

Mapping level 1.2 and higher:
Enterprise PL/I

DECIMAL FLOAT(16) HEXADEC
Other PL/I

DECIMAL FLOAT(16)

Note: The IBM Hexadecimal Floating
Point (HFP) data representation is not
exactly the same as the
IEEE-754-1985 representation used
for JSON. Some values may not
convert exactly from one
representation to the other. Some
extremely large or small values might
not be valid for float data types. Some
values may lose precision when
converted to or from HFP
representation. If precise conversions
are important, consider replacing use
of DECIMAL FLOAT data types with
fixed precision alternatives.

Chapter 4. Developing with JSON 373

Table 21. Mapping reference for JSON schema types (continued)

JSON Schema keyword PL/I data description

oneOf: [{ "properties": { "A": {...} } } ,
 { "properties": { "B": {...} } }]
anyOf: [{ "properties": { "A": {...} } } ,
 { "properties": { "B": {...} } }]
allOf: [{ "properties": { "A": {...} } } ,
 { "properties": { "B": {...} } }]

The logical paths through the array of
options are merged together as though
a single Object had been defined of
type { "properties":
{ "A":..., "B":... } }. Each of
the JSON properties is treated as
optional. If the sub-options contain
conflicting definitions for the same
property name, an error message is
issued; for example, if a single
property is defined as both a String (in
path A) and an Object (in path B), then
such a definition is not supported and
will result in an error message.

It is possible for a JSON schema to
define complex logical structures;
however, the subtleties implied in the
complex logical structures might be
lost in the mapping to a language
structure. The transformation process
does not attempt to enforce the
combinatorial rules from the schema; it
only interacts with the language
structure fields that indicate whether a
given JSON property is present or
absent.

If the sub-options contain compatible
definitions for the same property
name, DFHJS2LS attempts to merge
the associated pattern of constraints,
though some subtleties might be lost
in the process. For example, assume
the following definition:

"A": { "oneOf": [{ "type":
"string", "maxLength": 5},
{"type": "string",
"minLength": 7, "maxLength":
8}] }

"A" is defined as either a string up to 5
characters long or a string between 7
and 8 characters long. The merged
composition might result in mappings
to a string between 0 and 8 characters
long, without recognizing that length of
6 characters is invalid.

Most scenarios involving logical
composition will map to simple
language structures, but complicated
logical composition might result in
compromises during the mapping
process. For best results, avoid using
logical composition in a JSON schema
to define alternative declarations for
the same JSON property.374 CICS TS for z/OS: Using Web Services with CICS

Note:

• CICS cannot transform integer values greater than the maximum value for a signed long (2^63 - 1)
unless they are enclosed within quotes.

• Minimum and maximum values specified in the schema for numeric types are used only to map to a PL/I
datatype. Data is not validated against these values at run time.

Variable arrays of elements in DFHJS2LS
JSON can contain arrays of varying numbers of elements. In general JSON Schemas that contain varying
numbers of elements do not map efficiently into a single high-level language data structure. CICS uses
container-based mappings or inline mappings to handle varying numbers of elements in JSON data.

An array with a varying number of elements is represented in the JSON schema by using the minItems
and maxItems keywords in the schema with "type" value of "array" :

• The minItems keyword specifies the minimum number of times that the element can occur. It can
have a value of 0 or any positive integer. It defaults to the value 0.

• The maxItems keyword specifies the maximum number of times that the element can occur. It can
have a value of any positive integer greater than or equal to the value of the minItems keyword.

• If the maxItems keyword is missing it means the array is unbounded.

An optional field can be denoted by a variable array of "maxItems":1 . For example, an optional 8 byte
string called "component" :

"properties":{
"component": {
"type":"array",
"maxItems":1,
"items": {
"type": "string",
"maxLength": 8
}
}
},
"required": ["component"]

The same effect can be produced by not including the field name in the "required" keyword value:

"properties":{
"component": {
"type": "string",
"maxLength": 8
}
}

In general, JSON schemas that contain varying numbers of elements do not map efficiently into a single
high-level language data structure. To handle these cases, CICS uses a series of connected data
structures that are passed to the application program in a series of containers. These structures are used
as input and output from the application:

• When CICS transforms JSON data to application data, it populates these structures with the application
data and the application reads them.

• When CICS transforms the application data to JSON data, it reads the application data in the structures
that have been populated by the application.

The following examples illustrate the format of these data structures. These examples use an array of
simple 8-byte fields. However, the model supports arrays of complex data types and arrays of data types
that contain other arrays.

Example 1. Fixed number of elements

This example illustrates an element that occurs exactly three times:

"properties":{
"component": {
"type": "array",

Chapter 4. Developing with JSON 375

"maxItems": 3,
"minItems": 3,
"items": {
"type": "string",
"maxLength": 8
}
}
},
"required": ["component"]

In this example, the number of times that the element occurs is known in advance, so it can be
represented as a fixed-length array in a simple COBOL declaration, or the equivalent in other languages.

05 component PIC X(8) OCCURS 3 TIMES

Example 2. Varying number of elements at mapping level 2 and below

This example illustrates a mandatory element that can occur from one to five times:

"properties":{
"component": {
"type": "array",
"maxItems": 5,
"minItems": 1,
"items": {
"type": "string",
"maxLength": 8
}
}
},
"required": ["component"]

The main data structure contains a declaration of two fields. When CICS transforms the JSON data to
binary data, the first field component-num contains the number of times that the element appears in the
JSON data, and the second field, component-cont , contains the name of a container:

05 component-num PIC S9(9) COMP-5
05 component-cont PIC X(16)

A second data structure contains the declaration of the element itself:

01 DFHJS-component
02 component PIC X(8)

You must examine the value of component-num , which will contain a value in the range 1 to 5, to find
how many times the element occurs. The element contents are in the container named in component-
cont ; the container holds an array of elements, where each element is mapped by the DFHJS-
component data structure.

If minItems="0" , or is missing, and maxItems="1" , the element is optional. To process the data
structure in your application program, you must examine the value of component-num :

• If it is zero, the message has no component element and the contents of component-cont is
undefined.

• If it is one, the component element is in the container named in component-cont.

The contents of the container are mapped by the DFHJS-component data structure.

Note: If the JSON data consists of a single recurring element, DFHJS2LS generates two language
structures. The main language structure contains the number of elements in the array and the name of a
container which holds the array of elements. The second language structure maps a single instance of the
recurring element.

376 CICS TS for z/OS: Using Web Services with CICS

Example 3. Variable number of elements at mapping level 2.1 and above

At mapping level 2.1 and above, you can use the INLINE-MAXOCCURS-LIMIT parameter in the CICS
assistants. The INLINE-MAXOCCURS-LIMIT parameter specifies the way that varying numbers of
elements are handled. The mapping options for varying numbers of elements are container-based
mapping, described in “Example 2. Varying number of elements at mapping level 2 and below” on page
376 , or inline mapping. The value of this parameter can be a positive integer in the range 0 - 32767:

• The default value of INLINE-MAXOCCURS-LIMIT is 1 , which ensures that optional elements are
mapped inline.

• A value of 0 for the INLINE-MAXOCCURS-LIMIT parameter prevents inline mapping.
• If maxItems is less than or equal to the value of INLINE-MAXOCCURS-LIMIT , inline mapping is used.
• If maxItems is greater than the value of INLINE-MAXOCCURS-LIMIT , container-based mapping is

used.

Mapping varying numbers of elements inline results in the generation of both an array, as happens with
the fixed occurrence example above, and a counter. The component-num field indicates how many
instances of the element are present, and these are pointed to by the array. For the example shown in
“Example 2. Varying number of elements at mapping level 2 and below” on page 376 , when INLINE-
MAXOCCURS-LIMIT is less than or equal to 5, the generated data structure is like this:

05 component-num PIC S9(9) COMP-5 SYNC.
05 component OCCURS 5 PIC X(8).

The first field, component-num , is identical to the output for the container-based mapping example in
the previous section. The second field contains an array of length 5 which is large enough to contain the
maximum number of elements that can be generated.

Inline mapping differs from container-based mapping, which stores the number of occurrences of the
element and the name of the container where the data is placed, because it stores all the data in the
current container. Storing the data in the current container will generally improve performance and make
inline mapping preferable.

Example 4. Nested variable arrays

Complex JSON schemas can contain variable recurring elements, which in turn contain variable recurring
elements. In this case, the structure described extends beyond the two levels described in the examples.

This example illustrates an optional element called "component2" that is nested in a mandatory
element called "component1" , where the mandatory element can occur from one to five times:

"properties":{
"component1": {
"type": "array",
"maxItems": 5,
"minItems": 1,
"items": {
"type": "object",
"properties":{
"component2":{
"type": "string",
"maxLength": 8
}
},
"required": ["component2"]
}
},
"required": ["component1"]

The top-level data structure is exactly the same as in the previous examples:

05 component1-num PIC S9(9) COMP-5
05 component1-cont PIC X(16)

However, the second data structure contains these elements:

Chapter 4. Developing with JSON 377

01 DFHJS-component1
02 component2-num PIC S9(9) COMP-5
02 component2-cont PIC X(16)

A third-level structure contains these elements:

01 DFHJS-component2
02 component2 PIC X(8)

The number of occurrences of the outermost element "component1" is in component1-num.

The container named in component1-cont contains an array with that number of instances of the
second data structure DFHJS-component1.

Each instance of component2-cont names a different container, each of which contains the data
structure mapped by the third-level structure DFHJS-component2.

To illustrate this structure, consider the fragment of JSON data that matches the example:

{"component1":
[
{
"component2": "string1"
},
{
"component2": "string2"
},
]
}

"component1" occurs three times. The first two contain an instance of "component2" ; the third
instance does not.

In the top-level data structure, component1-num contains a value of 3. The container named in
component1-cont has three instances of DFHJS-component1 :

1. In the first, component2-num has a value of 1, and the container named in component2-cont holds
string1.

2. In the second, component2-num has a value of 1, and the container named in component2-cont
holds string2.

3. In the third, component2-num has a value of 0, and the contents of component2-cont are
undefined.

In this instance, the complete data structure is represented by four containers in all:

• The root data structure in container DFHJS-DATA.
• The container named in component1-cont.
• Two containers named in the first two instances of component2-cont.

Optional structures and the required keyword

Data structures are defined by the JSON Schema "type" of "object". The schemas relate field names
to individual types using the object provided by the "properties" keyword. The requirement for these
fields to be part of the JSON data described by the JSON Schema is controlled by the array provided by
the "required" keyword. This array lists all the field names that must be present in the JSON data.
Optional fields are therefore represented by their absence from this array, or as the array is not allowed to
be empty, the absence of the "required" keyword. In this case, all fields are optional.

Optional fields are treated as a variable array of 0 or 1 elements. This adds an additional field with the
suffix "-num" appended to the element name. If the total length is more than 28 characters, the element
name is truncated. At run time this will be non-zero to indicate the value was present in the JSON data
and zero if it was not.

378 CICS TS for z/OS: Using Web Services with CICS

This example shows two fields, one required called "required-structure" and the other one optional
called "optional-structure" :

{
"type": "object",
"properties": {
"required-structure": {
"type":"string",
"maxLength": 8
},
"optional-structure": {
"type":"string",
"maxLength": 8
}
},
"required": [
"required-structure"
]
}

The generated COBOL structure shows both fields, but the second is preceded by "optional-
structure-num" which is an integer count of the elements, with 0 representing none and 1 that it is
present. The value is set to indicate whether the "optional-structure" contains valid data or not.

03 OutputData.
06 required-structure PIC X(8).
06 optional-structure-num PIC S9(9) COMP-5 SYNC.
06 optional-structure PIC X(8).

Support for UTF-16 in application data
CICS web services support conversion of UTF-16 encoded application data into XML or JSON and also
XML or JSON into UTF-16 encoded application data. Use UTF-16 when you need to store and process
data in multiple languages.

CICS SOAP and JSON web services support conversion of UTF-16 encoded application data into XML or
JSON and also XML or JSON into UTF-16 encoded application data. Unicode is a variable-width encoding
scheme that enables systems to handle data efficiently.

UTF-16 is a variable width encoding for Unicode, where each character is represented by 2 or 4 bytes.
CICS web services support CCSID 1200 for application data, which is UTF-16 BE (big endian) with IBM
Private Use Area. This behavior is consistent with UTF-16 support in all supported languages.

UTF-16 is supported at mapping level 4.0 and upwards. You can customize how application data is
converted by using mapping settings in the assistants. For more information about XML mapping levels,
see Mapping levels for the CICS assistants . For more information about JSON mapping levels, see
Mapping levels for the CICS JSON assistants.

Note: UTF-16 requires more processing time and is less storage efficient than EBCDIC encodings.
Furthermore, mixing encoding types incurs extra runtime processing.

Mapping UTF-16 from XML or JSON schema to language structures

Support for UTF-16 depends on how you create the web service. Mapping XML or JSON schema to
language structures, also known as top-down mapping, has the following characteristics. If UTF-16 is
enabled, all text fields are mapped to UTF-16 fields, whereas numeric display data types in COBOL are
mapped as EBCDIC. To use UTF-16, set the CCSID parameter of DFHJS2LS, DFHSC2LS, or DFHWS2LS to
1200.

For example, if the following XML schema fragment were present in the WSDL:

<xsd:element name="myString" nillable="false">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="20"/>
 </xsd:restriction>

Chapter 4. Developing with JSON 379

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/dfhws_mappinglevels.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/dfhws_mappinglevels_json.html

 </xsd:simpleType>
</xsd:element>

The DFHWS2LS assistant generates the following field in a COBOL language structure:

myString PIC N(
20
) USAGE NATIONAL

The CHAR-MULTIPLIER parameter of the web services assistants can be used to specify the length of a
field the assistants generate.
CHAR-MULTIPLIER

When you use UTF-16, the only valid values for the CHAR-MULTIPLIER parameter are 2 or 4 , where
2 is the default value.

CHAR-MULTIPLIER = 2 , where the schema describes a string of maxlength x , generates PIC
N(x) . Setting CHAR-MULTIPLIER = 2 does not preclude the use of surrogate pairs in a UTF-16
string, but impacts the number of characters that fit in the field.

CHAR-MULTIPLIER = 4 generates PIC N(2x) . If CHAR-MULTIPLIER = 4 , the value at run time
is padded if the string includes characters that can be expressed in a single encoding unit.

Mapping UTF-16 from language structures to XML or JSON schema

Mapping from a language structure to XML or JSON schema, also known as bottom-up mapping, is
managed differently to top-down mapping. If a UTF-16 string is declared in the language structure, then
the data is interpreted by CICS as UTF-16 encoded, otherwise, data is assumed to be in an EBCDIC
encoding. The CCSID parameter for DFHLS2JS, DFHLS2SC, or DFHLS2WS indicates the encoding of any
EBCDIC text within the application data; it must not be set to indicate UTF-16.

The data types that are interpreted as UTF-16 characters are as follows: PIC N (n) in COBOL,
WIDECHAR(n) in PL/I, and char16_t[n] in C and C++.

The CHAR-USAGE parameter of the web services assistants can be used to specify data types.
CHAR-USAGE

In COBOL, the national data type, PIC N , can be used for UTF-16 or DBCS data. This setting is
controlled by the NSYMBOL compiler option. You must set the CHAR-USAGE parameter on the
assistant to the same value as the NSYMBOL compiler option to ensure that the data is handled
appropriately. This is typically set to CHAR-USAGE=NATIONAL when you use UTF-16.

If you want to mix national data types that contain UTF-16 and DBCS data in the same copybook, you
can use the USAGE NATIONAL or USAGE DISPLAY-1 qualifiers on individual fields.

Note: DFHLS2WS, DFHLS2SC, and DFHLS2JS do not the support the COBOL GROUP USAGE NATIONAL
clause.

Generating mappings from language structure
To create JavaScript Object Notation (JSON) from application data or application data from JSON, you
create the mappings to describe how CICS should transform the data and JSON at run time. You can start
from any application data record; for example, you can start with a COMMAREA, VSAM file, temporary
storage queue, or an IBM Db2® record.

Before you begin
Before you create the mappings, you must make sure that these preconditions are met:

• You must have a language structure that describes the application record in a partitioned data set. The
language structure can be written in any of the high-level languages that are supported by the CICS
JSON assistant: COBOL, PL/I, C, and C++.

• You must configure the user ID under which DFHLS2JS runs to use z/OS UNIX.

380 CICS TS for z/OS: Using Web Services with CICS

• The user ID must have read permission to access the language structure and write permission to put
the output in the appropriate directories on z/OS UNIX.

• You must allocate sufficient storage to the user ID for the ID to run Java . You can use any supported
version of Java.

About this task
Use the CICS JSON assistant to create the data mappings for the application record. The CICS JSON
assistant creates CICS bundle and issues error messages about any unsupported items that it identifies in
your language structure. The reference information for the CICS JSON assistant lists the restrictions that
apply to each high-level language.

Procedure

Run the DFHLS2JS batch job. DFHLS2JS has optional parameters that you select to meet your
requirements, such as selecting a particular code page. Use the following parameters as a minimum:
• Specify the high-level language of your language structure in the LANG parameter.
• Specify the name and location of a bundle resource in the BUNDLE parameter.
• Specify the mapping level in the MAPPING-LEVEL parameter. Although you can use any mapping level,

to get the most advanced mapping options use the latest mapping level.
• Specify the location and the code page of the language structures that describe the application record

in the PDSMEM and PDSCP parameters.
• Specify the name and location of the .json JSON schema file in the JSON-SCHEMA parameter. If the

file does not exist DFHLS2JS creates the JSON schema, but not the directory structure.
• Specify the name that is used for the JSONTRANSFRM bundle resource. This name is used by

applications to identify the JSON mappings.

The batch job creates a bundle directory structure on z/OS UNIX. The bundle directory has a META-
INF subdirectory that contains the bundle manifest. The batch job also creates a JSON schema and a
JSON binding in the bundle, using the file names that you specified for the JSONTRANSFRM and JSON-
SCHEMA parameters.

Install the BUNDLE resource that specifies this JSON binding. The JSONTRANSFRM bundle resource
dynamically creates a JSONTRANSFRM resource, which defines the location of the JSON schema and
binding file. You can use the CICS Explorer Bundle and Bundle Parts operational views to check the
status of installed BUNDLE resources.

Results
A CICS bundle that contains one JSON transformation is generated.

The following example shows DFHLS2JS with the minimum set of parameters specified.

//LS2JS JOB 'accounting information',name,MSGCLASS=A
// SET QT=''''
//JCLLIB JCLLIB ORDER=FPHLQ.SDFHMOBI
//JAVAPROG EXEC DFHLS2JS,
//INPUT.SYSUT1 DD *
LANG=COBOL
BUNDLE=/u/exampleapp/bundle/test1
LOGFILE=/u/exampleapp/jsbind/example.log
MAPPING-LEVEL=3.0
PDSLIB=//CICSHLQ.SDFHSAMP
PDSMEM=CPYBK2
JSONTRANSFRM=example.jsbind
JSON-SCHEMA=/u/exampleapp/example.json
/*

What to do next
Write an application program to transform the application data to JSON and vice versa. You can use the
same mappings for both transformations.

Chapter 4. Developing with JSON 381

Generating mappings from a JSON schema
To create application data from JavaScript Object Notation (JSON) or JSON from application data, you
create the mappings to describe how CICS should transform the data and JSON at run time. You can start
from a JSON schema. After the language structure and the mapping are generated, you can develop CICS
application using the language structure, and transform JSON to application data and vice versa.

Before you begin
Before you create the mappings, you must make sure that these preconditions are met:

• You must have the JSON schema that describes a JSON record.
• You must configure the user ID under which DFHJS2LS runs to use z/OS UNIX.
• The user ID must have read permission to access the JSON schema and write permission to put the

output in the appropriate directories on z/OS UNIX.
• You must allocate sufficient storage to the user ID for the ID to run Java . You can use any supported

version of Java.

About this task
Use the CICS JSON assistant to create the data mappings for the application record. The CICS JSON
assistant creates a CICS bundle and issues error messages about any unsupported items that it identifies
in your language structure. The reference information for the CICS JSON assistant lists the restrictions
that apply to each high-level language. For more information, see “DFHJS2LS: JSON schema to high-level
language conversion for linkable interface” on page 314.

Procedure

Run the DFHJS2LS batch job. DFHJS2LS has optional parameters that you select to meet your
requirements, such as selecting a particular code page. Use the following parameters as a minimum:
• Specify the name and location of a bundle resource in the BUNDLE parameter.
• Specify the name and location of the JSON schema file in the JSON-SCHEMA parameter.
• Specify the mapping level in the MAPPING-LEVEL parameter. Although you can use any mapping level,

to get the most advanced mapping options use the latest mapping level.
• Specify the high-level language for the generated language structure in the LANG parameter.
• Specify the location and the code page of the language structures that describe the application record

in the PDSMEM and PDSCP parameters. DFHJS2LS creates the language structure, but not the directory
structure.

• Specify the name that is used for the JSONTRANSFRM bundle resource in CICS . This name is used by
applications to identify the JSON mappings.

The batch job creates a bundle directory structure on z/OS UNIX. The bundle directory has a META-
INF subdirectory that contains the bundle manifest. The batch job also creates a JSON binding and
copies the JSON schema into the bundle directory, using the file names that you specified for the
JSONTRANSFRM and JSON-SCHEMA parameters. The batch job also creates the language structure at
the location specified in the PDSMEM and PDSLIB parameters.

Install the BUNDLE resource that specifies this JSON binding. The JSONTRANSFRM bundle resource
dynamically creates a JSONTRANSFRM resource, which defines the location of the JSON schema and
binding file. This bundle resource is visible in CICS when you view the contents of the installed bundle
using the CICS Explorer . It is not a normal CICS resource, and is not visible when using CEMT or the
CICSPlex SM WUI.

Results
A CICS bundle that contains one JSON transformation is generated. A language structure is generated.

The following example shows DFHJS2LS with the minimum set of parameters specified.

382 CICS TS for z/OS: Using Web Services with CICS

//JS2LS JOB 'accounting information',name,MSGCLASS=A
// SET QT=''''
//JCLLIB JCLLIB ORDER=FPHLQ.SDFHMOBI
//JAVAPROG EXEC DFHJS2LS,
//INPUT.SYSUT1 DD *
LANG=COBOL
BUNDLE=/u/exampleapp/bundle/test2
LOGFILE=/u/exampleapp/jsbind/example.log
MAPPING-LEVEL=3.0
PDSLIB=/u/exampleapp
PDSMEM=CPYBK2
JSONTRANSFRM=example.jsbind
JSON-SCHEMA=/u/exampleapp/example.json
/*

What to do next
Write an application program to transform the application data to JSON and vice versa. You can use the
same mappings for both transformations.

Transforming application data to JSON by linking to DFHJSON
The JSON transformer linkable interface DFHJSON is a CICS-supplied program that can be called to
perform transformation between application data and JSON. Your application program can transform
application data to JSON by linking to DFHJSON.

Before you begin
You must have an enabled JSONTRANSFRM bundle resource that defines the JSON binding and JSON
schema. If you intend to perform transformations by using Java , you must have an Axis2 JVM server
already running.

About this task
Create or update an application program to link to the CICS supplied program DFHJSON to do the
transformation.

Procedure

1. The application program must create a channel, for example MyChannelName , and put the following
containers into the channel.

• DFHJSON-DATA
• DFHJSON-TRANSFRM
• DFHJSON-JVMSERVR (optional)

For more information about these containers, see JSON transformer linkable interface containers .
2. Use the EXEC CICS LINK PROGRAM command to transform the data to JSON:

EXEC CICS LINK PROGRAM('DFHJSON') CHANNEL('MyChannelName')
3. Get container DFHJSON-ERROR and check if any errors occurred during the transformation.
4. Get container DFHJSON-JSON and make use of the JSON in your application.
5. Install the application.

Results
When the application runs the LINK command, CICS checks the JSONTRANSFRM bundle resource to find
the mappings in the JSON binding and transforms the application binary data to JSON by using the
containers on the channel. The JSON is placed in the DFHJSON-JSON container on return. The JSON
conforms to the JSON schema that is defined in the JSONTRANSFRM bundle resource.

What to do next
You can also use the same mappings to transform JSON to application data. For more information, see
“Transforming JSON to application data by linking to DFHJSON” on page 384.

Chapter 4. Developing with JSON 383

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-applications/containers/dfhjson_jsoncontainers_json.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-applications/commands-api/dfhp4_link.html

Transforming application data to JSON by using the TRANSFORM
DATATOJSON API command

You can use the TRANSFORM DATATOJSON API command in your application to transform application
data to JSON.

Before you begin

You must have an enabled JSONTRANSFRM resource that defines the JSON binding and JSON schema. If
you intend to perform transformations by using Java , you must have an Axis2 JVM server already
running.

About this task

The application must use a channel-based interface.

Procedure

1. Create a channel and put into the channel an input container that contains the application data to be
converted.

Note: This channel will also have an output container that contains the JSON output when the
TRANSFORM DATATOJSON command completes. Do not create the output container before issuing
TRANSFORM DATATOJSON because the container is created and populated as part of the command
itself.

2. Use the TRANSFORM DATATOJSON command to transform the data to JSON.
For example:

EXEC CICS TRANSFORM DATATOJSON CHANNEL(
ChannelName
) INCONTAINER(
InpContainerName
) OUTCONTAINER(
OutContainerName
) TRANSFORMER(
BundleName
)

Results

When the application runs the TRANSFORM DATATOJSON command, CICS checks the JSONTRANSFRM
bundle resource to find the mappings in the JSON binding and transforms the application binary data to
JSON by using the containers on the channel. On return, the JSON is placed in the container that is
specified in the OUTCONTAINER option of the TRANSFORM DATATOJSON command. If the option is
omitted, DFHJSON-JSON is used by default. The JSON conforms to the JSON schema that is defined in
the JSONTRANSFRM bundle resource.

Transforming JSON to application data by linking to DFHJSON
The JSON transformer linkable interface DFHJSON is a CICS-supplied program that can be called to
perform transformation between application data and JSON. Your application program can transform
JSON to application data by linking to DFHJSON.

Before you begin
You must have an enabled JSONTRANSFRM resource that defines the JSON binding and JSON schema. If
you intend to perform transformations by using Java , you must have an Axis2 JVM server already
running.

384 CICS TS for z/OS: Using Web Services with CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-applications/commands-api/dfhp4_transform_data2json.html

About this task
Create or update an application program to link to the CICS supplied program DFHJSON to do the
transformation.

Procedure

1. Create a channel, for example MyChannelName , and put the following containers into the channel.

• DFHJSON-JSON
• DFHJSON-TRANSFRM
• DFHJSON-JVMSERVR

For more information about these containers, see JSON transformer linkable interface containers .
2. Use the EXEC CICS LINK PROGRAM API command to transform the data to JSON:

EXEC CICS LINK PROGRAM('DFHJSON') CHANNEL('MyChannelName')
3. Install the application program.

Results
When the application runs the LINK PROGRAM command, CICS checks the JSONTRANSFRM resource to
find the mappings in the JSON binding and transforms the JSON to the application data using the
containers on the channel. The application data is placed in the DFHJSON-DATA bit container on return.

What to do next
You can also use the same mappings to transform application data to JSON. For more information, see
“Transforming application data to JSON by linking to DFHJSON” on page 383.

Transforming JSON to application data by using the TRANSFORM
JSONTODATA API command

You can use the TRANSFORM JSONTODATA API command in your application to transform JSON to
application data.

Before you begin

You must have an enabled JSONTRANSFRM resource that defines the JSON binding and JSON schema. If
you intend to perform transformations by using Java , you must have an Axis2 JVM server already
running.

About this task

The application must use a channel-based interface.

Procedure

1. Create a channel and put into the channel an input container that contains the JSON to be converted.

Note: This channel will also have an output container that contains the converted data when the
TRANSFORM JSONTODATA command completes. Do not create the output container before issuing
TRANSFORM JSONTODATA because the container is created and populated as part of the command
itself.

2. Use the TRANSFORM JSONTODATA command to transform JSON to application data.
For example:

EXEC CICS TRANSFORM JSONTODATA CHANNEL(
ChannelName
) INCONTAINER(
InpContainerName
) OUTCONTAINER(
OutContainerName

Chapter 4. Developing with JSON 385

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-applications/containers/dfhjson_jsoncontainers_json.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-applications/commands-api/dfhp4_link.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-applications/commands-api/dfhp4_transform_json2data.html

) TRANSFORMER(
BundleName
)

Results

When the application runs the TRANSFORM JSONTODATA command, CICS checks the JSONTRANSFRM
bundle resource to find the mappings in the JSON binding and transforms the JSON to the application
binary data by using the containers on the channel. On return, the converted data is placed in the
container that is specified in the OUTCONTAINER option of the TRANSFORM JSONTODATA command. If
the option is omitted, DFHJSON-DATA is used by default.

Handling invalid and uninitialized application-supplied data
How to tolerate invalid data that is found during transformation between JSON and application data.

Service enabling an existing application results in CICS becoming aware of the contents of the
COMMAREA or containers that are used by that application. The WSBind file that is deployed to CICS
contains information about the data format, including the names, location, and data type of each
individual field. CICS uses this information to facilitate the transformation between the XML/JSON data
representation, and the application data.

If the application data is not consistent with the information that is stored in the WSBind file, CICS reports
a problem and fails to transform the data. For example, an application interface is changed but the
WSBind file is not regenerated and redeployed. This type of problem often results in a DFHPI1010 error
message.

A more subtle variant of this condition can occur in scenarios where the application has left fields that are
deliberately uninitialized. For example, a signed packed decimal field might contain low values (null
bytes). When CICS processes that field, it cannot determine that the invalid value is deliberately
uninitialized. CICS displays the DFHPI1010 error message and the data transformation fails. Applications
can leave fields uninitialized for many reasons. For example,

• A language structure might describe both the input and output data formats, but the uninitialized field
was for input only.

• The application might detect an error, set a response code, and return without the other output fields
initialized.

• Conditional logic within the application might control whether the field is considered to be meaningful.

The ideal response to this scenario is for the application to be changed to ensure that no invalid values
are passed to CICS for processing. An alternative option is to set the Assistant's DATA-SCREENING option
to DISABLED at the time that the WSBind file is generated. This option causes CICS to tolerate bad
application supplied values, and to replace such values with a default value, typically zero. These options
can make service enablement of existing applications simpler, but makes error detection more difficult,
and must be used with care. If data screening is disabled, it's more likely that application generated data
errors is not detected by CICS.

A related condition can be experienced where application generated arrays are left partially unpopulated.
For example, consider an array of 1000 records of data; the application might initialize the first 10
records. CICS generates an XML or JSON representation of the data and populates all 1000 fields,
although 990 are empty. The ideal response to this problem is to introduce an OCCURS DEPENDING ON
clause to the application to indicate precisely how many records are considered to be populated. An
alternative is to use the TRUNCATE-NULL-ARRAYS option of the Assistants when the WSBind file is
generated. This option instructs CICS to attempt to detect uninitialized data, and to truncate the array at
that point. Use of this option can result in elegant JSON/XML data that is generated from ambiguous and
uninitialized application data, but introduces the risk of accidental data loss if the array content is
indistinguishable from uninitialized data.

The best solution is to have applications produce unambiguous data that is entirely consistent with the
language structure that describes that data. Use of the TRUNCATE-NULL-ARRAYS=ENABLED and DATA-

386 CICS TS for z/OS: Using Web Services with CICS

SCREENING=DISABLED options can cause CICS to tolerate imperfect application-supplied data, but they
introduce an element of risk and uncertainty in the process.

The following example demonstrates how to use these options.

Example 1: toleration of decimal fields
Testing the automatic correction of invalid data in a decimal field.

About this task

This scenario shows how the default value 0 can be automatically set in decimal fields that contain invalid
data.

Procedure

1. Generate the JSON schema and necessary artifacts for CICS to transform between JSON and COBOL
application data.
a) Prepare the copybook.

 03 BAD-DATA.
 05 NORMAL-NUM PIC 9(2).
 05 NORMAL-CHAR PIC X(3).
 05 PZONED-DECIMAL PIC S9(4) DISPLAY.
 05 NZONED-DECIMAL PIC S9(4) DISPLAY.
 05 UZONED-DECIMAL PIC 9(4) DISPLAY.
 05 NORMAL-CHAR2 PIC X(3).
 05 PBINARY PIC S9(4) BINARY.
 05 NBINARY PIC S9(4) COMP.
 05 UBINARY PIC 9(4) COMP.
 05 NORMAL-NUM2 PIC 9(3).
 05 PPACKED-DECIMAL PIC S9(4) COMP-3.
 05 NPACKED-DECIMAL PIC S9(4) COMP-3.
 05 UPACKED-DECIMAL PIC 9(4) COMP-3.
 05 NORMAL-NUM3 PIC 9(2).
 05 NORMAL-CHAR3 PIC X(3).
 05 FLOAT-ZONED PIC S9(4)V99.
 05 FLOAT-PACKED PIC S9(4)V99 COMP-3.

b) Submit the JCL.
Set DATA-SCREENING to DISABLED to activate the function.

 //GENJSON JOB ('accounting
information',name),CLASS=M,REGION=0M,
 // MSGCLASS=A,NOTIFY=&SYSUID
 //JCLLIB JCLLIB ORDER=ZZZZ.A.ZOSCONN.JCL
 //LS2JS EXEC DFHLS2JS,
 // JAVADIR='/java/java7_64/J7.0_64',
 // USSDIR='cics.ts.test/tolerate',
 // PATHPREF='',
 // TMPDIR='/tmp',
 // TMPFILE=''
 //INPUT.SYSUT1 DD *
 PDSLIB=ZZZZ.A.ZOSCONN.COPYBOOK
 REQMEM=BADDATA
 RESPMEM=BADDATA
 JSON-SCHEMA-REQUEST=/u/zzzz/json/ls2js/baddata1_request.json
 JSON-SCHEMA-RESPONSE=/u/zzzz/json/ls2js/
baddata1_response.json
 LANG=COBOL
 LOGFILE=/u/zzzz/json/ls2js/baddata1.log
 MAPPING-LEVEL=4.1
 DATA-SCREENING=DISABLED
 CHAR-VARYING=COLLAPSE
 PGMNAME=baddata1
 URI=/baddata1
 PGMINT=COMMAREA
 WSBIND=/u/zzzz/json/ls2js/baddata1.wsbind
 /*

Chapter 4. Developing with JSON 387

c) Check that the generated JSON schemas (request and response) and WSBind files were created
successfully.

2. Create the application program.
a) In COBOL program, assign a value to all fields except decimals.

 MOVE LOW-VALUE TO BAD-DATA.
 MOVE 11 TO NORMAL-NUM.
 MOVE 'AAA' TO NORMAL-CHAR.
 MOVE 'BBB' TO NORMAL-CHAR2.
 MOVE 222 TO NORMAL-NUM2.
 MOVE 'CCC' TO NORMAL-CHAR3.

3. Define CICS resources.
a) Define and install COBOL program.
b) Define and install TCPIPSERVICE.
c) Based on your parser, define and install PIPELINE.

4. Test the application.
a) Run PIPELINE SCAN. For the webservice described in the WSbind file, use INSERVICE.
b) Send the JSON request.

{"BADDATA1Operation":{"bad_data":{"normal_num":12}}}

c) Check the response.

Results
Default values are assigned to the uninitialized fields.

 {
 "BADDATA1OperationResponse": {
 "bad_data": {
 "normal_num": 11,
 "normal_char": "AAA",
 "pzoned_decimal": 0,
 "nzoned_decima": 0,
 "uzoned_decimal": 0,
 "normal_char2": "BBB",
 "pbinary": 0,
 "nbinary": 0,
 "ubinary": 0,
 "normal_num2": 222,
 "ppacked_decimal": 0,
 "npacked_decimal": 0,
 "upacked_decimal": 0,
 "normal_num3": 0,
 "normal_char3": "CCC",
 "float_zoned": 0,
 "float_packed": 0
 }
 }
 }

388 CICS TS for z/OS: Using Web Services with CICS

Chapter 5. Developing with XML
For any purpose, you can write application programs to transform application binary data into XML and
vice versa. CICS supports a number of high-level languages and provides an XML assistant to map how
the data is transformed during runtime processing. CICS uses the same technology for mapping
application data to XML in SOAP messages, as part of the web services support.

Before you begin
You must have Java installed to run the XML assistant and to optionally perform validation when CICS
transforms the data or XML.

About this task

The advantage of using this approach to transform application data to and from XML is that CICS goes
beyond the capabilities offered by an XML parser. CICS can interpret the XML and perform record-based
conversions of the application data. Therefore, it is easier and faster for you to create applications that
work with XML using this approach.

The CICS XML assistant is a supplied utility that helps you to create the required artifacts to transform
application binary data to XML or transform XML to application binary data. The XML assistant can create
the artifacts in a bundle directory or another specified location on z/OS UNIX.

Procedure

1. Create the mappings using the XML assistant.
2. Create the XMLTRANSFORM resources in CICS to make the mappings available.
3. Create or update an application program to use the TRANSFORM API command.

The application must use a channel-based interface.
4. Run the application to test that the transformation works as you intended.

You can turn on validation to check that CICS converts the data correctly.

These steps are explained in more detail in the following topics.

The CICS XML assistant
The CICS XML assistant is a set of batch utilities that can help you to transform XML into high-level
language structures and vice versa. The assistant supports rapid deployment of applications that perform
XML processing with the minimum amount of programming effort.

Using the XML assistant for CICS reduces the amount of code that you must write to parse or construct
XML; CICS transforms data between XML fragments and the data structure of an application program.

The XML assistant can create an XML schema from a simple language structure, or a language structure
from an existing XML schema, and supports COBOL, C/C++, and PL/I. It also generates metadata that
CICS uses at run time to automatically convert XML data to binary application data or vice versa; the
metadata is defined in an XML binding and stored on z/OS UNIX. The schema for the XML binding is
in /usr/lpp/cicsts/cicsts52/schemas/xmltransform/ directory on z/OS UNIX.

The CICS XML assistant comprises two utility programs:
DFHLS2SC

This utility generates an XML schema and binding from a language structure.
DFHSC2LS

This utility generates an XML binding and language structure that you can use in your application
programs. You can use either a WSDL document or an XML schema as input.

The JCL procedures to run both programs are in the hlq .XDFHINST library, where hlq is the high-level
qualifier of your CICS installation.

© Copyright IBM Corp. 1974, 2020 389

The relevant usage mode for the DFHLS2SC or DFHSC2LS procedure depends on your requirements:

• “DFHLS2SC: high-level language to XML schema conversion” on page 390
• “DFHSC2LS: XML schema to high-level language conversion” on page 398

For information about the data mappings between high-level language structures and XML schemas or
WSDL documents, see the following topics:

• “How the CICS assistants map between high-level languages and XML schemas” on page 407
• “Mapping levels for the CICS assistants” on page 410
• “Data mapping limitations when using the CICS assistants” on page 408
• “Variable arrays of elements” on page 460

DFHLS2SC: high-level language to XML schema conversion
The DFHLS2SC cataloged procedure generates an XML schema and an XML binding file from a high-level
language structure. Use DFHLS2SC when you want to create a CICS program that can parse or create
XML.

Job control statements for DFHLS2SC
JOB

Starts the job.
EXEC

Specifies the procedure name (DFHLS2SC).
INPUT.SYSUT1 DD

Specifies the input. The input parameters are usually specified in the input stream. However, you can
define them in a data set or in a member of a partitioned data set.

Symbolic parameters

The following symbolic parameters are defined in DFHLS2SC:

JAVADIR = path
Specifies the name of the Java directory that is used by DFHLS2SC. The value of this parameter is
appended to /usr/lpp/ giving a complete path name of /usr/lpp/ path .
Typically, you do not specify this parameter. The default value is the value that was supplied to the
CICS installation job (DFHISTAR) in the JAVADIR parameter.

PATHPREF = prefix
Specifies an optional prefix that extends the z/OS UNIX directory path used on other parameters. The
default is the empty string.
Typically, you do not specify this parameter. The default value is the value that was supplied to the
CICS installation job (DFHISTAR) in the PATHPREF parameter.

SERVICE = value
Use this parameter only when directed to do so by IBM support.

TMPDIR = tmpdir
Specifies the location of a directory in z/OS UNIX that DFHLS2SC uses as a temporary work space.
The user ID under which the job runs must have read and write permission to this directory.
The default value is /tmp.

TMPFILE = tmpprefix
Specifies a prefix that DFHLS2SC uses to construct the names of the temporary workspace files.
The default value is SC2WS.

PATHMAIN =path
Specifies the main part of the name of the CICS TS directory in the UNIX system services file system.
The default value is /usr/lpp/cicsts.

390 CICS TS for z/OS: Using Web Services with CICS

Typically, you do not specify this parameter. The default value is the value that was supplied to the
CICS installation job (DFHISTAR) in the PATHMAIN parameter.

USSDIR = path
Specifies the name of the CICS TS directory in the UNIX system services file system. The value of this
parameter is appended to the value specified by the PATHMAIN parameter.
Typically, you do not specify this parameter. The default value is the value that was supplied to the
CICS installation job (DFHISTAR) in the USSDIR parameter.

The temporary work space

DFHLS2SC creates the following three temporary files at run time:

tmpdir / tmpprefix .in
tmpdir / tmpprefix .out
tmpdir / tmpprefix .err

where:

tmpdir is the value specified in the TMPDIR parameter.
tmpprefix is the value specified in the TMPFILE parameter.

The default names for the files (when TMPDIR and TMPFILE are not specified), are as follows:

/tmp/LS2SC.in
/tmp/LS2SC.out
/tmp/LS2SC.err

Important: DFHLS2SC does not lock access to the z/OS UNIX files or the data set members. Therefore, if
two or more instances of DFHLS2SC run concurrently and use the same temporary workspace files,
nothing prevents one job from overwriting the workspace files while another job is using them, leading to
unpredictable failures.

Therefore, you are advised to devise a naming convention and operating procedures that avoid this
situation; for example, you can use the system symbolic parameter SYSUID to generate workspace file
names that are unique to an individual user.

These temporary files are deleted before the end of the job.

Chapter 5. Developing with XML 391

Input parameters for DFHLS2SC

BUNDLE=  value CCSID=  value

DATA-SCREENING=ENABLED

DATA-SCREENING=DISABLED

LANG=COBOL

LANG=PLI-ENTERPRISE

LANG=PLI-OTHER

LANG=C

LANG=CPP

STRUCTURE=DFHDATA

STRUCTURE=  data

LOGFILE=  value

MAPPING-LEVEL=1.0

MAPPING-LEVEL=1.1

MAPPING-LEVEL=1.2 Mapping level 1.2 and higher

MAPPING-LEVEL=2.0

MAPPING-LEVEL=2.1 Mapping level 2.1 and higher

MAPPING-LEVEL=2.2

MAPPING-LEVEL=3.0 Mapping level 3.0 and higher

MAPPING-LEVEL=4.0 Mapping level 4.0 and higher

MAPPING-LEVEL=4.1 Mapping level 4.1 and higher

MAPPING-LEVEL=4.2

MAPPING-LEVEL=4.3

MINIMUM-RUNTIME-LEVEL=MINIMUM

MINIMUM-RUNTIME-LEVEL=3.0

MINIMUM-RUNTIME-LEVEL=4.0

MINIMUM-RUNTIME-LEVEL=4.1

MINIMUM-RUNTIME-LEVEL=4.2

MINIMUM-RUNTIME-LEVEL=4.3

MINIMUM-RUNTIME-LEVEL=CURRENT

NAMESPACE=  value

OVERWRITE-OUTPUT=  NO

OVERWRITE-OUTPUT=  YES
PDSCP=  value

PDSLIB=  value

PDSMEM=  value SCHEMA=  value
XMLCP=LOCAL

XMLCP=UTF-8

XMLCP=EBCDIC-CP-US

XSDBIND=  value

Mapping level 1.2 and higher

392 CICS TS for z/OS: Using Web Services with CICS

CHAR-VARYING=NO

CHAR-VARYING=NULL

Mapping level 2.1 and higher
CHAR-VARYING=NO

CHAR-VARYING=NULL

CHAR-VARYING=COLLAPSE

CHAR-VARYING=BINARY

Mapping level 3.0 and higher
DATETIME=UNUSED

DATETIME=PACKED15

DATA-TRUNCATION=DISABLED

DATA-TRUNCATION=ENABLED

Mapping level 4.0 and higher
CHAR-OCCURS=STRING

CHAR-OCCURS=ARRAY

CHAR-USAGE=NATIONAL

CHAR-USAGE=DBCS

Mapping level 4.1 and higher
TRUNCATE-NULL-ARRAYS=DISABLED

TRUNCATE-NULL-ARRAYS=ENABLED

TRUNCATE-NULL-ARRAY-VALUES=

,

NULL

PACKEDZERO

SPACE

ZERO

Parameter use

• You can specify the input parameters in any order.
• Each parameter must start on a new line.
• A parameter (and its continuation character, if you use one) must not extend beyond column 72;

columns 73 to 80 must contain blanks.
• If a parameter is too long to fit on a single line, use an asterisk (*) character at the end of the line to

indicate that the parameter continues on the next line. Everything (including spaces) before the asterisk
is considered part of the parameter. For example:

XSDBIND=/path/xsdbinddir*
 /app1

is equivalent to

Chapter 5. Developing with XML 393

XSDBIND=/path/xsdbinddir/app1

• A # character in the first character position of the line is a comment character. The line is ignored.
• A comma in the last character position of the line is an optional line separator, and is ignored.

Parameter descriptions
BUNDLE = value

Specifies the path and name of the bundle directory on z/OS UNIX. If you specify this value, the XML
assistant generates a bundle containing the XSD binding. The path information on this parameter
overrides any path information on the XSDBIND parameter.
You can optionally specify an archive file rather than a directory name. The XML assistant
supports .zip and .jar archives. However, you must uncompress the archive before trying to install
the BUNDLE resource.
If you do not specify this parameter, CICS places the XML schema and binding in the location
specified on the XSDBIND parameter.

CCSID = value
Specifies the CCSID that is used at run time to encode character data in the application data
structure. The value of this parameter overrides the value of the LOCALCCSID system initialization
parameter. The value must be an EBCDIC CCSID that is supported by Java and z/OS conversion
services. If you do not specify this parameter, the application data structure is encoded using the
CCSID specified in the system initialization parameter.

You can use this parameter with any mapping level.

CHAR-VARYING = { NO | NULL | COLLAPSE | BINARY }
Specifies how character fields in the language structure are mapped when the mapping level is 1.2 or
higher. A character field in COBOL is a Picture clause of type X; for example, PIC(X) 10 . A character
field in C/C++ is a character array. This parameter does not apply to Enterprise and Other PL/I
language structures. You can select these options:
NO

Character fields are mapped to an xsd:string and are processed as fixed-length fields. The
maximum length of the data is equal to the length of the field. NO is the default value for the
CHAR-VARYING parameter for COBOL and PL/I at mapping levels 2.0 and earlier.

NULL
Character fields are mapped to an xsd:string and are processed as null-terminated strings.
CICS adds a terminating null character when transforming from an XML schema. The maximum
length of the character string is calculated as one character less than the length indicated in the
language structure. NULL is the default value for the CHAR-VARYING parameter for C/C++.

COLLAPSE
Character fields are mapped to an xsd:string . Trailing and embedded white space in the field
is not included in the XML schema; for example
<space>AB<space><space><space>C<space> becomes AB<space>C. COLLAPSE is the
default value for the CHAR-VARYING parameter for COBOL and PL/I at mapping level 2.1
onwards.

BINARY
Character fields are mapped as an xsd:base64binary data type and are processed as fixed-
length fields. The BINARY value on the CHAR-VARYING parameter is available only at mapping
levels 2.1 and onwards.

CHAR-OCCURS = { STRING | ARRAY }
Specifies how character arrays in the language structure are mapped when the mapping level is 4.0 or
higher. For example, PIC X OCCURS 20 . This parameter is only for use by the COBOL language.
ARRAY

Character arrays are mapped to an XML array. This means that every character is mapped as an
individual XML element. This is also the behavior at mapping levels 3.0 and earlier.

394 CICS TS for z/OS: Using Web Services with CICS

STRING
Character arrays are mapped to an XML string. This means that the entire COBOL array is mapped
as a single XML element.

CHAR-USAGE = { NATIONAL | DBCS }

In COBOL, the national data type, PIC N , can be used for UTF-16 or DBCS data. This setting is
controlled by the NSYMBOL compiler option. You must set the CHAR-USAGE parameter on the
assistant to the same value as the NSYMBOL compiler option to ensure that the data is handled
appropriately. This is typically set to CHAR-USAGE=NATIONAL when you use UTF-16.

DBCS
Data from PIC (n) fields is treated as DBCS encoded data.

NATIONAL
Data from PIC (n) fields is treated as UTF-16 encoded data.

DATA-SCREENING = { ENABLED | DISABLED }
Specifies whether application supplied data is screened for errors.
ENABLED

Any application-supplied runtime data that is inconsistent with the language structure, is treated
as an error, and message DFHPI1010 is issued. An error response is returned to the application.

DISABLED
Values in application-supplied runtime data that are inconsistent with the language structure are
replaced by default values. For example, a zero replaces a bad value in a numeric field. Message
DFHPI1010 is not issued and a normal response is returned to the application. This feature can be
used to avoid INVALID_PACKED_DEC and INVALID_ZONED_DEC error responses that are
generated from uninitialized output fields.

DATA-TRUNCATION = { DISABLED | ENABLED }
Specifies whether variable length data is tolerated in a fixed-length field structure:
DISABLED

If the data is less than the fixed length that CICS is expecting, CICS rejects the truncated data and
issues an error message.

ENABLED
If the data is less than the fixed length that CICS is expecting, CICS tolerates the truncated data
and processes the missing data as null values.

DATETIME = { UNUSED | PACKED15 }
Specifies if potential ABSTIME fields in the high-level language structure are mapped as timestamps:
PACKED15

Packed decimal fields of length 15 (8 bytes) are treated as CICS ABSTIME fields, and mapped as
timestamps.

UNUSED
Packed decimal fields of length 15 (8 bytes) are not treated as timestamps.

You can set this parameter at a mapping level of 3.0.
LANG = COBOL|PLI-ENTERPRISE|PLI-OTHER|C|CPP

Specifies the programming language of the high-level language structure:
COBOL

COBOL
PLI-ENTERPRISE

Enterprise PL/I
PLI-OTHER

A level of PL/I other than Enterprise PL/I
C

C

Chapter 5. Developing with XML 395

CPP
C++

LOGFILE = value
The fully qualified z/OS UNIX name of the file into which DFHLS2SC writes its activity log and trace
information. DFHLS2SC creates the file, but not the directory structure, if it does not already exist.

Typically, you do not use this file, but it might be requested by the IBM service organization if you
encounter problems with DFHLS2SC.

MAPPING-LEVEL = { 1.0 | 1.1 | 1.2 | 2.0 | 2.1 | 2.2 | 3.0 | 4.0 | 4.1 | 4.2 | 4.3 }
Specifies the level of mapping for the assistant to use when generating the XML binding and language
structures. You are recommended to use the most recent mapping level that is available. If you are
creating an XML binding for an Atom feed, you must use a mapping level of 3.0.

MINIMUM-RUNTIME-LEVEL = { MINIMUM | 3.0 | 4.0 | 4.1 | 4.2 | 4.3 | CURRENT }
Specifies the minimum CICS runtime environment into which the web service binding file can be
deployed. If you select a level that does not match the other parameters that you specified, you
receive an error message. You can select these options:
MINIMUM

The lowest possible runtime level of CICS is allocated automatically given the parameters that you
selected.

3.0
Specify runtime level 3.0 or above if you want to use the CICS XML assistant and take advantage
of advanced data mappings.

4.0
The generated web service binding file deploys successfully into a region at CICS TS 5.2 or later.
With this runtime level, you can use a mapping level of 4.0 or earlier for the MAPPING-LEVEL
parameter. You can use any optional parameter at this level.

4.1
The generated web service binding file deploys successfully into a region at CICS TS 5.2, or later.
With this runtime level, you can use a mapping level of 4.1 or earlier for the MAPPING-LEVEL
parameter.

4.2
The generated web service binding file deploys successfully into a region at CICS TS V5.4, or later.
With this runtime level, you can use a mapping level of 4.2 or earlier for the MAPPING-LEVEL
parameter.

4.3
The generated web service binding file deploys successfully into a region at CICS TS 5.4, or later.
With this runtime level, you can use a mapping level of 4.3 or earlier for the MAPPING-LEVEL
parameter.

CURRENT
The generated web service binding file deploys successfully into a CICS region at the same
runtime level as the one you are using to generate the web service binding file.

NAMESPACE = value
Specifies the namespace for CICS to use in the generated XML schema. For Atom feeds, CICS
provides this namespace in the Atom feed together with the Atom namespace.
If you do not specify this parameter, CICS generates a namespace automatically.

OVERWRITE-OUTPUT = NO | YES
Controls whether existing CICS BUNDLEs on the file system can be overwritten.
NO

Any existing BUNDLE is not replaced. If an existing BUNDLE is found DFHLS2SC issues error
message DFHPI9689E and terminates.

YES
Any existing BUNDLE is replaced. If an existing BUNDLE is found then message DFHPI9683W is
issued to inform you that the file has been replaced.

396 CICS TS for z/OS: Using Web Services with CICS

PDSCP = value
Specifies the code page that is used in the partitioned data set members, where value is a CCSID
number or a Java code page number. If you do not specify this parameter, the z/OS UNIX System
Services code page is used. For example, you might specify PDSCP=037.

PDSLIB = value
Specifies the name of the partitioned data set that contains the high-level language data structures to
be processed.

Restriction: The records in the partitioned data set must have a fixed length of 80 bytes.

PDSMEM = value
Specifies the name of the partitioned data set member that contains the high-level language
structures to be processed.

SCHEMA = value
The fully qualified z/OS UNIX name of the file into which the XML schema is written. The XML schema
conforms to the WSDL 2.0 specification. DFHLS2SC creates the file, but not the directory structure, if
it does not already exist.

STRUCTURE = { DFHDATA | data }
The name of the top-level data structure in C and C++. The default is DFHDATA.

TRUNCATE-NULL-ARRAYS = { DISABLED | ENABLED }
Specifies how structured arrays are processed at mapping level 4.1 or higher. If enabled, CICS will
attempt to recognize empty records within an array (see TRUNCATE-NULL-ARRAY-VALUES for more
information about identifying empty records). If five consecutive empty array records are detected,
the array is truncated at the first such record when generating XML/JSON. This truncation capability is
only enabled for arrays with structured content, arrays of simple primitive fields are not subject to
truncation. Truncation of arrays can result in a more concise representation of the data in JSON/XML,
but is not without risk. If five consecutive data records are misidentified as uninitialized storage
(perhaps because they legitimately contain low values), data loss can be experienced. If TRUNCATE-
NULL-ARRAYS is enabled and TRUNCATE-NULL-ARRAY-VALUES is not set, then the default value for
TRUNCATE-NULL-ARRAY-VALUES is used.

TRUNCATE-NULL-ARRAY-VALUES = { NULL | PACKEDZERO|SPACE | ZERO }
Specifies which values are treated as empty for TRUNCATE-NULL-ARRAYS processing at mapping
level 4.1 or higher. By default, the null value (0x00, or low-values) is treated as empty. If all of the
bytes of storage within a record of a structured array contain nulls, then the entire record is
considered to be empty. One or more of the NULL, PACKEDZERO, SPACE and ZERO values can be
specified in a comma separated list.
NULL

Implies a null character (0x00).
PACKEDZERO

Implies a positive signed packed decimal zero (0x0C), a negative signed packed decimal zero
(0x0D), or an unsigned packed decimal zero (0x0F).

SPACE
Implies an SBCS EBCDIC space (0x40).

ZERO
Implies an unsigned zoned decimal zero (0xF0).

Any matching combination of the selected bytes within a structured array record will cause the entire
record to be identified as empty.

If TRUNCATE-NULL-ARRAY-VALUES has a value defined, TRUNCATE-NULL-ARRAYS must be
enabled.

XSDBIND = value
The fully qualified z/OS UNIX name of the XSD binding. DFHLS2SC creates the file, but not the
directory structure, if it does not already exist. If the BUNDLE parameter is specified, exclude the
path. The file extension is .xsdbind.

Chapter 5. Developing with XML 397

DFHSC2LS: XML schema to high-level language conversion
The DFHSC2LS cataloged procedure generates a high-level language data structure and an XML binding
from an XML schema or WSDL document. Use DFHSC2LS when you want to create a CICS program that
can parse or create XML. This topic lists the job control statements, symbolic parameters, input
parameters and their descriptions for DFHSC2LS.

Job control statements for DFHSC2LS
JOB

Starts the job.
EXEC

Specifies the procedure name (DFHSC2LS).
INPUT.SYSUT1 DD

Specifies the input. The input parameters are usually specified in the input stream. However, you can
define them in a data set or in a member of a partitioned data set.

Symbolic parameters

The following symbolic parameters are defined in DFHSC2LS:

JAVADIR = path
Specifies the name of the Java directory that is used by DFHSC2LS. The value of this parameter is
appended to /usr/lpp/ giving a complete path name of /usr/lpp/ path .
Typically, you do not specify this parameter. The default value is the value that was supplied to the
CICS installation job (DFHISTAR) in the JAVADIR parameter.

PATHPREF = prefix
Specifies an optional prefix that extends the z/OS UNIX directory path used on other parameters. The
default is the empty string.
Typically, you do not specify this parameter. The default value is the value that was supplied to the
CICS installation job (DFHISTAR) in the PATHPREF parameter.

TMPDIR = tmpdir
Specifies the location of a directory in z/OS UNIX that DFHSC2LS uses as a temporary work space.
The user ID under which the job runs must have read and write permission to this directory.
The default value is /tmp.

TMPFILE = tmpprefix
Specifies a prefix that DFHSC2LS uses to construct the names of the temporary workspace files.
The default value is SC2LS.

PATHMAIN =path
Specifies the main part of the name of the CICS TS directory in the UNIX system services file system.
The default value is /usr/lpp/cicsts.
Typically, you do not specify this parameter. The default value is the value that was supplied to the
CICS installation job (DFHISTAR) in the PATHMAIN parameter.

USSDIR = path
Specifies the name of the CICS TS directory in the UNIX system services file system. The value of this
parameter is appended to the value specified by the PATHMAIN parameter.
Typically, you do not specify this parameter. The default value is the value that was supplied to the
CICS installation job (DFHISTAR) in the USSDIR parameter.

SERVICE = value
Use this parameter only when directed to do so by IBM support.

The temporary work space

DFHSC2LS creates the following three temporary files at run time:

398 CICS TS for z/OS: Using Web Services with CICS

tmpdir / tmpprefix .in
tmpdir / tmpprefix .out
tmpdir / tmpprefix .err

where:

tmpdir is the value specified in the TMPDIR parameter.
tmpprefix is the value specified in the TMPFILE parameter.

The default names for the files (when TMPDIR and TMPFILE are not specified), are as follows:

/tmp/SC2LS.in
/tmp/SC2LS.out
/tmp/SC2LS.err

Important: DFHSC2LS does not lock access to the z/OS UNIX files or the data set members. Therefore, if
two or more instances of DFHSC2LS run concurrently, and use the same temporary workspace files,
nothing prevents one job from overwriting the workspace files while another job is using them, leading to
unpredictable failures.

Therefore, you are advised to devise a naming convention and operating procedures that avoid this
situation; for example, you can use the system symbolic parameter SYSUID to generate workspace file
names that are unique to an individual user.

These temporary files are deleted before the end of the job.

Chapter 5. Developing with XML 399

Input parameters for DFHSC2LS

CCSID=  value

DATA-SCREENING=ENABLED

DATA-SCREENING=DISABLED

ELEMENTS=ALL

ELEMENTS=  value

HTTPPROXY= domain name

IP address

: port number

HTTPPROXY-USERNAME=  value HTTPPROXY-PASSWORD=  value

LANG=COBOL

LANG=PLI-ENTERPRISE

LANG=PLI-OTHER

LANG=C

LANG=CPP

STRUCTURE=  PDSMEM_value

STRUCTURE=  data

BUNDLE=  value

LOGFILE=  value

MAPPING-LEVEL=1.0

MAPPING-LEVEL=1.1

MAPPING-LEVEL=1.2 Mapping level 1.2 and higher

MAPPING-LEVEL=2.0

MAPPING-LEVEL=2.1 Mapping level 2.1 and higher

MAPPING-LEVEL=2.2

MAPPING-LEVEL=3.0 Mapping level 3.0 and higher

MAPPING-LEVEL=4.0

MAPPING-LEVEL=4.1

MAPPING-LEVEL=4.2 Mapping level 4.2 and higher

MAPPING-LEVEL=4.3

MAPPING-OVERRIDES=
SAME-AS-MAPPING-LEVEL

HYPHENS-AS-UNDERSCORES

NO-ARRAY-NAME-INDEXING

UNDERSCORES-AS-HYPHENS

MINIMUM-RUNTIME-LEVEL=MINIMUM

MINIMUM-RUNTIME-LEVEL=3.0

MINIMUM-RUNTIME-LEVEL=4.0

MINIMUM-RUNTIME-LEVEL=4.1

MINIMUM-RUNTIME-LEVEL=4.2

MINIMUM-RUNTIME-LEVEL=4.3

MINIMUM-RUNTIME-LEVEL=CURRENT

OVERWRITE-OUTPUT=  NO

OVERWRITE-OUTPUT=  YES
PDSCP=  value

PDSLIB=  value

PDSMEM=  value SCHEMA=  value

WSDL=  value TYPES=  value

XMLCP=LOCAL

XMLCP=UTF-8

XMLCP=EBCDIC-CP-US

XSDBIND=  value

WIDE-COMP3=FULL

WIDE-COMP3=  NO

WIDE-COMP3=  YES

Mapping level 1.2 and higher

400 CICS TS for z/OS: Using Web Services with CICS

CHAR-VARYING=NO

CHAR-VARYING=NULL

CHAR-VARYING=YES

CHAR-VARYING-LIMIT=32767

CHAR-VARYING-LIMIT=  value

CHAR-MULTIPLIER=1

CHAR-MULTIPLIER=  value

DEFAULT-CHAR-MAXLENGTH=255

DEFAULT-CHAR-MAXLENGTH=  value

DEFAULT-FRACTION-DIGITS=3

DEFAULT-FRACTION-DIGITS=  value

Mapping level 2.1 and higher
INLINE-MAXOCCURS-LIMIT=1

INLINE-MAXOCCURS-LIMIT=  value

Mapping level 3.0 and higher
DATETIME=PACKED15

DATETIME=STRING

DATA-TRUNCATION=DISABLED

DATA-TRUNCATION=ENABLED

Mapping level 4.2 and higher
ADDITIONAL-PROPERTIES-DEFAULT=FALSE

ADDITIONAL-PROPERTIES-DEFAULT=TRUE

ADDITIONAL-PROPERTIES-MAX=UNBOUNDED

ADDITIONAL-PROPERTIES-MAX=  value

ADDITIONAL-PROPERTIES-SIZE=255

ADDITIONAL-PROPERTIES-SIZE=  value

Parameter use

• You can specify the input parameters in any order.
• Each parameter must start on a new line.
• A parameter (and its continuation character, if you use one) must not extend beyond column 72;

columns 73 to 80 must contain blanks.
• If a parameter is too long to fit on a single line, use an asterisk (*) character at the end of the line to

indicate that the parameter continues on the next line. Everything (including spaces) before the asterisk
is considered part of the parameter. For example:

XSDBIND=xsdbinddir*
 /app1

is equivalent to

Chapter 5. Developing with XML 401

XSDBIND=xsdbinddir/app1

• A # character in the first character position of the line is a comment character. The line is ignored.

Parameter descriptions
ADDITIONAL-PROPERTIES-DEFAULT = { true | false }

Indicates whether JSON schema objects that do not explicitly declare support for Additional
Properties are interpreted as supporting them or not. Additional JSON properties are any properties
within a JSON object that are not pre-defined in the JSON Schema. These properties are typically
rejected by the data transformation mechanism as unexpected extra data. If ADDITIONAL-
PROPERTIES-DEFAULT is set to TRUE, or if the JSON schema explicitly sets
additionalProperties:true for an object, then space is allocated in the generated copybooks to
hold such values. Applications can interact with those values using the associated fields in the
copybooks.

You can use this parameter at a mapping level of 4.2 or higher.

ADDITIONAL-PROPERTIES-MAX = { 0-20 | UNBOUNDED }
Indicates how many Additional Properties are supported for a JSON object that supports them. See
ADDITIONAL-PROPERTIES-DEFAULT. The generated copybooks will contain structures suitable for
addressing any additional properties. By default, there is no maximum constraint placed on the
number of properties that are supported. The copybooks are generated in a similar fashion to arrays
with no constraints and use containers. This parameter can be used to apply a maximum constraint
that can be used in combination with the INLINE-MAXOCCURS-LIMIT parameter to cause a fixed
length array to be allocated for the maximum number of properties, thereby avoiding the need for
containers.

You can use this parameter at a mapping level of 4.2 or higher.

ADDITIONAL-PROPERTIES-SIZE = { 16-32767 | 255 }
Indicates the maximum size for each of the JSON additional properties. If a JSON object supports
additional properties, as defined by ADDITIONAL-PROPERTIES-DEFAULT, then the generated
copybooks will have bindings to support properties up to the number specified by ADDITIONAL-
PROPERTIES-MAX. By default, the maximum value supported for each additional property is 255
characters. A field of that size will be generated into the copybooks that are produced. This size can
be customized by setting the ADDITIONAL-PROPERTIES-SIZE parameter. For example, a JSON
object is processed that is found to contain the following property:

"example": { "notes": "this extra property was not defined in the JSON Schema" }

If the copybooks have been generated to support additional properties, then that entire value will be
passed to the application for processing. The value begins with the leading quotation mark before the
property's key, and ends with the trailing right brace in the property's value. It's approximately 100
characters in this example. The value used for ADDITIONAL-PROPERTIES-SIZE must be large
enough to hold the largest such value that might occur. If the allocated buffer is too small for the
value that is processed, an error response is generated.

You can use this parameter at a mapping level of 4.2 or higher.

CCSID = value
Specifies the CCSID that is used at run time to encode character data in the application data
structure. The value of this parameter overrides the value of the LOCALCCSID system initialization
parameter. The value must be an EBCDIC CCSID that is supported by Java and z/OS conversion
services (see z/OS Unicode Services User's Guide and Reference). If you do not specify this
parameter, the application data structure is encoded using the CCSID specified in the system
initialization parameter.

You can use this parameter with any mapping level.

CHAR-MULTIPLIER = { 1 | value }
Specifies the number of bytes to allow for each character when the mapping level is 1.2 or later. The
value of this parameter can be a positive integer in the range of 1 - 2,147,483,647. All nonnumeric

402 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.cunu100/toc.htm

character-based mappings, are subject to this multiplier. Binary, numeric, zoned, and packed decimal
fields are not subject to this multiplier.

This parameter can be useful if, for example, you are planning to use DBCS characters where you
might opt for a multiplier of 3 to allow space for potential shift-out and shift-in characters around
every double-byte character at run time.

When you set CCSID=1200 (indicating UTF-16), the only valid values for CHAR-MULTIPLIER are 2 or
4. When you use UTF-16, the default value is 2 . Use CHAR-MULTIPLIER=2 when you expect
application data to contain characters that require 1 UTF-16 encoding unit. Use CHAR-
MULTIPLIER=4 when you expect application data to contain characters that require 2 UTF-16
encoding units.

Note: Setting CHAR-MULTIPLIER to 1 does not preclude the use of DBCS characters, and setting it to
2 does not preclude the use of UTF-16 surrogate pairs. However, if wide characters are routinely used
then some valid values will not fit into the allocated field. If a larger CHAR-MULTIPLIER value is used,
it can be possible to store more characters in the allocated field than are valid in the XML. Care must
be taken to conform to the appropriate range restrictions.

CHAR-VARYING = { NO | NULL | YES }
Specifies how variable-length character data is mapped when the mapping level is 1.2 or higher.
Variable-length binary data types are always mapped to either a container or a varying structure. If
you do not specify this parameter, the default mapping depends on the language specified. You can
select these options:
NO

Variable-length character data is mapped as fixed-length strings.
NULL

Variable-length character data is mapped to null-terminated strings.
YES

Variable-length character data is mapped to a CHAR VARYING data type in PL/I. In the COBOL, C,
and C++ languages, variable-length character data is mapped to an equivalent representation that
consists of two related elements: the data-length and the data.

CHAR-VARYING-LIMIT = { 32767 | value }
Specifies the maximum size of binary data and variable-length character data that is mapped to the
language structure when the mapping level is 1.2 or higher. If the character or binary data is larger
than the value specified in this parameter, it is mapped to a container and the container name is used
in the generated language structure. The value can range from 0 to the default 32 767 bytes.

DATA-SCREENING = { ENABLED | DISABLED }
Specifies whether application supplied data is screened for errors.
ENABLED

Any application-supplied runtime data that is inconsistent with the language structure, is treated
as an error, and message DFHPI1010 is issued. An error response is returned to the application.

DISABLED
Values in application-supplied runtime data that are inconsistent with the language structure are
replaced by default values. For example, a zero replaces a bad value in a numeric field. Message
DFHPI1010 is not issued and a normal response is returned to the application. This feature can be
used to avoid INVALID_PACKED_DEC and INVALID_ZONED_DEC error responses that are
generated from uninitialized output fields.

DATA-TRUNCATION = { DISABLED | ENABLED }
Specifies whether variable length data is tolerated in a fixed-length field structure:
DISABLED

If the data is less than the fixed length that CICS is expecting, CICS rejects the truncated data and
issues an error message.

ENABLED
If the data is less than the fixed length that CICS is expecting, CICS tolerates the truncated data
and processes the missing data as null values.

Chapter 5. Developing with XML 403

DATETIME = { PACKED15 | STRING }
Specifies that xsd:dateTime fields are mapped to CICS ABSTIME data format or to text:
PACKED15

xsd:dateTime fields are mapped to CICS ABSTIME format.
STRING

xsd:dateTime fields are mapped to text. This mapping is the same as all previous mappings levels.
You can use this parameter at a mapping level of 3.0.

DEFAULT-CHAR-MAXLENGTH = { 255 | value }
Specifies the default array length of character data in characters for mappings where no length is
implied in the XML schema document or WSDL document, when the mapping level is 1.2 or higher.
The value of this parameter can be a positive integer in the range of 1 to 2 147 483 647.

DEFAULT-FRACTION-DIGITS = 3 | value
Specifies the default number of fraction digits to use on an XML decimal schema type. The default is
3. For COBOL, the valid range is 0-17, or 0-30 if parameter WIDE-COMP3 is being used. For C or PL/I
the valid range is 0-30.

ELEMENTS = { ALL | value }
Defines a list of global element local names to enable. The default value of ALL indicates that all
global elements are enabled.

HTTPPROXY = { domain name | IP address } : port number
If your XML schema or WSDL document contains references to other XML schema or WSDL files that
are located on the Internet, and the system on which you are running DFHSC2LS uses a proxy server
to access the Internet, specify either the domain name or IP address and the port number of the
proxy server. For example:

HTTPPROXY=proxy.example.com:8080

In other cases, this parameter is not required.

HTTPPROXY-USERNAME = value
Specifies the HTTP proxy user name to be used with HTTPPROXY-PASSWORD if the system on which
you are running DFHSC2LS uses an HTTP proxy server to access the Internet, and the HTTP proxy
server uses basic authentication. You can use this parameter only when you also specify HTTPPROXY.

HTTPPROXY-PASSWORD = value
Specifies the HTTP proxy password to be used with HTTPPROXY-USERNAME if the system on which
you are running DFHSC2LS uses an HTTP proxy server to access the Internet, and the HTTP proxy
server uses basic authentication. You can use this parameter only when you also specify HTTPPROXY.

INLINE-MAXOCCURS-LIMIT = { 1 | value }
Specifies whether inline variable repeating content is used based on the maxOccurs attribute of the
XML attribute.

The INLINE-MAXOCCURS-LIMIT parameter is available only at mapping level 2.1 onwards. The value
of INLINE-MAXOCCURS-LIMIT can be a positive integer in the range of 0 to 32 767. A value of 0
indicates that inline mapping is not used. A value of 1 ensures that optional elements are mapped
inline. If the value of the maxOccurs attribute is greater than the value of INLINE-MAXOCCURS-
LIMIT , container based mapping is used; otherwise, inline mapping is used.

When deciding if you want variably repeating lists to be mapped inline, consider the length of a single
item of recurring data. If you have few instances of long length, container-based mapping is
preferable; if you have many instances of short length, inline mapping is likely to be preferable.

LANG = COBOL|PLI-ENTERPRISE|PLI-OTHER|C|CPP
Specifies the programming language of the high-level language structure:
COBOL

COBOL
PLI-ENTERPRISE

Enterprise PL/I

404 CICS TS for z/OS: Using Web Services with CICS

PLI-OTHER
A level of PL/I other than Enterprise PL/I

C
C

CPP
C++

LOGFILE = value
The fully qualified z/OS UNIX name of the file into which DFHSC2LS writes its activity log and trace
information. DFHSC2LS creates the file, but not the directory structure, if it does not already exist.

Typically you do not use this file, but it might be requested by the IBM service organization if you
encounter problems with DFHSC2LS.

MAPPING-LEVEL = { 1.0 | 1.1 | 1.2 | 2.0 | 2.1 | 2.2 | 3.0 | 4.0 | 4.1 | 4.2 | 4.3 }
Specifies the level of mapping for the assistant to use when generating the XML binding and language
structures. You are recommended to use the most recent mapping level that is available; for
DFHSC2LS, you are recommended to use a mapping level of 3.0 or higher.
3.0

The xsd:dateTime data type maps to the CICS ASKTIME format.
4.0

Use this mapping level with a region at CICS TS 5.2 or later when you want to use UTF-16.
4.1

For truncatable array support, use this mapping level with a region at CICS TS 5.2 or later.
4.2

For additional properties, use this mapping level with a region at CICS TS 5.4 or later.
4.3

For multidimensional array support, use this mapping level with a region at CICS TS 5.4 or later.
MAPPING-OVERRIDES = { SAME-AS-MAPPING-LEVEL | [HYPHENS-AS-UNDERSCORES] | [NO-ARRAY-
NAME-INDEXING] | [UNDERSCORES-AS-HYPHENS] }

Specifies whether the default behavior is overridden for the specified mapping level when generating
language structures.
SAME-AS-MAPPING-LEVEL

This parameter generates language structures in the same style as the mapping level. This is the
default.

HYPHENS-AS-UNDERSCORES
For PL/I only. This parameter converts any hyphens in the XML document to underscores rather
than the character X, to improve the readability of the generated PL/I language structures. For
more information, see XML schema to PL/I mapping. This option is enabled automatically at
mapping level 4.2.

NO-ARRAY-NAME-INDEXING
For COBOL and Enterprise PL/I only. Ensures that the field names within an array are unique only
within the scope of the higher level structure.

UNDERSCORES-AS-HYPHENS
For COBOL only. Converts any underscores in the XML document to hyphens instead of the
character X. This option improves the readability of the generated COBOL language structures. If
any field name clashes occur, the fields are numbered to ensure they are unique. For more
information, see “XML schema to COBOL mapping” on page 429.
This option is enabled automatically at Mapping level 4.0.

MINIMUM-RUNTIME-LEVEL = { MINIMUM | 3.0 | 4.1 | 4.2 |4.3 | CURRENT }
Specifies the minimum CICS runtime environment into which the XML binding can be deployed. If you
select a level that does not match the other parameters that you have specified, you receive an error
message. The options that you can select are as follows:

Chapter 5. Developing with XML 405

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/dfhws_wsdl2pli.html

MINIMUM
The lowest possible runtime level of CICS is allocated automatically given the parameters that you
selected.

3.0
Specify runtime level 3.0 or above if you want to use the CICS XML assistant and take advantage
of advanced data mappings.

4.0
The generated web service binding file deploys successfully into a region at CICS TS 5.2 or later.
With this runtime level, you can use a mapping level of 4.0 or earlier for the MAPPING-LEVEL
parameter. You can use any optional parameter at this level.

4.1
The generated web service binding file deploys successfully into a region at CICS TS 5.2, or later.
With this runtime level, you can use a mapping level of 4.1 or earlier for the MAPPING-LEVEL
parameter.

4.2
The generated web service binding file deploys successfully into a region at CICS TS V5.4, or later.
With this runtime level, you can use a mapping level of 4.2 or earlier for the MAPPING-LEVEL
parameter.

4.3
The generated web service binding file deploys successfully into a region at CICS TS 5.4, or later.
With this runtime level, you can use a mapping level of 4.3 or earlier for the MAPPING-LEVEL
parameter.

CURRENT
Use this runtime level to deploy the generated XML binding into a CICS region that has the same
runtime environment as the region used to generate the XML binding.

OVERWRITE-OUTPUT = NO | YES
Controls whether existing CICS BUNDLEs on the file system can be overwritten.
NO

Any existing BUNDLE is not replaced. If an existing BUNDLE is found, DFHLS2SC issues error
message DFHPI9689E and terminates.

YES
Any existing BUNDLE is replaced. If an existing BUNDLE is found, DFHLS2SC issues message
DFHPI9683W to inform you that the file has been replaced.

PDSCP = value
Specifies the code page that is used in the partitioned data set members, where value is a CCSID
number or a Java code page number. If you do not specify this parameter, the z/OS UNIX System
Services code page is used. For example, you might specify PDSCP=037.

PDSLIB = value
Specifies the name of the partitioned data set that contains the generated high-level language.

PDSMEM = value
Specifies the 1-6 character prefix that DFHSC2LS uses to generate the name of the partitioned data
set member that will contain the high-level language structures.
DFHSC2LS generates a partitioned data set member for each operation. It generates the member
name by appending a 2-digit number to the prefix.

SCHEMA = value
The fully qualified z/OS UNIX name of the file from which the XML schema is read. DFHSC2LS creates
the file, but not the directory structure, if it does not already exist.
You can use either an XML schema or a WSDL document as input to DFHSC2LS. You must specify
either this parameter or the WSDL parameter, but not both, to indicate from where the input comes.

STRUCTURE = { PDSMEM_value | data }
The name of the top-level data structure in C and C++. The default value is the value of the PDSMEM
parameter.

406 CICS TS for z/OS: Using Web Services with CICS

TYPES = value
Defines a list of global type local names to enable. A value of ALL indicates that all global types are
enabled. By default, global types are not enabled.

WIDE-COMP3 = { FULL | NO | YES }
Controls the maximum size of the packed decimal variable length in the generated COBOL or PL/I
language structure.
FULL

For COBOL and PL/I. DFHJS2LS generates a packed decimal field that is large enough to hold all
valid values. The maximum size is 31 digits. This is the default.

NO
For COBOL only. DFHJS2LS limits the packed decimal variable length to 18 when generating the
COBOL language structure type COMP-3. If the packed decimal size is greater than 18, message
DFHPI9022W is issued to indicate that the specified type is being restricted to a total of 18 digits.

YES
For COBOL only. DFHJS2LS supports the maximum size of 31 when generating the COBOL
language structure type COMP-3.

Note: The NO and YES options generate fields that are unable to represent all valid values; the FULL
option avoids this problem. However, the FULL option does allow some invalid values to be
represented in the packed decimal field. For example, if a schema indicates that there are a maximum
of five digits and a maximum of two fractional digits, the FULL option will generate a packed decimal
field that allows for seven digits, and this allows space for valid values such as 25000 and 999.99, but
also provides space for some invalid values such as 9999.99. When you use the FULL option, take
care not to generate invalid values in application data.

WSDL = value
The fully qualified z/OS UNIX name of the WSDL document.
You can use either an XML schema or a WSDL document as input to DFHSC2LS. You must specify
either this parameter or the SCHEMA parameter, but not both, to indicate from where the input comes.

XMLCP = { LOCAL | UTF-8 | EBCDIC-CP-US }
Specifies the code page that is used to generate the XML binding.
LOCAL

This value is the default. It specifies that the XML is generated using the local code page and no
encoding tag is generated in the XML schema.

UTF-8
Specifies that the XML is generated using the UTF-8 code page. An encoding tag is generated in
the XML schema. If you specify this option, you must ensure that the encoding remains correct
when copying the XML schema between different platforms.

EBCDIC-CP-US
Specifies that the XML is generated using the US EBCDIC code page. An encoding tag is generated
in the XML schema.

XSDBIND = value
The fully qualified z/OS UNIX name of the XML binding. DFHSC2LS creates the file, but not the
directory structure, if it does not already exist. The file extension is .xsdbind.

How the CICS assistants map between high-level languages and XML schemas
Utility programs DFHSC2LS and DFHLS2SC are collectively known as the CICS XML assistant. Utility
programs DFHWS2LS and DFHLS2WS are collectively known as the CICS web services assistant. The
CICS assistants generate mappings between high-level language structures and XML schemas or WSDL
documents. The CICS assistants also generate XML schemas or WSDL documents from high-level
language data structures, or vice versa.

• DFHLS2SC and DFHLS2WS map high-level language structures to XML schemas and WSDL documents
respectively.

• DFHSC2LS and DFHWS2LS map XML schemas and WSDL documents to high-level language structures.

Chapter 5. Developing with XML 407

The two mappings are not symmetrical:

• If you process a language data structure with DFHLS2SC or DFHLS2WS and then process the resulting
XML schema or WSDL document with the complementary utility program (DFHSC2LS or DFHWS2LS
respectively), do not expect the final data structure to be the same as the original. However, the final
data structure is logically equivalent to the original.

• If you process an XML schema or WSDL document with DFHSC2LS or DFHWS2LS and then process the
resulting language structure with the complementary utility program (DFHLS2SC or DFHLS2WS
respectively), do not expect the XML schema in the final XML schema or WSDL document to be the
same as the original.

• In some cases, DFHSC2LS and DFHWS2LS generate language structures that are not supported by
DFHLS2SC and DFHLS2WS.

You must code language structures processed by DFHLS2SC and DFHLS2WS according to the rules of the
language, as implemented in the language compilers that CICS supports.

Data mapping limitations when using the CICS assistants
CICS supports bidirectional data mappings between high-level language structures and XML schemas or
WSDL documents that conform to WSDL version 1.1 or 2.0, with certain limitations. These limitations
apply only to the DFHWS2LS and DFHSC2LS tools and vary according to the mapping level.

Limitations at all mapping levels

• Only SOAP bindings that use literal encoding are supported. Therefore, you must set the use attribute
to a value of literal ; use="encoded" is not supported.

• Data type definitions must be encoded using the XML Schema Definition language (XSD). In the schema,
data types used in the SOAP message must be explicitly declared.

• The length of some keywords in the web services description is limited. For example, operation,
binding, and part names are limited to 255 characters. In some cases, the maximum operation name
length might be slightly shorter.

• Any SOAP faults defined in the web service description are ignored. If you want a service provider
application to send a SOAP fault message, use the EXEC CICS SOAPFAULT command.

• DFHWS2LS and DFHSC2LS support only a single <xsd:any> element in a particular scope. For example,
the following schema fragment is not supported:

<xsd:sequence>
 <xsd:any/>
 <xsd:any/>
</xsd:sequence>

Here, <xsd:any> can specify minOccurs and maxOccurs if required. For example, the following
schema fragment is supported:

<xsd:sequence>
 <xsd:any minOccurs="2" maxOccurs="2"/>
</xsd:sequence>

• Cyclic references are not supported. For example, where type A contains type B which, in turn, contains
type A.

• Recurrence is not supported in group elements, such as <xsd:choice>, <xsd:sequence>, <xsd:group>,
or <xsd:all> elements. For example, the following schema fragment is not supported:

<xsd:choice maxOccurs="2">
 <xsd:element name="name1" type="string"/>
</xsd:choice>

The exception is at mapping level 2.1 and higher, where maxOccurs="1" and minOccurs="0" are
supported on these elements.

408 CICS TS for z/OS: Using Web Services with CICS

• DFHSC2LS and DFHWS2LS do not support data types and elements in the SOAP message that are
derived from the declared data types and elements in the XML schema either from the xsi:type
attribute or from a substitution group, except at mapping level 2.2 and higher if the parent element or
type is defined as abstract.

• Embedded <xsd:sequence> and <xsd:group> elements inside an <xsd:choice> element are not
supported prior to mapping level 2.2. Embedded <xsd:choice> and <xsd:all> elements inside an
<xsd:choice> element are never supported.

Improved support at mapping level 1.1 and higher

When the mapping level is 1.1 or higher, DFHWS2LS provides support for the following XML elements and
element type:

• The <xsd:list> element.
• The <xsd:union> element.
• The xsd:anySimpleType type.
• The <xsd:attribute> element. At mapping level 1.0 this element is ignored.

Improved support at mapping level 2.1 and higher

When the mapping level is 2.1 or higher, DFHWS2LS supports the following XML elements and element
attributes:

• The <xsd:any> element.
• The xsd:anyType type.
• Abstract elements. In earlier mapping levels, abstract elements are supported only as nonterminal

types in an inheritance hierarchy.
• The maxOccurs and minOccurs attributes on the <xsd:all>, <xsd:choice>, and <xsd:sequence>

elements, only when maxOccurs="1" and minOccurs="0".
• "FILLER" fields in COBOL and "*" fields in PL/I are suppressed. The fields do not appear in the

generated WSDL and an appropriate gap is left in the data structures at run time.

Improved support at mapping level 2.2 and higher

When the mapping level is 2.2 or higher, DFHSC2LS and DFHWS2LS provide improved support for the
<xsd:choice> element, supporting a maximum of 255 options in the <xsd:choice> element. For more
information on <xsd:choice> support, see “Support for <xsd:choice> ” on page 470.

At mapping level 2.2 and higher, the CICS assistants support the following XML mappings:

• Substitution groups
• Fixed values for elements
• Abstract data types

Embedded <xsd:sequence> and <xsd:group> elements inside an <xsd:choice> element are supported at
mapping level 2.2 and higher. For example, the following schema fragment is supported:

<xsd:choice>
 <xsd:element name="name1" type="string"/>
 <xsd:sequence/>
</xsd:choice>

If the parent element or type in the SOAP message is defined as abstract, DFHSC2LS and DFHWS2LS
support data types and elements that are derived from the declared data types and elements in the XML
schema.

Chapter 5. Developing with XML 409

Improved support at mapping level 3.0 and higher

When the mapping level is 3.0 or higher, the CICS assistants support the following mapping
improvements:

• DFHSC2LS and DFHWS2LS map xsd:dateTime data types to CICS ASKTIME format.
• DFHLS2WS can generate a WSDL document and web service binding from an application that uses

many containers rather than just one container.
• Tolerating truncated data that is described by a fixed-length data structure. You can set this behavior by

using the DATA-TRUNCATION parameter on the CICS assistants.

Improved support at mapping level 4.0 and higher

When the mapping level is 4.0 or higher, the CICS assistants support the following mapping
improvements:

At mapping level 4.0 and higher, DFHLS2SC and DFHLS2WS support the COBOL OCCURS DEPENDING ON
clause and supports mapping of COBOL character arrays into XML strings. You can set this behavior by
using the CHAR-OCCURS parameter on the CICS assistants.

• You must specify the parameter DATA-TRUNCATION=ENABLED.
• Complex OCCURS DEPENDING ON is not supported. This limitation means that OCCURS DEPENDING

ON is only supported for the last field of a structure.
• CICS does not support qualified names (using the 'OF' keyword) as the target of an OCCURS

DEPENDING ON clause, for example FIELD1 OF STRUCTURE1.
• CICS does not support the UNBOUNDED keyword. You must specify the maximum size of the table that

is expected by the application.

At mapping level 4.0 and higher, CICS web services support the conversion of application data that is
encoded using UTF-16 Unicode.

• When you use DFHLS2WS or DFHLS2SC, you can enable this behavior by using language-specific data
types for UTF-16.

• When you use DFHWS2LS or DFHSC2LS, you can enable this behavior by setting CCSID=1200.
• CICS supports only a single Unicode code page, UTF-16BE with IBM Private Use Area (CCSID 1200).
• Conversion of application data that is encoded using UTF-8 is not supported.

Note: DFHLS2WS and DFHLS2SC do not the support the COBOL GROUP USAGE NATIONAL clause.

Mapping levels for the CICS assistants
A mapping is the set of rules that specifies how information is converted between language structures
and XML schemas. To benefit from the most sophisticated mappings available, you must set the
MAPPING-LEVEL parameter in the CICS assistants to the latest level.

Each level of mapping inherits the function of the previous mapping, where the highest level of mapping
offers the best capabilities available. The highest mapping level provides more control over data
conversion at run time and removes restrictions on support for certain data types and XML elements.

You can set the MAPPING-LEVEL parameter to an earlier level if you want to redeploy applications that
were previously enabled at that level.

Mapping level 4.3

Mapping level 4.3 is compatible with CICS TS V5.4 with APAR PI88519, and higher.

Mapping level 4.3 is primarily for use with DFHJS2LS, but is also included in the CICS web services
assistants, XML assistants, and JSON assistants. This mapping level implements support for
multidimensional arrays in JSON.

410 CICS TS for z/OS: Using Web Services with CICS

Mapping level 4.2

Mapping level 4.2 is compatible with CICS TS V5.4 with APAR PI86039 applied, and higher.

Mapping level 4.2 is primarily for use with DFHJS2LS, but is also included in the CICS web services
assistants, XML assistants, and JSON assistants. This mapping level implements support for Additional
Properties in JSON, and introduces the following three parameters to DFHJS2LS: ADDITIONAL-
PROPERTIES-DEFAULT, ADDITIONAL-PROPERTIES-MAX, and ADDITIONAL-PROPERTIES-SIZE.

Mapping level 4.1

Mapping level 4.1 is compatible with a CICS TS 5.3 region or CICS TS 5.2 region with APAR PI67641
applied, and higher.

Mapping level 4.1 is added to the CICS web services assistants, XML assistants, and JSON assistants. This
mapping level implements improved mappings for simple arrays generated bottom-up from existing
copybooks; it also adds the ability for CICS to auto-detect uninitialized trailing storage in arrays, and to
omit those records from the generated XML/JSON form. For more information, see “COBOL to JSON
schema mapping” on page 328.

DFHLS2WS, DFHWS2LS, DFHLS2SC, DFHSC2LS, DFHJS2LS, and DFHLS2JS support the TRUNCATE-
NULL-ARRAYS and TRUNCATE-NULL-ARRAY-VALUES parameters.

If you specify any value for TRUNCATE-NULL-ARRAY-VALUES , you must also specify TRUNCATE-NULL-
ARRAYS=ENABLED.

Mapping level 4.0

Mapping level 4.0 is compatible with a CICS TS 5.2 region.

At mapping level 4.0 and higher, DFHLS2SC and DFHLS2WS support the COBOL OCCURS DEPENDING ON
clause and supports mapping of COBOL character arrays into XML strings. You can set this behavior by
using the CHAR-OCCURS parameter on the CICS assistants.

• You must specify the parameter DATA-TRUNCATION=ENABLED.
• Complex OCCURS DEPENDING ON is not supported. This limitation means that OCCURS DEPENDING

ON is only supported for the last field of a structure.
• CICS does not support qualified names (using the 'OF' keyword) as the target of an OCCURS

DEPENDING ON clause, for example FIELD1 OF STRUCTURE1.
• CICS does not support the UNBOUNDED keyword. You must specify the maximum size of the table that

is expected by the application.

At mapping level 4.0 and higher, CICS web services support the conversion of application data that is
encoded using UTF-16 Unicode.

• When you use LS2WS or LS2SC, you can enable this behavior by using language-specific data types for
UTF-16.

• When you use WS2LS or SC2LS, you can enable this behavior by setting CCSID=1200.
• CICS supports only a single Unicode code page, " UTF-16BE with IBM Private Use Area " (CCSID 1200).
• Conversion of application data that is encoded using UTF-8 is not supported.

Note: DFHLS2WS and DFHLS2SC do not the support the COBOL GROUP USAGE NATIONAL clause.

Mapping level 3.0 and higher

Mapping level 3.0 is compatible with a CICS TS 4.1 region and higher.

This mapping level provides the following support:

• DFHSC2LS and DFHWS2LS map xsd:dateTime data types to CICS ASKTIME format.
• DFHLS2WS can generate a WSDL document and web service binding from an application that uses

many containers rather than just one container.

Chapter 5. Developing with XML 411

• Tolerating truncated data that is described by a fixed-length data structure. You can set this behavior by
using the DATA-TRUNCATION parameter on the CICS assistants.

Mapping level 2.2 and higher

Mapping level 2.2 is compatible with a CICS TS 3.2 region, with APAR PK69738 applied, and higher.

At mapping level 2.2 and higher, DFHSC2LS and DFHWS2LS support the following XML mappings:

• Fixed values for elements
• Substitution groups
• Abstract data types
• XML schema <sequence> elements can nest inside <choice> elements

DFHSC2LS and DFHWS2LS provide enhanced support for the following XML mappings:

• Abstract elements
• XML schema <choice> elements

Mapping level 2.1 and higher

Mapping level 2.1 is compatible with a CICS TS 3.2 region, with APAR PK59794 applied, and higher.

This mapping level includes greater control over the way variable content is handled with the new
INLINE-MAXOCCURS-LIMIT parameter and new values on the CHAR-VARYING parameter.

At mapping level 2.1 and higher, DFHSC2LS and DFHWS2LS offer the following new and improved
support for XML mappings:

• The XML schema <any> element
• The xsd:anyType type
• Toleration of abstract elements
• The INLINE-MAXOCCURS-LIMIT parameter
• The minOccurs attribute

The INLINE-MAXOCCURS-LIMIT parameter specifies whether variably repeating lists are mapped inline.
For more information about mapping variably repeating content inline, see Variable arrays of elements.

Support for the minOccurs attribute is enhanced for the XML schema <sequence>, <choice>, and <all>
elements. If minOccurs="0" , the CICS assistant treats these elements as though the minOccurs="0"
attribute is also an attribute of all its child elements.

At mapping level 2.1 and higher, DFHLS2SC and DFHLS2WS support the following XML mappings:

• FILLER fields in COBOL and PL/I are ignored
• A value of COLLAPSE for the CHAR-VARYING parameter
• A value of BINARY for the CHAR-VARYING parameter

FILLER fields in COBOL and PL/I are ignored; they do not appear in the generated XML schema and an
appropriate gap is left in the data structures at run time.

COLLAPSE causes CICS to ignore trailing spaces in text fields.

BINARY provides support for binary fields. This value is useful when you are converting COBOL into an
XML schema. This option is available only on SBCS character arrays and allows the array to be mapped to
fixed-length xsd:base64Binary fields rather than to xsd:string fields.

Mapping level 1.2 and higher

Mapping level 1.2 is compatible with a CICS TS 3.1 region and higher.

412 CICS TS for z/OS: Using Web Services with CICS

Greater control is available over the way character and binary data are transformed at run time with these
additional parameters on the batch tools:

• CHAR-VARYING
• CHAR-VARYING-LIMIT
• CHAR-MULTIPLIER
• DEFAULT-CHAR-MAXLENGTH

If you decide to use the CHAR-MULTIPLIER parameter in DFHSC2LS or DFHWS2LS, the following rules
apply after the value of this parameter is used to calculate the amount of space that is required for
character data.

• DFHSC2LS and DFHWS2LS provide these mappings:

– Variable-length character data types that have a maximum length of more than 32 767 bytes map to
a container. You can use the CHAR-VARYING-LIMIT parameter to set a lower limit. A 16-byte field is
created in the language structure to store the name of the container. At run time, the character data
is stored in a container and the container name is put in the language structure.

– Variable-length character data types that have a maximum length of less than 32 768 bytes map to a
VARYING structure for all languages except C/C++ and Enterprise PL/I. In C/C++, these data types
are mapped to null-terminated strings, and in Enterprise PL/I these data types are mapped to
VARYINGZ structures. You can use the CHAR-VARYING parameter to select the way that variable-
length character data is mapped.

– Variable-length binary data that has a maximum length of less than 32 768-bytes maps to a
VARYING structure for all languages. If the maximum length is equal to or greater than 32 768 bytes,
the data is mapped to a container. A 16-byte field is created in the language structure to store the
name of the container. At run time, the binary data is stored in a container and the container name is
put in the language structure.

If you have character data types in the XML schema that do not have a length that is associated with
them, you can assign a default length by using the DEFAULT-CHAR-MAXLENGTH parameter in DFHWS2LS
or DFHSC2LS.

DFHLS2SC and DFHLS2WS provide these mappings:

• Character fields map to an xsd:string data type and can be processed as fixed-length fields or null-
terminated strings at run time. You can use the CHAR-VARYING parameter to select the way that
variable-length character data is handled at run time for all languages except PL/I.

• Base64Binary data types map to a container if the maximum length of the data is greater than 32 767
bytes or when the length is not defined. If the length of the data is 32 767 or less, the base64Binary
data type is mapped to a VARYING structure for all languages.

Mapping level 1.1 and higher

Mapping level 1.1 is compatible with a CICS TS 3.1 region and higher.

This mapping level provides improved mapping of XML character and binary data types, in particular when
mapping data of variable length that has maxLength and minLength attributes that are defined with
different values in the XML schema. Data is handled in the following ways:

• Character and binary data types that have a fixed length that is greater than 16 MB map to a container
for all languages except PL/I. In PL/I, fixed-length character and binary data types that are greater than
32 767 bytes are mapped to a container. A 16-byte field is created in the language structure to store
the name of the container. At run time, the fixed-length data is stored in a container and the container
name is put in the language structure.

Because containers are variable in length, fixed-length data that is mapped to a container is not padded
with spaces or nulls, or truncated, to match the fixed length that is specified in the XML schema or web
service description. If the length of the data is significant, you can either write your application to check
it or turn on validation in the CICS region. Both SOAP and XML validation have a significant performance
impact.

Chapter 5. Developing with XML 413

• XML schema <list> and <union> data types map to character fields.
• Schema-defined XML attributes are mapped rather than ignored. A maximum of 255 attributes is

allowed for each XML element. For more information, see Support for XML attributes.
• The xsi:nil attribute is supported. For more information, see Support for XML attributes.

Mapping level 1.1 only

Mapping level 1.1 is compatible with a CICS TS 3.1 region and higher.

This mapping level provides improved mapping of XML character and binary data types, in particular when
mapping data of variable length that has maxLength and minLength attributes that are defined with
different values in the XML schema. Data is handled in the following ways:

• Variable-length binary data types map to a container. A 16-byte field is created in the language
structure to store the name of the container. At run time, the binary data is stored in a container and the
container name is put in the language structure.

• Variable-length character data types that have a maximum length greater than 32 767 bytes map to a
container. A 16-byte field is created in the language structure to store the name of the container. At run
time, the character data is stored in a container and the container name is put in the language structure.

• Character and binary data types that have a fixed length of less than 16 MB map to fixed-length fields
for all languages except PL/I. In PL/I, fixed-length character and binary data types that are 32 767
bytes or less map to fixed-length fields.

• CICS encodes and decodes data in the hexBinary format but not in base64Binary format. Base64Binary
data types in the XML schema map to a field in the language structure. The size of the field is calculated
by using the formula: 4×(ceil(z /3)) where:

– z is the length of the data type in the XML schema.
– ceil(x) is the smallest integer greater than or equal to x.

If the length of z is greater than 24 566 bytes, the resulting language structure fails to compile. If you
have base64Binary data that is greater than 24 566 bytes, you must use a mapping level of 1.2. With
mapping level 1.2, you can map the base64Binary data to a container instead of using a field in the
language structure.

Mapping level 1.0 only

Mapping level 1.0 is compatible with a CICS TS 3.1 region and higher.

Note the following limitations, which are modified in later mapping levels:

• DFHSC2LS and DFHWS2LS map character and binary data types in the XML schema to fixed-length
fields in the language structure. Look at this partial XML schema:

<xsd:element name="example">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="33000"/>
 </xsd:restriction>
 </xsd:simpleType>
</xsd:element>

That partial XML schema appears in a COBOL language structure like this example:

15 example PIC X(33000)

• CICS encodes and decodes data in the hexBinary format but not in base64Binary format. DFHSC2LS
and DFHWS2LS map Base64Binary data to a fixed-length character field, the contents of which must be
encoded or decoded by the application program.

• DFHSC2LS and DFHWS2LS ignore XML attributes during processing.

414 CICS TS for z/OS: Using Web Services with CICS

• DFHLS2SC and DFHLS2WS interpret character and binary fields in the language structure as fixed-
length fields and map those fields to XML elements that have a maxLength attribute. At run time, the
fields in the language structure are filled with spaces or nulls if insufficient data is available.

Learn more

• “How the CICS assistants map between high-level languages and XML schemas” on page 407
• “COBOL to JSON schema mapping” on page 328
• “JSON schema to COBOL mapping” on page 340
• “C and C++ to JSON schema mapping” on page 347
• “JSON schema to C and C++ mapping” on page 350
• “PL/I to JSON schema mapping” on page 359
• “JSON schema to PL/I mapping” on page 365

COBOL to XML schema mapping
The DFHLS2SC and DFHLS2WS utility programs support mappings between COBOL data structures and
XML schema definitions.

How COBOL names are converted to XML

COBOL names are converted to XML names according to the following rules:

1. Duplicate names are made unique by the addition of one or more numeric digits.

For example, two instances of year become year and year1.
2. Hyphens are replaced by underscore characters. Strings of contiguous hyphens are replaced by

contiguous underscores.

For example, current-user--id becomes current_user__id.
3. Segments of names that are delimited by hyphens and that contain only uppercase characters are

converted to lowercase.

For example, CA-REQUEST-ID becomes ca_request_id.
4. A leading underscore character is added to names that start with a numeric character.

For example, 9A-REQUEST-ID becomes _9a_request_id.

How COBOL data description elements are mapped to XML

CICS maps COBOL data description elements to schema elements according to Table 22 on page 417.

Restriction:

• COBOL data description elements that are not shown in Table 22 on page 417 are not supported by
DFHLS2SC or DFHLS2WS.

• Data description items with level numbers of 66 and 77 are not supported. Data description items with
a level number of 88 are ignored.

• The following clauses on data description entries are not supported:

REDEFINES
RENAMES; that is level 66
DATE FORMAT

• The following clauses on data description items are ignored:

BLANK WHEN ZERO
JUSTIFIED
VALUE

Chapter 5. Developing with XML 415

• The SIGN clause SIGN TRAILING is supported. The SIGN clause SIGN LEADING is supported only when
the mapping level specified in DFHLS2SC or DFHLS2WS is 1.2 or higher.

• SEPARATE CHARACTER is supported at a mapping level of 1.2 or higher for both SIGN TRAILING and
SIGN LEADING clauses.

• The following phrases on the USAGE clause are not supported:

OBJECT REFERENCE
POINTER
FUNCTION-POINTER
PROCEDURE-POINTER

• The following phrases on the USAGE clause are supported at a mapping level of 1.2 or higher:

COMPUTATIONAL-1
COMPUTATIONAL-2

• The only PICTURE characters that are supported for DISPLAY and COMPUTATIONAL-5 data description
items are 9, S, and Z.

• The PICTURE characters that are supported for PACKED-DECIMAL data description items are 9, S, V,
and Z.

• The only PICTURE characters that are supported for edited numeric data description items are 9 and Z.
• If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING parameter is set to

NULL, character arrays are mapped to an xsd:string and are processed as null-terminated strings.
• If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING parameter is set to

BINARY, character arrays are mapped to xsd:base64Binary and are processed as binary data.
• If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING parameter is set to

COLLAPSE, trailing white space is ignored for strings.
• The OCCURS DEPENDING ON clause is supported at a mapping level of 4.0 or higher. Complex OCCURS

DEPENDING ON is not supported. This means that OCCURS DEPENDING ON is only supported for the
last field of a structure.

• The OCCURS INDEXED BY clause is supported at any mapping level.
• The OCCURS clause is supported up to 65535 TIMES of occurrences. This means OCCURS n TIMES

where n is greater than 65535 is not supported.

416 CICS TS for z/OS: Using Web Services with CICS

Table 22. Mapping reference for COBOL data description elements

COBOL data description Schema simpleType

 PIC X(

 n

)

 PIC A(

 n

)

 PIC G(

 n

) DISPLAY-1

 PIC N(

 n

)

<xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxlength value="n"/>
 <xsd:whiteSpace value="preserve"/>
 </xsd:restriction>
</xsd:simpleType>

 PIC S9 DISPLAY
 PIC S99 DISPLAY
 PIC S999 DISPLAY
 PIC S9999 DISPLAY

<xsd:simpleType>
 <xsd:restriction base="xsd:short">
 <xsd:minInclusive value="-n"/>
 <xsd:maxInclusive value="n"/>
 </xsd:restriction>
</xsd:simpleType>

where n is the maximum value that can be represented by the
pattern of '9' characters.

Chapter 5. Developing with XML 417

Table 22. Mapping reference for COBOL data description elements (continued)

COBOL data description Schema simpleType

 PIC S9(

 z

) DISPLAY

where 5 ≤ z ≤ 9

<xsd:simpleType>
 <xsd:restriction base="xsd:int">
 <xsd:minInclusive value="-n"/>
 <xsd:maxInclusive value="n"/>
 </xsd:restriction>
</xsd:simpleType>

where n is the maximum value that can be represented by the
pattern of '9' characters.

 PIC S9(

 z

) DISPLAY

where 9 < z

<xsd:simpleType>
 <xsd:restriction base="xsd:long">
 <xsd:minInclusive value="-n"/>
 <xsd:maxInclusive value="n"/>
 </xsd:restriction>
</xsd:simpleType>

where n is the maximum value that can be represented by the
pattern of '9' characters.

 PIC 9 DISPLAY
 PIC 99 DISPLAY
 PIC 999 DISPLAY
 PIC 9999 DISPLAY

<xsd:simpleType>
 <xsd:restriction base="xsd:unsignedShort">
 <xsd:minInclusive value="0"/>
 <xsd:maxInclusive value="n"/>
 </xsd:restriction>
</xsd:simpleType>

where n is the maximum value that can be represented by the
pattern of '9' characters.

 PIC 9(

 z

) DISPLAY

where 5 ≤ z ≤ 9

<xsd:simpleType>
 <xsd:restriction base="xsd:unsignedInt">
 <xsd:minInclusive value="0"/>
 <xsd:maxInclusive value="n"/>
 </xsd:restriction>
</xsd:simpleType>

where n is the maximum value that can be represented by the
pattern of '9' characters.

418 CICS TS for z/OS: Using Web Services with CICS

Table 22. Mapping reference for COBOL data description elements (continued)

COBOL data description Schema simpleType

 PIC 9(

 z

) DISPLAY

where 9 < z

<xsd:simpleType>
 <xsd:restriction base="xsd:unsignedLong">
 <xsd:minInclusive value="0"/>
 <xsd:maxInclusive value="n"/>
 </xsd:restriction>
</xsd:simpleType>

where n is the maximum value that can be represented by the
pattern of '9' characters.

 PIC S9(

 n

) COMP

 PIC S9(

 n

) COMP-4

 PIC S9(

 n

) COMP-5

 PIC S9(

 n

) BINARY

where n ≤ 4.

<xsd:simpleType>
 <xsd:restriction base="xsd:short">
 </xsd:restriction>
</xsd:simpleType>

Chapter 5. Developing with XML 419

Table 22. Mapping reference for COBOL data description elements (continued)

COBOL data description Schema simpleType

 PIC S9(

 n

) COMP

 PIC S9(

 n

) COMP-4

 PIC S9(

 n

) COMP-5

 PIC S9(

 n

) BINARY

where 5 ≤ n ≤ 9.

<xsd:simpleType>
 <xsd:restriction base="xsd:int">
 </xsd:restriction>
</xsd:simpleType>

420 CICS TS for z/OS: Using Web Services with CICS

Table 22. Mapping reference for COBOL data description elements (continued)

COBOL data description Schema simpleType

 PIC S9(

 n

) COMP

 PIC S9(

 n

) COMP-4

 PIC S9(

 n

) COMP-5

 PIC S9(

 n

) BINARY

where 9 < n.

<xsd:simpleType>
 <xsd:restriction base="xsd:long">
 </xsd:restriction>
</xsd:simpleType>

Chapter 5. Developing with XML 421

Table 22. Mapping reference for COBOL data description elements (continued)

COBOL data description Schema simpleType

 PIC 9(

 n

) COMP

 PIC 9(

 n

) COMP-4

 PIC 9(

 n

) COMP-5

 PIC 9(

 n

) BINARY

where n ≤ 4.

<xsd:simpleType>
 <xsd:restriction base="xsd:unsignedShort">
 </xsd:restriction>
</xsd:simpleType>

422 CICS TS for z/OS: Using Web Services with CICS

Table 22. Mapping reference for COBOL data description elements (continued)

COBOL data description Schema simpleType

 PIC 9(

 n

) COMP

 PIC 9(

 n

) COMP-4

 PIC 9(

 n

) COMP-5

 PIC 9(

 n

) BINARY

where 5 ≤ n ≤ 9.

<xsd:simpleType>
 <xsd:restriction base="xsd:unsignedInt">
 </xsd:restriction>
</xsd:simpleType>

Chapter 5. Developing with XML 423

Table 22. Mapping reference for COBOL data description elements (continued)

COBOL data description Schema simpleType

 PIC 9(

 n

) COMP

 PIC 9(

 n

) COMP-4

 PIC 9(

 n

) COMP-5

 PIC 9(

 n

) BINARY

where 9 < n.

<xsd:simpleType>
 <xsd:restriction base="xsd:unsignedLong">
 </xsd:restriction>
</xsd:simpleType>

PIC S9(m)V9(n) COMP-3
<xsd:simpleType>
 <xsd:restriction base="xsd:decimal">
 <xsd:totalDigits value="p"/>
 <xsd:fractionDigits value="n"/>
 </xsd:restriction>
</xsd:simpleType>

where p = m + n.

424 CICS TS for z/OS: Using Web Services with CICS

Table 22. Mapping reference for COBOL data description elements (continued)

COBOL data description Schema simpleType

PIC 9(m)V9(n) COMP-3
<xsd:simpleType>
 <xsd:restriction base="xsd:decimal">
 <xsd:totalDigits value="p"/>
 <xsd:fractionDigits value="n"/>
 <xsd:minInclusive value="0"/>
 </xsd:restriction>
</xsd:simpleType>

where p = m + n.

PIC S9(m) COMP-3

Supported at mapping level 3.0 when
DATETIME=PACKED15

<xsd:simpleType>
 <xsd:restriction base="xsd:dateTime">
 </xsd:restriction>
</xsd:simpleType>

The format of the time stamp is CICS ABSTIME.

PIC S9(m)V9(n) DISPLAY

Supported at mapping level 1.2 and higher <xsd:simpleType>
 <xsd:restriction base="xsd:decimal">
 <xsd:totalDigits value="p"/>
 <xsd:fractionDigits value="n"/>
 </xsd:restriction>
</xsd:simpleType>

where p = m + n.

COMP-1

Supported at mapping level 1.2 and higher

Note: The IBM Hexadecimal Floating Point
(HFP) data representation is not exactly
the same as the IEEE-754-1985
representation that is used for XML. Some
values might not convert exactly from one
representation to the other. Some
extremely large or small values might not
be valid for xsd:float data types. Some
values might lose precision when
converted to or from HFP representation. If
precise conversions are important,
consider replacing use of COMP-1 data
types with fixed precision alternatives.

<xsd:simpleType>
 <xsd:restriction base="xsd:float">
 </xsd:restriction>
</xsd:simpletype>

Chapter 5. Developing with XML 425

Table 22. Mapping reference for COBOL data description elements (continued)

COBOL data description Schema simpleType

COMP-2

Supported at mapping level 1.2 and higher

Note: The IBM Hexadecimal Floating Point
(HFP) data representation is not exactly
the same as the IEEE-754-1985
representation that is used for XML. Some
values might not convert exactly from one
representation to the other. Some
extremely large or small values might not
be valid for xsd:double data types. Some
values might lose precision when
converted to or from HFP representation. If
precise conversions are important,
consider replacing use of COMP-2 data
types with fixed precision alternatives.

<xsd:simpleType>
 <xsd:restriction base="xsd:double">
 </xsd:restriction>
</xsd:simpletype>

data description OCCURS n TIMES
<xsd:element
name="field-name"
minOccurs="n"
maxOccurs="n">
...
</xsd:element>

The content of the element depends on the data type used.

 data description
 OCCURS
 n
 TO
 m
 TIMES

 DEPENDING ON

 t

Supported at mapping level 4.0

<xsd:element
name="field-name"
minOccurs="n"
maxOccurs="m">
...
</xsd:element>

426 CICS TS for z/OS: Using Web Services with CICS

Table 22. Mapping reference for COBOL data description elements (continued)

COBOL data description Schema simpleType

 PIC X OCCURS
 n
 TIMES
 PIC A OCCURS
 n
 TIMES
 PIC G DISPLAY-1
OCCURS
 n
 TIMES
 PIC N OCCURS
 n
 TIMES

When CHAR-OCCURS =STRING :

<xsd:element name="field-name">
 <xsd:simpleType>
 <xsd:restriction base="s:string">
 <xsd:maxLength value="n">
 </xsd:restriction>
 </xsd:simpleType>
</xsd:element>

This is a string.

When CHAR-OCCURS =ARRAY :

<xsd:element
name="field-name"
minOccurs="n"
maxOccurs="n">
 <xsd:simpleType>
 <xsd:restriction base="s:string">
 <xsd:maxLength value="1">
 </xsd:restriction>
 </xsd:simpleType>
</xsd:element>

This is an array of single characters.

Chapter 5. Developing with XML 427

Table 22. Mapping reference for COBOL data description elements (continued)

COBOL data description Schema simpleType

 PIC X OCCURS
 n
 TO
 m
 TIMES

 DEPENDING ON

 t
 PIC A OCCURS
 n
 TO
 m
 TIMES

 DEPENDING ON

 t
 PIC G DISPLAY-1
OCCURS
 n
 TO
 m
 TIMES

 DEPENDING ON

 t
 PIC N OCCURS
 n
 TO
 m
 TIMES

 DEPENDING ON

 t

When CHAR-OCCURS =STRING :

<xsd:element name="field-name">
 <xsd:simpleType>
 <xsd:restriction base="s:string">
 <xsd:maxLength value="m">
 <xsd:minLength value="n">
 </xsd:restriction>
 </xsd:simpleType>
</xsd:element>

PIC N(n) USAGE NATIONAL

When CHAR-USAGE =NATIONAL : PIC
N(n)

<xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxlength value="n"/>
 <xsd:whiteSpace value="preserve"/>
 </xsd:restriction>
</xsd:simpleType>

At run time, CICS populates the application data structure field
with UTF-16 data.

428 CICS TS for z/OS: Using Web Services with CICS

XML schema to COBOL mapping
The DFHSC2LS and DFHWS2LS utility programs support mappings between XML schema definitions and
COBOL data structures.

How XML schema element names are mapped to COBOL

The CICS assistants generate unique and valid names for COBOL variables from the schema element
names using the following rules:

1. COBOL reserved words are prefixed with ' X '.

For example, DISPLAY becomes XDISPLAY.
2. Characters other than A-Z, a-z, 0-9, or hyphen are replaced with ' X '.

For example, monthly_total becomes monthlyXtotal . You can use the MAPPING-OVERRIDES
parameter to change the way other characters are handled. For example, if you set the value
UNDERSCORES-AS-HYPHENS , any underscore in the XML is converted to a hyphen instead of an X. So
monthly_total becomes monthly-total.

3. If the last character is a hyphen, it is replaced with ' X '.

For example, ca-request- becomes ca-requestX.
4. If the schema specifies that the variable has varying cardinality (that is, minOccurs and maxOccurs

are specified on an xsd:element with different values), and the schema element name is longer than
23 characters, it is truncated to that length.

If the schema specifies that the variable has fixed cardinality and the schema element name is longer
than 28 characters, it is truncated to that length.

5. Duplicate names in the same scope are made unique by the addition of one or two numeric digits to
the second and subsequent instances of the name.

For example, three instances of year become year , year1 , and year2.

Should the above behavior be undesirable the user can specify MAPPING-OVERRIDES=NO-ARRAY-
NAME-INDEXING as input to the utility which disables the addition of one or two numeric digits to the
second and subsequent instances of the name.

6. Five characters are reserved for the strings -cont or -num , which are used when the schema
specifies that the variable has varying cardinality; that is, when minOccurs and maxOccurs are
specified with different values.

For more information, see “Variable arrays of elements” on page 460.
7. For attributes, the previous rules are applied to the element name. The prefix attr- is added to the

element name, and is followed by -value or -exist . If the total length is longer than 28 characters,
the element name is truncated. For more information, see “Support for XML attributes” on page 466.

The nillable attribute has special rules. The prefix attr- is added, but nil- is also added to the
beginning of the element name. The element name is followed by -value . If the total length is longer
than 28 characters, the element name is truncated.

The total length of the resulting name is 30 characters or less.

How XML schema types are mapped to COBOL

DFHSC2LS and DFHWS2LS map schema types to COBOL data description elements by using the specified
mapping level according to Table 23 on page 430. Note the following points:

• If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING parameter is set to
NULL, variable-length character data is mapped to null-terminated strings and an extra character is
allocated for the null-terminator.

Chapter 5. Developing with XML 429

• If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING parameter is set to
YES, variable-length character data is mapped to two related elements: a length field and a data field.
For example:

<xsd:simpleType name="VariableStringType">
 <xsd:restriction base="xsd:string">
 <xsd:minLength value="1"/>
 <xsd:maxLength value="10000"/>
 </xsd:restriction>
</xsd:simpleType>
<xsd:element name="textString" type="tns:VariableStringType"/>

maps to:

15 textString-length PIC S9999 COMP-5 SYNC
15 textString PIC X(10000)

Table 23. Mapping reference for XML schema types

Schema simple type COBOL data description

<xsd:simpleType>
 <xsd:restriction base="xsd:anyType">
 </xsd:restriction>
</xsd:simpleType>

Mapping level 2.0 and below:

 Not supported

Mapping level 2.1:

Supported

<xsd:simpleType>
 <xsd:restriction base="xsd:anySimpletype">
 </xsd:restriction>
</xsd:simpleType>

Mapping level 1.0:

Not supported

Mapping level 1.1 and higher:

 PIC X(255)

<xsd:simpleType>
 <xsd:restriction base="xsd:type">
 <xsd:length value="z"/>
 </xsd:restriction>
</xsd:simpleType>

where type is one of:

string
normalizedString
token
Name
NMTOKEN
language
NCName
ID
IDREF
ENTITY
hexBinary

All mapping levels:

 PIC X(

 z

)

430 CICS TS for z/OS: Using Web Services with CICS

Table 23. Mapping reference for XML schema types (continued)

Schema simple type COBOL data description

<xsd:simpleType>
 <xsd:restriction base="xsd:type">
 <xsd:length value="z"/>
 </xsd:restriction>
</xsd:simpleType>

where type is one of:

string
normalizedString
token
Name
NMTOKEN
language
NCName
ID
IDREF
ENTITY

When CCSID=1200 at mapping level 4.0 and higher:

 PIC N(

 z

) USAGE NATIONAL

<xsd:simpleType>
 <xsd:restriction base="xsd:type">
 </xsd:restriction>
</xsd:simpleType>

where type is one of:

duration
date
time
gDay
gMonth
gYear
gMonthDay
gYearMonth

All mapping levels:

 PIC X(32)

<xsd:simpleType>
 <xsd:restriction base="xsd:dateTime">
 </xsd:restriction>
</xsd:simpleType>

Mapping level 1.2 and below:

 PIC X(32)

Mapping level 2.0 and higher:

 PIC X(40)

Mapping level 3.0 and higher:

 PIC S9(15) COMP-3

The format is CICS ABSTIME.

Chapter 5. Developing with XML 431

Table 23. Mapping reference for XML schema types (continued)

Schema simple type COBOL data description

<xsd:simpleType>
 <xsd:restriction base="xsd:type">
 </xsd:restriction>
</xsd:simpleType>

where type is one of:

byte
unsignedByte

All mapping levels:

 PIC X DISPLAY

<xsd:simpleType>
 <xsd:restriction base="xsd:short">
 </xsd:restriction>
</xsd:simpleType>

All mapping levels:

 PIC S9999 COMP-5 SYNC

or

PIC S9999 DISPLAY

<xsd:simpleType>
 <xsd:restriction base="xsd:unsignedShort">
 </xsd:restriction>
</xsd:simpleType>

All mapping levels:

 PIC 9999 COMP-5 SYNC

or

PIC 9999 DISPLAY

<xsd:simpleType>
 <xsd:restriction base="xsd:integer">
 </xsd:restriction>
</xsd:simpleType>

All mapping levels:

 PIC S9(18) COMP-3

<xsd:simpleType>
 <xsd:restriction base="xsd:int">
 </xsd:restriction>
</xsd:simpleType>

All mapping levels:

 PIC S9(9) COMP-5 SYNC

or

PIC S9(9) DISPLAY

<xsd:simpleType>
 <xsd:restriction base="xsd:unsignedInt">
 </xsd:restriction>
</xsd:simpleType>

All mapping levels:

 PIC 9(9) COMP-5 SYNC

or

PIC 9(9) DISPLAY

432 CICS TS for z/OS: Using Web Services with CICS

Table 23. Mapping reference for XML schema types (continued)

Schema simple type COBOL data description

<xsd:simpleType>
 <xsd:restriction base="xsd:long">
 </xsd:restriction>
</xsd:simpleType>

All mapping levels:

 PIC S9(18) COMP-5 SYNC

or

PIC S9(18) DISPLAY

<xsd:simpleType>
 <xsd:restriction base="xsd:unsignedLong">
 </xsd:restriction>
</xsd:simpleType>

All mapping levels:

 PIC 9(18) COMP-5 SYNC

or

PIC 9(18) DISPLAY

<xsd:simpleType>
 <xsd:restriction base="xsd:decimal">
 <xsd:totalDigits value="m">
 <xsd:fractionDigits value="n">
 </xsd:restriction>
</xsd:simpleType>

All mapping levels:

If WIDE-COMP3=FULL:

 PIC 9(

 m

)V9(

 n

) COMP-3

Otherwise:

 PIC 9(

 p

)V9(

 n

) COMP-3

where p = m - n.

Chapter 5. Developing with XML 433

Table 23. Mapping reference for XML schema types (continued)

Schema simple type COBOL data description

<xsd:simpleType>
 <xsd:restriction base="xsd:boolean">
 </xsd:restriction>
</xsd:simpleType>

All mapping levels:

 PIC X DISPLAY

The value x'00' implies false, x'01' implies true.

<xsd:simpleType>
 <xsd:list>
 <xsd:simpleType>
 <xsd:restriction base="xsd:int"/>
 </xsd:simpleType>
 </xsd:list>
</xsd:simpleType>

Mapping level 1.0:

Not supported

Mapping level 1.1 and higher:

 PIC X(255)

<xsd:simpleType>
 <xsd:union memberTypes="xsd:int
xsd:string"/>
</xsd:simpleType>

Mapping level 1.0:

Not supported

Mapping level 1.1 and higher:

 PIC X(255)

434 CICS TS for z/OS: Using Web Services with CICS

Table 23. Mapping reference for XML schema types (continued)

Schema simple type COBOL data description

<xsd:simpleType>
 <xsd:restriction base="xsd:base64Binary">
 <xsd:length value="z"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType>
 <xsd:restriction base="xsd:base64Binary">
 </xsd:restriction>
</xsd:simpleType>

where the length is not defined.

Mapping level 1.0:

Not supported

Mapping level 1.1:

 PIC X(

 y

)

where y =4×(ceil(z /3)). ceil(x) is the smallest integer
greater than or equal to x.

Mapping level 1.2 and higher:

 PIC X(

 z

)

where the length is fixed.

 PIC X(16)

where the length is not defined. The field holds the
16-byte name of the container that stores the binary
data.

Chapter 5. Developing with XML 435

Table 23. Mapping reference for XML schema types (continued)

Schema simple type COBOL data description

<xsd:simpleType>
 <xsd:restriction base="xsd:float">
 </xsd:restriction>
</xsd:simpletype>

Mapping level 1.1 and below:

 PIC X(32)

Mapping level 1.2 and higher:

 COMP-1

Note: The IBM Hexadecimal Floating Point (HFP) data
representation is not exactly the same as the
IEEE-754-1985 representation that is used for XML.
Some values might not convert exactly from one
representation to the other. Some extremely large or
small values might not be valid for xsd:float data
types. Some values might lose precision when
converted to or from HFP representation. If precise
conversions are important, consider replacing use of
COMP-1 data types with fixed precision alternatives.

<xsd:simpleType>
 <xsd:restriction base="xsd:double">
 </xsd:restriction>
</xsd:simpletype>

Mapping level 1.1 and below:

 PIC X(32)

Mapping level 1.2 and higher:

 COMP-2

Note: The IBM Hexadecimal Floating Point (HFP) data
representation is not exactly the same as the
IEEE-754-1985 representation that is used for XML.
Some values might not convert exactly from one
representation to the other. Some extremely large or
small values might not be valid for xsd:double data
types. Some values might lose precision when
converted to or from HFP representation. If precise
conversions are important, consider replacing use of
COMP-2 data types with fixed precision alternatives.

Some of the schema types shown in the table map to a COBOL format of COMP-5 SYNC or of DISPLAY,
depending on the values (if any) that are specified in the minInclusive and maxInclusive facets:

• For signed types (short , int , and long), DISPLAY is used when the following are specified:

<xsd:minInclusive value="-
a"/>
<xsd:maxInclusive value="a"/>

where a is a string of '9's.

436 CICS TS for z/OS: Using Web Services with CICS

• For unsigned types (unsignedShort , unsignedInt , and unsignedLong), DISPLAY is used when
the following are specified:

<xsd:minInclusive value="0"/>
<xsd:maxInclusive value="a"/>

where a is a string of '9's.

When any other value is specified, or no value is specified, COMP-5 SYNC is used.

C and C++ to XML schema mapping
The DFHLS2SC and DFHLS2WS utility programs support mappings between C and C++ data types and
XML schema definitions.

How C and C++ names are converted to XML

C and C++ names are converted to XML names according to the following rules:

1. Characters that are not valid in XML element names are replaced with ' X '.

For example, monthly-total becomes monthlyXtotal.
2. Duplicate names are made unique by the addition of one or more numeric digits.

For example, two instances of year become year and year1.

How C and C++ data types are mapped to XML

DFHLS2SC and DFHLS2WS map C and C++ data types to schema elements according to Table 24 on page
438.

The _Packed qualifier is supported for structures.

Restriction:

• C and C++ types that are not shown in Table 24 on page 438 are not supported by DFHLS2SC or
DFHLS2WS.

• Header files must contain a top-level struct instance.
• You cannot declare a structure type that contains itself as a member.
• The following C and C++ data types are not supported:

decimal
long double
wchar_t (C++ only)

• The following characters are ignored if they are present in the header file.
Storage class specifiers:

auto
register
static
extern
mutable

Qualifiers

const
volatile
_Export (C++ only)

Function specifiers

inline (C++ only)
virtual (C++ only)

Chapter 5. Developing with XML 437

Initial values
• The header file must not contain these items:

Unions
Class declarations
Enumeration data types
Pointer type variables
Template declarations
Predefined macros; that is, macros with names that start and end with two underscore characters
(__)
The line continuation sequence (a \ symbol that is immediately followed by a newline character)
Prototype function declarators
Preprocessor directives
Bit fields
The __cdecl (or _cdecl) keyword (C++ only)

• The application programmer must use a 32-bit compiler to ensure that an int maps to 4 bytes.
• The following C++ reserved keywords are not supported:

explicit
using
namespace
typename
typeid

• If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING parameter is set to
NULL, character arrays are mapped to an xsd:string and are processed as null-terminated strings.

• If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING parameter is set to
BINARY, character arrays are mapped to xsd:base64Binary and are processed as binary data.

• If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING parameter is set to
COLLAPSE, <xsd:whiteSpace value="collapse"/> is generated for strings.

Table 24. Mapping reference for C and C++ data types

C and C++ data type Schema simpleType

char[z]
<xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:length value="z"/>
 </xsd:restriction>
</xsd:simpletype>

char16_t[n] At mapping level 4.0 and higher:

<xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxlength value="n"/>
 <xsd:whiteSpace value="preserve"/>
 </xsd:restriction>
</xsd:simpleType>

At run time, CICS populates the application data structure field with
UTF-16 data.

438 CICS TS for z/OS: Using Web Services with CICS

Table 24. Mapping reference for C and C++ data types (continued)

C and C++ data type Schema simpleType

char[8]

Supported at mapping level 3.0 and
higher when DATETIME=PACKED15

<xsd:simpleType>
 <xsd:restriction base="xsd:dateTime">
 </xsd:restriction>
</xsd:simpleType>

The format of the time stamp is CICS ABSTIME.

char
<xsd:simpleType>
 <xsd:restriction base="xsd:byte">
 </xsd:restriction>
</xsd:simpletype>

unsigned char
<xsd:simpleType>
 <xsd:restriction base="xsd:unsignedByte">
 </xsd:restriction>
</xsd:simpletype>

short
<xsd:simpleType>
 <xsd:restriction base="xsd:short">
 </xsd:restriction>
</xsd:simpletype>

unsigned short
<xsd:simpleType>
 <xsd:restriction base="xsd:unsignedShort">
 </xsd:restriction>
</xsd:simpletype>

 int
 long

<xsd:simpleType>
 <xsd:restriction base="xsd:int">
 </xsd:restriction>
</xsd:simpletype>

 unsigned int
 unsigned
long

<xsd:simpleType>
 <xsd:restriction base="xsd:unsignedInt">
 </xsd:restriction>
</xsd:simpletype>

long long
<xsd:simpleType>
 <xsd:restriction base="xsd:long">
 </xsd:restriction>
</xsd:simpletype>

unsigned long long
<xsd:simpleType>
 <xsd:restriction base="xsd:unsignedLong">
 </xsd:restriction>
</xsd:simpletype>

Chapter 5. Developing with XML 439

Table 24. Mapping reference for C and C++ data types (continued)

C and C++ data type Schema simpleType

bool

(C++ only) <xsd:simpleType>
 <xsd:restriction base="xsd:boolean">
 </xsd:restriction>
</xsd:simpletype>

float

Supported at mapping level 1.2 and
higher

<xsd:simpleType>
 <xsd:restriction base="xsd:float">
 </xsd:restriction>
</xsd:simpletype>

Note: The IBM Hexadecimal Floating Point (HFP) data representation is
not exactly the same as the IEEE-754-1985 representation that is used
for XML. Some values might not convert exactly from one representation
to the other. Some extremely large or small values might not be valid for
xsd:float data types. Some values might lose precision when
converted to or from HFP representation. If precise conversions are
important, consider replacing use of float data types with fixed precision
alternatives.

double

Supported at mapping level 1.2 and
higher

<xsd:simpleType>
 <xsd:restriction base="xsd:double">
 </xsd:restriction>
</xsd:simpletype>

Note: The IBM Hexadecimal Floating Point (HFP) data representation is
not exactly the same as the IEEE-754-1985 representation that is used
for XML. Some values might not convert exactly from one representation
to the other. Some extremely large or small values might not be valid for
xsd:double data types. Some values might lose precision when
converted to or from HFP representation. If precise conversions are
important, consider replacing use of double data types with fixed
precision alternatives.

XML schema to C and C++ mapping
The DFHSC2LS and DFHWS2LS utility programs support mappings between the XML schema definitions
that are included in each web service description and C and C++ data types.

How XML schema element names are converted to C and C++

The CICS assistants generate unique and valid names for C and C++ variables from the schema element
names using the following rules:

1. Characters other than A-Z, a-z, 0-9, or _ are replaced with ' X '.

For example, monthly-total becomes monthlyXtotal.
2. If the first character is not an alphabetic character, it is replaced by a leading ' X '.

For example, _monthlysummary becomes Xmonthlysummary.
3. If the schema element name is longer than 50 characters, it is truncated to that length.
4. Duplicate names in the same scope are made unique by the addition of one or more numeric digits.

For example, two instances of year become year and year1.

440 CICS TS for z/OS: Using Web Services with CICS

5. Five characters are reserved for the strings _cont or _num , which are used when the schema
specifies that the variable has varying cardinality; that is, when minOccurs and maxOccurs are
specified on an xsd:element.

For more information, see “Variable arrays of elements” on page 460.
6. For attributes, the previous rules are applied to the element name. The prefix attr_ is added to the

element name, and it is followed by _value or _exist. If the total length is longer than 28
characters, the element name is truncated.

The nillable attribute has special rules. The prefix attr_ is added, but nil_ is also added to the
beginning of the element name. The element name is followed by _value. If the total length is longer
than 28 characters, the element name is truncated.

The total length of the resulting name is 57 characters or less.

How XML schema types are mapped to C and C++

DFHSC2LS and DFHWS2LS map schema types to C and C++ data types according to Table 25 on page
441. The following rules also apply:

• If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING parameter is set to
NULL, variable-length character data is mapped to null-terminated strings and an extra character is
allocated for the null-terminator.

• If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING parameter is set to
YES, variable-length character data is mapped to two related elements: a length field and a data field.

Table 25. Mapping reference for XML schema types

Schema simpleType C and C++ data type

<xsd:simpleType>
 <xsd:restriction base="xsd:anyType">
 </xsd:restriction>
</xsd:simpleType>

Mapping level 2.0 and below:

Not supported

Mapping level 2.1 and higher:

Supported

<xsd:simpleType>
 <xsd:restriction base="xsd:anySimpletype">
 </xsd:restriction>
</xsd:simpleType>

Mapping level 1.0:

Not supported

Mapping level 1.1 and higher:

 char[255]

Chapter 5. Developing with XML 441

Table 25. Mapping reference for XML schema types (continued)

Schema simpleType C and C++ data type

<xsd:simpleType>
 <xsd:restriction base="xsd:type">
 <xsd:length value="z"/>
 </xsd:restriction>
</xsd:simpleType>

where type is one of:

string
normalizedString
token
Name
NMTOKEN
language
NCName
ID
IDREF
ENTITY
hexBinary

All mapping levels:

 char[

 z

]

<xsd:simpleType>
 <xsd:restriction base="xsd:type">
 <xsd:length value="z"/>
 </xsd:restriction>
</xsd:simpleType>

where type is one of:

string
normalizedString
token
Name
NMTOKEN
language
NCName
ID
IDREF
ENTITY

When CCSID=1200 at mapping level 4.0 and higher:

 char16_t[

 z

]

442 CICS TS for z/OS: Using Web Services with CICS

Table 25. Mapping reference for XML schema types (continued)

Schema simpleType C and C++ data type

<xsd:simpleType>
 <xsd:restriction base="xsd:type">
 </xsd:restriction>
</xsd:simpleType>

where type is one of:

duration
date
decimal
time
gDay
gMonth
gYear
gMonthDay
gYearMonth

All mapping levels:

 char[32]

<xsd:simpleType>
 <xsd:restriction base="xsd:dateTime">
 </xsd:restriction>
</xsd:simpleType>

Mapping level 1.2 and below:

 char[32]

Mapping level 2.0 and higher:

 char[40]

Mapping level 3.0 and higher:

 char[8]

The format of the time stamp is CICS ABSTIME.

<xsd:simpleType>
 <xsd:restriction base="xsd:byte">
 </xsd:restriction>
</xsd:simpletype>

All mapping levels:

 signed char

<xsd:simpleType>
 <xsd:restriction base="xsd:unsignedByte">
 </xsd:restriction>
</xsd:simpletype>

All mapping levels:

 char

<xsd:simpleType>
 <xsd:restriction base="xsd:short">
 </xsd:restriction>
</xsd:simpletype>

All mapping levels:

 short

Chapter 5. Developing with XML 443

Table 25. Mapping reference for XML schema types (continued)

Schema simpleType C and C++ data type

<xsd:simpleType>
 <xsd:restriction base="xsd:unsignedShort">
 </xsd:restriction>
</xsd:simpletype>

All mapping levels:

 unsigned short

<xsd:simpleType>
 <xsd:restriction base="xsd:integer">
 </xsd:restriction>
</xsd:simpletype>

All mapping levels:

 char[33]

<xsd:simpleType>
 <xsd:restriction base="xsd:int">
 </xsd:restriction>
</xsd:simpletype>

All mapping levels:

 int

<xsd:simpleType>
 <xsd:restriction base="xsd:unsignedInt">
 </xsd:restriction>
</xsd:simpletype>

All mapping levels:

 unsigned int

<xsd:simpleType>
 <xsd:restriction base="xsd:long">
 </xsd:restriction>
</xsd:simpletype>

All mapping levels:

 long long

<xsd:simpleType>
 <xsd:restriction base="xsd:unsignedLong">
 </xsd:restriction>
</xsd:simpletype>

All mapping levels:

 unsigned long long

<xsd:simpleType>
 <xsd:restriction base="xsd:boolean">
 </xsd:restriction>
</xsd:simpletype>

All mapping levels:

 bool
 (C++ only)
 short
 (C only)

<xsd:simpleType>
 <xsd:list>
 <xsd:simpleType>
 <xsd:restriction base="xsd:int"/>
 </xsd:simpleType>
 </xsd:list>
</xsd:simpleType>

Mapping level 1.0:

Not supported

Mapping level 1.1 and higher:

 char[255]

444 CICS TS for z/OS: Using Web Services with CICS

Table 25. Mapping reference for XML schema types (continued)

Schema simpleType C and C++ data type

<xsd:simpleType>
 <xsd:union memberTypes="xsd:int
xsd:string"/>
</xsd:simpleType>

Mapping level 1.0:

Not supported

Mapping level 1.1 and higher:

 char[255]

<xsd:simpleType>
 <xsd:restriction base="xsd:base64Binary">
 <xsd:length value="z"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType>
 <xsd:restriction base="xsd:base64binary">
 </xsd:restriction>
</xsd:simpletype>

where the length is not defined

Mapping level 1.1 and below:

 char[

 y

]

where y =4×(ceil(z /3)). ceil(x) is the smallest integer
greater than or equal to x.

Mapping level 1.2 and higher:

 char[

 z

]

where the length is fixed.

 char[16]

is the name of the container that stores the binary
data when the length is not defined.

Chapter 5. Developing with XML 445

Table 25. Mapping reference for XML schema types (continued)

Schema simpleType C and C++ data type

<xsd:simpleType>
 <xsd:restriction base="xsd:float">
 </xsd:restriction>
</xsd:simpletype>

Mapping level 1.1 and below:

 char[32]

Mapping level 1.2 and higher:

 float(*)

Note: The IBM Hexadecimal Floating Point (HFP) data
representation is not exactly the same as the
IEEE-754-1985 representation that is used for XML.
Some values might not convert exactly from one
representation to the other. Some extremely large or
small values might not be valid for xsd:float data
types. Some values might lose precision when
converted to or from HFP representation. If precise
conversions are important, consider replacing use of
float data types with fixed precision alternatives.

<xsd:simpleType>
 <xsd:restriction base="xsd:double">
 </xsd:restriction>
</xsd:simpletype>

Mapping level 1.0 and below:

 char[32]

Mapping level 1.2 and higher:

 double(*)

Note: The IBM Hexadecimal Floating Point (HFP) data
representation is not exactly the same as the
IEEE-754-1985 representation that is used for XML.
Some values might not convert exactly from one
representation to the other. Some extremely large or
small values might not be valid for xsd:double data
types. Some values might lose precision when
converted to or from HFP representation. If precise
conversions are important, consider replacing use of
double data types with fixed precision alternatives.

PL/I to XML schema mapping
The DFHLS2SC and DFHLS2WS utility programs support mappings between PL/I data structures and XML
schema definitions. Because the Enterprise PL/I compiler and older PL/I compilers differ, two language
options are supported: PLI-ENTERPRISE and PLI-OTHER.

How PL/I names are converted to XML

PL/I names are converted to XML names according to the following rules:

1. Characters that are not valid in XML element names are replaced with ' x '.

446 CICS TS for z/OS: Using Web Services with CICS

For example, monthly$total becomes monthlyxtotal.
2. Duplicate names are made unique by the addition of one or more numeric digits.

For example, two instances of year become year and year1.

How PL/I data types are mapped to XML

DFHLS2SC and DFHLS2WS map PL/I data types to schema elements according to Table 26 on page 448.

Restriction:

• PL/I types that are not shown in Table 26 on page 448 are not supported by DFHLS2SC or DFHLS2WS.
• Data items with the COMPLEX attribute are not supported.
• Data items with the FLOAT attribute are supported at a mapping level of 1.2 or higher. Enterprise PL/I

FLOAT IEEE is not supported.
• VARYING and VARYINGZ pure DBCS strings are supported at a mapping level of 1.2 or higher.
• Data items that are specified as DECIMAL(p , q) are supported only when p ≥ q
• Data items that are specified as BINARY(p , q) are supported only when q = 0.
• If the PRECISION attribute is specified for a data item, it is ignored.
• PICTURE strings are not supported.
• ORDINAL data items are treated as FIXED BINARY(7) data types.
• If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING parameter is set to

NULL, character arrays are mapped to an xsd:string and are processed as null-terminated strings;
this mapping does not apply for Enterprise PL/I.

• If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING parameter is set to
BINARY, character arrays are mapped to xsd:base64Binary and are processed as binary data.

• If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING parameter is set to
COLLAPSE, <xsd:whiteSpace value="collapse"/> is generated for strings.

• DFHLS2SC and DFHLS2WS do not fully implement the padding algorithms of PL/I; therefore, you must
declare padding bytes explicitly in your data structure. DFHLS2SC and DFHLS2WS issue a message if
they detect that padding bytes are missing. Each top-level structure must start on a doubleword
boundary and each byte in the structure must be mapped to the correct boundary.

Example

Consider this code fragment:

3 FIELD1 FIXED BINARY(7),
3 FIELD2 FIXED BINARY(31),
3 FIELD3 FIXED BINARY(63);

In this example:

– FIELD1 is 1 byte long and can be aligned on any boundary.
– FIELD2 is 4 bytes long and must be aligned on a fullword boundary.
– FIELD3 is 8 bytes long and must be aligned on a doubleword boundary.

The Enterprise PL/I compiler aligns the fields in the following order:

1. FIELD3 is aligned first because it has the strongest boundary requirements.
2. FIELD2 is aligned at the fullword boundary immediately before FIELD3.
3. FIELD1 is aligned at the byte boundary immediately before FIELD3.

Finally, so that the entire structure will be aligned at a fullword boundary, the compiler inserts three
padding bytes immediately before FIELD1.

Chapter 5. Developing with XML 447

Because DFHLS2WS does not insert equivalent padding bytes, you must declare them explicitly before
the structure is processed by DFHLS2WS. For example:

 3 PAD1 FIXED BINARY(7),
3 PAD2 FIXED BINARY(7),
3 PAD3 FIXED BINARY(7),
3 FIELD1 FIXED BINARY(7),
3 FIELD2 FIXED BINARY(31),
3 FIELD3 FIXED BINARY(63);

Alternatively, you can change the structure to declare all the fields as unaligned and recompile the
application that uses the structure. For more information about PL/I structural memory alignment
requirements, see Enterprise PL/I for z/OS product information.

Table 26. Mapping reference for PL/I data types

PL/I data description Schema

FIXED BINARY (n)

where n ≤ 7 <xsd:simpleType>
 <xsd:restriction base="xsd:byte"/>
</xsd:simpleType>

FIXED BINARY (n)

where 8 ≤ n ≤ 15 <xsd:simpleType>
 <xsd:restriction base="xsd:short"/>
</xsd:simpleType>

FIXED BINARY (n)

where 16 ≤ n ≤ 31 <xsd:simpleType>
 <xsd:restriction base="xsd:int"/>
</xsd:simpleType>

FIXED BINARY (n)

where 32 ≤ n ≤ 63

Restriction: Enterprise PL/I only

<xsd:simpleType>
 <xsd:restriction base="xsd:long"/>
</xsd:simpleType>

UNSIGNED FIXED BINARY(n)

where n ≤ 8

Restriction: Enterprise PL/I only

<xsd:simpleType>
 <xsd:restriction base="xsd:unsignedByte"/>
</xsd:simpleType>

UNSIGNED FIXED BINARY(n)

where 9 ≤ n ≤ 16

Restriction: Enterprise PL/I only

<xsd:simpleType>
 <xsd:restriction base="xsd:unsignedShort"/>
</xsd:simpleType>

UNSIGNED FIXED BINARY(n)

where 17 ≤ n ≤ 32

Restriction: Enterprise PL/I only

<xsd:simpleType>
 <xsd:restriction base="xsd:unsignedInt"/>
</xsd:simpleType>

UNSIGNED FIXED BINARY(n)

where 33 ≤ n ≤ 64

Restriction: Enterprise PL/I only

<xsd:simpleType>
 <xsd:restriction base="xsd:unsignedLong"/>
</xsd:simpleType>

448 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SSY2V3

Table 26. Mapping reference for PL/I data types (continued)

PL/I data description Schema

FIXED DECIMAL(n , m)
<xsd:simpleType>
 <xsd:restriction base="xsd:decimal">
 <xsd:totalDigits value="n"/>
 <xsd:fractionDigits value="m"/>
 </xsd:restriction>
</xsd:simpleType>

FIXED DECIMAL(15)

Supported at mapping level 3.0 and higher when
DATETIME=PACKED15

<xsd:simpleType>
 <xsd:restriction base="xsd:dateTime">
 </xsd:restriction>
</xsd:simpleType>

The format of the time stamp is CICS ABSTIME.

BIT(n)

where n is a multiple of 8. Other values are not
supported.

<xsd:simpleType>
 <xsd:restriction base="xsd:hexBinary">
 <xsd:length value="m"/>
 </xsd:restriction>
</xsd:simpleType>

where m = n /8

CHARACTER(n)

VARYING and VARYINGZ are also supported at
mapping level 1.2 and higher.

Restriction: VARYINGZ is supported only by
Enterprise PL/I

<xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="n"/>
 <xsd:whiteSpace value="preserve"/>
 </xsd:restriction>
</xsd:simpleType>

GRAPHIC(n)

VARYING and VARYINGZ are also supported at
mapping level 1.2 and higher.

Restriction: VARYINGZ is supported only by
Enterprise PL/I

At a mapping level of 1.0 and 1.1, where m = 2* n :

<xsd:simpleType>
 <xsd:restriction base="xsd:hexBinary">
 <xsd:length value="m"/>
 </xsd:restriction>
</xsd:simpleType>

At a mapping level of 1.2 or higher:

<xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:length value="n"/>
 <xsd:whiteSpace value="preserve"/>
 </xsd:restriction>
</xsd:simpleType>

Chapter 5. Developing with XML 449

Table 26. Mapping reference for PL/I data types (continued)

PL/I data description Schema

WIDECHAR(n)

Restriction: Enterprise PL/I only

At a mapping level of 1.0 and 1.1, where m = 2* n :

<xsd:simpleType>
 <xsd:restriction base="xsd:hexBinary">
 <xsd:length value="m"/>
 </xsd:restriction>
</xsd:simpleType>

At a mapping level of 1.2 or higher:

<xsd:simpleType>
 <xsd:restriction base="xsd:hexBinary">
 <xsd:length value="n"/>
 </xsd:restriction>
</xsd:simpleType>

At mapping level 4.0 and higher, CICS populates the
application data structure field with UTF-16 data.

<xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxlength value="n"/>
 <xsd:whiteSpace value="preserve"/>
 </xsd:restriction>
</xsd:simpleType>

ORDINAL

Restriction: Enterprise PL/I only <xsd:simpleType>
 <xsd:restriction base="xsd:byte"/>
</xsd:simpleType>

BINARY FLOAT(n)

where n <= 21

Supported at mapping level 1.2 and higher.

<xsd:simpleType>
 <xsd:restriction base="xsd:float">
 </xsd:restriction>
</xsd:simpletype>

BINARY FLOAT(n)

where 21 < n <= 53

Values greater than 53 are not supported.

Supported at mapping level 1.2 and higher.

<xsd:simpleType>
 <xsd:restriction base="xsd:double">
 </xsd:restriction>
</xsd:simpletype>

450 CICS TS for z/OS: Using Web Services with CICS

Table 26. Mapping reference for PL/I data types (continued)

PL/I data description Schema

DECIMAL FLOAT(n)

where n <= 6

Supported at mapping level 1.2 and higher.

Note: The IBM Hexadecimal Floating Point (HFP) data
representation is not exactly the same as the
IEEE-754-1985 representation that is used for XML.
Some values might not convert exactly from one
representation to the other. Some extremely large or
small values might not be valid for xsd:float data
types. Some values might lose precision when
converted to or from HFP representation. If precise
conversions are important, consider replacing use of
DECIMAL FLOAT data types with fixed precision
alternatives.

<xsd:simpleType>
 <xsd:restriction base="xsd:float">
 </xsd:restriction>
</xsd:simpletype>

DECIMAL FLOAT(n) where 6 < n <= 16

Values greater than 16 are not supported.

Supported at mapping level 1.2 and higher.

Note: The IBM Hexadecimal Floating Point (HFP) data
representation is not exactly the same as the
IEEE-754-1985 representation that is used for XML.
Some values might not convert exactly from one
representation to the other. Some extremely large or
small values might not be valid for xsd:double data
types. Some values might lose precision when
converted to or from HFP representation. If precise
conversions are important, consider replacing use of
DECIMAL FLOAT data types with fixed precision
alternatives.

<xsd:simpleType>
 <xsd:restriction base="xsd:double">
 </xsd:restriction>
</xsd:simpletype>

XML schema to PL/I mapping
The DFHSC2LS and DFHWS2LS utility programs support mappings between XML schema definitions and
PL/I data structures. Because the Enterprise PL/I compiler and older PL/I compilers differ, two language
options are supported: PLI-ENTERPRISE and PLI-OTHER.

How XML schema element names are converted to PL/I

The CICS assistants generate unique and valid names for PL/I variables from the schema element names
using the following rules:

1. Characters other than A-Z, a-z, 0-9, @, #, _, or $ are replaced with ' X '.

For example, monthly-total becomes monthlyXtotal.

You can use the MAPPING-OVERRIDES parameter to change the way other characters are handled.
For example, if you set the value HYPHENS-AS-UNDERSCORES , any hyphen in the XML is converted to
an underscore instead of an X. For example, monthly-total becomes monthly_total.

2. If the schema specifies that the variable has varying cardinality (that is, minOccurs and maxOccurs
attributes are specified with different values on the xsd:element), and the schema element name is
longer than 24 characters, it is truncated to that length.

If the schema specifies that the variable has fixed cardinality and the schema element name is longer
than 29 characters, it is truncated to that length.

Chapter 5. Developing with XML 451

3. Duplicate names in the same scope are made unique by the addition of one or more numeric digits to
the second and subsequent instances of the name.

For example, three instances of year become year , year1 , and year2.

Should the above behavior be undesirable the user can specify MAPPING-OVERRIDES=NO-ARRAY-
NAME-INDEXING as input to the utility which disables the addition of one or two numeric digits to the
second and subsequent instances of the name.

4. Five characters are reserved for the strings _cont or _num , which are used when the schema
specifies that the variable has varying cardinality; that is, when minOccurs and maxOccurs attributes
are specified with different values.

For more information, see “Variable arrays of elements” on page 460.
5. For attributes, the previous rules are applied to the element name. The prefix attr- is added to the

element name and is followed by -value or -exist . If the total length is longer than 28 characters,
the element name is truncated. For more information, see “Support for XML attributes” on page 466.

The nillable attribute has special rules. The prefix attr- is added, but nil- is also added to the
beginning of the element name. The element name is followed by -value . If the total length is longer
than 28 characters, the element name is truncated.

The total length of the resulting name is 31 characters or less.

How XML schema types are mapped to PL/I

DFHSC2LS and DFHWS2LS map schema types to PL/I data types according to the following table. Also
note the following points:

• If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING parameter is set to
NULL, variable-length character data is mapped to null-terminated strings and an extra character is
allocated for the null-terminator.

• If the MAPPING-LEVEL parameter is set to 1.2 or higher and the CHAR-VARYING parameter is not
specified, by default variable-length character data is mapped to a VARYINGZ data type for Enterprise
PL/I and VARYING data type for Other PL/I.

• Variable-length binary data is mapped to a VARYING data type if it less than 32 768 bytes and to a
container if it is more than 32 768 bytes.

Table 27. Mapping reference for XML schema types

Schema PL/I data description

<xsd:simpleType>
 <xsd:restriction base="xsd:anyType">
 </xsd:restriction>
</xsd:simpleType>

Mapping level 2.0 and below:

 Not supported

Mapping level 2.1 and higher:

 Supported

<xsd:simpleType>
 <xsd:restriction base="xsd:anySimpletype">
 </xsd:restriction>
</xsd:simpleType>

Mapping level 1.1 and higher:

CHAR(255)

452 CICS TS for z/OS: Using Web Services with CICS

Table 27. Mapping reference for XML schema types (continued)

Schema PL/I data description

<xsd:simpleType>
 <xsd:restriction base="xsd:type">
 <xsd:maxLength value="z"/>
 <xsd:whiteSpace value="preserve"/>
 </xsd:restriction>
</xsd:simpleType>

where type is one of:

string
normalizedString
token
Name
NMTOKEN
language
NCName
ID
IDREF
ENTITY

All mapping levels:

CHARACTER(z)

<xsd:simpleType>
 <xsd:restriction base="xsd:type">
 <xsd:length value="z"/>
 </xsd:restriction>
</xsd:simpleType>

where type is one of:

string
normalizedString
token
Name
NMTOKEN
language
NCName
ID
IDREF
ENTITY

When CCSID=1200 at mapping level 4.0 and higher:

 WIDECHAR(

 z

)

Chapter 5. Developing with XML 453

Table 27. Mapping reference for XML schema types (continued)

Schema PL/I data description

<xsd:simpleType>
 <xsd:restriction base="xsd:type">
 </xsd:restriction>
</xsd:simpleType>

where type is one of:

duration
date
time
gDay
gMonth
gYear
gMonthDay
gYearMonth

All mapping levels:

CHAR(32)

<xsd:simpleType>
 <xsd:restriction base="xsd:dateTime">
 </xsd:restriction>
</xsd:simpleType>

Mapping level 1.2 and below:

 CHAR(32)

Mapping level 2.0 and higher:

 CHAR(40)

Mapping level 3.0 and higher:

 FIXED DECIMAL(15)

The format of the time stamp is CICS ABSTIME.

454 CICS TS for z/OS: Using Web Services with CICS

Table 27. Mapping reference for XML schema types (continued)

Schema PL/I data description

<xsd:simpleType>
 <xsd:restriction base="xsd:hexBinary">
 <xsd:length value="y"/>
 </xsd:restriction>
</xsd:simpleType>

Mapping level 1.1 and below:

 BIT(

 z

)

where z = 8 × y and z < 4095 bytes.

 CHAR(

 z

)

where z = 8 × y and z > 4095 bytes.

Mapping levels 1.2 and higher:

 CHAR(

 y

)

<xsd:simpleType>
 <xsd:restriction base="xsd:byte">
 </xsd:restriction>
</xsd:simpleType>

All mapping levels:
Enterprise PL/I

SIGNED FIXED BINARY (7)
Other PL/I

FIXED BINARY (7)

<xsd:simpleType>
 <xsd:restriction base="xsd:unsignedByte">
 </xsd:restriction>
</xsd:simpleType>

All mapping levels:
Enterprise PL/I

UNSIGNED FIXED BINARY (8)
Other PL/I

FIXED BINARY (8)

Chapter 5. Developing with XML 455

Table 27. Mapping reference for XML schema types (continued)

Schema PL/I data description

<xsd:simpleType>
 <xsd:restriction base="xsd:short">
 </xsd:restriction>
</xsd:simpleType>

All mapping levels:
Enterprise PL/I

SIGNED FIXED BINARY (15)
Other PL/I

FIXED BINARY (15)

<xsd:simpleType>
 <xsd:restriction base="xsd:unsignedShort">
 </xsd:restriction>
</xsd:simpleType>

All mapping levels:
Enterprise PL/I

UNSIGNED FIXED BINARY (16)
Other PL/I

FIXED BINARY (16)

<xsd:simpleType>
 <xsd:restriction base="xsd:integer">
 </xsd:restriction>
</xsd:simpleType>

All mapping levels:
Enterprise PL/I

FIXED DECIMAL(31,0)
Other PL/I

FIXED DECIMAL(15,0)

<xsd:simpleType>
 <xsd:restriction base="xsd:int">
 </xsd:restriction>
</xsd:simpleType>

All mapping levels:
Enterprise PL/I

SIGNED FIXED BINARY (31)
Other PL/I

FIXED BINARY (31)

<xsd:simpleType>
 <xsd:restriction base="xsd:unsignedInt">
 </xsd:restriction>
</xsd:simpleType>

All mapping levels:
Enterprise PL/I

UNSIGNED FIXED BINARY(32)
Other PL/I

BIT(64)

456 CICS TS for z/OS: Using Web Services with CICS

Table 27. Mapping reference for XML schema types (continued)

Schema PL/I data description

<xsd:simpleType>
 <xsd:restriction base="xsd:long">
 </xsd:restriction>
</xsd:simpleType>

Mapping level 1.1 and below:
Enterprise PL/I

SIGNED FIXED BINARY(63)

Note: The LIMITS compiler directive might affect
how the PL/I compiler interprets this field. CICS
expects the field to be of the declared size, but the
compiler might optimize the field into a smaller
space, which can result in a mismatch. To avoid
such problems, use the LIMITS(FIXEDBIN(63))
compile-time option.

Mapping level 1.2 and higher:
Enterprise PL/I

CHAR(y)

where y is a fixed length that is less than 16 MB.

All mapping levels:
Other PL/I

BIT(64)

<xsd:simpleType>
 <xsd:restriction base="xsd:unsignedLong">
 </xsd:restriction>
</xsd:simpleType>

Mapping level 1.1 and below:
Enterprise PL/I

UNSIGNED FIXED BINARY(64)

Note: The LIMITS compiler directive might affect
how the PL/I compiler interprets this field. CICS
expects the field to be of the declared size, but the
compiler might optimize the field into a smaller
space, which can result in a mismatch. To avoid
such problems, use the LIMITS(FIXEDBIN(63))
compile-time option.

Mapping level 1.2 and higher:
Enterprise PL/I

CHAR(y)

where y is a fixed length that is less than 16 MB.

All mapping levels:
Other PL/I

BIT(64)

Chapter 5. Developing with XML 457

Table 27. Mapping reference for XML schema types (continued)

Schema PL/I data description

<xsd:simpleType>
 <xsd:restriction base="xsd:boolean">
 </xsd:restriction>
</xsd:simpleType>

Mapping level 1.1 and below:
Enterprise PL/I

SIGNED FIXED BINARY (7)
Other PL/I

FIXED BINARY (7)

Mapping level 1.2 and higher:
Enterprise PL/I

BIT(7)
BIT(1)

Other PL/I
BIT(7)
BIT(1)

where BIT(7) is provided for alignment and BIT(1)
contains the Boolean mapped value.

<xsd:simpleType>
 <xsd:restriction base="xsd:decimal">
 <xsd:totalDigits value="n"/>
 <xsd:fractionDigits value="m"/>
 </xsd:restriction>
</xsd:simpleType>

All mapping levels:

FIXED DECIMAL(n , m)

<xsd:simpleType>
 <xsd:list>
 <xsd:simpleType>
 <xsd:restriction base="xsd:int"/>
 </xsd:simpleType>
 </xsd:list>
</xsd:simpleType>

All mapping levels:

CHAR(255)

<xsd:simpleType>
 <xsd:union memberTypes="xsd:int
xsd:string"/>
</xsd:simpleType>

All mapping levels:

CHAR(255)

458 CICS TS for z/OS: Using Web Services with CICS

Table 27. Mapping reference for XML schema types (continued)

Schema PL/I data description

<xsd:simpleType>
 <xsd:restriction base="xsd:base64Binary">
 <xsd:length value="y"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType>
 <xsd:restriction base="xsd:base64Binary">
 </xsd:restriction>
</xsd:simpleType>

where the length is not defined

Mapping level 1.0:

Not supported

Mapping level 1.1:

 CHAR(

 z

)

where z =4×(ceil(y /3)). ceil(x) is the smallest integer
greater than or equal to x.

Mapping level 1.2 and higher:

 CHAR(

 y

)

where the length is fixed.

 CHAR(16)

where the length is not defined. The field holds the
16-byte name of the container that stores the binary
data.

Chapter 5. Developing with XML 459

Table 27. Mapping reference for XML schema types (continued)

Schema PL/I data description

<xsd:simpleType>
 <xsd:restriction base="xsd:float">
 </xsd:restriction>
</xsd:simpletype>

Mapping levels 1.0 and 1.1:

 CHAR(32)

Mapping level 1.2 and higher:
Enterprise PL/I

DECIMAL FLOAT(6) HEXADEC
Other PL/I

DECIMAL FLOAT(6)

Note: The IBM Hexadecimal Floating Point (HFP) data
representation is not exactly the same as the
IEEE-754-1985 representation that is used for XML.
Some values might not convert exactly from one
representation to the other. Some extremely large or
small values might not be valid for xsd:float data
types. Some values might lose precision when
converted to or from HFP representation. If precise
conversions are important, consider replacing use of
DECIMAL FLOAT data types with fixed precision
alternatives.

<xsd:simpleType>
 <xsd:restriction base="xsd:double">
 </xsd:restriction>
</xsd:simpletype>

Mapping levels 1.0 and 1.1:

 CHAR(32)

Mapping level 1.2 and higher:
Enterprise PL/I

DECIMAL FLOAT(16) HEXADEC
Other PL/I

DECIMAL FLOAT(16)

Note: The IBM Hexadecimal Floating Point (HFP) data
representation is not exactly the same as the
IEEE-754-1985 representation that is used for XML.
Some values might not convert exactly from one
representation to the other. Some extremely large or
small values might not be valid for xsd:double data
types. Some values might lose precision when
converted to or from HFP representation. If precise
conversions are important, consider replacing use of
DECIMAL FLOAT data types with fixed precision
alternatives.

Variable arrays of elements
XML can contain an array with varying numbers of elements. In general, WSDL documents and XML
schemas that contain varying numbers of elements do not map efficiently into a single high-level

460 CICS TS for z/OS: Using Web Services with CICS

language data structure. CICS uses container-based mappings or inline mappings to handle varying
numbers of elements in XML.

An array with a varying number of elements is represented in the XML schema by using the minOccurs
and maxOccurs attributes on the element declaration:

• The minOccurs attribute specifies the minimum number of times that the element can occur. It can
have a value of 0 or any positive integer.

• The maxOccurs attribute specifies the maximum number of times that the element can occur. It can
have a value of any positive integer greater than or equal to the value of the minOccurs attribute. It can
also take a value of unbounded , which indicates that no upper limit applies to the number of times the
element can occur.

• The default value for both attributes is 1.

Example: Denoting an 8-byte string that is optional

This example denotes an 8-byte string that is optional; that is, it can occur never or once in the
application XML or SOAP message:

<xsd:element name="component"
 minOccurs="0" maxOccurs="1">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:length value="8"/>
 </xsd:restriction>
 </xsd:simpleType>
</xsd:element>

Example: Denoting an 8-byte string that must occur

The following example denotes an 8-byte string that must occur at least once:

<xsd:element name="component"
 minOccurs="1" maxOccurs="unbounded">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:length value="8"/>
 </xsd:restriction>
 </xsd:simpleType>
</xsd:element>

In general, WSDL documents that contain varying numbers of elements do not map efficiently into a
single high-level language data structure. Therefore, to handle these cases, CICS uses a series of
connected data structures that are passed to the application program in a series of containers. These
structures are used as input and output from the application:

• When CICS transforms XML to application data, it populates these structures with the application data
and the application reads them.

• When CICS transforms the application data to XML, it reads the application data in the structures that
have been populated by the application.

The format of these data structures is best explained with a series of examples. The XML can be from a
SOAP message or from an application. These examples use an array of simple 8-byte fields. However, the
model supports arrays of complex data types and arrays of data types that contain other arrays.

Fixed number of elements
Example: An element that occurs exactly three times

The following example illustrates an element that occurs exactly three times:

<xsd:element name="component"
 minOccurs="3" maxOccurs="3">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">

Chapter 5. Developing with XML 461

 <xsd:length value="8"/>
 </xsd:restriction>
 </xsd:simpleType>
</xsd:element>

In this example, because the number of times that the element occurs is known in advance, it can be
represented as a fixed-length array in a simple COBOL declaration (or the equivalent in other
languages):

05 component PIC X(8) OCCURS 3 TIMES

Varying number of elements at mapping level 2 and below
Example: a mandatory element that can occur from one to five times

This example illustrates a mandatory element that can occur from one to five times:

<xsd:element name="component"
 minOccurs="1" maxOccurs="5">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:length value="8"/>
 </xsd:restriction>
 </xsd:simpleType>
</xsd:element>

The main data structure contains a declaration of two fields. When CICS transforms the XML to binary
data, the first field component-num contains the number of times that the element appears in the
XML, and the second field, component-cont , contains the name of a container:

05 component-num PIC S9(9) COMP-5
05 component-cont PIC X(16)

A second data structure contains the declaration of the element itself:

01 DFHWS-component
02 component PIC X(8)

You must examine the value of component-num (which will contain a value in the range 1 to 5) to find
out how many times the element occurs. The element contents are in the container named in
component-cont ; the container holds an array of elements, where each element is mapped by the
DFHWS-component data structure.

If minOccurs="0" and maxOccurs="1", the element is optional. To process the data structure in your
application program, you must examine the value of component-num :

• If it is zero, the message has no component element and the contents of component-cont is
undefined.

• If it is one, the component element is in the container named in component-cont.

The contents of the container are mapped by the DFHWS-component data structure.

Note: If the SOAP message consists of a single recurring element, DFHWS2LS generates two language
structures. The main language structure contains the number of elements in the array and the name of a
container which holds the array of elements. The second language structure maps a single instance of the
recurring element.

Varying number of elements at mapping level 2.1 and above

At mapping level 2.1 and above, you can use the INLINE-MAXOCCURS-LIMIT parameter in the CICS
assistants. The INLINE-MAXOCCURS-LIMIT parameter specifies the way that varying numbers of
elements are handled. The mapping options for varying numbers of elements are container-based
mapping, described in “Varying number of elements at mapping level 2 and below” on page 462 , or inline
mapping. The value of this parameter can be a positive integer in the range 0 - 32767:

462 CICS TS for z/OS: Using Web Services with CICS

• The default value of INLINE-MAXOCCURS-LIMIT is 1 , which ensures that optional elements are
mapped inline.

• A value of 0 for the INLINE-MAXOCCURS-LIMIT parameter prevents inline mapping.
• If maxOccurs is less than or equal to the value of INLINE-MAXOCCURS-LIMIT , inline mapping is

used.
• If maxOccurs is greater than the value of INLINE-MAXOCCURS-LIMIT , container-based mapping is

used.

Mapping varying numbers of elements inline results in the generation of both an array, as happens with
the fixed occurrence example above, and a counter. The component-num field indicates how many
instances of the element are present, and these are pointed to by the array. For the example shown in
“Varying number of elements at mapping level 2 and below” on page 462 , when INLINE-MAXOCCURS-
LIMIT is less than or equal to 5, the generated data structure is like this:

05 component-num PIC S9(9) COMP-5 SYNC.
05 component OCCURS 5 PIC X(8).

The first field, component-num , is identical to the output for the container-based mapping example in
the previous section. The second field contains an array of length 5 which is large enough to contain the
maximum number of elements that can be generated.

Inline mapping differs from container-based mapping, which stores the number of occurrences of the
element and the name of the container where the data is placed, because it stores all the data in the
current container. Storing the data in the current container will generally improve performance and make
inline mapping preferable.

Nested variable arrays

Complex WSDL documents and XML schemas can contain variably recurring elements, which in turn
contain variably recurring elements. In this case, the structure described extends beyond the two levels
described in the examples.

Example: Nested variable arrays

This example illustrates an optional element called <component2> that is nested in a mandatory
element called <component1> , where the mandatory element can occur from one to five times:

<xsd:element name="component1"
 minOccurs="1" maxOccurs="5">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="component2"
 minOccurs="0" maxOccurs="1">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:length value="8"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

The top-level data structure is exactly the same as in the previous examples:

05 component1-num PIC S9(9) COMP-5
05 component1-cont PIC X(16)

However, the second data structure contains these elements:

01 DFHWS-component1
02 component2-num PIC S9(9) COMP-5
02 component2-cont PIC X(16)

A third-level structure contains these elements:

Chapter 5. Developing with XML 463

01 DFHWS-component2
02 component2 PIC X(8)

The number of occurrences of the outermost element <component1> is in component1-num.

The container named in component1-cont contains an array with that number of instances of the
second data structure DFHWS-component1.

Each instance of component2-cont names a different container, each of which contains the data
structure mapped by the third-level structure DFHWS-component2.

To illustrate this structure, consider the fragment of XML that matches the example:

<component1><component2>
string1
</component2></component1>
<component1><component2>
string2
</component2></component1>
<component1></component1>

<component1> occurs three times. The first two each contain an instance of <component2> ; the
third instance does not.

In the top-level data structure, component1-num contains a value of 3. The container named in
component1-cont has three instances of DFHWS-component1:

1. In the first, component2-num has a value of 1, and the container named in component2-cont
holds string1.

2. In the second, component2-num has a value of 1, and the container named in component2-cont
holds string2.

3. In the third, component2-num has a value of 0, and the contents of component2-cont are
undefined.

In this instance, the complete data structure is represented by four containers in all:

• The root data structure in container DFHWS-DATA
• The container named in component1-cont
• Two containers named in the first two instances of component2-cont

Optional structures and xsd:choice

DFHWS2LS and DFHSC2LS support the use of maxOccurs and minOccurs on <xsd:sequence>,
<xsd:choice>, and <xsd:all> elements only at mapping level 2.1 and above, where the minOccurs and
maxOccurs attributes are set to minOccurs="0" and maxOccurs="1".

The assistants generate mappings that treat these elements as though each child element in them is
optional. When you implement an application with these elements, ensure that invalid combinations of
options are not generated by the application. Each of the elements has its own count field in the
generated languages structure, these fields must either all be set to "0" or all be set to "1". Any other
combination of values is invalid, except for with <xsd:choice> elements.

<xsd:choice> elements indicate that only one of the options in the element can be used. It is supported at
all mapping levels. The assistants handle each of the options in an <xsd:choice> as though it is in an
<xsd:sequence> element with minOccurs="0" and maxOccurs="1". Take care when you implement an
application using the <xsd:choice> element to ensure that invalid combinations of options are not
generated by the application. Each of the elements has its own count field in the generated languages
structure, exactly one of which must be set to '1' and the others must all be set to '0'. Any other
combination of values is invalid, except when the <xsd:choice> element is itself optional, in which case it
is valid for all the fields to be set to '0'.

464 CICS TS for z/OS: Using Web Services with CICS

Support for variable-length values and white space
You can customize the way in which variable-length values and white space are handled by using settings
on the CICS assistants and by adding facets directly into the XML schema.

Typically, the CICS XML assistant and the CICS Web services assistant map data strings to fixed-length
character arrays; these arrays require padding with spaces or nulls. Mapping variable-length values to
fixed-length data arrays can be inefficient and waste storage. If the length of your data is variable, you are
recommended to customize the way these mappings are handled.

If you are converting from a language structure to an XML schema or WSDL document, you are
recommended to specify the whiteSpace and maxLength facets in your XML schema and to set the
CHAR-VARYING-LIMIT parameter on the assistants.

If you are converting from an XML schema or WSDL document to a language structure, you are
recommended to set an appropriate value for the CHAR-VARYING parameter on the assistants.

Note: Null characters ('x00') are not valid in XML documents. Any null characters from application data
parsed by CICS are seen to signify the end of a string and the value is truncated. When CICS generates
application data it does so according to the value of the CHAR-VARYING parameter. For example, if the
CHAR-VARYING=NULL option is specified, variable-length strings generated by CICS are ended with a null
character.

Mapping variable-length values from XML to language structures

Use facets in the XML schema or specify certain parameters on the CICS assistants to customize the way
in which mappings between your XML schema or WSDL document and the language structure are
handled.

XML data types can be restricted using facets. Use the length facets (length , maxLength , and
minLength) and the whiteSpace facet to customize how variable-length data in your XML is handled.
length

Used to specify that the data is of fixed length.
maxLength

Used to specify the maximum length for the data type. If this value is not set for a string-based data
type, the maximum length is unbounded.

minLength
Used to specify the minimum length for the data type. If this value is not set for a string-based data
type, the minimum length is 0.

whiteSpace
Used to specify how white space around a data value is handled. White space includes spaces, tabs,
and new lines. The whiteSpace facet can be set to preserve , replace , or collapse :

• A value of preserve maintains any white space in the data value.
• A value of replace means that any tabs or new lines are replaced with the appropriate number of

spaces.
• A value of collapse means that leading, trailing, and embedded white space is removed and that

all tabs, new lines, and consecutive spaces are replaced with single space characters.

If the whiteSpace facet is not set, white space is preserved.
For more information about XML schema facets, see XML Schema Part 2: Datatypes Second Edition.

The following parameters on the CICS assistants, DFHSC2LS and DFHWS2LS, can be used to alter the
way that variable-length data is mapped from the XML schema to the language structure. These
parameters are available at mapping level 1.2 or higher.
DEFAULT-CHAR-MAXLENGTH

Specifies the default array length of character data in characters for mappings where no length is
implied in the XML schema or WSDL document. The value of this parameter can be a positive integer
in the range of 1 - 2 147 483 647.

Chapter 5. Developing with XML 465

https://www.w3.org/TR/xmlschema-2/

However, you are recommended to specify the maximum character length that you want DFHSC2LS
or DFHWS2LS to use directly in your XML schema or WSDL document with the maxLength facet.
Specifying the maximum length directly in the XML schema or WSDL document avoids problems
associated with having one global default applied to all string-based data types.

CHAR-VARYING-LIMIT
Specifies the maximum size of variable-length character data that is mapped to the language
structure. If the character data is larger than the value specified in this parameter, it is mapped to a
container and the container name is used in the generated language structure. The value can range
from 0 to the default 32 767 bytes.

CHAR-VARYING
Specifies how variable-length character data is mapped. If you do not specify this parameter, the
default mapping depends on the language specified. You can select these options:

• CHAR-VARYING=NO specifies that variable-length character data is mapped as fixed-length strings.
• CHAR-VARYING=NULL specifies that variable-length character data is mapped to null-terminated

strings.
• CHAR-VARYING=YES specifies that variable-length character data is mapped to a CHAR VARYING

data type in PL/I. In the COBOL, C, and C++ languages, variable-length character data is mapped to
an equivalent representation that comprises two related elements: data-length and the data.

Setting CHAR-VARYING=YES typically results in the best performance.

Mapping variable-length values from language structures to XML

You can customize the way in which mappings between your language structure and the XML schema, or
WSDL document are handled. Set the CHAR-VARYING parameter on DFHLS2SC or DFHLS2WS, to
COLLAPSE or NULL to change the way that character arrays are generated.

Setting the CHAR-VARYING=NULL option tells CICS to add a null character at the end of each character
array when generating XML.

Setting the CHAR-VARYING=COLLAPSE option tells CICS to automatically remove any trailing spaces
from the end of character arrays when generating XML. This option is available only at mapping level 2.1
or higher and CHAR-VARYING=COLLAPSE is the default value at mapping level 2.1 or higher for all
languages other than C and C++. When the XML is parsed, all leading, trailing, and embedded white space
is removed.

Support for XML attributes
XML schemas can specify attributes that are allowed or required in XML. The CICS assistant utilities
DFHWS2LS and DFHSC2LS ignore XML attributes by default. To process XML attributes that are defined in
the XML schema, the value of the MAPPING-LEVEL parameter must be 1.1 or higher.

Optional attributes

Attributes can be optional or required and can be associated with any element in a SOAP message or XML
for an application. For every optional attribute defined in the schema, two fields are generated in the
appropriate language structure:

1. An existence flag; this field is treated as a Boolean data type and is typically 1 byte in length.
2. A value; this field is mapped in the same way as an equivalently typed XML element. For example, an

attribute of type NMTOKEN is mapped in the same way as an XML element of type NMTOKEN.

The attribute existence and value fields appear in the generated language structure before the field for
the element with which they are associated. Unexpected attributes that appear in the instance document
are ignored.

466 CICS TS for z/OS: Using Web Services with CICS

Example

For example, consider the following schema attribute definition:

<xsd:attribute name="age" type="xsd:short"
use="optional" />

This optional attribute maps to the following COBOL structure:

05 attr-age-exist PIC X DISPLAY
05 attr-age-value PIC S9999 COMP-5 SYNC

Runtime processing of optional attributes

The following runtime processing takes place for optional attributes:

• If the attribute is present, the existence flag is set and the value is mapped.
• If the attribute is not present, the existence flag is not set.
• If the attribute has a default value and is present, the value is mapped.
• If the attribute has a default value and is not present, the default value is mapped.

Optional attributes that have default values are treated as required attributes.

When CICS transforms the data to XML, the following runtime processing takes place:

• If the existence flag is set, the attribute is transformed and included in the XML.
• If the existence flag is not set, the attribute is not included in the XML.

Required attributes and runtime processing

For every attribute that is required, only the value field is generated in the appropriate language structure.

If the attribute is present in the XML, the value is mapped. If the attribute is not present, the following
processing occurs:

• If the application is a web service provider, CICS generates a SOAP fault message indicating an error in
the client SOAP message.

• If the application is a web service requester, CICS issues a message and returns a conversion error
response with a RESP2 code of 13 to the application.

• If the application is using the TRANSFORM XMLTODATA command, CICS issues a message and returns
an invalid request response with a RESP2 code of 3 to the application.

When CICS produces a SOAP message based on the contents of a COMMAREA or container, the attribute
is transformed and included in the message. When an application uses the TRANSFORM DATATOXML
command, CICS also transforms the attribute and includes it in the XML.

The nillable attribute

The nillable attribute is a special attribute that can appear on an xsd:element in an XML schema. It
specifies that the xsi:nil attribute is valid for the element in XML. If an element has the xsi:nil
attribute specified, it indicates that the element is present but has no value, and therefore no content is
associated with it.

If an XML schema has defined the nillable attribute as true, it is mapped as a required attribute that takes
a Boolean value.

When CICS receives a SOAP message or has to transform XML for an application that contains an
xsi:nil attribute, the value of the attribute is true or false. If the value is true, the application must
ignore the values of the element or nested elements in the scope of the xsi:nil attribute.

When CICS produces a SOAP message or XML based on the contents of a COMMAREA or container for
which the value for the xsi:nil attribute is true, the following processing occurs:

Chapter 5. Developing with XML 467

• The xsi:nil attribute is generated into the XML or SOAP message.
• The value of the associated element is ignored.
• Any nested elements within the element are ignored.

Example: SOAP message

Consider the following example XML schema, which could be part of a WSDL document:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="root" nillable=”true”>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element nillable="true" name="num" type="xsd:int" maxOccurs=”3”
 minOccurs=”3”/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Here is an example of a partial SOAP message that conforms to this schema:

<root xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<num xsi:nil="true"/>
<num>15</num>
<num xsi:nil=”true”/>
</root>

In COBOL, this SOAP message maps to these elements:

05 root
10 attr-nil-root-value PIC X DISPLAY
10 num OCCURS 3
15 num1 PIC S9(9) COMP-5 SYNC
15 attr-nil-num-value PIC X DISPLAY
10 filler PIC X(3)

Support for <xsd:any> and xsd:anyType
DFHWS2LS and DFHSC2LS support the use of <xsd:any> and xsd:anyType in the XML schema. You
can use the <xsd:any> XML schema element to describe a section of an XML document with undefined
content. xsd:anyType is the base data type from which all simple and complex data types are derived; it
has no restrictions or constraints on the data content.

Prerequisite

Before you can use <xsd:any> and xsd:anyType with the CICS assistants, set the following
parameters:

• Set the MAPPING-LEVEL parameter to 2.1 or higher.
• For a web service provider application, set the PGMINT parameter to CHANNEL.

<xsd:any> example

This example uses an <xsd:any> element to describe some optional unstructured XML content following
the "Surname" tag in the "Customer" tag:

<xsd:element name="Customer">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Title" type="xsd:string"/>
 <xsd:element name="FirstName" type="xsd:string"/>
 <xsd:element name="Surname" type="xsd:string"/>
 <xsd:any minOccurs="0"/>
 </xsd:sequence>

468 CICS TS for z/OS: Using Web Services with CICS

 </xsd:complexType>
</xsd:element>

An example SOAP message that conforms to this XML schema is:

<xml version='1.0' encoding='UTF-8'?>
 <SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <Customer xmlns="http://www.example.org/anyExample">
 <Title xmlns="">Mr</Title>
 <FirstName xmlns="">John</FirstName>
 <Surname xmlns="">Smith</Surname>
 <ExtraInformation xmlns="http://www.example.org/ExtraInformation">
 <!-- This 'ExtraInformation' tag is associated with the optional xsd:any
 from the XML schema.
 It can contain any well formed XML. -->
 <ExampleField1>one</ExampleField1>
 <ExampleField2>two</ExampleField2>
 </ExtraInformation>
 </Customer>
 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>

If this SOAP message is sent to CICS , CICS populates the Customer-xml-cont container with the
following XML data:

<ExtraInformation xmlns="http://www.example.org/ExtraInformation">
<!-- This 'ExtraInformation' tag is associated with the optional xsd:any
 from the XML schema. It can contain any well formed XML. -->
 <ExampleField1>one</ExampleField1>
 <ExampleField2>two</ExampleField2>
</ExtraInformation>

CICS also populates the Customer-xmlns-cont container with the following XML namespace
declarations that are in scope; these declarations are separated by a space:

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns="http://www.example.org/anyExample"

xsd:anyType example

The xsd:anyType is the base data type from which all simple and complex data types are derived. It
does not restrict the data content. If you do not specify a data type, it defaults to xsd:anyType. For
example, these two XML fragments are equivalent:

<xsd:element name="Name" type="xsd:anyType"/>

<xsd:element name="Name"/>

Generated language structures

The language structures generated for <xsd:any> or xsd:anyType take the following form in COBOL
and an equivalent form for the other languages:

elementName-xml-cont PIC X(16)
The name of a container that holds the raw XML. When CICS processes an incoming SOAP message, it
places the subset of the SOAP message that the <xsd:any> or xsd:anyType defines into this
container. The application can process the XML data only natively. The application must generate the
XML, populate this container, and supply the container name.

This container must be populated in text mode. If CICS populates this container, it does so using the
same variant of EBCDIC as the web service is defined to use. Characters that do not exist in the target

Chapter 5. Developing with XML 469

EBCDIC code page are replaced with substitute characters, even if the container is read by the
application in UTF-8.

elementName-xmlns-cont PIC X(16)
The name of a container that holds any namespace prefix declarations that are in scope. The contents
of this container are similar to those of the DFHWS-XMLNS container, except that it includes all the
namespace declarations that are in scope and that are relevant, rather than only the subset from the
SOAP Envelope tag.

This container must be populated in text mode. If CICS populates this container, it does so using the
same variant of EBCDIC as the web service is defined to use. Characters that do not exist in the target
EBCDIC code page are replaced with substitute characters, even if the container is read by the
application in UTF-8.

This container is used only when processing SOAP messages sent to CICS. If the application tries to
supply a container with namespace declarations when an output SOAP message is generated, the
container and its contents are ignored by CICS. CICS requires that the XML supplied by the application
is entirely self-contained with respect to namespace declarations.

The name of the XML element that contains the <xsd:any> element is included in the variable names
that are generated for the <xsd:any> element. In the <xsd:any> example, the <xsd:any> element is
nested inside the <xsd:element name="Customer"> element and the variable names that are
generated for the <xsd:any> element are Customer-xml-cont PIC X(16) and Customer-xmlns-
cont PIC X(16).

For an xsd:anyType type, the direct XML element name is used; in the xsd:anyType example above,
the variable names are Name-xml-cont PIC X(16) and Name-xmlns-cont PIC X(16).

Support for <xsd:choice>
An <xsd:choice> element indicates that only one of the options in the element can be used. The CICS
assistants provide varying degrees of support for <xsd:choice> elements at the various mapping levels.

Support for <xsd:choice> at mapping level 2.2 and higher

At mapping level 2.2 and higher, DFHWS2LS and DFHSC2LS provide improved support for
<xsd:choice> elements. The assistants generate a new container that stores the value associated with
the <xsd:choice> element. The assistants generate language structures containing the name of a new
container and an extra field:

fieldname -enum
The discriminating field to indicate which of the options the <xsd:choice> element will use.

fieldname -cont
The name of the container that stores the option to be used. A further language structure is generated
to map the value of the option.

Example

The following XML schema fragment includes an <xsd:choice> element:

<xsd:element name="choiceExample">
<xsd:complexType>
<xsd:choice>
<xsd:element name="option1" type="xsd:string" />
<xsd:element name="option2" type="xsd:int" />
<xsd:element name="option3" type="xsd:short" maxOccurs="2" minOccurs="2" />
</xsd:choice>
</xsd:complexType>
</xsd:element>

If this XML schema fragment is processed at mapping level 2.2 or higher, the assistant generates the
following COBOL language structures:

 03 choiceExample.
06 choiceExample-enum PIC X DISPLAY.
88 empty VALUE X'00'.
88 option1 VALUE X'01'.

470 CICS TS for z/OS: Using Web Services with CICS

88 option2 VALUE X'02'.
88 option3 VALUE X'03'.
06 choiceExample-cont PIC X(16).

01 Example-option1.
03 option1-length PIC S9999 COMP-5 SYNC.
03 option1 PIC X(255).

01 Example-option2.
03 option2 PIC S9(9) COMP-5 SYNC.

01 Example-option3.
03 option3 OCCURS 2 PIC S9999 COMP-5 SYNC.

Limitations for <xsd:choice> at mapping level 2.2 and higher

DFHSC2LS and DFHWS2LS do not support nested <xsd:choice> elements. For example, the following
XML is not supported:

<xsd:choice>
 <xsd:element name ="name1" type="string"/>
 <xsd:choice>
 <xsd:element name ="name2a" type="string"/>
 <xsd:element name ="name2b" type="string"/>
 </xsd:choice>
</xsd:choice>

DFHSC2LS and DFHWS2LS do not support recurring <xsd:choice> elements. For example, the
following XML is not supported:

<xsd:choice maxOccurs="2">
 <xsd:element name ="name1" type="string"/>
</xsd:choice>

DFHSC2LS and DFHWS2LS support a maximum of 255 options in an <xsd:choice> element.

Support for <xsd:choice> at mapping level 2.1 and below

At mapping level 2.1 and below, DFHWS2LS provides limited support for <xsd:choice> elements.
DFHWS2LS treats each of the options in an <xsd:choice> element as though it is an <xsd:sequence>
element that can occur at most once.

Only one of the options in an <xsd:choice> element can be used, so take care when you implement an
application using the <xsd:choice> element that you generate only valid combinations of options. Each
of the elements has its own count field in the generated languages structure, exactly one of which must
be set to 1 and the others must all be set to 0. Any other combination of values is incorrect, except when
the <xsd:choice> is itself optional, in which case it is valid for all of the fields to be set to 0.

Support for <xsd:sequence>
The use of <xsd:sequence> elements with the CICS assistants is supported with a number of limitations.

The use of minOccurs and maxOccurs attributes are not supported for the <xsd:sequence> element.
The exceptions to this rule are when minOccurs="0" and maxOccurs="1" or minOccurs="1" and
maxOccurs="1".

The CICS assistants do not allow two elements with the same name to be used in the same
<xsd:sequence> element. For example, the sequence {a, b, c, a} is rejected by the CICS Assistants.
To avoid this limitation, replace the sequence with {a maxOccurs="2", b, c}.

The CICS Assistants allow only one <xsd:any> element, or one element that is treated as an <xsd:any> in
the same <xsd:sequence> element. Elements that are treated as <xsd:any> elements include abstract
elements that do not have a substitution group defined.

When parsing XML, CICS treats <xsd:sequence> elements like <xsd:all> elements; this means that CICS
does not check whether the order of the items in the sequence is correct. For example, if the schema

Chapter 5. Developing with XML 471

defines a sequence of {a, b, c} , CICS tolerates XML that contains a, b, and c in any order. However;
when CICS generates XML, the order of items in an <xsd:sequence> is always preserved.

CICS does not automatically detect missing XML data. For example, if an element in the <xsd:sequence>
is defined as mandatory, (minOccurs="1" maxOccurs="1"), but does not occur in the XML document,
CICS will report this problem only if runtime validation is enabled

Support for substitution groups
You can use a substitution group to define a group of XML elements that are interchangeable. The CICS
assistants provide support for substitution groups at mapping level 2.2 and higher.

At mapping level 2.2 and higher, DFHSC2LS and DFHWS2LS support substitution groups using similar
mappings to those used for <xsd:choice> elements. The assistant generates an enumeration field and
a new container name in the language structure.

Example

The following XML schema fragment includes an array of two subGroupParent elements, each of
which can be replaced with replacementOption1 or replacementOption2:

<xsd:element name="subGroupExample">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="subGroupParent" maxOccurs="2" minOccurs="2" />
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>
<xsd:element name="subGroupParent" type="xsd:anySimpleType" />
<xsd:element name="replacementOption1" type="xsd:int"
 substitutionGroup="subGroupParent" />
<xsd:element name="replacementOption2" type="xsd:short"
 substitutionGroup="subGroupParent" />

Processing this XML fragment with the assistant generates the following COBOL language structures:

03 subGroupExample.
06 subGroupParent OCCURS2.
09 subGroupExample-enum PIC X DISPLAY.
88 empty VALUE X '00'.
88 replacementOption1 VALUE X '01'.
88 replacementOption2 VALUE X '02'.
88 subGroupParent VALUE X '03'.
09 subGroupExample-cont PIC X (16).

01 Example-replacementOption1.
03 replacementOption1 PIC S9(9) COMP-5 SYNC.

01 Example-replacementOption2.
03 replacementOption2 PIC S9999 COMP-5 SYNC.

01 Example-subGroupParent.
03 subGroupParent-length PIC S9999 COMP-5 SYNC.
03 subGroupParent PIC X(255).

For more information about substitution groups, see XML Schema Part 1: Structures Second Edition.

Support for abstract elements and abstract data types
The CICS assistants provide support for abstract elements and abstract data types at mapping level 2.2
and higher. The CICS assistants map abstract elements and abstract data types in a similar way to
substitution groups.

Support for abstract elements at mapping level 2.2 and higher

At mapping level 2.2 and above, DFHSC2LS and DFHWS2LS treat abstract elements in almost the same
way as substitution groups except that the abstract element is not a valid member of the group. If there

472 CICS TS for z/OS: Using Web Services with CICS

https://www.w3.org/TR/xmlschema-1/

are no substitutable elements, the abstract element is treated as an <xsd:any> element and uses the
same mappings as an <xsd:any> element at mapping level 2.1.

Example

The following XML schema fragment specifies two options that can be used in place of the abstract
element. The abstract element itself is not a valid option:

<xsd:element name="abstractElementExample" >
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="abstractElementParent"
 maxOccurs="2" minOccurs="2" />
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

<xsd:element name="abstractElementParent" type="xsd:anySimpleType"
 abstract="true" />
<xsd:element name="replacementOption1" type="xsd:int"
 substitutionGroup="abstractElementParent" />
<xsd:element name="replacementOption2" type="xsd:short"
 substitutionGroup="abstractElementParent" />

Processing this XML fragment with the assistant generates the following COBOL language structures:

 03 abstractElementExample.
06 abstractElementParent OCCURS 2.
09 abstractElementExample-enum PIC X DISPLAY.
88 empty VALUE X '00'.
88 replacementOption1 VALUE X '01'.
88 replacementOption2 VALUE X '02'.
09 abstractElementExample-cont PIC X (16).

01 Example-replacementOption1.
03 replacementOption1 PIC S9(9) COMP-5 SYNC.

01 Example-replacementOption2.
03 replacementOption2 PIC S9999 COMP-5 SYNC.

For more information about abstract elements, see XML Schema Part 0: Primer Second Edition.

Support for abstract data types at mapping level 2.2 and higher

At mapping level 2.2 and higher, DFHSC2LS and DFHWS2LS treat abstract data types as substitution
groups. The assistant generates an enumeration field and a new container name in the language
structure.

Example

The following XML schema fragment specifies two alternatives that can be used in place of the
abstract type:

<xsd:element name="AbstractDataTypeExample"
type="abstractDataType" />

<xsd:complexType name="abstractDataType" abstract="true">
 <xsd:simpleContent>
 <xsd:extension base="xsd:string" />
 </xsd:simpleContent>
</xsd:complexType>
<xsd:complexType name="option1">
 <xsd:simpleContent>
 <xsd:restriction base="abstractDataType">
 <xsd:length value="5" />
 </xsd:restriction>
 </xsd:simpleContent>
</xsd:complexType>
<xsd:complexType name="option2">
 <xsd:simpleContent>
 <xsd:restriction base="abstractDataType">

Chapter 5. Developing with XML 473

https://www.w3.org/TR/xmlschema-0/

 <xsd:length value="10" />
 </xsd:restriction>
 </xsd:simpleContent>
</xsd:complexType>

Processing this XML fragment with the assistant generates the following COBOL language structures:

 03 AbstractDataTypeExamp-enum PIC X DISPLAY.
88 empty VALUE X'00'.
88 option1 VALUE X'01'.
88 option2 VALUE X'02'.
03 AbstractDataTypeExamp-cont PIC X(16).

The language structures are generated into separate copy books. The language structure generated
for option1 is generated into one copybook:

 03 option1 PIC X(5).

The language structure for option2 is generated into a different copybook:

 03 option2 PIC X(10).

For more information about abstract data types, see XML Schema Part 0: Primer Second Edition.

Support for UTF-16 in application data
CICS web services support conversion of UTF-16 encoded application data into XML or JSON and also
XML or JSON into UTF-16 encoded application data. Use UTF-16 when you need to store and process
data in multiple languages.

CICS SOAP and JSON web services support conversion of UTF-16 encoded application data into XML or
JSON and also XML or JSON into UTF-16 encoded application data. Unicode is a variable-width encoding
scheme that enables systems to handle data efficiently.

UTF-16 is a variable width encoding for Unicode, where each character is represented by 2 or 4 bytes.
CICS web services support CCSID 1200 for application data, which is UTF-16 BE (big endian) with IBM
Private Use Area. This behavior is consistent with UTF-16 support in all supported languages.

UTF-16 is supported at mapping level 4.0 and upwards. You can customize how application data is
converted by using mapping settings in the assistants. For more information about XML mapping levels,
see Mapping levels for the CICS assistants . For more information about JSON mapping levels, see
Mapping levels for the CICS JSON assistants.

Note: UTF-16 requires more processing time and is less storage efficient than EBCDIC encodings.
Furthermore, mixing encoding types incurs extra runtime processing.

Mapping UTF-16 from XML or JSON schema to language structures

Support for UTF-16 depends on how you create the web service. Mapping XML or JSON schema to
language structures, also known as top-down mapping, has the following characteristics. If UTF-16 is
enabled, all text fields are mapped to UTF-16 fields, whereas numeric display data types in COBOL are
mapped as EBCDIC. To use UTF-16, set the CCSID parameter of DFHJS2LS, DFHSC2LS, or DFHWS2LS to
1200.

For example, if the following XML schema fragment were present in the WSDL:

<xsd:element name="myString" nillable="false">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="20"/>
 </xsd:restriction>
 </xsd:simpleType>
</xsd:element>

474 CICS TS for z/OS: Using Web Services with CICS

https://www.w3.org/TR/xmlschema-0/
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/dfhws_mappinglevels.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/dfhws_mappinglevels_json.html

The DFHWS2LS assistant generates the following field in a COBOL language structure:

myString PIC N(
20
) USAGE NATIONAL

The CHAR-MULTIPLIER parameter of the web services assistants can be used to specify the length of a
field the assistants generate.
CHAR-MULTIPLIER

When you use UTF-16, the only valid values for the CHAR-MULTIPLIER parameter are 2 or 4 , where
2 is the default value.

CHAR-MULTIPLIER = 2 , where the schema describes a string of maxlength x , generates PIC
N(x) . Setting CHAR-MULTIPLIER = 2 does not preclude the use of surrogate pairs in a UTF-16
string, but impacts the number of characters that fit in the field.

CHAR-MULTIPLIER = 4 generates PIC N(2x) . If CHAR-MULTIPLIER = 4 , the value at run time
is padded if the string includes characters that can be expressed in a single encoding unit.

Mapping UTF-16 from language structures to XML or JSON schema

Mapping from a language structure to XML or JSON schema, also known as bottom-up mapping, is
managed differently to top-down mapping. If a UTF-16 string is declared in the language structure, then
the data is interpreted by CICS as UTF-16 encoded, otherwise, data is assumed to be in an EBCDIC
encoding. The CCSID parameter for DFHLS2JS, DFHLS2SC, or DFHLS2WS indicates the encoding of any
EBCDIC text within the application data; it must not be set to indicate UTF-16.

The data types that are interpreted as UTF-16 characters are as follows: PIC N (n) in COBOL,
WIDECHAR(n) in PL/I, and char16_t[n] in C and C++.

The CHAR-USAGE parameter of the web services assistants can be used to specify data types.
CHAR-USAGE

In COBOL, the national data type, PIC N , can be used for UTF-16 or DBCS data. This setting is
controlled by the NSYMBOL compiler option. You must set the CHAR-USAGE parameter on the
assistant to the same value as the NSYMBOL compiler option to ensure that the data is handled
appropriately. This is typically set to CHAR-USAGE=NATIONAL when you use UTF-16.

If you want to mix national data types that contain UTF-16 and DBCS data in the same copybook, you
can use the USAGE NATIONAL or USAGE DISPLAY-1 qualifiers on individual fields.

Note: DFHLS2WS, DFHLS2SC, and DFHLS2JS do not the support the COBOL GROUP USAGE NATIONAL
clause.

Querying XML from an application
You can write an application program to query a fragment of XML before transforming it into application
data.

About this task
If your application is going to process many different types of XML, you might want to query the XML to
determine which XMLTRANSFORM resource to use to transform it to application data. This command
might also be useful if your XML contains <xsd:any> elements.

Procedure

1. In your application program, use the TRANSFORM XMLTODATA API command to query the XML:

EXEC CICS TRANSFORM XMLTODATA
CHANNEL('MyChannelName')

Chapter 5. Developing with XML 475

XMLCONTAINER('SourceContainerName')
ELEMNAME(elementName) ELEMNAMELEN(elementNameLength)

You must specify the name of the channel and the name of the container that holds the XML. You do
not have to specify an XMLTRANSFORM resource to query the XML. The above example queries the
name of the first XML element and the length of the XML element. You can also query the type of the
first XML element, the length of the type, and the namespace of the type.

2. Optional: If the application requires the namespace of the XML element, provide a data-area in which
CICS can write the ELEMNS value.

3. Optional: After querying the XML, you can write application logic to determine which XMLTRANSFORM
resource to use to transform the XML to application data.

4. Install the application program in CICS.

Results
CICS reads the specified container and returns the information about the XML element to the application
program.

Handling XML by data type
If the XML schema contains global data types, one or more of which are referenced in the XML, you can
generate metadata to support these global data types and then parse or transform the XML in an
application program.

Before you begin
To generate the correct metadata, you must run DFHSC2LS specifying the TYPES=ALL parameter.

About this task

Procedure

1. To transform application data to XML by data type, use the TRANSFORM DATATOXML command:

EXEC CICS TRANSFORM DATATOXML
XMLTRANSFORM('
MyXmlTransformName
')
CHANNEL('
MyChannelName
')
DATCONTAINER('
SourceContainerName
')
XMLCONTAINER('
TargetContainerName
')
ELEMNAME(
elementName
) ELEMNAMELEN(
elementNameLength
)
ELEMNS(
elementNamespace
) ELEMNSLEN(
elementNamespaceLength
)
TYPENAME(
typeName
) TYPENAMELEN(
typeNameLen
)
TYPENS(
typeNamespace
) TYPENSLEN(
typeNamespaceLen
)

476 CICS TS for z/OS: Using Web Services with CICS

MyXmlTransformName is the 32-character name of the XMLTRANSFORM resource that specifies the
XML binding and schema; MyChannelName is the 16-character name of the channel that has the input
and output containers; SourceContainerName is the 16-character name of the input container that
holds the application data and TargetContainerName is the 16-character name of the output container
that CICS populates with XML. You must also specify the XML element name, the namespace, the data
type, and the namespace of the data type for the transformation.

2. To parse the XML by data type, use the TRANSFORM XMLTODATA command.
The options that you specify on the command depend on whether the XML has an xsi:type attribute.

• If the XML uses the xsi:type attribute, specify the following command in your application program:

EXEC CICS TRANSFORM XMLTODATA
XMLTRANSFORM('
MyXmlTransformName
')
CHANNEL('
MyChannelName
')
XMLCONTAINER('
SourceContainerName
')
DATCONTAINER('
TargetContainerName
')
ELEMNAME(elementName) ELEMNAMELEN(elementNameLength)
TYPENAME(typeName) TYPENAMELEN(typeNameLength)

If the application also requires the namespace of the data type, add the TYPENS option to the API
command. CICS returns the data type from the xsi:type attribute in TYPENAME.

• If the XML does not use the xsi:type attribute, the application program can specify the local name
and namespace of the global data type. Use the following command in your application program:

EXEC CICS TRANSFORM XMLTODATA
XMLTRANSFORM('
MyXmlTransformName
')
CHANNEL('
MyChannelName
')
XMLCONTAINER('
SourceContainerName
')
DATCONTAINER('
TargetContainerName
')
TYPENAME(
typeName
) TYPENAMELEN(
typeNameLength
)
TYPENS(
TypeNamespace
) TYPENSLEN(
typeNamespaceLen
)

The application program must specify the type name and namespace but not the name and
namespace. This command indicates that the application tells CICS which data type to use. When
CICS is generating XML, CICS always adds the xsi:type attribute.

3. Install the application program in CICS.

What to do next
Test that the application program generates and parses the XML as expected.

Chapter 5. Developing with XML 477

Handling <xsd:any> data types
If you are working with an XML schema that contains one or more <xsd:any> data types, the XML
assistants can map the data type to a pair of CICS containers. You can write an application program to
parse the XML in the containers.

Before you begin
You must map the XML schema using DFHSC2LS or DFHWS2LS using a mapping level of 2.1 or higher.

About this task
When CICS transforms the data to XML, it puts the XML associated with the <xsd:any> data type in the
first container and the namespace prefix declarations that are in scope in the second container.

Procedure

1. To parse the XML data, use the TRANSFORM XMLTODATA command in your application program:

EXEC CICS TRANSFORM XMLTODATA
XMLTRANSFORM('
MyXmlTransformName
')
CHANNEL('
MyChannelName
')
XMLCONTAINER('
SourceContainerName
')
DATCONTAINER('
TargetContainerName
')
NSCONTAINER('
NamespacesContainerName
')
ELEMNAME(elementName) ELEMNAMELEN(elementNameLength)

MyXmlTransformName is the 32-character name of the XMLTRANSFORM resource that specifies the
XML binding and schema; MyChannelName is the 16-character name of the channel that has the input
and output containers; SourceContainerName is the 16-character name of the input container that
holds the XML and TargetContainerName is the 16-character name of the output container that CICS
populates with application data; NamespacesContainerName is the 16-character name of the
container that CICS populates with the namespace prefix declarations. Provide initial values for the
ELEMNAME and ELEMNAMELEN options.

CICS returns the XML element and its length in the ELEMNAME and ELEMNAMELEN options.
2. Install the application program in CICS.

What to do next
Test that the application program parses the XML correctly.

Handling variably repeating content in COBOL
In COBOL, you cannot process variably repeating content by using pointer arithmetic to address each
instance of the data. Other programming languages do not have this limitation. This example shows you
how to handle variably repeating content in COBOL for a web service application.

This technique also applies to transforming XML to application data using the TRANSFORM API
commands.

Example

The following example WSDL document represents a web service with application data that consists of an
8-character string that recurs a variable number of times:

478 CICS TS for z/OS: Using Web Services with CICS

<?xml version="1.0"?>
<definitions name="ExampleWSDL"
 targetNamespace="http://www.example.org/variablyRepeatingData/"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.example.org/variablyRepeatingData/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <types>
 <xsd:schema targetNamespace="http://www.example.org/variablyRepeatingData/">
 <xsd:element name="applicationData">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="component"
 minOccurs="1" maxOccurs="unbounded">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:length value="8"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:schema>
 </types>

 <message name="exampleMessage">
 <part element="tns:applicationData" name="messagePart"/>
 </message>

 <portType name="examplePortType">
 <operation name="exampleOperation">
 <input message="tns:exampleMessage"/>
 <output message="tns:exampleMessage"/>
 </operation>
 </portType>

 <binding name="exampleBinding" type="tns:examplePortType">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="exampleOperation">
 <soap:operation soapAction=""/>
 <input>
 <soap:body parts="messagePart" encodingStyle=""
 use="literal"/>
 </input>
 <output>
 <soap:body parts="messagePart" encodingStyle=""
 use="literal"/>
 </output>
 </operation>
 </binding>
</definitions>

Processing this WSDL document through DFHWS2LS generates the following COBOL language structures:

 03 applicationData.

06 component-num PIC S9(9) COMP-5 SYNC.
06 component-cont PIC X(16).

01 DFHWS-component.
03 component PIC X(8).

Note that the 8-character component field is defined in a separate structure called DFHWS-component.
The main data structure is called applicationData and it contains two fields, component-num and
component-cont. The component-num field indicates how many instances of the component data are

Chapter 5. Developing with XML 479

present and the component-cont field indicates the name of a container that holds the concatenated
list of component fields.

The following COBOL code demonstrates one way to process the list of variably recurring data. It makes
use of a linkage section array to address subsequent instances of the data, each of which is displayed by
using the DISPLAY statement:

IDENTIFICATION DIVISION.
PROGRAM-ID. EXVARY.

ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

* working storage variables
01 APP-DATA-PTR USAGE IS POINTER.
01 APP-DATA-LENGTH PIC S9(8) COMP.
01 COMPONENT-PTR USAGE IS POINTER.
01 COMPONENT-DATA-LENGTH PIC S9(8) COMP.
01 COMPONENT-COUNT PIC S9(8) COMP-4 VALUE 0.
01 COMPONENT-LENGTH PIC S9(8) COMP.

LINKAGE SECTION.

* a large linkage section array
01 BIG-ARRAY PIC X(659999).

* application data structures produced by DFHWS2LS
* this is normally referenced with a COPY statement
01 DFHWS2LS-data.
03 applicationData.
06 component-num PIC S9(9) COMP-5 SYNC.
06 component-cont PIC X(16).

01 DFHWS-component.
03 component PIC X(8).

PROCEDURE DIVISION USING DFHEIBLK.
A-CONTROL SECTION.
A010-CONTROL.

* Get the DFHWS-DATA container
EXEC CICS GET CONTAINER('DFHWS-DATA')
SET(APP-DATA-PTR)
FLENGTH(APP-DATA-LENGTH)
END-EXEC
SET ADDRESS OF DFHWS2LS-data TO APP-DATA-PTR

* Get the recurring component data
EXEC CICS GET CONTAINER(component-cont)
SET(COMPONENT-PTR)
FLENGTH(COMPONENT-DATA-LENGTH)
END-EXEC

* Point the component structure at the first instance of the data
SET ADDRESS OF DFHWS-component TO COMPONENT-PTR

* Store the length of a single component
MOVE LENGTH OF DFHWS-component TO COMPONENT-LENGTH

* process each instance of component data in turn
PERFORM WITH TEST AFTER
UNTIL COMPONENT-COUNT = component-num

* display the current instance of the data
DISPLAY 'component value is: ' component

* address the next instance of the component data
SET ADDRESS OF BIG-ARRAY TO ADDRESS OF DFHWS-component
SET ADDRESS OF DFHWS-component
TO ADDRESS OF BIG-ARRAY (COMPONENT-LENGTH + 1:1)
ADD 1 TO COMPONENT-COUNT

* end the loop
END-PERFORM.

* Point the component structure back at the first instance of
* of the data, for any further processing we may want to perform

480 CICS TS for z/OS: Using Web Services with CICS

SET ADDRESS OF DFHWS-component TO COMPONENT-PTR

* return to CICS.

EXEC CICS
RETURN
END-EXEC

GOBACK.

The code above provides a generic solution to handling variably repeating content. The array, BIG-
ARRAY , moves to the start of each component in turn and does not remain fixed at the start of the data.
The component data structure is then moved to point at the first byte of the next component.
COMPONENT-PTR can be used to recover the start position of the component data if required.

Here is an example SOAP message that conforms to the WSDL document:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <applicationData xmlns="http://www.example.org/variablyRepeatingData/">
 <component xmlns="">VALUE1</component>
 <component xmlns="">VALUE2</component>
 <component xmlns="">VALUE3</component>
 </applicationData>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Here is the output produced by the COBOL program when it processes the SOAP message:

CPIH 20080115103151 component value is: VALUE1
CPIH 20080115103151 component value is: VALUE2
CPIH 20080115103151 component value is: VALUE3

Generating mappings from language structures
To create XML from application data or vice versa, you create the mappings to describe how CICS will
transform the data and XML at run time. You can start from any application data record; for example, you
can start with a COMMAREA, VSAM file, temporary storage queue, or a Db2 record.

Before you begin
Before you create the mappings, you must make sure that these preconditions have been completed:

• You must have a language structure that describes the application record in a partitioned data set. The
language structure can be written in any of the high-level languages supported by the CICS XML
assistant: COBOL, PL/I, C, and C++. If this mapping is for use with an Atom feed, and you are using any
of the fields in your application record to provide metadata for the Atom entries (such as the name of an
author), make sure that those fields are not nested in your language structure. You can have structures
of nested fields within a field that provides the content for an Atom entry.

• You must configure the user ID under which DFHLS2SC runs to use z/OS UNIX.
• The user ID must have read permission to access the language structure and write permission to put

the output in the appropriate directories on z/OS UNIX.
• You must allocate sufficient storage to the user ID for the ID to run Java . You can use any supported

version of Java. By default, DFHLS2SC uses the Java version specified in the JAVADIR parameter.

About this task
Use the CICS XML assistant to create the data mappings for the application record. For each high-level
language supported by the CICS XML assistant, a few types of data are restricted or not supported. The
CICS XML assistant issues error messages about any unsupported items that it identifies in your language
structure. The reference information for the CICS XML assistant lists the restrictions that apply to each
high-level language.

Chapter 5. Developing with XML 481

Procedure

1. Run the DFHLS2SC batch job.
DFHLS2SC has optional parameters that you select to meet your requirements, such as selecting a
particular code page or a name space. Use the following parameters as a minimum:
a) Specify the high-level language of your language structure in the LANG parameter.
b) If you are deploying the data mappings in a bundle, specify the name of a bundle resource in the
BUNDLE parameter.
If you are creating an XML binding for an Atom feed, do not specify this parameter.

c) Specify the mapping level in the MAPPING-LEVEL parameter.
If you are creating an XML binding for an Atom feed, you must use a mapping level of 3.0 or higher.
For other situations, although you can use any mapping level, to get the most advanced mapping
options use the latest mapping level.

d) Optional: If you are creating an XML binding for an Atom feed, and your application data record
contains timestamps in CICS ABSTIME format, specify the optional parameter
DATETIME=PACKED15 to map these fields as timestamps.

e) Specify the location and the code page of the language structures that describe the application
record in the PDSMEM and PDSCP parameters.

f) Specify the name and location of the schema file in the SCHEMA parameter.
The file extension is .xsd . If you are creating a bundle, do not specify a location. DFHLS2SC
creates the XML schema, but not the directory structure, if the file does not already exist.

g) Specify the name and location of the XML binding in the XSDBIND parameter.
The file extension is .xsdbind . If you are creating a bundle, do not specify a location. DFHLS2SC
creates the XML binding, but not the directory structure, if the file does not already exist.

Tip: Put the XML binding and the schema in the same directory structure to enable validation.
Validation can be useful when you are testing out your application in a development or test
environment. If you are creating a bundle, CICS puts the files in the same directory for you.

If you specify the BUNDLE parameter, the batch job creates a bundle directory structure on z/OS UNIX.
The bundle directory has a META-INF subdirectory that contains the bundle manifest. The batch job
also creates an XML schema and an XML binding in the bundle directory, using the file names that you
specified for the SCHEMA and XSDBIND parameters. If you do not specify the BUNDLE parameter, the
batch job creates the XML schema and XML binding only in the specified location.

2. Install the BUNDLE resource, or an ATOMSERVICE resource that specifies this XML binding.
The BUNDLE and ATOMSERVICE resources dynamically create an XMLTRANSFORM resource, which
defines the location of the XML schema and binding file.

Results
When you generate mappings from language structures, only one XML transformation is possible.

Example
The following example shows DFHLS2SC with the minimum set of parameters specified.

//LS2SC JOB 'accounting information',name,MSGCLASS=A
// SET QT=''''
//JAVAPROG EXEC DFHLS2SC,
// TMPFILE=&QT.&SYSUID.&QT
//INPUT.SYSUT1 DD *
LANG=COBOL
BUNDLE=/u/exampleapp/bundle/test1
LOGFILE=/u/exampleapp/xsdbind/example.log
MAPPING-LEVEL=3.0
PDSLIB=//CICSHLQ.SDFHSAMP
PDSMEM=CPYBK2
XSDBIND=example.xsdbind
SCHEMA=example.xsd
/*

482 CICS TS for z/OS: Using Web Services with CICS

What to do next
Write an application program to transform the application data to XML and vice versa. You can use the
same mappings for both transformations. If you have created an XML binding for an Atom feed, continue
with the steps to set up your Atom feed.

Generating mappings from an XML schema
To create application data from XML, or XML from application data, that conforms to an existing XML
schema, you create the mappings to describe how CICS will transform the data at run time. You can start
from an XML schema or a WSDL document.

Before you begin
You must have a valid XML schema or WSDL document. Before you create the mappings, you must make
sure that these preconditions have been completed:

• You must have a valid XML schema or WSDL document.
• You must configure the user ID under which DFHSC2LS runs to use UNIX System Services.
• The user ID must have read permission to access the XML schema or WSDL document and write

permission to put the output in the appropriate directories on z/OS UNIX.
• The user ID must have a sufficiently large storage allocation to run Java . You can use any supported

version of Java. By default, DFHWS2LS uses the Java version specified in the JAVADIR parameter.

About this task
Use the CICS XML assistant to create the data mappings for the XML schema.

Procedure

1. Run the DFHSC2LS batch job.
DFHSC2LS has optional parameters that you can select to meet your requirements, such as selecting a
particular code page or specifying how to handle variable-length character data. Use the following
parameters as a minimum:
a) Specify the location of your input file in the WSDL or SCHEMA parameter.

You can either use a WSDL document or an XML schema. If your input file contains references to
other schemas or documents on the Internet and the system uses a proxy server, specify the
domain name or IP address and the port number of the proxy server.

b) Specify the high-level language that you want to generate in the LANG parameter.
The XML assistant supports COBOL, C, C++, and PL\I languages.

c) If you are deploying the data mappings in a bundle, specify the name and location of a bundle in the
BUNDLE parameter.

The XML assistant creates a library of supported transformations in the XML binding. For each global
element in the input file, the assistant creates a separate transformation.

If you specify the BUNDLE parameter, the batch job creates a bundle directory structure on z/OS
UNIX . The bundle directory has a META-INF subdirectory that contains the bundle manifest. The
batch job also creates an XML binding in the bundle directory and places the language structures in the
specified location. The XML assistant also places a copy of the input file in the bundle directory. If you
do not specify the BUNDLE parameter, the batch job creates the language structures and XML binding
only in the specified location.

2. Install the BUNDLE resource.
The BUNDLE resource dynamically creates an XMLTRANSFORM resource, which defines the location
of the XML schema or WSDL document, the XML binding, and the language structures.

Results
When you generate mappings from an XML schema, CICS generates a language structure for every global
element that is present in the schema.

Chapter 5. Developing with XML 483

Example
The following example shows DFHSC2LS with the minimum set of parameters specified.

//SC2LS JOB 'accounting information',name,MSGCLASS=A
// SET QT=''''
//JAVAPROG EXEC DFHSC2LS,
// TMPFILE=&QT.&SYSUID.&QT
//INPUT.SYSUT1 DD *
LANG=COBOL
BUNDLE=/u/exampleapp/bundle/test1
LOGFILE=/u/exampleapp/xsdbind/example.log
MAPPING-LEVEL=3.0
PDSLIB=//CICSHLQ.SDFHSAMP
PDSMEM=CPYBK2
XSDBIND=example.xsdbind
SCHEMA=example.xsd
/*

What to do next
Write an application program to transform the application data to XML, or XML to application data. You
can use the same mappings for both transformations.

Transforming application data to XML
You can write an application program to transform application data to XML.

Before you begin
You must have an enabled XMLTRANSFORM resource that defines the XML binding and XML schema.

About this task
The XML assistant generates the mappings in the XML binding. If you started with a language structure
and used DFHLS2SC, only one transformation to the XML is possible. If you started with an XML schema,
there might be many XML to language structure transformations so your application must select which
XML element to generate.

Procedure

1. The application program must create a channel and place the data associated with the language
structure into a bit-mode container on that channel.

2. Use the TRANSFORM DATATOXML API command to transform the data to XML:

EXEC CICS TRANSFORM DATATOXML
XMLTRANSFORM('
MyXmlTransformName
')
CHANNEL('
MyChannelName
')
DATCONTAINER('
SourceContainerName
')
XMLCONTAINER('
TargetContainerName
')

If the XMLTRANSFORM resource supports only a single transformation from the language structure,
you do not have to specify the conversion type on the command. If many transformations are possible,
add the following options to your application program:

ELEMNAME(elementName) ELEMNAMELEN(elementNameLength)

These additional options indicate the XML element into which the application data is transformed and
placed in the output container.

3. Install the application program.

484 CICS TS for z/OS: Using Web Services with CICS

Results
When the application runs the TRANSFORM DATATOXML command, CICS checks the XMLTRANSFORM
resource to find the mappings in the XML binding and transforms the application binary data to XML using
the containers on the channel. The XML is placed in the container that the application specified on the
XMLCONTAINER option. The XML conforms to the XML schema that is defined in the XMLTRANSFORM
resource.

What to do next
You can also use the same mappings to transform XML to application data. For details, see “Transforming
XML to application data” on page 485.

Transforming XML to application data
You can write an application program to transform XML to application data. You can also query the XML
before transforming it.

Before you begin
You must have an enabled XMLTRANSFORM resource that defines the XML binding and XML schema.

About this task
The CICS XML assistant generates the mappings in the XML binding. If you started with a language
structure and used DFHLS2SC, only one transformation from the XML is possible. If you started with an
XML schema, there might be many XML to language structure transformations so your application must
select which language structure to use as output.

Procedure

1. Create a channel and place the XML into a text mode container on that channel.
If the application puts the XML in a BIT mode container, CICS tries to determine the encoding of the
text data, but it can take longer to process the container and the encoding might not be correct.

2. Use the TRANSFORM XMLTODATA API command.
If only one transform is possible for the XML, you can use the following command:

EXEC CICS TRANSFORM XMLTODATA
XMLTRANSFORM('
MyXmlTransformName
')
CHANNEL('
MyChannelName
')
XMLCONTAINER('
SourceContainerName
')
DATCONTAINER('
TargetContainerName
')

If more than one transformation is possible, use the following additional options:

EXEC CICS TRANSFORM XMLTODATA
XMLTRANSFORM('
MyXmlTransformName
')
CHANNEL('
MyChannelName
')
XMLCONTAINER('
SourceContainerName
')
DATCONTAINER('
TargetContainerName
')
ELEMNAME(
elementName

Chapter 5. Developing with XML 485

) ELEMNAMELEN(
elementNameLength
)

In the second example, CICS returns the name of the element that was found in the ELEMNAME
option. The application can then use the name of the element to determine which of the library of
language structures to use to interpret the contents of the target container.

3. Install the application program.

Results
When the application runs the TRANSFORM XMLTODATA command, CICS uses the details in the
XMLTRANSFORM resource to transform the XML to application binary data using the containers on the
channel.

What to do next
You can also use the same mappings to transform application data to XML. For details, see “Transforming
application data to XML” on page 484.

Validating XML transformations
When you use the CICS XML assistant to map application data to XML, you can specify that the
transformations that take place at run time are validated to ensure that they conform to the schema that
is contained in the XML binding. You can perform validation on the transformation of XML to binary data or
binary data to XML.

Before you begin
During development and testing of your CICS application, full validation assists in detecting problems in
the XML. However, full validation of the XML carries a substantial overhead and it is inadvisable to validate
XML in a fully tested production application.

CICS uses a Java program to validate the XML against the schema. Therefore, you must have Java support
enabled in your CICS region to perform validation.

Procedure

1. Set up a JVM server in the CICS region.
The XML validator class can run in an OSGi framework or Axis2, but not in a Liberty profile. CICS
provides samples to quickly set up a JVM server that uses an OSGi framework.
a) Install the sample JVM server DFHJVMS in group DFH$OSGI or create your own JVM server.

For more information, see Setting up a JVM server.
b) If you created your own JVM server, modify the DFHPIVAL program definition in group DFHPIVAL to

reference the name of the JVMSERVER resource.
The DFHPIVAL definition is not locked and can be edited. By default, the definition references
DFHJVMS.

2. Ensure that the XML binding and the schema are in the same location on z/OS UNIX.
The XMLTRANSFORM resource defines these files to CICS. You can use the INQUIRE XMLTRANSFORM
command to check the location of each file.

3. Turn validation on for the application.
In CICS Explorer , open the XMLTRANSFORM resource and edit the Validation Status field in the list of
attributes. Alternatively, you can use CEMT or the SPI.

Results
Check the system log to find out if the XML transformation is valid. Message DFHML0508 indicates that
the XML was successfully validated and message DFHML0507 indicates that the validation failed.

486 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_jvmserver.html

What to do next
When you no longer require XML validation for the application, update the XMLTRANSFORM resource to
turn it off.

Chapter 5. Developing with XML 487

488 CICS TS for z/OS: Using Web Services with CICS

Chapter 6. Support for securing web services
CICS Transaction Server for z/OS provides support for a number of related technologies that you can use
to secure SOAP and JSON messages.

Some of these technologies are available as part of the HTTP protocol, and are equally applicable to both
SOAP and JSON. Some use the Web Services Security (WSS): SOAP Message Security 1.0 specification,
and are only available for SOAP. For information on the shared TCP/IP and HTTP security options, see
Security for TCP/IP clients and Security for CICS web support.

For information about using SAML assertions, see Configuring CICS for SAML.

SOAP web services security

Web Services Security (WSS): SOAP Message Security 1.0 describes the use of security tokens and digital
signatures to protect and authenticate SOAP messages. For more information, see the Web Services
Security: SOAP Message Security 1.0 specification. Web Services Security: SOAP Message Security 1.0

Web Services Security protects the privacy and integrity of SOAP messages by, respectively, protecting
messages from unauthorized disclosure and preventing unauthorized and undetected modification. WSS
provides this protection by digitally signing and encrypting XML elements in the message. The elements
that can be protected are the body or any elements in the body or the header. You can give different
levels of protection to different elements in the SOAP message.

The Web Services Trust Language (WS-Trust) specification enhances Web Services Security further by
providing a framework for requesting and issuing security tokens, and managing trust relationships
between web service requesters and providers. This extension to the authentication of SOAP messages
enables web services to validate and exchange security tokens of different types byusing a trusted third
party. This third party is called a Security Token Service (STS). For more information about the Web
Services Trust Language, see the Web Services Trust Language specification.

CICS Transaction Server for z/OS provides support for these specifications by using a CICS-supplied
security handler in the pipeline:

• For outbound messages, CICS provides support for digital signing and encryption of the entire SOAP
body. CICS can also exchange a username token for a security token of a different type with an STS.

• For inbound messages, CICS supports messages in which the body, or elements of the body and
header, are encrypted or digitally signed. CICS can also exchange and validate security tokens with an
STS.

CICS also provides a separate Trust client interface so that you can interact with an STS without using the
CICS security handler.

Note: Web Services Security is potentially not conformant with SP800-131A. Web Services Security is
configured by adding a handler into the pipeline and CICS has no control over the processing in a
customer-written handler. If you use digital signatures, you can specify only the algorithms dsa-sha1
and rsa-sha1. These algorithms are not SP800-131A-conformant. The two-key tripledes encryption
algorithm, which can be used to encrypt a SOAP body, is also non-conformant.

Enabling CICS for WS-Security processing
Some prerequisites are needed in your CICS region to enable it for the full range of WS-Security
processing for SOAP messages. You must install the IBM XML Toolkit for z/OS v1.10, apply APAR
OA14956, and add 3 libraries to the DFHRPL concatenation.

Procedure

1. Install the free IBM XML Toolkit for z/OS v1.10.

© Copyright IBM Corp. 1974, 2020 489

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/tcpip/dfht5_part4.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/web/dfhtl6v.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/saml/deploy_saml.html
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://specs.xmlsoap.org/ws/2005/02/trust/WS-Trust.pdf

You can download it from the following site: https://www.ibm.com/servers/eserver/zseries/
software/xml/. You must install version 1.10. Later versions do not work with Web Services Security
support in CICS.

2. Apply ICSF APAR OA14956 if it is not already installed in z/OS.
3. Add the following libraries to the DFHRPL concatenation:

• hlq.SIXMLOD1, where hlq is the high-level qualifier of the XML Toolkit.
• hlq.SCEERUN, where hlq is the high-level qualifier of the Language Environment.
• hlq.SDFHWSLD, where hlq is the high-level qualifier of the CICS installation; for example CICSTS56.

The first two libraries contain DLLs that are required at run time by the security handler. IXM4C57 is
provided by the XML Toolkit and is found in hlq.SIXMLOD1; C128N is provided by the Language
Environment run time and is found in hlq.SCEERUN.

The hlq.SDFHWSLD library enables CICS to find the DFHWSSE1 and DFHWSXXX Web Services Security
modules.

4. You might need to increase the value of the EDSALIM system initialization parameter.
The three DLLs that are loaded require approximately 15 MB of EDSA storage.

Results
If you do not have the libraries specified, you see the following message:
CEE3501S The module module_name was not found.

The module_name varies depending on which library is missing.

Planning to secure SOAP web services
You can decide the best way to secure your web services. CICS supports a number of options, including a
configurable security message handler and a separate Trust client interface.

About this task
CICS implements Web Services Security (WS-Security or WSS) at a pipeline level, rather than for each
web service. Answer the following questions to decide how best to implement security.

Procedure

1. Is the performance of your pipeline processing important?
The use of WSS to secure your web services incurs a significant performance impact.

The main advantage of implementing WSS is that, by encrypting part of a SOAP message, you can send
the message through a chain of intermediate nodes, all of which might have legitimate reasons to look
at the SOAP header to make routing or processing decisions, but are not allowed to view the content of
the message. By encrypting only those sections that need to be confidential, you derive the following
benefits:

• You do not incur the overhead of encrypting and decrypting at every node in a chain of intermediate
processes.

• You can route a confidential message over a public network of untrusted nodes, where only the
ultimate recipient of the data can understand it.

As an alternative to using WSS, you can use SSL to encrypt the whole data stream.
2. If you want to use WSS, what level of security do you want?

The options range from basic authentication, where the message header includes a user name and a
password, through to combining digital signatures and encryption in the message. The options that the
CICS security handler supports are described in “Options for securing SOAP messages” on page 491.

3. Does the CICS-supplied security handler meet your requirements?
If you want to perform more advanced security processing, you must write your own custom security
handler. This handler must perform the necessary authentication of messages, either directly with

490 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/servers/eserver/zseries/software/xml/
https://www.ibm.com/servers/eserver/zseries/software/xml/

RACF or using a Security Token Service, and handle the processing of digital certificates and encrypted
elements. See “Writing a custom security handler” on page 504 for details.

4. Does your pipeline include an MTOM handler?
If you are planning to enable both the MTOM handler and the security handler in your pipeline
configuration file, any MIME Multipart or Related messages are processed in compatibility mode,
because the security handler cannot parse the XOP elements in the body of the message. This
processing can have a further effect on the performance of the pipeline processing.

Options for securing SOAP messages
CICS supports both the signing and encryption of SOAP messages, so you can select the level of security
that is most appropriate for the data that you are sending or receiving in the SOAP message.Signing and
encryption of SOAP messages are not supported for provider mode Axis2 web service Java applications or
for provider web services that attach to the pipeline using Axis2 MessageContext.

You can choose from these options:

Trusted authentication
In service provider pipelines, CICS can accept a username token in the SOAP message header as
trusted. This type of security token typically contains a user name and password, but in this case the
password is not required. CICS trusts the provided user name and places it in container DFHWS-
USERID, and the message is processed in the pipeline.

In service requester pipelines, CICS can send a username token without the password in the SOAP
message header to the service provider.

Basic authentication
In service provider mode, CICS can accept a username token in the SOAP message header for
authentication on inbound SOAP messages. This type of security token contains a user name and
password. CICS verifies the username token using an external security manager, such as RACF. If
successful, the user name is placed in container DFHWS-USERID and the SOAP message is processed
in the pipeline. If CICS cannot verify the username token, a SOAP fault message is returned to the
service requester.

Username tokens that contain passwords are not supported in service requester mode or on
outbound SOAP messages.

HTTP basic authentication
In service provider mode, CICS can accept basic authentication information over an HTTP protocol.
The service requester uses a URIMAP definition to specify that credentials (user identification
information) can be captured by the global user exit, XWBAUTH. XWBAUTH passes this information to
CICS on request and CICS sends the information in an HTTP authorization header to the service
provider.

Advanced authentication
In service provider and requester pipelines, you can verify or exchange security tokens with a Security
Token Service (STS) for authentication purposes. This authentication enables CICS to accept and send
messages that have security tokens in the message header that are not normally supported; for
example, Kerberos tokens or SAML assertions.

For an inbound message, you can select to verify or exchange a security token. If the request is to
exchange the security token, CICS must receive a username token back from the STS. For an
outbound message, you can exchange a username token only for a security token.

Signing with X.509 certificates
In service provider and service requester mode, you can provide an X.509 certificate in the SOAP
message header to sign the body of the SOAP message for authentication. This type of security token
is known as a binary security token. To accept binary security tokens from inbound SOAP messages,
the public key associated with the certificate must be imported into an external security manager,
such as RACF, and associated with the key ring that is specified in the KEYRING system initialization
parameter. For outbound SOAP messages, you generate and publish the public key to the intended
recipients. The Integrated Cryptographic Service Facility (ICSF) is used to generate public keys.

Chapter 6. Support for securing web services 491

When you specify the label associated with an X.509 digital certificate, do not use the following
characters:

< > : ! =

You can also include a second X.509 certificate in the header and sign it using the first certificate.
With this second certificate, you can run the work in CICS under the user ID associated with the
second X.509 certificate. The certificate that you are using to sign the SOAP message must be
associated with a trusted user ID, and have surrogate authority to assert that work runs under a
different identity, the asserted identity, without the trusted user ID having the password associated
with that identity.

Encrypting
In service provider and service requester mode, you can encrypt the SOAP message body using a
symmetric algorithm such as Triple DES or AES. A symmetric algorithm is where the same key is used
to encrypt and decrypt the data. This key is known as a symmetric key. It is then included in the
message and encrypted using a combination of the public key of the intended recipient and the
asymmetric key encryption algorithm RSA 1.5. This encryption provides you with increased security,
because the asymmetric algorithm is complex and it is difficult to decrypt the symmetric key.
However, you obtain better performance because the majority of the SOAP message is encrypted with
the symmetric algorithm, which is faster to decrypt.

For inbound SOAP messages, you can encrypt an element in the SOAP body and then encrypt the
SOAP body as a whole. This sort of encryption might be particularly appropriate for an element that
contains sensitive data. If CICS receives a SOAP message with two levels of encryption, CICS decrypts
both levels automatically. This sort of encryption is not supported for outbound SOAP messages.

CICS does not support inbound SOAP messages that have an encrypted element in the message
header only and no encrypted elements in the SOAP body.

Signing and encrypting
In service provider and service requester mode, you can choose to both sign and encrypt a SOAP
message. CICS always signs the SOAP message body first and then encrypts it. The advantage of this
method is that it gives you both message confidentiality and integrity.

ICRX-based identity propagation
In service provider mode, you can use an unauthenticated ICRX (Extended Identity Context
Reference) identity token in the same circumstances that you would use an unauthenticated WS-
Security user ID token. An ICRX identity token is a z/OS identifier that maps to a user ID. CICS
resolves the ICRX identity token to a user ID and places a copy in the DFHWS-ICRX container. CICS
also populates the DFHWS-USERID container. For more information about an ICRX identity token, see
Identity propagation and distributed security.

Authentication using a Security Token Service
CICS can interoperate with a Security Token Service (STS), such as Tivoli Federated Identity Manager, to
provide more advanced authentication of web services.

An STS is a web service that acts as a trusted third party to broker trust relationships between a web
service requester and a web service provider. In a similar manner to a certificate authority in an SSL
handshake, the STS guarantees that the requester and provider can "trust" the credentials that are
provided in the message. This trust is represented through the exchange of security tokens. An STS can
issue, exchange, and validate these security tokens, and establish trust relationships, allowing web
services from different trust domains to communicate successfully. For more details, see the Web
Services Trust Language specification.

CICS acts as a Trust client and can send two types of web service request to an STS. The first type of
request is to validate the security token in the WS-Security message header; the second type of request is
to exchange the security token for a different type. These requests enable CICS to send and receive
messages that contain different security tokens from a wide variety of trust domains, such as SAML
assertions and Kerberos tokens.

492 CICS TS for z/OS: Using Web Services with CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/cics/idprop_intro.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-standards/WSTrust.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-standards/WSTrust.html

You can either configure the CICS security handler to define how CICS interacts with an STS or write your
own message handler to use a separately provided Trust client interface. Whichever method you select,
use SSL to secure the connection between CICS and the STS.

How the security handler calls the STS

The CICS security handler uses the information in the pipeline configuration file to send a web service
request to the Security Token Service (STS). The type of request that is sent depends on the action that
you want the STS to perform.
In a service provider pipeline

In a service provider pipeline, the security handler supports two types of actions, depending on the
way you configure the security handler:

• Send a request to the STS to validate the first instance of a security token, or the first security token
of a specific type, in the WS-Security header of the inbound message.

• Send a request to the STS to exchange the first instance of a security token, or the first security
token of a specific type, in the WS-Security header of the inbound message, for a security token that
CICS can understand.

The security handler dynamically creates a pipeline to send the web service request to the STS. This
pipeline exists until a response is received from the STS, after which it is deleted. If the request is
successful, the STS returns an identity token or the status of the validity of the token. The security
handler places the RACF ID that is derived from the token in the DFHWS-USERID container.

If the STS encounters an error, it returns a SOAP fault to the security handler. The security handler
then passes a fault back to the web service requester.

In a service requester pipeline
In a service requester pipeline, the security handler can request only to exchange a token with the
STS. The pipeline configuration file defines what type of token the STS issues to the security handler.

If the request is successful, the RACF ID is placed in the DFHWS-USERID container and the token is
included in the outbound message header. If the STS encounters an error, it returns a SOAP fault to
the security handler. The security handler then passes the fault back through the pipeline to the web
service requester application.

The security handler can request only one type of action from the STS for the pipeline. It can also
exchange only one type of token for an outbound request message, and is limited to handling the first
token in the WS-Security message header, either the first instance or the first instance of a specific type.
These options cover the most common scenarios for using an STS, but might not offer you the processing
that you require for handling inbound and outbound messages.

If you want to provide more specific processing to handle many tokens in the inbound message headers
or exchange multiple types of tokens for outbound messages, use the Trust client interface. Using this
interface, you can create a custom message handler to send your own web service request to the STS.

The Trust client interface
The Trust client interface enables you to interact with a Security Token Service (STS) directly, rather than
using the security handler. In this way, you have the flexibility to provide more advanced processing of
tokens than the processing offered by the security handler.

The Trust client interface is an enhancement to the CICS-supplied program DFHPIRT. This program is
usually used to start a pipeline when a web service requester application has not been deployed using the
CICS web services assistant. But it can also act as the Trust client interface to the STS.

You can invoke the Trust client interface by linking to DFHPIRT from a message handler or header
processing program, passing a channel called DFHWSTC-V1 and a set of security containers. Using these
containers, you have the flexibility to request either a validate or issue action from the STS, select which
token type to exchange, and pass the appropriate token from the message header. DFHPIRT dynamically
creates a pipeline, composes a web service request from the security containers, and sends it to the STS.

Chapter 6. Support for securing web services 493

DFHPIRT waits for the response from the STS and passes this back in the DFHWS-RESTOKEN container to
the message handler. If the STS encounters an error, it returns a SOAP fault. DFHPIRT puts the fault in
the DFHWS-STSFAULT container and returns to the linking program in the pipeline.

You can use the Trust client interface without enabling the security handler in your service provider and
service requester pipelines, or you can use the Trust client interface in addition to the security handler.

Signing of SOAP messages
For inbound messages, CICS supports digital signatures on elements in the SOAP body and on SOAP
header blocks. For outbound messages, CICS signs all elements in the SOAP body.

A SOAP message is an XML document, consisting of an <Envelope> element, which contains an optional
<Header> element and a mandatory <Body> element.

The WSS: SOAP Message Security specification permits the contents of the <Header> and the <Body> to
be signed at the element level. That is, in a given message, individual elements can be signed or not, or
can be signed with different signatures or using different algorithms. For example, in a SOAP message
used in an online purchasing application, it is appropriate to sign elements that confirm receipt of an
order, because these elements might have legal status. However, to avoid the overhead of signing the
entire message, other information might safely remain unsigned.

For inbound messages, the security message handler can verify the digital signature on individual
elements in the SOAP <Header> and the <Body>:

• Signed elements it encounters in the <Header>.
• Signed elements in the SOAP <Body>. If the handler is configured to expect a signed body, CICS rejects

any SOAP message in which the body is not signed and issues a SOAP fault.

For outbound messages, the security message handler can sign the SOAP <Body> only; it does not sign
the <Header>. The algorithm and key used to sign the body are specified in the handler configuration
information.

Signature algorithms
CICS supports the signature algorithms required by the XML Signature specification. Each algorithm is
identified by a universal resource identifier (URI).

Algorithm URI

Digital Signature Algorithm with
Secure Hash Algorithm 1 (DSA
with SHA1)

Supported on inbound SOAP
messages only.

http://www.w3.org/2000/09/xmldsig#dsa-sha1

Rivest-Shamir-Adleman
algorithm with Secure Hash
Algorithm 1 (RSA with SHA1)

http://www.w3.org/2000/09/xmldsig#rsa-sha1

Example of a signed SOAP message
This is example shows a SOAP message that has been signed by CICS.

<?xml version="1.0" encoding="UTF8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header>
 <wsse:Security xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#" SOAP-ENV:mustUnderstand="1">
 <wsse:BinarySecurityToken 1
 EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-
security-1.0#Base64Binary"
 ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509"

494 CICS TS for z/OS: Using Web Services with CICS

 wsu:Id="x509cert00">MIIChDCCAe2gAwIBAgIBADANBgkqhkiG9w0BAQUFADAwMQswCQYDVQQGEwJHQjEMMAoGA1UEChMD
 SUJNMRMwEQYDVQQDEwpXaWxsIFlhdGVzMB4XDTA2MDEzMTAwMDAwMFoXDTA3MDEzMTIzNTk1OVow
 MDELMAkGA1UEBhMCR0IxDDAKBgNVBAoTA0lCTTETMBEGA1UEAxMKV2lsbCBZYXRlczCBnzANBgkq
 hkiG9w0BAQEFAAOBjQAwgYkCgYEArsRj/n+3RN75+jaxuOMBWSHvZCB0egv8qu2UwLWEeiogePsR
 6Ku4SuHbBwJtWNr0xBTAAS9lEa70yhVdppxOnJBOCiERg7S0HUdP7a8JXPFzA+BqV63JqRgJyxN6
 msfTAvEMR07LIXmZAte62nwcFrvCKNPCFIJ5mkaJ9v1p7jkCAwEAAaOBrTCBqjA/BglghkgBhvhC
 AQ0EMhMwR2VuZXJhdGVkIGJ5IHRoZSBTZWN1cml0eSBTZXJ2ZXIgZm9yIHovT1MgKFJBQ0YpMDgG
 ZQVRFU0BVSy5JQk0uQ09ggdJQk0uQ09NhgtXV1cuSUJNLkNPTYcECRRlBjAO
 </wsse:BinarySecurityToken>
 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <ds:SignedInfo xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">
 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
 <c14n:InclusiveNamespaces xmlns:c14n="http://www.w3.org/2001/10/xml-exc-c14n#" PrefixList="ds wsu xenc SOAP-ENV "/>
 </ds:CanonicalizationMethod>
 <ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <ds:Reference URI="#TheBody">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
 <c14n:InclusiveNamespaces xmlns:c14n="http://www.w3.org/2001/10/xml-exc-c14n#" PrefixList="wsu SOAP-ENV "/>
 </ds:Transform>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/> 2
 <ds:DigestValue>QORZEA+gpafluShspHxhrjaFlXE=</ds:DigestValue> 3
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>drDH0XESiyN6YJm27mfK1ZMG4Q4IsZqQ9N9V6kEnw2lk7aM3if77XNFnyKS4deglbC3ga11kkaFJ 4
 p4jLOmYRqqycDPpqPm+UEu7mzfHRQGe7H0EnFqZpikNqZK5FF6fvYlv2JgTDPwrOSYXmhzwegUDT
 lTVjOvuUgXYrFyaO3pw=</ds:SignatureValue>
 <ds:KeyInfo>
 <wsse:SecurityTokenReference>
 <wsse:Reference URI="#x509cert00"
 ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509"/
> 5
 </wsse:SecurityTokenReference>
 </ds:KeyInfo>
 </ds:Signature>
 </wsse:Security>
</SOAP-ENV:Header>
<SOAP-ENV:Body xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
wsu:Id="TheBody">
 <getVersion xmlns="http://msgsec.wssecfvt.ws.ibm.com"/>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

1. The binary security token contains the base64binary encoding of the X.509 certificate. This encoding
includes the public key that the intended recipient of the SOAP message uses to verify the signature.

2. The algorithm that is used during the hashing process to produce the message digest.
3. The value of the message digest.
4. The digest value is then encrypted with the user's private key and included here as the signature value.
5. References the binary security token that contains the public key that is used to verify the signature.

CICS support for encrypted SOAP messages
For inbound messages, CICS can decrypt any encrypted elements in the SOAP body, and encrypted SOAP
header blocks where the body is also encrypted. For outbound messages, CICS encrypts the entire SOAP
body.

A SOAP message is an XML document, consisting of an <Envelope> element, which contains an optional
<Header> element, and a mandatory <Body> element.

The WSS: SOAP Message Security specification allows some of the contents of the <Header> element
and all of the contents of the <Body> element to be encrypted at the element level. That is, in a given
message, individual elements can have different levels of encryption, or can be encrypted using different
algorithms. For example, in a SOAP message used in an online purchasing application, it is appropriate to
encrypt an individual's credit card details to ensure that they remain confidential. However, to avoid the
overhead of encrypting the entire message, some information might safely be encrypted using a less
secure (but faster) algorithm and other information might safely remain unencrypted.

For inbound messages, the CICS-supplied security message handler can decrypt individual elements in
the SOAP <Body>, and can decrypt elements in the SOAP <Header> if the SOAP body is also encrypted.
The security message handler always decrypts these elements:

• Elements it encounters in the <Header> element in the order in which the elements are found.

Chapter 6. Support for securing web services 495

• Elements in the SOAP <Body> element. If you want to reject a SOAP message that does not have an
encrypted <Body>, configure the handler to expect an encrypted body using the
<expect_encrypted_body> element.

For outbound messages, the security message handler supports encryption of the contents of the SOAP
<Body> only; it does not encrypt any elements in the <Header> element. When the security message
handler encrypts the <Body> element, all elements in the body are encrypted with the same algorithm
and using the same key. The algorithm, and information about the key, are specified in the configuration
information about the handler.

Encryption algorithms
CICS supports the encryption algorithms required by the XML Encryption specification. Each algorithm is
identified by a universal resource identifier (URI).

Algorithm URI

Triple Data Encryption Standard
algorithm (Triple DES)

http://www.w3.org/2001/04/xmlenc#tripledes-cbc

Advanced Encryption Standard
(AES) algorithm with a key length
of 128 bits

http://www.w3.org/2001/04/xmlenc#aes128-cbc

Advanced Encryption Standard
(AES) algorithm with a key length
of 192 bits

http://www.w3.org/2001/04/xmlenc#aes192-cbc

Advanced Encryption Standard
(AES) algorithm with a key length
of 256 bits

http://www.w3.org/2001/04/xmlenc#aes256-cbc

Example of an encrypted SOAP message
This example of a SOAP message has been encrypted by CICS.

<?xml version="1.0" encoding="UTF8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header>
 <wsse:Security xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#" SOAP-ENV:mustUnderstand="1">

 <wsse:BinarySecurityToken
 EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-
security-1.0#Base64Binary" 1
 ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509"
 wsu:Id="x509cert00">MIIChDCCAe2gAwIBAgIBADANBgkqhkiG9w0BAQUFADAwMQswCQYDVQQGEwJHQjEMMAoGA1UEChMD
 SUJNMRMwEQYDVQQDEwpXaWxsIFlhdGVzMB4XDTA2MDEzMTAwMDAwMFoXDTA3MDEzMTIzNTk1OVow
 MDELMAkGA1UEBhMCR0IxDDAKBgNVBAoTA0lCTTETMBEGA1UEAxMKV2lsbCBZYXRlczCBnzANBgkq
 hkiG9w0BAQEFAAOBjQAwgYkCgYEArsRj/n+3RN75+jaxuOMBWSHvZCB0egv8qu2UwLWEeiogePsR
 6Ku4SuHbBwJtWNr0xBTAAS9lEa70yhVdppxOnJBOCiERg7S0HUdP7a8JXPFzA+BqV63JqRgJyxN6
 msfTAvEMR07LIXmZAte62nwcFrvCKNPCFIJ5mkaJ9v1p7jkCAwEAAaOBrTCBqjA/BglghkgBhvhC
 AQ0EMhMwR2VuZXJhdGVkIGJ5IHRoZSBTZWN1cml0eSBTZXJ2ZXIgZm9yIHovT1MgKFJBQ0YpMDgG
 A1UdEQQxMC+BEVdZQVRFU0BVSy5JQk0uQ09NggdJQk0uQ09NhgtXV1cuSUJNLkNPTYcECRRlBjAO
 BgNVHQ8BAf8EBAMCAfYwHQYDVR0OBBYEFMiPX6VZKP5+mSOY1TLNQGVvJzu+MA0GCSqGSIb3DQEB
 BQUAA4GBAHdrS409Jhoe67pHL2gs7x4SpV/NOuJnn/w25sjjop3RLgJ2bKtK6RiEevhCDim6tnYW
 NyjBL1VdN7u5M6kTfd+HutR/HnIrQ3qPkXZK4ipgC0RWDJ+8APLySCxtFL+J0LN9Eo6yjiHL68mq
 uZbTH2LvzFMy4PqEbmVKbmA87alF
 </wsse:BinarySecurityToken>
 <xenc:EncryptedKey xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">
 <xenc:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/> 2
 <ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <wsse:SecurityTokenReference>
 <wsse:Reference URI="#x509cert00"
 ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509"/>
 3
 </wsse:SecurityTokenReference>
 </ds:KeyInfo>
 <xenc:CipherData>
 <xenc:CipherValue>M6bDQtJrvX0pEjAEIcf6bq6MP3ySmB4TQOa/B5UlQj1vWjD56V+GRJbF7ZCES5ojwCJHRVKW1ZB5 4
 Mb+aUzSWlsoHzHQixc1JchgwCiyIn+E2TbG3R9m0zHD3XQsKTyVaOTlR7VPoMBd1ZLNDIomxjZn2
 p7JfxywXkObcSLhdZnc=</xenc:CipherValue>
 </xenc:CipherData>
 <xenc:ReferenceList>

496 CICS TS for z/OS: Using Web Services with CICS

 <xenc:DataReference URI="#Enc1"/>
 </xenc:ReferenceList>
 </xenc:EncryptedKey>
 </wsse:Security>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
 <xenc:EncryptedData xmlns:xenc="http://www.w3.org/2001/04/xmlenc#" Id="Enc1" Type="http://www.w3.org/2001/04/
xmlenc#Content">
 <xenc:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/> 5
 <xenc:CipherData>
 <xenc:CipherValue>kgvqKnMcgIUn7rl1vkFXF0g4SodEd3dxAJo/mVN6ef211B1MZelg7OyjEHf4ZXwlCdtOFebIdlnK 6
 rrksql1Mpw6So7ID8zav+KPQUKGm4+E=</xenc:CipherValue>
 </xenc:CipherData>
 </xenc:EncryptedData>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

1. The binary security token contains the base64binary encoding of the X.509 certificate. This encoding
includes the public key that was used to encrypt the symmetric key.

2. States the algorithm that was used to encrypt the symmetric key.
3. References the binary security token that contains the public key used to encrypt the symmetric key.
4. The encrypted symmetric key that was used to encrypt the message.
5. The encryption algorithm that was used to encrypt the message.
6. The encrypted message.

Configuring RACF for Web Services Security
You must configure an external security manager, such as RACF, to create public-private key pairs and
X.509 certificates for signing and encrypting outbound SOAP messages and to authenticate and decrypt
signed and encrypted inbound SOAP messages.

Before you begin
Before you perform this task, you must have RACF set up to work with CICS. Specify the DFLTUSER,
KEYRING, and SEC=YES system initialization parameters in the CICS region that contains your web
services pipelines.

Note: Multiple certificates with the same Distinguished Name on the same KEYRING are not supported.

Procedure

1. To authenticate inbound SOAP messages that are signed:
a) Import the X.509 certificate into RACF as an ICSF key.
b) Attach the certificate to the key ring specified in the KEYRING system initialization parameter, using

the RACDCERT command:

RACDCERT ID(userid1)
CONNECT(ID(userid2) LABEL('label-name') RING(ring-name)

where:

• userid1 is the default user ID of the key ring or has authority to attach certificates to the key ring
for other user IDs.

• userid2 is the user ID that you want to associate with the certificate.
• label-name is the name of the certificate.
• ring-name is the name of the key ring that is specified in the KEYRING system initialization

parameter.
c) Optional: If you want to use asserted identities, ensure that the user ID associated with the

certificate has surrogate authority to allow work to run under other user IDs.
Also, make sure that any additional certificates included in the SOAP message header are also
imported into RACF.

Chapter 6. Support for securing web services 497

The SOAP message can contain a binary security token in the header that either includes the
certificate or contains a reference to the certificate. This reference can be the KEYNAME (the
certificate label in RACF), a combination of the ISSUER and SERIAL number, or the
SubjectKeyIdentifier. CICS can recognize the SubjectKeyIdentifier only if it has been specified as an
attribute in the definition of the certificate in RACF.

2. To sign outbound SOAP messages:
a) Create an X.509 certificate and a public-private key pair using the following RACDCERT command:

RACDCERT ID(userid2) GENCERT
SUBJECTSDN(CN('common-name')
 T('title')
 OU('organizational-unit')
 O('organization')
 L('locality')
 SP('state-or-province')
 C('country'))
WITHLABEL('label-name')

where userid2 is the user ID that you want to associate with the certificate.
When you specify the certificate label-name value, do not use the following characters:

< > : ! =

b) Attach the certificate to the key ring specified in the KEYRING system initialization parameter.
Use the RACDCERT command.

c) Export the certificate and publish it to the intended recipient of the SOAP message.
You can edit the pipeline configuration file so that CICS automatically includes the X.509 certificate in
the binary security token of the SOAP message header for the intended recipient to validate the
signature.

3. To decrypt inbound SOAP messages that are encrypted, the SOAP message must include the public
key that is part of a key pair, where the private key is defined in CICS.
a) Generate a public-private key pair and certificate in RACF for encryption.

The key pair and certificate must be generated using ICSF.
b) Attach the certificate to the key ring specified in the KEYRING system initialization parameter. Use

the RACDCERT command.
c) Export the certificate and publish it to the generator of the SOAP messages that you want to

decrypt.
The generator of the SOAP message can then import the certificate that contains the public key and
use it to encrypt the SOAP message. The SOAP message can contain a binary security token in the
header that either includes the public key or contains a reference to it. This reference can be the
KEYNAME, a combination of the ISSUER and SERIAL number, or the SubjectKeyIdentifier. CICS can
recognize the SubjectKeyIdentifier only if it has been specified as an attribute in the definition of the
public key in RACF.

4. To encrypt outbound SOAP messages:
a) Import the certificate that contains the public key that you want to use for encryption into RACF as

an ICSF key.
The intended recipient must have the private key associated with the public key to decrypt the
SOAP message.

b) Attach the certificate that contains the public key to the key ring specified in the KEYRING system
initialization parameter. Use the RACDCERT command.

CICS uses the public key in the certificate to encrypt the SOAP body and sends the certificate
containing the public key as a binary security token in the SOAP message header. The public key is
defined in the pipeline configuration file.

498 CICS TS for z/OS: Using Web Services with CICS

What to do next

This configuration for signing and encrypting outbound messages requires that the certificate used is
owned by the CICS region user ID. The certificate must be owned by the CICS region userid because
RACF allows only the certificate owner to extract the private key, which is used for the signing or
encryption process.

If CICS needs to sign or encrypt a message using a certificate that it does not own, you can share a single
certificate between CICS systems by following the instructions in Using an existing certificate that is not
owned by the CICS region user ID.

Configuring provider mode web services for identity propagation
Identity propagation with a web service request relies on trust-based configurations; for example, using a
client-certified SSL connection from IBM DataPower. In this task, you configure a PIPELINE resource to
expect an ICRX identity token in the WS-Security header, sent from a trusted client.

Before you begin
You must configure your RACF RACMAP settings before you configure your web service connections,
otherwise you receive the RACF ICH408I message for every unmapped request that is sent to RACF. For
more information about configuring the RACF RACMAP command, see Configuring RACF for identity
propagation.

You must configure a trust relationship between the IBM DataPower appliance and CICS, for example,
using SSL client certification between IBM DataPower and CICS. The digital certificate that IBM
DataPower uses to identify itself must be associated with a user ID, and that user ID must be granted
surrogate authority to assert identities. For more information about surrogate authority, see Surrogate
user security.

About this task
This task explains how to use CICS with a IBM DataPower appliance to provide a web service
configuration that can propagate distributed identities in a secure and robust way. The circle in the
diagram indicates that this task explains the CICS-specific configuration.
Figure 32. Configuring CICS to expect an ICRX identity token from IBM DataPower.

IBM DataPower acts as an intermediary between CICS and other applications. Remote web service
requester applications connect to the IBM DataPower appliance using the SOAP protocol. IBM DataPower

Chapter 6. Support for securing web services 499

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/tcpip/dfht5_racf_already_def.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/tcpip/dfht5_racf_already_def.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/cics/idprop_racf_configure.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/cics/idprop_racf_configure.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/cics/dfht51m.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/cics/dfht51m.html

authenticates the credentials supplied by the remote client and mapping the credentials to a z/OS ICRX
identity token, which identifies the distributed identity of a user. The SOAP message is then forwarded to
CICS over the trusted SSL connection with an ICRX identity token in a WS-Security header. For more
information about ICRX identity tokens, see z/OS Security Server RACF Data Areas.

CICS receives the SOAP message from IBM DataPower. The PIPELINE configuration file specifies blind
trust, because the only possible client is the IBM DataPower appliance, and IBM DataPower is
communicating with CICS over a secure SSL connection. Therefore, you do not need to specify additional
authentication in the PIPELINE configuration file. The WS-Security handler program locates the first ICRX
found in the WS-Security header and uses the ICRX to identify the user.

Procedure

1. Create a PIPELINE resource, or edit an existing PIPELINE resource to specify the basic-ICRX mode,
which allows the PIPELINE to receive an ICRX.
The most typical combination is the blind trust with the basic-ICRX mode. For more information about
the PIPELINE resource element, see The <authentication> element.

Here is an example PIPELINE configuration file, showing blind trust with the basic-ICRX mode:

<?xml version="1.0" encoding="EBCDIC-CP-US"?>
<provider_pipeline xmlns="http://www.ibm.com/software/htp/cics/pipeline">
 <service>
 <service_handler_list>
 <wsse_handler>
 <dfhwsse_configuration version="1">
 <authentication trust="blind" mode="basic-ICRX"/>
 </dfhwsse_configuration>
 </wsse_handler>
 </service_handler_list>
 <terminal_handler>
 <cics_soap_1.2_handler/>
 </terminal_handler>
 </service>
 <apphandler>DFHPITP</apphandler>
</provider_pipeline>

Here is an example SOAP message with an ICRX identity, using blind trust:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Header>
 <wsse:Security
 xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd"
 SOAP-ENV:mustUnderstand="1">

 <wsse:BinarySecurityToken EncodingType="http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss
-soap-message-security-1.0#Base64Binary"
 wsu:Id="ICRX"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wsswssecurity-
utility-1.0.xsd"
 ValueType="http://www.IBM.com/xmlns/prod/zos/saf#ICRXV1">

 ICRX IS HERE

 </wsse:BinarySecurityToken>

 </wsse:Security>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body>

 APPLICATION SPECIFIC XML IS HERE

500 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.ichc400/abstract.htm
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_authentication.html

 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

2. Ensure that IBM DataPower is configured to be able to send ICRX information. See Sample network
topologies for using identity propagation.

Results
Web service requests from IBM DataPower with an ICRX identity token in the WS-Security header,
connected over a client-certified SSL connection, can now flow.

Configuring the pipeline for Web Services Security
To configure a pipeline to support Web Services Security (WSS), you must add a security handler to your
pipeline configuration files. You can use the security handler supplied with CICS, as described, or create
your own.

Before you begin
Before you define the CICS-supplied security handler, you must identify or create the pipeline
configuration files to which you add configuration information for WSS.

Procedure

1. Add a <wsse_handler> element to your pipeline.
The handler must be included in the <service_handler_list> element in a service provider or
requester pipeline.
Code the following elements:

<wsse_handler>
 <dfhwsse_configuration version="1">

 </dfhwsse_configuration>
</wsse_handler>

The <dfhwsse_configuration> element is a container for the other elements in the configuration.
2. Optional: Code an <authentication> element.

• In a service requester pipeline, the <authentication> element specifies the type of
authentication that must be used in the security header of outbound SOAP messages.

• In a service provider pipeline, the element specifies whether CICS uses the security tokens in an
inbound SOAP message to determine the user ID under which work is processed.

a) Code the trust attribute to specify whether asserted identity is used and the nature of the trust
relationship between service provider and requester.
For details of the trust attribute, see The <authentication> element.

b) Optional: If you specified trust=none, code the mode attribute to specify how credentials found
in the message are processed.
For details of the mode attribute, see The <authentication> element.

c) In the <authentication> element, code these elements:

1) An optional, empty <suppress/> element.

If this element is specified in a service provider pipeline, the handler does not attempt to use
any security tokens in the message to determine under which user ID the work runs.

If this element is specified in a service requester pipeline, the handler does not attempt to add
to the outbound SOAP message any of the security tokens that are required for authentication.

2) In a requester pipeline, an optional <algorithm> element that specifies the URI of the
algorithm that is used to sign the body of the SOAP message. You must specify this element if
the combination of trust and mode attribute values indicate that the messages are signed. You

Chapter 6. Support for securing web services 501

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/cics/idprop_topology.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/cics/idprop_topology.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_authentication.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_authentication.html

can specify only the RSA with SHA1 algorithm in this element. The URI is http://
www.w3.org/2000/09/xmldsig#rsa-sha1.

3) An optional <certificate_label> element that specifies the label that is associated with
an X.509 digital certificate installed in RACF. If you specify this element in a service requester
pipeline and the <suppress> element is not specified, the certificate is added to the security
header in the SOAP message. If you do not specify a <certificate_label> element, CICS
uses the default certificate in the RACF key ring.

This element is ignored in a service provider pipeline.
3. Optional: Code an <sts_authentication> element as an alternative to the <authentication>

element.
You must not code both in your pipeline configuration file. This element specifies that a Security
Token Service (STS) is used for authentication and determines the type of request that is sent.
a) Optional: In service provider mode only, code the action attribute to specify whether the STS

verifies or exchanges a security token.
For details of the action attribute, see The <sts_authentication> element.

b) Within the <sts_authentication> element, code these elements:

1) An <auth_token_type> element. This element is required when you specify a
<sts_authentication> element in a service requester pipeline and is optional in a service
provider pipeline. For more information, see The <auth_token_type> element.

• In a service requester pipeline, the <auth_token_type> element indicates the type of
token that STS issues when CICS sends it the user ID contained in the DFHWS-USERID
container. The token that CICS receives from the STS is placed in the header of the outbound
message.

• In a service provider pipeline, the <auth_token_type> element is used to determine the
identity token that CICS takes from the message header and sends to the STS to exchange or
validate. CICS uses the first identity token of the specified type in the message header. If you
do not specify this element, CICS uses the first identity token that it finds in the message
header. CICS does not consider the following as identity tokens:

– wsu:Timestamp
– xenc:ReferenceList
– xenc:EncryptedKey
– ds:Signature

2) In a service provider pipeline only, an optional, empty <suppress/> element. If this element
is specified, the handler does not attempt to use any security tokens in the message to
determine the user ID that the work runs under. The <suppress/> element includes the
identity token that is returned by the STS.

4. Optional: Code an <sts_endpoint> element.
Use this element only if you have also specified an <sts_authentication> element. In the
<sts_endpoint> element, code the following elements:

• An <endpoint> element. This element contains a URI that points to the location of the Security
Token Service (STS) on the network. It is recommended that you use TLS to keep the connection to
the STS secure, rather than using HTTP.

To use SAML support, set the endpoint to cics://PROGRAM/DFHSAML.

You can also specify an IBM MQ endpoint, by using the JMS format of URI.
• An optional <jvmserver> element. This element identifies the JVM server that is configured to run

the SAML token service. If this element is not included, the default sample resource JVM server
DFHXSTS is assumed. This element is valid only if you are using SAML: if you use it in other
situations, an error occurs.

5. Optional: If you require inbound SOAP messages to be digitally signed, code an empty
<expect_signed_body/> element.

502 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_sts_authentication.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_auth_token_type.html

The <expect_signed_body/> element indicates that the <body> of the inbound message must be
signed. If the body of an inbound message is not correctly signed, CICS rejects the message with a
security fault.

6. Optional: If you want to reject inbound SOAP messages that are digitally signed, code an empty
<reject_signature/> element.

7. Optional: If you require inbound SOAP messages to be encrypted, code an empty
<expect_encrypted_body/> element.

The <expect_encrypted_body/> element indicates that the <body> of the inbound message
must be encrypted. If the body of an inbound message is not correctly encrypted, CICS rejects the
message with a security fault.

8. If you want to reject inbound SOAP messages that are partially or fully encrypted, code an empty
<reject_encryption/> element.

9. Optional: If you require outbound SOAP messages to be signed, code a <sign_body> element.
a) In the <sign_body> element, code an <algorithm> element.

b) Following the <algorithm> element, code a <certificate_label> element.

Here is an example of a completed <sign_body> element:

<sign_body>
 <algorithm>http://www.w3.org/2000/09/xmldsig#rsa-sha1</algorithm>
 <certificate_label>SIGCERT01</certificate_label>
</sign_body>

10. Optional: If you require outbound SOAP messages to be encrypted, code an <encrypt_body>
element.
a) In the <encrypt_body> element, code an <algorithm> element.

b) Following the <algorithm> element, code a <certificate_label> element.

Here is an example of a completed <encrypt_body> element:

<encrypt_body>
 <algorithm>http://www.w3.org/2001/04/xmlenc#tripledes-cbc</algorithm>
 <certificate_label>ENCCERT02</certificate_label>
</encrypt_body>

Example
The following example shows a completed security handler in which most of the optional elements are
present:

<wsse_handler>
 <dfhwsse_configuration version="1">
 <authentication trust="signature" mode="basic">
 <suppress/>
 <certificate_label>AUTHCERT03</certificate_label>
 </authentication>
 <expect_signed_body/>
 <expect_encrypted_body/>
 <sign_body>
 <algorithm>http://www.w3.org/2000/09/xmldsig#rsa-sha1</algorithm>
 <certificate_label>SIGCERT01</certificate_label>
 </sign_body>
 <encrypt_body>
 <algorithm>http://www.w3.org/2001/04/xmlenc#tripledes-cbc</algorithm>
 <certificate_label>ENCCERT02</certificate_label>
 </encrypt_body>
 </dfhwsse_configuration>
</wsse_handler>

Chapter 6. Support for securing web services 503

Writing a custom security handler
If you want to use your own security procedures and processing, you can write a custom message handler
to process secure SOAP messages in the pipeline.

You need to decide the level of security that your security handler must support, and ensure that an
appropriate SOAP fault is returned when a message includes security that is not supported. The message
handler must also be able to cope with security on inbound and outbound messages.

Here is a likely set of steps that your security handler would implement:

1. Retrieve the DFHREQUEST or DFHRESPONSE container using an EXEC CICS GET CONTAINER
command.

2. Parse the XML to find the security token that is in the WS-Security message header. The header starts
with the <wsse:Security> element. The security token might be a user name and password, a
digital certificate, or an encryption key. A message can have many tokens in the security header, so
your handler needs to identify the correct one to process.

3. Perform the appropriate processing, depending on the security that is implemented in the message:

• To perform basic authentication of a Kerberos token, issue an EXEC CICS VERIFY TOKEN
command. This command checks that the supplied Kerberos token is valid. If the command is
successful, update the DFHWS-USERID container with an EXEC CICS PUT CONTAINER. Otherwise,
issue an EXEC CICS SOAPFAULT CREATE command.

• To perform basic authentication of a password or password phrase, issue an EXEC CICS VERIFY
PHRASE command. This command checks the user name and password in the security header of the
message. If the command is successful, update the DFHWS-USERID container with an EXEC CICS
PUT CONTAINER. Otherwise, issue an EXEC CICS SOAPFAULT CREATE command.

• You might also want to write an audit record each time a service is requested, for example, you could
write a message to a CICS user journal.

• To perform advanced authentication, either by exchanging or validating a range of tokens with a
Security Token Service, use the Trust client interface which enables you to interact with the STS
directly. . See “Invoking the Trust client from a message handler” on page 504 for details.

• Validate the credentials of the digital certificate if the message is signed.
• If parts of the message are encrypted, decrypt the message using the information in the security

header. The How CICS complies with Web Services Security specifications specification provides
information about how to do this

4. Define your security handler program in CICS and update the pipeline configuration file, ensuring that
it is correctly placed in the XML. In a service requester pipeline configuration file, the security handler
must be configured to run at the end of the pipeline. In a service provider pipeline configuration file,
the security handler must be configured to run at the beginning of the pipeline.

For examples of custom message handlers, see IBM Redbooks: Implementing CICS Web services.

Invoking the Trust client from a message handler
CICS provides an interface so that you can write your own message handler to invoke a Security Token
Service (STS). With this interface you can perform more advanced processing than the CICS-supplied
security handler.

About this task
You can use the Trust client instead of the security handler or in addition to it. To use the Trust client
interface:

Procedure

1. Extract the correct token from the security message header of the inbound or outbound message.
2. Link to program DFHPIRT, passing the channel DFHWSTC-V1 and the following required containers:

504 CICS TS for z/OS: Using Web Services with CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-standards/WSsecurity.html
http://www.redbooks.ibm.com/abstracts/SG247206.html

• DFHWS-STSURI, containing the location of the STS on the network.
• DFHWS-STSACTION, containing the URI of the type of request that the STS must perform. The two

supported actions are issue and validate.
• DFHWS-IDTOKEN, containing the token that must either be verified or exchanged by the STS.
• DFHWS-TOKENTYPE, containing the type of token that the STS must send back in the response.
• DFHWS-SERVICEURI, containing the URI of the web service operation that is being invoked.

You can optionally include the DFHWS-XMLNS container to provide the namespaces of the SOAP
message that contains the security token. This container is described in more detail in The header
processing program interface.

3. DFHPIRT returns with the response from the STS.
A successful response is stored in the DFHWS-RESTOKEN container.

If the STS encounters a problem with the request, it returns a SOAP fault. DFHPIRT puts the SOAP
fault in the DFHWS-STSFAULT container. If the STS provides a reason for issuing the SOAP fault, the
reason is put in the DFHWS-STSREASON container.

If an abend occurs, a DFHERROR container is returned that contains details of the processing error.

Your message handler must handle these responses and perform suitable processing in the event of
an error. For example, the message handler might return a suitable SOAP fault to the web service
requester.

4. Process the response as appropriate.
In provider mode, your pipeline processing must ensure that a user name that CICS can understand is
placed in the DFHWS-USERID container by the time the message reaches the application handler. In
requester mode, your message handler must add the correct token to the outbound message security
header.

What to do next
When you have written your message handler, deploy the program in CICS and update the appropriate
pipeline configuration files. In service requester pipelines, define your message handler to occur at the
end of the pipeline processing but before the CICS-supplied security handler. In service provider
pipelines, define your message handler at the beginning of the pipeline but after the CICS-supplied
security handler.

Security for z/OS Connect
z/OS Connect is a WebSphere Liberty application, and has the same configuration and considerations as
other WebSphere Liberty applications. In addition, z/OS Connect for CICS 1.0 and z/OS Connect
Enterprise Edition have some extra security requirements.

z/OS Connect for CICS 1.0 and z/OS Connect Enterprise Edition have a RESTful management interface to
allow dynamic service discovery. This interface is hosted at the same host name and port number as the
individual JSON Services. The use of Transport Layer Security (TLS) to protect this interface, and the
individual JSON Services, is encouraged.

By default, all client connections to z/OS Connect for CICS 1.0 and z/OS Connect Enterprise Edition must
use the HTTPS protocol. The default behavior is to require a client-certified TLS connection to CICS. If this
default is retained, client certificates must be associated with a SAF user ID. The application runs by
using this certificate-derived identity.

Both z/OS Connect for CICS 1.0 and z/OS Connect Enterprise Edition can be configured to support the
HTTP basic authentication protocol. This protocol allows a client to connect by using TLS in combination
with a SAF user ID and password. To enable support for HTTP basic authentication, add the following line
to the Liberty server configuration file (server.xml) : <webAppSecurity
allowFailOverToBasicAuth="true"/>

Chapter 6. Support for securing web services 505

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_headerhandler.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_headerhandler.html

Users of z/OS Connect for CICS 1.0 and z/OS Connect Enterprise Edition must be a member of the
zos.connect.access.roles.zosConnectAccess EJBROLE. For more information, see Authorization
using SAF role mapping

See Configuring authorization for applications in Liberty for Liberty information, Configuring security for
z/OS Connect for z/OS Connect information, and Configuring security for z/OS Connect EE in z/OS Connect
Enterprise Edition V3.0 product documentation for z/OS Connect EE information.

For further information, see Authorization using SAF role mapping, and Configuring security for a Liberty
JVM server.

Configuring permissions for z/OS Connect Services and APIs
The CICS security model requires some additional actions in the way that you configure permissions for
Services and APIs with z/OS Connect for CICS 1.0 and z/OS Connect Enterprise Edition.

About this task
When z/OS Connect is used to inject work into CICS, the following two identities are associated with the
work at different stages of the processing:

• An initial, temporary identity is allocated during the process of attaching the work.
• An authenticated identity is then used to run the remainder of the work.

You can configure these identities in several ways, depending on your preferences and system
environment.

Procedure

1. Optional: Create an alternative initial user ID for z/OS Connect.

By default, the initial identity is the default CICS user ID, but you might choose to assign a different
user ID to avoid giving the default CICS user ID permission to run transaction CPIH, or its equivalent.

a) Authorize the alternative initial user ID to run transaction CPIH and any other transactions that are
initiated through z/OS Connect.

The initial user ID requires permission to run the target transaction for the Service or API.
2. Assign a default initial user ID. You can choose either or both of the following methods:

• Set a user ID override value in the JVM profile for the JVMSERVER resource that hosts z/OS
Connect.

The following is an example override, where ZOSCUSER is the default initial user ID: -
Dcom.ibm.cics.jvmserver.http.userid=ZOSCUSER

Note: If you set a default initial user ID in the JVM profile, you do not need to provide a USERID
value for each URIMAP. However, If you provide both a USERID for a URIMAP and an override value
in the JVM profile, the USERID specified for a given URIMAP takes precedence.

• Set the USERID field for a given URIMAP resource that targets z/OS Connect.

When an HTTP request is received by z/OS Connect, CICS matches it against the URIMAP resources
that are installed. If the URIMAP that is found specifies the USERID attribute, that user ID is used
as the initial user ID, instead of the default initial user ID for the JVM server.

Here is an example configuration for a URIMAP resource named ZOSCDEFT, where JVMSERVER is
the USAGE value, a generic value is set for the PATH attribute, CPIH is the target transaction, and
ZOSCUSER is the default initial user ID:

NAME: ZOSCDEFT
USAGE: JVMSERVER
SCHEME: HTTP
PORT: NO
HOST: *
PATH: /zosConnect/*

506 CICS TS for z/OS: Using Web Services with CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/jee_app_role.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/jee_app_role.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_sec_rolebased.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_zconnect_security.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_zconnect_security.html
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/securing/config_security.html
https://www.ibm.com/support/knowledgecenter/SS4SVW_3.0.0/com.ibm.zosconnect.doc/securing/config_security.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/jee_app_role.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/security_liberty.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/security_liberty.html

TRANSACTION: CPIH
USERID: ZOSCUSER

Note: URIMAP resources that are installed by using the PIPELINE SCAN mechanism are unlikely to be
configured with a default user ID. In this scenario, you might consider specifying a user ID override
value on the JVMSERVER.

Note: It is possible to store an initial user ID in a WSBind file: the user of DFHLS2JS or DFHJS2LS
might provide a value for the USERID input parameter. If the USERID parameter is used, any URIMAPs
that are produced during a PIPELINE SCAN include the requested initial user ID.

Results
You have now configured your environment so that CICS recognizes the URIs for your Services and APIs,
and associates an initial user ID for use when the target transaction is attached.

Chapter 6. Support for securing web services 507

508 CICS TS for z/OS: Using Web Services with CICS

Chapter 7. Troubleshooting web services
The problems that you might get when implementing web services in CICS can occur during the
deployment process, or at run time when CICS is transforming the messages.

Troubleshooting SOAP web services
The problems that you might get when implementing SOAP web services in CICS can occur during the
deployment process, or at run time when CICS is transforming SOAP messages.

Diagnosing deployment errors
Deployment errors can occur when you try to run the CICS web services assistant batch jobs or the CICS
XML assistant batch jobs, install a PIPELINE resource in CICS, or install a WEBSERVICE resource in CICS.
The most common deployment errors are described here, including the symptom of the problem, the
cause and the solution.

About this task

In the event of a deployment error, PIPELINE resources typically install in a DISABLED state and
WEBSERVICE resources install in an UNUSABLE state.

Information and error messages associated with the CICS web services assistant batch jobs and the CICS
XML assistant batch jobs are located in the job log. Error messages associated with installing resources
are located in the system log.

Codes of 0, 4, 8, or 12 are issued by the assistants, other codes are typically issued by BPXBATCH, the
JVM, or IEBGENER.

Codes issued by BPXBATCH fall into two main categories: a code of less than 128 indicates a command
failure, a code of greater than or equal to 128 indicates that the process was terminated by a signal. For
more information about BPXBATCH and its return codes, see the z/OS UNIX System Services Command
Reference.

Procedure

• You receive a return code of 0, 4, 8, or 12 when running the CICS web services assistant batch jobs or
the CICS XML assistant batch jobs.
The return codes mean the following:

– 0 - The job completed successfully.
– 4 - Warning. The job completed successfully, but one or more warning messages have been issued.
– 8 - Input error. The job did not complete successfully. One or more error messages were issued

while validating the input parameters.
– 12 - Error. The job did not complete successfully. One or more error messages were issued during

execution.

a) Check the job log for any warning or error messages.
Look up the detailed explanations for the messages. The explanations normally describe actions
that you can take to fix the problem.

b) Ensure that you have entered the correct values for each of the parameters in the job.
Parameter values such as file names and elements in the web service description should be treated
as case sensitive.

c) Ensure that you have specified the correct combination of parameters. For example, if you include
the PGMNAME parameter in DFHWS2LS when generating a web service binding file for a service
requester, you get an error and the job does not complete successfully.

© Copyright IBM Corp. 1974, 2020 509

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.bpxa500/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.bpxa500/toc.htm

• You receive a return code of 1, 136 or 139 when running the CICS web services assistant batch jobs or
the CICS XML assistant batch jobs.
These return codes indicate that the JVM has failed, usually because there is insufficient storage
available. The CICS assistants require a JCL region size of at least 300 MB, although some documents
might require 400 MB.
a) Increase the region size, or consider setting the region size to 0M.
b) Check for any active IEFUSI exits, which can limit the region size.

Note: If you use a 64bit JVM, ensure you specify a suitable MEMLIMIT value.
• You receive a return code of 137 when running the CICS web services assistant batch job DFHLS2WS,

or the CICS XML assistant batch job DFHLS2SC. This return code means that the job timed out.
a) Increase the time by coding the TIME parameter on the EXEC statement of your job to TIME=1440,

or increase the MAXCPUTIME value in the SYS1.PARMLIB(BPXPRMxx) member.
• You receive a DFHPI0914 error message when attempting to install a WEBSERVICE resource. The

message includes some information about the cause of the installation failure.
a) Check that you have authorized CICS to read the web service binding file in z/OS UNIX.
b) Check that the web service binding file is not corrupt.

This can occur, for example, if you use FTP to transfer the file to z/OS UNIX in text mode rather than
binary mode.

c) Check that two web service binding files with the same name are not in different pick up
directories.

d) If you are attempting to install a resource for a web service requester application, check that the
version of the SOAP binding matches the level supported in the pipeline.
You cannot install a SOAP 1.1 WEBSERVICE into a service requester pipeline that supports SOAP
1.2.

e) Check that you are not installing a provider mode WEBSERVICE resource into a requester mode
pipeline.
Provider mode web service binding files specify a PROGRAM value, whereas requester mode binding
files do not.

f) If you are using DFHWS2LS or DFHLS2WS, check that you have specified the correct parameters
when generating the web service binding file.
Some parameters, such as PGMNAME, are only allowed for web service providers and have to be
excluded if you are creating a web service requester.

g) If you are using DFHWS2LS or DFHLS2WS, check the messages issued by the job to see if there are
any problems that you need to resolve before creating the WEBSERVICE resource.

• The PIPELINE resource fails to install and you receive a DFHPI0700, DFHPI0712, DFHPI0714 or
similar error message.
a) If you received a DFHPI0700 error message, you need to enable PL/I language support in your

CICS region.
This is required before you can install any PIPELINE resources. See Language Environment support
for PL/I for more information.

b) Check that you have authorized CICS to access the z/OS UNIX directories to read the pipeline
configuration files.

c) Check that the directory you are specifying in the WSDIR parameter is valid.
In particular, check the case as directory and file names in z/OS UNIX are case-sensitive.

d) Ensure that you do not have a PIPELINE resource of the same name in an ENABLED state in the
CICS region.

• The PIPELINE resource installs in a DISABLED state. You get an error message in the range of
DFHPI0702 to DFHPI0711.
a) Check that there are no errors in the pipeline configuration file.

510 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/installing/dfha1n4.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/installing/dfha1n4.html

The elements in the pipeline configuration file can only appear in certain places. If you specify
these incorrectly you get a DFHPI0702 error message. This message includes the name of the
element that is causing the problem. Check the element description to make sure you have coded it
in the correct place.

b) Check that you do not have any unprintable characters, such as tabs, in the pipeline configuration
file.

c) Check that the XML is valid.
If the XML is not valid, this can cause parsing errors when you attempt to install the PIPELINE
resource.

d) Ensure that the pipeline configuration file is encoded in US EBCDIC.
If you try to use a different EBCDIC encoding, CICS cannot process the file.

• The WEBSERVICE resource is in a DISABLED state.
The states DISABLED and DISABLING are only available for WEBSERVICE resources that are defined
and installed in CICS bundles.
a) If the PIPELINE resource associated with the WEBSERVICE resource has been discarded, the

WEBSERVICE resource enters DISABLED state. Investigate why the PIPELINE resource is missing,
and replace it if appropriate.

b) If a disable action has been carried out for the CICS bundle where the WEBSERVICE resource is
defined, the WEBSERVICE resource enters DISABLED state when the web service is no longer in
use. Investigate the state of the CICS bundle, and enable it if appropriate.

Diagnosing service provider runtime errors
If you are having problems receiving or processing inbound messages in a provider mode pipeline, there
could be a problem with the transport or a specific SOAP message.

Procedure

• You receive a DFHPI0401, DFHPI0502, or similar message, indicating that an HTTP or WebSphere MQ
transport error has occurred.
If the transport is HTTP, the client receives a 500 Server Internal Error message. If the transport is
WebSphere MQ, the message is written to the dead letter queue (DLQ). A SOAP fault is not returned to
the web service requester, because CICS cannot determine what type of message was received.

• You receive a DFHxx message and a 404 Not Found error message.
a) If you are not using the web services assistant, you must create a URIMAP resource.

If you are using the web services assistant, the URIMAP is created automatically for you when you
run the PIPELINE SCAN command. The system log provides information on any errors that
occurred as a result of running this command.

b) Check that the WEBSERVICE resource is enabled and that the URIMAP it is associated with is what
you expected.
If your WEBSERVICE resource is in an UNUSABLE state, see “Diagnosing deployment errors” on
page 509.

c) Check that you have correctly specified the URI and port number.
In particular, check the case, because the attribute PATH on the URIMAP resource is case
sensitive.

• If there are unexpected errors being reported, consider using CEDX to debug the web service
application.

a) Check the system log to see what error messages are being reported by CICS.
This could indicate what type of error is occurring. If CICS is not reporting any errors, ensure that
the request is reaching CICS through the network.

b) Run CEDX against CPIH for the HTTP transport, CPIQ for the WebSphere MQ transport, or the
transaction that you specified in the URIMAP if this is different.

Chapter 7. Troubleshooting web services 511

If a task switch occurs during the pipeline processing before the application handler, unless the
DFHWS-TRANID container is populated, the new task runs under the same transaction id as the
first one. This can interfere with running CEDX, because the first task has a lock on the CEDX
session. You can avoid this problem by using DFHWS-TRANID to change the transaction id when
the task switches, allowing you to use CEDX on both the pipeline and application tasks separately.

For more information about CEDX, see Using the CEDX transaction.
c) If CEDX does not activate or allow you solve the problem, consider running auxiliary trace with the

PI, SO, AP, EI, and XS domains active.
This could indicate whether there is a security problem, TCP/IP problem, application program
problem or pipeline problem in your CICS region. Look for any exception trace points or abends.

• If you are receiving conversion errors, see “Diagnosing data conversion errors” on page 515.
• If you think your problem is related to MTOM messages, see “Diagnosing MTOM/XOP errors” on page

514.
• If a persistent HTTP connection is periodically closed:

a) Check whether performance tuning for HTTP connections is enabled. For more information, see
SOTUNING

b) If performance tuning is enabled, CICS will periodically close persistent HTTP connections to allow
connections to be redistributed among regions that are listening on shared IP endpoints.

• If connection attempts are refused when your CICS region is at maximum capacity.
a) Check whether performance tuning for HTTP connections is enabled. For more information, see

SOTUNING
b) If performance tuning is enabled, when CICS is at maximum capacity all inbound HTTP connection

open requests will queue outside of CICS in the TCPIPSERVICE's listening connection's backlog
queue in TCP/IP. The region's TCP/IP Global statistics SOG_PAUSING_HTTP_LISTENING field
reflects whether it is currently the case, and the SOG_TIMES_AT_ACCEPT_LIMIT/
SOG_TIME_LAST_PAUSED_HTTP_LISTENING fields contain more information on past occurrences.

c) Use NETSTAT ALL to obtain the ConnectionsDropped statistics for the TCPIPSERVICE's listening
connection. This is the number of connection requests received and dropped because the number
of connection requests waiting in the backlog queue has reached the maximum limit.
For more information, see Netstat in z/OS Communications Server: IP System Administrator's
Commands.

Statistics about connections dropped are also available from the following fields in the TCP/IP
services: Resource statistics:

– Connections dropped (SOR_CONNS_DROPPED)
– Time connection last dropped (SOR_CONN_LAST_DROPPED)

d) If the ConnectionsDropped value is too high, consider increasing the TCPIPSERVICE's backlog
attribute's value.

Diagnosing service requester runtime errors
Read this section if you are having problems sending web service requests from your service requester
application, or you are receiving SOAP fault messages from the web service provider.

About this task
Problems that occur can be due to errors in individual web services or issues at the transport level.

Procedure

• If you are using the INVOKE SERVICE command in your application program, a RESP and RESP2 code
are returned when there is a problem.
a) Look up the meaning of the RESP and RESP2 codes for the INVOKE SERVICE command to give you

an indication of what the problem might be.

512 CICS TS for z/OS: Using Web Services with CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/transactions/dfha7os.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/sit/dfha2_sotuning.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/sit/dfha2_sotuning.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/statistics/dfht3_stats_tcpip_global.html
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.halu101/netstat.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.halu101/netstat.htm
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/statistics/dfht3_stats_tcpip_services_resource.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/statistics/dfht3_stats_tcpip_services_resource.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-applications/commands-api/dfhp4_invokeservice.html

b) Check the CICS system log to see if there are any messages that can help you determine the cause
of the problem.

• If you are unable to send a SOAP request message and the pipeline is returning a DFHERROR
container, there was a problem when the pipeline tried to process the SOAP message.
a) Look at the contents of the DFHERROR container.

This should contain an error message and some data describing the problem that occurred.
b) Have you introduced any new message handlers or header processing programs in the pipeline?

If you have, try removing the new program and rerunning the web service to see if this solves the
problem. If your message handler is trying to perform some processing using a container that isn't
present in the pipeline, or is trying to update a container that is read-only, the pipeline stops
processing and returns an error in the DFHERROR container. Header processing programs can only
update a limited set of containers in the pipeline. See The header processing program interface for
details.

c) If the web service requester application is not using the INVOKE SERVICE command to send a
web service request, check that it has created all of the necessary control containers and that they
are the correct datatype. In particular, check that the DFHREQUEST container has a datatype of
CHAR rather than BIT.

d) If the web service requester application is using the INVOKE SERVICE command and a RESP value
of INVREQ and a RESP2 code of 14 is returned, this indicates that there has been a data conversion
error.
See “Diagnosing data conversion errors” on page 515.

e) Check that the XML in your SOAP message has not been invalidated by a custom message handler
during pipeline processing.
CICS does not perform any validation on outbound messages in the pipeline. If your application
uses the INVOKE SERVICE command, the XML is generated by CICS and is well formed when the
body of the SOAP message is placed in the DFHREQUEST container. However, if you have any
additional message handlers that change the contents of the SOAP message, this is not validated in
the pipeline.

• If you are able to send a SOAP message, but are getting a time out or transport error, this is usually
returned as a SOAP fault. If your program is using the INVOKE SERVICE command, CICS returns a
RESP value of TIMEDOUT and RESP2 code of 2 for a timeout error, and a RESP value of INVREQ and
RESP2 code of 17 for a transport error.
a) Check that the network end point is present.
b) Ensure that the RESPWAIT attribute on the PIPELINE resource is correctly configured to meet your

application's requirements.
The RESPWAIT attribute defines how long CICS waits for a reply from the web service provider
before returning to the application. If no value is specified, CICS uses the defaults of 10 seconds for
HTTP and 60 seconds for WebSphere MQ. However, CICS also has a time out in the dispatcher for
each transaction, and if this is less than the default of the protocol that is being used, CICS uses the
dispatcher time out instead.

• If you are able to send a SOAP message, but are getting a SOAP fault response back from the web
service provider that you didn't expect, look at the contents of the DFHWS-BODY container for details
of the SOAP fault.
a) If you sent a complete SOAP envelope in DFHREQUEST using the DFHPIRT interface, ensure that

the outbound message doesn't contain duplicate SOAP headers.
This can occur when the requester pipeline uses a SOAP 1.1 or SOAP 1.2 message handler. The
SOAP message handlers add SOAP headers, even if they are already specified in the SOAP
envelope by the service requester application. In this scenario, you can either:

• Remove the SOAP 1.1 or SOAP 1.2 message handler from the pipeline. This will affect any other
service requester applications that use this pipeline.

Chapter 7. Troubleshooting web services 513

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_headerhandler.html

• Remove the SOAP headers from the SOAP envelope that the application puts in DFHREQUEST.
CICS adds the necessary SOAP headers for you. If you want to perform additional processing on
the headers, you can use the header processing program interface.

• Use a WEB SEND command instead in your application and opt out of the web services support.
• If you think the problem is related to sending or receiving MTOM messages, see “Diagnosing

MTOM/XOP errors” on page 514.

Diagnosing MTOM/XOP errors
MTOM/XOP errors can occur at run time, in both requester and provider mode pipelines.

Before you begin
If you are having problems configuring a pipeline to support MTOM/XOP, read “Diagnosing deployment
errors” on page 509.

About this task

Procedure

• If you are able to send a web service request message in MTOM format, but are getting a SOAP fault
message from the web service provider, look at the contents of the DFHWS-BODY container for details
of the SOAP fault.
a) Is the web service provider able to receive MIME Multipart/Related messages?

If the web service provider does not support the MTOM format, the fault that you get back can vary
depending on the implementation. If the web service provider is another CICS application, the
SOAP fault would indicate that the MIME message is not a valid content type.

b) If the web service provider can receive MIME messages, check to see if the pipeline is sending the
message in direct or compatibility mode.
If you are sending an MTOM message in direct mode, there could be a problem with the XML.

c) To find out if the problem is with the XML, turn validation on for the web service.
This causes the MTOM message to be processed in compatibility mode through the pipeline. As
part of this processing, the MTOM handler parses the message contents to optimize the
base64binary data. If there is an error in the XML, CICS puts the error in the DFHERROR container
and issues an MTOM transport failure in the pipeline.

d) Examine the contents of the DFHERROR container to see if this indicates what problem occurred. If
this isn't enough information to help you diagnose the cause of the problem, run a level 2 trace of
the PI domain.

e) Look for trace point PI 0C16.
This describes the problem that was encountered in more detail, and should help you to fix the
problem with the XML that is provided by the requester application.

• If expected binary attachments are missing from the outbound MTOM message, this could indicate
that the binary data is considered too small to optimize as a binary attachment.
CICS only creates binary attachments for data that is large enough to justify the processing overhead
of optimizing it in the pipeline. Any binary data below 1,500 bytes in size is not optimized.

• If you are unable to send an outbound MTOM message in compatibility mode and the pipeline is
returning a DFHERROR container, there was a problem when the pipeline tried to process the MTOM
message.
a) Look at the contents of the DFHERROR container.

This should contain an error message and some data describing the problem that occurred.
b) Check that the XML in your outbound MTOM message is valid.

CICS does not perform any validation on outbound messages in the pipeline.

514 CICS TS for z/OS: Using Web Services with CICS

• If you receive a DFHPI1100E message, there was a problem with the MIME headers of an MTOM
message that was received by CICS.
The CICS message contains the general class of MIME error that occurred. To find the exact problem
that occurred:
a) If you have auxiliary trace active in your CICS region, check for any exception trace entries.
b) Look for trace point PI 1305.

This describes the nature of the MIME header error, the location of the error in the header, and up
to 80 bytes of text before and after the error so you can understand the context of where the error
occurred.

For example, the following excerpt of trace indicates that the MIME content-type start parameter was
invalid because it was not enclosed in quotes, but included characters that are not valid outside a
quoted string.

PI 1305 PIMM *EXC* - MIME_PARSE_ERROR -

 TASK-01151 KE_NUM-0214 TCB-QR /009C7B68 RET-9C42790A TIME-10:33:41.3667303015
INTERVAL-00.0000053281 =000599=
 1-0000 C5A79785 83A38584 40978199 819485A3 859940A5 8193A485 40A39692 85954096 *Expected parameter
value token o*
 0020 994098A4 96A38584 40A2A399 899587 *r quoted
string *
 2-0000 D4C9D4C5 40A2A895 A381A740 85999996 994081A3 404EF0F0 F0F0F1F1 F2408995 *MIME syntax error at
+0000112 in*
 0020 40C39695 A38595A3 60A3A897 85408885 81848599 * Content-type
header *
 3-0000 5F626F75 6E646172 793B2074 7970653D 22617070 6C696361 74696F6E 2F786F70 *_boundary;
type="application/xop*
 0020 2B786D6C 223B2073 74617274 2D696E66 6F3D2261 70706C69 63617469 6F6E2F73 *+xml"; start-
info="application/s*
 0040 6F61702B 786D6C22 3B207374 6172743D *oap+xml";
start= *
 4-0000 3C736F61 70736C75 6E674074 6573742E 68757273 6C65792E 69626D2E 636F6D3E
<soapslung@test.hursley.ibm.com>
 0020 3B206368 61727365 743D7574 662D38 *;
charset=utf-8 *

• The pipeline processing fails to parse an inbound MTOM message, and the web service requester
receives a SOAP fault message.
This indicates that there was a problem with the XOP document in the MTOM message. In direct
mode, the SOAP fault is generated by the application handler. If the pipeline is running in compatibility
mode, the message is parsed by the MTOM handler when constructing the SOAP message. In this
case, CICS issues a DFHPI prefixed error message and a SOAP fault.
a) The DFHPI prefixed error message indicates what was wrong with the XOP document.

For example, it could be an invalid MIME header or a missing binary attachment.
b) To find the exact cause of the problem, check for any exception trace points.

In particular, look for trace points beginning with PI 13xx. This describes the exception that
occurred in more detail.

You can also run a PI level 2 trace to establish the sequence of events leading up to the error, but this
can have a significant performance impact and is not recommended on production regions.

Diagnosing data conversion errors
Data conversion errors can occur at run time when converting a SOAP message into a CICS COMMAREA or
container and from a COMMAREA or container into a SOAP message.

Before you begin
Symptoms include the generation of SOAP fault messages and CICS messages indicating that a failure
has occurred.

About this task
If you have a data conversion problem, perform the following steps:

Chapter 7. Troubleshooting web services 515

Procedure

1. Ensure that the WEBSERVICE resource is up to date. Regenerate the web service binding file for the
web service and redeploy it to CICS.

2. Ensure that the remote web service has been generated using the same version of the web service
document (WSDL) as used or generated by CICS.

3. If you are sure that the WEBSERVICE resource is using a current web service binding file:
a) Enable runtime validation for the WEBSERVICE resource using the command SET
WEBSERVICE(name) VALIDATION where name is the WEBSERVICE resource name.

b) Check for the CICS messages DFHPI1001 or DFHPI1002 in the message log.
DFHPI1001 describes the precise nature of the data conversion problem and can help you identify
the source of the conversion error. DFHPI1002 indicates that no problems were found.

c) When you no longer need validation for the web service, use the following command to turn off
validation: SET WEBSERVICE(name) NOVALIDATION.

4. If you still have not determined the reason for the conversion error, take a CICS trace of the failing web
service.
Look for the following PI domain exception trace entries:

PI 0F39 - PICC *EXC* - CONVERSION_ERROR
PI 0F08 - PIII *EXC* - CONVERSION_ERROR

A PICC conversion error indicates that a problem occurred when transforming an inbound SOAP
message into a COMMAREA or container. A PIII conversion error indicates that a problem occurred
when generating a SOAP message from a COMMAREA or container supplied by the application
program. In both cases, the trace point identifies the name of the field associated with the conversion
error and might also identify the value that is causing the problem.
If either of these trace points occur, they are followed by a conversion error. For a possible
interpretation of these conversion errors, see the explanations of messages DFHPI1007 to
DFHPI1010.

Why data conversion errors occur
CICS validates SOAP messages only to the extent that it is necessary to confirm that they contain well-
formed XML, and to transform them. This means that it is possible for a SOAP message to be successfully
validated using the WSDL, but then fail in the runtime environment and vice versa.

The WEBSERVICE resource encapsulates the mapping instructions to enable CICS to perform data
conversion at run time. A conversion error occurs when the input does not match the expected data, as
described in the WEBSERVICE resource.

This mismatch can occur for any of the following reasons:

• A SOAP message that is received by CICS is not well formed and valid when checked against the web
service description (WSDL) associated with the WEBSERVICE resource.

• A SOAP message that is received by CICS is well formed and valid but contains values that are out of
range for the WEBSERVICE resource.

• The contents of a COMMAREA or container are not consistent with the WEBSERVICE resource and the
language structure from which the web service was generated.

For example, the WSDL document might specify range restrictions on a field, such as an unsignedInt that
can only have a value between 10 and 20. If a SOAP message contains a value of 25, then validating the
SOAP message would cause it to be rejected as invalid. The value 25 is accepted as a valid value for an
integer and is passed to the application.

A second example is where the WSDL document specifies a string without specifying a maximum length.
DFHWS2LS assumes a maximum length of 255 characters by default when generating the web service
binding file. If the SOAP message contains 300 characters, then although the check against the WSDL
would validate the message as no maximum length is set, an error would be reported when attempting to
transform the message as the value does not fit the 255 character buffer allocated by CICS.

516 CICS TS for z/OS: Using Web Services with CICS

Code page issues
CICS uses the value of the LOCALCCSID system initialization parameter to encode the application
program data. However, the web service binding file is encoded in US EBCDIC (Cp037). This can lead to
problems with converting data when the code page used by the application program encodes characters
differently to the US EBCDIC code page. To avoid this problem, you can use the CCSID parameter in the
web services assistant batch jobs to specify a different code page to encode data between the application
program and the web services binding file. The value of this parameter overrides the LOCALCCSID system
initialization parameter for that particular WEBSERVICE resource. The value of CCSID must be an EBCDIC
CCSID.

SOAP fault messages for conversion errors
If a conversion error occurs at run time and CICS is acting as a web service provider, a SOAP fault
message is issued to the service requester. This SOAP fault message includes the message that is issued
by CICS.

The service requester can receive one of the following SOAP fault messages:

• Cannot convert SOAP message

This fault message implies that either the SOAP message is not well formed and valid, or its values are
out of range.

• Outbound data cannot be converted

This fault message implies that the contents of a COMMAREA or container are not consistent.
• Operation not part of web service

This fault message is a special variation of when an invalid SOAP message is received by CICS.

If CICS is the web service requester, the INVOKE SERVICE command returns a RESP code of INVREQ
and a RESP2 value of 14.

Troubleshooting JSON web services
The problems that you might get when implementing JSON web services in CICS can occur during the
deployment process, or at run time when CICS is transforming the messages.

About this task

This problem determination information is specific to CICS.

Support for CICS as a service provider for JSON requests is heavily based on CICS support for SOAP web
services.

Troubleshooting JSON deployment problems
Deployment errors can occur when you try to either install a PIPELINE or a WEBSERVICE resource in
CICS. The most common deployment errors are described here, including the symptom of the problem,
the cause, and the solution.

Procedure

The following errors might occur when you install a PIPELINE or WEBSERVICE resource in CICS:
• You receive a DFHPI0914 error message when you attempt to install a WEBSERVICE resource. The

message includes some information about the cause of the installation failure.
a) Check that you have authorized CICS to read the web service binding file in z/OS UNIX.
b) Check that the web service binding file is not corrupted.

This corruption can occur, for example, if you use FTP to transfer the file to z/OS UNIX in text mode
rather than binary mode.

c) Check that two web service binding files with the same name are not in different pickup directories.
d) Check that you are not installing a provider mode WEBSERVICE resource into a requester mode

pipeline.

Chapter 7. Troubleshooting web services 517

Provider mode web service binding files specify a PROGRAM value, whereas requester mode binding
files do not.

e) If you are using DFHJS2LS or DFHLS2JS, check the messages that are issued by the job to see
whether there are any problems that you must resolve before creating the WEBSERVICE resource.

• The PIPELINE resource fails to install and you receive a DFHPI0700, DFHPI0712, DFHPI0714 or
another error message that states that the PIPELINE resource failed.
a) If you received a DFHPI0700 error message, you must enable PL/I language support in your CICS

region.
This support is required before you can install any PIPELINE resources. See Language Environment
support for PL/I for more information.

b) Check that you have authorized CICS to access the z/OS UNIX directories to read the pipeline
configuration files.

c) Check that the directory you are specifying in the WSDIR parameter is valid.
In particular, check the case as directory and file names in z/OS UNIX are case-sensitive.

d) Ensure that you do not have a PIPELINE resource of the same name in an ENABLED state in the
CICS region.

• The PIPELINE resource installs in a DISABLED state. You get an error message in the range of
DFHPI0702 to DFHPI0711.
a) Check that there are no errors in the pipeline configuration file.

The elements in the pipeline configuration file can only appear in certain places. If you specify
these incorrectly, you get a DFHPI0702 error message. This message includes the name of the
element that is causing the problem. Check the element description to make sure that you have
coded it in the correct place.

b) Check that you do not have any unprintable characters, such as horizontal tab characters, in the
pipeline configuration file.

c) Check that the XML is valid.
If the XML is not valid, this can cause parsing errors when you attempt to install the PIPELINE
resource.

d) Ensure that the pipeline configuration file is encoded in US EBCDIC.
If you try to use a different EBCDIC encoding, CICS cannot process the file.

Troubleshooting the JSON assistant
If you are experiencing problems with the JSON assistant, use troubleshooting techniques to diagnose
the problem.

Procedure

The following errors might occur when you run the JSON assistant:
• You receive a return code of 0, 4, 8, or 12 when running the CICS JSON assistant batch jobs.

For more information about the return codes, see “JSON assistant return codes” on page 520.
a) Check the job log for any warning or error messages.

Look up the detailed explanations for the messages. The explanations often describe actions that
you can take to fix the problem.

b) Ensure that you have entered the correct values for each of the parameters in the job.
Parameter values such as file names and elements in the web service description are case
sensitive.

c) Ensure that you have specified the correct combination of parameters.
• You receive a return code of 1, 136, or 139 when running the CICS JSON assistant batch jobs.

These return codes indicate that the JVM has failed, usually because there is insufficient storage
available. The CICS assistant requires a JCL region size of at least 300 MB.

518 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/installing/dfha1n4.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/installing/dfha1n4.html

a) Increase the region size, or consider setting the region size to 0M.
b) Check for any active IEFUSI exits, which can limit the region size.

• You receive a return code of 137 when running the CICS JSON assistant batch job. This return code
means that the job timed out.
a) Increase the time by coding the TIME parameter on the EXEC statement of your job to TIME=1440,

or increase the MAXCPUTIME value in the SYS1.PARMLIB(BPXPRMxx) member.
• You receive a message in the range DFHPI9700 - DFHPI9711 indicating an invalid or unsupported

JSON schema when running DFHJS2LS.
a) Check that your JSON schema is valid. You could do this by checking it against the JSON Schema

Validation, or you could use a tool, for example json-schema-validator.
b) Check that your JSON schema is supported by DFHJS2LS. For more information, see High-level

language and JSON schema mapping.

What to do next
After you have resolved the problem, rerun your JSON assistant batch job.

Troubleshooting problems with JSON requests
If CICS is rejecting JSON, whether as an input message to a web service or when used with the linkable
interface to transform JSON, the JSON might be invalid or not conforming to the schema.

About this task

If CICS encounters a problem with JSON provided by a web service requester or an application program,
an error message is return with details of the problem. When CICS is acting as a web service provider, the
error message is returned to the client application as a JSON response. For more information, see “Error
responses returned to the client” on page 520. When an application calls the linkable interface to
transform JSON, an error code is returned in the DFHJSON-ERROR container and a detailed message in
the DFHJSON-ERRORMSG container. For more information, see JSON transformer linkable interface. In
both cases the troubleshooting steps are the same and depend on the type of error.

Procedure

• Check that your JSON conforms to the restrictions imposed by CICS. For more information, see JSON
web service restrictions .

• If a JSON parsing error occurs, check that the JSON is well-formed. The error message provides
details of the problem, such as:

"Expected a ',' or '}' at character 44 of {"inquireCatalogRequest":
"myData }

You could use a tool to validate the JSON syntax, for example JSONLint.
• If CICS detects a structural error when it is trying to map JSON to application data, a DFHPI1007

message is issued providing details of the error.
For example:

DFHPI1007 04/19/2013 15:14:42 IYK2ZKE1 00112 JSON to data transformation
failed because of incorrect input (UNDEFINED_ELEMENT Operation) for
WEBSERVICE SimpleMappings.

Check that the JSON contains the JSON objects and properties that are described by the schema you
provided to DFHJS2LS, or that was generated by DFHLS2JS. You could use a tool to validate that the
JSON conforms to the schema.

• If no error occurs, but your application receives empty data for some fields, check that the
corresponding JSON was provided. CICS will not detect the absence of JSON properties described by
the schema. You could use a JSON validation tool to check this as described earlier.

• An Internal server error is encountered.

Chapter 7. Troubleshooting web services 519

https://json-schema.org/latest/json-schema-validation.html
https://json-schema.org/latest/json-schema-validation.html
https://json-schema-validator.herokuapp.com
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/dfhws_hlljsonmapping.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/dfhws_hlljsonmapping.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-applications/containers/dfhjson_jsoncontainers_json.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/jsonwebservice_restrictions.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/jsonwebservice_restrictions.html
https://jsonlint.com

Internal Server Error

CICS TS: Unhandled Pipeline Error

Release: 670

In the browser, check for message DFHSJ1006. Check that the JVMServer exists and is not disabled.
• In some circumstances. CICS adds a wrapper element to the JSON request or response during internal

processing. This will never be visible to the application, but can sometimes occur in error messages.
For example:

"Error obtaining parser from data source:Expected a ':'
after a key at character 25 of {\"DFHWrapper\": { l2jb01c\":"...

In these situations the DFHWrapper element should be ignored when determining the cause of the
error.

What to do next
After you have corrected your JSON, rerun the application.

Error responses returned to the client
These responses are returned if errors occur during processing in the CICS JSON handler.

About this task
If errors occur during processing in the CICS JSON handler, CICS returns a response to the client
containing information about the error. An HTTP status code of 500 (Internal Server Error) is returned,
and the message body contains details of the error in JSON format, depending on the type of error that
occurred.

Example
If an error occurs before or after CICS has called the Axis2 pipeline, the message will contain information
similar to the following:

{
 "exception" : {
 "message" : "An exception has occurred while validating HTTP headers".
 "class" : "com.ibm.cicsts.axis2.Controller"
 }
}

If an error occurs at any other point during processing, the message will contain similar information to a
SOAP fault, with a detail section which varies depending on the nature of the error. This might contain a
CICS message, such as:

{
 "Fault": {
 "faultstring": "Conversion from SOAP failed",
 "detail": {
 "CICSFault": "DFHPI1007 02/14/2013 17:51:47 IYK2ZKE1 00185 XML to data
transformation failed because of incorrect input UNDEFINED_ELEMENT startItemRuff)
for WEBSERVICE json_inquireCatalogWrapper."
 }
 }
}

JSON assistant return codes
If a failure occurs while running the JSON assistant batch jobs, a return code is provided indicating the
type of failure. This information is contained in the job log.

In the event of a deployment error, PIPELINE resources typically install in a DISABLED state and
WEBSERVICE resources install in an UNUSABLE state. Information and error messages associated with

520 CICS TS for z/OS: Using Web Services with CICS

the CICS JSON assistant batch jobs are located in the job log. Error messages associated with installing
resources are located in the system log.

Codes of 0, 4, 8, or 12 are issued by the JSON assistant, other codes are typically issued by BPXBATCH,
the JVM, or IEBGENER.

Codes issued by BPXBATCH fall into two main categories: a code of less than 128 indicates a command
failure, a code of greater than or equal to 128 indicates that the process was terminated by a signal. For
more information about BPXBATCH and its return codes, see z/OS UNIX System Services Command
Reference.

JSON assistant program return codes

You receive a return code of 0, 4, 8, or 12 when running the JSON assistant batch jobs.

Return code Description

0 The job completed successfully.

4 Warning. The job completed successfully, but one or more warning messages were
issued.

8 Input error. The job did not complete successfully. One or more error messages were
issued while validating the input parameters.

12 Error. The job did not complete successfully. One or more error messages were issued
during execution.

JSON assistant batch job return codes

You receive a return code of 1, 136, 137, or 139 when running the CICS JSON assistant batch jobs.

Return code Description

1 The JVM failed, usually because there is insufficient storage available. The CICS assistant
requires a JCL region size of at least 300 MB.

136 The JVM failed, usually because there is insufficient storage available. The CICS assistant
requires a JCL region size of at least 300 MB.

137 The job timed out.

139 The JVM has failed, usually because there is insufficient storage available. The CICS
assistant requires a JCL region size of at least 300 MB.

Chapter 7. Troubleshooting web services 521

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.bpxa500/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.bpxa500/toc.htm

522 CICS TS for z/OS: Using Web Services with CICS

Appendix A. JSON transformer linkable interface
containers

The JSON transformer linkable interface is a CICS supplied program that can be called to perform data
transformations to and from JSON. It can create JSON data from structured application data, or
structured application data from JSON data.

You can use the linkable interface to transform JSON from any source, whether over a protocol such as
WebSphere MQ or from a JSON database, as compared to the JSON web services support, which is HTTP
and provider-mode only.

For more information about JSON, see Concepts of JSON web services.

To use the JSON transformer linkable interface the application program must LINK to the CICS supplied
DFHJSON program, with a channel. Containers are used to pass input data to DFHJSON, and to receive
output data from DFHJSON, the details of which are provided in subtopics.

CICS provides two mechanisms for transforming structured application data to and from JSON data, one
using a JVM server, the other without. The JVM server approach experiences the advantages of the Java
platform (such as eligibility for zEnterprise Application Assist Processors (zAAP) where available), the non
Java approach avoids the need to configure a JVM server. The application selects which is used by using
the DFHJSON_JVMSERVR container. The contents identify the JVM server in which to transform the data,
the absence of this container indicates that the non Java transformation service is used.

In order to use this service, you must have a suitable JSONTRANSFRM bundle part that is installed in
CICS. These are generated by using the JSON assistants. For more information, see Mapping and
transforming application data and JSON.

DFHJSON-JSON container
DFHJSON-JSON is a container of DATATYPE(CHAR).

• When you transform application data to JSON: This container contains the JSON created by the
transformer corresponding to the application data input.

• When you transform JSON to application data: This container contains the JSON provided by the user
application to be transformed.

DFHJSON-DATA container
DFHJSON-DATA is a container of DATATYPE(BIT).

• When you transform application data to JSON: This container contains the application data that is
provided by the user to be transformed into JSON.

• When you transform JSON to application data: This container contains the application data that is
created by the transformed data corresponding to the JSON input.

DFHJSON-TRANSFRM container
DFHJSON-TRANSFRM is a container of DATATYPE(CHAR). It contains the 16 character name of the
JSONTRANSFRM bundle part whose mappings are applied to transform the data.

The JSONTRANSFRM is a bundle part. It is contained in a bundle that is generated by using the JSON
assistant.

For more information about how to view bundle parts, see Bundle Parts view in the CICS Explorer product
documentation.

Alternatively, you can use the INQUIRE BUNDLEPART command. See INQUIRE BUNDLEPART.

© Copyright IBM Corp. 1974, 2020 523

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/transforming_json_linkable_interface.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/transforming_json_linkable_interface.html
https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.5.0/com.ibm.cics.core.help/topics/reference/view_std_bundle_parts.html
https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.5.0/com.ibm.cics.core.help/topics/reference/view_std_bundle_parts.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-programming/commands-spi/dfha8_inquirebundlepart.html

DFHJSON-JVMSERVR container
DFHJSON-JVMSERVR is a container of DATATYPE(CHAR). It contains the eight character name of the
JVMSERVER in which the target program is to run.

If the container is not provided, or if the container is present but with a length of zero, then data
transformation will be carried out within CICS rather than in a JVM server. If you want to carry out
transformation in the CICS supplied Axis2 JVM server, then specify the value DFHAXIS in this container.

DFHJSON-ERROR container
DFHJSON-ERROR is a container of DATATYPE(BIT). Errors that are generated during validation or
execution of DFHJSON are returned as a fullword binary value in the DFHJSON-ERROR container.

The following errors can be returned by DFHJSON:
1

The DFHJSON-TRANSFRM container was not present.
2

The name of the JSONTRANSFRM provided in the DFHJSON-TRANSFRM container was longer than 16
characters.

3
A container had the wrong data type. DFHJSON-ERRORMSG contains the name of the incorrect
container.

4
The name of the JVMSERVER provided in the DFHJSON-JVMSERVR container was longer than eight
characters.

11
The JSONTRANSFRM named in DFHJSON-TRANSFRM container was not found.

12
The JSONTRANSFRM named in DFHJSON-TRANSFRM container was not in the ENABLED state.

13
Neither the DFHJSON-DATA or the DFHJSON-JSON container is present, one of these containers
must be specified.

14
Both the DFHJSON-DATA and the DFHJSON-JSON containers were present, only one of these
containers must be provided.

15
A data transformation error occurred. DFHJSON-ERRORMSG contains details of the error.

16
An error occurred while parsing JSON provided in the DFHJSON-JSON container. DFHJSON-
ERRORMSG contains details of the error.

17
An error occurred in the Java portion of the transformer. Contact IBM support for assistance.

20
An unexpected error occurred. Contact IBM support for assistance.

51
The JVM server that is named in the DFHJSON-JVMSERVR container was not found.

52
The JVM server that is named in the DFHJSON-JVMSERVR container was not in the ENABLED state.

524 CICS TS for z/OS: Using Web Services with CICS

DFHJSON-ERRORMSG container
DFHJSON-ERRORMSG is a container of DATATYPE(CHAR). This container is created if an error occurs
during processing. It contains a human-readable extra error message for example, the error message
from the JSON parser. This message is only populated if extra details are needed.

For more information about error codes, see “DFHJSON-ERROR container” on page 524.

Appendix A. JSON transformer linkable interface containers 525

526 CICS TS for z/OS: Using Web Services with CICS

Appendix B. Web services samples
CICS supplies a set of samples that you can use as a starting point for developing applications and
configuring CICS.

The samples are categorized as follows:

The CICS catalog manager example application

The CICS catalog manager example application is a working COBOL application that is designed to
illustrate best practice when connecting CICS applications to external clients and servers.

The base application has a 3270 user interface, but the modular structure, with well-defined interfaces
between the components, makes it possible to add further components. In particular, the application
comes with web service support, which is designed to illustrate how you can extend an existing
application into the web services environment.

• “The CICS catalog manager example application” on page 527

JSON samples

Use these examples to help you understand JSON requests.

• “JSON samples” on page 560

The CICS catalog manager example application
The CICS catalog manager example application is a working COBOL application that is designed to
illustrate best practice when connecting CICS applications to external clients and servers.

The example is constructed around a simple sales catalog and order processing application, in which a
user can perform these tasks:

• List the items in a catalog.
• Inquire on individual items in the catalog.
• Order items from the catalog.

The catalog is implemented as a VSAM file.

The base application has a 3270 user interface, but the modular structure, with well-defined interfaces
between the components, makes it possible to add further components. In particular, the application
comes with web service support, which is designed to illustrate how you can extend an existing
application into the web services environment.

For this example, the CICS Explorer could be used to install and deploy the application. The CICS Explorer
is an Eclipse-based graphical tooling interface for CICS.

Optional: Those users that do not use CICS Explorer can use the CEDA transaction to amend and install
the resources contained in groups DFH$EXBS and DFH$EXWS.

The base application
The base application, with its 3270 user interface, provides functions with which you can list the contents
of a stored catalog, select an item from the list, and enter a quantity to order. The application has a
modular design, which makes it simple to extend the application to support newer technology, such as
web services.

Figure 33 on page 528 shows the structure of the base application.

© Copyright IBM Corp. 1974, 2020 527

Figure 33. Structure of the base application

The components of the base application are:

• A BMS presentation manager (DFH0XGUI) that supports a 3270 terminal or emulator, and that interacts
with the main catalog manager program.

• A catalog manager program (DFH0XCMN) that is the core of the example application, and that interacts
with several back-end components:

– A data handler program that provides the interface between the catalog manager program and the
data store. The base application provides two versions of this program. They are the VSAM data
handler program (DFH0XVDS), which stores data in a VSAM data set; and a dummy data handler
(DFH0XSDS), which does not store data, but returns valid responses to its caller. Configuration
options let you choose between the two programs.

– A dispatch manager program that provides an interface for dispatching an order to a customer. Again,
configuration options let you choose between the two versions of this program: DFHX0WOD is a web
service requester that invokes a remote order dispatch end point, and DFHX0SOD is a dummy
program that returns valid responses to its caller.

There are two equivalent order dispatch endpoints: DFH0XODE is a CICS service provider program;
ExampleAppDispatchOrderV855.war is a Java web archive file that can be deployed in CICS
Liberty JVM Server or similar environments.

– A dummy stock manager program (DFH0XSSM) that returns valid responses to its caller, but takes no
other action.

528 CICS TS for z/OS: Using Web Services with CICS

BMS presentation manager
The presentation manager is responsible for all interactions with the user via 3270 BMS panels. No
business decisions are made in this program.

The BMS presentation manager can be used in two ways:

• As part of the base application.
• As a CICS web service client that communicates with the base application using SOAP messages.

Data handler
The data handler provides the interface between the catalog manager and the data store.

The example application provides two versions of the data handler:

• The first version uses a VSAM file as the data store.
• The second version is a dummy program that always returns the same data on an inquire and does not

store the results of any update requests.

Dispatch manager
The dispatch manager is responsible for dispatching the order to the customer when the order has been
confirmed.

The example application provides two versions of the dispatch manager program:

• The first version is a dummy program that returns a correct response to the caller, but takes no other
action.

• The second version is a web service requester program that makes a request to the endpoint address
defined in the configuration file.

Order dispatch program
The order dispatch program is a web service provider program that is responsible for dispatching the item
to the customer.

In the example application, the order dispatcher is a dummy program that returns a correct response to
the caller, but takes no other action. It makes it possible for all configurations of the example web
services to be operable.

Stock manager
The stock manager is responsible for managing the replenishment of the stock.

In the example program, the stock manager is a dummy program that returns a correct response to the
caller, but takes no other action.

Application configuration
The example application includes a program that lets you configure the base application.

Installing and setting up the base application
Before you can run the base application, you must define and populate two VSAM data sets, and create
two TRANSACTION resources.

Creating and defining the VSAM data sets
Two KSDS VSAM data sets are used to define and populate the example application. One data set
contains configuration information for the example application. The other contains the sales catalog.

Procedure

1. Locate the JCL to create the VSAM data sets.
During CICS installation, the JCL is placed in the hlq.SDFHINST library:

• Member DFH$ECNF contains the JCL to generate the configuration data set.
• Member DFH$ECAT contains the JCL to generate the catalog data set.

Appendix B. Web services samples 529

2. Modify the JCL and access method services commands.
a) Supply a valid JOB card.
b) Supply a suitable high-level qualifier for the data set names in the access method services

commands.
As supplied, the JCL uses a high-level qualifier of HLQ.

The following command defines the configuration file:

DEFINE CLUSTER (NAME(hlq.EXMPLAPP.EXMPCONF)-
 TRK(1 1) -
 KEYS(9 0) -
 RECORDSIZE(350,350) -
 SHAREOPTIONS(2 3) -
 INDEXED -
) -
 DATA (NAME(hlq.EXMPLAPP.EXMPCONF.DATA) -
) -
 INDEX (NAME(hlq.EXMPLAPP.EXMPCONF.INDEX) -
)

where hlq is a high-level qualifier of your choice.

The following command defines the catalog file:

DEFINE CLUSTER (NAME(hlq.EXMPLAPP.catname)-
 TRK(1 1) -
 KEYS(4 0) -
 RECORDSIZE(80,80) -
 SHAREOPTIONS(2 3) -
 INDEXED -
) -
 DATA (NAME(hlq.EXMPLAPP.catname.DATA) -
) -
 INDEX (NAME(hlq.EXMPLAPP.catname.INDEX) -
)

where:

• hlq is a high-level qualifier of your choice
• catname is a name of your choice. The name used in the example application as supplied is
EXMPCAT.

3. Run both jobs to create and populate the data sets.
4. Use the CICS Explorer to create a FILE definition for the catalog file. Alternatively, CEDA can be used.

See details below.
a) Select Definitions > File Definitions. Right-click in the Name column and click New to create a

new file definition. Type EXAMPLE in the Resource Group text box, and type EXMPCAT in the Name
text box. Click Finish to define the FILE definition.
Alternatively, you can copy the file definition from the CICS supplied group DFH$EXBS.

b) Double-click the new EXMPCAT file. In the File Definition (EXMPCAT) CICS Example Application
editor, select the VSAM tab. Type hlq.EXMPLAPP.EXMPCAT in the Data set name to be used text
box.

c) Select the Attributes tab and set the operations of the following attributes to Yes:

Add
Browse
Delete
Read
Update

d) Use the default values for all other attributes.
5. Use the CICS Explorer to create a FILE definition for the configuration file. Alternatively, CEDA can be

used. See details below.

530 CICS TS for z/OS: Using Web Services with CICS

a) Select Definitions > File Definitions. Right-click in the Name column and click New to create a
new file definition. Type EXAMPLE in the Resource Group text box, and type EXMPCONF in the
Name text box. Click Finish to define the FILE definition.
Alternatively, you can copy the file definition from the CICS supplied group DFH$EXBS.

b) Double-click the new EXMPCONF file. In the File Definition (EXMPCONF) CICS Example
Application window, select the VSAM tab. Type hlq.EXMPLAPP.EXMPCONF in the Data set name
to be used text box.

c) Select the Attributes tab and set the operations of the following attributes to Yes:

Add
Browse
Delete
Read
Update

d) Use the default values for all other attributes.

Results

The data sets are populated, and the FILE definitions for the catalog file and the configuration file have
been created and are ready to install.

Optional: Those users that do not use CICS Explorer can use the CEDA transaction to amend and install
the resources contained in groups DFH$EXBS and DFH$EXWS. The file definitions are in group DFH
$EXBS. Copy group DFH$EXBS into a new group with a name not starting with DFH. Edit the file
definitions in the new group to specify the correct file names in the DSNAME parameter, then install the
new group.

Defining the 3270 interface
The example application is supplied with a 3270 user interface to run the application and to customize it.
The user interface consists of two transactions, EGUI and ECFG. A third transaction, ECLI, is used for the
CICS web service client.

About this task
Optional: Those users that do not use CICS Explorer can use the CEDA transaction to amend and install
the resources contained in groups DFH$EXBS and DFH$EXWS.

Procedure

1. Create transaction definitions for the following transactions using the CICS Explorer.
The correct operation of the example application does not depend on the names of the transactions,
so you can use different names.
EGUI

a. Copy the definitions for transaction EGUI from the CICS supplied group DFH$EXBS by right-
clicking DFH$EXBS in the Resource Group Definitions view.

b. Select New > Transaction Definition.
c. Type EGUI in the Name text box, specify a name in the Resource/CSD Group text box, and
DFH0XGUI in the Program Name text box.

d. Click Finish to create the EGUI transaction definition.

Use the default values for all other attributes.

ECFG

a. Copy the definitions for transaction ECFG from the CICS supplied group DFH$EXBS by right-
clicking DFH$EXBS in the Resource Group Definitions window.

b. Select New > Transaction Definition.

Appendix B. Web services samples 531

c. Type ECFG in the Name text box, specify a name in the Resource/CSD Group text box, and
DFH0XCFG in the Program Name text box.

d. Click Finish to create the ECFG transaction definition.

Use the default values for all other attributes.

ECLI (optional)

a. Copy the definitions for transactions ECLI from the CICS supplied group DFH$EXWS by right-
clicking DFH$EXWS in the Resource Group Definitions view.

b. Select New > Transaction Definition.
c. Type ECLI in the Name text box, specify a name in the Resource/CSD Group text box, and
DFH0XCUI in the Program Name text box.

d. Click Finish to create the ECLI transaction definition.

Use the default values for all other attributes.
2. Optional: If you do not want to use program autoinstall, copy the PROGRAM definitions for the base

application programs and the MAPSET definitions for the BMS maps from the CICS supplied group DFH
$EXBS.

a) Copy the MAPSET resource definitions for the BMS maps in members DFH0XS1, DFH0XS2, and
DFH0XS3.
For details of what is in each member, see “Components of the base application” on page 551.

b) Copy the PROGRAM resource definitions for the following COBOL programs.

Table 28. SDFHSAMP members containing COBOL source for the base application

Member name Description

DFH0XCFG Program invoked by transaction ECFG to read and update the VSAM
configuration file.

DFH0XCMN Controller program for the catalog application. All requests pass through
the controller program.

DFH0XGUI Program invoked by transaction EGUI to manage the sending of the BMS
maps to the terminal user and the receiving of the maps from the
terminal user. This program links to program DFH0XCMN.

DFH0XODE One of two versions of the endpoint for the order dispatch web service.
This is the version that runs in CICS. This program sets the text "Order
in dispatch" in the return COMMAREA.

DFH0XSDS A stubbed or dummy version of the data store program that allows the
application to work when the VSAM catalog file has not been set up.
DFH0XSDS uses data defined in the program rather than data stored in a
VSAM file.

DFH0XSOD A stubbed version of the order dispatch program. It sets the return code
in the COMMAREA to 0 and returns to its caller. DFH0XSOD is used when
outbound web services are not required.

DFH0XSSM A stubbed version of the stock manager (replenishment) program.
DFH0XSSM sets the return code in the COMMAREA to 0 and returns to its
caller.

DFH0XVDS The VSAM version of the data store program. DFH0XVDS accesses the
VSAM file to perform reads and updates of the catalog.

DFH0XWOD The web service version of the order dispatch program. DFH0XWOD
issues an EXEC CICS INVOKE WEBSERVICE to make an outbound web
service call to an order dispatcher.

532 CICS TS for z/OS: Using Web Services with CICS

Use the default values for all other attributes.
c) Optional: Copy the PROGRAM definitions for DFH0XCUI from the CICS supplied group DFH$EXWS.

Use the default values for all other attributes. This program is required if you want to use
transaction ECLI that starts the web service client.

 DIS G(DFH$EXWS)
 ENTER COMMANDS
 NAME TYPE GROUP
 DFH0XCUI PROGRAM DFH£EXWS
 ECLI TRANSACTION DFH£EXWS
 EXMPPORT TCPIPSERVICE DFH£EXWS
 EXPIPE01 PIPELINE DFH£EXWS
 EXPIPE02 PIPELINE DFH£EXWS

Completing the installation
To complete the installation, install the RDO group that contains your resource definitions.

Procedure

Right-click the resource group in the Resource Group Definitions window. Select Install. Make sure that
your CICSplex is correct and that you select your target region, then click OK.

Results
Your RDO is now installed and the application is ready for use.

Optional: Those users that do not use CICS Explorer can use the CEDA transaction to amend and install
the resources contained in groups DFH$EXBS and DFH$EXWS.

Configuring the example application
The base application includes a transaction (ECFG) that you can use to configure the example application.

Before you begin
The configuration transaction uses mixed-case information. You must use a terminal that can handle
mixed-case information correctly. You can use the CEOT transaction to set upper case translation off for
your terminal session.

About this task

You can specify a number of aspects of the example application. These include:

• The overall configuration of the application, such as the use of web services
• The network addresses used by the web services components of the application
• The names of resources, such as the file used for the data store
• The names of programs used for each component of the application

With the configuration transaction, you can replace CICS-supplied components of the example
application with your own without restarting the application.

Procedure

1. Enter the transaction ECFG to start the configuration application.
CICS displays the following screen:

Appendix B. Web services samples 533

CONFIGURE CICS EXAMPLE CATALOG APPLICATION

 Datastore Type ==> VSAM STUB|VSAM
 Outbound WebService? ==> NO YES|NO
 Catalog Manager ==> DFH0XCMN
 Data Store Stub ==> DFH0XSDS
 Data Store VSAM ==> DFH0XVDS
 Order Dispatch Stub ==> DFH0XSOD
Order Dispatch WebService ==> DFH0XWOD
 Stock Manager ==> DFH0XSSM
 VSAM File Name ==> EXMPCAT
 Server Address and Port ==> myserver:99999
 Outbound WebService URI ==> http://myserver:80/exampleApp/dispatchOrder
 ==>
 ==>
 ==>
 ==>
 ==>

PF 3 END 12 CNCL

2. Complete the fields.
Datastore Type

Specify STUB if you want to use the data store stub program.
Specify VSAM if you want to use the VSAM data store program.

Outbound WebService
Specify YES if you want to use a remote web service for your order dispatch function; that is, if you
want the catalog manager program to link to the order dispatch web service program.
Specify NO if you want to use a stub program for your order dispatch function; that is, if you want
the catalog manager program to link to the order dispatch stub program.

Catalog Manager
Specify the name of the catalog manager program. The program supplied with the example
application is DFH0XCMN.

Data Store Stub
If you specified STUB in the Datastore Type field, specify the name of the data store stub program.
The program supplied with the example application is DFH0XSDS.

Data Store VSAM
If you specified VSAM in the Datastore Type field, specify the name of the VSAM data store
program. The program supplied with the example application is DFH0XVDS.

Order Dispatch Stub
If you specified NO in the Outbound WebService field, specify the name of the order dispatch stub
program. The program supplied with the example application is DFH0XSOD.

Order Dispatch WebService
If you specified YES in the Outbound WebService field, specify the name of the program that
functions as a service requester. The program supplied with the example application is
DFH0XWOD.

Stock Manager
Specify the name of the stock manager program. The program supplied with the example
application is DFH0XSSM.

VSAM File Name
If you specified VSAM in the Datastore Type field, specify the name of the CICS FILE definition.
The name used in the example application as supplied is EXMPCAT.

Server Address and Port
If you are using the CICS web service client, specify the IP address and port of the system on
which the example application is deployed as a web service.

534 CICS TS for z/OS: Using Web Services with CICS

Outbound WebService URI
If you specified YES in the Outbound WebService field, specify the location of the web service
that implements the dispatch order function. If you are using the supplied CICS endpoint, set the
Outbound WebService to: http://myserver:myport/exampleApp/dispatchOrder where
myserver and myport are your CICS server address and port.

Running the example application with the BMS interface
The base application can be run using the BMS interface.

Procedure

1. Enter transaction EGUI from a CICS terminal.
The example application menu is displayed:

CICS EXAMPLE CATALOG APPLICATION - Main Menu

Select an action, then press ENTER

Action 1. List Items
 2. Order Item Number ____
 3. Exit

F3=EXIT F12=CANCEL

You can list the items in the catalog, order an item, or exit the application using the options on the
menu.

2. Type 1 and press Enter to select the List Items option.
The application displays a list of items in the catalog.

CICS EXAMPLE CATALOG APPLICATION - Inquire Catalog

Select a single item to order with /, then press ENTER

Item Description Cost Order

0010 Ball Pens Black 24pk 2.90 /
0020 Ball Pens Blue 24pk 2.90 _
0030 Ball Pens Red 24pk 2.90 _
0040 Ball Pens Green 24pk 2.90 _
0050 Pencil with eraser 12pk 1.78 _
0060 Highlighters Assorted 5pk 3.89 _
0070 Laser Paper 28-lb 108 Bright 500/ream 7.44 _
0080 Laser Paper 28-lb 108 Bright 2500/case 33.54 _
0090 Blue Laser Paper 20lb 500/ream 5.35 _
0100 Green Laser Paper 20lb 500/ream 5.35 _
0110 IBM Network Printer 24 - Toner cart 169.56 _
0120 Standard Diary: Week to view 8 1/4x5 3/4 25.99 _
0130 Wall Planner: Eraseable 36x24 18.85 _
0140 70 Sheet Hard Back wire bound notepad 5.89 _
0150 Sticky Notes 3x3 Assorted Colors 5pk 5.35 _

F3=EXIT F7=BACK F8=FORWARD F12=CANCEL

Appendix B. Web services samples 535

3. Type / in the Order column, and press Enter to order an item.
The application displays details of the item to be ordered.

CICS EXAMPLE CATALOG APPLICATION - Details of your order

Enter order details, then press ENTER

Item Description Cost Stock On Order

0010 Ball Pens Black 24pk 2.90 0011 000

 Order Quantity: 5
 User Name: CHRISB
 Charge Dept: CICSDEV1

F3=EXIT F12=CANCEL

4. If there is sufficient stock to fulfill the order, enter the following information:
a) Complete the Order Quantity field.

Specify the number of items you want to order.
b) Complete the User Name field.

Enter a 1-to 8-character string. The base application does not check the value that is entered here.
c) Complete the Charge Dept field.

Enter a 1-to 8-character string. The base application does not check the value that is entered here.
5. Press Enter to submit the order and return to the main menu.
6. Press F3 to end the applications.

Web service support for the example application
The web service support extends the example application, providing two Java versions of a web server
front end client, and a Java and COBOL version of the web service endpoint for the order dispatcher
component.

The two versions of the web client front end and one version of the web service endpoint are supplied as
Java web archive files (WARs) that run in the Java EE 6 web profile environment provided by the latest
version of WebSphere Application Server or the latest CICS TS Liberty JVM server. The second version of
the web service endpoint is supplied as a CICS service provider application program (DFH0XODE).

File Description

ExampleAppClientV855.war Web service front end client to catalog manager

ExampleAppWrapperClientV855.war Web service front end client to web service wrappers

ExampleAppDispatchOrderV855.war Order dispatch web service provider application

These WARs were exported from Dynamic Web Projects. For information about deploying the WAR files,
see Deploying applications to a JVM server.

You must enable the jax-ws feature in the Liberty JVM server, for example by adding the following to the
Liberty server configuration file, server.xml:

<feature>jaxws-2.2</feature>

536 CICS TS for z/OS: Using Web Services with CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/deploying/dfhpj69.html

Figure 1 shows a configuration of the example application with one version of the web client front end and
CICS service provider as the order dispatch web service end point. It also includes a web service client on
a CICS system.

In this configuration, the application is accessed through two different clients:

• A web browser client connected to Liberty JVM server, in which ExampleAppClientV855.War is
deployed.

• CICS web service client DFH0XECC. This client uses the same BMS presentation logic as the base
application but uses module DFH0XCUI instead of DFH0XGUI.

Figure 2 shows another version of web client front end, with CICS service provider as the order dispatch
web service end point.

Appendix B. Web services samples 537

In this configuration, the web browser client is connected to Liberty JVM server, in which
ExampleAppWrapperClientV855.war is deployed. In CICS, three wrapper applications (for the inquire
catalog, inquire single, and place order functions) are deployed as service provider applications. They in
turn link to the base application.

In order for Dispatch Manager on your CICS system to call this end point, you need to change the
following configuration using the ECFG configuration transaction:

• Outbound WebService? to YES

• Outbound WebService URI to the URI where the Dispatch Order end point is being deployed on, e.g.
http://cics2:8080/exampleApp/dispatchOrder

For further details on setting up the example application, see Configuring the example application.

Figure 3 shows a configuration of the example application with both of the web client front end and the
order dispatch web service end point on Liberty JVM server.

538 CICS TS for z/OS: Using Web Services with CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-samples/web-services/dfhxa_t310.html

In this configuration, the web browser client is connected to Liberty JVM server, in which
ExampleAppClientV855.war is deployed. The order dispatch web service end point
ExampleAppDispatchOrderV855.war is installed on Liberty JVM server.

In order for Dispatch Manager on your CICS system to call this end point, you need to change the
following configuration using the ECFG configuration transaction

• Outbound WebService? to YES

• Outbound WebService URI to the URI where the Dispatch Order end point is being deployed on, e.g.
http://mylibertyserver:9080/ExampleAppDispatchOrderV855/DispatchOrder

For further details on setting up the example application, see Configuring the example application.

Configuring code page support
As supplied, the example application uses two coded character sets. You must configure your system to
enable data conversion between the two character sets.

About this task
The coded character sets used in the example application are:
037

EBCDIC Group 1: USA, Canada (z/OS), Netherlands, Portugal, Brazil, Australia, New Zealand)

Appendix B. Web services samples 539

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-samples/web-services/dfhxa_t310.html

1208
UTF-8 Level 3

Procedure

Add the following statements to the conversion image for your z/OS system:

CONVERSION 037,1208;
CONVERSION 1208,037;

For more information, see Unicode data conversion by z/OS.

Defining the web service client and wrapper programs
If you are not using program autoinstall, you must define resource definitions for the web service client
and wrapper programs.

About this task
Optional: Those users that do not use CICS Explorer can use the CEDA transaction to amend and install
the resources contained in groups DFH$EXBS and DFH$EXWS.

Procedure

Use the CICS Explorer to define PROGRAM resource definitions for the wrapper programs, by selecting
Definitions > Program Definitions. Right-click in the Program Definitions view and select New to create
a new program definition. Type a CSD group in the CSD Group text box, and type the program name in
the Name text box. Click Finish to define the PROGRAM definition.
Create definitions for the following COBOL programs:

Table 29. SDFHSAMP members containing COBOL source code for the wrapper modules

Member name Description

DFH0XECC Web services client program

DFH0XICW Wrapper program for the inquireCatalog service.

DFH0XISW Wrapper program for the inquireSingle service.

DFH0XPOW Wrapper program for the purchaseOrder service.

Installing web service support
Before you can run the web service support for the example application, you must create two z/OS UNIX
directories, and create the required CICS resources.

The z/OS UNIX directories
Web service support for the example application requires a shelf directory and a pickup directory in z/OS
UNIX.

The shelf directory is used to store the WEBSERVICE binding files that are associated with WEBSERVICE
resources. Each WEBSERVICE resource is, in turn, associated with a PIPELINE. The shelf directory is
managed by the PIPELINE resource and you should not modify its contents directly. Several PIPELINEs
can use the same shelf directory, as CICS ensures a unique directory structure beneath the shelf directory
for each PIPELINE.

The pickup directory is the directory that contains the WEBSERVICE binding files associated with a
PIPELINE. When a PIPELINE is installed, or in response to a PERFORM PIPELINE SCAN command,
information in the binding files is used to dynamically create the WEBSERVICE and URIMAP definitions
associated with the PIPELINE.

The example application uses /var/cicsts for the shelf directory.

540 CICS TS for z/OS: Using Web Services with CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/installing/dfha1p9.html

Creating the pipeline definition
The complete definition of a pipeline consists of a PIPELINE resource and a PIPELINE configuration file.
The file contains the details of the message handlers that act on web service requests and responses as
they pass through the pipeline.

About this task

Optional: Those users that do not use CICS Explorer can use the CEDA transaction to amend and install
the resources contained in groups DFH$EXBS and DFH$EXWS.

The example application uses the supplied SOAP 1.1 handler to deal with the SOAP envelopes of inbound
and outbound requests. CICS provides sample pipeline configuration files, which you can use in your
service provider and service requester.

More than one web service can share a single pipeline, therefore you need define only one pipeline for the
inbound requests of the example application. You must, however, define a second pipeline for the
outbound requests because a single pipeline cannot be configured to be both a provider and requester
pipeline at the same time.

If you want to use Java-based pipelines, you must specify the sample service provider configuration file
basicsoap11javaprovider.xml instead of basicsoap11provider.xml in step 1b. And specify the
sample service requester configuration file basicsoap11javarequester.xml instead of
basicsoap11requester.xml in step 2b. For more information about sample configuration files, see
Pipeline configuration files. Also, if you want to use the Axis2 application handler in your Java-based
pipeline, you must replace EXPIPE01 with EXPIPE03 in step 1a and EXPIPE02 with EXPIPE04 in step
2a

Procedure

1. Use the CICS Explorer to create a pipeline definition for the service provider.
a) Create a PIPELINE definition for the wrapper programs using the CICS Explorer by selecting

Definitions > Pipeline Definitions. Right-click in the Pipeline Definitions view and select New to
create a new pipeline definition. Type DFH$EXWS in the Resource Group text box, and type
EXPIPE01 in the Name text box. Click Finish to create the PIPELINE definition.
Alternatively, you can copy the PIPELINE definition from CICS supplied group DFH$EXWS. Right-
click DFH$EXWS in the Resource Group Definition view and select New > Pipeline Definition.

b) Double-click the PIPELINE definition and select the Attributes tab from the Pipeline Definition
(EXPIPE01) editor. Under Details, the Configuration File must be set to the location of the sample
files /usr/lpp/cicsts/samples/pipelines/basicsoap11provider.xml,
where /usr/lpp/cicsts is the path to the files on your directory, Shelf must be /var/cicsts/,
Status must be ENABLED, and WS Directory must be /usr/lpp/cicsts/samples/
webservices/wsbind/provider/.

The z/OS UNIX entries are case-sensitive and assume a default CICS z/OS UNIX installation root
of /usr/lpp/cicsts.

2. Use the CICS Explorer to create a PIPELINE definition for the service requester.
a) Create a PIPELINE definition for the wrapper programs using the CICS Explorer by selecting

Definitions > Pipeline Definitions. Right-click in the Pipeline Definitions view and select New to
create a new pipeline definition. Type DFH$EXWS in the Resource Group text box, and type
EXPIPE02 in the Name text box. Click Finish to create the PIPELINE definition.
Alternatively, you can copy the PIPELINE definition from CICS supplied group DFH$EXWS.

b) Double click the PIPELINE definition and select the Attributes tab from the Pipeline Definition
(EXPIPE02) editor. Under Details, Configuration File must be set to the location of the sample
files /usr/lpp/cicsts/samples/pipelines/basicsoap11requester.xml,
where /usr/lpp/cicsts is the path to the files on your directory, Shelf must be /var/cicsts/,
Status must be ENABLED, and WS Directory must be /usr/lpp/cicsts/samples/
webservices/wsbind/requester/.

Appendix B. Web services samples 541

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/dfhws_pipelineconfig.html

Creating a TCP/IP service
Because the client connects to your web services over an HTTP transport you must define a TCP/IP
service to receive the inbound HTTP traffic.

Procedure

Use the CICS Explorer to create a TCPIPSERVICE definition to handle inbound HTTP requests.
a) Create a TCPIPSERVICE definition by selecting Definitions > TCP/IP Service Definitions. Right-click

in the TCP/IP Service Definitions view and select New to create a new definition. Type DFH$EXWS in
the Resource Group text box, and type EXMPPORT in the Name text box. You must specify a port
number; type in the number of any unused port in your CICS system. Click Finish to create the
TCPIPSERVICE definition.

b) Double-click the TCPIPSERVICE definition. In the Attributes tab in the TCP/IP Service Definition
(EXMPPORT) editor, set the following attributes:

Urm must be DFHWBAAX
Protocol must be HTTP
Transaction must be CWXN

c) Use the default values for all other attributes.

Optional: Those users that do not use CICS Explorer can use the CEDA transaction to amend and install
the resources contained in groups DFH$EXBS and DFH$EXWS.

Dynamically installing the WEBSERVICE and URIMAP resources
Each function that is exposed as a web service requires a WEBSERVICE resource to map between the
incoming XML of the SOAP BODY and the COMMAREA interface of the program, and a URIMAP resource
that routes incoming requests to the correct pipeline and web service. Although you can use resource
definition online (RDO) to define and install your WEBSERVICE and URIMAP resources, you can also have
CICS create them dynamically when you install a pipeline resource.

About this task
Optional: Those users that do not use CICS Explorer can use the CEDA transaction to amend and install
the resources contained in groups DFH$EXBS and DFH$EXWS.

Procedure

1. Use the CICS Explorer to install the PIPELINE resources.
a) Select Definitions > Pipeline Definitions. Right-click the EXPIPE01 PIPELINE definition in the

Pipeline Definitions view and select Install. Select your target CICS region by selecting the check
box. Click OK to install the PIPELINE.

Note: If you created Java-based pipeline definitions in “Creating the pipeline definition” on page
541 then right-click EXPIPE03 PIPELINE definition in the Pipeline Definitions view.

b) Repeat this process for the EXPIPE02 PIPELINE definition or EXPIPE04 for Java-based pipelines.

When you install each PIPELINE resource, CICS scans the directory specified in the PIPELINE
WSDIR attribute (the pickup directory). For each WEBSERVICE binding file in the directory, that is
for each file with the .wsbind suffix, CICS installs a WEBSERVICE resource and one URIMAP
resource if these resources do not exist.

The URIMAP resource provides CICS with the information to associate the WEBSERVICE resource
with a specific URI. Existing resources are replaced if the information in the binding file is newer
than the existing resources.

A second optional URIMAP resource is installed if a WSDL file or WSDL archive file has been copied
to the pickup directory. This URIMAP resource provides CICS with the information to associate the
WSDL archive file or WSDL document with a specific URI so that external requesters can use the
URI to discover the WSDL archive file or WSDL document.

542 CICS TS for z/OS: Using Web Services with CICS

When the PIPELINE is later disabled and discarded, all associated WEBSERVICE and URIMAP
resources are also discarded.

2. If you have already installed the PIPELINE resource, use the PERFORM PIPELINE SCAN command to
initiate the scan of the PIPELINE pickup directory.

When you have installed the PIPELINE resources, the following WEBSERVICE resources and the
associated URIMAP resources for the provider pipeline are installed in your system:

dispatchOrder
dispatchOrderEndpoint
inquireCatalog
inquireCatalogClient
inquireCatalogWrapper
inquireSingle
inquireSingleClient
inquireSingleWrapper
placeOrder
placeOrderClient
placeOrderWrapper

The names of the WEBSERVICE resources are derived from the names of the WEBSERVICE binding
files; the names of the URIMAP resources are generated dynamically. An additional URIMAP is
generated for each WSDL document that exists in the pickup directory of the pipeline. You can view
the resources by selecting Operations > Web Services to open the Web Services view. Right-click the
WEBSERVICE resource and select Open Related > URI Map.

The CICS Explorer view shows the names of the PIPELINE resource, the URIMAP resource, and the
target program that is associated with each web service. In this example, there is no URIMAP or target
program for WEBSERVICE(dispatchOrder) because the WEBSERVICE resource is for an outbound
request.

WEBSERVICE(dispatchOrderEndpoint) represents the local CICS implementation of the dispatch order
service.

Creating the WEBSERVICE resources with resource definition online (RDO)
As an alternative to using the pipeline scanning mechanism to install WEBSERVICE resources, you can
create and install them using resource definition online (RDO).

Before you begin

Important: If you use RDO to define the WEBSERVICE and URIMAP resources, you must ensure that their
web service binding files are not in the pickup directory of the PIPELINE. This ensures that the
WEBSERVICE and URIMAP resources are not dynamically installed during a pipeline scan of the pickup
directory. Alternatively, you can ensure that no value is specified for WSDIR in the PIPELINE. However, if
you do not specify a value for WSDIR, no pipeline scans of the pickup directory occur. Therefore, all
WEBSERVICE and URIMAP resources have to be created and installed using RDO.

Procedure

1. Use the CICS Explorer to create a WEBSERVICE definition for the inquire catalog function of the
example application.
a) Create a WEBSERVICE definition using the CICS Explorer by selecting Definitions > Web Service

Definition.
b) Right-click in the Web Service Definitions view and select New to create a new WEBSERVICE

definition.
c) Type DFH$EXWS in the Resource Group text box, type EXINQCWS in the Name text box, and type
EXPIPE01 in the Pipeline text box or type EXPIPE03 for Java-based pipelines. You must enter the
WSBind attribute before you can create the WEBSERVICE definition. In the WSBind File text box

Appendix B. Web services samples 543

type /usr/lpp/cicsts/samples/webservices/wsbind/provider/
inquireCatalog.wsbind.

d) Click Finish to create the WEBSERVICE definition.
2. Repeat the preceding step for each of the following functions of the example application.

Function
WEBSERVICE
name

PIPELINE
attribute WSBind attribute

INQUIRE SINGLE
ITEM

EXINQSWS EXPIPE01 or
EXPIPE03

/usr/lpp/cicsts/samples
/webservices/wsbind
/provider/inquireSingle.wsbind

PLACE ORDER EXORDRWS EXPIPE01 or
EXPIPE03

/usr/lpp/cicsts/samples
/webservices/wsbind
/provider/placeOrder.wsbind

DISPATCH STOCK EXODRQWS EXPIPE02 or
EXPIPE04

/usr/lpp/cicsts/samples
/webservices/wsbind
/requester/dispatchOrder.wsbind

DISPATCH STOCK
endpoint (optional)

EXODEPWS EXPIPE01 or
EXPIPE03

/usr/lpp/cicsts/samples
/webservices/wsbind
/provider/dispatchOrderEndpoint.wsbind

Creating the URIMAP resources with resource definition online (RDO)
As an alternative to using the pipeline scanning mechanism to install URIMAP resources, you can create
and install them using resource definition online (RDO).

Before you begin

Important: If you use RDO to define the WEBSERVICE and URIMAP resources, you must ensure that their
web service binding files are not in the pickup directory of the PIPELINE. This ensures that the
WEBSERVICE and URIMAP resources are not dynamically installed during a pipeline scan of the pickup
directory. Alternatively, you can ensure that no value is specified for WSDIR in the PIPELINE. However, if
you do not specify a value for WSDIR, no pipeline scans of the pickup directory occur. Therefore, all
WEBSERVICE and URIMAP resources have to be created and installed using RDO.

Procedure

1. Use the CICS Explorer to create a URIMAP definition for the inquire catalog function of the example
application.
a) Create a URIMAP definition in the CICS Explorer by selecting Definitions > URI Map Definition.
b) Right-click in the URI Map Definitions view and select New to create a new URIMAP definition.
c) Type INQCURI in the Name text box, and type * in the Host text box. You must enter the Path

attribute before you can create the URIMAP definition. In the Path text box type /exampleApp/
inquireCatalog. Usage must be set to Pipeline; the PIPELINE resource is EXPIPE01 or
EXPIPE03 for Java-based pipelines.

d) Click Finish to finish the URIMAP definition.
e) Double-click the new URIMAP resource to open the Editor. In the Attributes tab in the Editor, set

the Web Service attribute to EXINQCWS and TCP/IP Service to SOAPPORT.
2. Repeat the preceding step for each of the remaining functions of the example application.

Use the following names for your URIMAPs:

Function URIMAP name

INQUIRE SINGLE ITEM INQSURI

544 CICS TS for z/OS: Using Web Services with CICS

Function URIMAP name

PLACE ORDER ORDRURI

DISPATCH STOCK Not required

DISPATCH STOCK endpoint (optional) ODEPURI

3. Specify the following distinct attributes for each URIMAP:

Function URIMAP name PATH WEBSERVICE

INQUIRE SINGLE
ITEM

INQSURI /exampleApp/inquireSingle EXINQSWS

PLACE ORDER ORDRURI /exampleApp/placeOrder EXORDRWS

DISPATCH STOCK
endpoint
(optional)

ODEPURI /exampleApp/dispatchOrder EXODEPWS

Completing the installation
To complete the installation, install the RDO group that contains your resource definitions.

Procedure

Right-click the resource group in the Resource Group Definitions window. Select Install. Make sure that
your CICSplex is correct and that you select your target region, then click OK.

Results
Your RDO is now installed and the application is ready for use.

Optional: Those users that do not use CICS Explorer can use the CEDA transaction to amend and install
the resources contained in groups DFH$EXBS and DFH$EXWS.

Configuring the web client
Before you can use the web client, you must deploy the Java web archive (WAR) for the web client front
end into one of the supported environments and configure it to call the appropriate endpoints in your
CICS system.

About this task
The following environments are supported for the two versions of web client front end application
ExampleAppClientV855.war and ExampleAppWrapperClientV855.war:

• CICS Liberty JVM server with the latest WebSphere Liberty Profile

The WAR files are located in the hlq /samples/webservices/client directory in z/OS UNIX.

Procedure

1. To start the web client enter the following URL in your web browser, where mylibertyserver is the host
name of the Liberty JVM server on which the web client is installed.

• For ExampleAppClientV855.war, use URL http://mylibertyserver:9080/ExampleAppClientV855/
• For ExampleAppWrapperClientV855.war, use URL http://mylibertyserver:9080/

ExampleAppWrapperClientV855/
2. Click CONFIGURE to display the configuration page.

The configuration page is displayed.
3. Enter the new endpoint for the web service of Inquire catalog, Inquire item, and Place order.

a) In the URLs replace the string myCicsServer with the name of the system on which your CICS is
running.

Appendix B. Web services samples 545

b) Replace the port number 8080 with the port number configured in the TCPIPSERVICE definition
resource.

4. Click SUBMIT.

Results
The web application is now ready to run.

What to do next

The URL for the web services invocation is stored in an HTTP session. It is therefore necessary to repeat
this configuration step each time a web browser is first connected to the client.

Running the web service enabled application
You can invoke the example application from a web browser.

About this task
Please make sure that you configured the web client before proceed. See Configuring the example
application

Procedure

1. Enter the following URL in your web browser: http://mylibertyserver:9080/
ExampleAppClientV855/, where mylibertyserver is the host name of the server on which the
web service client is installed.

2. Click the INQUIRE button.
3. Enter an item number, and click the SUBMIT button.

Tip: The base application is primed with item numbers in the sequence 0010, 0020, ... through 0210.

The application displays a list of items in the catalog, starting with the item number that you entered.
4. Select the item that you want to order.

a) Click the radio button in the Select column for the item you want to order.
b) Click the SUBMIT button.

5. To place an order, enter the following information.
a) Complete the Quantity field.

Specify the number of items you want to order.
b) Complete the User Name field.

Enter a 1- to 8-character string. The base application does not check the value that is entered here.
c) Complete the Department Name field.

Enter a 1- to 8-character string. The base application does not check the value that is entered here.
d) Click the SUBMIT button.
The application confirms that the order has been placed:

Deploying the example application
You can use the web services assistant to deploy parts of the example application as a web service.
Although the application works without performing this task, you must perform a similar task if you want
to deploy your own applications to extend the example application.

546 CICS TS for z/OS: Using Web Services with CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-samples/web-services/dfhxa_t310.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-samples/web-services/dfhxa_t310.html

Extracting the program interface
To deploy a program with the CICS web services assistant, you must create a copybook that matches the
COMMAREA or container interface.

About this task

In this example, the INQUIRE SINGLE ITEM function of the central catalog manager program
(DFH0XCMN) is deployed as a web service. The interface to this program is a COMMAREA; the structure of
the COMMAREA is defined in the copybook DFH0XCP1:

* Catalogue COMMAREA structure
 03 CA-REQUEST-ID PIC X(6).
 03 CA-RETURN-CODE PIC 9(2).
 03 CA-RESPONSE-MESSAGE PIC X(79).
 03 CA-REQUEST-SPECIFIC PIC X(911).
 * Fields used in Inquire Catalog
 03 CA-INQUIRE-REQUEST REDEFINES CA-REQUEST-SPECIFIC.
 05 CA-LIST-START-REF PIC 9(4).
 05 CA-LAST-ITEM-REF PIC 9(4).
 05 CA-ITEM-COUNT PIC 9(3).
 05 CA-INQUIRY-RESPONSE-DATA PIC X(900).
 05 CA-CAT-ITEM REDEFINES CA-INQUIRY-RESPONSE-DATA
 OCCURS 15 TIMES.
 07 CA-ITEM-REF PIC 9(4).
 07 CA-DESCRIPTION PIC X(40).
 07 CA-DEPARTMENT PIC 9(3).
 07 CA-COST PIC X(6).
 07 IN-STOCK PIC 9(4).
 07 ON-ORDER PIC 9(3).
 * Fields used in Inquire Single
 03 CA-INQUIRE-SINGLE REDEFINES CA-REQUEST-SPECIFIC.
 05 CA-ITEM-REF-REQ PIC 9(4).
 05 FILLER PIC 9(4).
 05 FILLER PIC 9(3).
 05 CA-SINGLE-ITEM.
 07 CA-SNGL-ITEM-REF PIC 9(4).
 07 CA-SNGL-DESCRIPTION PIC X(40).
 07 CA-SNGL-DEPARTMENT PIC 9(3).
 07 CA-SNGL-COST PIC X(6).
 07 IN-SNGL-STOCK PIC 9(4).
 07 ON-SNGL-ORDER PIC 9(3).
 05 FILLER PIC X(840).
 * Fields used in Place Order
 03 CA-ORDER-REQUEST REDEFINES CA-REQUEST-SPECIFIC.
 05 CA-USERID PIC X(8).
 05 CA-CHARGE-DEPT PIC X(8).
 05 CA-ITEM-REF-NUMBER PIC 9(4).
 05 CA-QUANTITY-REQ PIC 9(3).
 05 FILLER PIC X(888).

The copybook defines three separate interfaces for the INQUIRE CATALOG, INQUIRE SINGLE ITEM, and
PLACE ORDER functions, which are overlaid on one another in the copybook. However, the DFHLS2WS
utility does not support the REDEFINES statement. Therefore you must extract from the combined
copybook just those sections that relate to the inquire single function:

* Catalogue COMMAREA structure
 03 CA-REQUEST-ID PIC X(6).
 03 CA-RETURN-CODE PIC 9(2) DISPLAY.
 03 CA-RESPONSE-MESSAGE PIC X(79).
 * Fields used in Inquire Single
 03 CA-INQUIRE-SINGLE.
 05 CA-ITEM-REF-REQ PIC 9(4) DISPLAY.
 05 FILLER PIC X(4) DISPLAY.
 05 FILLER PIC X(3) DISPLAY.
 05 CA-SINGLE-ITEM.
 07 CA-SNGL-ITEM-REF PIC 9(4) DISPLAY.
 07 CA-SNGL-DESCRIPTION PIC X(40).
 07 CA-SNGL-DEPARTMENT PIC 9(3) DISPLAY.
 07 CA-SNGL-COST PIC X(6).
 07 IN-SNGL-STOCK PIC 9(4) DISPLAY.
 07 ON-SNGL-ORDER PIC 9(3) DISPLAY.
 05 FILLER PIC X(840).

Appendix B. Web services samples 547

The redefined element CA-REQUEST-SPECIFIC has been removed and replaced by the section of the
copybook that redefined it for the inquire single function. The copybook is now suitable for use with the
web services assistant.

The copybook is supplied with the example application as copybook DFH0XCP4.

Running the web services assistant program DFHLS2WS
The CICS web services assistant consists of two batch programs that can help you to transform existing
CICS applications into web services, and to enable CICS applications to use web services provided by
external providers. Program DFHLS2WS transforms a language structure to generate a web service
binding file and a web service description.

Procedure

1. Copy the supplied sample JCL to a suitable working file.
The JCL is supplied in samples/webservices/JCL/LS2WS.

2. Add a valid JOB card to the JCL.
3. Code the parameters for DFHLS2WS.

The following parameters are required for the INQUIRE SINGLE ITEM function of the example
application are:

//INPUT.SYSUT1 DD *
LOGFILE=/u/exampleapp/wsbind/inquireSingle.log
PDSLIB=CICSHLQ.SDFHSAMP
REQMEM=DFH0XCP4
RESPMEM=DFH0XCP4
LANG=COBOL
PGMNAME=DFH0XCMN
PGMINT=COMMAREA
URI=mycicsserver:myport/exampleApp/inquireSingle
WSBIND=/u/exampleapp/wsbind/inquireSingle.wsbind
WSDL=/u/exampleapp/wsdl/inquireSingle.wsdl
*/

LOGFILE=/u/exampleapp/wsbind/inquireSingle.log
The file that is used to record diagnostic information from DFHLS2WS. The file is normally used
only by IBM software support organization.

PDSLIB=CICSHLQ.SDFHSAMP
The name of the partitioned data set (PDS) where the web services assistant looks for copybooks
that define the request and response structures. In the example, this is the CICS installed data set
SDFHSAMP.

REQMEM=DFH0XCP4
RESPMEM=DFH0XCP4

These parameters define the language structure for the request and the response to the program.
In the example, the request and the response have the same structure and are defined by the
same copybook.

LANG=COBOL
The target program and the data structures are written in COBOL.

PGMNAME=DFH0XCMN
The name of the target program that is started when a web service request is received.

PGMINT=COMMAREA
The target program is invoked with a COMMAREA interface.

URI=mycicsserver:myport/exampleApp/inquireSingle

The unique part of the URI that is used in the generated web service definition, and used to create
the URIMAP resource that maps incoming requests to the correct web service. The value specified
results in the service being available to external clients at:

http://mycicsserver:myport/exampleApp/inquireSingle

548 CICS TS for z/OS: Using Web Services with CICS

where mycicsserver and myport are the CICS server address and the port onto which this
WEBSERVICE resource has been installed.

Note: The parameter does not have a leading '/'.

WSBIND=/u/exampleapp/wsbind/inquireSingle.wsbind
The location on z/OS UNIX to which the web service binding file is written.

Note: If the file is to be used with the pipeline scanning mechanism it must have the
extension .wsbind.

WSDL=/u/exampleapp/wsdl/inquireSingle.wsdl
The location on z/OS UNIX to which the file containing the generated web service description is
written. It is good practice to use matching names for the web service binding file and its
corresponding web service description.
Conventionally, files containing web service descriptions have the extension .wsdl.
The web services description provides the information that a client must use to access the web
service. It contains an XML schema definition of the request and response, and location
information for the service.

4. Run the job.
A web service description and web service binding file are created in the locations specified.

An example of the generated WSDL document
An example of the web service description (WSDL) document that is generated when the web services
assistant program DFHLS2WS is run.

<?xml version="1.0" ?>
<definitions targetNamespace="http://www.DFH0XCMN.DFH0XCP4.com" xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:reqns="http://www.DFH0XCMN.DFH0XCP4.Request.com" xmlns:resns="http://
www.DFH0XCMN.DFH0XCP4.Response.com"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:tns="http://www.DFH0XCMN.DFH0XCP4.com">
 <types>
 <xsd:schema attributeFormDefault="qualified" elementFormDefault="qualified"
 targetNamespace="http://www.DFH0XCMN.DFH0XCP4.Request.com" xmlns:tns="http://
www.DFH0XCMN.DFH0XCP4.Request.com"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:complextype abstract="false" block="#all" final="#all" mixed="false"
name="ProgramInterface">
 <xsd:annotation>
 <xsd:documentation source="http://www.ibm.com/software/htp/cics/annotations">
 This schema was generated by the CICS web services assistant.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="ca_request_id" nillable="false">
 <xsd:simpletype>
 <xsd:annotation>
 <xsd:appinfo source="http://www.ibm.com/software/htp/cics/annotations">
 #Thu Nov 03 11:55:26 GMT 2005
com.ibm.cics.wsdl.properties.synchronized=false
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:maxlength value="6"/>
 <xsd:whitespace value="preserve"/>
 </xsd:restriction>
 </xsd:simpletype>
 </xsd:element>

.... most of the schema for the request is removed

 </xsd:sequence>
 </xsd:complextype>
 <xsd:element name="DFH0XCMNOperation" nillable="false" type="tns:ProgramInterface"/>
 </xsd:schema>
 <xsd:schema attributeFormDefault="qualified" elementFormDefault="qualified"
 targetNamespace="http://www.DFH0XCMN.DFH0XCP4.Response.com" xmlns:tns="http://
www.DFH0XCMN.DFH0XCP4.Response.com"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

... schema content for the reply is removed

Appendix B. Web services samples 549

 </xsd:schema>
 </types>
 <message name="DFH0XCMNOperationResponse">
 <part element="resns:DFH0XCMNOperationResponse" name="ResponsePart"/>
 </message>
 <message name="DFH0XCMNOperationRequest">
 <part element="reqns:DFH0XCMNOperation" name="RequestPart"/>
 </message>
 <porttype name="DFH0XCMNPort">
 <operation name="DFH0XCMNOperation">
 <input message="tns:DFH0XCMNOperationRequest" name="DFH0XCMNOperationRequest"/>
 <output message="tns:DFH0XCMNOperationResponse" name="DFH0XCMNOperationResponse"/>
 </operation>
 </porttype>
 <binding name="DFH0XCMNHTTPSoapBinding" type="tns:DFH0XCMNPort">
 <!-- This soap:binding indicates the use of SOAP 1.1 -->
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <!-- This soap:binding indicates the use of SOAP 1.2 -->
 <!-- <soap:binding style="document" transport="http://www.w3.org/2003/05/soap-http"/> -->
 <operation name="DFH0XCMNOperation">
 <soap:operation soapAction="" style="document"/>
 <input name="DFH0XCMNOperationRequest">
 <soap:body parts="RequestPart" use="literal"/>
 </input>
 <output name="DFH0XCMNOperationResponse">
 <soap:body parts="ResponsePart" use="literal"/>
 </output>
 </operation>
 </binding>
 <service name="DFH0XCMNService">
 <port binding="tns:DFH0XCMNHTTPSoapBinding" name="DFH0XCMNPort">
 <!-- This soap:address indicates the location of the web service over HTTP.
 Please replace "my-server" with the TCPIP host name of your CICS region.
 Please replace "my-port" with the port number of your CICS TCPIPSERVICE. -->
 <soap:address location="http://my-server:my-port/exampleApp/inquireSingles.log"/>
 <!-- This soap:address indicates the location of the web service over HTTPS. -->
 <!-- <soap:address location="https://my-server:my-port/exampleApp/inquireSingles.log"/> -->
 <!-- This soap:address indicates the location of the web service over Websphere MQSeries.
 Please replace "my-queue" with the appropriate queue name. -->
 <!-- <soap:address location="jms:/queue?destination=my-queue&connectionFactory=()&
 targetService=/exampleApp/
inquireSingles.log&initialContextFactory=com.ibm.mq.jms.Nojndi" /> -->
 </port>
 </service>
</definitions>

Deploying the web services binding file
The WEBSERVICE binding file, created by DFHLS2WS, is deployed into your CICS region dynamically
when you install a PIPELINE resource.

About this task

When a pipeline scan command is issued, CICS scans the pickup directory to search for WEBSERVICE
binding files with the .wsbind extension. For each binding file found, CICS determines whether to install
a WEBSERVICE resource.

A URIMAP resource is also created to map the URI, as provided in the JCL, to the installed WEBSERVICE
resource and the PIPELINE onto which the web service is installed. When a scanned WEBSERVICE
resource is discarded, the URIMAP resource associated with it is also discarded.

Procedure

1. Modify the PIPELINE definition for your provider pipeline PIPELINE(EXPIPE01) in the CICS Explorer by
selecting Definitions > Pipeline Definitions. Double-click EXPIPE01 to open the Pipeline Definition
(EXPIPE01) editor.
In the Attributes tab, change the WS Directory parameter to /u/exampleapp/wsbind. This
pickup directory contains the WEBSERVICE binding file that you generated with DFHLS2WS.

2. Copy any other WEBSERVICE binding files used by the application to the same directory.
In this example, the following files are copied:

inquireCatalog

550 CICS TS for z/OS: Using Web Services with CICS

placeOrder

They are provided in directory /usr/lpp/cicsts/samples/webservices/wsbind/provider.
3. Install the PIPELINE resource.

Results

CICS creates two URIMAP resources; the first URIMAP definition is required in a service provider when it
contains information that maps the URI of an inbound web service request to the other resources (such as
the PIPELINE resource) that service the request. The second URIMAP contains information that maps the
URI of an inbound request for the WSDL document or documents associated with the web service.

Components of the base application
Use these tables to understand the components of the base application and the members supplied in the
SDFHSAMP sample. The SDFHSAMP members listed contain BMS maps, COBOL source, and copybooks
for the base application, web service client application, and the wrapper modules.

Table 30. SDFHSAMP members containing BMS maps

Member name Description

DFH0XS1 BMS macros for the mapset consisting of the map (EXMENU) for the Main
Menu screen and the map (EXORDR) for the Details of your order screen.

DFH0XS2 BMS macros for the mapset consisting of the map (EXINQC) for the Inquire
Catalog screen.

DFH0XS3 BMS macros for the mapset consisting of the map (EXCONF) for the
Configure CICS example catalog application screen.

DFH0XM1 COBOL copybook generated by assembling DFH0XS1. DFH0XGUI and
DFH0XCUI include this copybook

DFH0XM2U COBOL copybook generated by assembling DFH0XS2 and editing the result to
include an indexed array structure for ease of copybook programming.
DFH0XGUI and DFH0XCUI include this copybook.

DFH0XM3 COBOL copybook generated by assembling DFH0XS3. DFH0XCFG includes
this copybook

Table 31. SDFHSAMP members containing COBOL source for the base application

Member name Description

DFH0XCFG Program invoked by transaction ECFG to read and update the VSAM
configuration file.

DFH0XCMN Controller program for the catalog application. All requests pass through the
controller program.

DFH0XGUI Program invoked by transaction EGUI to manage the sending of the BMS
maps to the terminal user and the receiving of the maps from the terminal
user. This program links to program DFH0XCMN.

DFH0XODE One of two versions of the endpoint for the order dispatch web service. This is
the version that runs in CICS. This program sets the text "Order in
dispatch" in the return COMMAREA.

DFH0XSDS A stubbed or dummy version of the data store program that allows the
application to work when the VSAM catalog file has not been set up.
DFH0XSDS uses data defined in the program rather than data stored in a
VSAM file.

Appendix B. Web services samples 551

Table 31. SDFHSAMP members containing COBOL source for the base application (continued)

Member name Description

DFH0XSOD A stubbed version of the order dispatch program. It sets the return code in
the COMMAREA to 0 and returns to its caller. DFH0XSOD is used when
outbound web services are not required.

DFH0XSSM A stubbed version of the stock manager (replenishment) program.
DFH0XSSM sets the return code in the COMMAREA to 0 and returns to its
caller.

DFH0XVDS The VSAM version of the data store program. DFH0XVDS accesses the VSAM
file to perform reads and updates of the catalog.

DFH0XWOD The web service version of the order dispatch program. DFH0XWOD issues an
EXEC CICS INVOKE WEBSERVICE to make an outbound web service call to an
order dispatcher.

Table 32. SDFHSAMP members containing COBOL copybooks for the base application

Member name Description

DFH0XCP1 Defines a COMMAREA structure that includes the request and response for
the inquire catalog, inquire single, and place order functions. Programs
DFH0XCMN, DFH0XCUI, DFH0XECC, DFH0XGUI, DFH0XICW, DFH0XISW,
DFH0XPOW, DFH0XSDS, and DFH0XVDS include this copybook.

DFH0XCP2 Defines a COMMAREA structure for the order dispatcher and stock manager
modules. Programs DFH0XCMN, DFH0XSOD, DFH0XSSM, and DFH0XWOD
include this copybook

DFH0XCP3 Defines a data structure for an inquire catalog request and response. Used as
input to DFHLS2WS in order to produce inquireCatalog.wsdl and
inquireCatalog.wsbind.

DFH0XCP4 Defines a data structure for an inquire single request and response. Used as
input to DFHLS2WS in order to produce inquireSingle.wsdl and
inquireSingle.wsbind.

DFH0XCP5 Defines a data structure for a place order request and response. Used as
input to DFHLS2WS in order to produce placeOrder.wsdl and
placeOrder.wsbind.

DFH0XCP6 Defines a data structure for a dispatch order request and response. Used as
input to DFHLS2WS in order to produce dispatchOrder.wsdl and
dispatchOrder.wsbind.

DFH0XCP7 Defines the data structure for a dispatch order request. Programs DFH0XODE
and DFH0XWOD include this copybook

DFH0XCP8 Defines the data structure for a dispatch order response. Programs
DFH0XODE and DFH0XWOD include this copybook.

Table 33. SDFHSAMP members containing COBOL source code for the web service client application
thatruns in CICS

Member name Description

DFH0XCUI Program invoked by transaction ECLI to manage the sending of the BMS maps
to the terminal user and the receiving of the maps from the terminal user. It
links to program DFH0XECC.

552 CICS TS for z/OS: Using Web Services with CICS

Table 33. SDFHSAMP members containing COBOL source code for the web service client application
thatruns in CICS (continued)

Member name Description

DFH0XECC Makes outbound web service requests to the base application, using the
EXEC CICS INVOKE WEBSERVICE command. The web service specified is one
of the following:

inquireCatalogClient
inquireSingleClient
placeOrderClient

Table 34. SDFHSAMP members containing COBOL copybooks for the web service client application
thatruns in CICS. They are all generated by DFHWS2LS, and are included by program DFH0XECC.

Member name Description

DFH0XCPA Defines the data structure for the inquire catalog request.

DFH0XCPB Defines the data structure for the inquire catalog response.

DFH0XCPC Defines the data structure for the inquire single request.

DFH0XCPD Defines the data structure for the inquire single response.

DFH0XCPE Defines the data structure for the place order request.

DFH0XCPF Defines the data structure for the place order response.

Table 35. SDFHSAMP members containing COBOL source code for the wrapper modules

Member name Description

DFH0XECC Web services client program

DFH0XICW Wrapper program for the inquireCatalog service.

DFH0XISW Wrapper program for the inquireSingle service.

DFH0XPOW Wrapper program for the purchaseOrder service.

Table 36. SDFHSAMP members containing COBOL copybooks for the wrapper modules

Member name Description

DFH0XWC1 Defines the data structure for the inquire catalog request. Program
DFH0XICW includes this copybook.

DFH0XWC2 Defines the data structure for the inquire catalog response. Program
DFH0XICW includes this copybook.

DFH0XWC3 Defines the data structure for the inquire single request. Program DFH0XISW
includes this copybook.

DFH0XWC4 Defines the data structure for the inquire single response. Program
DFH0XISW includes this copybook.

DFH0XWC5 Defines the data structure for the place order request. Program DFH0XPOW
includes this copybook.

DFH0XWC6 Defines the data structure for the place order response. Program DFH0XPOW
includes this copybook

Appendix B. Web services samples 553

Table 37. CICS Resource Definitions

Resource name Resource type Comment

EXAMPLE CICS Resource definition group CICS resource definitions
required for the example
application.

EGUI TRANSACTION Transaction to invoke program
DFH0XGUI to start the BMS
interface to the application
(Customizable).

ECFG TRANSACTION Transaction to invoke the
program DFH0XCFG to start the
example configuration BMS
interface (Customizable).

EXMPCAT FILE File definition of the EXMPCAT
VSAM file for the application
catalog (Customizable).

EXMPCONF FILE File definition of the EXMPCONF
application configuration file.

The catalog manager program
The catalog manager is the controlling program for the business logic of the example application, and all
interactions with the example application pass through it.

To ensure that the program logic is simple, the type checking and error recovery that the catalog manager
performs is limited.

The catalog manager supports a number of operations. Input and output parameters for each operation
are defined in a single data structure, which is passed to and from the program in a COMMAREA.

COMMAREA structures
Data is passed between the sample client and server programs by using a standard CICS communications
area (COMMAREA).

The following code extract shows the catalog manager application COMMAREA structure.

* Catalogue COMMAREA structure
 03 CA-REQUEST-ID PIC X(6).
 03 CA-RETURN-CODE PIC 9(2).
 03 CA-RESPONSE-MESSAGE PIC X(79).
 03 CA-REQUEST-SPECIFIC PIC X(911).
 * Fields used in Inquire Catalog
 03 CA-INQUIRE-REQUEST REDEFINES CA-REQUEST-SPECIFIC.
 05 CA-LIST-START-REF PIC 9(4).
 05 CA-LAST-ITEM-REF PIC 9(4).
 05 CA-ITEM-COUNT PIC 9(3).
 05 CA-INQUIRY-RESPONSE-DATA PIC X(900).
 05 CA-CAT-ITEM REDEFINES CA-INQUIRY-RESPONSE-DATA
 OCCURS 15 TIMES.
 07 CA-ITEM-REF PIC 9(4).
 07 CA-DESCRIPTION PIC X(40).
 07 CA-DEPARTMENT PIC 9(3).
 07 CA-COST PIC X(6).
 07 IN-STOCK PIC 9(4).
 07 ON-ORDER PIC 9(3).
 * Fields used in Inquire Single
 03 CA-INQUIRE-SINGLE REDEFINES CA-REQUEST-SPECIFIC.
 05 CA-ITEM-REF-REQ PIC 9(4).
 05 FILLER PIC 9(4).
 05 FILLER PIC 9(3).
 05 CA-SINGLE-ITEM.
 07 CA-SNGL-ITEM-REF PIC 9(4).
 07 CA-SNGL-DESCRIPTION PIC X(40).
 07 CA-SNGL-DEPARTMENT PIC 9(3).
 07 CA-SNGL-COST PIC X(6).

554 CICS TS for z/OS: Using Web Services with CICS

 07 IN-SNGL-STOCK PIC 9(4).
 07 ON-SNGL-ORDER PIC 9(3).
 05 FILLER PIC X(840).
 * Fields used in Place Order
 03 CA-ORDER-REQUEST REDEFINES CA-REQUEST-SPECIFIC.
 05 CA-USERID PIC X(8).
 05 CA-CHARGE-DEPT PIC X(8).
 05 CA-ITEM-REF-NUMBER PIC 9(4).
 05 CA-QUANTITY-REQ PIC 9(3).
 05 FILLER PIC X(888).

 * Dispatcher/Stock Manager COMMAREA structure
 03 CA-ORD-REQUEST-ID PIC X(6).
 03 CA-ORD-RETURN-CODE PIC 9(2).
 03 CA-ORD-RESPONSE-MESSAGE PIC X(79).
 03 CA-ORD-REQUEST-SPECIFIC PIC X(23).
 * Fields used in Dispatcher
 03 CA-DISPATCH-ORDER REDEFINES CA-ORD-REQUEST-SPECIFIC.
 05 CA-ORD-ITEM-REF-NUMBER PIC 9(4).
 05 CA-ORD-QUANTITY-REQ PIC 9(3).
 05 CA-ORD-USERID PIC X(8).
 05 CA-ORD-CHARGE-DEPT PIC X(8).
 * Fields used in Stock Manager
 03 CA-STOCK-MANAGER-UPDATE REDEFINES CA-ORD-REQUEST-SPECIFIC.
 05 CA-STK-ITEM-REF-NUMBER PIC 9(4).
 05 CA-STK-QUANTITY-REQ PIC 9(3).
 05 FILLER PIC X(16).

Return codes
Each operation of the catalog manager can return a number of return codes.

Table 38. Catalog manager return codes

Type Code Explanation

General 00 Function completed without error

Catalog file 20 Item reference not found

21 Error opening, reading, or ending
browse of catalog file

22 Error updating file

Configuration file 50 Error opening configuration file

51 Data store type was neither STUB
nor VSAM

52 Outbound web service switch
was neither Y nor N

Remote web service 30 The EXEC CICS INVOKE
WEBSERVICE command returned
an INVREQ condition

31 The EXEC CICS INVOKE
WEBSERVICE command returned
an NOTFND condition

32 The EXEC CICS INVOKE
WEBSERVICE command returned
a condition other than INVREQ or
NOTFND

Appendix B. Web services samples 555

Table 38. Catalog manager return codes (continued)

Type Code Explanation

Application 97 Insufficient stock to complete
order

98 Order quantity was not a positive
number

99 DFH0XCMN received a
COMMAREA in which the CA-
REQUEST-ID field was not set to
one of the following: 01INQC,
01INQS, or 01ORDR

INQUIRE CATALOG operation
This operation returns a list of up to 15 catalog items, starting with the item specified by the caller.

Input parameters
CA-REQUEST-ID

A string that identifies the operation. For the INQUIRE CATALOG command, the string contains
01INQC.

CA-LIST-START-REF
The reference number of the first item to be returned.

Output parameters
CA-RETURN-CODE

A string that identifies the operation.
CA-RESPONSE-MESSAGE

A human readable string, containing num ITEMS RETURNED where num is the number of items
returned.

CA-LAST-ITEM-REF
The reference number of the last item returned.

CA-ITEM-COUNT
The number of items returned.

CA-CAT-ITEM
An array containing the list of catalog items returned. The array has 15 elements; if fewer than 15
items are returned, the remaining array elements contain blanks.

INQUIRE SINGLE ITEM operation
This operation returns a single catalog item specified by the caller.

Input parameters
CA-REQUEST-ID

A string that identifies the operation. For the INQUIRE SINGLE ITEM command, the string contains
01INQS.

CA-ITEM-REF-REQ
The reference number of the item to be returned.

Output parameters
CA-RETURN-CODE

A string that identifies the operation.

556 CICS TS for z/OS: Using Web Services with CICS

CA-RESPONSE-MESSAGE
A human readable string, containing RETURNED ITEM: REF=item-reference where item-
reference is the reference number of the returned item.

CA-SINGLE-ITEM
An array containing in its first element the returned catalog item.

PLACE ORDER operation
This operation places an order for a single item. If the required quantity is not available a message is
returned to the user. If the order is successful, a call is made to the Stock Manager informing it what item
has been ordered and the quantity ordered.

Input parameters
CA-REQUEST-ID

A string that identifies the operation. For the PLACE ORDER operation, the string contains 01ORDR.
CA-USERID

An 8-character user ID which the application uses for dispatch and billing.
CA-CHARGE-DEPT

An 8-character department ID which the application uses for dispatch and billing.
CA-ITEM-REF-NUMBER

The reference number of the item to be ordered.
CA-QUANTITY-REQ

The number of items required.

Output parameters
CA-RETURN-CODE

A string that identifies the operation.
CA-RESPONSE-MESSAGE

A human readable string, containing ORDER SUCCESSFULLY PLACED.

DISPATCH STOCK operation
This operation places a call to the stock dispatcher program, which in turn dispatches the order to the
customer.

Input parameters
CA-ORD-REQUEST-ID

A string that identifies the operation. For the DISPATCH ORDER operation, the string contains
01DSPO.

CA-ORD-USERID
An 8-character user ID which the application uses for dispatch and billing.

CA-ORD-CHARGE-DEPT
An 8-character department ID which the application uses for dispatch and billing.

CA-ORD-ITEM-REF-NUMBER
The reference number of the item to be ordered.

CA-ORD-QUANTITY-REQ
The number of items required.

Output parameters
CA-ORD-RETURN-CODE

A string that identifies the operation.

Appendix B. Web services samples 557

NOTIFY STOCK MANAGER operation
This operation takes details of the order that has been placed to decide if stock replenishment is
necessary.

Input parameters
CA-ORD-REQUEST-ID

A string that identifies the operation. For the NOTIFY STOCK MANAGER operation, the string contains
01STKO.

CA-STK-ITEM-REF-NUMBER
The reference number of the item to be ordered.

CA-STK-QUANTITY-REQ
The number of items required.

Output parameters
CA-ORD-RETURN-CODE

A string that identifies the operation.

File structures and definitions
The example application uses two VSAM files: the catalog file, which contains the details of all items
stocked and their stock levels, and the configuration file, which holds user-selected options for the
application.

Catalog file
The catalog file is a KSDS VSAM file that contains all information relating to the product inventory.

Catalog file records

Records in the file have the following structure:

Name COBOL data type Description

WS-ITEM-REF-NUM PIC 9(4) Item reference number

WS-DESCRIPTION PIC X(40) Item description

WS-DEPARTMENT PIC 9(3) Department identification
number

WS-COST PIC ZZZ.99 Item price

WS-IN-STOCK PIC 9(4) Number of items in stock

WS-ON-ORDER PIC 9(3) Number of items on order

Configuration file
The configuration file is a KSDS VSAM file that contains information used to configure the example
application.

Configuration file records
The configuration file is a KSDS VSAM file with four distinct records.

Table 39. General information record

Name COBOL data type Description

PROGS-KEY PIC X(9) Key field for the general
information record, containing
EXMP-CONF.

558 CICS TS for z/OS: Using Web Services with CICS

Table 39. General information record (continued)

Name COBOL data type Description

filler PIC X

DATASTORE PIC X(4) A character string that specifies
the type of data store program to
be used. Values are:

STUB
VSAM

filler PIC X

DO-OUTBOUND-WS PIC X A character that specifies
whether the dispatch manager is
make an outbound web service
request. Values are:

Y
N

filler PIC X

CATMAN-PROG PIC X(8) The name of the catalog manager
program.

filler PIC X

DSSTUB-PROG PIC X(8) The name of the dummy data
handler program.

filler PIC X

DSVSAM-PROG PIC X(8) The name of the VSAM data
handler program.

filler PIC X

ODSTUB-PROG PIC X(8) The name of the dummy order
dispatcher module.

filler PIC X

ODWEBS-PROG PIC X(8) The name of the outbound web
service order dispatcher
program.

filler PIC X

STKMAN-PROG PIC X(8) The name of the stock manager
program.

filler PIC X(10)

Table 40. Outbound URL record

Name COBOL data type Description

URL-KEY PIC X(9) Key field for the general
information record, containing
OUTBNDURL.

filler PIC X

Appendix B. Web services samples 559

Table 40. Outbound URL record (continued)

Name COBOL data type Description

OUTBOUND-URL PIC X(255) Outbound URL for the order
dispatcher web service request.

Table 41. Catalog file information record

Name COBOL data type Description

URL-FILE-KEY PIC X(9) Key field for the general
information record, containing
VSAM-NAME.

filler PIC X

CATALOG-FILE-NAME PIC X(8) Name of the CICS FILE resource
used for the catalog file.

Table 42. Server information record

Name COBOL data type Description

WS-SERVER-KEY PIC X(9) Key field for the server
information record, containing
WS-SERVER.

filler PIC X

CATALOG-FILE-NAME PIC X(8) For the CICS web service client
only, the IP address and port of
the system on which the example
application is deployed as a web
service.

JSON samples
Use these examples to help you understand JSON requests.

Example HTTP GET request using a query string
This is an example of a HTTP GET request using a query string.

GET /genapp/customers?name=Joe%20Bloggs/ 1
Host: www.example.com

Where 1 is the query string.

Example HTTP request with a JSON body
This is an example of a HTTP request with a JSON body.

 POST /genapp/customers/
Host: www.example.com
Content-Type: application/json
Content-Length: nn 1

{
 "customers":
 {
 "firstName": "Joe”,
 "lastName": “Bloggs”,
 "fullAddress":
 {
 "streetAddress": "21 2nd Street",
 "city": "New York",
 "state": "NY",

560 CICS TS for z/OS: Using Web Services with CICS

 "postalCode": 10021
 }
 }
}

Where the Content-Length: nn 1 is the length of your request.

The COBOL language structure mapping for this example would be as follows:

01 CUSTOMERS.
 03 firstname pic x(8).
 03 lastname pic x(8).
 03 fulladdress.
 05 streetaddress pic x(20).
 05 city pic x(20).
 05 state pic xx.
 05 postalcode pic 9(5).

Appendix B. Web services samples 561

562 CICS TS for z/OS: Using Web Services with CICS

Notices

This information was developed for products and services offered in the U.S.A. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property rights may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
United States of America

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119 Armonk,
NY 10504-1785
United States of America

© Copyright IBM Corp. 1974, 2020 563

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Programming License Agreement, or
any equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Programming interface information

CICS supplies some documentation that can be considered to be Programming Interfaces, and some
documentation that cannot be considered to be a Programming Interface.

Programming Interfaces that allow the customer to write programs to obtain the services of CICS
Transaction Server for z/OS, Version 5 Release 6 are included in the following sections of the online
product documentation:

• Developing applications
• Developing system programs
• CICS TS security
• Developing for external interfaces
• Application development reference
• Reference: system programming
• Reference: connectivity

Information that is NOT intended to be used as a Programming Interface of CICS Transaction Server for
z/OS, Version 5 Release 6 , but that might be misconstrued as Programming Interfaces, is included in the
following sections of the online product documentation:

• Troubleshooting and support
• CICS TS diagnostics reference

If you access the CICS documentation in manuals in PDF format, Programming Interfaces that allow the
customer to write programs to obtain the services of CICS Transaction Server for z/OS, Version 5 Release
6 are included in the following manuals:

• Application Programming Guide and Application Programming Reference
• Business Transaction Services
• Customization Guide

564 Notices

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/developing_sysprogs.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/security.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/interfaces/externalInterfaces.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-applications/reference-programming.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/home/reference-systemprogramming.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-connectivity/reference-connections.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/troubleshooting.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/home/reference-diagnostics.html

• C++ OO Class Libraries
• Debugging Tools Interfaces Reference
• Distributed Transaction Programming Guide
• External Interfaces Guide
• Front End Programming Interface Guide
• IMS Database Control Guide
• Installation Guide
• Security Guide
• Supplied Transactions
• CICSPlex SM Managing Workloads
• CICSPlex SM Managing Resource Usage
• CICSPlex SM Application Programming Guide and Application Programming Reference
• Java Applications in CICS

If you access the CICS documentation in manuals in PDF format, information that is NOT intended to be
used as a Programming Interface of CICS Transaction Server for z/OS, Version 5 Release 6 , but that
might be misconstrued as Programming Interfaces, is included in the following manuals:

• Data Areas
• Diagnosis Reference
• Problem Determination Guide
• CICSPlex SM Problem Determination Guide

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Apache, Apache Axis2, Apache Maven, Apache Ivy, the Apache Software Foundation (ASF) logo, and the
ASF feather logo are trademarks of Apache Software Foundation.

Gradle and the Gradlephant logo are registered trademark of Gradle, Inc. and its subsidiaries in the
United States and/or other countries.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon,
Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or
its subsidiaries in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

The registered trademark Linux is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Red Hat®, and Hibernate® are trademarks or registered trademarks of Red Hat, Inc. or its subsidiaries in
the United States and other countries.

Spring Boot is a trademark of Pivotal Software, Inc. in the U.S. and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Notices 565

https://www.ibm.com/legal/copytrade.shtml

Zowe™, the Zowe logo and the Open Mainframe Project™ are trademarks of The Linux Foundation.

Terms and conditions for product documentation

Permissions for the use of these publications are granted subject to the following terms and conditions.
Applicability

These terms and conditions are in addition to any terms of use for the IBM website.
Personal use

You may reproduce these publications for your personal, noncommercial use provided that all
proprietary notices are preserved. You may not distribute, display or make derivative work of these
publications, or any portion thereof, without the express consent of IBM.

Commercial use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications,
or reproduce, distribute or display these publications or any portion thereof outside your enterprise,
without the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted,
either express or implied, to the publications or any information, data, software or other intellectual
property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are
not being properly followed.

You may not download, export or re-export this information except in full compliance with all
applicable laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-
INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM online privacy statement

IBM Software products, including software as a service solutions, (Software Offerings) may use cookies or
other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below:

For the CICSPlex SM Web User Interface (main interface):
Depending upon the configurations deployed, this Software Offering may use session and persistent
cookies that collect each user’s user name and other personally identifiable information for purposes
of session management, authentication, enhanced user usability, or other usage tracking or functional
purposes. These cookies cannot be disabled.

For the CICSPlex SM Web User Interface (data interface):
Depending upon the configurations deployed, this Software Offering may use session cookies that
collect each user's user name and other personally identifiable information for purposes of session
management, authentication, or other usage tracking or functional purposes. These cookies cannot be
disabled.

For the CICSPlex SM Web User Interface ("hello world" page):
Depending upon the configurations deployed, this Software Offering may use session cookies that
collect no personally identifiable information. These cookies cannot be disabled.

For CICS Explorer:
Depending upon the configurations deployed, this Software Offering may use session and persistent
preferences that collect each user’s user name and password, for purposes of session management,

566 Notices

authentication, and single sign-on configuration. These preferences cannot be disabled, although
storing a user's password on disk in encrypted form can only be enabled by the user's explicit action
to check a check box during sign-on.

If the configurations deployed for this Software Offering provide you, as customer, the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM Privacy Policy and IBM Online Privacy Statement, the section entitled Cookies, Web Beacons and
Other Technologies and the IBM Software Products and Software-as-a-Service Privacy Statement.

Notices 567

https://www.ibm.com/privacy
https://www.ibm.com/privacy/details
https://www.ibm.com/software/info/product-privacy

568 CICS TS for z/OS: Using Web Services with CICS

Index

Special Characters
<addressing>

pipeline configuration element 91
<apphandler_class>

pipeline configuration element 86
<apphandler>

pipeline configuration element 88
<auth_token_type>

pipeline configuration element 120
<authentication>

pipeline configuration element 113
<cics_json_handler_java>

pipeline configuration element 91
<cics_mtom_handler>

pipeline configuration element 106
<cics_soap_1.1_handler_java>

pipeline configuration element 94
<cics_soap_1.1_handler>

pipeline configuration element 92
<cics_soap_1.2_handler_java>

pipeline configuration element 98
<cics_soap_1.2_handler>

pipeline configuration element 96
<default_http_transport_handler_list>

pipeline configuration element 100
<default_mq_transport_handler_list>

pipeline configuration element 100
<default_target>

pipeline configuration element 105
<default_transport_handler_list>

pipeline configuration element 101
<dfhmtom_configuration>

pipeline configuration element 107
<dfhwsse_configuration>

pipeline configuration element 112
<encrypt_body>

pipeline configuration element 122
<handler>

pipeline configuration element 101
<jvmserver>

pipeline configuration element 102
<mime_options>

pipeline configuration element 110
<mtom_options>

pipeline configuration element 108
<mtom>

pipeline configuration element 106
<named_transport_entry>

pipeline configuration element 87
<namespace>

pipeline configuration element 91
<provider_pipeline_json>

pipeline configuration element 88
<provider_pipeline>

pipeline configuration element 88
<repository>

<repository> (continued)
pipeline configuration element 103

<requester_pipeline>
pipeline configuration element 90

<service_handler_list>
pipeline configuration element 104

<service_parameter_list>
pipeline configuration element 105

<service>
pipeline configuration element 103

<sign_body>
pipeline configuration element 121

<sts_authentication>
pipeline configuration element 118

<sts_endpoint>
pipeline configuration element 121

<terminal_handler>
pipeline configuration element 89

<transport_handler_list>
pipeline configuration element 90

<transport>
pipeline configuration element 105

<wsse_handler>
pipeline configuration element 111

<xop_options>
pipeline configuration element 109

A
addressing

pipeline configuration element 91
algorithm 494, 496
apphandler

pipeline configuration element 88
application

transform to XML 389
application handler

pipeline configuration element 86
assistant, JSON 269
assistant, web services 218
assistant, XML 389
Atom feed

XML binding
creating 481

atomic transaction
configuring CICS 171
configuring service provider 173
configuring service requester 174
registration services 170
states 176

auth_token_type
pipeline configuration element 120

authentication
pipeline configuration element 113

Axis2 51

Index 569

B
batch utility

JSON assistant 269
web services assistant 218
XML assistant 389

binary attachment
pipeline configuration 106

binding file
XML binding 481

body, SOAP 18

C
C and C++

mapping to JSON Schema 347, 350
mapping to XML Schema 437, 440

call web service from Java 267
capabilities 38
catalog samplecatalog sample 527
channel description 212, 254
channel interface 212, 254
CICS web services

Unicode 379, 474
UTF-16 379, 474

cics_json_handler_java
pipeline configuration element 91

cics_mtom_handler
pipeline configuration element 106

cics_soap_1.1_handler
pipeline configuration element 92

cics_soap_1.1_handler_java
pipeline configuration element 94

cics_soap_1.2_handler
pipeline configuration element 96

cics_soap_1.2_handler_java
pipeline configuration element 98

COBOL
mapping to JSON schema 340
mapping to JSON Schema 328
mapping to XML schema 429
mapping to XML Schema 415
variable repeating content 478

command line 520
command-line 520
compatibility mode 178
configuration file, pipeline 77
configuring 64, 68
configuring RACF 497
configuring the pipeline 501
container

context container
DFH-HANDLERPLIST 147
DFH-SERVICEPLIST 147
DFHWS-APPHANDLER 147, 149
DFHWS-DATA 147
DFHWS-FAULT 148
DFHWS-PIPELINE 149
DFHWS-SOAPLEVEL 149
DFHWS-STSREASON 159
DFHWS-TRANID 150
DFHWS-URI 150
DFHWS-USERID 153
DFHWS-WEBSERVICE 153

container (continued)
control container

DFHERROR 136
DFHFUNCTION 138
DFHHTTPSTATUS 142
DFHMEDIATYPE 143
DFHNORESPONSE 143
DFHREQUEST 143
DFHRESPONSE 143
DFHWS-CCSID 144

DFH-EXIT-HEADER1 146
DFH-HANDLERPLIST 147
DFH-SERVICEPLIST 147
DFHERROR 136
DFHFUNCTION 138
DFHHTTPSTATUS 142
DFHJSON-DATA 523
DFHJSON-JSON 523
DFHJSON-JVMSERVR 524
DFHJSON-TRANSFRM 523
DFHMEDIATYPE 143
DFHNORESPONSE 143
DFHREQUEST 143
DFHRESPONSE 143
DFHWS-APPHANDLER 147, 149
DFHWS-CCSID 144
DFHWS-CID-DOMAIN 154
DFHWS-DATA 147
DFHWS-FAULT 148
DFHWS-IDTOKEN 158
DFHWS-LOCATION 148
DFHWS-MEP 148
DFHWS-MTOM-IN 154
DFHWS-MTOM-OUT 154
DFHWS-PIPELINE 149
DFHWS-RESPWAIT 149
DFHWS-RESTOKEN 158
DFHWS-SERVICEURI 158
DFHWS-SOAPLEVEL 149
DFHWS-STSACTION 158
DFHWS-STSFAULT 159
DFHWS-STSREASON 159
DFHWS-STSURI 159
DFHWS-TOKENTYPE 159
DFHWS-TRANID 150
DFHWS-URI 150
DFHWS-USERID 153
DFHWS-WEBSERVICE 153
DFHWS-XOP-IN 156
DFHWS-XOP-OUT 155, 156

Container DFH-EXIT-HEADER1 146
Container DFHJSON-DATA 523
Container DFHJSON-ERROR 524
Container DFHJSON-ERRORMSG 525
Container DFHJSON-JSON 523
Container DFHJSON-JVMSERVR 524
Container DFHJSON-TRANSFRM 523
container DFHSAML-AnnnVmmm 159
container DFHSAML-ASSQNAME 159
container DFHSAML-ATTRAnnn 160
container DFHSAML-ATTRFnnn 160
container DFHSAML-ATTRNnnn 160
container DFHSAML-ATTRSnnn 160
container DFHSAML-ATTRYnnn 160

570 CICS TS for z/OS: Using Web Services with CICS

container DFHSAML-AUDNRnnn 160
container DFHSAML-AUTHMETH 160
container DFHSAML-CERTIDN 160
container DFHSAML-CERTSDN 160
container DFHSAML-CERTSNUM 160
container DFHSAML-CONFMETH 160
container DFHSAML-COUNTS 161
container DFHSAML-FLAGS 161
container DFHSAML-ISSUER 161
container DFHSAML-NAMID 161
container DFHSAML-NAMIDF 161
container DFHSAML-NAMIDQ 161
container DFHSAML-NAMIDSP 161
container DFHSAML-NAMIDSPQ 161
container DFHSAML-OUTTOKEN 161
container DFHSAML-PROXYnnn 161
container DFHSAML-RESPONSE 161
container DFHSAML-SAMLID 161
container DFHSAML-SUBJADDR 161
container DFHSAML-SUBJDNS 162
container DFHSAML-TIMES 162
Container DFHWS-CID-DOMAIN 154
Container DFHWS-IDTOKEN 158
Container DFHWS-LOCATION 148
Container DFHWS-MEP 148
Container DFHWS-MTOM-IN 154
Container DFHWS-MTOM-OUT 154
Container DFHWS-RESPWAIT 149
Container DFHWS-RESTOKEN 158
Container DFHWS-SERVICEURI 158
Container DFHWS-STSACTION 158
Container DFHWS-STSFAULT 159
Container DFHWS-STSURI 159
Container DFHWS-TOKENTYPE 159
Container DFHWS-WSDL-CTX 155
Container DFHWS-XOP-IN 156
Container DFHWS-XOP-OUT 156
containers

channel description 212, 254
DFHSAML-AnnnVmmm 159
DFHSAML-ASSQNAME 159
DFHSAML-ATTRAnnn 160
DFHSAML-ATTRFnnn 160
DFHSAML-ATTRNnnn 160
DFHSAML-ATTRSnnn 160
DFHSAML-ATTRYnnn 160
DFHSAML-AUDNRnnn 160
DFHSAML-AUTHMETH 160
DFHSAML-CERTIDN 160
DFHSAML-CERTSDN 160
DFHSAML-CERTSNUM 160
DFHSAML-CONFMETH 160
DFHSAML-COUNTS 161
DFHSAML-FLAGS 161
DFHSAML-ISSUER 161
DFHSAML-NAMID 161
DFHSAML-NAMIDF 161
DFHSAML-NAMIDQ 161
DFHSAML-NAMIDSP 161
DFHSAML-NAMIDSPQ 161
DFHSAML-OUTTOKEN 161
DFHSAML-PROXYnnn 161
DFHSAML-RESPONSE 161
DFHSAML-SAMLID 161

containers (continued)
DFHSAML-SUBJADDR 161
DFHSAML-SUBJDNS 162
DFHSAML-TIMES 162
SAML 159

context container
DFH-EXIT-HEADER1 146
DFHWS-CID-DOMAIN 154
DFHWS-IDTOKEN 158
DFHWS-LOCATION 148
DFHWS-MEP 148
DFHWS-MTOM-IN 154
DFHWS-MTOM-OUT 154
DFHWS-RESPWAIT 149
DFHWS-RESTOKEN 158
DFHWS-SERVICEURI 158
DFHWS-STSACTION 158
DFHWS-STSFAULT 159
DFHWS-STSURI 159
DFHWS-TOKENTYPE 159
DFHWS-WSDL-CTX 155
DFHWS-XOP-IN 156
DFHWS-XOP-OUT 156

context containers 146
control containers 136
Creating a service requester application 215
custom security handler 504
customizing pipeline processing 167

D
default EPR

WSDL 1.1 192
default_http_transport_handler_list

pipeline configuration element 100, 102, 103
default_mq_transport_handler_list

pipeline configuration element 100
default_target

pipeline configuration element 105
default_transport_handler_list

pipeline configuration element 101
DFH-HANDLERPLIST container 147
DFH-SERVICEPLIST container 147
DFHAXIS 524
DFHERROR container 136
DFHFUNCTION container 138
DFHHTTPSTATUS container 142
DFHJS2LS

cataloged procedure 281, 293, 314
DFHLS2SC, CICS XML assistant program 481
DFHMEDIATYPE container 143
dfhmtom_configuration

pipeline configuration element 107
DFHNORESPONSE container 143
DFHREQUEST container 143
DFHRESPONSE container 143
DFHSC2LS

cataloged procedure 398
DFHWS-APPHANDLER container 147, 149
DFHWS-CCSID container 144
DFHWS-DATA container 147
DFHWS-FAULT container 148
DFHWS-PIPELINE container 149
DFHWS-SOAPLEVEL container 149

Index 571

DFHWS-STSREASON container 159
DFHWS-TRANID container 150
DFHWS-URI container 150
DFHWS-USERID container 153
DFHWS-WEBSERVICE container 153
DFHWS2LS

cataloged procedure 233
dfhwsse_configuration

pipeline configuration element 112
diagnosing problems

service provider 511
service requester 512

direct mode 178
dynamic routing

in a service provider 134
in a terminal handler 134

dynamic scripting 517

E
encrypt_body

pipeline configuration element 122
end point reference

default 192
endpoint reference (EPR) 185
envelope, SOAP 18
error 520
Error container

DFHJSON-ERROR 524
DFHJSON-ERRORMSG 525

example 527
EXEC CICS SOAPFAULT CREATE command 257

F
fault, SOAP 18

G
Generating mappings from a JSON schema 382
Generating mappings from language structure 380
global user exits 167
GLUEs 167

H
handler

pipeline configuration element 101
header, SOAP 18

I
install 517
installation 517
invoking the trust client 504

J
Java

call web service 267
Java-based SOAP pipelines 188
JCICS container

JCICS container (continued)
DFHJSON-DATA 523
DFHJSON-ERROR 524
DFHJSON-ERRORMSG 525
DFHJSON-JSON 523
DFHJSON-JVMSERVR 524
DFHJSON-TRANSFRM 523
JSON 523

JSON
converting to language structure 314

JSON assistant 269, 518, 520
JSON samples 560
JSON schema 206, 340
JSON Schema 328, 347, 350, 359, 365
JVM server 51, 267

L
limitations at run time 164

M
mapping language structures to XML 481
mapping to C and C++ 347, 350, 437, 440
mapping to COBOL 328, 340, 415, 429
mapping to PL/I 359, 365, 446, 451
mapping XML schemas to application data 483
maxOccurs

in JSON schema 375
in XML schema 460

MEP 13
message exchange pattern (MEP) 13
message handler

invoking trust client 504
non-terminal 127–129

MIME message
pipeline configuration 106

mime_options
pipeline configuration element 110

minOccurs
in JSON schema 375
in XML schema 460

mtom
pipeline configuration element 106

mtom_options
pipeline configuration element 108

MTOM/XOP
pipeline configuration 106

N
named_transport_entry

pipeline configuration element 87
namespace

pipeline configuration element 91
non-terminal message handler 127–129

O
overriding the URI 168

572 CICS TS for z/OS: Using Web Services with CICS

P
parsing XML 476
persistent message 46
persistent message support 47
pipeline configuration

MTOM/XOP 106
Web Services Security 111

pipeline configuration element
<addressing> 91
<apphandler> 88
<auth_token_type> 120
<authentication> 113
<cics_json_handler_java> 91
<cics_mtom_handler> 106
<cics_soap_1.1_handler_java> 94
<cics_soap_1.1_handler> 92
<cics_soap_1.2_handler_java> 98
<cics_soap_1.2_handler> 96
<default_http_transport_ handler_list> 100
<default_mq_transport_ handler_list> 100
<default_transport_handler_list> 101
<dfhmtom_configuration> 107
<dfhwsse_configuration> 112
<encrypt_body> 122
<handler> 101
<jvmserver> 102
<mime_options> 110
<mtom_options> 108
<mtom> 106
<named_transport_entry> 87
<namespace> 91
<provider_pipeline_json> 88
<provider_pipeline> 88
<repository> 103
<requester_pipeline> 90
<service_handler_list> 104
<service> 103
<sign_body> 121
<sts_authentication> 118
<sts_endpoint> 121
<terminal_handler> 89
<transport_handler_list> 90
<transport> 105
<wsse_handler> 111
<xop_options> 109

pipeline configuration file 77
pipeline definition

service requester 84
pipeline processing

customizing 167
overriding the URI 168

PL/I
mapping to JSON Schema 359, 365
mapping to XML Schema 446, 451

problem determination 517
provider_pipeline

pipeline configuration element 88

Q
querying XML 475

R
repeating content 478
requester_pipeline

element of pipeline definition 84
pipeline configuration element 90

return code 520
run time limitations 164

S
SAML

containers 159
sample 527
schema

channel description 212, 254
security containers

DFHSAML-AnnnVmmm 159
DFHSAML-ASSQNAME 159
DFHSAML-ATTRAnnn 160
DFHSAML-ATTRFnnn 160
DFHSAML-ATTRNnnn 160
DFHSAML-ATTRSnnn 160
DFHSAML-ATTRYnnn 160
DFHSAML-AUDNRnnn 160
DFHSAML-AUTHMETH 160
DFHSAML-CERTIDN 160
DFHSAML-CERTSDN 160
DFHSAML-CERTSNUM 160
DFHSAML-CONFMETH 160
DFHSAML-COUNTS 161
DFHSAML-FLAGS 161
DFHSAML-ISSUER 161
DFHSAML-NAMID 161
DFHSAML-NAMIDF 161
DFHSAML-NAMIDQ 161
DFHSAML-NAMIDSP 161
DFHSAML-NAMIDSPQ 161
DFHSAML-OUTTOKEN 161
DFHSAML-PROXYnnn 161
DFHSAML-RESPONSE 161
DFHSAML-SAMLID 161
DFHSAML-SUBJADDR 161
DFHSAML-SUBJDNS 162
DFHSAML-TIMES 162

security for web services 489
security handler

writing your own 504
Security Token Service

trust client interface 493
service

pipeline configuration element 103
service parameter list

<service_parameter_list> 105
service provider

diagnosing problems 511
service provider application

creating from a data structure 207, 251
using atomic transactions 173

service requester
diagnosing problems 512
pipeline definition 84

service requester application
using atomic transactions 174

Index 573

service_handler_list
pipeline configuration element 104

service_parameter_list
service parameter list 105

sign_body
pipeline configuration element 121

SOAP
body 18
envelope 18
fault 18
header 18
overview 15
overview of SOAP 15

SOAP faults 257
SOAP message

encrypting 495
example 18
signing 494
structure 18

SOAP message path 9
SOAP messages

validating against XML Schema 264
XML Schema

validating SOAP message 264
SOAP pipelines 51
sts_authentication

pipeline configuration element 118
sts_endpoint

pipeline configuration element 121

T
terminal_handler

pipeline configuration element 89
TRANSFORM DATATOXML 484
TRANSFORM XMLTODATA 485
Transforming application data to JSON 383
transforming binary data to XML 484
Transforming JSON to application data 384
Transforming JSON using the linkable interface 269
transforming XML 476
transforming XML to binary data 485
transport

pipeline configuration element 105
transport_handler_list

pipeline configuration element 90
troubleshooting 517, 520
trust client

interface 493
invoking 504

U
URI

for IBM MQ transport 45
user containers 162
utility program

JSON assistant 269
web services assistant 218
XML assistant 389

V
validating SOAP messages 264
Variable arrays 375, 460

W
web service errors 512
Web service errors 511
Web Services Addressing

<wsa:Action> 192
addressing handler 188, 189
default actions 190, 193, 194
default EPR 190, 192
DFHWS-URI 185
DFHWSADH 188, 189
EPR 185
explicit actions 190, 192
MAP 185
parameters 248
provider pipeline configuration 189
requester pipeline configuration 188
requester service 190
specification 184
support 184
WSADDR-EPR-ANY 248
WSDL 1.1 193
WSDL 2.0 194

web services assistant
creating a service provider application 207, 251

web services discovery 42
Web Services Security

pipeline configuration 111
Web Services Security (WSS) 489, 497, 501
workload management

in a service provider 134
in a terminal handler 134

WS-Addressing
<wsa:Action> 192
addressing handler 188, 189
default actions 193, 194
default EPR 192
DFHWS-URI 185
DFHWSADH 188, 189
EPR 185
explicit actions 192
MAP 185
parameters 248
provider pipeline configuration 189
requester pipeline configuration 188
specification 184
WSADDR-EPR-ANY 248
WSDL 1.1 193
WSDL 2.0 194

WS-AT 169
WSDL

and application data structure 12
converting to language structure 233, 281, 293, 398
querying 42
Web Services Addressing 190

WSDL 1.1
default EPR 192

WSDL document
variable-length 465

574 CICS TS for z/OS: Using Web Services with CICS

WSDL document (continued)
white space 465

wsse_handler
pipeline configuration element 111

X
XML

assistant 389
data types 476
parsing 476
querying 475
transform to data 389
transforming 476
xsd:any data types 478

XML assistant
DFHLS2SC 481

XML binding 481
XML schema

variable-length 465
white space 465

XML Schema 415, 437, 440, 446, 451
xop_options

pipeline configuration element 109
xsd:any data types 478

Z
z/OS Connect

configuring 67, 73
overview 34
Security 505

zAAP 51
zosConnectService 64, 68

Index 575

576 CICS TS for z/OS: Using Web Services with CICS

IBM®

	Contents
	About this PDF
	Chapter 1. CICS and web services
	CICS and SOAP web services
	Message handlers and pipelines
	Transport-related handlers
	A service provider pipeline
	A service requester pipeline
	CICS pipelines and SOAP
	The SOAP message path

	SOAP nodes
	SOAP messages and the application data structure
	WSDL and the application data structure
	WSDL and message exchange patterns
	The web service binding file
	SOAP architecture and message format
	SOAP web services architecture
	Web service description
	Service publication

	Structure of a SOAP message
	The SOAP header
	The SOAP body
	The SOAP fault

	Planning to use SOAP web services

	CICS and JSON web services
	Concepts of JSON web services
	Concepts of RESTful JSON web services
	Planning to use JSON web services
	Planning a JSON service provider application
	Planning a JSON service requester application

	CICS and z/OS Connect
	Capabilities of z/OS Connect for CICS

	Chapter 2. Configuring web services in CICS
	Configuring your CICS system for web services
	CICS resources for web services
	Web services discovery

	Configuring CICS to use the IBM MQ transport for SOAP web services
	Defining local queues in a service provider
	Defining local queues in a service requester
	The URI for the IBM MQ transport
	Configuring CICS to support persistent messages
	Persistent message processing

	Interoperability between the web services assistant and WSRR
	Example of how to use SSL with the web services assistant and WSRR

	Creating the web services infrastructure
	The web services infrastructure
	CICS as a service provider
	CICS as a service requester
	Java-based SOAP pipelines
	Data formatting for Web Services
	CICS as a service provider for JSON requests
	CICS as a service provider for JSON requests using z/OS Connect for CICS
	CICS as a service provider for JSON requests using CICS Java pipelines

	Creating the CICS infrastructure for a SOAP service provider
	Creating the CICS infrastructure for a SOAP service requester
	Creating the CICS infrastructure for a JSON service provider
	Creating the CICS infrastructure for a non-Java JSON service provider
	Configuring z/OS Connect for CICS
	Configuring z/OS Connect in CICS
	Configuring z/OS Connect for CICS 1.0
	Configuring z/OS Connect for CICS for a CICS JSON web service
	Migrating from JSON web services to z/OS Connect

	Configuring z/OS Connect Enterprise Edition
	Configuring z/OS Connect for CICS for a CICS JSON web service
	Migrating from JSON web services to z/OS Connect
	Using APIs from z/OS Connect EE
	Configuring z/OS Connect Enterprise Edition V3.0 for z/OS Connect managed services
	Configuring z/OS Connect Enterprise Edition for CICS managed services

	Pipeline configuration files
	Transport handlers
	The pipeline definition for a service provider
	The pipeline definition for a service requester
	Service provider elements
	Application handlers
	The <apphandler_class> pipeline configuration element
	The <named_transport_entry> pipeline configuration element
	The <provider_pipeline> pipeline configuration element
	The <provider_pipeline_json> pipeline configuration element
	The <terminal_handler> pipeline configuration element
	The <transport_handler_list> pipeline configuration element

	Service requester elements
	The <requester_pipeline> configuration element

	Common elements
	The <addressing> pipeline configuration element
	The <cics_json_handler_java> pipeline configuration element
	The <cics_soap_1.1_handler> pipeline configuration element
	The <cics_soap_1.1_handler_java> pipeline configuration element
	The <cics_soap_1.2_handler> pipeline configuration element
	The <cics_soap_1.2_handler_java> pipeline configuration element
	The <default_http_transport_handler_list> pipeline configuration element
	The <default_mq_transport_handler_list> pipeline configuration element
	The <default_transport_handler_list>pipeline configuration element
	The <handler> pipeline configuration element
	The <jvmserver> pipeline configuration element
	The <repository> pipeline configuration element
	The <service> pipeline configuration element
	The <service_handler_list> pipeline configuration element
	The <service_parameter_list> pipeline configuration element
	The <transport> pipeline configuration element

	Pipeline configuration for MTOM/XOP
	The <mtom> pipeline configuration element
	The <cics_mtom_handler> pipeline configuration element
	The <dfhmtom_configuration> pipeline configuration element
	The <mtom_options> pipeline configuration element
	The <xop_options> pipeline configuration element
	The <mime_options> pipeline configuration element

	Pipeline configuration for WS-Security
	The <wsse_handler>pipeline configuration element
	The <dfhwsse_configuration> pipeline configuration element
	The <authentication> pipeline configuration element
	The <sts_authentication> pipeline configuration element
	The <auth_token_type> pipeline configuration element
	The <sts_endpoint> pipeline configuration element
	The <sign_body> pipeline configuration element
	The <encrypt_body> pipeline configuration element

	Application handlers
	Channel-attached application handlers

	Message handlers
	How containers control the pipeline protocols
	Supplying your own message handlers
	Working with messages in a non-terminal message handler
	Passing a message to the next message handler in the pipeline
	Forcing a transition to the response phase of the pipeline
	Suppressing the response
	Handling one way messages in a service requester pipeline

	Working with messages in a terminal message handler
	Handling errors
	The message handler interface

	The SOAP message handlers
	Header processing programs
	The header processing program interface
	Dynamic routing of inbound requests in a terminal handler

	Containers used in the pipeline
	Control containers
	DFHERROR container
	DFHFUNCTION container
	DFHHTTPMETHOD container
	DFHHTTPSTATUS container
	DFHMEDIATYPE container
	DFHNORESPONSE container
	DFHREQUEST container
	DFHRESPONSE container
	DFHWS-CCSID container
	DFHWS-NODEJSAPP container

	How containers control the pipeline protocols
	Context containers
	DFH-EXIT-HEADER1 container
	DFH-HANDLERPLIST container
	DFH-SERVICEPLIST container
	DFHWS-APPHANDLER container
	DFHWS-APPHANCLAS container
	DFHWS-DATA container
	DFHWS-DPLTRANID container
	DFHWS-FAULT container
	DFHWS-LOCATION container
	DFHWS-MEP container
	DFHWS-OPERATION container
	DFHWS-PIPELINE container
	DFHWS-RESPWAIT container
	DFHWS-SOAPLEVEL container
	DFHWS-TRANID container
	DFHWS-URI container
	DFHWS-URI-RESID container
	DFHWS-URI-QUERY container
	DFHWS-URIMAPPATH container
	DFHWS-USERID container
	DFHWS-WEBSERVICE container
	DFHWS-CID-DOMAIN container
	DFHWS-MTOM-IN container
	DFHWS-MTOM-OUT container
	DFHWS-WSDL-CTX container
	DFHWS-XOP-IN container
	DFHWS-XOP-OUT container

	The header processing program containers
	Security containers
	DFHWS-IDTOKEN container
	DFHWS-RESTOKEN container
	DFHWS-SERVICEURI container
	DFHWS-STSACTION container
	DFHWS-STSFAULT container
	DFHWS-STSREASON container
	DFHWS-STSURI container
	DFHWS-TOKENTYPE container

	SAML support containers
	DFHSAML-AnnnVmmm container
	DFHSAML-ASSQNAME container
	DFHSAML-ATTRAnnn container
	DFHSAML-ATTRFnnn container
	DFHSAML-ATTRNnnn container
	DFHSAML-ATTRSnnn container
	DFHSAML-ATTRYnnn container
	DFHSAML-AUDNRnnn container
	DFHSAML-AUTHMETH container
	DFHSAML-CERTIDN container
	DFHSAML-CERTSDN container
	DFHSAML-CERTSNUM container
	DFHSAML-CONFMETH container
	DFHSAML-COUNTS container
	DFHSAML-FLAGS container
	DFHSAML-ISSUER container
	DFHSAML-NAMID container
	DFHSAML-NAMIDF container
	DFHSAML-NAMIDQ container
	DFHSAML-NAMIDSP container
	DFHSAML-NAMIDSPQ container
	DFHSAML-OUTTOKEN container
	DFHSAML-PROXYnnn container
	DFHSAML-RESPONSE container
	DFHSAML-SAMLID container
	DFHSAML-SUBJADDR container
	DFHSAML-SUBJDNS container
	DFHSAML-TIMES container

	Containers generated by CICS
	User containers

	Runtime processing for web services
	How CICS invokes a service provider program deployed with the web services assistant
	Invoking a web service from an application deployed with the web services assistant
	Local optimization for web services
	Runtime limitations for code generated by the web services assistant
	Customizing pipeline processing
	Options for controlling requester pipeline processing
	Controlling requester pipeline processing using a URI

	Support for Web Services transactions
	Registration services
	Configuring CICS for web service transactions
	Configuring a service provider for web service transactions
	Configuring a service requester for web service transactions
	Determining if the SOAP message is part of an atomic transaction
	Checking the progress of an atomic transaction

	Support for MTOM/XOP optimization of binary data
	MTOM/XOP and SOAP
	MTOM messages and binary attachments in CICS
	Inbound MTOM message processing
	Outbound MTOM message processing

	Restrictions when using MTOM/XOP
	Restrictions for Java-based pipelines
	Restrictions for other SOAP pipelines

	Configuring CICS to support MTOM/XOP
	MTOM/XOP support for Java-based pipelines
	MTOM/XOP support for pipelines that do not support Java

	Support for Web Services Addressing
	Web Services Addressing overview
	Configuring a requester pipeline for Web Services Addressing
	Configuring a provider pipeline for Web Services Addressing
	Creating a web service that uses WS-Addressing
	Default end point references
	Explicit actions
	Default actions for WSDL 1.1
	Default actions for WSDL 2.0

	WS-Addressing message exchanges
	Mandatory MAPs for WS-Addressing
	Web Services Addressing security
	Web Services Addressing example
	Web Services Addressing terminology

	Support for SAML

	Chapter 3. Developing web services
	Developing JSON web services
	Creating a JSON service provider application
	Creating a service provider application from a JSON schema
	Creating a service provider application from a data structure
	Creating a RESTful web service provider application
	Design considerations for RESTful web service provider applications
	Application error reporting

	Creating a channel description document
	Customizing generated JSON schemas

	Creating a JSON web service client application
	JSON web service restrictions

	Developing SOAP web services
	The CICS web services assistant
	DFHLS2WS: high-level language to WSDL conversion
	DFHWS2LS: WSDL to high-level language conversion
	Parameters required by DFHWS2LS to support WS-Addressing

	Creating a web service provider using the assistant
	Creating a service provider application from a web service description
	Creating a service provider application from a data structure
	Creating a channel description document
	Customizing generated web service description documents
	Sending a SOAP fault

	Creating a web service requester using the assistant
	Developing web services using tooling
	Creating your own XML-aware web service applications
	Creating an XML-aware service provider application
	Creating an XML-aware service requester application

	Validating SOAP messages

	Using Java with web services
	Deploying a Java provider-mode web service in an Axis2 JVM server
	Creating a web service that generates and parses XML
	Creating a web service that has a COBOL interface
	Deploying a requester-mode JAX-WS web service
	Deploying a Java provider-mode web service in a Liberty JVM server

	Chapter 4. Developing with JSON
	The CICS JSON assistant
	DFHLS2JS: High-level language to JSON schema conversion for request-response services
	DFHJS2LS: JSON schema to high-level language conversion for request-response services
	DFHJS2LS: JSON schema to high-level language conversion for RESTful services
	DFHLS2JS: High-level language to JSON schema conversion for linkable interface
	DFHJS2LS: JSON schema to high-level language conversion for linkable interface
	How the CICS JSON assistant maps between high-level languages and JSON schemas
	Mapping levels for the CICS JSON assistant
	COBOL to JSON schema mapping
	JSON schema to COBOL mapping
	C and C++ to JSON schema mapping
	JSON schema to C and C++ mapping
	PL/I to JSON schema mapping
	JSON schema to PL/I mapping
	Variable arrays of elements in DFHJS2LS
	Support for UTF-16 in application data

	Generating mappings from language structure
	Generating mappings from a JSON schema
	Transforming application data to JSON by linking to DFHJSON
	Transforming application data to JSON by using the TRANSFORM DATATOJSON API command
	Transforming JSON to application data by linking to DFHJSON
	Transforming JSON to application data by using the TRANSFORM JSONTODATA API command
	Handling invalid and uninitialized application-supplied data
	Example 1: toleration of decimal fields

	Chapter 5. Developing with XML
	The CICS XML assistant
	DFHLS2SC: high-level language to XML schema conversion
	DFHSC2LS: XML schema to high-level language conversion
	How the CICS assistants map between high-level languages and XML schemas
	Data mapping limitations when using the CICS assistants
	Mapping levels for the CICS assistants
	COBOL to XML schema mapping
	XML schema to COBOL mapping
	C and C++ to XML schema mapping
	XML schema to C and C++ mapping
	PL/I to XML schema mapping
	XML schema to PL/I mapping
	Variable arrays of elements
	Support for variable-length values and white space
	Support for XML attributes
	Support for <xsd:any> and xsd:anyType
	Support for <xsd:choice>
	Support for <xsd:sequence>
	Support for substitution groups
	Support for abstract elements and abstract data types
	Support for UTF-16 in application data

	Querying XML from an application
	Handling XML by data type
	Handling <xsd:any> data types
	Handling variably repeating content in COBOL
	Generating mappings from language structures
	Generating mappings from an XML schema
	Transforming application data to XML
	Transforming XML to application data
	Validating XML transformations

	Chapter 6. Support for securing web services
	Enabling CICS for WS-Security processing
	Planning to secure SOAP web services
	Options for securing SOAP messages
	Authentication using a Security Token Service
	The Trust client interface

	Signing of SOAP messages
	Signature algorithms
	Example of a signed SOAP message

	CICS support for encrypted SOAP messages
	Encryption algorithms
	Example of an encrypted SOAP message

	Configuring RACF for Web Services Security
	Configuring provider mode web services for identity propagation
	Configuring the pipeline for Web Services Security
	Writing a custom security handler
	Invoking the Trust client from a message handler
	Security for z/OS Connect
	Configuring permissions for Services and APIs

	Chapter 7. Troubleshooting web services
	Troubleshooting SOAP web services
	Diagnosing deployment errors
	Diagnosing service provider runtime errors
	Diagnosing service requester runtime errors
	Diagnosing MTOM/XOP errors
	Diagnosing data conversion errors
	Why data conversion errors occur
	SOAP fault messages for conversion errors

	Troubleshooting JSON web services
	JSON deployment problems
	JSON assistant problems
	Troubleshooting problems with JSON requests
	JSON error responses returned to the client
	JSON assistant return codes

	Appendix A. JSON transformer linkable interface containers
	DFHJSON-JSON container
	DFHJSON-DATA container
	DFHJSON-TRANSFRM container
	DFHJSON-JVMSERVR container
	DFHJSON-ERROR container
	DFHJSON-ERRORMSG container

	Appendix B. Web services samples
	The CICS catalog manager example application
	The base application
	BMS presentation manager
	Data handler
	Dispatch manager
	Order dispatch program
	Stock manager
	Application configuration

	Installing and setting up the base application
	Creating and defining the VSAM data sets
	Defining the 3270 interface
	Completing the installation
	Configuring the example application

	Running the example application with the BMS interface
	Web service support for the example application
	Configuring code page support
	Defining the web service client and wrapper programs
	Installing web service support
	The z/OS UNIX directories
	Creating the pipeline definition
	Creating a TCP/IP service
	Dynamically installing the WEBSERVICE and URIMAP resources
	Creating the WEBSERVICE resources with resource definition online (RDO)
	Creating the URIMAP resources with resource definition online (RDO)
	Completing the installation

	Configuring the web client
	Running the web service enabled application
	Deploying the example application
	Extracting the program interface
	Running the web services assistant program DFHLS2WS
	An example of the generated WSDL document
	Deploying the web services binding file

	Components of the base application
	The catalog manager program
	COMMAREA structures
	Return codes
	INQUIRE CATALOG operation
	INQUIRE SINGLE ITEM operation
	PLACE ORDER operation
	DISPATCH STOCK operation
	NOTIFY STOCK MANAGER operation

	File structures and definitions
	Catalog file
	Configuration file

	JSON samples
	Example HTTP GET request using a query string
	Example HTTP request with a JSON body

	Notices
	Index
	Special Characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

