
CICS Transaction Server for z/OS
Version 5 Release 6

Java Applications in CICS

IBM

Note

Before using this information and the product it supports, read the information in Product Legal
Notices.

This edition applies to the IBM® CICS® Transaction Server for z/OS®, Version 5 Release 6 (product number 5655-
Y305655-BTA) and to all subsequent releases and modifications until otherwise indicated in new editions.
© Copyright International Business Machines Corporation 1974, 2020.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/documentation/notices.dita
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/documentation/notices.dita

Contents

About this PDF...vii

Chapter 1. CICS and Java.. 1
Java support in CICS..1

The OSGi Service Platform... 3
JVM server runtime environment...4
JVM profiles.. 6
Structure of a JVM.. 7
CICS task and thread management... 9
Shared class cache...11

Java applications that comply with OSGi..12
Java applications in a Liberty JVM server... 15
Java web services.. 16
Spring Boot support in CICS.. 19

Chapter 2. Developing Java applications ...21
What you need to know about CICS..21

CICS transactions .. 21
CICS tasks...22
CICS application programs.. 22
CICS services..22
Java runtime environment in CICS ... 24

Setting up your development environment.. 24
Developing applications using the IBM CICS SDK for Java ... 26

Setting up the Target Platform...27
Creating a plug-in project...28
Updating the plug-in project manifest file...29
Creating a Java EE application...30
Adding a project to a CICS bundle project...31
Updating the project build path... 32

Developing applications using Maven or Gradle...33
Manually importing Java libraries... 38
Considerations for a shared JVM...39
Java development using JCICS... 39

The Java class library for CICS (JCICS)... 40
Data encoding...43
JCICS API services and examples... 44
Using JCICS.. 66
JCICS restrictions ..67

Java development using JCICSX...67
JCICSX examples... 71

Guidance for using OSGi.. 73
Developing Java applications to run in a Liberty JVM server .. 74

Java EE and Liberty applications... 74
Migrating Java EE applications to run in Liberty JVM server ..85
Linking to a Java EE or Spring Boot application from a CICS program... 85
Java Transaction API (JTA) ... 97
Java Persistence API (JPA).. 98
Enterprise JavaBeans (EJB)...100
Java Message Service (JMS)..107

 iii

Java Management Extensions API (JMX) ... 108
Java Authorization Contract for Containers (JACC).. 109
Java Authentication Service Provider Interface for Containers (JASPIC)..110
Java EE Connector Architecture (JCA).. 112
Developing microservices with MicroProfile... 124
Spring Boot applications..133
Liberty web server plug-in... 140

Liberty features..140
Accessing data from Java applications ..160
Interacting with structured data from Java..161
Developing Java applications to use the JZOS Toolkit API in an OSGi JVM server...............................162
Accessing IBM MQ from Java programs .. 164

Using IBM MQ classes for JMS in a CICS Liberty JVM server .. 165
Using IBM MQ classes for JMS in an OSGi JVM server .. 168
Using IBM MQ classes for Java in an OSGi JVM server ..172

Connectivity from Java applications in CICS ... 173
JCA local ECI support..173
Packaging existing applications to run in a JVM server..174

Moving applications to a JVM server... 174
Converting an existing Java project to a plug-in project...175
Importing the contents of a JAR file into an OSGi plug-in project... 176
Importing a binary JAR file into an OSGi plug-in project.. 178

Writing Java classes to redirect JVM stdout and stderr output .. 180
The output redirection interface..181
Possible destinations for output..182
Handling output redirection errors and internal errors...182

Chapter 3. Deploying applications to a JVM server..183
Deploying OSGi bundles in a JVM server.. 183
Deploying a Java EE application in a CICS bundle to a Liberty JVM server... 185
Deploying Java EE applications directly to a Liberty JVM server...186
Deploying common libraries to a Liberty JVM server... 187
Invoking a Java application in a JVM server .. 188
Deploying a CICS non-OSGi Java application...189

Chapter 4. Setting up Java support.. 191
Setting the location for the JVM profiles...191
Setting the memory limits for Java... 192
Giving CICS regions access to z/OS UNIX directories and files... 193
Setting up a JVM server...195

Configuring an OSGi JVM server.. 196
Configuring a Liberty JVM server... 199
Configuring a JVM server for Axis2..213
Configuring a JVM server for a CICS Security Token Service..215
JVM profile validation and properties..216

Chapter 5. Updating OSGi bundles in a JVM server..241
Updating OSGi bundles in an OSGi JVM server.. 242

Using CICS bundle PHASEIN to dynamically update an OSGi bundle without updating CICS
resources...242

Phasing in an OSGi bundle with CICS resource changes..243
Replacing OSGi bundles in an OSGi JVM server..244

Updating bundles that contain common libraries.. 244
Updating OSGi middleware bundles... 245

Chapter 6. Removing OSGi bundles from a JVM server.. 247

iv

Chapter 7. Updating Java EE applications in a Liberty JVM server....................... 249

Chapter 8. Managing the thread limit of JVM servers...251

Chapter 9. Security for Java applications... 253
Configuring security for OSGi applications... 253
Configuring security for a Liberty JVM server... 253

The Liberty angel process..256
Authenticating users in a Liberty JVM server..258
Authorizing users to run applications in a Liberty JVM server..260
Authorizing applications by using OAuth 2.0.. 261
Authorization using SAF role mapping.. 264
Configuring security for a Liberty JVM server with the Java EE security API 1.0.............................266
Configuring security for a Liberty JVM server by using an LDAP registry... 270
Configuring SSL (TLS) for a Liberty JVM server using a Java keystore... 274
Configuring SSL (TLS) for a Liberty JVM server using RACF..274
Configuring security for remote JCICSX API development.. 275
Setting up SSL (TLS) client certificate authentication in a Liberty JVM server................................ 277
Using the syncToOSThread function .. 278

Enabling a Java security manager...279

Chapter 10. Improving Java performance...281
Determining performance goals for your Java workload... 281
Analyzing Java applications using IBM Health Center... 282
Garbage collection and heap expansion...283
Improving JVM server performance... 284

Examining processor usage by JVM servers... 284
Calculating storage requirements for JVM servers...285
Tuning JVM server heap and garbage collection.. 288
Tuning the JVM server startup environment...289

Language Environment enclave storage for JVMs..289
Identifying Language Environment storage needs for JVM servers... 291
Modifying the enclave of a JVM server with DFHAXRO...294

Tuning the z/OS shared library region...296

Chapter 11. Troubleshooting Java applications.. 297
Diagnostics for Java...299
Troubleshooting Liberty JVM servers and Java web applications... 301
Controlling the location for JVM output, logs, dumps and trace..308

Using a DD statement to route JVM server output to JES.. 309
Redirecting the JVM stdout and stderr streams... 310
Control of Java-related dump options...312

CICS component tracing for JVM servers... 312
Activating and managing tracing for JVM servers...312
Debugging a Java application..313
The CICS JVM plug-in mechanism..314

Notices..317

Index.. 323

 v

vi

About this PDF

This PDF tells you how to develop and use Java applications and enterprise beans in CICS. It is for
experienced Java application programmers with little experience of CICS, and no need to know more
about CICS than is necessary to develop and run Java programs. It is also for experienced CICS users and
system programmers, who need to know about CICS requirements for Java support.

For details of the terms and notation used, see Conventions and terminology used in the CICS
documentation in IBM Knowledge Center.

Date of this PDF

This PDF was created on May 28th 2020.

© Copyright IBM Corp. 1974, 2020 vii

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/documentation/conventions.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/documentation/conventions.html

viii CICS TS for z/OS: Java Applications in CICS

Chapter 1. CICS and Java
If you are planning to use Java™ in your enterprise, CICS provides the tools and runtime environment to
develop and run Java applications in a Java Virtual Machine (JVM) that is under the control of a CICS
region. Java workloads that run in a JVM server are eligible to run on a zEnterprise® Application Assist
Processor (zAAP).

Java application development

You can create modular and reusable Java applications that comply with the OSGi Service Platform.
These applications are easier to port between CICS and other platforms and OSGi provides granularity
around managing dependencies and versions.

You can use the Java CICS (JCICS) API to write applications that access CICS services, such as reading
from files or temporary storage queues. Java applications can link to other CICS applications, and can
access data in Db2® and IMS. Java applications run in JVM servers.

You can create a web presentation layer for the application by using the web tools supplied with the
Liberty profile. CICS can run JSP pages and web servlets in the same JVM server as the application.

Web services in an Axis2 JVM server

You can create Java web services to work with service providers and service requesters in a
heterogeneous environment. Java web services run in a JVM server and the SOAP processing is
performed by Apache CXF in the Liberty JVM server or the Apache Axis2 web services engine in the JVM
server. You can also use standard Java APIs and annotations to create Java web services and perform
data conversion, handle XML, or work with structured data.

Java connectivity to CICS

You can use JCA (Java Connector Architecture) to connect external Java applications to CICS through
CICS Transaction Gateway. JCA is a related technology for calling CICS applications from an external Java
environment. The CICS applications that are called in this way can be implemented in Java, or in any
other supported language.

Java support in CICS
CICS provides the tools and runtime environment to develop and run Java enterprise applications in a
Java Virtual Machine (JVM) that is under the control of a CICS region. Java applications can interact with
CICS services and applications written in other languages.

Java on z/OS provides comprehensive support for running Java applications. CICS uses the IBM 64-bit
SDK for z/OS, Java Technology Edition, Version 8. Some Liberty features require specific Java versions,
and these are called out in the Liberty Features table.

CICS provides a JVM server runtime environment for Java application development. You can develop,
build, and deploy applications using the IBM CICS SDK for Java, Maven modules, or Gradle modules.

The SDK contains a Java Runtime Environment that supports the full set of Java APIs and a set of
development tools. To help increase general purpose processor productivity and contribute to lowering
the overall cost of computing for z/OS Java technology-based applications, special processors are
available in certain z Systems® hardware. The IBM zEnterprise Application Assist Processor (zAAP) can
provide additional processor capacity to run eligible Java workloads, including Java workloads in CICS.
You can find more information about Java on the z/OS platform and download the 64-bit version of the
SDK at Java Standard Edition Products on z/OS.

© Copyright IBM Corp. 1974, 2020 1

https://developer.ibm.com/javasdk/support/zos/

JVM server

The JVM server is the strategic runtime environment for Java applications in CICS. A JVM server can
handle many concurrent requests from different Java applications in a single JVM. Use of a JVM server
reduces the number of JVMs that are required to run Java applications in a CICS region. To use a JVM
server, Java applications must be threadsafe and must comply with the OSGi or Java EE specifications.
JVM server provides the following benefits:

• Eligible Java workloads can run on specialty engine processors, reducing the cost of transactions.
• Different types of work such as threadsafe Java programs and web services, can run in a JVM server.
• Application life cycle can be managed in the OSGi framework, without restarting the JVM server.
• Java applications that are packaged using OSGi can be ported more easily between CICS and other

platforms.
• Java EE applications can be deployed into the Liberty JVM server.

Note: OSGi applications in CICS can be installed in a Liberty JVM server but cannot use any of the
Liberty services or features as they are not supported.

IBM CICS SDK for Java

CICS Explorer® is a freely available download for Eclipse-based Integrated Development Environments
(IDEs). The IBM CICS SDK for Java that is included with CICS Explorer provides support for developing
and deploying applications that comply with the OSGi Service Platform specification.

The OSGi Service Platform provides a mechanism for developing applications using a component model
and deploying those applications into a framework as OSGi bundles. An OSGi bundle is the unit of
deployment for an application component and contains version control information, dependencies, and
application code. The main benefit of OSGi is that you can create applications from reusable components
that are accessed only though well-defined interfaces called OSGi services. You can also manage the life
cycle and dependencies of Java applications in a granular way.

The IBM CICS SDK for Java allows development of Java applications for any supported release of CICS.
The SDK includes the Java CICS library (JCICS) to access CICS services along with examples to get
started with developing applications for CICS. You can also use the tool to convert existing Java
applications to OSGi.

The IBM CICS SDK for Java EE, Jakarta EE and Liberty is included as an option with CICS Explorer and
supports packaging of Liberty applications into CICS bundles that can be deployed to CICS.

Maven and Gradle modules

As an alternative to the IBM CICS SDK for Java, you can define your projects as Maven or Gradle modules,
express dependencies by referencing the Maven Central artifacts, and then package and deploy your
application in a CICS bundle using the CICS-provided Maven or Gradle plug-in.

Using Maven to build your Java projects provides the following benefits:
Simplified dependency management

Java developers can easily add dependencies on the Java CICS APIs and the CICS annotation
processor with a few lines of configuration.

More flexibility when choosing the development environment
Maven and Gradle support is available in most Java IDEs, such as Eclipse, IntelliJ IDEA, and Visual
Studio Code. Java developers can write application code in a familiar IDE.

Bundle deployment with ease and confidence at development time (Requires the CICS bundle
deployment API)

Java developers can redeploy a bundle using the CICS-provided Maven or Gradle plug-in, which
allows them to see their application changes in a running CICS region within seconds, without the
need for them to have a zFS connection or disable, discard, and reinstall the bundle manually.
Java developers can use the CICS-provided Maven or Gradle plug-in to integrate CICS bundle build
and deployment into their toolchain, saving lots of manual work.

2 CICS TS for z/OS: Java Applications in CICS

https://search.maven.org/search?q=g:com.ibm.cics
https://maven.apache.org/index.html

The API ensures controlled access both to the CSD for BUNDLE definition installation and to the
bundle directory on zFS, so that system programmers can allow Java developers to deploy bundles
without granting additional access.

CICS provides artifacts on Maven Central to facilitate JCICS development using Maven or Gradle, under
the com.ibm.cics group ID:

Resolving compilation dependencies from Maven Central

The following artifacts can be declared as dependencies in Maven or Gradle modules.

The Java CICS class library (JCICS)
Provides EXEC CICS API support for Java applications in CICS TS.

The CICS annotations library and the CICS annotation processor
Enables CICS programs to invoke Java applications in a Liberty JVM server.

A bill of materials (BOM)
For each version of CICS, a BOM is provided to reference the correct version numbers for all
compilation dependencies.

Depending on your organization’s policy, you can either use these artifacts directly from Maven
Central, or have them mirrored to your enterprise repository by using repository managers such as
Artifactory or Nexus. For more instructions, see Developing applications using Maven or Gradle.

Maven and Gradle plug-ins for bundle packaging and deployment

You can use the Maven or Gradle plug-in to build CICS bundles and, when the CICS bundle
deployment API is configured, to deploy CICS bundles.

For Maven users:
cics-bundle-maven-plugin

A Maven plug-in that authors CICS bundles for deploying resources into CICS TS. It supports a
subset of CICS bundle parts, including WAR files (.war), EAR files (.ear), OSGi bundles (.jar), and
more.

cics-bundle-reactor-archetype
A Maven archetype that provides a simple reactor build containing a CICS bundle and a Dynamic
Web Project (WAR). You can use it as a template to base your own Maven builds on.

For Gradle users:
com.ibm.cics.bundle

A Gradle plug-in that builds CICS bundles, includes selected Java-based dependencies and
deploys them to CICS.

For instructions on how to configure the CMCI JVM server for the CICS bundle deployment API, see
Configuring the CMCI JVM server for the CICS bundle deployment API.

For more information about the API, see How it works: CICS bundle deployment API.

The plug-ins are open source and contributions are welcome through the cics-bundle-maven or the
cics-bundle-gradle project.

The OSGi Service Platform
The OSGi Service Platform provides a mechanism for developing applications by using a component
model and deploying those applications into an OSGi framework. The OSGi architecture is separated into
a number of layers that provide benefits to creating and managing Java applications.

The OSGi framework is at the core of the OSGi Service Platform specification. CICS uses the Equinox
implementation of the OSGi framework. The OSGi framework is initialized when a JVM server starts. Using
OSGi for Java applications provides the following major benefits:

• New Java applications, and new versions of Java applications, can be deployed into a live production
system without having to restart the JVM, and without impacting the other Java applications deployed
in that JVM.

Chapter 1. CICS and Java 3

https://search.maven.org/search?q=g:com.ibm.cics
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/cics_license_jars.html
https://search.maven.org/search?q=a:cics-bundle-maven-plugin
https://search.maven.org/search?q=a:cics-bundle-reactor-archetype
https://plugins.gradle.org/plugin/com.ibm.cics.bundle
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/cmci/config-bundle-api.dita
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/cpsm/cics-bundle-api.html
https://github.com/IBM/cics-bundle-maven
https://github.com/IBM/cics-bundle-gradle

• Java applications are more portable, easier to re-engineer, and more adaptable to changing
requirements.

• You can follow the Plain Old Java Object (POJO) programming model, giving you the option of deploying
an application as a set of OSGi bundles with dynamic life cycles.

• You can more easily manage and administer application bundle dependencies and versions.

The OSGi architecture has the following layers:

• Modules layer
• Life cycle layer
• Services layer

Modules layer

The unit of deployment is an OSGi bundle. The modules layer is where the OSGi framework processes the
modular aspects of a bundle. The metadata that enables the OSGi framework to do this processing is
provided in a bundle manifest file.

One key advantage of OSGi is its class loader model, which uses the metadata in the manifest file. There
is no global class path in OSGi. When bundles are installed into the OSGi framework, their metadata is
processed by the module layer and their declared external dependencies are reconciled against the
exports and version information declared by other installed modules. The OSGi framework works out all
the dependencies and calculates the independent required class path for each bundle. This approach
resolves the shortcomings of plain Java class loading by ensuring that the following requirements are
met:

• Each bundle provides visibility only to Java packages that it explicitly exports.
• Each bundle declares its package dependencies explicitly.
• Packages can be exported at specific versions, and imported at specific versions or from a specific

range of versions.
• Multiple versions of a package can be available concurrently to different clients.

Life cycle layer

The bundle life cycle management layer in OSGi enables bundles to be dynamically installed, started,
stopped, and uninstalled, independently from the life cycle of the JVM. The life cycle layer ensures that
bundles are started only if all their dependencies are resolved, reducing the occurrence of
ClassNotFoundException exceptions at run time. If there are unresolved dependencies, the OSGi
framework reports the problem and does not start the bundle.

Each bundle can provide a bundle activator class, which is identified in the bundle manifest, that the
framework calls as part of bundle start and stop events.

Services layer

The services layer in OSGi intrinsically supports a service-oriented architecture through its non-durable
service registry component. Bundles publish services to the service registry, and other bundles can
discover these services from the service registry. These services are the primary means of collaboration
between bundles. An OSGi service is a Plain Old Java Object (POJO), published to the service registry
under one or more Java interface names, with optional metadata stored as custom properties (name/
value pairs). A discovering bundle can look up a service in the service registry by an interface name, and
can potentially filter the services that are being looked up based on the custom properties.

Services are fully dynamic and typically have the same life cycle as the bundle that provides them.

JVM server runtime environment
A JVM server is a runtime environment that can handle many concurrent requests for different Java
applications in a single JVM. You can use a JVM server to run threadsafe Java applications in an OSGi

4 CICS TS for z/OS: Java Applications in CICS

framework, run web applications in Liberty, and process web service requests in the Axis2 web services
engine.

A JVM server is represented by the JVMSERVER resource. When you enable a JVMSERVER resource, CICS
requests storage from MVS™, sets up a Language Environment® enclave, and launches the 64-bit JVM in
the enclave. CICS uses a JVM profile that is specified on the JVMSERVER resource to create the JVM with
the correct options. In this profile, you can specify JVM options and system properties, and add native
libraries; for example, you can add native libraries to access DB2® or IBM MQ from Java applications.

One of the advantages of using JVM servers is that you can run many requests for different applications in
the same JVM. In the following diagram, three applications are calling three Java programs in a CICS
region concurrently using different access methods. Each Java program runs in the same JVM server.

Java applications

To run a Java application in a OSGi JVM server, it must be threadsafe and packaged as one or more OSGi
bundles in a CICS bundle. The JVM server implements an OSGi framework in which you can run OSGi
bundles and services. The OSGi framework registers the services and manages the dependencies and
versions between the bundles. OSGi handles all the class path management in the framework, so you can
add, update, and remove Java applications without stopping and restarting the JVM server.

The unit of deployment for a Java application that is packaged using OSGi is a CICS bundle. The BUNDLE
resource represents the application to CICS and you can use it to manage the lifecycle of the application.
The IBM CICS SDK for Java provides support for deploying OSGi bundles in a CICS bundle project to zFS.

To access the Java application from outside the OSGi framework, use a PROGRAM resource to identify the
JVM server in which the application is running and the name of the OSGi service. The OSGi service points
to the CICS main class.

For more information about using the OSGi framework in a JVM server, see Java applications that comply
with OSGi.

Java web applications

In addition to running Java applications in an OSGi framework, the JVM server also supports running
WebSphere® Application Server Liberty. Liberty is a lightweight application server for running web
applications. Web applications can use JCICS to access resources and services in CICS, and to access
data in DB2. Applications running in Liberty are accessed through the TCP/IP sockets layer in z/OS rather
than through web support in CICS.

Chapter 1. CICS and Java 5

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/jvmserver/dfha4_summary.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/bundle/dfha4_summary.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/program/dfha4_summary.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/java/planning_osgi.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/java/planning_osgi.html

Java web applications can follow the Liberty model for deployment, where developers can deploy web
archive (WAR) files or enterprise application archive (EAR) files directly into the drop-in directory of
Liberty, or use the CICS application model of creating CICS bundles. CICS bundles provide lifecycle
management and can package an application that contains many components, including OSGi bundles
and WAR files, together.

To access OSGi bundles from a web application, you must deploy your application as an Enterprise
Bundle Archive (EBA) file. To develop EBAs, you can use Rational® Application Developer, or you can use a
combination of the Eclipse IDE, the IBM CICS SDK for Java, and WebSphere Application Server Developer
Tools for Eclipse. The latter set of tools is free to use but, apart from the IBM CICS SDK for Java, IBM
support is not available for them.

For more information about using Liberty, see Java applications in a Liberty JVM server .

Web services

You can use a JVM server to run the SOAP processing for web service requester and provider applications.
If a pipeline uses Axis2, a SOAP engine that is based on Java, the SOAP processing occurs in a JVM
server. The advantage of using a JVM server for web services is that you can offload the work to a zAAP
processor.

For more information about using a JVM server for web services, see Java web services.

JVM profiles
JVM profiles are text files that contain Java launcher options and system properties, which determine the
characteristics of JVMs. You can edit JVM profiles using any standard text editor.

When CICS receives a request to run a Java program, the name of the JVM profile is passed to the Java
launcher. The Java program runs in a JVM, which was created using the options in the JVM profile.

6 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/java/liberty_overview.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/java/java_webservices.html

CICS uses JVM profiles that are in the z/OS UNIX System Services directory specified by the
JVMPROFILEDIR system initialization parameter. This directory must have the correct permissions for
CICS to read the JVM profiles.

Sample JVM profiles

CICS includes several sample JVM profiles to help you configure your Java environment. They are
customized during the CICS installation process. These files are used by CICS as defaults or for system
programs.

A JVM profile lists the options that are used by the CICS launcher for Java. Some of the options are
specific to CICS and others are standard for the JVM runtime environment. For example, the JVM profile
controls the initial size of the storage heap and how far it can expand. The profile can also define the
destinations for messages and dump output produced by the JVM. The JVM profile is named in the
JVMPROFILE attribute in a JVMSERVER resource definition.

You can copy the samples and customize them for your own applications. The sample JVM profiles
supplied with CICS are in the directory /usr/lpp/cicsts/cicsts56/JVMProfiles on z/OS UNIX.
Copy the samples from the installation directory to the directory that you specified in the
JVMPROFILEDIR system initialization parameter. The sample JVM profiles in the installation location are
overwritten if you apply an APAR that includes changes to these files. To avoid losing your modifications,
always copy the samples to a different location before adding your own application classes or changing
any options.

The following table summarizes the key characteristics of each sample JVM profile.

Table 1. Sample JVM profiles supplied with CICS

JVM profile Characteristics

DFHJVMAX.jvmprofile The supplied sample profile for an Axis2 JVM server. The JVM profile is specified
on the JVMSERVER resource. CICS uses DFHJVMAX.jvmprofile to initialize the JVM
server.

DFHJVMST.jvmprofile The supplied sample profile for a JVM server for a Security Token Service. The JVM
profile is specified on the JVMSERVER resource. CICS uses DFHJVMST.jvmprofile
to initialize the JVM server.

DFHOSGI.jvmprofile The supplied sample profile for an OSGi JVM server. The JVM profile is specified on
the JVMSERVER resource. CICS uses DFHOSGI.jvmprofile to initialize the JVM
server.

DFHWLP.jvmprofile The supplied sample profile for a Liberty JVM server. The JVM profile is specified
on the JVMSERVER resource. CICS uses DFHWLP.jvmprofile to initialize the Liberty
JVM server.

Structure of a JVM
JVMs that run under CICS use a set of classes and class paths that are defined in JVM profiles and use
64-bit storage. Each JVM runs in a Language Environment enclave that you can tune to make the most
efficient use of MVS storage.

For further information about the IBM 64-bit SDK for z/OS, Java Technology Edition, see z/OS User Guide
for IBM SDK, Java Technology Edition, Version 7 or z/OS User Guide for IBM SDK, Java Technology
Edition, Version 8.

Chapter 1. CICS and Java 7

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/sit/dfha2_jvmprofiledir.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/jvmserver/dfha4_attributes.html
https://www.ibm.com/support/knowledgecenter/SSYKE2_7.0.0/com.ibm.java.zos.70.doc/homepage/plugin-homepage-java.html
https://www.ibm.com/support/knowledgecenter/SSYKE2_7.0.0/com.ibm.java.zos.70.doc/homepage/plugin-homepage-java.html
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/welcome/welcome_javasdk_version.html
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/welcome/welcome_javasdk_version.html

Classes and class paths in JVMs
A JVM running under CICS can use different types of class or library files: primordial classes (system and
standard extension classes), native C DLL library files, and application classes.

The JVM recognizes the purpose of each of these components, determines how to load them, and
determines where to store them. The class paths for a JVM are defined by options in the JVM profile, and
(optionally) are referenced in JVM properties files.

• Primordial classes are the z/OS JVM code that provide the base services in the JVM. Primordial classes
can be categorized as system classes and standard extension classes.

• Native C dynamic link library (DLL) files have the extension .so in z/OS UNIX. Some libraries are
required for the JVM to run, and additional native libraries can be loaded by application code or
services. For example, the additional native libraries might include the DLL files to use the Db2 JDBC
drivers.

• Application classes are the classes for applications that run in the JVM, and include classes that belong
to user-written applications. Java application classes also include those supplied by IBM or by other
vendors, to provide services that access resources, such as the JCICS interfaces classes, JDBC and
JNDI, which are not included in the standard JVM setup for CICS. When Java application classes are
loaded into the class cache the are kept and can be reused by other applications running in the same
JVM.

The class paths on which classes or native libraries can be specified are the library path, and the standard
class path.

• The Library path specifies the native C dynamic link library (DLL) files that are used by the JVM,
including the files required to run the JVM and additional native libraries loaded by application code or
services. Only one copy of each DLL file is loaded, and all the JVMs share it, but each JVM has its own
copy of the static data area for the DLL.

The base library path for the JVM is built automatically using the directories specified by the USSHOME
system initialization parameter and the JAVA_HOME option in the JVM profile. The base library path is
not visible in the JVM profile. It includes all the DLL files required to run the JVM and the native libraries
used by CICS. You can extend the library path using the LIBPATH_SUFFIX option or the
LIBPATH_PREFIX option. LIBPATH_SUFFIX adds items to the end of the library path, after the IBM-
supplied libraries. LIBPATH_PREFIX adds items to the beginning, which are loaded in place of the IBM-
supplied libraries if they have the same name. You might have to do this for problem determination
purposes.

Compile and link with the LP64 option any DLL files that you include on the library path . The DLL files
supplied on the base library path and the DLL files used by services such as the Db2 JDBC drivers are
built with the LP64 option.

• The Standard class path must not be used for OSGi enabled JVM servers because the OSGi framework
automatically determines the class path for an application from information in the OSGi bundle that
contains the application. The standard class path is retained for use by JVM servers that are not
configured for OSGi (for example the Axis2 environment in CICS). For exceptional scenarios, such as
Axis2, in which the standard class path is used, you can use a wildcard suffix on the class path entries
to specify all JAR files in a particular directory.

CICS also builds a base class path automatically for the JVM using the /lib subdirectories of the
directories specified by the USSHOME system initialization parameter. This class path contains the JAR
files supplied by CICS and by the JVM. It is not visible in the JVM profile.

You do not have to include the system classes and standard extension classes (the primordial classes) on
a class path, because they are already included on the boot class path in the JVM.

Storage heap in JVMs
The runtime JVM storage is managed by a single 64-bit storage heap.

The heap for each JVM is allocated from 64-bit storage in the Language Environment enclave for the JVM.
The size of each heap is determined by options in the JVM profile.

8 CICS TS for z/OS: Java Applications in CICS

The single storage heap is known as the heap, or sometimes as the garbage-collected heap. Its initial
storage allocation is set by the -Xms option in a JVM profile, and its maximum size is set by the -Xmx
option.

You can tune the size of a heap to achieve optimum performance for your JVMs. See Tuning JVM server
heap and garbage collection.

Where JVMs are constructed
When a JVM is required, the CICS launcher program for JVMs requests storage from MVS, sets up a
Language Environment enclave, and launches the JVM in the Language Environment enclave. Each JVM is
constructed in its own Language Environment enclave, to ensure isolation between JVMs running in
parallel.

The Language Environment enclave is created using the Language Environment preinitialization module,
CELQPIPI, and the JVM runs as a z/OS UNIX process. The JVM therefore uses MVS Language Environment
services rather than CICS Language Environment services. The storage used for a JVM is MVS 64-bit
storage, obtained by calls to MVS Language Environment services. This storage resides in the CICS
address space, but is not included in the CICS dynamic storage areas (DSAs).

The Language Environment enclave for a JVM can expand, depending on the storage requirements of the
JVM. The Language Environment runtime options used by CICS for a Language Environment enclave
control the initial size of, and incremental additions to, the Language Environment enclave heap storage.

You can tune the runtime options that CICS uses for a Language Environment enclave, so that the amount
of storage CICS requests for the enclave is as close as possible to the amount of storage specified by your
JVM profiles. You can therefore make the most efficient use of MVS storage. For more information about
tuning storage, see Language Environment enclave storage for JVMs.

CICS task and thread management
CICS uses the open transaction environment (OTE) to run JVM server work. Each task runs as a thread in
the JVM server and is attached by using a T8 TCB. A major benefit of using OSGi is that applications in an
OSGi framework can use an ExecutorService to create threads that run extra tasks in CICS
asynchronously. CICS takes special measures to deal with runaway tasks.

When CICS enables a JVM server, the JVM server runs on a Language Environment process thread. This
thread is a child of the TP TCB. Every CICS task is attached to a thread in the JVM by using a T8 TCB. You
can control how many T8 TCBs are available to the JVM server by setting the THREADLIMIT attribute on
the JVMSERVER resource.

The T8 TCBs that are created for the JVM server exist in a virtual pool and cannot be reused by another
JVM server that is running in the same CICS region. The maximum number of T8 TCBs that can exist in a
CICS region across all JVM servers is 2000 and the maximum for a specific JVM server is 256.

Multithreaded applications

Java applications that are running in an OSGi framework can also start CICS tasks asynchronously by
using an ExecutorService OSGi service. The JVM server registers the ExecutorService as an OSGi
service on startup. The ExecutorService automatically uses an implementation that is supplied by
CICS that creates threads that can use the JCICS API to access CICS services. This approach means the
application does not have to use specific JCICS API methods to create threads. However, an application
can also use the CICSExecutorService to run work on a separate CICS capable thread.

When the JVM server is enabled, it starts the CJSL transaction to create a long-running task that is called
the JVM server listener. This listener waits for new thread requests from the application and runs the
CJSA transaction to create CICS tasks that are dispatched on a T8 TCB. This process is shown in the
following diagram:

Chapter 1. CICS and Java 9

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/java/tuning_jvmserver_gc.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/java/tuning_jvmserver_gc.html
http://www.ibm.com/support/knowledgecenter//java/tuning/dfht3rr.html

In advanced scenarios, an application can use the OSGi service to run many threads asynchronously.
These threads all have access to CICS services through JCICS and run under T8 TCBs.

Execution keys for JVM servers

A Java program must use a JVM that is running in the correct execution key. JVM servers run in CICS key.
To use a JVM server, the PROGRAM resource for the Java program must have the EXECKEY attribute set to
CICS. CICS uses a T8 TCB to run the JVM and obtains MVS storage in CICS key.

Runaway tasks

The CICS JVM server infrastructure supports use of the task runaway detection mechanism. Unlike
traditional CICS tasks, a task running Java on a T8 TCB cannot be terminated without consequences to
other workload in the same JVM. Language Environment and the JVM server run in a POSIX-compliant
environment, which mandates that if a TCB/Thread is terminated, the parent process is also terminated.
In turn, all child processes are terminated abruptly - and cause all tasks in the JVM to fail immediately.

A task running in a JVM server that exceeds the modified RUNAWAY interval experiences a more controlled
termination process. This differs from the traditional CICS behavior and you should evaluate whether you
want runaway intervals to apply to your Java tasks, or what value to set.

JVMSERVER controlled runaway processing

When a task running Java experiences a runaway interval condition, the JVMSERVER intercepts the
condition and triggers a DISABLE PHASEOUT. New work is prevented from entering the JVM and existing
work is left to drain. Subsequently, should the task complete its processing, the JVMSERVER re-enables
and becomes available for new requests. In many cases if a task running Java exceeds the runaway
interval value, it is likely to be a bad application, such as a tightly looping application and prevents
successful PHASEOUT/RECYCLE of the JVMSERVER. When an application is detected, the runaway timer
triggers again after another interval and the JVMSERVER DISABLE PHASEOUT is escalated to a
JVMSERVER DISABLE PURGE. Remaining tasks are subject to PURGE processing and in most cases are

10 CICS TS for z/OS: Java Applications in CICS

terminated. If further runaway intervals are exceeded, the JVMSERVER DISABLE escalates to
FORCEPURGE and ultimately KILL - until all running tasks are forcefully terminated. The JVMSERVER
recycles back to the ENABLED state ready for new requests. If the JVMSERVER had to escalate as far as a
DISABLE KILL request, it is prudent to recycle CICS at the earliest opportunity.

Modified runaway interval value

A runaway condition for a task that is running in a JVM server can cause temporary availability problems
for the whole JVM server. For this reason, CICS modifies the runaway interval value that was configured,
by multiplying it by a factor of 10 (up to a maximum value of 45 minutes). This new value is the effective
runaway interval. This higher runaway interval reduces the possibility of a runaway condition being
detected for an inefficient (but otherwise working) application. For example, if the transaction definition
specifies RUNAWAY=SYSTEM, and the ICVR system initialization parameter indicates a default limit of
5000 milliseconds, then the effective runaway interval for that task when it runs in a JVM server is 50000
milliseconds.

Setting the runaway interval value

By default the CJSA transaction definition that is used for Liberty JVM servers and for work in an OSGi
JVM server started from the CICSExecutorService has runaway detection active and set to the system
interval. If you do not want runaway intervals to apply to these tasks, you can run work under your own
transaction definitions with the runaway interval set to 0, or another value of your choice. Liberty
workload is typically controlled by URIMAPs, while the CICSExecutorService provides the
CICSTransactionRunnable and CICSTransactionCallable interfaces to allow customized
transaction definitions to be used.

Shared class cache
Using a Java shared class cache provides a means of improving JVM startup time, reducing overall
storage usage, and optimizing the compilation process. A class cache can be used with all JVM servers
(OSGi, Liberty, and classpath-based).

The IBM® SDK, Java Technology Edition on z/OS® supports a shared class cache. To enable a JVM server
to use the class cache, and set the size, you must use JVM command line parameters. Other operational
requirements, such as monitoring usage of the class cache and destroying class caches, are also
performed using options on the Java command.

For more information about Java class data sharing, see Class data sharing.

A shared class cache can contain the following elements:

• Java classes, including application classes, JVM server infrastructure, and Java bootstrap classes.
• Ahead-of-time (AOT) compiled code.

Enabling the class cache

To enable class cache, use a JVM command line parameter, for example:

-Xshareclasses:name=cics.<group>

Where <group> might be the JVM profile symbol &applid; if you want to share classes within the same
region only. Alternatively, you can select an arbitrary identifier that all JVM servers of a particular type
would connect to, with common classes. The granularity of sharing is user-specific depending on your
needs, the size of the class cache, and the number of shared applications. You can ensure a number of
JVM servers of common functions share a class cache name, and that the size of the class cache is large
enough to accommodate all uses.

Checking the class cache

You can check how full the class cache is by running the z/OS UNIX command JAVA_HOME/bin/java -
Xshareclasses:name=<named_cache>,printStats. This query returns a Cache is nn% full
message. For more information, see Dealing with cache problems.

Chapter 1. CICS and Java 11

https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.vm.80.doc/docs/shrc.html
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.vm.80.doc/docs/shrc_pd_debug_cache.html

Setting or changing the class cache size

1. Modify the JVM profile to define the named cache size -Xscmx256M
2. Shutdown all JVM servers using the cache.
3. Remove the cache using JAVA_HOME/bin/java -
Xshareclasses:name=<named_cache>,destroy

4. Start the JVM servers.

As an alternative to steps 2 and 3 of this procedure, you can restart z/OS.

Java applications that comply with OSGi
CICS includes the Equinox implementation of the OSGi framework to run Java applications that comply
with the OSGi specification in a JVM server.

The OSGi Service Platform specification, as described in “The OSGi Service Platform” on page 3, provides
a framework for running and managing modular and dynamic Java applications. The default configuration
of a JVM server includes the Equinox implementation of an OSGi framework. Java applications that are
deployed on the OSGi framework of a JVM server benefit from the advantages of using OSGi and the
qualities of service that are inherent in running applications in CICS.

You might want to use Java applications for any of the following reasons:

• You want to create Java workloads that can run on a zAAP to reduce the cost of transactions.
• You have experience of writing Java applications that use OSGi on other platforms and want to create

Java applications in CICS.
• You want to provide Java applications as a set of modular components that can be reused and updated

independently, without affecting the availability of applications and the JVM in which they are running.

To effectively develop, deploy, and manage Java applications that comply with OSGi, you must use the
IBM CICS SDK for Java and CICS Explorer:

• The IBM CICS SDK for Java enhances an existing Eclipse Integrated Development Environment (IDE) to
provide the tools and support to help Java developers create and deploy Java applications in CICS. Use
this tool to convert existing Java applications to OSGi bundles.

• CICS Explorer is an Eclipse-based systems management tool that provides system administrators with
views for OSGi bundles, OSGi services, and the JVM servers in which they run. Use this tool to enable
and disable Java applications, check the status of OSGi bundles and services in the framework, and get
some preliminary statistics on the performance of the JVM server.

Any Java developer or systems administrator who wants to work with OSGi requires access to these
freely available tools.

The following examples describe how you can run Java applications that use OSGi in CICS.

Run multiple Java applications in the same JVM server

The JVM server can handle multiple requests in the same JVM concurrently. Therefore, you can call the
same application multiple times concurrently or run more than one application in the same JVM server.

When you decide how to split your applications between JVM servers, you can plan how to use the OSGi
model to componentize your applications into a set of OSGi bundles. You must also decide what
supporting OSGi bundles are required in the framework to provide services to your applications. The OSGi
framework can contain different types of OSGi bundle, as shown in the following diagram:

12 CICS TS for z/OS: Java Applications in CICS

OSGi framework

Bundle A

Library
Bundle C

Application bundles

Middleware bundles

Service Service
CICS
main
class

Bundle A

CICS
main
class

IBM MQ

System bundles
JCICS

Chapter 1. CICS and Java 13

Application bundles
An application bundle is an OSGi bundle that contains application code. OSGi bundles can be self-
contained or have dependencies on other bundles in the framework. These dependencies are
managed by the framework, so that an OSGi bundle that has an unresolved dependency cannot run in
the framework. In order for the application to be accessible outside the framework in CICS, an OSGi
bundle must declare a CICS main class as its OSGi service. If a PROGRAM resource points to the CICS
main class, other applications outside the OSGi framework can access the Java application. If you
have an OSGi bundle that contains common libraries for one or more applications, a Java developer
might decide not to declare a CICS main class. This OSGi bundle is available only to other OSGi
bundles in the framework.
The deployment unit for a Java application is a CICS bundle. A CICS bundle can contain any number of
OSGi bundles and can be deployed on one or more JVM servers. You can add, update, and remove
application bundles independently from managing the JVM server.

Middleware bundles
A middleware bundle is an OSGi bundle that contains classes to implement system services, such as
connecting to WebSphere MQ. Another example might be an OSGi bundle that contains native code
and must be loaded only once in the OSGi framework. A middleware bundle is managed with the
lifecycle of the JVM server, rather than the applications that use its classes. Middleware bundles are
specified in the JVM profile of the JVM server and are loaded by CICS when the JVM server starts up.

System bundles
A system bundle is an OSGi bundle that manages the interaction between CICS and the OSGi
framework to provide key services to the applications. The primary example is the JCICS OSGi
bundles, which provide access to CICS services and resources.

To simplify the management of your Java applications, follow these best practices:

• Deploy tightly coupled OSGi bundles that comprise an application in the same CICS bundle. Tightly
coupled bundles export classes directly from each other without using OSGi services. Deploy these
OSGi bundles together in a CICS bundle to update and manage them together.

• Avoid creating dependencies between applications. Instead, create a common library in a separate
OSGi bundle and manage it in its own CICS bundle. You can update the library separately from the
applications.

• Follow OSGi best practices by using versions when you are creating dependencies between bundles.
Using a range of versions mean that an application can tolerate compatible updates to bundles that it
depends on.

• You should always explicitly declare the packages that your OSGi bundle uses, even if the tooling does
not indicate an error. You can do this by adding or updating the Import-Package bundle header in
your OSGi bundle manifest. Tools such as Eclipse make assumptions about the availability of javax.*
packages that might not be correct for a runtime environment where an explicit Import is necessary.

• Set up a naming convention for the JVM servers and agree the convention between the system
programmers and Java developers.

• Avoid the use of singleton OSGi bundles. Discarding a singleton bundle that other bundles depend on
can cause the dependent bundles to fail.

Run multiple versions of the same Java application in a JVM server

The OSGi framework supports running multiple versions of an OSGi bundle in a framework, so you can
phase in updates to the application without interrupting its availability. While you can install multiple
implementations of the same OSGi service into the framework, the service with the highest version
property is used when that service is called. In CICS the version property is inferred from the underlying
OSGi bundle. So if you want to run multiple versions of the same Java application in a JVM server at the
same time and the different versions of the OSGi bundle have the same CICS main class, you must use an
alias on one definition of the CICS main class. The alias is specified with the declaration of the CICS main
class and registered in the OSGi framework as the OSGi service for a specific version of the application.
Specify the alias on another PROGRAM resource to make that version of the application available.

14 CICS TS for z/OS: Java Applications in CICS

Java applications in a Liberty JVM server
CICS provides a Java EE application server that can run lightweight Java servlets and JavaServer Pages.
Developers can use the rich features of the Liberty in CICS specifications to write Java EE applications for
CICS. The application server runs in a JVM server and is built on WebSphere Application Server Liberty.

Liberty is a lightweight application server for application development that starts quickly and can run on
different platforms. It is optimized for Java developers to quickly develop and test applications, requiring
a minimal amount of effort to configure and start the web server. Java developers package the application
and web server together for simple deployment by using Eclipse tools that are freely available. Web
services support available includes Java API for RESTful Web Services (JAX-RS) and Java API for XML
Web Services (JAX-WS). For more information about Liberty, see Liberty overview.

Liberty is installed with CICS to run as a application server in a JVM server. The Liberty JVM server
supports a subset of the features that are available in Liberty; you can run OSGi applications, Java
servlets, and JSP pages. For more information about what features are supported, see Liberty features.

You might want to use the Liberty JVM server and associated tools for any of the following reasons:

• You want to modernize the presentation interfaces of your CICS application, replacing 3270 screens
with web browser and RESTful clients.

• You want to use Java standards-based development tools to package, co-locate, and manage a web
client with other existing CICS applications.

• You already use Liberty applications in WebSphere Application Server and want to port them to run in
CICS.

• You already use Jetty or similar servlet engines in CICS and want to migrate to an application server
that is based on Liberty.

• You want to use data source definitions to access Db2 databases from Java. See Defining the CICS Db2
connection.

• You want to coordinate updates made to CICS recoverable resources with updates made to a remote
resource manager via a type 4 JDBC database driver, using the Java Transaction API (JTA).

• You want to develop services that follow REpresentational State Transfer (REST) principles using JAX-
RS.

• You want to develop applications through support of a standard, annotation-based model using JAX-
WS.

• You want to develop Java EE applications that send and receive secure messages via JMS.

CICS exception handling in Liberty applications

Liberty applications can use several different transactional APIs, including the JCICS API. Most Liberty
components (except for EJBs) require the explicit use of the Java Transactions API (JTA) to coordinate

Chapter 1. CICS and Java 15

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/cwlp_about.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/liberty_features.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/databases/dfhtk2c.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/databases/dfhtk2c.html

transactions across those APIs. For example, if you need JCICS and remote JDBC activity to rollback
following an Exception issued in application code, you must start a JTA transaction before interacting with
the JDBC connection.

CICS implements an automatic rollback-CICS-transactions-on-Exception policy for simple servlets
hosted in Liberty. This policy ensures that CICS transactions roll back if an Exception is thrown from an
ordinary servlet. This is sufficient to provide basic transactional integration for simple servlets that use
the JCICS API, but the policy does not address some of the more complicated scenarios you might
encounter.

For example, the rollback-CICS-transactions-on-Exception policy doesn't integrate with other non-CICS
resource adapters such as remote JDBC and JCA connections. If you need to coordinate transactions
between CICS and other resource managers, you must use JTA to explicitly coordinate the transactions.
This causes Liberty, CICS, and the remote transaction managers, to jointly negotiate whether to commit
or rollback the transactions.

The rollback-CICS-transactions-on-Exception policy is available for simple servlets, but isn't available to
the entire range of extensibility points available in a Liberty environment. Advanced users who exploit
other plugin, callback, and extension points might not experience automated rollback of the CICS
transaction when throwing an Exception. If you need predictable transactionality for Exceptions thrown
from such components, use JTA to coordinate the transactions; an alternative option is to issue an
explicit JCICS Abend to force CICS to rollback the CICS transaction for application detected errors.

CICS tasks for Liberty applications

In order for a Liberty application to use the JCICS API and other CICS resources, such as a JDBC
DataSource with type 2 connectivity, requests must run under a CICS task. CICS creates a task for an
application request at different times, dependent on the type of request. For HTTP requests, a task is
created before the Liberty application is invoked. For other types of requests, for example message-
driven beans (MDBs), inbound JCA, and remote EJBs, a task is created as required.

If the application does not interact with CICS, no CICS task is created for non-HTTP requests.

CICS performs the following actions when a CICS task is created:

• The CICS transaction security check occurs.
• CICS monitoring begins for the task.
• CICS trace for the task starts.
• The name of the Java thread is changed to include the CICS task number and transaction ID.

For non-HTTP applications, these actions occur the first time a JCICS API or a JDBC DataSource with type
2 connectivity is used. If the application does not interact with CICS, no CICS monitoring or transaction
security occurs.

CICS abend handling for uncaught Java exceptions does not apply unless there is a CICS task. If an
application throws an exception before the JCICS API or a JDBC DataSource with type 2 connectivity is
used, no AJ05 abend occurs.

Java web services
CICS includes the Axis2 technology to run Java web services. Axis2 is an open source web services
engine from the Apache foundation and is provided with CICS to process SOAP messages in a Java
environment.

Axis2 is a Java implementation of a web services SOAP engine that supports a number of the web
services specifications. It also provides a programming model that describes how to create Java
applications that can run in Axis2. Axis2 is provided with CICS to process web services in a Java
environment, and therefore supports offloading eligible Java processing to zAAP processors.

The JVM server supports running Axis2 to process inbound and outbound SOAP messages in a Java SOAP
pipeline, without changing any of your existing web services. However, you can also create a web service
from a Java application and run it in the same JVM server. By deploying the application to the Axis2

16 CICS TS for z/OS: Java Applications in CICS

https://axis.apache.org/axis2/java/core/index.html

repository of the JVM server, both the Java application and SOAP processing are eligible for running on a
zEnterprise Application Assist Processor (zAAP).

You might want to use Java web services for one of the following reasons:

• You have experience of Axis2 web services on other platforms and want to create web services in CICS.
• You want to use standard Java APIs to create Java data bindings that integrate with Axis2.
• You have complicated WSDL documents that are difficult to handle with the CICS web services

assistants.

The following examples describe how you can use Java with web services.

Process SOAP messages in a JVM server

Most SOAP processing that occurs in the web services pipeline is performed by the SOAP handler and
application handler. You can optionally run this SOAP processing in a JVM server and use zAAPs to run the
work. You can continue to use web service applications that are written in COBOL, C, C++, or PL/I.

If you have existing web services, you can update the configuration of your pipelines to use a JVM server.
You do not have to change the web services. If the pipeline uses a SOAP header processing program, it is
best to rewrite the program in Java by using the Axis2 programming model. The header processing
program can share the Java objects with Axis2 without doing any further data conversion. If you have a
header processing program in COBOL for example, the data must be converted from Java into COBOL and
back again, which can slow down the performance of the SOAP processing.

The scenario shown in the following diagram is an example of a COBOL application that is a web service
provider. The request is processed in a pipeline that is configured to support Java. The SOAP handler and
application handler are Java programs that are processed by Axis2 and run in a JVM server. The
application handler converts the data from XML to COBOL and links to the application.

When you are planning your environment, ensure that you use a set of dedicated regions for your JVM
servers. In this example, the COBOL application runs in an application-owning region (AOR) that is
separate from the CICS region where the JVM server runs. You can use workload management to balance
the workloads, for example on the EXEC CICS LINK from the application handler or on the inbound
request from the web service requester.

Write a Java application that uses output from the CICS web services assistant

You can write a Java application that interprets the language structures and uses the data bindings
generated by the CICS web services assistant. The web services assistant can produce language
structures from WSDL or WSDL from language structures. The assistant also produces a web service

Chapter 1. CICS and Java 17

binding that describes how to convert the data between XML and the target language during SOAP
processing.

If you use the assistant to generate a language structure, you can use IBM Record Generator for Java or
the Rational J2C Tools to work with the language structures to generate Java classes. These tools provide
a way for Java developers to interact with other CICS applications. In this example, you can use these
tools to write a Java application that can handle an inbound SOAP message after CICS has converted the
data from XML. For more information, see Interacting with structured data from Java.

The scenario shown in the following diagram is an example of a Java application that is a web service
provider. The SOAP processing is handled by Axis2 in a JVM server. The application handler links to the
Java application, which is packaged and deployed as one or more OSGi bundles and runs in a JVM server.

The advantage of this approach is that because the data bindings were generated by the web services
assistant, the web service is represented in CICS by the WEBSERVICE resource. You can use statistics,
resource management, and other facilities in CICS to manage the web service. The disadvantage is that
the Java developer must work with language structures for a programming language that might be
unfamiliar.

When you are planning your environment for this type of application, use a separate JVM server to run the
application:

• You can more effectively manage and tune the JVM servers for the different workloads.
• You can use workload management on the inbound requests and EXEC CICS LINK to balance

workloads and scale the environment.
• You can take advantage of the OSGi support in CICS to manage the Java application.

Write a Java application that uses Java data bindings

You can write a Java application that generates and parses the XML for SOAP messages. The Java API
provides standard Java libraries to work with XML; for example, you can use the Java Architecture for XML
Binding (JAXB) to create the Java data bindings, and the Java API for XML Web Services (JAX-WS)
libraries to generate and parse the XML. If you use these libraries, the application can run in Axis2 in the
same JVM server as the SOAP pipeline processing.

The scenario shown in the following diagram is an example of a Java application that is a web service
provider and is processed by the Axis2 SOAP engine in a JVM server.

18 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/dfhpj_strdata_java.html

The Java application uses Java data bindings and interacts with the Java SOAP handler, so there is no
application handler. In this example, the web service requester uses HTTP to connect to the CICS region,
but you can also use JMS. The Java application uses JCICS to access CICS services, in this example VSAM
files and a temporary storage queue.

The advantage of this approach is that the Java developer uses familiar technologies to create the
application. Also, the Java developer can work with complex WSDL documents that the web services
assistant cannot process to produce a binding. However, this approach has some limitations:

• You cannot use WS-Security for this type of application, so if you want to use security, use SSL to secure
the connection.

• No context switch for the user ID occurs in the pipeline processing. To change the user ID on the
request, use a URIMAP resource.

• Because you are not using the web service binding from the web services assistant, there is no
WEBSERVICE resource.

• If the application is a web service requester, the pipeline processing is bypassed. So you do not get the
qualities of service that are available in the pipeline.

If you implement workload management in your CICS regions, you must plan how to route this type of
workload. Because the Java application runs in the same JVM server as the SOAP processing, CICS does
not provide a routing opportunity. However, you can implement a distributed program link in the JAX-WS
application to another program if routing is required.

Spring Boot support in CICS
The CICS Liberty JVM server supports Spring Boot applications by using the Spring application
programming model. Spring Boot provides a simpler and faster way of configuring, building, and running
Spring applications. Spring was originally designed to simplify Java Enterprise Edition (EE), by using plain
old Java objects (POJOs) and dependency injection. It now extends and encompasses many aspects of
Java EE development. Spring Boot builds on Spring by adding components to avoid complex
configuration, reduce development time, and offer a simpler startup experience. Most Spring Boot
applications require little Spring configuration. For more information about Spring and Spring Boot, see
Spring Boot overview.

Spring Boot applications can run on CICS Liberty without modification by configuring the springBoot-1.5
or springBoot-2.0features and deploying them as applications of 'type="spring"', as JAR files
with .spring extension in dropins, or as JAR files with .jar extension in dropins/spring. It also is
possible to configure Spring Boot applications for integration with CICS transactions and security, and to
call the CICS API by using JCICS. For more information on integrations, see Spring Boot applications.

Chapter 1. CICS and Java 19

https://spring.io/projects/spring-boot
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/liberty_features.html#features__springboot-1.5
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/liberty_features.html#features__springboot-2.0
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/developing_springboot.dita

When built as a web application archive (WAR), a Spring Boot application can be deployed and managed
by using CICS bundles in the same way as can other CICS Liberty applications. A Spring Boot application
can use the annotation @CICSProgram to define a method as the target of a CICS program. This can be
linked from COBOL or other non-Java CICS programs by using the channel and container interface.

20 CICS TS for z/OS: Java Applications in CICS

Chapter 2. Developing Java applications
You can write Java application programs that use CICS services and run under CICS control. Using the
IBM CICS SDK for Java or other Java IDEs, you can develop applications that use the JCICS class library
to access CICS resources and interact with programs that are written in other languages. You can also
connect to your Java programs by using various protocols and technologies, such as web services or z/OS
Connect Enterprise Edition.

CICS provides a JVM server runtime environment for Java application development. You can develop,
build, and deploy applications using the IBM CICS SDK for Java, Maven modules, or Gradle modules.

The IBM CICS SDK for Java is an Eclipse-based tool that provides support for developing and deploying
Java applications to CICS. It contains the JCICS class libraries to develop applications that access CICS
resources and services; for example, you can access VSAM files, transient data queues, and temporary
storage. You can also use JCICS to link to CICS applications that are written in other languages, such as
COBOL and C. The IBM CICS SDK for Java includes a set of samples to help you get started if you are new
to developing Java applications for CICS.

The artifacts for Java that are provided by CICS on Maven Central enable you to resolve Java
dependencies easily and fast. They provide support for the JCICS library, CICS annotations, and CICS
annotation processor. You can declare the dependencies in a Maven or Gradle module using most Java
IDEs, and develop the applications in the same way as you do for other platforms.

What you need to know about CICS
CICS is a transaction processing subsystem that provides services for a user to run applications by
request. It enables many users to submit requests to run the same applications, using the same files and
programs, at the same time. CICS manages the sharing of resources, integrity of data, and prioritization of
execution, while maintaining fast response times.

A CICS application is a collection of related programs that together perform a business operation, such as
processing a product order or preparing a company payroll. CICS applications run under CICS control,
using CICS services and interfaces to access programs and files.

You run CICS applications by submitting a transaction request. The term transaction has a special
meaning in CICS; See “CICS transactions ” on page 21 for an explanation of the difference between the
CICS usage and the more common industry usage. Execution of the transaction consists of running one or
more application programs that implement the required function.

To develop Java applications for CICS, you have to understand the relationship between CICS programs,
transactions, and tasks. These terms are used throughout CICS documentation and appear in many
programming commands. You also have to understand how CICS handles Java applications in the runtime
environment.

CICS transactions
A transaction is a piece of processing initiated by a single request.

The request is typically made by a user at a terminal. However, it could be made from a web page, from a
remote workstation program, or from an application in another CICS region; or it might be triggered
automatically at a predefined time. The CICS web support concepts and structure and the Overview of
CICS external interfaces describe different ways of running CICS transactions.

A single transaction consists of one or more application programs that, when run, carry out the processing
needed.

However, the term transaction is used in CICS to mean both a single event and all other transactions of
the same type. You describe each transaction type to CICS with a TRANSACTION resource definition. This
definition gives the transaction type a name (the transaction identifier, or TRANSID) and tells CICS several

© Copyright IBM Corp. 1974, 2020 21

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/web/dfhtl11.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/interfaces/dfhtm50.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/interfaces/dfhtm50.html

things about the work to be done, such as which program to invoke first, and what kind of authentication
is required throughout the execution of the transaction.

You run a transaction by submitting its TRANSID to CICS. CICS uses the information recorded in the
TRANSACTION definition to establish the correct execution environment, and starts the first program.

The term transaction is now used extensively in the IT industry to describe a unit of recovery or what CICS
calls a unit of work. This is typically a complete logical operation that is recoverable; it can be committed
or backed out as an entirety as a result of a programmed command or of a system failure. In many cases,
the scope of a CICS transaction is also a single unit of work, but you should be aware of the difference in
meaning when reading CICS documentation.

CICS tasks
A task is single instance of the execution of a transaction.

The word task has a specific meaning in CICS. When CICS receives a request to run a transaction, it starts
a new task that is associated with this one instance of the execution of the transaction type. That is, a
CICS task is one execution of a transaction, with its own private set of data, usually on behalf of a specific
user. You can also consider a task as a thread. Tasks are dispatched by CICS according to their priority
and readiness. When the transaction completes, the task is terminated.

CICS application programs
In Java programs, you can use the Java class library for CICS (JCICS) to access CICS services and link to
application programs that are written in other languages.

CICS application programs can be written in COBOL, C, C++, Java, PL/I, or assembler languages. Most of
the processing logic is expressed in standard language statements, but to request CICS services,
applications use the provided application programming interfaces. COBOL, C, C++, PL/I, or assembler
programs can use the EXEC CICS application programming interface or the C++ class library. Java
programs use the JCICS class library. JCICS is described in “The Java class library for CICS (JCICS)” on
page 40.

CICS services
Java programs can access the following CICS services through the JCICS programming interface: Data
management, communications, unit-of-work, program, and diagnostic services.

CICS services managers usually have the word control in their title; for example, "terminal control" and
"program control". These terms are used extensively in CICS information.

Data management services

CICS provides the following data management services:

• Record-level sharing, with integrity, in accessing Virtual Storage Access Method (VSAM) data sets. CICS
logs activity to support data backout (for transaction or system failure) and forward recovery (for media
failure). CICS file control manages the VSAM data.

CICS also implements two proprietary file structures, and provides commands to manipulate them:
Temporary storage

Temporary storage (TS) is a means of making data readily available to multiple transactions. Data is
kept in queues, which are created as required by programs. Queues can be accessed sequentially or
by item number.

Temporary storage queues can reside in main memory, or can be written to a storage device.

A temporary storage queue can be thought of as a named scratchpad.

Transient data
Transient data (TD) is also available to multiple transactions, and is kept in queues. However, unlike
TS queues, TD queues must be predefined and can be read only sequentially. Each item is removed
from the queue when it is read.

22 CICS TS for z/OS: Java Applications in CICS

Transient data queues are always written to a data set. You can define a transient data queue so
that writing a specific number of items to it acts as a trigger to start a specific transaction. For
example, the triggered transaction might process the queue.

• Access to data in other databases (including Db2), through interfaces with database products.

Communications services

CICS provides commands that give access to a wide range of terminals (displays, printers, and
workstations) by using SNA and TCP/IP protocols. CICS terminal control provides management of SNA
and TCP/IP networks.

You can write programs that use Advanced Program-to-Program Communication (APPC) commands to
start and communicate with other programs in remote systems, using SNA protocols. CICS APPC
implements the peer-to-peer distributed application model.

The following CICS proprietary communications services are provided:
Function shipping

Program requests to access resources (files, queues, and programs) that are defined as existing on
remote CICS regions are automatically routed by CICS to the owning region.

Distributed program link (DPL)
Program-link requests for a program defined as existing on a remote CICS region are automatically
routed to the owning region. CICS provides commands to maintain the integrity of the distributed
application.

Asynchronous processing
CICS provides commands to allow a program to start another transaction in the same, or in a remote,
CICS region and optionally pass data to it. The new transaction is scheduled independently, in a new
task. This function is similar to the fork operation provided by other software products.

Transaction routing
Requests to run transactions that are defined as existing on remote CICS regions are automatically
routed to the owning region. Responses to the user are routed back to the region that received the
request.

Unit of work services

When CICS creates a new task to run a transaction, a new unit of work (UOW) is started automatically.
CICS does not provide a BEGIN command, because one is not required. CICS transactions are always
executed in-transaction.

CICS provides a SYNCPOINT command to commit or roll back recoverable work done. When the sync
point completes, CICS automatically starts another unit of work. If you terminate your program without
issuing a SYNCPOINT command, CICS takes an implicit sync point and attempts to commit the
transaction.

The scope of the commit includes all CICS resources that have been defined as recoverable, and any
other resource managers that have registered an interest through interfaces provided by CICS.

Program services

CICS provides commands that enable a program to link or transfer control to another program, and
return.

Diagnostic services

CICS provides commands that you can use to trace programs and produce dumps.

Chapter 2. Developing Java applications 23

Java runtime environment in CICS
CICS provides the JVM server environment for running threadsafe Java applications. Applications that are
not threadsafe cannot use a JVM server.

The JVM server is a runtime environment that can run tasks in a single JVM. This environment reduces the
amount of virtual storage required for each Java task, and allows CICS to run many tasks concurrently.

CICS tasks run in parallel as threads in the same JVM server process. The JVM is shared by all CICS tasks,
which might be running multiple applications concurrently. All static data and static classes are also
shared. So to use a JVM server in CICS, a Java application must be threadsafe. Each thread runs under a
T8 TCB and can access CICS services by using the JCICS API.

Do not use the System.exit() method in your applications. This method causes both the JVM server
and CICS to shut down, affecting the state and availability of your applications.

Multithreaded applications

You can write application code to start a new thread or call a library that starts a thread. If you want to
create threads in your application, the preferred method is to use a generic ExecutorService from the
OSGi registry. The ExecutorService automatically uses CICSExecutorService to create CICS
threads when the application is running in a JVM server. This approach means the application is easier to
port to other environments and you do not have to use specific JCICS API methods.

However, if you are writing an application that is specific to CICS, you can choose to use the
CICSExecutorService class in the JCICS API to request new threads.

Whichever approach you choose, the newly created threads run as CICS tasks and can access CICS
services. When the JVM server is disabled, CICS waits for all CICS tasks running in the JVM to finish. By
using the ExecutorService or CICSExecutorService class, CICS is aware of the tasks that are
running and you can ensure that your application work completes before the JVM server shuts down.

You should only use JCICS objects in the task that created them. Any attempt to share the objects
between tasks can produce unpredictable results.

For further details on using the CICS ExecutorService refer to “Threads” on page 42.

JVM server startup and shutdown

Because static data is shared by all threads that are running in the JVM server, you can create OSGi
bundle activator classes to initialize static data and leave it in the correct state when the JVM shuts down.
A JVM server runs until disabled by an administrator, for example to change the configuration of the JVM
or to fix a problem. By providing bundle activator classes, you can ensure that the state is correctly set for
your applications. CICS has a timeout that specifies how long to wait for these classes to complete before
continuing to start or stop the JVM server. You cannot directly use JCICS in startup and termination
classes. However, a developer can start a new JCICS-enabled thread from an activator, by using the
CICSExecutorService.runAsCICS() API. Any JCICS commands will run under the authority of the
user id that issued the install command. Therefore it is prudent for an administrator to understand the
resources used in bundle activators before they install them.

Setting up your development environment
You can use the JCICS or JCICSX API to develop Java applications that can access CICS resources. Both
APIs are available in the IBM CICS SDK for Java, Maven Central, or in the USSHOME directory of your CICS
installation.

About this task

Both JCICS and JCICSX APIs provide you with the Java interface to access CICS services. The JCICS API
is the Java equivalent of the EXEC CICS API that is provided for other CICS supported languages, such as
COBOL. The JCICSX API supports a subset of JCICS functionality with new Java API classes that provide
developers with the capabilities of mocking and remote development. The JCICSX API classes can be

24 CICS TS for z/OS: Java Applications in CICS

used together with the JCICS API, but only the commands using JCICSX will benefit from these enhanced
features. See “Java development using JCICSX” on page 67 for more information.

The table shows where the APIs are provided and what tools you can use to consume them.

Table 2. JCICS and JCICSX API locations

Java code authoring
tool

JCICS API JCICSX API classes

CICS Explorer Yes, provided in the preinstalled IBM
CICS SDK for Java, which resolves
dependencies automatically.

Yes, provided in the preinstalled IBM
CICS SDK for Java in IBM CICS
Explorer for Aqua V3.21 (Fix Pack
5.5.0.9) or later, which resolves
dependencies automatically.

Apache Maven and
Gradle (accessing
artifacts from Maven
Central)

Yes. You can declare the dependency
using any Java IDE that supports
Maven or Gradle.

Yes. You can declare the dependency
using any Java IDE that supports
Maven or Gradle.

Any other tool, using the
API jars provided in
USSHOME

Yes. You need to manually import the
dependency.

Yes. You need to manually import the
dependency.

Note: If you want to develop Java EE applications for CICS, you must install the IBM CICS SDK for Java
EE, Jakarta EE and Liberty in CICS Explorer.

CICS Explorer provides the following tools for you to develop, package, and deploy Java applications that
are hosted in the CICS JVM server:

• The IBM CICS SDK for Java provides support for the JCICS API and JCICSX API classes.
• Eclipse and the Eclipse Web Tools Platform provide the tools to develop Java EE applications.
• The IBM CICS SDK for Java EE, Jakarta EE and Liberty provides the Java EE, Jakarta EE, and Liberty

APIs in the form of a Java build path library or OSGi target platform.
• CICS Explorer provides the tools to package, deploy, and manage Java applications within CICS

bundles.
• Explorer for z/OS provides the tools to work with files, data sets, and jobs on z/OS, including viewing

JVM server log files.

The SDKs can resolve dependencies automatically as long as you add the correct library to your build path
or select the correct OSGi target platform.

Consuming dependencies from Maven Central offers more flexibility in the choice of IDE and integrates
easily into popular build toolchains such as Maven or Gradle. The Maven Central artifacts contain the
JCICS, JCICSX, CICS annotation, CICS annotation processor libraries and a bill of material (BOM) for you
to declare dependencies and develop applications for CICS in your IDE of choice. The artifacts can be
obtained directly from Maven Central, or from locally hosted and approved repositories using tools such
as JFrog Artifactory or Sonatype Nexus. You can then use the CICS-provided Maven and Gradle plug-ins
to package and deploy CICS bundles that contain your applications into a CICS region.

Procedure

• To use the SDKs in CICS Explorer:
a) The IBM CICS SDK for Java is preinstalled in CICS Explorer. If you want to develop Java EE

applications, install the IBM CICS SDK for Java EE, Jakarta EE and Liberty into your CICS Explorer
as a plug-in. For instructions, see Downloading and starting CICS Explorer in the CICS Explorer
product documentation and Installing the CICS SDK for Java EE, Jakarta EE and Liberty in the CICS
Explorer product documentation.

1 Aqua refers to IBM Explorer for z/OS Aqua.

Chapter 2. Developing Java applications 25

https://github.com/IBM/cics-bundle-maven
https://github.com/IBM/cics-bundle-gradle
https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.5.0/com.ibm.cics.core.help/topics/concepts/install_planning_client.html
https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.5.0/com.ibm.cics.core.help/topics/concepts/install_planning_client.html
https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.5.0/com.ibm.cics.core.help/topics/tasks/task_install_web_sdk.html
https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.5.0/com.ibm.cics.core.help/topics/tasks/task_install_web_sdk.html

b) Restart your development environment.
c) Add libraries to your build path or select your target platform, for the SDK to revolve dependencies

correctly for your projects. See Step 1 in “Creating a Dynamic Web Project” on page 75, “Creating
an OSGi Application Project ” on page 78, and “Creating an Enterprise Application Project” on
page 81.

• To use Maven or Gradle:
a) Ensure your environment fulfills either of the following prerequisites:

– If you want to use Maven or Gradle with the command line, you must install them on your
machine. See Downloading and Installing Maven and Installing Gradle.

– Your IDE must support Maven or Gradle. Such IDEs include Eclipse, IntelliJ IDEA, and Visual
Studio Code.

b) Create your project using Maven or Gradle and import dependencies based on the API you want to
use, as described in “Developing applications using Maven or Gradle” on page 33. You might need
to add extra Maven or Gradle configuration, depending on your project type. See Step 1 in “Creating
a Dynamic Web Project” on page 75, “Creating an OSGi Application Project ” on page 78, and
“Creating an Enterprise Application Project” on page 81.

• To use the jar files in the USSHOME directory, see “Manually importing Java libraries” on page 38.

Results

Your development environment is ready to develop Java applications for CICS.

What to do next

For JCICS users, you can refer to the JCICS Javadoc information. If you're using the IBM CICS SDK for
Java, you can use the examples that are provided with the IBM CICS SDK for Java to get started. For more
information, see Java samples: Servlet examples.

For JCICSX users, see JCICSX Javadoc for more information.

Developing applications using the IBM CICS SDK for Java
CICS Explorer includes the IBM CICS SDK for Java and optionally the IBM CICS SDK for Java EE, Jakarta
EE and Liberty. These SDKs provide an environment for developing and deploying Java applications to
CICS, including support for OSGi and web projects.

If you want to develop Java applications without using an SDK, see “Developing applications using Maven
or Gradle” on page 33.

You can use the IBM CICS SDK for Java to create new applications, or repackage existing Java
applications to comply with the OSGi specification. OSGi provides a mechanism for developing
applications by using a component model and deploying those applications to a framework as OSGi
bundles. An OSGi bundle is the unit of deployment for an application and contains version information,
dependencies, and application code. The main benefit of OSGi is that you can create applications from
reusable components that are accessed only through well-defined interfaces called Java packages . You
can then use OSGi services to access the Java packages. You can also manage the lifecycle and
dependencies of Java applications in a granular way. For information about developing applications with
OSGi, see OSGi Alliance.

You can use the IBM CICS SDK for Java to develop a Java application to run in any supported release of
CICS. Different releases of CICS support different versions of Java, and the JCICS API is also extended in
later releases to support more features of CICS. For example, the JCICSX API classes are supported as of
CICS TS V5.6. To avoid use of the wrong classes, the IBM CICS SDK for Java provides a feature to set up a
target platform or project libraries. You can define which release of CICS you are developing for, and the
IBM CICS SDK for Java automatically hides the Java classes that you cannot use.

If you are using the Liberty JVM server, the IBM CICS SDK for Java EE, Jakarta EE and Liberty can help
you work with Dynamic Web Projects and OSGi Application Projects. You can create an application that

26 CICS TS for z/OS: Java Applications in CICS

https://maven.apache.org/download.cgi
https://maven.apache.org/install.html
https://docs.gradle.org/current/userguide/installation.html
https://www.eclipse.org/downloads/
https://www.jetbrains.com/idea/download/
https://code.visualstudio.com/download
https://code.visualstudio.com/download
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/index.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-samples/java_samples_servlet.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcicsx-javadoc/index.html
https://www.osgi.org

has a modern web layer and business logic that uses JCICS to access CICS services. If your web
application needs to access code from another OSGi bundle, it must be deployed as an OSGi Application
Project (EBA file). You must either include the other OSGi bundle in the application manifest, or install the
other bundle in the Liberty bundle_repository as a common library. The EBA file must include a web-
enabled OSGi bundle (WAB file) to provide the entry point to the application and to expose it as a URL to a
web browser.

Prerequisite: Before you start developing applications using the IBM CICS SDK for Java, make sure you
have set up the development environment.

Setting up the Target Platform
You must set up and update the target platform of your Eclipse development environment as necessary
before developing or deploying OSGi-based Java applications.

About this task

You can use a template target platform as-is or update it with additional support. The CICS Explorer
Software Development Kit (SDK) only supplies Java classes necessary for the usage of the CICS or web
APIs. To add support for additional interfaces, you must add the OSGi plug-in that contains the third party
Java classes to the Eclipse Target Platform. This procedure makes the exported packages available to all
applications that use this target platform. If you need to add third party Java classes to your target
platform, ensure the JAR file that contains those classes is available as an OSGi plug-in and is copied to
the local workstation.

Procedure

1. In Eclipse, click Window > Preferences.
2. In the Preferences page, expand Plug-in Development and click Target Platform.
3. Create or update a target definition as needed:

• If you need a new target definition, click Add to create a target definition in the wizard.

a) Select Template and select the target platform that matches your CICS version, for example, CICS
TS 5.6 .

b) Click Next in the wizard and then click Finish.

• If your target definition is already in the list, proceed to the following steps.
To update the target definition with additional Java classes:
4. Optional: Select the target definition in the Target Platform dialog and click Edit, which opens the Edit

Target Definition dialog.
5. Optional: Under the Locations tab, click Add. Browse the directory and add the OSGi plug-in that

contains the third party bundle JARs.
6. Optional: After the OSGi plug-in content is added, in the Edit Target Definition dialog, click Finish.
7. After creating or updating the target definition, return to the Preferences page and click Apply and

Close.

Results
You have successfully set up and updated the OSGi environment to include both the third party OSGi
bundles and the CICS OSGi bundles that are required for Java application development.

What to do next
Deploy the Java application into a CICS JVM server, and add the third party JARs as an OSGi middleware
bundle or to the Liberty shared bundle repository. For further details, see Updating OSGi middleware
bundles and Manually tailoring server.xml.

Chapter 2. Developing Java applications 27

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/java/updating_middlewareosgi.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/java/updating_middlewareosgi.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/serverxmljvm.html

Creating a plug-in project
You create your CICS Java application as an Eclipse plug-in project that complies with the OSGi
specification. The OSGi Service Platform provides a mechanism for developing applications by using a
component model and deploying those applications into a framework as OSGi bundles. The plug-in
project is an OSGi bundle, and contains all the files and artifacts needed for the CICS Java application.
The plug-in project is then included in a CICS bundle project before being exported to the host system.

Before you begin
You need to set the Target Platform. For more information, see “Setting up the Target Platform” on page
27.

About this task

This task creates a new plug-in project. You can leave the settings on their default values unless
otherwise stated. When the project is created you must edit the manifest and add the JCICS API
dependencies.

Procedure

1. On the Eclipse menu bar click File > New > Project to open the New Project wizard.
2. Select Plug-in Project from the list provided, then click Next to open the New Plug-in Project wizard.
3. In the Project name field, enter a name for the project, for example
com.ibm.cics.example.accounting. In the Target Platform section, select an OSGi framework
and select standard from the menu. Click Next.
The Content pane is displayed.

4. In the Version field remove the ".qualifier" from the end of the version number.
5. In the Execution Environment field select the Java level that matches the execution environment in

your CICS runtime target platform, for example JavaSE-1.7.
6. Uncheck the Generate an activator check box and click Finish.

The new plug-in project is created in the Package Explorer view.
7. You must now edit the plug-in manifest file and add the JCICS and com.ibm.record API

dependencies. If you do not perform these steps, you will be able to export and install the bundle, but
it will not run.
a) In the Package Explorer view, right-click the project name and click Plug-in Tools > Open

Manifest.
The manifest file opens in the manifest editor.

b) Select the Dependencies tab and in the Imported Packages section, click Add.
The Package Selection dialog opens.

c) Select the package com.ibm.cics.server and click OK.
The package is displayed in the Imported Packages list.

d) Repeat the previous step to install the following package, if it is required for your application:
com.ibm.record

The Java API for legacy programs that use IByteBuffer from the Java Record Framework that
came with VisualAge®. Previously in the dfjcics.jar file.

e) Select File > Save to save the manifest file.

Results

The new plug-in project is created containing the JCICS API dependencies.

28 CICS TS for z/OS: Java Applications in CICS

What to do next

You can now create your CICS Java application. If you are new to developing Java applications for CICS,
you can use the JCICS samples provided with the IBM CICS SDK for Java to help you get started.

Note: After you have developed your application, you must add a CICS-MainClass declaration to the
manifest file and declare the classes used in the application. See the related link for more information.

For more information on plug-in development, see the section Plug-in development environment (PDE)
user guide in the Eclipse Help documentation.

When your Java application is finished, you must deploy it in a CICS bundle to zFS. CICS bundles can
contain one or more plug-ins and are the unit of deployment for your application in CICS.

Updating the plug-in project manifest file
When you develop a JCICS application, or package an existing application in a plug-in project, you must
update the project manifest file and include a CICS-MainClass header.

About this task

The CICS-MainClass header is used to declare the classes that can be called by a LINK, START or RUN
command, or a transaction initial program. Do not use lazy activation policies for OSGi bundles that
declare a CICS main class. CICS activates the OSGi bundles as soon as they are started in the OSGi
framework. You must add the declaration manually to the manifest file.

Procedure

1. If the manifest file is not already open in the editor, right-click the project name in the Package
Explorer view and click Plug-in Tools > Open Manifest.
The manifest file opens in the manifest editor.

2. Select the MANIFEST.MF tab. The content of the file is displayed.
3. Add the following declaration to the manifest file:
CICS-MainClass: packagename.classname where:
packagename

Is the fully qualified Java package name.
classname

Is the name of the class used in the application. If more than one class is used, repeat the
packagename.classname element, separated by a comma.

You can use aliases in the CICS-MainClass header; for example, the declaration CICS-MainClass:
examples.hello.HelloCICSWorld; alias=greeting assigns the alias greeting to the CICS-
MainClass examples.hello.HelloCICSWorld. When you define the program to CICS, you use
the alias name, greeting, instead of the class name. An alias is useful if you have multiple versions of
the same program, each with the same class name. By using aliases you can identify the different
versions.

The following example shows a manifest file with a CICS-MainClass header for the classes
HelloCICSWorld and HelloWorld.

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: Hello Plug-in
Bundle-SymbolicName: com.ibm.cics.server.examples.hello
Bundle-Version 1.0.0
Bundle-RequiredExecutionEnvironment: JavaSE-1.7
Import-Package: com.ibm.cics.core.bundle,
 com.ibm.cics.core.model.builders,
 com.ibm.cics.server;version="[1.300.0,2.0.0)"
CICS-MainClass: examples.hello.HelloCICSWorld,
 examples.hello.HelloWorld

4. When you have added all the class declarations, select File > Save to save the manifest file.

Chapter 2. Developing Java applications 29

Results

You can now add the plug-in project to a CICS bundle and deploy it to zFS. CICS bundles can contain one
or more plug-ins and are the unit of deployment for your application in CICS.

What to do next
Create a CICS bundle project. See Creating a CICS bundle project in the CICS Explorer product
documentation.

Creating a Java EE application
The CICS Explorer and IBM CICS SDK for Java help provides full details on how you can perform each of
the following steps to develop and deploy applications.

Procedure

1. Set up a target platform for your Java development.
.

The target platform ensures that you use only the Java classes that are appropriate for the target
release of CICS in your application development.

2. Create an OSGi Bundle Project or a plug-in project for your Java application development.
a) The default version of the project is 1.0.0.qualifier. In the Version field either remove

the .qualifier from the end of the version number, if you do not wish to use one, or set it to
something meaningful, for example the date/time stamp.

Develop your Java application using best practices; for example, to organize the dependencies
between OSGi bundles, use Import-Package / Export-Package in preference to Require-Bundle.

3. If you are new to developing Java applications for CICS, you can use the examples that are provided
with the IBM CICS SDK for Java to get started.
To use JCICS in a OSGi Java application, you must import the com.ibm.cics.server package.

4. Optional: In Liberty, create a dynamic web application (WAR) or a web-enabled OSGi Bundle Project
(WAB) to develop your application presentation layer.
You can create servlets and JSP pages in a Dynamic Web Project. For a WAR file, you must also add the
Liberty libraries to your build path to give you access to the Liberty API bundles. For further details,
refer to “Setting up your development environment” on page 24.

5. Package your application for deployment:
a) If you are deploying a web-enabled OSGi Bundle Project (WAB), create an OSGi Application Project

(EBA).
b) Create one or more CICS bundle projects to reference your EBA, your EAR file, or your web

application (WAR file).
CICS bundles are the unit of deployment for your application in CICS. Put the web applications that
you want to update and manage together in a CICS bundle project. You must know the name of the
JVMSERVER resource in which you want to deploy the application.

You can also add CICS resources to the CICS bundle project, such as PROGRAM, URIMAP, and
TRANSACTION resources. These resources are dynamically installed and managed with the Java
application.

c) Optional: If you want to deploy the application to a CICS platform, create an application project
that references your CICS bundles.
An application provides a single management point for deploying and managing the application
across a CICSplex in CICS. For more information, see How it works: applications.

d) You should always explicitly declare the packages that your OSGi bundle uses, even if the tooling
does not indicate an error. You can do this by adding or updating the Import-Package bundle
header in your OSGi bundle manifest. Tools such as Eclipse make assumptions about the

30 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.5.0/com.ibm.cics.core.help/topics/tasks/create_bundle.html
https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.5.0/com.ibm.cics.core.help/topics/tasks/create_bundle.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/cloud/cloud-applications.html

availability of javax.* packages that might not be correct for a runtime environment where an
explicit Import is necessary.

6. Deploy your Java application to zFS by exporting the application project or CICS bundle projects.
Alternatively, you can save the projects in a source repository for deployment.

Results
You have successfully developed and exported your application by using the IBM CICS SDK for Java.

What to do next
Install the application in a JVM server. If you do not have authority to create resources in CICS, the
system programmer or administrator can create the application for you. You must tell the system
programmer or administrator where the exported bundle is located and the name of the target JVM
server.

Adding a project to a CICS bundle project
When you create a CICS bundle project a manifest file is created in the META-INF directory. You can edit
the manifest file to include one or more of the following types of projects; Dynamic Web Project,
Enterprise Application Project, OSGi Application Project, or OSGi Bundle Project. The included projects
can be source or pre-built. When you export the CICS bundle project, all included projects are contained
in the CICS bundle on zFS.

Before you begin
This task describes how to add details of a project to a CICS bundle. If you have not created a CICS
bundle project, see Creating a CICS bundle project in the CICS Explorer product documentation.

About this task

You can add details of a project to a CICS bundle by using one of the following wizards; Dynamic Web
Project Include, Enterprise Application Project Include, OSGi Application Project Include, or OSGi
Bundle Project Include. The wizards update the bundle manifest file to include details of the project that
is being added, and creates a resource file with a file extension
of .warbundle , .earbundle , .ebabundle , or .osgibundle that points to the project.

Note: To add OSGi bundles that are not included in an OSGi application project to a CICS bundle project,
you must have a build.properties file that includes the location of the output folder. For example, the
build.properties file might have the following content:

source.. = src/
output.. = bin/
bin.includes = META-INF/

Procedure

1. In the Package Explorer view, right-click the bundle project that you want to update, and click New >
Other to open the New wizard.

2. Expand the CICS Resources folder and click Dynamic Web Project Include, Enterprise Application
Project Include, OSGi Application Project Include, or OSGi Bundle Project Include. Click Next.
The wizard opens and displays the projects of that type in your workspace. The wizard also displays
any built projects (for example, JAR, EAR, EBA, and WAR files) that are contained within the selected
bundle project.

3. Click the project to include in the bundle.
When you click the project, the wizard displays the symbolic name, and the version when applicable.
You can hover over the project to identify whether it is a built project or a source project.

4. Optional: For an OSGi project, specify the version or version range to include:

• Select Use this version to include the specific version of the selected OSGi project, as shown in the
Version field.

Chapter 2. Developing Java applications 31

https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.5.0/com.ibm.cics.core.help/topics/tasks/create_bundle.html

• Select Use version range to include the highest version in a defined version range of the selected
OSGi project when you export that OSGi project. By default, the version range is from the version of
the selected OSGi project to the next highest major version. You can use the fields and the buttons
to specify a different range.

5. In the JVM Server field, enter the name of the JVM server where the application component is going to
run.

6. Optional: The name of the resource file that is created is generated from the project name and is
displayed in the wizard. You can use the Back button to change the file name.

7. Click Finish.

Results
A project resource file is added to the bundle project and the manifest file is updated. You can repeat
these steps to add more projects to the CICS bundle project.

What to do next

You can add resources to the CICS bundle project for your application. For example, you can create a
program to make your Java application available to other applications in CICS.

You can deploy your CICS bundle to a z/OS UNIX file system, as described in Deploying a CICS bundle in
the CICS Explorer product documentation. When the CICS bundle project is exported to zFS, all the files
and artifacts needed for the application are compiled and exported.

Alternatively, you can package your CICS bundle project in a cloud-style application project for
deployment into a CICS platform. By using an application project, you can group together all the CICS
bundle projects that comprise your application and deploy and install them in a single step. For more
information, see Creating a CICS Application Binding project in the CICS Explorer product documentation.

Updating the project build path
How to update the project build path.

About this task
Using a Dynamic Web Project creates a WAR file archive for deployment. This does not use the OSGi
framework in Eclipse so you need to add third party JAR files to the project build path. This example uses
IBM MQ JAR files.

Procedure

1. In Eclipse select the web project and right-click Build Path > Configure Build Path. This will display
the Java Build Path window.

2. Add the CICS and Liberty libraries, click Add Library > Liberty JVM server > Next > Finish.
3. Click Add External JARs and navigate to the directory where the previously downloaded IBM MQ JAR

files are located. Select the following JAR files depending on which imports are used in the
applications:

• com.ibm.mq.jar
• com.ibm.mq.jmql.jar
• com.ibm.mq.headers.jar

Note: Step 3 is optional if you are using IBM MQ only.

Results
The build path of the project now has the correct interfaces for development of a web application using
both CICS and IBM MQ APIs.

32 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.5.0/com.ibm.cics.core.help/topics/tasks/task_deploy_bundle_project.html
https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.5.0/com.ibm.cics.core.help/topics/tasks/task_deploy_bundle_project.html
https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.5.0/com.ibm.cics.core.help/topics/tasks/task_create_application_binding.html

Developing applications using Maven or Gradle
You can use popular build tools such as Apache Maven and Gradle to create your own scripts for building
CICS Java programs instead of using the IBM CICS SDK for Java. Before you start developing Java
applications using Maven or Gradle, make sure you have set up the development environment.

Managing Java dependencies using Maven Central artifacts

CICS provides a set of artifacts on Maven Central, an online repository, for you to resolve Java
dependencies. When writing your own build scripts, you can use Maven or Gradle as your build toolchain,
which support dependency management by retrieving required libraries or components from remote and
local repositories. Using Maven or Gradle also enables you to write application code in most Java IDEs,
and allows better integration with other automation tools, such as Jenkins and Travis CI.

You can also use other build tools to leverage the artifacts on Maven Central. This section focuses on
Maven and Gradle only.

To help you find instructions applicable to your case, the relevant steps for each tool are indicated using
the following logos.

Chapter 2. Developing Java applications 33

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/installingthelibertyprofile.dita
https://search.maven.org/search?q=g:com.ibm.cics
https://maven.apache.org/index.html
https://docs.gradle.org/current/userguide/what_is_gradle.html

Apache Maven Gradle

34 CICS TS for z/OS: Java Applications in CICS

Prerequisites: To use Maven or Gradle, your environment must fulfill either of the following prerequisites:

• If you want to use Maven or Gradle with the command line, you must install them on your machine. See
Downloading and Installing Maven and Installing Gradle.

• Your IDE must support Maven or Gradle. Such IDEs include Eclipse, IntelliJ IDEA, and Visual Studio
Code.

To resolve dependencies using Maven or Gradle, you must create a Maven or Gradle module to include
your application, or convert an existing Java project to a Maven or Gradle module. Most Java IDEs support
this functionality.

Next, declare your dependencies in the Maven module's pom.xml file or the Gradle module's
build.gradle file.

CICS provides the following artifacts on Maven Central:

Table 3. CICS-provided artifacts on Maven Central

Group ID Artifact ID Description

com.ibm.cics com.ibm.cics.ts.bom The bill of materials (BOM) that
defines the versions of all the
artifacts to ensure they are at the
same CICS TS level.

Tip: You're recommended to use
the BOM to control version
numbers of the other
dependencies and omit their
version numbers from their own
specifications.

Learn more ...

com.ibm.cics.server The CICS Java class library
(JCICS), a Java library that
provides the EXEC CICS API
support for Java applications in
CICS TS.

Learn more ...

com.ibm.cics.server.invoc
ation.annotations

CICS annotations, a Java library
that provides the @CICSProgram
annotation to enable CICS
programs to invoke Java
applications in a Liberty JVM
server.

Learn more ...

com.ibm.cics.server.invoc
ation

The CICS annotation processor, a
Java library that is used during
compilation to create metadata
that enables CICS programs to
invoke Java applications in a
Liberty JVM server.

Learn more ...

Declare your dependencies as follows.

Chapter 2. Developing Java applications 35

https://maven.apache.org/download.cgi
https://maven.apache.org/install.html
https://docs.gradle.org/current/userguide/installation.html
https://www.eclipse.org/downloads/
https://www.jetbrains.com/idea/download/
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://search.maven.org/search?q=g:com.ibm.cics

Note: Snippets on Maven Central are auto-generated. Follow the syntax in this topic instead to ensure the
dependencies are correctly declared. However, you can update the artifact coordinates according to the
information on Maven Central.

com.ibm.cics.ts.bom

Maven: pom.xml

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>com.ibm.cics</groupId>
 <artifactId>com.ibm.cics.ts.bom</artifactId>
 <version>5.5-20191121085445-PH14856</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

Here, the version number (<version>) consists of the CICS version, the time stamp when the BOM is
built, and (if relevant) the CICS TS APAR version.

The BOM controls the version of any other CICS dependency in the same module or its child modules
if the version of that dependency is not otherwise specified. Therefore, you only need to specify a
BOM that suits your CICS version in the module or parent module, and that saves the trouble of
specifying the version number for every dependency one by one.

The BOM also indicates that dependencies have a provided scope, meaning that they are to be
provided by the eventual runtime and must not be packaged as part of the module. It not only reduces
the application size, but also avoids hard-to-diagnose problems caused by inconsistent versions being
used or classes being loaded from more than one class loader.

If you do not use the BOM to control other dependencies, you must specify <scope>provided</
scope> when declaring those dependencies in Maven.

Gradle does not use the provided scope specified by the BOM. Instead, the other dependencies in a
Gradle build must use the compileOnly configuration, apart from the annotation processor
com.ibm.cics.server.invocation, which must use the annotationProcessor configuration.

Gradle: build.gradle

repositories {
 mavenCentral()
}

dependencies {
 compileOnly enforcedPlatform('com.ibm.cics:com.ibm.cics.ts.bom:5.5-20191121085445-
PH14856')
}

Here, the BOM is defined for the compileOnly configuration. If you also use the annotation
processor com.ibm.cics.server.invocation, you should also define it for the
annotationProcessor configuration by adding:

Gradle: build.gradle

dependencies {
 annotationProcessor
enforcedPlatform('com.ibm.cics:com.ibm.cics.ts.bom:5.5-20191121085445-PH14856')
}

Note that enforcedPlatform is supported from Gradle 5.0.

For all available versions of the artifact, see com.ibm.cics.ts.bom.

36 CICS TS for z/OS: Java Applications in CICS

https://search.maven.org/search?q=g:com.ibm.cics
https://search.maven.org/search?q=g:com.ibm.cics%20AND%20a:com.ibm.cics.ts.bom&core=gav

com.ibm.cics.server

Maven: pom.xml

<dependencies>
 <dependency>
 <groupId>com.ibm.cics</groupId>
 <artifactId>com.ibm.cics.server</artifactId>
 </dependency>
</dependencies>

Gradle: build.gradle

repositories {
 mavenCentral()
}

dependencies {
 compileOnly 'com.ibm.cics:com.ibm.cics.server'
}

For all available versions of the artifact, see com.ibm.cics.server on Maven Central.

The version number is omitted here as it's inherited from the BOM. If you don't use the BOM, you need
to specify a version number for this dependency.

The version number includes the OSGi Bundle-Version, the CICS release, and (if relevant) the
APAR number.

For a Maven module, the provided scope is also inherited from the BOM. For a Gradle module, you
must specify the compileOnly configuration to indicate that the classes will be provided at run time.

com.ibm.cics.server.invocation.annotations

Maven: pom.xml

<dependencies>
 <dependency>
 <groupId>com.ibm.cics</groupId>
 <artifactId>com.ibm.cics.server.invocation.annotations</artifactId>
 </dependency>
</dependencies>

Gradle: build.gradle

repositories {
 mavenCentral()
}

dependencies {
 compileOnly 'com.ibm.cics:com.ibm.cics.server.invocation.annotations'
}

For all available versions of the artifact, see com.ibm.cics.server.invocation.annotations on Maven
Central.

The version number is omitted here as it's inherited from the BOM. If you don't use the BOM, you need
to specify a version number for this dependency.

The version number includes the CICS release and (if relevant) the CICS TS APAR number.

For a Maven module, the provided scope is also inherited from the BOM. For a Gradle module, you
must specify the compileOnly configuration to indicate that the classes will be provided at run time.

Chapter 2. Developing Java applications 37

https://search.maven.org/search?q=g:com.ibm.cics%20AND%20a:com.ibm.cics.server&core=gav
https://search.maven.org/search?q=g:com.ibm.cics%20AND%20a:com.ibm.cics.server.invocation.annotations&core=gav

com.ibm.cics.server.invocation

You're recommended to use the separate processor path for annotation processors, rather than
adding them directly to the class path. For this reason, the configuration for
com.ibm.cics.server.invocation differs from the other artifacts.

Maven: pom.xml

<build>
 <plugins>
 <plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.8.1</version>
 <configuration>
 <annotationProcessorPaths>
 <annotationProcessorPath>
 <groupId>com.ibm.cics</groupId>
 <artifactId>com.ibm.cics.server.invocation</artifactId>
 <version>5.5-PH14856</version>
 </annotationProcessorPath>
 </annotationProcessorPaths>
 </configuration>
 </plugin>
 </plugins>
</build>

Gradle: build.gradle

repositories {
 mavenCentral()
}

dependencies {
 annotationProcessor 'com.ibm.cics:com.ibm.cics.server.invocation'
}

For all available versions of this artifact, see com.ibm.cics.server.invocation on Maven Central.

Exception:

If you're using Maven, you need to specify the version number of the artifact even if you use the BOM.

The version number includes the CICS release and (if relevant) the CICS TS APAR number.

You can reference the JCICS Javadoc information when writing the code. After finishing the application
code, you can build the applications and integrate them into your build toolchain in the same way as you
build and deploy other Maven or Gradle modules. CICS provides a Maven and a Gradle plug-in for you to
deploy your applications into CICS at development time.

Manually importing Java libraries
When creating your own build scripts, if you want to manually import Java libraries to resolve
dependencies instead of using the IBM CICS SDK for Java or Maven Central artifacts, you can copy
the .jar files out of the CICS installation directories.

Note: Copying .jar files manually makes them prone to get out of sync with updates. You can use the
artifacts on Maven Central to ensure that you always have the correct version of libraries. Otherwise, you
must have a mechanism to refresh the copied .jar files. A full refresh is required when a new release of
CICS is installed.

The .jar files are located within the /lib directory of the CICS USSHOME directory on zFS.

The application development .jar files are:

• com.ibm.cics.jcicsx.jar, which provides support for the JCICSX API.

38 CICS TS for z/OS: Java Applications in CICS

https://search.maven.org/search?q=g:com.ibm.cics%20AND%20a:com.ibm.cics.server.invocation&core=gav
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/index.html
https://github.com/IBM/cics-bundle-maven
https://github.com/IBM/cics-bundle-gradle

• com.ibm.cics.server.invocation.jar, which provides support for the CICS annotation
processor, a Java library that is used to create metadata that enables CICS programs to invoke Java
applications in a Liberty JVM server.

• com.ibm.cics.server.invocation.annotations.jar, which provides support for CICS
annotations, a Java library that provides the @CICSProgram annotation to enable CICS programs to
invoke Java applications in a Liberty JVM server.

• com.ibm.cics.server.jar, which provides support for the JCICS API
• com.ibm.record.jar, containing Java API for legacy programs that use IByteBuffer from the Java

Record Framework that came with VisualAge.

Related information
“Deploying applications to a JVM server” on page 183
To deploy a Java application to a JVM server, the application must be packaged appropriately to install
and run successfully. You can use the IBM CICS SDK for Java, or the CICS-provided Maven or Gradle plug-
in to package and deploy the application.

Considerations for a shared JVM
When you are developing Java applications to run in CICS, be aware that changes to shared resources
within the JVM might be seen by all running applications and threads. Ensure that your applications do
not leave the JVM in an unexpected state that other applications might rely on.

The following points are important considerations to think about:

• If your application resets the default time zone, other applications that use the same JVM server will
use the new default time zone, which might be unexpected.

• Do not use System.exit() in your applications. Using System.exit() causes both the JVM server
and CICS to shut down.

• Ensure that your applications are Threadsafe. Static variables that are shared between applications
need careful review to ensure that there is no cross contamination between applications. A typical
pattern to ensure uniqueness, is to use ThreadLocal variables.

• If objects are referenced by static variables, they are not candidates for garbage collection. In a JVM
server, static state persists for all applications until the JVM server is disabled by the system
programmer.

• It is possible to have multiple connections to Db2 from different applications. Therefore, when a task
finishes with Db2, it is best practice to close the connection even if that connection is later deleted
when the task completes.

• Sockets created using classes from the java.net package are not CICS domain sockets and cannot be
managed or monitored by CICS.

Java development using JCICS
You can write Java applications that use the CICS Java interface to access CICS services. The JCICS API
is the Java equivalent of the EXEC CICS application programming interface (API) that is provided for
other CICS supported languages, such as COBOL.

Using JCICS, you can write Java applications that access CICS resources and integrate with programs
written in other languages. Most of the functions of the EXEC CICS API are supported. You can get the
CICS Java class library (JCICS) from any of the following places:

• The com.ibm.cics:com.ibm.cics.server artifact on Maven Central
• The com.ibm.cics.server.jar file supplied with CICS in the USSHOME directory
• The IBM CICS SDK for Java

Note: The JCICS API doesn't support mocking or remoting. If you need to mock a CICS environment on or
link to a remote CICS program from your workstation, consider using the JCICSX API classes.

Chapter 2. Developing Java applications 39

Consuming JCICS from OSGi environments

The com.ibm.cics.server package (JCICS) will increment in version number when there are API
additions, API removals, or bug-fixes during service or development work. Version increments are not
guaranteed on a release boundary. Versions, and which CICS release they apply to, are described in
Package com.ibm.cics.server.

It is prudent to declare Imports as a compatible range, beginning at your applications minimum
supported level, up to (but not including), the next breaking API change. For example: Import-
Package: com.ibm.cics.server;version="[1.600.0,2.0.0)"

The Java class library for CICS (JCICS)
JCICS supports most of the functions of the EXEC CICS API commands.

The JCICS classes are fully documented in Javadoc that is generated from the class definitions. The
Javadoc is available at JCICS Javadoc information.

JavaBeans
Some of the classes in JCICS can be used as JavaBeans , which means that they can be customized in an
application development tool such as Eclipse, serialized, and manipulated using the JavaBeans API.

The following JavaBeans are available in JCICS:

• Program
• ESDS
• KSDS
• RRDS
• TDQ
• TSQ
• AttachInitiator
• EnterRequest

These beans do not define any events; they consist of properties and methods. They can be instantiated
at run time in one of three ways:

• By calling the new method for the class itself. This method is preferred.
• By calling Beans.instantiate() for the name of the class, with property values set manually.
• By calling Beans.instantiate() of a .ser file, with property values set at design time.

If either of the first two options are chosen, the property values, including the name of the CICS resource,
must be set by invoking the appropriate set methods at run time.

Library structure
Each JCICS library component falls into one of four categories: Interfaces, Classes, Exceptions, or Errors.
Interfaces

Some interfaces are provided to define sets of constants. For example, the TerminalSendBits
interface provides a set of constants that can be used to construct a java.util.BitSet.

Classes
The supplied classes provide most of the JCICS function. The API class is an abstract class that
provides common initialization for every class that corresponds to a part of the CICS API, except for
ABENDs and exceptions. For example, the Task class provides a set of methods and variables that
correspond to a CICS task.

Errors and Exceptions
The Java language defines both exceptions and errors as subclasses of the class Throwable . JCICS
defines CicsError as a subclass of Error. CicsError is the superclass for all the other CICS error
classes, which are used for severe errors.

40 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/package-summary.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/index.html

JCICS defines CicsException as a subclass of Exception. CicsException is the superclass for
all the CICS exception classes (including the CicsConditionException classes such as
InvalidQueueIdException, which represents the CICS QIDERR condition).

See “Error handling and abnormal termination ” on page 49 for further information.

CICS resources
CICS resources, such as programs or temporary storage queues, are represented by instances of the
appropriate Java class, identified by the values of various properties such as the name of the resource.

You define CICS resources by using either the CICS Explorer, CEDA transactions, or the CICSPlex® SM
WUI. To use implicit remote access, you define a resource locally that points to a remote resource.

For more information on defining CICS resources, see CICS resources.

Arguments for passing data
You can pass data between programs using channels and containers, or by using a communication area
(COMMAREA).

If you use a COMMAREA, you are limited to passing 32 KB at a time. If you use a channel and containers,
you can pass more than 32 KB between programs. The COMMAREA or channel, and any other
parameters, are passed as arguments to the appropriate methods.

Many of the methods are overloaded; that is, they have different versions that take either a different
number of arguments or arguments of a different type. There might be one method that has no
arguments, or the minimum mandatory arguments, and another that has all of the arguments. For
example, the Program class includes the following different link() methods:

link()
This method does a simple LINK without using a COMMAREA to pass data, nor any other options.

link(com.ibm.cics.server.CommAreaHolder)
This method does a simple LINK, using a COMMAREA to pass data but without any other options.

link(com.ibm.cics.server.CommAreaHolder, int)
This method does a distributed LINK, using a COMMAREA to pass data and a DATALENGTH value to
specify the length of the data within the COMMAREA.

link(com.ibm.cics.server.Channel)
This method does a LINK using a channel to pass data in one or more containers.

Serializable classes
A list of the JCICS serializable classes.

• AddressResource
• AttachInitiator
• CommAreaHolder
• EnterRequest
• ESDS
• File
• KeyedFile
• KSDS
• NameResource
• Program
• RemotableResource
• Resource
• RRDS
• StartRequest
• SynchronizationResource

Chapter 2. Developing Java applications 41

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/system/dfha421.html

• SyncLevel
• TDQ
• TSQ
• TSQType

Task.out and Task.err
For each Java-related CICS task, CICS automatically creates two Java PrintWriters classes that can
be used as standard out and standard error streams. The standard out and standard error streams are
public fields in the Task class called out and err.

If a CICS task is being driven from a terminal (the terminal is called a principal facility in this case), CICS
maps the standard out and standard error streams to the task's terminal.

If the task does not have a terminal as its principal facility, the standard out and standard error streams
are sent to System.out and System.err.

Threads
In a JVM server environment, an application that is running in an OSGi framework can use an
ExecutorService to create threads that run on CICS tasks asynchronously.

CICS provides an implementation of the Java ExecutorService interface. This implementation creates
threads that can use the JCICS API to access CICS services. The JVM server registers the CICS
ExecutorService as an OSGi service on startup. Use this service instead of the Java Thread class to
create tasks that can use JCICS.

The ExecutorService that is provided by CICS is registered as high priority in the OSGi framework, so
that it can be used by applications to create threads. Typically, an application uses the highest priority
ExecutorService, unless it filters services to use a specific implementation.

If you want to create threads in your application, the preferred method is to use a generic
ExecutorService from the OSGi registry. The OSGi registry automatically uses the CICS
ExecutorService to create CICS threads when the application is running in a JVM server. This
approach means that the application is decoupled from the implementation, so you do not have to use the
JCICS API method to create threads.

However, if you are writing an application that is specific to CICS, you can choose to use a
CICSExecutorService class in the JCICS API to request new threads.

CICSExecutorService

This class implements the java.util.concurrent.ExecutorService interface. The
CICSExecutorService class provides a static method that is called runAsCICS() that you can use to
send a Runnable or Callable Java object for execution on a new JCICS enabled thread. The
runAsCICS() method is a utility method which performs the OSGi registry look-up to obtain an instance
of a CICSExecutorService for the application.

For work that is spawned from a parent CICS thread, a new CICS task is created, and runs under the task
user ID and transaction ID inherited from the parent. If the work is spawned from a non- CICS
thread, the default CJSA transaction ID and default CICS user ID are used. If you want to guarantee
the new task runs under a transaction ID of your choice, then your Runnable or Callable object
should implement the CICSTransactionRunnable or CICSTransactionRunnable interface.

CICSExecutorService.runAsCICS(Runnable runnable)

CICSExecutorService.runAsCICS(Callable callable)

Restrictions

For applications that are not running in an OSGi framework, for example an Axis2 Java program, you can
access JCICS only on the initial application thread as the ExecutorService is not available.

42 CICS TS for z/OS: Java Applications in CICS

Additionally, you must ensure that all threads other than the initial thread finish before you take any of
the following actions:

• link methods in class com.ibm.cics.server.Program
• setNextTransaction(String) method in class
com.ibm.cics.server.TerminalPrincipalFacility

• setNextCOMMAREA(byte[]) method in class
com.ibm.cics.server.TerminalPrincipalFacility

• commit() method in class com.ibm.cics.server.Task
• rollback() method in class com.ibm.cics.server.Task
• Returning an AbendException exception from class com.ibm.cics.server

Data encoding
The JVM can use a different code page from CICS for character encoding; CICS must always use an
EBCDIC code page, but the JVM can use another encoding such as ASCII. When you are developing an
application that uses the JCICS API, you must ensure that you use the correct encoding.

The JCICS API uses the code page that is specified in the CICS region and not the underlying JVM. So if
the JVM uses a different file encoding, your application must handle different code pages. To help you
determine which code page CICS is using, CICS provides several Java properties:

• The com.ibm.cics.jvmserver.supplied.ccsid property returns the code page that is specified
for the CICS region. By default, the JCICS API uses this code page for its character encoding. However,
this value can be overridden in the JVM server configuration.

• The com.ibm.cics.jvmserver.override.ccsid property returns the value of an override in the
JVM profile. The value is a code page that the JCICS API uses for its character encoding, instead of the
code page that is used by the CICS region.

• The com.ibm.cics.jvmserver.local.ccsid property returns the code page that the JCICS API is
using for character encoding in the JVM server.

You cannot set any of these properties in your Java application to change the encoding for JCICS. To
change the code page, you must ask a system administrator to update the JVM profile to add the JVM
system property -Dcom.ibm.cics.jvmserver.override.ccsid.

Encoding example

Any JCICS methods that accept java.lang.String parameters as input are automatically encoded
with the correct code page before the data passes to CICS . Similarly, any java.lang.String values
that are returned from the JCICS API are encoded in the correct code page. The JCICS API provides
helper methods in most classes; these helper methods work with strings and data to determine and set
the code page on behalf of the application.

If your application uses the String.getBytes() or new String(byte[] bytes) methods, the
application must ensure it uses the correct encoding. If you want to use these methods in your
application, you can use the Java property to encode the data correctly:

String.getBytes(System.getProperty("com.ibm.cics.jvmserver.local.ccsid"))
String(bytes, System.getProperty("com.ibm.cics.jvmserver.local.ccsid"))

The following example shows how to use the JCICS encoding when the application reads a field from a
COMMAREA:

public static void main(CommAreaHolder ca)
{
 //Convert first 8 bytes of ca into a String using JCICS encoding
 String str=new String(ca.getValue(), 0, 8, System.getProperty("com.ibm.cics.jvmserver.local.ccsid"));
}

Chapter 2. Developing Java applications 43

JCICS API services and examples
CICS supports a range of APIs and services for Java applications. Many of the services available to non-
Java programs through the EXEC CICS API are available to Java programs through the JCICS API along
with the standard Java SE APIs provided by the Java SDK.

These topics provide details on the JCICS services and the integration with Java exception handling.
Other JEE APIs are available in the Liberty JVM server; for further details, see “ Developing Java
applications to run in a Liberty JVM server ” on page 74.

CICS exception handling in Java programs
CICS ABENDs and exceptions are integrated into the Java exception-handling architecture to handle
problems that occur in CICS.

All regular CICS ABENDs are mapped to a single Java exception, AbendException, whereas each CICS
condition is mapped to a separate Java exception. This leads to an ABEND-handling model in Java that is
similar to the other programming languages; a single handler is given control for every ABEND, and the
handler must query the particular ABEND and then decide what to do.

If the exception representing a condition is caught by CICS itself, it is turned into an ABEND.

Java exception-handling is fully integrated with the ABEND and condition-handling in other languages, so
that ABENDs can propagate between Java and non-Java programs, in the standard language-
independent way. A condition is mapped to an ABEND before it leaves the program that caused or
detected the condition.

However, there are several differences to the abend-handling model for other programming languages,
resulting from the nature of the Java exception-handling architecture and the implementation of some of
the technology underlying the Java API:

• ABENDs that cannot be handled in other programming languages can be caught in Java programs.
These ABENDs typically occur during sync point processing. To avoid these ABENDs interrupting Java
applications, they are mapped to an extension of an unchecked exception; therefore they do not have to
be declared or caught.

• Several internal CICS events, such as program termination, are also mapped to Java exceptions and can
therefore be caught by a Java application. Again, to avoid interrupting the normal case, these events are
mapped to extensions of an unchecked exception and do not have to be caught or declared.

Three class hierarchies of exceptions relate to CICS :

1. CicsError extends java.lang.Error and is the base for AbendError and UnknownCicsError.
2. CicsRuntimeException extends java.lang.RuntimeException and is in turn extended by:
AbendCancelException

Represents a CICS ABEND CANCEL.
AbendException

Represents a normal CICS ABEND.
EndOfProgramException

Indicates that a linked-to program has terminated normally.
3. CicsException extends java.lang.Exception and has the subclass:
CicsConditionException

The base class for all CICS conditions.

CICS error-handling commands
The way that the EXEC CICS error-handling commands are supported in Java is described.

CICS condition handling is integrated into the Java exception-handling architecture, as described in
“ CICS exception handling in Java programs ” on page 44. The equivalent EXEC CICS command is
supported in Java in the following ways:

44 CICS TS for z/OS: Java Applications in CICS

HANDLE ABEND
To handle an ABEND generated by a program in any CICS supported language, use a Java try-catch
statement, with AbendException appearing in a catch clause.

HANDLE CONDITION
To handle a specific condition, such as PGMIDERR, use a catch clause that names the appropriate
exception; in this case InvalidProgramException. Alternatively, use a catch clause that names
CicsConditionException , if all CICS conditions are to be caught.

IGNORE CONDITION
This command is not relevant in Java applications.

POP HANDLE and PUSH HANDLE
These commands are not relevant in Java applications. The Java exceptions that are used to
represent CICS ABENDs and conditions are caught by any catch block in scope.

CICS conditions
The condition-handling model in Java is different from other CICS programming languages.

In COBOL, you can define an exception-handling label for each condition. If that condition occurs during
the processing of a CICS command, control transfers to the label.

In C and C++, you cannot define an exception-handling label for a condition; to detect a condition, the
RESP field in the EIB must be checked after each CICS command.

In Java , any condition returned by a CICS command is mapped into a Java exception. You can include all
CICS commands in a try-catch block and do specific processing for each condition, or have a single null
catch clause if the particular exception is not relevant. Alternatively, you can let the condition propagate,
to be handled by a catch clause at a larger scope.

CICS exception handling in Java Web applications
CICS ABENDs and exceptions are integrated into the Java exception-handling architecture for the Liberty
Web container to handle problems that occur in CICS applications. Any Java exception that is not handled
by a Web application will be caught by the Web container and drive the servlet exception handling
process. As part of this processing any uncommitted CICS units of work will be rolled back by CICS.

All Java Web applications that extend the HttpServlet interface must handle all checked exceptions apart
from IOException or ServletException , as defined on the HttpServlet interface. Checked
exceptions included all sub-classes of com.ibm.cics.server.CicsConditionException that
represents unhandled CICS conditions. Therefore any exception handling code that catches CICS
conditions must identify any error conditions which require a unit-of-work to be rolled back and either
explicitly call syncpoint rollback using the rollback() method on the Task object, as illustrated in the
example, or throw an AbendException.

try
{
 TSQ tsqQ = new TSQ();
 tsqQ.setName("tsq1");
 tsqQ.writeString("input data");

} catch (IOErrorException e) {
 // Log error
 try
 {
 Task.getTask().rollback();

 } catch (InvalidRequestException e1) {
 throw new RuntimeException(e1);
 }
 }
}

Unchecked Java exceptions, which are sub-classes of java.lang.RuntimeException, can be thrown by any
Java application including Web applications, and include com.ibm.cics.server.AbendException
and com.ibm.cics.server.AbendCancelException. Therefore any Web application that throws an
AbendException or does not handle a transaction abend will drive the servlet exception handling
process and associated unit-of-work rollback processing.

Chapter 2. Developing Java applications 45

Web applications that commit units-of-work using the Java Transaction API (JTA) will be committed
according to the control of the Liberty Transaction Manager. For further details see “Java Transaction API
(JTA) ” on page 97.

JCICS exception mapping
In Java, a condition returned by a CICS command is mapped into a Java exception.

Table 4. Java exception mapping

CICS condition Java Exception

ALLOCERR AllocationErrorException

CBIDERR InvalidControlBlockIdException

CCSIDERR CCSIDErrorException

CHANNELERR ChannelErrorException

CONTAINERERR ContainerErrorException

DISABLED FileDisabledException

ResourceDisabledException

DSIDERR FileNotFoundException

DSSTAT DestinationStatusChangeException

DUPKEY DuplicateKeyException

DUPREC DuplicateRecordException

END EndException

ENDDATA EndOfDataException

ENDFILE EndOfFileException

ENDINPT EndOfInputIndicatorException

ENQBUSY ResourceUnavailableException

ENVDEFERR InvalidRetrieveOptionException

EOC EndOfChainIndicatorException

EODS EndOfDataSetIndicatorException

EOF EndOfFileIndicatorException

ERROR ErrorException

EXPIRED TimeExpiredException

FILENOTFOUND FileNotFoundException

FUNCERR FunctionErrorException

IGREQID InvalidREQIDPrefixException

IGREQCD InvalidDirectionException

ILLOGIC LogicException

INBFMH InboundFMHException

INVERRTERM InvalidErrorTerminalException

INVEXITREQ InvalidExitRequestException

46 CICS TS for z/OS: Java Applications in CICS

Table 4. Java exception mapping (continued)

CICS condition Java Exception

INVLDC InvalidLDCException

INVMPSZ InvalidMapSizeException

INVPARTNSET InvalidPartitionSetException

INVPARTN InvalidPartitionException

INVREQ InvalidRequestException

INVTSREQ InvalidTSRequestException

IOERR IOErrorException

ISCINVREQ ISCInvalidRequestException

ITEMERR ItemErrorException

JIDERR InvalidJournalIdException

LENGERR LengthErrorException

MAPERROR MapErrorException

MAPFAIL MapFailureException

NAMEERROR NameErrorException

NODEIDERR InvalidNodeIdException

NOJBUFSP NoJournalBufferSpaceException

NONVAL NotValidException

NOPASSBKRD NoPassbookReadException

NOPASSBKWR NoPassbookWriteException

NOSPACE NoSpaceException

NOSPOOL NoSpoolException

NOSTART StartFailedException

NOSTG NoStorageException

NOTALLOC NotAllocatedException

NOTAUTH NotAuthorisedException

NOTFINISHED NotFinishedException

NOTFND RecordNotFoundException
NotFoundException

NOTOPEN NotOpenException

OPENERR DumpOpenErrorException

OVERFLOW MapPageOverflowException

PARTNFAIL PartitionFailureException

PGMIDERR InvalidProgramIdException

QBUSY QueueBusyException

Chapter 2. Developing Java applications 47

Table 4. Java exception mapping (continued)

CICS condition Java Exception

QIDERR InvalidQueueIdException

QZERO QueueZeroException

RDATT ReadAttentionException

RETPAGE ReturnedPageException

ROLLEDBACK RolledBackException

RTEFAIL RouteFailedException

RTESOME RoutePartiallyFailedException

SELNERR DestinationSelectionErrorException

SESSBUSY SessionBusyException

SESSIONERR SessionErrorException

SIGNAL InboundSignalException

SPOLBUSY SpoolBusyException

SPOLERR SpoolErrorException

STRELERR STRELERRException

SUPPRESSED SuppressedException

SYMBOLERR SymbolErrorException

SYSBUSY SystemBusyException

SYSIDERR InvalidSystemIdException

TASKIDERR InvalidTaskIdException

TCIDERR TCIDERRException

TEMPLATERR TemplateErrorException

TERMERR TerminalException

TERMIDERR InvalidTerminalIdException

TOKENERR TokenErrorException

TRANSIDERR InvalidTransactionIdException

TSIOERR TSIOErrorException

UNEXPIN UnexpectedInformationException

USERIDERR InvalidUserIdException

WRBRK WriteBreakException

WRONGSTAT WrongStatusException

Note: NonHttpDataException is thrown by getContent() if the CICS command WEB RECEIVE
indicates that the data received is a non-HTTP message (by setting TYPE=HTTPNO).

48 CICS TS for z/OS: Java Applications in CICS

Error handling and abnormal termination
To initiate an ABEND from a Java program, you must invoke one of the Task.abend() or
Task.forceAbend() methods.

Methods JCICS class EXEC CICS commands

abend() , forceAbend() Task ABEND

ABEND
To initiate an ABEND from a Java program, invoke one of the Task.abend() methods . This causes
an abend condition to be set in CICS and an AbendException to be thrown. If the AbendException
is not caught within a higher level of the application object, or handled by an ABEND-handler
registered in the calling program (if any), CICS terminates and rolls back the transaction.

The different abend() methods are:

• abend (String abcode), which causes an ABEND with the ABEND code abcode.
• abend (String abcode , boolean dump), which causes an ABEND with the ABEND code abcode. If

the dump parameter is false, no dump is taken.
• abend() , which causes an ABEND with no ABEND code and no dump.

ABEND CANCEL
To initiate an ABEND that cannot be handled, invoke one of the Task.forceAbend() methods . As
described above, this causes an AbendCancelException to be thrown which can be caught in Java
programs. If you do so, you must re-throw the exception to complete ABEND_CANCEL processing, so
that, when control returns to CICS, CICS will terminate and roll back the transaction. Only catch the
AbendCancelException for notification purposes and then re-throw it.

The different forceAbend() methods are:

• forceAbend (String abcode), which causes an ABEND CANCEL with the ABEND code abcode.
• forceAbend (String abcode , boolean dump), which causes an ABEND CANCEL with the ABEND

code abcode. If the dump parameter is false, no dump is taken.
• forceAbend() , which causes an ABEND CANCEL with no ABEND code and no dump.

APPC mapped conversations
APPC unmapped conversation support is not available from the JCICS API.

APPC mapped conversations:

Methods JCICS class EXEC CICS Commands

initiate() AttachInitiator ALLOCATE, CONNECT PROCESS

converse() Conversation CONVERSE

get*() methods Conversation EXTRACT ATTRIBUTES

get*() methods Conversation EXTRACT PROCESS

free() Conversation FREE

issueAbend() Conversation ISSUE ABEND

issueConfirmation() Conversation ISSUE CONFIRMATION

issueError() Conversation ISSUE ERROR

issuePrepare() Conversation ISSUE PREPARE

issueSignal() Conversation ISSUE SIGNAL

receive() Conversation RECEIVE

Chapter 2. Developing Java applications 49

Methods JCICS class EXEC CICS Commands

send() Conversation SEND

flush() Conversation WAIT CONVID

Basic Mapping Support (BMS)
Basic mapping support (BMS) is an application programming interface between CICS programs and
terminal devices. JCICS provides support for some of the BMS application programming interface.

Methods JCICS class EXEC CICS Commands

sendControl() TerminalPrincipalFacility SEND CONTROL

sendText() TerminalPrincipalFacility SEND TEXT

Not supported SEND MAP, RECEIVE MAP

Channel and container examples
Containers are named blocks of data designed for passing information between programs. Containers are
grouped in sets called channels. This information explains how you can use channels and containers in
your Java application and provides some code examples.

For introductory information about channels and containers, and guidance about using channels in non-
Java applications, see Transferring data between programs using channels. For information about tools
that allow Java programs to access existing CICS application data, see “Interacting with structured data
from Java” on page 161.

Table 5 on page 50 lists the classes and methods that implement JCICS support for channels and
containers.

Table 5. JCICS support for channels and containers

Methods JCICS class EXEC CICS Commands

containerIterator() Channel STARTBROWSE CONTAINER

createContainer() Channel

delete() Channel DELETE CHANNEL

deleteContainer() Channel DELETE CONTAINER CHANNEL

getContainer() Channel

getContainerCount() Channel QUERY CHANNEL

getName() Channel

delete() Container DELETE CONTAINER CHANNEL

get() Container GET CONTAINER CHANNEL

getLength() Container GET CONTAINER CHANNEL NODATA

getDatatype() Container

getName() Container

put() Container PUT CONTAINER CHANNEL

getOwner() ContainerIterator

hasNext() ContainerIterator

next() ContainerIterator GETNEXT CONTAINER
BROWSETOKEN

50 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/designing/dfhp3_ch_overview.html

Table 5. JCICS support for channels and containers (continued)

Methods JCICS class EXEC CICS Commands

remove() ContainerIterator

link() Program LINK

setNextChannel() TerminalPrincipalFacility RETURN CHANNEL

issue() StartRequest START CHANNEL

createChannel() Task

getCurrentChannel() Task ASSIGN CHANNEL

containerIterator() Task STARTBROWSE CONTAINER

The CICS condition CHANNELERR results in a ChannelErrorException being thrown; the
CONTAINERERR CICS condition results in a ContainerErrorException ; the CCSIDERR CICS
condition results in a CCSIDErrorException.

Creating channels and containers in JCICS
To create a channel, use the createChannel() method of the Task class.

For example:

Task t=Task.getTask();
Channel custData = t.createChannel("Customer_Data");

The string supplied to the createChannel method is the name by which the Channel object is known to
CICS. (The name is padded with spaces to 16 characters, to conform to CICS naming conventions.)

To create a new container in the channel, use the Channel createContainer() method. For example:

Container custRec = custData.createContainer("Customer_Record");

The string supplied to the createContainer() method is the name by which the Container object is
known to CICS. The name is padded with spaces to 16 characters, if necessary, to conform to CICS
naming conventions. If a container of the same name already exists in this channel, a
ContainerErrorException is thrown.

Putting data into a container
To put data into a Container object, use the Container.put() method.

Data can be added to a container as a string. For example:

String custNo = "00054321";
string[] custRecIn = custNo.putString();
custRec.put(custRecIn);

Or :

custRec.putString("00054321");

Passing a channel to another program or task
To pass a channel on a program-link use the link() method of the Program class.

programX.link(custData);

To set the next channel on a program-return call, use the setNextChannel() method of the
TerminalPrincipalFacility class:

terminalPF.setNextChannel(custData);

Chapter 2. Developing Java applications 51

To pass a channel on a START request, use the issue method of the StartRequest class:

startrequest.issue(custData);

Receiving the current channel
It is not necessary for a program to receive its current channel explicitly. However, a program can get its
current channel from the current task.

If a program gets the current channel from the current task, the task can extract containers by name:

Task t = Task.getTask();
Channel custData = t.getCurrentChannel();

if (custData != null) {
 Container custRec = custData.getContainer("Customer_Record");
} else {
 System.out.println("There is no Current Channel");
}

Getting data from a container
Use the Container.get() method to read the data in a container into a byte array.

byte[] custInfo = custRec.get();

Browsing the current channel
A JCICS program that is passed a channel can access all of the Container objects without receiving the
channel explicitly.

To do this, it uses a ContainerIterator object. The ContainerIterator class implements the
java.util.Iterator interface. When a Task object is instantiated from the current task, its
containerIterator() method returns an Iterator for the current channel, or null if there is no
current channel. For example:

Task t = Task.getTask();
ContainerIterator ci = t.containerIterator();

while (ci.hasNext()) {
 Container custData = ci.next();
 // Process the container...
}

52 CICS TS for z/OS: Java Applications in CICS

Channel and containers example
This example shows an excerpt of a Java class called Payroll that calls a COBOL server program named
PAYR. The Payroll class uses the JCICS com.ibm.cics.server.Channel and
com.ibm.cics.server.Container classes to work with a channel and its containers.

import com.ibm.cics.server.*;

public class Payroll
{
 ...
 Task t=Task.getTask();

 // create the payroll_2004 channel
 Channel payroll_2004 = t.createChannel("payroll-2004");

 // create the employee container
 Container employee = payroll_2004.createContainer("employee");

 // put the employee name into the container
 employee.putString("John Doe");

 // create the wage container
 Container wage = payroll_2004.createContainer("wage");

 // put the wage into the container
 wage.putString("2000");

 // Link to the PAYROLL program, passing the payroll_2004 channel
 Program p = new Program();
 p.setName("PAYR");
 p.link(payroll_2004);

 // Get the status container which has been returned
 Container status = payroll_2004.getContainer("status");

 if (status != null)
 {
 // Get the status information
 byte[] payrollStatus = status.get();
 }

 ...
}

Figure 1. Java class that uses the JCICS com.ibm.cics.server.Channel and
com.ibm.cics.server.Container classes to pass a channel to a COBOL server program

Diagnostic services
The JCICS application programming interface has support for these CICS trace and dump commands.

Methods JCICS class EXEC CICS Commands

Not supported DUMP

enterTrace() EnterRequest ENTER

Document services
This section describes JCICS support for the commands in the DOCUMENT application programming
interface.

Class Document maps to the EXEC CICS DOCUMENT API.

The default no-argument constructor for class Document creates a new document in CICS. The
constructor Document(byte[] docToken) accepts a document token for an existing document that
has previously been created. For example, another program can create a document and pass its
document token to the Java application in a COMMAREA or container.

Constructors for class DocumentLocation map to the AT and TO keywords of the EXEC CICS
DOCUMENT API.

Chapter 2. Developing Java applications 53

Setters and getters for class SymbolList map to the SYMBOLLIST, LENGTH, DELIMITER, and UNESCAPE
keywords of the EXEC CICS DOCUMENT API.

Methods JCICS class EXEC CICS Commands

create*() Document DOCUMENT CREATE

append*() Document DOCUMENT INSERT

insert*() Document DOCUMENT INSERT

addSymbol() Document DOCUMENT SET

setSymbolList() Document DOCUMENT SET

retrieve*() Document DOCUMENT RETRIEVE

get*() Document DOCUMENT

Environment services
CICS environment services provide access to CICS data areas, parameters, and resource attributes that
are relevant to an application program.

The EXEC CICS commands and options that have equivalent JCICS support are:

• ADDRESS
• ASSIGN
• INQUIRE SYSTEM
• INQUIRE TASK
• INQUIRE TERMINAL/NETNAME

ADDRESS
The following support is provided for the ADDRESS API command options.

For complete information about the EXEC CICS ADDRESS command, see ADDRESS.

ACEE
The Access Control Environment Element (ACEE) is created by an external security manager when a
CICS user signs on. This option not supported in JCICS.

COMMAREA
A COMMAREA contains user data that is passed with a command. The COMMAREA pointer is passed
automatically to the linked program by the CommAreaHolder argument. See “Arguments for passing
data” on page 41 for more information.

CWA
The Common Work Area (CWA) contains global user data, sharable between tasks. A copy of the CWA
can be obtained using the getCWA() method of the Region class.

EIB
The EIB fields contains information about the CICS command last executed. Access to EIB values is
provided by methods on the appropriate objects. For example,
eibtrnid

is returned by the getTransactionName() method of the Task class.
eibaid

is returned by the getAIDbyte() method of the TerminalPrincipalFacility class.
eibcposn

is returned by the getRow() and getColumn() methods of the Cursor class.
TCTUA

The Terminal Control Table User Area (TCTUA) contains user data associated with the terminal that is
driving the CICS transaction (the principal facility). This area is used to pass information between
application programs, but only if the same terminal is associated with the application programs

54 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-applications/commands-api/dfhp4_address.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-diagnostics/eib/dfhp4_eibfields.html

involved. The contents of the TCTUA can be obtained using the getTCTUA() method of the
TerminalPrincipalFacility class.

TWA
The Transaction Work Area (TWA) contains user data that is associated with the CICS task. This area
is used to pass information between application programs, but only if they are in the same task. A
copy of the TWA can be obtained using the getTWA() method of the Task class.

ASSIGN
The following support is provided for the ASSIGN API command options.

For detailed information about this command, see ASSIGN.

Methods JCICS class

getABCODE() AbendException

getApplicationContext() Task

getAPPLID() Region

getCurrentChannel() Task

getCWA() Region

getName() TerminalPrincipalFacility or
ConversationPrincipalFacility

getFCI() Task

getNetName() TerminalPrincipalFacility or
ConversationPrincipalFacility

getPrinSysid() TerminalPrincipalFacility or
ConversationPrincipalFacility

getProgramName() Task

getQNAME() Task

getSTARTCODE() Task

getSysid() Region

getTCTUA() TerminalPrincipalFacility

getTERMCODE() TerminalPrincipalFacility

getTWA() Task

getUSERID() , Task.getUSERID() Task, TerminalPrincipalFacility or
ConversationPrincipalFacility

No other ASSIGN options are supported.

INQUIRE SYSTEM
Support is provided for the INQUIRE SYSTEM SPI options.

Methods JCICS class

getAPPLID() Region

getSYSID() Region

No other INQUIRE SYSTEM options are supported.

Chapter 2. Developing Java applications 55

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-applications/commands-api/dfhp4_assign.html

INQUIRE TASK
The following support is provided for the INQUIRE TASK API command options.

Methods JCICS class

getSTARTCODE() Task

getTransactionName() Task

getUSERID() Task

FACILITY
You can find the name of the task's principal facility by calling the getName() method on the task's
principal facility, which can in turn be found by calling the getPrincipalFacility() method on
the current Task object.

FACILITYTYPE
You can determine the type of facility by using the Java instanceof operator to check the class of
the returned object reference.

No other INQUIRE TASK options are supported.

INQUIRE TERMINAL and INQUIRE NETNAME
The following support is provided for INQUIRE TERMINAL and INQUIRE NETNAME SPI options.

Methods JCICS class

getUSERID() Terminal, ConversationalPrincipalFacility

Terminal.getUser() Terminal, ConversationalPrincipalFacility

You can also find the USERID value by calling the getUSERID() method on the current Task object, or
on the object representing the task's principal facility.

No other INQUIRE TERMINAL or INQUIRE NETNAME options are supported.

File services
JCICS provides classes and methods that map to the EXEC CICS API commands for each type of CICS
file and index.

For information about tools that allow Java programs to access existing CICS application data, see
Interacting with structured data from Java.

CICS supports the following types of files:

• Key Sequenced Data Sets (KSDS)
• Entry Sequenced Data Sets (ESDS)
• Relative Record Data Sets (RRDS)

KSDS and ESDS files can have alternative (or secondary) indexes. CICS does not support access to an
RRDS file through a secondary index. Secondary indexes are treated by CICS as though they were
separate KSDS files in their own right, which means they have separate FD entries.

There are a few differences between accessing KSDS, ESDS (primary index), and ESDS (secondary index)
files, which means that you cannot always use a common interface.

Records can be read, updated, deleted, and browsed in all types of file, with the exception that records
cannot be deleted from an ESDS file.

See VSAM data sets: KSDS, ESDS, RRDS for more information about data sets.

Java commands that read data support only the equivalent of the SET option on EXEC CICS commands.
The data returned is automatically copied from CICS storage to a Java object.

56 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/dfhpj_strdata_java.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/designing/dfhp3mk.html

Categories of Java interfaces relating to File Control

The Java interfaces relating to File Control are in five categories:
File

The superclass for the other file classes; contains methods common to all file classes.
KeyedFile

Contains the interfaces common to a KSDS file accessed using the primary index, a KSDS file
accessed using a secondary index, and an ESDS file accessed using a secondary index.

KSDS
Contains the interface specific to KSDS files.

ESDS
Contains the interface specific to ESDS files accessed through Relative Byte Address (RBA, its primary
index) or Extended Relative Byte Address (XRBA). To use XRBA instead of RBA, issue the
setXRBA(true) method.

RRDS
Contains the interface specific to RRDS files accessed through Relative Record Number (RRN, its
primary index).

File and FileBrowse objects

For each file, there are two objects that can be operated on; the File object and the FileBrowse object.

File objects
The File object represents the file itself and can be used with methods to perform the following API
operations:

• DELETE
• READ
• REWRITE
• UNLOCK
• WRITE
• STARTBR

A File object is created by the user application explicitly starting the required file class. The
FileBrowse object represents a browse operation on a file. There can be more than one active
browse against a specific file at any time, each browse being distinguished by a REQID. Methods can
be instantiated for a FileBrowse object to perform the following API operations:

• ENDBR
• READNEXT
• READPREV
• RESETBR

FileBrowse objects
A FileBrowse object is not instantiated explicitly by the user application; it is created and returned
to the user class by the methods that perform the STARTBR operation.

Mapping from JCICS classes and methods to CICS API commands

The following tables show how the JCICS classes and methods map to the EXEC CICS API commands
for each type of CICS file and index. In these tables, the JCICS classes and methods are shown in the
form class.method(). For example, KeyedFile.read() references the read() method in the
KeyedFile class.

Classes and methods for keyed files

This table shows the classes and methods for keyed files.

Chapter 2. Developing Java applications 57

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-applications/commands-api/dfhp4_delete.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-applications/commands-api/dfhp4_read.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-applications/commands-api/dfhp4_rewrite.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-applications/commands-api/dfhp4_unlock.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-applications/commands-api/dfhp4_write.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-applications/commands-api/dfhp4_startbr.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-applications/commands-api/dfhp4_endbr.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-applications/commands-api/dfhp4_readnext.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-applications/commands-api/dfhp4_readprev.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-applications/commands-api/dfhp4_resetbr.html

Table 6. Classes and methods for keyed files

KSDS primary or secondary index
class and method

ESDS secondary index class and
method

CICS File API command

KeyedFile.read() KeyedFile.read() READ

KeyedFile.readForUpdate() KeyedFile.readForUpdate() READ UPDATE

KeyedFile.readGeneric() KeyedFile.readGeneric() READ GENERIC

KeyedFile.rewrite() KeyedFile.rewrite() REWRITE

KSDS.write() KSDS.write() WRITE

KSDS.delete() DELETE

KSDS.deleteGeneric() DELETE GENERIC

KeyedFile.unlock() KeyedFile.unlock() UNLOCK

KeyedFile.startBrowse() KeyedFile.startBrowse() START BROWSE

KeyedFile.startGenericBrows
e()

KeyedFile.startGenericBrows
e()

START BROWSE
GENERIC

KeyedFileBrowse.next() KeyedFileBrowse.next() READNEXT

KeyedFileBrowse.previous() KeyedFileBrowse.previous() READPREV

KeyedFileBrowse.reset() KeyedFileBrowse.reset() RESET BROWSE

FileBrowse.end() FileBrowse.end() END BROWSE

Classes and methods for non-keyed files

This table shows the classes and methods for non-keyed files. ESDS and RRDS are accessed by their
primary indexes.

Table 7. Classes and methods for non-keyed files

ESDS primary index class and
method

RRDS primary index class and
method

CICS File API command

ESDS.read() RRDS.read() READ

ESDS.readForUpdate() RRDS.readForUpdate() READ UPDATE

ESDS.rewrite() RRDS.rewrite() REWRITE

ESDS.write() RRDS.write() WRITE

RRDS.delete() DELETE

KeyedFile.unlock() RRDS.unlock() UNLOCK

ESDS.startBrowse() RRDS.startBrowse() START BROWSE

ESDS_Browse.next() RRDS_Browse.next() READNEXT

ESDS_Browse.previous() RRDS_Browse.previous() READPREV

ESDS_Browse.reset() RRDS_Browse.reset() RESET BROWSE

FileBrowse.end() FileBrowse.end() END BROWSE

ESDS.setXRBA()

58 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KeyedFile.html#read-byte:A-com.ibm.cics.server.RecordHolder-
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KeyedFile.html#read-byte:A-com.ibm.cics.server.RecordHolder-
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KeyedFile.html#readForUpdate-byte:A-com.ibm.cics.server.RecordHolder-
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KeyedFile.html#readForUpdate-byte:A-com.ibm.cics.server.RecordHolder-
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KeyedFile.html#readGeneric-byte:A-com.ibm.cics.server.RecordHolder-
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KeyedFile.html#readGeneric-byte:A-com.ibm.cics.server.RecordHolder-
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KeyedFile.html#rewrite-byte:A-
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KeyedFile.html#rewrite-byte:A-
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KSDS.html#write-byte:A-byte:A-
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KSDS.html#write-byte:A-byte:A-
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KSDS.html#delete-byte:A-
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KSDS.html#deleteGeneric-byte:A-
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KeyedFile.html#unlock--
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KeyedFile.html#unlock--
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KeyedFile.html#startBrowse-byte:A-
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KeyedFile.html#startBrowse-byte:A-
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KeyedFile.html#startGenericBrowse-byte:A-int-
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KeyedFile.html#startGenericBrowse-byte:A-int-
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KeyedFile.html#startGenericBrowse-byte:A-int-
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KeyedFile.html#startGenericBrowse-byte:A-int-
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KeyedFileBrowse.html#next-byte:A-com.ibm.cics.server.RecordHolder-com.ibm.cics.server.KeyHolder-
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KeyedFileBrowse.html#next-byte:A-com.ibm.cics.server.RecordHolder-com.ibm.cics.server.KeyHolder-
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KeyedFileBrowse.html#previous-byte:A-com.ibm.cics.server.RecordHolder-com.ibm.cics.server.KeyHolder-
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KeyedFileBrowse.html#previous-byte:A-com.ibm.cics.server.RecordHolder-com.ibm.cics.server.KeyHolder-
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KeyedFileBrowse.html#reset-byte:A-
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KeyedFileBrowse.html#reset-byte:A-
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/FileBrowse.html#end--
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/FileBrowse.html#end--
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/ESDS.html#read-long-com.ibm.cics.server.RecordHolder-
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/RRDS.html#read-long-com.ibm.cics.server.RecordHolder-
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/ESDS.html#readForUpdate-long-com.ibm.cics.server.RecordHolder-
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/RRDS.html#readForUpdate-long-com.ibm.cics.server.RecordHolder-
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/ESDS.html#rewrite-byte:A-
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/RRDS.html#rewrite-byte:A-
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/ESDS.html#write-byte:A-
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/RRDS.html#write-long-byte:A-
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/RRDS.html#delete--
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/KeyedFile.html#unlock--
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/RRDS.html#unlock--
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/ESDS.html#startBrowse-long-
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/RRDS.html#startBrowse-long-
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/ESDS_Browse.html#next-long-com.ibm.cics.server.RecordHolder-
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/RRDS_Browse.html#next-long-com.ibm.cics.server.RecordHolder-
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/ESDS_Browse.html#previous-long-com.ibm.cics.server.RecordHolder-
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/RRDS_Browse.html#previous-long-com.ibm.cics.server.RecordHolder-
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/ESDS_Browse.html#reset-long-
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/RRDS_Browse.html#reset-long-
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/FileBrowse.html#end--
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/FileBrowse.html#end--
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/com/ibm/cics/server/ESDS.html#setXRBA-boolean-

Writing and reading data

Data to be written to a file must be in a Java byte array.

Data is read from a file into a RecordHolder object; the storage is provided by CICS and is released
automatically at the end of the program.

You do not need to specify the KEYLENGTH value on any File method; the length used is the actual
length of the key passed. When a FileBrowse object is created, it contains the length of the key
specified on the startBrowse method, and this length is passed to CICS on subsequent browse
requests against that object.

You do not need to provide a REQID for a browse operation; each browse object contains a unique REQID
which is automatically used for all subsequent browse requests against that browse object.

Samples

In Github, sample CICS Java programs are provided to demonstrate how to use the JCICS API in an OSGi
JVM server environment. In particular, use com.ibm.cicsdev.vsam for accessing KSDS, ESDS, and
RRDS VSAM files.

HTTP and TCP/IP services
Getters in classes HttpHeader, NameValueData, and FormField return HTTP headers, name and
value pairs, and form field values for the appropriate API commands.

Methods JCICS class EXEC CICS Commands

get*() CertificateInfo EXTRACT CERTIFICATE / EXTRACT TCPIP

get*() HttpRequest EXTRACT WEB

getHeader() HttpRequest WEB READ HTTPHEADER

getFormField() HttpRequest WEB READ FORMFIELD

getContent() HttpRequest WEB RECEIVE

getQueryParm() HttpRequest WEB READ QUERYPARM

startBrowseHeader() HttpRequest WEB STARTBROWSE HTTPHEADER

getNextHeader() HttpRequest WEB READNEXT HTTPHEADER

endBrowseHeader() HttpRequest WEB ENDBROWSE HTTPHEADER

startBrowseFormField() HttpRequest WEB STARTBROWSE FORMFIELD

getNextFormField() HttpRequest WEB READNEXT FORMFIELD

endBrowseFormField() HttpRequest WEB ENDBROWSE FORMFIELD

startBrowseQueryParm() HttpRequest WEB STARTBROWSE QUERYPARM

getNextQueryParm() HttpRequest WEB READNEXT QUERYPARM

endBrowseQueryParm() HttpRequest WEB ENDBROWSE QUERYPARM

writeHeader() HttpResponse WEB WRITE

getDocument() HttpResponse WEB RETRIEVE

getCurrentDocument() HttpResponse WEB RETRIEVE

sendDocument() HttpResponse WEB SEND

Note: Use the method get HttpRequestInstance() to obtain the HttpRequest object.

Chapter 2. Developing Java applications 59

https://github.com/cicsdev/cics-java-jcics-samples

Each incoming HTTP request processed by CICS Web support includes an HTTP header. If the request
uses the POST HTTP verb it also includes document data. Each response HTTP request generated by
CICS Web support includes an HTTP header and document data.

To process this JCICS provides the following Web and TCP/IP services:
HTTP Header

You can examine the HTTP header using the HttpRequest class. With HTTP in GET mode, if a client
has filled in an HTTP form and selected the submit button, the query string is submitted.

SSL
CICS Web support provides the TcpipRequest class, which is extended by HttpRequest to obtain
more information about which client submitted the request as well as basic information on the SSL
support. If an SSL certificate is provided, you can use the CertificateInfo class to examine it in
detail.

Documents
If a document is published to the server (HTTP POST), it is provided as a CICS document. You can
access it by calling the getDocument() method on the HttpRequest class. See “Document
services” on page 53 for more information about processing existing documents.

To serve the HTTP client web content resulting from a request, the server programmer needs to
create a CICS document using the Document Services API and call the sendDocument() method.

For more information on CICS Web support see CICS Web support. For more information on the JCICS
web classes see JCICS Javadoc information.

Program services
JCICS supports the CICS program control commands; LINK, RETURN, and INVOKE APPLICATION.

For information about tools that allow Java programs to access existing CICS application data, see
Interacting with structured data from Java.

Table 8 on page 60 lists the methods and JCICS classes that map to CICS program control commands.

Table 8. Relationship between methods, JCICS classes, and CICS commands

EXEC CICS Commands JCICS class JCICS methods

LINK Program link()

RETURN TerminalPrincipalFacility setNextTransaction(),
setNextCOMMAREA(),
setNextChannel()

INVOKE APPLICATION Application invoke()

LINK
You can transfer control to another program that is defined to CICS by using the link() method. The
target program can be in any language that is supported by CICS.

RETURN
Only the pseudoconversational aspects of this command are supported. It is not necessary to make a
CICS call to return; the application can terminate as normal. The pseudoconversational functions are
supported by methods in the TerminalPrincipalFacility class: setNextTransaction() is
equivalent to using the TRANSID option of RETURN; setNextCOMMAREA() is equivalent to using the
COMMAREA option; while setNextChannel() is equivalent to using the CHANNEL option . These
methods can be invoked at any time during the running of the program, and take effect when the
program terminates.

INVOKE
Allows invocation of an application by naming an operation that corresponds to one of its program
entry points, without having to know the name of the application entry point program and regardless
of whether the program is public or private.

60 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/web/dfhtl11.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/index.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/dfhpj_strdata_java.html

Note: The length of the COMMAREA provided is used as the LENGTH value for CICS. This value should not
exceed 24 KB if the COMMAREA is to be passed between any two CICS servers (for any combination of
product/version/release). This limit allows for the COMMAREA and space for headers.

Scheduling services
JCICS provides support for the CICS scheduling services, which let you retrieve data stored for a task,
cancel interval control requests, and start a task at a specified time.

Methods JCICS class EXEC CICS Commands

cancel() StartRequest CANCEL

retrieve() Task RETRIEVE

issue() StartRequest START

To define what is to be retrieved by the Task.retrieve() method, use a java.util.BitSet object.
The com.ibm.cics.server.RetrieveBits class defines the bits which can be set in the BitSet
object; they are:

• RetrieveBits.DATA
• RetrieveBits.RTRANSID
• RetrieveBits.RTERMID
• RetrieveBits.QUEUE

These correspond to the options on the EXEC CICS RETRIEVE command.

The Task.retrieve() method retrieves up to four different pieces of information in a single invocation,
depending on the settings of the RetrieveBits. The DATA, RTRANSID, RTERMID and QUEUE data are
placed in a RetrievedData object, which is held in a RetrievedDataHolder object. The following
example retrieves the data and transid:

BitSet bs = new BitSet();
bs.set(RetrieveBits.DATA, true);
bs.set(RetrieveBits.RTRANSID, true);
RetrievedDataHolder rdh = new RetrievedDataHolder();
t.retrieve(bs, rdh);
byte[] inData = rdh.value.data;
String transid = rdh.value.transId;

Serialization services
JCICS provides support for the CICS serialization services, which let you schedule the use of a resource
by a task.

Methods JCICS class EXEC CICS Commands

dequeue() SynchronizationResource DEQ

enqueue(), tryEnqueue() SynchronizationResource ENQ

Storage services
No support is provided for explicit storage management using CICS services (such as EXEC CICS
GETMAIN). You should find that the standard Java storage management facilities are sufficient to meet
the needs for task-private storage.

Sharing of data between tasks must be accomplished using CICS resources.

Names are generally represented as Java strings or byte arrays; you must ensure that these are of the
necessary length.

Chapter 2. Developing Java applications 61

Threads and tasks example
If your CICS Java application is running within an OSGi or Liberty environment, you can run work under a
separate thread on a separate CICS task/transaction by using the CICSExecutorService.

Submit a Java Runnable or Callable object to the Executor service and the submitted application code will
run on a separate thread under a new CICS task. Unlike normal threads created from Java, Executor
controlled threads have access to the JCICS API and CICS services. In a CICS OSGi or Liberty
environment you can use standard OSGi APIs to find the CICSExecutorService, or you can use the
JCICS API convenience method CICSExecutorService.runAsCICS(), which finds the service and
submits the Runnable or Callable object on your behalf.

Note: For non-HTTP requests in Liberty, a CICS task is created only when the first JCICS or JDBC
DataSource with type 2 connectivity call is made.

The following example shows an excerpt of a Java class that submits a Runnable piece of application
code to the CICSExecutorService. The application code simply writes to a CICS TSQ.

public class ExecutorTest
{
 public static void main(String[] args)
 {
 // Inline the new Runnable class
 class CICSJob implements CICSTransactionRunnable
 {
 public void run()
 {
 // Create a temporary storage queue
 TSQ test_tsq = new TSQ();
 test_tsq.setType(TSQType.MAIN);

 // Set the TSQ name
 test_tsq.setName("TSQWRITE");

 // Write to the temporary storage queue
 // Use the CICS region local CCSID so it is readable
 String test_string = "Hello from a non CICS Thread - "+ threadId;

 try
 {

test_tsq.writeItem(test_string.getBytes(System.getProperty("com.ibm.cics.jvmserver.local.ccsid")));
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }

 @Override
 public String getTranid()
 {
 // *** This transaction id should be installed and available ***
 return "IJSA";
 }
 }

 // Create and run the new CICSJob Runnable
 Runnable task = new CICSJob();
 CICSExecutorService.runAsCICS(task);
 }
}

Temporary storage queue services
JCICS supports the CICS temporary storage commands; DELETEQ TS, READQ TS, and WRITEQ TS.

Interaction between JCICS methods and EXEC CICS commands

For information about tools that allow Java programs to access existing CICS application data, see
Interacting with structured data from Java.

Table 9 on page 63 lists the methods and JCICS classes that map to CICS temporary storage
commands.

62 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/dfhpj_strdata_java.html

Table 9. Relationship between methods, JCICS classes and CICS commands

Methods JCICS class EXEC CICS Commands

delete() TSQ DELETEQ TS

readItem(), readNextItem() TSQ READQ TS

 writeItem(),
 rewriteItem(),

writeItemConditional(),

rewriteItemConditional()

TSQ WRITEQ TS

DELETEQ TS
You can delete a temporary storage queue (TSQ) using the delete() method in the TSQ class.

READQ TS
The CICS INTO option is not supported in Java programs. You can read a specific item from a TSQ
using the readItem() and readNextItem() methods in the TSQ class. These methods take an
ItemHolder object as one of their arguments, which will contain the data read in a byte array. The
storage for this byte array is created by CICS and is garbage-collected at the end of the program.

WRITEQ TS
You must provide data to be written to a temporary storage queue in a Java byte array. The
writeItem() and rewriteItem() methods suspend if a NOSPACE condition is detected, and wait
until space is available to write the data to the queue. The writeItemConditional() and
rewriteItemConditional() methods do not suspend in the case of a NOSPACE condition, but
return the condition immediately to the application as a NoSpaceException.

Terminal services
JCICS provides support for these CICS terminal services commands.

Methods JCICS class EXEC CICS Commands

converse() TerminalPrincipalFacility CONVERSE

Not supported HANDLE AID

receive() TerminalPrincipalFacility RECEIVE

send() TerminalPrincipalFacility SEND

Not supported WAIT TERMINAL

If a task has a terminal allocated as a principal facility, CICS automatically creates two Java
PrintWriter components that can be used as standard output and standard error streams. These
components are mapped to the task terminal. The two streams, which have the names out and err, are
public files in the Task object and can be used in the same way as System.out and System.err.

Data to be sent to a terminal must be provided in a Java byte array. Data is read from the terminal into a
DataHolder object. CICS provides the storage for the returned data which is deallocated when the
program ends.

Chapter 2. Developing Java applications 63

Transforming between data and XML
JCICS supports API commands to transform data to XML and vice versa. These commands provide the
equivalent functions to the EXEC CICS TRANSFORM DATATOXML and TRANSFORM XMLTODATA
commands.

Methods JCICS class EXEC CICS commands

SetName XmlTransform TRANSFORM DATATOXML,
TRANSFORM XMLTODATA

dataToXML Transform TRANSFORM DATATOXML

xmltoData Transform TRANSFORM XMLTODATA

setChannel TransformInput TRANSFORM DATATOXML,
TRANSFORM XMLTODATA

setDataContainer TransformInput TRANSFORM DATATOXML

TRANSFORM XMLTODATA

setElementName TransformInput TRANSFORM DATATOXML,
TRANSFORM XMLTODATA

setElementNamespace TransformInput TRANSFORM DATATOXML,
TRANSFORM XMLTODATA

setNsContainer TransformInput TRANSFORM XMLTODATA

setTypeName TransformInput TRANSFORM DATATOXML,
TRANSFORM XMLTODATA

setTypeNamespace TransformInput TRANSFORM DATATOXML,
TRANSFORM XMLTODATA

setXmlContainer TransformInput TRANSFORM DATATOXML,
TRANSFORM XMLTODATA

setXmltransform TransformInput TRANSFORM DATATOXML,
TRANSFORM XMLTODATA

getElementName TransformOutput TRANSFORM DATATOXML,
TRANSFORM XMLTODATA

getElementNamespace TransformOutput TRANSFORM DATATOXML,
TRANSFORM XMLTODATA

getTypeName TransformOutput TRANSFORM DATATOXML,
TRANSFORM XMLTODATA

getTypeNamespace TransformOutput TRANSFORM DATATOXML,
TRANSFORM XMLTODATA

Transient data queue services
JCICS supports the CICS transient data commands, DELETEQ TD, READQ TD, and WRITEQ TD. All options
are supported except the INTO option.

Interaction between JCICS methods and EXEC CICS commands

For information about tools that allow Java programs to access existing CICS application data, see
Interacting with structured data from Java.

Table 10 on page 65 lists the methods and JCICS classes that map to CICS transient data commands.

64 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/dfhpj_strdata_java.html

Table 10. Relationship between methods, JCICS classes and CICS commands

Methods JCICS class EXEC CICS Commands

delete() TDQ DELETEQ TD

readData(), readDataConditional() TDQ READQ TD

writeData() TDQ WRITEQ TD

DELETEQ TD
You can delete a transient data queue (TDQ) using the delete() method in the TDQ class.

READQ TD
The CICS INTO option is not supported in Java programs. You can read from a TDQ using the
readData() or the readDataConditional() method in the TDQ class. These methods take as a
parameter an instance of a DataHolder object that will contain the data read in a byte array. The
storage for this byte array is created by CICS and is garbage-collected at the end of the program.

The readDataConditional() method drives the CICS NOSUSPEND logic. If a QBUSY condition is
detected, it is returned to the application immediately as a QueueBusyException.

The readData() method suspends if it attempts to access a record in use by another task and there
are no more committed records.

WRITEQ TD
You must provide data to be written to a TDQ in a Java byte array.

Unit of work (UOW) services
JCICS provides support for the CICS SYNCPOINT service.

Table 11. Relationship between JCICS and EXEC CICS commands for UOW services

Methods JCICS class EXEC CICS Commands

commit(), rollback() Task SYNCPOINT

In a Liberty JVM server, UOW syncpointing can be controlled by using the Java Transaction API (JTA). For
more information, see “Java Transaction API (JTA) ” on page 97.

Web services example
JCICS supports all API commands that are available for working with web services in an application.

Methods JCICS class EXEC CICS commands

invoke() WebService INVOKE WEBSERVICE

create() SoapFault SOAPFAULT CREATE

addFaultString() SoapFault SOAPFAULT ADD FAULTSTRING

addSubCode() SoapFault SOAPFAULT ADD SUBCODESTR

delete() SoapFault SOAPFAULT DELETE

create() WSAEpr WSAEPR CREATE

delete() WSAContext WSACONTEXT DELETE

set*() WSAContext WSACONTEXT BUILD

get*() WSAContext WSACONTEXT GET

The following example shows how you might use JCICS to create a web service request:

Channel requesterChannel = Task.getTask().createChannel("TestRequester");
Container appData = requesterChannel.createContainer("DFHWS-DATA");

Chapter 2. Developing Java applications 65

byte[] exampleData = "ExampleData".getBytes();
appData.put(exampleData);

WebService requester = new WebService();
requester.setName("MyWebservice");
requester.invoke(requesterChannel, "myOperationName");

byte[] response = appData.get();

To handle the application data that is sent and received in a web service request, if you are working with
structured data, you can use a tool such as IBM Record Generator for Java to generate classes. See
“Interacting with structured data from Java” on page 161. You can also use Java to generate and
consume XML directly.

Using JCICS
Use the classes from the JCICS library in the same way as Java classes. Applications declare a reference
of the required type and a new instance of a class is created using the new operator.

Name CICS resources using the setName method to supply the name of the underlying CICS resource.
After creating the resource, manipulate objects using standard Java constructs. Call methods of the
declared objects in the usual way. Full details of the methods supported for each class are available in the
supplied Javadoc.

CICS attempts to pass control to the method with a signature of main(CommAreaHolder) in the class
specified by the JVMCLASS attribute of the PROGRAM resource. If this method is not found, CICS tries to
invoke method main(String[]).

For more information, see Java restrictions and JCICS Javadoc information.

This example shows how to create a TSQ object, invoke the delete method on the temporary storage
queue object you have just created, and catch the thrown exception if the queue is empty.

// Define a package name for the program
package unit_test;

// Import the JCICS package
import com.ibm.cics.server.*;

// Declare a class for a CICS application
public class JCICSTSQ
{
 // The main method is called when the application runs
 public static void main(CommAreaHolder cah)
 {
 try
 {
 // Create and name a Temporary Storage queue object
 TSQ tsq = new TSQ();
 tsq.setName("JCICSTSQ");

 // Delete the queue if it exists
 try
 {
 tsq.delete();
 }
 catch(InvalidQueueIdException e)
 {
 // Absorb QIDERR
 System.out.println("QIDERR ignored!");
 }

 // Write an item to the queue
 String transaction = Task.getTask().getTransactionName();
 String message = "Transaction name is - " + transaction;
 tsq.writeItem(message.getBytes());
 }
 catch(Throwable t)
 {
 System.out.println("Unexpected Throwable: " + t.toString());
 }

 // Return from the application
 return;

66 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/java_restrictions.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcics-javadoc/index.html

 }
}

JCICS restrictions
When developing Java applications for CICS using JCICS (Java class library for CICS), there are a number
of restrictions a programmer should be aware of.

The following restrictions apply to Java applications using JCICS in CICS:

• Do not use the System.exit() method. Using this method when the application is running in a JVM
server will terminate the JVM server, quiesce CICS, and may lead to data inconsistency. Use a Java
security policy to prohibit use of System.exit(). For related information see Enabling a Java security
manager.

• JCICS API calls: these calls cannot be used in the activator classes of OSGi bundles.

Note: The Java thread that runs the OSGi bundle activator will not be JCICS-enabled. A developer can
start a new JCICS-enabled thread from an activator, by using the
CICSExecutorService.runAsCICS() API. Any JCICS commands will run under the authority of the
user id that issued the install command. Therefore it is prudent for an administrator to understand the
resources used in OSGi bundle activators before they install them. There is more information on the
runAsCICS() API at “Threads and tasks example” on page 62.

• Start and stop methods used in OSGi bundle activators: these methods must return in a reasonable
amount of time.

• Do not share JCICS objects between threads. You can only call instance methods on JCICS objects from
the thread that created them.

• Do not use finalizers in CICS Java programs. For an explanation of why finalizers are not recommended,
see Troubleshooting and support.

Java development using JCICSX
The JCICSX API classes allow you to access CICS services using Java. They support a subset of CICS
functionality, can be run remotely, and are easier to mock and stub than the Java classes of JCICS. The
JCICSX API classes can be used together with the JCICS API, but only the commands using JCICSX will
benefit from these enhanced features.

Table of contents

“Why use JCICSX?” on page 67
“Restrictions of JCICSX” on page 68
“Security model of JCICSX” on page 68
“Configuring the environment for JCICSX” on page 68
“How to use JCICSX” on page 69
“Best practices” on page 70
“Troubleshooting” on page 70
Appendix 1. JCICSX API classes
Appendix 2. Mapping between JCICSX and EXEC CICS commands

Why use JCICSX?

The JCICSX API classes extend parts of the JCICS API with the capability of remote development and
mocking. They have the following benefits:

• The classes allow easy mocking and stubbing. The JCICSX API classes make it easier to apply inversion
of control and inject test doubles, so that you can mock the JCICSX method calls on your workstation
during unit testing, using frameworks such as Mockito, EasyMock, and PowerMock.

• The classes can be run remotely in development environments. You can link to programs or pass data
through channels and containers in a remote CICS region by executing CICS Java applications on your

Chapter 2. Developing Java applications 67

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/topics/dfhpj5u.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/topics/dfhpj5u.html
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.zos.80.doc/troubleshooting.html

local workstation, without having to repeatedly deploy the applications to CICS. In addition, no
modification is required to the application code regardless of whether it runs in CICS or on your local
workstation.

• The syntax is simplified and natural for Java developers.
• You can leverage capabilities of modern Java IDEs, such as content assist, debugging, smart navigation,

and hot-swapping. This is achieved through the support of mocking and remote development in a local
IDE, including IntelliJ and Eclipse.

• Code written using the JCICSX API classes will execute without change, both in remote development
mode and when deployed to run in CICS.

• It's compatible with the JCICS API. JCICSX API classes can be used alongside the JCICS API in the
same program, but only pure JCICSX programs can benefit from the enhanced features such as remote
development. For example, if you mix JCICS and JCICSX in the same program, you won't be able to run
it remotely in your development environment.

Restrictions of JCICSX

The JCICSX API classes support only a subset of CICS functionality that addresses some of the most
common scenarios for using Java in CICS, focused on linking to CICS programs using channels and
containers. See “Appendices” on page 70 for more information. If you need to use functions beyond that
scope, consider using the JCICS API.

Client-side tooling is available initially to enable Liberty users to use JCICSX to access CICS from a
servlet.

Security model of JCICSX

For remote development, JCICSX requires a Liberty JVM server to be set up in CICS to receive the remote
JCICSX requests. The JCICSX client-side tooling creates a new CICS Task with a call to the server.
Subsequent JCICSX requests from that client will run under the same task, and must be issued by the
same user. This is transparent when using the client-side tooling. The Liberty JVM server can be
configured to use basic authentication or SAF authentication for JCICSX calls.

In other cases, for example when the applications are deployed to run in CICS, JCICSX adopts an
identical security model to that of JCICS.

Configuring the environment for JCICSX

To enable remote development using JCICSX, extra configuration is needed to set up supporting
infrastructure in CICS and on your local workstation. Note that the supporting infrastructure in CICS is
only required in development regions. The JCICSX API is available in all CICS JVM servers by default.

For information on setting up your compilation environment, see “Importing the JCICSX dependency” on
page 69.

Extra configuration for remote development (CICS server)
For remote development, the system programmer must configure a Liberty JVM server within CICS TS
with the JCICSX server feature (cicsts:jcicsxServer-1.0) enabled. JCICSX supports remote
development for Liberty servlets:

1. Set up a Liberty JVM server in a development CICS region that the application will remotely
execute against. You are advised to set up a JVM server solely for the purpose of remote
development, so that the remoting JVM server and the actual application JVM servers can have
different configuration. Otherwise the configuration might conflict. For more information, see Set
up a Liberty JVM server.

2. Let the developer know the hostname and httpEndpoint port of this Liberty JVM server.

68 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_jvmserver_liberty.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_jvmserver_liberty.html

3. Add the cicsts:jcicsxServer-1.0 Liberty feature to the Liberty JVM server's server.xml
file:

<featureManager>
 <feature>cicsts:jcicsxServer-1.0</feature>
</featureManager>

4. Configure security for the remoting Liberty JVM server. See Configuring security for remote JCICSX
API development.

Extra configuration for remote development (local workstation)
Your local development environment must be configured to run your Java code locally and make
remote calls for JCICSX:

1. Provision a local Liberty server on your workstation to run your Java code.
2. Install the jcicsxClient-1.0 feature from the Liberty Feature Repository into your local Liberty

server.
3. Configure the server.xml file in your local Liberty server with the hostname and port of the

remote Liberty JVM server that your system programmer created, which contains the
cicsts:jcicsxServer-1.0 feature:

<usr_jcicsxClient serverUri="http://hostname:port"/>

If the Liberty JVM server for JCICSX is configured to use basic authentication, you can specify it as
something like this:

<usr_jcicsxClient serverUri="http://hostname:port">
 <basicAuthentication user="myUser"
password="{aes}ADwac72WXpSCr2YDUv3hHgjfOa0moXZDj626MmM4DbtT"/>
</usr_jcicsxClient>

In this example the user password is encrypted using the securityUtility tool that is provided in the
bin directory of the local Liberty server. For more information, see securityUtility command.

Importing the JCICSX dependency
The JCICSX API classes are available in CICS TS alongside the JCICS API in CICS TS V5.6 or later. You
can import JCICSX API classes from any of the following places:

1. The build path library supplied with the IBM CICS SDK for Java in IBM CICS Explorer for Aqua
V3.22 (Fix Pack 5.5.0.9) or later.

2. The com.ibm.cics:com.ibm.cics.jcicsx artifact in Maven Central.
3. The com.ibm.cics.jcicsx.jar file supplied with CICS in the USSHOME directory.

If you are using CICS Explorer to add a library to your project, JCICSX will automatically be available
as an API in your client. See Step 1 in “Creating a Dynamic Web Project” on page 75 to configure
your Dynamic Web project to target CICS TS.

If you are using Maven or Gradle, you must declare a dependency on com.ibm.cics.jcicsx. The API can
be obtained directly from Maven Central, or from locally hosted and approved repositories using tools
such as JFrog Artifactory or Sonatype Nexus.

If you don't have CICS Explorer, Maven, or Gradle installed, install any of them as described in
“Setting up your development environment” on page 24.

How to use JCICSX

After configuration is complete, you can start coding to the JCICSX API classes.

During unit testing, you can mock the JCICSX method calls on your workstation using familiar testing
frameworks.

2 Aqua refers to IBM Explorer for z/OS Aqua.

Chapter 2. Developing Java applications 69

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/security-jcicsx.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/security-jcicsx.html
https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/rwlp_command_securityutil.html
https://search.maven.org/artifact/com.ibm.cics/com.ibm.cics.jcicsx

When the Liberty JVM server is enabled for remote development, you can run the application code in your
local Liberty server to check how your code will behave when running in CICS or explore what information
is returned on the API commands, by making remote calls into a CICS region. When you run your
application within the local Liberty server, any JCICSX calls will automatically be redirected to your CICS
region. When your application is deployed to a JVM server running in a real CICS region, the same JCICSX
calls will be made directly against CICS.

Typical use cases of JCICSX are shown in “JCICSX examples” on page 71. For details of all JCICSX API
classes, see JCICSX Javadoc.

Best practices

If you're developing using JCICSX, you are advised to run your code in a local Liberty server on your
workstation. This can reduce issues around different applications conflicting with each other when
running in a shared JVM server in a CICS development region.

If you're planning to deploy applications to a Liberty JVM server running in CICS TS, see “Considerations
for a shared JVM” on page 39 for best practices.

Troubleshooting

You can use your Java IDE's debugger, console message, and error handling information to debug your
applications. You can also use the CEDX transaction to test your application program in CICS.

If an error occurs that relates to CICS, for example the Liberty JVM server or the CICS transaction, a
response (RESP) code is returned. The system programmer can use the Liberty server's traces and logs
for debugging. For more information, see Troubleshooting Java applications.

Appendices
Appendix 1. JCICSX API classes

The JCICSX API classes support a subset of the CICS functionality as follows. For details about each
class, see JCICSX Javadoc.

Table 12. JCICSX API classes

Classes Description

CICSContext The environment that the API is executing in. Entry
point to the JCICSX API.

Channel Create or delete a channel, or retrieve information
about the containers in it.

Container Create a container, retrieve information about a
container, get data from and put data into a
container, or delete a container.

ProgramLinker Link to a program.

Appendix 2. Mapping between JCICSX and EXEC CICS API commands

This table shows how JCICSX API methods map onto EXEC CICS API commands. Only methods that
have mapping relationships are listed.

70 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcicsx-javadoc/index.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/transactions/dfha7os.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/java/java_troubleshooting.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/jcicsx-javadoc/index.html

Table 13. Mapping between JCICSX and EXEC CICS API commands

Classes Methods EXEC CICS API commands

BITContainer
CHARContainer
WritableBITContainer
WritableCHARContainer
WritableContainer

append EXEC CICS PUT CONTAINER

put EXEC CICS PUT CONTAINER

Channel exists
getContainerCount

EXEC CICS QUERY CHANNEL

delete EXEC CICS DELETE CHANNEL

iterator EXEC CICS STARTBROWSE
CONTAINER

EXEC CICS GETNEXT
CONTAINER
EXEC CICS ENDBROWSE
CONTAINER

ChannelProgramLinker link EXEC CICS LINK PROGRAM

Container delete EXEC CICS DELETE
CONTAINER

getLength EXEC CICS GET CONTAINER

ProgramLinker link EXEC CICS LINK PROGRAM

ReadableBITContainer get EXEC CICS GET CONTAINER

read EXEC CICS GET CONTAINER

ReadableCHARContainerRead
ableContainer

get EXEC CICS GET CONTAINER

JCICSX examples
Examples using JCICSX API classes, as well as their JCICS equivalents, are provided to give a basic
understanding of how JCICSX can be used in typical use cases.

For more samples to play with, go to JCICSX samples in Github.

Setting up channels and containers

Example 1
The example shows how to set up a channel named XYZ with two containers:

• A CHAR container called CONT1 with the text scenarios in it.
• A BIT container called CONT2 with the content of the bytes byte array.

The JCICSX snippet shows the use of opinionated container types: the Java code is aware of the
difference between BIT and CHAR in containers, and different methods are available for each type.

Chapter 2. Developing Java applications 71

https://github.com/cicsdev/cics-java-jcicsx-samples

JCICSX JCICS

CICSContext task = CICSContext.getCICSContext();
Channel channel = task.getChannel("XYZ");
channel.getCHARContainer("CONT1").put("scenarios"
);
channel.getBITContainer("CONT2").put(bytes);

Task task = Task.getTask();
Channel channel = task.getChannel("XYZ");
channel.createContainer("CONT1").putString("scena
rios");
channel.createContainer("CONT2").put(bytes);

Linking to a program

Example 2
This example shows how to link to program ABC without passing any input.

JCICSX JCICS

CICSContext task =
CICSContext.getCICSContext();
task.createProgramLinker("ABC").link();

Task task = Task.getTask();
Program abcProgram = new Program();
abcProgram.setName("ABC");
abcProgram.link();

Example 3
This example shows how to link to program ABC with a channel named XYZ, passing a CHAR container
named CONT-IN with the text scenarios in it, then get the content of a CHAR container called CONT-
OUT and return it as a string.

The JCICSX snippet shows that JCICSX has convenient ways of calling common models: adding
containers, linking, and getting response data.

JCICSX JCICS

CICSContext task = CICSContext.getCICSContext();
return task
 .createProgramLinkerWithChannel("ABC",
task.getChannel("XYZ"))
 .setStringInput("CONT-IN", "scenarios")
 .link()
 .getOutputCHARContainer("CONT-OUT")
 .get();

Task task = Task.getTask();
Channel channel = task.createChannel("XYZ");
channel.createContainer("CONT-
IN").putString("scenarios");

Program abcProgram = new Program();
abcProgram.setName("ABC");
abcProgram.link();

return channel.getContainer("CONT-
OUT").getString();

Mocking
Example 4

The JCICSX API can be easily mockable. There are many mocking frameworks you can use; this JCICSX
example shows how to use Mockito to return some mocked contents of a container. Mocking out the CICS
calls enables you to independently unit test the logic of your application.

CICSContext task = Mockito.mock(CICSContext.class);
Channel channel = Mockito.mock(Channel.class);
CHARContainer container = Mockito.mock(CHARContainer.class);
Mockito.when(task.getChannel("ABC")).thenReturn(channel);
Mockito.when(channel.getCHARContainer("container")).thenReturn(container);
Mockito.when(container.get()).thenReturn("the contents of my container");

72 CICS TS for z/OS: Java Applications in CICS

Guidance for using OSGi
A number of considerations for developing OSGi applications.

Defining dependencies

When an OSGi bundle uses Java packages from another OSGi bundle, the interface between the two
bundles must be explicitly expressed. The bundle that uses the package must add the package to the
Import-Package statement in its manifest.mf. The bundle that provides the package must add the
package to the Export-Package statement in its manifest.mf. When both OSGi bundles are deployed
into the environment, the dependency can be resolved.

All packages that are used by an OSGi bundle, including JRE extensions such as javax.* must be
explicitly imported. This is the case even if the run time would otherwise find these packages through
other means such as bootdelegation. Assume that only the core java.* packages are available by
default.

There are alternative ways of expressing dependencies - in particular the bundle header Require-
Bundle. However, Require-Bundle is more coarse-grained and ties the consumer to a specific bundle.
Using Require-Bundle also prevents architectural flexibility and restricts the ability to version packages
independently.

JRE class visibility, bootdelegation, and system.packages.extra

In OSGi, loading of core JRE packages/classes (java.*) is always delegated to the bootstrap classloader.
It is assumed that there is only one JRE in the system, and so explicit dependency statements are not
required. For that reason, it is never necessary to add a java.* dependency to a bundle manifest.
However, for other parts of the JRE, application bundles that require these packages must code an
Import-Package statement; for example vendor-specific extensions javax.* com.sun.* and
com.ibm.* require an import. This is because they are not delegated to the bootstrap classloader and
instead treated as part of the OSGi system.

The OSGi framework provides a system bundle that exposes known extension packages to the system
automatically. The application bundle registers its dependency by including an Import statement, just as
for all other packages provided by OSGi bundles. The advantage of this approach is that extensions can be
replaced with newer implementations by installing an OSGi bundle that contains the new code.

An exception to this process is where a particular package is added to the bootdelegation list by using a
special OSGi property. Although convenient (as no Import statement is required to access these
packages), it restricts the flexibility of OSGi and is not considered best practice. Occasionally there are
vendor-specific extensions that aren't automatically added to the system bundle by the OSGi
implementation. For these cases, and assuming the package is genuinely available from the JRE, the
property -Dorg.osgi.framework.system.packages.extra can be used to add the packages to the
system bundle and allow application Imports to resolve.

Bundle activators

Bundle activators are classes within an OSGi bundle that implement the BundleActivator interface. To
use an activator, an OSGi bundle must declare it using the Bundle-Activator header in the bundle
manifest. The BundleActivator interface has start and stop methods that can be used to perform
initialization or termination work. A common pattern is to look up service dependencies for use within the
application. However, it is better to employ a component model, such as Declarative Services to activate
components and their service dependencies.

Singleton bundles

A singleton bundle is used to prevent any other version of a bundle being loaded in memory, there can be
only one resolved version in the run time at any point. The use of a singleton bundle can be desirable
where access to a single system resource is required from a set of applications.

Chapter 2. Developing Java applications 73

OSGi bundle fragments

Fragments are OSGi bundles that are dynamically attached to host bundles by the OSGi framework. They
share the class loader for their host bundle, and do not participate in the lifecycle of the bundle - for that
reason they do not support bundle activators. Common use-cases for fragments are as bundle patches. A
fragment provided ahead of . on the Bundle-ClassPath allows classes to be preferentially loaded from
the fragment instead of the host.

OSGi service registry

The OSGi service registry enables a bundle to publish objects to a shared registry. A service is advertised
under a Java interface and made available to other bundles installed in the OSGi environment.

Microservices (μServices)

Microservices are a software architecture style in which complex applications are composed of small,
independent components which communicate with each other using language-agnostic APIs. These
services are small, highly decoupled, and focus on doing a small task, facilitating a modular approach to
system building. The use of μServices between OSGi components provides flexibility and dynamic update
capabilities that cannot be achieved by using bundle wiring alone. For this reason, the use of μServices is
encouraged over bundle-wiring.

Bundle and package versioning

A favored approach to package versioning in OSGi is the semantic versioning model. Given a version
number MAJOR.MINOR.PATCH, increment the:

1. MAJOR version when you make incompatible API changes
2. MINOR version when you add functionality that is compatible with an earlier version
3. PATCH version when you make bug fixes that are compatible with an earlier version

Execution environment

Execution environments (EEs) are symbolic representations of JREs, for example:

Bundle-RequiredExecutionEnvironment: JavaSE-1.7

You need to use the lowest version of EE that gives you all the features you require. When creating a new
OSGi bundle, the most recent actively maintained Java execution environment is usually adequate - only
if a specialized application requires a lower version would you set it at a lower level. When a particular EE
is chosen, it must be left alone unless there is a clear advantage to moving up. Increasing the version of
your EE can create more work with no real value, such as exposing your code to new warnings, and
deprecations.

Developing Java applications to run in a Liberty JVM server
Configure the Liberty JVM server to run a web container if you want to deploy Java EE applications that
use WebSphere Application Server Liberty.

Java EE and Liberty applications
To provide modern interfaces to CICS applications, you can develop a presentation layer that uses web
application technology. You can use the IBM CICS SDK for Java in CICS Explorer or the CICS-provided
artifacts on Maven Central to create, package, and build the applications. The IBM CICS SDK for Java EE,
Jakarta EE and Liberty, which is optionally installed with CICS Explorer, also provides support to deploy
the application to run in CICS.

About this task

Three types of web application projects can be deployed on a Liberty server:

74 CICS TS for z/OS: Java Applications in CICS

• Dynamic Web Project (WAR)
• OSGi Application Project (EBA)
• Enterprise Application Project (EAR)

A WAR can contain dynamic Java EE resources such as Liberty in CICS, filters, and associated metadata,
in addition to static resources such as images and HTML files.

An EBA is a Java archive file that can contain WABs and OSGi bundles. WABs are web-enabled OSGi
bundles that contain JSP servlets and files, filters, and associated metadata, in addition to static
resources such as images and HTML files.

An EAR is a way of organizing WAR and EJB modules into a single container in the same way as an EBA
organizes WABs and OSGi bundles.

Creating a Dynamic Web Project
To develop a web presentation layer for your Java application, you can create a Dynamic Web Project.

Before you begin

Ensure that you have set up the development environment.

A restriction added by Liberty, prevents access to OSGi bundles from servlets that are deployed in a WAR
file. The restriction includes access to OSGi bundles installed directly in a CICS bundle. To overcome this
restriction, you must deploy your application as a WAB, as part of an EBA (OSGi Application Project). An
EBA is a container in which web and OSGi components can interact.

About this task

If you are using the IBM CICS SDK for Java, you can refer to the CICS Explorer and IBM CICS SDK for Java
help, which provides full details on how you can complete each of the following steps to develop and
package web applications.

If you are using a build toolchain such as Apache Maven or Gradle, you can use CICS-provided artifacts on
Maven Central to define Java dependencies.

To help you find instructions applicable to your case, the relevant steps for each tool are indicated using
the following logos or icons.

Chapter 2. Developing Java applications 75

Apache Maven Gradle IBM CICS SDK for Java

76 CICS TS for z/OS: Java Applications in CICS

Procedure

1. Create a web project for your application.

• If you're using the IBM CICS SDK for Java, create a Dynamic Web Project and update your
build path to add the Liberty libraries.

a. Right-click the Dynamic Web Project and click Build Path > Configure Build Path. The
properties dialog opens for the project.

b. In the Java Build Path, click the Libraries tab.
c. Click Add Library and select CICS with Java EE and Liberty.
d. Click Next, select the CICS version, then click Finish to complete adding the library.
e. Click OK to save your changes.

•
For Maven users, create a Maven project. In the pom.xml file, specify <packaging>war</
packaging> and declare dependencies on CICS-provided artifacts. If you are unfamiliar with
Maven, you can start with the maven-archetype-webapp archetype and modify it.

• For Gradle users, create a Gradle project. In the build.gradle file, specify the following
and declare dependencies on CICS-provided artifacts.

plugins {
 id 'war'
}

2. Develop your web application. You can use the JCICS API to access CICS services, JDBC to access
DB2 and JMS to access IBM MQ. The IBM CICS SDK for Java EE, Jakarta EE and Liberty includes
examples of web components that use JCICS and JDBC.

3. Optional: If you want to secure the application with CICS security, create a web.xml file in the
Dynamic Web Project to contain a CICS security constraint. The IBM CICS SDK for Java EE, Jakarta EE
and Liberty includes a template for this file that contains the correct information for CICS. See
Authenticating users in a Liberty JVM server for further information.

4. Create one or more CICS bundle projects to package your application. Add definitions and imports for
CICS resources. Each CICS bundle contains an ID and version so you can manage changes in a
granular way.

5. Optional: Add a URIMAP and TRANSACTION resource to a CICS bundle if you want to map inbound
web requests from a URI to run under a specific transaction. If you do not define these resources, all
work runs under a supplied transaction, which is called CJSA. These resources are installed
dynamically and managed as part of the bundle in CICS.

Results
You set up your development environment, created a web application from a Dynamic Web Project, and
packaged it for deployment.

What to do next
When you are ready to deploy your application, export the CICS bundle projects to zFS. The referenced
projects are built and included in the transfer to zFS. Alternatively, you can follow the Liberty deployment
model by exporting the application as a WAR and deploying it to the dropins directory of a running Liberty
JVM server.

Chapter 2. Developing Java applications 77

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/cics_license_jars.html
https://search.maven.org/search?q=a:maven-archetype-webapp
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/cics_license_jars.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/auth_use_app.html

Creating an OSGi Application Project
An OSGi Application Project (EBA) groups together a set of bundles. The application can consist of
different OSGi bundles types.

Before you begin
Ensure that you have set up the development environment.

About this task

If you are using the IBM CICS SDK for Java, you can refer to the CICS Explorer and IBM CICS SDK for Java
help, which provides full details on how you can complete each of the following steps to develop and
package OSGi applications.

If you are using a build toolchain such as Apache Maven or Gradle, you can use CICS-provided artifacts on
Maven Central to define Java dependencies.

To help you find instructions applicable to your case, the relevant steps for each tool are indicated using
the following logos or icons.

78 CICS TS for z/OS: Java Applications in CICS

Apache Maven Gradle IBM CICS SDK for Java

Chapter 2. Developing Java applications 79

Procedure

1.
If you're using the IBM CICS SDK for Java, set up a target platform for your Java development, using
the CICS TS 5.6 with Java EE and Liberty template. You might get a warning that the target is a newer
version than the current Eclipse installation, but you can ignore this warning message.

2. Create an OSGi Bundle Project for your application.

• If you're using the IBM CICS SDK for Java, the target platform effectively makes the packages
available, so you must include the appropriate Import statements in the bundle manifest. A web-
enabled OSGi Bundle Project is the bundle equivalent of a Dynamic Web Project. You can use a
web-enabled OSGi Bundle Project to deploy an application within an OSGi Application Project (an
Enterprise Bundle Archive, or EBA file). You can mix web-enabled OSGi Bundle Projects (WAB files)
and non-web-enabledOSGi Bundle Projects in your OSGi Application Project. A web-enabled OSGi
Bundle Project would typically implement the front end of the application, and interact with the
non-web OSGi bundles, which contain the business logic.

Restriction: EBA files are not supported in Java EE 8.

•
For Maven users, create a Maven project. In the pom.xml file, specify <packaging>bundle</
packaging> and the following dependency:

<dependency>
 <groupId>net.wasdev.maven.tools.targets</groupId>
 <artifactId>liberty-target</artifactId>
 <version><your_liberty_version></version>
 <type>pom</type>
 <scope>provided</scope>
</dependency>

Instead of specifying the dependency above, you can start with an OSGi bundle archetype, for
example, the osgi-web31-liberty artifact, and modify it. Then declare dependencies on CICS-
provided artifacts.

• For Gradle users, create a Gradle-enabled OSGi project using the BND Gradle Plugins, and
then declare dependencies on CICS-provided artifacts.

3. Develop your web application. You can use the JCICS API to access CICS services and JDBC to
connect to Db2. The IBM CICS SDK for Java includes examples of web components and OSGi bundles
that use JCICS and Db2. Create OSGi bundles that use JCICS to separate the business from the
presentation logic. You can also use semantic versioning in OSGi bundles to manage updates to the
business logic of the application. For each WAB or OSGi bundle that uses Db2 through the JDBC
DriverManager interface, include an Import-Package header for com.ibm.db2.jcc in the bundle
manifest. Omitting this import will result in the error message java.sql.SQLException: No
suitable driver found for jdbc:default:connection. The import is not required when
using the JDBC DataSource interface.

4. Optional: If you want to authenticate users of the web application, create a web.xml file in the web
project to contain a security constraint. The IBM CICS SDK for Java includes a template for this file
that contains the correct information for CICS. See Authenticating users in a Liberty JVM server for
further information.

5. Create an OSGi Application Project that references your OSGi bundles.
6. Create a CICS bundle project that references the OSGi Application Project. You can also add

definitions and imports for CICS resources. Each CICS bundle contains an ID and version so you can
manage changes in a granular way.

7. Optional: Add a URIMAP and TRANSACTION resource to a CICS bundle if you want to map inbound
web requests from a URI to run under a specific transaction. If you do not define these resources, all
work runs under a supplied transaction, which is called CJSA. These resources are installed
dynamically and managed as part of the bundle in CICS.

80 CICS TS for z/OS: Java Applications in CICS

https://search.maven.org/search?q=a:osgi-web31-liberty
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/cics_license_jars.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/cics_license_jars.html
https://github.com/bndtools/bnd/blob/master/biz.aQute.bnd.gradle/README.md
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/cics_license_jars.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/auth_use_app.html

Results
You set up your development environment, created a OSGi web application, and packaged it for
deployment.

What to do next
When you are ready to deploy your application, export the CICS bundle projects to zFS. The referenced
projects are built and included in the transfer to zFS. Alternatively, you can follow a development
deployment model by exporting the application as an EBA file and deploying it to the dropins directory of
a running Liberty JVM server. You should be aware that Security and other qualities of service are not
configurable using dropins.

Creating an Enterprise Application Project
To develop components such as an Enterprise Java Bean module (EJB module) or to group web projects,
EJBs, or both together, you can use an Enterprise Application Project.

Before you begin
Ensure that the web development tools are installed in your Eclipse IDE. For more information, see
“Setting up your development environment” on page 24.

About this task

If you are using the IBM CICS SDK for Java, you can refer to the CICS Explorer and IBM CICS SDK for Java
help, which provides full details on how you can complete each of the following steps to develop and
package Enterprise Applications.

If you are using a build toolchain such as Apache Maven or Gradle, you can use CICS-provided artifacts on
Maven Central to define Java dependencies.

To help you find instructions applicable to your case, the relevant steps for each tool are indicated using
the following logos or icons.

Chapter 2. Developing Java applications 81

Apache Maven Gradle IBM CICS SDK for Java

82 CICS TS for z/OS: Java Applications in CICS

Procedure

1. Create a project for your application.

• If you're using IBM CICS SDK for Java, create an Enterprise Application Project.

•
For Maven users, create a Maven project. In the pom.xml file, specify <packaging>ear</
packaging> and declare dependencies on CICS-provided artifacts.

• For Gradle users, create a Gradle project. In the build.gradle file, specify the following
and declare dependencies on CICS-provided artifacts.

plugins {
 id 'ear'
}

2. Develop the components of your application. These components are typically EJB modules and
Dynamic Web Projects. Add the components to your Enterprise Application Project.
For more information, see Creating an Enterprise JavaBeans (EJB) project.

3. Create one or more CICS bundle projects to package your Enterprise Application. Add definitions and
imports for CICS resources. Every CICS bundle contains an ID and version so you can manage changes
in a granular way.

4. Optional: Add a URIMAP and TRANSACTION resource to a CICS bundle if you want to map inbound
web requests from a URI to run under a specific transaction. If you do not define these resources, all
work runs under a supplied transaction, which is called CJSA. These resources are installed
dynamically and managed as part of the bundle in CICS.

Results
You set up your development environment, created an Enterprise Application Project, and packaged it for
deployment.

What to do next
When you are ready to deploy your application, export the CICS bundle projects to zFS. The referenced
projects are built and included in the transfer to zFS. Alternatively, you can follow the Liberty deployment
model by exporting the application as a EAR and deploying it with an <application> element, or
placing it in the drop-ins directory of a running Liberty JVM server.

Creating a URI map and transaction
You can install applications resources through traditional methods such as CSD or BAS, or you can add
application resources to CICS bundles. CICS bundles provide a convenient and co-located technique to
group application code and CICS resources together. This is useful if, for example, you deploy a Java EE
application in a CICS bundle. You might want to provide a URI map that maps the inbound web requests
to run under a specific application transaction.

Before you begin
To create the application resources, you must have a CICS bundle project in your Project Explorer. For
more information, see Creating a CICS bundle project in the CICS Explorer product documentation. You
use this CICS bundle project to package the application for deployment.

About this task
By default all Java EE application requests use a transaction that is called CJSA that is supplied by CICS.
However, you can map the application URI from an inbound request to a different transaction. You might
find this feature useful if you want to securely control access to the application because a security
administrator can configure CICS to control which transactions are accessed by users.

Chapter 2. Developing Java applications 83

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/cics_license_jars.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/cics_license_jars.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/developing_ejb.html
https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.5.0/com.ibm.cics.core.help/topics/tasks/create_bundle.html

Procedure

1. Create a definition for the application transaction:
a) Switch to the Eclipse Resource perspective. Right-click the CICS bundle project and click New >

Transaction Definition.
The New Transaction Definition wizard opens.

b) Enter a 4-character name for the transaction.
Do not start the transaction name with C because this letter is reserved by CICS.

c) Enter the program name DFHSJTHP.
You must use this CICS program because it handles the security checking of inbound Java EE
requests to the Liberty server.

d) Click Finish to create the definition in the CICS bundle project.
Do not set attributes to create a remote transaction because the application transaction must always
run in the CICS region where the Java EE application is running.

2. Create a definition for the URI map:
a) Right-click the CICS bundle project and click New > URI Map Definition.
b) Enter an 8-character name for the URI map.

Do not start URI maps names with DFH because this prefix is reserved by CICS.
c) Enter the host name.

You can either use a * to match any host name, or specify the host name of the machine where
your application is going to run.

d) Enter the path for the application URI.
CICS matches the URI in the inbound request to the value in the URI map and runs the application
transaction.

e) In the Usage section, select JVM Server and optionally enter the port number.
f) Click Finish to create the URI map.

3. Edit the URI map definition:
a) Edit the Scheme field to enter the scheme for the URI map. HTTP is the default, but you can set

HTTPS if you want to use SSL security to encrypt the request.
You can use basic authentication, where a user ID and password are supplied in the HTTP header,
on both HTTP and HTTPS requests.

b) Edit the Transaction field to enter the name of the application transaction.
c) Optional: Edit the user ID field to enter a user ID to run the application request.

This value is ignored if basic authentication is enabled. If you do not supply a value and the HTTP
request does not include a user ID and password, CICS runs the request under the default user ID
of the CICS region.

Results
You created a URI map and a transaction in the CICS bundle project. When the bundle is deployed and
installed, these resources are created dynamically in the CICS region.

What to do next
You can create extra resources if you want to run different application operations under different
transactions, or if you want to support both HTTP and HTTPS schemes. If your application is ready to
deploy, see Deploying a CICS bundle in the CICS Explorer product documentation.

84 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.5.0/com.ibm.cics.core.help/topics/tasks/task_deploy_bundle_project.html

Migrating Java EE applications to run in Liberty JVM server
If you have a Java EE application running in a Liberty instance that accesses CICS over a network, you can
run the application in a Liberty JVM server to optimize performance.

About this task
CICS supports a subset of the features that are available in Liberty. For a list of supported features in
CICS integrated-mode Liberty, see “Liberty features” on page 140.

If your application uses security, you can continue to use Liberty security features however without
further action it is possible that the CICS task will run under transaction CJSA, URIMAP matching in CICS
will not be available and any resource access will be performed under the CICS default user ID. To better
integrate your security solution with CICS, allowing your CICS tasks to run under the same user ID as
determined by Liberty, see Authenticating users in a Liberty JVM server.

Procedure

1. Update the application to use the JCICS API to access CICS services directly, ensuring that the correct
JCICS encoding is used when the application passes data to and from CICS.
For more information about encoding, see “Data encoding” on page 43. This step only applies if you
are using CICS integrated-mode Liberty or CICS standard-mode Liberty with the runAsCICS() API.

2. If you want to use CICS security for basic authentication, update the security constraint in the
web.xml file of the Dynamic Web Project to use a CICS role for authentication. This step only applies if
you are using CICS integrated-mode Liberty or CICS standard-mode Liberty and submitting work to
the CICSExecutorService using the runAsCICS() method.

<auth-constraint>
 <description>All authenticated users of my application</description>
 <role-name>cicsAllAuthenticated</role-name>
</auth-constraint>

3. Package the application as a WAR (Dynamic Web Project), an EBA (OSGi Application Project) file or an
EAR (Enterprise Application Archive) file, in a CICS bundle.

Restriction: EBA files are not supported in Java EE 8.

CICS bundles are a unit of deployment for an application. All CICS resources in the bundle are
dynamically installed and managed together. Create CICS bundle projects for application components
that you want to manage together.

4. Deploy the CICS bundle projects to zFS and install the CICS bundles in the Liberty JVM server.

Results
The application is running in a JVM server.

Linking to a Java EE or Spring Boot application from a CICS program
You can link to a Java EE or Spring Boot application running in a Liberty JVM server either as the initial
program of a CICS transaction, or by using the LINK, START, or START CHANNEL commands from any
CICS program.

To be linked to by a CICS program, a Java EE application is required to be a plain Java object (POJO)
packaged in a Web ARchive (WAR) or Enterprise Application Archive (EAR). A Spring Boot application can
be packaged in a WAR or a Java Archive (JAR). You cannot link to an EJB, a CDI bean, or an OSGi
application. Dependency injection in the POJO is not supported, including injecting EJBs using @EJB.
Instead, you can use a JNDI lookup to obtain a reference to a resource such as an EJB. This information
applies to CICS integrated-mode Liberty only. In a Spring Boot application, injection using an annotation
such as @Autowired is fully supported.

There are three main reasons for linking to a Java application from a CICS program:

• Java code is part of an existing web application and you want to link it to a CICS application. You only
need to maintain a single piece of logic and your code can access CICS resources by using JCICS APIs.

Chapter 2. Developing Java applications 85

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/auth_use_app.html

• You want to write a new piece of function in Java as part of your CICS application. For example, you
might want to use third party libraries or APIs that already exist in Java.

• You want to re-implement existing COBOL applications in Java. For example, you might want to reduce
the cost of maintenance and make the most of your Java skills, or you might want your applications to
be eligible to run on specialty engines rather than general processors.

When you link to a Java application from a CICS program, CICS sends a message to a JCA resource
adapter running inside Liberty. The JCA resource adapter links to the target Java application on the same
CICS task as the calling program. The Java application runs under the same unit-of-work (UOW) as the
calling program, so any updates made to recoverable CICS resources are committed or backed out when
the transaction ends. However, when the Java application is invoked, there is no JTA transaction context.
If the application starts a JTA transaction, a syncpoint is performed to commit the CICS UOW, and create
a new one. This also occurs if a JTA transaction is started by the container on behalf of the application, for
example if the application calls an EJB with the REQUIRED transaction attribute.

As best practice, the code that is linked by the CICS program should be part of your application's business
logic (rather than presentation logic). For example, it would not make sense to link a servlet from a CICS
program because no HTTP request is involved.

Configuring a Liberty JVM server to link from CICS programs to Java EE or Spring Boot applications

To configure your Liberty JVM server to support linking to Java EE or Spring Boot applications, add the
cicsts:link-1.0 feature to server.xml. Ensure that you add the feature before deploying the Java
applications.

Security

When you link to Spring Boot application from a CICS program, the CICS user ID is not passed to Spring
security.

When you link to a Java EE application from a CICS program, the user ID of the CICS task is passed into
the Java EE application. Liberty does not authenticate the user, but trusts the identity that is passed in by
CICS. However, Liberty does check that the user ID is present in the configured user registry. Where
possible, use the SAF registry in Liberty because it checks the user ID passed in from CICS. If you are
using another type of user registry other than the SAF registry, and the same user ID is present in the
registry, then that user ID will be passed to the Java EE application. If the user ID is not present in the
user registry the Java EE application is linked with the unauthenticated user ID.

To configure security when you are linking a Java EE application, include the cicsts:security-1.0
feature in your server.xml. If you do not include this feature, the Java EE application is linked without
being authenticated. As a result, any authorization checks in your Java EE applications might not apply.
However, access to any CICS resources by using the JCICS API still runs under the user ID of the CICS
task.

The following web security mechanisms do not apply when you are linking a Java EE application to a CICS
program:

• Java EE web security mechanisms. For example: <auth-constraint> in web.xml or
@HttpConstraint on a servlet.

• Trust Association Interceptors (TAIs).
• The JVM server profile property com.ibm.cics.jvmserver.unclassified.userid.
• URIMAPs.

The Java EE application can perform additional authorization checks by calling an EJB and applying EJB
security. For example, authorization can be applied to session bean methods using the @RolesAllowed
annotation. For more information about EJB security, see The Java EE Tutorial.

For more information about security in Liberty see Configuring security for a Liberty JVM server.

86 CICS TS for z/OS: Java Applications in CICS

https://docs.oracle.com/javaee/7/tutorial/security-javaee002.htm#BNBYL
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/security_liberty.html

Preparing a Java EE application to be called by a CICS program
Use annotations to enable a Java method to be invoked by a CICS application. CICS creates a PROGRAM
resource for you. The Java EE application runs in a Liberty JVM server, and can be deployed within a WAR
or EAR.

Before you begin
Identify which Java class and method you want to call, and adhering to site standards and CICS naming
rules, determine a suitable CICS program name.

Make sure that the Liberty JVM server is configured to enable linking to Java EE applications. For more
information, see Linking to a Java EE or Spring Boot application from a CICS program.

To help you find instructions applicable to your case, the relevant steps for each tool are indicated using
the following logos or icons.

Chapter 2. Developing Java applications 87

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/link_2_liberty.html

Apache Maven Gradle IBM CICS SDK for Java

88 CICS TS for z/OS: Java Applications in CICS

Procedure

1. Add the @CICSProgram annotation class to the classpath of your Web Project.

• If you are using the preinstalled IBM CICS SDK for Java in CICS Explorer, the SDK includes
the Liberty JVM server libraries, which provide the @CICSProgram annotation.

•

If you're using your own build toolchain, you need to declare dependence on the
com.ibm.cics.server.invocation.annotations artifact that's available on Maven Central
or use the com.ibm.cics.server.invocation.annotations.jar JAR file as described in
Developing applications using Maven or Gradle.

2. Create a class to contain the methods that CICS calls.
Creating a class is good practice because it keeps the CICS specific code separate from the rest of
your application.

3. Create a method for each CICS PROGRAM resource to be created.
4. Annotate each method with the @CICSProgram annotation, giving it a parameter of the PROGRAM

name, such as @CICSProgram("PROGNAME").

CICS PROGRAM names:

• Must be 1 - 8 characters;
• Must match the pattern A-Z a-z 0-9 $ @ #.

Example of a simple class with a single method, annotated with the @CICSProgram annotation:

public class CustomerLinkTarget
{
 @CICSProgram("CUSTGET")
 public void getCustomer()
 {
 // do work here
 }
}

5. Enable annotation processing for the Web Project.

• If you are using CICS Explorer, either:

– Hover over a @CICSProgram annotation with a warning underline and use the quick-fix to
enable annotation processing, or:

– Right-click the Web Project and select Properties. Search for the Annotation Processing page.
Check both Enable project-specific settings and Enable annotation processing.

•

If you're using a build toolchain such as Maven or Gradle, configure the Java compiler to use
com.ibm.cics.server.invocation as an annotation processor, as described in Developing
applications using Maven or Gradle.

6. Validate the annotation is correctly specified.

• If you are using CICS Explorer, validation happens automatically to ensure that your
annotation is correctly positioned and that the method that it annotates and the containing class
fulfills the following requirements.

Chapter 2. Developing Java applications 89

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/cics_license_jars.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/cics_license_jars.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/cics_license_jars.html

•
If you're using Maven in Eclipse, you can use the m2e-apt plugin to get the annotation processing
configured in Eclipse based on the dependencies specified in your pom.xml file.

The annotation:

• Must be on a method;
• Must have a value attribute of a PROGRAM name.

The method:

• Must be concrete (not abstract);
• Must be public;
• Must have no arguments;
• Must be declared void.

The class:

• Must have a constructor with no arguments (implicit or explicit), unless all annotated methods are
static;

• Must be top level (not nested or anonymous);
• Must not have more than one method that is annotated with the same PROGRAM name.

7. Write the content of the annotated method. The content is likely to involve the following stages:
a) Obtain containers from the channel;
b) Obtain input data from containers in a channel;
c) Use data mapping code to convert the input data to Java objects;
d) Call the application business logic;
e) Use data mapping code to convert the resulting Java objects to output data;
f) Place the output data in containers in a channel.

Example of a class with a single method, annotated with the @CICSProgram annotation, and code to
take input data from a container and put output data to a container:

public class CustomerLinkTarget
{
 @CICSProgram("CUSTGET")
 public void getCustomer()
 {
 Channel currentChannel = Task.getTask().getCurrentChannel();
 Container dataContainer = currentChannel.getContainer("DATA");

 // do work here

 Container resultContainer = currentChannel.createContainer("RESULT");
 byte[] results = null; // change this to be the result of the work
 resultContainer.put(results);
 }
}

8. Build the application.

• If you are in CICS Explorer , you can right-click the Web Project and select Export -> WAR file ,
or right-click a containing CICS Bundle Project and select Export Bundle to z/OS UNIX file system.

• If you are using the CICS build toolkit, the annotation processor is invoked automatically.

•

 If you are building the Java code by using other tools, ensure that the dependency on the CICS
annotation and the annotation processor configuration are correctly specified by using the artifacts
on Maven Central. If you've done that in Steps “1” on page 89 and “5” on page 89, they are resolved
automatically during build. Otherwise, you must ensure the

90 CICS TS for z/OS: Java Applications in CICS

https://marketplace.eclipse.org/content/m2e-apt

com.ibm.cics.server.invocation.annotations.jar JAR file (which defines the
@CICSProgram annotation) is on the classpath of the Java compiler. Also, ensure that the
com.ibm.cics.server.invocation.jar JAR file (containing the annotation processor) is on
the classpath of the Java compiler, or is otherwise specified in the -processorpath option. You
can find both JAR files in the usshome /lib directory on z/OS UNIX , where usshome is the value
of the USSHOME system initialization parameter.

• If the class is packaged in a library JAR inside the WEB-INF/lib directory of a WAR file, export the
generated metadata when you are building the JAR. In CICS Explorer , you can do this by adding the
library project to the deployment assembly of the Dynamic Web Project. From the properties dialog
for the Dynamic Web Project, choose the Deployment Assembly page, click the Add button, and
select the library project. CICS does not support @CICSProgram annotations on classes that are
packaged in a utility JAR within an EAR file.

9. Deploy the application.

Results
If the application is installed by a CICS bundle, PROGRAM resources are created as the CICS bundle
becomes ENABLED. If the application is installed directly from server.xml or from a file by using an
<application> element; PROGRAM resources are created as the application is installed.

You can now link to the Java program from another CICS program by using:

EXEC CICS LINK PROGRAM("CUSTGET") CHANNEL()

Preparing a Spring Boot application to be called by a CICS program
Use annotations to enable a Java method to be invoked by a CICS application. CICS creates a PROGRAM
resource for you. The Spring Boot application runs in a Liberty JVM server, and can be deployed within a
JAR or WAR.

Before you begin
Identify which Java class and method you want to call, and adhering to site standards and CICS naming
rules, determine a suitable CICS program name.

Make sure that the Liberty JVM server is configured to enable linking to Spring Boot applications. For
more information, see Linking to a Java EE or Spring Boot application from a CICS program.

To help you find instructions applicable to your case, the relevant steps for each tool are indicated using
the following logos or icons.

Chapter 2. Developing Java applications 91

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/link_2_liberty.html

Apache Maven Gradle IBM CICS SDK for Java

92 CICS TS for z/OS: Java Applications in CICS

Procedure

1. Add the @CICSProgram annotation class to the classpath of your project.

• If you are using the preinstalled IBM CICS SDK for Java in CICS Explorer, the SDK includes
the Liberty JVM server libraries, which provide the @CICSProgram annotation.

•

If you're using your own build toolchain, you need to declare dependence on the
com.ibm.cics.server.invocation.annotations artifact that's available on Maven Central
or use the com.ibm.cics.server.invocation.annotations.jar JAR file as described in
Developing applications using Maven or Gradle.

2. Create a class to contain the methods that CICS calls. Creating a class keeps the CICS-specific code
separate from the rest of your application.

3. Create a method for each CICS PROGRAM resource to be created.
4. Annotate each method with the @CICSProgram annotation, giving it a parameter of the PROGRAM

name, such as @CICSProgram("CUSTGET").

CICS PROGRAM names:

• Must be 1 - 8 characters;
• Must match the pattern A-Z a-z 0-9 $ @ #.

Example of a simple class with a single method, annotated with the @CICSProgram annotation:

@Component
public class CustomerLinkTarget
{
 @CICSProgram("CUSTGET")
 public void getCustomer()
 {
 // do work here
 }
}

Add targetType = TargetType.SPRINGBEAN if your class does not contain @Service,
@Repository, @Controller, or @Component annotations.

public class CustomerLinkTarget
{
 @CICSProgram(value ="CUSTGET", targetType = TargetType.SPRINGBEAN)
 public void getCustomer()
 {
 // do work here
 }
}

5. Enable annotation processing for the project.

• If you are using CICS Explorer, either:

– Hover over a @CICSProgram annotation with a warning underline and use the quick-fix to
enable annotation processing, or:

– Right-click the project and select Properties. Search for the Annotation Processing page.
Check both Enable project-specific settings and Enable annotation processing.

•

If you're using a build toolchain such as Maven or Gradle, configure the Java compiler to use
com.ibm.cics.server.invocation as an annotation processor, as described in Developing
applications using Maven or Gradle.

Chapter 2. Developing Java applications 93

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/cics_license_jars.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/cics_license_jars.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/cics_license_jars.html

6. Validate the annotation is correctly specified.

• If you are using CICS Explorer, validation happens automatically to ensure that your
annotation is correctly positioned and that the method that it annotates and the containing class
fulfills the following requirements.

•
If you're using Maven in Eclipse, you can use the m2e-apt plugin to get the annotation processing
configured in Eclipse based on the dependencies specified in your pom.xml file.

The annotation:

• Must be on a method.
• Must have a value attribute of a PROGRAM name.

The method:

• Must be concrete (not abstract).
• Must be public.
• Must have no arguments.

The class:

• Must be top level (not nested or anonymous).
• Must not have more than one method that is annotated with the same PROGRAM name.

7. Write the content of the annotated method. The content is likely to involve the following stages:
a) Obtain containers from the channel.
b) Obtain input data from containers in a channel.
c) Use data-mapping code to convert the input data to Java objects.
d) Call the application business logic.
e) Use data mapping code to convert the resulting Java objects to output data.
f) Place the output data in containers in a channel.

Example of a class with a single method, annotated with the @CICSProgram annotation, and code to
take input data from a container and put output data to a container:

@Component
public class CustomerLinkTarget
{
 @CICSProgram("CUSTGET")
 public void getCustomer()
 {
 Channel currentChannel = Task.getTask().getCurrentChannel();
 Container dataContainer = currentChannel.getContainer("DATA");

 // do work here

 Container resultContainer = currentChannel.createContainer("RESULT");
 byte[] results = null; // change this to be the result of the work
 resultContainer.put(results);
 }
}

8. Ensure that the generated CICS proxy class is scanned for annotations by Spring.
The CICS annotation processor generates a proxy class (a Spring bean) which needs to be scanned
for annotations by the Spring framework. If you use the @SpringBootApplication annotation within
the same package or a parent package, this happens automatically.
The annotation processor generates the proxy class in a sub-package within the same package as the
class in which you annotate with @CICSProgram. You can check these in the Navigator view in CICS
Explorer.

94 CICS TS for z/OS: Java Applications in CICS

https://marketplace.eclipse.org/content/m2e-apt

In this example, the class with the @CICSProgram annotation is in the package
springboot.link.app.ui.cics, and the annotation processor generates the proxy class in
springboot.link.app.ui.cics.cics.proxy

If you are not already using annotations, you must explicitly configure Spring to scan for annotations:
a) Add component scan to your Spring component class.

@ComponentScan(basePackages = "org.example.cics.proxy")

If you are using XML configuration, you can enable component scan with:

<context:component-scan base-package="org.example.cics.proxy"/>

9. Build the application.

• If you are in CICS Explorer, you can right-click the project and select Export -> WAR file , or
right-click a containing CICS Bundle Project and select Export Bundle to z/OS UNIX file system.

• If you are using the CICS build toolkit, the annotation processor is invoked automatically.

•

 If you are building the Java code by using other tools, ensure that the dependency on the
CICS annotation and the annotation processor configuration are correctly specified by using the
artifacts on Maven Central. If you've done that in Steps “1” on page 93 and “5” on page 93, they
are resolved automatically during build. Otherwise, you must ensure the
com.ibm.cics.server.invocation.annotations.jar JAR file (which defines the
@CICSProgram annotation) is on the classpath of the Java compiler. Also, ensure that the
com.ibm.cics.server.invocation.jar JAR file (containing the annotation processor) is on
the classpath of the Java compiler, or is otherwise specified in the -processorpath option. You
can find both JAR files in the usshome /lib directory on z/OS UNIX , where usshome is the value
of the USSHOME system initialization parameter.

• If the class is packaged in a library JAR inside the WEB-INF/lib directory of a WAR file, export the
generated metadata when you are building the JAR. In CICS Explorer , you can do this by adding
the library project to the deployment assembly of the Dynamic Web Project. From the properties
dialog for the Dynamic Web Project, choose the Deployment Assembly page, click the Add button,
and select the library project.

10. Deploy the application.

Results
If the application is installed by a CICS bundle, PROGRAM resources are created as the CICS bundle
becomes ENABLED. If the application is installed directly from server.xml or from a file by using an
<application> element, PROGRAM resources are created as the application is installed.

Chapter 2. Developing Java applications 95

You can now link to the Spring Boot application from another CICS program by using:

EXEC CICS LINK PROGRAM("CUSTGET") CHANNEL()

Program Lifecycle
When a Java EE application is installed into Liberty the cicsts:link-1.0 feature searches for methods
that are annotated with @CICSProgram . For each one, it dynamically installs a PROGRAM resource. If a
Java EE application is installed into Liberty by using a CICS bundle, the PROGRAM resources are created
when the bundle is enabled. Otherwise, PROGRAM resources are created when Liberty installs the
application.

When an application is removed, CICS deletes any dynamically installed PROGRAM resources that are
associated with that application. If the application was installed by using a CICS bundle, CICS deletes the
programs when the bundle is disabled. If an application is removed while tasks that invoke the
application are still in progress, errors might occur. Therefore, disable any PROGRAM resources that are
associated with a Java EE application and allow work to drain before you remove the application.
Otherwise, programs are deleted when Liberty uninstalls the application.

In most cases, you do not need to create your own PROGRAM definition. You might want to create your
own PROGRAM definition if you do not want CICS to create one for you automatically, or if you want to
specify particular attributes. To create a private program as part of a CICS application that is deployed on
a platform, you must define it in a CICS bundle that is installed as part of that application. You can create
a program definition in the CSD, BAS or in a CICS bundle, and install it yourself. When CICS finds a
method that is annotated with @CICSProgram and a matching PROGRAM resource is already installed,
CICS does not replace it.

When you are creating your program definition, you must specify the same classname as the class that
contains the method that is annotated with @CICSProgram . You can optionally specify the method name
as well. CICS validates this information when the program is invoked. The JVMCLASS attribute should
contain the classname and optionally the method name in the format wlp:classname#methodname ,
for example:

wlp:com.example.CustomerLinkTarget#getCustomer

Figure 2. The lifecycle of a CICS bundle, showing when PROGRAM resources for @CICSProgram
annotations exist

96 CICS TS for z/OS: Java Applications in CICS

Figure 3. The lifecycle of a stand-alone web application, showing when PROGRAM resources for
@CICSProgram annotations exist

Java Transaction API (JTA)
The Java Transaction API (JTA) can be used to coordinate transactional updates to multiple resource
managers.

You can use the Java Transaction API (JTA) to coordinate transactional updates to CICS resources and
other third party resource managers, such as a type 4 database driver connection within a Liberty JVM
server. In this scenario, the Liberty transaction manager is the transaction coordinator and the CICS unit
of work is subordinate, as though the transaction had originated outside of the CICS system.

Note: If you have the JVM profile option com.ibm.cics.jvmserver.wlp.jta.integration=false
and use autoconfigure, or are manually configuring server.xml and include the <cicsts_jta
Integration="false"/> element, then the CICS unit of work will not participate in the JTA
transaction and is committed or rolled back separately.

A type 2 driver connection to a local Db2 database using a CICS data source is accessed using the CICS
Db2 attachment. It is not necessary to use JTA to coordinate with updates to other CICS resources.

In JTA you create a UserTransaction object to encapsulate and coordinate updates to multiple resource
managers. The following code fragment shows how to create and use a User Transaction:

InitialContext ctx = new InitialContext();
UserTransaction tran = (UserTransaction)ctx.lookup("java:comp/UserTransaction");

DataSource ds = (DataSource)ctx.lookup("jdbc/SomeDB");
Connection con = ds.getConnection();

// Start the User Transaction
tran.begin();

// Perform updates to CICS resources via JCICS API and
// to database resources via JDBC/SQLJ APIs

if (allOk) {
 // Commit updates on both systems
 tran.commit();
} else {
 // Backout updates on both systems
 tran.rollback();
}

If you are using an OSGi application, ensure that you include the following entry in the MANIFEST.MF:

Import-Package: javax.transaction;version="[1.1,2)"

Chapter 2. Developing Java applications 97

Your development environment might not highlight this dependency by default. It is advisable to explicitly
check and to ensure the minimum version of 1.1 is specified. If you allow the runtime environment to
resolve the dependency itself, it might resolve to the lower version of the package from the underlying
JRE, and conflict with the Liberty runtime.

Unlike a CICS unit of work, a UserTransaction must be explicitly started using the begin() method.
Invoking begin() causes CICS to commit any updates that may have been made prior to starting the
UserTransaction. The UserTransaction is terminated by invoking either of the commit() or rollback()
methods, or by the web container when the web application terminates. While the UserTransaction is
active, the program can not invoke the JCICS Task commit() or rollback() methods.

The JCICS methods Task.commit() and Task.rollback() will not be valid within a JTA transaction
context. If either is attempted, an InvalidRequestException will be thrown.

The Liberty default is to wait until the first UserTransaction is created before attempting to recover any
indoubt JTA transactions. However, CICS will initiate transaction recovery as soon as the Liberty JVM
server initialization is complete. If the JVM server is installed as disabled, recovery will run when it is set
to enabled.

If you are using EJBs, see Using JTA transactions in EJBs .

Java Persistence API (JPA)
The JPA can be used to create object oriented versions of relational database entities for developers to
make use of in their applications.

You can use the JPA to provide annotations and XML extensions which you can use to describe tables in
their database and their contents, including data types, keys and relationships between tables.
Developers can use the API to perform database operations instead of using SQL.

CICS supports jpa-2.0, jpa-2.1 and jpa-2.2. For information on how these versions differ, see Java
Persistence API (JPA) feature overview.

• Entity objects are simple Java classes, and can be concrete or abstract. Each represents a row in a
database table, and properties and fields are used to maintain states. Each field is mapped to a column
in the table, and key information about that particular field is added in; for example, you can specify
primary keys, or fields that can't be null.

@Entity
@Table(name = "JPA")
public class Employee implements Serializable
{
 @Id
 @Column(name = "EMPNO")
 private Long EMPNO;

 @Column(name = "NAME", length = 8)
 private String NAME;

 private static final long serialVersionUID = 1L;

 public Employee()
 {
 super();
 }

 public Long getEMPNO()
 {
 return this.EMPNO;
 }

 public void setEMPNO(Long EMPNO)
 {
 this.EMPNO = EMPNO;
 }

 public String getNAME()
 {
 return this.NAME;
 }

 public void setNAME(String NAME)

98 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/developing_apps_ejb.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/cwlp_jpa_feat_overview.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/cwlp_jpa_feat_overview.html

 {
 this.NAME = NAME;
 }
}

• The EntityManagerFactory is used to generate an EntityManager for the persistence unit.
EntityManager maintains the active collection of entity objects being used by an application.
You can use the EntityManager class to initialize the classes and create a transaction for managing
data integrity. Next, you interact with the data using the Entity class get and set methods, before
using the Entity transaction to commit the data.

The following example contains sample code to insert a record:

@WebServlet("/Create")
public class Create extends HttpServlet
{
 private static final long serialVersionUID = 1L;

 @PersistenceUnit(unitName = "com.ibm.cics.test.wlp.jpa.annotation.cics.datasource")
 EntityManagerFactory emf;

 InitialContext ctx;

 /**
 * @throws NamingException
 * @see HttpServlet#HttpServlet()
 */
 public Create() throws NamingException
 {
 super();
 ctx = new InitialContext();
 }

 /**
 * @see HttpServlet#doGet(HttpServletRequest request,
 HttpServletResponse response)
 */
 protected void doGet(HttpServletRequest request, HttpServletResponse
 response) throws ServletException, IOException
 {
 // Get the servlet parms
 String id = request.getParameter("id");
 String name = request.getParameter("name");

 // Create a new employee object
 Employee newEmp = new Employee();
 newEmp.setEMPNO(Long.valueOf(id));
 newEmp.setNAME(name);

 // Get the entity manager factory
 EntityManager em = emf.createEntityManager();

 // Get a user transaction
 UserTransaction utx;

 try
 {
 // Start a user transaction and join the entity manager to it
 utx = (UserTransaction) ctx.lookup("java:comp/UserTransaction");
 utx.begin();
 em.joinTransaction();

 // Persist the new employee
 em.persist(newEmp);

 // End the transaction
 utx.commit();
 }
 catch(Exception e)
 {
 throw new ServletException(e);
 }

 response.getOutputStream().println("CREATE operation completed");
 }
}

Chapter 2. Developing Java applications 99

• @PersistenceUnit expresses a dependency on an EntityManagerFactory and its associated
persistence unit. The name of the persistence unit as defined in the persistence.xml file. To connect
the entities and tables to a database we then create a persistence.xml file in our bundle. The
persistence.xml file describes the database that these entities connect to. The file includes
important information such as the name of the provider, the entities themselves, the database
connection URL and drivers.

The following example contains a sample persistence.xml:

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.0"
 xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">

 <persistence-unit name="com.ibm.cics.test.wlp.jpa.annotation.cics.datasource">
 <jta-data-source>jdbc/jpaDataSource</jta-data-source>

 <class>com.ibm.cics.test.wlp.jpa.annotation.cics.datasource.entities.Employee</class>

 <properties>
 <property name="openjpa.LockTimeout" value="30000" />
 <property name="openjpa.Log" value="none" />
 <property name="openjpa.jdbc.UpdateManager" value="operation-order" />
 </properties>
 </persistence-unit>
</persistence>

Enterprise JavaBeans (EJB)
Enterprise JavaBeans (EJB) is a Java API, and a subset of the Java EE specification. EJBs contain the
business logic of an application, and are fully supported by CICS Liberty, including the Lite subset.

The Liberty features that provide the support for EJBs are:

Table 14. Liberty features that provide support

Feature Support Java EE version

ejbLite-3.1 This feature enables the Lite
subset of the EJB technology as
defined in the EJB specification.
This subset includes support for
local session beans that are
written to the EJB 3.x APIs.

Java EE 6

mdb-3.1 This feature enables the
message-driven bean subset of
the EJB technology, which is
similar to the support that the
ejbLite feature enables for
session beans.

Java EE 6

ejbLite-3.2 This feature enables the Lite
subset of the EJB technology as
defined in the EJB specification.
This subset includes support for
local session beans that are
written to the EJB 3.x APIs, non-
persistent EJB timers, and
asynchronous local interface
methods.

Java EE 7

100 CICS TS for z/OS: Java Applications in CICS

Table 14. Liberty features that provide support (continued)

Feature Support Java EE version

mdb-3.2 This feature enables the
message-driven bean subset of
the EJB technology, which is
similar to the support that the
ejbLite feature enables for
session beans.

Java EE 7

ejbHome-3.2 Enables support of the EJB 2.x
APIs, specifically, support for the
javax.ejb.EJBLocalHome
interface. The
javax.ejb.EJBHome interface
is also supported when combined
with the ejbRemote feature.

Java EE 7

ejbRemote-3.2 Enables support for remote EJB
interfaces

Java EE 7

ejbPersistentTimers-3.2 Enables support for persistent
EJB timers.

Java EE 7

ejb-3.2 Enables full EJB 3.2 support.
Covers all EJB 3.2 technology,
including remote EJB technology.

Java EE 7

Procedure

Enable the feature in the server.xml file. For example:

<featureManager>
 <feature>ejb-3.2</feature>
</featureManager>

For more information, see:

• Developing EJB 3.x applications for information about developing EJB applications by using WebSphere
Developer Tools.

• Developing Enterprise bean (EJB) persistent timer applications for information about developing EJB
persistent timer applications.

• Using enterprise JavaBeans applications that call local EJB components in another application for
information on using enterprise JavaBeans applications that call local EJB components in another
application.

Creating an Enterprise JavaBeans (EJB) project
To develop EJBs for your Java application, you can create an EJB project.

Before you begin
Ensure that the web development tools are installed in your Eclipse IDE. For more information, see
“Setting up your development environment” on page 24.

About this task
The CICS Explorer and IBM CICS SDK for Java help provides full details on how you can complete each of
the following steps to develop and package EJB applications.

Chapter 2. Developing Java applications 101

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wdt.doc/topics/tejb3.htm
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_ejb_perstimer.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_ejb_local.html

Procedure

1. Create an EJB project for your application.
2. Develop your EJB application. You can use the JCICS API to access CICS services, JDBC to access DB2

and JMS to access IBM MQ.
3. Optional: To secure the application, you can use security annotations, or you can specify security

constraints in an ejb-jar.xml file. For more information, see Enterprise application security.
4. Add your EJB project to an Enterprise Application Project (EAR).

Results
Your development environment is set up, you created an EJB project, and packaged it for deployment.

Using JTA transactions in EJBs
How to use JTA transactions in Enterprise JavaBeans (EJBs) on Liberty.

About this task

EJBs are Java objects that are managed by the Liberty JVM server, allowing a modular architecture of
Java applications. The Liberty JVM server supports EJB Lite 3.1 and EJB Lite 3.2, and EJB 3.2. EJBs are
deployed to a Liberty server using an Enterprise Application Archive (EAR) file created from an Enterprise
Application Project. Enterprise Application Projects can contain both EJB and Web projects.

EJB Lite is enabled by adding the relevant feature ejbLite-3.1 or ejbLite-3.2 to the server.xml
configuration file. EJB is enabled by adding ejb-3.2 to the server.xml configuration file. EJBs are
deployed into a container. This container works in the background ensuring that aspects like session
management, transactions and security are adhered to.

EJBs support two types of transaction management: container managed and bean managed. Container
managed transactions provide a transactional context for calls to bean methods, and are defined using
Java annotations or the deployment descriptor file ejb-jar.xml. Bean managed transactions are
controlled directly using the Java Transaction API (JTA) . In both cases, the CICS® unit of work (UOW)
remains subordinate to the outcome of the Liberty JTA transaction assuming that you have not disabled
CICS JTA integration using the <cicsts_jta Integration="false"/> server.xml element.

There are six different transaction attributes that can be specified for container managed transactions:

• Mandatory
• Required
• RequiresNew
• Supports
• NotSupported
• Never

A JTA transaction is a distributed UOW as defined in the JEE specification. Setting of a method's
transaction attribute determines whether or not the CICS task, under which the method executes, runs
under its own UOW or is part of a wider, distributed JTA transaction.

Note: Although it is respected by the Liberty JTA transaction system, the transaction attribute
NotSupported does not integrate with and is not supported by the CICS UOW. This applies to EJBs in
general.

The following table describes the resulting transactional context of an invoked EJB method, depending on
the transaction attribute and whether or not the calling application already has a JTA transactional
context.

Important: Liberty does not support outbound or inbound transaction propagation. For more information,
see Using enterprise JavaBeans with remote interfaces on Liberty.

102 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wdt.doc/topics/cjavaeesecurity.htm
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_ejb_remote.html

Table 15. EJB transaction support

Transaction
Attribute No JTA transaction Pre-existing JTA transaction Accessing a remote EJB with a pre-existing JTA transaction

Exception
behavior

Mandatory Throws exception
EJBTransactionRequiredException
.

Inherits the existing JTA
transaction.

Throws exception
com.ibm.websphere.csi.CSITransactionMandatoryException.

Rollback

Required

This is the
default
transaction
attribute.

EJB container creates new JTA
transaction.

Inherits the existing JTA
transaction.

Throws exception
com.ibm.websphere.csi.CSITransactionRequiredException.

Rollback

RequiresNew EJB container creates new JTA
transaction.

Throws exception
javax.ejb.EJBException.

EJB container creates a new JTA transaction that is managed by the
remote server.

Rollback

Supports Continues without a JTA transaction. Inherits the existing JTA
transaction.

Throws exception
com.ibm.websphere.csi.CSITransactionSupportedException.

Rollback if
called
from JTA

NotSupported Continues without a JTA transaction. Suspends the JTA transaction
but not the CICS UOW.

The remote server continues without a JTA transaction. No
rollback

Never Continues without a JTA transaction. Throws exception
javax.ejb.EJBException.

The remote server continues without a JTA transaction. No
rollback

Important: Calling a method marked as NotSupported will suspend the JTA transaction but not
suspend the CICS UOW. Any modification of CICS resources during this method call will still be
recoverable.

Note: If JTA integration is enabled, the transaction attribute RequiresNew is supported by a CICS
Liberty JVM server, with the restriction that the CICS UOW cannot be nested. Attempting to call a method
marked as RequiresNew when already in a JTA transaction causes an exception to be thrown.

If you call an EJB from a servlet or a POJO and do not explicitly configure the EJB transactional attribute,
then by default, container-managed transaction management applies, as does a default transaction
attribute of Required. This means each call to the EJB starts a new JTA transaction with a subordinate
CICS UOW and commits the JTA transaction after each call. If you do not require the use of JTA with EJBs
consider using the transaction attribute Never.

For information about additional Enterprise JavaBeans (EJB) feature restrictions, see Liberty: Runtime
environment known issues and restrictions.

Enterprise Java Bean (EJB) methods with remote interfaces
EJB methods with remote interfaces can be remotely accessed or hosted by CICS Liberty by using RMI-
IIOP technologies. You can enable remote EJB support with the ejbRemote-3.2 feature.

When you use remote EJB interfaces, there are considerations that you must be aware of. For more
information, see Using enterprise JavaBeans with remote interfaces on Liberty.

Accessing EJB methods with remote interfaces

1. To configure CICS Liberty to run an application which accesses EJB methods with remote interfaces,
you must enable the ejbRemote-3.2 feature by adding the feature into the server.xml file, as
follows:

<featureManager>
 <feature>ejbRemote-3.2</feature>
</featureManager>

2. Configure your application binding files, for example ibm-*-bnd.xml, for remote EJB references that
are defined either in the deployment descriptor <ejb-ref>, or with source code annotations, for
example @EJB. A binding is not required for EJB references that provide a lookup name, either on the
annotation or in the deployment descriptor. In the binding file, the EJB reference can be bound by
using one of the java: names for an EJB or with one of the corbaname:names:

@EJB(name="TestBean")
 TestRemoteInterface testBean;

Chapter 2. Developing Java applications 103

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/rwlp_restrict.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/rwlp_restrict.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_ejb_remote.html

The binding is defined:

<ejb-ref name="TestBean" binding-name=
"corbaname:rir:#ejb/global/TestApp/TestModule/TestBean!test.TestRemoteInterface"/>

3. Configure your application client to include stub classes.

Hosting EJB methods with remote interfaces

1. To host EJBs in CICS Liberty so they can be called by other JVMs, you must enable the
ejbRemote-3.2 feature by adding the feature to the server.xml file, as follows:

<featureManager>
 <feature>ejbRemote-3.2</feature>
</featureManager>

2. Configure the IIOP server to customize ports and security settings. For more information, see
Configuring IIOP-RMI Transport for Remote EJBs.

3. Create an EJB application. For more information, see Creating an Enterprise JavaBeans (EJB) project.
4. Generate stub classes. In Eclipse, right-click the EJB project and select Java EE Tools > Create EJB

Client JAR.
5. Deploy the EJB application to CICS Liberty as part of an EAR. For more information, see Creating an

Enterprise Application project.
6. Check the Liberty messages.log file to ensure that the EJB is enabled and bound to a namespace.

You should see this message:
CNTR0167I: The server is binding the ejb.remote.ejb.view.MyBeanRemote
interface of the MyBean enterprise bean in the ejb.remote.ejb.jar module of the
ejb.remote application. The binding location is:
java:global/ejb.remote/ejb.remote.ejb/MyBean!remote.ejb.view.MyBeanRemote

Configuring IIOP-RMI transport for remote EJBs
Internet Inter-ORB Protocol Remote Method Invocation (IIOP-RMI) transport is used by CICS Liberty to
communicate with EJB methods that have remote interfaces. This communication can be secured by
using Common Secure Interoperability Protocol Version 2 (CSIv2).

IIOP-RMI is used by CICS Liberty as the technology for calling EJB methods with remote interfaces. Using
the ejbRemote-3.2 feature supports both inbound and outbound IIOP-RMI calls.

Inbound calls allow CICS Liberty to listen as an object request broker (ORB) on a TCP/IP port for IIOP-
RMI requests and call the target EJB method. See “Configuring Inbound IIOP Communication” on page
104 for details.

Outbound calls are where CICS Liberty makes a request to an ORB to start an EJB method. Outbound
calls can be made to the same JVM server the call was made for, or any other Java virtual machine (JVM)
capable of acting as an ORB. See “Configuring Outbound IIOP Communication” on page 105 for details.

This communication can be secured by using CSIv2, a technology that satisfies the CORBA (Common
Object Request Broker Architecture) for authentication, delegation, and privileges. CSIv2 also supports
the use of transport layer security (TLS). See Configuring CSIv2 to secure IIOP Communication for details.

For more information, see Common Secure Interoperability version 2 (CSIv2).

Configuring Inbound IIOP Communication
Enable the ejbRemote-3.2 feature by adding it to the server.xml file.

<featureManager>
 <feature>ejbRemote-3.2</feature>
</featureManager>

Optionally, you can configure an IIOP endpoint in the server.xml file.

<iiopEndpoint id="defaultIiopEndpoint" host="host.example.com" iiopPort="2809" />

104 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/config_iiop.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/developing_ejb.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/developing_ear.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/developing_ear.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/config_iiop_csiv2.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/cwlp_csiv2overview.html

Important: By default the IIOP endpoint listens on localhost:2809. The default ORB references the
IIOP endpoint defaultIiopEndpoint. See Configuring CSIv2 to secure IIOP Communication for more
information on configuring ORBs for inbound security.

Configuring Outbound IIOP Communication
Enable the ejbRemote-3.2 feature by adding it to the server.xml file.

<featureManager>
 <feature>ejbRemote-3.2</feature>
</featureManager>

Optionally you can configure an ORB with the name service of the remote server.

<orb id="defaultOrb" nameService="corbaname::host.example.com:2809" />

Important: By default the ORB references the local IIOP endpoint defaultIiopEndpoint. See
Configuring CSIv2 to secure IIOP Communication for more information on configuring ORBs for outbound
security.

Configuring CSIv2 to secure IIOP communication
The following information covers some of the general cases for configuring both inbound and outbound
CSIv2 security for IIOP communication.

Inbound calls allow CICS Liberty to listen as an object request broker (ORB) on a TCP/IP port for IIOP-
RMI requests and call the target EJB method.

Outbound calls are where CICS Liberty makes a request to an ORB to start an EJB method. Outbound
calls can be made to the same JVM server the call was made for, or any other Java virtual machine (JVM)
capable of acting as an ORB.

In the following example, the client is the JVM making the outbound request and the server is the JVM
receiving the inbound request. Either one, or both of these, can be the CICS Liberty JVM server. For more
information, see Configuring Common Secure Interoperability version 2 (CSIv2) in Liberty.

Configuring CSIv2 to use TLS

Inbound

• Create a keystore that contains the certificate for the server.

<keyStore id="iiopKeyStore" ... />

• Create an SSL repertoire (the SSL element) that references the keystore.

<ssl id="iiopSSL" keyStoreRef="iiopKeyStore" />

• Create an IIOP endpoint with an IIOPS port.

<iiopEndpoint id="defaultIiopEndpoint" host="host.example.com" iiopPort="2809">
 <iiopsOptions iiopsPort="9402" sslRef="iiopSSL" />
</iiopEndpoint>

Important: By default the IIOPs options sslRef references the defaultSSLConfig SSL repertoire.

Outbound

• Create a keystore. You can include a key that allows the keystore to trust a root certificate, which trusts
all the certificates that are signed by that certificate.

<keystore id="iiopTrustStore" ... />

• Create an SSL repertoire (the SSL element) that references the keystore.

<ssl id="iiopSSL" trustStoreRef="iiopTrustStore" ... />

Chapter 2. Developing Java applications 105

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/config_iiop_csiv2.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/config_iiop_csiv2.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_sec_csiv2.html

• Create an ORB with the CSIv2 client policy.

<orb id="defaultOrb" nameService="corbaname::host.example.com">
 <clientPolicy.csiv2>
 <layers>
 <transportLayer sslRef="iiopSSL" />
 </layers>
 </clientPolicy.csiv2>
</orb>

Configuring CSIv2 to allow propagation of the user ID from the client to the server

Inbound

• Create an ORB with the CSIv2 server policy.

<orb id="defaultOrb">
 <serverPolicy.csiv2>
 <layers>
 <attributeLayer identityAssertionEnabled="true" />
 </layers>
 </serverPolicy.csiv2>
</orb>

• Optionally, you can specify one or more identities to be trusted by the server.

<attributeLayer identityAssertionEnabled="true" trustedIdentities="MYUSER" />

Outbound

• Create an ORB with the CSIv2 client policy.

<orb id="defaultOrb" nameService="corbaname::host.example.com:2809">
 <clientPolicy.csiv2>
 <layers>
 <attributeLayer identityAssertionEnabled="true" />
 </layers>
 </clientPolicy.csiv2>
</orb>

• Optionally, you can provide a trusted identity to be authorized by the server.

<attributeLayer identityAssertionEnabled="true" trustedIdentity="MYUSER"
 trustedPassword="MYPASSWD" />

Important: The trusted user must exist in a user registry on the server. The trustedPassword can be
encoded by using the Liberty securityUtility tool.

Configuring CSIv2 to use TLS Client Authentication

Inbound

• Create a keystore. You can include a key that allows the keystore to trust a root certificate, which trusts
all the certificates that are signed by that certificate.

<keyStore id="iiopTrustStore" ... />

• Create an SSL repertoire (the SSL element) that references the keystore.

<ssl id="iiopSSL" trustStoreRef="iiopTrustStore" ... />

• Create an IIOP endpoint with an IIOPS endpoint.

<iiopEndpoint id="defaultIiopEndpoint" host="host.example.com" port="2809">
 <iiopsOptions iiopsPort="9402" sslRef="iiopSSL" />
</iiopEndpoint>

• Create an ORB with the CSIv2 server policy.

106 CICS TS for z/OS: Java Applications in CICS

<orb id="defaultOrb">
 <serverPolicy.csiv2>
 <layers>
 <attributeLayer identityAssertionEnabled="true" ... />
 <transportLayer sslRef="iiopSSL" />
 </layers>
 </serverPolicy.csiv2>
</orb>

Outbound

• Create a keystore that contains the clients certificate.

<keyStore id="iiopKeyStore" ... />

• Create an SSL repertoire (the SSL element) that references the keystore.

<ssl id="iiopSSL" keyStoreRef="iiopKeyStore" />

• Create an ORB with the CSIv2 client policy.

<orb id="defaultOrb">
 <clientPolicy.csiv2>
 <layers>
 <attributeLayer identityAssertionEnabled="true" />
 <transportLayer sslRef="iiopSSL" />
 </layers>
 </clientPolicy.csiv2>
</orb>

Java Message Service (JMS)
Java Message Service (JMS) is an API that allows application components based on Java EE to create,
send, receive, and read messages. JMS support in Liberty is supplied as a group of related features that
support the deployment of JMS resource adapters.

JMS can run in a managed mode in which queues, topics, connections, and other resources are created
and managed through server configuration. This includes the configuration of JMS connection factories,
queues, topics, and activation specifications. Alternatively it can run in unmanaged mode where all
resources are manually configured as part of the application. The Liberty embedded JMS messaging
provider is managed, and therefore all resources are set up as part of the server.xml configuration.

JMS specifications
The JMS specification level supported in a Liberty JVM server is JMS 2.0 support. JMS 2.0 support
(jms-2.0) enables the configuration of resource adapters to access messaging systems using the Java
Message Service API at the 2.0 specification level.

JMS clients
Different JMS client providers are supported in the Liberty JVM server through the following Liberty
features:

• WebSphere MQ JMS 2.0 client (wmqJmsClient-2.0) - the WebSphere MQ JMS client feature that
allows JMS 2.0 or 1.1 client applications to send and receive messages from a remote MQ server.

• WebSphere Application Server JMS 2.0 client (wasJmsClient-2.0) - WebSphere Application Server
client feature that allow JMS 2.0 or 1.1 client applications to send and receive messages from the
messaging engine that is enabled through the wasJmsServer feature.

• Any other JMS resource adapter that complies with the JCA 1.6 specification can also be used in Liberty
by using generic JCA resource adapters links, see Overview of JCA configuration elements.

JMS providers

Liberty in CICS TS supports usage of the:

• Liberty embedded JMS messaging provider.

Chapter 2. Developing Java applications 107

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/cwlp_jca_config_overview.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/cwlp_msg_embedded.html

– WebSphere messaging server (wasJmsServer-1.0) - the JMS server feature enables the embedded
JMS messaging provider to be hosted within Liberty by using the server feature so that a separate
JMS server does not need to be installed or configured, see Enabling JMS messaging for a single
Liberty server . The server can also be hosted in a separate Liberty instance either inside CICS or in a
Liberty server hosted in z/OS or on a distributed platform, see Enabling JMS messaging between two
Liberty servers . The WebSphere JMS messaging client component can also be configured to talk to
JMS via SIBUS running in a WebSphere Application Server, see Enabling interoperability between
Liberty and WebSphere Application Server traditional.

– WebSphere messaging security (wasJmsSecurity-1.0) - the JMS security feature provides
security support for the embedded JMS messaging provider client and server components. The JMS
security feature can be used with the cicsts:security-1.0 feature to specify which users from
the security registry are to be used by a connection factory when authenticating requests against the
embedded JMS messaging server. For information on authorization, see Authorizing users to connect
to the messaging engine.

• JMS access to IBM MQ in a CICS standard-mode Liberty JVM server when the JMS application connects
using either bindings or client mode transport.

• JMS access to IBM MQ in a CICS integrated-mode Liberty JVM server when the JMS application
connects using the client mode transport.

• Third-party JMS resource adapters that comply with the JCA 1.6 specification.

Java Management Extensions API (JMX)
The Java Management Extensions API (JMX) is used for resource monitoring and management.

JMX is a Java framework and API that provides a way of exposing application information by using a
widely accepted implementation. Various tools, such as JConsole can then be configured to read that
information. The information is exposed by using managed beans (MBeans) - non-static Java classes with
public constructors. Get and set methods of the bean are exposed as attributes , while all other methods
are exposed as operations.

You can connect to JMX in a Liberty JVM server to view the attributes and operations of MBeans, both
locally and from a remote machine. A local connection requires adding the localConnector-1.0
feature to your server.xml and allows you to connect from within the same JVM server. Adding the
restConnector-1.0 feature to your server.xml allows you to connect by way of a RESTful interface,
which provides remote access to JMX.

Using WebSphere MBeans to monitor your applications

1. To begin, you must acquire a reference to your MBeanServer. This example looks for the JvmStats
MBean and uses the findMBeanServer method to check which server the MBean is registered to.
Then, referring to the correct MBeanServer object, you can obtain reference to your MBean and get
data back from the attributes that it exposes. This example looks for the UpTime attribute of the
JvmStats MBean.

// Create an ObjectName object for the MBean that we're looking for.
ObjectName beanObjName = null;
beanObjName = new ObjectName("WebSphere:type=JvmStats");

// Obtain the full list of MBeanServers.
java.util.List servers = MBeanServerFactory.findMBeanServer(null);
MBeanServer mbs = null;

// Iterate through our list of MBeanServers and attempt to find the one we want.
for (int i = 0; i < servers.size(); i++)
{
 // Check if the MBean domain matches what we're looking for.
 mbs = (MBeanServer)servers.get(i);

 if (mbs.isRegistered(beanObjName))
 {
 Object attributeObj = mbs.getAttribute(beanObjName, "UpTime");
 System.out.println("UpTime of JVM is: " + attributeObj + ".");
 }
}

108 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_msg_single.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_msg_single.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_msg_multi.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_msg_multi.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_msg_interop.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_msg_interop.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_msg_sec_authorize.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_msg_sec_authorize.html

Remote connectivity to JMX in Liberty

Remote connectivity to JMX in a Liberty JVM server requires use of an SSL connection and Java Platform,
Enterprise Edition (JEE) role authorization. The client code then obtains a reference to the remote MBean
using a JMXServiceURL.

1. All the JMX MBeans accessed through the REST connector are protected by a single JEE role named
administrator. To provide access to this role edit the server.xml and add the authenticated user
to the administrator role.

<administrator-role>
<user>myuserid</user>
<group>group1</group>
</administrator-role>

For more information on using JEE roles, see Authorization using SAF role mapping.
2. A remote RESTful JMX client must access the Liberty JVM server by using SSL. To configure SSL

support for a Liberty JVM server, refer to topic Configuring SSL (TLS) for a Liberty JVM server using
RACF. In addition, the JMX client requires access to the restConnector client-side JAR file and an SSL
client keystore containing the server's signing certificate. The restConnector.jar comes as part of
the CICS WLP installation, which is available at &USSHOME;/wlp/clients.

3. In the client-side code, you need to create a JMXServiceURL object. This allows you to obtain a
reference to the remote MBeanServerConnection object. See example where <host> and
<httpsPort> match those of your server:

JMXServiceURL url = new JMXServiceURL("service:jmx:rest://<host>:<httpsPort>/IBMJMXConnectorREST");
JMXConnector jmxConnector = JMXConnectorFactory.connect(url, environment);
MBeanServerConnection mbsc = jmxConnector.getMBeanServerConnection();

4. When you successfully obtain the connection, the MBeanServerConnection object provides the same
capability and set of methods as a local connection from the MBeanServer object.

For more information about the MBeans that are provided by WebSphere, see Liberty profile: List of
provided MBeans.

Java Authorization Contract for Containers (JACC)
Liberty supports authorization that is based on the Java Authorization Contract for Containers (JACC)
specification in addition to the default authorization. When security is enabled in Liberty, the default
authorization is used unless a JACC provider is specified.

About this task

JACC enables third-party security providers to manage authorization in the application server. The default
authorization does not require special setup, and the default authorization engine makes all of the
authorization decisions. However, if a JACC provider is configured and set up for Liberty to use, all of the
enterprise beans and web authorization decisions are delegated to the JACC provider. JACC defines
security contracts between the Application Server and authorization policy modules. These contracts
specify how the authorization providers are installed, configured, and used in access decisions. To add
the jacc-1.5 feature to your Liberty server, add a third-party JACC provider which is not a part of
Liberty.

You can develop a JACC provider to have custom authorization decisions for Java EE applications by
implementing the com.ibm.wsspi.security.authorization.jacc.ProviderService interface
that is provided in the Liberty server. The JACC specification, JSR 115, defines an interface for
authorization providers. In the Liberty server, you must package your JACC provider as a user feature.
Your feature must implement the
com.ibm.wsspi.security.authorization.jacc.ProviderService interface.

Procedure

1. Create an OSGi Bundle Project to develop the Java class.

Chapter 2. Developing Java applications 109

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/jee_app_role.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/ssl_liberty_racf.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/ssl_liberty_racf.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/rwlp_mbeans_list.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/rwlp_mbeans_list.html

Your project might have compile errors. To fix these errors, you need to import two packages,
javax.security.jacc and com.ibm.wsspi.security.authorization.jacc.

Edit the file MANIFEST.MF to import the missing package:

Manifest-Version: 1.0
Service-Component: OSGI-INF/myjaccExampleComponent.xml,
Bundle-ManifestVersion: 2
Bundle-Name: com.example.myjaac.osgiBundle
Bundle-SymbolicName: com.example.myjaac.osgiBundle
Bundle-Version: 1.0.0
Bundle-RequiredExecutionEnvironment: JavaSE-1.7
Import-Package: com.ibm.wsspi.security.authorization.jacc;version="1.0.0",
javax.security.jacc;version="1.5.0"

An example of the service component XML, myjaccExampleComponent.xml:

<?xml version="1.0" encoding="UTF-8"?>
<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0" immediate="true"
 name="TestPolicyServiceProvider">
 <implementation class="com.example.myjaac.osgiBundle.TestPolicyServiceProvider"/>
 <property name="javax.security.jacc.policy.provider" type="String" value=""/>
 <property name="javax.security.jacc.PolicyConfigurationFactory.provider" type="String" value=""/>
 <service>
 <provide interface="com.ibm.wsspi.security.authorization.jacc.ProviderService"/>
 </service>
</scr:component>

2. Create a Liberty Feature Project to add the previous OSGi bundle into the user Liberty feature, under
Subsystem-Content in the feature manifest file.

3. Refine the feature manifest to add the necessary OSGi subsystem content:
com.ibm.ws.javaee.jacc.1.5; version="[1,1.0.200)"; location:="dev/api/spec/".

Subsystem-ManifestVersion: 1.0
IBM-Feature-Version: 2
IBM-ShortName: jacc15CICSLiberty-1.0
Subsystem-SymbolicName: com.example.myjaac.libertyFeature;visibility:=public
Subsystem-Version: 1.0.0
Subsystem-Type: osgi.subsystem.feature
Subsystem-Content: com.example.myjaac.osgiBundle;version="1.0.0",
 com.ibm.ws.javaee.jacc.1.5;version="[1,1.0.200)";location:="dev/api/spec/"
Manifest-Version: 1.0

If you need to add one more Subsystem-Content, you must add at least one space before you type
the content. If you do not add a space, CICS returns java.lang.IllegalArgumentException.

4. Export the Liberty Feature Project as a Liberty Feature (ESA) file.
5. FTP the ESA file to zFS.
6. Use the installUtility command to install the ESA file.

./wlpenv installUtility install myFeature.esa

7. Add the jacc-1.5 feature and the ESA file containing the JACC provider as a user feature to
server.xml.

<feature>jacc-1.5</feature>
<feature>usr:jacc15CICSLiberty-1.0</feature>

Java Authentication Service Provider Interface for Containers (JASPIC)
The Java Authentication Service Provider Interface for Containers (JASPIC) specification defines a service
provider interface (SPI). Authentication providers, that implement message authentication mechanisms,
can be integrated in client or server message processing containers or runtimes.

About this task

Authentication providers that are integrated through the JASPIC interface, operate on network messages
that are provided by their calling container. The providers transform outgoing messages so that the

110 CICS TS for z/OS: Java Applications in CICS

source of the message can be authenticated by the receiving container, and the recipient of the message
can be authenticated by the message sender. Incoming messages are authenticated and returned to their
calling container, which is the identity that is established as a result of the message authentication.

JSR 196 defines a standard SPI, and standardizes how an authentication module is integrated into Java
EE containers. A message processing model and details of a number of interaction points on the client
and server are provided. A compatible web container uses the SPI at these points to delegate the
corresponding message security processing to a server authentication module (SAM).

Liberty supports the use of third-party authentication providers that are compliant with the servlet
container that is specified in jaspic-1.1. The servlet container defines interfaces that are used by the
security runtime environment in collaboration with the web container. These start authentication modules
before and after a web request is processed by an application. Authentication that uses JASPIC modules
is used only when JASPIC is enabled in the security configuration.

Procedure

1. Create an OSGi Bundle Project to develop the Java class.
Your project might have compile errors. To fix these errors, you need to import two packages,
javax.security.auth.message and com.ibm.wsspi.security.jaspi. The Target Platform
must be edited to add the missing JARs into the lists com.ibm.ws.security.jaspic from
<cics_install>/wlp/lib directory and com.ibm.ws.javaee.jaspic.<version_number>
from <cics_install>/wlp/dev/api/spec directory. FTP these to your development system and
add them to the build path.

Edit the file MANIFEST.MF to import the missing package.

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: com.example.myjaspic.osgiBundle
Bundle-SymbolicName: com.example.myjaspic.osgiBundle
Bundle-Version: 1.0.0
Bundle-RequiredExecutionEnvironment: JavaSE-1.7
Import-Package: com.ibm.wsspi.security.jaspi;version="1.0.13",
javax.security.auth.message;version="1.0.0",
javax.security.auth.message.callback;version="1.0.0",
javax.security.auth.message.config;version="1.0.0",
javax.security.auth.message.module;version="1.0.0",
javax.servlet;version="2.7.0",
javax.servlet.http;version="2.7.0"
Service-Component: myjaspicExampleComponent.xml

An example of the service component XML, myjaspicExampleComponent.xml:

<?xml version="1.0" encoding="UTF-8"?>
<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0" name="com.example.myjaspic.osgiBundle">
 <implementation class="com.example.myjaspic.osgiBundle.TestJASPICProviderService"/>
 <service>
 <provide interface="com.ibm.wsspi.security.jaspi.ProviderService"/>
 </service>
</scr:component>

2. Create a Liberty Feature Project to add the previous OSGi bundle into the user Liberty feature, under
Subsystem-Content in the feature manifest file.

3. Edit the feature manifest to add the necessary OSGi subsystem content:
com.ibm.websphere.appserver.jaspic-1.1; type="osgi.subsystem.feature".

Subsystem-ManifestVersion: 1.0
IBM-Feature-Version: 2
IBM-ShortName: jaspic11CICSLiberty-1.0
Subsystem-SymbolicName: com.example.myjaspic.libertyFeature;visibility:=public
Subsystem-Version: 1.0.0.201611081617
Subsystem-Type: osgi.subsystem.feature
Subsystem-Content: com.example.myjaspic.osgiBundle;version="1.0.0",
 com.ibm.websphere.appserver.jaspic-1.1;type="osgi.subsystem.feature",
 com.ibm.websphere.appserver.servlet-3.0;ibm.tolerates:="3.1";type="osgi.subsystem.feature"
Manifest-Version: 1.0

Chapter 2. Developing Java applications 111

If you need to add one more Subsystem-Content, you must add at least one space before you type
the content. If you do not add a space, CICS returns java.lang.IllegalArgumentException.

4. Export the Liberty Feature Project as a Liberty Feature (ESA) file.
5. FTP the ESA file to zFS.
6. Use installUtility to install the ESA file.

./wlpenv installUtility install myFeature.esa

7. Add the jaspic-1.1 feature and the ESA file containing the JASPIC provider as a user feature to
server.xml.

<feature>jaspic-1.1</feature>
<feature>usr:jaspic11CICSLiberty-1.0</feature>

Java EE Connector Architecture (JCA)
JCA connects enterprise information systems such as CICS, to the JEE platform.

JCA supports the qualities of service for security credential management, connection pooling and
transaction management, provided by the JEE application server. Using JCA ensures these qualities of
service are managed by the JEE application server and not by the application. This means the
programmer is free to concentrate on writing business code and need not be concerned with quality of
service. For information about the provided qualities of service and configuration guidance see the
documentation for your JEE application server. JCA defines a programming interface called the Common
Client Interface (CCI). This interface can be used with minor changes to communicate with any enterprise
information system.

The programming interface model

Applications that use the CCI have a common structure for all enterprise information systems. JCA
connects the enterprise information systems (EIS) such as CICS, to the JEE platform. These connection
objects allow a JEE application server to manage the security, transaction context and connection pools
for the resource adapter. An application must start by accessing a connection factory from which a
connection can be acquired. The properties of the connection can be overridden by a ConnectionSpec
object. After a connection has been acquired, an interaction can be created from the connection to make
a particular request. The interaction, like the connection, can have custom properties that are set by the
InteractionSpec class. To perform the interaction, call the execute() method and use record objects to
hold the data. For example:

ConnectionFactory cf = <Lookup from JNDI namespace>
Connection c = cf.getConnection(ConnectionSpec);
Interaction i = c.createInteraction();
InteractionSpec is = newInteractionSpec();
i.execute(spec, input, output);
i.close();
c.close();

The example shows the following sequence:

1. Use the ConnectionFactory object to create a connection object.
2. Use the Connection object to create an interaction object.
3. Use the Interaction object to run commands on the enterprise information system.
4. Close the interaction and the connection.

If you are using a JEE application server, you create the connection factory by configuring it using the
administration interface of the server. In the Liberty server this is defined through the server.xml
configuration. When you have created a connection factory, enterprise applications can access it by
looking it up in the JNDI (Java Naming Directory Interface). This type of environment is called a managed
environment, and allows a JEE application server to manage the qualities of service of the connections.
For more information about managed environments see your JEE application server documentation.

112 CICS TS for z/OS: Java Applications in CICS

Record objects

Record objects are used to represent data passing to and from the EIS. It is advised that application
development tools are used to generate these Records. Rational Application Developer provides the J2C
tooling that allows you to build implementations of the Record interface from specific native language
structures such as COBOL copybooks, with in-built support for data marshalling between Java and non-
Java data types.

Resource adapter example

You can install a basic example resource adapter and configure instances of the resources it provides, see
Configuring and deploying a basic JCA Resource Adapter.

The Common Client Interface

The CCI provides a standard interface that allows developers to communicate with any number of EISs
through their respective resource adapters, using a generic programming style. The CCI is closely
modeled on the client interface used by Java Database Connectivity (JDBC), and is similar in its idea of
Connections and Interactions.

Using the JCA local ECI resource adapter
The JCA local ECI resource adapter is provided with CICS TS and invokes local CICS programs. This is an
optimized path to migrate applications using the CICS Transaction Gateway ECI resource adapter into
CICS Liberty. This section applies to integrated mode Liberty only.

The JCA local ECI resource adapter is used to connect to CICS programs, passing data in either
COMMAREAs or channels and containers. The resource adapter is provided by the CICS Liberty feature.

Note: The JCA local ECI resource adapter and the CICS Transaction Gateway ECI resource adapter
cannot be used in the same Liberty JVM server.

Table one shows the JCA objects corresponding to the CICS terms.

Table 16. CICS terms and corresponding JCA objects

CICS term JCA object: property

Abend code CICSTxnAbendException

COMMAREA Record

Channel ECIChannelRecord

Container with a data type of BIT byte[]

Container with a data type of CHAR String

Program name ECIInteractionSpec:FunctionName

Transaction ECIInteractionSpec:TPNName

For further details see “JCA local ECI support” on page 173.

Configuring the JCA local ECI resource adapter
You can configure the JCA local ECI resource adapter using connection factories as defined in the JCA
specification.

To start using the JCA local ECI, add the feature cicsts:jcaLocalEci-1.0 to the featureManager
element of the server.xml.

<featureManager>
<feature>cicsts:jcaLocalEci-1.0</feature>
</featureManager>

Chapter 2. Developing Java applications 113

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_jca_config_dep.html

The JCA local ECI provides a default connection factory defaultCICSConnectionFactory bound to
the JNDI name eis/defaultCICSConnectionFactory . Optionally if a different JNDI name is
required configure additional connection factories using the properties subelement as follows:

<connectionFactory id="localEci" jndiName="eis/ECI">
<properties.com.ibm.cics.wlp.jca.local.eci/>
</connectionFactory>

Tip: You do not need any attributes on the properties element.

Porting JCA ECI applications into a Liberty JVM server
JCA applications can be easily ported into a Liberty JVM server using the JCA local ECI resource adapter
support.

Porting

Porting existing JCA applications that use the CICS Transaction Gateway ECI resource adapter from a
stand-alone JEE application server into a CICS Liberty JVM server can be achieved through these steps:

1. Add the cicsts:jcaLocalEci-1.0 , and webProfile-6.0 features to the server.xml file.

For example:

<featureManager>
...
<feature>cicsts:jcaLocalEci-1.0</feature>
<feature>webProfile-6.0</feature>
...
</featureManager>

2. You can either update the source so that the JNDI name of the Connection Factory is eis/
defaultCICSConnectionFactory , or add a connectionFactory and
properties.com.ibm.cics.wlp.jca.local.eci to server.xml.

3. Deploy the application into CICS , see Deploying a Java EE application in a CICS bundle to a Liberty
JVM server.

If the application uses any restricted features of the ECI resource adapter, the code for the application
will have to be changed to remove these unsupported features. For more information, see Restrictions of
the JCA local ECI resource adapter.

Using the local ECI resource adapter to link to a program in CICS
Running a program in CICS using the JCA local ECI resource adapter is done by using the execute()
method of the ECIInteraction class.

About this task

This task shows an application developer how to use the JCA local ECI resource adapter to run a CICS
program passing in a COMMAREA using a JCA record. For further details on how to extend the Record
interface to represent a CICS COMMAREA, see and for details on how to link to a CICS program that uses
channels and containers, see Using the JCA local ECI resource adapter with channels and containers.

Procedure

1. Use JNDI to look up the ConnectionFactory object named eis/defaultCICSConnectionFactory.
2. Get a Connection object from the ConnectionFactory.
3. Get an Interaction object from the Connection.
4. Create a new ECIInteractionSpec object.
5. Use the set methods on ECIInteractionSpec to set the properties of the execution, such as the

program name and COMMAREA length.
6. Create a record object to contain the input data (see COMMAREA/Channel topics) and populate the

data.

114 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/deploying/create_liberty_bundle.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/deploying/create_liberty_bundle.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/dfhpj2_jca_restrict.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/dfhpj2_jca_restrict.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/dfhpj2_jca_eci_channel.html

7. Create a record object to contain the output data.
8. Call the execute method on the Interaction, passing the ECIInteractionSpec and two Record objects.
9. Read the data from the output record.

package com.ibm.cics.server.examples.wlp;

 import java.io.ByteArrayInputStream;
 import java.io.ByteArrayOutputStream;
 import java.io.IOException;
 import java.io.InputStream;
 import java.io.OutputStream;

 import javax.annotation.Resource;
 import javax.resource.cci.Connection;
 import javax.resource.cci.ConnectionFactory;
 import javax.resource.cci.Interaction;
 import javax.resource.cci.Record;
 import javax.resource.cci.Streamable;
 import javax.servlet.ServletException;
 import javax.servlet.annotation.WebServlet;
 import javax.servlet.http.HttpServlet;
 import javax.servlet.http.HttpServletRequest;
 import javax.servlet.http.HttpServletResponse;

 import com.ibm.connector2.cics.ECIInteractionSpec;

 /**
 * Servlet implementation class JCAServlet
 */
 @WebServlet("/JCAServlet")
 public class JCAServlet extends HttpServlet
 {
 private static final long serialVersionUID = 4283052088313275418L;

 // 1. Use JNDI to look up the connection factory
 @Resource(lookup = "eis/defaultCICSConnectionFactory")
 private ConnectionFactory cf;

 protected void doGet(HttpServletRequest request, HttpServletResponse
 response)
 throws ServletException, IOException
 {
 try
 {
 // 2. Get the connection object from the connection factory
 Connection conn = cf.getConnection();

 // 3. Get an interaction object from the connection
 Interaction interaction = conn.createInteraction();

 // 4. Create a new ECIInteractionSpec
 ECIInteractionSpec is = new ECIInteractionSpec();

 // 5. Use the set methods on ECIInteractionSpec
 // to set the properties of execution.
 // Change these properties to suit the target program
 is.setCommareaLength(20);
 is.setFunctionName("PROGNAME");
 is.setInteractionVerb(ECIInteractionSpec.SYNC_SEND_RECEIVE);

 // 6. Create a record object to contain the input data and populate
 data
 // Change the contents to suit the data required by the program
 RecordImpl in = new RecordImpl();
 byte[] commarea = "COMMAREA contents".getBytes();
 ByteArrayInputStream inStream = new ByteArrayInputStream(commarea);
 in.read(inStream);

 // 7. Create a record object to contain the output data
 RecordImpl out = new RecordImpl();

 // 8. Call the execute method on the interaction
 interaction.execute(is, in, out);

 // 9. Read the data from the output record
 ByteArrayOutputStream outStream = new ByteArrayOutputStream();
 out.write(outStream);
 commarea = outStream.toByteArray();
 }

Chapter 2. Developing Java applications 115

 catch (Exception e)
 {
 // Handle any exceptions by wrapping them into an IOException
 throw new IOException(e);
 }
 }

 // A simple class which extends Record and Streamable representing a
 commarea.
 public class RecordImpl implements Streamable, Record
 {
 private static final long serialVersionUID = -947604396867020977L;

 private String contents = new String("");

 @Override
 public void read(InputStream is)
 {
 try
 {
 int total = is.available();
 byte[] bytes = null;
 if (total > 0)
 {
 bytes = new byte[total];
 is.read(bytes);
 }
 // Convert the bytes to a string.
 contents = new String(bytes);
 }
 catch (Exception e)
 {
 // Log the exception
 e.printStackTrace();
 }
 }

 @Override
 public void write(OutputStream os)
 {
 try
 {
 // Output the string as bytes
 os.write(contents.getBytes());
 }
 catch (Exception e)
 {
 // Log the exception
 e.printStackTrace();
 }
 }

 @Override
 public String getRecordName()
 {
 // Required by Record, unused in this sample
 return "";
 }
 @Override
 public void setRecordName(String newName)
 {
 // Required by Record, unused in this sample
 }
 @Override
 public void setRecordShortDescription(String newDesc)
 {
 // Required by Record, unused in this sample
 }
 @Override
 public String getRecordShortDescription()
 {
 // Required by Record, unused in this sample
 return "";
 }
 @Override
 public Object clone() throws CloneNotSupportedException
 {
 // Required by Record, unused in this sample
 return super.clone();
 }

116 CICS TS for z/OS: Java Applications in CICS

 }
 }

Results
You have successfully linked to a program in CICS using the ECI resource adapter.

Using the JCA local ECI resource adapter with channels and containers
To use channels and containers with the JCA local ECI resource adapter, the input and output records
must be instances of ECIChannelRecord.

When the ECIChannelRecord is passed to the execute() method of ECIInteraction, the method uses the
ECIChannelRecord itself to create a channel and converts the entries inside the ECIChannelRecord into
containers before passing them to CICS.

This example shows how to build an input and output record for use by the JCA local resource adapter
using the put() and get() methods on the ECI ChannelRecord.

ECIChannelRecord in = new
 ECIChannelRecord("CHANNELNAME");
 byte[] bitData = "Container with BIT data".getBytes();
 String charData = "Container with CHAR data";
 in.put("BITCONTAINER", bitData);
 in.put("CHARCONTAINER", charData);
 ECIChannelRecord out = new ECIChannelRecord("CHANNELNAME");

 interaction.execute(is, in, out);

 bitData = (byte[]) out.get("BITCONTAINER");
 charData = (String) out.get("CHARCONTAINER");

BIT and CHAR containers are created depending on the type of the entry:

• A BIT container is created when the entry data is of type byte[] or an object that implements the
Streamable interface. No code page conversion takes place.

• A CHAR container is created when the entry data is of type String. String data is encoded by Unicode
and is converted to the encoding of the container. Data read from this container by EXEC CICS GET
CONTAINER will be converted according to Using containers for code page conversion.

When creating the ECIChannelRecord, the name must be a valid CICS channel name. Once created the
getRecordName() method obtains the name of the channel. When adding containers to the
ECIChannelRecord, the container names must be valid CICS container names. Once created the KeySet()
method retrieves the names of all the containers.

Using the JCA local ECI resource adapter with COMMAREA
To use COMMAREA with the JCA local ECI resource adapter, the input and output records must be
instances of classes that implement javax.resource.cci.Record and
javax.resource.cci.Streamable.

This example shows how to build an input and output record for use by the local ECI resource adapter
using the read() and write() methods on the Streamable interface:

RecordImpl in = new RecordImpl();
 byte[] commarea = "COMMAREA contents".getBytes();
 ByteArrayInputStream inStream = new ByteArrayInputStream(commarea);
 in.read(inStream);
 RecordImpl out = new RecordImpl();

 interaction.execute(is, in, out);

 ByteArrayOutputStream outStream = new ByteArrayOutputStream();
 out.write(outStream);
 commarea = outStream.toByteArray();

To retrieve a byte array from the output record, use the write method on the Streamable interface using a
java.io.ByteArrayOutputStream object. The toByteArray() method on ByteArrayOutputStream
provides the output data from the COMMAREA in the form of a byte array.

Chapter 2. Developing Java applications 117

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/designing/dfhp3_ch_concpconv.html

To provide more function for your specific JEE components, you can write implementations of the Record
interface that allow you to set the contents of the record using the constructor. In this way you avoid use
of the java.io.ByteArrayInputStream used in the example.

Rational Application Developer provides the J2C tooling that allows you to build implementations of the
Record interface from specific native language structures such as COBOL copybooks, with in-built support
for data marshalling between Java and non-Java data types.

Unit of work management with JCA
Transaction Management, when using the CICS local ECI resource adapter, is provided by a CICS Liberty
JVM server.

Calls to other CICS programs using the CICS local ECI resource adapter are integrated with CICS unit of
work (UOW) management. This allows the UOW to be controlled through either syncpoint commands or a
JTA transaction.

Calls to a program in a remote CICS region result in a DPL call using a mirror transaction. This mirror task
UOW is coordinated by the calling UOW if a Java transaction context is being used, this means the called
program is unable to issue syncpoint calls as it is restricted to the DPL command subset. If the calling
program has no JTA transaction context then the mirror task UOW is invoked using the SYNCONRETURN
option. In this scenario the called program is able to issue syncpoint commands as its UOW is not
coordinated by the calling program.

For more details refer to Programming considerations for distributed program link , “Unit of work (UOW)
services” on page 65 and “Java Transaction API (JTA) ” on page 97.

Enabling trace for the JCA local ECI resource adapter
A detailed trace mechanism is provided for the JCA local ECI resource adapter. Enabling trace can be
useful for problem solving in applications using the resource adapter.

• JCA local ECI resource adapter trace is enabled by SJ domain trace level 4 (SJ = 4 or SJ = ALL).
• Trace from the resource adapter will be included in the JVM server trace output in zFS with the

component identifier com.ibm.cics.wlp.jca.local.eci.adapter.

Restrictions of the JCA local ECI resource adapter
Some API calls that are available on the CICS Transaction Gateway ECI resource adapter are not
supported by the CICS TS JCA local ECI resource adapter.

Restricted methods

These API calls are not supported by the JCA local ECI resource adapter

• ECIInteractionSpec class methods setExecuteTimeout(), getExecuteTimeout(), setReplyLength(),
getReplyLength(), setTranName(), getTranName()

• CICSConnectionSpec class methods setPassword(), getPassword(), setUserid(), getUserid(),
addPropertyChangeListener(), removePropertyChangeListener(), firePropertyChange

• ECIConnection class method getLocalTransaction()
• ECIChannelRecord class method values()
• CICSUserInputException
• The constructor ECIConnectionSpec(String username, String password). ECIConnectionSpec() has been

added as an alternative
• The constructor ECIInteractionSpec(int verb, int timeout, String prog, int commLen, int repLen).

ECIInteractionSpec(int verb, String prog, int commLen) has been added as an alternative

These calls are not supported when using the IBM CICS SDK for Java to develop web applications. In
order to allow portability of existing ECI JCA applications into a Liberty JVM server these methods will
continue to function but any settings of transaction, timeout, reply length and transaction name will have
no effect. Setting the transaction ID through ECIInteractionSpec.setTPNName() only uses the specified

118 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/designing/dfhp3c00230.html

transaction when linking to a remote program (DPL). Linking to a local program will continue to use the
current transaction.

Non-managed environments

JCA local ECI only supports managed connection factories (those created via the server.xml
configuration). Non-managed connections created using instances of a ManagedConnectionFactory, are
not supported.

Exception handling

Exception handling may differ slightly between the CICS Transaction Gateway ECI resource adapter and
the CICS TS JCA local ECI resource adapter. Any CICS errors will propagate to the ECI local resource
adapter as a CICSException, as they do with the JCICS API. The resource adapter will wrap these
exceptions in a ResourceException. To help identify the CICS fault, the CICSException will be set as the
cause of the Exception and can be accessed using the getCause() method of java.lang.Throwable.

Asynchronous calls

Asynchronous calls are not fully asynchronous in the JCA local ECI resource adapter. A call using the
SYNC_SEND interaction verb will block until the program completes, then the results can be gathered via
a subsequent call using the SYNC_RECEIVE interaction verb, using the same ECIInteraction.

Unsupported CICS Transaction Gateway functions

These CICS Transaction Gateway functions are not supported in the CICS TS local ECI resource adapter.

• Remote connections to a CICS Transaction Gateway server
• Identity propagation
• Cross component trace (XCT)
• Request monitoring user exits
• Trace from the resource adapter is controlled by CICS TS, use of the CICSLogTraceLevels is not

supported.

CICS remote development feature for Java
The CICS remote development feature for Java provides an ECI resource adapter for use in Liberty
running on a developers workstation. The feature enables developers to rapidly test and debug Java
applications that use JCA APIs to invoke programs in CICS TS. When ready, the application can be
deployed into Liberty running in CICS without any further changes to the application.

The feature connects to a CICS region by using an IP interconnectivity (IPIC) connection that is defined by
using the TCPIPSERVICE resource. The trace facility can be used to identify problems with the data sent
and received from the program in CICS TS.

Configuring the IPIC connection
Before you can test your Java application with a CICS region, an IPIC connection must be available.
Contact your CICS system programmer to request a TCP/IP service that accepts IPIC requests from a
Liberty profile by using the following details.

About this task
The following procedure guides the CICS system programmer through the steps to define a TCP/IP
service in CICS and install a sample user program for IPIC connections.

Procedure

1. Install IPIC support in CICS by defining a TCPIPSERVICE resource with the following attributes:

Chapter 2. Developing Java applications 119

Table 17. Attributes for TCPIPSERVICE resource

TCPIPSERVICE resource attribute Value required

URM DFHISAIP

Port number n

Status OPEN

Protocol IPIC

Transaction CISS

Backlog 0

Socketclose No

2. Verify that the TCPIPSERVICE is in service by issuing the CEMT INQUIRE TCPIPSERVICE(JCA)
command.

3. Install a sample program to test the IPIC connection.
a) If you do not already have a copy, download the CICS Transaction Gateway Software Development

Kit (SDK) and expand the archive file.
b) Locate and copy the cicsprograms/ec01.cpp member to a COBOL source data set on z/OS.
c) Compile the EC01 sample program and copy the generated module into a load library that CICS can

access.
d) If the autoinstall program is not enabled, define and install a program definition for ECO1.
e) Test the ECO1 program by issuing the CECI LINK PROG(EC01) COMMAREA(' ').

Check that the RESPONSE is NORMAL.

Results
IPIC support is now available for use in the CICS region.

Setting up your local Java test environment
Before you can test your Java application with a CICS region, you must check that the required tools are
installed and also configure your local work environment.

About this task

To create a local work environment where you can test your Java applications with a CICS region,
complete the following steps.

Procedure

1. Download and install the Eclipse IDE for Java EE Developers with WebSphere Developer Tools (WDT).
Then, install a local Liberty profile server instance, create the Hello World JavaServer Pages (JSP) and
test by deploying the Hello World web application on the server.
For more information, see Get Started available at Open Liberty.

2. Install the JCA remote ECI resource adapter from the Liberty Repository. You can install a feature from
the repository by using the installUtility command:

<liberty_install>/bin/installUtility install
--acceptLicense jcaRemoteEci-1.0

3. Add the usr:jcaRemoteEci-1.0 , localConnector-1.0 , and webProfile-6.0 features to the
server.xml file.
For example, in Eclipse expand the WebSphere Application Server Liberty Profile project and then
expand servers . Double-click defaultServer to edit server.xml . Click the source tab and add the
following features:

120 CICS TS for z/OS: Java Applications in CICS

https://developer.ibm.com/cics/2016/03/11/cics-tg-sdks/
https://developer.ibm.com/cics/2016/03/11/cics-tg-sdks/
https://openliberty.io/
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/cwlp_repository.html

<featureManager>
...
<feature>usr:jcaRemoteEci-1.0</feature>
<feature>localConnector-1.0</feature>
<feature>webProfile-6.0</feature>
...
</featureManager>

4. Add a connectionFactory and properties.com.ibm.cics.wlp.jca.remote.eci to
server.xml.

The connectionFactory jndiName is used by the application to create a connection. The
properties.com.ibm.cics.wlp.jca.remote.eci is used to configure the JCA remote ECI
resource adapter and at a minimum must specify serverName with the host name and port number of
the IPIC connection defined by the TCPIPSERVICE resource.

Note: You might need to specify extra parameters. For example, to use Secure Sockets Layer (SSL)
and a user ID and password. Table 1 lists the available parameters. Table 2 lists the ECI resource
adapter deployment parameters that are not supported by the JCA remote ECI resource adapter. For
more information, see ECI resource adapter deployment parameters.

<server>
...
<connectionFactory id="com.ibm.cics.wlp.jca.local.eci" jndiName="eis/ECI">
<properties.com.ibm.cics.wlp.jca.remote.eci serverName="tcp://
hostname
:
port"/>
</connectionFactory>
...
</server>

Table 1 shows the JCA remote ECI resource adapter properties that are supported.

Table 18. Supported JCA remote ECI resource adapter properties

JCA object: property Notes

applid

applidQualifier This property is required.

cipherSuites

ipicHeartbeatInterva l

ipicSendSessions This property default is 5.

keyRingClass

keyRingPassword

password

socketConnectTimeout

serverName This property is required.

traceLevel

traceRequest

userName

Table 2 shows CICS Transaction Gateway ECI resource adapter deployment parameters that are not
supported by the JCA remote ECI resource adapter.

Chapter 2. Developing Java applications 121

https://www.ibm.com/support/knowledgecenter/SSZHJ2_9.2.0/com.ibm.cics.tg.zos.doc/deploying/topics/ccla206.html?lang=en

Table 19. JCA remote ECI resource adapter properties that are not supported

JCA object: property

interceptPlugin

portNumber

tPNName

tranName

Testing the example Java EE JCAServlet application
Add the example Java EE JCAServlet application and then verify that the Java EE application can call a
sample program in CICS.

About this task

Complete the following steps to add the Java EE JCAServlet application. Then, verify that the Java EE
JCAServlet application can call the EC01 sample program in CICS.

Procedure

1. Create a JCAServlet class in the Hello World web application.
Expand the Hello World project and then expand Java Resource . Right-click New and select Servlet.

• For Java package , enter com.ibm.ctg.samples.liberty
• For Class name , enter JCAServlet

Then, click Finish.
2. Edit JCAServlet.java and replace all of the code with the CICS example JCAServlet.java from

GitHub.
For more information, see JCAServlet.java.

3. Expand the Hello World project and then expand Java Resources > src >
com.ibm.ctg.samples.liberty . Right-click the JCAServlet.java application and select Run As > Run
on server.

4. The Liberty server is started and a message is displayed on the Liberty server console that indicates
the URL, which you can click to run the Java EE application. The following is an example of a message,
which might be displayed.

[AUDIT] CWWKT0016I: Web application available
(default_host):
http://localhost:9080/GenappCustomerSearchWeb/

Results

You can now test and debug the Java EE application in your local Liberty server.

Configuring the trace function in your local Liberty profile
Before you can trace your Java web application in your local Liberty profile, you must configure your local
work environment.

About this task
Complete the following steps to configure the trace function in your local Liberty profile.

Procedure

Add the traceRequests="ON" parameter to the connection factory in your server.xml file to enable
tracing.

122 CICS TS for z/OS: Java Applications in CICS

https://github.com/crshnburn/CICS-TG-Liberty-Sample/blob/master/com/ibm/ctg/samples/liberty/JCAServlet.java

With traceRequests="ON" specified, when you send another application request, the Eclipse console
shows the request and the response that your application sends and receives from CICS.

The following example shows a request that is sent to CICS and the response received from CICS.

Starting DataFlowsMonitor log stream at
Thu Apr 07 14:21:54 BST 2016[00000000001]:
com.ibm.ctg.monitoring.DataFlowsMonitor:eventFired called with
event = RequestEntry
FlowType = EciSynconreturn Fully qualified APPLID = No APPLID
CtgCorrelator =
1Program = EC01Server =
TCP://WINMVS2C.HURSLEY.IBM.COM:27723PayLoad = COMMAREA is 20
bytes00000000 00000000 00000000 00000000 00000000
'????????????????????'

[00000000001]:
com.ibm.ctg.monitoring.DataFlowsMonitor:eventFired called with
event = ResponseExit
FlowType = EciSynconreturn Fully qualified APPLID = No APPLID
CtgCorrelator =
1OriginData - Transaction Group ID = 1B114040
40404040 40402EF0 F0F0F0F0 F0F0F2D0 8F53F115 220100Program = EC01Server =
TCP://WINMVS2C.HURSLEY.IBM.COM:27723PayLoad = COMMAREA is 20
bytesF0F761F0 F461F1F6 40F1F47A F2F17AF5 F4000000
'??a??a??@??z??z?????'CtgReturnCode = 0CicsReturnCode = 0

Results
You can now trace your application to help identify any problems.

Configuring a secure SSL connection
You can secure the IPIC connection from the JCA remote ECI resource adapter to CICS by using SSL.

About this task

Complete the following steps to configure a secure SSL connection.

Completing this setup provides SSL with trusted Certificates exported from both MVS and the local client.
An MVS user ID and password are also required for authentication.

Procedure

1. Set up a CICS RACF® environment.
For more information, see Configuring SSL server authentication on the CICS server .

2. Set up the client security.
For more information, see Configuring SSL server authentication on the client.

3. Configure the client authentication.
For more information, see Configuring SSL client authentication.

4. Configure the IPIC connection on CICS.
For more information, see Configuring the IPIC connection on CICS .

5. Modify your sever.xml to use the local KeyRingClass that was created in Step 2 and send your
user ID and password.

<connectionFactory id="com.ibm.cics.wlp.jca.local.eci"
jndiName="eis/ECI">
<properties.com.ibm.cics.wlp.jca.remote.eci
serverName="ssl://hostname:port"
keyRingClass="C:\Users\IBM_ADMIN\Documents\CICS\JCA\ctgclientkeyring.jks"
keyRingPassword="password"
userName="user_ID"
password="*******"
applid="JCASSL"
applidQualifier="ABCDEFGH"

Chapter 2. Developing Java applications 123

https://www.ibm.com/support/knowledgecenter/SSZHFX_9.2.0/com.ibm.cics.tg.doc/scenarios/topics/sc07_conf_serv1.html
https://www.ibm.com/support/knowledgecenter/SSZHFX_9.2.0/com.ibm.cics.tg.doc/scenarios/topics/sc07_conf_serv2.html
https://www.ibm.com/support/knowledgecenter/SSZHFX_9.2.0/com.ibm.cics.tg.doc/scenarios/topics/sc07_conf_client.html
https://www.ibm.com/support/knowledgecenter/SSZHFX_9.2.0/com.ibm.cics.tg.doc/scenarios/topics/sc07_conf_ipic.html

/>
</connectionFactory>

Results

The JCA remote ECI resource adapter secures requests to CICS by using SSL and the key ring, user ID,
and password that are specified in server.xml.

Developing microservices with MicroProfile
Eclipse MicroProfile defines a programming model for developing microservice applications in an
Enterprise Java environment. It is an open source project under The Eclipse Foundation, to bring
microservices to the Enterprise Java community. MicroProfile is supported by Liberty.

MicroProfile defines a number of specifications for building microservices that are resilient, secure and
easy to monitor.

Table 20. Included in Eclipse MicroProfile 1.2

Specification Description

JSR 346: Contexts and Dependency Injection for
Java EE 1.1

CDI defines a set of services that manage the
injection and lifecycle of objects in an Enterprise
Java runtime.

JSR 339: JAX-RS 2.0: The Java API for RESTful
Web Services

JAX-RS is a Java API for RESTful Web Services.

JSR 353: Java API for JSON Processing JSON-P is a Java API for processing JSON.

Eclipse MicroProfile Config 1.1 Config is a Java API and SPI for managing
application configuration.

Eclipse MicroProfile Fault Tolerance 1.0 Fault Tolerance provides strategies for coping with
failures when calling external services.

Eclipse MicroProfile Health Check 1.0 Health Check allows components to report their
liveliness to the wider system.

Eclipse MicroProfile Health Metrics 1.0 Health Metrics provide a unified way for
applications to expose monitoring data.

Eclipse MicroProfile JWT Propagation 1.0 JWT Propagation allows JSON Web Token (JWT) to
be used for authentication and authorization with
Java EE role-based access control (RBAC).

Known Restrictions

• CDI is used extensively in the MicroProfile APIs, however Liberty does not support CDI in OSGi web
applications that are packaged in enterprise bundle archives (EBAs). Instead, package applications that
use MicroProfile in web application archives (WARs) or enterprise application archives (EARs).

• MicroProfile Fault Tolerance 1.0 is designed to manage calls made to other services. It is not designed
to manage updates to resources in a transactional context. CICS resources should not be updated in
methods annotated @Bulkhead, @CircuitBreaker, @Fallback, @Timeout or @Retry. CICS cannot
guarantee that these updates will be recovered when exceptions occur, even when JTA is used.

• When the feature mpJwt-1.0 is enabled in the server.xml of a Liberty JVM server, all authentication
must be done by using JWT bearer tokens. To use any other form of authentication, a separate Liberty
JVM server must be used.

Service Architectures in CICS Liberty JVM servers

124 CICS TS for z/OS: Java Applications in CICS

https://jcp.org/en/jsr/detail?id=346
https://jcp.org/en/jsr/detail?id=346
https://jcp.org/en/jsr/detail?id=339
https://jcp.org/en/jsr/detail?id=339
https://jcp.org/en/jsr/detail?id=353
https://projects.eclipse.org/projects/technology.microprofile/releases/config-1.1
https://projects.eclipse.org/projects/technology.microprofile/releases/fault-tolerance-1.0
https://projects.eclipse.org/projects/technology.microprofile/releases/health-check-1.0
https://projects.eclipse.org/projects/technology.microprofile/releases/health-metrics-1.0
https://projects.eclipse.org/projects/technology.microprofile/releases/jwt-propagation-1.0

Monolithic Architecture

Monolithic architecture implements the application in a single unit. Internally the logic can be modular,
but externally the application is either entirely available, or not available at all. Monoliths perform well
compared to microservices and are less complex when managing security and transaction context.
Scaling monoliths involves adding instances of the entire application, individual parts cannot be scaled.

Chapter 2. Developing Java applications 125

DatabaseApplication

Internet

Figure 4. Monolithic architecture

126 CICS TS for z/OS: Java Applications in CICS

Backing Services

Backing services allow the back end data and programs to be decoupled from the main application. By
making the data and programs into separate applications, they are called using a platform agnostic
communication method, for example HTTP, socket, message queues, etc. Instead of the main application
holding all the logic for communicating with these sources, some responsibility is given to these services.

In CICS, z/OS Connect is used to expose CICS programs as backing services through a REST API. In the
example, the application uses JDBC to communicate with a database. SMTP is used to send emails and
HTTP is used to call a CICS program through z/OS Connect.

Chapter 2. Developing Java applications 127

Database

z/OS Connect EE

Mail service

Application

Internet

Figure 5. Backing services

128 CICS TS for z/OS: Java Applications in CICS

Hosted Services

Services are hosted in CICS to further decouple the main application from the various components.
Similar to backing services, additional functionality is exposed in CICS through CICS Web Services, or in
CICS Liberty with applications using technologies including servlets, JAX-RS and JAX-WS.

JAX-RS is a popular technology for creating RESTful web services, JAX-WS is used to create remote
procedure call (RPC) orientated web services.

Chapter 2. Developing Java applications 129

Service A

Service B

Service C

Application

Internet Database

Figure 6. Hosted services

130 CICS TS for z/OS: Java Applications in CICS

Note: Both REST and RPC are equally valid options for communication in microservices. REST focuses on
resource management. RPC focuses on actions. A microservice architecture does not mandate REST, RPC
or any other technology.

Microservices

A full microservice architecture is an interconnected web of isolated services with no single central point,
though there can be dedicated entry points. Services can communicate with one another as required.
Scaling microservices involves adding instances of the parts which require scaling. Microservices are
more resilient to failures than monoliths.

Chapter 2. Developing Java applications 131

Service A

Service B

Service C

Website

API GatewayInternet

Database

Figure 7. Microservices

132 CICS TS for z/OS: Java Applications in CICS

Scaling Services in CICS

Services can be scaled in several ways in CICS, depending on region topology and setup. Microservices
are typically isolated into a single container. In CICS, a service or set of services could be isolated within a
region or JVM server. Scaling can be achieved by running multiple CICS regions hosting the same service
or set of services. You can also scale the JVM server by increasing the number of threads.

Securing Microservices

Where possible, microservices should be kept off public networks. API gateways can be used to provide
controlled access to microservices. MicroProfile offers a method for using Open ID Connect (OIDC) based
JSON Web Tokens (JWT) for role based access control (RBAC) of microservice endpoints. Security tokens
offer lightweight and interoperable propagation of user identities across different services.

MicroProfile JWT Authentication 1.0 provides functionality to authenticate and authorize users based on a
JWT bearer token. The token can be injected into the service code and used to propagate the identity
across the microservice network. Propagation of the JWT can be done manually by including the JWT as a
bearer token in the Authorization HTTP header on the outbound request. Alternatively, Liberty can
automatically propagate the JWT by configuring a webTarget element in server.xml with an
authnToken configured, for example:

<webTarget uri="http://microservice.example.ibm.com/protected/*" authnToken="mpjwt" />

Important: JWT identities are not automatically mapped to a user registry and will not be propagated into
the CICS task user ID. To enable identity mapping, add mapToUserRegistry=”true” configuration
attribute to the <mpJwt> element in server.xml.

For more information on configuring MicroProfile JWT Authentication in Liberty see Configuring the
MicroProfile JSON Web Token.

Data Consistency in Microservices

Microservices cannot easily make use of distributed transactions. Instead alternative transaction
strategies are used, such as the saga pattern, where events are published after an updated in a service.
For example, if service A and service B have updates which should both happen, the following sequence
occurs:

1. A updates into a pending state
2. A sends a message to B
3. B updates into a complete state
4. B sends a message to A
5. A updates into a complete state

When to use Microservices

Microservices are best applied where an application can be deconstructed into smaller, isolated, services.
A microservice allows for controlled scaling, independent deployment and more autonomous
development. The architecture of microservices can create additional complexity, particularly in
deployment and data consistency. Communicating over protocols such as HTTP produces a larger
performance cost compared to calling in memory. Components can be made more resilient to failure by
allowing them to scale individually. Monitoring solutions become more important to aid diagnosis of
unhealthy services when managing a microservice architecture.

Spring Boot applications
You can develop Spring Boot applications for use with CICS. There are two approaches to developing
Spring Boot applications. The approach that you choose depends upon whether you want to integrate
your Spring Boot application with aspects of Java EE such as Security, Transactions, DataSources and
Java Message Service (JMS), or whether you prefer to use standard Spring configuration and templates
with little or no integration with Java EE.

Chapter 2. Developing Java applications 133

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_sec_json.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_sec_json.html

If you build and deploy your Spring Boot application as a JAR, then you can only integrate with JCICS. To
achieve greater integration with Java EE and Liberty, build and deploy your Spring Boot application as a
WAR file and follow the best practices that are described in topic Building and deploying Spring Boot
applications. Each subtopic describes an important aspect of integration and how to ensure Spring Boot
integrates with Java EE, Liberty, and CICS capabilities.

JCICS in Spring Boot applications
You can use JCICS in your Spring Boot applications to call CICS services. JCICS is integrated by default
for both WARs and Spring Boot JARs.

This is contrary to other integration aspects of Java EE and Liberty that are only available when the Spring
Boot application is deployed as a WAR. Although you can resolve your Spring Boot dependencies against
JCICS by using the com.ibm.cics.server artifact on Maven Central, a more consistent approach is to use
the JCICS bill of materials (BOM). This ensures you resolve against consistent versions of a range of CICS
artifacts as shown in the examples below.

Avoid binding the JCICS library into your application as this is provided by the CICS runtime.

If you are using Maven, you can achieve this by compiling against the JCICS library by using
<scope>provided</scope>. Or, if you are using the CICS TS BOM, the <scope>import</scope> on
the <dependency> element automatically defers the scope value to the CICS BOM. The CICS BOM
applies the 'provided' scope, which ensures JCICS is only included at build time. It is not embedded in
your application where it might potentially conflict with the version that is used by the CICS runtime. For
example,

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>com.ibm.cics</groupId>
 <artifactId>com.ibm.cics.ts.bom</artifactId>
 <version>5.5-20191121085445-PH14856</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

If you are using Gradle, you can take advantage of the CICS TS BOM by coding a compileOnly directive
with the 'enforcedPlatform' qualifier. Doing so infers version information from the BOM and ensures that
references to the contained artifacts are consistent and compatible. Thereafter, to declare a dependency
on the JCICS library (com.ibm.cics.server), or any other CICS artifact from the BOM, a version qualifier is
not required, simply code the appropriate dependency statement.

For example,

compileOnly enforcedPlatform('com.ibm.cics:com.ibm.cics.ts.bom:5.5-20191121085445-PH14856')
compileOnly("com.ibm.cics:com.ibm.cics.server")

Note: See Maven Central for the latest version number for appropriate for your release of CICS.

For more information about building applications with Maven and Gradle, see Developing applications
using Maven or Gradle.

JPA in Spring Boot applications
Developers can use the Java Persistence API (JPA) to create object-oriented versions of relational
database entities to use in their applications.

To use JPA in your Spring Boot application, first add a JPA artifact to your dependencies in your Spring
Boot application. For example:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency>

134 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/sb-building.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/sb-building.html
https://search.maven.org/search?q=g:com.ibm.cics%20AND%20a:com.ibm.cics.server&core=gav
https://search.maven.org/search?q=g:com.ibm.cics
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/cics_license_jars.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/cics_license_jars.html

Java EE’s implementation of JPA and Spring data’s implementation of JPA both require configuration to
define the connection to the database repository that is used by the application.

Just like using JDBC you can use the spring.jdbc.jndi-name property that is defined in
application.properties to configure the connection to the datasource being used and this will be
used dynamically by the JPA EntityManager. Alternatively the data source can also be defined in an
@Bean annotated dataSource() method, by performing a JNDI lookup of a data source defined in Liberty.

Security in Spring Boot applications
You have three options when you are using Spring Boot security in CICS.

1. You can use Spring Boot security without integrating with Liberty or CICS security. This option is useful
if you are taking an existing Spring Boot application and deploying it unchanged in CICS.

2. You can use Java EE security to authenticate web requests by using any of the Liberty-supported
registry types. You can configure it in the standard Java EE method by using a <security-
constraint>and <login-config> in the application's web.xml. This option is useful if you want to
authenticate users by using any of the supported Liberty registry types, and then control transaction
authorization by using CICS security. For more information, see Authenticating users in a Liberty JVM
server

Note: You must ensure that web.xml is stored in src/main/webapp/WEB-INF/
3. You can integrate Spring Boot security with Java EE security by using Java EE container pre-

authentication. It allows you to authenticate users via an external system in order to provide a
validated user ID and set of roles to Spring Boot security. To do this, you need to modify the
application and create an @Configuration annotated class that extends
WebSecurityConfigurerAdapter in order to name the roles to be propagated into Spring security. In
addition, you then need to configure the standard Java EE security settings in the applications
web.xml and <application-bnd> or EJBROLE profiles if you are using SAF authorization. Use this
option if you want to authenticate users by using any of the supported Liberty registry types, and you
want to authorize requests by using Java EE role-based access to individual methods

Transactional integration and Spring Boot applications
You can achieve transactional integration when you are developing Spring Boot applications for use with
CICS Liberty. The effect of transactional integration between Spring Boot and CICS is to ensure that the
CICS Unit of Work (UOW) is coordinated by Liberty's transaction manager. Using the Java Transaction API
(JTA) you can coordinate CICS, Liberty, and third-party resource managers, such as a type 4 database
driver connection, together as one global transaction. For more information about JTA support in CICS,
see Java Transaction API (JTA).

JTA is available for use in a Spring Boot WAR application in various ways:

• Spring Boot's @Transactional annotation: This annotation, which is specified at the class or method
level denotes the code segment to be contained within a single global transaction.

• Spring templates: The Spring framework provides two templates for use with programmatic transaction
management: the TransactionTemplate and the PlatformTransactionManager interface.

• UserTransaction: It is also possible to use the JTA UserTransaction interface within a Spring Boot
application by obtaining the UserTransaction initial context of the hosting Application server (Liberty)
through a JNDI lookup. For example, ctx.lookup("java:comp/UserTransaction");. The
developer can employ a Bean-managed approach to transactions by explicitly coding UserTransaction
'start' and 'end' calls around the resources to be managed.

Threading and Concurrency in Spring Boot applications
The Spring Framework provides abstractions for asynchronous execution of tasks by using the
TaskExecutor interface. Executors are the Java SE name for the concept of thread pools. Spring’s
TaskExecutor interface is identical to the java.util.concurrent.Executor interface. The TaskExecutor was
originally created to give other Spring components an abstraction for thread pooling where needed.
Spring includes a number of pre-built implementations of TaskExecutor but it is the
DefaultManagedTaskExecutor that is most useful for integration with CICS as it looks up the application
server's defaultExecutor - which in CICS Liberty is designed to provide CICS enabled threads.

Chapter 2. Developing Java applications 135

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/auth_use_app.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/auth_use_app.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/dfhpj2_jta.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#scheduling-task-executor-types

About this task
To run asynchronous tasks in your Spring Boot application by using CICS enabled threads, there are two
options. You can either set an Asynchronous Executor for the whole application, or you can choose to
specify an AsyncExecutor on a per method basis. If all the tasks you spawn asynchronously require CICS
services, then setting the Asynchronous Executor for the whole application is the simplest approach.
Otherwise, you need to specify the Asynchronous Executor to use for each and every method where you
require asynchronous capability. Here, we demonstrate the whole application approach.

Procedure

1. On your main Spring Boot Application class add the @EnableAsync annotation, implement the
interface AsyncConfigurer, and override the getAsyncExecutor() and AsyncUncaughtExceptionHandler
methods. Ensure you return an instance of the DefaultManagedTaskExecutor in the
getAsyncExecutor() method as this obtains new threads from Liberty's defaultExecutor, which in turn
is configured to return CICS enabled threads. For more information about the AsyncConfigurer, see the
AsyncConfigurer in the Spring Boot documentation. For usage examples, see EnableAsync in the
Spring Boot documentation.

@SpringBootApplication
@EnableAsync
public class MyApplication implements AsyncConfigurer
{

 public static void main(String[] args)
 {
 SpringApplication.run(MyApplication.class, args);
 }

 @Override
 @Bean(name = "CICSEnabledTaskExecutor")
 public Executor getAsyncExecutor()
 {
 return new DefaultManagedTaskExecutor();
 }

 @Override
 public AsyncUncaughtExceptionHandler getAsyncUncaughtExceptionHandler()
 {
 return new CustomAsyncExceptionHandler();
 }
}

public class CustomAsyncExceptionHandler implements AsyncUncaughtExceptionHandler
{
 @Override
 public void handleUncaughtException(Throwable throwable, Method method, Object... obj)
 {
 System.out.println("Exception Cause - " + throwable.getMessage());
 System.out.println("Method name - " + method.getName());
 for (Object param : obj)
 {
 System.out.println("Parameter value - " + param);
 }
 }
}

2. Add the @Async annotation to either: a class in your application if you wish to run all methods on that
class asynchronously, or to individual methods that you wish to run asynchronously.
i.e.@Async("CICSEnabledTaskExecutor")

3. Add the concurrent-1.0 feature to server.xml

JDBC in Spring Boot applications
You can use Spring Data JDBC to implement JDBC based repositories. It allows you to access DB2 and
other data sources from your Spring Boot application.

Spring Data JDBC is conceptually simpler than JPA, for more information on how it differs from JPA, see:
Reference documentation in the Spring Boot documentation. To use JDBC in your Spring Boot application,

136 CICS TS for z/OS: Java Applications in CICS

https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/scheduling/annotation/AsyncConfigurer.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/aop/interceptor/AsyncUncaughtExceptionHandler.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/scheduling/annotation/AsyncConfigurer.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/scheduling/annotation/EnableAsync.html
https://docs.spring.io/spring-data/jdbc/docs/current/reference/html/#reference

add a JDBC artifact to your dependencies in your Spring Boot application to make the necessary Java
libraries available. For example, in Maven:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jdbc</artifactId>
</dependency>

Or in Gradle, (implementation"org.springframework.boot:spring-boot-starter-data-jdbc")

To use JDBC in a Spring Boot application, you can define a Liberty dataSource in the server.xml just as
you would if using JDBC in a Java EE application. This data source can then be located by using a JNDI
lookup that references the jndiName attribute on the dataSource element, and then used by the Spring
Boot JdbcTemplate object by using one of the following methods:

1. Performing a JNDI lookup of the data source in an @Bean annotated dataSource() method and
returning the data source.

2. Naming the data source in the spring.jdbc.jndi-name in the Spring application properties. Spring
Boot creates the JdbcTemplate using the data source that is named in application.properties.

Note: In option 2, it is also possible to configure all the data source attributes necessary to connect a
Spring application to the required data source from within the application.properties file. The
attributes are all defined in Common application properties in the Spring Boot documentation. However,
this ties the application directly the data source and using JNDI is a more flexible approach.

JMS in Spring Boot applications
You can use JMS in Spring Boot applications to send and receive messages by using reliable,
asynchronous communication by using messaging providers such as IBM MQ.

To use JMS in your Spring Boot application, add a JMS artifact to your dependencies in your Spring Boot
application to make the necessary Java libraries available. For example, in Maven,

<dependency>
 <groupId>org.springframework.integration</groupId>
 <artifactId>spring-integration-jms</artifactId>
</dependency>
<dependency>
 <groupId>javax.jms</groupId>
 <artifactId>javax.jms-api</artifactId>
 <scope>provided</scope>
</dependency>

or in Gradle,

implementation("org.springframework.integration:spring-integration-jms")
compileOnly("javax.jms:javax.jms-api")

To send and receive messages by using a JMS messaging provider, you can define a JMS connection
factory in the Liberty server.xml as you would if you were using JMS in a Java EE application. This
connection factory can then be used to reference a remote IBM MQ queue manager by using a
JmsTemplate object and either:

1. Performing a JNDI lookup of the connection factory in an @Bean annotated connectionFactory()
method and returning the connection factory.

2. Naming the connection factory in the spring.jms.jndi-name in the Spring application properties. Spring
Boot then creates the JmsTemplate by using the connection factory that is named in the
application.properties.

Note: In option 2, it is also possible to configure all the connection factory attributes necessary to
connect a Spring application to the required queue manager from within the application.properties
file. The attributes are all defined in Common application properties. However, this ties the application
directly the queue manager and by using JNDI is a more flexible approach.

A message driven POJO (MDP) is used to handle incoming messages in Spring Boot. An @EnableJms
annotation is used in the Spring Boot Configuration class to enable discovery of methods annotated

Chapter 2. Developing Java applications 137

https://docs.spring.io/spring-boot/docs/current/reference/html/appendix-application-properties.html
https://docs.spring.io/spring-boot/docs/current/reference/html/appendix-application-properties.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/context/annotation/Configuration.html

@JmsListener. The @JMSListener annotation marks a method to be the target of a JMS message listener
that receives incoming messages.

If you want these MDPs to be able to use the JCICS API, then you need to bind the Liberty TaskExecutor
to the JmsListenerContainerFactory. This can be achieved as follows:

@Bean
public TaskExecutor taskExecutor()
{
 return new DefaultManagedTaskExecutor();
}

@Bean
public JmsListenerContainerFactory<?> myFactory(ConnectionFactory connectionFactory)
{
 DefaultJmsListenerContainerFactory factory = new DefaultJmsListenerContainerFactory();
 factory.setConnectionFactory(connectionFactory);
 factory.setTaskExecutor(taskExecutor());
 return factory;
}

Note: This requires the use of the jndi-1.0 and concurrent-1.0 Liberty features.

The Spring Boot @Transactional annotation can also be used on the @JMSListener annotated method to
signify that the receiving of the message from the queue and the CICS UOW are to be coordinated by
using the same container-managed JTA global transaction.

Building and deploying Spring Boot applications
You can build your Spring Boot applications for use in CICS with Maven or with Gradle.

Building Spring Boot applications as WAR or JAR files

You can build Spring Boot applications as a web application archive (WAR) or a Java Archive (JAR) file.
Build your Spring boot application as a WAR if you are looking to integrate Spring Framework
transactional management or Spring Boot Security in CICS. See Table 21 on page 138. When built as a
WAR, a Spring Boot application can be deployed and managed by using CICS bundles in the same way as
other CICS Liberty applications. When built as a JAR the springBoot-1.5 or springBoot-2.0 feature must
be installed and the JAR must be deployed by using either a Liberty application element with the
type="spring" attribute or by using the dropins directory. However, if you have an existing application
that you simply want to deploy into CICS without using CICS integration, you can package it as a JAR.
Only one JAR file can be deployed into a Liberty JVM server at a time but multiple WAR files can be co-
hosted.

Table 21. Spring Boot integration

Capability Spring Boot applications built into:

WAR JAR

CICS JCICS API Yes Yes

CICS link to Spring Bean Yes Yes

Java Persistance API (JPA) Yes No

Spring security integration with CICS Yes No

Spring transaction integration with CICS Yes No

Java Database Connectivity (JDBC) Yes No

Threading and concurrency Yes No

Java Message Service (JMS) Yes No

The following diagram displays the different options that you can take to run your Spring Boot application
on CICS.

138 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/sb-jcics.dita
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/link_2_liberty.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/sb-jpa.dita
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/sb-security.dita
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/sb-transactions.dita
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/sb-jdbc.dita
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/sb-jms.diat

Additional notes for building WARs

Before building, you must set the packaging type of your Spring Boot application as a deployable WAR.
Your main application class must extend the SpringBootServletInitializer and override the configure
method. You must also declare the Spring Boot embedded web container (typically Tomcat) as a provided
dependency in your build script so that it can be replaced with Liberty's web-container at run time. In this
example a main method is provided so that the application can also be built as a stand-alone JAR if
required.

@SpringBootApplication
public class MyApplication extends SpringBootServletInitializer
{
 @Override
 protected SpringApplicationBuilder configure(SpringApplicationBuilder application)
 {
 return application.sources(MyApplication.class);
 }

 public static void main(String[] args)
 {
 SpringApplication.run(MyApplication.class, args);
 }
}

Chapter 2. Developing Java applications 139

For detailed information about creating a deployable WAR file with Maven or Gradle, see Create a
deployable WAR file in the Spring Boot documentation.

For more information about building applications with Maven and Gradle, see Developing applications
using Maven or Gradle

Liberty web server plug-in
The web server plug-in allows the forwarding of HTTP requests from a supported web server, on to one or
more Liberty application servers.

There are three main reasons why you would want to use the web server plug-in.

• It provides integration with a web server for the serving of static content.
• It allows termination of the SSL endpoint in the web server when using HTTPS.
• It enables load balancing and failover of HTTP requests across a group of Liberty servers.

The web server plug-in is configured by generating a plugin-cfg.xml file on the Liberty server that is
copied to the machine hosting the web server. The plug-in takes inbound requests and checks them
against the configuration data contained within this file and forwards incoming HTTP requests to the URI
and host of the configured Liberty servers.

The procedure for generating plugin-cfg.xml with a Liberty profile server uses the
generatePluginConfig operation, that is exposed by the
com.ibm.ws.jmx.mbeans.generatePluginConfig MBean provided by Liberty. This JMX MBean can
either be invoked remotely using the JConsole utility supplied with the IBM Java SDK in combination with
the Liberty server restConnector-1.0 feature or by developing a custom JMX application to invoke the
required operation on the MBean. For further details on using JMX in a CICS Liberty server see “ Java
Management Extensions API (JMX) ” on page 108.

Further detailed information on setting up a web server plug-in can be found in the WAS Knowledge
Center, see Adding a plug-in configuration to a web server.

Liberty features
CICS supports features from WebSphere Application Server Liberty, which enables Java EE applications
to be deployed into a Liberty JVM server.

All features in Tables 2-14 relate to CICS integrated-mode Liberty. The features are also supported in
CICS standard-mode Liberty without any of the restrictions, unless noted otherwise. Table 15 provides a
set of CICS features to integrate Liberty features with the CICS qualities of service.

Many features from Java EE 6 and Java EE 7, and Java EE 7 and Java EE 8 must not be used concurrently.
For information about feature compatibility, see Supported Java EE 6 and 7 feature combinations and
Supported Java EE 7 and 8 feature combinations. For information about editing the server.xml, see
Server configuration.

List of tables

Table 1: Liberty features listed alphabetically

Table 2: Liberty features supported for Java EE 8 Full Platform and Jakarta EE 8 Platform

Table 3: Liberty features supported for Java EE 8 Web Profile

Table 4: Liberty features supported for Java EE 7 Full Platform

Table 5: Liberty features supported for Java EE 7 Web Profile

Table 6: Liberty features supported for Java EE 6 Technologies

Table 7: Liberty features supported for Java EE 6 Web Profile

Table 8: Liberty features supported for Enterprise OSGi

Table 9: Liberty features supported for Extended Programming Models

140 CICS TS for z/OS: Java Applications in CICS

https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#howto-create-a-deployable-war-file
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#howto-create-a-deployable-war-file
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/cics_license_jars.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/cics_license_jars.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_admin_webserver_plugin.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/rwlp_prog_model_supported_combos.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/rwlp_prog_model_supported_combos_7_8.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/cwlp_config.html

Table 10: Liberty features supported for MicroProfile

Table 11: Liberty features supported for Operations

Table 12: Liberty features supported for Security

Table 13: Liberty features supported for Systems Management

Table 14: Liberty features supported for z/OS

Table 15: CICS Liberty features

Table 22. Liberty features alphabetically

Features A-Ej Features Ej-Jn Features Jp-MpJ Features MpM-Z

adminCenter-1.0 ejbLite-3.2 jmsMdb-3.1 mpJwt-1.0

appClientSupport-1.0 ejbPersistentTimer-3.2 jndi-1.0 mpMetrics-1.0

appSecurity-1.0 ejbRemote-3.2 jpa-2.0 oauth-2.0

appSecurity-2.0 el-3.0 jpa-2.1 openidConnectClient-1.0

appSecurity-3.0 j2eeManagement-1.1 jpa-2.2 openidConnectServer-1.0

batch-1.0 jacc-1.5 jsf-2.0 osgiConsole-1.0

batchManagement-1.0 for
JEE7

jakartaee-8.0 jsf-2.2 osgi.jpa-1.0

beanValidation-1.0 for
JEE6

jaspic-1.1 jsf-2.3 restConnector-1.0

beanValidation-1.0 for
JEE7

javaMail-1.5 json-1.0 servlet-3.0

beanValidation-1.1 for
JEE6

javaMail-1.6 jsonb-1.0 servlet-3.1

beanValidation-1.1 for
JEE7

javaee-7.0 jsonp-1.0 servlet-4.0

blueprint-1.0 javaee-8.0 jsonp-1.1 sessionDatabase-1.0

cdi-1.0 jaxb-2.2 for JEE7 jsp-2.2 springBoot-1.5

cdi-1.2 jaxb-2.2 for JEE6 jsp-2.3 springBoot-2.0

cicsts:core-1.0 jaxrs-1.1 jta-1.1 ssl-1.0

cicsts:defaultApp-1.0 jaxrs-2.0 jta-1.2 wab-1.0

cicsts:distributedIdentity-
1.0

jaxrs-2.1 jwt-1.0 wasJmsClient-1.1

cicsts:jcaLocalEci-1.0 jaxrsClient-2.0 ldapRegistry-3.0 wasJmsClient-2.0

cicsts:jdbc-1.0 jaxrsClient-2.1 localConnector-1.0 wasJmsSecurity-1.0

cicsts:link-1.0 jaxws-2.2 for JEE7 managedBeans-1.0 wasJmsServer-1.0

cicsts:security-1.0 jaxws-2.2 for JEE6 mdb-3.1 webCache-1.0

cicsts:standard-1.0 jca-1.6 mdb-3.2 webProfile-6.0

cicsts:zosConnect-1.0 jca-1.7 microProfile-1.0 webProfile-7.0

cicsts:zosConnect-2.0 jcaInboundSecurity-1.0
for JEE6

microProfile-1.2 webProfile-8.0

Chapter 2. Developing Java applications 141

Table 22. Liberty features alphabetically (continued)

Features A-Ej Features Ej-Jn Features Jp-MpJ Features MpM-Z

concurrent-1.0 jcaInboundSecurity-1.0
for JEE7

mongodb-2.0 websocket-1.0

distributedMap-1.0 jdbc-4.0 monitor-1.0 websocket-1.1

ejb-3.2 jdbc-4.1 mpConfig-1.1 wmqJmsClient-2.0

ejbHome-3.2 jdbc-4.2 mpFaultTolerance-1.0 zosTransaction-1.0

ejbLite-3.1 jms-1.1 mpHealth-1.0 zosSecurity-1.0

Table 23. Liberty features supported for Java EE 8 Full Platform and Jakarta EE 8 Platform.

L
i
b
e
r
t
y
f
e
a
t
u
r
e

Liberty feature description Using this feature in CICS

j
a
k
a
r
t
a
e
e
-
8
.
0

Combines the Liberty features that support the
Jakarta EE 8.0 Platform.

Jakarta EE 8 and Java EE 8 in Liberty

Note:

Jakarta EE 8, which includes new versions of features
such as servlet-4.0 cannot be used with the wab-1.0
feature. To prevent CICS automatically including
wab-1.0, and to take advantage of Jakarta EE 8 APIs,
set the property
com.ibm.cics.jvmserver.wlp.wab=false in the
JVM profile.

j
a
v
a
e
e
-
8
.
0

Combines the Liberty features that support the Java
EE 8.0 Full Platform.

Jakarta EE 8 and Java EE 8 in Liberty

Note:

In Java EE 8, jsonb-1.0 replaces json-1.0.

Java EE 8, which includes new versions of features
such as servlet-4.0 cannot be used with the wab-1.0
feature. To prevent CICS automatically including
wab-1.0, and to take advantage of Java EE 8 APIs, set
the property
com.ibm.cics.jvmserver.wlp.wab=false in the
JVM profile.

142 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/no/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jakartaee-8.0.html
https://www.ibm.com/support/knowledgecenter/no/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jakartaee-8.0.html
https://www.ibm.com/support/knowledgecenter/no/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jakartaee-8.0.html
https://www.ibm.com/support/knowledgecenter/no/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jakartaee-8.0.html
https://www.ibm.com/support/knowledgecenter/no/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jakartaee-8.0.html
https://www.ibm.com/support/knowledgecenter/no/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jakartaee-8.0.html
https://www.ibm.com/support/knowledgecenter/no/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jakartaee-8.0.html
https://www.ibm.com/support/knowledgecenter/no/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jakartaee-8.0.html
https://www.ibm.com/support/knowledgecenter/no/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jakartaee-8.0.html
https://www.ibm.com/support/knowledgecenter/no/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jakartaee-8.0.html
https://www.ibm.com/support/knowledgecenter/no/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jakartaee-8.0.html
https://www.ibm.com/support/knowledgecenter/no/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jakartaee-8.0.html
https://www.ibm.com/support/knowledgecenter/no/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jakartaee-8.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/cwlp_javaee8.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_javaee-8.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_javaee-8.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_javaee-8.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_javaee-8.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_javaee-8.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_javaee-8.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_javaee-8.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_javaee-8.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_javaee-8.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_javaee-8.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/cwlp_javaee8.html

Table 23. Liberty features supported for Java EE 8 Full Platform and Jakarta EE 8 Platform. (continued)

L
i
b
e
r
t
y
f
e
a
t
u
r
e

Liberty feature description Using this feature in CICS

j
a
v
a
M
a
i
l
-
1
.
6

Allows applications to use the JavaMail 1.6 API.

Chapter 2. Developing Java applications 143

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_javaMail-1.6.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_javaMail-1.6.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_javaMail-1.6.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_javaMail-1.6.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_javaMail-1.6.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_javaMail-1.6.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_javaMail-1.6.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_javaMail-1.6.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_javaMail-1.6.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_javaMail-1.6.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_javaMail-1.6.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_javaMail-1.6.html

Table 24. Liberty features supported for Java EE 8 Web Profile

L
i
b
e
r
t
y
f
e
a
t
u
r
e

Liberty feature description Using this feature in CICS

a
p
p
S
e
c
u
r
i
t
y
-
3
.
0

Enables support for securing the server runtime
environment and applications using Security-1.0 as
defined in JSR-375.

Configuring security for a Liberty JVM server with the
Java EE security API 1.0

b
e
a
n
V
a
l
i
d
a
t
i
o
n
-
2
.
0

Provides an annotation based model for validating
JavaBeans. It can be used to assert and maintain the
integrity of data as it travels through an application.
This feature is built on top of the Hibernate® Validator
Engine.

c
d
i
-
2
.
0

Makes it easier to integrate Java EE components of
different types. It provides a common mechanism to
inject component such as EJBs or Managed Beans into
other components such as JSPs or other EJBs.

144 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_appSecurity-3.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_appSecurity-3.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_appSecurity-3.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_appSecurity-3.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_appSecurity-3.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_appSecurity-3.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_appSecurity-3.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_appSecurity-3.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_appSecurity-3.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_appSecurity-3.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_appSecurity-3.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_appSecurity-3.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_appSecurity-3.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_appSecurity-3.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_appSecurity-3.0.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/jee.api.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/jee.api.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_beanValidation-2.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_beanValidation-2.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_beanValidation-2.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_beanValidation-2.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_beanValidation-2.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_beanValidation-2.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_beanValidation-2.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_beanValidation-2.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_beanValidation-2.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_beanValidation-2.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_beanValidation-2.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_beanValidation-2.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_beanValidation-2.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_beanValidation-2.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_beanValidation-2.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_beanValidation-2.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_beanValidation-2.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_beanValidation-2.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_cdi-2.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_cdi-2.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_cdi-2.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_cdi-2.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_cdi-2.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_cdi-2.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_cdi-2.0.html

Table 24. Liberty features supported for Java EE 8 Web Profile (continued)

L
i
b
e
r
t
y
f
e
a
t
u
r
e

Liberty feature description Using this feature in CICS

j
a
x
r
s
-
2
.
1

Enables support for Java API for RESTful Web
Services v2.1. JAX-RS annotations can be used to
define web service clients and endpoints that comply
with the REST architectural style. Endpoints are
accessed through a common interface that is based on
the HTTP standard methods.

j
a
x
r
s
C
l
i
e
n
t
-
2
.
1

Enables support for Java Client API for JAX-RS 2.1.

Chapter 2. Developing Java applications 145

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jaxrs-2.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jaxrs-2.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jaxrs-2.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jaxrs-2.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jaxrs-2.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jaxrs-2.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jaxrs-2.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jaxrs-2.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jaxrs-2.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jaxrsClient-2.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jaxrsClient-2.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jaxrsClient-2.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jaxrsClient-2.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jaxrsClient-2.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jaxrsClient-2.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jaxrsClient-2.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jaxrsClient-2.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jaxrsClient-2.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jaxrsClient-2.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jaxrsClient-2.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jaxrsClient-2.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jaxrsClient-2.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jaxrsClient-2.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jaxrsClient-2.1.html

Table 24. Liberty features supported for Java EE 8 Web Profile (continued)

L
i
b
e
r
t
y
f
e
a
t
u
r
e

Liberty feature description Using this feature in CICS

j
d
b
c
-
4
.
0
,
j
d
b
c
-
4
.
1
,
j
d
b
c
-
4
.
2

Enables the configuration of DataSources to access
Databases from applications. Note: The jdbc-4.0, jdbc-4.1 and jdbc-4.2

implementations reside in the same Db2 JCC driver
and are mutually exclusive.

j
p
a
-
2
.
2

Enables support for applications that use application-
managed and container-managed JPA written to the
Java Persistence API 2.2 specification. This only
includes Java Persistence API 2.2 specification
interfaces, and container-managed JPA integration.
This feature does not include any JPA implementation.

j
s
f
-
2
.
3

Enables support for web applications that use the
Java Server Faces (JSF) 2.3 framework. This
framework simplifies the construction of user
interfaces.

146 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jdbc-4.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jdbc-4.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jdbc-4.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jdbc-4.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jdbc-4.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jdbc-4.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jdbc-4.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jdbc-4.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jdbc-4.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jdbc-4.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jdbc-4.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jdbc-4.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jdbc-4.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jdbc-4.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jdbc-4.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jdbc-4.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jdbc-4.2.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jdbc-4.2.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jdbc-4.2.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jdbc-4.2.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jdbc-4.2.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jdbc-4.2.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jdbc-4.2.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jdbc-4.2.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jpa-2.2.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jpa-2.2.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jpa-2.2.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jpa-2.2.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jpa-2.2.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jpa-2.2.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jpa-2.2.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jsf-2.3.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jsf-2.3.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jsf-2.3.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jsf-2.3.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jsf-2.3.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jsf-2.3.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jsf-2.3.html

Table 24. Liberty features supported for Java EE 8 Web Profile (continued)

L
i
b
e
r
t
y
f
e
a
t
u
r
e

Liberty feature description Using this feature in CICS

j
s
o
n
b
-
1
.
0

Provides a standard for converting between Java
objects and JavaScript Object Notation (JSON).

j
s
o
n
p
-
1
.
1

Provides a standardized method for constructing and
manipulating data to be rendered in JavaScript Object
Notation (JSON).

s
e
r
v
l
e
t
-
4
.
0

Enables support for HTTP Servlets written to the Java
Servlet 4.0 specification, including support for the
HTTP/2 protocol.

Chapter 2. Developing Java applications 147

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jsonb-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jsonb-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jsonb-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jsonb-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jsonb-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jsonb-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jsonb-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jsonb-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jsonb-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jsonp-1.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jsonp-1.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jsonp-1.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jsonp-1.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jsonp-1.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jsonp-1.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jsonp-1.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jsonp-1.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jsonp-1.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_servlet-4.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_servlet-4.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_servlet-4.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_servlet-4.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_servlet-4.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_servlet-4.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_servlet-4.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_servlet-4.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_servlet-4.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_servlet-4.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_servlet-4.0.html

Table 24. Liberty features supported for Java EE 8 Web Profile (continued)

L
i
b
e
r
t
y
f
e
a
t
u
r
e

Liberty feature description Using this feature in CICS

w
e
b
P
r
o
fi
l
e
-
8
.
0

Combines the Liberty features that support the Java
EE 8.0 Web Profile.

Note: Java EE 8, which includes new versions of
features such as servlet-4.0 cannot be used with the
wab-1.0 feature. To prevent CICS automatically
including wab-1.0, and to take advantage of Java EE 8
APIs, set the property
com.ibm.cics.jvmserver.wlp.wab=false in the
JVM profile.

Table 25. Liberty features supported for Java EE 7 Full Platform

Liberty feature Liberty feature description Using this feature in CICS

appClientSupport-1.0 Enables the Liberty server to
process client modules and
support remote client
containers.

Tip: The Application Client module runs in both the client
and the server. The client executes the client specific logic of
the application. The other portion of code runs in a client
container on the server and communicates data from the
business logic running on the server to the client. For more
information, see Preparing and running an application client.

batch-1.0 Enables support for the Java
Batch 1.0 API defined in
JSR-352. This feature does
not support Java batch
applications that are
packaged in an Enterprise
Bundle Archive (EBA).

concurrent-1.0 Enables managed executors
to be created, which then
permit applications to submit
tasks that can run
concurrently.

Restriction: The transaction property
ManagedTask.SUSPEND is not supported by a Liberty JVM
server.

Restriction: The user ID that is attached to the transaction
of a new thread is always the user ID that is attached to the
parent transaction.

Restriction: Use of a ManagedThreadFactory creates
standard Java threads, not CICS-enabled Java threads.

148 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_webProfile-8.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_webProfile-8.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_webProfile-8.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_webProfile-8.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_webProfile-8.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_webProfile-8.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_webProfile-8.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_webProfile-8.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_webProfile-8.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_webProfile-8.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_webProfile-8.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_webProfile-8.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_webProfile-8.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_appClientSupport-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_setup_prepareappclient.html
https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_batch-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_concurrent-1.0.html

Table 25. Liberty features supported for Java EE 7 Full Platform (continued)

Liberty feature Liberty feature description Using this feature in CICS

ejb-3.2 Enables support for
Enterprise JavaBeans written
to the EJB 3.2 specification.

Enterprise JavaBeans (EJB)

Important: When using EJB-related features, the
transaction attribute NotSupported is respected by the
JTA Liberty transaction system but not the CICS unit of
work.

ejbHome-3.2 Provides support for the EJB
2.x APIs.

Using EJB-related features

ejbPersistentTimer-3.2 Provides support for
persistent EJB timers.

Using EJB-related features

Restriction: Db2 JDBC type 2 connectivity is not supported
for persisting EJB timers.

ejbRemote-3.2 Provides support for remote
EJB interfaces.

Using EJB-related features

jacc-1.5 Enables support for Java
Authorization Contract for
Containers (JACC) version
1.5.

Developing a Java Authorization Contract for Containers
(JACC) Authorization Provider

jaspic-1.1 Java Authentication SPI for
Containers (JASPIC) allows a
Java EE Application Server to
use custom authentication.
JASPIC providers are defined
in JSR-196. If a JASPIC
provider and a TAI are
configured in the same
server, then the TAI has no
effect. Therefore, JASPIC is a
standard Java EE technology
and a more portable solution
than a TAI for Java EE
applications.

j2eeManagement-1.1 Provides a set of interfaces
to manage and monitor
applications within the JEE
application server.

javaMail-1.5 Enables applications to use
the JavaMail 1.5 API.

javaee-7.0 Combines the Liberty
features that support the
Java EE 7.0 Full Platform.

jaxb-2.2 Provides support to map
between Java classes and
XML representations.

jaxws-2.2 Provides support for SOAP
web services.

Chapter 2. Developing Java applications 149

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_ejb-3.2.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/ejb_overview.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_ejbHome-3.2.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_ejbPersistentTimer-3.2.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_ejbRemote-3.2.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jacc-1.5.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_developing_jacc_auth_provider.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_developing_jacc_auth_provider.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jaspic-1.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_j2eeManagement-1.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_javaMail-1.5.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_javaee-7.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jaxb-2.2.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jaxws-2.2.html

Table 25. Liberty features supported for Java EE 7 Full Platform (continued)

Liberty feature Liberty feature description Using this feature in CICS

jca-1.7 Enables the configuration of
resource adapters to access
Enterprise Information
Systems (EIS) from
applications.

“Java EE Connector Architecture (JCA)” on page 112

Restriction: The use of JCICS API and Db2 JDBC type 2
connectivity capabilities is not supported in threads that are
created by the JCA API
javax.resource.spi.BootstrapContext.createTim
er(). For the same effect, use the concurrent APIs
(javax.enterprise.concurrent.ManagedScheduled
ExecutorService).

jcaInboundSecurity-1.0 Allows JCA inbound resource
adapters to flow security
contexts by extending the
javax.resource.spi.wor
k.SecurityContext
abstract class.

mdb-3.2 Enables the use of Message-
Driven Enterprise JavaBeans
written to the EJB 3.2
specification. MDBs allow
asynchronous processing of
messages within a Java EE
component.

wasJmsClient-2.0 Provides applications with
access to message queues
hosted in Liberty through the
JMS API.

“Java Message Service (JMS)” on page 107

wasJmsSecurity-1.0 Enables an embedded
messaging server to
authenticate and authorize
access from clients.

“Java Message Service (JMS)” on page 107

wasJmsServer-1.0 Enables an embedded
messaging server in the
server. Applications can
operate on messages by
using the wasJmsClient
feature.

“Java Message Service (JMS)” on page 107

Table 26. Liberty features supported for Java EE 7 Web Profile

Liberty feature Liberty feature description Using this feature in CICS

beanValidation-1.0 Provides an annotation-based
model for validating JavaBeans.

beanValidation-1.1 Provides an annotation-based
model for validating JavaBeans.

cdi-1.2 Provides a mechanism to inject
components such as EJBs or
Managed Beans into other
components such as JSPs or EJBs.

ejbLite-3.2 Enables support for Enterprise
JavaBeans written to the EJB Lite
subset of the EJB specification.

Using EJB-related features

150 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jca-1.7.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jcaInboundSecurity-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_mdb-3.2.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_wasJmsClient-2.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_wasJmsSecurity-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_wasJmsServer-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_beanValidation-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_beanValidation-1.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_cdi-1.2.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_ejbLite-3.2.html

Table 26. Liberty features supported for Java EE 7 Web Profile (continued)

Liberty feature Liberty feature description Using this feature in CICS

el-3.0 Enables support for the Enterprise
Language (EL) 3.0 specification.

jaxrs-2.0 Provides support for the Java API
for RESTful Web Services (JAX-RS)
in Liberty.

jaxrsClient-2.0 Enables support for the Java Client
API for JAX-RS 2.0.

The jaxrsClient-2.0 feature is
enabled by jaxrs-2.0. Configuring
JAX-RS 2.0 client.

jdbc-4.0 , jdbc-4.1, jdbc-4.2 Enables the configuration of
DataSources to access Databases
from applications. Note: The jdbc-4.0, jdbc-4.1

and jdbc-4.2 implementations
reside in the same Db2 JCC driver
and are mutually exclusive.

jndi-1.0 Provides support for a single Java
Naming and Directory Interface
(JNDI) entry definition in the server
configuration of Liberty.

jpa-2.1 Enables support for applications
that use application-managed and
container-managed JPA.

jsf-2.2 Provides support for web
applications that use the
JavaServer Faces (JSF) framework.

jsonp-1.0 Supports the definition of a Java
API to process JavaScript Object
Notation. Including the support for
the JSON parse, generate,
transform, and query function.

jsp-2.3 Enables support for servlet and
JavaServer Pages (JSP)
applications.

“Java EE and Liberty applications”
on page 74

managedBeans-1.0 Provides a common foundation for
different Java EE components types
that are managed by a container.
Common services provided to
Managed Beans include resource
injection, lifecycle management
and the use of interceptors.

servlet-3.1 Provides support for HTTP Servlets
written to the Java Servlet
specification.

“Java EE and Liberty applications”
on page 74

webProfile-7.0 Provides a convenient combination
of the Liberty features that are
required to support the Java EE 7
Web Profile.

Chapter 2. Developing Java applications 151

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_el-3.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jaxrs-2.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jaxrsClient-2.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_jaxrs2.0_clientconfig.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_jaxrs2.0_clientconfig.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jdbc-4.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jdbc-4.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jdbc-4.2.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jndi-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jpa-2.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jsf-2.2.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jsonp-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jsp-2.3.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_managedBeans-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_servlet-3.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_webProfile-7.0.html

Table 26. Liberty features supported for Java EE 7 Web Profile (continued)

Liberty feature Liberty feature description Using this feature in CICS

websocket-1.0 Enables a web browser or client
application and a web server
application to communicate by
using one full duplex connection.

websocket-1.1 Enables a web browser or client
application and a web server
application to communicate by
using one full duplex connection.

Table 27. Liberty features supported for Java EE 6 Technologies

Liberty feature Liberty feature
description

Using this feature in CICS

jaxb-2.2 Provides support to map
between Java classes and
XML representations.

jaxrs-1.1 Provides support for the
Java API for RESTful Web
Services (JAX-RS) in
Liberty.

jaxws-2.2 Provides support for SOAP
web services.

jca-1.6 Enables the configuration
of resource adapters to
access Enterprise
Information Systems (EIS)
from applications.

“Java EE Connector Architecture (JCA)” on page 112

Restriction: The use of JCICS API and Db2 JDBC type
2 connectivity capabilities are not supported within
threads that are created by the JCA API
javax.resource.spi.BootstrapContext.crea
teTimer(). Instead, for the same effect, use the
concurrent APIs
(javax.enterprise.concurrent.ManagedSched
uledExecutorService).

jcaInboundSecurity-1.0 Allows JCA inbound
resource adapters to flow
security contexts by
extending the
javax.resource.spi.
work.SecurityContex
t abstract class.

jdbc-4.0 , jdbc-4.1,
jdbc-4.2

Enables the configuration
of DataSources to access
Databases from
applications.

Note: The jdbc-4.0, jdbc-4.1 and jdbc-4.2
implementations reside in the same Db2 JCC driver
and are mutually exclusive.

jms-1.1 Enables the configuration
of resource adapters to
access messaging
systems using the Java
Message Service API.

“Java Message Service (JMS)” on page 107

152 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_websocket-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_websocket-1.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jaxb-2.2.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jaxrs-1.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jaxws-2.2.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jca-1.6.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jcaInboundSecurity-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jdbc-4.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jdbc-4.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_jdbc-4.2.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jms-1.1.html

Table 27. Liberty features supported for Java EE 6 Technologies (continued)

Liberty feature Liberty feature
description

Using this feature in CICS

jmsMdb-3.1 Enables the use of JMS
Message-Driven
Enterprise JavaBeans.
MDBs allow asynchronous
processing of messages
within a Java EE
component.

mdb-3.1 Enables the use of
Message-Driven
Enterprise JavaBeans.
MDBs allow asynchronous
processing of messages
within a Java EE
component.

wasJmsClient-1.1 Provides applications with
access to message
queues hosted in Liberty
through the JMS API.

Java Message Service (JMS)

wasJmsSecurity-1.0 Enables an embedded
messaging server to
authenticate and
authorize access from
clients.

Java Message Service (JMS)

wasJmsServer-1.0 Enables an embedded
messaging server in the
server. Applications can
operate on messages by
using the wasJmsClient
feature.

Java Message Service (JMS)

Table 28. Liberty features supported for Java EE 6 Web Profile

Liberty feature Liberty feature description Using this feature in CICS

beanValidation-1.0 Provides an annotation-based
model for validating JavaBeans.

beanValidation-1.1 Provides an annotation-based
model for validating JavaBeans.

cdi-1.0 Provides a mechanism to inject
components such as EJBs or
Managed Beans into other
components such as JSPs or EJBs.

ejbLite-3.1 Enables support for Enterprise
JavaBeans written to the EJB Lite
subset of the EJB specification.

Using EJB-related features

jndi-1.0 Provides support for a single Java
Naming and Directory Interface
(JNDI) entry definition in the server
configuration of Liberty.

Chapter 2. Developing Java applications 153

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jmsMdb-3.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_mdb-3.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_wasJmsClient-1.1.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/dfhpj2_jms.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_wasJmsSecurity-1.0.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/dfhpj2_jms.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_wasJmsServer-1.0.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/dfhpj2_jms.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_beanValidation-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_beanValidation-1.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_cdi-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_ejbLite-3.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jndi-1.0.html

Table 28. Liberty features supported for Java EE 6 Web Profile (continued)

Liberty feature Liberty feature description Using this feature in CICS

jpa-2.0 Enables support for applications
that use application-managed and
container-managed JPA.

jsf-2.0 Provides support for web
applications that use the
JavaServer Faces (JSF) framework.

jsp-2.2 Enables support for servlet and
JavaServer Pages (JSP)
applications.

“Java EE and Liberty applications”
on page 74

servlet-3.0 Provides support for HTTP Servlets
written to the Java Servlet
specification.

“Java EE and Liberty applications”
on page 74

webProfile-6.0 Provides a convenient combination
of the Liberty features that are
required to support the Java EE 6
Web Profile.

Table 29. Liberty features supported for Enterprise OSGi

Liberty feature Liberty feature description Using this feature in CICS

blueprint-1.0 Enables support for deploying OSGi
applications that use the OSGi
blueprint container specification.

Important: The transaction
attribute NotSupported is
respected by the JTA Liberty
transaction system but not the
CICS unit of work.

osgi.jpa-1.0 This feature is superseded by the
blueprint-1.0 and jpa-2.0
features that both include OSGi
capability. When those features are
both added to the server, this
feature is added automatically.

wab-1.0 Provides support for web
application bundles (WAB) that are
inside enterprise bundles (EBA).

“Creating an OSGi Application
Project ” on page 78

Note: This feature is automatically
added by CICS when the JVM
system property
com.ibm.cics.jvmserver.wlp
.wab=true.

Table 30. Liberty features supported for Extended Programming Models

Liberty feature Liberty feature description Using this feature in CICS

json-1.0 Provides access to the JavaScript
Object Notation (JSON4J) library
that provides a set of JSON
handling classes for Java
environments.

154 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jpa-2.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jsf-2.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jsp-2.2.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_servlet-3.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_webProfile-6.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_blueprint-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_osgi.jpa-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_wab-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_json-1.0.html

Table 30. Liberty features supported for Extended Programming Models (continued)

Liberty feature Liberty feature description Using this feature in CICS

jta-1.1 Supports the Java Transaction API
(JTA).

Note: Java Transaction API is a
protected Liberty feature.

“Java Transaction API (JTA) ” on
page 97

jta-1.2 Supports the Java Transaction API
(JTA).

Note: Java Transaction API is a
protected Liberty feature.

“Java Transaction API (JTA) ” on
page 97

Provides support for the MongoDB
Java Driver and allows remote
database instances to be
configured in the server
configuration. Applications interact
with these databases through the
MongoDB APIs.

springBoot-1.5 Provides support for Spring Boot
applications using Spring Boot
version 1.5.x.

Spring Boot applications

springBoot-2.0 Provides support for Spring Boot
applications using Spring Boot
version 2.0.x.

Spring Boot applications

Table 31. Liberty features supported for MicroProfile

Liberty feature Liberty feature description Using this feature in CICS

microProfile-1.0 Combines the Liberty features that
support the Micro Profile for
enterprise Java.

microProfile-1.2 Combines the Liberty features that
support Micro Profile 1.2 for
enterprise Java.

mpConfig-1.1 Provides a unified mechanism to
access configuration, providing a
single view of multiple sources.

mpFaultTolerance-1.0 Provides support for the
MicroProfile Fault Tolerance API for
enterprise Java.

Restriction: MicroProfile Fault
Tolerance 1.0 is not designed to
work with transactions (UOW, JTA,
etc.). Updates to CICS resources
should not be made in methods
annotated @Bulkhead,
@CircuitBreaker, @Fallback,
@Retry or @Timeout.

mpHealth-1.0 Provides support for the
MicroProfile Health API for
enterprise Java.

Chapter 2. Developing Java applications 155

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_springBoot-1.5.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/developing_springboot.dita
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_springBoot-2.0.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/developing_springboot.dita
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_microProfile-1.0.html
https://www.ibm.com/support/knowledgecenter/en/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_microProfile-1.2.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_mpConfig-1.1.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_mpFaultTolerance-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_mpHealth-1.0.html

Table 31. Liberty features supported for MicroProfile (continued)

Liberty feature Liberty feature description Using this feature in CICS

mpJwt-1.0 Enables web applications or
microservices to use JSON Web
Token (JWT) to authenticate users
instead of, or in addition to, the
configured user registry.

The default value for attribute
ignoreApplicationAuthMetho
d is false. This indicates all
requests received by Liberty need
to have a JWT token in the HTTP
header.

The default value for attribute
mapToUserRegistry is false. For
integration with CICS security set
this value to true.

mpMetrics-1.0 Provides support for the
MicroProfile Metrics API for
enterprise Java.

Table 32. Liberty features supported for Operations

Liberty feature Liberty feature description Using this feature in CICS

batchManagement-1.0 Provides managed batch support
for the Java batch container. This
includes the Batch REST
management interface, job logging
support, and a command line utility
for external scheduler integration.

distributedMap-1.0 Provides a local cache service,
which can be accessed through the
DistributedMap API.

localConnector-1.0 Allows the use of a local JMX
connector that is built into the JVM
to access JMX resources in the
server.

“ Java Management Extensions API
(JMX) ” on page 108

monitor-1.0 Enables performance monitoring of
Liberty runtime components by
using a JMX client.

“ Java Management Extensions API
(JMX) ” on page 108

osgiConsole-1.0 Enables an OSGi console to aid with
debug of the runtime.

Troubleshooting Java applications

restConnector-1.0 Enables remote access by JMX
clients through a REST-based
connector and requires SSL and
user security configuration.

“ Java Management Extensions API
(JMX) ” on page 108

sessionDatabase-1.0 Enables persistence of HTTP
sessions to a datasource that uses
JDBC.

webCache-1.0 Enables local caching for web
responses. It includes the
distributedMap feature and
performs automatic caching of web
application responses to improve
response times and throughput.

156 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/en/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_mpJwt-1.0.html
https://www.ibm.com/support/knowledgecenter/en/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_mpMetrics-1.0.html
https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_batchManagement-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_distributedMap-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_localConnector-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_monitor-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_osgiConsole-1.0.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/java/java_troubleshooting.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_restConnector-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_sessionDatabase-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_webCache-1.0.html

Table 32. Liberty features supported for Operations (continued)

Liberty feature Liberty feature description Using this feature in CICS

Provides applications with access
to message queues hosted on IBM
MQ through the JMS 2.0 API.

Restriction: Only supported when
the JMS application connects to
IBM MQ using the client mode
transport. Requires V9.0.1 of the
IBM MQ Resource Adapter for
Liberty.

Important: This restriction also
applies to CICS standard-mode
Liberty.

Table 33. Liberty features supported for Security

Liberty feature Liberty feature description Using this feature in CICS

appSecurity-1.0 Provides support for securing the
server runtime environment and
applications. appSecurity-2.0
supercedes appSecurity-1.0.

Configuring security for a Liberty
JVM server

appSecurity-2.0 Provides support for securing the
server runtime environment and
applications. appSecurity-2.0
supersedes appSecurity-1.0.

Configuring security for a Liberty
JVM server

jwt-1.0 Allows runtime to create JWT
tokens.

ldapRegistry-3.0 Enables support for using an LDAP
server as a user registry. Any server
that supports LDAP Version 3.0 can
be used. Multiple LDAP registries
can be configured, and then
federated to achieve a single logical
registry view.

Configuring security for a Liberty
JVM server by using distributed
identity mapping

oauth-2.0 Enables web applications to
integrate OAuth 2.0 for
authenticating and authorizing
users.

Authorization using OAuth 2.0

Configuring persistent OAuth 2.0
services

openidConnectClient-1.0 Enables web applications to
integrate OpenID Connect Client
1.0 for authenticating users instead
of, or in addition to, the configured
user registry.

openidConnectServer-1.0 Enables web applications to
integrate OpenID Connect Server
1.0 for authenticating users instead
of, or in addition to, the configured
user registry.

Chapter 2. Developing Java applications 157

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_appSecurity-1.0.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/security_liberty.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/security_liberty.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_appSecurity-2.0.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/security_liberty.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/security_liberty.html
https://www.ibm.com/support/knowledgecenter/en/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jwt-1.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_ldapRegistry-3.0.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/dist_identity.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/dist_identity.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/dist_identity.html
https://www.ibm.com/support/knowledgecenter/en/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_oauth-2.0.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/auth_oauth.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/config_oauth.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/config_oauth.html
https://www.ibm.com/support/knowledgecenter/en/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_openidConnectClient-1.0.html
https://www.ibm.com/support/knowledgecenter/en/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_openidConnectServer-1.0.html

Table 33. Liberty features supported for Security (continued)

Liberty feature Liberty feature description Using this feature in CICS

ssl-1.0 Provides support for Secure
Sockets Layer (SSL) connections
and SAF keyrings.

Configuring SSL (TLS) for a Liberty
JVM server using RACF

Setting up SSL (TLS) client
certificate authentication in a
Liberty JVM server

Configuring SSL (TLS) for a Liberty
JVM server using a Java keystore

Table 34. Liberty features supported for Systems Management

Liberty feature Liberty feature description Using this feature in CICS

adminCenter-1.0 Enables the Liberty Admin Center, a
web-based graphical interface for
deploying, monitoring and
managing Liberty servers in
standalone environments.

Configuring Admin Center

Restriction: Collectives are not
supported in CICS.

Table 35. Liberty features supported for z/OS

Liberty feature Liberty feature description Using this feature in CICS

enables the server to use the SAF
Registry in the z/OS platform for
authenticating users and
authorizing access to applications

Restriction: zosSecurity-1.0 is
enabled by cicsts:security-1.0

Enables Liberty to synchronize and
manage transactional activity
between the z/OS Resource
Recovery Services (RRS), the
transaction manager of the
application server, and the
resource manager.

Restriction:
zosTransaction-1.0 is only
supported for JMS applications that
connect to IBM MQ using
BINDINGS mode transport in CICS
standard-mode Liberty.

For more information about the function in these features, see the documentation for Liberty at Liberty
overview. For details of Liberty restrictions, see Runtime environment known restrictions.

CICS Liberty features

The following table provides a set of CICS features to integrate Liberty features with the CICS qualities of
service. The Liberty JVM server mode can be set by specifying CICS_WLP_MODE in the JVM profile.

Table 36. CICS Liberty features

CICS Feature CICS Liberty mode Description Using this CICS feature

cicsts:core-1.0 Integrated-mode Provides core CICS
features, and Java
Transaction API (JTA) 1.0.

This feature is required
when using Integrated-
mode CICS Liberty.

Restriction: The JVM
server should be disabled
before adding or removing
this feature.

158 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_ssl-1.0.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/ssl_liberty_racf.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/ssl_liberty_racf.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/client_authentication.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/client_authentication.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/client_authentication.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/ssl_liberty.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/ssl_liberty.html
https://www.ibm.com/support/knowledgecenter/en/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.nd.doc/ae/rwlp_feature_adminCenter-1.0.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_admincenter.dita
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/cwlp_about.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/cwlp_about.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/rwlp_restrict.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/dfha2_jvmprofile_server_options.htmldfha2_jvmprofile_server_options__CICS_WLP_MODE

Table 36. CICS Liberty features (continued)

CICS Feature CICS Liberty mode Description Using this CICS feature

cicsts:defaultApp-1.0 Integrated-mode and
standard-mode

Verifies that the Liberty
server is running and
provides information on
the server configuration.
Browse the JVM Profile,
the JVM server logs, the
Liberty server.xml, and
the messages log by using
the FileViewer servlet.

Configuring the CICS
Default Web Application

cicsts:distributedIdentity-
1.0

Integrated-mode and
standard-mode

Provides support for
distributed identity
mapping.

Configuring security for a
Liberty JVM server by
using distributed identity
mapping

cicsts:jcaLocalEci-1.0 Integrated-mode Provides a locally
optimized JCA ECI
resource adapter for
calling CICS programs.

“Using the JCA local ECI
resource adapter” on
page 113

Restriction: The JVM
server should be disabled
before adding or removing
this feature.

cicsts:jcicsxServer-1.0 Integrated-mode When enabled in a Liberty
JVM server in CICS, the
server can receive remote
requests from Java
applications using JCICSX
API classes.

“Configuring the
environment for JCICSX”
on page 68

cicsts:jdbc-1.0 Integrated-mode and
standard-mode

Provides support for
applications to access a
local CICS Db2 database
that uses JDBC. This
feature has been
superseded by jdbc-4.0
and jdbc-4.1, except
when used directly with
DriverManager.

Acquiring a connection to
a database

Restriction: The JVM
server should be disabled
before adding or removing
this feature.

cicsts:link-1.0 Integrated-mode Provides support to start a
Java EE application that is
running in a Liberty JVM
server either as the initial
program of a CICS
transaction or by using the
LINK, START, or START
CHANNEL commands from
any CICS program.

“Linking to a Java EE or
Spring Boot application
from a CICS program” on
page 85

Chapter 2. Developing Java applications 159

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_jvmserver_defaultapp.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_jvmserver_defaultapp.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/dist_identity.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/dist_identity.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/dist_identity.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/dist_identity.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jdbc-4.0.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_jdbc-4.1.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/database/dfhtk4s.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/database/dfhtk4s.html

Table 36. CICS Liberty features (continued)

CICS Feature CICS Liberty mode Description Using this CICS feature

cicsts:security-1.0 Integrated-mode and
standard-mode

Provides integration of
Liberty security with CICS
security, including
propagation of thread
identity.

Configuring security for a
Liberty JVM server

Restriction: The JVM
server should be disabled
before adding or removing
this feature.

cicsts:standard-1.0 Standard-mode Enables users to port and
deploy Liberty
applications from other
platforms to CICS without
changing your application.
Standard mode is ideal for
hosting applications that
are written for and rely on
the Java EE Full Platform,
but do not require full
integration with CICS.

CICS standard-mode
Liberty: Java EE 7 Full
Platform support without
full CICS integration

cicsts:zosConnect-1.0 Integrated-mode Integrates z/OS Connect
with CICS Liberty JVM
server.

Configuring z/OS Connect
EE

Restriction: The JVM
server should be disabled
before adding or removing
this feature.

cicsts:zosConnect-2.0 Integrated-mode Integrates z/OS Connect
with CICS Liberty JVM
server.

Configuring z/OS Connect
EE

Restriction: The JVM
server should be disabled
before adding or removing
this feature.

Accessing data from Java applications
You can write Java applications that can access and update data in Db2 and VSAM. Alternatively, you can
link to programs in other languages to access Db2, VSAM, and IMS.

You can use any of the following techniques when writing a Java application to access data in CICS. The
CICS recovery manager maintains data integrity.

Accessing relational data

You can write a Java application to access relational data in Db2 by using any of the following methods:

• A JCICS LINK command to link to a program that uses Structured Query Language (SQL) commands to
access the data.

• Where a suitable driver is available, use Java Data Base Connectivity (JDBC) or Structured Query
Language for Java (SQLJ) calls to access the data directly. Suitable JDBC drivers are available for Db2.
For more information about using JDBC and SQLJ application programming interfaces, see Using JDBC
and SQLJ to access Db2 data from Java programs .

• JavaBeans that use JDBC or SQLJ as the underlying access mechanism. You can use any suitable Java
integrated development environment (IDE) to develop such JavaBeans.

160 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/security_liberty.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/security_liberty.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/cics_standard_mode_liberty.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/cics_standard_mode_liberty.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/cics_standard_mode_liberty.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/cics_standard_mode_liberty.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/zos_connect_ee_configuring.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/zos_connect_ee_configuring.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/zos_connect_ee_configuring.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/web-services/zos_connect_ee_configuring.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/database/dfhtk6j.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/database/dfhtk6j.html

Accessing DL/I data

To access DL/I data in IMS, your Java application must use a JCICS LINK command to link to an
intermediate program that issues EXEC DLI commands to access the data.

Accessing VSAM data

To access VSAM data, a Java application can use either of the following methods:

• The JCICS file control classes to access VSAM directly.
• A JCICS LINK command to link to a program that issues CICS file control commands to access the data.

Interacting with structured data from Java
CICS Java programs often interact with data that was originally designed for use with other programming
languages. For example, a Java program might link to a COBOL program by using a COMMAREA defined in
a COBOL copybook, or read a record from a VSAM file where the data is defined by using an assembler
language DSECT.

Importing structured data into Java

You can use an importer to generate Java classes that facilitate the interaction with structured record
data from other languages. The importers map the data types that are contained in the language structure
source so that your Java application can easily set and get individual fields in the underlying record
structure.

You can use IBM Record Generator for Java or the Rational Java EE Connector (J2C) Tools to interact with
data to produce a Java class so that you can pass data between Java and other programs in CICS.

IBM Record Generator for Java V3.0.0

IBM Record Generator for Java is a stand-alone utility that generates Java helper classes based on the
associated-data (ADATA) files that are produced from compiling COBOL copybooks or assembler DSECTs.
These Java helper classes can then be used in a Java application to marshal data to and from the COBOL-
specific or assembler language-specific record structures.

For more information, see IBM Record Generator for Java V3.0.0.

Rational J2C Tools

The Rational J2C Tools, resource adapters, and file importers enable you to create J2C artifacts that you
can use to create enterprise applications that connect to enterprise information systems such as CICS. To
use the Rational J2C Tools, you require Rational Application Developer for WebSphere Software or IBM
Developer for z Systems.

The J2C Tools CICS/IMS Data Binding wizard generates Java classes that map to COBOL, PL/I, or C
application program data structures, by using a customizable Eclipse based wizard. These helper classes
can then be used in a Java application to marshal data to and from the language-specific record
structures.

For more information, see Connecting to enterprise information systems in Rational Application
Developer for WebSphere Software product documentation.

Related information
IBM Redbooks: IBM CICS and the JVM server: Developing and Deploying Java Applications
Building Java records from COBOL with the IBM Record Generator for Java
COBOL Importer overview in Rational Application Developer for WebSphere Software product
documentation
Generating Java Records from COBOL with Rational J2C Tools

Chapter 2. Developing Java applications 161

https://www.ibm.com/support/knowledgecenter/SSMQ4D_3.0.0/documentation/welcome.html
https://www.ibm.com/support/knowledgecenter/SSRTLW_9.5.0/com.ibm.j2c.doc/topics/cresadapoverv.html
https://www.ibm.com/support/knowledgecenter/SSRTLW_9.5.0/com.ibm.j2c.doc/topics/cresadapoverv.html
https://www.redbooks.ibm.com/abstracts/sg248038.html?Open
https://developer.ibm.com/cics/2016/05/12/java-cics-using-ibmjzos
https://www.ibm.com/support/knowledgecenter/SSRTLW_9.5.0/com.ibm.j2c.doc/topics/ccobolimporteroverview.html
https://www.ibm.com/support/knowledgecenter/SSRTLW_9.5.0/com.ibm.j2c.doc/topics/ccobolimporteroverview.html
https://developer.ibm.com/cics/2016/06/29/java-cics-using-rational-j2c/

Developing Java applications to use the JZOS Toolkit API in an OSGi JVM
server

The IBM JZOS Toolkit consists of classes in package com.ibm.jzos, which is distributed with the IBM
Java SDKs for z/OS in a single JAR file ibmjzos.jar.

These classes give Java applications on z/OS direct access to traditional z/OS data sets and files and
access to z/OS system services and converter classes for mapping byte array fields into Java data types.

Before you begin

If the JZOS Toolkit API is not downloaded to your workstation, then transfer the ibmjzos.jar file from
the relevant version of the IBM Java SDK on z/OS to your workstation.

Procedure

1. Set the Target platform. To prepare to use the JCICS API in your development environment, set the
Eclipse Target Platform to ensure it can resolve locally. In an OSGi development environment Target
Platform definitions are used to define the plug-ins that applications in the workspace is built against.
For CICS Explorer use the Eclipse menu, Windows > Preferences > Plug-in Development > Target
Platform. Click Add, and from the supplied templates select the CICS TS release for your runtime
environment. Don't forget to apply the target platform to your workspace.

2. Create an OSGi wrapper bundle for the JZOS Toolkit. If you have the IBM CICS SDK for Java EE,
Jakarta EE and Liberty plug-in, then select File > Import > Java Archive into an OSGi bundle to
create a new OSGi Bundle Project. Ensure that the newly created bundle exports all the available JZOS
Toolkit packages that are required by the Java application such as com.ibm.jzos,
com.ibm.jzos.fields, or com.ibm.jzos.wlm. This ensures that these packages are available to
be imported by other OSGi projects in the Eclipse workspace.
For example

Export-Package: com.ibm.jzos,
 com.ibm.jzos.fields

3. Create a CICS Java application.
a) Create an OSGi Bundle Project in Eclipse by using the wizard File > New > Other Plug-in Project.
b) Create a Java package com.ibm.cicsdev.jzos.sample and add a class ZFilePrint.
c) Copy in the following code example, which opens an MVS data set pointed to by the //INPUT DD

and writes the output to a CICS temporary storage queue.

package com.ibm.cicsdev.jzos.sample;

import com.ibm.jzos.ZFile;
import com.ibm.jzos.ZUtil;
import com.ibm.cics.server.TSQ;

public class ZFilePrint
{
 public static void main(String[] args) throws Exception
 {
 ZFile zFile = new ZFile("//DD:INPUT", "rb,type=record,noseek");
 TSQ tsqQ = new TSQ();
 tsqQ.setName("JZOSTSQ");

 try
 {
 byte[] recBuf = new byte[zFile.getLrecl()];
 int nRead;
 String encoding = ZUtil.getDefaultPlatformEncoding();

 while ((nRead = zFile.read(recBuf)) >= 0)
 {
 String line = new String(recBuf, 0, nRead, encoding);
 tsqQ.writeString(line);
 }
 }

162 CICS TS for z/OS: Java Applications in CICS

 finally
 {
 zFile.close();
 }
 }
}

4. Add the following Import-Package statements to the bundle manifest for the JCICS and JZOS
packages. The JCICS import should follow best practice to specify a range of versions the application
operates with. Typically this range will go up to, but not include, the next API breaking change. For
JCICS that would be version 2.0.0, so the range
com.ibm.cics.server;version="[1.401.0,2.0.0)" is used in the example as this is the
minimum level that is required to support the JCICS TSQ.writeString() method. The JZOS
package is not taken from a versioned bundle. It is displayed to the runtime from the underlying JAR
file with no version, and so com.ibm.jzos can be listed without a referenced version, which allows
any available version (including 0.0.0) to be chosen.

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: com.ibm.cicsdev.jzos.sample
Bundle-SymbolicName: com.ibm.cicsdev.jzos.sample
Bundle-Version: 1.0.0
Bundle-RequiredExecutionEnvironment: JavaSE-1.7
Import-Package: com.ibm.cics.server;version="[1.401.0,2.0.0)",
 com.ibm.jzos

5. Add a CICS-MainClass: definition to the bundle manifest to register a MainClass service for your
com.ibm.cicsdev.jzos.sample.ZFilePrint class.
This allows the Java class to be linked to using a CICS program definition. Your manifest now looks
similar to the following example:

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: com.ibm.cicsdev.jzos.sample
Bundle-SymbolicName: com.ibm.cicsdev.jzos.sample
Bundle-Version: 1.0.0
Bundle-RequiredExecutionEnvironment: JavaSE-1.7
Import-Package: com.ibm.cics.server;version="[1.401.0,2.0.0)",
 com.ibm.jzos
CICS-MainClass: com.ibm.cicsdev.jzos.sample.ZFilePrint

Results

The application is now ready to be tested, and can be deployed into a CICS OSGi JVM server by using a
CICS Bundle Project as follows:

1. Create a CICS Bundle Project in Eclipse and add the OSGi Bundle Project by using the menu New OSGi
Bundle Project Include.

2. Deploy to zFS by using the menu Export Bundle Project to z/OS UNIX file system.
3. Create a CICS BUNDLE definition that references this zFS location and install it.
4. Create a CICS PROGRAM definition that names the CICS-MainClass:
com.ibm.cicsdev.jzos.sample.ZFilePrint in the JVMClass attribute and install it.

5. Before you run the application, you need to define an MVS DD in the CICS JCL referencing a valid MVS
data set and then restart your CICS region. For instance

//INPUT DD DISP=SHR,DSN=CICS.USER.INPUT

6. If you need to run the application from a 3270 console, create a TRANSACTION definition that
references the PROGRAM defined in step 4.

When started, your Java class ZFilePrint reads the defined MVS data set by using the JZOS Toolkit API
and then write the contents to a CICS temporary storage queue using the JCICS API.

Chapter 2. Developing Java applications 163

Accessing IBM MQ from Java programs
Java programs that run in CICS can use either the IBM MQ classes for Java, or the IBM MQ classes for
JMS, to access IBM MQ. IBM MQ classes for JMS are the preferred interfaces to IBM MQ from a Java
application that runs in CICS. (The IBM MQ classes for Java continue to be supported but newer
applications should use IBM classes for JMS.

For an overview of how CICS works with IBM MQ, see CICS and IBM MQ.

IBM MQ classes for Java encapsulate the Message Queue Interface (MQI), the native IBM MQ API. The
classes use a similar object model to the C++ and .NET interfaces to IBM MQ. In addition, you can exploit
the full range of features of IBM MQ beyond the features that are available through JMS. IBM MQ classes
for JMS implement the JMS interfaces for IBM MQ as the messaging system.

Three different JVM server environments in CICS support access to the IBM MQ classes:

• A CICS integrated-mode Liberty JVM server. This JVM server supports IBM MQ classes for JMS. It
provides managed JMS connection factories and MDB support, and integrated CICS transactions and
security. IBM MQ classes for Java are not supported.

• A CICS standard-mode Liberty JVM server. This JVM server supports IBM MQ classes for JMS. It
provides managed JMS connection factories and MDB support but without integrated CICS
transactions. IBM MQ classes for Java are not supported.

• An OSGi JVM server. This JVM server supports IBM MQ classes for JMS. It supports non-managed JMS
connection factories with integrated CICS transactions and security. IBM MQ classes for Java are also
supported, in bindings-mode only.

In addition, there are three different ways of connecting to IBM MQ from CICS:

• MQ client mode: a TCP/IP network connection to an IBM MQ queue manager
• MQ bindings mode: a local cross memory interface to the queue manager, using the IBM MQ RRS

adapter
• CICS-MQ adapter and MQCONN: a local cross memory interface to the queue manager, using the CICS-

MQ adapter

Table 37 on page 164 shows which JVM servers support which IBM MQ classes, and through which
connectivity options.

Table 37. Summary of CICS support for access to IBM MQ from a Java application

MQ
connectivity

CICS standard-mode
Liberty JVM server

CICS integrated-mode
Liberty JVM server

OSGi JVM server

Client mode • IBM MQ classes for JMS:
JMS 1.1 and JMS 2.0

• IBM MQ classes for Java:
not supported

For more information, see
“ Using IBM MQ classes for
JMS in a CICS Liberty JVM
server ” on page 165

• IBM MQ classes for JMS:
JMS 1.1 and JMS 2.0

• IBM MQ classes for Java:
not supported

For more information, see
“ Using IBM MQ classes for
JMS in a CICS Liberty JVM
server ” on page 165

Not supported

Bindings
mode

• IBM MQ classes for JMS:
JMS 1.1 and JMS 2.0

• IBM MQ classes for Java:
not supported

For more information, see
“ Using IBM MQ classes for
JMS in a CICS Liberty JVM
server ” on page 165

Not supported • IBM MQ classes for JMS:
not supported

• IBM MQ classes for Java:
supported

For imore nformation, see
“Using IBM MQ classes for
Java in an OSGi JVM server ”
on page 172

164 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/mq/cics-mq-overview.html

Table 37. Summary of CICS support for access to IBM MQ from a Java application (continued)

MQ
connectivity

CICS standard-mode
Liberty JVM server

CICS integrated-mode
Liberty JVM server

OSGi JVM server

CICS-MQ
adapter and
MQCONN

Not applicable Not applicable • IBM MQ classes for JMS:
JMS 1.1 and JMS 2.0

• IBM MQ classes for Java:
not supported

For information, see “ Using
IBM MQ classes for JMS in
an OSGi JVM server ” on
page 168

Using IBM MQ classes for JMS in a CICS Liberty JVM server
Java programs running in a CICS Liberty JVM server can use JMS to access IBM MQ. When the IBM MQ
JMS feature is installed in a CICS Liberty JVM server, JMS requests are processed by the MQ messaging
provider. Support for the JMS 2.0 feature gives access to the classic (JMS 1.1) and simplified (JMS 2.0)
interfaces. CICS must be connected to a level of IBM MQ queue manager that supports the appropriate
level of JMS and is using a suitable version of the IBM MQ classes for JMS.

For an introduction, see How it works: IBM MQ classes for JMS. For information about how IBM MQ
implements JMS, see Using IBM MQ classes for JMS in the IBM MQ documentation, including IBM MQ
classes for JMS JavaDoc and information about messages, application functions, and accessing MQ
features in Writing IBM MQ classes for JMS applications. To compare levels of JMS specification, see Java
Message Service Specification.

In a CICS Liberty environment, the IBM MQ messaging provider supports JMS connections to be made to
an IBM MQ queue manager as follows:

• In a CICS integrated-mode Liberty JVM server, JMS applications can only connect to a queue manager
using MQ client mode transport. The use of MQ bindings mode is not supported. This type of CICS
Liberty JVM server provides JMS support, with integrated CICS transactions and security.

• In a CICS standard-mode Liberty JVM server, JMS applications can connect to a queue manager using
either MQ bindings mode or client mode transports. This type of CICS Liberty JVM server provides JMS
support, without integrated CICS transactions.

Your Java application communicates with IBM MQ in one of two ways:

• Through message-driven beans (MDBs)
• Through a servlet that uses a JMS connection factory.

Chapter 2. Developing Java applications 165

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/mq/mq-classes-planning.html
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.dev.doc/q031500_.htm
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.javadoc.doc/WMQJMSClasses/index.html
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.javadoc.doc/WMQJMSClasses/index.html
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.dev.doc/q031950_.html
https://javaee.github.io/jms-spec/
https://javaee.github.io/jms-spec/

Figure 8. Applications connecting to IBM MQ using JMS and running in a CICS Liberty JVM server

Things to check

• Your intended connection to MQ is supported by your version of the CICS Liberty JVM server. See Table
37 on page 164 in “ Accessing IBM MQ from Java programs ” on page 164.

• The level of JMS that is supported by the IBM queue manager that CICS connects to. IBM MQ for z/OS
Version 7.1 only supports JMS 1.1. IBM MQ Version 8.0 and above support both JMS 1.1 and JMS 2.0.

• If you use bindings mode transport (supported only by CICS standard-mode Liberty) :

– JMS applications that connect to an MQ queue manager using bindings mode must specify a different
queue manager to the queue manager that is specified on any CICS MQCONN resource installed in
the same CICS region.

– Both Liberty and IBM MQ are deployed on the same server.
• Any CICS tasks started using the CICSExecutorService must connect to a queue manager using client

mode transport.
• There are some programming restrictions, described in “JMS programming considerations (Liberty JVM

server)” on page 168

Where next?

To use JMS in an application, you must:

• Ensure that you have access to the IBM MQ classes for JMS in your development environment, either as
a component of IBM MQ product or as a JAR file from FixCentral (see Using IBM MQ classes for JMS for
information on how to do this.)

• Develop your application to use either managed JMS connection factory or message-driven beans
(MDBs). For more information, see “Programming with IBM MQ classes for JMS with a Liberty JVM
server ” on page 167.

• Add your application to a CICS bundle project, export to zFS, and install it into the Liberty JVM server.
• Configure the CICS Liberty JVM server environment. In addition to configuring the server.xml, you

must set up the IBM MQ resource adapter, which is needed to connect to IBM MQ from Liberty. For
more information, see Configuring a Liberty JVM server to support JMS.

166 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.dev.doc/q031500_.htm
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/dfhpj_webspheremq_jmsliberty_configure.html

Programming with IBM MQ classes for JMS with a Liberty JVM server
To use JMS in your CICS Java application to exchange messages with IBM MQ, you have two options. You
can either use a message-driven bean (MDB) that receives incoming messages from an IBM MQ queue
manager or a servlet that uses a JMS connection factory to send and receive JMS messages.

Using a JMS connection factory

For a tutorial that shows how to develop this type of application, see CICS Developer Center: Developing
an MQ JMS application for CICS Liberty. It includes links to a sample servlet and supporting code that you
can download.

Figure 9. Accessing IBM MQ through a Java application that uses JMS connection factory

Using message-driven beans (MDBs)

In this form of programming, the onMessage() method in the MDB is invoked when a message arrives on
the queue that is associated with the MDB. A javax.jms.Message object is then passed as input to the
MDB for further processing. An MDB is a type of EJB, so it can use either container-managed or bean-
managed Java transactions

CICS Developer Center: Developing an MQ JMS application for CICS Liberty in the CICS developerCenter
is a tutorial of how to develop this kind of application. It includes links to a sample servlet and supporting
code that you can download.

Chapter 2. Developing Java applications 167

https://developer.ibm.com/cics/2017/09/06/developing-jms-application-cics-liberty/
https://developer.ibm.com/cics/2017/09/06/developing-jms-application-cics-liberty/
https://developer.ibm.com/cics/2017/09/06/developing-jms-application-cics-liberty/

Figure 10. Accessing IBM MQ through a Java application that uses MDBs

JMS programming considerations (Liberty JVM server)

• Any work submitted to the CICSExecutorService using the runAsCICS() method that work must
not include any JMS requests.

• The CICS transaction ID under which the MDB request runs defaults to CJSU, which is the JVM server
unclassified request processor. This can be modified per JVM server using the system property
com.ibm.cics.jvmserver.unclassified.tranid.

• When you use JMS in a Liberty JVM server, messages sent and received by the IBM MQ classes for JMS
are coordinated using the Liberty Transaction Manager. For updates to recoverable resources that are
managed by CICS to be coordinated in the same unit-of-work, the application must use the Java
Transaction API (JTA), either explicitly through the UserTransaction.begin() method or implicitly
using an EJB container-managed transaction. To complete a UOW, use the UserTransaction
commit() or rollback() methods. Using the EXEC CICS SYNCPOINT command (in a mixed-language
application), or the commit() and rollback() methods on the following objects to commit or roll
back the UOW is not supported:

– javax.jms.Session (JMS 1.1 API)
– javax.jms.JmsContext (JMS 2.0 API)
– com.ibm.cics.server.Task

For more information about JTA, see Java Transaction API (JTA).

Using IBM MQ classes for JMS in an OSGi JVM server
Java programs running in an OSGi JVM server can use JMS to access IBM MQ. When a CICS Java
application makes JMS requests, the requests are processed by the MQ messaging provider. Support is
provided for using the classic (JMS 1.1) and simplified (JMS 2.0) interfaces, provided that CICS is
connected to a level of IBM MQ queue manager that supports the appropriate level of JMS and is using a
suitable version of the IBM MQ classes for JMS.

For an introduction, see How it works: IBM MQ classes for JMS. For information about how IBM MQ
implements JMS, see Using IBM MQ classes for JMS in the IBM MQ documentation, including IBM MQ
classes for JMS JavaDoc and information about messages, application functions, and accessing MQ
features in Writing IBM MQ classes for JMS applications. To compare levels of JMS specification, see Java
Message Service Specification

168 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/dfhpj2_jta.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/mq/mq-classes-planning.html
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.dev.doc/q031500_.htm
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.javadoc.doc/WMQJMSClasses/index.html
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.javadoc.doc/WMQJMSClasses/index.html
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.dev.doc/q031950_.html
https://javaee.github.io/jms-spec/
https://javaee.github.io/jms-spec/

In a CICS environment, the IBM MQ classes for JMS allow connections to be made through an OSGi JVM
server. This supports non-managed JMS connection factories, with integrated CICS transactions and
security. If you want to use managed JMS connection factories or MDBs in your application, use a CICS
Liberty JVM server instead.

Figure 11. Applications connecting to IBM MQ using JMS and running in a CICS OSGi server

Things to check

• The connection to IBM MQ. With an OSGi JVM server, only bindings mode connections to a local queue
manager are supported.

• The level of JMS that is supported by the IBM queue manager that CICS connects to. IBM MQ for z/OS
Version 7.1 only supports JMS 1.1. IBM MQ Version 8.0 and above support both JMS 1.1 and JMS 2.0.

• You have defined a CICS MQCONN resource.
• There are some programming restrictions, described in “Programming with IBM MQ classes for JMS

with an OSGi JVM server” on page 170.

Where next?

To use JMS in an application, you must:

• Ensure that you have access to the IBM MQ classes for JMS in your development environment, either as
a component of IBM MQ product or as a JAR file from FixCentral (see Using IBM MQ classes for JMS in
the IBM MQ documentation for information on how to do this.)

• Develop your application to use non-managed JMS connection factory. For more information, see
“Programming with IBM MQ classes for JMS with an OSGi JVM server” on page 170.

• Add your application to a CICS bundle project, export to zFS, and install it into the OSGi JVM server.
• Configure the CICS-MQ adapter. to connect to IBM MQ. For more information, see Setting up the CICS-

MQ adapter.
• Configure the CICS OSGi server environment. For more information, see Configuring an OSGi JVM server

to support JMS .

Chapter 2. Developing Java applications 169

https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.dev.doc/q031500_.htm
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/mq/zs11290_.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/mq/zs11290_.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/dfhpj_webspheremq_jmsosgi_configure.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/dfhpj_webspheremq_jmsosgi_configure.html

Programming with IBM MQ classes for JMS with an OSGi JVM server
To use JMS in your CICS Java application to exchange messages with IBM MQ, you use a JMS connection
factory.

for a tutorial that shows how to develop this type of application, see CICS Developer Center: Using MQ
JMS in a CICS OSGi JVM server.

JMS programming considerations (OSGi JVM server)

• Use of any of the XA connection factories, for example com.ibm.mq.jms.MQXAConnectionFactory,
is not supported.

• Messages sent and received by the IBM® MQ classes for JMS in a JVM server environment are always
associated with the CICS® unit of work (UOW) that is active on the current thread. That UOW can only be
completed by calling the commit or rollback methods on the com.ibm.cics.server.Task object, or
by the CICS task ending normally in which case the UOW is implicitly committed. (There is one
exception to this, described in the next item in this list.) The values of the transacted and
acknowledgeMode arguments are ignored when calling any of the Connection.createSession, or
ConnectionFactory.createContext methods. Additionally, the following methods are not
supported and calling them results in an IllegalStateException in the session case:

– javax.jms.Session.commit()
– javax.jms.Session.recover()
– javax.jms.Session.rollback()

and an IllegalStateRuntimeSession in the JMS context case:

– javax.jms.JMSContext.commit()
– javax.jms.JMSContext.recover()
– javax.jms.JMSContext.rollback()

• The exception to the transactionality described above is this: if a session or JMS context is created
using one of the following mechanisms:

– Connection.createSession(false, Session.AUTO_ACKNOWLEDGE)
– Connection.createSession(Session.AUTO_ACKNOWLEDGE)
– ConnectionFactory.createContext(JMSContext.AUTO_ACKNOWLEDGE)

then the behavior of that session, or JMS context, is as follows:

– Any messages that are sent are transferred outside of the CICS UOW. That is, they are available on
the target destination immediately, or when the provided delivery delay interval has completed.

– Any non-persistent messages are received outside of the CICS UOW, unless the
syncPointAllGets property is specified on the connection factory that created the session or JMS
context.

– Persistent messages are always received inside the CICS UOW.

In a mixed-language application, an EXEC CICS SYNCPOINT command issued from a non- Java™

program will commit the whole unit of work, including the updates made to IBM MQ by a Java program.
• JMS provides support for a number of different listener interfaces such as
javax.jms.MessageListener, javax.jms.ExceptionListener and, if using JMS 2, the
javax.jms.CompletionListener. All of these interfaces result in MQ JMS using multiple threads
which is not supported in a CICS environment. Attempting to register one of these listeners results in
either a JMSException or a JMSRuntimeException.

• MQ JMS builds on the native support for IBM MQ in CICS so it makes use of the existing IBM MQ
security support which is described in Security considerations for using IBM MQ with CICS . As a result,
any attempt to create either a connection or JMS context object while specifying a user id or password
results in either a JMSException or JMSRuntimeException.

170 CICS TS for z/OS: Java Applications in CICS

https://developer.ibm.com/cics/2015/06/04/using-mq-jms-in-a-cics-osgi-jvm-server/
https://developer.ibm.com/cics/2015/06/04/using-mq-jms-in-a-cics-osgi-jvm-server/
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.sec.doc/q012170_.htm

• A CICS MQCONN resource must be defined. The name of the queue manager, or queue sharing group,
to which MQ JMS connects is taken from this MQCONN definition. Attempting to programmatically
specify a queue manager, or queue sharing group has no effect.

• The following approaches can be used to create and configure the IBM MQ implementations of
connection factories and destinations:

– Using JNDI to retrieve administered objects
– Using the IBM JMS extensions
– Using the IBM MQ JMS extensions

Most users of JMS use a JNDI repository to locate a pre-configured set of connection factories and
destinations. CICS does not provide a JNDI implementation, and the use of LDAP is not possible in an
OSGi environment.

For details of the available options, and an example of how to register an initial context factory and the
IBM MQ object factories with OSGi using the start method of a bundle adapter, see Creating and
configuring connection factories and destinations.

The connection between CICS and a IBM MQ queue manager is policed using the user ID of the CICS
address space. Resource access to a queue is authorized by the transaction user ID. Specifying a user
ID and password with a connection factory is therefore not supported.

• Any applications that make use of MQ JMS in CICS should make sure that all JMS resources are
recreated from an MQConnectionFactory each time the application is run. I.e. application code should
not store instances of sessions, message consumers, or any other MQ JMS objects in static variables so
that they can be shared between runs of the application. This restriction exists because the CICS-MQ
adapter tidies up any resources such as queue input handles when r the transaction that created them
completes. Trying to use one of these resources in another run of the same, or any other, transaction
results in JMS exceptions.

• From a JMS specification perspective, the IBM MQ classes for JMS treat a JVM server as a Java™ EE
compliant application server, that always has a JTA transaction in progress. For example, you can never
call javax.jms.Session.commit() in CICS, because the JMS specification states that you cannot
call it in a JEE EJB, or Web container, while a JTA transaction is in progress. This results in restrictions
to the JMS API in CICS.

The following restrictions apply to the classic JMS API (JMS 1.1):

• javax.jms.Connection.createConnectionConsumer(javax.jms.Destination, String,
javax.jms.ServerSessionPool, int) always throws a JMSException

• javax.jms.Connection.createDurableConnectionConsumer(javax.jms.Topic, String,
String, javax.jms.ServerSessionPool, int) always throws a JMSException.

• All three variants of javax.jms.Connection.createSession always throw a JMSException if the
connection already has an existing session active.

• javax.jms.Connection.createSharedConnectionConsumer(javax.jms.Topic, String,
String, javax.jms.ServerSessionPool, int) always throws a JMSException.

• javax.jms.Connection.createSharedDurableConnectionConsumer(javax.jms.Topic,
String, String, javax.jms.ServerSessionPool, int) always throws a JMSException.

• javax.jms.Connection.setClientID() always throws a JMSException.
• javax.jms.Connection.setExceptionListener(javax.jms.ExceptionListener) always

throws a JMSException.
• javax.jms.Connection.stop() always throws a JMSException.
• javax.jms.MessageConsumer.setMessageListener(javax.jms.MessageListener) always

throws a JMSException.
• javax.jms.MessageConsumer.getMessageListener() always throws a JMSException.
• javax.jms.MessageProducer.send(javax.jms.Destination,
javax.jms.Message,javax.jms.CompletionListener) always throws a JMSException.

Chapter 2. Developing Java applications 171

https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.dev.doc/q032160_.htm
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.dev.doc/q032160_.htm

• javax.jms.MessageProducer.send(javax.jms.Destination, javax.jms.Message, int,
int, long, javax.jms.CompletionListener) always throws a JMSException.

• javax.jms.MessageProducer.send(javax.jms.Message, int, int, long,
javax.jms.CompletionListener) always throws a JMSException.

• javax.jms.MessageProducer.send(javax.jms.Message,javax.jms.CompletionListener
) always throws a JMSException.

• javax.jms.Session.run() always throws a JMSRuntimeException.
• javax.jms.Session.setMessageListener(javax.jms.MessageListener) always throws a

JMSException.
• javax.jms.Session.getMessageListener() always throws a JMSException.

The following restrictions apply to the simplified JMS API (JMS 2.0):

• – javax.jms.JMSContext.createContext(int) always throws a JMSRuntimeException.
– javax.jms.JMSContext.setClientID(String) always throws a JMSRuntimeException.
– javax.jms.JMSContext.setExceptionListener(javax.jms.ExceptionListener) always

throws a JMSRuntimeException.
– javax.jms.JMSContext.stop() always throws a JMSRuntimeException.
– javax.jms.JMSProducer.setAsync(javax.jms.CompletionListener) always throws a

JMSRuntimeException.
– javax.jms.JMSConsumer.getMessageListener() always throws a JMSRuntimeException.
– javax.jms.JMSConsumer.setMessageListener(javax.jms.MessageListener) always

throws a JMSRuntimeException.

CICS abends during the processing of JMS requests
The use of IBM MQ classes for JMS and the bindings mode transport results in the issuing of IBM MQ MQI
commands. CICS abends issued during processing of the MQI command are not converted into Java
exceptions, and therefore are not catchable by a CICS Java application.

In this situation, the CICS transaction abends and rolls back to the last syncpoint.

Using IBM MQ classes for Java in an OSGi JVM server
Java programs running in an OSGi JVM server can use the IBM MQ classes for Java, provided by IBM MQ,
to access IBM MQ. The IBM MQ classes for Java provide a Java variant of the Message Queue Interface
(MQI) that allows a CICS application to put and get messages to queues, using the MQ connection that is
maintained by CICS. Support for use of IBM MQ classes for Java in CICS applications is provided from
IBM MQ for z/OS 7.1.

In a CICS environment, the classes supplied by IBM MQ allow only connections to MQ in bindings mode.
Any attempt to use connections to a remote queue manager in client mode results in an exception. In
bindings mode, the call request is transformed into an IBM MQ MQI call, and is processed as normal by
the existing CICS-MQ adapter. The converted requests flow into the CICS-MQ adapter in exactly the same
way as MQI requests from any other program (for example, a COBOL program). So there are no
operational differences between Java programs and other programs accessing IBM MQ.

To use the IBM MQ classes for Java in your application, you must:

• Ensure that you have access to the MQ classes for Java in your development environment. Unless you
have IBM MQ installed on your workstation, get these from IBM MQ SupportPacs which entitle you to
download the IBM MQ clients free of charge.

• Add your application to a CICS bundle project, export to zFS, and install it into the JVM server.
• Configure the CICS JVM server environment with the correct levels of the IBM MQ Java and native

libraries. These must match the level of IBM MQ libraries that are specified in the CICS STEPLIB. For
more information, see Configuring an OSGi JVM server to support IBM MQ classes for Java.

172 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/pages/uid/swg24031412
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/dfhpj_webspheremq_javaosgi_configure.html

For information about the IBM MQ classes for Java, see Using IBM MQ classes for Java in the IBM MQ
documentation. A list of the classes is in IBM MQ classes for JMS JavaDoc in the IBM MQ documentation.
For a tutorial, see CICS Developer Center: Using MQ JMS in a CICS OSGi JVM server.

Committing a unit of work involving WebSphere MQ requests
Messages sent and received by the IBM MQ classes for Java in a CICS JVM server environment are always
associated with the CICS unit of work (UOW).

The UOW can only be completed by calling the commit or rollback methods on the
com.ibm.cics.server.Task object, or by the CICS task ending normally, in which case the UOW is
implicitly committed. Use of the transaction control methods on MQQueueManager is not supported.

For a mixed language application, an EXEC CICS SYNCPOINT command issued from a non- Java
program will commit the whole unit of work, including the updates made to IBM MQ by a Java program.

CICS abends during the processing of IBM MQ requests
The use of IBM MQ classes for Java results in the issuing of a IBM MQ MQI command. CICS abends issued
during processing of the MQI command are not converted into Java exceptions, and therefore are not
catchable by a CICS Java application.

In this situation, the CICS transaction will abend and roll back to the last syncpoint.

Connectivity from Java applications in CICS
Java programs in the CICS environment can open TCP/IP sockets and communicate with external
processes. You can use Java programs as a gateway to connect to other enterprise applications that
might not be available to CICS programs in other languages. For example, you can write a Java program to
communicate with a remote servlet or database.

In some cases, this connectivity is integrated with CICS to provide enterprise qualities of service, such as
distributed transactions and identity propagation. In other cases, you can use connectivity without
distributed transactions and other services provided by CICS. Depending on the type of connectivity you
require, third party vendor products might be available which enable connectivity with enterprise
applications that are not natively supported by CICS.

Generally, JVMs in the CICS environment are similar in capability to batch mode JVMs. A batch mode JVM
runs as a stand-alone process outside the CICS environment, and is typically started from a UNIX System
Services command line or with a JCL job. Most applications that can work in a batch mode JVM can also
run in a JVM in CICS to the same extent. For example, if you write a batch mode Java application to
communicate with a non-IBM database using a third-party JDBC driver, then the same application is likely
to work in a JVM in CICS. If you want to use vendor supplied code such as non-IBM JDBC drivers in a JVM
in CICS , consult with your vendor to determine whether they support their code running in a JVM in CICS.

For more information about Java application behavior in CICS , see “ Java runtime environment in CICS ”
on page 24.

Batch mode applications that run in a JVM in the CICS environment do not usually exploit the capabilities
of CICS. For example, if a Java program in CICS updates records in a non-IBM database using a third-
party JDBC driver, CICS is not aware of this activity, and does not attempt to include the updates in the
current CICS transaction.

JCA local ECI support
You can deploy JCA ECI applications into a Liberty JVM server that is configured to use the JCA local ECI
resource adapter. This topic applies to CICS integrated-mode Liberty only.

For information on developing applications refer to “Java EE Connector Architecture (JCA)” on page 112.
To find out more about porting existing CICS Transaction Gateway applications, refer to “Porting JCA ECI
applications into a Liberty JVM server” on page 114. For information on configuring JCA, see “Configuring
the JCA local ECI resource adapter” on page 113.

Chapter 2. Developing Java applications 173

https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.dev.doc/q030520_.htm
https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.1.0/com.ibm.mq.javadoc.doc/WMQJMSClasses/index.html
https://developer.ibm.com/cics/2015/06/04/using-mq-jms-in-a-cics-osgi-jvm-server/

The JCA ECI programming interfaces provided by the CICS TS JCA local ECI resource adapter are
documented in Javadoc that is generated from the class definitions. The Javadoc is available at JCA local
ECI Javadoc information.

The libraries and OSGi bundle required for application development are provided by the IBM CICS SDK for
Java.

Packaging existing applications to run in a JVM server
If you are running Java applications in pooled JVMs, you can move them to run in a JVM server. Because a
JVM server can handle multiple requests for Java applications in the same JVM, you can reduce the
number of JVMs that are required to run the same workload. You must package the Java application as
one or more OSGi bundles. You can use one of three methods to package the application:

Moving applications to a JVM server
If you are running Java applications in pooled JVMs, you can move them to run in a JVM server. Because a
JVM server can handle multiple requests for Java applications in the same JVM, you can reduce the
number of JVMs that are required to run the same workload.

Before you begin
Ensure that the application is threadsafe and is packaged as one or more OSGi bundles. The OSGi bundles
must be deployed in a CICS bundle to zFS and specify the correct target JVMSERVER resource.

The Java developer can use the CICS SDK for Java that is included with CICS Explorer to repackage a Java
application using OSGi. For more information on how to migrate applications that use third party JARs,
see Upgrading the Java environment .

About this task

You can either use an existing JVM server or create a JVM server for your application. Do not move an
application to a JVM server where the thread limit and usage are already high, because you might
introduce locking contentions in the JVM server.

Procedure

1. Create or update a JVM server:

• If you decide to create a JVM server, see Configuring a Liberty JVM server . Many of the settings in a
JVM profile for a pooled JVM do not apply to JVM servers. The only option that you might want to
copy from the pooled JVM profile to the DFHOSGI profile is the LIBPATH_SUFFIX option.

• If you use an existing JVM server, you might have to increase the THREADLIMIT attribute on the
JVMSERVER resource to handle the additional application or update the options in the JVM server
profile. If you change the JVM profile, restart the JVM server to pick up the changes.

2. Create a BUNDLE resource that points to the deployed bundle in zFS.
When you install the BUNDLE resource, CICS loads the OSGi bundles into the OSGi framework in the
JVM server. The OSGi framework resolves the OSGi bundles and registers the OSGi services.
Use CICS Explorer to check that the BUNDLE resource is enabled. You can also use the OSGi Bundles
and OSGi Services views to check the state of the OSGi bundles and services.

3. Update the PROGRAM resource for the application:
a) Ensure that the EXECKEY attribute is set to CICS .

All JVM server work runs in CICS key.
b) Remove the JVM profile name and enter the name of the JVMSERVER resource.
c) Ensure that the JVMCLASS attribute matches the OSGi service of the Java application.
d) Reinstall the PROGRAM resource for the application.

174 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/j2ee-javadoc/index.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-javadocs/j2ee-javadoc/index.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/upgrading/process/upgrade_java.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_jvmserver_liberty.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/bundle/dfha4_summary.html

The PROGRAM resource uses the OSGi service to make an OSGi bundle available to other CICS
applications outside the JVM server.

Results
When the Java application is called, it runs in the JVM server.

What to do next
You can use the JVM server view in CICS Explorer and CICS statistics to monitor the JVM server. If the
performance is not optimal, adjust the thread limit.

Converting an existing Java project to a plug-in project
If you have an existing Java project, you can convert it to an OSGi plug-in project. The OSGi bundle can
run in a pooled JVM environment and a JVM server.

About this task

This task assumes that you have an existing Java project in your workspace, and you want to convert it to
an OSGi plug-in project.

Procedure

1. In the Package Explorer view, right-click the Java project that you want to convert to a plug-in project,
and click Configure > Convert to Plug-in Projects.
The Convert Existing Projects dialog is displayed.

The dialog contains a list of all the Java projects in your workspace. The one you chose to convert is
selected. You can change your selection, or select more than one Java project to convert to a plug-in
project.

2. Click Finish.
The Java project is converted to a plug-in project. The project name does not change, but the project
now includes a manifest file and a build properties file.

Chapter 2. Developing Java applications 175

3. Required: You must now edit the plug-in manifest file and add the JCICS API dependencies. If you do
not perform these steps, you will be able to export and install the bundle, but it will not run.

Note: In CICS versions before CICS TS version 4.2 you had to add the Java class library,
dfjcics.jar, to the Java build path. With CICS TS version 4.2, OSGi manages the build path for you.
Before you perform the following steps you must edit the current build path and remove any
references to dfhjcics.jar. If you do not remove all references to dfhjcics.jar, a
NoSuchMethodException error occurs at run time.

a) In the Package Explorer view, right-click the project name and click Plug-in Tools > Open
Manifest.
The manifest file opens in the manifest editor.

b) Important: In CICS versions before CICS TS version 4.2, the Java class library, known as JCICS, is
supplied in the dfjcics.jar JAR file. In CICS TS version 4.2 the library is supplied in the
com.ibm.cics.server.jar file. If your project manifest contains the declaration: Import-
Package: dfhjcics.jar; you must remove the declaration before continuing with the
remaining steps.

c) Select the Dependencies tab and in the Imported Packages section, click ADD.
The Package Selection dialog opens.

d) Select the package com.ibm.cics.server and click OK.
The package is displayed in the Imported Packages list.

e) Optional: Repeat the previous step to install the following package, if it is required for your
application:
com.ibm.record

The Java API for legacy programs that use IByteBuffer from the Java Record Framework that
came with VisualAge. Previously in the dfjcics.jar file.

f) Select File > Save to save the manifest file.

Results

You have successfully converted your existing Java project to a plug-in project.

What to do next
You must now update the manifest file to add a CICS-MainClass declaration. For more information, see
the related link.

Importing the contents of a JAR file into an OSGi plug-in project
You can create a plug-in project from an existing JAR file. This method is useful when the application is
already threadsafe and no refactoring or recompiling is required. The OSGi bundle can run in a pooled
JVM environment and a JVM server.

About this task

This task creates a new OSGi plug-in project from an existing JAR file. The JAR file must be on your local
file system.

Procedure

1. On the Eclipse menu bar, click File > New > Project to open the New wizard.
2. Expand the Plug-in Development folder and click Plug-in from Existing JAR Archives. Click Next.

The JAR selection dialog opens.
3. Locate the JAR file to convert. If the file is in your Eclipse workspace, click Add. If the file is in a folder

on your computer, click Add External and browse to the JAR file. Select the required file and click
Open to add it in the Jar selection dialog. Click Next.
The Plug-in Project Properties dialog opens.

176 CICS TS for z/OS: Java Applications in CICS

4. In the Project name field, enter the name of the project that you want to create. A project name is
mandatory.

5. Complete the following fields in the Plug-in Properties section as required:
Plug-in ID

The plug-in ID is automatically generated from the project name; however, you can change the ID
if you want to.

Plug-in Name
The plug-in name is automatically generated from the project name; however, you can change the
name if you want to.

Chapter 2. Developing Java applications 177

Execution Environment
This field specifies the minimum level of JRE required for the plug-in to run. Select the Java level
that matches the execution environment in your CICS runtime target platform.

6. In the Target Platform section, select an OSGI framework and select standard from the menu.
7. Ensure that Unzip the JAR archives into the project is selected and click Finish.

Eclipse creates the plug-in project in the workspace.
8. Required: You must now edit the plug-in manifest file and add the JCICS API dependencies. If you do

not perform these steps, you will be able to export and install the bundle, but it will not run.
a) In the Package Explorer view, right-click the project name and click Plug-in Tools > Open

Manifest.
The manifest file opens in the manifest editor.

b) Select the Dependencies tab and in the Imported Packages section, click ADD.
The Package Selection dialog opens.

c) Select the package com.ibm.cics.server and click OK.
The package is displayed in the Imported Packages list.

d) Optional: Repeat the previous step to install the following package, if it is required for your
application:
com.ibm.record

The Java API for legacy programs that use IByteBuffer from the Java Record Framework that
came with VisualAge. Previously in the dfjcics.jar file.

e) Select File > Save to save the manifest file.

Results

You have created an OSGi plug-in project from an existing JAR file.

What to do next
You must now update the manifest file to add a CICS-MainClass declaration. For more information, see
the related link.

Importing a binary JAR file into an OSGi plug-in project
You can create a plug-in project from an existing binary JAR file. This method is useful in situations where
there are licensing restrictions or where the binary file cannot be extracted. However, an OSGi bundle that
contains a JAR file is not supported in a pooled JVM environment.

About this task

This task creates a new OSGi plug-in project from an existing binary JAR file. The JAR file must be on your
local file system.

Procedure

1. On the Eclipse menu bar click File > New > Project to open the New wizard.
2. Expand the Plug-in Development folder and click Plug-in from Existing JAR Archives. Click Next.

The JAR selection dialog opens.
3. Locate the JAR file to convert. If the file is in your Eclipse workspace, click Add. If the file is in a folder

on your computer, click Add External and browse to the JAR file. Select the required file and click
Open to add it in the Jar selection dialog. Click Next.
The Plug-in Project Properties dialog opens.

178 CICS TS for z/OS: Java Applications in CICS

4. In the Project name field, enter the name of the project that you want to create. A project name is
mandatory.

5. Complete the following fields in the Plug-in Properties section as required:
Plug-in ID

The plug-in ID is automatically generated from the project name; however, you can change the ID
if you want to.

Plug-in Name
The plug-in name is automatically generated from the project name; however, you can change the
name if you want to.

Chapter 2. Developing Java applications 179

Execution Environment
This field specifies the minimum level of JRE required for the plug-in to run. Select the Java level
that matches the execution environment in your CICS runtime target platform.

6. In the Target Platform section, select an OSGI framework and select standard from the menu.
7. Ensure that Unzip the JAR archives into the project is not selected and click Finish.

Eclipse creates the plug-in project in the workspace. The project contains the binary JAR file but the
project is not supported in a pooled JVM environment.

8. Required: You must now edit the plug-in manifest file and add the JCICS API dependencies. If you do
not perform these steps, you will be able to export and install the bundle, but it will not run.
a) In the Package Explorer view, right-click the project name and click Plug-in Tools > Open

Manifest.
The manifest file opens in the manifest editor.

b) Select the Dependencies tab and in the Imported Packages section, click ADD.
The Package Selection dialog opens.

c) Select the package com.ibm.cics.server and click OK.
The package is displayed in the Imported Packages list.

d) Optional: Repeat the previous step to install the following package, if it is required for your
application:
com.ibm.record

The Java API for legacy programs that use IByteBuffer from the Java Record Framework that
came with VisualAge. Previously in the dfjcics.jar file.

e) Select File > Save to save the manifest file.

Results

You have successfully created the plug-in project in the workspace.

What to do next
You must now update the manifest file to add a CICS-MainClass declaration. For more information, see
the related link.

Writing Java classes to redirect JVM stdout and stderr output
Use the USEROUTPUTCLASS option in a JVM profile to name a Java class that intercepts the stdout
stream and stderr stream from the JVM. You can update this class to specify your choice of time stamps
and record headers, and to redirect the output.

CICS supplies sample Java classes, com.ibm.cics.samples.SJMergedStream , and
com.ibm.cics.samples.SJTaskStream , that you can use for this purpose. Sample source is
provided for both these classes, in the directory /usr/lpp/cicsts/ cicsts56 /samples/
com.ibm.cics.samples . The /usr/lpp/cicsts/ cicsts56 directory is the installation directory
for CICS files on z/OS UNIX . This directory is specified by the USSDIR parameter in the DFHISTAR
installation job. The sample classes are also shipped as a class file, com.ibm.cics.samples.jar ,
which is in the directory /usr/lpp/cicsts/ cicsts56 /lib . You can modify these classes, or write
your own classes based on the samples.

Controlling the location for JVM output, logs, dumps and trace has information about:

• The types of output from JVMs that are and are not intercepted by the class that is named by the
USEROUTPUTCLASS option. The class that you use must be able to deal with all the types of output that
it might intercept.

• The behavior of the supplied sample classes. The com.ibm.cics.samples.SJMergedStream class
creates two merged log files for JVM output and for error messages, with a header on each record that
contains APPLID, date, time, transaction ID, task number, and program name. The log files are created
by using transient data queues, if they are available; or z/OS UNIX files, if the transient data queues are

180 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/java/dfhpjcv.html

not available, or cannot be used by the Java application. The
com.ibm.cics.samples.SJTaskStream class directs the output from a single task to z/OS UNIX
files, adding time stamps and headers, to provide output streams that are specific to a single task.

For a JVM server to use an output redirection class, you must create an OSGi bundle that contains your
output redirection class. You must ensure that the bundle activator registers an instance of your class as
a service in the framework and sets the property
com.ibm.cics.server.outputredirectionplugin.name= class_name . You can use the
constant com.ibm.cics.server.Constants.CICS_USER_OUTPUT_CLASSNAME_PROPERTY to get
the property name. The following code excerpt shows how you might register your service in the bundle
activator:

Properties serviceProperties = new Properties();
 serviceProperties.put(Constants.CICS_USER_OUTPUT_CLASSNAME_PROPERTY,
MyOwnStreamPlugin.class.getName());
 context.registerService(OutputRedirectionPlugin.class.getName(), new MyOwnStreamPlugin(),
serviceProperties);

You can either add the OSGi bundle to the OSGI_BUNDLES option in the JVM profile or ensure that the
bundle is installed in the framework when the first task is run. Whichever method you use, you must still
specify the class in the USEROUTPUTCLASS option.

If you decide to write your own classes, you need to know about:

• The OutputRedirectionPlugin interface
• Possible destinations for output
• Handling output redirection errors and internal errors

The output redirection interface
CICS supplies an interface called com.ibm.cics.server.OutputRedirectionPlugin in
com.ibm.cics.server.jar, which can be implemented by classes that intercept the stdout and stderr
output from the JVM. The supplied samples implement this interface.

The following sample classes are provided:

• A superclass com.ibm.cics.samples.SJStream that implements this interface
• The subclasses com.ibm.cics.samples.SJMergedStream and
com.ibm.cics.samples.SJTaskStream, which are the classes named in the JVM profile

Like the sample classes, ensure that your class implements the interface OutputRedirectionPlugin
directly, or extends a class that implements the interface. You can either inherit from the superclass
com.ibm.cics.samples.SJStream, or implement a class structure with the same interface. Using
either method, your class must extend java.io.OutputStream.

The initRedirect() method receives a set of parameters that are used by the output redirection class
or classes. The following code shows the interface:

package com.ibm.cics.server;

import java.io.*;

public interface OutputRedirectionPlugin {

 public boolean initRedirect(String inDest,
 PrintStream inPS,
 String inApplid,
 String inProgramName,
 Integer inTaskNumber,
 String inTransid
);
 }

The superclass com.ibm.cics.samples.SJStream contains the common components of
com.ibm.cics.samples.SJMergedStream and com.ibm.cics.samples.SJTaskStream. It
contains an initRedirect() method that returns false, which effectively disables output redirection
unless this method is overridden by another method in a subclass. It does not implement a

Chapter 2. Developing Java applications 181

writeRecord() method, and such a method must be provided by any subclass to control the output
redirection process. You can use this method in your own class structure. The initialization of output
redirection can also be performed using a constructor, rather than the initRedirect() method.

The inPS parameter contains either the original System.out print stream or the original System.err
print stream of the JVM. You can write logging to either of these underlying logging destinations. You
must not call the close() method on either of these print streams because they remain closed
permanently and are not available for further use.

Possible destinations for output
The CICS-supplied sample classes direct output from JVMs to a directory that is specific to a CICS region;
the directory name is created using the applid associated with the CICS region. When you write your own
classes, if you prefer, you can send output from several CICS regions to the same z/OS UNIX directory or
file.

For example, you might want to create a single file containing the output associated with a particular
application that runs in several different CICS regions.

Threads that are started programmatically using Thread.start() are not able to make CICS requests. For
these applications, the output from the JVM is intercepted by the class you have specified for
USEROUTPUTCLASS, but it cannot be redirected using CICS facilities (such as transient data queues). You
can direct output from these applications to z/OS UNIX files, as the supplied sample classes do.

Handling output redirection errors and internal errors
If your classes use CICS facilities to redirect output, they should include appropriate exception handling
to deal with errors in using these facilities.

For example, if you are writing to the transient data queues CSJO and CSJE, and using the CICS-supplied
definitions for these queues, the following exceptions might be thrown by TDQ.writeData:

• IOErrorException
• LengthErrorException
• NoSpaceException
• NotOpenException

If your classes direct output to z/OS UNIX files, they should include appropriate exception handling to
deal with errors that occur when writing to z/OS UNIX. The most common cause of these errors is a
security exception.

The Java programs that will run in JVMs that name your classes on the USEROUTPUTCLASS options
should include appropriate exception handling to deal with any exceptions that might be thrown by your
classes. The CICS-supplied sample classes handle exceptions internally, by using a Try/Catch block to
catch all throwable exceptions, and then writing one or more error messages to report the problem. When
an error is detected while redirecting an output message, these error messages are written to
System.err, making them available for redirection. However, if an error is found while redirecting an
error message, then the messages which report this problem are written to the file indicated by the
STDERR option in the JVM profile used by the JVM that is servicing the request. Because the sample
classes trap all errors in this way, this means that the calling programs do not need to handle any
exceptions thrown by the output redirection class. You can use this method to avoid making changes to
your calling programs. Be careful that you do not send the output redirection class into a loop by
attempting to redirect the error message issued by the class to the destination which has failed.

182 CICS TS for z/OS: Java Applications in CICS

Chapter 3. Deploying applications to a JVM server
To deploy a Java application to a JVM server, the application must be packaged appropriately to install
and run successfully. You can use the IBM CICS SDK for Java, or the CICS-provided Maven or Gradle plug-
in to package and deploy the application.

You have a number of options for deploying Java applications:

• Deploy one or more CICS bundles that include the OSGi bundles for the application into a JVM server
that is running an OSGi framework.

• Deploy one or more CICS bundles that include one or more WAR files into a Liberty JVM server.
• Deploy one or more CICS bundles that include Enterprise Bundle Archive (EBA) files into a Liberty JVM

server.
• Deploy one or more CICS bundles that include EAR files into a Liberty JVM server.
• Deploy an application bundle that comprises the CICS bundles and OSGi bundles into a platform.

CICS provides two ways for you to deploy applications in CICS bundles: the IBM CICS SDK for Java in
CICS Explorer and the Maven or Gradle plug-in that deploys bundles through the CICS bundle deployment
API.

Deploying OSGi bundles in a JVM server
To deploy a Java application in a JVM server, you must install the OSGi bundles for the application in the
OSGi framework of the target JVM server.

Before you begin

The CICS bundle that contains the OSGi bundles for the application must be deployed to zFS. The target
JVM server must be enabled in the CICS region.

About this task

A CICS bundle can contain one or more OSGi bundles. Because the CICS bundle is the unit of deployment,
all the OSGi bundles are managed together as part of the BUNDLE resource. The OSGi framework also
manages the lifecycle of the OSGi bundles, including the management of dependencies and versioning.

Ensure that all OSGi bundles that comprise a Java application component are deployed in the same CICS
bundle. If there are dependencies between OSGi bundles, deploy them in the same CICS bundle. When
you install the CICS BUNDLE resource, CICS ensures that all the dependencies between the OSGi bundles
are resolved.

If you have dependencies on an OSGi bundle that contains a library of common code, create a separate
CICS bundle for the library. In this case, it is important to install the CICS BUNDLE resource that contains
the library first. If you install the Java application before the CICS bundles that it depends on, the OSGi
framework is unable to resolve the dependencies of the Java application.

Do not attempt to install a CICS bundle that contains an OSGi bundle into a Liberty JVM server, as this
configuration is not supported. Instead, you can either package the OSGi bundle together with your web
application in an enterprise bundle archive (EBA), or you can use the WebSphere Liberty Profile bundle
repository to make the OSGi bundle available to all web applications in the Liberty JVM server.

If you're using the IBM CICS SDK for Java in CICS Explorer to deploy bundles, follow the instructions in
this topic.

If you're using Maven or Gradle, you can package and deploy applications in CICS bundles using the CICS-
provided Maven or Gradle plug-in, provided the CMCI JVM server is configured to use the CICS bundle
deployment API. For instructions, see How it works: CICS bundle deployment API.

© Copyright IBM Corp. 1974, 2020 183

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/cpsm/cics-bundle-api.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/cpsm/cics-bundle-api.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/cpsm/cics-bundle-api.html

Procedure

1. Create a BUNDLE resource that specifies the directory of the bundle in zFS:
a) In the CICS SM perspective, click Definitions > Bundle Definitions in the CICS Explorer menu bar

to open the Bundles Definitions view.
b) Right-click anywhere in the view and click New to open the New Bundle Definition wizard.

Enter the details for the BUNDLE resource in the wizard fields.
c) Install the BUNDLE resource.

You can either install the resource in an enabled or disabled state:

• If you install the resource in a DISABLED state, CICS installs the OSGi bundles in the framework
and resolves the dependencies, but does not attempt to start the bundles.

• If you install the resource in an ENABLED state, CICS installs the OSGi bundles, resolves the
dependencies, and starts the OSGi bundles. If the OSGi bundle contains a lazy bundle activator,
the OSGi framework does not attempt to start the bundle until it is first called by another OSGi
bundle.

2. Optional: Enable the BUNDLE resource to start the OSGi bundles in the framework if the resource is
not already in an ENABLED state.

3. Click Operations > Bundles in the CICS Explorer menu bar to open the Bundles view. Check the state
of the BUNDLE resource.

• If the BUNDLE resource is in an ENABLED state, CICS was able to install all the resources in the
bundle successfully.

• If the BUNDLE resource is in a DISABLED state, CICS was unable to install one or more resources in
the bundle.

If the BUNDLE resource failed to install in the enabled state, check the bundle parts for the BUNDLE
resource. If any of the bundle parts are in the UNUSABLE state, CICS was unable to create the OSGi
bundles. Typically, this state indicates that there is a problem with the CICS bundle in zFS. You must
discard the BUNDLE resource, fix the problem, and then install the BUNDLE resource again.

4. Click Operations > Java > OSGi Bundles in the CICS Explorer menu bar to open the OSGi Bundles
view. Check the state of the installed OSGi bundles and services in the OSGi framework.

• If the OSGi bundle is in the STARTING state, the bundle activator has been called but not yet
returned. If the OSGi bundle has a lazy activation policy, the bundle remains in this state until it is
called in the OSGi framework.

• If the OSGi bundles and OSGi services are active, the Java application is ready.
• If the OSGi service is inactive it is possible that CICS detected an OSGi service with that name

already exists in the OSGi framework.
• If you disable the BUNDLE resource, the OSGi bundle moves to the RESOLVED state.
• If the OSGi bundle is in the INSTALLED state, either it has not started or it failed to start because the

dependencies in the OSGi bundle could not be resolved.
5. “ Invoking a Java application in a JVM server ” on page 188

Results
The BUNDLE is enabled, the OSGi bundles are successfully installed in the OSGi framework, and any OSGi
services are active. The OSGi bundles are available to other bundles in the framework.

What to do next
You can make the Java application available to other CICS applications outside the OSGi framework, as
described in “ Invoking a Java application in a JVM server ” on page 188.

184 CICS TS for z/OS: Java Applications in CICS

Deploying a Java EE application in a CICS bundle to a Liberty JVM server
You can deploy a Java EE application that is packaged as a CICS bundle in a Liberty JVM server.

Before you begin

The Java EE application, either in the form of WAR files, EAR files or an EBA file, must be deployed as a
CICS bundle in zFS. The target JVM server must be enabled in the CICS region.

For general information about creating Java applications, see “Developing applications using the IBM
CICS SDK for Java ” on page 26 or “Developing applications using Maven or Gradle” on page 33.

If you have dependencies on an OSGi bundle that contains a library of common code, install the bundle
into the Liberty bundle repository, see “Deploying OSGi bundles in a JVM server” on page 183.

About this task
The CICS application model is to package Java application components in CICS bundles and deploy them
to zFS. By installing the CICS bundles, you can manage the lifecycle of the application components.

A Java EE application can contain:

• One or more WAR files that provide the presentation layer and business logic of the application
• An OSGi Application Project, exported to an EBA file, which contains a web-enabled OSGi Bundle

Project to provide the presentation layer and a set of further OSGi bundles that provide the business
logic

• An Enterprise Application Archive (EAR) file containing one or more WAR files that provide the
presentation layer and business logic

If you're using the IBM CICS SDK for Java in CICS Explorer to deploy bundles, follow the instructions in
this topic.

If you're using Maven or Gradle, you can package and deploy applications in CICS bundles using the CICS-
provided Maven or Gradle plug-in, provided the CMCI JVM server is configured to use the CICS bundle
deployment API. For instructions, see How it works: CICS bundle deployment API.

Procedure

1. Create a BUNDLE resource that specifies the directory of the bundle in zFS:
a) In the CICS SM perspective in CICS Explorer, click Definitions > Bundle Definitions in the CICS

Explorer menu bar to open the Bundles Definitions view.
b) Right-click anywhere in the view and click New to open the New Bundle Definition wizard.

Enter the details for the BUNDLE resource in the wizard fields.
c) Install the BUNDLE resource.

You can install the resource in an enabled or disabled state:

• If you install the resource in a DISABLED state, CICS does not attempt to install the Java EE
applications into the Liberty server.

• If you install the resource in an ENABLED state, CICS installs the Java EE applications (WAR, EAR,
EBA files) in the ${server.output.dir}/installedApps directory and adds an
<application> entry into ${server.output.dir}/installedApps.xml.

2. Optional: Enable the BUNDLE resource to start the Java EE applications in the Liberty server, if the
resource is not already in an ENABLED state.

3. Click Operations > Bundles in the CICS Explorer menu bar to open the Bundles view. Check the state
of the BUNDLE resource.

• If the BUNDLE resource is in an ENABLED state, CICS installed all the resources in the bundle
successfully and all Liberty applications included in the bundle have started.

• If the BUNDLE resource is in an ENABLING state, CICS is currently installing all the resources in the
bundle or one or more Liberty application included in the bundle are still installing or starting.

Chapter 3. Deploying applications to a JVM server 185

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/cpsm/cics-bundle-api.html

• If the BUNDLE resource is in a DISABLED state, CICS was unable to install one or more resources in
the bundle. This might happen if a Liberty application included in the bundle failed to start, or the
application did not install in Liberty before the timeout. The timeout is configured by the JVM
system property com.ibm.cics.jvmserver.wlp.bundlepart.timeout.

If the BUNDLE resource failed to install in the enabled state, check the bundle parts for the BUNDLE
resource. If any of the bundle parts are in the UNUSABLE state, a message is issued to explain the
cause of the problem. For example, this state can indicate that there is a problem with the CICS
bundle in zFS, or the associated JVMSERVER resource is not available. You must discard the BUNDLE
resource, resolve the reported issue, and then install the BUNDLE resource again.

4. Optional: To run Java EE application requests on an application transaction, you can create URIMAP
and TRANSACTION resources.
Defining a URI map is useful if you want to control security to the application, because you can map
the URI to a specific transaction and use transaction security. Typically, these resources are created
as part of the CICS bundle and are managed with the application. However, you can choose to define
these resources separately if preferred.
a) Create a TRANSACTION resource for the application that sets the PROGRAM attribute to

DFHSJTHP.
This CICS program handles the security checking of inbound Java EE requests to the Liberty JVM
server. If you set any remote attributes, they are ignored by CICS because the transaction must
always attach in the local CICS region.

b) Create a URIMAP resource that has a USAGE type of JVMSERVER. Set the TRANSACTION attribute
to the name of the application transaction and set the SCHEME attribute to HTTP or HTTPS.
You can also use the USERID attribute to set a user ID. This value is ignored if the application
security authentication mechanisms are used. If no authentication occurs and no user ID is set on
the URI map, the work runs under CICS default user ID.

Results
The CICS resources are enabled, and the Java EE applications are successfully installed into the Liberty
JVM server.

What to do next
You can test that the Java application is available through a web client. To update or remove the
application, see Administering Java applications.

Deploying Java EE applications directly to a Liberty JVM server
You can deploy Java EE applications by defining the application element in server.xml, or by
copying the application into a previously defined dropins directory.

Before you begin
The JVM server must be configured to use Liberty technology.

About this task

Java EE applications can be packaged as a Web Archive (WAR), a Enterprise Bundle Archive (EBA), or a
Enterprise Application Archive (EAR).

Liberty provides two methods to install Java EE applications:

• You can add an application element in server.xml.
• Alternatively you can copy the application into the dropins directory of the Liberty JVM server. If you

use dropins, CICS is will always run under the transaction CJSA and will not benefit from extra
qualities of service such as CICS security.

Note:

• Do not use both techniques to deploy the same application into the same JVM server.

186 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/transaction/dfha4_summary.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/urimap/dfha4_summary.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/dfhpjuj.html

• If you accept the defaults that are provided by CICS autoconfigure, the dropins directory is not
automatically created.

Procedure

• To deploy an application by adding it to the server configuration file:

You must configure the following attributes for the application element in the server.xml:

– id - Must be unique and is used internally by the server.
– name - Must be unique.
– type - Specifies the type of application. The supported types are WAR, EBA, and EAR.
– location - Specifies the location of the application. The location can be an absolute path or a URL.

For example:

<application
 id="com.ibm.cics.server.examples.wlp.tsq.app"
 name="com.ibm.cics.server.examples.wlp.tsq.app"
 type="eba"
 location="${server.output.dir}/path_to_app"/>

• To create the dropins directory and deploy applications to it:
a) To enable dropins, you need to add configuration that is similar to the following example to your
server.xml:

<applicationMonitor dropins="dropins" dropinsEnabled="true" pollingRate="5s"
updateTrigger="disabled"/>

For more information, see Controlling dynamic updates.
b) Use FTP to transfer the exported file in binary mode to the dropins directory. The directory path is
WLP_USER_DIR/servers/server_name/dropins, where server_name is the value of the
com.ibm.cics.jvmserver.wlp.server.name property. If the property is not set, the property
is defaultServer.

Results
The Liberty JVM server installs the application.

What to do next
Access the Java EE application from a web browser to ensure that it is running correctly. To remove the
application file, delete the WAR, EBA or EAR file from the dropins directory. If it was deployed with an
application element, remove that element from server.xml.

Deploying common libraries to a Liberty JVM server
Deploy the common libraries according to whether it is supplied as DLL files, JAR files or OSGi bundles.

Procedure

• For common libraries supplied as DLL files, copy the files to a directory that is referred to by the
LIBPATH_SUFFIX option of the JVM profile.

For more information about LIBPATH_PREFIX and LIBPATH_SUFFIX, see Symbols used in the JVM
profile.

• For common libraries supplied as OSGi bundle JAR files, copy the JAR files to a directory that is
referred to in a bundleRepository definition in the server.xml file.

For more information, see Bundle repository in Manually tailoring server.xml.
• For common libraries supplied as JAR files but not OSGi bundles, copy the JAR files to a directory that

is referred to in a global library definition in the server.xml file.

Chapter 3. Deploying applications to a JVM server 187

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_setup_dyn_upd.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/dfha2_jvmprofile_symbols.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/dfha2_jvmprofile_symbols.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/serverxmljvm.html

For more information, see Global/shared library in Manually tailoring server.xml.

Invoking a Java application in a JVM server
There are many ways to call a Java application that is running in a JVM server. The method used will
depend upon the characteristics of the JVM server.

About this task

You can invoke a web application running in a Liberty JVM server by using a HTTP request with a specific
URL. Web applications cannot be driven directly from EXEC CICS LINK or EXEC CICS START. If you
have Java EE applications that are implemented as Plain Old Java Objects (POJOs) and packaged in a
WAR or an EAR, you can invoke their business logic components by using EXEC CICS LINK or EXEC
CICS START.

To invoke a Java application that is running in an OSGi JVM server, you can either EXEC CICS LINK to a
PROGRAM defined by Java, or EXEC CICS START a TRANSACTION that has a target PROGRAM defined by
Java. The PROGRAM definition specifies a JVMSERVER, and the name of a CICS generated OSGi service
you want to invoke. Such linkable OSGi services are created by CICS when you install an OSGi bundle that
includes a CICS-MainClass header in its manifest. The CICS-MainClass header identifies the main
method of the Java class in the OSGi bundle that you want to act as an entry-point to the application.

An OSGi service is a well-defined interface that is registered in the OSGi framework. OSGi bundles and
remote applications use the OSGi service to call application code that is packaged in an OSGi bundle. An
OSGi bundle can export more than one OSGi service. For more information, see Updating OSGi bundles in
an OSGi JVM server.

Invoking Java function in a classpath based JVM server is usually performed as part of a specific
capability of a JVM server, such as Batch, Axis2 and SAML. For these capabilities the DFHSJJI vendor
interface is provided.

Procedure

• For a web application developed as a web archive (WAR) file, as an enterprise application archive
(EAR) file, or as an enterprise bundle archive (EBA) file containing web application bundle (WAB) files
and running in a Liberty JVM server, invoke the application from the client browser by using a URL.
For more information about invoking business logic components of Java EE applications, see
“ Preparing a Java EE application to be called by a CICS program ” on page 87.

• For OSGi bundles that are deployed in an OSGi JVM server, follow these steps:
a) Determine the symbolic name of the active OSGi service that you want to use in the OSGi

framework.
Click Operations > Java > OSGi Services in CICS Explorer to list the OSGi services that are active.

b) Create a PROGRAM resource to represent the OSGi service to other CICS applications:

– In the JVM attribute, specify YES to indicate that the program is a Java program.
– In the JVMCLASS attribute, specify the symbolic name of the OSGi service. This value is case

sensitive.
– In the JVMSERVER attribute, specify the name of the JVMSERVER resource in which the OSGi

service is running.
c) You can call the Java application in either of two ways:

– Use a 3270 or EXEC CICS START request that specifies a transaction identifier. Create a
TRANSACTION resource that defines the PROGRAM resource for the OSGi service.

– Use an EXEC CICS LINK request, an ECI call, or an EXCI call. Name the PROGRAM resource for
the OSGi service when coding the request.

• For Axis2 or SAML function, see Configuring a JVM server for Axis2 and Configuring CICS for SAML.

188 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/serverxmljvm.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/java/updating_osgi.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/java/updating_osgi.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/program/dfha4_summary.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/transaction/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_jvmserver_axis2.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/saml/deploy_saml.html

Results
You have created the definition to make your Java application available to other components. When CICS
receives the request in the target JVM server, it invokes the specified Java class or Web application on a
new CICS Java thread. If the associated OSGi service or Web application is not registered or is inactive, an
error is returned to the calling program.

Deploying a CICS non-OSGi Java application
The Java applications are included in a CICS bundle and can be deployed to a z/OS UNIX System Services
(z/OS UNIX) file system using CICS Explorer, or using the CICS provided Maven or Gradle plug-in.

Before you begin

About this task

This task outlines the steps to deploy a non-OSGi Java application. The process is the same as for an OSGi
application; the only difference is that CICS uses the application JAR file instead of the bundle.

If you're using the IBM CICS SDK for Java in CICS Explorer to deploy bundles, follow the instructions in
this topic. When you are not authorized to deploy the bundle directly to a z/OS file system, you can export
the bundle as a compressed file. For more information, see Exporting a CICS bundle project to your local
file system in the CICS Explorer product documentation.

If you're using Maven or Gradle, you can package and deploy applications in CICS bundles using the CICS-
provided Maven or Gradle plug-in, provided the CMCI JVM server is configured to use the CICS bundle
deployment API. For instructions, see How it works: CICS bundle deployment API.

Procedure

1. Convert the Java application to a plug-in project.
Follow the instructions in “Converting an existing Java project to a plug-in project” on page 175.

2. Add the plug-in project to a CICS bundle.
Follow the instructions in “Adding a project to a CICS bundle project” on page 31.

3. Deploy the bundle project to a z/OS Unix file system.
Follow the instructions in Deploying a CICS bundle in the CICS Explorer product documentation.

Results
The Java application is exported to z/OS UNIX. The exported bundle includes the application JAR files.

Chapter 3. Deploying applications to a JVM server 189

https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.5.0/com.ibm.cics.core.help/topics/tasks/task_export_to_local.html
https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.5.0/com.ibm.cics.core.help/topics/tasks/task_export_to_local.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/cpsm/cics-bundle-api.html
https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.5.0/com.ibm.cics.core.help/topics/tasks/task_deploy_bundle_project.html

190 CICS TS for z/OS: Java Applications in CICS

Chapter 4. Setting up Java support
Perform the basic setup tasks to support Java in your CICS region and configure a JVM server to run Java
applications.

Before you begin
The Java components that are required for CICS are set up during the installation of the product. You
must ensure that the Java components are installed correctly.

About this task
CICS uses files in z/OS UNIX to start the JVM. You must ensure that your CICS region is configured to use
the correct zFS directories, and that those directories have the correct permissions. After you configure
CICS and set up zFS, you can configure a JVM server to run Java applications.

Procedure

1. Set the JVMPROFILEDIR system initialization parameter to a suitable directory in z/OS UNIX where
you want to store the JVM profiles that are used by the CICS region.
For more information, see “Setting the location for the JVM profiles” on page 191.

2. Ensure that your CICS region has enough memory to run Java applications.
For more information, see “Setting the memory limits for Java” on page 192.

3. Give your CICS region permission to access the resources that are held in z/OS UNIX, including your
JVM profiles, directories, and files that are required to create JVMs.
For more information, see “Giving CICS regions access to z/OS UNIX directories and files” on page
193.

4. Set up a JVM server.
You can configure a JVM server to run different workloads. For more information, see “Setting up a
JVM server” on page 195.

5. Optional: Enable a Java security manager to protect a Java application from performing potentially
unsafe actions.
For more information, see Enabling a Java security manager.

6. Set the JAVA_DUMP_TDUMP_PATTERN unformatted storage dump parameter.
The dump is written to a sequential MVS data set, which can be changed by specifying a value for the
environment variable JAVA_DUMP_TDUMP_PATTERN. Ensure that the CICS region user ID has UPDATE
access to data sets matching this pattern, otherwise diagnostic data is lost. For more information, see
Using dump agents on z/OS.

Results
You set up your CICS region to support Java and created a JVM server to run Java applications.

What to do next
If you are upgrading existing Java applications, follow the guidance in Upgrading. To start running Java
applications in a JVM server, see Deploying applications to a JVM server.

Setting the location for the JVM profiles
CICS loads the JVM profiles from the z/OS UNIX directory that is specified by the JVMPROFILEDIR
system initialization parameter. You must change the value of the JVMPROFILEDIR parameter to a new

© Copyright IBM Corp. 1974, 2020 191

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/sit/dfha2_jvmprofiledir.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/topics/dfhpj5u.html
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.zos.80.doc/diag/tools/dumpagents_platform_zos.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/upgrading/upgrading.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/deploying/dfhpj69.html

location and copy the supplied sample JVM profiles into this directory so that you can use them to verify
your installation.

Before you begin
The USSHOME system initialization parameter must specify the root directory for CICS files on z/OS UNIX.

About this task

The CICS-supplied sample JVM profiles are customized for your system during the CICS installation
process, so you can use them immediately to verify your installation. You can customize copies of these
files for your own Java applications.

The settings that are suitable for use in JVM profiles can change from one CICS release to another, so for
ease of problem determination, use the CICS-supplied samples as the basis for all profiles. Check the
upgrading information to find out what options are new or changed in the JVM profiles.

Procedure

1. Set the JVMPROFILEDIR system initialization parameter to the location on z/OS UNIX where you want
to store the JVM profiles used by the CICS region.
The value that you specify can be up to 240 characters long.

The supplied setting for the JVMPROFILEDIR system initialization parameter is /usr/lpp/cicsts/
cicsts56/JVMProfiles, which is the installation location for the sample JVM profiles. This
directory is not a safe place to store your customized JVM profiles, because you risk losing your
changes if the sample JVM profiles are overwritten when program maintenance is applied. So you
must always change JVMPROFILEDIR to specify a different z/OS UNIX directory where you can store
your JVM profiles. Choose a directory where you can give appropriate permissions to the users who
must customize the JVM profiles.

2. Copy the supplied sample JVM profiles from their installation location to the z/OS UNIX directory.

When you install CICS, the sample JVM profiles are placed in a zFS directory. This directory is specified
by the USSDIR parameter in the DFHISTAR installation job. The default installation directory
is /usr/lpp/cicsts/cicsts56/JVMProfiles.

Results
You have copied the sample JVM profiles to a zFS directory and configured CICS to use that directory. The
sample JVM profiles contain default values so that you can use them immediately to set up a JVM server.

What to do next
Ensure that CICS and Java have enough memory to run Java applications, as described in “Setting the
memory limits for Java” on page 192. You must also ensure that the CICS region has access to the z/OS
UNIX directories where Java is installed and the Java applications are deployed. For more information,
see “Giving CICS regions access to z/OS UNIX directories and files” on page 193.

Setting the memory limits for Java
Java applications require more memory than programs written in other languages. You must ensure that
CICS and Java have enough storage and memory available to run Java applications.

About this task
Java uses storage below the 16 MB line, 31-bit storage, and 64-bit storage. The storage required for the
JVM heap comes from the CICS region storage in MVS, and not the CICS DSAs.

Procedure

1. Ensure that the z/OS MEMLIMIT parameter is set to a suitable value.

192 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/sit/dfha2_usshome.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/sit/dfha2_jvmprofiledir.html

This parameter limits the amount of 64-bit storage that the CICS address space can use. CICS uses
the 64-bit version of Java and you must ensure that MEMLIMIT is set to a large enough value for both
this and other use of 64-bit storage in the CICS region.

See the following topics:

• Calculating storage requirements for JVM servers
• Estimating, checking, and setting MEMLIMIT in Improving performance

2. Ensure that the REGION parameter on the startup job stream is large enough for Java to run.
Each JVM require some storage below the 16 MB line to run applications, including just-in-time
compiled code, and working storage to pass parameters to CICS.

Giving CICS regions access to z/OS UNIX directories and files
CICS requires access to directories and files in z/OS UNIX. During installation, each of your CICS regions
is assigned a z/OS UNIX user identifier (UID). The regions are connected to an ESM group that is assigned
a z/OS UNIX group identifier (GID). Use the UID and GID to grant permission for the CICS region to access
the directories and files in z/OS UNIX.

Before you begin

Ensure that you are either a superuser on z/OS UNIX, or the owner of the directories and files. The owner
of directories and files is initially set as the UID of the system programmer who installs the product. The
owner of the directories and files must be connected to the ESM group that was assigned a GID during
installation. The owner can have that ESM group as their default group (DFLTGRP) or can be connected to
it as one of their supplementary groups.

About this task

z/OS UNIX System Services treats each CICS region as a UNIX user. You can grant user permissions to
access z/OS UNIX directories and files in different ways. For example, you can give the appropriate group
permissions for the directory or file to the ESM group to which your CICS regions connect. This option
might be best for a production environment and is explained in the following steps.

Procedure

1. Identify the directories and files in z/OS UNIX to which your CICS regions require access.

JVM server options Default directories Permission Description

JAVA_HOME /usr/lpp/java/J8.0_64 read and
execute

IBM 64-bit SDK for z/OS, Java
Technology Edition directories

USSHOME /usr/lpp/cicsts/
cicsts56

read and
execute

The installation directory for CICS files
on z/OS UNIX. Files in this directory
include sample profiles and CICS-
supplied JAR files.

WORK_DIR /u/CICS region userid read, write,
and execute

The working directory for the CICS
region. This directory contains input,
output, and messages from the JVMs.

JVMPROFILEDIR USSHOME/JVMProfiles/ read and
execute

Directory that contains the JVM profiles
for the CICS region, as specified in the
JVMPROFILEDIR system initialization
parameter.

Chapter 4. Setting up Java support 193

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/java/jvmserver_storage.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/dfht3_dsa_memlimit.html

JVM server options Default directories Permission Description

WLP_USER_DIR WORK_DIR/APPLID/
JVMSERVER/wlp/usr/

read, write,
and execute

Specifies the directory that contains
the configuration files for the Liberty
JVM server. WLP_USER_DIR needs
additional x permissions (read, write,
execute) if Liberty JVM server
autoconfigure is used as CICS must be
able to write to server.xml.

WLP_OUTPUT_DIR WLP_USER_DIR/servers read, write,
and execute

Specifies the output directory for the
Liberty JVM server.

2. List the directories and files to show the permissions.
Go to the directory where you want to start, and issue the following UNIX command:

ls -la

If this command is issued in the z/OS UNIX System Services shell environment when the current
directory is the home directory of CICSHT##, you might see a list such as the following example:

/u/cicsht##:>ls -la
total 256
drwxr-xr-x 2 CICSHT## CICSTS56 8192 Mar 15 2008 .
drwx------ 4 CICSHT## CICSTS56 8192 Jul 4 16:14 ..
-rw------- 1 CICSHT## CICSTS56 2976 Dec 5 2010 Snap0001.trc
-rw-r--r-- 1 CICSHT## CICSTS56 1626 Jul 16 11:15 dfhjvmerr
-rw-r--r-- 1 CICSHT## CICSTS56 0 Mar 15 2010 dfhjvmin
-rw-r--r-- 1 CICSHT## CICSTS56 458 Oct 9 14:28 dfhjvmout
/u/cicsht##:>

3. If you are using the group permissions to give access, check that the group permissions for each of the
directories and files give the level of access that CICS requires for the resource.
Permissions are indicated, in three sets, by the characters r, w, x and -. These characters represent
read, write, execute, and none, and are shown in the left column of the command line, starting with the
second character. The first set are the owner permissions, the second set are the group permissions,
and the third set are other permissions.
In the previous example, the owner has read and write permissions to dfhjvmerr, dfhjvmin, and
dfhjvmout, but the group and all others have only read permissions.

4. If you want to change the group permissions for a resource, use the UNIX command chmod.
The following example sets the group permissions for the named directory and its subdirectories and
files to read, write, and execute. -R applies permissions recursively to all subdirectories and files:

chmod -R g=rwx directory

The following example sets the group permissions for the named file to read and execute:

chmod g+rx filename

The following example turns off the write permission for the group on two named files:

chmod g-w filename filename

In all these examples, g designates group permissions. If you want to correct other permissions, u
designates user (owner) permissions, and o designates other permissions.

5. Assign the group permissions for each resource to the ESM group that you chose for your CICS regions
to access z/OS UNIX. You must assign group permissions for each directory and its subdirectories, and
for the files in them.
Enter the following UNIX command:

chgrp -R GID directory

194 CICS TS for z/OS: Java Applications in CICS

GID is the numeric GID of the ESM group and directory is the full path of a directory to which you want
to assign the CICS regions permissions.
For example, to assign the group permissions for the /usr/lpp/cicsts/cicsts56 directory, use
the following command:

chgrp -R GID /usr/lpp/cicsts/cicsts56

Because your CICS region user IDs are connected to the ESM group, the CICS regions have the
appropriate permissions for all these directories and files.

Results
You have ensured that CICS has the appropriate permissions to access the directories and files in z/OS
UNIX to run Java applications.

When you change the CICS facility that you are setting up, such as moving files or creating new files,
remember to repeat this procedure to ensure that your CICS regions have permission to access the new
or moved files.

What to do next
Verify that your Java support is set up correctly using the sample programs and profiles.

Setting up a JVM server
To run Java applications, web applications, Axis2, or a CICS Security Token Service in a JVM server, you
must set up the CICS resources and create a JVM profile that passes options to the JVM.

About this task

A JVM server can handle multiple concurrent requests for different Java applications in a single JVM. The
JVMSERVER resource represents the JVM server in CICS. The resource defines the JVM profile that
specifies configuration options for the JVM, the program that provides values to the Language
Environment enclave, and the thread limit. A JVM server can run different types of workload. A JVM
profile is supplied for each different use of the JVM server:

• To run applications that are packaged as OSGi bundles, configure the JVM server with the
DFHOSGI.jvmprofile. This profile contains the options to run an OSGi framework in the JVM server.

• To run applications that include Liberty in CICS, configure the JVM server with the
DFHWLP.jvmprofile. This profile contains the options to run a web container that is based on Liberty
technology. The web container also includes an OSGi framework and can therefore run applications that
are packaged as OSGi bundles.

• To run SOAP processing for web services with the Axis2 SOAP engine, configure the JVM server with the
DFHJVMAX.jvmprofile. This profile contains the options to run Axis2 in the JVM server.

• To run a CICS Security Token Service (STS), configure the JVM server with the
DFHJVMST.jvmprofile. This profile contains the options to run an STS.

Any changes that you make to the profiles apply to all JVM servers that use it. When you customize each
profile, make sure that the changes are suitable for all the Java applications that use the JVM server.

You can either configure JVM servers and JVM profiles with CICS online resource definition, or you can
use the CICS Explorer to define and package JVMSERVER resources and JVM profiles in CICS bundles. For
more information, see Working with bundles in the CICS Explorer product documentation.

Results
The JVM server is configured and ready to run a Java workload.

Chapter 4. Setting up Java support 195

https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.5.0/com.ibm.cics.core.help/topics/tasks/task_intro_app.html

What to do next
Configure the security for your Java environment. Give appropriate access to application developers to
deploy and install Java applications, and authorize application users to run Java programs and
transactions in CICS.

Configuring an OSGi JVM server
Configure the JVM server to run an OSGi framework if you want to deploy Java applications that are
packaged in OSGi bundles.

About this task
The JVM server contains an OSGi framework that handles the class loading automatically, so you cannot
add standard class path options to the JVM profile. The supplied sample, DFHOSGI.jvmprofile, is suitable
for an OSGi JVM server. This task shows you how to define a JVM server for an OSGi application from this
sample profile.

You can define the JVM server either with CICS online resource definition or in a CICS bundle in CICS
Explorer.

Procedure

1. Create a JVMSERVER resource for the JVM server.
a) Specify a name for the JVM profile for the JVM server.

On the JVMPROFILE attribute of JVMSERVER, specify a 1 - 8 character name. This name is used for
the prefix of the JVM profile, which is the file that holds the configuration options for the JVM
server. You do not need to specify the suffix, .jvmprofile, here.

b) Specify the thread limit for the JVM server.
On the THREADLIMIT attribute of JVMSERVER, specify the maximum number of threads that are
allowed in the Language Environment enclave for the JVM server. The number of threads depends
on the workload that you want to run in the JVM server. To start with, you can accept the default
value and tune the environment later. You can set up to 256 threads in a JVM server.

2. Create the JVM profile to define the configuration options for the JVM server.
You can use the sample profile, DFHOSGI.jvmprofile, as a basis. This profile contains a subset of
options that are suitable for starting the JVM server. All options and values for the JVM profile are
described in “JVM profile validation and properties” on page 216. Follow the coding rules, including
those for the profile name, in “Rules for coding profiles” on page 216.
a) Set the location for the JVM profile.

The JVM profile must be in the directory that you specify on the system initialization parameter,
JVMPROFILEDIR. For more information, see “Setting the location for the JVM profiles” on page
191.

b) Make the following changes to the sample profile:

• Set JAVA_HOME to the location of your installed IBM Java SDK.
• Set WORK_DIR to your choice of destination directory for messages, trace, and output from the

JVM server.
• Set TZ to specify the timezone for timestamps on messages from the JVM server. An example for

the United Kingdom is TZ=GMT0BST,M3.5.0,M10.4.0.
c) Save your changes to the JVM profile.

The JVM profile must be saved as EBCDIC on the z/OS UNIX System Services file system.
3. Install and enable the JVMSERVER resource.

Results
CICS creates a Language Environment enclave and passes the options from the JVM profile to the JVM
server. The JVM server starts up and the OSGi framework resolves any OSGi middleware bundles. When
the JVM server completes startup successfully, the JVMSERVER resource installs in the ENABLED state.

196 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/jvmserver/dfha4_summary.html

If an error occurs, for example CICS is unable to find or read the JVM profile, the JVM server fails to start.
The JVMSERVER resource installs in the DISABLED state, and CICS issues error messages to the system
log.

What to do next

• Configure the location for JVM logs as described in Controlling the location for JVM output, logs, dumps
and trace.

• Install OSGi bundles for the application in the OSGi framework of the JVM server, as described in
Deploying OSGi bundles in a JVM server.

• Specify any directories that contain native C dynamic link library (DLL) files, such as Db2 or IBM MQ. You
specify these directories on the LIBPATH_SUFFIX option in the JVM profile.

• Specify middleware bundles that you want to run in the OSGi framework. Middleware bundles are a type
of OSGi bundle that contains Java classes to implement shared services, such as connecting to IBM MQ
and Db2. You specify these bundles on the OSGI_BUNDLES option in the JVM profile.

JVM profile example
Example JVM profile for an OSGi application.

The following excerpt shows an example JVM profile that is configured to start an OSGi framework that
uses DB2 Version 11 and the JDBC 4.0 OSGi middleware bundle:

#**
#
Required parameters

#
When using a JVM server, the set of CICS options that are supported
JAVA_HOME=/usr/lpp/java/J8.0_64
WORK_DIR=.
LIBPATH_SUFFIX=/usr/lpp/db2v11/jdbc/lib
...
#**
#
JVM server specific parameters

#
OSGI_BUNDLES=/usr/lpp/db2v11/jdbc/classes/db2jcc4.jar,\
 /usr/lpp/db2v11/jdbc/classes/db2jcc_license_cisuz.jar
OSGI_FRAMEWORK_TIMEOUT=60
#
#**
#
JVM options

The following option sets the Garbage collection Policy.
#
-Xgcpolicy:gencon
#
#**
#
Setting user JVM system properties

#
-Dcom.ibm.cics.some.property=some_value
#
#**
#
Unix System Services Environment Variables
--
#
JAVA_DUMP_OPTS="ONANYSIGNAL(JAVADUMP,SYSDUMP),ONINTERRUPT(NONE)"
#
#

Chapter 4. Setting up Java support 197

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/java/dfhpjcv.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/java/dfhpjcv.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/deploying/create_osgibundle.html

Configuring an OSGi JVM server to support JMS
You can configure an OSGi JVM server to support applications that use JMS.

About this task
This task sets up the configuration for the OSGi JVM server to support applications that connect to IBM
MQ using JMS. You configure CICS to connect to IBM MQ through the CICS-MQ adapter. The JMS bundles
must be added to the set of middleware bundles that run in the OSGi framework within the JVM server.
The framework must also have access to the associated set of IBM MQ native libraries.

Before you start, make sure that you review the considerations in Using IBM MQ classes for JMS in a CICS
Liberty JVM server.

Procedure

1. Set up the CICS-MQ adapter, as described in Setting up the CICS-MQ adapter.
2. Add the IBM MQ classes for JMS to the JVM server as an OSGi middleware bundle.

Do this by including the following lines in the JVM profile of the JVM server:

OSGI_BUNDLES=MQ_ROOT/OSGi/com.ibm.mq.osgi.allclientprereqs_VERSION.jar,\
MQ_ROOT/OSGi/com.ibm.mq.osgi.allclient_VERSION.jar

where MQ_ROOT is the java/lib/ directory of the IBM MQ for z/OS® Unix System Services
installation, for example, /usr/lpp/V8R0M0/java/lib and VERSION is the version of the IBM MQ
classes for JMS used, for example, 8.0.0.0.

3. Add the directory containing the IBM MQ classes for JMS native libraries to the LIBPATH_SUFFIX in
the JVM profile of the JVM server.
For example: LIBPATH_SUFFIX=MQ_ROOT.

Note: Do we also need this: https://www.ibm.com/support/knowledgecenter/SSFKSJ_8.0.0/
com.ibm.mq.dev.doc/q121760_.htm

4. Stop and restart the JVM server.

Configuring an OSGi JVM server to support IBM MQ classes for Java
A JVM server is the runtime environment for Java applications. You can configure an OSGi JVM server to
support applications that use IBM MQ classes for Java.

About this task
To enable the OSGi JVM server to support applications that use IBM MQ classes for Java, IBM MQ for Java
bundles need to be added to the set of middleware bundles that run in the OSGi framework within the
JVM server. The framework must also have access to the associated set of native libraries.

Procedure

1. Add the IBM MQ classes for Java to the JVM server as an OSGi middleware bundle.
To add the classes, from IBM MQ Version 8.0, include the following lines in the JVM profile for the
OSGi JVM server:

OSGI_BUNDLES=<MQ_ROOT>/OSGi/com.ibm.mq.osgi.allclientprereqs_<VERSION>.jar,\
<MQ_ROOT>/OSGi/com.ibm.mq.osgi.allclient_<VERSION>.jar

For WebSphere MQ for z/OS Version 7.1, include the following line:

OSGI_BUNDLES=<MQ_ROOT>/OSGi/com.ibm.mq.osgi.java_<VERSION>.jar

where:

• MQ_ROOT is the java/lib/ directory of the IBM MQ for z/OS Unix System Services installation, for
example, /usr/lpp/V8R0M0/java/lib.

• VERSION is the version of the IBM MQ classes for Java that you are using, for example, 8.0.0.0.

198 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/dfhpj_webspheremq_jmsliberty.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/dfhpj_webspheremq_jmsliberty.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/mq/zs11290_.html
https://www.ibm.com/support/knowledgecenter/SSFKSJ_8.0.0/com.ibm.mq.dev.doc/q121760_.htm
https://www.ibm.com/support/knowledgecenter/SSFKSJ_8.0.0/com.ibm.mq.dev.doc/q121760_.htm

2. Add the directory containing the IBM MQ classes for Java native libraries to the LIBPATH_SUFFIX
option in the JVM profile for the OSGi JVM server.
For example:

LIBPATH_SUFFIX=<MQ_ROOT>

where MQ_ROOT is the java/lib/ directory of the IBM MQ for z/OS Unix System Services
installation, for example, /usr/lpp/V8R0M0/java/lib.

Configuring a Liberty JVM server
Configure the Liberty JVM server if you want to deploy Java EE applications such as EJBs, JSP, JSF and
servlets.

About this task

You have two ways of configuring a Liberty JVM server:
Autoconfigure

CICS automatically creates and updates the configuration file for Liberty, server.xml, from
templates that are supplied in the CICS installation directory. Autoconfigure gets you started quickly
with a minimal set of configuration values in Liberty. To enable autoconfigure, set the JVM system
property, -Dcom.ibm.cics.jvmserver.wlp.autoconfigure property to true. If you are
defining the JVM server in a CICS bundle, set this option.

Manually configuring
This is the default setting. You supply the configuration files and all values. Manually configuring is
appropriate where you want to remain in full control of the Liberty server configuration.

To define the JVM server, see Ways of defining CICS resources.

Procedure

1. Create a JVMSERVER resource. If you want to create a JVMSERVER resource within a CICS bundle, see
Artifacts that can be deployed in bundles.
a) Specify a name for the JVM profile for the JVM server.

On the JVMPROFILE attribute of JVMSERVER, specify a 1 - 8 character name. This name is used for
the file name of the JVM profile, which is the file that holds the configuration options for the JVM
server. You do not need to specify the file type, .jvmprofile, here.

b) Specify the thread limit for the JVM server.
On the THREADLIMIT attribute of the JVMSERVER, specify the maximum number of threads you
want to allocate. The actual number of threads that are used depends on the workload that you run
in the JVM server. To start with, you can accept the default value and tune the environment later.
You can set up to 256 threads in a JVM server.

c) Set the location for the JVM profile.
The JVM profile must be in the directory that you specify on the system initialization parameter,
JVMPROFILEDIR. For more information, see “Setting the location for the JVM profiles” on page
191.

2. Create the JVM profile to define the configuration options for the JVM server.
You can use the sample profile, DFHWLP.jvmprofile, as a basis. This profile contains a subset of
options that are suitable for starting the JVM server. All options and values for the JVM profile are
described in “JVM profile validation and properties” on page 216. Follow the coding rules, including
those for the profile name, in “Rules for coding profiles” on page 216.
a) Make the following changes to the sample profile:

• Set JAVA_HOME to the location of your installed IBM Java SDK.
• Set WORK_DIR to your choice of destination directory for messages, trace, and output from the

JVM server.

Chapter 4. Setting up Java support 199

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/fundamentals/system/dfha4fn.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/jvmserver/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/resources/app_types.html

• Set WLP_INSTALL_DIR to &USSHOME;/wlp
• Set TZ to specify the timezone for time stamps on messages from the JVM server. An example for

the United Kingdom is TZ=GMT0BST,M3.5.0,M10.4.0
• Set -Dfile.encoding to ISO-8859-1, for example -Dfile.encoding=ISO-8859-1.
• (Optional) Set CICS_WLP_MODE to choose the level of integration between CICS and Liberty.

See Symbols used in the JVM profile for more information about JVM server options.
b) Save your changes to the JVM profile.

The JVM profile must be saved in EBCDIC file encoding on UNIX System Services and the file type
must be .jvmprofile.

3. Create the Liberty server configuration.

Manually creating JVM servers is appropriate when the configuration files need to be carefully
controlled. For more information, see “Manually creating a Liberty server” on page 202 and Manually
tailoring server.xml.

Important: You should use autoconfigure if you are defining the JVM server in a CICS bundle, as the
server.xml configuration file cannot be included with the JVM profile in a CICS bundle.

4. Install and enable the JVMSERVER resource.

Results

The JVMSERVER reads the JVM profile and initializes itself based on the provided settings. If
autoconfigure is enabled and a Liberty server configuration does not exist, it will be created. If
autoconfigure is not enabled and there is no configuration, or the configuration is incorrect, the
JVMSERVER will become DISABLED and report an appropriate failure. On subsequent start up, the
JVMSERVER will use the existing configuration and launch the Liberty server instance. When the
JVMSERVER completes startup successfully, the JVMSERVER resource installs in the ENABLED state.

If an error occurs, for example, CICS is unable to find or read the JVM profile, the JVM server fails to
initialize. The JVM server is installed in the DISABLED state and CICS issues error messages to the system
log. See Troubleshooting Liberty JVM servers and Java web applications for help. To confirm that Liberty
successfully started within your JVM server, consult the messages.log file in the WLP_USER_DIR output
directory on zFS.

CAUTION: Do not use the Liberty bin/server script to start or stop a Liberty server that is running in
a JVM server.

Note: In CICS integrated-mode Liberty, the current number of threads indicated by the JVM server will
return a positive value and can fluctuate even when no workload is running. This is because threads are
pooled within Liberty for efficiency.

What to do next

• Run the CICS Liberty default web application to verify the Liberty JVM server is running by using the
following URL: http://server:port/com.ibm.cics.wlp.defaultapp/. For more information,
see Configuring the CICS Default Web Application.

• Specify any directories that contain native C dynamic link library (DLL) files, such as IBM MQ.
Middleware and tools that are supplied by IBM or by vendors might require DLL files to be added to the
library path.

• Add support for security. See Configuring security for a Liberty JVM server.
• Install the Java EE applications (EAR files, WAR files, and EBA files), as described in Deploying a Java EE

application in a CICS bundle to a Liberty JVM server.
• Liberty bootstrap properties can be placed in the JVM profile to achieve the same effect as using a

Liberty bootstrap.properties file.

200 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/dfha2_jvmprofile_symbols.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/java/troubleshooting_web_ref.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_jvmserver_defaultapp.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/security_liberty.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/deploying/create_liberty_bundle.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/deploying/create_liberty_bundle.html

• By default, Liberty and OSGi caches are not cleared on start-up of the JVM server. Should you encounter
caching issues, or receive guidance from the IBM Service team to clean your server, this can be
achieved by using one of two approaches:

– Add -Dcom.ibm.cics.jvmserver.wlp.args=--clean to your JVM profile.
– Add -Dorg.osgi.framework.storage.clean=onFirstInit to your JVM profile.

In both cases, remove the option once the server has started to ensure subsequent restarts are not
performance impacted.

• For more information on general Liberty set up see this overview on Liberty, Liberty overview.

CICS standard-mode Liberty: Java EE Full Platform support without full CICS integration
Use the CICS embedded Liberty JVM server in standard mode to port and deploy Liberty applications
from other platforms to CICS without changing your application. Standard mode is ideal for hosting
applications that are written for and rely on the Java Enterprise Edition (Java EE) Full Platform, but do not
require full integration with CICS. Applications running on CICS standard-mode Liberty can take
advantage of Liberty services, management, and security, and benefit from the performance and
capabilities of Java on z/OS, the z Systems platform, and close proximity to data in Db2 and IBM MQ.

CICS standard-mode Liberty is based on the Java EE 7 and Java EE 8 certified IBM WebSphere
Application Server Liberty. Java EE extends the core Java SE by providing the APIs and environment for
running multi-tiered, scalable, and secure network applications. Java EE includes the Web Profile,
Enterprise JavaBeans, and Batch Applications for the Java Platform.

Manage the creation, life-cycle and configuration of CICS standard-mode Liberty using CICS JVM server
technology. Applications running on CICS standard-mode Liberty do not have access to CICS resources
by default, but can submit work to the CICSExecutorService using the runAsCICS() method. Work
submitted to the CICSExecutorService has full access to the JCICS API, runs in a CICS unit-of-work
under a CICS task, and is committed on completion of the thread. Work submitted to the
CICSExecutorService does not have access to the Java EE APIs.

JVM profile example
Example JVM profile for Liberty server.

The following excerpt shows an example JVM profile that is configured to automatically create the
required configuration files and directory structure. It uses DB2 Version 11:

#**
JVM profile: DFHWLP
#
JAVA_HOME=/java/java71_64/J7.1_64
WORK_DIR=.
#**
JVM server parameters
#
OSGI_FRAMEWORK_TIMEOUT=60
#**
Liberty JVM server
#
-Dcom.ibm.ws.logging.console.log.level=INFO
-Dcom.ibm.cics.jvmserver.wlp.autoconfigure=true
-Dcom.ibm.cics.jvmserver.wlp.server.http.port=12345
-Dcom.ibm.cics.jvmserver.wlp.server.host=*
-Dcom.ibm.cics.jvmserver.wlp.jdbc.driver.location=/usr/lpp/db2v11/jdbc
-Dfile.encoding=ISO-8859-1
WLP_INSTALL_DIR=&USSHOME;/wlp
WLP_USER_DIR=./&APPLID;/&JVMSERVER;
#**
JVM options
-Xgcpolicy:gencon
-Xms128M
-Xmx256M
-Xmso128K
#**
Unix System Services Environment Variables
TZ=CET-1CEST,M3.5.0,M10.5.0

Chapter 4. Setting up Java support 201

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/cwlp_about.html

Manually creating a Liberty server
Manually creating a Liberty server in zFS for the JVM server.

Procedure

1. Create the Liberty server directory structure in zFS for the JVM server.
The JVM server expects configuration files to be in the WLP_USER_DIR/servers/server_name
directory, where WLP_USER_DIR is the value of the WLP_USER_DIR option and server_name is the
value of the com.ibm.cics.jvmserver.wlp.server.name property. The server_name property is
always prefixed with -D. For more information on these server options, see JVM server options.

2. Create the Liberty server configuration in the server_name directory.
As a minimum, you must create the server.xml file. You can base it on the template that is supplied
as wlp/templates/servers/defaultServer/server.xml in the installation directory of Liberty.
This file must be saved in the ASCII file encoding of ISO-8859-1 and tagged with this encoding using
the UNIX command chtag -c ISO8859-1 -t <file>.

3. Edit the server.xml file for your installation.
Update the <httpEndpoint> with the host name and port number. For information about configuring
server.xml in a JVM server, see “Manually tailoring server.xml” on page 203. If you want to use
security, see Configuring security for a Liberty JVM server.

Configuring the CICS Default Web Application
The CICS Liberty Default Web Application can be used to verify that the Liberty server is running and view
the server configuration. You can use it to view the JVM profile and server logs, and the Liberty
server.xml and messages.log files.

Before you begin
Without application security enabled, full access to the Default Web Application is available to all users. If
you have autoconfigure enabled and run with CICS security (sec=yes), or you have manually configured
your server.xml by adding the cicsts:security-1.0 feature, your user ID requires additional
permissions to run the application. For access to the Default servlet and basic information, you need to be
in the User role. For access to the FileViewer servlet, you need to be in the Administrator role.

Procedure

1. If you are using SAF authorization, and your server.xml contains the <safAuthorization .../>
element, you need to create these profiles:
a) To access the Default servlet, use the following example:

RDEFINE EJBROLE BBGZDFLT.com.ibm.cics.wlp.defaultapp.User UACC(NONE)
PERMIT BBGZDFLT.com.ibm.cics.wlp.defaultapp.User CLASS(EJBROLE) ID(WLPSVRS) ACCESS(READ)
SETROPTS RACLIST(EJBROLE) REFRESH

b) To access the FileViewer servlet, use the following example:

RDEFINE EJBROLE BBGZDFLT.com.ibm.cics.wlp.defaultapp.Administrator UACC(NONE)
PERMIT BBGZDFLT.com.ibm.cics.wlp.defaultapp.Administrator CLASS(EJBROLE) ID(WLPSVRS) ACCESS(READ)
SETROPTS RACLIST(EJBROLE) REFRESH

2. Alternatively, if you do not have SAF authorization configured, then the default JEE role-based access
is used.

• CICS provides a default authorization definition as shown in the following configuration. Access to
the Default servlet is granted through the User role to the special subject
ALL_AUTHENTICATED_USERS, which means all users are authenticated. By default CICS does not
provide access to the FileViewer servlet.

<authorization-roles id="com.ibm.cics.wlp.defaultapp">
 <security-role name="User">
 <special-subject type="ALL_AUTHENTICATED_USERS"/>

202 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/security_liberty.html

 </security-role>
</authorization-roles>

• However, the default JEE role information can be customized in server.xml by adding an
authorization element in the example that follows. This example extends the default configuration
by adding user2 into the Administrator role and giving access to the FileViewer servlet.

<authorization-roles id="com.ibm.cics.wlp.defaultapp">
 <security-role name="User">
 <user name="user1"/>
 <user name="user2"/>
 </security-role>
 <security-role name="Administrator">
 <user name="user2"/>
 </security-role>
</authorization-roles>

In this case, user1 can access the Default servlet but not the FileViewer servlet and user2 can
access the Default servlet and the FileViewer servlet.

Results

You have successfully configured the CICS Default Web Application.

Manually tailoring server.xml
If you want to make manual changes to your server.xml, there are some basic configurations you can
apply. Your CICS region user ID needs to have both read and write access to the server.xml file.

Rules for server configuration

Liberty allows customization of your server.xml. For details of the rules, see Server configuration.

Configuring the HTTP endpoint

If you want web access to your application, update the httpEndpoint attribute with the host name and
port numbers you require. For example:

<httpEndpoint host="winmvs2c.example.com" httpPort="28216" httpsPort="28217"
 id="defaultHttpEndpoint"/>

Use a port number that can be opened by the CICS region, either exclusively or as a shared port.

HTTPS is available only if SSL is configured as described in Configuring SSL (TLS) for a Liberty JVM server
using a Java keystore.

For more information, see Liberty overview.

Using environment variables in server.xml

Within server.xml, you can access and reference existing environment variables. See .

These can include custom environment variables that you have already set up in a JVM profile. See
Options for JVMs in a CICS environment.

Adding features

Add the following features in the <featureManager> list of features.

• CICS feature cicsts:core-1.0. This feature installs the CICS system OSGi bundles into the Liberty
framework. This feature is required to start a CICS integrated-mode Liberty JVM server. You can also
define a SAF or other type of registry.

• CICS feature cicsts:standard-1.0. This feature is required to start a CICS standard-mode Liberty
JVM server. The cicsts:standard-1.0 feature does not have access to CICS resources by default.
For more information see “CICS standard-mode Liberty: Java EE Full Platform support without full CICS
integration” on page 201.

Chapter 4. Setting up Java support 203

https://www.ibm.com/support/knowledgecenter/en/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/cwlp_config.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/ssl_liberty.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/ssl_liberty.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/cwlp_about.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/dfha2_jvmprofile_options.html

Note: Specify either the cicsts:core-1.0 or cicsts:standard-1.0 feature. You cannot specify
both features in server.xml.

• CICS security feature cicsts:security-1.0. This feature installs the CICS system OSGi bundles that
are required for CICS Liberty security into the Liberty framework. This feature is required when CICS
external security is enabled (SEC=YES in the SIT) and you want security in the Liberty server. To use the
cicsts:security-1.0 feature, you must also configure a user registry. For more information, see
“User registry” on page 205.

• jsp-2.3. This feature enables support for servlet and JavaServer Pages (JSP) applications. This
feature is required by Dynamic Web Projects (WAR files) and OSGi Application Projects that contain
OSGi Bundle Projects with Web Support that are installed as CICS bundles.

• cicsts:jdbc-1.0. This feature enables applications to access Db2 through the JDBC DriverManager
or DataSource interfaces.

Example:

<featureManager>
 <feature>cicsts:core-1.0</feature>
 <feature>cicsts:security-1.0</feature>
 <feature>jsp-2.3</feature>
 <feature>cicsts:jdbc-1.0</feature>
</featureManager>

For more information, see Liberty features.

CICS bundle deployed applications

If you want to deploy Liberty applications that use CICS bundles, the server.xml file must include the
entry:

<include location="${server.output.dir}/installedApps.xml"/>

The included file is used to define CICS bundle deployed applications.

Bundle repository

Share common OSGi bundles by placing them in a directory and referring to that directory in a
bundleRepository element. For example:

<bundleRepository>
 <fileset dir="directory_path" include="*.jar"/>
</bundleRepository>

Global/shared library

Share common JAR files between web applications by placing them in a directory and referring to that
directory in a global/shared library definition.

<library id="global">
 <fileset dir="directory_path" include="*.jar"/>
</library>

The global/shared libraries cannot be used by OSGi applications in an EBA, which must use a bundle
repository. For more information, see Providing global libraries for all Java EE applications or Shared
libraries.

Liberty server application and configuration update monitoring

The Liberty JVM server scans the server.xml file for updates. By default, it scans every 500
milliseconds. To vary this value, add an entry such as:

<config monitorInterval="5s" updateTrigger="polled"/>

204 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/liberty_features.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_classloader_global_libs.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/cwlp_sharedlibrary.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/cwlp_sharedlibrary.html

It also scans the dropins directory to detect the addition, update, or removal of applications. If you
install your web applications in CICS bundles, disable the dropins directory as follows:

<applicationMonitor updateTrigger="disabled" dropins="dropins"
dropinsEnabled="false" pollingRate="5s"/>

For more information, see Controlling dynamic updates.

JTA transaction log

When the Java Transaction API (JTA) is used, the Liberty transaction manager stores its recoverable log
files in the zFS filing system. The default location for the transaction logs is ${WLP_USER_DIR}/
tranlog/. This location can be overridden by adding a transaction element to server.xml such as

<transaction transactionLogDirectory="/u/cics/CICSPRD/DFHWLP/tranlog/"/>

CICS default web application

The CICS default web application CICSDefaultApp is a configuration service that validates the Liberty
JVM server has started. To make the application available, add the JVM profile option
com.ibm.cics.jvmserver.wlp.defaultapp=true to your JVM profile, or if you are not using
autoconfigure, add the cicsts:defaultApp-1.0 feature to server.xml. Run the application by using
the URL http://<server>:<port>/com.ibm.cics.wlp.defaultapp/.

<featureManager>
 <feature>cicsts:defaultApp-1.0</feature>
</featureManager>

User registry

Unless you are using distributed identity mapping, you must define a SAF registry to use the CICS security
feature:

<safRegistry id="saf"/>

For more information, see Configuring security for a Liberty JVM server by using distributed identity
mapping or Java Database Connectivity 4.1.

CICS JTA integration

If an XA transaction is used by Liberty, the CICS unit-of-work becomes subordinate to the XA transaction
by default. You can opt out of this automatic integration of CICS with JTA by setting the JVM profile option
com.ibm.cics.jvmserver.wlp.jta.integration=true. If you are not using autoconfigure, you
can manually set the element in your server.xml: <cicsts_jta Integration="true"/>.

Configuring Admin Center
The adminCenter-1.0 feature enables the Liberty Admin Center, a web-based graphical interface for
deploying, monitoring, and managing Liberty servers. After creating a Liberty JVM server, configure the
server.xml file.

About this task

These steps outline how to set up Admin Center.

Procedure

1. Open an editor on the server.xml file of the Liberty server, and configure the server for Admin
Center. Add the adminCenter-1.0 feature to the feature manager.

Chapter 4. Setting up Java support 205

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_setup_dyn_upd.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/dist_identity.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/dist_identity.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/rwlp_feature_jdbc-4.1.html

<featureManager>
 <feature>adminCenter-1.0</feature>
 <feature>websocket-1.1</feature>
</featureManager>

WebSocket provides a live view of the topology. Without the WebSocket feature, Admin Center web
client periodically and frequently polls for changes.

2. Add the userid of all users of the Admin Center (SAF userid if registry), or add the RACF group, to the
built-in administrator role.

<administrator-role>
 <user>username</user>
</administrator-role>

For more information about the built-in administrator role, see
3. Optionally, give Admin Center access to write to server.xml by adding the following to server.xml:

<remoteFileAccess>
 <writeDir>${server.config.dir}</writeDir>
</remoteFileAccess>

In the Admin Center you can see and edit server.xml, as well as any include files such as the CICS
installedApps.xml file.

The design view lists and describes many other attributes of each element, providing a good way to
understand the options available.

Note:

Some CICS augmented elements are not understood by a Liberty server and so those must be
manually edited in the source view.

Do not remove any of the essential CICS features, such as core-1.0. This disconnects the Liberty
instance and the containing JVMSERVER resource.

Results

Admin Center is now set up and ready to use. When you are using Admin Center, you should be aware that
it is possible to STOP the server and applications. Any synchronization of resources should be seen as a
convenience and not as a primary mechanism of control. The following behavior applies:

• A signal is sent to CICS when the Liberty server is stopped. This quiesces all of your JVM server
workload with a DISABLE(PHASEOUT) of the JVMSERVER. There is no option in the Admin Center to use
FORCE or PURGE commands.

• When stopping an application deployed as a CICS bundle, the parent CICS bundle is notified of the
application STOP and moves to the corresponding DISABLED state.

Auto-configuring a Db2 DataSource with type 2 connectivity through CICS using the jdbc-4.0,
jdbc-4.1, or jdbc-4.2 feature
Create a CICS-aware Db2 DataSource with type 2 connectivity by using the auto-configure property. This
uses the jdbc-4.0, jdbc-4.1, or jdbc-4.2 feature.

Before you begin

Configure your CICS region to connect to Db2. For more information, see Defining the CICS Db2
connection.

About this task

You can create a Db2 DataSource with type 2 connectivity in the Liberty server.xml, which operates
through the CICS DB2CONN, by using the JVM profile auto-configure property. The JNDI name is jdbc/
defaultCICSDataSource.

206 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/databases/dfhtk2c.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/databases/dfhtk2c.html

If there is already a Db2 DataSource with type 2 connectivity with id="defaultCICSDataSource", you
are not able to use auto-configure to create a new one. For more information on creating one manually,
see Manually configuring a Db2 DataSource with type 2 connectivity through CICS using the jdbc-4.0,
jdbc-4.1 or jdbc-4.2 feature.

Procedure

1. Enable auto-configure by setting -Dcom.ibm.cics.jvmserver.wlp.autoconfigure=true in the
JVM profile.

2. Set the com.ibm.cics.jvmserver.wlp.jdbc.driver.location in the JVM profile to the
location of the Db2 JDBC library.
For example: -Dcom.ibm.cics.jvmserver.wlp.jdbc.driver.location=/usr/lpp/db2v11/
jdbc

3. If the default schema is not the current userid, set the db2.jcc.currentSchema in the JVM profile
to the name of the schema.
For example: -Ddb2.jcc.currentSchema=CICSDB2

4. Install and enable the JVMSERVER resource.

Results

A Db2 DataSource with type 2 connectivity is added to the Liberty server configuration file, server.xml.

<featureManager>
 ...
 <feature>jdbc-4.2</feature>
</featureManager>

<dataSource id="defaultCICSDataSource" jndiName="jdbc/defaultCICSDataSource" transactional="false">
 <jdbcDriver libraryRef="defaultCICSDb2Library"/>
 <properties.db2.jcc driverType="2"/>
 <connectionManager agedTimeout="0"/>
</dataSource>

<library id="defaultCICSDb2Library">
 <fileset dir="/usr/lpp/db2v11/jdbc/classes" includes="db2jcc4.jar db2jcc_license_cisuz.jar"/>
 <fileset dir="/usr/lpp/db2v11/jdbc/lib" includes="libdb2jcct2zos4_64.so"/>
</library>

Manually configuring a Db2 DataSource with type 2 connectivity through CICS using the jdbc-4.0,
jdbc-4.1, or jdbc-4.2 feature
A CICS Liberty JVM server can be configured to use a JDBC DataSource with type 2 connectivity through
CICS to access Db2 databases from Java applications.

Before you begin

You should configure your CICS region to connect to Db2. For more information, see Defining the CICS
Db2 connection.

About this task

This task explains how to define the elements that are required in server.xml to enable JDBC type 2
driver connectivity to a local Db2 database.

Procedure

1. Add the jdbc-4.0, jdbc-4.1, or jdbc-4.2 feature to the server.xml file.

<featureManager>
 <feature>jdbc-4.2</feature>
</featureManager>

2. Add a library element to the server.xml file to specify the location on zFS of the JDBC driver.

Chapter 4. Setting up Java support 207

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_db2datasource_liberty.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_db2datasource_liberty.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/databases/dfhtk2c.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/databases/dfhtk2c.html

<library id="defaultCICSDb2Library">
 <fileset dir="/usr/lpp/db2v11/jdbc/classes" includes="db2jcc4.jar db2jcc_license_cisuz.jar"/>
 <fileset dir="/usr/lpp/db2v11/jdbc/lib" includes="libdb2jcct2zos4_64.so"/>
</library>

3. To access Db2 through a DataSource definition, a dataSource element is required. The jndiName
attribute is required to define the JNDI name that is referenced by your application.
You can set attributes for the dataSource by using a properties.db2.jcc element. The following
example shows how to do this:

<dataSource id="defaultCICSDataSource" jndiName="jdbc/defaultCICSDataSource" transactional="false">
 <jdbcDriver libraryRef="defaultCICSDb2Library"/>
 <properties.db2.jcc driverType="2"/>
 <connectionManager agedTimeout="0"/>
</dataSource>

transactional="false" is required to allow CICS to manage the transactions.

driverType="2" is required to use the type 2 connectivity to Db2.

agedTimeout="0" is required to disable Liberty connection pooling. Liberty connection pooling is not
required as the DB2CONN resource provides Db2 connection pooling.

Results

The Liberty server is configured to allow access to Db2 databases by using JDBC type 2 connectivity
through a CICS DB2CONN resource.

Manually configuring a Db2 DataSource with type 4 connectivity through Liberty using the jdbc-4.0,
jdbc-4.1, or jdbc-4.2 feature
A CICS Liberty JVM server can be configured to use a JDBC DataSource with type 4 connectivity to access
Db2 databases from Java applications.

Before you begin

The Liberty Db2 DataSource with type 4 connectivity does not use the CICS Db2 connection resource.
However, if you do not have APARs PI18798 and PI18799 applied, you need to add the Db2 SDSNLOAD
and SDSNLOD2 libraries to the CICS STEPLIB concatenation.

About this task

This task explains how to manually define the elements that are required in the server.xml
configuration file to enable JDBC type 4 driver connectivity to a local or remote Db2 database. Updates
that are made to a Db2 database that uses type 4 connectivity do not use the CICS Db2 connection
resource. They are not part of a two-phase commit transaction unless the DataSource connection is of
type javax.sql.XADataSource, and they are made within a JTA user transaction. For more
information, see Acquiring a connection to a database.

Procedure

1. Add the jdbc-4.0, jdbc-4.1, or jdbc-4.2 feature to the featureManager element. This enables use
of the dataSource and jdbcDriver elements that are used later in the server.xmlfile.

<featureManager>
 <feature>jdbc-4.2</feature>
</featureManager>

2. Add dataSource and jdbcDriver elements. The dataSource element must refer to a library
definition that specifies the library from which the JDBC driver components (the Db2 JDBC jar and
native DLL files) are to be loaded. Typical definitions might look like this:

<dataSource jndiName="jdbc/defaultCICSDataSource">
 <jdbcDriver libraryRef="db2Lib"/>
 <properties.db2.jcc driverType="4"

208 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/database/dfhtk4s.html

 serverName="winmvs2c.hursley.ibm.com"
 portNumber="41100"
 databaseName="DSNV11P2"
 user="DBUSER"
 password="{xor}Lz4sLCgwLTs="/>
</dataSource>

<library id="db2Lib">
 <fileset dir="/usr/lpp/db2v11/jdbc/classes" includes="db2jcc4.jar
 db2jcc_license_cisuz.jar" />
</library>

If you do not have APARs PI18798 and PI18799 applied, you need to add a fileset entry for the Db2
native library to the library configuration, for example:

<fileset dir="/usr/lpp/db2v11/jdbc/lib" />

The dataSource specifies the jndiName attribute that is referenced by your application program
when you are establishing a connection to that data source. The required properties are set in the
properties.db2.jcc element as follows:
driverType

Description: Database driver type, must be set to 4 to use the pure Java driver.
Default value: 4
Required: false
Data type: int

serverName
Description: The host name of server where the database is running. This is the SQL DOMAIN value
of the Db2 DISPLAY DDF command.
Default value: localhost
Required: false
Data type: string

portNumber
Description: Port on which to obtain database connections. This is the TCPPORT value of the Db2
DISPLAY DDF command.
Default value: 50000
Required: false
Data type: int

databaseName
Description: specifies the name for the data source. This is the LOCATION value of the Db2
DISPLAY DDF command.
Required: true
Data type: string

user
Description: The user ID used to connect to the database.
Required: true
Data type: string

password
Description: The password of the user ID used to connect to the database. The value can be stored
in clear text or encoded form. It is recommended that you encode the password. To do so, use the
securityUtility tool with the encode option, see securityUtility command.
Required: true
Data type: string

Chapter 4. Setting up Java support 209

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/rwlp_command_securityutil.html

Results

The Liberty server, when started, is configured to allow access to Db2 databases through a JDBC type 4
connectivity. For more information, see Java Database Connectivity 4.1.

Manually configuring a Db2 DataSource or the DriverManager interface with type 2 connectivity
through CICS using the cicsts:jdbc-1.0 feature
A CICS Liberty JVM server can be configured to use JDBC type 2 connectivity through CICS, providing
Java applications with either a javax.sql.DataSource or a java.sql.DriverManager interface to
access Db2 databases.

Before you begin

Configure your CICS region to connect to Db2. For more information, see Defining the CICS Db2
connection.

About this task

Although you can configure CICS Liberty to access Db2 with type 2 connectivity using the
cicsts:jdbc-1.0 feature, the preferred method is to use the Liberty jdbc-4.x features. For more
information, see Manually configuring a Db2 DataSource with type 2 connectivity through CICS using the
jdbc-4.0, jdbc-4.1 or jdbc-4.2 feature. However, if you want to use the DriverManager interface, you must
use the cicsts:jdbc-1.0 feature as described in the following procedure.

Procedure

1. Add the cicsts:jdbc-1.0 feature to the featureManager element.
This enables use of the cicsts_jdbcDriver and cicsts_dataSource elements, used later in the
server.xml file.

<featureManager>
 <feature>cicsts:jdbc-1.0</feature>
</featureManager>

2. Add a cicsts_jdbcDriver element. This enables JDBC type 2 connectivity with the
java.sql.DriverManager or javax.sql.DataSource interface.

The cicsts_jdbcDriver element must refer to a library definition that specifies the library from
which the JDBC driver components (the Db2 JDBC jar and native dll files) are to be loaded. Typical
definitions might look like this:

<cicsts_jdbcDriver libraryRef="defaultCICSDb2Library"/>
<library id="defaultCICSDb2Library">
 <fileset dir="/usr/lpp/db2v11/jdbc/classes" includes="db2jcc4.jar db2jcc_license_cisuz.jar"/>
 <fileset dir="/usr/lpp/db2v11/jdbc/lib" includes="libdb2jcct2zos4_64.so"/>
</library>

Note: Only one cicsts_jdbcDriver element is required. If more than one is specified, only the last
cicsts_jdbcDriver element in the server.xml file is used and the others are ignored.

If you require only java.sql.DriverManager support, the preceding steps are sufficient.
3. To access Db2 using the DataSource interface, a cicsts_dataSource element is required, but the

preferred method for DataSource access is to use the Liberty jdbc-4.x features, as described in
Manually configuring a Db2 DataSource with type 2 connectivity through CICS using the jdbc-4.0,
jdbc-4.1 or jdbc-4.2 feature. A cicsts_dataSource requires a jndiName attribute to define the
JNDI name that is referenced by your application. A definition might look like this:

<cicsts_dataSource id="defaultCICSDataSource" jndiName="jdbc/defaultCICSDataSource"/>

Tip: The DataSource class that is used is com.ibm.db2.jcc.DB2SimpleDataSource, which
implements javax.sql.DataSource.

210 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/rwlp_feature_jdbc-4.1.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/databases/dfhtk2c.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/databases/dfhtk2c.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_db2datasource_liberty.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_db2datasource_liberty.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_db2datasource_liberty.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_db2datasource_liberty.html

4. Optional: You can set attributes for the cicsts_dataSource by using a properties.db2.jcc
element. The following example shows how to do this:

<cicsts_dataSource id="defaultCICSDataSource" jndiName="jdbc/defaultCICSDataSource">
 <properties.db2.jcc currentSchema="DB2USER" fullyMaterializeLobData="true" />
</cicsts_dataSource>

Some of the attributes, which can be specified on the properties.db2.jcc element are not valid for
DataSources with type 2 connectivity. If these invalid attributes are specified, they are ignored and a
warning message is issued. The following attributes are not valid:

• driverType
• serverName
• portNumber
• user
• password
• databaseName

Results

The Liberty JVM server can connect to Db2 databases with JDBC type 2 connectivity through a CICS
DB2CONN resource.

Note: Dynamic updates of the cicsts_dataSource and its components are not supported. Updating
the configuration while the Liberty server is running can result in Db2 application failures. You should
recycle the server to activate any changes.

Configuring a Liberty JVM server to support JMS
You configure a CICS Liberty JVM server to support applications that use JMS. The Liberty JVM server can
be either CICS standard-mode Liberty or CICS integrated-mode Liberty but there are differences in the
configuration, depending on which you use and the type of connection that you use to IBM MQ.

About this task
This task sets up the server.xml for the CICS Liberty JVM server to support applications that connect to
IBM MQ through the IBM MQ classes for JMS. To connect to IBM MQ from Liberty, you need the IBM MQ
resource adapter at Version 9.0.1 or later. Liberty does not contain the IBM MQ resource adapter so you
must get it from Fix Central (see Installing the resource adapter in Liberty). The Liberty features that are
referenced in the configuration steps are described in detail in Liberty features.

Before you start, make sure that you review the considerations in Using IBM MQ classes for JMS in a CICS
Liberty JVM server.

Procedure

1. Add the wmqJmsClient-2.0 feature to the server.xml file.
Adding the wmqJmsClient-2.0 feature enables the Liberty server to load the necessary IBM MQ
bundles that let you define the JMS resources, such as the connection factory and activation
specification properties.

If you want to perform a JNDI lookup, then you must also add the jndi-1.0 feature.

<featureManager>
 <feature>wmqJmsClient-2.0</feature>
 <feature>jndi-1.0</feature>
</featureManager>

2. If you want to configure JMS applications to connect to IBM MQ in bindings mode (supported only in
CICS standard-mode Liberty), add the zosTransaction-1.0 feature:

Chapter 4. Setting up Java support 211

https://www.ibm.com/support/knowledgecenter/SSFKSJ_9.0.0/com.ibm.mq.dev.doc/q128160_.htm?view=kc#q128160_
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/liberty_features.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/dfhpj_webspheremq_jmsliberty.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/dfhpj_webspheremq_jmsliberty.html

<featureManager>
 <feature>zosTransaction-1.0</feature>
</featureManager>

3. Specify the location in zFS of the IBM MQ resource adapter on the variable element of the
server.xml file:

<variable name="wmqJmsClient.rar.location" value="/path/to/wmq/rar/wmq.jmsra.rar"/>

On the value attribute, specify the absolute path to the IBM MQ resource adapter file,
wmq.jmsra.rar.

4. If you are using a JMS connection factory to connect to the IBM MQ queue manager, add the
connection factory definitions to the server.xml file.
You must have information about the IBM MQ system: the name of the queue manager, the host name
of its system, the port that the queue manager is listening on, and the channel to the queue manager.
The connection factory is not applicable if your application communicates with IBM MQ through
message-driven beans.

For more information about the IBM MQ properties, see the Configuring JMS connection factories in
the Liberty documentation.

• For a client mode connection to IBM MQ, add the following elements:

<jmsConnectionFactory jndiName="jms/wmqCF" connectionManagerRef="ConMgr6">
 <properties.wmqJms transportType="CLIENT"
 hostName="localhost" port="1414"
 channel="SYSTEM.DEF.SVRCONN" queueManager="QM1"/>
</jmsConnectionFactory>

<connectionManager id="ConMgr6" maxPoolSize="10"/>

The value of 10 on maxPoolSize is used as an example only. Set maxPoolSize to the maximum
number of concurrent users of the connection factory.

• For a bindings mode connection to IBM MQ (supported only in CICS standard-mode Liberty), add
the following elements:

<jmsConnectionFactory jndiName="jms/qm1" connectionManagerRef="ConMgr6">
 <properties.wmqJms transportType="BINDINGS" queueManager="QM1"/>
</jmsConnectionFactory>

<connectionManager id="ConMgr6" maxPoolSize="10"/>

The value of “10” on maxPoolSize is used as an example only. Set maxPoolSize to the
maximum number of concurrent users of the connection factory.

5. Add the queue definitions to the server.xml that are referenced by the jmsConnectionFactory or
jmsActivationSpec:

<jmsQueue id="jms/queue1" jndiName="jms/queue1">
 <properties.wmqJms baseQueueName="QUEUE1" baseQueueManagerName="QM1"/>
</jmsQueue>

6. If you are configuring JMS applications to connect in bindings mode, use the wmqJmsClient element
in the server.xml file to specify the location of the IBM MQ native libraries.

<wmqJmsClient nativeLibraryPath="/opt/mqm/java/lib64"/>

7. If you use message-driven beans, add the mdb-3.2 feature to server.xml. This feature is not
applicable if you use a connection factory.

<featureManager>
 <feature>mdb-3.2</feature>
</featureManager>

Then define a jmsActivationSpec in the Liberty server.xml that references the jmsQueue
element, the IBM MQ channel, queue manager, host, port, and transport type. For more information

212 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_jms_config_confact.html

about the IBM MQ properties, see the Configuring JMS connection factories in the Liberty
documentation.

• For a client mode connection, add a jmsActivationSpec element as follows:

<jmsActivationSpec id="MQ.JMS.mdb.app/MQ.JMS.mdbEJB/MessageDrivenBean">
 <properties.wmqJms transportType="CLIENT"
 destinationRef="jms/queue1" destinationType="javax.jms.Queue"
 hostName="localhost" port="1414"
 channel="SYSTEM.DEF.SVRCONN" queueManager="QM1"/>
</jmsActivationSpec>

The jmsActivationSpec id attribute must be in the format of application name/module name/bean
name.

• For a bindings mode connection (supported only in CICS standard-mode Liberty), add a
jmsActivationSpec element as follows:

<jmsActivationSpec id="MQ.JMS.mdb.app/MQ.JMS.mdbEJB/MessageDrivenBean">
 <properties.wmqJms transportType="BINDINGS"
 destinationRef="jms/queue1" destinationType="javax.jms.Queue"
 queueManager="QM1"/>
</jmsActivationSpec>

The jmsActivationSpec id attribute must be in the format of application name/module name/bean
name.

Results
You have configured a CICS Liberty JVM server to support applications that use JMS.

Configuring a JVM server for Axis2
Configure the JVM server to run Axis2 if you want to run Java web services or process SOAP requests in a
pipeline.

About this task

Axis2 is a Java SOAP engine that can process web service requests in provider and requester pipelines.
When you configure a JVM server to run Axis2, CICS automatically adds the required JAR files to the class
path.

You can define the JVM server either with CICS online resource definition or in a CICS bundle.

Procedure

1. Create a JVMSERVER resource for the JVM server.
a) Specify a name for the JVM profile for the JVM server.

On the JVMPROFILE attribute of JVMSERVER, specify a 1 - 8 character name. This name is used for
the prefix of the JVM profile, which is the file that holds the configuration options for the JVM
server. You do not need to specify the suffix, .jvmprofile, here.

b) Specify the thread limit for the JVM server.
On the THREADLIMIT attribute of JVMSERVER, specify the maximum number of threads that are
allowed in the Language Environment enclave for the JVM server. The number of threads that are
required depend on the workload that you want to run in the JVM server. To start with, you can
accept the default value and then tune the environment. You can set up to 256 threads in a JVM
server.

2. Create the JVM profile to define the configuration options for the JVM server.
You can use the sample profile, DFHJVMAX.jvmprofile, as a basis. This profile contains a subset of
options that are suitable for starting the JVM server. All options and values for the JVM profile are
described in “JVM profile validation and properties” on page 216. Follow the coding rules, including
those for the profile name, in “Rules for coding profiles” on page 216.
a) Set the location for the JVM profile.

Chapter 4. Setting up Java support 213

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_jms_config_confact.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/jvmserver/dfha4_summary.html

The JVM profile must be in the directory that you specify on the system initialization parameter,
JVMPROFILEDIR. For more information, see “Setting the location for the JVM profiles” on page
191.

b) Make the following changes to the sample profile:

• Set JAVA_HOME to the location of your installed IBM Java SDK.
• Set JAVA_PIPELINE to run Axis2.
• Set CLASSPATH_SUFFIX to specify classes for Axis2 applications and SOAP handlers that are

written in Java.
• Set WORK_DIR to your choice of destination directory for messages, trace, and output from the

JVM server.
• Set TZ to specify the timezone for timestamps on messages from the JVM server.An example for

the United Kingdom is TZ=GMT0BST,M3.5.0,M10.4.0.
c) Save your changes to the JVM profile.

The JVM profile must be saved as EBCDIC on the z/OS UNIX System Services file system.
3. Install and enable the JVMSERVER resource.

Results
CICS creates a Language Environment enclave and passes the options from the JVM profile to the JVM
server. The JVM server starts up and loads the Axis2 JAR files. When the JVM server completes startup
successfully, the JVMSERVER resource installs in the ENABLED state.

If an error occurs, for example CICS is unable to find or read the JVM profile, the JVM server fails to start.
The JVMSERVER resource installs in the DISABLED state and CICS issues error messages to the system
log.

What to do next

• Specify any directories that contain native C dynamic link library (DLL) files, such as Db2 or IBM MQ. You
specify these directories on the LIBPATH_SUFFIX option in the JVM profile.

• Configure CICS to run web service requests in the JVM server, as described in Using Java with web
services.

JVM profile example
Example JVM profile configured to start Axis2.

The following excerpt shows an example JVM profile that is configured to start Axis2:

#**
#
Required parameters

#
When using a JVM server, the set of CICS options that are supported
JAVA_HOME=/usr/lpp/java/J8.0_64
WORK_DIR=.
LIBPATH_SUFFIX=/usr/lpp/db2910/lib
...
#**
#
JVM server specific parameters

#
JAVA_PIPELINE=YES
#
#**
#
JVM options

The following option sets the Garbage collection Policy.
#
-Xgcpolicy:gencon
#
#**

214 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/dfhws_using_java_with_web_services.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/dfhws_using_java_with_web_services.html

#
Setting user JVM system properties

#
-Dcom.ibm.cics.some.property=some_value
#
#**
#
Unix System Services Environment Variables
--
#
JAVA_DUMP_OPTS="ONANYSIGNAL(JAVADUMP,SYSDUMP),ONINTERRUPT(NONE)"
#
#

Configuring a JVM server for a CICS Security Token Service
Configure the JVM server to run a CICS Security Token Service if you want to validate and process SAML
tokens.

About this task

The supplied sample DFHJVMST.jvmprofile is suitable for a JVM server that runs a CICS Security Token
Service.

You can define the JVM server either with CICS online resource definition or in a CICS bundle. For more
help with using the CICS Explorer to create and edit resources in CICS bundles, see Working with bundles
in the CICS Explorer product documentation.

Procedure

Create a JVMSERVER resource for the JVM server.
a) Specify a name for the JVM profile for the JVM server.

On the JVMPROFILE attribute, specify a 1 - 8 character name. This name is used for the prefix of the
JVM profile, which is the file that holds the configuration options for the JVM server. You do not need
to specify the suffix .jvmprofile.

b) Specify the thread limit for the JVM server.
The number of threads depends on the workload that you want to run in the JVM server. To start with,
you can accept the default value and then tune the environment later. You can set up to 256 threads in
a JVM server.

c) Create the JVM profile to define the configuration options for the JVM server.
The JVM profile must be in the directory that you specify on the system initialization parameter,
JVMPROFILEDIR. You can use the sample profile, DFHJVMST.jvmprofile, as a basis. This profile
contains a subset of options that are suitable for starting the JVM server. You can either copy
DFHJVMST.jvmprofile from the installation directory into the directory that you specify on
JVMPROFILEDIR, or select it in CICS Explorer and save to the target directory.

All options and values for the JVM profile are described in “JVM profile validation and properties” on
page 216. Follow the coding rules in “Rules for coding profiles” on page 216.

Make the following changes to the sample profile:

• Set JAVA_HOME to the location of your installed IBM Java SDK.
• Set WORK_DIR to your choice of destination directory for messages, trace, and output from the JVM

server.
• Set SECURITY_TOKEN_SERVICE to YES.
• Set TZ to specify the timezone for timestamps on messages from the JVM server. An example for the

United Kingdom is TZ=GMT0BST,M3.5.0,M10.4.0.
d) Save your changes to the JVM profile

The JVM profile must be saved as EBCDIC on the USS file system.

Chapter 4. Setting up Java support 215

https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.5.0/com.ibm.cics.core.help/topics/tasks/task_intro_app.html
https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.5.0/com.ibm.cics.core.help/topics/tasks/task_intro_app.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/jvmserver/dfha4_summary.html

Results
When you install and enable the JVMSERVER resource, CICS creates a Language Environment enclave
and passes the options from the JVM profile to the JVM server. The JVM starts up and the OSGi
framework resolves any OSGi middleware bundles. When the JVM server completes startup successfully,
the JVMSERVER resource installs in the ENABLED state.

If an error occurs, for example CICS is unable to find or read the JVM profile, the JVM server fails to
initialize. The JVMSERVER resource installs in the DISABLED state and CICS issues error message.

What to do next
You can further customize the JVM server, for example:

• Specify any directories that contain native C dynamic link library (DLL) files, such as Db2 or IBM MQ. You
specify these directories on the LIBPATH_SUFFIX option.

• For more information see Configuring the CICS Security Token Service.

JVM profile validation and properties
JVM profiles contain a set of options and system properties that are passed to the JVM when it starts.
Some JVM profile options are specific to the CICS environment and are not used for JVMs in other
environments. CICS validates that the JVM profile is coded correctly when you start the JVM server.

The JVM options are described in “Options for JVMs in a CICS environment” on page 218. CICS provides
sample profiles for each JVM server configuration that is supported by CICS. These sample profiles have
default values for the most common JVM options. The sample profiles are stored in zFS in /usr/lpp/
cicsts/cicsts56/JVMProfiles/.

You can also specify z/OS UNIX System Services environment variables in a JVM profile. For more
information see Symbols used in the JVM profile. Name and value pairs that are not valid JVM options are
treated as z/OS UNIX System Services environment variables, and are exported. z/OS UNIX System
Services environment variables specified in a JVM profile apply only to JVMs created with that profile.

Examples of environment variables include the WLP_INSTALL_DIR variable for the Liberty profile, and
the TZ variable for changing the time zone of the JVM.

The Java class libraries include other system properties that you can set in a JVM profile. For example,
applications might also have their own system properties. The IBM Java documentation is the primary
source of Java information. For more information about the JVM system properties, see z/OS User Guide
for IBM SDK, Java Technology Edition, Version 8.

Rules for coding profiles
JVM profiles are text files encoded in EBCDIC when stored on the USS file system. When JVM profiles are
created in a CICS bundle, they can be edited on a workstation using any text editor. They must be
converted to EBCDIC when they are transferred to USS. CICS Explorer performs this conversion
automatically when exporting a CICS bundle project to USS.

Case sensitivity

All parameter keywords and operands are case-sensitive, and must be specified exactly as shown in
“Options for JVMs in a CICS environment” on page 218, “JVM system properties” on page 230, or
Node.js profile and command line options.

Comments

To add comments or to comment out an option instead of deleting it, begin each line of the comment
with a # symbol. Comment lines are ignored when the file is read by the launcher.

Blank lines are also ignored. You can use blank lines as a separator between options or groups of
options.

The profile parsing code removes inline comments. An inline comment is defined as follows:

• The comment starts with a # symbol
• It is preceded with one or more spaces (or tabs)

216 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/saml/saml_config_sts.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/dfha2_jvmprofile_symbols.html
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/welcome/welcome_javasdk_version.html
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/welcome/welcome_javasdk_version.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/node/node-options.html

• It is not contained in quoted text

Table 38. Inline comment examples

Code Result

MYVAR=myValue # Comment MYVAR=myValue

MYVAR=#myValue # Comment MYVAR=#myValue

MYVAR=myValue "# Quoted comment" #
Comment

MYVAR=myValue "# Quoted comment"

Continuation

For options the value is delimited by the end of the line in the text file. If a value that you are entering
or editing is too long for an editor window, you can break the line to avoid scrolling. To continue on the
next line, terminate the current line with the backslash character and a blank continuation character,
as in this example:

STDERR=/example/a/long/path/which/you/would/like\
 /to/break/over/a/line

Do not put more than one option on the same line.

Including files

Use %INCLUDE=<file_path> to include a file in your profile. The file can contain common system-
wide configuration that can be maintained separate to the profile. This enables configuration that is
common to several profiles to be shared, giving more control and providing easier maintenance for
profiles.

The following rules apply:

• <file_path> must be a fully qualified file in zFS.

– Avoid use of relative directories at the start of <file_path> such as . and ... They are
interpreted by UNIX System Services as relative to the Language Environment current working
directory, which can change in processing.

– If <file_path> does not exist, or if the CICS region user ID does not have read access to
<file_path> message DFHSJ1308 is issued.

• <file_path> can contain symbols, for example &USSCONFIG;.

– Symbols &DATE; and &TIME; are not allowed due to the formatting for these being set via the
time zone option (TZ) that can be before or after the %INCLUDE directive.

• The contents of <file_path> replace the %INCLUDE directive.
• A profile can contain any number of %INCLUDE directives.
• Cyclic references result in message Skipping duplicate. For example, Profile-A can include
Profile-B, and Profile-B include Profile-C; but if Profile-B includes Profile-A the directive is ignored.

Multiple instances of options

If more than one instance of the same option is included in a profile, the value for the last option
found is used, and previous values are ignored.

UNIX System Services directory paths

Do not use quotation marks when specifying values for zFS files or directories in a profile.

Chapter 4. Setting up Java support 217

Rules specific to JVM profiles
Appending values

Use the + character before a variable to append the value specified to the existing value of that
variable using a comma separator, for example:

LIBERTY_INCLUDE_XML=/path/file1
+LIBERTY_INCLUDE_XML=/path/file2

This is the equivalent to:

LIBERTY_INCLUDE_XML=/path/file1,/path/file2

CEDA

The CEDA panels accept mixed case input for the JVMPROFILE field irrespective of your terminal
UCTRAN setting. However, you must enter the name of a JVM profile in mixed case when you use
CEDA from the command line or when you use another CICS transaction. Ensure that your terminal is
correctly configured with uppercase translation suppressed. You can use the supplied CEOT
transaction to alter the uppercase translation status (UCTRAN) for your own terminal, for the current
session only.

Class path separator character

Use the : (colon) character to separate the directory paths that you specify on a class path option,
such as CLASSPATH_SUFFIX.

Name of a profile

• The name of a JVM profile can be up to eight characters in length.
• JVM profiles on the file system must have the file extension .jvmprofile. The file extension is set

to lowercase and must not be changed (only applies to JVM profiles).
• The name can be any name that is valid for a file in z/OS UNIX System Services. Do not use a name

beginning with DFH, because these characters are reserved for use by CICS.
• Because profiles are UNIX files, case is important. When you specify the name in CICS, you must

enter it using the same combination of uppercase and lowercase characters that is present in the
z/OS UNIX file name.

Referencing environment variables

Environment variables can be referenced in other variables in the JVM profile using the symbol
notation syntax. For more information , see Symbols used in the JVM profile.

Storage sizes

When specifying storage-related options in a JVM profile, specify storage sizes in multiples of 1024
bytes. Use the letter K to indicate KB, the letter M to indicate MB, and the letter G to indicate GB. For
example, to specify 6 291 456 bytes as the initial size of the heap, code -Xms in one of the following
ways:

-Xms6144K
-Xms6M

Options for JVMs in a CICS environment
The options in a JVM profile are used by CICS to start JVM servers. Some options are specific to CICS, but
you can also specify environment variables and Java system properties.

Coding rules

When you specify JVM options, make sure that you follow the coding rules. For more information, see
“Rules for coding profiles” on page 216.

218 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/dfha2_jvmprofile_symbols.html

Format

The format of options can vary:

• Options in a JVM profile either take the form of a keyword and value, separated by an equal sign (=), for
example JAVA_PIPELINE=TRUE, or they begin with a hyphen, for example -Xmx16M.

• Keyword value pairs are either CICS variables such as JAVA_PIPELINE=TRUE, or if not recognized as
CICS options, they are treated as z/OS UNIX System Services environment variables, and are exported.

• Options that begin with -D in a JVM profile are JVM system properties. Options that begin with -X are
treated as JVM command-line options. Any option that begins with - is passed to the JVM after any
substitution symbols have been expanded. For more information, see “JVM system properties” on page
230.

Symbols used in the JVM profile
You can use built-in substitution symbols in any variable or JVM server property specified in the JVM
profile. The values of these symbols are determined at JVM server startup, so you can use a common
profile for many JVM servers and CICS regions.

Note:

Environment variables that have been previously defined in the profile can also be used as substitution
variables using the syntax &myvar;

The following symbols are supported:
&APPLID;

When you use this symbol, the APPLID of the CICS region is substituted at run time. In this way, you
can use the same profile for all regions, and still have region-specific working directories or output
destinations. The APPLID is always in uppercase.

&BUNDLE;
When you use this symbol, the symbol is replaced with the name of the CICS bundle from which the
JVM server is being installed.

&BUNDLEID;
When you use this symbol, the symbol is replaced with the ID of the CICS bundle from which the JVM
server is being installed.

&CONFIGROOT;
When you use this symbol, the absolute path of the directory where the JVM profile is located is
substituted at run time. For JVM servers that are defined in CICS bundles, the JVM profiles are by
default located in the root directory for the bundle. For JVM servers that are defined by other
methods, the JVM profiles are in the directory that is specified by the JVMPROFILEDIR system
initialization parameter.

&DATE;
When you use this symbol, the symbol is replaced with the current date in the format Dyymmdd at run
time.

&JVMSERVER;
When you use this symbol, the name of the JVMSERVER resource is substituted at run time. Use this
symbol to create unique output or dump files for each JVM server.

&TIME;
When you use this symbol, the symbol is replaced with the JVM start time in the format Thhmmss at
run time.

&USSCONFIG;
When you use this symbol, the symbol is replaced with the value of the USSCONFIG system
initialization parameter that is the directory for CICS configuration files.

&USSHOME;
When you use this symbol, the symbol is replaced with the value of the USSHOME system
initialization parameter. You can specify this symbol to automatically pick up the home directory for
z/OS UNIX where CICS supplies its libraries for Java and the Liberty profile.

Chapter 4. Setting up Java support 219

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/sit/dfha2_ussconfig.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/sit/dfha2_usshome.html

Built-in symbols are only substituted during the parsing phase of a JVM profile, they are not available to
your applications directly. If you wish to set them as environment variables you can assign them in your
JVM profile like this: e.g. APPLID=&APPLID;.

Custom variables

Environment variables that have been previously defined in the profile, e.g. MYVAR=HELLO, can also be
used as substitution variables e.g. MYVAR2=&MYVAR;

JVM server profile options
JVM server options, how they apply to different uses of a JVM server, and their descriptions are listed.

How options apply to different uses of a JVM server

The following table indicates whether an option is required, optional, or not supported for a particular use
of a JVM server.

Table 39. JVM server options and how they apply to different uses of a JVM server

Option OSGi Liberty Axis2 STS

_DFH_UMASK Optional Optional Optional Optional

CICS_WLP_MODE Not supported Optional Not supported Not supported

CLASSPATH_PREFIX Not supported Not supported Optional Optional

CLASSPATH_SUFFIX Not supported Not supported Optional Optional

DIAGS_ARCHIVE_DIR Optional Optional Optional Optional

DIAGS_TEMP_DIR Optional Optional Optional Optional

DISPLAY_JAVA_VERSION Optional Optional Optional Optional

IDENTITY_PREFIX Optional Optional Optional Optional

JAVA_DUMP_TDUMP_PATTERN Optional Optional Optional Optional

JAVA_HOME Required Required Required Required

JAVA_PIPELINE Not supported Not supported Required Not supported

JNDI_REGISTRATION Optional Not supported Optional Optional

JVMLOG Optional Optional Optional Optional

JVMTRACE Optional Optional Optional Optional

LIBERTY_INCLUDE_XML Not supported Optional Not supported Not supported

LIBERTY_PRODUCT_EXTENSIO
NS

Not supported Optional Not supported Not supported

LIBPATH_PREFIX Optional - use
only under the
guidance of IBM
service personnel

Optional - use
only under the
guidance of IBM
service personnel

Optional - use
only under the
guidance of IBM
service personnel

Optional - use
only under the
guidance of IBM
service personnel

LIBPATH_SUFFIX Optional Optional Optional Optional

LOG_FILES_MAX Optional Optional Optional Optional

LOG_LEVEL Optional Optional Optional Optional

LOG_PATH_COMPATIBILITY Optional Optional Optional Optional

OSGI_BUNDLES Optional Not supported Not supported Not supported

220 CICS TS for z/OS: Java Applications in CICS

Table 39. JVM server options and how they apply to different uses of a JVM server (continued)

Option OSGi Liberty Axis2 STS

OSGI_CONSOLE Optional Not supported Not supported Not supported

OSGI_FRAMEWORK_TIMEOUT Optional Optional Not supported Not supported

PRINT_JVM_OPTIONS Optional Optional Optional Optional

PRINT_PROFILE Optional Optional Optional Optional

PURGE_ESCALATION_TIMEOUT Optional Optional Optional Optional

SCRIPT_TIMEOUT_SECS Optional Optional Optional Optional

SECURITY_TOKEN_SERVICE Not supported Not supported Not supported Required

STDERR Optional Optional Optional Optional

STDIN Optional Optional Optional Optional

STDOUT Optional Optional Optional Optional

USEROUTPUTCLASS Optional Not supported Optional Optional

WLP_INSTALL_DIR Not supported Required Not supported Not supported

WLP_LINK_TIMEOUT Not supported Optional Not supported Not supported

WLP_OUTPUT_DIR Not supported Optional Not supported Not supported

WLP_USER_DIR Not supported Optional Not supported Not supported

WLP_ZOS_PLATFORM Not supported Optional Not supported Not supported

WORK_DIR Optional Optional Optional Optional

WSDL_VALIDATOR Optional Not supported Optional Optional

ZCEE_INSTALL_DIR Not supported Optional Not supported Not supported

JVM server options and descriptions

Default values, where applicable, are the values that CICS uses when the option is not specified. The
sample JVM profiles might specify a value that is different from the default value.

Note: You can still use options that are previously documented as YES|NO, but TRUE|FALSE is the
preferred syntax.

_DFH_UMASK={007|nnn}

Sets the UNIX System Services process UMASK that applies when JVMSERVER files are created. This
value is a three digit octal. For example, the default value of 007 allows the intended read/write/
execute permissions of owner and group to be respected, while preventing read/write/execute
being given to other when a file is created. The supplied value must fall within the range of 000 (least
restrictive) to 777 (most restrictive). UMASK applies for the lifetime of the JVM.

CICS_WLP_MODE={INTEGRATED|STANDARD}

For a Liberty JVM server, choose the level of integration between CICS and Liberty.

Specify the INTEGRATED mode to use CICS integrated-mode Liberty. The Liberty JVM server runs
with CICS enabled threads, respects CICS security, integrates with a CICS unit of work, and makes the
Java class library for CICS (JCICS) API available for your Java web applications. If this option is
omitted or not valid, the default of INTEGRATED is used.

Specify the STANDARD mode to use CICS standard-mode Liberty. The Liberty JVM server runs in a
mode that is more standard to all Liberty supported platforms. This mode allows you to port and

Chapter 4. Setting up Java support 221

deploy your Liberty applications from other platforms to CICS without change. The JVM server retains
control of the Liberty server and manages the server creation, lifecycle, and configuration. However,
threads are not CICS enabled by default and do not run within a CICS transaction context. CICS unit of
work integration, CICS security integration, and the JCICS API are not directly available from your
Java application.

CLASSPATH_PREFIX, CLASSPATH_SUFFIX=class_pathnames

Use these options to specify directory paths, Java archive files, and compressed files to be searched
by a JVM that is not OSGi enabled. For example, it is used for Java web services. Do not set a class
path if you want to use an OSGi framework because the OSGi framework handles the class loading for
you. If you use these options to specify the standard class path for Axis2, you must also specify
JAVA_PIPELINE=TRUE to start the Axis2 engine.

CLASSPATH_PREFIX adds class path entries to the beginning of the standard class path, and
CLASSPATH_SUFFIX adds them to the end of the standard class path. You can specify entries on
separate lines by using a \ (backslash) at the end of each line that is to be continued.

Use the CLASSPATH_PREFIX option with care. Classes in CLASSPATH_PREFIX take precedence over
classes of the same name that are supplied by CICS and the Java run time and the wrong classes
might be loaded.

CICS builds a base class path for a JVM by using the /lib subdirectories of the directories that are
specified by the USSHOME system initialization parameter and the JAVA_HOME option in the JVM
profile. This base class path contains the Java archive files that are supplied by CICS and by the JVM.
It is not visible in the JVM profile. You do not specify these files again in the class paths in the JVM
profile.

Use a colon, not a comma, to separate multiple items that you specify by using the
CLASSPATH_PREFIX or CLASSPATH_SUFFIX options.

DIAGS_ARCHIVE_DIR=pathname

Specifies where the diagnostics archive tar file should be stored when the the PERFORM JVMSERVER
(jvmserver-name) JVM GATHER DIAGNOSTICS command completes. See Using the PERFORM
JVMSERVER SPI to gather JVM diagnostics. Defaults to ${WORKDIR}/diagnostics/archives.

DIAGS_TEMP_DIR=pathname

Specifies where the diagnostics archive tar file is initially created and where trace information is
stored as the PERFORM JVMSERVER (jvmserver-name) JVM GATHER DIAGNOSTICS command
executes. See Using the PERFORM JVMSERVER SPI to gather JVM diagnostics. Defaults to /tmp.

DISPLAY_JAVA_VERSION={TRUE|FALSE}

If this option is set to TRUE, whenever a JVM is started by an application CICS writes message
DFHSJ0901 to the MSGUSER log, showing the version and build of the IBM Software Developer Kit for
z/OS, Java Technology Edition that is in use.

IDENTITY_PREFIX={TRUE|FALSE}

In order to establish the origin of JVM server output, all STDOUT, and STDERR entries that are routed
to JES are written with a prefix string of the JVM server name, which is useful if multiple JVM servers
are sharing a JES destination. This behavior can be disabled by setting IDENTITY_PREFIX=FALSE,
this disables usage of the prefix string.

JAVA_DUMP_TDUMP_PATTERN=

A z/OS UNIX System Services environment variable that specifies the file name pattern to be used for
transaction dumps (TDUMPs) from the JVM. Java TDUMPs are written to a data set destination in the
event of a JVM abend.

JAVA_HOME=/usr/lpp/java/javadir/

Specifies the installation location for IBM 64-bit SDK for z/OS, Java Technology Edition in z/OS UNIX.
This location contains subdirectories and Java archive files that are required for Java support.

222 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-programming/commands-spi/dfha8_performjvmserver.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/jvm-servers/gathering_diagnostics.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/jvm-servers/gathering_diagnostics.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-programming/commands-spi/dfha8_performjvmserver.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/jvm-servers/gathering_diagnostics.html

The supplied sample JVM profiles contain a path that was generated by the JAVADIR parameter in
the DFHISTAR CICS installation job. The default for the JAVADIR parameter is java/J8.0_64/,
which is the default installation location for the IBM 64-bit SDK for z/OS, Java Technology Edition.
This value produces a JAVA_HOME setting in the JVM profiles of /usr/lpp/java/J8.0_64/.

JAVA_PIPELINE={TRUE|FALSE}

Adds the required Java archive files to the class path so that a JVM server can support web services
processing in Java standard SOAP pipelines. The default value is FALSE. If you set this value, the JVM
server is configured to support Axis2 instead of OSGi. You can add more JAR files to the class path by
using the CLASSPATH options.

Note: The options JAVA_PIPELINE=TRUE and SECURITY_TOKEN_SERVICE=TRUE are not
compatible.

JNDI_REGISTRATION={TRUE|FALSE}

Specifies that the JNDI registration JAR files are automatically added to the JVM runtime environment
to support the usage of the JNDI by Java applications. This option is ignored for Liberty JVM servers.
It is possible to opt out of the automatic addition of these files by setting
JNDI_REGISTRATION=FALSE. If this function is not required, opting out can prevent potential clashes
with newer JAR files, can keep the JVM footprint smaller, and avoids unnecessary class loading.

JVMLOG={{&APPLID;.&JVMSERVER;.}Dyyyymmdd.Thhmmss.dfhjvmlog|file_name|JOBLOG|//
DD:data_definition}

Specifies the name of the z/OS UNIX file or JES DD to which JVM server logging is written during
operation of a JVM server. If you do not set a value for this option, CICS automatically creates unique
log files for each JVM server.

If JVMLOG is left to default or is a relative filename then the output location depends on the
LOG_PATH_COMPATIBILITY option. If LOG_PATH_COMPATIBILITY=FALSE, the files are placed in
the WORK_DIR/applid/jvmserver directory. If LOG_PATH_COMPATIBILITY=TRUE, the files are
placed in the WORK_DIR directory.

If an absolute filename is specified for JVMLOG then CICS will create any directories within the path
that do not exist.

If the file exists, output is appended to the end of the file. To create unique output files for each JVM
server, use the JVMSERVER and APPLID symbols in your file name, as demonstrated in the sample
JVM profiles. If JVMLOG is left to default then CICS uses the APPLID and JVMSERVER symbols, and
the date and time stamp when the JVM server started to create unique output files.

To route to a JES DD, specify the data definition name from JES by using the syntax //
DD:data_definition.

If this option is set to JOBLOG, JVMLOG is routed to the current stdout location.

JVMTRACE={{&APPLID;.&JVMSERVER;.}Dyyyymmdd.Thhmmss.dfhjvmtrc|file_name|JOBLOG|//
DD:data_definition}

Specifies the name of the z/OS UNIX file or JES DD to which JVM server tracing is written during
operation of a JVM server. If you do not set a value for this option, CICS automatically creates unique
trace files for each JVM server.

If JVMTRACE is left to default or is a relative filename then the output location depends on the
LOG_PATH_COMPATIBILITY option. If LOG_PATH_COMPATIBILITY=FALSE, the files are placed in
the WORK_DIR/applid/jvmserver directory. If LOG_PATH_COMPATIBILITY=TRUE, the files are
placed in the WORK_DIR directory.

If an absolute filename is specified for JVMTRACE then CICS will create any directories within the path
that do not exist.

If the file exists, output is appended to the end of the file. To create unique output files for each JVM
server, use the JVMSERVER and APPLID symbols in your file name, as demonstrated in the sample

Chapter 4. Setting up Java support 223

JVM profiles. If JVMTRACE is left to default then CICS uses the APPLID and JVMSERVER symbols, and
the date and time stamp when the JVM server started to create unique output files.

To route to a JES DD, specify the data definition name from JES by using the syntax //
DD:data_definition.

If this option is set to JOBLOG, JVMTRACE is routed to the current stdout location.

LIBERTY_INCLUDE_XML=filenames
Specifies a file, or a comma separated list of files, to be added to the server.xml as <include>
elements.
Use the + character before a variable to append a comma and the value specified to the existing value
of that variable, for example:

LIBERTY_INCLUDE_XML=/path/file1
+LIBERTY_INCLUDE_XML=/path/file2

This is the equivalent to:

LIBERTY_INCLUDE_XML=/path/file1,/path/file2

LIBERTY_PRODUCT_EXTENSIONS=name;location
Allows installation of a users own product extension into a Liberty server.
The name is a unique name for the product extension. This is also used as the feature prefix. The
location is the absolute location of the directory on zFS where the product extension is located and
maintained.
You can add multiple product extensions by using a comma to separate them. Alternatively, you can
use an append syntax.

LIBERTY_PRODUCT_EXTENSIONS=product1;/u/product1, product2;/u/product2

OR

LIBERTY_PRODUCT_EXTENSIONS=product1;/u/product1
+LIBERTY_PRODUCT_EXTENSIONS=product2;/u/product2

Warning: Do not name your product extension cicsts, as this clashes with core JVM server
support and gives unpredictable results.

Do not name your product extension usr, as Liberty will look for the extensions in the $
{wlp.usr.dir}/extension directory rather than your own directory.

LIBPATH_PREFIX, LIBPATH_SUFFIX=pathnames

Specifies directory paths to be searched for native C dynamic link library (DLL) files that are used by
the JVM, and that have the extension .so in z/OS UNIX. This includes files that are required to run the
JVM and extra native libraries that are loaded by application code or services.

The base library path for the JVM is built automatically by using the directories that are specified by
the USSHOME system initialization parameter and the JAVA_HOME option in the JVM profile. The base
library path is not visible in the JVM profile. It includes all the DLL files that are required to run the
JVM and the native libraries that are used by CICS.

You can extend the library path by using the LIBPATH_SUFFIX option. This option adds directories to
the end of the library path after the base library path. Use this option to specify directories that
contain any additional native libraries that are used by your applications. Also, use this option to
specify directories that are used by any services that are not included in the standard JVM setup for
CICS. For example, the additional native libraries might include the DLL files that are required to use
the Db2 JDBC drivers.

The LIBPATH_PREFIX option adds directories to the beginning of the library path before the base
library path. Use this option with care. If DLL files in the specified directories have the same name as
DLL files on the base library path, they are loaded instead of the supplied files.

224 CICS TS for z/OS: Java Applications in CICS

Use a colon, not a comma, to separate multiple items that you specify by using the LIBPATH_PREFIX
or LIBPATH_SUFFIX option.

DLL files that are on the library path for use by your applications must be compiled and linked with the
XPLink option. Compiling and linking with the XPLink option provides optimum performance. The
DLL files that are supplied on the base library path and the DLL files that are used by services such as
the Db2 JDBC drivers are built with the XPLink option.

LOG_FILES_MAX={0|number}

Specifies the number of old log files that are kept on the system. A default setting of 0 ensures that all
old versions of the log file are retained. You can change this value to specify how many old log files
you want to remain on the file system.

If LOG_PATH_COMPATIBILITY=TRUE, LOG_FILES_MAX is ignored.

If STDOUT, STDERR, JVMLOG, and JVMTRACE use the default scheme, or if customized, include the
&DATE;.&TIME; pattern, then only the newest nn of each log type is kept on the system. If your
customization does not include any variables, which make the output unique, then the files are
appended to, and there is no requirement for deletion. The clean-up does not apply if the output
variables are customized to route output to DD:// or JOBLOG. Special value 0 means do not delete.

LOG_LEVEL={INFO|WARNING|ERROR|NONE}
Provides control over the logged information returned in the dfhjvmlog file. A value of NONE
suppresses all output and the file is empty. Any other value indicates the lowest log type that is
written to the dfhjvmlog file. For example, selecting WARNING gives log entries of WARNING level
and above.

LOG_PATH_COMPATIBILITY={TRUE|FALSE}

The default value for this behavior is LOG_PATH_COMPATIBILITY=FALSE, which provides a
consolidated log output behavior. The new behavior places the JVMSERVER log files in the same
output directory structure as used by existing subcomponents of the JVMSERVER, for example: the
OSGi framework, and the Liberty server. To revert to behavior from previous releases, set the
parameter to LOG_PATH_COMPATIBILITY=TRUE, and the JVMSERVER log directories are created in
the original location.

OSGI_BUNDLES=pathnames

Specifies the directory path for middleware bundles that are enabled in the OSGi framework of an
OSGi JVM server. These OSGi bundles contain classes to implement system functions in the
framework, such as connecting to IBM MQ or Db2. If you specify more than one OSGi bundle, use
commas to separate them.

OSGI_CONSOLE={TRUE|FALSE}

Adds the required OSGi bundles to the OSGi framework to enable the OSGi console. You must also set
the following properties in the JVM profile: -Dosgi.console=host:port and -
Dosgi.file.encoding={ISO-8859-1|US-ASCII|ASCII}. The default value is FALSE. If you
want to look at the state of OSGi bundles and services, see Troubleshooting Java applications.

OSGI_FRAMEWORK_TIMEOUT={60|number}

Specifies the number of seconds that CICS waits for the OSGi framework to initialize or shut down
before it times out. You can set a value in the range 1 - 60000 seconds. The default value is 60
seconds. If the OSGi framework takes longer to start than the specified number of seconds, the JVM
server fails to initialize and a DFHSJ0215 message is issued by CICS. Error messages are also written
to the JVM server log files in zFS. If the OSGi framework takes longer to shut down than the specified
number of seconds, the JVM server fails to shut down normally.

PRINT_JVM_OPTIONS={TRUE|FALSE}

If this option is set to TRUE, whenever a JVM starts, the options that are passed to the JVM at start
are also printed to SYSPRINT. The output is produced every time a JVM starts with this option in its
profile. You can use this option to check the contents of the class paths for a particular JVM profile,

Chapter 4. Setting up Java support 225

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/java/java_troubleshooting.html

including the base library path and the base class path that are built by CICS, which are not visible in
the JVM profile.

PRINT_PROFILE={TRUE|FALSE}

If this option is set to TRUE, the options, system properties and environment variables from the
profile that are passed to the JVM server and application are output to SYSPRINT.

PURGE_ESCALATION_TIMEOUT={15|time}
Specifies the interval in seconds between the disable actions that CICS performs when a JVM server
encounters a TCB failure. After each timeout, CICS escalates to the next disable action (for example,
from phaseout to purge), until the JVM server has been recycled.

CICS performs the following steps in sequence:

1. CICS disables the JVMSERVER resource with the PHASEOUT option to allow existing work in the
JVM to complete where possible and prevent new work from using the JVM.

2. If the PHASEOUT operation fails to disable the JVMSERVER within the interval specified by the
PURGE_ESCALATION_TIMEOUT JVM server option, CICS escalates to the next disable action
PURGE until the JVMSERVER is disabled.

For a Liberty JVM server, there is a minimum of 60-second timeout from phaseout to purge.
3. If the PURGE operation fails to disable the JVMSERVER within the interval, CICS escalates to the

next disable action FORCEPURGE.
4. If the FORCEPURGE operation fails to disable the JVMSERVER within the interval, CICS escalates

to KILL.
5. After the JVMSERVER is successfully disabled, message DFHSJ1008 is issued.
6. CICS attempts to re-enable the resource to create a new JVM.

SCRIPT_TIMEOUT_SECS={300|number}

Specifies the number of seconds the PERFORM JVMSERVER (jvmserver-name) JVM GATHER
DIAGNOSTICS command is permitted to run before it is considered to have malfunctioned, after
which execution is abandoned. See Using the PERFORM JVMSERVER SPI to gather JVM diagnostics.
Defaults to 300 seconds.

SECURITY_TOKEN_SERVICE={TRUE|FALSE}

If this option is set to TRUE, the JVM server can use security tokens. If this option is set to FALSE,
Security Token Service support is disabled for the JVM server.

Note: The options SECURITY_TOKEN_SERVICE=TRUE and JAVA_PIPELINE=TRUE are not
compatible.

STDERR={{&APPLID;.&JVMSERVER;.}Dyyyymmdd.Thhmmss.dfhjvmerr|file_name|JOBLOG|//
DD:data_definition}

Specifies the name of the z/OS UNIX file or JES DD to which the stderr stream is redirected. If you
do not set a value for this option, CICS automatically creates unique trace files for each JVM server.

If STDERR is left to default or is a relative filename then the output location depends on the
LOG_PATH_COMPATIBILITY option. If LOG_PATH_COMPATIBILITY=FALSE, the files are placed in
the WORK_DIR/applid/jvmserver directory. If LOG_PATH_COMPATIBILITY=TRUE, the files are
placed in the WORK_DIR directory.

If an absolute filename is specified for STDERR then CICS will create any directories within the path
that do not exist.

If the file exists, output is appended to the end of the file. To create unique output files for each JVM
server, use the JVMSERVER and APPLID symbols in your file name, as demonstrated in the sample
JVM profiles. If STDERR is left to default then CICS uses the APPLID and JVMSERVER symbols, and
the date and time stamp when the JVM server started to create unique output files.

226 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-programming/commands-spi/dfha8_performjvmserver.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/jvm-servers/gathering_diagnostics.html

To route to a JES DD, specify the data definition name from JES by using the syntax //
DD:data_definition.

If this option is set to JOBLOG, STDERR is routed to SYSOUT if defined, or to a dynamic SYSnnn if not.

If you specify the USEROUTPUTCLASS option on a JVM profile, the Java class that is named on that
option handles the System.err requests instead. The z/OS UNIX file that is named by the STDERR
option might still be used if the class named by the USEROUTPUTCLASS option cannot write data to its
intended destination; for example when you use the supplied sample class
com.ibm.cics.samples.SJMergedStream. You can also use the file if output is directed to it for
any other reason by a class that is named by the USEROUTPUTCLASS option.

STDIN=file_name

Specifies the name of the z/OS UNIX file from which the stdin stream is read. CICS does not create
this file unless you specify a value for this option.

STDOUT={{&APPLID;.&JVMSERVER;.}Dyyyymmdd.Thhmmss.dfhjvmout|file_name|JOBLOG|//
DD:data_definition}

Specifies the name of the z/OS UNIX file or JES DD to which the stdout stream is redirected. If you
do not set a value for this option, CICS automatically creates unique trace files for each JVM server.

If STDOUT is left to default or is a relative filename then the output location depends on the
LOG_PATH_COMPATIBILITY option. If LOG_PATH_COMPATIBILITY=FALSE, the files are placed in
the WORK_DIR/applid/jvmserver directory. If LOG_PATH_COMPATIBILITY=TRUE, the files are
placed in the WORK_DIR directory.

If an absolute filename is specified for STDOUT then CICS will create any directories within the path
that do not exist.

If the file exists, output is appended to the end of the file. To create unique output files for each JVM
server, use the JVMSERVER and APPLID symbols in your file name, as demonstrated in the sample
JVM profiles. If STDOUT is left to default then CICS uses the APPLID and JVMSERVER symbols, and
the date and time stamp when the JVM server started to create unique output files.

To route to a JES DD, specify the data definition name from JES by using the syntax //
DD:data_definition.

If this option is set to JOBLOG, STDOUT is routed to SYSPRINT if defined, or to a dynamic SYSnnn if
not.

If you specify the USEROUTPUTCLASS option on a JVM profile, the Java class that is named on that
option handles the System.out requests instead. The z/OS UNIX file that is named by the STDOUT
option might still be used if the class named by the USEROUTPUTCLASS option cannot write data to its
intended destination; for example when you use the supplied sample class
com.ibm.cics.samples.SJMergedStream. You can also use the file if output is directed to it for
any other reason by a class that is named by the USEROUTPUTCLASS option.

USEROUTPUTCLASS=classname

Specifies the fully qualified name of a Java class that intercepts the output from the JVM and
messages from JVM internals. You can use this Java class to redirect the output and messages from
your JVMs, and you can add time stamps and headers to the output records. This is not supported for
Liberty. If the Java class cannot write data to its intended destination, the files that are named in the
STDOUT and STDERR options might still be used.

Specifying the USEROUTPUTCLASS option has a negative effect on the performance of JVMs. For best
performance in a production environment, do not use this option. However, this option can be useful
to application developers who are using the same CICS region because the JVM output can be
directed to an identifiable destination.

For more information about this class and the supplied samples, see Controlling the location for JVM
output, logs, dumps and trace.

Chapter 4. Setting up Java support 227

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/java/dfhpjcv.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/java/dfhpjcv.html

WLP_INSTALL_DIR={&USSHOME;/wlp}

Specifies the installation directory of the Liberty profile technology. The Liberty profile is installed in
the z/OS UNIX home for CICS in a subdirectory called wlp. The default installation directory
is /usr/lpp/cicsts/cicsts56/wlp. Always use the &USSHOME; symbol to set the correct file
path and append the wlp directory.

This environment variable is required if you want to start a Liberty JVM server. If you set this
environment variable, you can also supply other environment variables and system properties to
configure the Liberty JVM server. The environment variables are prefixed with WLP, and the system
properties are described in “JVM system properties” on page 230.

WLP_LINK_TIMEOUT={30000|number}

Specifies the number of milliseconds that CICS waits to dispatch a request to invoke an application in
the Liberty JVM server before it times out. If you specify 0, CICS will wait indefinitely. The default
value is 30000 milliseconds. If the task has no been dispatched to the Liberty JVM server after the
specified number of milliseconds, the EXEC CICS LINK command will fail and a DFHSJ1006 message
is issued by CICS.

WLP_OUTPUT_DIR=$WLP_USER_DIR/servers

Specifies the directory that contains output files for the Liberty profile. By default, the Liberty profile
stores logs, the work area, configuration files, and applications, for the server in a directory that is
named after the server.

This environment variable is optional. If you do not specify it, CICS defaults to $WORK_DIR/
&APPLID;/&JVMSERVER;/wlp/usr/servers, replacing the symbols with runtime values.

If this environment variable is set, the output logs and work area are stored in $WLP_OUTPUT_DIR/
server_name.

WLP_USER_DIR={&APPLID;/&JVMSERVER;/wlp/usr/|directory_path}

Specifies the directory that contains the configuration files for the Liberty JVM server. This
environment variable is optional. If you do not specify it, CICS uses &APPLID;/
&JVMSERVER;/wlp/usr/ in the working directory, replacing the symbols with runtime values.
Configuration files are written to servers/server_name.

WLP_ZOS_PLATFORM={TRUE|FALSE}

Important: This option is deprecated in Version 5.6 , because multiple fully configured Liberty servers
are now allowed in the same region.

Disables the z/OS platform extensions in a Liberty JVM server. Use of the cicsts:security-1.0
and cicsts:distributedIdentity-1.0 features is not permitted in this mode.

WORK_DIR={.|/tmp|directory_name}

Specifies the working directory on z/OS UNIX that the CICS region uses for activities that are related
to JVMSERVER. The CICS JVMSERVER uses this directory as the route of configuration and output. A
period (.) is defined in the supplied JVM profiles, indicating that the home directory of the CICS region
user ID is to be used as the working directory. This directory can be created during CICS installation.
If the directory does not exist or if WORK_DIR is omitted, /tmp is used as the z/OS UNIX directory
name.

You can specify an absolute path or relative path to the working directory. A relative working directory
is relative to the home directory of the CICS region user ID. If you do not want to use the home
directory as the working directory for activities that are related to Java, or if your CICS regions are
sharing the z/OS user identifier (UID) and so have the same home directory, you can create a different
working directory for each CICS region.

228 CICS TS for z/OS: Java Applications in CICS

If you specify a directory name that uses the &APPLID; symbol (whereby CICS substitutes the actual
CICS region APPLID), you can have a unique working directory for each region, even if all the CICS
regions share the set of JVM profiles. For example, if you specify:

WORK_DIR=/u/&APPLID;/javaoutput

each CICS region that uses that JVM profile has its own working directory. Ensure that the relevant
directories are created on z/OS UNIX, and that the CICS regions are given read, write, and run access
to them.

You can also specify a fixed name for the working directory. In this situation, you must also ensure
that the relevant directory is created on z/OS UNIX, and access permissions are given to the correct
CICS regions. If you use a fixed name for the working directory, the output files from all the JVM
servers in the CICS regions that share the JVM profile are created in that directory. If you use fixed file
names for your output files, the output from all the JVM servers in those CICS regions is appended to
the same z/OS UNIX files. To avoid appending to the same files, use the JVMSERVER symbol and the
APPLID symbols to produce unique output and dump files for each JVM server.

Do not define your working directories in the CICS installation directory on z/OS UNIX, which is the
home directory for CICS files as defined by the USSHOME system initialization parameter.

WSDL_VALIDATOR={TRUE|FALSE}

Enables validation for SOAP requests and responses against their definition and schema. This option
is ignored for Liberty JVM servers. For more information, see Validating SOAP messages. It is possible
to turn off this option by setting WSDL_VALIDATOR=FALSE. Opting out can prevent potential clashes
with newer JAR files, wasted storage, and slower start.

ZCEE_INSTALL_DIR={<installation_directory>}
Provides the location of the z/OS Connect Enterprise Edition feature installation. For z/OS Connect
Enterprise Edition V2.0, the default is /usr/lpp/IBM/zosconnect/v2r0/runtime. For z/OS
Connect Enterprise Edition V3.0, the default is /usr/lpp/IBM/zosconnect/v3r0/runtime.

JVM command-line options
JVM command-line options, with descriptions.

List of command-line options

Note: This list is not exhaustive. It is a list of useful IBM® JVM options. Options that include -X are specific
to the IBM JVM.

-agentlib
Specifies whether debugging support is enabled in the JVM.

For more information, see Debugging a Java application. For more information about the Java
Platform Debugger Architecture (JPDA), see Oracle Technology Network Java website.

-Xcompressedrefs

Java 1.7.1 sets compressed references by default. This setting instructs the virtual machine (VM) to
store all references to objects, classes, threads, and monitors as 32-bit values, rather than 64-bit
values. The use of compressed references improves the performance of many applications because
objects are smaller, resulting in less frequent garbage collection, and improved memory cache usage.
However, this is at the expense of a large initial allocation of 31-bit storage.

Before Java 1.7.1, the use of compressed references was optional. To balance the use of -
Xcompressedrefs in a JVM server, and to offset the large initial 31-bit storage allocation, a JVM
server automatically sets the -XXnosuballoc32bitmem option. The effect of this option is to avoid a
large initial allocation in favor of incremental allocations as required. For many applications, this
behavior is an adequate balance between performance and storage use. For applications that use
many references, reducing the available 31-bit storage (or if operating within a 31-bit storage
constrained environment) then the use of -Xnocompressedrefs might be preferable - consider
using this option if you are constrained on 31-bit storage.

Chapter 4. Setting up Java support 229

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/web-services/dfhws_validation.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/java/dfhpj94.html
https://www.oracle.com/technetwork/java/

-Xnocompressedrefs
The use of -Xnocompressedrefs might be preferable for applications that use many references that
reduce the available 31-bit storage (or if operating within a 31-bit storage constrained environment).

-Xms
Specifies the initial size of the heap. Specify storage sizes in multiples of 1024 bytes. Use the letter K
to indicate KB, the letter M to indicate MB, and the letter G to indicate GB. For example, to specify
6,291,456 bytes as the initial size of the heap, code -Xms in one of the following ways:

-Xms6144K
-Xms6M

Specify size as a number of KB or MB. For information, see JVM command-line options in IBM SDK.

-Xmso

Sets the initial stack size for operating system threads.

For more information about the -Xmso JVM option and the default value, see -Xmso.

-Xmx
Specifies the maximum size of the heap. This fixed amount of storage is allocated by the JVM during
JVM initialization.

Specify size as a number of KB or MB.

-Xscmx
Specifies the size of the shared class cache. The minimum size is 4 KB: the maximum and default
sizes are platform-dependent.

Specify size as a number of KB or MB. For information, see JVM command-line options in IBM SDK.

-Xshareclasses
Specify this option to enable class data sharing in a shared class cache. The JVM connects to an
existing cache or creates a cache if one does not exist. You can have multiple caches and you can
specify the correct cache by adding a suboption to the -Xshareclasses option. For more
information, see Class data sharing between JVMs in IBM SDK.

-XX:[+|-]EnableCPUMonitor

This defaults to -XX:-EnableCPUMonitor when running in a JVM server, however, if you want to
use the enhanced JMX CPU-monitoring capabilities, it should be set to -XX:+EnableCPUMonitor.
Enabling this option will incur an increased CPU usage.

JVM system properties
JVM system properties provide configuration information specific to the JVM and its runtime
environment. You provide JVM system properties by adding them to the JVM profile. At run time, CICS
reads the properties from the JVM profile, and passes them to the JVM.

Property prefix

System properties must be set by using a -D prefix, for example the correct syntax for com.ibm.cics is
-Dcom.ibm.cics.

com.ibm.cics indicates that the property is specific to the IBM JVM in a CICS environment.
com.ibm indicates a general JVM property that is used more widely.
java.ibm also indicates a general JVM property that is used more widely.

For information about general properties, see “JVM profile validation and properties” on page 216.

Property coding rules

Properties must be specified according to a set of coding rules. For more information about the rules, see
“Rules for coding profiles” on page 216.

230 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.zos.80.doc/diag/appendixes/cmdline/commands_jvm.html
https://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/openj9/xmso/index.html
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.zos.80.doc/diag/appendixes/cmdline/commands_jvm.html
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.zos.80.doc/user/shc_overview.html

Applicability of properties to different uses of JVM server

For a generic JVM sever, three types are available: OSGi, Liberty, and Classpath. Classpath JVM servers
can be further refined to Axis2 capable, Security Token Server (STS) capable, Batch capable, and Mobile
capable. The following table shows the options that apply to each specific capability. The table also
indicates whether or not a property is supported for a particular use of a JVM server. Be aware that some
properties are read-only. Changing a read-only property might result in runtime environment failure. For
details about these properties, see “Read-only properties” on page 233.

Table 40. Options by JVM server use

System property OSGi Liberty Classpath

com.ibm.cics.json.enableAxis2Handlers Not
supported

Not
supported

Supported

com.ibm.cics.jvmserver.applid Supported Supported Supported

com.ibm.cics.jvmserver.cics.product.name Not
supported

Supported Not
supported

com.ibm.cics.jvmserver.cics.product.version Not
supported

Supported Not
supported

com.ibm.cics.jvmserver.configroot Supported Supported Supported

com.ibm.cics.jvmserver.controller.timeout Supported Supported Not
supported

com.ibm.cics.jvmserver.local.ccsid Supported Supported Supported

com.ibm.cics.jvmserver.name Supported Supported Supported

com.ibm.cics.jvmserver.override.ccsid Supported Supported Supported

com.ibm.cics.jvmserver.supplied.ccsid Supported Supported Supported

com.ibm.cics.jvmserver.threadjoin.timeout Supported Supported Not
supported

com.ibm.cics.jvmserver.trace.filename Supported Supported Supported

com.ibm.cics.jvmserver.trace.format Supported Supported Supported

com.ibm.cics.jvmserver.trace.specification Supported Supported Supported

com.ibm.cics.jvmserver.trigger.timeout Supported Supported Not
supported

com.ibm.cics.jvmserver.unclassified.tranid Supported Supported Not
supported

com.ibm.cics.jvmserver.unclassified.userid Supported Supported Not
supported

com.ibm.cics.jvmserver.wlp.args Not
supported

Supported Not
supported

com.ibm.cics.jvmserver.wlp.autoconfigure Not
supported

Supported Not
supported

com.ibm.cics.jvmserver.wlp.bundlepart.timeout Not
supported

Supported Not
supported

com.ibm.cics.jvmserver.wlp.defaultapp Not
supported

Supported Not
supported

Chapter 4. Setting up Java support 231

Table 40. Options by JVM server use (continued)

System property OSGi Liberty Classpath

com.ibm.cics.jvmserver.wlp.install.dir Not
supported

Supported Not
supported

com.ibm.cics.jvmserver.wlp.jdbc.driver.location Not
supported

Supported Not
supported

com.ibm.cics.jvmserver.wlp.jta.integration Not
supported

Supported Not
supported

com.ibm.cics.jvmserver.wlp.latebinding Not
supported

Supported Not
supported

com.ibm.cics.jvmserver.wlp.optimize.static.resources Not
supported

Supported Not
supported

com.ibm.cics.jvmserver.wlp.optimize.static.resources.extra Not
supported

Supported Not
supported

com.ibm.cics.jvmserver.wlp.server.config.dir Not
supported

Supported Not
supported

com.ibm.cics.jvmserver.wlp.server.host Not
supported

Supported Not
supported

com.ibm.cics.jvmserver.wlp.reserve.thread.percentage Not
supported

Supported Not
supported

com.ibm.cics.jvmserver.wlp.server.http.port Not
supported

Supported Not
supported

com.ibm.cics.jvmserver.wlp.server.https.port Not
supported

Supported Not
supported

com.ibm.cics.jvmserver.wlp.server.name Not
supported

Supported Not
supported

com.ibm.cics.jvmserver.wlp.server.output.dir Not
supported

Supported Not
supported

com.ibm.cics.jvmserver.wlp.wab Not
supported

Supported Not
supported

com.ibm.cics.jvmserver.wlp.xml.format Not
supported

Supported Not
supported

com.ibm.cics.sts.config Not
supported

Not
supported

Supported
(STS only)

com.ibm.ws.logging.console.log.level Not
supported

Supported Not
supported

com.ibm.ws.zos.core.angelName Not
supported

Supported Not
supported

com.ibm.ws.zos.core.angelRequired Not
supported

Supported Not
supported

console.encoding Supported Supported Supported

file.encoding Supported Supported Supported

java.security.manager Supported Not
supported

Supported

232 CICS TS for z/OS: Java Applications in CICS

Table 40. Options by JVM server use (continued)

System property OSGi Liberty Classpath

java.security.policy Supported Not
supported

Supported

org.osgi.framework.storage.clean Supported Supported Not
supported

org.osgi.framework.system.packages.extra Supported Supported Not
supported

osgi.compatibility.bootdelegation Supported Supported Not
supported

Properties applicable to CMCI JVM server only

The CMCI JVM server is a Liberty server that must be configured in the WUI region of a CICSplex SM
environment. It is an optional, but highly recommended component of the CICS management client
interface (CMCI), a system management API for use by HTTP client applications such as IBM® CICS
Explorer®. The CMCI JVM server provides enhanced support for CMCI requests, such as the GraphQL API
and the CICS bundle deployment API.

Table 41. Options by CMCI JVM server use

System property

com.ibm.cics.jvmserver.cmci.bundles.dir

com.ibm.cics.jvmserver.cmci.deploy.timeout

com.ibm.cics.jvmserver.cmci.max.file.size

com.ibm.cics.jvmserver.cmci.max.request.size

com.ibm.cics.jvmserver.cmci.user.agent.white.list

com.ibm.cics.jvmserver.cmci.user.agent.white.list.monitor.interval

com.ibm.cics.jvmserver.cmci.user.agent.white.list.reject.text

com.ibm.cics.jvmserver.wlp.saf.profilePrefix

Read-only properties
com.ibm.cics.json.enableAxis2Handlers

Indicates that a JVM requires the ability to run Axis2 handler programs when processing JSON data.
This property is only relevant to a JVM that has JAVA_PIPELINE=YES specified and is configured to
support JSON pipelines. This option is not relevant to z/OS Connect in CICS, and should only be
enabled if the capability is required. Enabling this option will ensure that Axis2 Handler programs can
run during a JSON workload, but there is likely to be a performance penalty in enabling this option,
and some of the capabilities of mapping level 4.2 and later WSBind files will not be available for use.

com.ibm.cics.jvmserver.applid
Specifies the CICS region application identifier (APPLID). This is a read-only property. You can use this
property in an application but you should not change it.

com.ibm.cics.jvmserver.cics.product.name
Specifies the name of the CICS product under which Liberty is running. This is a read-only property.
You can use this property in an application but you should not change it.

com.ibm.cics.jvmserver.cics.product.version
Specifies the version of the CICS product under which Liberty is running. This is a read-only property.
You can use this property in an application but you should not change it.

Chapter 4. Setting up Java support 233

com.ibm.cics.jvmserver.configroot
Specifies the location where configuration files, such as the JVM profile of a JVM server, can be found.
This is a read-only property. You can use this property in an application but you should not change it.

com.ibm.cics.jvmserver.local.ccsid
Specifies the code page for file encoding when the JCICS API is used. This is a read-only property.
You can use this property in an application but you should not change it.

com.ibm.cics.jvmserver.name
Specifies the name of the JVM server. This is a read-only property. You can use this property in an
application but you should not change it.

com.ibm.cics.jvmserver.supplied.ccsid
Specifies the default CCSID for the local CICS region. This is a read-only property. You can use this
property in an application but you should not change it.

com.ibm.cics.jvmserver.trace.filename
Specifies the name of the JVM server trace file. This is a read-only property. You can use this property
in an application but you should not change it.

com.ibm.cics.jvmserver.wlp.install.dir
Specifies the location of the Liberty installation. This is a read-only property. You can use this property
in an application but you should not change it.

com.ibm.cics.jvmserver.wlp.server.config.dir
Specifies the location of the Liberty configuration directory. This is a read-only property. You can use
this property in an application but you should not change it.

com.ibm.cics.jvmserver.wlp.server.output.dir
Specifies the location of the Liberty output directory where you can find Liberty logs. This is a read-
only property. You can use this property in an application but you should not change it.

Properties that can be changed
com.ibm.cics.jvmserver.cmci.bundles.dir=<bundles_directory>

Note: This property is intended only for the CICS bundle deployment API.

Specifies the bundles directory on zFS that stores the CICS bundles pushed to the API.
com.ibm.cics.jvmserver.cmci.deploy.timeout={120000|timeout_limit}

Note: This property is intended only for the CICS bundle deployment API.

Specifies the timeout limit for deploying a CICS bundle, in milliseconds. This includes the time for all
bundle lifecycle actions, including disable, discard, install and enable. Only use numeric characters
when changing this value.

com.ibm.cics.jvmserver.cmci.max.file.size={52428800|max_file_size}

Note: This property is intended only for the CICS bundle deployment API.

Specifies the maximum size allowed for the uploaded CICS bundle, in bytes.
com.ibm.cics.jvmserver.cmci.max.request.size={104857600|max_request_size}

Note: This property is intended only for the CICS bundle deployment API.

Specifies the maximum size allowed for a multipart or form-data request, in bytes.
com.ibm.cics.jvmserver.cmci.user.agent.white.list={file_path}

Note: This property is intended only for the CMCI JVM server.

Specifies the location of the client whitelist file and enables whitelist processing in the CMCI JVM
server.

com.ibm.cics.jvmserver.cmci.user.agent.white.list.monitor.interval={time|10s}

Note: This property is intended only for the CMCI JVM server.

234 CICS TS for z/OS: Java Applications in CICS

Specifies the interval of Liberty cache file monitoring checks performed by the CMCI JVM server to
refresh the cache of user-agent whitelist values obtained from the client whitelist file.

com.ibm.cics.jvmserver.cmci.user.agent.white.list.reject.text={text}

Note: This property is intended only for the CMCI JVM server.

Specifies a custom response message to return to the user when a request to connect to the CMCI is
rejected because the system management client being used is not in the client whitelist.

com.ibm.cics.jvmserver.controller.timeout={time|90000ms}

This value should be less than the Liberty bundlepart timeout value, otherwise bundleparts can
incorrectly timeout. Only use numeric characters when changing this value.

Warning: This property is subject to change at any time.

com.ibm.cics.jvmserver.override.ccsid=

Warning: This property is intended for advanced users.

It overrides the code page for file encoding when the JCICS API is used. By default, JCICS uses the
value of the LOCALCCSID system initialization parameter as the file encoding. If you choose to
override this value, set the code page in this property. Use an EBCDIC code page. You must ensure
that your applications are consistent with the new code page, or errors might occur. For more
information about valid CCSIDs, see LOCALCCSID system initialization parameter.

com.ibm.cics.jvmserver.threadjoin.timeout={time|30000ms}
Controls the timeout value when requests that are waiting for threads are queuing for service. Only
use numeric characters when changing this value.

com.ibm.cics.jvmserver.trace.format={FULL|SHORT|ABBREV}
Controls the format of the trace. You can vary the trace format for your own purposes but you must
set it to FULL when you send diagnostic information to IBM service.

com.ibm.cics.jvmserver.trace.specification={filter_text}

Warning: Use this property only under IBM service guidance. This property is subject to
change at any time.

Specifies a JVM server trace filter string allowing finer grained control over package and class trace
from the JVM server. {filter_text} is a colon separated string of clauses that sets the trace level of one
or more specified components. If not specified, the default value is equivalent to
com.ibm.cics.*=ALL.

The SJ domain trace flag remains the master switch, but this trace specification allows for additional
filtering of specific components.

For any given class or package, the most specific filter clause applies. Each filter clause can be set to
one of the following levels:

{ALL, DEBUG, ENTRYEXIT, EVENT, INFO, WARNING, ERROR, NONE}

Example 1:

com.ibm.cics.jvmserver.trace.specification=com.ibm.cics.*=NONE

A single filter clause that suppresses all output.

Example 2:

com.ibm.cics.jvmserver.trace.specification=com.ibm.cics.*=NONE:com.ibm.cics.wlp.*=ALL

This example has two filter clauses. The first filter clause suppresses all trace. The second filter
clause is more specific for all packages under the com.ibm.cics.wlp component and ensures all of
their trace output is written.

Chapter 4. Setting up Java support 235

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/sit/dfha2_localccsid.html

Example 3:

com.ibm.cics.jvmserver.trace.specification=com.ibm.cics.wlp.impl.CICSTaskWrapper=NONE:com.ib
m.cics.wlp.impl.CICSTaskInterceptor=NONE

This example has two filter clauses. All trace is written, except trace that is produced from the specific
CICSTaskWrapper and CICSTaskInterceptor classes of the com.ibm.cics.wlp.impl package.

com.ibm.cics.jvmserver.trigger.timeout={time|500ms}
Only use numeric characters when changing this value.

Warning: Use this property only under IBM service guidance. This property is subject to
change at any time.

com.ibm.cics.jvmserver.unclassified.tranid={transaction id}
Specifies the default transaction that is used for unclassified work that is run in a JVM server.

• In a Liberty JVM server, unclassified work runs under transaction CJSU, unless you specify the
com.ibm.cics.jvmserver.unclassified.tranid property.

• In an OSGI JVM server, unclassified work runs under transaction CJSA, unless you specify the
com.ibm.cics.jvmserver.unclassified.tranid property.

The user must ensure that the transaction ID specified is defined to CICS, by duplicating the CJSA or
CJSU transaction.

com.ibm.cics.jvmserver.unclassified.userid={user id}
Allows users to change the default user ID under which unclassified work is run as a CICS task in a
JVM server. If not specified, the CICS default user ID is used. The user ID specified must be defined to
RACF® and have the necessary permissions to run the work.
Unclassified work is any request not identified by the HTTP classification component of Liberty, for
example JMS, inbound JCA, EJB requests and so on.

com.ibm.cics.jvmserver.wlp.args=

Provides a way to set Liberty server options during start-up. For a list of server options, see the
'options' section in Server command options.

Warning: This property is typically used under IBM service guidance.

com.ibm.cics.jvmserver.wlp.autoconfigure={false|true}
Specifies whether CICS creates the necessary Liberty directories, server.xml and other
configuration files within WLP_USER_DIR if they do not already exist.

com.ibm.cics.jvmserver.wlp.bundlepart.timeout={time|60000ms}
Controls the timeout value used by CICS Liberty during bundlepart installation. If the operation times
out, the bundlepart - and by association, the bundle - is moved to the disabled state.

When Liberty acknowledges the install phase, the bundlepart stays in an enabling state until Liberty
has fully started the application. The timeout does not affect bundleparts that have reached this state.
Only use numeric characters when changing this value.

Important: This value should be greater than the Liberty configuration monitor interval, otherwise
bundleparts can incorrectly timeout.

com.ibm.cics.jvmserver.wlp.defaultapp={false|true}

Instructs CICS to add the defaultApp-1.0 feature to server.xml, which installs the default CICS
web application that can be used to verify that the Liberty server has installed and started correctly.

Tip: This property is used only when com.ibm.cics.jvmserver.wlp.autoconfigure=true.

com.ibm.cics.jvmserver.wlp.jdbc.driver.location=
Specifies the location of the directory that contains the Db2 JDBC drivers. The location must contain
the Db2 JDBC driver classes and lib directories. If the autoconfigure property
com.ibm.cics.jvmserver.wlp.autoconfigure=true, when the JVM server is enabled, the

236 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/rwlp_command_server.html

existing example configuration in server.xml is replaced with the default configuration and any user
updates are lost.

com.ibm.cics.jvmserver.wlp.jta.integration={false|true}
Enables CICS integration with the Java Transaction API (JTA). When transactions that are created
through the JTA interface are in effect, the CICS unit of work is subordinate to the Java Transaction
Manager.

Tip: This property is used only when com.ibm.cics.jvmserver.wlp.autoconfigure=true.

com.ibm.cics.jvmserver.wlp.latebinding={NONHTTP|COMPATIBILITY}

Warning: Use this property only under IBM service guidance. This property is subject to
change at any time.

com.ibm.cics.jvmserver.wlp.optimize.static.resources={false|true}

Enables requests for static content to be processed on a non-CICS thread. The following types of file
are recognized as static: .css .gif .ico .jpg .jpeg .js and .png.

com.ibm.cics.jvmserver.wlp.reserve.thread.percentage={percent|10}

Reserves a percentage of the threadlimit of the Liberty JVM server for use by OSGi Applications. The
value can be between 1% and 50%.

com.ibm.cics.jvmserver.wlp.optimize.static.resources.extra=

Specifies a custom list of extra static resources for optimization. Items must be comma-separated,
and begin with a period, for example: .css, .gif, .ico.

Tip: This value is only respected when
com.ibm.cics.jvmserver.wlp.optimize.static.resources=true.

com.ibm.cics.jvmserver.wlp.saf.profilePrefix=<my_prefix>

Note: This property is intended only for the CMCI JVM server.

Specifies the SAF profile prefix for the WUI regions that need to share security configurations.
com.ibm.cics.jvmserver.wlp.server.host={*|hostname|IP_address}

Specifies the name or IP address in IPv4 or IPv6 format of the host for HTTP requests to access the
web application. The Liberty JVM server uses * as the default value. This value is not appropriate for
running a web application in CICS, so either use this property to provide a different value or update
the server.xml file.

Tip: This property is used only when com.ibm.cics.jvmserver.wlp.autoconfigure=true.

com.ibm.cics.jvmserver.wlp.server.http.port={9080|port_number}
Specifies a port to accept HTTP requests for a Java web application. CICS uses the default value that
is supplied by Liberty. The Liberty JVM server does not use a TCPIPSERVICE resource. Ensure that the
port number is free or shared on the z/OS system.

Tip: This property is used only when com.ibm.cics.jvmserver.wlp.autoconfigure=true.

com.ibm.cics.jvmserver.wlp.server.https.port={9443|port_number}
Specifies a port to accept HTTPS requests for a Java web application. CICS uses the default value that
is supplied by Liberty. The Liberty JVM server does not use a TCPIPSERVICE resource, so ensure that
the port number is free or shared on the z/OS system.

Tip: This property is used only when com.ibm.cics.jvmserver.wlp.autoconfigure=true.

com.ibm.cics.jvmserver.wlp.server.name={defaultServer|server_name}
Specifies the name of the Liberty server. You should not need to specify this property as it affects the
location of the Liberty server configuration and output files and directories.

com.ibm.cics.jvmserver.wlp.wab={false|true}

Controls the Liberty feature wab-1.0 in server.xml. If you want to use Java EE 8 in standard or
integrated-mode Liberty, you must set this option to com.ibm.cics.jvmserver.wlp.wab=false,
and then add the required Java EE 8 features.

Chapter 4. Setting up Java support 237

If you want to use EBA files then you must set this option to
com.ibm.cics.jvmserver.wlp.wab=true.

com.ibm.cics.jvmserver.wlp.xml.format={false|true}

Enables CICS to format the white space in server.xml for improved readability.

com.ibm.cics.sts.config=path
Specifies the location and name of the STS configuration file.

com.ibm.ws.logging.console.log.level={INFO|AUDIT|WARNING|ERROR|OFF}
Controls which messages Liberty writes to the JVM server stdout file. Liberty console messages are
also written to the Liberty messages.log file independent of the setting of this property.

com.ibm.ws.zos.core.angelName=named_angel
Specifies a named angel process for the Liberty JVM server to connect to. If you do not specify
com.ibm.ws.zos.core.angelName, when required, the default angel process is used for Liberty
JVM server startup.

com.ibm.ws.zos.core.angelRequired={false|true}
Indicates whether an angel process is required for Liberty JVM server startup.

console.encoding=
Specifies the encoding for JVM server output files.

file.encoding=
Specifies the code page for reading and writing characters by the JVM. By default, a JVM on z/OS uses
the EBCDIC code page IBM1047 (or cp1047).

• In a profile that is configured for OSGi, you can specify any code page that is supported by the JVM.
CICS tolerates any code page because JCICS uses the local CCSID of the CICS region for its
character encoding.

• In a profile that is configured for the Liberty JVM server, the supplied default value is ISO-8859-1.
You can also use UTF-8. Any other code page is not supported.

• In a profile that is configured for Axis2, you must specify an EBCDIC code page.

java.security.manager={default| "" | |other_security_manager}
Specifies the Java security manager to be enabled for the JVM. To enable the default Java security
manager, include this system property in one of the following formats:

• java.security.manager=default
• java.security.manager=""
• java.security.manager=

All these statements enable the default security manager. If you do not include the
java.security.manager system property in your JVM profile, the JVM runs with Java security
disabled.

java.security.policy=
Describes the location of extra policy files that you want the security manager to use to determine the
security policy for the JVM. A default policy file is provided with the JVM in /usr/lpp/java/
J8.0_64/lib/security/java.policy, where the java/J8.0_64 subdirectory names are the
default values when you install the IBM 64-bit SDK for z/OS, Java Technology Edition. The default
security manager always uses this default policy file to determine the security policy for the JVM, and
you can use the java.security.policy system property to specify any policy files that you want
the security manager to take into account, in addition to the default policy file.

To enable CICS Java applications to run successfully when Java security is active, specify, as a
minimum, an extra policy file that gives CICS the permissions it requires to run the application.

For information about enabling Java security, see Enabling a Java security manager.

org.osgi.framework.storage.clean={onFirstInit}
This option is specific to OSGi-enabled JVM servers, including Liberty. It specifies if and when the
storage area for the OSGi framework should be cleaned. If no value is specified, the framework

238 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/topics/dfhpj5u.html

storage area will not be cleaned. onFirstInit flushes the bundle cache when the framework
instance is first initialized. i.e when the JVM server is enabled. Framework storage cleaning is not
necessary under normal operations.

org.osgi.framework.system.packages.extra=
This option is specific to OSGi-enabled JVM servers, including Liberty, which allows extensions of the
JRE and custom Java packages to be exposed through the OSGi framework for subsequent bundle
import resolution. JVM vendors might provide different extensions in the JRE. In an IBM JVM server,
the option is augmented to include the set of packages which CICS chooses to expose from the IBM
JRE. You can set this property to define additional packages, if required. For further information, see
OSGi Alliance Specifications.

osgi.compatibility.bootdelegation={false|true}
This option is specific to the Equinox implementation of OSGi. It applies to OSGi-enabled JVM servers,
including Liberty. When set to true, the OSGi framework employs a last resort bootdelegation strategy
for packages that are not found through the normal OSGi bundle dependency resolution mechanism.
This option allows the OSGi run time to be more tolerant if explicit dependencies were overlooked at
development time. As a last resort algorithm, a small amount of overhead is incurred compared to
direct resolution (where the package is explicitly listed in the Import-Package bundle header).
For strict OSGi compliance, increased portability, and optimum performance, set this option to false
and ensure all the packages that are used in your OSGi bundles are explicitly declared in the bundle
MANFEST.MF.

Setting the time zone for a JVM server
The TZ environment variable specifies the "local" time of a system. You can set this for a JVM server by
adding it to the JVM profile. If you do not set the TZ variable, the system defaults to UTC. Once the TZ
variable is set, a JVM automatically transitions to and from daylight savings time as required, without a
restart or further intervention.

When setting the time zone for a JVM server or Node.js application, you should be aware of the following
issues:

• The TZ variable in your JVM or Node.js profile should match your local MVS system offset from GMT. For
more information on how to display and set your local MVS system offset, see TIMEZONE statement in
z/OS Communications Server: IP Configuration Reference and Adjusting local time in a sysplex in z/OS
MVS Setting Up a Sysplex.

• Customized time zones are not supported and will result in failover to UTC or a mixed time zone output
in the JVMTRACE file (for JVM servers) or TRACE file (for Node.js applications).

• If you see LOCALTIME as the time zone string, there is an inconsistency in your configuration. This can
be between your local MVS time and the TZ you are setting, or between your local MVS time and your
default setting in the JVM or Node.js profile. The output will be in mixed time zones although each entry
will be correct.

Using the POSIX time zone format
The POSIX time zone format has a short form and a long form. You can use either to set the TZ
environment variable, but using the short form reduces the chance of input errors.

Example long form:

TZ=GMT0BST,M3.5.0,M10.5.0

Example short form:

TZ=GMT0BST

To find out what time zone your system is running on, log on to USS and enter echo $TZ. The result is the
long form of the value your TZ environment variable should be set to.

/u/user:>echo $TZ
GMT0BST,M3.5.0,M10.4.0

Chapter 4. Setting up Java support 239

https://www.osgi.org/Specifications/HomePage
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.halz001/timezonestatementsmtp.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.halz001/timezonestatementsmtp.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaf100/adjtod.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieaf100/adjtod.htm

For a more detailed breakdown of the POSIX time zone format, see POSIX and Olson time zone formats
on the IBM developerWorks® site.

240 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/developerworks/aix/library/au-aix-posix/

Chapter 5. Updating OSGi bundles in a JVM server
The process for updating OSGi bundles in the OSGi framework depends on the type of bundle and its
dependencies. You can update OSGi bundles for applications without restarting the JVM server. However,
updating a middleware bundle requires a restart of the JVM server.

About this task
In a typical JVM server, the OSGi framework contains a mixture of OSGi bundles as shown in the following
diagram.

Bundle A and Bundle B are separate Java applications that are packaged as OSGi bundles in separate
CICS bundles. Both applications have a dependency on a common library that is packaged in Bundle C.
Bundle C is separately managed and updated. In addition, Bundle B has a dependency on an IBM MQ
middleware bundle and the JCICS system bundle.

Bundle A and B can both be independently updated without affecting any of the other bundles in the
framework. However, updating Bundle C can affect both the bundles that depend on it. Any exported
packages in Bundle C remain in memory in the OSGi framework, so to pick up changes in Bundle C,
Bundles A and B also have to be updated in the framework.

Middleware bundles contain framework services and are managed with the life cycle of the JVM server.
For example, you might have native code that you want to load once in the framework or you might want
to add a driver to access another product such as IBM MQ.

System bundles are provided by CICS to manage the interaction with the OSGi framework. These bundles
are serviced by IBM as part of the product. An example of a system bundle is the
com.ibm.cics.server.jar file, which provides most of the JCICS API to access CICS services.

© Copyright IBM Corp. 1974, 2020 241

Updating OSGi bundles in an OSGi JVM server
If a Java developer provides an updated version of an OSGi bundle, you can either replace the CICS
bundle that refers to it completely, or phase in a new version of the OSGi bundle.

About this task

The update method to use depends on the following factors:

• Whether service outages can be tolerated during the update.
• Whether CICS resource changes can be tolerated during the update.

Using CICS bundle PHASEIN to dynamically update an OSGi bundle without updating
CICS resources

Use this update method to phase in a new version of an OSGi bundle when service outages and CICS
resource changes cannot be tolerated during the update.

Before you begin

The new version of the JAR file for the OSGi bundle must be present in the same zFS directory as the old
version of the OSGi bundle, that is, the same directory as the associated osgibundle bundlepart file.
By default, this directory is the directory that is named in the BUNDLE resource definition. This new
version of the OSGi bundle must have a higher version than the one that is currently installed in the OSGi
framework, and the version must be in the version range that was defined when the OSGi bundle
reference was added to the CICS bundle project.

Procedure

To phase in a new version of an OSGi bundle in an OSGi JVM server, use the following steps.
1. In the Bundles view in CICS Explorer, right-click the CICS bundle that contains the OSGi bundle, click

Phase In, then click OK. The new version of the OSGi bundle is phased in, new versions of any services
that are implemented by the new version of the OSGi bundle are installed into the OSGi framework,
and any old versions of the services are removed from the OSGi framework.

2. In the OSGi Services view in CICS Explorer check that all OSGi services for the new version of the
OSGi bundle are all in the active state.

3. In the OSGi Bundles view in CICS Explorer check that the new version of the OSGi bundle is listed and
is in the active state.

Results

The new version of the OSGi bundle is used for all new service requests. Existing requests continue to use
the old version. The symbolic version of the OSGi bundle increases, indicating that the Java code is
updated.

What to do next

If you are satisfied that the new version of the OSGi service is working well, there is no more to do.
Optionally, you can delete the old version of the OSGi JAR file from zFS, but it is not compulsory. It might
also be useful to retain the OSGi JAR file so that you can restore that version if problems arise with the
new version.

If you are not satisfied with the new version of the OSGi service and want to restore the old version, use
the following steps.

1. Delete the new version of the OSGi bundle JAR from zFS.
2. In the Bundles view of CICS Explorer, right-click the CICS bundle that contains the OSGi bundle, click

Phase In, then click OK. Because the old version of the OSGi bundle is now the one with the highest
version on zFS, it is reinstalled into the OSGi framework and the defective new version removed.

242 CICS TS for z/OS: Java Applications in CICS

3. In the OSGi Services view in CICS Explorer, check that only the OSGi services for the old version of the
OSGi bundle are listed, and are all in the active state.

4. In the OSGi Bundles view in CICS Explorer, check that only the old version of the OSGi bundle is listed
and is in the active state.

If there is a CICS cold, warm, or emergency restart, the new version of the OSGi bundle is automatically
restored. You do not need to change any CICS resource definitions to ensure that this happens.

Phasing in an OSGi bundle with CICS resource changes
Use this update method to phase in a new version of an OSGi bundle when service outages cannot be
tolerated during the update process. New CICS resources are created during the update.

Before you begin

A CICS bundle that contains the new version of an OSGi bundle is already defined and exported to zFS.
The new version of the OSGi bundle must have a higher version specified in the OSGi bundle manifest
than the version that is currently installed in the OSGi framework. You can have both OSGi bundles
running in the framework at the same time.

Procedure

To phase in a new version of an OSGi bundle in an OSGi JVM server, use the following steps.
1. In the Bundle Definitions view in CICS Explorer, right-click anywhere and click New to create a

BUNDLE resource to pick up the new CICS bundle project on zFS.
2. In the Bundle Definitions view in CICS Explorer, right-click the BUNDLE resource that you created in

the previous step and click Install. Select the install target, then click OK to install the OSGi bundles
and services in the CICS bundle into the OSGi framework.

3. Check the status of the OSGi bundles in the OSGi Bundles view in CICS Explorer. Two versions of the
OSGi bundle are listed with a state of active.

4. In the OSGi Services view in CICS Explorer, check the OSGi services that are implemented by both
versions of the OSGi bundle are all in the active state. The OSGi services that reference the OSGi
bundle with the highest semantic version are used for any new service invocations.

Results

The updated OSGi bundle is available in the OSGi framework along with the old version of the OSGi
bundle.

The new version of the OSGi bundle is used for all new service requests. Existing requests continue to use
the old version.

What to do next

When you are satisfied that the new version of the OSGi service is working well, use the following steps to
remove the old version from the OSGi framework:

1. Disable the BUNDLE resource that points to the old version of the OSGi bundle. In the Bundles view in
CICS Explorer, right-click the old BUNDLE, click Disable, then click OK. The old version of any services
that are implemented by the OSGi bundle are removed from the OSGi framework; only the new
versions of the services are now listed in the OSGi Services view. In the OSGi Bundles view, the old
OSGi bundle state is now in resolved.

2. Discard the BUNDLE resource that points to the old version of the OSGi bundle. In the Bundles view in
CICS Explorer, right-click the old BUNDLE, click Discard, then click OK. In the OSGi Bundles view, the
OSGi bundle from the OSGi framework is removed, and only the new version of the OSGi bundle is
listed.

To ensure that the new version of the OSGi bundle is installed if there is a cold start of a CICS region,
make sure that you update any CICS group lists (GRPLIST system initialization parameter) that reference

Chapter 5. Updating OSGi bundles in a JVM server 243

the CSD groups that contain the BUNDLE definition for the old version, to reference the CSD groups that
contain the new BUNDLE definition that you created in Step 1 of the procedure.

If you want to restore the old version of the OSGi bundle, use the previous two steps to disable and
discard the BUNDLE resource that points at the new version of the OSGi bundle. The old version of the
service is listed in the OSGi Services view in CICS Explorer, and it is used for any new service invocations.

Replacing OSGi bundles in an OSGi JVM server
Use this update method when service outages can be tolerated during the update process. No new CICS
resources are created, but you might need to update the existing BUNDLE resource definition.

Before you begin

To replace the CICS bundle completely, an updated CICS bundle that contains the new version of the
OSGi bundle must be present in zFS.

Procedure

To replace an existing OSGi bundle in an OSGi JVM server with a new version of the OSGi bundle, use the
following steps.
1. In the Bundles view in CICS Explorer, disable and discard the BUNDLE resource for the CICS bundle

that you want to update. The OSGi services that are part of that CICS bundle are removed from the
OSGi framework and are not listed in the OSGi Services view of CICS Explorer.

Note: No services that are implemented by the OSGi bundle are available in the OSGi framework from
this point until the completion of step 3, so any users of these services suffer a service outage.

2. Optional: Edit the BUNDLE resource definition if the updated CICS bundle is deployed in a different
directory in zFS.

3. In the Bundles view in CICS Explorer, install the BUNDLE resource definition to pick up the changed
OSGi bundle. The OSGi bundles and services in the CICS bundle are installed in the OSGi framework.

4. Check the status of the OSGi bundle in the OSGi Bundles view in CICS Explorer. The new version of
the OSGi bundle is listed with a state of active.

5. In the OSGi Services view in CICS Explorer, check that the new version of all the OSGi services that
are implemented by the new version of the OSGi bundle are in the active state.

Results

The new version of the OSGi bundle is used for all new service requests. Existing requests continue to use
the old version. The symbolic version of the OSGi bundle increases, indicating that the Java code is
updated.

Updating bundles that contain common libraries
OSGi bundles that contain common libraries for use by other OSGi bundles must be updated in a specific
order.

Before you begin
An updated CICS bundle that contains the new version of the OSGi bundle must be present in zFS. If you
manage common libraries in a separate CICS bundle, you can manage the lifecycle of these libraries
separately from the applications that depend on them.

About this task

Typically, an OSGi bundle specifies a range of supported versions in a dependency on another OSGi
bundle. Using a range provides more flexibility to make compatible changes in the framework. When you
are updating bundles that contain common libraries, the version number of the OSGi bundle increases.
However, the running applications are already using a version of the bundle that satisfies the
dependencies. To obtain the most recent version of the library, you must refresh the OSGi bundles for the

244 CICS TS for z/OS: Java Applications in CICS

applications. It is therefore possible to update specific applications to use different versions of the library,
and leave other applications to run on an older version.

When you update an OSGi bundle that contains common libraries, you can completely replace the CICS
BUNDLE resource. However, if classes are not loaded in the library, the dependent bundles might receive
errors. Alternatively, you can install a new version of the library and run it in the framework alongside the
original version. If the OSGi bundles have different version numbers, the OSGi framework can run both
bundles concurrently.

Procedure

To replace an existing OSGi bundle in an OSGi JVM server:
1. Define and install a CICS BUNDLE resource that points to the new version of the CICS bundle, which

contains the OSGi bundle that defines the common libraries. CICS defines the new version of the OSGi
bundle in the OSGi framework. The existing OSGi bundles continue to use the previous version of the
library.

2. Check the status of the OSGi bundles in the OSGi Bundles view in CICS Explorer (Operations > Java >
OSGi Bundles). The list shows two entries for the same OSGi bundle symbolic name with different
versions that are running in the framework.

3. To obtain the new version of the library in a dependent Java application, use one of the following
methods:

• Replace the CICS bundle for the Java application.

a. Disable and discard the CICS BUNDLE resource for the Java application.
b. Reinstall the CICS BUNDLE resource for the Java application.

• Phase in a new version of the Java application.

a. Ask the Java developer to update the version information for the OSGi bundle. The new version
of the OSGi bundle must have a higher version specified in the OSGi bundle manifest and be
within the version range specified when the OSGi Bundle Project was added to the CICS bundle.
Optionally, the new version of the OSGi bundle could also have its dependencies modified to
specifically require the new version of the OSGi bundle that defines the common libraries.

b. Copy the JAR for the new version of OSGi bundle to the root directory of the CICS BUNDLE
resource.

c. In the Operations > Bundles view in CICS Explorer, right-click the CICS bundle that contains
the OSGi bundle, click Phase In, then click OK to phase in the new version of the OSGi bundle.

When the OSGi bundle is loaded in the framework, it obtains the latest version of the common
libraries.

4. Check the status of the CICS BUNDLE resource in the Bundles view in CICS Explorer (Operations >
Bundles).

Results
You have updated an OSGi bundle that contains common libraries and updated a Java application to use
the latest version of the libraries.

Updating OSGi middleware bundles
To update the middleware bundles that are running in an OSGi framework, you must stop and restart the
JVM server.

About this task

OSGi middleware bundles are installed in the OSGi framework during the initialization of the JVM server.
If you want to update a middleware bundle, for example to apply a patch or use a new version, you must
stop and restart the JVM server to pick up the changed bundle.

You can manage the lifecycle of the JVM server and edit the JVM profile by using CICS Explorer.

Chapter 5. Updating OSGi bundles in a JVM server 245

Procedure

1. Ensure that the new version of the middleware bundle is in a directory on zFS to which CICS has read
and execute access. CICS also requires read access to the files.

2. If the zFS directory or file name is different from the values that are specified in the JVM profile, edit
the OSGI_BUNDLES option in the JVM profile for the JVM server.
a) Open the JVM Servers view in CICS Explorer to find out the name and location of the JVM profile in

zFS.
You must be connected with a region or CICSplex selected to see the JVMSERVER resources.

b) Open the z/OS UNIX Files view and browse to the directory that contains the JVM profile.
c) Edit the JVM profile to update the OSGI_BUNDLES option.

3. Disable the JVMSERVER resource to shut down the JVM server.
Disabling the JVMSERVER also disables any BUNDLE resources that contain OSGi bundles that are
installed in that JVM server.

4. Enable the JVMSERVER resource to start the JVM server with the updated JVM profile.
The JVM server starts up and installs the new version of the middleware bundle in the OSGi
framework. CICS also enables the BUNDLE resources that were disabled and installs the OSGi bundles
and services in the updated framework.

Results
The OSGi framework contains the updated middleware bundles and the OSGi bundles and services for
Java applications that were installed before you shut down the JVM server.

246 CICS TS for z/OS: Java Applications in CICS

Chapter 6. Removing OSGi bundles from a JVM server
If you want to remove OSGi bundles from the JVM server, use the CICS Explorer to disable and discard
the BUNDLE resource.

About this task

The BUNDLE resource provides life-cycle management for the collection of OSGi bundles and OSGi
services that are defined in the CICS bundle. Removing OSGi bundles from the OSGi framework does not
automatically affect the state of other installed OSGi bundles and services. If you remove a bundle that is
a prerequisite for another bundle, the state of the dependent bundle does not generally change until you
explicitly refresh that bundle. An exception is in the use of singleton bundles. If you uninstall a singleton
bundle that other bundles depend on, the dependent bundles cannot use the services of the uninstalled
bundle. The reported status of the CICS BUNDLE resource might not accurately reflect the status of the
OSGi bundle.

Procedure

1. Click Operations > Java > OSGi Bundles to find out which BUNDLE resource contains the OSGi
bundle.

2. Click Operations > Bundles to disable the BUNDLE resource.
CICS disables each resource that is defined in the CICS bundle. For OSGi bundles and services, CICS
sends a request to the OSGi framework in the JVM server to unregister any OSGi services and moves
the OSGi bundles into a resolved state. Any in-flight transactions complete, but any new links to the
OSGi service from CICS applications return with an error.

3. Discard the BUNDLE resource.
CICS sends a request to the OSGi framework to remove the OSGi bundles from the JVM server.

Results
You have removed the OSGi bundles and services from the OSGi framework.

What to do next
If you have PROGRAM resources pointing to OSGi services that are no longer in the OSGi framework, you
might want to disable and discard the PROGRAM resources.

© Copyright IBM Corp. 1974, 2020 247

248 CICS TS for z/OS: Java Applications in CICS

Chapter 7. Updating Java EE applications in a Liberty
JVM server

There are three methods to update Java EE applications in a Liberty JVM server: refresh the CICS
bundles, update the applications in the drop-ins folder, and use <application> elements.

About this task

The process to update Java EE applications in a Liberty server depends on how the applications are
deployed:

• Applications deployed in CICS bundles

In this scenario, the application must be added as a bundle part to a CICS bundle project using CICS
Explorer and then exported to z/OS File System (zFS). It is then installed into CICS using a BUNDLE
definition that refers to the exported project.

• Applications deployed directly to the Liberty drop-ins folder

In this scenario, the Java archive is copied directly to a previously defined drop-ins directory.
• Applications deployed in an <application> element into server.xml

In this scenario, a reference to the application is added into server.xml, together with further
application attributes and descriptive elements.

Procedure

Applications deployed in CICS bundles
• To refresh the CICS bundle, a bundle that contains the Java EE application must already be installed

and enabled in the CICS region. For more information, see Deploying a Java EE application in a CICS
bundle to a Liberty JVM server.
a) In the Bundles view in CICS Explorer, disable the BUNDLE resource for the CICS bundle that you

want to update.

Note: The applications that are part of that CICS bundle are removed from the Liberty server run
time and are not available from this point until the last step completes. Any users of these services
suffer a service outage.

b) Export the new version of the CICS bundle that contains the Java EE application to the same zFS
location as the old version.

c) In the Bundles view in CICS Explorer, enable the BUNDLE resource definition to pick up the Java EE
application. The applications are reinstalled into the Liberty server.

d) Check the status of the CICS bundle in CICS Explorer. The CICS bundle is listed with a state of
active.

When the new version of the Java EE application becomes active, it is used for all new requests.
Applications deployed directly to the Liberty drop-ins folder
• To use the drop-ins directory with a Liberty server, the server.xml configuration must be updated

to enable this function. For more information, see Deploying Java EE applications directly to a Liberty
JVM server.
a) Export the new version of the archive (WAR, EAR, or EBA) from your Eclipse environment.

Note: The applications that are part of that CICS bundle are removed from the Liberty server run
time. Any users of these services suffer a service outage.

b) Copy this new archive into the drop-ins directory, replacing the original version.

The Liberty server scans the directory, uninstalls the previous version, and installs the new version.

© Copyright IBM Corp. 1974, 2020 249

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/deploying/create_liberty_bundle.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/deploying/create_liberty_bundle.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/deploying/create_libertyapp.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/deploying/create_libertyapp.html

When the new version of the Java EE application becomes active, it is used for all new requests.
Applications deployed in an <application> element into server.xml
• To allow applications to be dynamically updated, the updateTrigger attribute of the

<applicationMonitor> element must be set to polled. For more information, see Controlling
dynamic updates.
a) Export the new version of the archive (WAR, EAR, or EBA) from your Eclipse environment.

Note: The applications that are part of that CICS bundle are removed from the Liberty server run
time. Any users of these services suffer a service outage.

b) Copy this new archive into the location specified in your <application> element.

The Liberty server scans the file for modification and if a change is detected, it uninstalls the
previous version and installs the new version.

When the new version of the Java EE application becomes active, it is used for all new requests.

250 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_setup_dyn_upd.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_setup_dyn_upd.html

Chapter 8. Managing the thread limit of JVM servers
JVM servers are limited in the number of threads that they can use to run Java applications. The CICS
region also has a limit on the number of threads, because each thread uses a T8 TCB. You can adjust the
thread limit using CICS statistics to balance the number of JVM servers in the region against the
performance of the applications running in each JVM server.

About this task

Each JVM server can have a maximum of 256 threads to run Java applications. In a CICS region you can
have a maximum of 2000 threads. If you have many JVM servers running in the CICS region (for example,
more than seven), you cannot set the maximum value for every JVM server. You can adjust the thread
limit of each JVM server to balance the number of JVM servers in the CICS region against the performance
of the Java applications.

The thread limit is set on the JVMSERVER resource, so set an initial value and use CICS statistics to adjust
the number of threads when you test your Java workloads.

Procedure

1. Enable the JVMSERVER resources and run your Java application workload.
2. Collect JVMSERVER resource statistics using an appropriate statistics interval.

You can use the Operations > Java > JVM Servers view in CICS Explorer, or you can use the
DFH0STAT statistics program.

3. Check how many times and how long a task waited for a thread.
The "JVMSERVER thread limit waits" and "JVMSERVER thread limit wait time" fields contain this
information.

• If the values in these fields are high and many tasks are suspended with the JVMTHRD wait, the JVM
server does not have enough threads available. Increasing the number of threads can increase the
processor usage, so check you have enough MVS resource available.

• If the values in these fields are low and the peak number of tasks is below the maximum number of
threads available, you can free up threads for other JVM servers by reducing the thread limit.

4. To check the availability of MVS resource, use the dispatcher TCB pool and TCB mode statistics to
assess the T8 TCB usage across the CICS region.
Each thread in a JVM server uses a T8 TCB and you are limited to 2000 in a region. T8 TCBs cannot be
shared between JVM servers, although all TCBs are in a THRD TCB pool. If the number of waiting TCBs
and processor usage is low, it indicates that there is enough MVS resource available.

5. To adjust the number of threads that can run in the JVM server, change the THREADLIMIT value on the
JVMSERVER resource.

6. Run the Java application workload again and use the statistics to check that the number of waiting
tasks has reduced.

What to do next
To tune the performance of your JVM servers, see Improving JVM server performance.

© Copyright IBM Corp. 1974, 2020 251

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/java/tuning_jvmserver.html

252 CICS TS for z/OS: Java Applications in CICS

Chapter 9. Security for Java applications
You can secure Java applications to ensure that only authorized users can deploy and install applications,
and access those applications from the web or through CICS. You can also use a Java security manager to
protect the Java application from performing potentially unsafe actions.

You can add security at different points in the Java application lifecycle:

• Implement security checking for defining and installing Java application resources. Java applications
are packaged in CICS bundles, so you must ensure that users who are allowed to install applications in
the JVM server can install this type of resource.

• Implement security checking for application users to ensure that only authorized users can access an
application.

• Implement security checking for CICS Java tasks that are started using the CICSExecutorService. All
such CICS tasks run under the CJSA transaction and the default user ID.

• Implement security restrictions on the Java API by using a Java security manager.

Java applications can run in an OSGi framework or a Liberty server. Liberty is designed to host web
applications and includes an OSGi framework. The security configuration for a Liberty server is different,
because Liberty has its own security model.

To configure security for OSGi applications, use CICS resource security to authorize which users can
manage the lifecycle of the JVMSERVER and the Java applications. Use CICS transaction security to
determine who can access the application.

Configuring security for OSGi applications
Use CICS resource security to authorize which users can manage the lifecycle of the JVMSERVER and the
Java applications. Use CICS transaction security to determine who can access the application.

Procedure

• Authorize application developers and system administrators to create, view, update, and remove
JVMSERVER and BUNDLE resources as appropriate. The JVMSERVER resource controls the availability
of the JVM server. The BUNDLE resource is a unit of deployment for the Java application and controls
the availability of the application.

• Authorize users to run the application by ensuring the relevant user ID is allowed to attach the
transaction under which the application will run.

Results
You have successfully configured security for Java applications that run in an OSGi framework.

Configuring security for a Liberty JVM server
You can use the CICS Liberty security feature to authenticate users and authorize access to web
applications through Java Platform, Enterprise Edition roles (Java EE roles), providing integration with
CICS transaction and resource security. You can also use CICS resource security to authorize the
appropriate users to manage the lifecycle of both the JVMSERVER resource and Java web applications
that are deployed in a CICS BUNDLE resource. In this topic, authentication verifies the identity of a given
user, typically by requiring the user to enter a username and password. Authorization then grants access
control permissions based on the identity of the authenticated user.

© Copyright IBM Corp. 1974, 2020 253

Before you begin

1. Ensure that the CICS region is configured to use SAF security and is defined with SEC=YES as a system
initialization parameter. If CICS security is turned off (SEC=NO), you can still use Liberty security by
manually configuring the server.xml file as described in “6” on page 255.

2. Authorize application developers and system administrators to create, view, update, and remove
JVMSERVER and BUNDLE resources to deploy web applications into a Liberty JVM server.

The JVMSERVER resource controls the availability of the JVM server, and the BUNDLE resource is a unit of
deployment for the Java applications and controls the availability of the applications. The default
behavior of the CICS TS security feature, cicsts:security-1.0, is to use the SAF registry. If you use
an LDAP registry, a SAF registry is not created. For more information, see Configuring security for a Liberty
JVM server by using distributed identity mapping. The basic user registry (which is also used by
quickStartSecurity) is only suitable for simple security testing. Be aware that if you configure and
run with basic user registry and you need to switch to cicsts:security-1.0, you need to delete the
session tokens.

About this task

This task explains how to configure security for a Liberty JVM server and integrate Liberty security with
CICS security. For information about how to configure security for Link to Liberty, see Linking to a Java EE
or Spring Boot application from a CICS program. For guidance on configuring security for the JCICSX
remoting server, see “Configuring security for remote JCICSX API development” on page 275.

The default transaction ID for running web requests is CJSA. However, you can configure CICS to run web
requests under a different transaction ID by using a URIMAP of type JVMSERVER. Typically, you might
specify a URIMAP to match the generic context root (URI) of a web application to scope the transaction ID
to the set of servlets that make up the application. Or you might choose to run each individual servlet
under a different transaction with a more precise URI.

Calls to the JCICSX Liberty JVM server are run under transaction CJXA.

The default user ID for running web requests is the CICS default user ID. If a URIMAP is available and
contains a static user ID, it is used in preference to the default user ID. If the web request contains a user
ID in its security header, it takes precedence over all other mechanisms.

Tasks that emanate from Liberty that are not classified as web requests run under the CJSU transaction
by default. Although there is no URIMAP style mechanism for these types of tasks, you can override the
default transaction ID by using the JVM profile property of
com.ibm.cics.jvmserver.unclassified.tranid and the default user ID by using the JVM profile
property com.ibm.cics.jvmserver.unclassified.userid.

Note: The user ID requires permission to attach the specified transaction. For more information, see
Transaction security.

Procedure

1. Configure the Liberty angel process to provide authentication and authorization services to the Liberty
JVM server, see The Liberty server angel process.

Tip: If you have a named angel process, you need to configure your Liberty JVM server to connect to it
by adding the following line to your JVM profile.

-Dcom.ibm.ws.zos.core.angelName=<named_angel>

2. Optional: Enforce the requirement to connect to the Liberty angel process when the Liberty JVM server
is being enabled by adding the following line to your JVM profile:

-Dcom.ibm.ws.zos.core.angelRequired=true

This option prevents the Liberty JVM server from starting if the angel process is unavailable.

254 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/dist_identity.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/dist_identity.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/link_2_liberty.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/link_2_liberty.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/cics/dfht535.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/security_angel.html

It instructs CICS to call the Liberty angel check API to verify whether an angel process is available for
Liberty JVM server startup.

If the angel process is unavailable, CICS reacts as follows:

• If the Liberty JVM server is being enabled through the CEMT transaction, a message is issued, and
the Liberty JVM server is disabled.

• If the Liberty JVM server is being enabled by the SET JVMSERVER SPI command or by using the
CMCI through the CICS Explorer, a message is issued, and the Liberty JVM server is disabled.

• If the Liberty JVM server is being enabled by the CICS CREATE SPI, by BAS, or from GRPLIST, a
message is issued, and CICS will wait 30 seconds before retrying the Liberty angel check API call. If
the angel process is unavailable on the fifth attempt, a WTOR message is issued, giving the operator
the option to continue waiting or to disable the JVMSERVER resource.

3. Add the cicsts:security-1.0 feature to the featureManager list in the server.xml,

<featureManager>
 ...
 <feature>cicsts:security-1.0</feature>
</featureManager>
...

4. Add the System Authorization Facility (SAF) registry to server.xml by using the following example:

<safRegistry id="saf" enableFailover="false"/>

5. Save the changes to server.xml.
6. Optional: Alternatively, if you are autoconfiguring the Liberty JVM server and the SEC system

initialization parameter is set to YES in the CICS region, the Liberty JVM server is dynamically
configured to support Liberty JVM security when the JVM server is restarted. For more information,
see Configuring a Liberty JVM server.
If the SEC system initialization parameter is set to NO, you can still use Liberty security for
authentication or SSL support. If CICS security is turned off, and you want to use a Liberty security, you
must configure the server.xml file manually:

a. Add the appSecurity-2.0 feature to the featuremanager list.
b. Add a user registry to authenticate users. Liberty security supports SAF, LDAP, and basic user

registries. For more information, see Configuring a user registry in Liberty.
c. Add security-role definitions to authorize access to application resources, see “Authorizing users to

run applications in a Liberty JVM server” on page 260.

Results
The web container is automatically configured to use the z/OS® Security feature of Liberty. A SAF registry
is used for authentication, and Java EE roles are respected for authorization. Authorization constraints
and security roles govern who can access the application. These are usually defined in the deployment
descriptor (web.xml) of the application, but might also be defined as security annotations in the source-
code. Typically, users and groups are mapped to roles by the applications <application-bnd> element in
server.xml. Alternatively, if the<safAuthorization> element is configured in server.xml, the mappings
are held in SAF (as EJBROLES in RACF).

What to do next

• Configure Liberty application security authentication rules; see “Authenticating users in a Liberty JVM
server” on page 258.

• Define authorization rules for web applications; see “Authorizing users to run applications in a Liberty
JVM server” on page 260 and “Authorization using SAF role mapping” on page 264.

• Modify the Liberty authentication cache.

For more information about using Secure Sockets Layer (SSL), see “Configuring SSL (TLS) for a Liberty
JVM server using a Java keystore” on page 274.

Chapter 9. Security for Java applications 255

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_jvmserver_liberty.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_sec_registries.html

The Liberty angel process
When you include the cicsts:security-1.0 feature, the CICS Liberty JVM server uses the angel
process to call z/OS authorized services such as System Authorization Facility (SAF).

Optionally, you can name an angel process. If an angel process is not given a name, it becomes the
default angel process. You can have only one default angel process. If you try to create another, it fails to
start. All the Liberty servers that are running on a z/OS image can share a single angel process. This is
regardless of the level of code that the servers are running or whether they are running in a CICS JVM
server. For more information about named angel processes, see Named angel.

Important: Install the latest version of the angel process, regardless of which product it is bundled with.
The latest version might be bundled with other IBM software, and might supersede the version that is
bundled with CICS.

Running the angel process started task

1. Locate the JCL procedure for the started task in the USSHOME directory, for example: /usr/lpp/
cicsts56/wlp/templates/zos/procs/bbgzangl.jcl

2. Modify and copy the JCL procedure to a JES procedure library. You can set ROOT to the value of
USSHOME/wlp, for example: ROOT=/usr/lpp/cicsts56/wlp

3. Start the angel process. In the following examples, [.identifier] indicates an optional identifier
that can be up to 8 characters.

a. To start the angel process without naming it, use the following command:

START BBGZANGL[.identifier]

b. To start the angel process as a named angel process, code the NAME parameter on the operator
START command. For example:

START BBGZANGL[.identifier],NAME=<named_angel>

The angel process name is 1 - 54 characters inclusive, and must use only the following characters:
A-Z 0-9 ! # $ + - / : < > = ? @ [] ˆ _ ` { } | ˜

Note: A Liberty server can use its own named angel process. One benefit of this isolation is that the
angel process can be serviced without affecting any other Liberty server instances on the LPAR. The
angel process must be running before the Liberty JVM server starts.

4. Start the Liberty JVM server. By default, the server connects to the unnamed angel process if one is
available. To connect to a specific angel process, set the com.ibm.ws.zos.core.angelName
property, for example:

-Dcom.ibm.ws.zos.core.angelName=named_angel

5. You can specify that CICS checks for the presence of a running angel process before enabling, by
setting the com.ibm.ws.zos.core.angelRequired property to true. For example:

-Dcom.ibm.ws.zos.core.angelRequired=true

The server fails if the angel process is not available during startup. Use of this property allows a
quicker and cleaner failure.

Interacting with the angel process started task

In the following examples, [.identifier] indicates an optional identifier that can be up to eight
characters.

• Stop the angel process.

STOP BBGZANGL[.identifier]

256 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/rwlp_named_angel.html

• Display the Liberty JVM servers that are connected to the angel process use the following console
command:

MODIFY BBGZANGL[.identifier],DISPLAY,SERVERS,PID

A list of job names and process identifiers (PID) are displayed:

15.48.45 STC82204 CWWKB0067I ANGEL DISPLAY OF ACTIVE SERVERS
15.48.45 STC82204 CWWKB0080I ACTIVE SERVER ASID 5c JOBNAME IYK3ZNA1 PID 83953428
15.48.45 STC82204 CWWKB0080I ACTIVE SERVER ASID 5c JOBNAME IYK3ZNA1 PID 33621002

Each Liberty JVM server runs under a unique PID, and is returned by the CICS command INQUIRE
JVMSERVER.

SAF profiles used by the angel process

This section describes the SAF profiles to which access is required for CICS processing. For information
on the full set of SAF profiles defined by Liberty, refer to Enabling z/OS authorized services on Liberty for
z/OS.

• The Liberty JVM server runs under the authority of the CICS region user ID. This user ID must be able to
connect to the angel process to use authorized services. The user ID that the angel process runs under
needs access to the SAF STARTED profile, for example:

RDEFINE STARTED BBGZANGL.* UACC(NONE) STDATA(USER(WLPUSER))
SETROPTS RACLIST(STARTED) REFRESH

• For the Liberty JVM server to connect to an angel process, create a profile for the angel (BBG.ANGEL, or
BBG.ANGEL.<namedAngelName> if you are using a named angel process) in the SERVER class. Give
the CICS region user ID (cics_region_user) authority to access it, for example, in RACF:

RDEFINE SERVER BBG.ANGEL UACC(NONE)
PERMIT BBG.ANGEL CLASS(SERVER) ACCESS(READ) ID(cics_region_user)

• For a Liberty server to use the z/OS authorized services, create a SERVER profile for the authorized
module BBGZSAFM and give the CICS region user ID (cics_region_user) to the profile:

RDEFINE SERVER BBG.AUTHMOD.BBGZSAFM UACC(NONE)
PERMIT BBG.AUTHMOD.BBGZSAFM CLASS(SERVER) ACCESS(READ) ID(cics_region_user)

• Give the Liberty JVM server, under the authority of the CICS region user ID (cics_region_user), access to
the SAF user registry and SAF authorization services (SAFCRED) in the SERVER class. For example, in
RACF:

RDEFINE SERVER BBG.AUTHMOD.BBGZSAFM.SAFCRED UACC(NONE)
PERMIT BBG.AUTHMOD.BBGZSAFM.SAFCRED CLASS(SERVER) ACCESS(READ) ID(cics_region_user)

• Create a SERVER profile for the IFAUSAGE services (PRODMGR) and allow the CICS region user ID
access to it. This allows the Liberty JVM server to register and unregister from IFAUSAGE when the
CICS JVM server is enabled and disabled:

RDEFINE SERVER BBG.AUTHMOD.BBGZSAFM.PRODMGR UACC(NONE)
PERMIT BBG.AUTHMOD.BBGZSAFM.PRODMGR CLASS(SERVER) ACCESS(READ) ID(cics_region_user)

• Refresh the SERVER resource:

SETROPTS RACLIST(SERVER) REFRESH

The following table summarizes the SAF security profiles that are used by a Liberty server running in a
CICS JVM server.

Chapter 9. Security for Java applications 257

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_config_security_zos.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_config_security_zos.html

Table 42. SAF profile table for CICS Liberty security

Class Profile Required for CICS region
user ID 1

Unauthenticat
ed user ID 2

Authenticated
user ID 3

SERVER BBG.ANGEL Angel process
registration at
Liberty server
startup

READ

SERVER BBG.ANGEL.<namedAngelName
>

Angel process
registration at
Liberty server
startup

READ

SERVER BBG.AUTHMOD.BBGZSAFM Angel process
registration at
Liberty server
startup

READ

SERVER BBG.AUTHMOD.BBGZSAFM.SAFC
RED

Angel process
registration at
Liberty server
startup

READ

SERVER BBG.AUTHMOD.BBGZSAFM.PROD
MGR

Angel process
registration at
Liberty server
startup

READ

SERVER BBG.SECPFX.BBGZDFLT 4 Authentication
or authorization

READ

APPL BBGZDFLT 4 Authentication
or authorization

READ READ

EJBROL
E

BBGZDFLT.<resource>.<role
> 5

Authentication
or authorization

READ

1. User ID that is associated with the CICS job or started task.
2. User ID used for unauthenticated requests in Liberty. The value is controlled by using the
unauthenticatedUser attribute of the <safCredentials> element. This value defaults to
WSGUEST.

3. User ID authenticated by the Liberty server.
4. BBGZDFLT is the default value for the security profile prefix that is set by using the profilePrefix

attribute of the <safCredentials> element, for example: <safCredentials
profilePrefix="BBGZDFLT"/>.

5. EJBROLE profiles are required if the <safAuthorization> element is configured. The default
pattern for the profile is controlled by the SAF role mapper element, which defaults to
<safRoleMapper profilePattern="%profilePrefix%.%resource%.%role%"/>.

For more information, see Process types on z/OS.

Authenticating users in a Liberty JVM server
Although you can configure CICS security for all web applications that run in a Liberty JVM server, the web
application will only authenticate users if it includes a security constraint. The security constraint is
defined by an application developer in the deployment descriptor (web.xml) of the Dynamic Web Project
or OSGi Application Project. The security constraint defines what is to be protected (URL) and by which
roles.

258 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/cwlp_zos_runtime_proc.html

A <login-config> element defines the way a user gains access to web container and the method used
for authentication. The supported methods are either HTTP basic authentication, form based
authentication or SSL client authentication. For further details on how to define application security for
CICS see SSL security for Explorer connections in the CICS Explorer product documentation. Here is an
example of those elements in web.xml:

<!-- Secure the application -->
<security-constraint>
 <display-name>com.ibm.cics.server.examples.wlp.tsq.web_SecurityConstraint</display-name>
 <web-resource-name>com.ibm.cics.server.examples.wlp.tsq.web</web-resource-name>
 <description>Protection area for com.ibm.cics.server.examples.wlp.tsq.web</description>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <description>Only SuperUser can access this application</description>
 <role-name>SuperUser</role-name>
 </auth-constraint>
 <user-data-constraint>
 <!-- Force the use of SSL -->
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
</security-constraint>

<!-- Declare the roles referenced in this deployment descriptor -->
<security-role>
 <description>The SuperUser role</description>
 <role-name>SuperUser</role-name>
</security-role>

<!--Determine the authentication method -->
<login-config>
 <auth-method>BASIC</auth-method>
</login-config>

Note: If you use RequestDispatcher.forward() methods to forward requests from one servlet to another,
the security check occurs only on the first servlet that is requested from the client.

Tasks that are authenticated in CICS using Liberty security can use the user ID derived from any of the
Liberty application security mechanisms to authorize transaction and resource security checks in CICS.
The CICS user ID is determined according to the following criteria:

1. Liberty application security authentication.

Integration with the SAF user registry is part of the CICS Liberty security feature, unless distributed
identity mapping is used. Any of the application security mechanisms supported by Liberty are
supported in CICS, this includes HTTP basic authentication, form login, SSL client certificate
authentication, identity assertion using a custom login module, JACC, JASPIC, or a Trust Association
Interceptor (TAI). All SAF user IDs authenticated by Liberty must be granted read access to the Liberty
JVM server APPL class profile. The name of this is determined by the profilePrefix setting in the
safCredentials element in the Liberty server configuration file server.xml.

<safCredentials profilePrefix="BBGZDFLT"/>

The APPL class is also used by CICS terminal users to control access to specific CICS regions and your
Liberty JVM server can use the same profile as the CICS APPLID depending upon your security
requirements. If you do not specify this element, then the default profilePrefix of BBGZDFLT is used.

You must define the APPLID and users must have access to the it. To configure and activate the
BBGZDFLT profile in the APPL class:

RDEFINE APPL BBGZDFLT UACC(NONE)
SETROPTS CLASSACT(APPL)

The users must be given read access to the BBGZDFLT profile in the APPL class in order to
authenticate. To allow user AUSER to authenticate against the BBGZDFLT APPL class profile:

PERMIT BBGZDFLT CLASS(APPL) ACCESS(READ) ID(AUSER)

Chapter 9. Security for Java applications 259

https://www.ibm.com/support/knowledgecenter/SSSQ3W_5.5.0/com.ibm.cics.core.help/topics/concepts/SSL_intro.html

The Liberty SAF unauthenticated user id must be given read access to the APPL class profile. The SAF
unauthenticated user id can be specified in the safCredentials element in the Liberty server
configuration file server.xml.

<safCredentials unauthenticatedUser="WSGUEST"/>

If you do not specify the element, then the default unauthenticatedUser is WSGUEST. To allow the SAF
unauthenticated user id WSGUEST read access to the BBGZDFLT profile in the APPL class:

PERMIT BBGZDFLT CLASS(APPL) ACCESS(READ) ID(WSGUEST)

The WLP z/OS System Security Access Domain (WZSSAD) refers to the permissions granted to the
Liberty server. These permissions control which System Authorization Facility (SAF) application
domains and resource profiles the server is permitted to query when authenticating and authorizing
users. The CICS region user ID must be granted permission within the WZSSAD domain to make
authentication calls. To grant permission to authenticate, the CICS region ID must be granted READ
access to the BBG.SECPFX.<APPL> profile in the SERVER class:

RDEFINE SERVER BBG.SECPFX.BBGZDFLT UACC(NONE)
PERMIT BBG.SECPFX.BBGZDFLT CLASS(SERVER) ACCESS(READ) ID(cics_region_user)

For more details refer to Accessing z/OS security resources using WZSSAD.
2. If an unauthenticated subject is supplied from Liberty, then the USERID defined in the URIMAP will be

used.
3. If no USERID is defined in the URIMAP the request will run under the CICS default user ID.

Note:

Due to the way that security processing for Liberty transactions is deferred during CICS transaction attach
processing, the user ID used in the CICS Monitoring Facility (CMF) records, the z/OS Workload Manager
(WLM) classification, and the task association data and the UEPUSID global user exits field for the
XAPADMGR exit, will be determined as follows; the user ID in the HTTP security header, or if there isn't
one, the user ID taken from matching URIMAP. If neither exist, the CICS default user ID will be used.

Be aware that Liberty caches authenticated user IDs and, unlike CICS, does not check for an expired user
ID within the cache period. You can configure the cache timeout by using the standard Liberty
configuration process. Please see Configuring the authentication cache in Liberty.

Authorizing users to run applications in a Liberty JVM server
You can use Java EE application security roles to authorize access to Java EE applications. Additionally, in
a Liberty JVM server you can further restrict access to transactions (run as part of the application) by
using CICS transaction and resource security.

About this task

Your application is secured by providing an authorization constraint, the <auth_constraint> element,
in the deployment descriptor (web.xml). If present, this ensures that access to your application is
achieved only by a user that is a member of an authorized role. User or group membership to a Java EE
role is determined in one of two ways:

• Use an <application-bnd> element in the <application> element of your server.xml to
describe the user/group to role mappings directly in XML.

• Use <safAuthorization> in your server.xml to allow users/groups role membership to be mapped
by SAF (typically using EJBROLES).

For more information, see Authorization using SAF role mapping.

Using CICS security allows you to re-use existing security procedures but requires that individual web
applications are accessed from different URIMAPs. Using role-based security allows you to use existing
standard Java EE security definitions from another Java EE application server. For more information, see
“Authenticating users in a Liberty JVM server” on page 258.

260 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/rwlp_WZSSAD_zos.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_sec_cache.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/jee_app_role.html

If you want to use CICS transaction and resource authorization exclusively, or prefer to use finer-grained
annotation-based role checking in code, you can defer the authorization decision to those components by
using the special subject ALL_AUTHENTICATED_USERS role, as shown in the following example. If you
deploy a Liberty application in a CICS bundle, CICS automatically configures this for you.

Note: Access checks are performed for the declarative security annotations and CICS transaction and
resource security only after the configured constraints (web.xml) are verified

<application id="com.ibm.cics.server.examples.wlp.tsq.app"
 name="com.ibm.cics.server.examples.wlp.tsq.app" type="eba"
 location="${server.output.dir}/installedApps/com.ibm.cics.server.examples.wlp.tsq.app.eba">
 <application-bnd>
 <security-role name="cicsAllAuthenticated">
 <special-subject type="ALL_AUTHENTICATED_USERS"/>
 </security-role>
 </application-bnd>
</application>

Using this special subject, and giving the cicsAllAuthenticated role access to all URLs in your web
applications deployment descriptor (web.xml), allows access to the web application using any
authenticated user ID and authorization to the transaction must be controlled using CICS transaction
security. If you deploy your application directly to the dropins directory, it is not configured to use CICS
security as dropins does not support security.

If you are using safAuthorization then the <application-bnd> no longer acts as the source of user ID
to role mapping. Instead, EJBROLEs in SAF determine which SAF users are in which roles (EJBROLEs).
With safAuthorization the <application-bnd> is ignored. To achieve the same effect and allow all
authenticated users to be authorized to run your application, the <auth-constraint> in web.xml must
use the special role **, for example:

<auth-constraint>
 <description>special role for all authenticated users</description>
 <role-name>**</role-name>
</auth-constraint>

• The special role name ** is a shorthand for any authenticated user independent of role.
• The special role name * is a shorthand for all role names defined in the deployment descriptor.

When the special role name ** appears in an authorization constraint, it indicates that any authenticated
user, independent of role, is authorized to perform the constrained requests. Special roles do not need an
additional <security-role> declaration in web.xml.

To use CICS transaction or resource security you should follow the following steps:

Procedure

1. Define a URIMAP of type JVMSERVER for each web application. Typically, you might specify a URIMAP
to match the generic context root (URI) of a web application to scope the transaction ID to the set of
servlets that make up the application. Or you may choose to run each individual servlet under a
different transaction with a more precise URI.

2. Authorize all users of the web application to use the transaction specified in the URIMAP using CICS
transaction or resource security profiles.

Authorizing applications by using OAuth 2.0
OAuth 2.0 is an open standard for delegated authorization. The OAuth authorization framework enables a
user to grant a third-party application access to information that is stored with another HTTP service
without sharing their access permissions or the full extent of their data.

WebSphere Liberty supports OAuth 2.0, and can be used as an OAuth service provider endpoint and an
OAuth protected resource enforcement endpoint. Liberty supports persistent OAuth 2.0 services. See
Configuring persistent OAuth 2.0 services. Clients can be defined locally with the localStore and client
elements. The following procedure uses local clients to enable OAuth 2.0 authorization.

Chapter 9. Security for Java applications 261

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/config_oauth.html

Before you begin
SAF security is a common use-case in CICS, and this procedure uses SAF in the examples.

Ensure that the CICS region is configured to use SAF security and is defined with SEC=YES as a system
initialization parameter.

Optionally, you can grant an administrator user access to the SAF EJBROLE
BBGZDFLT.com.ibm.ws.security.oauth20.clientManager. The security role clientManager
controls access to the management interfaces, allowing local clients to be queried, and persistent local
clients to be created. The administrator user controls OAuth 2.0 local clients.

Configure the Liberty angel process to provide authentication and authorization services to the Liberty
JVM server. See The Liberty server angel process.

For more information about OAuth, see oauth-2.0.

About this task
The following procedure covers how to:

• Create an OAuth 2.0 service provided in a Liberty JVM server.
• Create a locally configured client.
• Use this local client to grant an OAuth 2.0 token to a relying party application, also known as a third-

party web application.
• Use this token to access protected resources in an application.

Restriction: Db2 JDBC type 2 connectivity is not supported for persistent OAuth 2.0 services.

Procedure

1. Configure an OAuth 2.0 service provider.
a) Add the oauth-2.0 and the cicsts:security-1.0 features to the featureManager element

in server.xml.

<featureManager>
 ...
 <feature>oauth-2.0</feature>
 <feature>cicsts:security-1.0</feature>
</featureManager>
...

b) Configure an OAuth 2.0 provider in server.xml.

<oauthProvider id="myProvider">
</oauthProvider>

2. Configure a local client for the relying party application. Local clients define the details of the relying
party application, including the name, secret password, and redirect URI of the application.
a) Define a meaningful local client name and create a secret password that is used by the server for

authorization. The local client application listens on a URI, and the server supplies authorization
codes.

b) Configure an OAuth 2.0 local client in the oauthProvider element of server.xml, supplying the
local client ID, secret password, and the redirect URI.

<oauthProvider id="myProvider">
 <localStore>
 <client id="myClient" redirect="https://client.example.ibm.com/webApp/redirect"
secret="mySecret" />
 </localStore>
</oauthProvider>

Important:

262 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/security_angel.html
https://www.ibm.com/support/knowledgecenter/en/SS7K4U_liberty/com.ibm.websphere.liberty.autogen.zos.doc/ae/rwlp_feature_oauth-2.0.html

Although it is not shown in this example, it is important to encode passwords and limit access to
server.xml configuration. Passwords can be encoded by using the Liberty securityUtility,
found in USS_HOME/wlp/bin/securityUtility. For more information, see securityUtility
command.

Note: More than one local client can be configured in the localStore element.
3. When the relying party application requires access to protected resources on the server, the user must

authorize access to these resources first.
a) The relying party application requires the user to authenticate with the server, and select the type

of access for the relying party application by linking or redirecting the user to the authorization
endpoint:

https://hostname:port/oauth2/endpoint/provider_name/authorize

or

https://hostname:port/oauth2/declarativeEndpoint/provider_name/authorize

Additional parameters are required in the query parameters of the URL. For the local client that was
configured in step 2, the following GET request is required (all one line):

https://zos.example.ibm.com/oauth2/endpoint/myProvider/authorize?response_type=code
 &client_id=myClient&client_secret=mySecret&redirect_uri=https://client.example.ibm.com/webApp/redirect

After the user selects the access for the relying party application, they are redirected back to the
relying party application using the redirect URI:

https://client.example.ibm.com/webApp/redirect?code=access_code

The relying party application must store this access code to request an OAuth token.

Note: For local clients, the user must exist in a user register in the Liberty JVM server. For more
information about authenticating users in Liberty JVM servers, see Authenticating users in a Liberty
JVM server.

b) The relying party application requests an OAuth 2.0 token by sending a POST request to the server:

https://hostname:port/oauth2/endpoint/provider_name/token

The relying party application sends the authorization code that is received from the authorization
endpoint, the local client ID, and the secret password in the POST data (grant_type is all one
line):

POST https://zos.example.ibm.com/oauth2/endpoint/myProvider/token HTTP/1.1
Content-Type: application/www-form-urlencoded

grant_type=authorization_code&code=code&client_id=myClient
 &client_secret=mySecret&redirect_url=https://client.example.ibm.com/webApp/redirect

This returns a JSON document that contains the token.
4. Use the token to access protected resources.

a) Add the token to the Authorization header on the HTTP request.
Authorization: Bearer <token>

Results
Users are able to authorize third-party applications to access their protected resources in a Liberty JVM
server through OAuth 2.0 authorizations flows. The Liberty JVM server can configure the provider of these
tokens and create locally configured clients.

Several methods to grant tokens are available. For more information, see OAuth 2.0 service invocation.

Chapter 9. Security for Java applications 263

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/rwlp_command_securityutil.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/rwlp_command_securityutil.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/auth_use_app.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/auth_use_app.html
https://www.ibm.com/support/knowledgecenter/en/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/cwlp_oauth_invoking.html

Configuring persistent OAuth 2.0 services
WebSphere Liberty supports persisting OAuth 2.0 local clients and tokens to a database. With persistent
OAuth 2.0, an authorized local client can continue to access OAuth 2.0 services after a restart.

Before you begin
SAF security is a common use-case in CICS, and this procedure uses SAF in the examples.

• Gain the necessary access to create tables and read/write to these tables in a database and configure it
in the Liberty server.xml.

• Grant access to the SAF EJBROLE BBGZDFLT.com.ibm.ws.security.oauth20.clientManager to
an administrator user to control OAuth 2.0 local clients.

• Create an OAuth 2.0 provider in the Liberty server.xml. For more information, see Authorization using
OAuth 2.0.

About this task

The following steps create a persistent OAuth 2.0 local client. This local client is used to grant OAuth 2.0
tokens.

Restriction: Db2 JDBC type 2 connectivity is not supported for persistent OAuth 2.0 services.

Procedure

1. Create the necessary tables using IBM Db2 for persistent OAuth services as a guide.
2. Create a persistent local client by sending a POST request to the URL:

https://hostname:port/oauth2/endpoint/provider_name/registration

Use the JSON document which is described in the first table in Configuring an OpenID Connect
Provider to accept client registration requests; for example:

{
 "client_id": "client_id",
 "client_secret": "client_secret",
 "grant_types": ["authorization_code", "refresh_token"],
 "redirect_uris": ["https://client.example.ibm.com/webApp/redirect"]
}

Results
A persistent OAuth 2.0 local client is created. When this local client is used to produce tokens, the tokens
are persisted to the database. If the server restarts, the persistent local client and tokens remain valid.

Authorization using SAF role mapping
Mapping Java EE roles to users and groups can be achieved in different ways. In distributed systems, a
basic registry or LDAP registry would typically be used in conjunction with an application specific
<application-bnd> element, to map users from those registries into roles. The deployment descriptor
of the application determines which roles can access which parts of the application.

About this task

On z/OS, there is an additional registry type, the System Authorization Facility (SAF) registry. A Liberty
JVM server implicitly uses this type for authentication when the cicsts:security-1.0 feature is
installed unless configured to use LDAP. You can choose to make use of SAF authorization. When using
SAF authorization, user to role mappings are used to map roles to EJBROLE resource profiles using the
SAF role mapper. The server queries SAF to determine if the user has the required READ access to the
EJBROLE resource profile.

In a Liberty JVM server, if you want to use Java EE roles without SAF authorization, you cannot use CICS
bundles to install your applications. This is because a CICS bundle installed application automatically
creates an <application-bnd> element and uses the ALL_AUTHENTICATED_USERS special-subject,

264 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/auth_oauth.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/auth_oauth.html
https://www.ibm.com/support/knowledgecenter/en/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/cwlp_oauth_db2.html
https://www.ibm.com/support/knowledgecenter/en/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_client_registration.html
https://www.ibm.com/support/knowledgecenter/en/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_client_registration.html

which prevents you from defining the element yourself. Instead, you must create an <application>
element in server.xml directly and configure the <application-bnd> with the roles and users you
require.

If, however, you choose to use Java EE roles and SAF authorization, you can continue to use CICS bundles
to lifecycle your web applications. The <application-bnd> is ignored by Liberty in favor of using the
role mappings determined by the SAF registry. Role mappings are determined by virtue of a user
belonging to an EJB role.

Tip: Special subjects ALL_AUTHENTICATED_USERS and EVERYONE can not be used when SAF
authorization is enabled.

Tip: It is advisable to create or update your EJB roles before starting the CICS region. Liberty issues a
RACROUTE REQUEST=LIST with GOBAL=NO in order to support a minimum version of z/OS. The address
space will not see updates until it is restarted (or started).

Procedure

1. Add the <safAuthorization id="saf"/> element to your server.xml. If you are using the
cicsts:distributedIdentity-1.0 feature, this is defined for you.

2. Optional: You can add racRouteLog="ASIS" to the element in the previous step.
This allows you to see the RACF EJBROLE logging from Liberty.

3. Create the EJB roles in RACF, with reference to the prefix scheme described.
4. Add users to those EJB roles.

By default, if SAF authorization is used, the application uses the pattern
<profile_prefix>.<resource>.<role> to determine if a user is in a role. The profile_prefix
defaults to BBGZDFLT but can be modified using the <safCredentials> element. For more
information, see Accessing z/OS security resources using WZSSAD.

The role mapping preferences can be modified using the <safRoleMapper> element in the
server.xml, for example:

<safRoleMapper profilePattern="myprofile.%resource%.%role%" toUpperCase="true"/>

Users can then be authorized to a particular EJB role using the following RACF commands, where
WEBUSER is the authenticated user ID.

RDEFINE EJBROLE BBGZDFLT.MYAPP.ROLE UACC(NONE)
PERMIT BBGZDFLT.MYAPP.ROLE CLASS(EJBROLE) ACCESS(READ) ID(WEBUSER)

5. Optional: If you are deploying the CICS servlet examples and want to use the Java EE role security
with SAF authorization, create a SAF EJBROLE for each servlet that you have deployed. For example,
if you use the default APPL class of BBGZDFLT, define the following EJBROLE security definitions using
RACF commands:

RDEFINE EJBROLE BBGZDFLT.com.ibm.cics.server.examples.wlp.hello.war.cicsAllAuthenticated UACC(NONE)
RDEFINE EJBROLE BBGZDFLT.com.ibm.cics.server.examples.wlp.tsq.app.cicsAllAuthenticated UACC(NONE)
RDEFINE EJBROLE BBGZDFLT.com.ibm.cics.server.examples.wlp.jdbc.app.cicsAllAuthenticated UACC(NONE)
SETROPTS RACLIST(EJBROLE) REFRESH

Give read access to the defined roles for each web user ID that requires authorization:

PERMIT BBGZDFLT.com.ibm.cics.server.examples.wlp.hello.war.cicsAllAuthenticated
 CLASS(EJBROLE) ID(user) ACCESS(READ)
PERMIT BBGZDFLT.com.ibm.cics.server.examples.wlp.tsq.app.cicsAllAuthenticated
 CLASS(EJBROLE) ID(user) ACCESS(READ)
PERMIT BBGZDFLT.com.ibm.cics.server.examples.wlp.jdbc.app.cicsAllAuthenticated
 CLASS(EJBROLE) ID(user) ACCESS(READ)
SETROPTS RACLIST(EJBROLE) REFRESH

Chapter 9. Security for Java applications 265

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/rwlp_WZSSAD_zos.html

Results
You can authorize access to web applications using CICS Security, Java EE role security, or both by
defining the roles and the users in the roles.

Configuring security for a Liberty JVM server with the Java EE security API 1.0
Java EE 8 introduces a portable, flexible, and standardized security model with the Java EE security API
1.0. A Liberty JVM server can be configured to respect the new security configuration through the
inclusion of the Liberty appSecurity-3.0 feature.

The Java EE security API 1.0 specification covers three principles:

1. Authentication mechanism: provided by the HttpAuthenticationMechanism interface for the servlet
container

2. Identity store: an attempt to standardize the JAAS LoginModule
3. Security context: an access point for programmatic security

Authentication mechanism

An authentication mechanism is a way that is used to obtain a username and password from the user to
be processed later by the Java Security API. There are two standard options for authentication, both take
advantage of the annotations that are introduced by the Java EE security 1.0 API.

HTTP basic authentication

Basic authentication displays the browser's native login dialog before the user can access the
protected resource.

@BasicAuthenticationMechanismDefinition(realmName="user-realm")
@WebServlet("/home") @DeclareRoles({"user"})
@ServletSecurity(@HttpConstraint(rolesAllowed = "user"))
public class HomeServlet extends HttpServlet {
 ...
}

Form-based authentication
You can use form-based authentication to replace the browser’s built-in dialog with your own custom
HTML form. You can create an application config class with annotations as follows:

@FormAuthenticationMechanismDefinition(
 loginToContinue = @LoginToContinue(
 loginPage = "/login",
 errorPage = "/error"
)
)
@ApplicationScoped
public class ApplicationConfig {
 ...
}

Identity store

A component acts as a DAO (Data Access Object) for accessing user information, including their
usernames, passwords, and associated roles. A number of identity store types are introduced by the Java
EE security API 1.0, including:
Database identity store

A database identity store is used to retrieve user information from a relation database.

@DatabaseIdentityStoreDefinition(
dataSourceLookup = "jdbc/sec",
 callerQuery = "#{'select password from USR where USERNAME = ?'}",
 groupsQuery = "#{'select ugroup from USR where USERNAME = ?'}",
 hashAlgorithm = Pbkdf2PasswordHash.class,
 priorityExpression = "#{100}",
 hashAlgorithmParameters = {
 "Pbkdf2PasswordHash.Iterations=3072",
 "Pbkdf2PasswordHash.Algorithm=PBKDF2WithHmacSHA512",

266 CICS TS for z/OS: Java Applications in CICS

 "Pbkdf2PasswordHash.SaltSizeBytes=64"
 }
)

Lightweight Directory Access Protocol (LDAP) identity store

LDAP is a common way of organizing a user's access to different systems across a single organization.
LDAP realizes the idea of Single-Sign On, where a user has a single username and password, and then
uses it across all different systems that are used to perform the everyday business of a specific
organization.

@WebServlet("/home")
@ServletSecurity(@HttpConstraint(rolesAllowed = "user"))
@LdapIdentityStoreDefinition(
 url = "ldap://localhost:33389/",
 callerBaseDn = "ou=user,dc=jsr375,dc=net",
 groupSearchBase = "ou=group,dc=jsr375,dc=net"
)
public class HomeServlet extends HttpServlet{
 ...
}

URL: The URL of the LDAP server to use for authentication.

callerBaseDn: Base distinguished name for callers in the LDAP store.

groupSearchBase: Search base for looking up groups.

Custom identity store

In addition to the built-in identity stores found in Java EE security API 1.0, a user can implement their
own identity store and control exactly where to obtain user information. This can be achieved by
creating a custom identity store class, then creating an HTTP authentication mechanism associated
with this custom identity store.

Security context

The security context object is used to programmatically check a user's authority to access a specific
resource. This is useful when you need to perform custom behavior. In this example, the user is
forwarded to another page only if they have access to it:

@WebServlet("/home")
public class HomeServlet extends HttpServlet {
 @Inject
 private SecurityContext securityContext;
 @Override
 protected void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {
 if (securityContext.hasAccessToWebResource("/anotherServlet", "GET")) {
 req.getRequestDispatcher("/anotherServlet").forward(req, res);
 } else {
 req.getRequestDispatcher("/logout").forward(req, res);
 }
 }
}

For more information about the Java EE 8 security API, see Java EE Security API in the Liberty Knowledge
Centre.

Authenticating by using a database identity store
You can use the @DatabaseIdentityStoreDefinition interface to retrieve user credentials from a database
for authentication.

About this task

Follow these steps to authenticate by using a database identity store.

Chapter 9. Security for Java applications 267

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/rwlp_sec_jee_api.html

Procedure

1. Add the appSecurity-3.0 feature to server.xml before you start the server.
2. Ensure that CDI annotation file scanning is enabled. CICS disables it by default in server.xml.

You can ensure CDI annotation file scanning is enabled by checking the following line is not present in
server.xml: <cdi12 enableImplicitBeanArchives="false"/>.

3. Create a table in the database and set up server.xml.
For example, to create a Db2 table using SQL:

CREATE TABLE PXX.USR (
 USERNAME VARCHAR (256) NOT NULL,
 PASSWORD VARCHAR (256) NOT NULL,
 UGROUP VARCHAR (256) NOT NULL
) IN SECU.TSSE;
CREATE UNIQUE INDEX INDXUSRS ON PXX.USR (USERNAME);

The password in the database must be encrypted. An example of inserting an encrypted password into
a database can be found here: Database Setup
a) Add the jdbc-4.2 feature in server.xml:

<feature>jdbc-4.2</feature>

b) Set jndiName in server.xml, for example:

<dataSource id="DefaultDataSource" jndiName="jdbc/sec">
 <jdbcDriver libraryRef=“<xxx>"/>
 ...
</dataSource>

4. Determine whether to use SAF for the CICS task userid.
a) If you do not want to push the database identity onto the CICS task, you can remove the default

safRegistry setting in server.xml. This makes the CICS task run under the default CICS userid.
b) If you want CICS tasks to run under specific SAF users mapped from your database identity store,

you need to take the following steps:

1) Configure SAF in server.xml by setting the following SAF elements.

<safCredentials mapDistributedIdentities="true" profilePrefix=“<xxx>"/>
<safAuthorization id="saf"/>
<safRoleMapperprofilePattern=“<xxx>.%resource%.%role%" toUpperCase="false”/>

2) Issue the RACMAP command. The general RACMAP command of mapping a distributed userid
to a SAF userid is in the format of:

RACMAP ID(userid)
MAP
WITHLABEL('label-name')
USERDIDFILTER(NAME('distributed-identity-user-name'))
REGISTRY(NAME('distributed-identity-registry-name'))

Use “defaultRealm” in REGISTRY(NAME(‘<nnn>’)), and use “<username_in_DBIS>” in
USERDIDFILTER(NAME(‘<nnn>’)), for example:

RACMAP ID(JATM12) MAP WITHLABEL('authorisedUser:JATM12')
USERDIDFILTER(NAME('authorisedUser')) REGISTRY(NAME('defaultRealm'))

Note: If you deploy the application in a CICS bundle, the security role "cicsAllAuthenticated"
is automatically set in the installedApps.xml as follows:

<application ...>
 <application-bnd>
 <security-role name="cicsAllAuthenticated">
 <special-subject type="ALL_AUTHENTICATED_USERS"/>
 </security-role>
 </application-bnd>
</application>

268 CICS TS for z/OS: Java Applications in CICS

https://github.com/eclipse-ee4j/soteria/blob/master/test/app-db/src/main/java/org/glassfish/soteria/test/DatabaseSetup.java

The security role "cicsAllAuthenticated" takes precedence over the group name that is
stored in the database identity store and an HTTP 403 error occurs. There are two options you take:

1) Deploy your database identity store application with a direct <application> element in
server.xml.

2) Deploy within a CICS bundle, but use safAuthorization to bypass the CICS-generated
<application-bnd> which overrides the group information stored in the Custom Identity
Store.

Results
You have successfully configured the database identity store.

Authenticating by using a custom identity store
You can use a custom identity store to implement your own identity store and control exactly where to
obtain user information.

About this task

Follow these steps to authenticate by using a custom identity store.

Procedure

1. Add the appSecurity-3.0 feature to server.xml before you start the server.
2. Ensure that CDI annotation file scanning is enabled. CICS disables it by default in server.xml.

You can ensure that CDI annotation file scanning is enabled by checking the following line is not
present in server.xml: <cdi12 enableImplicitBeanArchives="false"/>.

3. Create Java classes to process the custom identity store logic and build them into a WAR file.
a) Create a custom identity store object, by creating a class that implements the IdentityStore

interface, as shown in the following example:

@ApplicationScoped
public class MyIdentityStore implements IdentityStore {
 public CredentialValidationResult validate(UsernamePasswordCredential userCredential)
{
 if (userCredential.compareTo("authorisedUser", "tomtom")) {
 return new CredentialValidationResult("authorisedUser",
 new HashSet<String>(asList("user")));
 }
 return INVALID_RESULT;
 }
}

b) Create an HTTP authentication mechanism associated with this identity store, which is used with
the identity store class that is created in the previous step:

@ApplicationScoped
public class MyAuthMechanism implements HttpAuthenticationMechanism {

 @Inject
 private IdentityStoreHandler idStoreHandler;

 public AuthenticationStatus validateRequest(HttpServletRequest req,
 HttpServletResponse res, HttpMessageContext context) {
 CredentialValidationResult result = idStoreHandler.validate(
 new UsernamePasswordCredential(
 req.getParameter("name"),
 req.getParameter("password")));
 if (result.getStatus() == CredentialValidationResult.Status.VALID) {
 return context.notifyContainerAboutLogin(result);
 } else {
 return context.responseUnauthorized();
 }
 }
}

c) Create a servlet.

Chapter 9. Security for Java applications 269

@WebServlet("/home")
@ServletSecurity(@HttpConstraint(rolesAllowed = "user"))
public class Servlet extends HttpServlet {...}

4. Determine whether to use SAF for the CICS task userid.
a) If you do not want to push the custom identity onto the CICS task, you can remove the default

safRegistry setting in server.xml. This makes the CICS task run under the default CICS userid.
b) If you want CICS tasks to run under specific SAF users mapped from your custom identity store,

you need to take the following steps:

1) Configure SAF in server.xml by setting the following SAF elements.

<safCredentials mapDistributedIdentities="true" profilePrefix=“<xxx>"/>
<safAuthorization id="saf"/>
<safRoleMapperprofilePattern=“<xxx>.%resource%.%role%" toUpperCase="false”/>

2) Issue the RACMAP command. The general RACMAP command of mapping a distributed userid
to a SAF userid is in the format of:

RACMAP ID(userid)
MAP
WITHLABEL('label-name')
USERDIDFILTER(NAME('distributed-identity-user-name'))
REGISTRY(NAME('distributed-identity-registry-name'))

Use “defaultRealm” in REGISTRY(NAME(‘<nnn>’)), and use “<username_in_CIS>” in
USERDIDFILTER(NAME(‘<nnn>’)), for example:

RACMAP ID(JATM12) MAP WITHLABEL('authorisedUser:JATM12')
USERDIDFILTER(NAME('authorisedUser')) REGISTRY(NAME('defaultRealm'))

Note: If you deploy the application within a CICS bundle, the security role
"cicsAllAuthenticated" is automatically set in installedApps.xml as follows:

<application ...>
 <application-bnd>
 <security-role name="cicsAllAuthenticated">
 <special-subject type="ALL_AUTHENTICATED_USERS"/>
 </security-role>
 </application-bnd>
</application>

It takes precedence over the group name that is stored in the custom identity store and an HTTP
403 error occurs. There are two options you can take:

1) Deploy your custom identity store application with a direct <application> element in
server.xml.

2) Deploy within a CICS bundle, but use safAuthorization to bypass the CICS-generated
<application-bnd> which overrides the group information stored in the custom identity
store.

Results
You have successfully configured the custom identity store.

Configuring security for a Liberty JVM server by using an LDAP registry
Liberty uses a user registry to authenticate a user and retrieve information about users and groups to
perform security-related operations, including authentication and authorization. Default CICS Liberty
security uses the SAF registry. However, many transactions that run on CICS are initiated by users who
authenticate their identities on distributed application servers, so CICS also supports the use of a
Lightweight Directory Access Protocol (LDAP) registry in Liberty. To use LDAP, it is necessary to manually
configure the server.xml.

270 CICS TS for z/OS: Java Applications in CICS

Before you begin

• Ensure that the CICS region is configured to use SAF security and is defined with SEC=YES as a system
initialization parameter.

• Authorize application developers and system administrators to create, view, update, and remove
JVMSERVER and BUNDLE resources to deploy web applications into a Liberty JVM server. The
JVMSERVER resource controls the availability of the JVM server, and the BUNDLE resource is a unit of
deployment for the Java applications and controls the availability of the applications.

About this task

This task explains how to configure LDAP security for a Liberty JVM server, and integrate Liberty security
with CICS security. Distributed identity mapping can be used to associate a SAF user ID with a distributed
identity. You can use the CICS distributed identity mapping feature to set up distributed identity mapping.
A user can then log on to a CICS web application with their distributed identity, as authenticated by an
LDAP server. Filters that are defined in the z/OS security product (RACMAP) determine the mapping of
this identity to a SAF user ID. This SAF user ID can then be used to authorize access to web applications
through JEE application role security, providing integration with CICS transaction and resource security.
You can map a SAF user ID to one or more distributed identities.

The default transaction ID for running any web request is CJSA. You can configure CICS to run web
requests under a different transaction ID by using a URIMAP of type JVMSERVER. You can specify a
URIMAP to match the generic context root (URI) of a web application to scope the transaction ID to the
set of servlets that make up the application. Or you can choose to run each individual servlet under a
different transaction with a more precise URI.

There are three scenarios for this task:

• Scenario 1 – Distributed identity mapping with SAF authorization
• Scenario 2 – Distributed identity mapping without SAF authorization
• Scenario 3 – LDAP for authentication and authorization

Procedure

1. Distributed identity mapping with SAF authorization

You can use the CICS distributed identity mapping feature, cicsts:distributedIdentity-1.0 to
enable LDAP distributed identities to be mapped to SAF user IDs. When used with the CICS security
feature cicsts:security-1.0, Liberty LDAP security is used for authentication and JEE application
role security from EJB role mappings are respected for authorization. CICS transactions run under the
mapped SAF user ID providing integration with CICS transaction and resource security.

a. Configure the WebSphere Liberty angel process to provide authentication and authorization
services to the Liberty JVM server, for more information see The Liberty server angel process.

b. Add the cicsts:security-1.0 and the cicsts:distributedIdentity-1.0 feature to the
featureManager list in the server.xml.

<featureManager>
 ...
 <feature>cicsts:security-1.0</feature>
 <feature>cicsts:distributedIdentity-1.0</feature>
</featureManager>
...

c. Configure Liberty to use LDAP authentication by defining the LDAP server in the server.xml, for
example:

<ldapRegistry id="ldap"
 host="host.domain.com" port="389"
 ldapType="IBM Tivoli Directory Server"
 baseDN="ou=users,dc=domain,dc=com"
 ignoreCase="true">
</ldapRegistry>

Chapter 9. Security for Java applications 271

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/security_angel.html

Full details on configuring LDAP user registries with Liberty are available in Configuring LDAP user
registries in Liberty.

d. Remove the safRegistry element, if present. Save the changes to the server.xml.
e. Make the necessary RACF definitions, including setting up the RACMAPs to map distributed

identities to SAF user IDs as which are described in Configuring LDAP user registries in Liberty and
providing access for these user IDs to the appropriate EJBROLES as described in “Authorization
using SAF role mapping” on page 264. CICS configures SAF authorization and the
mapDistributedIdentities attributes in the safCredentials configuration element for you.

When the cicsts:distributedIdentity-1.0 feature is used with the cicsts:security-1.0
feature, Liberty LDAP security is used for authentication, and JEE application role security from EJB
role mappings are respected for authorization. CICS transactions run under the RACMAP mapped user
ID providing integration with CICS transaction and resource security.

What to do next

Back to top
2. Distributed identity mapping without SAF authorization

It is possible to allow CICS transactions to run under a RACMAP mapped user ID while respecting the
roles configured in the application’s <application-bnd> element. This might be useful when
migrating work from distributed Liberty to CICS Liberty. Be aware that if CICS bundles are used, a
user-defined <application-bnd> is overwritten by the CICS-generated <application-bnd>. SAF
authorization using role mapping is preferred, for more information see “Authorization using SAF role
mapping” on page 264 for more details.

a. Configure the WebSphere Liberty angel process to provide authentication and authorization
services to the Liberty JVM server, for more information, see The Liberty server angel process.

b. Add the cicsts:security-1.0 and the ldapRegistry-3.0 feature to the featureManager list
in the server.xml.

<featureManager>
 ...
 <feature>cicsts:security-1.0</feature>
 <feature>ldapRegistry-3.0</feature>
</featureManager>
...

c. Configure Liberty to use LDAP authentication by defining the LDAP server in the server.xml, for
example:

<ldapRegistry id="ldap"
 host="host.domain.com" port="389"
 ldapType="IBM Tivoli Directory Server"
 baseDN="ou=users,dc=domain,dc=com"
 ignoreCase="true">
</ldapRegistry>

Full details on configuring LDAP user registries with the Liberty are available in Configuring LDAP
user registries in Liberty.

d. Configure Liberty to use distributed identity filters to map the distributed identities to SAF user IDs
by setting the mapDistributedIdentities attribute in the safCredentials configuration
element to true in the server.xml.

e. Remove the safRegistry element, if present. Save the changes to the server.xml.
f. Make the necessary RACF definitions, including setting up the RACMAPs to map distributed

identities to SAF user IDs as which are described in Configuring LDAP user registries in Liberty.
g. If JEE application role security from EJB roles is required for authorization then refer to the topic

“Authorization using SAF role mapping” on page 264.

Applications use Liberty LDAP security for authentication, and JEE application role security in an
<application-bnd> element are respected for authorization of the distributed identity. In CICS,

272 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_sec_ldap.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_sec_ldap.html
https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/twlp_sec_ldap.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/security_angel.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_sec_ldap.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_sec_ldap.html
https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/twlp_sec_ldap.html

transactions run under the RACMAP mapped user ID, providing integration with CICS transaction and
resource security.

What to do next

Back to top
3. LDAP for authentication and authorization

LDAP security can be used in a CICS Liberty JVM server for both authentication and authorization using
JEE application role security. URIMAP definitions can then be used to set the user ID under which
transactions run. The mapDistributedIdentities attribute is not set in this scenario.

This scenario might be useful if migrating a distributed application into a CICS Liberty JVM server,
without requiring any significant security resource changes.

a. Add the cicsts:security-1.0 and the ldapRegistry-3.0 feature to the featureManager list
in the server.xml.

<featureManager>
 ...
 <feature>cicsts:security-1.0</feature>
 <feature>ldapRegistry-3.0</feature>
</featureManager>
...

b. Configure Liberty to use LDAP authentication by defining the LDAP server in the server.xml, for
example:

<ldapRegistry id="ldap"
 host="host.domain.com" port="389"
 ldapType="IBM Tivoli Directory Server"
 baseDN="ou=users,dc=domain,dc=com"
 ignoreCase="true">
</ldapRegistry>

Full details on configuring LDAP user registries with Liberty are available in Configuring LDAP user
registries in Liberty.

c. Remove the safRegistry element, if present. Save the changes to the server.xml.
d. If JEE application role security from EJB roles is required for authorization then refer to the topic

“Authorization using SAF role mapping” on page 264.

Applications use Liberty LDAP security for authentication, and JEE application role security in an
<application-bnd>element are respected for authorization. In CICS transactions run under the
URIMAP or CICS DFLTUSER user ID as appropriate.

What to do next

Back to top

What to do next
This applies to all three scenarios:

• Modify the Liberty authentication cache.
• Set up URIMAP definitions to map web application URIs to transaction IDs.

This applies to scenarios 1 and 2:

• Set up CICS transaction security definitions to authorize access to URIs based on the mapped user ID.

Back to top

Chapter 9. Security for Java applications 273

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_sec_ldap.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_sec_ldap.html

Configuring SSL (TLS) for a Liberty JVM server using a Java keystore
You can configure a Liberty JVM server to use SSL for data encryption, and optionally authenticate with
the server by using a client certificate. Certificates can be stored in a Java keystore or in a SAF key ring
such as in RACF.

About this task

Enabling SSL in a Liberty JVM server requires adding the transportSecurity-1.0 Liberty feature, a
keystore, and an HTTPS port. CICS automatically creates and updates the server.xml file.
Autoconfiguring always results in the creation of a Java keystore.

It is important to understand that any web request to a Liberty JVM server uses the JVM support for
TCP/IP sockets and SSL processing, not CICS sockets domain.

Procedure

• To use autoconfigure to configure SSL, complete the following steps:
a) Ensure autoconfigure is enabled in the JVM profile by using the JVM system property -
Dcom.ibm.cics.jvmserver.wlp.autoconfigure=true.

b) Set the SSL port by setting the JVM system property -
Dcom.ibm.cics.jvmserver.wlp.server.https.port in the JVM profile.

c) Restart the JVM server to add the necessary configuration elements to server.xml.

Results
SSL for a Liberty JVM server is successfully configured.

Configuring SSL (TLS) for a Liberty JVM server using RACF
You can configure a Liberty JVM server to use SSL for data encryption, and optionally authenticate with
the server by using a client certificate. Certificates can be stored in a Java keystore or in a SAF key ring
such as RACF.

About this task

Enabling SSL in a Liberty JVM server requires adding the transportSecurity-1.0 Liberty feature, a
keystore, and an HTTPS port. You edit the server.xml file to add the required elements and values. You
must follow the manual procedure if you want to use a RACF key ring.

It is important to understand that any web request to a Liberty JVM server uses the JVM support for
TCP/IP sockets and SSL processing, not CICS sockets domain.

Procedure

• To manually configure SSL, you need to create a signing certificate. Use this signing certificate to
create a server certificate. Then, export the signing certificate to the client web browser where it is
used to authenticate the server certificate.
a) Create a certificate authority (CA) certificate (signing certificate). An example, using RACF

commands, follows:

RACDCERT GENCERT
 CERTAUTH
 SUBJECTSDN(CN('CICS Sample Certification Authority')
 O('IBM')
 OU('CICS'))
 SIZE(2048)
 WITHLABEL('CICS-Sample-Certification')

The SIZE of the certificate should be a minimum of 2048 bits. For more information, see the RACF
RACDCERT GENCERT (Generate certificate) command.

274 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.icha400/le-gencert.html
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.icha400/le-gencert.html

b) Create a server certificate that uses the signing certificate from step 2, where <userid> is the
CICS region user ID. The hostname is the host name of the server that the Liberty server HTTPS
port is configured to use.

RACDCERT ID(<userid>)
GENCERT
 SUBJECTSDN(CN('<hostname>')
 O('IBM')
 OU('CICS'))
 SIZE(2048)
 SIGNWITH (CERTAUTH LABEL('CICS-Sample-Certification'))
 WITHLABEL('<userid>-Liberty-Server')

The SIZE of the certificate should be a minimum of 2048 bits. For more information, see the RACF
RACDCERT GENCERT (Generate certificate) command.

c) Connect the signing certificate and server certificate to a RACF key ring.
You can use RACF with the following command, and replace the value of <keyring> with the name
of the key ring you want to use. Replace the value of <userid> with the CICS region user ID.

RACDCERT ID(<userid>) CONNECT(RING(<keyring>)
 LABEL('CICS-Sample-Certification')
 CERTAUTH)

RACDCERT ID(<userid>) CONNECT(RING(<keyring>)
 LABEL('<userid>-Liberty-Server'))

Export the signing certificate to a CER file:

RACDCERT CERTAUTH EXPORT(LABEL('CICS-Sample-Certification'))
 DSN('<userid>.CERT.LIBCERT')
 FORMAT(CERTDER)
 PASSWORD('password')

FTP the exported certificate in binary to your workstation, and import it into your browser as a
certificate authority certificate.

d) Edit the server.xml file and add the SSL feature, and the keystore. Set the HTTPS port (value is
9443 in the following example) and restart your CICS region. The SAF key ring must be specified in
the URL form safkeyring://<userid>/<keyring>. The <userid> value must be set to the
CICS region user ID and the <keyring> value must be set to the name of the key ring. The
password field is not used for accessing the SAF key ring and must be set to password.

<featureManager>
 ...
 <feature>transportSecurity-1.0</feature>
</featureManager>
...
<httpEndpoint host="*" httpPort="9080" httpsPort="9443"
 id="defaultHttpEndpoint"/>
...
.
<keyStore filebased="false" id="racfKeyStore"
 location="safkeyring://<userid>/<keyring>"
 password="password"
 readOnly="true"
 type="JCERACFKS"/>
<ssl id="defaultSSLConfig" keyStoreRef="racfKeyStore"
 sslProtocol="SSL_TLS"
 serverKeyAlias="<userid>-Liberty-Server" />

Results
SSL for a Liberty JVM server is successfully configured.

Configuring security for remote JCICSX API development
When setting up the Liberty JVM server for remote JCICSX API development, you need to consider how
clients are authenticated and authorized. When remote connection is established from a JCICSX
development client to a JCICSX server, the server can authenticate users and grant them access based on

Chapter 9. Security for Java applications 275

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.icha400/le-gencert.html
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.icha400/le-gencert.html

their identities. This ensures that the authenticated users are able to use the JCICSX API for remote
development in that region. It also prevents users from interfering with remote tasks started by other
users.

Before you begin
Ensure that you have set up a Liberty JVM server to serve as the JCICSX server, by adding the JCICSX
server feature (cicsts:jcicsxServer-1.0) to the server.xml file:

<featureManager>
 <feature>cicsts:jcicsxServer-1.0</feature>
</featureManager>

For more information, see Java development using JCICSX.

About this task

Authentication verifies the identify of the user. When designing your Liberty authentication, you need to
decide on a user registry to store users' identity information. Liberty security supports SAF, LDAP, and
basic user registries. This task shows how to set up a SAF or basic user registry.

Authorization grants authenticated users corresponding access based on their identities. You can map
users from registries to roles using Java EE role mapping or SAF authorization.

Calls to the JCICSX Liberty JVM server are run under transaction CJXA, which is a category 2 transaction.
If you have transaction attach security turned on, you also need to permit users to run the transaction
CJXA.

Procedure

• To configure authentication:

Note: When security is enabled, by default the server only accepts authentication with a valid
certificate. To allow users to be authenticated with a username and password, add the following line to
the server.xml file:

<webAppSecurity allowFailOverToBasicAuth="true"/>

• You can use your SAF database as your user registry to integrate Liberty security with CICS
security. For instructions on how to configure a SAF registry for a Liberty JVM server in CICS, see
“Configuring security for a Liberty JVM server” on page 253.

• To configure a basic user registry for Liberty, see .

When you set up your user registry, by default the server allows all the authenticated users defined in
your user registry to access the servlet. If you want to disable security entirely to allow all users, add
this snippet to the server.xml file. It changes the special-subject type from
ALL_AUTHENTICATED_USERS to EVERYONE:

<authorization-roles id="com.ibm.cics.wlp.jcicsxserver">
 <security-role name="JCICSXUSER">
 <special-subject type="EVERYONE"/>
 </security-role>
</authorization-roles>

• To configure authorization:

After users are authenticated, you might want to control what they are allowed to do based on their
identities. By default, all the authenticated users are allowed to use the application. You can impose
further restriction either in the server.xml file or in SAF.

• If you want to restrict the application to specific users, you can bind users to the JCICSXUSER
security role in server.xml:

<authorization-roles id="com.ibm.cics.wlp.jcicsxserver">
 <security-role name="JCICSXUSER">

276 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/jcicsx-api.html

 <user name="USER"/>
 </security-role>
</authorization-roles>

• When using SAF authorization, user to role mappings are used to map roles to EJBROLE resource
profiles using the SAF role mapper. The server queries SAF to determine if the user has the
required READ access to the EJBROLE resource profile. SAF authorization requires a SAF registry to
be configured. For more information, see “Authorization using SAF role mapping” on page 264.

1. Add the<safAuthorization> element to server.xml, to use SAF authorization for role
mapping:

<safAuthorization id="saf"/>

2. Create the EJB roles in RACF, with reference to the prefix scheme described.
3. Grant users READ access to those EJB roles:

By default, if SAF authorization is used, the application uses the pattern
<profile_prefix>.<resource>.<role> to determine if a user is in a role. The system
administrator needs to grant READ access to the profile
<profile_prefix>.<resource>.<role>, where:
<profile_prefix>

Is the profile prefix, which defaults to BBGZDFLT but is often set to the APPL_ID of the
region. This can be overridden in the server.xml file with the <safCredentials>
element, for example, <safCredentials
profilePrefix="your_profile_prefix"/>. If you want multiple regions to share
identical security configuration, you can set <profile_prefix> to the same value for
those regions.

<resource>
Is com.ibm.cics.wlp.jcicsxserver.

<role>
Is JCICSXUSER.

Users can then be authorized to a particular EJB role using the following RACF commands,
where <user> is the authenticated user ID.

RDEFINE EJBROLE <profile_prefix>.com.ibm.cics.wlp.jcicsxserver.JCICSXUSER UACC(NONE)
PERMIT <profile_prefix>.com.ibm.cics.wlp.jcicsxserver.JCICSXUSER CLASS(EJBROLE)
ACCESS(READ) ID(<user>)

Setting up SSL (TLS) client certificate authentication in a Liberty JVM server
SSL client certificate authentication allows the client and server to provide certificates to the opposite
party for mutual verification. It is often used in situations where an extra level of authentication is
required because of security concerns.

Before you begin
You must complete the task Configuring SSL (TLS) for a Liberty JVM server using RACF. If you do not
already have your CICS Liberty security set up, you must complete Configuring security for a Liberty JVM
server before proceeding.

About this task

The following setup information assumes that you are using RACF keystores to store your certificates for
SSL client certificate authentication.

Procedure

1. Create a personal certificate using a signing certificate and associate the personal certificate with a
RACF user ID.

Chapter 9. Security for Java applications 277

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/ssl_liberty_racf.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/security_liberty.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/security_liberty.html

Then, export the personal certificate to a data set in CER format and then FTP in binary to your work
station. Import the personal certificate to the web browser as a personal certificate. When the
certificate is imported into the web browser, it can supply an SSL client certificate and connect to the
HTTPS port in the Liberty server. Use the following RACF command, where <clientuserid> is the
RACF user ID and <hostname> is the host name of the client computer.

RACDCERT ID(<clientuserid>)
GENCERT
 SUBJECTSDN(CN('<hostname>')
 O('IBM')
 OU('CICS'))
 SIZE(2048)
 SIGNWITH (CERTAUTH LABEL('CICS-Sample-Certification'))
 WITHLABEL('<clientuserid>-certificate')

Export the personal certificate as you have done earlier in this step.

RACDCERT ID(<clientuserid>)
 EXPORT(LABEL('<clientuserid>-certificate'))
 DSN('USERID.CERT.CLICERT')
 FORMAT(PKCS12DER)
 PASSWORD('password')

Update the server.xml SSL element to support SSL client certificate authentication:

 <ssl id="defaultSSLConfig" keyStoreRef="racfKeyStore"
 sslProtocol="SSL_TLS"
 serverKeyAlias="<userid>-Liberty-Server"
 clientAuthenticationSupported="true"/>

Additionally, if you want to ensure all clients must supply a valid SSL client certificate, add the
clientAuthentication attribute to the SSL element as follows:

 <ssl id="defaultSSLConfig" keyStoreRef="racfKeyStore"
 sslProtocol="SSL_TLS"
 serverKeyAlias="<userid>-Liberty-Server"
 clientAuthenticationSupported="true"
 clientAuthentication="true"/>

2. You can authenticate a web request in CICS under the identity of the client user ID in step 2. Then,
deploy the web application with a login-config element for CLIENT-CERT in the web.xml. The
web.xml file can be found inside the source files for the web application that you are deploying.

 <login-config>
 <auth-method>CLIENT-CERT</auth-method>
 </login-config

Instead, if you want to allow failover to HTTP basic authentication if SSL client certificate
authentication is not configured, add the webAppSecurity element to server.xml.

 <webAppSecurity allowFailOverToBasicAuth="true" />

3. Finally, set up CICS transaction security to authorize access to the CICS transaction based on the
authenticated client user ID.
For further information, see “Authorizing users to run applications in a Liberty JVM server” on page
260.

Using the syncToOSThread function
You can use the syncToOSThread function of Liberty in a CICS Liberty JVM server. SyncToOSThread
enables a Java subject, authenticated by Liberty, to be synchronized with the operating system (OS)
thread identity. Without syncToOSThread, the operating system thread identity defaults to be the CICS
region user ID, this is the identity used to authorize access to resources outside of CICS control such as
zFS files. With syncToOSThread in effect, the user's subject is used to access these operating system
resources.

278 CICS TS for z/OS: Java Applications in CICS

About this task
Enabling syncToOSThread requires the Liberty appSecurity-1.0 and zosSecurity-1.0 features. These
features are included with the cicsts:security-1.0 feature. You must also define the syncToOSThread
configuration element in the Liberty server.xml and add a special <env-entry/> to the application's
deployment descriptor (web.xml). In addition, the SAF registry must be used for authentication, the
angel process must be up and running, and the server must be connected to the angel process. For more
information about the angel process, see Process types on z/OS.

Procedure

1. Configure the syncToOSThread configuration element in the Liberty server.xml and add the required
<env-entry/> to each web application's deployment descriptor by following steps 1 and 2 in

2. Grant the Liberty server permission to perform syncToOSThread operations by configuring SAF with
either of the following profiles:

• Grant the CICS region user ID CONTROL access to the BBG.SYNC.<profilePrefix> profile in
the FACILITY class, where <profilePrefix> is specified on the <safCredentials />
element. This allows the Liberty server to synchronize any Java subject with the OS thread identity:

PERMIT BBG.SYNC.<profilePrefix> ID(<serverUserId>) ACCESS(CONTROL) CLASS(FACILITY)Copy

• Grant the CICS region user ID READ access to the BBG.SYNC.<profilePrefix> profile in the
FACILITY class. Additionally, grant the CICS region user ID READ access to one or more
BBG.SYNC.<AuthUserid/> profiles in the SURROGATE class, one for each authenticated user ID
to be synchronized with the OS identity:

PERMIT BBG.SYNC.<profilePrefix> ID(<serverUserId>) ACCESS(READ) CLASS(FACILITY)
PERMIT BBG.SYNC.<AuthUserid> ID(<serverUserId>) ACCESS(READ) CLASS(SURROGAT)

Restriction: A servlet configured as the welcome page in web.xml, does not support the
syncToOSThread function.

Enabling a Java security manager
By default, Java applications have no security restrictions placed on activities requested of the Java API.
To use Java security to protect a Java application from performing potentially unsafe actions, you can
enable a security manager for the JVM in which the application runs.

About this task

The security manager enforces a security policy, which is a set of permissions (system access privileges)
that are assigned to code sources. A default policy file is supplied with the Java platform. However, to
enable Java applications to run successfully in CICS when Java security is active, you must specify an
additional policy file that gives CICS the permissions it requires to run the application.

You must specify this additional policy file for each kind of JVM that has a security manager enabled. CICS
provides some examples that you can use to create your own policies.

Notes: Enabling a Java security manager is not supported in a Liberty JVM server.

• The OSGi security agent example creates an OSGi middleware bundle called
com.ibm.cics.server.examples.security in your project that contains a security profile. This
profile applies to all OSGi bundles in the framework in which it is installed.

• The example.permissions file contains permissions that are specific to running applications in a
JVM server, including a check to ensure that applications do not use the System.exit() method.

• CICS must have read and execute access to the directory in zFS where you deploy the OSGi bundle.

For applications that run in the OSGi framework of a JVM server:

Chapter 9. Security for Java applications 279

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/cwlp_zos_runtime_proc.html

Procedure

1. Create a plug-in project in the IBM CICS SDK for Java and select the supplied OSGi security agent
example.

2. In the project, select the example.permissions file to edit the permissions for your security policy.
a) Validate that the CICS zFS and Db2 installation directories are correctly specified.
b) Add other permissions as necessary.

3. Deploy the OSGi bundle to a suitable directory in zFS such as /u/bundles.
4. Edit the JVM profile for the JVM server to add the OSGi bundle to the OSGI_BUNDLES option before

any other bundles:

OSGI_BUNDLES=/u/bundles/com.ibm.cics.server.examples.security_1.0.0.jar
5. Add the following Java property to the JVM profile to enable security.

-Djava.security.policy=all.policy
6. Add the following Java environment variable to the JVM profile to enable security in the OSGi

framework:

org.osgi.framework.security=osgi
7. To allow the OSGi framework to start with Java 2 security, add the following policy:

grant { permission java.security.AllPermission; };
8. Save your changes and enable the JVMSERVER resource to install the middleware bundle in the JVM

server.
9. Optional: Activate Java 2 security.

a) To activate a Java 2 security policy mechanism, add it to the appropriate JVM profile. You must also
edit your Java 2 security policy to grant appropriate permissions.

b) To use JDBC or SQLJ from a Java application with a Java 2 security policy mechanism active, use
the IBM Data Server Driver for JDBC and SQLJ.

c) To activate a Java 2 security policy mechanism, edit the JVM profile.
d) Edit the Java 2 security policy to grant permissions to the JDBC driver, by adding the lines that are

shown in Example 1. In place of db2xxx, specify a directory below which all your Db2 libraries are
located. The permissions are applied to all the directories and files below this level. This enables
you to use JDBC and SQLJ.

e) Edit the Java 2 security policy to grant read permissions, by adding the lines that are shown in
Example 2. If you do not add read permission, running a Java program produces
AccessControlExceptions and unpredictable results. You can use JDBC and SQLJ with a Java 2
security policy.

Example 1:

grant codeBase "file:/usr/lpp/db2xxx/-" {
 permission java.security.AllPermission;
};

Example 2:

grant {

// allows anyone to read properties
permission java.util.PropertyPermission "*", "read";

};

Results
When the Java application is called, the JVM determines the code source for the class and consults the
security policy before granting the class the appropriate permissions.

280 CICS TS for z/OS: Java Applications in CICS

Chapter 10. Improving Java performance
You can take various actions to improve the performance of Java applications and the JVMs in which they
run.

About this task

In addition to fine-tuning CICS itself, you can further improve the performance of Java applications in the
following ways:

• Ensuring that the Java applications are well written
• Tuning the Java Runtime Environment (JVM)
• Tuning the language in which the JVM runs

Procedure

1. Determine the performance goals for your Java workload.
Some of the most common goals include minimizing processor usage or application response times.
After you decide on the goal, you can tune the Java environment.

2. Analyze your Java applications to ensure that they are running efficiently and do not generate too
much garbage.
IBM has tools that can help you to analyze Java applications to improve the efficiency and
performance of particular methods and the application as a whole.

3. Tune the JVM server.
You can use statistics and IBM tools to analyze the storage settings, garbage collection, task waits,
and other information to tune the performance of the JVM.

4. Tune the Language Environment enclave in which a JVM runs.
JVMs use MVS storage, obtained by calls to MVS Language Environment services. You can modify the
runtime options for Language Environment to tune the storage that is allocated by MVS.

5. Optional: If you use the z/OS shared library region to share DLLs between JVMs in different CICS
regions, you can tune the storage settings.

Determining performance goals for your Java workload
Tuning CICS JVMs to achieve the best overall performance for a given application workload involves
several different factors. You must decide what the preferred performance characteristics of your Java
workload are. When you establish these characteristics, you can determine what parameters to change
and how to change them.

The following performance goals for Java workloads are most common:
Minimum overall processor usage

This goal prioritizes the most efficient use of the available processor resource. If a workload is tuned
to achieve this goal, the total use of the processor across the entire workload is minimized, but
individual tasks might experience high processor consumption. Tuning for the minimum overall
processor usage involves specifying large storage heap sizes for your JVMs to minimize the number of
garbage collections.

Minimum application response times
This goal prioritizes ensuring that an application task returns to the caller as rapidly as possible. This
goal might be especially relevant if there are Service Level Agreements to be achieved. If a workload
is tuned to achieve this goal, applications respond consistently and quickly, though a higher processor
usage might occur for garbage collections. Tuning for minimum application response times involves
keeping the heap size small and possibly using the gencon garbage collection policy.

© Copyright IBM Corp. 1974, 2020 281

Minimum JVM storage heap size
This goal prioritizes reducing the amount of storage used by JVMs. You can reduce the amount of
storage that is used in the JVM, by reducing the JVM heap size.

Note: Reducing the JVM heap size might result in more frequent garbage collection events.

Other factors can affect the response times of your applications. The most significant of these is the Just
In Time (JIT) compiler. The JIT compiler optimizes your application code dynamically at run time and
provides many benefits, but it requires a certain amount of processor resource to do this.

Analyzing Java applications using IBM Health Center
To improve the performance of a Java application, you can use IBM Health Center to analyze the
application. This tool provides recommendations to help you improve the performance and efficiency of
your application.

About this task

IBM Health Center is available in the IBM Support Assistant Workbench. These free tools are available to
download from IBM as described in the Getting Started guide for IBM Health Center. Try to run the
application in a JVM on its own. If you are running a mixed workload in a JVM server, it might be more
difficult to analyze a particular application.

Procedure

1. Add the required connection options to the JVM profile of the JVM server.
The IBM Health Center documentation describes what options you must add to connect to the JVM
from the tool.

2. Start IBM Health Center and connect it to your running JVM.
IBM Health Center reports JVM activity in real time so wait a few moments for it to monitor the JVM.

3. Select the Profiling link to profile the application.
You can check the time spent in different methods. Check the methods with the highest usage to look
for any potential problems.

Tip: The Analysis and Recommendations tab can identify particular methods that might be good
candidates for optimization.

4. Select the Locking link to check for locking contentions in the application.
If the Java workload is unable to use all the available processor, locking might be the cause. Locking in
the application can reduce the amount of parallel threads that can run.

5. Select the Garbage Collection link to check the heap usage and garbage collection.
The Garbage Collection tab can tell you how much heap is being used and how often the JVM pauses
to perform garbage collection.
a) Check the proportion of time spent in garbage collection.

This information is presented in the Summary section. If the time spent in garbage collection is
more than 2%, you might need to adjust your garbage collection.

b) Check the pause time for garbage collection.
If the pause time is more than 10 milliseconds, the garbage collection might be having an effect on
application response times.

c) Divide the rate of garbage collection by the number of transactions to find out approximately how
much garbage is produced by each transaction.
If the amount of garbage seems high for the application, you might have to investigate the
application further.

What to do next
After you have analyzed the application, you can tune the Java environment for your Java workloads.

282 CICS TS for z/OS: Java Applications in CICS

https://developer.ibm.com/javasdk/tools/
https://developer.ibm.com/javasdk/tools/

Garbage collection and heap expansion
Garbage collection and heap expansion are an essential part of the operation of a JVM. The frequency of
garbage collection in a JVM is affected by the amount of garbage, or objects, created by the applications
that run in the JVM.

Allocation failures

When a JVM runs out of space in the storage heap and is unable to allocate any more objects (an
allocation failure), a garbage collection is triggered. The Garbage Collector cleans up objects in the
storage heap that are no longer being referenced by applications and frees some of the space. Garbage
collection stops all other processes from running in the JVM for the duration of the garbage collection
cycle, so time spent on garbage collection is time that is not being used to run applications. For a detailed
explanation of the JVM garbage collection process, see Generational Concurrent Garbage Collector and
z/OS User Guide for IBM SDK, Java Technology Edition, Version 8.

When a garbage collection is triggered by an allocation failure, but the garbage collection does not free
enough space, the Garbage Collector expands the storage heap. During heap expansion, the Garbage
Collector takes storage from the maximum amount of storage reserved for the heap (the amount
specified by the -Xmx option), and adds it to the active part of the heap (which began as the size specified
by the -Xms option). Heap expansion does not increase the amount of storage required for the JVM,
because the maximum amount of storage specified by the -Xmx option has already been allocated to the
JVM at startup. If the value of the -Xms option provides sufficient storage in the active part of the heap for
your applications, the Garbage Collector does not have to carry out heap expansion at all.

At some point during the lifetime of the JVM, the Garbage Collector stops expanding the storage heap,
because the heap has reached a state where the Garbage Collector is satisfied with the frequency of
garbage collection and the amount of space freed by the process. The Garbage Collector does not aim to
eliminate allocation failures, so some garbage collection can still be triggered by allocation failures after
the Garbage Collector has stopped expanding the storage heap. Depending on your performance goals,
you might consider this frequency of garbage collection to be excessive.

Garbage collection options

You can use different policies for garbage collection that make trade-offs between throughput of the
application and the overall system, and the pause times that are caused by garbage collection. Garbage
collection is controlled by the -Xgcpolicy option:

-Xgcpolicy:optthruput
This policy delivers high throughput to applications but at the cost of occasional pauses, when
garbage collection occurs.

-Xgcpolicy:gencon
This policy helps to minimize the time that is spent in any garbage collection pause. Use this garbage
collection policy with JVM servers. You can check which policy is being used by the JVM server by
inquiring on the JVMSERVER resource. The JVM server statistics have fields that tell you how many
major and minor garbage collection events occur and what processor time is spent on garbage
collection.

-XX:+HeapManagementMXBeanCompatibility
This policy is set by default if you are using Java 8 SR5 and above. The policy ensures consistent
garbage collection statistics with previous levels of Java. For more information, see -XX:
[+|-]HeapManagementMXBeanCompatibility.

-XX:-HeapManagementMXBeanCompatibility
You can choose to opt in to using this policy. The policy enables the default heap changes in Java 8
SR5 and above, however in some cases, the garbage collection statistics might indicate the heap
usage to be greater than the maximum heap size. For more information, see -XX:
[+|-]HeapManagementMXBeanCompatibility.

You can change the garbage collection policy by updating the JVM profile. For details of all the garbage
collection options, see Specifying garbage collection policy in IBM SDK.

Chapter 10. Improving Java performance 283

https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.vm.80.doc/docs/mm_gc_generational.html
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/welcome/welcome_javasdk_version.html
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/openj9/xxheapmanagementmxbeancompatibility/index.html
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/openj9/xxheapmanagementmxbeancompatibility/index.html
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/openj9/xxheapmanagementmxbeancompatibility/index.html
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/openj9/xxheapmanagementmxbeancompatibility/index.html
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.zos.80.doc/user/garbage.html

Improving JVM server performance
To improve the performance of applications that run in a JVM server, you can tune different parts of the
environment, including the garbage collection and the size of the heap.

About this task
CICS provides statistics reports on the JVM server, which include details of how long tasks wait for
threads, heap sizes, frequency of garbage collection, and processor usage. You can also use additional
IBM tools that monitor and analyze the JVM directly to tune JVM servers and help with problem diagnosis.
You can use the statistics to check that the JVM is performing efficiently, particularly that the heap sizes
are appropriate and garbage collection is optimized.

Procedure

1. Check the amount of processor time that is used by the JVM server.
Dispatcher statistics can tell you how much processor time the T8 TCBs are using. JVM server
statistics tell you how long the JVM is spending in garbage collection and how many garbage
collections occurred. Application response times and processor usage can be adversely affected by
the JVM garbage collection.

2. Ensure that there is enough available storage capacity in the CICS address space. The CICS address
space contains the Language Environment heap size that is required by the JVM server.

3. Tune the garbage collection and heap in the JVM.
A small heap can lead to very frequent garbage collections, but too large a heap can lead to inefficient
use of MVS storage. You can use IBM Health Center to visualize and tune garbage collection and adjust
the heap accordingly.

What to do next
For more detailed analysis of memory usage and heap sizes, you can use the Memory Analyzer tool in IBM
Support Assistant to analyze Java heap memory using system dump or heap dump snapshots of a Java
process.

To start one or more JVM servers in a CICS region, you must ensure that enough storage capacity is
available for the JVM to use, excluding any storage capacity that is allocated to CICS.

Examining processor usage by JVM servers
You can use the CICS monitoring facility to monitor the processor time that is used by transactions
running in a JVM server. CICS-enabled threads in a JVM server run on T8 TCBs.

About this task
You can use the DFH$MOLS utility to print the SMF records or use a tool such as CICS Performance
Analyzer to analyze the SMF records.

Procedure

1. Turn on monitoring in the CICS region to collect the performance class of monitoring data.
2. Check the performance data group DFHTASK.

In particular, you can look at the following fields:

Field ID Field name Description

283 MAXTTDLY The elapsed time for which the user task waited to obtain a T8
TCB, because the CICS region reached the limit of available
threads. The thread limit is 2000 for each CICS region and each
JVM server can have up to 256 threads.

284 CICS TS for z/OS: Java Applications in CICS

Field ID Field name Description

400 T8CPUT The processor time during which the user task was dispatched
by the CICS dispatcher domain on a CICS T8 mode TCB. When
a thread is allocated a T8 TCB, that same TCB remains
associated with the thread until the processing completes.

401 JVMTHDWT The elapsed time that the user task waited to obtain a JVM
server thread because the CICS system had reached the thread
limit for a JVM server in the CICS region. This does not apply to
Liberty JVM servers.

3. To improve processor usage, reduce or eliminate the use of tracing where possible.
a) In a production environment, consider running your CICS region with the CICS master system trace

flag set off.
Having this flag on significantly increases the processor cost of running a Java program. You can set
the flag off by initializing CICS with SYSTR=OFF, or by using the CETR transaction.

b) Ensure that you activate JVM trace only for special transactions.
JVM tracing can produce large amounts of output in a very short time, and increases the processor
cost. For more information about controlling JVM tracing, see Diagnostics for Java.

4. Do not use the USEROUTPUTCLASS option in JVM profiles in a production environment.
Specifying this option has a negative effect on the performance of JVMs. The USEROUTPUTCLASS
option enables developers using the same CICS region to separate JVM output, and direct it to a
suitable destination, but it involves the building and invocation of additional class instances.

Calculating storage requirements for JVM servers
To run a JVM server successfully in a CICS region, you must ensure that enough free MVS storage is
available for both the JVM and its deployed applications to use.

About this task
The storage that is required for a JVM server, and the Java applications in it, does not come from CICS-
managed storage areas such as the DSA, EDSA, or GDSA. Some storage areas are managed by the
Language Environment handling requests, such as malloc() issued by C code. The remaining storage
areas are managed directly by the JVM, by using z/OS storage management requests such as IARV64.
Both of these storage area management types use storage from the available MVS private areas. It is
important to ensure that sufficient non-allocated private area region storage is available in the 24-bit, 31-
bit, and 64-bit addressing areas. CICS cannot use its short-on-storage mechanism when private area
region storage is running low.

The major Java components that allocate MVS storage areas are as follows:

• Java heap
• Loading of Java classes
• JIT compilation caches
• Native stack
• Java monitors
• Java threads
• UNIX shared libraries

The Java heap is a contiguous pre-allocated block of 64-bit storage that is used to store the runtime data
area for all objects and arrays. It is managed by the JVM garbage collection process, and its size can only
be modified if the JVM is restarted. The other JVM storage areas are more dynamic in size and their size
can vary depending on usage. In addition, on top of the storage areas that are allocated by the JVM, you
must also consider other components that use MVS private area and interact with the JVM such as JDBC
type 2 drivers, IBM MQ Java adapter, or third-party tools.

Chapter 10. Improving Java performance 285

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/java/dfhpjei.html

To estimate the amount of storage used by the JVM in the different MVS private storage areas, you can
use the following procedure:

Procedure

1. Calculate your 24-bit storage.

Each JVM thread requires 4 KB of 24-bit storage. A single JVM server can start more than 50
background daemon threads; this number does not include the number of CICS-managed JVM server
threads defined by the JVMSERVER THREADLIMIT attribute. If you are using a Liberty JVM server, the
number of daemon threads can be 100 or greater.

UNIX System Services temporarily requires 256 KB of contiguous 24-bit storage during the process of
creating a new thread. The minimum 24-bit requirement is calculated as follows:

256KB + (4KB * number_of_threads)
2. Calculate your 31-bit storage.

Multiple JVM components can allocate storage from the 31-bit MVS private area that includes loading
of Java classes, CICS control blocks, Java thread stack, the JIT compiler, and the USS dynamic link
library (DLL) files used by the JVM.

a) Java class loading

By default, CICS JVM servers with -Xmx (heap) values of 57GB or less use Java compressed
references. Compressed references instruct the JVM to create smaller objects, and having smaller
objects can improve performance. Using compressed references causes the Java objects, classes,
threads, and monitors to be loaded into the LE HEAP31 storage area in 31-bit storage. If you have
insufficient space in 31-bit storage, class loading fails, causing termination of the JVM. Setting the
JVM command line option –Xnocompressedrefs disables the use of compressed references and
instead loads the Java classes into 64-bit storage.

b) JIT Compiler

The JIT compiler is responsible for continuous optimization, by compiling Java byte code.
Executable code is stored in the JIT code cache, and static data is stored in the JIT data cache.
Prior to z/OS, Version 2 Release 3 and Java 8 SR5 the code cache is stored in 31-bit storage,
whereas the data cache is stored in 64-bit storage. Depending on the number of Java applications,
and the amount of JIT activity, the 31-bit JIT code cache can expand dynamically to a maximum
size determined by the JVM setting -Xcodecachetotal. This defaults to 128 MB. If the cache
becomes full, the JIT process stops but the JVM continues to operate with reduced potential
performance. If you are using z/OS, Version 2 Release 3, you can free up more space in the 31-bit
private area by upgrading to Java 8 SR5, which supports residency mode for 64-bit applications
(RMODE64) for the JIT code cache. This stores the compiled JIT code in the 64-bit private area.

c) UNIX shared libraries

The shared library region is a z/OS® feature that enables address spaces to improve the
performance of the loading of UNIX System Services dynamic link library (DLL) files, and to share
the associated real storage. The shared library function is disabled by default in CICS JVM servers,
but is supported by the IBM Java SDK. When the first JVM process that uses shared libraries is
started in the region, the shared library region reserves storage in the 31-bit high private area. For
more information, see Tuning the z/OS shared library region.

Note:

As an approximate guideline if using Java 8 SR5 and a single application, the first JVM server to
start within a CICS region can allocate anywhere between 51M to 115M of 31-bit MVS private area
depending on configuration and workload.

The subsequent JVM servers have a lower footprint and can allocate anywhere between 8M and
73M, as the JVM DLL files need to only be loaded once.

These figures do not include the UNIX shared library region, the value of which must also be added
to the 31-bit storage if enabled.

286 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/openj9/xcodecachetotal/index.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/java/dfht3gl.html

3. Calculate your 64-bit storage.

Multiple JVM components can allocate storage from the 64-bit MVS private area that includes the Java
heap, native thread stack, Java classes, JIT compiler output, and Java monitors. The amount of 64-bit
storage that is required can be estimated as a minimum of 2 GB, with additional storage required for
larger workloads or more complex configurations.

To more accurately estimate 64-bit storage, you need to consider:

• The maximum Java heap value, set by using -Xmx
• The maximum number of all threads in the JVM. Each thread requires a minimum of 3 MB of

Language Environment stack storage, including 1 MB of stack. This accounts for the minimum 1 MB
native stack storage, 1 MB of reserve storage and the 1 MB Language Environment control block that
is required to support each thread. See Identifying Language Environment storage needs for JVM
servers

• Storage for the Java classes, JIT caches, and Language Environment 64-bit heaps. You can add a
best guess of 300 MB - 500 MB depending on workload and configuration

Note:

The Java shared class cache uses UNIX shared memory which does not count towards the CICS
region's address space MEMLIMIT.

The resulting figure needs to be rounded up to the next GB to account for the way that CICS GDSA
expansion views guarded storage.

4. Run the sample statistics program DFH0STAT to provide values used to estimate MVS storage.

• Note the value for 1 Private Area storage available below 16 Mb, which is the currently
available 24-bit private storage in the region.

• Note the value for 2 Private Area storage available above 16 Mb, which is the currently
available 31-bit private storage in the region.

• Note the value for 3 MEMLIMIT minus usable within Private Memory Objects, which is
the currently available 64-bit private storage in the region.

Storage BELOW 16MB

 Private Area Region size below 16Mb : 10,216K
 Max LSQA/SWA storage allocated below 16Mb (SYS) . : 660K
 Max User storage allocated below 16Mb (VIRT). . . : 5,460K
 System Use. : 20K
 RTM . : 250K
 __
 Private Area storage available below 16Mb : 3,826K 1

Storage ABOVE 16MB

 Private Area Region size above 16Mb : 1,417,216K
 Max LSQA/SWA storage allocated above 16Mb (SYS) . : 84,500K
 Max User storage allocated above 16Mb (EXT) . . . : 987,936K
 __
 Private Area storage available above 16Mb : 344,780K 2

Storage ABOVE 2GB

 MEMLIMIT Size. : 200G
 MEMLIMIT Set By. : JCL

 Current Address Space active (bytes) : 3,780,116,480
 Current Address Space active : 3,605M
 Peak Address Space active. :
3,661M

 MEMLIMIT minus Current Address Space active. . . . : 201,195M
 MEMLIMIT minus usable within Private Memory Objects: 196,408M 3
 Number of Private Memory Objects : 728
 minus Current GDSA extents : 727
 Bytes allocated to Private Memory Objects. : 8,392M
 minus Current GDSA allocated : 7,368M
 Bytes hidden within Private Memory Objects : 4,787M

Chapter 10. Improving Java performance 287

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/java/dfhpj_le_dfhaxro.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/java/dfhpj_le_dfhaxro.html

 minus Current GDSA hidden. : 4,786M
 minus CICS Internal Trace Table hidden . . : 3,794M
 Bytes usable within Private Memory Objects : 3,605M
 Peak bytes usable within Private Memory Objects. . : 3,681M
 Current GDSA Allocated : 1,024M
 Peak GDSA Allocated. : 1,024M

5. Start the JVM server and run a representative Java workload.
Observe how the values for each private storage area available change, and make sure that the private
storage areas are not constrained.

Tuning JVM server heap and garbage collection
Garbage collection in a JVM server is handled by the JVM automatically. You can tune the garbage
collection process and heap size to ensure that application response times and processor usage are
optimal.

About this task

The garbage collection process affects application response times and processor usage. Garbage
collection temporarily stops all work in the JVM and can therefore affect application response times. If
you set a small heap size, you can save on memory, but it can lead to more frequent garbage collections
and more processor time spent in garbage collection. If you set a heap size that is too large, the JVM
makes inefficient use of MVS storage and this can potentially lead to data cache misses and even paging.
CICS provides statistics that you can use to analyze the JVM server. You can also use IBM Health Center,
which provides the advantage of analyzing the data for you and recommending tuning options.

Procedure

1. Collect JVM server and dispatcher statistics over an appropriate interval. The JVM server statistics can
tell you how many major and minor garbage collections take place and the amount of time that
elapsed performing garbage collection. The dispatcher statistics can tell you about processor usage
for T8 TCBs across the CICS region.

2. Use the dispatcher TCB mode statistics for T8 TCBs to find out how much processor time is spent on
JVM server threads.
The "Accum CPU Time / TCB" field shows the accumulated processor time taken for all the TCBs that
are, or have been, attached in this TCB mode. The "TCB attaches" field shows the number of T8 TCBs
that have been used in the statistics interval. Use these numbers to work out approximately how much
processor time each T8 TCB has used.

3. Use the JVM server statistics to find the percentage of time that is spent in garbage collection.
Divide the time of the statistics interval by how much elapsed time is spent in garbage collection. Aim
for less than 2% of processor usage in garbage collection. If the percentage is higher, you can increase
the size of the heap so that garbage collection occurs less frequently.

4. Divide the heap freed value by the number of transactions that have run in the interval to find out how
much garbage per transaction is being collected.
You can find out how many transactions have run by looking at the dispatcher statistics for T8 TCBs.
Each thread in a JVM server uses a T8 TCB.

5. Optional: Write the verbosegc log data to a file, which can be done with the parameter -
Xverbosegclog:path_to_file. This data can be analyzed by another ISA tool - Garbage Collection
and Memory Visualizer.
The JVM writes garbage collection messages in XML to the file that is specified in the STDERR option in
the JVM profile. For examples and explanations of the messages, see Troubleshooting and support.

Tip: You can use the file in the Memory Analyzer tool to perform more detailed analysis.

288 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.zos.80.doc/troubleshooting.html

Results

The outcome of your tuning can vary depending on your Java workload, the maintenance level of CICS
and of the IBM SDK for z/OS, and other factors. For more detailed information about the storage and
garbage collection settings and the tuning possibilities for JVMs, see Troubleshooting and support.

IBM Health Center and Memory Analyzer are two IBM monitoring and diagnostic tools for Java that are
supplied by the IBM Support Assistant workbench. You can download these tools free of charge from the
IBM Support Assistant web site.

Tuning the JVM server startup environment
If you are running multiple JVM servers, you can improve performance by tuning the JVM startup
environment.

About this task
When a JVM server starts, the server has to load a set of libraries in the /usr/lpp/cicsts/
cicsts56/lib directory. If you start a large number of JVM servers at the same time, the time taken to
load the required libraries might cause some JVM servers to time out, or some JVM servers might take an
excessively long time to start. To reduce JVM server startup time, you should tune the JVM startup
environment.

Procedure

1. Create a shared class cache for the JVM servers to load the libraries a single time.
To use a shared class cache, add the -Xshareclasses option to the JVM profile of each JVM server.
For more information see Class data sharing between JVMs in IBM SDK.

2. Increase the timeout value for the OSGi framework.
The DFHOSGI.jvmprofile contains the OSGI_FRAMEWORK_TIMEOUT option that specifies how long
CICS waits for the JVM server to start and shut down. If the value is exceeded, the JVM server fails to
initialize or shut down correctly. The default value is 60 seconds, so you should increase this value for
your own environment.

Language Environment enclave storage for JVMs
A JVM server has both static and dynamic storage requirements, primarily in 64-bit storage. It may use a
significant amount of 31-bit storage.

Note: The amount of 31-bit storage used will depend on several factors:

• The configuration parameters
• The design and use of other products
• The design of the JVM
• The Java workload.

For example, the use of -Xcompressedrefs might improve performance, but requires 31-bit storage
and should always be used with -XXnosuballoc32bitmem to ensure that the JVM dynamically allocates
31-bit storage for compressed references based on demand. For more information about of these
options, see Default settings for the JVM in IBM SDK. Just-in-time compilation (JIT) also requires 31-bit
storage for the compiled class code.

A JVM runs as a z/OS UNIX System Services process in a Language Environment enclave that is created
using the Language Environment preinitialization module, CELQPIPI.

JVM storage requests are handled by Language Environment, which in turn allocates z/OS storage based
on the defined runtime options.

The Language Environment runtime options are set by DFHAXRO. The default values provided by these
programs for a JVM enclave are shown in Table 43 on page 290:

Chapter 10. Improving Java performance 289

https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.zos.80.doc/troubleshooting.html
https://www.ibm.com/support/home/product/C100515X13178X21/other_software/ibm_support_assistant
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.zos.80.doc/user/shc_overview.html
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.zos.80.doc/diag/appendixes/defaults.html

Table 43. Language Environment runtime options used by CICS for the JVM enclave

Language Environment runtime options Example JVM server values

Heap storage
HEAP64(256M,4M,KEEP,4M,1M,FREE,1K,1K,KEEP)

Library heap storage
LIBHEAP64(5M,3M)

Library routine stack frames that can reside
anywhere in storage STACK64(1M,1M,16M)

Optional heap storage management for
multithreaded applications (64 bit) HEAPPOOLS64(ALIGN)

Optional heap storage management for
multithreaded applications (31 bit) HEAPPOOLS(ALIGN)

Amount of storage reserved for the out-of-
storage condition and the initial content of
storage when allocated and freed

STORAGE(NONE,NONE,NONE)

Note: For current JVM server values, refer to the DFHAXRO member in Library SDFHSAMP.

Language Environment runtime options, such as HEAP64, work on the principle of an initial value for that
type of storage: for example, 256 MB 64-bit. When HEAP64 cannot contain a new request, an increment
is allocated of the specified size (4 MB above) or of the request size plus control information, whichever is
larger. Extra increments are allocated as required to meet demand. When an increment is empty,
Language Environment will either KEEP or FREE the z/OS storage based on the runtime value.

For full information about Language Environment runtime options, see z/OS Language Environment
Customization.

Where possible, the 31-bit and 64-bit initial size should cover the total 31-bit and 64-bit storage
requirements, although a few increments is acceptable. This reduces both overall z/OS storage
requirements and CPU time, compared to when there are many increments.

The HEAP64 31-bit increment size should not be set to less than 1M and the FREE option should be used.
In the previous example, the 31-bit parameters were set to 4M, 1M, and FREE.

Language Environment 31-bit and 64-bit HEAP usage can be seen by activating the RPTO(ON) and
RPTS(ON) options in DFHAXRO. An Language Environment storage report is produced when the JVM
server is stopped.

You can override the Language Environment runtime options by modifying and recompiling the sample
program DFHAXRO, which is described in “Modifying the enclave of a JVM server with DFHAXRO” on page
294. This program is set on the JVMSERVER resource, so you can use different names, which is why there
are different options for individual JVM servers, if required.

The amounts of storage required for a JVM in a Language Environment enclave might require changes to
installation exits, IEALIMIT or IEFUSI, which you use to limit the REGION and MEMLIMIT sizes. A possible
approach is to have a Java owning region (JOR), to which all Java program requests are routed. Such a
region runs only Java workloads, minimizing the amount of CICS DSA storage required and allowing the
maximum amount of MVS storage to be allocated to JVMs.

290 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ceea500/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ceea500/toc.htm

Identifying Language Environment storage needs for JVM servers
After identifying the actual storage needs, it is possible to determine whether the supplied DFHAXRO
options need to be modified or not. This allows values to be chosen that either avoid the need for
incremental storage allocations, or reduce the number to an acceptable level.

About this task

The HEAP64 runtime option in DFHAXRO controls the heap size of the Language Environment enclave for
a JVM server. This option includes settings for 64-bit, 31-bit, and 24-bit storage. You can use your own
program instead of DFHAXRO if preferred. The program must be specified on the JVMSERVER resource.

Procedure

1. Set the RPTO(ON) and RPTS(ON) options in DFHAXRO.
These options are in comments in the supplied source of DFHAXRO. Specifying these options causes
Language Environment to report on the storage options and to write a storage report showing the
actual storage used.

2. Disable the JVMSERVER resource.
The JVM server shuts down and the Language Environment enclave is removed.

3. Enable the JVMSERVER resource.
CICS uses the Language Environment runtime options in DFHAXRO to create the enclave for the JVM
server. The JVM also starts up.

4. Run your Java workloads in the JVM server to collect data about the storage that is used by the
Language Environment enclave.

5. Remove the RPTO(ON) and RPTS(ON) options from DFHAXRO.
6. Disable the JVMSERVER resource to generate the storage reports.

The storage reports include a suggestion for the initial Language Environment enclave heap storage.
The entry “Suggested initial size” in the 64-bit user heap statistics contains the suggested value and is
equal to the total amount of Language Environment enclave heap storage that was used by the JVM
server.

Results

The storage reports are saved in an stderr file in z/OS UNIX, or can also go to your CICS JES output if
you are using the JOBLOG or DD:// routing syntax. The directory depends on whether you have
redirected output for the JVM in the JVM profile. If no redirection exists, the file is saved in the working
directory for the JVM. If no value is set for WORK_DIR in the profile, the file is saved in the /tmp directory.

Use the information in the storage reports to select a suitable value for the Language Environment
enclave heap storage in the DFHAXRO HEAP64 option. Storage requirements might change from one CICS
execution to the next, and are typically not the same for different CICS systems that share the one
DFHAXRO, thus requiring a compromise.

The normal aim is to set the HEAP64 initial allocations to the suggested sizes to avoid or reduce the
number of increments. The more increments that are used, the more likely that the ratio of z/OS storage
compared to actively used Language Environment storage increases. Many increments can also cause an
increase in the amount of CPU time that is used by Language Environment to manage the HEAP64 storage
requests. Java allocates the JVM Heap as a Memory Object via IARV64 and not through a Language
Environment storage request. If a Java migration is performed with an initial allocation that includes -
Xmx, it normally doubles the storage that is used for the Java Heap, and might result in MEMLIMIT being
too small.

Allocating many increments might produce the effect of a Storage Leak, which manifests as a continual
increase in z/OS storage over time. In practice, this is more likely to be Storage Creep, which is
characterized by an increase in both z/OS allocated storage and Language Environment free storage. A
Storage Leak shows a continual increase in both z/OS and Language Environment used storage. 31-bit

Chapter 10. Improving Java performance 291

HEAP64 storage is allocated in z/OS subpool 1 whereas JIT storage is allocated in z/OS subpool 2 in 2MB
increments.

The effect of the revised options should be evaluated at least one time and adjusted as required. Tuning
should also be repeated at suitable intervals to assess the effect of any changes to storage usage due to
application changes and other changes. Tuning should also be repeated whenever the CICS or Java
release changes as storage usage patterns might change.

Note: If you increase the 31 bit HEAP64 initial size, you must also change HEAPP to avoid over-allocating
HEAPPOOLS 31-bit storage. In the example below, the HEAPPOOLS percentage values should be reduced
from 10% to 1%.

HEAPPOOLS and HEAPPOOLS64 are active in the default DFHAXRO and can be effective when
configured, but the correct values are dependent on the workload and hence precise tuning might be
difficult.

STACK64 should be checked to ensure that the maximum storage used is not close to the defined limit,
which is typically 16 MB. Exceeding the limit will results in runtime errors.

What is not obvious from LE RPTSTG output is that, while using STACK64(1M,1M,16M) provides a safe
value for JVM thread stack expansion, it can result in a large MEMLIMIT being required to avoid CICS SOS
Above the Bar during GDSA expansion. With the 16M maximum, 20 MB is allocated per JVM thread in
three Memory Objects - one of 16+1 MB, one of 2 MB and one of 1 MB. Only 3 MB is initially usable, and of
out this 1MB is allocated for the native stack, 1MB for the LE control block and 1MB for the reserve stack,
leaving 16MB as guarded stack storage and another 1MB as guarded reserve stack storage. Only the 3MB
of usable allocated storage is counted towards the z/OS IARV64 MEMLIMIT check. However, CICS counts
all 20 MB to decide whether it can expand the GDSA by a multiple of GB without exceeding MEMLIMIT. A
single JVM server can legitimately use more than 200 threads, and 200 threads equates to 4,000MB
towards the CICS MEMLIMIT check. Therefore, reducing the STACK64 maximum to a lower value that still
permits some expansion can help towards reducing the MEMLIMIT size and the possibility of SOS Above
the Bar.

Example
The following example is RPTOPTS output based on these DFHAXRO options:

HEAPPOOLS(ALIGN,8,10,32,10,128,10,256,10,1024,10,2048,10,0,10,0,10,0,10,0,10,0,10,0,10)
HEAPPOOLS64(ALIGN,8,4000,32,2000,128,700,256,350,1024,100,2048,50,3072,50,4096,50,8192,
 25,16384,10,32768,5,65536,5)
HEAP64(256M,4M,KEEP,4194304,1048576,KEEP,1024,1024,KEEP)
LIBHEAP64(3M,3M,FREE,16384,8192,FREE,8192,4096,FREE)
STACK64(1M,1M,16M)
THREADSTACK64(OFF,1M,1M,128M)

The following example is partial RPTSTG output:
STACK64 statistics:
Initial size: 1M
Increment size: 1M
Maximum used by all concurrent threads: 1M
Largest used by any thread: 1M - no change required
Number of increments allocated: 0
THREADSTACK64 statistics:
Initial size: 1M
Increment size: 1M
Maximum used by all concurrent threads: 0M
Largest used by any thread: 0M - not used
Number of increments allocated: 0
64bit User HEAP statistics:
Initial size: 256M
Increment size: 4M
Total heap storage used: 730857472
Suggested initial size: 697M - use this
Successful Get Heap requests: 783546
Successful Free Heap requests: 780785
Number of segments allocated: 135 - too many increments
Number of segments freed: 0
31bit User HEAP statistics:
Initial size: 4194304
Increment size: 1048576
Totalheap storage used (suggested initial size): 137165672 - use this

292 CICS TS for z/OS: Java Applications in CICS

Successful Get Heap requests: 1345332
Successful Free Heap requests: 1345260
Number of segments allocated: 125 - too many increments
Number of segments freed: 0
64bit Library HEAP statistics:
Initial size: 3M
Increment size: 3M
Total heap storage used: 4640032
Suggested initial size: 5M
Successful Get Heap requests: 113381
Successful Free Heap requests: 112860
Number of segments allocated: 1 - low, so no change required
Number of segments freed: 0
31bit Library HEAP statistics:
Initial size: 16384
Increment size: 8192
Total heap storage used (suggested initial size): 520
Successful Get Heap requests: 33725
Successful Free Heap requests: 33725
Number of segments allocated: 1 - low, so no change required
Number of segments freed: 0

Suggested Percentages for current CellSizes:
HEAPP(ALIGN,8,1,32,1,128,1,256,1,1024,1,2048,1,0)

When reviewing RPTSTG output, remember that the HEAP64 increment sizes are for the minimum amount
of storage that Language Environment allocates, and any increment could be substantially bigger than
that value. Hence it is not possible to accurately determine how much z/OS storage was used when 1 or
more increments have been allocated. The actual number of increments is reported for 64bit HEAP (that
is, 135), for 31bit HEAP the actual number of increments is one less than is shown (that is, 124 not 125).

Because of the way that Language Environment's storage management works when increments are used,
the amount of 31-bit and 64-bit z/OS storage allocated may be significantly higher than shown in RPTSTG
"maximum used".

The suggested DFHAXRO changes are:
* Heap storage
DC C'HEAP64(700M,' Initial 64bit heap - change (Note 1)
DC C'4M,' 64bit Heap increment
DC C'KEEP,' 64bit Increments kept
DC C'128M,' Initial 31bit heap - change (Note 2)
DC C'2M,' 31bit Heap increment - change (Note 3)
DC C'FREE,' 31bit Increments freed - change (Note 4)
DC C'1K,' Initial 24bit heap
DC C'1K,' 24bit Heap increment
DC C'KEEP) ' 24bit Increments kept

* Heap pools
DC C'HP64(ALIGN) '
DC C'HEAPP(ALIGN,8,1,32,1,128,1,256,1,1024,1,2048,1,0) ' - change (Note 5)

* Library Heap storage
DC C'LIBHEAP64(3M,3M) ' Initial 64bit heap - do not change (Note 6)

* 64bit stack storage
DC C'STACK64(1M,1M,16M) ' - consider a change (Note 7)

Note:

1. As shown by RPTSTG output 64bit "Suggested initial size" plus a small increase.
2. As shown by RPTSTG output 31bit "Suggested initial size" but with a small reduction as we are using

FREE.
3. The 31-bit HEAP increment may be better as a value of 2M instead of 1M.
4. Optionally, using 31-bit HEAP FREE may result in less z/OS storage being allocated to map the "Total

heap storage used" than with KEEP.
5. As recommended by RPTSTG output after the HEAPPOOLS statistics, but may benefit from further

optimization. The default of 10% of the 31-bit Heap initial size of 128MB is likely to result in an
excessive amount of storage being allocated. A minimum of 6 pools each of 10% of the initial heap
size of 128MB causes 77MB to be allocated. This will be included in the "Total heap storage used"
value (because the HEAPPOOLS storage extents are allocated there), irrespective of what percentage

Chapter 10. Improving Java performance 293

of the pool s is productively used. Using HEAPPOOLS cell sizes greater than 256 bytes might result in
inefficient use of Language Environment HEAP storage.

6. Only one increment was required, which is not a problem.
7. The largest used was 1MB. Reducing the maximum of 16M to a value such as 8 MB or even lower

would significantly reduce the amount of STACK64 storage that CICS counts towards MEMLIMIT when
checking to see whether it can allocate a new GDSA extent. STACK64 changes should be tested
thoroughly before migrating them into a production environment.

This is an example of using 31-bit HEAP FREE on another run of the same JVM server. The "Number of
segments" shows the number of GETMAINs and FREEMAINs performed, which was low for the time that
the JVM server was active. The difference of 2 shows that the enclave terminated with only the initial
allocation plus one increment, which is likely to be less than the "Total heap storage" and shows the
effectiveness of FREE. "Total heap storage used" was higher, but any total often changes from one run of
a JVM server to another, hence basing changes on only one set of RPTSTG may not provide the best
possible settings.
31bit User HEAP statistics:
Initial size: 134217728
Increment size: 2097152
Total heap storage used (suggested initial size): 154056664
Successful Get Heap requests: 3253239
Successful Free Heap requests: 3253176
Number of segments allocated: 149
Number of segments freed: 147

It is important to read the Language Environment Debugging Guide in order to correctly interpret RPTSTG
output.

Modifying the enclave of a JVM server with DFHAXRO
DFHAXRO is a sample program that provides a default set of runtime options for the Language
Environment® enclave in which a JVM server runs. For example, it defines storage allocation parameters
for the heap and stack. It is not possible to provide default runtime options that are optimized for all
workloads. Consider identifying actual storage usage, and override the defaults as required, to optimize
the ratio of used storage to allocated storage.

About this task

You can update the sample program to tune the Language Environment enclave or you can base your own
program on the sample. The program is defined on the JVMSERVER resource and is called during the
CELQPIPI preinitialization phase of the Language Environment enclave that is created for a JVM server.

You must write the program in assembly language and it must not be translated with the CICS® translator.
The options are specified as character strings, comprising a 2-byte string length followed by the runtime
option. The maximum length for all Language Environment runtime options is 255 bytes, so use the
abbreviated version of each option and restrict your changes to a total of under 200 bytes (allowing space
for the mandatory options imposed by the JVMSERVER).

Procedure

1. Copy the DFHAXRO program to a new location to edit the runtime options, and rename the module if
required.
If maintenance is applied to your CICS region, you might want to reflect the changes in your program.
The source for DFHAXRO is in the CICSTS56.CICS.SDFHSAMP library.

2. Edit the runtime options, using the abbreviation for each option.
The z/OS Language Environment Programming Guide has complete information about Language
Environment runtime options.

• Use the HEAP64 option to specify the initial heap allocation for the 64-bit, 31-bit and 24-bit storage
Language Environment heap areas.

For example the following HEAP64 settings
HEAP64(256M,4M,KEEP,4M,1M,FREE,1K,1K,KEEP)sets the initial 64-bit heap to 256 MB with

294 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ceea200/toc.htm

further storage getmained in 4 MB increments, the initial 31-bit storage heap to 4 MB with 1 MB
increments, and the initial 24-bit storage heap to 1 KB with 1 KB increments.

• The POSIX option is forced on by CICS.
3. Use the RPTO(ON) and RPTS(ON) values to report on the LE options and LE storage usage.

The output that is produced is written to the Enclave stderr stream at Enclave termination.

Tip:

It is possible to see the Language Environment storage growing over time as application workload
increases. While this growth might look like a storage leak, in most instances, the growth and the total
amount of storage can be corrected by tuning the Language Environment HEAP64 runtime option 64-
bit and 31-bit parameters based on the following procedure.

4. Use the DFHASMVS procedure to compile the program, deploy into the RPL and restart the JVM server.
5. Analyze the LE storage report produced to see if any of the LE user heaps show allocation using a high

number of increments.
Using many increments typically increases the amount of CPU time for storage requests. The more
segments that are allocated, the more likely it is that storage fragmentation occurs.

6. If any of the user heap statistics show more than 20 segments have been allocated, increase the initial
size or the increment size in the relevant LE runtime option.

7. When tuning is complete, edit the runtime options and disable the reporting of the LE options and LE
storage report. Compile the program, deploy into the RPL and restart the JVM server.

Example LE storage report for LE user heap statistics:

64bit User HEAP statistics:
 Initial size: 256M
 Increment size: 4M
 Total heap storage used: 47842496
 Suggested initial size: 46M
 Successful Get Heap requests: 8214
 Successful Free Heap requests: 8052
 Number of segments allocated: 0
 Number of segments freed: 0
31bit User HEAP statistics:
 Initial size: 4194304
 Increment size: 1048576
 Total heap storage used (sugg. initial size): 8583912
 Successful Get Heap requests: 338
 Successful Free Heap requests: 69
 Number of segments allocated: 6
 Number of segments freed: 0
24bit User HEAP statistics:
 Initial size: 1024
 Increment size: 1024
 Total heap storage used (sugg. initial size): 0
 Successful Get Heap requests: 0
 Successful Free Heap requests: 0
 Number of segments allocated: 0
 Number of segments freed: 0

Results
When you enable the JVMSERVER resource, CICS creates the Language Environment enclave by using the
runtime options that you specified in the DFHAXRO program. CICS checks the length of the runtime
options before it passes them to Language Environment. If the length is greater than 255 bytes, CICS
does not attempt to start the JVM server and writes error messages to CSMT. The values that you specify
are not checked by CICS before they are passed to Language Environment.

Chapter 10. Improving Java performance 295

Tuning the z/OS shared library region
The shared library region is a z/OS feature designed to improve performance when loading UNIX System
Services dynamic link library (.so) files. The primary exploiter of this feature is the Java SDK for z/OS, but
it can be used by any product that sets the shared library bit on their shared object (.so) files.

CICS JVM servers and Node.js applications disable the shared library region by default. Doing so usually
increases the available MVS 31-bit private area virtual storage within the CICS region. To enable the
shared library region, you must explicitly set the variable _BPXK_DISABLE_SHLIB=NO in the JVM profile
or Node.js profile.

Enabling the shared library region across multiple CICS regions can provide a performance benefit related
to the one-time allocation of the associated real storage, compared to each region loading each library
individually. However, if your z/OS image has many different JVM versions in use, all using the shared
library region, a larger amount of virtual storage is needed in all regions to hold the different versions of
the shared libraries. That increase is significant because each address space must reserve an equivalent
amount of MVS high private area storage onto which it maps the shared library region. Thus, a region's
private storage allocation is usually larger than if it was loading only the specific libraries required.

For more information about private storage, see High private area.

Additionally, executable code in the shared library region is allocated on a megabyte boundary, allowing a
single-page table to be shared, similar to LPA. A tradeoff is that the coarse-grained allocation consumes
more storage than direct loading of libraries.

Individual address spaces allocate their private storage when the first process using shared libraries is
started in the region. Take care that all processes within your address space opt in or opt out of the
shared library region consistently. If you choose to use the shared library region, the amount of storage
that is allocated is controlled by the SHRLIBRGNSIZE parameter in z/OS, which is in the BPXPRMxx
member of SYS1.PARMLIB. The minimum is 16 MB, and the z/OS default is 64 MB. To determine the
amount of storage that is allocated, bring up your normal workload on the z/OS system, then issue the
command D OMVS,L to display the library statistics. Adjust the SHRLIBRGNSIZE parameter large
enough to accommodate all the libraries, but not so large that excessive storage is reserved.

Note: Native libraries are loaded once per address space. Running multiple JVM servers and Node.js
applications within the same CICS region will not incur additional load costs regardless of the shared
library region setting, providing they use the same version of the IBM SDK, Java Technology Edition and
IBM SDK for Node.js - z/OS respectively.

296 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/dfht3c00465.html

Chapter 11. Troubleshooting Java applications
If you have a problem with a Java application, you can use the diagnostics that are provided by CICS and
the JVM to determine the cause of the problem.

About this task
CICS provides some statistics, messages, and tracing to help you diagnose problems that are related to
Java. The diagnostic tools and interfaces that are provided with Java can give you more detailed
information about what is happening in the JVM than CICS because CICS is unaware of many of the
activities in a JVM.

You can use freely available tools that perform real-time and offline analysis of a JVM, for example IBM
Health Center. For full details, see IBM Monitoring and Diagnostic Tools for Java - Health Center.

For troubleshooting web applications that are running in a Liberty JVM server, see “Troubleshooting
Liberty JVM servers and Java web applications” on page 301. For information about where to find log files
see “Controlling the location for JVM output, logs, dumps and trace” on page 308.

Procedure

1. If you are unable to start a JVM server, check that the setup of your Java installation is correct.
Use the CICS messages and any errors in the stderr file for the JVM to determine what might be
causing the problem.
a) Check that the correct version of the Java SDK is installed and that CICS has access to it in z/OS

UNIX.
For a list of supported SDKs, see Changes to CICS support for application programming languages.

b) Check that the USSHOME system initialization parameter is set in the CICS region.
This parameter specifies the home for files on z/OS UNIX.

c) Check that the JVMPROFILEDIR system initialization parameter is set correctly in the CICS region.
This parameter specifies the location of the JVM profiles on z/OS UNIX.

d) Check that the CICS region has read and run access to the z/OS UNIX directories that contain the
JVM profiles.

e) Check that the CICS region has write access to the working directory of the JVM.
This directory is specified in the WORK_DIR option in the JVM profile.

f) Check that the JAVA_HOME option in the JVM profiles points to the directory that contains the Java
SDK.

g) If you are using IBM MQ or Db2 DLL files, check that the 64-bit versions of these files are available
to CICS.

h) If you modify DFHAXRO to configure the Language Environment enclave, ensure that the runtime
options do not exceed 200 bytes and that the options are valid.
CICS does not validate the options that you specify before it passes them to Language
Environment. Check SYSOUT for any error messages from Language Environment.

2. If your setup is correct, gather diagnostic information to determine what is happening to the
application and the JVM.
a) To obtain the diagnostics, you must use PRINT_JVM_OPTIONS=TRUE. The default for this option is
PRINT_JVM_OPTIONS=FALSE, so if it is left to default no options for diagnostics are presented.
When you specify PRINT_JVM_OPTIONS=TRUE, all the options that are passed to the JVM at
startup, including the contents of the class paths, are printed to SYSPRINT. The information is
produced every time a JVM is started with this option in its profile.

b) Check the dfhjvmout and dfhjvmerr files for information and error messages from the JVM.

© Copyright IBM Corp. 1974, 2020 297

https://developer.ibm.com/javasdk/tools/
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/upgrading/changes/compiler_changes.html

These files are in the directory that is specified by the WORK_DIR/applid/jvmserver option in
the JVM profile. The files might have different names if the STDOUT and STDERR options were
changed in the JVM profile.

3. If the application is failing or performing poorly, debug the application.

• If you receive java.lang.ClassNotFoundException errors and the transaction abends with
the AJ05 code, the application might not be able to access IBM or vendor classes in the OSGi
framework. For more information about how to fix this problem, see Upgrading the Java
environment.

• Use the CEDX transaction to debug the application transaction. For a Liberty JVM server, if you are
using a URI map to match the inbound application request to an application transaction, debug that
transaction. If you use the default transaction CJSA, you must set the MAXACTIVE attribute to 1 on
the DFHEDFTC transaction class (or DFHEDFTO transaction class if you use CEDY). This setting is
required because a number of CJSA tasks might be running and you might debug the wrong
transaction. Do not use CEDX on the CJSA transaction in a production environment.

• To use a debugger with the JVM server, you must set some options in the JVM profile. For more
information, see “Debugging a Java application” on page 313.

• If you want to determine the status of OSGi bundles and services, use the OSGi console. Set the
following properties in the JVM profile: -Dosgi.file.encoding=ISO-8859-1, and -
Dosgi.console=host:port where host is the host name of the system the JVM server is
running on, and port is a free port on the same system. While the osgi.console.encoding
property was designed to allow the OSGi console to use a preferred encoding without putting the
whole JVM into that encoding, an outstanding bug in the Equinox OSGi framework prevents its use,
instead you must set the file.encoding value to an ASCII based encoding. If you are using an
OSGi JVM server, add OSGI_CONSOLE=TRUE to the JVM profile. If you are using a Liberty JVM
server, add the osgiConsole-1.0 feature to the server.xml. Connect to the OSGi console by using
a Telnet session with the host and port properties you specified in the JVM profile.

Note: If you type the exit command into the OSGi console, it will issue a system.exit(0) call to the
environment that the JVMSERVER runs in. The command to disconnect your terminal from the OSGi
console is disconnect. system.exit(0) is an abrupt stop of all threads and workload, and if left to
continue processing, can leave the JVM and CICS in an indeterminate state. CICS is designed to
perform an immediate shutdown in this eventuality to avoid subsequent complications. For this
reason, it is important to control write access to both the JVM profile, and server.xml. A Liberty
JVM server offers further protection by requiring inclusion of the osgiConsole-1.0 feature before
the OSGi console is able to run. The OSGi console is primarily a development and debug aid, and is
not expected to run in a production environment.

4. If you are getting out-of-memory errors, it might indicate that the JVM or CICS address space was not
allocated enough storage, the application might have a memory leak, or the heap size might be
insufficient.
a) Use CICS statistics or a tool such as IBM Health Center to monitor the JVM. If the application has a

memory leak, the amount of live data that remains after garbage collection gradually increases over
time until the heap is exhausted.
The JVM server statistics report the size of the heap after the last garbage collection and the
maximum and peak size of the heap. For more information, see Analyzing Java applications using
IBM Health Center.

b) Run the storage reports for Language Environment to find out whether the amount of storage is
sufficient.
For more information, see Language Environment enclave storage for JVMs.

5. If you are getting encoding errors when you install or run a Java application, maybe you set up
conflicting or an unsupported combination of code pages.
JVMs on z/OS typically use an EBCDIC code page for file encoding; the default for non-Liberty JVM
servers is IBM1047 (or cp1047), but the JVM can use other code pages for file encoding if required.
CICS requires an EBCDIC code page to handle character data and all JCICS calls must use an EBCDIC

298 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/upgrading/process/upgrade_java.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/upgrading/process/upgrade_java.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_setup_osgi_console.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/java/analyzing_apps.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/java/analyzing_apps.html
http://www.ibm.com/support/knowledgecenter//java/tuning/dfht3rr.html

code page. The code page is set in the LOCALCCSID system initialization parameter for the CICS
region.
a) Check the JVM server logs to see whether any warning messages were issued relating to the value

of LOCALCCSID.
If this parameter is set to a non-EBCDIC code page, a code page that is not supported by the JVM,
or an EBCDIC code page that is not supported (such as 930), the JVM server uses cp1047.

b) JCICS calls use the code page that is specified in the LOCALCCSID system initialization parameter.
If your application expects a different code page, you get encoding errors. To use a different code
page for JCICS, set the -Dcom.cics.jvmserver.override.ccsid= parameter in the JVM
profile.

c) If you are using the -Dcom.cics.jvmserver.override.ccsid= parameter in the JVM profile,
ensure that the CCSID is an EBCDIC code page.
The application must use EBCDIC when it uses JCICS calls.

d) If you are running SOAP processing in an Axis2 JVM server, ensure that the -Dfile.encoding
JVM property specifies an EBCDIC property.
If you specify a non-EBCDIC code page, such a UTF-8, the web service request fails and the
response contains corrupted data.

6. If you experience startup timeouts or timeouts under workload, there are various parameters that you
can tune to help resolve the issue. The following give an indication of values you can tune:

• Modify your -Dcom.ibm.cics.jvmserver.threadjoin.timeout setting to control how long
an HTTP request waits to obtain a JVM server thread.

• Increase the THREADLIMIT value on the JVMSERVER resource.
• If THREADLIMIT is already set to the maximum permitted value, then you might be attempting to

run more work than a single JVM server can handle. Consider balancing the workload between
multiple JVM servers or multiple regions.

Alternatively, your CICS system might be unresponsive because of other constraints. Follow the
standard procedures to diagnose performance problems. See Improving the performance of a CICS
system.

What to do next
If you cannot fix the cause of the problem, contact IBM support. Make sure that you provide the required
information, as listed in the Collecting CICS troubleshooting data (CICS MustGather) for IBM Support for
reporting Java problems.

Diagnostics for Java
Many of the usual sources of CICS diagnostic information contain information that applies to Java
applications. In addition to the information supplied by CICS, there are a number of interfaces specific to
the JVM that you can use for problem determination.

CICS diagnostic tools for Java

CICS has statistics and monitoring data that you can collect on running Java applications. When errors
occur, transactions abend and messages are written to the appropriate log. See CICS messages for a list
of the abends and messages that apply to the JVM (SJ) domain. Messages related to Java are in the
format DFHSJxxxx.

You can also turn on tracing to produce additional diagnostic information. The trace points for the JVM
domain are listed in JVM and Node.js runtime domain trace points.

When the first JVM is started in a CICS region after initialization, CICS issues message DFHSJ0207,
showing the version of Java that is being used.

The Java SDK provides diagnostic tools and interfaces that give you more detailed information about what
is happening in the JVM. Messages and diagnostic information from the JVM are written to the stderr

Chapter 11. Troubleshooting Java applications 299

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/dfht330.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/tuning/dfht330.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/cics/mustgather.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-messages/cics-messages/DFHmessages.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-diagnostics/trace/dfhs6_sj.html

log file for the JVM. If you encounter a Java problem, always consult this file. For example, if CICS issues
a message to indicate that the JVM has abended, the stderr log file is the primary source of diagnostic
information. “Controlling the location for JVM output, logs, dumps and trace” on page 308 tells you how
to control the location of output from the JVM, and how to redirect messages from JVM internals and
output from Java applications running in a JVM.

When you develop Java applications for CICS, it is important to consider the requirements for thread
safety and transaction isolation in CICS. If a Java application works correctly on its first use, but does not
behave correctly on subsequent uses, then the problem is likely to be due to isolation issues.

OSGi diagnostic files

The OSGi framework produces diagnostic files in zFS that you can use to help troubleshoot problems with
OSGi bundles and services in a JVM server:

OSGi cache
The OSGi cache is in the $WORK_DIR/applid/jvmserver/configuration/org.eclipse.osgi
directory of the JVM server. $WORK_DIR is the working directory of the JVM server, applid is the CICS
APPLID, and jvmserver is the name of the JVMSERVER resource. The OSGi cache contains framework
metadata and other information that is required to run the framework. The cache is replaced when the
JVM server starts up.

OSGi logs
If an error occurs in the OSGi framework, an OSGi log is created in the $WORK_DIR/applid/
jvmserver/configuration/ directory of the JVM server. The file extension is .log.

JVM diagnostic tools

The CICS documentation provides information about some of the Java diagnostic tools and interfaces:

• “Activating and managing tracing for JVM servers” on page 312 describes how you can use the
component tracing provided by the CETR transaction to trace the life cycle of the JVM server and the
tasks running inside it. JVM servers do not use auxiliary or GTF tracing. Instead, the tracing is written to
a file on zFS that is uniquely named for each JVM server.

• “Debugging a Java application” on page 313 describes how you can use a remote debugger to step
through the application code for a Java application that is running in a JVM. CICS also provides a set of
interception points (or plug-in) in the CICS Java middleware, which allows additional Java programs to
be inserted immediately before and after the application Java code is run, for debugging, logging, or
other purposes. For more information, see “The CICS JVM plug-in mechanism” on page 314.

Many more diagnostic tools and interfaces are available for the JVM. See Troubleshooting and support for
information about further facilities that can be used for problem determination for JVMs. The following
facilities provide useful diagnostic information:

• The internal trace facility of the JVM can be used directly, without going through the interfaces provided
by CICS. For information about the system properties that you can use to control the internal trace
facility and to output JVM trace information to various destinations, see Using CICS trace. You can use
these system properties to output trace from any method or class within the JVM, and to find the value
of any parameters and return types on the method call.

• If you experience memory leaks in the JVM, you can request a heap dump from the JVM. A heap dump
generates a dump of all the live objects (objects still in use) that are in the heap of the JVM. You can
also analyze memory leaks using the IBM Health Center and Memory Analyzer tools, which are both
available with IBM Support Assistant. For more information about Java tools, see IBM Monitoring and
Diagnostic Tools for Java - Health Center.

• The HPROF profiler, that is shipped with the IBM 64-bit SDK for z/OS, Java Technology Edition, provides
performance information for applications that run in the JVM, so you can see which parts of a program
are using the most memory or processor time.

• The JVM provides interfaces for monitoring, profiling, and RAS (Reliability, Availability, and
Serviceability).

300 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.zos.80.doc/troubleshooting.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/cics/dfhs13p.html
https://developer.ibm.com/javasdk/tools/
https://developer.ibm.com/javasdk/tools/

With all interfaces, options, or system properties available for the IBM JVM that are not specific to the
CICS environment, use the IBM JVM documentation as the primary source of information.

Troubleshooting Liberty JVM servers and Java web applications
If you have a problem with a Java web application, you can use the diagnostics that are provided by CICS
and Liberty to determine the cause of the problem.

CICS provides statistics, messages, and tracing to help you diagnose problems that are related to running
Java web applications in a Liberty JVM server. Liberty also produces diagnostics that are available in zFS.
For general setup errors and application problems, see Troubleshooting and support.

Avoiding problems

CICS uses the values of the region APPLID and the JVMSERVER resource name to create unique zFS file
and directory names. Some of the acceptable characters have special meanings in the UNIX System
Services shell. For example, the dollar sign ($) means the start of an environment variable name. Some of
these characters can cause an Exception in the Equinox OSGi framework and prevent the JVM server
from starting. Avoid using non-alphanumeric characters in the region APPLID and JVM server name. If
you do use these characters, you might need to use the backslash (\) as an escape character in the UNIX
System Services shell. For example, if you called your JVM server MY$JVMS and wanted to read the JVM
system out file:

cat CICSPRD.MY\$JVMS.D20140319.T124122.dfhjvmout

Unable to start Liberty JVM server

1. If you are unable to start a Liberty JVM server, check that your setup is correct; see Configuring a
Liberty JVM server for more information. Use the messages in the CICS system log and the Liberty
messages.log file that is located after WLP_OUTPUT_DIR to determine what might be causing the
problem.

2. Check that the -Dfile.encoding JVM property in the JVM profile specifies either ISO-8859-1 or
UTF-8. These are the two code pages that are supported by Liberty. If you set any other value, the JVM
server fails to start.

Unable to authenticate a user when trying to access a protected web application in a CICS Liberty
JVM server

CICS JESMSGLG log contains the message:
ICH420I PROGRAM DFHSIP FROM LIBRARY hlq.SDFHAUTH CAUSED THE
ENVIRONMENT TO BECOME UNCONTROLLED
BPXP014I ENVIRONMENT MUST BE CONTROLLED FOR DAEMON (BPX.DAEMON) PROCESSING.

The Liberty messages.log contains the message:
CWWKS1100A: Authentication did not succeed for user ID user.
An invalid user ID or password was specified.

The CICS Liberty JVM server security implementation uses the Liberty angel process to perform
authorized security checks. If Liberty is unable to connect to the angel process, it fails over to using UNIX
System Services security, which requires all members in the STEPLIB and DFHRPL concatenations to be
program controlled.

Attention: The Liberty server connects only to the angel process at server startup. The JVM server
needs to be restarted to complete authentication.

Unable to authenticate a user with user ID and password, cannot access APPL-ID when trying to
access a protected web application in a CICS Liberty JVM server

Liberty messages.log contains the message:

com.ibm.ws.security.saf.SAFServiceResult E CWWKS2909E:

Chapter 11. Troubleshooting Java applications 301

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/troubleshooting.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_jvmserver_liberty.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/config_jvmserver_liberty.html

A SAF authentication or authorization attempt was rejected because the server
is not authorized to access the following SAF resource:
APPL-ID APPL-ID. Internal error code 0x03008108.

The CICS Liberty JVM server security requires access to SAF security profiles in classes APPL and
SERVER. If access is not granted, then Liberty is not able to authenticate the user ID and password.
Details of how to configure this can be found here Authenticating users in a Liberty JVM server.

Web application is not available after it is deployed to the dropins directory

If you receive a CWWK0221E error message in dfhjvmerr, check that you set the right values for the
host name and port number in the JVM profile and server.xml. The port might be in use by another
process and port sharing disabled. The host name might not be resolvable by the client.

CICS CPU use increased after a Liberty JVM server is enabled

Liberty can be configured to regularly check for updates to both configuration and installed applications
using the <config> and <applicationMonitor> elements in server.xml. If the configuration polling rate or
application monitor interval is set too frequently it can cause excessive use of CPU and I/O.

For <config> you can reduce the frequency using the monitorInterval attribute. Do not set the
updateTrigger attribute to disabled because CICS requires Liberty to pick up configuration changes within
a few seconds.

For <applicationMonitor> you can reduce the frequency using the pollingRate attribute, change the
updateTrigger attribute to mbean, or disable it.

For more information, see Controlling dynamic updates.

Application not available

You copy a WAR file into the dropins directory but your application is not available. Check the Liberty
messages.log file for error messages. If you receive the CWWKZ0013E error message, you already have
a web application running in the Liberty JVM server with the same name. To fix this problem, change the
name of the web application and deploy to the dropins directory.

Web application returns Context Root Not Found

You enabled your Liberty JVM server and deployed your web application. The JVM server reports it is
enabled, but when you are accessing your application, you receive Context Root Not Found.
Accessing the web application a short time later results in success. This is a known timing window in
which the server reports it is enabled while applications are still starting in the background. You are more
likely to experience this condition in a multi-region environment that uses Sysplex Distributor or port
sharing. You are also likely to experience this condition if you use automation to access the application
triggered from the enabled status. If you are using Sysplex Distributor or port sharing, TCP/IP
automation can be used to silence a port and then resume the port once the web application is available.
Workarounds might involve the addition of a pause in automation scripts, or the application writing a flag
to a known location when it is available.

Web application is not requesting authentication

You configured security, but the web application is not requesting authentication.

1. Although you can configure CICS security for web applications, the web application uses security only
if it includes a security restraint in the WAR file. Check that a security restraint was defined by the
application developer in the web.xml file in the Dynamic Web Project.

2. Check that the server.xml file contains the correct security information. Any configuration errors are
reported in dfhjvmerr and might provide some useful information. If you are using CICS security,
check that the feature cicsts:security-1.0 is specified in server.xml. If CICS security is
switched off, check that you specified a basic user registry to authenticate application users.

3. Check that server.xml is configured either for <safAuthorization> to take advantage of
EJBRoles, or for a local role mapping in an <application-bnd> element. The <application-bnd>

302 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/auth_use_app.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_setup_dyn_upd.html

element is found with in the <application> element in server.xml or installedApps.xml. The
default security-role added by CICS for a local role mapping is cicsAllAuthenticated.

Web application is returning an HTTP 403 error code

The web application is returning an HTTP 403 error code in the web browser because either your user ID
is revoked or you are not authorized to run the application transaction.

1. Check the CICS message log for the error message ICH408I to see what type of authorization failure
occurred. To fix the problem, make sure that the user ID has a valid password and is authorized to run
the transaction.

2. If no ICH408I message is found check the messages.log file.

• For the following message:
CWWKS3005E: A configuration exception has occurred.
No UserRegistry implementation service is available. Â
Ensure that you have a user registry configured.

You must ensure that you have configured a SAF registry in server.xml. For more information, see
Manually tailoring server.xml.

• For the following message, when distributed identity is in use:
CWWKS9104A:Â Authorization failed for user alidist:defaultRealm
while invoking LdapTests on /basic.
The user is not granted access to any of the required roles: [testing].

IfÂ server.xml is configured for <safAuthorization> or includes the
cicsts:distributedIdentity-1.0 feature, then ensure the appropriate EJBRoles for the
RACMAPped user ID have been defined. For more information, see Authorization using SAF role
mapping. If server.xml is not configured for <safAuthorization> and does not include the
cicsts:distributedIdentity-1.0 feature, then ensure that the appropriate distributed user
ID is defined to have access to the appropriate role in an <application-bnd> element. For more
information, see Authorizing users to run applications in a Liberty JVM server.

3. If the application is retuning an exception for the class
com.ibm.ws.webcontainer.util.Base64Decode, check dfhjvmerr for error messages. If you
see configuration error messages, for example CWWKS4106E or CWWKS4000E, the server is trying to
access configuration files that were created in a different encoding. This type of configuration error can
occur when you change the file.encoding value and restart the JVM server. To fix the problem, you
can either revert to the previous encoding and restart the JVM server, or delete the configuration files.
The JVM server re-creates the files in the correct file encoding when it starts.

Web application is returning an HTTP 500 error code

The web application is returning an HTTP 500 error in the web browser. If you receive an HTTP 500 error,
a configuration error occurred.

1. Check the CICS message log for DFHSJ messages, which might give you more information about the
specific cause of the error.

2. If you are using a URIMAP to run application requests on a specific transaction, make sure that the
URIMAP specifies the correct transaction ID.

3. Make sure that the SCHEME and USAGE attributes are set correctly. The SCHEME must match the
application request, either HTTP or HTTPS. The USAGE attribute must be set to JVMSERVER.

Web application is returning an HTTP 503 error code

The web application is returning an HTTP 503 error in the web browser. If you receive an HTTP 503 error,
the application is not available.

1. Check the CICS message log for DFHSJ messages for additional information.

Chapter 11. Troubleshooting Java applications 303

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/serverxmljvm.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/jee_app_role.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/jee_app_role.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/java/auth_app_liberty.html

2. Make sure that the TRANSACTION and URIMAP resources for the application are enabled. If these
resources are packaged as part of the application in a CICS bundle, check the status of the BUNDLE
resource.

3. The request might have been purged before it completed. The error messages in the log describe why
the request was purged.

Unable to access your web application by using distributed identity mapping

If you are using distributed identity mapping and see the following message in the messages.log file:
FFDC1015I: An FFDC Incident has been created: "com.ibm.ws.security.saf.SAFException:
CWWKS2905E: SAF service IRRSIA00_CREATE did not succeed because
user null was not found in the SAF registry.
SAF return code 0x00000008. RACF return code 0x00000008. RACF reason code 0x00000010.
FFDC1015I: An FFDC Incident has been created:
"javax.security.auth.login.CredentialException: could not create SAF credential
for <distid> DistId

Check the CICS message log for the error message ICH408I to see what type of authorization failure
occurred. If it is ICH408I USER(<userid>) GROUP(TSOUSER) NAME(<name>) DISTRIBUTED
IDENTITY IS NOT DEFINED: 776 cn= <distid> DistId,ou=users,dc=domain,dc=com
LdapRegistry you need to create the appropriate RACMAP for the distributed identity being used to
access the application. The RACMAP QUERY command is useful for debugging. For example:

RACMAP QUERY USERDIDFILTER(NAME('ou=users,dc=domain,dc=com')) REGISTRY(NAME('LdapRegistry'))

The web application is returning exceptions

The web application is returning exceptions in the web browser; for example, the application is retuning
an exception for the class com.ibm.ws.webcontainer.util.Base64Decode.

1. Check dfhjvmerr for error messages.
2. If you see configuration error messages, for example CWWKS4106E or CWWKS4000E, the server is

trying to access configuration files that were created in a different encoding. This type of configuration
error can occur when you change the file.encoding value and restart the JVM server. To fix the
problem, you can either revert to the previous encoding and restart the JVM server, or delete the
configuration files. The JVM server re-creates the files in the correct file encoding when it starts.

Error message WTRN0078E An attempt by the transaction manager to call start on a
transactional resource has resulted in an error.

The error code was XAER_PROTO. If you experience this error, the most likely scenario is that you have
the default JTA integration in operation on your Liberty server, and your application uses a bean method
declared as REQUIRES_NEW. For example, the use of REQUIRES_NEW inside an XA transaction is not
supported by CICS: @Transactional(value = TxType.REQUIRES_NEW) void yourMethod{}
You must alter the application before it will run.

Error message DFHSJ1004 in MSGUSER, but no corresponding STDERR exception

A symptom of running out of zFS file system space could be a DFHSJ1004 with no corresponding STDERR
exception. The message is sent because of the lack of space, but there is no exception in STDERR
because there is no space to write a message to the files.

You can plan and monitor the size of your file system using the techniques detailed in Managing file
systems in z/OS UNIX System Services Planning.

Using the productInfo script to verify integrity of Liberty

You can verify the integrity of the Liberty installation after you install CICS or applying service, by using
the productInfo script.

1. Change directory to the CICS USSHOME directory.

304 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.bpxb200/dasman.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.bpxb200/dasman.htm

2. As productInfo uses Java, you must ensure that Java is included in your PATH. Alternatively, set the
JAVA_HOME environment variable to the value of JAVA_HOME in your JVM profile, for example:

export JAVA_HOME=/usr/lpp/java/J8.0_64

3. Run the productInfo script, supplying the validate option wlp/bin/productInfo validate. No
errors should be reported. For more information about the Liberty productInfo script, see Verifying
the integrity of Liberty profile installation.

Using the wlpenv script to run Liberty commands

You might be asked by IBM service to run one or more of the Liberty supplied commands, such as
productInfo or server dump. To run these commands, you can use the wlpenv script as a wrapper to
set the required environment. The script is created and updated every time that you enable a Liberty JVM
server after the JVM profile has been successfully parsed. Because the script is unique for each JVM
server in each CICS region, it is created in the WORK_DIR/APPLID/JVMSERVER as specified by default in
the JVM profile and is called wlpenv. APPLID is the value of the CICS region APPLID and JVMSERVER is
the name of the JVMSERVER resource.

To run the wlpenv script in the UNIX System Services shell, change directory to the WORK_DIR as
specified in the JVM profile and run the script with the Liberty command as an argument, for example:

./wlpenv productInfo version

./wlpenv server dump --archive=package_file_name.dump.pax --include=heap

For the server dump command, you do not supply the server name because it is set by the wlpenv
script to the value set the last time the JVM server was enabled.

For more information about Liberty commands, see productInfo command and Generating a Liberty
server dump from the command line.

Troubleshooting invoking a Java EE application
EXEC CICS LINK command fails with RESP = PGMIDERR, RESP2 = 1

1. Check the application to determine whether the correct artifacts have been generated.

a. Check that annotation processing is enabled on the source project.

Chapter 11. Troubleshooting Java applications 305

https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_inst_integrity.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_inst_integrity.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/rwlp_command_productinfo.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_setup_dump_server.html
https://www.ibm.com/support/knowledgecenter/SS7K4U_liberty/com.ibm.websphere.wlp.zseries.doc/ae/twlp_setup_dump_server.html

Figure 12. Check annotation processing is enabled
b. Check if an @CICSProgram has been added to a Java method and that it compiles correctly.
c. If your project contains a web.xml, check the version of the servlet specification it specifies. It

must be at least version 2.5.
d. Export the application and check for generated code in the
com.ibm.cics.server.invocation.proxy package. For example, on a workstation, open
the WAR or EAR file using an archive manager, or on z/OS use the jar -tf command, to
examine the contents of the WAR or EAR file. If code has not been generated, check you have
the latest version of the CICS Explorer, CICS build toolkit, or the annotation processor.

2. Review the CICS message log for messages similar to:

• DFHSJ1204: A linkable service has been registered for class examples.TSQ.ClassOne method
anotherMethod with program name LINKJCIN in JVMSERVER LINKJVM

• DFHPG0101: Resource definition for LINKJCIN has been added.

If these messages don't appear then:

a. Ensure you have a Liberty JVM server in the enabled state.
b. Ensure you have the cicsts:link-1.0 feature configured in your server.xml. If it is

configured you will see message J2CA7001I: Resource adapter
com.ibm.cics.wlp.program.link.connectorinstalled in messages.log.

c. If you are deploying your application using a CICS bundle, ensure the bundle is installed and
enabled.

d. Ensure the application is installed in Liberty, if it is, in the messages.log you will get a
message including the name of the user's application. For example: CWWKZ0001I:
Application com.ibm.cics.test.javalink started.

EXEC CICS LINK command fails with RESP = PGMIDERR, RESP = 27
This indicates that CICS tried to invoke a Java EE application in Liberty but a timeout occurred before
the application was successful. The most common cause for this issue is that there was no thread
available in the JVM server. To resolve this, increase the JVM server thread limit or increase the value
of WLP_LINK_TIMEOUT to allow the tasks to wait longer to acquire a thread. For more information see
WLP_LINK_TIMEOUT in Symbols used in the JVM profile and Managing the thread limit of JVM
servers.

306 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/dfha2_jvmprofile_symbols.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/java/threadlimit_jvmserver.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/administering/java/threadlimit_jvmserver.html

JCICS API call throws a CICSRuntimeException

com.ibm.cics.server.CicsRuntimeException:
DTCTSQ_READNEXT: No JCICS context is associated with the current thread.

The most likely cause of this exception is that you created a JCICS object on one thread and tried to
call its instance methods from a different thread. Change your application to construct the JCICS
object on the same thread that calls its methods.

Patterns that lead to inadvertently using an object on a different thread include:

• Constructing a JCICS object in constructor of a java.lang.Runnable or
java.util.concurrent.Callable. Construct the object in the run() method instead.

• Assigned JCICS objects to static variables. Use instance variables instead.
• Passing a JCICS object as a parameter to a method that is executed by another thread. The thread

should construct JCICS object itself.

Transaction abends AJ05 when using invoking a Java EE application
The following exceptions will be logged to the dfhvjmerr file:

com.ibm.cics.server.InvalidRequestException: CICS INVREQ Condition(RESP=INVREQ, RESP2=200)
java.lang.RuntimeException:
javax.transaction.RollbackException:
XAResource start association error:XAER_PROTO

Using JTA with Link to Liberty is only supported with CICS JTA integration disabled. Configure this by
using <cicsts_jta integration="false"/> in server.xml.

Java stack overflows

The Java error message java.lang.StackOverflowError: operating system stack
overflow is typically seen when the thread exceeds the initial stack size for operating system threads.
The size is set by the JVM option -Xmso in the JVM profile. This value might need to be increased if Java
Platform Debugger Architecture (JPDA) is enabled.

Unexpected ICH408I messages in log

These are standard audit messages. For more information, see Classes that control auditing for z/OS
UNIX System Services in z/OS Security Server RACF Auditor's Guide.

You can prevent them from being issued by executing one of the following RACF commands

• SETROPTS LOGOPTIONS(NEVER(IPCOBJ))
• SETROPTS LOGOPTION(DEFAULT(IPCOBJ))

IPCOBJ is defined only for auditing z/OS UNIX security events, it is not used for authorization checking.

Liberty Bundlepart hits timeout

In the JVM log or STDERR file, you see the message:
The application installed by bundlepart <symbolic-name> was not started
after 30000 milliseconds. Either a problem exists with the application, or the system is busy.
This timeout can be controlled by the System Property
'com.ibm.cics.jvmserver.wlp.bundlepart.timeout=n'
where n is the value of milliseconds to wait.

Check the Liberty messages.log for CWWKZ messages. CWWKZ messages might provide information on
why the application has not started. If there are no CWWKZ messages for the application, make sure the
<config> element is configured to use polling and has a monitor interval lower the timeout, for example:

<config updateTrigger="polled" monitorInterval="10s" />

Chapter 11. Troubleshooting Java applications 307

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.icha800/audcls.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.icha800/audcls.htm

If the monitor interval is less than the bundlepart timeout, you need to increase the timeout value. The
timeout value is controlled by the JVM system property
com.ibm.cics.jvmserver.wlp.bundlepart.timeout.

EBA application fails to install with a CWWKZ0005E or CWWKZ0021E messages

If Liberty fails to install an EBA, it produces either the CWWKZ0005E or CWWKZ0021E messages. This might
be caused when the wab-1.0 feature is not installed. Ensure that the wab-1.0 feature is correctly
installed.

Due to the stabilization of Liberty's OSGi support, WABs are not compatible with Java EE 8 features. The
wab-1.0 feature can automatically be uninstalled if Java EE 8 features are also installed in the same
Liberty server, causing any EBAs to be removed from the server with the above message. The JVM profile
property com.ibm.cics.jvmserver.wlp.wab can be used to control whether the wab-1.0 feature is
added to server.xml.

Error message CWWKC2262E The server is unable to process the 4.0 version and the
http://xmlns.jcp.org/xml/ns/javaee namespace

If the server is unable to process the 4.0 version and the http://xmlns.jcp.org/xml/ns/javaee
namespace, this typically means that an application server, such as Tomcat has not been excluded from
the build script. In Gradle, ensure that you have specified
providedRuntime("org.springframework.boot:spring-boot-starter-tomcat"), while in
Maven you have used the scope 'provided', for example:

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-tomcat</artifactId>
<scope>provided</scope>
</dependency>

Controlling the location for JVM output, logs, dumps and trace
Output from Java applications that are running in a JVM server can be written to the z/OS UNIX files. The
z/OS UNIX files are named by the STDOUT, STDERR, JVMLOG, and JVMTRACE options in the JVM profile or
routed to the JES log. In a Liberty JVM server, Liberty server output can be found in messages.log
relative to the configured log directory.

Logs and Traces

By default, the output from Java applications that are running in a JVM server is written to the z/OS UNIX
file system. The z/OS UNIX file system follows the file name convention DATE.TIME.<dfhjvmxxx>
within the directory structure of $WORK_DIR/APPLID/JVMSERVER. Additional overrides can be used to
route the output to the JES log. For more information, see Using a DD statement to route JVM server
output to JES.

If you want to override the defaults, you can specify a zFS file name for the STDOUT, STDERR, JVMLOG,
and JVMTRACE options. However, if you use a fixed file name, the output from all the JVMs that were
created with that JVM profile is appended to the same file. The output from different JVMs is interleaved
with no record headers. This situation is not helpful for problem determination.

If you customize these values, a better choice is to specify a variable file name for the STDOUT, STDERR,
JVMLOG, and JVMTRACE options. The files can then be made unique to each individual JVM during the
lifetime of the CICS region.

You can include the CICS region APPLID in the file name by using the APPLID symbol.

You can also include extra identifying information in file names. Other identifying information includes the
DATE and TIME symbols.

DATE is replaced by the date the profile parses on JVM server start, in the form Dyymmdd.
TIME is replaced by the time the profile parses on JVM server start, in the format Thhmmss.

308 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/dfha2_jvmprofile_sysprops.html#dfha2bk__com.ibm.cics.jvmserver.wlp.bundlepart.timeout
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/configuring/java/dfha2_jvmprofile_sysprops.html#dfha2bk__com.ibm.cics.jvmserver.wlp.wab

JVMSERVER is replaced by the name of the JVMSERVER resource.

Further customization can be achieved at the programmatic level that uses the USEROUTPUTCLASS
option, which does not work with Liberty. The USEROUTPUTCLASS option, which is specified in the JVM
profile, names a Java class. A Java class intercepts and redirects the output from the JVM to a custom
location such as a CICS transient data queue. You can add time stamps and headers to the output
records, and identify the output from individual transactions that are running in the JVM. CICS supplies
sample classes that perform these tasks.

Dumps

The location for the javacore (also known as a Java dump), heap and snaptrace outputs from the JVM is
the working directory on z/OS UNIX named by the JVMSERVER's WORK_DIR option in the JVM profile.
These files are uniquely identified by a time stamp in their names. To override the default locations and
names, you can use -Xdump:directory=<path> to specify a location for all dump types to be written
to, and -Xdump:file=<filename> to specify the dump file names. For details about -Xdump, see -
Xdump.

The more detailed Java system dumps are written to the data set named by the
JAVA_DUMP_TDUMP_PATTERN option. You can use the APPLID, DATE, and TIME, and JVMSERVER
symbols in this value to make the name unique to the individual JVM, as shown in the sample JVM profiles
included with CICS. You can also use MVS symbols as supported by the IEATDUMP macro or dump agent
tokens as supported by the JRE. For details about dump agent tokens see -Xdump and for details about
MVS system symbols see What are system symbols?. You should ensure that the generated data set
names are valid and can be allocated by the CICS region user ID otherwise first failure diagnostic
information may be lost in the event of a system error.

Note: The terms system dump and TDUMP are occasionally used interchangeably. For clarification,
TDUMP is a type of MVS system dump generated via IEATDUMP, producing an MVS transaction dump.
Care should be taken to avoid confusing such MVS transaction dumps with CICS transaction dumps.

The JVM writes information to the stderr stream when it generates a javacore output or a system dump.
For more information about the contents of javacore outputs and system dump files, see Troubleshooting
and support.

Using a DD statement to route JVM server output to JES
You can update the JVM server to redirect output to a specific location.

JVM server STDOUT, STDERR, JVMLOG, JVMTRACE, and messages.log output can be routed to the JES
log. This allows JVM server log file output to be managed together with other CICS logs such as the
MSGUSR.

Using the JOBLOG parameter results in STDOUT, JVMLOG and JVMTRACE being routed to SYSPRINT if
defined or to a dynamic SYSnnn if not. If only JVMTRACE=JOBLOG is specified, JVMTRACE is routed to the
current stdout location. STDERR is routed to SYSOUT if defined or to a dynamic SYSnnn if not, for
example:

STDOUT=JOBLOG
STDERR=JOBLOG
JVMTRACE=JOBLOG
JVMLOG=JOBLOG

Output can also be routed to any MVS data definition (DD) defined to JES, for example if the CICS region
JCL specifies the DD statements JVMOUT, JVMERR, and MSGLOG.

//JVMOUT DD SYSOUT=*
//JVMERR DD SYSOUT=*
//MSGLOG DD SYSOUT=* <--- redirects Liberty messages.log

If the DD statements configured in Liberty are not defined in CICS runtime JCL, these logs are
automatically redirected to the specified DD output and are listed in CICS job output when Liberty is
started.

Chapter 11. Troubleshooting Java applications 309

https://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/openj9/xdump/index.html
https://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/openj9/xdump/index.html
https://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/openj9/xdump/index.html
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.ieag300/comdesc.htm
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.zos.80.doc/troubleshooting.html
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.zos.80.doc/troubleshooting.html

The following JVM profile options can then be used in the JVM profile to route stdout and stderr
streams to the JVMOUT and JVMERR destinations. If omitted, the JVM server will automatically create
those destinations. A MSGLOG statement automatically redirects messages.log to JES without the need
for any JVM profile configuration.

STDOUT=//DD:JVMOUT
STDERR=//DD:JVMERR

To establish the origin of the JVM server output, all stdout, and stderr entries that are routed to JES
are written with a prefix string of the JVM server name, which is useful if multiple JVM servers are sharing
a destination. This behavior can be disabled by using the JVM profile option IDENTITY_PREFIX, which if
set to FALSE disables use of the prefix string.

It is not possible to route IBM Health Center messages to the CICS job log. Consider using zFS as the
primary output location if you wish to see detailed IBM Health Center output.

If you choose not to specify a destination, the output will redirect to the zFS default file, however you can
set it to send to specific zFS files. See “Controlling the location for JVM output, logs, dumps and trace” on
page 308.

Redirecting the JVM stdout and stderr streams
During application development, the USEROUTPUTCLASS option can be used by developers to separate
out their own stdout and stderr entries in a CICS region, and direct them to an identifiable destination
of their choice. You can use a Java class to redirect the output, and you can add time stamps and headers
to the output records. Dump output cannot be intercepted by this method.

Specifying the USEROUTPUTCLASS option has a negative effect on the performance of JVMs. For best
performance in a production environment, do not use this option.

Output that is written to System.out() or System.err(), either by an application or by system code,
can be redirected by the output redirection class. The z/OS UNIX files that are named by the STDOUT and
STDERR options in the JVM profile are still used for some messages that are issued by the JVM, or if the
class named by the USEROUTPUTCLASS option is unable to write data to its intended destination. You
must therefore still specify appropriate file names for these files.

To use the USEROUTPUTCLASS option, specify USEROUTPUTCLASS=[java class] in a JVM profile,
naming the Java class of your choice. The class extends java.io.OutputStream. The supplied sample
JVM profiles contain the commented-out option
USEROUTPUTCLASS=com.ibm.cics.samples.SJMergedStream, which names the supplied sample
class. Uncomment this option to use the com.ibm.cics.samples.SJMergedStream class to handle
output from JVMs with that profile. CICS also supplies an alternative sample Java class,
com.ibm.cics.samples.SJTaskStream.

For JVM servers, you package your output redirection class as an OSGi bundle to run the class in the OSGi
framework. For more information, see Writing Java classes to redirect JVM stdout and stderr output.

Note: Output redirection samples function in OSGi and classpath JVM servers and not in a Liberty JVM
server.

The sample classes com.ibm.cics.samples.SJMergedStream and
com.ibm.cics.samples.SJTaskStream
For Java application threads that can make CICS requests, you can intercept the output from the JVM and
write it to a transient data queue. A log is created that correlates JVM activity with CICS activity.

You can add time stamps, task and transaction identifiers, and program names when the output is
intercepted. You can therefore create a merged log file that contains the output from multiple JVMs. You
can use this log file to correlate JVM activity with CICS activity. The sample class,
com.ibm.cics.samples.SJMergedStream, is set up to create merged log files.

The com.ibm.cics.samples.SJMergedStream class directs output from the JVM to the transient
data queues CSJO (for the stdout stream), and CSJE (for the stderr stream and internal messages).

310 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/dfha3sc.html

These transient data queues are supplied in group DFHDCTG, and they are redirected to CSSL, but you
can redefine them if required.

By redirecting the output, the class adds a header to each record that contains the date, time, APPLID,
TRANSID, task number, and program name. The result is two merged log files for JVM output and for error
messages, in which the source of the output and messages can easily be identified.

The classes are shipped in the file com.ibm.cics.samples.jar, which is in the directory /usr/lpp/
cicsts/cicsts56/lib, where /usr/lpp/cicsts/cicsts56 is the installation directory for CICS
files on z/OS UNIX. The source for the classes is also provided as samples, so you can modify the classes
as you want, or write your own classes based on the samples. The classes are packaged as an OSGi
bundle JAR. These classes can either be deployed into a CLASSPATH JVM server or as a middleware
bundle that uses the OSGI_BUNDLES JVM server option in an OSGi JVM server. For more information, see
Writing Java classes to redirect JVM stdout and stderr output.

Java applications that run on threads other than the ones that are attached by CICS are not able to make
CICS requests. The output from the JVM cannot be redirected by using CICS facilities. The
com.ibm.cics.samples.SJMergedStream class still intercepts the output and adds a header to each
record. The output is written to the z/OS UNIX files /work_dir/applid/stdout/CSJO and /
work_dir/applid/stderr/CSJE as referred to previously. If these files are unavailable, the output is
written to the z/OS UNIX files named by the STDOUT and STDERR options in the JVM profile.

As an alternative to creating merged log files for your JVM output, you can direct the output from a single
task to z/OS UNIX files. You can also add time stamps and headers, to provide output streams that are
specific to a single task. The sample class that is supplied with CICS,
com.ibm.cics.samples.SJTaskStream is set up for this purpose. The class directs the output for
each task to two z/OS UNIX files. One is for the stdout stream and one is for the stderr stream. The
output entries within the streams are uniquely named by using a task number (in the format
YYYYMMDD.task.tasknumber). The z/OS UNIX files are stored in directories called STDOUT and
STDERR respectively. The process is the same for Java applications which run on threads that are
attached by CICS, and Java applications that are running on other threads.

Error handling

The length of messages that are given by the JVM can vary. The maximum record length for the CSSL
queue (133 bytes) might not be sufficient to contain some of the messages you receive. If you receive
more messages than the maximum record length for the queue, the sample output redirection class
issues an error message. The text of the message might be affected.

If you find that you are receiving messages longer than 133 bytes from the JVM, redefine CSJO and CSJE
as separate transient data queues. Make them extrapartition destinations, and increase the record length
for the queue. You can allocate the queue to a physical data set or to a system output data set. You might
find a system output data set more convenient in this case, because you do not then need to close the
queue to view the output. For information about how to define transient data queues, see TDQUEUE
resources. If you redefine CSJO and CSJE, ensure that they are installed as soon as possible during a cold
start, in the same way as for transient data queues that are defined in group DFHDCTG.

If the transient data queues CSJO and CSJE cannot be accessed, output is written to the z/OS UNIX files /
work_dir/applid/stdout/CSJO and /work_dir/applid/stderr/CSJE, where work_dir is the
directory that is specified on the WORK_DIR option in the JVM profile, and applid is the APPLID identifier
that is associated with the CICS region. If these files are unavailable, the output is written to the z/OS
UNIX files named by the STDOUT and STDERR options in the JVM profile.

When an error is encountered by the sample output redirection classes, one or more error messages are
given. If the error occurred while you processed an output message, then the error messages are directed
to System.err, and are eligible for redirection. However, if the error occurred while you processed an
error message, then the new error messages are sent to the file named by the STDERR option in the JVM
profile, avoiding a recursive loop in the Java class. The classes do not return exceptions to the calling Java
program.

Chapter 11. Troubleshooting Java applications 311

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/java/dfha3sc.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/tdqueue/dfha4_summary.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-system-management/resources/tdqueue/dfha4_summary.html

Control of Java-related dump options
The -Xdump option can be used in a JVM profile to specify dump options to the JVM.

Information about Java-related dump options can be found in Troubleshooting and support.

CICS component tracing for JVM servers
In addition to the logging produced by Java, CICS provides some standard trace points in the SJ (JVM)
and AP domains for 0, 1, and 2 trace levels. These trace points trace the actions that CICS takes in setting
up and managing JVM servers.

You can activate the SJ and AP domain trace points at levels 0, 1, and 2 using the CETR transaction. For
details of all the standard trace points in the SJ domain, see JVM and Node.js runtime domain trace
points.

SJ and AP component tracing

The SJ component traces exceptions and processing in SJ domain to the internal trace table. The AP
component traces the installation of OSGi bundles in the OSGi framework. SJ level 3, 4, and 5 tracing
produce Java logging that is written to a trace file in zFS. The name and location of the trace file is
determined by the JVMTRACE option in the JVM profile.

SJ level 4 and 5 tracing produces verbose logging information in the trace file. If you want to use this
trace level, you must ensure that there is enough space in zFS for the file. For more information about
activating and managing trace, see “Activating and managing tracing for JVM servers” on page 312.

Activating and managing tracing for JVM servers
You can activate JVM server tracing by turning on SJ and AP component tracing. Small amounts of trace
are written to the internal trace table, but Java also writes out logging information to a unique file in zFS
for each JVM server. This file does not wrap so you must manage its size in zFS.

About this task

JVM server tracing does not use auxiliary or GTF tracing. CICS writes some information to the internal
trace table. However, most diagnostic information is logged by Java and written to a file in zFS. This file is
uniquely named for each JVM server. The default file name has the format &DATE;.&TIME;.dfhjvmtrc
and is created by CICS in the $WORK_DIR/&APPLID;/&JVMSERVER; directory when you enable the
JVMSERVER resource. You can change the name and location of the trace file in the JVM profile. If you
delete or rename the trace file when the JVM server is running, CICS does not re-create the file and the
logging information is not written to another file.

Procedure

1. Use the CETR transaction to activate tracing for the JVM server.
You can use two components to produce tracing and logging information for a JVM server:

• Select the SJ component to trace the actions taken by CICS to start and stop the JVM server. The
JVM logs diagnostic information in the zFS file.

• Select the AP component to trace the installation of OSGi bundles.
2. Set the tracing level for the SJ and AP components:

• SJ level 0 produces tracing for exceptions only, such as errors during the initialization of the JVM
server or problems in the OSGi framework. SJ level 1 and level 2 produces more CICS tracing from
the SJ domain. This tracing is written to the internal trace table.

• SJ level 3 produces additional logging from the JVM, such as warning and information messages in
the OSGi framework. This information is written to the trace file in zFS.

312 CICS TS for z/OS: Java Applications in CICS

https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.zos.80.doc/troubleshooting.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-diagnostics/trace/dfhs6_sj.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-diagnostics/trace/dfhs6_sj.html

• SJ level 4, 5 and AP level 2 produce debug information from CICS and the JVM, which provides
much more detailed information about the JVM server processing. This information is written to the
trace file in zFS.

3. Each trace entry has a date and time stamp. You can change the name and the location of this trace
file by using the JVMTRACE profile option.

4. If you are using the default JVMTRACE settings, when you enable the JVMSERVER resource CICS
creates a new unique trace file for the life of the JVM.
If you disable the JVMSERVER resource, you can delete the trace file or rename the file if you want to
retain the information separately.

5. To manage the number of files you can set the LOG_FILES_MAX option to control the number of old
trace files that are retained on the JVM server startup.

Debugging a Java application
The JVM in CICS supports the Java Platform Debugger Architecture (JPDA), which is the standard
debugging mechanism provided in the Java Platform.

About this task

You can use any tool that supports JDPA to debug a Java application running in CICS. For example, you
can use the Java Debugger (JDB) that is included with the Java SDK on z/OS. To attach a JPDA remote
debugger, you must set some options in the JVM profile.

Note: The use of JPDA might require a larger stack size for operating system threads. The stack size for
operating threads can be configured in the JVM profile with option -Xmso. You should review your
existing profiles for artificially constrained lower values. The default stack size is now 1M, which matches
the stack size of the 64bit JVM.

IBM provides monitoring and diagnostic tools for Java, including Health Center. IBM Health Center is
available in the IBM Support Assistant Workbench. These free tools are available to download from IBM
as described in the Getting Started guide for IBM Health Center.

Procedure

1. Add the debugging option to the JVM profile to start the JVM in debug mode:

-agentlib:jdwp=transport=dt_socket,server=y,address=port,suspend=n

Select a free port to connect to the debugger remotely.
If the JVM profile is shared by more than one JVM server, you can use a different JVM profile for
debugging.

Note: The default value for suspend is y. This value suspends the JVM and waits for the remote client
debugger to attach before processing continues. Specifying a value of n will prevent the JVM server
from suspending.

2. Add these properties to the JVM profile when debugging a Liberty JVM server to avoid hot-swap
complications with Liberty trace. This will also indicate to Liberty that it should operate in a debug
cognizant mode:

-Dwas.debug.mode=true
-Dcom.ibm.websphere.ras.inject.at.transform=true

3. Attach the debugger to the JVM.
If an error occurs during the connection, for example the port value is incorrect, messages are written
to the JVM standard output and standard error streams.

4. Using the debugger, check the initial state of the JVM. For example, check the identity of threads that
are started and system classes that are loaded.

Chapter 11. Troubleshooting Java applications 313

https://developer.ibm.com/javasdk/tools/
https://developer.ibm.com/javasdk/tools/

5. Set a breakpoint at a suitable point in the Java application by specifying the full Java class name and
source code line number. If the debugger indicates that activation of this breakpoint is deferred, it is
because the class might not yet have loaded.
Let the JVM run through the CICS middleware code to the application breakpoint, at which point it
suspends execution again.

6. Examine the source code of the loaded classes and variables and set further breakpoints to step
through the code as required.

7. End the debug session. You can let the application run to completion, at which point the connection
between the debugger and the CICS JVM closes. Some debuggers support forced termination of the
JVM, which results in an abend and error messages on the CICS system console.

The CICS JVM plug-in mechanism
In addition to the standard JPDA debug interfaces in the JVM, CICS provides a set of interception points
(plug-ins) in the CICS Java middleware, which can be useful for debugging applications. You can use
these plug-ins to insert additional Java programs immediately before and after the application Java code
is run.

Information about the application, for example, class name and method name, is made available to the
plug-ins. The plug-ins can also use the JCICS API to obtain information about the application, and can
also be used in conjunction with the standard JPDA interfaces to provide additional debug facilities
specifically for CICS. The plug-ins can also be used for purposes other than debugging, in a similar way to
CICS user exits.

The Java exit is a CICS Java wrapper plug-in that provides methods that are called immediately before
and after a Java program is invoked.

To deploy a plug-in, you package the plug-in as an OSGi bundle. For more information see Deploying OSGi
bundles in a JVM server.

Two Java programming interfaces are provided.

Both interfaces are supplied in com.ibm.cics.server.jar, and are documented in the Javadoc.

The Java programming interfaces are:

• DebugControl: com.ibm.cics.server.debug.DebugControl. This programming interface defines
the method calls that can be made to an implementation supplied by the user.

• Plugin: com.ibm.cics.server.debug.Plugin. This is a general purpose programming interface
that you use for registering the plug-in implementation.

Here is an example of the DebugControl interface:

public interface DebugControl
{
 // called before an application object method or program main is invoked
 public void startDebug(java.lang.String className,java.lang.String methodName);

 // called after an application object method or program main is invoked
 public void stopDebug(java.lang.String className,java.lang.String methodName);

 // called before an application object is deleted
 public void exitDebug();

}
public interface Plugin
{
 // initaliser, called when plug-in is registered
 public void init();
}

Here is an example implementation of the DebugControl and Plugin interfaces:

import com.ibm.cics.server.debug.*;

public class SampleCICSDebugPlugin
 implements Plugin, DebugControl

314 CICS TS for z/OS: Java Applications in CICS

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/deploying/create_osgibundle.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/deploying/create_osgibundle.html

{
 // Implementation of the plug-in initialiser
 public void init()
 {
 // This method is called when the CICS Java middleware loads and
 // registers the plug-in. It can be used to perform any initialization
 // required for the debug control implementation.
 }

 // Implementations of the debug control methods
 public void startDebug(java.lang.String className,java.lang.String methodName)
 {
 // This method is called immediately before the application method is
 // invoked. It can be used to start operation of a debugging tool. JCICS
 // calls such as Task.getTask can be used here to obtain further
 // information about the application.
 }

 public void stopDebug(java.lang.String className,java.lang.String methodName)
 {
 // This method is called immediately after the application method is
 // invoked. It can be used to suspend operation of a debugging tool.
 }

 public void exitDebug()
 {
 // This method is called immediately before an application object is
 // deleted. It can be used to terminate operation of a debugging tool.
 }

 public static void main(com.ibm.cics.server.CommAreaHolder ca)
 {
 }
}

Chapter 11. Troubleshooting Java applications 315

316 CICS TS for z/OS: Java Applications in CICS

Notices

This information was developed for products and services offered in the U.S.A. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property rights may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
United States of America

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119 Armonk,
NY 10504-1785
United States of America

© Copyright IBM Corp. 1974, 2020 317

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Programming License Agreement, or
any equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Programming interface information

CICS supplies some documentation that can be considered to be Programming Interfaces, and some
documentation that cannot be considered to be a Programming Interface.

Programming Interfaces that allow the customer to write programs to obtain the services of CICS
Transaction Server for z/OS, Version 5 Release 6 are included in the following sections of the online
product documentation:

• Developing applications
• Developing system programs
• CICS TS security
• Developing for external interfaces
• Application development reference
• Reference: system programming
• Reference: connectivity

Information that is NOT intended to be used as a Programming Interface of CICS Transaction Server for
z/OS, Version 5 Release 6 , but that might be misconstrued as Programming Interfaces, is included in the
following sections of the online product documentation:

• Troubleshooting and support
• CICS TS diagnostics reference

If you access the CICS documentation in manuals in PDF format, Programming Interfaces that allow the
customer to write programs to obtain the services of CICS Transaction Server for z/OS, Version 5 Release
6 are included in the following manuals:

• Application Programming Guide and Application Programming Reference
• Business Transaction Services
• Customization Guide

318 Notices

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/system-programming/developing_sysprogs.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/security/security.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/applications/developing/interfaces/externalInterfaces.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-applications/reference-programming.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/home/reference-systemprogramming.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/reference-connectivity/reference-connections.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/troubleshooting/troubleshooting.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.6.0/home/reference-diagnostics.html

• C++ OO Class Libraries
• Debugging Tools Interfaces Reference
• Distributed Transaction Programming Guide
• External Interfaces Guide
• Front End Programming Interface Guide
• IMS Database Control Guide
• Installation Guide
• Security Guide
• Supplied Transactions
• CICSPlex SM Managing Workloads
• CICSPlex SM Managing Resource Usage
• CICSPlex SM Application Programming Guide and Application Programming Reference
• Java Applications in CICS

If you access the CICS documentation in manuals in PDF format, information that is NOT intended to be
used as a Programming Interface of CICS Transaction Server for z/OS, Version 5 Release 6 , but that
might be misconstrued as Programming Interfaces, is included in the following manuals:

• Data Areas
• Diagnosis Reference
• Problem Determination Guide
• CICSPlex SM Problem Determination Guide

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Apache, Apache Axis2, Apache Maven, Apache Ivy, the Apache Software Foundation (ASF) logo, and the
ASF feather logo are trademarks of Apache Software Foundation.

Gradle and the Gradlephant logo are registered trademark of Gradle, Inc. and its subsidiaries in the
United States and/or other countries.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon,
Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or
its subsidiaries in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the
exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Red Hat®, and Hibernate are trademarks or registered trademarks of Red Hat, Inc. or its subsidiaries in
the United States and other countries.

Spring Boot is a trademark of Pivotal Software, Inc. in the U.S. and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Notices 319

https://www.ibm.com/legal/copytrade.shtml

Zowe™, the Zowe logo and the Open Mainframe Project™ are trademarks of The Linux Foundation.

Terms and conditions for product documentation

Permissions for the use of these publications are granted subject to the following terms and conditions.
Applicability

These terms and conditions are in addition to any terms of use for the IBM website.
Personal use

You may reproduce these publications for your personal, noncommercial use provided that all
proprietary notices are preserved. You may not distribute, display or make derivative work of these
publications, or any portion thereof, without the express consent of IBM.

Commercial use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications,
or reproduce, distribute or display these publications or any portion thereof outside your enterprise,
without the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted,
either express or implied, to the publications or any information, data, software or other intellectual
property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are
not being properly followed.

You may not download, export or re-export this information except in full compliance with all
applicable laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-
INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM online privacy statement

IBM Software products, including software as a service solutions, (Software Offerings) may use cookies or
other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below:

For the CICSPlex SM Web User Interface (main interface):
Depending upon the configurations deployed, this Software Offering may use session and persistent
cookies that collect each user’s user name and other personally identifiable information for purposes
of session management, authentication, enhanced user usability, or other usage tracking or functional
purposes. These cookies cannot be disabled.

For the CICSPlex SM Web User Interface (data interface):
Depending upon the configurations deployed, this Software Offering may use session cookies that
collect each user's user name and other personally identifiable information for purposes of session
management, authentication, or other usage tracking or functional purposes. These cookies cannot be
disabled.

For the CICSPlex SM Web User Interface ("hello world" page):
Depending upon the configurations deployed, this Software Offering may use session cookies that
collect no personally identifiable information. These cookies cannot be disabled.

For CICS Explorer:
Depending upon the configurations deployed, this Software Offering may use session and persistent
preferences that collect each user’s user name and password, for purposes of session management,

320 Notices

authentication, and single sign-on configuration. These preferences cannot be disabled, although
storing a user's password on disk in encrypted form can only be enabled by the user's explicit action
to check a check box during sign-on.

If the configurations deployed for this Software Offering provide you, as customer, the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM Privacy Policy and IBM Online Privacy Statement, the section entitled Cookies, Web Beacons and
Other Technologies and the IBM Software Products and Software-as-a-Service Privacy Statement.

Notices 321

https://www.ibm.com/privacy
https://www.ibm.com/privacy/details
https://www.ibm.com/software/info/product-privacy

322 CICS TS for z/OS: Java Applications in CICS

Index

Special Characters
-Xinitsh 8
-Xms 8
-Xmx 8

A
access control lists (ACLs) 193
accessing databases 160
Adding the CICS-MainClass declaration to the manifest 29
allocation failure 288
application programs, Java 39
applications

OSGi 12
updating 241

applying a security policy 279
Axis2

configuring 213

B
batch mode JVM 173
best practices

developing 39, 73
bundle 27
byte array handling 43

C
CEEPIPI Language Environment preinitialization module 9
channels

creating 51
JCICS support 50

channels as large COMMAREAs 50
CICS bundle 27
CICS Explorer SDK

developing Java application 27
CICS tasks in Java 9
class paths for JVM 8
class types in JVM 8
code page 43
com.ibm.cics 202
com.ibm.cics.jvmserver 202
com.ibm.cics.samples.SJMergedStream 310
com.ibm.cics.samples.SJTaskStream 310
COMMAREAs > 32 K 50
common libraries

deploying
Liberty 187

configuring
Axis2 213
CICS Security Token Service 215
Liberty JVM server 210
OSGi framework 196

configuring Db2 access 195

connectivity for Java applications 173
container plug-in, for debugging Java applications 314
containers

creating 51
JCICS support 50

controlling access to Java EE applications 83
Converting an existing Java project to a plug-in project 175
creating a JVM server 195
Creating a plug-in project 28
Creating an OSGi plug-in project from an existing binary JAR
file 178
Creating an OSGi plug-in project from an existing JAR file
176
CSJE transient data queue 310
CSJO transient data queue 310
customizing

JVM profiles 195

D
data source 210
DebugControl interface, for debugging Java applications 314
Default Web Application

Liberty 202
deploying

applications to a JVM server 183
common libraries

Liberty 187
Deploying a CICS non-OSGi Java project 189
deploying Java applications 27
deploying OSGi bundles 183
deploying WAR file 186
developing

best practices 39, 73
restrictions 67

developing Java applications 27
development environment 24
DFHAXRO 289, 291
DFHJVMAX JVM profile 7
DFHJVMAX profile 195
DFHJVMCD JVM profile 191
DFHJVMPR JVM profile 191
DFHJVMST JVM profile 7
DFHOSGI JVM profile 7
DFHOSGI profile 195
DFHWLP JVM profile 7
DFHWLP profile 195

E
EAR file 186
ECI 114
enabling a security policy 279
enclave storage 291
encoding 43
errors and exceptions

JCICS 40

Index 323

examples
channel and containers 53

G
garbage collection

JVM server 288
getting started 1
GID 193
Gradle 183
group identifier (GID) 193

H
heap expansion 288

I
IBM Health Center 282
installing developer tools 24
IPIC connection 119, 120, 122

J
Java

performance 281
Java development

CICS Explorer SDK 27
Java development using JCICS

introduction 39
Java Message Service 107
Java options

symbols 219
Java programming in CICS

accessing databases 160
using JCICS

arguments 41
classes 40
errors and exceptions 40
interfaces 40
JavaBeans 40
JCICS command reference 44
JCICS library structure 40
PrintWriter 42
serializable classes 41
Task.err 42
Task.out 42
threads 42

Java security manager 279
Java tools 282
java.security.policy 279
javadoc 173
JCA

CCI 112, 113, 118, 119
Channels 117
ECI 114, 117, 118
resource adapter 113, 118, 119
trace 118

JCAServlet 120, 122
JCICS

ABEND handling 44, 45
abnormal termination 49
ADDRESS 54

JCICS (continued)
APPC 49
arguments 41
BMS 50
browsing the current channel 52
CANCEL command 61
channels and containers 50
class library 40
classes 40
command reference 44
condition handling 45
creating channels 51
creating containers 51
DEQ command 61
diagnostic services 53
DOCUMENT services 53
ENQ command 61
error handling 49
errors and exceptions 40
example program 53
exception handling 44, 45
exception mapping 46
file control 56
getting data from a container 52
HANDLE commands 44
HTTP services 59
INQUIRE SYSTEM 55
INQUIRE TASK 56
INQUIRE TERMINAL or NETNAME 56
interfaces 40
JavaBeans 40
Javadoc 40
JCICS classes reference 40
library structure 40
PrintWriter 42
program control 60
receiving the current channel 52
resource definitions 41
RETRIEVE command 61
serializable classes 41
START command 61
storage services 61
Task.err 42
Task.out 42
temporary storage 62
terminal control 63
threads and tasks 62
transform

data to XML 64
XML to data 64

UOWs 65, 98, 108
using threads 42
web services 65

JCICS encoding 43
JDBC 195
JMS 107
JMS Client 107
JVM

class paths
library path 8
standard (CLASSPATH_PREFIX,
CLASSPATH_SUFFIX) 8

classes
application 8

324 CICS TS for z/OS: Java Applications in CICS

JVM (continued)
classes (continued)

system or primordial 8
debugging 299
DFHAXRO 289
heap 8
installation 6
JVM profiles 6, 191
JVMPROFILEDIR system initialization parameter 191
Language Environment enclave 9, 289
native libraries 8
output redirection

samples 310
plug-ins, for debugging Java applications 314
problem determination 299
setting up 191
storage heaps 8, 9
structure 7
tracing 299
tuning 288, 289

JVM profile
DFHJVMAX 195
DFHOSGI 195
DFHWLP 195
options 216
properties 216
validation 216

JVM profile directory 191
JVM profile options

USEROUTPUTCLASS, output redirection 310
JVM profiles

case considerations 191
choosing 6
DFHJVMAX 7
DFHJVMCD 191
DFHJVMPR 191
DFHJVMST 7
DFHOSGI 7
DFHWLP 7
JVMPROFILEDIR 191
locating 191
samples supplied by CICS 6

JVM properties files 6
JVM server

allocation failure 288
best practices 39, 73
configuring Axis2 213
configuring CICS Security Token Service 215
configuring Liberty 210
configuring OSGi 196
deploy WAR file 186
deploying to 183
garbage collection 288
heap expansion 288
installing OSGi bundles 183
Java EE applications 249
Language Environment enclave 291
moving from pooled 174
new OSGi bundles 242, 243
OSGi service 188
performance 284
removing OSGI bundles 247
setting up 195
threads 251

JVM server (continued)
updating middleware bundles 245
updating OSGi bundles 242, 244

JVM system properties 6
JVMPROFILEDIR system initialization parameter 191
jvmserver 202

L
Language Environment 291
Language Environment enclave for JVMs 289
large COMMAREAs 50
Liberty

JVM server 249
Liberty Default App

security 202
Liberty JVM server

configuring 210
Liberty profile 195
limitations 67
Limiting JVM server threads 251
linking

OSGi service 188

M
managing threads 9
mapping 39
maven 39
Maven 183
memory 192
middleware bundles

updating 245
MOM 107
moving from pooled JVM to JVM server 174
multiple threads 42

N
new 242, 243

O
OSGi 73
OSGi bundle 27
OSGi bundles

installing 183
phasing in 242, 243
removing 247
updating 242, 244

OSGi framework
configuring 196

OSGi security 279
OSGi service

calling 188
OSGi Service Platform 3
output redirection

samples 310
overview

OSGi 3

Index 325

P
performance

analyzing application 282
Java 281
JVM server 284

planning 1, 12
plug-ins

in CICS JVM
container plug-in 314
DebugControl interface 314
introduction 314
Plugin interface 314
wrapper plug-in 314

Plugin interface, for debugging Java applications 314
plugin-cfg 140
plus 32 K COMMAREAs 50
POJO 3
pooled JVM

moving to JVM server 174
problem determination for JVMs 299
profiling an application 282
programming in Java 39

R
redirecting output from JVMs

samples 310
resource adaptor 114
resource definitions

for JCICS 41
restrictions 67

S
SAML

configuring 215
sample JVM profiles 6
security

CICS Default Web Application 202
security manager

applying a security policy 279
enabling a security policy 279

serializable classes, JCICS 41
setting up a JVM server 195
shared class cache

defining 6
SQLJ 195
SSL 123
storage 192
system initialization parameters for JVMs

JVMPROFILEDIR 191

T
Target Platform 27
task management 9
TCPIPSERVICE 119
thread management 9
threads

JVM server 251
threads and tasks

JCICS support 62

Time zone
symbols 239

timezone 239
tools 282
trace 122
traceRequests 122
tracing for JVMs 299
transient data queues CSJO and CSJE 310
tuning

Java 281
JVM server 284

TZ 239

U
UID 193
UNIX file access 193
UNIX System Services access 193
updating

OSGi bundles 241
updating Java EE applications 249
user identifier (UID) 193
USEROUTPUTCLASS JVM profile option 310

W
WAR file

installing 186
web server 140
web server plug-in 140
WebSphere Developer Tools 120, 122
WebSphere MQ classes for Java

OSGi JVM server
committing UOWs 173
configuring 198

WebSphere MQ classes for JMS
OSGi JVM server

configuring 198
programming 170

wrapper plug-in, for debugging Java applications 314

326 CICS TS for z/OS: Java Applications in CICS

IBM®

	Contents
	About this PDF
	Chapter 1. CICS and Java
	Java support in CICS
	The OSGi Service Platform
	JVM server runtime environment
	JVM profiles
	Structure of a JVM
	Classes and class paths in JVMs
	Storage heap in JVMs
	Where JVMs are constructed

	CICS task and thread management
	Shared class cache

	Java applications that comply with OSGi
	Java applications in a Liberty JVM server
	Java web services
	Spring Boot support in CICS

	Chapter 2. Developing Java applications
	What you need to know about CICS
	CICS transactions
	CICS tasks
	CICS application programs
	CICS services
	Java runtime environment in CICS

	Setting up your development environment
	Developing applications using the IBM CICS SDK for Java
	Setting up the Target Platform
	Creating a plug-in project
	Updating the plug-in project manifest file
	Creating a Java EE application
	Adding a project to a CICS bundle project
	Updating the project build path

	Developing applications using Maven or Gradle
	Manually importing Java libraries
	Considerations for a shared JVM
	Java development using JCICS
	The Java class library for CICS (JCICS)
	JavaBeans
	Library structure
	CICS resources
	Arguments for passing data
	Serializable classes
	Task.out and Task.err
	Threads

	Data encoding
	JCICS API services and examples
	CICS exception handling in Java programs
	CICS error-handling commands
	CICS conditions

	CICS exception handling in Java Web applications
	JCICS exception mapping
	Error handling and abnormal termination
	APPC mapped conversations
	Basic Mapping Support (BMS)
	Channel and container examples
	Creating channels and containers in JCICS
	Putting data into a container
	Passing a channel to another program or task
	Receiving the current channel
	Getting data from a container
	Browsing the current channel
	Channel and containers example

	Diagnostic services
	Document services
	Environment services
	ADDRESS
	ASSIGN
	INQUIRE SYSTEM
	INQUIRE TASK
	INQUIRE TERMINAL and INQUIRE NETNAME

	File services
	HTTP and TCP/IP services
	Program services
	Scheduling services
	Serialization services
	Storage services
	Threads and tasks example
	Temporary storage queue services
	Terminal services
	Transforming between data and XML
	Transient data queue services
	Unit of work (UOW) services
	Web services example

	Using JCICS
	JCICS restrictions

	Java development using JCICSX
	JCICSX examples

	Guidance for using OSGi
	Developing Java applications to run in a Liberty JVM server
	Java EE and Liberty applications
	Creating a Dynamic Web Project
	Creating an OSGi Application Project
	Creating an Enterprise Application Project
	Creating a URI map and transaction

	Migrating Java EE applications to run in Liberty JVM server
	Linking to a Java EE or Spring Boot application from a CICS program
	Preparing a Java EE application to be called by a CICS program
	Preparing a Spring Boot application to be called by a CICS program
	Program Lifecycle

	Java Transaction API (JTA)
	Java Persistence API (JPA)
	Enterprise JavaBeans (EJB)
	Creating an Enterprise JavaBeans (EJB) project
	Using JTA transactions in EJBs
	Enterprise Java Bean (EJB) methods with remote interfaces
	Configuring IIOP-RMI transport for remote EJBs
	Configuring CSIv2 to secure IIOP communication

	Java Message Service (JMS)
	Java Management Extensions API (JMX)
	Java Authorization Contract for Containers (JACC)
	Java Authentication Service Provider Interface for Containers (JASPIC)
	Java EE Connector Architecture (JCA)
	Using the JCA local ECI resource adapter
	Configuring the JCA local ECI resource adapter
	Porting JCA ECI applications into a Liberty JVM server
	Using the local ECI resource adapter to link to a program in CICS
	Using the JCA local ECI resource adapter with channels and containers
	Using the JCA local ECI resource adapter with COMMAREA

	Unit of work management with JCA
	Enabling trace for the JCA local ECI resource adapter
	Restrictions of the JCA local ECI resource adapter

	CICS remote development feature for Java
	Configuring the IPIC connection
	Setting up your local Java test environment
	Testing the example Java EE JCAServlet application
	Configuring the trace function in your local Liberty profile
	Configuring a secure SSL connection

	Developing microservices with MicroProfile
	Spring Boot applications
	JCICS in Spring Boot applications
	JPA in Spring Boot applications
	Security in Spring Boot applications
	Transactional integration and Spring Boot applications
	Threading and Concurrency in Spring Boot applications
	JDBC in Spring Boot applications
	JMS in Spring Boot applications
	Building and deploying Spring Boot applications

	Liberty web server plug-in

	Liberty features
	Accessing data from Java applications
	Interacting with structured data from Java
	Developing Java applications to use the JZOS Toolkit API in an OSGi JVM server
	Accessing IBM MQ from Java programs
	Using IBM MQ classes for JMS in a CICS Liberty JVM server
	Programming with IBM MQ classes for JMS with a Liberty JVM server

	Using IBM MQ classes for JMS in an OSGi JVM server
	Programming with IBM MQ classes for JMS with an OSGi JVM server
	CICS abends during the processing of JMS requests

	Using IBM MQ classes for Java in an OSGi JVM server
	Committing a unit of work involving WebSphere MQ requests
	CICS abends during the processing of IBM MQ requests

	Connectivity from Java applications in CICS
	JCA local ECI support
	Packaging existing applications to run in a JVM server
	Moving applications to a JVM server
	Converting an existing Java project to a plug-in project
	Importing the contents of a JAR file into an OSGi plug-in project
	Importing a binary JAR file into an OSGi plug-in project

	Writing Java classes to redirect JVM stdout and stderr output
	The output redirection interface
	Possible destinations for output
	Handling output redirection errors and internal errors

	Chapter 3. Deploying applications to a JVM server
	Deploying OSGi bundles in a JVM server
	Deploying a Java EE application in a CICS bundle to a Liberty JVM server
	Deploying Java EE applications directly to a Liberty JVM server
	Deploying common libraries to a Liberty JVM server
	Invoking a Java application in a JVM server
	Deploying a CICS non-OSGi Java application

	Chapter 4. Setting up Java support
	Setting the location for the JVM profiles
	Setting the memory limits for Java
	Giving CICS regions access to z/OS UNIX directories and files
	Setting up a JVM server
	Configuring an OSGi JVM server
	JVM profile example
	Configuring an OSGi JVM server to support JMS
	Configuring an OSGi JVM server to support IBM MQ classes for Java

	Configuring a Liberty JVM server
	CICS standard-mode Liberty: Java EE Full Platform support without full CICS integration
	JVM profile example
	Manually creating a Liberty server
	Configuring the CICS Default Web Application
	Manually tailoring server.xml
	Configuring Admin Center
	Auto-configuring a Db2 DataSource with type 2 connectivity through CICS using the jdbc-4.0, jdbc-4.1, or jdbc-4.2 feature
	Manually configuring a Db2 DataSource with type 2 connectivity through CICS using the jdbc-4.0, jdbc-4.1, or jdbc-4.2 feature
	Manually configuring a Db2 DataSource with type 4 connectivity through Liberty using the jdbc-4.0, jdbc-4.1, or jdbc-4.2 feature
	Manually configuring a Db2 DataSource or the DriverManager interface with type 2 connectivity through CICS using the cicsts:jdbc-1.0 feature
	Configuring a Liberty JVM server to support JMS

	Configuring a JVM server for Axis2
	JVM profile example

	Configuring a JVM server for a CICS Security Token Service
	JVM profile validation and properties
	Rules for coding profiles
	Options for JVMs in a CICS environment
	Symbols used in the JVM profile
	JVM server profile options
	JVM command-line options
	JVM system properties
	Setting the time zone for a JVM server

	Chapter 5. Updating OSGi bundles in a JVM server
	Updating OSGi bundles in an OSGi JVM server
	Using CICS bundle PHASEIN to dynamically update an OSGi bundle without updating CICS resources
	Phasing in an OSGi bundle with CICS resource changes
	Replacing OSGi bundles in an OSGi JVM server

	Updating bundles that contain common libraries
	Updating OSGi middleware bundles

	Chapter 6. Removing OSGi bundles from a JVM server
	Chapter 7. Updating Java EE applications in a Liberty JVM server
	Chapter 8. Managing the thread limit of JVM servers
	Chapter 9. Security for Java applications
	Configuring security for OSGi applications
	Configuring security for a Liberty JVM server
	The Liberty angel process
	Authenticating users in a Liberty JVM server
	Authorizing users to run applications in a Liberty JVM server
	Authorizing applications by using OAuth 2.0
	Configuring persistent OAuth 2.0 services

	Authorization using SAF role mapping
	Configuring security for a Liberty JVM server with the Java EE security API 1.0
	Authenticating by using a database identity store
	Authenticating by using a custom identity store

	Configuring security for a Liberty JVM server by using an LDAP registry
	Configuring SSL (TLS) for a Liberty JVM server using a Java keystore
	Configuring SSL (TLS) for a Liberty JVM server using RACF
	Configuring security for remote JCICSX API development
	Setting up SSL (TLS) client certificate authentication in a Liberty JVM server
	Using the syncToOSThread function

	Enabling a Java security manager

	Chapter 10. Improving Java performance
	Determining performance goals for your Java workload
	Analyzing Java applications using IBM Health Center
	Garbage collection and heap expansion
	Improving JVM server performance
	Examining processor usage by JVM servers
	Calculating storage requirements for JVM servers
	Tuning JVM server heap and garbage collection
	Tuning the JVM server startup environment

	Language Environment enclave storage for JVMs
	Identifying Language Environment storage needs for JVM servers
	Modifying the enclave of a JVM server with DFHAXRO

	Tuning the z/OS shared library region

	Chapter 11. Troubleshooting Java applications
	Diagnostics for Java
	Troubleshooting Liberty JVM servers and Java web applications
	Controlling the location for JVM output, logs, dumps and trace
	Using a DD statement to route JVM server output to JES
	Redirecting the JVM stdout and stderr streams
	The sample classes com.ibm.cics.samples.SJMergedStream and com.ibm.cics.samples.SJTaskStream

	Control of Java-related dump options

	CICS component tracing for JVM servers
	Activating and managing tracing for JVM servers
	Debugging a Java application
	The CICS JVM plug-in mechanism

	Notices
	Index
	Special Characters
	A
	B
	C
	D
	E
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W

